
Ian F. Darwin

Fourth

Edition

Java
 Cookbook
Problems and Solutions
for Java Developers

Ian F. Darwin

Java Cookbook
Problems and Solutions for Java Developers

FOURTH EDITION

978-1-492-07258-4

[LSI]

Java Cookbook
by Ian F. Darwin

Copyright © 2020 RejmiNet Group, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Zan McQuade
Development Editor: Corbin Collins
Production Editor: Beth Kelly
Copyeditor: Amanda Kersey
Proofreader: Charles Roumeliotis

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2001: First Edition
June 2004: Second Edition
July 2014: Third Edition
March 2020: Fourth Edition

Revision History for the Fourth Edition
2020-03-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492072584 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492072584

In Memoriam

Andrej Cerar Darwin 1989-2014

Son, friend, fellow writer, and craftsman.

Table of Contents

Preface. xiii

1. Getting Started: Compiling and Running Java. 1
1.0 Introduction 1
1.1 Compiling and Running Java: Standard JDK 2
1.2 Compiling and Running Java: GraalVM for Better Performance 3
1.3 Compiling, Running, and Testing with an IDE 5
1.4 Exploring Java with JShell 11
1.5 Using CLASSPATH Effectively 13
1.6 Downloading and Using the Code Examples 15
1.7 Automating Dependencies, Compilation, Testing, and Deployment with

Apache Maven 23
1.8 Automating Dependencies, Compilation, Testing, and Deployment with

Gradle 27
1.9 Dealing with Deprecation Warnings 29
1.10 Maintaining Code Correctness with Unit Testing: JUnit 31
1.11 Maintaining Your Code with Continuous Integration 34
1.12 Getting Readable Stack Traces 38
1.13 Finding More Java Source Code 39
1.14 Finding Runnable Java Libraries 40

2. Interacting with the Environment. 43
2.0 Introduction 43
2.1 Getting Environment Variables 43
2.2 Getting Information from System Properties 44
2.3 Dealing with Code That Depends on the Java Version or the Operating

System 46

v

2.4 Using Extensions or Other Packaged APIs 51
2.5 Using the Java Modules System 52

3. Strings and Things. 57
3.0 Introduction 57
3.1 Taking Strings Apart with Substrings or Tokenizing 60
3.2 Putting Strings Together with StringBuilder 65
3.3 Processing a String One Character at a Time 67
3.4 Aligning, Indenting, and Unindenting Strings 69
3.5 Converting Between Unicode Characters and Strings 73
3.6 Reversing a String by Word or by Character 75
3.7 Expanding and Compressing Tabs 76
3.8 Controlling Case 81
3.9 Entering Nonprintable Characters 82
3.10 Trimming Blanks from the End of a String 83
3.11 Creating a Message with I18N Resources 85
3.12 Using a Particular Locale 88
3.13 Creating a Resource Bundle 89
3.14 Program: A Simple Text Formatter 90
3.15 Program: Soundex Name Comparisons 92

4. Pattern Matching with Regular Expressions. 97
4.0 Introduction 97
4.1 Regular Expression Syntax 99
4.2 Using Regexes in Java: Test for a Pattern 106
4.3 Finding the Matching Text 109
4.4 Replacing the Matched Text 112
4.5 Printing All Occurrences of a Pattern 115
4.6 Printing Lines Containing a Pattern 118
4.7 Controlling Case in Regular Expressions 119
4.8 Matching Accented, or Composite, Characters 120
4.9 Matching Newlines in Text 121
4.10 Program: Apache Logfile Parsing 123
4.11 Program: Full Grep 125

5. Numbers. 131
5.0 Introduction 131
5.1 Checking Whether a String Is a Valid Number 134
5.2 Converting Numbers to Objects and Vice Versa 135
5.3 Taking a Fraction of an Integer Without Using Floating Point 136
5.4 Working with Floating-Point Numbers 137

vi | Table of Contents

5.5 Formatting Numbers 142
5.6 Converting Among Binary, Octal, Decimal, and Hexadecimal 146
5.7 Operating on a Series of Integers 147
5.8 Formatting with Correct Plurals 149
5.9 Generating Random Numbers 151
5.10 Multiplying Matrices 153
5.11 Using Complex Numbers 155
5.12 Handling Very Large Numbers 158
5.13 Program: TempConverter 160
5.14 Program: Number Palindromes 162

6. Dates and Times. 167
6.0 Introduction 167
6.1 Finding Today’s Date 170
6.2 Formatting Dates and Times 172
6.3 Converting Among Dates/Times, YMDHMS, and Epoch Seconds 174
6.4 Parsing Strings into Dates 175
6.5 Difference Between Two Dates 176
6.6 Adding to or Subtracting from a Date 177
6.7 Handling Recurring Events 178
6.8 Computing Dates Involving Time Zones 181
6.9 Interfacing with Legacy Date and Calendar Classes 182

7. Structuring Data with Java. 185
7.0 Introduction 185
7.1 Using Arrays for Data Structuring 186
7.2 Resizing an Array 188
7.3 The Collections Framework 189
7.4 Like an Array, but More Dynamic 190
7.5 Using Generic Types in Your Own Class 194
7.6 How Shall I Iterate Thee? Let Me Enumerate the Ways 197
7.7 Eschewing Duplicates with a Set 201
7.8 Structuring Data in a Linked List 202
7.9 Mapping with Hashtable and HashMap 207
7.10 Storing Strings in Properties and Preferences 209
7.11 Sorting a Collection 213
7.12 Avoiding the Urge to Sort 218
7.13 Finding an Object in a Collection 220
7.14 Converting a Collection to an Array 222
7.15 Making Your Data Iterable 223
7.16 Using a Stack of Objects 226

Table of Contents | vii

7.17 Multidimensional Structures 229
7.18 Simplifying Data Objects with Lombok or Record 231
7.19 Program: Timing Comparisons 233

8. Object-Oriented Techniques. 237
8.0 Introduction 237
8.1 Object Methods: Formatting Objects with toString(), Comparing with

Equals 240
8.2 Using Inner Classes 247
8.3 Providing Callbacks via Interfaces 249
8.4 Polymorphism/Abstract Methods 253
8.5 Using Typesafe Enumerations 255
8.6 Avoiding NPEs with Optional 259
8.7 Enforcing the Singleton Pattern 261
8.8 Roll Your Own Exceptions 263
8.9 Using Dependency Injection 265
8.10 Program: Plotter 268

9. Functional Programming Techniques: Functional Interfaces, Streams,
and Parallel Collections. 273
9.0 Introduction 273
9.1 Using Lambdas/Closures Instead of Inner Classes 276
9.2 Using Lambda Predefined Interfaces Instead of Your Own 280
9.3 Simplifying Processing with Streams 283
9.4 Simplifying Streams with Collectors 284
9.5 Improving Throughput with Parallel Streams and Collections 287
9.6 Using Existing Code as Functional with Method References 289
9.7 Java Mixins: Mixing in Methods 293

10. Input and Output: Reading, Writing, and Directory Tricks. 297
10.0 Introduction 297
10.1 About InputStreams/OutputStreams and Readers/Writers 299
10.2 Reading a Text File 301
10.3 Reading from the Standard Input or from the Console/Controlling

Terminal 304
10.4 Printing with Formatter and printf 308
10.5 Scanning Input with StreamTokenizer 312
10.6 Scanning Input with the Scanner Class 316
10.7 Scanning Input with Grammatical Structure 319
10.8 Copying a File 324
10.9 Reassigning the Standard Streams 325

viii | Table of Contents

10.10 Duplicating a Stream as It Is Written; Reassigning Standard Streams 326
10.11 Reading/Writing a Different Character Set 329
10.12 Those Pesky End-of-Line Characters 330
10.13 Beware Platform-Dependent File Code 330
10.14 Reading/Writing Binary Data 331
10.15 Reading and Writing JAR or ZIP Archives 332
10.16 Finding Files in a Filesystem-Neutral Way with getResource() and

getResourceAsStream() 336
10.17 Getting File Information: Files and Path 338
10.18 Creating a New File or Directory 345
10.19 Changing a File’s Name or Other Attributes 346
10.20 Deleting a File 349
10.21 Creating a Transient/Temporary File 351
10.22 Listing a Directory 353
10.23 Getting the Directory Roots 354
10.24 Using the FileWatcher Service to Get Notified About File Changes 356
10.25 Program: Save User Data to Disk 358
10.26 Program: Find—Walking a File Tree 361

11. Data Science and R. 367
11.1 Machine Learning with Java 368
11.2 Using Data In Apache Spark 369
11.3 Using R Interactively 372
11.4 Comparing/Choosing an R Implementation 374
11.5 Using R from Within a Java App: Renjin 375
11.6 Using Java from Within an R Session 377
11.7 Using FastR, the GraalVM Implementation of R 378
11.8 Using R in a Web App 380

12. Network Clients. 383
12.0 Introduction 383
12.1 HTTP/REST Web Client 385
12.2 Contacting a Socket Server 388
12.3 Finding and Reporting Network Addresses 389
12.4 Handling Network Errors 391
12.5 Reading and Writing Textual Data 392
12.6 Reading and Writing Binary or Serialized Data 394
12.7 UDP Datagrams 397
12.8 URI, URL, or URN? 400
12.9 Program: TFTP UDP Client 401
12.10 Program: Sockets-Based Chat Client 406

Table of Contents | ix

12.11 Program: Simple HTTP Link Checker 410

13. Server-Side Java. 413
13.0 Introduction 413
13.1 Opening a Server Socket for Business 414
13.2 Finding Network Interfaces 417
13.3 Returning a Response (String or Binary) 418
13.4 Returning Object Information Across a Network Connection 422
13.5 Handling Multiple Clients 423
13.6 Serving the HTTP Protocol 428
13.7 Securing a Web Server with SSL and JSSE 430
13.8 Creating a REST Service with JAX-RS 433
13.9 Network Logging 436
13.10 Setting Up SLF4J 437
13.11 Network Logging with Log4j 439
13.12 Network Logging with java.util.logging 444

14. Processing JSON Data. 449
14.0 Introduction 449
14.1 Generating JSON Directly 451
14.2 Parsing and Writing JSON with Jackson 452
14.3 Parsing and Writing JSON with org.json 453
14.4 Parsing and Writing JSON with JSON-B 455
14.5 Finding JSON Elements with JSON Pointer 457

15. Packages and Packaging. 461
15.0 Introduction 461
15.1 Creating a Package 462
15.2 Documenting Classes with Javadoc 464
15.3 Beyond Javadoc: Annotations/Metadata 468
15.4 Preparing a Class as a JavaBean 469
15.5 Archiving with JAR 473
15.6 Running a Program from a JAR 474
15.7 Packaging Web Tier Components into a WAR File 476
15.8 Creating a Smaller Distribution with jlink 478
15.9 Using JPMS to Create a Module 479

16. Threaded Java. 483
16.0 Introduction 483
16.1 Running Code in a Different Thread 485
16.2 Displaying a Moving Image with Animation 489

x | Table of Contents

16.3 Stopping a Thread 494
16.4 Rendezvous and Timeouts 497
16.5 Synchronizing Threads with the synchronized Keyword 498
16.6 Simplifying Synchronization with Locks 504
16.7 Simplifying Producer/Consumer with the Queue Interface 508
16.8 Optimizing Parallel Processing with Fork/Join 511
16.9 Scheduling Tasks: Future Times, Background Saving in an Editor 514

17. Reflection, or “A Class Named Class”. 519
17.0 Introduction 519
17.1 Getting a Class Descriptor 520
17.2 Finding and Using Methods and Fields 521
17.3 Accessing Private Methods and Fields via Reflection 525
17.4 Loading and Instantiating a Class Dynamically 526
17.5 Constructing a Class from Scratch with a ClassLoader 529
17.6 Constructing a Class from Scratch with JavaCompiler 530
17.7 Performance Timing 533
17.8 Printing Class Information 537
17.9 Listing Classes in a Package 539
17.10 Using and Defining Annotations 542
17.11 Finding Plug-In-Like Classes via Annotations 547
17.12 Program: CrossRef 549

18. Using Java with Other Languages. 555
18.0 Introduction 555
18.1 Running an External Program from Java 556
18.2 Running a Program and Capturing Its Output 560
18.3 Calling Other Languages via javax.script 564
18.4 Mixing Languages with GraalVM 566
18.5 Marrying Java and Perl 567
18.6 Calling Other Languages via Native Code 571
18.7 Calling Java from Native Code 576

Afterword. dlxxix

A. Java Then and Now. 581

Index. 591

Table of Contents | xi

1 For the quirks, see the Java Puzzlers books by Joshua Bloch and Neal Gafter (Addison-Wesley).

Preface

Like any of the most-used programming languages, Java has its share of detractors,
advocates, issues, quirks,1 and a learning curve. The Java Cookbook aims to help the
Java developer get up to speed on some of the most important parts of Java develop‐
ment. I focus on the standard APIs and some third-party APIs, but I don’t hesitate to
cover language issues as well.

This is the fourth edition of this book, and it has been shaped by many people and by
the myriad changes that Java has undergone over its first two decades of popularity.
Readers interested in Java’s history can refer to Appendix A.

Java 11 is the current long-term supported version, but Java 12 and 13 are out. Java 14
is in early access and scheduled for final release the very same day as this book’s
fourth edition. The new cadence of releases every six months may be great for the
Java SE development team at Oracle and for click-driven, Java-related news sites, but
it “may cause some extra work” for Java book authors, since books typically have a
longer revision cycle than Java now does! Java 9, which came out after the previous
edition of this book, was a breaking release, the first release in a very long time to
break backwards compatibility, primarily the Java module system. Everything in the
book is assumed to work on any JVM that is still being used to develop code. Nobody
should be using Java 7 (or anything before it!) for anything, and nobody should be
doing new development in Java 8. If you are, it’s time to move on!

The goal of this revision is to keep the book up to date with all this change. While
cutting out a lot of older material, I’ve added information on new features such as
Modules and the interactive JShell, and I’ve updated a lot of other information along
the way.

xiii

http://javapuzzlers.com

Who This Book Is For
I’m going to assume that you know the basics of Java. I won’t tell you how to println
a string, nor how to write a class that extends another and/or implements an
interface. I presume you’ve taken a Java course such as Learning Tree’s Introduction
or that you’ve studied an introductory book such as Head First Java, Learning Java, or
Java in a Nutshell (O’Reilly). However, Chapter 1 covers some techniques that you
might not know very well and that are necessary to understand some of the later
material. Feel free to skip around! Both the printed version of the book and the elec‐
tronic copy are heavily cross-referenced.

What’s in This Book?
Java has seemed better suited to “development in the large,” or enterprise application
development, than to the one-line, one-off script in Perl, Awk, or Python. That’s
because it is a compiled, object-oriented language. However, this suitability has
changed somewhat with the appearance of JShell (see Recipe 1.4). I illustrate many
techniques with shorter Java class examples and even code fragments; some of the
simpler ones will be shown using JShell. All of the code examples (other than some
one- or two-liners) are in one of my public GitHub repositories, so you can rest
assured that every fragment of code you see here has been compiled, and most have
been run recently.

Some of the longer examples in this book are tools that I originally wrote to automate
some mundane task or another. For example, a tool called MkIndex (in the javasrc
repository) reads the top-level directory of the place where I keep my Java example
source code, and it builds a browser-friendly index.html file for that directory.
Another example is XmlForm, which was used to convert parts of the manuscript from
XML into the form needed by another publishing software. XmlForm also handled—
by use of another program, GetMark—full and partial code insertions from the javasrc
directory into the book manuscript. XmlForm is included in the Github repository I
mentioned, as is a later version of GetMark, though neither of these was used in build‐
ing the fourth edition. These days, O’Reilly’s Atlas publishing software uses Asciidoc‐
tor, which provides the mechanism we use for inserting files and parts of files into the
book.

Organization of This Book
Let’s go over the organization of this book. Each chapter consists of a handful of rec‐
ipes, short sections that describe a problem and its solution, along with a code exam‐
ple. The code in each recipe is intended to be largely self-contained; feel free to
borrow bits and pieces of any of it for use in your own projects. The code is dis‐
tributed with a Berkeley-style copyright, just to discourage wholesale reproduction.

xiv | Preface

https://learningtree.com/471
http://shop.oreilly.com/product/9780596009205.do
http://shop.oreilly.com/product/0636920023463.do
http://shop.oreilly.com/product/9780596007737.do
https://asciidoctor.org
https://asciidoctor.org

I start off Chapter 1, Getting Started: Compiling and Running Java, by describing some
methods of compiling your program on different platforms, running them in differ‐
ent environments (browser, command line, windowed desktop), and debugging.

Chapter 2, Interacting with the Environment, moves from compiling and running your
program to getting it to adapt to the surrounding countryside—the other programs
that live in your computer.

The next few chapters deal with basic APIs. Chapter 3, Strings and Things, concen‐
trates on one of the most basic but powerful data types in Java, showing you how to
assemble, dissect, compare, and rearrange what you might otherwise think of as ordi‐
nary text. This chapter also covers the topic of internationalization/localization so
that your programs can work as well in Akbar, Afghanistan, Algiers, Amsterdam, and
Angleterre as they do in Alberta, Arkansas, and Alabama.

Chapter 4, Pattern Matching with Regular Expressions, teaches you how to use the
powerful regular expressions technology from Unix in many string-matching and
pattern-matching problem domains. Regex processing has been standard in Java for
years, but if you don’t know how to use it, you may be reinventing the flat tire.

Chapter 5, Numbers, deals both with built-in numeric types such as int and double,
as well as the corresponding API classes (Integer, Double, etc.) and the conversion
and testing facilities they offer. There is also brief mention of the “big number”
classes. Because Java programmers often need to deal in dates and times, both locally
and internationally, Chapter 6, Dates and Times, covers this important topic.

The next few chapters cover data processing. As in most languages, arrays in Java are
linear, indexed collections of similar objects, as discussed in Chapter 7, Structuring
Data with Java. This chapter goes on to deal with the many Collections classes: pow‐
erful ways of storing quantities of objects in the java.util package, including use of
Java Generics.

Despite some syntactic resemblance to procedural languages such as C, Java is at
heart an Object-Oriented Programming (OOP) language, with some important Func‐
tional Programming (FP) constructs skilfully blended in. Chapter 8, Object-Oriented
Techniques, discusses some of the key notions of OOP as it applies to Java, including
the commonly overridden methods of java.lang.Object and the important issue of
design patterns. Java is not, and never will be, a pure FP language. However, it is pos‐
sible to use some aspects of FP, increasingly so with Java 8 and its support of lambda
expressions (a.k.a. closures). This is discussed in Chapter 9, Functional Programming
Techniques: Functional Interfaces, Streams, and Parallel Collections.

The next chapter deals with aspects of traditional input and output. Chapter 10, Input
and Output: Reading, Writing, and Directory Tricks, details the rules for reading and
writing files (don’t skip this if you think files are boring; you’ll need some of this
information in later chapters). The chapter also shows you everything else about

Preface | xv

files—such as finding their size and last-modified time—and about reading and mod‐
ifying directories, creating temporary files, and renaming files on disk.

Big data and data science have become a thing, and Java is right in there. Apache
Hadoop, Apache Spark, and much more of the big data infrastructure is written in,
and extensible with, Java, as described in Chapter 11, Data Science and R. The R pro‐
gramming language is popular with data scientists, statsticians, and other scientists.
There are at least two reimplementations of R coded in Java, and Java can also be
interfaced directly with the standard R implementation in both directions, so this
chapter covers R as well.

Because Java was originally promulgated as the programming language for the inter‐
net, it’s only fair to spend some time on networking in Java. Chapter 12, Network Cli‐
ents, covers the basics of network programming from the client side, focusing on
sockets. Today so many applications need to access a web service, primarily RESTful
web services, that this seemed to be necessary. I’ll then move to the server side in
Chapter 13, Server-Side Java, wherein you’ll learn some server-side programming
techniques.

One simple text-based representation for data interchange is JSON, the JavaScript
object notation. Chapter 14, Processing JSON Data, describes the format and some of
the many APIs that have emerged to deal with it.

Chapter 15, Packages and Packaging, shows how to create packages of classes that
work together. This chapter also talks about deploying (a.k.a. distributing and instal‐
ling) your software.

Chapter 16, Threaded Java, tells you how to write classes that appear to do more than
one thing at a time and let you take advantage of powerful multiprocessor hardware.

Chapter 17, Reflection, or “A Class Named Class”, lets you in on such secrets as how to
write API cross-reference documents mechanically and how web servers are able to
load any old Servlet—never having seen that particular class before—and run it.

Sometimes you already have code written and working in another language that can
do part of your work for you, or you want to use Java as part of a larger package.
Chapter 18, Using Java with Other Languages, shows you how to run an external pro‐
gram (compiled or script) and also interact directly with native code in C/C++ or
other languages.

There isn’t room in a book this size for everything I’d like to tell you about Java. The
Afterword presents some closing thoughts and a link to my online summary of Java
APIs that every Java developer should know about.

Finally, Appendix A, Java Then and Now, gives the storied history of Java in a release-
by-release timeline, so whatever version of Java you learned, you can jump in here
and get up to date quickly.

xvi | Preface

So many topics, and so few pages! Many topics do not recieve 100% coverage; I’ve
tried to include the most important or most useful parts of each API. To go beyond,
check the official javadoc pages for each package; many of these pages have some
brief tutorial information on how the package is to be used.

Besides the parts of Java covered in this book, two other platform editions, Java ME
and Java EE, have been standardized. Java Micro Edition (Java ME) is concerned with
small devices such as handhelds, cell phones, and fax machines. At the other end of
the size scale—large server machines—there’s Eclipse Jakarta EE, replacing the former
Java EE, which in the last century was known as J2EE. Jakarta EE is concerned with
building large, scalable, distributed applications. APIs that are part of Jakarta EE
include Servlets, JavaServer Pages, JavaServer Faces, JavaMail, Enterprise JavaBeans
(EJBs), Container and Dependency Injection (CDI), and Transactions. Jakarta EE
packages normally begin with “javax” because they are not core packages. This book
mentions but a few of these; there is also a Java EE 8 Cookbook by Elder Moraes
(O’Reilly) that covers some of the Jakarta EE APIs, as well as an older Java Servlet &
JSP Cookbook by Bruce Perry (O’Reilly).

This book doesn’t cover Java Micro Edition, Java ME. At all. But speaking of cell
phones and mobile devices, you probably know that Android uses Java as its lan‐
guage. What should be comforting to Java developers is that Android also uses most
of the core Java API, except for Swing and AWT, for which it provides Android-
specific replacements. The Java developer who wants to learn Android may consider
looking at my Android Cookbook (O’Reilly), or the book’s website.

Java Books
A lot of useful information is packed into this book. However, due to the breadth of
topics, it is not possible to give book-length treatment to any one topic. Because of
this, the book contains references to many websites and other books. In pointing out
these references, I’m hoping to serve my target audience: the person who wants to
learn more about Java.

O’Reilly publishes, in my opinion, the best selection of Java books on the market. As
the API continues to expand, so does the coverage. Check out the complete list of
O’Reilly’s collection of Java books; you can buy them at most bookstores, both physi‐
cal and virtual. You can also read them online through the O’Reilly Online Learning
Platform, a paid subscription service. And, of course, most are now available in ebook
format; O’Reilly ebooks are DRM free, so you don’t have to worry about their
copy-protection scheme locking you into a particular device or system, as you do
with certain other publishers.

Though many books are mentioned at appropriate spots in the book, a few deserve
special mention here.

Preface | xvii

https://projects.eclipse.org/projects/ee4j.jakartaee-platform
https://www.oreilly.com/library/view/java-ee-8/9781788293037
http://shop.oreilly.com/product/9780596005726.do
http://shop.oreilly.com/product/9780596005726.do
http://shop.oreilly.com/product/0636920038092.do
http://androidcookbook.com
https://ssearch.oreilly.com/?i=1;m_Sort=searchDate;q=java+o%27reilly;q1=Books;x1=t1&act=sort
http://oreilly.com
http://oreilly.com

First and foremost, David Flanagan and Benjamin Evan’s Java in a Nutshell (O’Reilly)
offers a brief overview of the language and API and a detailed reference to the most
essential packages. This is handy to keep beside your computer. Head First Java by
Bert Bates and Kathy Sierra offers a much more whimsical introduction to the lan‐
guage and is recommended for the less experienced developer.

Java 8 Lambdas (Warburton, O’Reilly) covers the Lambda syntax introduced in Java 8
in support of functional programming and more concise code in general.

Java 9 Modularity: Patterns and Practices for Developing Maintainable Applications by
Sander Mak and Paul Bakker (O’Reilly) covers the important changes made in the
language in Java 9 for the Java module system.

Java Virtual Machine by Jon Meyer and Troy Downing (O’Reilly) will intrigue the
person who wants to know more about what’s under the hood. This book is out of
print but can be found used and in libraries.

A definitive (and monumental) description of programming the Swing GUI is Java
Swing by Robert Eckstein et al. (O’Reilly).

Java Network Programming and Java I/O, both by Elliotte Harold (O’Reilly), are also
useful references.

For Java Database work, Database Programming with JDBC & Java by George Reese
(O’Reilly) and Pro JPA 2: Mastering the Java Persistence API by Mike Keith and Mer‐
rick Schincariol (Apress) are recommended. Or my forthcoming overview of Java
Database.

Although the book you’re now reading doesn’t have much coverage of the Java EE, I’d
like to mention two books on that topic:

• Arun Gupta covers the Enterprise Edition in Java EE 7 Essentials (O’Reilly).
• Adam Bien’s Real World Java EE Patterns: Rethinking Best Practices offers useful

insights in designing and implementing an Enterprise application.

You can find more at the O’Reilly website.

Finally, although it’s not a book, Oracle has a great deal of Java information on the
web. This web page used to feature a large diagram showing all the components of
Java in a “conceptual diagram.” An early version of this is shown in Figure P-1; each
colored box is a clickable link to details on that particular technology.

xviii | Preface

http://shop.oreilly.com/product/9780596007737.do
http://shop.oreilly.com/product/9780596009205.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920049494.do
http://shop.oreilly.com/product/9781565921948.do
http://shop.oreilly.com/product/9780596004088.do
http://shop.oreilly.com/product/9780596004088.do
http://shop.oreilly.com/product/0636920028420.do
http://shop.oreilly.com/product/9780596527501.do
http://shop.oreilly.com/product/9781565926165.do
https://darwinsys.com/db_in_java
https://darwinsys.com/db_in_java
http://shop.oreilly.com/product/0636920030614.do
http://realworldpatterns.com
https://shop.oreilly.com
https://docs.oracle.com/en/java/javase/13/docs

2 With possible exceptions for algorithm decisions that are less relevant today given the massive changes in
computing power now available.

Figure P-1. Java conceptual diagram from Oracle documentation

For better or for worse, newer versions of Java have replaced this with a text page; for
Java 13 the page is at https://docs.oracle.com/en/java/javase/13.

General Programming Books
Donald E. Knuth’s The Art of Computer Programming (Addison-Wesley) has been a
source of inspiration to generations of computing students since its first publication
in 1968. Volume 1 covers Fundamental Algorithms, Volume 2 is Seminumerical Algo‐
rithms, Volume 3 is Sorting and Searching, and Volume 4A is Combinatorial Algo‐
rithms, Part 1. The remaining volumes in the projected series are not completed.
Although his examples are far from Java (he invented the hypothetical assembly lan‐
guage MIX for his examples), many of his discussions of algorithms—of how com‐
puters ought to be used to solve real problems—are as relevant today as they were
years ago.2

Preface | xix

https://docs.oracle.com/en/java/javase/13
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

Though its code examples are quite dated now, the book The Elements of Program‐
ming Style by Brian Kernighan and P. J. Plauger (McGraw-Hill) set the style (literally)
for a generation of programmers with examples from various structured
programming languages. Kernighan and Plauger also wrote a pair of books, Software
Tools (Addison-Wesley) and Software Tools in Pascal (Addison-Wesley), which
demonstrated so much good advice on programming that I used to advise all pro‐
grammers to read them. However, these three books are dated now; many times I
wanted to write a follow-on book in a more modern language. Instead I now defer to
The Practice of Programming, Kernighan’s follow-on—cowritten with Rob Pike
(Addison-Wesley)—to the Software Tools series. This book continues the Bell Labs
tradition of excellence in software textbooks. In previous editions of this book, I had
even adapted one bit of code from their book, their CSV parser. Finally, Kernighan
recently published UNIX: A History and a Memoir, his take on the story of Unix.

See also The Pragmatic Programmer by Andrew Hunt and David Thomas (Addison-
Wesley).

Design Books
Peter Coad’s Java Design (PTR-PH/Yourdon Press) discusses the issues of object-
oriented analysis and design specifically for Java. Coad is somewhat critical of Java’s
implementation of the observable-observer paradigm and offers his own replacement
for it.

One of the most famous books on object-oriented design in recent years is Design
Patterns by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addison-Wesley). These authors are often collectively called the “Gang of Four,”
resulting in their book sometimes being referred to as the GoF book. One of my col‐
leagues called it “the best book on object-oriented design ever,” and I agree; at the
very least, it’s among the best.

Refactoring by Martin Fowler (Addison-Wesley) covers a lot of “coding cleanups” that
can be applied to code to improve readability and maintainability. Just as the GoF
book introduced new terminology that helps developers and others communicate
about how code is to be designed, Fowler’s book provided a vocabulary for discussing
how it is to be improved. But this book may be less useful than others; many of the
refactorings now appear in the Refactoring Menu of the Eclipse IDE (see Recipe 1.3).

Two important streams of methodology theories are currently in circulation. The first
is collectively known as Agile methods, and its best-known members are Scrum and
Extreme Programming (XP). XP (the methodology, not that really old flavor of
Microsoft’s OS) is presented in a series of small, short, readable texts led by its
designer, Kent Beck. The first book in the XP series is Extreme Programming
Explained (Addison-Wesley). A good overview of all the Agile methods is Jim High‐
smith’s Agile Software Development Ecosystems (Addison-Wesley).

xx | Preface

https://en.wikipedia.org/wiki/Scrum_(software_development)

Another group of important books on methodology, covering the more traditional
object-oriented design, is the UML series led by “the Three Amigos” (Booch,
Jacobson, and Rumbaugh). Their major works are the UML User Guide, UML Process,
and others. A smaller and more approachable book in the same series is Martin Fowl‐
er’s UML Distilled.

Conventions Used in This Book
This book uses the following conventions.

Programming Conventions
I use the following terminology in this book. A program means any unit of code that
can be run: from a five-line main program, to a servlet or web tier component, an
EJB, or a full-blown GUI application. Applets were Java programs for use in a web
browser; these were popular for a while but barely exist today. A servlet is a Java com‐
ponent built using Jakarta EE APIs for use in a web server, normally via HTTP. EJBs
are business-tier components built using Jakarta APIs. An application is any other
type of program. A desktop application (a.k.a. client) interacts with the user. A server
program deals with a client indirectly, usually via a network connection (usually
HTTP/HTTPS these days).

The examples shown are in two varieties. Those that begin with zero or more import
statements, a javadoc comment, and a public class statement are complete exam‐
ples. Those that begin with a declaration or executable statement, of course, are
excerpts. However, the full versions of these excerpts have been compiled and run,
and the online source includes the full versions.

Recipes are numbered by chapter and number, so, for example, Recipe 8.1 refers to
the first recipe in Chapter 8.

Typesetting Conventions
The following typographic conventions are used in this book:

Italic
Used for commands, filenames, and example URLs. It is also used for emphasis
and to define new terms when they first appear in the text.

Constant width

Used in code examples to show partial or complete Java source code program
listings. It is also used for class names, method names, variable names, and other
fragments of Java code.

Preface | xxi

Constant width bold

Used for user input, such as commands that you type on the command line.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This icon indicates a warning or caution.

Code Examples
The code samples for this book are on the author’s GitHub. Most are in the repository
javasrc, but a few are pulled in from one other repository, darwinsys-api. Details on
downloading these are in Recipe 1.6.

Many programs are accompanied by an example showing them in action, run from
the command line. These will usually show a prompt ending in either $ for Unix or >
for Windows, depending on which computer I was using the day I wrote that exam‐
ple. If there is text before this prompt character, it can be ignored. It may be a path‐
name or a hostname, again, depending on the system.

These examples will usually also show the full package name of the class because Java
requires this when starting a program from the command line. And because that will
remind you which subdirectory of the source repository to find the source code in, I
won’t be pointing it out explicitly very often.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Java Cookbook by Ian F.
Darwin (O’Reilly). Copyright 2020 RejmiNet Group, Inc., 978-1-492-07258-4.”

xxii | Preface

https://github.com/IanDarwin/javasrc
https://github.com/IanDarwin/darwinsys-api

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

Comments and Questions
As mentioned earlier, I’ve tested all the code on at least one of the reference plat‐
forms, and most on several. Still, there may be platform dependencies, or even bugs,
in my code or in some important Java implementation. Please report any errors you
find, as well as your suggestions for future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book where we list errata, examples, and any additional
information. It can be accessed at http://shop.oreilly.com/product/0636920304371.do.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xxiii

http://oreilly.com
http://oreilly.com
http://shop.oreilly.com/product/0636920304371.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The O’Reilly site lists errata. You’ll also find the source code for all the Java code
examples to download; please don’t waste your time typing them again! For specific
instructions, see Recipe 1.6.

Acknowledgments
I wrote in the Afterword to the first edition that “writing this book has been a hum‐
bling experience.” I should add that maintaining it has been humbling, too. While
many have been lavish with their praise—one very kind reviewer called it “arguably
the best book ever written on the Java programming language”—I have been humbled
by the number of errors and omissions in earlier editions. I have endeavored to cor‐
rect these.

My life has been touched many times by the flow of the fates bringing me into contact
with the right person to show me the right thing at the right time. Steve Munro, with
whom I’ve long since lost touch, introduced me to computers when we were in the
same class in high school—in particular an IBM 360/30 at the Toronto Board of Edu‐
cation that was bigger than a living room, had 32 or 64K (not M or G!) of memory,
and had perhaps the power of a PC/XT. The late Herb Kugel took me under his wing
at the University of Toronto while I was learning about the larger IBM mainframes
that came later. Terry Wood and Dennis Smith at the University of Toronto intro‐
duced me to mini- and micro-computers before there was an IBM PC. On evenings
and weekends, the Toronto Business Club of Toastmasters International and Al Lam‐
bert’s Canada SCUBA School allowed me to develop my public speaking and teaching
abilities. Several people at the University of Toronto, but especially Geoffrey Collyer,
taught me the features and benefits of the Unix operating system at a time when I was
ready to learn it.

Thanks to the many Learning Tree instructors and students who showed me ways of
improving my presentations. I still teach for “The Tree” and recommend their courses
for the busy developer who wants to zero in on one topic in detail over four days.

Closer to this project, Tim O’Reilly believed in my “little Lint book” when it was just a
sample chapter from a proposed longer work, enabling my early entry into the rare‐
fied circle of O’Reilly authors. Years later, Mike Loukides encouraged me to keep try‐
ing to find a Java book idea that both he and I could work with. And he stuck by me
when I kept falling behind the deadlines. Mike also read the entire manuscript and
made many sensible comments, some of which brought flights of fancy down to
earth. Jessamyn Read turned many faxed and emailed scratchings of dubious legibil‐
ity into the quality illustrations you see in this book. And many, many other talented
people at O’Reilly helped put this book into the form in which you now see it.

The code examples are now dynamically included (so updates get done faster) rather
than pasted in. My son (and functional programming developer) Benjamin Darwin

xxiv | Preface

https://en.wikipedia.org/wiki/Steve_Munro
http://www.toastmasters.org
https://en.wikipedia.org/wiki/Geoff_Collyer
https://www.learningtree.com

helped meet the deadline by converting almost the entire code base to O’Reilly’s new‐
est “include” mechanism and by resolving a couple of other non-Java presentation
issues. He also helped make Chapter 9 clearer and more functional.

At O’Reilly
For this fourth edition of the book, Suzanne McQuade was the editorial overseer, and
Corbin Collins the principal editor. Corbin was especially meticulous in checking the
manuscript. Meghan Blanchette, Sarah Schneider, Adam Witwer, Melanie Yarbrough,
and the many production people listed on the Copyright page all played a part in get‐
ting the third edition ready for you to read. Thanks to Mike Loukides, Deb Cameron,
and Marlowe Shaeffer for editorial and production work on the second edition.

Technical Reviewers
For the fourth edition I was blessed to have two very thorough technical reviewers,
Sander Mak and Daniel Hinojosa. Many issues that I hadn’t considered during the
main revision were called out by these two, leading to extensive rewrites and changes
in the last few weeks before the O’Reilly production team took over. Thanks so much
to both of you!

My reviewer for the third edition, Alex Stangl, read the third edition manuscript and
went far above the call of duty, making innumerable helpful suggestions, even finding
typos that had been present in previous editions! Helpful suggestions on particular
sections were made by Benjamin Darwin, Mark Finkov, and Igor Savin. For anyone
I’ve forgotten to mention, I thank you all!

Bil Lewis and Mike Slinn made helpful comments on multiple drafts of the first edi‐
tion. Ron Hitchens and Marc Loy carefully read the entire final draft of the first edi‐
tion. I am grateful to Mike Loukides for his encouragement and support throughout
the process. Editor Sue Miller helped shepherd the manuscript through the somewhat
energetic final phases of production. Sarah Slocombe read the XML chapter in its
entirety and made many lucid suggestions; unfortunately, time did not permit me to
include all of them in the first edition.

Jonathan Knudsen, Andy Oram, and David Flanagan commented on book’s outline
when it was little more than a list of chapters and recipes, and they were able to see
the kind of book it could become and suggest ways to make it better.

Each of these people made this book better in many ways, particularly by suggesting
additional recipes or revising existing ones. Thanks to one and all! The faults that
remain are my own.

Preface | xxv

3 Earlier editions are or have been available in English, German, French, Polish, Russian, Korean, Traditional
Chinese, and Simplified Chinese. My thanks to all the translators for their efforts in making the book available
to a wider audience.

Readers
My sincere thanks to all the readers who found errata and suggested improvements.
Every new edition is better for the efforts of folks like you who take the time and
trouble to report that which needs reporting!

Special mention must be made of one of the book’s German translators,3 Gisbert
Selke, who read the first edition cover to cover during its translation and clarified my
English. Gisbert did it all over again for the second edition and provided many code
refactorings, which have made this a far better book than it would be otherwise.
Going beyond the call of duty, Gisbert even contributed one recipe (Recipe 18.5) and
revised some of the other recipes in the same chapter. Thank you, Gisbert!

The second edition also benefited from comments by Jim Burgess, who read large
parts of the book. Comments on individual chapters were received from Jonathan
Fuerth, the late Kim Fowler, Marc Loy, and Mike McCloskey. My wife, Betty, and my
then-teenaged children each proofread several chapters as well.

The following people contributed significant bug reports or suggested improvements:
Rex Bosma, Rod Buchanan, John Chamberlain, Keith Goldman, Gilles-Philippe Gre‐
goire, B. S. Hughes, Jeff Johnston, Rob Konigsberg, Tom Murtagh, Jonathan O’Con‐
nor, Mark Petrovic, Steve Reisman, Bruce X. Smith, and Patrick Wohlwend.

Etc.
My dear wife, Betty Cerar, still knows more about the caffeinated beverage that I
drink while programming than the programming language I use, but her passion for
clear expression and correct grammar has benefited so much of my writing during
our life together.

No book on Java would be complete without a note of thanks to James Gosling for
inventing Java (he also invented the first Unix Emacs, the sc spreadsheet, and the
NeWS window system). Thanks also to his employer Sun Microsystems (before they
were taken over by Oracle) for releasing not only the Java language but an incredible
array of Java tools and API libraries freely available over the internet.

Willi Powell of Apple Canada provided macOS access for the first edition, back in the
early days of macOS.

To each and every one of you, my sincere thanks.

xxvi | Preface

Book Production Software
I used a variety of tools and operating systems in preparing, compiling, and testing
this book. The developers of OpenBSD, “the proactively secure Unix-like system,”
deserve thanks for making a stable and secure Unix clone that is also closer to tradi‐
tional Unix than other freeware systems. I used the vi editor (vi on OpenBSD and vim
on Windows) while inputting the original manuscript in XML, and I used Adobe
FrameMaker (a wonderful GUI-based documentation tool that Adobe bought and
subsequently destroyed) to format the documents. I do not know if I can ever forgive
Adobe for destroying what was arguably the world’s best documentation system and
for making the internet such a dangerous place by keeping the bug-infested Flash
alive long past its best-before century. I do know I will never use a documentation
system from Adobe for anything.

Because of this, the crowd-sourced Android Cookbook that I edited was not prepared
with FrameMaker, but instead XML DocBook (generated from wiki markup on a
Java-powered website that I wrote for the purpose) and a number of custom tools
provided by O’Reilly’s tools group.

The third and fourth editions of this Java Cookbook were formatted in Asciidoctor
and brought to life on the publishing toolchain of O’Reilly’s Atlas.

Preface | xxvii

http://www.openbsd.org
http://shop.oreilly.com/product/0636920038092.do
http://asciidoctor.org
http://atlas.oreilly.com

CHAPTER 1

Getting Started: Compiling and
Running Java

1.0 Introduction
This chapter covers some entry-level tasks that you need to know how to do before
you can go on. It is said you must crawl before you can walk, and walk before you can
ride a bicycle. Before you can try out anything in this book, you need to be able to
compile and run your Java code, so I start there, showing several ways to do that: the
JDK way, the Integrated Development Environment (IDE) way, and the build tools
(Ant, Maven, etc.) way. Another issue people run into is setting CLASSPATH correctly,
so that’s dealt with next. Deprecation warnings follow after that, because you’re likely
to encounter them in maintaining old Java code. The chapter ends with some general
information about conditional compilation, unit testing, assertions, and debugging.

If you don’t already have Java installed, you’ll need to download it. Be aware that
there are several different downloads. The JRE (Java Runtime Environment) was, up
until Java 8, a smaller download for end users. Since there is far less desktop Java than
there once was, the JRE was eliminated in favor of jlink to make a custom download
(see Recipe 15.8). The JDK or Java SDK download is the full development environ‐
ment, which you’ll want if you’re going to be developing Java software.

Standard downloads for the current release of Java are available at Oracle’s website.

You can sometimes find prerelease builds of the next major Java version on http://
jdk.java.net. The entire JDK is maintained as an open source project, and the
OpenJDK source tree is used (with changes and additions) to build the commercial
and supported Oracle JDKs.

1

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://jdk.java.net
http://jdk.java.net

If you’re already happy with your IDE, you may wish to skip some or all of this mate‐
rial. It’s here to ensure that everybody can compile and debug their programs before
we move on.

1.1 Compiling and Running Java: Standard JDK
Problem
You need to compile and run your Java program.

Solution
This is one of the few areas where your computer’s operating system impinges on
Java’s portability, so let’s get these issues out of the way first.

JDK
Using the command-line Java Development Kit (JDK) may be the best way to keep up
with the very latest improvements in Java. Assuming you have the standard JDK
installed in the standard location and/or have set its location in your PATH, you should
be able to run the command-line JDK tools. Use the commands javac to compile and
java to run your program (and, on Windows only, javaw to run a program without a
console window), like this:

C:\javasrc>javac HelloWorld.java

C:\javasrc>java HelloWorld
Hello, World

C:\javasrc>

If the program refers to other classes for which the source is available (in the same
directory) and a compiled .class file is not, javac will automatically compile it for you.
Effective with Java 11, for simple programs that don’t need any such co-compilation,
you can combine the two operations by simply passing the Java source file to the java
command:

 $ java HelloWorld.java
 Hello, Java
 $

As you can see from the compiler’s (lack of) output, both javac and java compilation
works on the Unix “no news is good news” philosophy: if a program was able to do
what you asked it to, it shouldn’t bother nattering at you to say that it did so.

There is an optional setting called CLASSPATH, discussed in Recipe 1.5, that controls
where Java looks for classes. CLASSPATH, if set, is used by both javac and java. In older

2 | Chapter 1: Getting Started: Compiling and Running Java

versions of Java, you had to set your CLASSPATH to include “.” even to run a simple
program from the current directory; this is no longer true on current Java
implementations.

Sun/Oracle’s javac compiler is the official reference implementation. There were sev‐
eral alternative open source command-line compilers, including Jikes and Kaffe, but
they are, for the most part, no longer actively maintained.

There have also been some Java runtime clones, including Apache Harmony, Japhar,
the IBM Jikes Runtime (from the same site as Jikes), and even JNode, a complete,
standalone operating system written in Java; but since the Sun/Oracle JVM has been
open sourced (GPL), most of these projects have stopped being maintained. Har‐
mony was retired by Apache in November 2011.

macOS

The JDK is pure command line. At the other end of the spectrum in terms of
keyboard-versus-visual, we have the Apple Macintosh. Books have been written
about how great the Mac user interface is, and I won’t step into that debate. macOS
(Release 10.x of the OS) is built upon a BSD Unix (and “Mach”) base. As such, it has a
regular command line (the Terminal application, hidden away under /Applications/
Utilities), as well as both the traditional Unix command-line tools and the graphical
Mac tools. If you’re using macOS, you can use the command-line JDK tools or any of
the modern build tools. Compiled classes can be packaged into clickable applications
using the Jar Packager discussed in Recipe 15.6. Mac fans can use one of the many full
IDE tools discussed in Recipe 1.3. Apple provides XCode as its IDE, but out of the
box it isn’t very Java-friendly.

1.2 Compiling and Running Java: GraalVM for Better
Performance
Problem
You’ve heard that Graal is a JVM from Oracle that’s faster than the standard JDK, and
you want to try it out. Graal promises to offer better performance, and it offers the
ability to mix and match programming languages and pre-compile your Java code
into executable form for a given platform.

Solution
Download and install GraalVM.

1.2 Compiling and Running Java: GraalVM for Better Performance | 3

http://sourceforge.net/projects/jikes
http://github.com/kaffe/kaffe
http://harmony.apache.org
http://www.hungry.com/old-hungry/products/japhar
http://www.jnode.org

Discussion
GraalVM bills itself as “a universal virtual machine for running applications written
in JavaScript, Python, Ruby, R, JVM-based languages like Java, Scala, Clojure, Kotlin,
and LLVM-based languages such as C and C++.”

Note that Graal is undergoing rapid change. While this recipe reflects the latest infor‐
mation at press time (late 2019), there may be newer versions and changed function‐
ality by the time you are ready to install.

As we go to press, GraalVM is based on OpenJDK 11, which means you can use
Modules and other Java 9, 10, and 11 features, but it doesn’t have support for Java 12,
13 or 14 features. You can build your own Graal on later releases, since the complete
source is on GitHub.

See the GraalVM website for more information on GraalVM. See also this presenta‐
tion by Chris Thalinger, who has worked on JVMs for a decade and a half.

Start at the downloads page. You will have to choose between the Community Edition
and the Enterprise Edition. To avoid any licensing issues, this recipe starts with the
Community Edition. You can download a tarball for Linux, macOS, and Windows.
There is no formal installer at this point. To install it, open a terminal window and try
the following (the directory chosen is for macOS):

$ cd /Library/Java/JavaVirtualMachines
$ tar xzvf ~/Downloads/graalvm-ce-NNN-VVV.tar.gz # replace with actual version
$ cd
$ /usr/libexec/java_home -V # macOS only
11.0.2, x86_64: "OpenJDK 11.0.2"
 /Library/Java/JavaVirtualMachines/jdk-11.0.2.jdk/Contents/Home
1.8.0_221, x86_64: "GraalVM CE 19.2.0.1"
 /Library/Java/JavaVirtualMachines/graalvm-ce-19.2.0.1/Contents/Home
$

On other systems, do the install in a sensible place. On most versions of Linux, after
installing a JDK, you can use the standard Linux alternatives command to make this
your default. On MacOS, the java_home command output confirms that you have
installed GraalVM, but it’s not your default JVM yet. To do that, you have to set your
PATH:

export JAVA_HOME=<where you installed GraalVM>/Contents/Home
export PATH=$JAVA_HOME/bin:$PATH

Be very sure to include the :$PATH at the end of the line—no space—or all your stan‐
dard command-line tools will appear to disappear (if you made this mistake, just log
out and log back in to restore your path). I suggest you don’t update your login scripts
until you are sure the settings you have are correct.

Now you should be running the Graal version of Java. This is what you should see:

4 | Chapter 1: Getting Started: Compiling and Running Java

https://github.com/oracle/graal
https://github.com/oracle/graal
https://www.graalvm.org
https://www.infoq.com/presentations/graal-jvm-jit
https://www.infoq.com/presentations/graal-jvm-jit
https://www.graalvm.org/downloads
https://access.redhat.com/documentation/en-US/JBoss_Communications_Platform/5.1/html/Platform_Installation_Guide/sect-Setting_the_Default_JDK.html

$ java -version
openjdk version "1.8.0_222"
OpenJDK Runtime Environment (build
 1.8.0_222-20190711112007.graal.jdk8u-src-tar-gz-b08)
OpenJDK 64-Bit GraalVM CE 19.2.0.1 (build 25.222-b08-jvmci-19.2-b02, mixed mode)

Your output may differ, but as long as it says “GraalVM” you should be good.

Graal includes a number of useful tools, including native-image, which can in some
cases translate a class file into a binary executable for the platform it’s running on,
optimizing startup speed and also reducing the download size needed to run a single
application. The native-image tool must be downloaded separately using gu install
native-image.

We’ll explore running some of the other non-Java languages in Recipe 18.4.

1.3 Compiling, Running, and Testing with an IDE
Problem
It is cumbersome to use several tools for the various development tasks.

Solution
Use an Integrated Development Environment (IDE), which combines editing, testing,
compiling, running, debugging, and package management.

Discussion
Many programmers find that using a handful of separate tools—a text editor, a com‐
piler, and a runner program, not to mention a debugger—is too many. An IDE inte‐
grates all of these into a single toolset with a graphical user interface. Many IDEs are
available, and the better ones are fully integrated tools with their own compilers and
virtual machines. Class browsers and other features of IDEs round out the ease-of-
use feature sets of these tools. Today most developers use an IDE because of the pro‐
ductivity gains. Although I started as a command-line junkie, I do find that IDE fea‐
tures like the following make me more productive:

Code completion:: Ian’s Rule here is that I never type more than three characters of
any name that is known to the IDE; let the computer do the typing! Incremental
compiling features:: Note and report compilation errors as you type, instead of wait‐
ing until you are finished typing. Refactoring:: The ability to make far-reaching yet
behavior-preserving changes to a code base without having to manually edit dozens
of individual files.

1.3 Compiling, Running, and Testing with an IDE | 5

Beyond that, I don’t plan to debate the merits of IDE versus the command-line pro‐
cess; I use both modes at different times and on different projects. I’m just going to
show a few examples of using a couple of the Java-based IDEs.

The three most popular Java IDEs, which run on all mainstream computing plat‐
forms and quite a few niche ones, are Eclipse, NetBeans, and IntelliJ IDEA. Eclipse is
the most widely used, but the others each have a special place in the hearts and minds
of some developers. If you develop for Android, the ADT has traditionally been
developed for Eclipse, but it has now transitioned to IntelliJ as the basis for Android
Studio, which is the standard IDE for Android, and for Google’s other mobile plat‐
form, Flutter. All three IDEs are plug-in based and offer a wide selection of optional
and third-party plug-ins to enhance the IDE, such as supporting other programming
languages, frameworks, and file types. While the following paragraph shows creating
and running a program with Eclipse, the IntelliJ IDEA and NetBeans IDEs all offer
similar capabilities.

One of the most popular cross-platform, open source IDEs for Java is Eclipse, origi‐
nally from IBM and now shepherded by the Eclipse Foundation, the home of many
software projects including Jakarta, the follow-on to the Java Enterprise Edition. The
Eclipse Platform is also used as the basis of other tools such as SpringSource Tool
Suite (STS) and IBM’s Rational Application Developer (RAD). All IDEs do basically
the same thing for you when getting started. The example in Figure 1-1 shows start‐
ing a new project.

6 | Chapter 1: Getting Started: Compiling and Running Java

https://flutter.io
http://eclipse.org
https://projects.eclipse.org/projects/ee4j.jakartaee-platform

Figure 1-1. Starting a new project with the Eclipse New Java Class Wizard

The Eclipse New Java Class Wizard shown in Figure 1-2 shows creating a new class.

1.3 Compiling, Running, and Testing with an IDE | 7

Figure 1-2. Creating a new class with the Eclipse New Java Class Wizard

Eclipse, like all modern IDEs, features a number of refactoring capabilities, shown in
Figure 1-3.

8 | Chapter 1: Getting Started: Compiling and Running Java

Figure 1-3. Refactoring in Eclipse

And, of course, all the IDEs allow you to run and/or debug your application.
Figure 1-4 shows running an application; for variety and neutrality, this is shown
using IntelliJ IDEA.

macOS includes Apple’s Developer Tools. The main IDE is Xcode. Unfortunately, cur‐
rent versions of Xcode do not really support Java development, so I can’t recommend
it for our purposes; it is primarily for those building nonportable (iOS-only or OS X–
only) applications in the Swift or Objective-C programming languages. So even if you
are on OS X, to do Java development you should use one of the three Java IDEs.

Microsoft VSCode (formerly part of Visual Studio) has been getting some attention
in Java circles lately, but it’s not a Java-specific IDE. Give it a try if you like.

How do you choose an IDE? Perhaps it will be dictated by your organization or
chosen by majority vote of your fellow developers. Given that all three major IDEs
(Eclipse, NetBeans, and IntelliJ) can be downloaded free and are 100% open source,
why not try them all and see which one best fits the kind of development you do?
Regardless of what platform you use to develop Java, if you have a Java runtime, you
should have plenty of IDEs from which to choose.

1.3 Compiling, Running, and Testing with an IDE | 9

Figure 1-4. IntelliJ program output

See Also
Each IDE’s website maintains an up-to-date list of resources, including books. See
Table 1-1 for the website for each.

Table 1-1. The three major Java IDEs and their websites
Product name Project URL Note
Eclipse https://eclipse.org/ Basis of STS, RAD

IntelliJ Idea https://jetbrains.com/idea/ Basis of Android Studio

Netbeans https://netbeans.apache.org Run anywhere JavaSE does

These major IDEs are extensible; see their documentation for a list of the many, many
plug-ins available. Most of them allow you to find and install plug-ins from within
the IDE. For Eclipse, use the Eclipse Marketplace, near the bottom of the Help menu.
As a last resort, if you need/want to write a plug-in that extends the functionality of
your IDE, you can do that too, and in Java.

10 | Chapter 1: Getting Started: Compiling and Running Java

https://eclipse.org/
https://jetbrains.com/idea/
https://netbeans.apache.org

For Eclipse, I have some useful information at https://darwinsys.com/java. The site
includes a list of shortcuts to aid developer productivity.

1.4 Exploring Java with JShell
Problem
You want to try out Java expressions and APIs quickly, without having to create a file
with public class X { public static void main(String[] args) { … } every
time.

Solution
Use JShell, Java’s REPL (Read-Evaluate-Print-Loop) interpreter.

Discussion
Starting with Java 11, JShell is included as a standard part of Java. It allows you to
enter Java statements and have them evaluated without the bother of creating a class
and a main program. You can use it for quick calculations, to try out an API to see
how it works, or for almost any purpose; if you find an expression you like, you can
copy it into a regular Java source file and make it permanent. JShell can also be used
as a scripting language over Java, but the overhead of starting the JVM means that it
won’t be as fast as awk, Perl, or Python for quick scripting.

REPL programs are very convenient, and they are hardly a new idea (LISP languages
from the 1950s included them). You can think of Command-Line Interpreters (CLIs)
such as the Bash or Ksh shells on UNIX/Linux, or Command.com and PowerShell on
Microsoft Windows, as REPLs for the system as a whole. Many interpreted languages
like Ruby and Python can also be used as REPLs. Java finally has its own REPL, JShell.
Here’s an example of using it:

$ jshell
| Welcome to JShell -- Version 11.0.2
| For an introduction type: /help intro

jshell> "Hello"
$1 ==> "Hello"

jshell> System.out.println("Hello");
Hello

jshell> System.out.println($1)
Hello

jshell> "Hello" + sqrt(57)
| Error:

1.4 Exploring Java with JShell | 11

https://darwinsys.com/java

| cannot find symbol
| symbol: method sqrt(int)
| "Hello" + sqrt(57)
| ^--^

jshell> "Hello" + Math.sqrt(57)
$2 ==> "Hello7.54983443527075"

jshell> String.format("Hello %6.3f", Math.sqrt(57)
 ...>)
$3 ==> "Hello 7.550"

jshell> String x = Math.sqrt(22/7) + " " + Math.PI +
 ...> " and the end."
x ==> "1.7320508075688772 3.141592653589793 and the end."

jshell>

You can see some obvious features and benefits here:

• The value of an expression is printed without needing to call Sys

tem.out.println every time, but you can call it if you like.
• Values that are not assigned to a variable get assigned synthetic identifiers, like
$1, that can be used in subsequent statements.

• The semicolon at the end of a statment is optional (unless you type more than
one statement on a line).

• If you make a mistake, you get a helpful message immediately.
• You can get completion with a single tab, as in shell filename completion.
• You can get the relevant portion of the Javadoc documentation on known classes

or methods with just a double tab.
• If you omit a close quote, parenthesis, or other punctuation, JShell will just wait

for you, giving a continuation prompt (…).
• If you do make a mistake, you can use “shell history” (i.e., up arrow) to recall the

statement so you can repair it.

JShell is also useful in prototyping Java code. For example, I wanted one of those
health-themed timers that reminds you to get up and move around a bit every half
hour:

$ jshell
| Welcome to JShell -- Version 11.0.2
| For an introduction type: /help intro

jshell> while (true) { sleep (30*60); JOptionPane.showMessageDialog(null,
 "Move it"); }
| Error:

12 | Chapter 1: Getting Started: Compiling and Running Java

| cannot find symbol
| symbol: method sleep(int)
| while (true) { sleep (30*60); JOptionPane.showMessageDialog(null, "Move
it");}
| ^---^
| Error:
| cannot find symbol
| symbol: variable JOptionPane
| while (true) { sleep (30*60); JOptionPane.showMessageDialog(null, "Move
it");}
| ^---------^

jshell> import javax.swing.*;

jshell> while (true) { Thread.sleep (30*60); JOptionPane.showMessageDialog(null,
"Move it"); }

jshell> while (true) { Thread.sleep (30*60 * 1000);
 JOptionPane.showMessageDialog(null, "Move it"); }

jshell> ^D

I then put the final working version into a Java file called MoveTimer.java, put a class
statement and a main() method around the main line, told the IDE to reformat the
whole thing, and saved it into my darwinsys-api repository.

So go ahead and experiment with JShell. Read the built-in introductory tutorial for
more details! When you get something you like, either use /save, or copy and paste it
into a Java program and save it.

Read more about JShell at the OpenJDK JShell Tutorial.

1.5 Using CLASSPATH Effectively
Problem
You need to keep your class files in a common directory, or you’re wrestling with
CLASSPATH.

Solution
Set CLASSPATH to the list of directories and/or JAR files that contain the classes you
want.

Discussion
CLASSPATH is a list of class files in any of a number of directories, JAR files, or ZIP
files. Just like the PATH your system uses for finding programs, the CLASSPATH is used

1.5 Using CLASSPATH Effectively | 13

https://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html

by the Java runtime to find classes. Even when you type something as simple as java
HelloWorld, the Java interpreter looks in each of the places named in your CLASSPATH
until it finds a match. Let’s work through an example.

The CLASSPATH can be set as an environment variable the same way you set other
environment variables, such as your PATH environment variable. However, it’s usually
preferable to specify the CLASSPATH for a given command on the command line:

C:\> java -classpath c:\ian\classes MyProg

Suppose your CLASSPATH were set to C:\classes;. on Windows or ~/classes:. on Unix or
Mac. Suppose you had just compiled a source file named HelloWorld.java (with no
package statement) into HelloWorld.class in the default directory (which is your cur‐
rent directory) and tried to run it. On Unix, if you run one of the kernel tracing tools
(trace, strace, truss, or ktrace), you would probably see the Java program open or
stat or access the following files:

• Some file(s) in the JDK directory
• Then ~/classes/HelloWorld.class, which it probably wouldn’t find
• Finally, ./HelloWorld.class, which it would find, open, and read into memory

The vague “some file(s) in the JDK directory” is release dependent. You should not
mess with the JDK files, but if you’re curious, you can find them in the System Prop‐
erties (see Recipe 2.2). There used to be a variable named sun.boot.class.path, but
that is not found anymore. Let’s look for any property with boot in its name:

jshell> System.getProperties().forEach((k,v) -> {
 ... if (((String)k).contains("boot")) System.out.println(k + "->" +v);})
sun.boot.library.path->/usr/local/jdk-11/lib

The reason I and others suggest not setting CLASSPATH as an environment variable is
that we don’t like surprises. It’s easy to add a JAR to your CLASSPATH and then forget
that you’ve done so; a program might then work for you but not for your colleagues,
due to their being unaware of your hidden dependency. And if you add a new version
to CLASSPATH without removing the old version, you may run into conflicts.

Note also that providing the -classpath argument causes the CLASSPATH environ‐
ment variable to be ignored.

If you still want to set CLASSPATH as an environment variable, you can. Suppose you
had also installed the JAR file containing the supporting classes for programs from
this book, darwinsys-api.jar (the actual filename if you download it may have a
version number as part of the filename). You might then set your CLASSPATH to C:
\classes;C:\classes\darwinsys-api.jar;. on Windows or ~/classes:~/classes/darwinsys-
api.jar:. on Unix.

14 | Chapter 1: Getting Started: Compiling and Running Java

Notice that you do need to list the full name of the JAR file explicitly. Unlike a single
class file, placing a JAR file into a directory listed in your CLASSPATH does not make it
available.

Certain specialized programs (such as a web server running a Servlet container)
might not use either bootpath or CLASSPATH exactly as shown; these application
servers typically provide their own ClassLoader (see Recipe 17.5 for information on
class loaders). EE Web containers, for example, set your web app CLASSPATH to
include the directory WEB-INF/classes and all the JAR files found under WEB-INF/
lib.

How can you easily generate class files into a directory in your CLASSPATH? The javac
command has a -d dir option, which specifies where the compiler output should go.
For example, using -d to put the HelloWorld class file into my $HOME/classes direc‐
tory, I just type the following (note that from here on I will be using the package
name in addition to the class name, like a good kid):

javac -d $HOME/classes HelloWorld.java
java -cp $HOME/classes starting.HelloWorld
Hello, world!

As long as this directory remains in my CLASSPATH, I can access the class file regard‐
less of my current directory. That’s one of the key benefits of using CLASSPATH.

While these examples show explicit use of java with -classpath, it is generally more
convenient (and reproducible) to use a build tool such as Maven (Recipe 1.7) or Gra‐
dle, which automatically provide the CLASSPATH for both compilation and execution.

Note that Java 9 and later also have a module path (environment variable MODULEPATH,
command-line argument --module-path entry[:,…]) with the same syntax as the
class path. The module path contains code that has been modularized; the Java Mod‐
ule System is discussed in Recipe 2.5 and Recipe 15.9.

1.6 Downloading and Using the Code Examples
Problem
You want to try out my example code and/or use my utility classes.

Solution
Download the latest archive of the book source files, unpack it, and run Maven (see
Recipe 1.7) to compile the files.

1.6 Downloading and Using the Code Examples | 15

Discussion
The source code used as examples in this book is included in a couple of source code
repositories that have been in continuous development since 1995. These are listed in
Table 1-2.

Table 1-2. The main source repositories
Repository
name

GitHub URL Package description Approx. size

javasrc http://github.com/IanDarwin/javasrc Java code examples/demos 1,400 classes

darwinsys-api http://github.com/Iandarwin/darwinsys-api A published API 200 classes

You can download these repositories from the GitHub URLs shown in Table 1-2. Git‐
Hub allows you to download a ZIP file of the entire repository’s current state, as well
as view individual files on the web interface. Downloading with git clone instead of as
an archive is preferred because you can then update at any time with a simple git pull
command. And with the amount of updating this code base has undergone for the
current release of Java, you are sure to find changes after the book is published.

If you are not familiar with Git, see “CVS, Subversion, Git, Oh My!” on page 20.

javasrc
This is the largest repo and consists primarily of code written to show a particular
feature or API. The files are organized into subdirectories by topic, many of which
correspond more or less to book chapters—for example, a directory for strings exam‐
ples (Chapter 3), regex for regular expressions (Chapter 4), numbers (Chapter 5), and
so on. The archive also contains the index by name and index by chapter files from
the download site, so you can easily find the files you need.

The javasrc library is further broken down into a dozen Maven modules (shown in
Table 1-3) so that you don’t need all the dependencies for everything on your CLASS
PATH all the time.

16 | Chapter 1: Getting Started: Compiling and Running Java

http://github.com/IanDarwin/javasrc
http://github.com/Iandarwin/darwinsys-api

Table 1-3. JavaSrc Maven modules
Directory/module name Description
pom.xml Maven parent pom

Rdemo-web R demo using a web framework

desktop AWT and Swing stuff (no longer covered in the Java Cookbook)

ee Enterprise stuff (no longer covered in the Java Cookbook)

graal GraalVM demos

jlink JLink demos

json JSON processing

main Contains the majority of the files, i.e., those not required to be in one of the other
modules due to CLASSPATH or other issues

restdemo REST service demo

spark Apache Spark demo

testing Code for testing

unsafe Demo of Unsafe class

xml XML stuff (no longer covered in the Java Cookbook)

darwinsys-api
I have built up a collection of useful stuff partly by moving some reusable classes
from javasrc into my own API, which I use in my own Java projects. I use example
code from it in this book, and I import classes from it into many of the other exam‐
ples. So, if you’re going to be downloading and compiling the examples individually,
you should first download the file darwinsys-api-1.x.jar (for the latest value of x) and
include it in your CLASSPATH. Note that if you are going to build the javasrc code with
Eclipse or Maven, you can skip this download because the top-level Maven script
starts off by including the JAR file for this API.

A compiled JAR file of darwinsys-api is available in Maven Central; find it by search‐
ing for darwinsys. This is the current Maven artifact:

<dependency>
 <groupId>com.darwinsys</groupId>
 <artifactId>darwinsys-api</artifactId>
 <version>1.1.3</version>
</dependency>

This API consists of about two dozen com.darwinsys packages, listed in Table 1-4.
The structure vaguely parallels the standard Java API; this is intentional. These pack‐
ages now include around 200 classes and interfaces. Most of them have javadoc docu‐
mentation that can be viewed with the source download.

1.6 Downloading and Using the Code Examples | 17

http://search.maven.org

Table 1-4. The com.darwinsys packages
Package name Package description

com.darwinsys.csv Classes for comma-separated values files

com.darwinsys.database Classes for dealing with databases in a general way

com.darwinsys.diff Comparison utilities

com.darwinsys.genericui Generic GUI stuff

com.darwinsys.geo Classes relating to country codes, provinces/states, and so on

com.darwinsys.graphics Graphics

com.darwinsys.html Classes (only one so far) for dealing with HTML

com.darwinsys.io Classes for input and output operations, using Java’s underlying I/O classes

com.darwinsys.jsptags Java EE JSP tags

com.darwinsys.lang Classes for dealing with standard features of Java

com.darwinsys.locks Pessimistic locking API

com.darwinsys.mail Classes for dealing with email, mainly a convenience class for sending mail

com.darwinsys.model Sample data models

com.darwinsys.net Networking

com.darwinsys.preso Presentations

com.darwinsys.reflection Reflection

com.darwinsys.regex Regular expression stuff: an REDemo program, a Grep variant

com.darwinsys.security Security

com.darwinsys.servlet Servlet API helpers

com.darwinsys.sql Classes for dealing with SQL databases

com.darwinsys.swingui Classes for helping construct and use Swing GUIs

com.darwinsys.swingui.layout A few interesting LayoutManager implementations

com.darwinsys.testdata Test data generators

com.darwinsys.testing Testing tools

com.darwinsys.unix Unix helpers

com.darwinsys.util A few miscellaneous utility classes

com.darwinsys.xml XML utilities

Many of these classes are used as examples in this book; just look for files whose first
line begins with the following:

package com.darwinsys;

You’ll also find that many of the other examples have imports from the com.darwin
sys packages.

18 | Chapter 1: Getting Started: Compiling and Running Java

General notes
Your best bet is to use git clone to download a copy of both the Git projects and then
do a git pull every few months to get updates. Alternatively, you can download from
this book’s catalog page a single intersection subset of both libraries that is made up
almost exclusively of files actually used in the book. This archive is made from the
sources that are dynamically included into the book at formatting time, so it should
reflect exactly the examples you see in the book. But it will not include as many exam‐
ples as the three individual archives, nor is it guaranteed that everything will compile
because of missing dependencies, nor will it get updated often. But if all you want is
to copy pieces into a project you’re working on, this may be the one to get. You can
find links to all of these files from my own website for this book; just follow the
Downloads link.

The two separate repositories contain multiple self-contained projects with support
for building both with Eclipse (Recipe 1.3) and with Maven (Recipe 1.7). Note that
Maven will automatically fetch a vast array of prerequisite libraries when first invoked
on a given project, so be sure you’re online on a high-speed internet link. Maven will
thus ensure that all prerequisites are installed before building. If you choose to build
pieces individually, look in the file pom.xml for the list of dependencies. Unfortu‐
nately, I will not be able to help you if you are using tooling other than Eclipse or
Maven with the control files included in the download.

If you have a version of Java older than Java 12, a few files will not compile. You can
make up exclusion elements for the files that are known not to compile.

All my code in the two projects is released under the least-restrictive credit-only
license, the two-clause BSD license. If you find it useful, incorporate it into your own
software. There is no need to write to ask me for permission; just use it, with credit. If
you get rich off it, send me some money.

Most of the command-line examples refer to source files, assuming
you are in src/main/java, and runnable classes, assuming you are in
(or have added to your CLASSPATH) the build directory (e.g., usually
target/classes). This will not be mentioned with each example, as
doing so would waste a lot of paper.

Caveat lector
The repos have been in development since 1995. This means that you will find some
code that is not up to date or that no longer reflects best practices. This is not surpris‐
ing: any body of code will grow old if any part of it is not actively maintained. (Thus,
at this point, I invoke Culture Club’s song “Do You Really Want to Hurt Me”: “Give
me time to realize my crime.”) Where advice in the book disagrees with some code
you found in the repo, keep this in mind. One of the practices of Extreme Program‐

1.6 Downloading and Using the Code Examples | 19

http://shop.oreilly.com/product/0636920026518.do
http://javacook.darwinsys.com

ming is Continuous Refactoring, the ability to improve any part of the code base at
any time. Don’t be surprised if the code in the online source directory differs from
what appears in the book; it is a rare month that I don’t make some improvement to
the code, and the results are committed and pushed quite often. So if there are differ‐
ences between what’s printed in the book and what you get from GitHub, be glad, not
sad, for you’ll have received the benefit of hindsight. Also, people can contribute
easily on GitHub via pull requests; that’s what makes it interesting. If you find a bug
or an improvement, do send me a pull request! The consolidated archive on the page
for this book will not be updated as frequently.

CVS, Subversion, Git, Oh My!
Many distributed version control systems or source code management systems are
available. These are the ones that have been widely used in open source over the
years:

• Concurrent Versions System (CVS)
• Apache Subversion
• Git
• As well as others that are used in particular niches (e.g., Bazaar, Mercurial)

Although each has its advantages and disadvantages, the use of Git in the Linux build
process (and projects based on Linux, such as the Android mobile environment), as
well as the availability of sites like github.com and gitorious.org, give Git a massive
momentum over the others. I don’t have statistics, but I suspect the number of
projects in Git repositories probably exceeds the others combined. Several well-
known organizations using Git are listed on the Git home page.

For this reason, I have moved my public projects to GitHub; see http://github.com/
IanDarwin. To download the projects and be able to get updates applied automati‐
cally, use Git to download them. Options include the following:

• The command-line Git client. If you are on any modern Unix or Linux system,
Git is either included or available in your ports or packaging or developer tools,
but it can also be downloaded for MS Windows, Mac, Linux, and Solaris from the
home page under Downloads.

• All modern IDEs have Git support built in (though IntelliJ doesn’t include Git
itself; it relies on the command-line Git client, possibly because the main Java
implementation jgit is owned by Eclipse).

• Numerous standalone GUI clients.

20 | Chapter 1: Getting Started: Compiling and Running Java

http://shop.oreilly.com/product/0636920304371.do
http://shop.oreilly.com/product/0636920304371.do
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://subversion.apache.org
http://git-scm.com
http://github.com/IanDarwin
http://github.com/IanDarwin
http://git-scm.com
http://git-scm.com/downloads/guis

• Even Continuous Integration servers such as Jenkins/Hudson (see Recipe 1.11)
have plug-ins available for updating a project with Git (and other popular SCMs)
before building them.

You will want to have one or more of these Git clients at your disposal to download
my code examples. You could instead download the code examples as ZIP archive
files, but then you won’t get updates! You can also view or download individual files
from the GitHub page via a web browser.

Make Versus Java Build Tools
Make is the original build tool from the 1970s, used in Unix and C/C++ development.
Make and the Java-based tools each have advantages; I’ll try to compare them without
too much bias.

The Java build tools work the same on all platforms, as much as possible. Make is
rather platform-dependent; there is GNU Make, BSD Make, Xcode Make, Visual Stu‐
dio Make, and several others, each with slightly different syntax.

That said, there are many Java build tools to choose from, including these:

• Apache Ant
• Apache Maven
• Gradle
• Apache Buildr

Makefiles and Gradle build files are the shortest. Make just lets you list the commands
you want run and their dependencies. Buildr and Gradle each have their own lan‐
guage (based on Ruby and Groovy, respectively). Maven uses XML, which is generally
more verbose but with a lot of sensible defaults and a standard, default workflow. Ant
also uses XML but makes you specify each task you want performed.

Make runs faster for single tasks; most implementations are written in C. However,
the Java tools can run many Java tasks in a single JVM, such as the built-in Java com‐
piler or .jar/.war/.tar/.zip files—to the extent that it may be more efficient to run sev‐
eral Java compilations in one JVM process than to run the same compilations using
Make. In other words, once the JVM that is running Ant/Maven/Gradle itself is up
and running, it doesn’t take long at all to run the Java compiler and run the compiled
class. This is Java as it was meant to be!

Java build tool files can do more for you. These tools automatically find all the *.java
files in and under src/main/java. With make, you have to spell such things out.

The Java tools have special knowledge of CLASSPATH, making it easy to set a CLASS
PATH in various ways for compile time. Maven offers a scope of tests for classes and

1.6 Downloading and Using the Code Examples | 21

other files that will be on your CLASSPATH only when running tests, for example. You
may have to duplicate this in other ways—shell scripts or batch files—for using Make
or for manually running or testing your application.

Maven and Gradle also handle dependency management. You simply list the API and
version that you want, and the tool finds it, downloads it over the internet, saves it in
a cache folder for future use, and adds it to your CLASSPATH at the right time—all
without writing any rules.

Gradle goes further yet and allows scripting logic in its configuration file. (Strictly
speaking, Ant and Maven do as well, but Gradle’s is much easier to use.)

Make is simpler to extend but harder to do so portably. You can write a one-line Make
rule for getting a CVS archive from a remote site, but you may run into incompatibili‐
ties between GNU Make, BSD Make, Microsoft Make, and so on. There is a built-in
Ant task for getting an archive from CVS using Ant; it was written as a Java source file
instead of just a series of command-line commands.

Make has been around much longer. There are probably millions (literally) more
makefiles than Ant files. Non-Java developers have typically not heard of Ant; they
almost all use Make. Most non-Java open source projects use Make, except for pro‐
gramming languages that provide their own build tool (e.g., Ruby provides Rake and
Thor, and Haskell provides Cabal).

The advantages of the Java tools make more sense on larger projects. Primarily, Make
has been used on the really large non-Java projects. For example, Make is used for tel‐
ephone switch source code, which consists of hundreds of thousands of source files
totaling tens or hundreds of millions of lines of source code. By contrast, Tomcat is
about 500,000 lines of code, and the JBoss Java EE server WildFly is about 800,000
lines. Use of the Java tools is growing steadily, particularly now that most of the
widely used Java IDEs (IntelliJ, Eclipse, NetBeans, etc.) have interfaces to Ant, Maven,
and/or Gradle. Effectively all Java open source projects use Maven; some still use Ant,
or the newest kid on that block, Gradle.

Make is included with most Unix and Unix-like systems and shipped with many Win‐
dows IDEs. Ant and Maven and gradle are not included with any operating system
distribution that I know of, but they can be installed as packages on almost all sys‐
tems, and both are available direct from Apache. Gradle installs from http://
gradle.org, and Buildr from the Apache website.

To sum up, although Make and the Java tools are good, new Java projects should use
one of the newer Java-based tools such as Maven or Gradle.

22 | Chapter 1: Getting Started: Compiling and Running Java

http://gradle.org
http://gradle.org
http://buildr.apache.org

1.7 Automating Dependencies, Compilation, Testing, and
Deployment with Apache Maven
Problem
You want a tool that does it all automatically: downloads your dependencies, com‐
piles your code, compiles and runs your tests, packages the app, and installs or
deploys it.

Solution
Use Apache Maven.

Discussion
Maven is a Java-centric build tool that includes a sophisticated, distributed depend‐
ency management system that also gives it rules for building application packages
such as JAR, WAR, and EAR files and deploying them to an array of different targets.
Whereas older build tools focus on the how, Maven files focus on the what, specifying
what you want done.

Maven is controlled by a file called pom.xml (for Project Object Model). A sample
pom.xml might look like this:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>my-se-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>my-se-project</name>
 <url>http://com.example/</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.1</version>
 <scope>test</scope>

1.7 Automating Dependencies, Compilation, Testing, and Deployment with Apache Maven | 23

 </dependency>
 </dependencies>
</project>

This specifies a project called my-se-project (my standard-edition project) that will be
packaged into a JAR file; it depends on the JUnit 4.x framework for unit testing (see
Recipe 1.10) but only needs it for compiling and running tests. If I type mvn install in
the directory with this POM, Maven will ensure that it has a copy of the given version
of JUnit (and anything that JUnit depends on). Then it will compile everything (set‐
ting CLASSPATH and other options for the compiler), run any and all unit tests, and
if they all pass, generate a JAR file for the program. It will then install it in my
personal Maven repo (under ~/.m2/repository) so that other Maven projects can
depend on my new project JAR file. Note that I haven’t had to tell Maven where the
source files live, nor how to compile them—this is all handled by sensible defaults,
based on a well-defined project structure. The program source is expected to be
found in src/main/java, and the tests in src/test/java; if it’s a web application, the web
root is expected to be in src/main/webapp by default. Of course, you can override
these settings.

Note that even the preceding config file does not have to be, and was not, written by
hand; Maven’s archetype generation rules let it build the starting version of any of
several hundred types of projects. Here is how the file was created:

$ mvn archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-quickstart \
 -DgroupId=com.example -DartifactId=my-se-project

[INFO] Scanning for projects...
Downloading: http://repo1.maven.org/maven2/org/apache/maven/plugins/
 maven-deploy-plugin/2.5/maven-deploy-plugin-2.5.pom
[several dozen or hundred lines of downloading POM files and Jar files...]
[INFO] Generating project in Interactive mode
[INFO] Archetype [org.apache.maven.archetypes:maven-archetype-quickstart:1.1]
 found in catalog remote
[INFO] Using property: groupId = com.example
[INFO] Using property: artifactId = my-se-project
Define value for property 'version': 1.0-SNAPSHOT: :
[INFO] Using property: package = com.example
Confirm properties configuration:
groupId: com.example
artifactId: my-se-project
version: 1.0-SNAPSHOT
package: com.example
 Y: : y
[INFO] --
[INFO] Using following parameters for creating project from Old (1.x) Archetype:
 maven-archetype-quickstart:1.1
[INFO] --
[INFO] Parameter: groupId, Value: com.example

24 | Chapter 1: Getting Started: Compiling and Running Java

[INFO] Parameter: packageName, Value: com.example
[INFO] Parameter: package, Value: com.example
[INFO] Parameter: artifactId, Value: my-se-project
[INFO] Parameter: basedir, Value: /private/tmp
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] project created from Old (1.x) Archetype in dir: /private/tmp/
 my-se-project
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 6:38.051s
[INFO] Finished at: Sun Jan 06 19:19:18 EST 2013
[INFO] Final Memory: 7M/81M
[INFO] --

Alternately, you can do mvn archetype:generate and select the default from a rather
long list of choices. The default is a quickstart Java archetype, which makes it easy to
get started.

The IDEs (see Recipe 1.3) have support for Maven. For example, if you use Eclipse,
M2Eclipse (m2e) is an Eclipse plug-in that will build your Eclipse project dependen‐
cies from your POM file; this plug-in ships by default with current Java Developer
builds of Eclipse. It is also available for some older releases; see the Eclipse website for
plug-in details.

A POM file can redefine any of the standard goals. Common Maven goals (prede‐
fined by default to do something sensible) include the following:

clean
Removes all generated artifacts

compile
Compiles all source files

test
Compiles and runs all unit tests

package
Builds the package

install
Installs pom.xml and the package into your local Maven repository for use by
your other projects

deploy
Tries to install the package (e.g., on an application server)

Most of the steps implicitly invoke the previous ones. For example, package will com‐
pile any missing .class files and run the tests if that hasn’t already been done in this
run.

1.7 Automating Dependencies, Compilation, Testing, and Deployment with Apache Maven | 25

http://eclipse.org/m2e

There is an optional distributionManagement element in the POM file or a -
DaltDeploymentRepository on the command line to specify an alternate deployment
location. There are application-server–specific targets provided by the app server
vendors; as a single example, with the WildFly Application Server (known as JBoss
AS a decade or more ago), you would install some additional plug-in(s) as per their
documentation and then deploy to the app server using

mvn wildfly:deploy

instead of the regular deploy. Since I use this Maven incantation frequently, I have a
shell alias or batch file mwd to automate even that.

Maven pros and cons
Maven can handle complex projects and is very configurable. I build the darwinsys-
api and javasrc projects with Maven and let it handle finding dependencies, making
the download of the project source code smaller (actually, moving the download
overhead to the servers of the projects themselves). The only real downsides to
Maven are that it takes a while to get fully up to speed with it, and it can be hard to
diagnose when things go wrong. A good web search engine is your friend when
things fail.

One issue I fear is that a hacker could gain access to a project’s site and modify, or
install a new version of, a POM. Maven automatically fetches updated POM versions.
However, it does use hash signatures to verify that files have not been tampered with
during the download process, and all files to be uploaded must be signed with PGP/
GPG, so an attacker would have to compromise both the upload account and the
signing keys. I am not aware of this ever having happened though.

See Also
Start at http://maven.apache.org.

Maven Central: Mapping the World of Java Software
There is an immense collection of software freely available to Maven users just for
adding a <dependency> element or “Maven Artifact” into your pom.xml. You can
search this repository at http://search.maven.org or https://repository.sonatype.org/
index.html.

Figure 1-5 shows a search for my darwinsys-api project and the information it reveals.
Note that the dependency information listed there is all you need to have the library
added to your Maven project; just copy the Dependency Information section and
paste it into the <dependencies> of your POM, and you’re done! Because Maven
Central has become the definitive place to look for software, many other Java build
tools piggyback on Maven Central. To accommodate these users, in turn, Maven

26 | Chapter 1: Getting Started: Compiling and Running Java

http://maven.apache.org
http://search.maven.org
https://repository.sonatype.org/index.html
https://repository.sonatype.org/index.html

Central offers to serve up the dependency information in a form that half a dozen
other build tools can directly use in the same copy-and-paste fashion.

When you get to the stage of having a useful open source project that others can build
upon, you may, in turn, want to share it on Maven Central. The process is longer than
building for yourself but not onerous. Refer to this Maven guide or the Sonatype OSS
Maven Repository Usage Guide.

Figure 1-5. Maven Central search results

1.8 Automating Dependencies, Compilation, Testing, and
Deployment with Gradle
Problem
You want a build tool that doesn’t make you use a lot of XML in your configuration
file.

Solution
Use Gradle’s simple build file format with configuration by convention for shorter
build files and fast builds.

1.8 Automating Dependencies, Compilation, Testing, and Deployment with Gradle | 27

http://maven.apache.org/guides/mini/guide-central-repository-upload.html
https://help.sonatype.com/repomanager3/formats/maven-repositories
https://help.sonatype.com/repomanager3/formats/maven-repositories

Discussion
Gradle is the latest in the succession of build tools (Make, Ant, and Maven). Gradle
bills itself as “the enterprise automation tool” and has integration with the other build
tools and IDEs.

Unlike the other Java-based tools, Gradle doesn’t use XML as its scripting language,
but rather a Domain-Specific Language (DSL) based on the JVM-based and Java-
based scripting language Groovy.

You can install Gradle by downloading from the Gradle website, unpacking the ZIP,
and adding its bin subdirectory to your path.

Then you can begin to use Gradle. Assuming you use the standard source directory
(src/main/java, src/main/test) that is shared by Maven and Gradle, among other tools,
the example build.gradle file in Example 1-1 will build your app and run your unit
tests.

Example 1-1. Example build.gradle file

Simple Gradle Build for the Java-based DataVis project
apply plugin: 'java'
Set up mappings for Eclipse project too
apply plugin: 'eclipse'

The version of Java to use
sourceCompatibility = 11
The version of my project
version = '1.0.3'
Configure JAR file packaging
jar {
 manifest {
 attributes 'Main-class': 'com.somedomainnamehere.data.DataVis',
 'Implementation-Version': version
 }
}

optional feature: like -Dtesting=true but only when running tests ("test task")
test {
 systemProperties 'testing': 'true'
}

You can bootstrap the industry’s vast investment in Maven infrastructure by adding
lines like these into your build.gradle:

Tell Gradle to look in Maven Central
repositories {
 mavenCentral()
}

28 | Chapter 1: Getting Started: Compiling and Running Java

http://groovy.codehaus.org
http://gradle.org

We need darwinsys-api for compiling as well as JUnit for testing
dependencies {
 compile group: 'com.darwinsys', name: 'darwinsys-api', version: '1.0.3+'
 testCompile group: 'junit', name: 'junit', version: '4.+'
}

See Also
There is much more functionality in Gradle. Start at Gradle’s website, and see the
documentation.

1.9 Dealing with Deprecation Warnings
Problem
Your code used to compile cleanly, but now it gives deprecation warnings.

Solution
You must have blinked. Either live—dangerously—with the warnings or revise your
code to eliminate them.

Discussion
Each new release of Java includes a lot of powerful new functionality, but at a price:
during the evolution of this new stuff, Java’s maintainers find some old stuff that
wasn’t done right and shouldn’t be used anymore because they can’t really fix it. In the
first major revision, for example, they realized that the java.util.Date class had
some serious limitations with regard to internationalization. Accordingly, many of
the Date class methods and constructors are marked “deprecated.” According to the
American Heritage Dictionary, to deprecate something means to “express disapproval
of; deplore.” Java’s developers are therefore disapproving of the old way of doing
things. Try compiling this code:

import java.util.Date;

/** Demonstrate deprecation warning */
public class Deprec {

 public static void main(String[] av) {

 // Create a Date object for May 5, 1986
 @SuppressWarnings("deprecation")
 // EXPECT DEPRECATION WARNING without @SuppressWarnings
 Date d = new Date(86, 04, 05);
 System.out.println("Date is " + d);

1.9 Dealing with Deprecation Warnings | 29

http://www.gradle.org
http://www.gradle.org/docs

 }
}

What happened? When I compiled it (prior to adding the @SuppressWarnings()
annotation), I got this warning:

C:\javasrc>javac Deprec.java
Note: Deprec.java uses or overrides a deprecated API. Recompile with
"-deprecation" for details.
1 warning
C:\javasrc>

So, we follow orders. For details, recompile with -deprecation to see the additional
details:

C:\javasrc>javac -deprecation Deprec.java
Deprec.java:10: warning: constructor Date(int,int,int) in class java.util.Date
has been deprecated
 Date d = new Date(86, 04, 05); // May 5, 1986
 ^
1 warning

C:\javasrc>

The warning is simple: the Date constructor that takes three integer arguments has
been deprecated. How do you fix it? The answer is, as in most questions of usage, to
refer to the javadoc documentation for the class. The introduction to the Date page
says, in part:

The class Date represents a specific instant in time, with millisecond precision.

Prior to JDK 1.1, the class Date had two additional functions. It allowed the interpreta‐
tion of dates as year, month, day, hour, minute, and second values. It also allowed the
formatting and parsing of date strings. Unfortunately, the API for these functions was
not amenable to internationalization. As of JDK 1.1, the Calendar class should be used
to convert between dates and time fields and the DateFormat class should be used to
format and parse date strings. The corresponding methods in Date are deprecated.

And more specifically, in the description of the three-integer constructor, the Date
javadoc says:

Date(int year, int month, int date)

Deprecated. As of JDK version 1.1, replaced by Calendar.set(year + 1900, month,
date) or GregorianCalendar(year + 1900, month, date).

Of course, the older Date class is replaced by LocalDate and LocalDateTime (see
Chapter 6), so you’d only see that particular example in legacy code, but the principles
of dealing with deprecation warnings matter, because many new releases of Java add
deprecation warnings to parts of the API that were previously “OK” to use.

As a general rule, when something has been deprecated, you should not use it in any
new code; and, when maintaining code, strive to eliminate the deprecation warnings.

30 | Chapter 1: Getting Started: Compiling and Running Java

In addition to Date (Java 8 includes a whole new date/time API; see Chapter 6), the
main areas of deprecation warnings in the standard API are the really ancient event
handling and some methods (a few of them important) in the Thread class.

You can also deprecate your own code, when you come up with a better way of doing
things. Put an @Deprecated annotation immediately before the class or method you
wish to deprecate and/or use a @deprecated tag in a javadoc comment (see Recipe
15.2). The javadoc comment allows you to explain the deprecation, whereas the
annotation is easier for some tools to recognize because it is present at runtime (so
you can use Reflection; see Chapter 17).

See Also
Numerous other tools perform extra checking on your Java code. See my Checking
Java Programs website.

1.10 Maintaining Code Correctness with Unit Testing:
JUnit
Problem
You don’t want to have to debug your code.

Solution
Use unit testing to validate each class as you develop it.

Discussion
Stopping to use a debugger is time-consuming, and finding a bug in released code is
much worse! It’s better to test beforehand. The methodology of unit testing has been
around for a long time; it is a tried-and-true means of getting your code tested in
small blocks. Typically, in an OO language like Java, unit testing is applied to individ‐
ual classes, in contrast to system or integration testing where a complete slice or even
the entire application is tested.

I have long been an advocate of this very basic testing methodology. Indeed, develop‐
ers of the software methodology known as Extreme Programming (XP for short)
advocate Test-Driven Development (TDD): writing the unit tests before you write the
code. They also advocate running your tests almost every time you build your appli‐
cation. And they ask one good question: If you don’t have a test, how do you know your
code (still) works? This group of unit-testing advocates has some well-known leaders,
including Erich Gamma of Design Patterns book fame and Kent Beck of eXtreme Pro‐

1.10 Maintaining Code Correctness with Unit Testing: JUnit | 31

https://cjp.darwinsys.com/
https://cjp.darwinsys.com/
http://www.extremeprogramming.org

gramming book fame (both Addison-Wesley). I definitely go along with their advo‐
cacy of unit testing.

Indeed, many of my classes used to come with a “built-in” unit test. Classes that are
not main programs in their own right would often include a main method that just
tests out or at least exercises the functionality of the class. What surprised me is that,
before encountering XP, I used to think I did this often, but an actual inspection of
two projects indicated that only about a third of my classes had test cases, either
internally or externally. Clearly what is needed is a uniform methodology. That is
provided by JUnit.

JUnit is a Java-centric methodology for providing test cases, and can be downloaded
for free. It is a very simple but useful testing tool. It is easy to use—you just write a
test class that has a series of methods and annotate them with @Test (the older JUnit
3.8 required you to have test methods’ names begin with test). JUnit uses introspec‐
tion (see Chapter 17) to find all these methods and then runs them for you. Exten‐
sions to JUnit handle tasks as diverse as load testing and testing enterprise compo‐
nents; the JUnit website provides links to these extensions. All modern IDEs provide
built-in support for generating and running JUnit tests.

How do you get started using JUnit? All that’s necessary is to write a test. Here I have
written a simple test of my Person class and placed it into a class called PersonTest
(note the obvious naming pattern):

public class PersonTest {

 @Test
 public void testNameConcat() {
 Person p = new Person("Ian", "Darwin");
 String f = p.getFullName();
 assertEquals("Name concatenation", "Ian Darwin", f);
 }
}

JUnit 4 has been around for ages and works well. JUnit 5 is only a few years old and
has some improvements. A simple test like this PersonTest class will be the same in
JUnit 4 or 5 (but with different imports). Using additional features, like setup meth‐
ods to be run before each test, requires different annotations between JUnit 4 and 5.

To show you running PersonTest manually, I compile the test and invoke the
command-line test harness TestRunner:

32 | Chapter 1: Getting Started: Compiling and Running Java

http://www.junit.org
http://www.junit.org

$ javac PersonTest.java
$ java -classpath .:junit4.x.x.jar junit.textui.TestRunner testing.PersonTest
.
Time: 0.188

OK (1 tests)

$

In practice, running tests that way is incredibly tedious, so I just put my tests in the
standard directory structure (i.e., src/test/java/) with the same package as the code
being tested and run Maven (see Recipe 1.7), which will automatically compile and
run all the unit tests and will halt the build if any test fails, every time you try to build,
package, or deploy your application. Gradle will do so too.

All modern IDEs provide built-in support for running JUnit tests; in Eclipse, you can
right-click a project in the Package Explorer and select Run As→Unit Test to have it
find and run all the JUnit tests in the entire project. The MoreUnit plugin (free in the
Eclipse Marketplace) aims to simplify creation and running of tests.

The Hamcrest matchers allow you to write more expressive tests at the cost of an addi‐
tional download. Support for them is built into JUnit 4 with the assertThat static
method, but you need to download the matchers from Hamcrest or via the Maven
artifact.

Here’s an example of using the Hamcrest matchers:

public class HamcrestDemo {

 @Test
 public void testNameConcat() {
 Person p = new Person("Ian", "Darwin");
 String f = p.getFullName();
 assertThat(f, containsString("Ian"));
 assertThat(f, equalTo("Ian Darwin"));
 assertThat(f, not(containsString("/"))); // contrived, to show syntax
 }
}

See Also
JUnit offers considerable documentation of its own; download it from the website lis‐
ted earlier.

An alternative unit test framework for Java is TestNG; it got some early traction by
adopting features such as Java annotations before JUnit did; but since JUnit got with
the annotations program, it has remained the dominant package for Java unit testing.

Another package of interest is AssertJ, which appears to offer similar power to the
combination of JUnit with Hamcrest.

1.10 Maintaining Code Correctness with Unit Testing: JUnit | 33

http://hamcrest.org
https://assertj.github.io/doc

Finally, one often needs to create substitute objects for use by the class being tested
(the dependencies of the class under test). While you can code these by hand, in gen‐
eral I encourage use of packages such as Mockito, which can generate mock objects
dynamically, have these mocks provide fixed return values, verify that the dependen‐
cies were called correctly, and so on.

Remember: test early and often!

1.11 Maintaining Your Code with Continuous Integration
Problem
You want to be sure that your entire code base compiles and passes its tests
periodically.

Solution
Use a Continuous Integration server such as Jenkins/Hudson.

Discussion
If you haven’t previously used Continuous Integration, you are going to wonder how
you got along without it. CI is simply the practice of having all developers on a
project periodically integrate (e.g., commit) their changes into a single master copy of
the project’s source and then building and testing the project to make sure it still
works and passes its tests. This might be a few times a day, or every few days, but
should not be more than that or else the integration will likely run into larger hurdles
where multiple developers have modified the same file.

But it’s not just big projects that benefit from CI. Even on a one-person project, it’s
great to have a single button you can click that will check out the latest version of
everything, compile it, link or package it, run all the automated tests, and give a red
or green pass/fail indicator. Better yet, it can do this automatically every day or even
on every commit to the master branch.

It’s not just code-based projects that benefit from CI. If you have a number of small
websites, putting them all under CI control is one of several important steps toward
developing an automated, DevOps culture around website deployment and
management.

If you are new to the idea of CI, I can do no better than to plead with you to read
Martin Fowler’s insightful (as ever) paper on the topic. One of the key points is to
automate both the management of the code and all the other artifacts needed to build

34 | Chapter 1: Getting Started: Compiling and Running Java

https://site.mockito.org
http://martinfowler.com/articles/continuousIntegration.html

1 If the deployment or build includes a step like “Get Smith to process file X on his desktop and copy to the
server,” you probably don’t quite get the notion of automated testing.

2 Jenkins and Hudson began as Hudson, largely written by Kohsuke Kawaguchi while working for Sun Micro‐
systems. There was later a cultural spat that resulted in Jenkins splitting off from Hudson, creating a new fork
of the project. Kohsuke works on the half now known as Jenkins. I’ll just use the name Jenkins, because that’s
the one I use, and because it takes too long to say “Jenkins/Hudson” all the time. But almost everything here
applies to Hudson as well.

your project, and to automate the actual process of building it, possibly using one of
the build tools discussed earlier in this chapter.1

There are many CI servers, both free and commercial. In the open source world,
CruiseControl and Jenkins/Hudson2 are among the best known CI servers that you
deploy yourself. There are also hosted solutions such as Travis CI, TeamCity, or Cir‐
cleCI. These hosted ones eliminate the need for setting up and running your own CI
server. They also tend to have their configuration right in your repo (travis.yml etc.)
so deployment to them is simplified.

Jenkins runs as a web application, either inside a Jakarta EE server or in its own
standalone web server. Once it’s started, you can use any standard web browser as its
user interface. Installing and starting Jenkins can be as simple as unpacking a distri‐
bution and invoking it as follows:

java -jar jenkins.war

This will start up its own tiny web server. If you do that, be sure to configure security
if your machine is reachable from the internet!

Many people find it more secure to run Jenkins in a full-function Java EE or Java web
server; anything from Tomcat to JBoss to WebSphere or Weblogic will do the job and
let you impose additional security constraints.

Once Jenkins is up and running and you have enabled security and are logged in on
an account with sufficient privilege, you can create jobs. A job usually corresponds to
one project, both in terms of origin (one source code checkout) and in terms of
results (one .war file, one executable, one library, one whatever). Setting up a project
is as simple as clicking the New Job button at the top left of the dashboard, as shown
in Figure 1-6.

You can fill in the first few pieces of information: the project’s name and a brief
description. Note that each and every input field has a question mark icon beside it,
which will give you hints as you go along. Don’t be afraid to peek at these hints!
Figure 1-7 shows the first few steps of setting up a new job.

In the next few sections of the form, Jenkins uses dynamic HTML to make entry
fields appear based on what you’ve checked. My demo project “TooSmallToFail” starts
off with no Source Code Management (SCM) repository, but your real project is

1.11 Maintaining Your Code with Continuous Integration | 35

http://jenkins-ci.org
https://www.eclipse.org/hudson
http://cruisecontrol.sourceforge.net
https://travis-ci.com
https://www.jetbrains.com/teamcity
https://circleci.com
https://circleci.com

probably already in Git, Subversion, or ome other SCM. Don’t worry if yours is not
listed; there are hundreds of plug-ins to handle almost any SCM. Once you’ve chosen
your SCM, you will enter the parameters to fetch the project’s source from that SCM
repository, using text fields that ask for the specifics needed for that SCM: a URL for
Git, a CVSROOT for CVS, and so on.

Figure 1-6. The dashboard in Jenkins

Figure 1-7. Creating a new job in Jenkins

You also have to tell Jenkins when and how to build (and package, test, deploy…) your
project. For the when, you have several choices such as building it after another Jen‐
kins project, building it every so often based on a cron-like schedule, or based on
polling the SCM to see if anything has changed (using the same cron-like scheduler).
If your project is at GitHub (not just a local Git server), or some other SCMs, you can
have the project built whenever somebody pushes changes up to the repository. It’s all
a matter of finding the right plug-ins and following the documentation for them.

36 | Chapter 1: Getting Started: Compiling and Running Java

Then we have the how, or the build process. Again, a few build types are included
with Jenkins, and many more are available as plug-ins: I’ve used Apache Maven, Gra‐
dle, the traditional Unix make tool, and even shell or command lines. As before, text
fields specific to your chosen tool will appear once you select the tool. In the toy
example, TooSmallToFail, I just use the shell command /bin/false (which should be
present on any Unix or Linux system) to ensure that the project does, in fact, fail to
build, just so you can see what that looks like.

You can have zero or more build steps; just keep clicking the Add button and add
additional ones, as shown in Figure 1-8.

Figure 1-8. Configuration for SCM and adding build steps in Jenkins

Once you think you’ve entered all the necessary information, click the Save button at
the bottom of the page, and you’ll go back to the project’s main page. Here you can
click the funny little Build Now icon at the far left to initiate a build right away. Or if
you have set up build triggers, you could wait until they kick in; but then again,
wouldn’t you rather know right away whether you’ve got it just right? Figure 1-9
shows the build starting.

Should a job fail to build, you get a red ball instead of a green one. Actually, a success‐
ful build shows a blue ball by default (the go bulb in Japanese traffic lights, where
Kohsuke lives, is blue rather than green), but most people outside Japan prefer green
for success, so the optional Green Balls plug-in is often one of the first to be added to
a new installation.

Beside the red or green ball, you will see a weather report ranging from sunny (the
last several builds have succeeded) to cloudy, rainy, or stormy (no recent builds have
succeeded).

1.11 Maintaining Your Code with Continuous Integration | 37

Click the link to the project that failed, and then the link to Console Output, and fig‐
ure out what went wrong. The usual workflow is then to make changes to the project,
commit/push them to the source code repository, and run the Jenkins build again.

Figure 1-9. After a new job is added in Jenkins

There are hundreds of optional plug-ins for Jenkins. To make your life easier, almost
all of them can be installed by clicking the Manage Jenkins link and then going to
Manage Plug-ins. The Available tab lists all the ones that are available from Jen‐
kins.org; you just need to click the checkbox beside the ones you want, and click
Apply. You can also find updates there. If your plug-in addtion or upgrade requires a
restart, you’ll see a yellow ball and words to that effect; otherwise you should see a
green (or blue) ball indicating plug-in success. You can also see the list of plug-ins
directly on the web.

I mentioned that Jenkins began life under the name Hudson. The Hudson project still
exists and is hosted at the Eclipse website. Last I checked, both projects had main‐
tained plug-in compatibility, so many or most plug-ins from one can be used with the
other. In fact, the most popular plug-ins appear in the Available tab of both, and most
of what’s said in this recipe about Jenkins applies equally to Hudson. If you use a dif‐
ferent CI system, you’ll need to check that system’s documentation, but the concepts
and the benefits will be similar.

1.12 Getting Readable Stack Traces
Problem
You’re getting an exception stack trace at runtime, but most of the important parts
don’t have line numbers.

38 | Chapter 1: Getting Started: Compiling and Running Java

https://wiki.jenkins-ci.org/display/JENKINS/Plugins

Solution
Be sure you have compiled with debugging enabled.

Discussion
When a Java program throws an exception, the exception propagates up the call stack
until there is a catch clause that matches it. If none is found, the Java interpreter pro‐
gram that invoked your main() method catches the exception and prints a stack
traceback showing all the method calls that got from the top of the program to the
place where the exception was thrown. You can print this traceback yourself in any
catch clause: the Throwable class has several overloads of the method called print
StackTrace().

The traceback includes line numbers only if they were compiled in. When using
javac, this is the default. If you add the -g option, javac will also include local variable
names and other information in the compiled code, which will make for better
debugging information in the event of a crash.

1.13 Finding More Java Source Code
Problem
You want to build a large application and need to minimize coding, avoiding the “Not
Invented Here” syndrome.

Solution
Use the Source, Luke. There are thousands of Java apps, frameworks, and libraries
available in open source.

Discussion
Java source code is everywhere. As mentioned earlier, all the code examples from this
book can be downloaded: see Recipe 1.6.

Another valuable resource is the source code for the Java API. You may not have real‐
ized it, but the source code for all the public parts of the Java API are included with
each release of the Java Development Kit. Want to know how java.util.ArrayList
actually works? You have the source code. Got a problem making a JTable behave?
The standard JDK includes the source for all the public classes! Look for a file called
src.zip or src.jar; some versions unzip this and some do not.

If that’s not enough, you can get the source for the whole JDK for free over the inter‐
net, either via the Mercurial source code librarian at openjdk.java.net or from the Git

1.13 Finding More Java Source Code | 39

http://hg.openjdk.java.net/jdk/jdk

mirror at AdoptOpenJDK at github.com. This includes the source for the public and
nonpublic parts of the API, as well as the compiler (written in Java) and a large body
of code written in C/C++ (the runtime itself and the interfaces to the native library).
For example, java.io.Reader has a method called read(), which reads bytes of data
from a file or network connection. There is a version of this written in C for each
operating system because it calls down to the read() system call for Unix, Windows,
macOS, or whatever. The JDK source kit includes the source for all this stuff.

1.14 Finding Runnable Java Libraries
Problem
You want to reuse a published library rather than reinventing a well-known solution
to your problem at hand.

Solution
Use the internet to find reusable software.

Discussion
Although most of this book is about writing Java code, this recipe is about not writing
code, but about using code written by others. There are hundreds of good frame‐
works to add to your Java application—why reinvent the flat tire when you can buy a
perfectly round one? Many of these frameworks have been around for years and have
become well rounded by feedback from users.

What, though, is the difference between a library and a framework? It’s sometimes a
bit vague, but in general, a framework is a program with holes that you fill in,
whereas a library is code you call. It is roughly the difference between building a car
by buying a car almost complete but with no engine and building a car by buying all
the pieces and bolting them together yourself.

When considering using a third-party framework, there are many choices and issues
to consider. One is cost, which gets into the issue of open source versus closed source.
Most open source tools can be downloaded for free and used, either without any con‐
ditions or with conditions that you must comply with. There is not the space here to
discuss these licensing issues, so I will refer you to Understanding Open Source and
Free Software Licensing (O’Reilly).

Much open source software is available in compiled library form on Maven Central,
as discussed in “Maven Central: Mapping the World of Java Software” on page 26.

40 | Chapter 1: Getting Started: Compiling and Running Java

https://github.com/AdoptOpenJDK/openjdk-jdk
http://shop.oreilly.com/product/9780596005818.do
http://shop.oreilly.com/product/9780596005818.do

Some well-known collections of open source frameworks and libraries for Java are lis‐
ted in Table 1-5. Most of the projects on these sites are curated—that is, judged and
found worthy—by some sort of community process.

Table 1-5. Reputable open source Java collections
Organization URL Notes
Apache Software Foundation http://projects.apache.org Not just a web server!

Eclipse Software Foundation https://eclipse.org/projects Home of IDE and of Jakarta EE

Spring Framework http://spring.io/projects Home to a dozen frameworks: Spring IOC (DI
factory), Spring MVC (web), more

JBoss community https://redhatofficial.github.io/ Lists half a dozen of their projects, plus a
long list of current open source projects they
use and/or support.

Codehaus — See footnotea

a Codehaus itself went offline a few years ago. As of 2019, the domain is owned by the Apache Software Foundation but does
not respond to browser requests. There is also a Codehaus account on github holding some of the projects that were
previously on Codehaus, some active and some not. See this article for more on the history of Codehaus.

There are also a variety of open source code repositories, which are not curated—
anybody who signs up can create a project there, regardless of the existing commu‐
nity size (if any). Sites like this that are successful accumulate too many projects to
have a single page listing them—you have to search. Most are not specific to Java.
Table 1-6 shows some of the open source code repos.

Table 1-6. Open source code repositories
Name URL Notes
Sourceforge.net https://sourceforge.net/ One of the oldest

GitHub http://github.com/ “Social Coding”; probably most heavily used, now owned by Microsoft

Bitbucket https://bitbucket.org/ Public and private repos; free and paid plans

GitLab https://gitlab.org/ Public and private repos; free and paid plans

Maven Central https://search.maven.org/ Has compiled jar, source jar and javadoc jar for each project

I’m not trying to disparage these repositories—indeed, the collection of demo pro‐
grams for this book is hosted on GitHub. I’m only saying that you have to know what
you’re looking for and exercise a bit of care before deciding on a framework. Is there
a community around it, or is it a dead end?

I maintain a small Java site that may be of value. It includes a listing of Java resources
and material related to this book.

For the Java enterprise or web tier, there are two main frameworks that also provide
dependency injection: the first is JavaServer Faces (JSF) and CDI, and the second is

1.14 Finding Runnable Java Libraries | 41

http://projects.apache.org
https://eclipse.org/projects
http://spring.io/projects
https://redhatofficial.github.io/
https://github.com/codehaus
https://www.javaworld.com/article/2892227/codehaus-the-once-great-house-of-code-has-fallen.html
https://sourceforge.net/
http://github.com/
https://bitbucket.org/
https://gitlab.org/
https://search.maven.org/
https://darwinsys.com/java

the Spring Framework SpringMVC package. JSF and the built-in CDI (Contexts and
Dependency Injection) provides DI as well as some additional contexts, such as a
very useful Web Conversation context that holds objects across multiple web page
interactions. The Spring Framework provides dependency injection and the
SpringMVC web-tier helper classes. Table 1-7 shows some web tier resources. Spring
MVC and JSF are far from the only web frameworks; the list in Table 1-7 includes
many others, which may be a better fit for your application. You have to decide!

Table 1-7. Web tier resources
Name URL Notes
Ian’s List of 100 Java Web
Frameworks

http://darwinsys.com/jwf/

JSF http://www.oracle.com/technetwork/java/javaee/overview/ Java EE standard technology
for web pages

Because JSF is a component-based framework, there are many add-on components
that will make your JSF-based website much more capable (and better looking) than
the default JSF components. Table 1-8 shows some of the JSF add-on libraries.

Table 1-8. JSF add-on libraries
Name URL Notes
BootsFaces https://bootsfaces.net/ Combines BootStrap with JSF

ButterFaces http://butterfaces.org/ Rich components library

ICEfaces http://icefaces.org/ Rich components library

OpenFaces http://openfaces.org/ Rich components library

PrimeFaces http://primefaces.org/ Rich components library

RichFaces http://richfaces.org/ Rich components; no longer maintained

Apache DeltaSpike http://deltaspike.apache.org/ Numerous code add-ons for JSF

JSFUnit http://www.jboss.org/jsfunit/ JUnit Testing for JSF

OmniFaces http://omnifaces.org/ JSF Utilities add-on

There are frameworks and libraries for almost everything these days. If my lists don’t
lead you to what you need, a web search probably will. Try not to reinvent the flat
tire!

As with all free software, be sure that you understand the ramifications of the various
licensing schemes. Code covered by the GPL, for example, automatically transfers the
GPL to any code that uses even a small part of it. Consult a lawyer. Your mileage may
vary. Despite these caveats, the source code is an invaluable resource to the person
who wants to learn more Java.

42 | Chapter 1: Getting Started: Compiling and Running Java

http://darwinsys.com/jwf/
http://www.oracle.com/technetwork/java/javaee/overview/
https://bootsfaces.net/
http://butterfaces.org/
http://icefaces.org/
http://openfaces.org/
http://primefaces.org/
http://richfaces.org/
http://deltaspike.apache.org/
http://www.jboss.org/jsfunit/
http://omnifaces.org/

CHAPTER 2

Interacting with the Environment

2.0 Introduction
This chapter describes how your Java program can deal with its immediate surround‐
ings with what we call the runtime environment. In one sense, everything you do in a
Java program using almost any Java API involves the environment. Here we focus
more narrowly on things that directly surround your program. Along the way we’ll be
introduced to the System class, which knows a lot about your particular system.

Two other runtime classes deserve brief mention. The first, java.lang.Runtime, lies
behind many of the methods in the System class. System.exit(), for example, just
calls Runtime.exit(). Runtime is technically part of the environment, but the only
time we use it directly is to run other programs, which is covered in Recipe 18.1.

2.1 Getting Environment Variables
Problem
You want to get the value of environment variables from within your Java program.

Solution
Use System.getenv().

Discussion
The seventh edition of Unix, released in 1979, had a new feature known as environ‐
ment variables. Environment variables are in all modern Unix systems (including
macOS) and in most later command-line systems, such as the DOS or Command

43

Prompt in Windows, but they are not in some older platforms or other Java runtimes.
Environment variables are commonly used for customizing an individual computer
user’s runtime environment, hence the name. To take one familiar example, on Unix
or DOS the environment variable PATH determines where the system looks for exe‐
cutable programs. So, of course people want to know how they access environment
variables from their Java program.

The answer is that you can do this in all modern versions of Java, but you should
exercise caution in depending on being able to specify environment variables because
some rare operating systems may not provide them. That said, it’s unlikely you’ll run
into such a system because all “standard” desktop systems provide them at present.

In some ancient versions of Java, System.getenv() was deprecated and/or just didn’t
work. Nowadays the getenv() method is no longer deprecated, though it still carries
the warning that system properties (see Recipe 2.2) should be used instead. Even
among systems that support environment variables, their names are case sensitive on
some platforms and case insensitive on others. The code in Example 2-1 is a short
program that uses the getenv() method.

Example 2-1. main/src/main/java/environ/GetEnv.java

public class GetEnv {
 public static void main(String[] argv) {
 System.out.println("System.getenv(\"PATH\") = " + System.getenv("PATH"));
 }
}

Running this code will produce output similar to the following:

C:\javasrc>java environ.GetEnv
System.getenv("PATH") = C:\windows\bin;c:\jdk1.8\bin;c:\documents
 and settings\ian\bin
C:\javasrc>

The no-argument form of the method System.getenv() returns all the environment
variables in the form of an immutable String Map. You can iterate through this map
and access all the user’s settings or retrieve multiple environment settings.

Both forms of getenv() require you to have permissions to access the environment,
so they typically do not work in restricted environments such as applets.

2.2 Getting Information from System Properties
Problem
You need to get information from the system properties.

44 | Chapter 2: Interacting with the Environment

Solution
Use System.getProperty() or System.getProperties().

Discussion
What is a property anyway? A property is just a name and value pair stored in a
java.util.Properties object, which we discuss more fully in Recipe 7.10.

The System.Properties object controls and describes the Java runtime. The System
class has a static Properties member whose content is the merger of operating sys‐
tem specifics (os.name, for example), system and user tailoring (java.class.path),
and properties defined on the command line (as we’ll see in a moment). Note that the
use of periods in these names (like os.arch, os.version, java.class.path, and
java.lang.version) makes it look as though there is a hierarchical relationship simi‐
lar to that for package/class names. The Properties class, however, imposes no such
relationships: each key is just a string, and dots are not special.

To view all the defined system properties, you can iterate through the output of call‐
ing System.getProperties() as in Example 2-2.

Example 2-2. jshell System.getProperties()

jshell> System.getProperties().forEach((k,v) -> System.out.println(k + "->" +v))
awt.toolkit->sun.awt.X11.XToolkit
java.specification.version->11
sun.cpu.isalist->
sun.jnu.encoding->UTF-8
java.class.path->.
java.vm.vendor->Oracle Corporation
sun.arch.data.model->64
java.vendor.url->http://java.oracle.com/
user.timezone->
os.name->OpenBSD
java.vm.specification.version->11
... many more ...
jshell>

Remember that properties whose names begin with “sun” are unsupported and sub‐
ject to change.

To retrieve one system-provided property, use System.getProperty(propName). If I
just wanted to find out if the System Properties had a property named "pen
cil_color", I could say:

 String sysColor = System.getProperty("pencil_color");

2.2 Getting Information from System Properties | 45

But what does that return? Surely Java isn’t clever enough to know about everybody’s
favorite pencil color? Right you are! But we can easily tell Java about our pencil color
(or anything else we want to tell it) using the -D argument.

When starting a Java runtime, you can define a value in the system properties object
using a -D option. Its argument must have a name, an equals sign, and a value, which
are parsed the same way as in a properties file (see Recipe 7.10). You can have more
than one -D definition between the java command and your class name on the com‐
mand line. At the Unix or Windows command line, type:

java -D"pencil_color=Deep Sea Green" environ.SysPropDemo

When running this under an IDE, put the variable’s name and value in the appropri‐
ate dialog box, for example, in Eclipse’s Run Configuration dialog under Program
Arguments. You can also set environment variables and system properties using the
build tools (Maven, Gradle, etc.).

The SysPropDemo program has code to extract just one or a few properties, so you can
run it like this:

$ java environ.SysPropDemo os.arch
os.arch = x86

If you invoke the SysPropDemo program with no arguments, it outputs the same
information as the jshell fragment in Example 2-2.

Which reminds me—this is a good time to mention system-dependent code. Recipe
2.3 talks about OS-dependent code and release-dependent code.

See Also
Recipe 7.10 lists more details on using and naming your own Properties files. The
javadoc page for java.util.Properties lists the exact rules used in the load()
method, as well as other details.

2.3 Dealing with Code That Depends on the Java Version
or the Operating System
Problem
You need to write code that adapts to the underlying operating system.

46 | Chapter 2: Interacting with the Environment

Solution
You can use System.Properties to find out the Java version and the operating sys‐
tem, various features in the File class to find out some platform-dependent features,
and java.awt.TaskBar to see if you can use the system-dependent Taskbar or Dock.

Discussion
Some things depend on the version of Java you are running. Use System.getProp
erty() with an argument of java.specification.version.

Alternatively, and with greater generality, you may want to test for the presence or
absence of particular classes. One way to do this is with Class.forName("class")
(see Chapter 17), which throws an exception if the class cannot be loaded—a good
indication that it’s not present in the runtime’s library. Example 2-3 shows code for
this, from an application wanting to find out whether the common Swing UI compo‐
nents are available. The javadoc for the standard classes reports the version of the
JDK in which this class first appeared, under the heading “Since.” If there is no such
heading, it normally means that the class has been present since the beginnings of
Java:

Example 2-3. main/src/main/java/starting/CheckForSwing.java

public class CheckForSwing {
 public static void main(String[] args) {
 try {
 Class.forName("javax.swing.JButton");
 } catch (ClassNotFoundException e) {
 String failure =
 "Sorry, but this version of MyApp needs \n" +
 "a Java Runtime with JFC/Swing components\n" +
 "having the final names (javax.swing.*)";
 // Better to make something appear in the GUI. Either a
 // JOptionPane, or: myPanel.add(new Label(failure));
 System.err.println(failure);
 }
 // No need to print anything here - the GUI should work...
 }
}

It’s important to distinguish between testing this code at compile time and at runtime.
In both cases, it must be compiled on a system that includes the classes you are test‐
ing for: JDK >= 1.1 and Swing, respectively. These tests are only attempts to help the
poor backwater Java runtime user trying to run your up-to-date application. The goal
is to provide this user with a message more meaningful than the simple “class not
found” error that the runtime gives. It’s also important to note that this test becomes
unreachable if you write it inside any code that depends on the code you are testing.

2.3 Dealing with Code That Depends on the Java Version or the Operating System | 47

1 When compiling strings for use on Windows, remember to double them because \ is an escape character in
most places other than the MS-DOS command line: String rootDir = "C:\\";.

Put the test early in the main flow of your application, before any GUI objects are
constructed. Otherwise the code just sits there wasting space on newer runtimes and
never gets run on Java systems that don’t include Swing. Obviously this is a very early
example, but you can use the same technique to test for any runtime feature added at
any stage of Java’s evolution (see Appendix A for an outline of the features added in
each release of Java). You can also use this technique to determine whether a needed
third-party library has been successfully added to your CLASSPATH.

Also, although Java is designed to be portable, some things aren’t. These include such
variables as the filename separator. Everybody on Unix knows that the filename sepa‐
rator is a slash character (/) and that a backward slash, or backslash (\), is an escape
character. Back in the late 1970s, a group at Microsoft was actually working on Unix
—their version was called Xenix, later taken over by SCO—and the people working
on DOS saw and liked the Unix filesystem model. The earliest versions of MS-DOS
didn’t have directories; it just had user numbers like the system it was a clone of, Digi‐
tal Research CP/M (itself a clone of various other systems). So the Microsoft develop‐
ers set out to clone the Unix filesystem organization. Unfortunately, MS-DOS had
already committed the slash character for use as an option delimiter, for which Unix
had used a dash (-); and the PATH separator (:) was also used as a drive letter delim‐
iter, as in C: or A:. So we now have commands like those shown in Table 2-1.

Table 2-1. Directory listing commands
System Directory list command Meaning Example PATH setting
Unix ls -R / Recursive listing of /, the top-level directory PATH=/bin:/usr/bin

DOS dir/s \ Directory with subdirectories option (i.e., recursive) of \, the
top-level directory (but only of the current drive)

PATH=C:\windows;D:
\mybin

Where does this get us? If we are going to generate filenames in Java, we may need to
know whether to put a / or a \ or some other character. Java has two solutions to this.
First, when moving between Unix and Microsoft systems, at least, it is permissive:
either / or \ can be used,1 and the code that deals with the operating system sorts it
out. Second, and more generally, Java makes the platform-specific information avail‐
able in a platform-independent way. For the file separator (and also the PATH separa‐
tor), the java.io.File class makes available some static variables containing this
information. Because the File class manages platform-dependent information, it
makes sense to anchor this information here. The variables are shown in Table 2-2.

48 | Chapter 2: Interacting with the Environment

Table 2-2. Table 2-2. File properties
Name Type Meaning

separator static String The system-dependent filename separator character (e.g., / or \)

separatorChar static char The system-dependent filename separator character (e.g., / or \)

pathSeparator static String The system-dependent path separator character, represented as a
string for convenience

pathSeparatorChar static char The system-dependent path separator character

Both filename and path separators are normally characters, but they are also available
in String form for convenience.

A second, more general, mechanism is the System Properties object mentioned in
Recipe 2.2. You can use this to determine the operating system you are running on.
Here is code that simply lists the system properties; it can be informative to run this
on several different implementations:

public class SysPropDemo {
 public static void main(String[] argv) throws IOException {
 if (argv.length == 0)
 // tag::sysprops[]
 System.getProperties().list(System.out);
 // end::sysprops[]
 else {
 for (String s : argv) {
 System.out.println(s + " = " +
 System.getProperty(s));
 }
 }
 }
}

Some OSes, for example, provide a mechanism called the null device that can be used
to discard output (typically used for timing purposes). Here is code that asks the sys‐
tem properties for the os.name and uses it to make up a name that can be used for
discarding data (if no null device is known for the given platform, we return the name
jnk, which means that on such platforms, we’ll occasionally create, well, junk files; I
just remove these files when I stumble across them):

package com.darwinsys.lang;

import java.io.File;

/** Some things that are system-dependent.
 * All methods are static.
 * @author Ian Darwin
 */
public class SysDep {

2.3 Dealing with Code That Depends on the Java Version or the Operating System | 49

 final static String UNIX_NULL_DEV = "/dev/null";
 final static String WINDOWS_NULL_DEV = "NUL:";
 final static String FAKE_NULL_DEV = "jnk";

 /** Return the name of the null device on platforms which support it,
 * or "jnk" (to create an obviously well-named temp file) otherwise.
 * @return The name to use for output.
 */
 public static String getDevNull() {

 if (new File(UNIX_NULL_DEV).exists()) {
 return UNIX_NULL_DEV;
 }

 String sys = System.getProperty("os.name");
 if (sys==null) {
 return FAKE_NULL_DEV;
 }
 if (sys.startsWith("Windows")) {
 return WINDOWS_NULL_DEV;
 }
 return FAKE_NULL_DEV;
 }
}

If /dev/null exists, use it.

If not, ask System properties if it knows the OS name.

Nope, so give up, return jnk.

We know it’s Microsoft Windows, so use NUL:.

All else fails, go with jnk.

Although Java’s Swing GUI aims to be portable, Apple’s implementation for macOS
does not automatically do the right thing for everyone. For example, a JMenuBar
menu container appears by default at the top of the application window. This is the
norm on Windows and on most Unix platforms, but Mac users expect the menu bar
for the active application to appear at the top of the screen. To enable normal behav‐
ior, you have to set the System property apple.laf.useScreenMenuBar to the value
true before the Swing GUI starts up. You might want to set some other properties
too, such as a short name for your application to appear in the menu bar (the default
is the full class name of your main application class).

There is an example of this in the book’s source code, at src/main/java/gui/MacOsUi‐
Hints.java.

50 | Chapter 2: Interacting with the Environment

There is probably no point in setting these properties unless you are, in fact, being
run under macOS. How do you tell? Apple’s recommended way is to check for the
system property mrj.runtime and, if so, assume you are on macOS:

boolean isMacOS = System.getProperty("mrj.version") != null;
if (isMacOS) {
 System.setProperty("apple.laf.useScreenMenuBar", "true");
 System.setProperty("com.apple.mrj.application.apple.menu.about.name",
 "My Super App");
}

On the other hand, these properties are likely harmless on non-Mac systems, so you
could just skip the test and set the two properties unconditionally.

Finally, the Mac’s Dock or the Taskbar on most other systems can be accessed using
the java.awt.Taskbar class that was added in Java 9. This is not discussed here, but
there is an example TaskbarDemo in the main/gui subdirectory.

2.4 Using Extensions or Other Packaged APIs
Problem
You have a JAR file of classes you want to use.

Solution
Simply add the JAR file to your CLASSPATH.

Discussion
As you build more sophisticated applications, you will need to use more and more
third-party libraries. You can add these to your CLASSPATH.

It used to be recommended that you drop these JAR files into the Java Extensions
mechanism directory, typically something like \jdk1.x\jre\lib\ext., instead of listing
each JAR file in your CLASSPATH variable. However, this is no longer generally recom‐
mended and is no longer available in the latest JDKs. Instead, you may wish to use
build tools like Maven (see Recipe 1.7) or Gradle, as well as IDEs, to automate the
addition of JAR files to your CLASSPATH.

One reason I’ve never been fond of using the extensions directory is that it requires
modifying the installed JDK or JRE, which can lead to maintenance issues and prob‐
lems when a new JDK or JRE is installed.

Java 9 introduced a major change to Java, the Java 9 Modules system for program
modularization, which we discuss in Recipe 2.5.

2.4 Using Extensions or Other Packaged APIs | 51

2.5 Using the Java Modules System
Problem
You are using Java 9 or later, and need to deal with the Modules mechanism.

Solution
Read on.

Discussion
Java’s Modules system, formerly known as Project Jigsaw, was designed to handle the
need to build large applications out of many small pieces. To an extent this problem
had been solved by tools like Maven and Gradle, but the Modules system solves a
slightly different problem than those tools. Maven or Gradle will find dependencies,
download them, install them on your development and test runtimes, and package
them into runnable JAR files. The Modules system is more concerned with the visbil‐
ity of classes from one chunk of application code to another, typically provided by
different developers who may not know or trust each other. As such, it is an admis‐
sion that Java’s original set of access modifiers—such as public, private, protected,
and default visibility—was not sufficient for building large-scale applications.

What follows is a brief discussion of using JPMS, the Java Platform Module System,
to import modules into your application. There is an introduction to creating your
own modules in Chapter 15. For a more detailed presentation, you should refer to a
book-length treatment such as Java 9 Modularity: Patterns and Practices for Develop‐
ing Maintainable Applications by Sander Mak and Paul Bakker (O’Reilly).

Java has always been a language for large-scale development. Object orientation is
one of the keys: classes and objects group methods, and access modifiers can be
applied so that public and private methods are clearly separated. When developing
large applications, having just a single flat namespace of classes is still not enough.
Enter packages: they gather classes into logical groups within their own namespace.
Access control can be applied at the package level as well so that some classes are only
accessible inside a package. Modules are the next logical step up. A module groups
some number of related packages, has a distinct name, and can restrict access to some
packages while exposing other packages to different modules as public API.

One thing to understand at the outset: JPMS is not a replacement for your existing
build tool. Whether you use Maven, Gradle, Ant, or just dump all needed JAR files
into a lib directory, you still need to do that. Also, don’t confuse Maven’s modules
with JPMS modules; the former is the physical structuring of a project into subpro‐
jects, and the latter is something the Java platform (compiler, runtime) understands.

52 | Chapter 2: Interacting with the Environment

http://shop.oreilly.com/product/0636920049494.do
http://shop.oreilly.com/product/0636920049494.do

Usually when working with Java modules, each Java module will equate to a single
Maven module.

When you’re dealing with a tiny, self-contained program, you don’t need to be con‐
cerned with modules. Just put all the necessary JAR files on your CLASSPATH at com‐
pile time and runtime, and all will be well. Probably.

You may see warning messages like this along the way:

Illegal reflective access by com.foo.Bar
 (file:/Users/ian/.m2/repository/com/foo/1.3.1/foo-1.3.1.jar)
 to field java.util.Properties.defaults
Please consider reporting this to the maintainers of com.foo.Bar
Use --illegal-access=warn to enable warnings of further
 illegal reflective access operations
All illegal access operations will be denied in a future release

The warning message comes about as a result of JPMS doing its job, checking that no
types are accessed in encapsulated packages within a module. Such messages will go
away over time as all public Java libraries and all apps being developed get
modularized.

Why will all be well only “probably”? If you are using certain classes that were depre‐
cated over the last few releases, things won’t compile. For that, you must make the
requisite modules available. In the unsafe subdirectory (also a Maven module) under
javasrc, there is a class called LoadAverage. The load average is a feature of Unix/
Linux systems that gives a rough measure of system load or busyness, by reporting
the number of processes that are waiting to be run. There are almost always more
processes running than CPU cores to run them on, so some always have to wait.
Higher numbers mean a busier system with slower response.

Sun’s unsupported Unsafe class has a method for obtaining the load average, on sys‐
tems that support it. The code has to use the Reflection API (see Chapter 17) to
obtain the Unsafe object; if you try to instantiate Unsafe directly you will get a Secur
ityException (this was the case before the Modules system). Once the instance is
obtained and casted to Unsafe, you can invoke methods such as loadAverage()
(Example 2-4).

Example 2-4. unsafe/src/main/java/unsafe/LoadAverage.java (use of Unsafe.java)

public class LoadAverage {
 public static void main(String[] args) throws Exception {
 Field f = Unsafe.class.getDeclaredField("theUnsafe");
 f.setAccessible(true);
 Unsafe unsafe = (Unsafe) f.get(null);
 int nelem = 3;
 double loadAvg[] = new double[nelem];
 unsafe.getLoadAverage(loadAvg, nelem);

2.5 Using the Java Modules System | 53

 for (double d : loadAvg) {
 System.out.printf("%4.2f ", d);
 }
 System.out.println();
 }
}

This code, which used to compile, gives warnings. If we are using Java Modules, we
must modify our module-info.java file to tell the compiler and VM that we require use
of the module with the semi-obvious name jdk.unsupported.

module javasrc.unsafe {
 requires jdk.unsupported;
 // others...
}

We’ll say more about the module file format in Recipe 15.9.

Now that we have the code in place and the module file in the top level of the source
folder, we can build the project, run the program, and compare its output against the
system-level tool for displaying the load average, uptime. We’ll still get the “internal
proprietary API” warnings, but it works:

$ java -version
openjdk version "14-ea" 2020-03-17
OpenJDK Runtime Environment (build 14-ea+27-1339)
OpenJDK 64-Bit Server VM (build 14-ea+27-1339, mixed mode, sharing)
$ mvn clean package
[INFO] Scanning for projects...
[INFO]
[INFO] --------------------< com.darwinsys:javasrc-unsafe >--------------------
[INFO] Building javasrc - Unsafe 1.0.0-SNAPSHOT
[INFO] --------------------------------[jar]---------------------------------
[INFO]
[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ javasrc-unsafe ---
[INFO] Deleting /Users/ian/workspace/javasrc/unsafe/target
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ javasrc-
unsafe ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] skip non existing resourceDirectory /Users/ian/workspace/javasrc/
unsafe/src/main/resources
[INFO]
[INFO] --- maven-compiler-plugin:3.1:compile (default-compile) @ javasrc-unsafe

[INFO] Changes detected - recompiling the module!
[INFO] Compiling 2 source files to /Users/ian/workspace/javasrc/unsafe/target/
classes
[WARNING] /Users/ian/workspace/javasrc/unsafe/src/main/java/unsafe/LoadAver
age.java:[3,16] sun.misc.Unsafe is internal proprietary API and may be removed
in a future release
[WARNING] /Users/ian/workspace/javasrc/unsafe/src/main/java/unsafe/LoadAver

54 | Chapter 2: Interacting with the Environment

age.java:[12,27] sun.misc.Unsafe is internal proprietary API and may be removed
in a future release
[WARNING] /Users/ian/workspace/javasrc/unsafe/src/main/java/unsafe/LoadAver
age.java:[14,17] sun.misc.Unsafe is internal proprietary API and may be removed
in a future release
[WARNING] /Users/ian/workspace/javasrc/unsafe/src/main/java/unsafe/LoadAver
age.java:[14,34] sun.misc.Unsafe is internal proprietary API and may be removed
in a future release
[INFO]
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources) @
javasrc-unsafe ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] skip non existing resourceDirectory /Users/ian/workspace/javasrc/
unsafe/src/test/resources
[INFO]
[INFO] --- maven-compiler-plugin:3.1:testCompile (default-testCompile) @
javasrc-unsafe ---
[INFO] No sources to compile
[INFO]
[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ javasrc-unsafe ---
[INFO] No tests to run.
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ javasrc-unsafe ---
[INFO] Building jar: /Users/ian/workspace/javasrc/unsafe/target/javasrc-
unsafe-1.0.0-SNAPSHOT.jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 4.668 s
[INFO] Finished at: 2020-01-05T14:53:55-05:00
[INFO] --
$
$ java -cp target/classes unsafe/LoadAverage
3.54 1.94 1.62
$ uptime
14:54 up 1 day, 21:50, 5 users, load averages: 3.54 1.94 1.62
$

Thankfully, it works and gives the same numbers as the standard Unix uptime com‐
mand. At least, it works on Java 11. As the warnings imply, it may (i.e., probably will)
be removed in a later release.

If you are building a more complex app, you will probably need to put together a
more complete module-info.java file. But at this stage it’s primarily a matter of requir‐
ing the modules you need. The standard Java API is divided into several modules,
which you can list using the java command:

$ java --list-modules
java.base
java.compiler
java.datatransfer
java.desktop

2.5 Using the Java Modules System | 55

java.instrument
java.logging
java.management
java.management.rmi
java.naming
java.net.http
java.prefs
java.rmi
java.scripting
java.se
java.security.jgss
java.security.sasl
java.smartcardio
java.sql
java.sql.rowset
java.transaction.xa
java.xml
java.xml.crypto
... plus a bunch of JDK modules ...

Of these, java.base is always available and doesn’t need to be listed in your module
file, java.desktop adds AWT and Swing for graphics, and java.se includes basically
all of what used to be public API in the Java SDK. If our load average program wanted
to display the result in a Swing window, for example, it would need to add this into its
module file:

requires java.desktop;

When your application is big enough to be divided into tiers or layers, you will proba‐
bly want to describe these modules using JPMS. Since that topic comes under the
heading of packaging, it is described in Recipe 15.9.

56 | Chapter 2: Interacting with the Environment

1 The two .equals() calls are equivalent with the exception that the first can throw a NullPointerException
while the second cannot.

CHAPTER 3

Strings and Things

3.0 Introduction
Character strings are an inevitable part of just about any programming task. We use
them for printing messages for the user; for referring to files on disk or other external
media; and for people’s names, addresses, and affiliations. The uses of strings are
many, almost without number (actually, if you need numbers, we’ll get to them in
Chapter 5).

If you’re coming from a programming language like C, you’ll need to remember that
String is a defined type (class) in Java—that is, a string is an object and therefore has
methods. It is not an array of characters (though it contains one) and should not
be thought of as an array. Operations like fileName.endsWith(".gif") and
extension.equals(".gif") (and the equivalent ".gif".equals(extension)) are
commonplace.1

Java old-timers should note that Java 11 and 12 added several new String methods,
including indent(int n), stripLeading() and stripTrailing(), Stream<T>

lines(), isBlank(), and transform(). Most of these provide obvious functionality;
the last one allows applying an instance of a functional interface (see Recipe 9.0) to a
string and returning the result of that operation.

Although we haven’t discussed the details of the java.io package yet (we will, in
Chapter 10), you need to be able to read text files for some of these programs. Even if
you’re not familiar with java.io, you can probably see from the examples of reading

57

text files that a BufferedReader allows you to read chunks of data and that this class
has a very convenient readLine() method.

Going the other way, System.out.println() is normally used to print strings or
other values to the terminal or standard output. String concatenation is commonly
used here, like this:

System.out.println("The answer is " + result);

One caveat with string concatenation is that if you are appending a bunch of things,
and a number and a character are concatenated at the front, they are added before
concatenation due to Java’s precedence rules. So don’t do as I did in this contrived
example:

int result = ...;
System.out.println(result + '=' + " the answer.");

Given that result is an integer, then result + '=' (result added to the equals
sign, which is of the numeric type +char) is a valid numeric expression, which
will result in a single value of type int. If the variable result has the value 42, and
given that the character = in a Unicode (or ASCII) code chart has the value 61, the
two-line fragment would print:

103 the answer.

The wrong value and no equals sign! Safer approaches include using parentheses,
double quotes around the equals sign, a StringBuilder (see Recipe 3.2), or
String.format() (see Recipe 10.4). Of course in this simple example you could just
move the = to be part of the string literal, but the example was chosen to illustrate the
problem of arithmetic on char values being confused with string contatenation. I
won’t show you how to sort an array of strings here; the more general notion of sort‐
ing a collection of objects will be taken up in Recipe 7.11.

Java 14 enables text blocks, also known as multiline text strings. These are delimited
with a set of three double quotes, the opening of which must have a newline after the
quotes (which doesn’t become part of the string; the following newlines do):

String long = """
This is a long
text String."""

Timeless, Immutable, and Unchangeable
Notice that a given String object, once constructed, is immutable. In other words,
once I have said String s = "Hello" + yourName;, the contents of the particular
object that reference variable s refers to can never be changed. You can assign s to
refer to a different string, even one derived from the original, as in s = s.trim().
And you can retrieve characters from the original string using charAt(), but it isn’t

58 | Chapter 3: Strings and Things

2 StringBuilder was added in Java 5. It is functionally equivalent to the older
StringBuffer. We will delve into the details in Recipe 3.2.

called getCharAt() because there is not, and never will be, a setCharAt() method.
Even methods like toUpperCase() don’t change the String; they return a new String
object containing the translated characters. If you need to change characters within a
String, you should instead create a StringBuilder (possibly initialized to the start‐
ing value of the String), manipulate the StringBuilder to your heart’s content, and
then convert that to String at the end, using the ubiquitous toString() method.2

How can I be so sure they won’t add a setCharAt() method in the next release?
Because the immutability of strings is one of the fundamentals of the Java Virtual
Machine. Immutable objects are generally good for software reliability (some lan‐
guages do not even allow mutable objects). Immutability avoids conflicts, particularly
where multiple threads are involved, or where software from multiple organizations
has to work together; for example, you can safely pass immutable objects to a third-
party library and expect that the objects will not be modifed.

It may be possible to tinker with the String’s internal data structures using the Reflec‐
tion API, as shown in Recipe 17.3, but then all bets are off. Secured environments do
not permit access to the Reflection API, and the Java Modules system from Java 9
tightens reflective access to such internals even further.

Remember also that the String is a fundamental type in Java. Unlike most of the
other classes in the core API, the behavior of strings is not changeable; the class is
marked final so it cannot be subclassed. So you can’t declare your own String sub‐
class. Think if you could—you could masquerade as a String but provide a setCh
arAt() method! Again, they thought of that. If you don’t believe me, try it out:

public class WolfInStringsClothing
 extends java.lang.String {//EXPECT COMPILE ERROR

 public void setCharAt(int index, char newChar) {
 // The implementation of this method
 // would be left as an exercise for the reader.
 // Hint: compile this code exactly as is before bothering!
 }
}

Got it? They thought of that!

Of course you do need to be able to modify strings. Some methods extract part of a
String; these are covered in the first few recipes in this chapter. And StringBuilder
is an important set of classes that deals in characters and strings and has many meth‐
ods for changing the contents, including, of course, a toString() method. Reformed
C programmers should note that Java strings are not arrays of chars as in C. There‐
fore you must use methods for such operations as processing a string one character at

3.0 Introduction | 59

a time; see Recipe 3.3. Figure 3-1 shows an overview of String, StringBuilder, and
C-language strings.

Figure 3-1. String, StringBuilder, and C-language strings

3.1 Taking Strings Apart with Substrings or Tokenizing
Problem
You want to break a string apart, either by indexing positions or by using fixed token
characters (e.g., break on spaces to get words).

Solution
For substrings, use the String object’s substring() method. For tokenizing, con‐
struct a StringTokenizer around your string and call its methods hasMoreTokens()
and nextToken().

Or, use regular expressions (see Chapter 4).

Discussion
We’ll look first at substrings, and then discuss tokenizing.

60 | Chapter 3: Strings and Things

Substrings

The substring() method constructs a new String object made up of a run of char‐
acters contained somewhere in the original string, the one whose substring() you
called. The substring method is overloaded: both forms require a starting index
(which is always zero-based). The one-argument form returns from startIndex to
the end. The two-argument form takes an ending index (not a length, as in some lan‐
guages) so that an index can be generated by the String methods indexOf() or last
IndexOf():

public class SubStringDemo {
 public static void main(String[] av) {
 String a = "Java is great.";
 System.out.println(a);
 String b = a.substring(5); // b is the String "is great."
 System.out.println(b);
 String c = a.substring(5,7);// c is the String "is"
 System.out.println(c);
 String d = a.substring(5,a.length());// d is "is great."
 System.out.println(d);
 }
}

When run, this prints the following:

C:> java strings.SubStringDemo
Java is great.
is great.
is
is great.
C:>

Note that the end index is one beyond the last character! Java
adopts this policy of having a half-open interval (or inclusive start,
exclusive end) fairly consistently; there are good practical reasons
for adopting this approach, and some other languages do so too.

Tokenizing
The easiest way is to use a regular expression. We’ll discuss regular expressions in
Chapter 4, but for now, a string containing a space is a valid regular expression to
match space characters, so you can most easily split a string into words like this:

for (String word : some_input_string.split(" ")) {
 System.out.println(word);
}

If you need to match multiple spaces, or spaces and tabs, use the string "\s+".

3.1 Taking Strings Apart with Substrings or Tokenizing | 61

3 Unless, perhaps, you’re as slow at updating personal records as I am.

If you want to split a file, you can try the string "," or use one of several third-party
libraries for CSV files.

Another method is to use StringTokenizer. The StringTokenizer methods imple‐
ment the Iterator interface and design pattern (see Recipe 7.6):

main/src/main/java/strings/StrTokDemo.java
StringTokenizer st = new StringTokenizer("Hello World of Java");

while (st.hasMoreTokens())
 System.out.println("Token: " + st.nextToken());

StringTokenizer also implements the Enumeration interface (see Recipe 7.6), but if
you use the methods thereof, you need to cast the results to String.

A StringTokenizer normally breaks the String into tokens at what we would think
of as word boundaries in European languages. Sometimes you want to break at some
other character. No problem. When you construct your StringTokenizer, in addi‐
tion to passing in the string to be tokenized, pass in a second string that lists the
break characters, like this:

main/src/main/java/strings/StrTokDemo2.java
StringTokenizer st = new StringTokenizer("Hello, World|of|Java", ", |");

while (st.hasMoreElements())
 System.out.println("Token: " + st.nextElement());

It outputs the four words, each on a line by itself, with no punctuation.

But wait, there’s more! What if you are reading lines like

FirstName|LastName|Company|PhoneNumber

and your dear old Aunt Begonia hasn’t been employed for the last 38 years? Her Com
pany field will in all probability be blank.3 If you look very closely at the previous
code example, you’ll see that it has two delimiters together (the comma and the
space); but if you run it, there are no “extra” tokens—that is, the StringTokenizer
normally discards adjacent consecutive delimiters. For cases like the phone list, where
you need to preserve null fields, there is good news and bad news. The good news is
that you can do it: you simply add a second argument of true when constructing the
StringTokenizer, meaning that you wish to see the delimiters as tokens. The bad
news is that you now get to see the delimiters as tokens, so you have to do the arith‐
metic yourself. Want to see it? Run this program:

main/src/main/java/strings/StrTokDemo3.java

62 | Chapter 3: Strings and Things

StringTokenizer st =
 new StringTokenizer("Hello, World|of|Java", ", |", true);

while (st.hasMoreElements())
 System.out.println("Token: " + st.nextElement());

You will get this output:

C:\>java strings.StrTokDemo3
Token: Hello
Token: ,
Token:
Token: World
Token: |
Token: of
Token: |
Token: Java
C:\>

This isn’t how you’d like StringTokenizer to behave, ideally, but it is serviceable
enough most of the time. Example 3-1 processes and ignores consecutive tokens,
returning the results as an array of Strings.

Example 3-1. main/src/main/java/strings/StrTokDemo4.java (StringTokenizer)

public class StrTokDemo4 {
 public final static int MAXFIELDS = 5;
 public final static String DELIM = "|";

 /** Processes one String, returns it as an array of Strings */
 public static String[] process(String line) {
 String[] results = new String[MAXFIELDS];

 // Unless you ask StringTokenizer to give you the tokens,
 // it silently discards multiple null tokens.
 StringTokenizer st = new StringTokenizer(line, DELIM, true);

 int i = 0;
 // Stuff each token into the current slot in the array.
 while (st.hasMoreTokens()) {
 String s = st.nextToken();
 if (s.equals(DELIM)) {
 if (i++>=MAXFIELDS)
 // This is messy: See StrTokDemo4b which uses
 // a List to allow any number of fields.
 throw new IllegalArgumentException("Input line " +
 line + " has too many fields");
 continue;
 }
 results[i] = s;
 }
 return results;

3.1 Taking Strings Apart with Substrings or Tokenizing | 63

 }

 public static void printResults(String input, String[] outputs) {
 System.out.println("Input: " + input);
 for (String s : outputs)
 System.out.println("Output " + s + " was: " + s);
 }

 public static void main(String[] a) {
 printResults("A|B|C|D", process("A|B|C|D"));
 printResults("A||C|D", process("A||C|D"));
 printResults("A|||D|E", process("A|||D|E"));
 }
}

When you run this, you will see that A is always in Field 1, B (if present) is in Field 2,
and so on. In other words, the null fields are being handled properly:

Input: A|B|C|D
Output 0 was: A
Output 1 was: B
Output 2 was: C
Output 3 was: D
Output 4 was: null
Input: A||C|D
Output 0 was: A
Output 1 was: null
Output 2 was: C
Output 3 was: D
Output 4 was: null
Input: A|||D|E
Output 0 was: A
Output 1 was: null
Output 2 was: null
Output 3 was: D
Output 4 was: E

See Also
Many occurrences of StringTokenizer may be replaced with regular expressions (see
Chapter 4) with considerably more flexibility. For example, to extract all the numbers
from a String, you can use this code:

Matcher tokenizer = Pattern.compile("\\d+").matcher(inputString);
while (tokenizer.find()) {
 String courseString = tokenizer.group(0);
 int courseNumber = Integer.parseInt(courseString);
 ...

This allows user input to be more flexible than you could easily handle with a String
Tokenizer. Assuming that the numbers represent course numbers at some educa‐

64 | Chapter 3: Strings and Things

4 String and StringBuilder have several methods that are forced to be identical by their implementation of
the CharSequence interface.

tional institution, the inputs “471,472,570” or “Courses 471 and 472, 570” or just “471
472 570” should all give the same results.

3.2 Putting Strings Together with StringBuilder
Problem
You need to put some String pieces (back) together.

Solution
Use string concatenation: the + operator. The compiler implicitly constructs a
StringBuilder for you and uses its append() methods (unless all the string parts are
known at compile time).

Better yet, construct and use a StringBuilder yourself.

Discussion
An object of one of the StringBuilder classes basically represents a collection of
characters. It is similar to a String object.4 However, as mentioned, Strings are
immutable; StringBuilders are mutable and designed for, well, building Strings.
You typically construct a StringBuilder, invoke the methods needed to get the char‐
acter sequence just the way you want it, and then call toString() to generate a
String representing the same character sequence for use in most of the Java API,
which deals in Strings.

StringBuffer is historical—it’s been around since the beginning of time. Some of its
methods are synchronized (see Recipe 16.5), which involves unneeded overhead in a
single-threaded context. In Java 5, this class was split into StringBuffer (which is
synchronized) and StringBuilder (which is not synchronized); thus, it is faster and
preferable for single-threaded use. Another new class, AbstractStringBuilder, is the
parent of both. In the following discussion, I’ll use “the StringBuilder classes” to
refer to all three because they mostly have the same methods.

The book’s example code provides a StringBuilderDemo and a StringBufferDemo.
Except for the fact that StringBuilder is not thread-safe, these API classes are
identical and can be used interchangeably, so my two demo programs are almost
identical except that each one uses the appropriate builder class.

3.2 Putting Strings Together with StringBuilder | 65

The StringBuilder classes have a variety of methods for inserting, replacing, and
otherwise modifying a given StringBuilder. Conveniently, the append() methods
return a reference to the StringBuilder itself, so stacked statements
like .append(…).append(…) are fairly common. This style of coding is referred to as a
fluent API because it reads smoothly, like prose from a native speaker of a human lan‐
guage. You might even see this style of coding in a toString() method, for example.
Example 3-2 shows three ways of concatenating strings.

Example 3-2. main/src/main/java/strings/StringBuilderDemo.java

public class StringBuilderDemo {

 public static void main(String[] argv) {

 String s1 = "Hello" + ", " + "World";
 System.out.println(s1);

 // Build a StringBuilder, and append some things to it.
 StringBuilder sb2 = new StringBuilder();
 sb2.append("Hello");
 sb2.append(',');
 sb2.append(' ');
 sb2.append("World");

 // Get the StringBuilder's value as a String, and print it.
 String s2 = sb2.toString();
 System.out.println(s2);

 // Now do the above all over again, but in a more
 // concise (and typical "real-world" Java) fashion.

 System.out.println(
 new StringBuilder()
 .append("Hello")
 .append(',')
 .append(' ')
 .append("World"));
 }
}

In fact, all the methods that modify more than one character of a StringBuilder’s
contents (i.e., append(), delete(), deleteCharAt(), insert(), replace(), and
reverse()) return a reference to the builder object to facilitate this fluent API style of
coding.

As another example of using a StringBuilder, consider the need to convert a list of
items into a comma-separated list while avoiding getting an extra comma after the
last element of the list. This can be done using a StringBuilder, although in Java 8+

66 | Chapter 3: Strings and Things

there is a static String method to do the same. Code for these are shown in
Example 3-3.

Example 3-3. main/src/main/java/strings/StringBuilderCommaList.java

 System.out.println(
 "Split using String.split; joined using 1.8 String join");
 System.out.println(String.join(", ", SAMPLE_STRING.split(" ")));

 System.out.println(
 "Split using String.split; joined using StringBuilder");
 StringBuilder sb1 = new StringBuilder();
 for (String word : SAMPLE_STRING.split(" ")) {
 if (sb1.length() > 0) {
 sb1.append(", ");
 }
 sb1.append(word);
 }
 System.out.println(sb1);

 System.out.println(
 "Split using StringTokenizer; joined using StringBuilder");
 StringTokenizer st = new StringTokenizer(SAMPLE_STRING);
 StringBuilder sb2 = new StringBuilder();
 while (st.hasMoreElements()) {
 sb2.append(st.nextToken());
 if (st.hasMoreElements()) {
 sb2.append(", ");
 }
 }
 System.out.println(sb2);

The first method is clearly the most compact; the static String.join() makes short
work of this task. The next method uses the StringBuilder.length() method, so it
will only work correctly when you are starting with an empty StringBuilder. The
second method relies on calling the informational method hasMoreElements() in the
Enumeration (or hasNext() in an Iterator, as discussed in Recipe 7.6) more than
once on each element. An alternative method, particularly when you aren’t starting
with an empty builder, would be to use a boolean flag variable to track whether you’re
at the beginning of the list.

3.3 Processing a String One Character at a Time
Problem
You want to process the contents of a string, one character at a time.

3.3 Processing a String One Character at a Time | 67

Solution
Use a for loop and the String’s charAt() or codePointAt() method. Or use a “for
each” loop and the String’s toCharArray method.

Discussion
A string’s charAt() method retrieves a given character by index number (starting at
zero) from within the String object. Since Unicode has had to expand beyond 16
bits, not all Unicode characters can fit into a Java char variable. There is thus an anal‐
ogous codePointAt() method, whose return type is int. To process all the characters
in a String, one after another, use a for loop ranging from zero to
String.length()-1. Here we process all the characters in a String:

main/src/main/java/strings/strings/StrCharAt.java
public class StrCharAt {
 public static void main(String[] av) {
 String a = "A quick bronze fox";
 for (int i=0; i < a.length(); i++) { // no forEach, need the index
 String message = String.format(
 "charAt is '%c', codePointAt is %3d, casted it's '%c'",
 a.charAt(i),
 a.codePointAt(i),
 (char)a.codePointAt(i));
 System.out.println(message);
 }
 }
}

Given that the “for each” loop has been in the language for ages, you might be
excused for expecting to be able to write something like for (char ch : myString)
{…}. Unfortunately, this does not work. But you can use myString.toCharArray() as
in the following:

public class ForEachChar {
 public static void main(String[] args) {
 String mesg = "Hello world";

 // Does not compile, Strings are not iterable
 // for (char ch : mesg) {
 // System.out.println(ch);
 // }

 System.out.println("Using toCharArray:");
 for (char ch : mesg.toCharArray()) {
 System.out.println(ch);
 }

 System.out.println("Using Streams:");

68 | Chapter 3: Strings and Things

 mesg.chars().forEach(c -> System.out.println((char)c));
 }
}

A checksum is a numeric quantity representing and confirming the contents of a
file. If you transmit the checksum of a file separately from the contents, a recipient
can checksum the file—assuming the algorithm is known—and verify that the file
was received intact. Example 3-4 shows the simplest possible checksum, computed
just by adding the numeric values of each character. Note that on files, it does not
include the values of the newline characters; in order to fix this, retrieve System.get
Property("line.separator"); and add its character value(s) into the sum at the end
of each line. Or give up on line mode and read the file a character at a time.

Example 3-4. main/src/main/java/strings/CheckSum.java

 /** CheckSum one text file, given an open BufferedReader.
 * Checksum does not include line endings, so will give the
 * same value for given text on any platform. Do not use
 * on binary files!
 */
 public static int process(BufferedReader is) {
 int sum = 0;
 try {
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 for (char c : inputLine.toCharArray()) {
 sum += c;
 }
 }
 } catch (IOException e) {
 throw new RuntimeException("IOException: " + e);
 }
 return sum;
 }

3.4 Aligning, Indenting, and Unindenting Strings
Problem
You want to align strings to the left, right, or center.

Solution
Do the math yourself, and use substring (see Recipe 3.1) and a StringBuilder (see
Recipe 3.2). Or, use my StringAlign class, which is based on the java.text.Format
class. For left or right alignment, use String.format().

3.4 Aligning, Indenting, and Unindenting Strings | 69

Discussion
Centering and aligning text comes up fairly often. Suppose you want to print a simple
report with centered page numbers. There doesn’t seem to be anything in the stan‐
dard API that will do the job fully for you. But I have written a class called String
Align that will. Here’s how you might use it:

public class StringAlignSimple {

 public static void main(String[] args) {
 // Construct a "formatter" to center strings.
 StringAlign formatter = new StringAlign(70, StringAlign.Justify.CENTER);
 // Try it out, for page "i"
 System.out.println(formatter.format("- i -"));
 // Try it out, for page 4. Since this formatter is
 // optimized for Strings, not specifically for page numbers,
 // we have to convert the number to a String
 System.out.println(formatter.format(Integer.toString(4)));
 }
}

If you compile and run this class, it prints the two demonstration line numbers cen‐
tered, as shown:

> javac -d . StringAlignSimple.java
> java strings.StringAlignSimple
 - i -
 4
>

Example 3-5 is the code for the StringAlign class. Note that this class extends the
class Format in the package java.text. There is a series of Format classes that all have
at least one method called format(). It is thus in a family with numerous other for‐
matters, such as DateFormat and NumberFormat, that we’ll take a look at in upcoming
chapters.

Example 3-5. main/src/main/java/strings/StringAlign.java

public class StringAlign extends Format {

 private static final long serialVersionUID = 1L;

 public enum Justify {
 /* Constant for left justification. */
 LEFT,
 /* Constant for centering. */
 CENTER,
 /** Constant for right-justified Strings. */
 RIGHT,
 }

70 | Chapter 3: Strings and Things

 /** Current justification */
 private Justify just;
 /** Current max length */
 private int maxChars;

 /** Construct a StringAlign formatter; length and alignment are
 * passed to the Constructor instead of each format() call as the
 * expected common use is in repetitive formatting e.g., page numbers.
 * @param maxChars - the maximum length of the output
 * @param just - one of the enum values LEFT, CENTER or RIGHT
 */
 public StringAlign(int maxChars, Justify just) {
 switch(just) {
 case LEFT:
 case CENTER:
 case RIGHT:
 this.just = just;
 break;
 default:
 throw new IllegalArgumentException("invalid justification arg.");
 }
 if (maxChars < 0) {
 throw new IllegalArgumentException("maxChars must be positive.");
 }
 this.maxChars = maxChars;
 }

 /** Format a String.
 * @param input - the string to be aligned.
 * @parm where - the StringBuilder to append it to.
 * @param ignore - a FieldPosition (may be null, not used but
 * specified by the general contract of Format).
 */
 @Override
 public StringBuffer format(
 Object input, StringBuffer where, FieldPosition ignore) {

 String s = input.toString();
 String wanted = s.substring(0, Math.min(s.length(), maxChars));

 // Get the spaces in the right place.
 switch (just) {
 case RIGHT:
 pad(where, maxChars - wanted.length());
 where.append(wanted);
 break;
 case CENTER:
 int toAdd = maxChars - wanted.length();
 pad(where, toAdd/2);
 where.append(wanted);
 pad(where, toAdd - toAdd/2);

3.4 Aligning, Indenting, and Unindenting Strings | 71

 break;
 case LEFT:
 where.append(wanted);
 pad(where, maxChars - wanted.length());
 break;
 }
 return where;
 }

 protected final void pad(StringBuffer to, int howMany) {
 for (int i=0; i<howMany; i++)
 to.append(' ');
 }

 /** Convenience Routine */
 String format(String s) {
 return format(s, new StringBuffer(), null).toString();
 }

 /** ParseObject is required, but not useful here. */
 public Object parseObject (String source, ParsePosition pos) {
 return source;
 }
}

Java 12 introduced a new method public String indent(int n) that prepends n
spaces to the string, which is treated as a sequence of lines with line separators. This
works well in conjunction with the Java 11 Stream<String> lines() method. For
example, for the case where a series of lines, already stored in a single string, needs
the same indent (Streams, and the “::” notation, are explained in Recipe 9.0):

jshell> "abc\ndef".indent(30).lines().forEach(System.out::println);
 abc
 def

jshell> "abc\ndef".indent(30).indent(-10).lines().forEach(System.out::println);
 abc
 def

jshell>

See Also
The alignment of numeric columns is considered in Chapter 5.

72 | Chapter 3: Strings and Things

5 Indeed, there are so many characters in Unicode that a fad has emerged of displaying your name upside down
using characters that approximate upside-down versions of the Latin alphabet. Do a web search for “upside-
down Unicode.”

3.5 Converting Between Unicode Characters and Strings
Problem
You want to convert between Unicode characters and Strings.

Solution
Use Java char or String data types to deal with characters; these intrinsically support
Unicode. Print characters as integers to display their raw value if needed.

Discussion
Unicode is an international standard that aims to represent all known characters used
by people in their various languages. Though the original ASCII character set is a
subset, Unicode is huge. At the time Java was created, Unicode was a 16-bit character
set, so it seemed natural to make Java char values be 16 bits in width, and for years a
char could hold any Unicode character. However, over time, Unicode has grown, to
the point that it now includes over a million code points, or characters, more than the
65,525 that could be represented in 16 bits.5 Not all possible 16-bit values were
defined as characters in UCS-2, the 16-bit version of Unicode originally used in Java.
A few were reserved as escape characters, which allows for multicharacter-length
mappings to less common characters. Fortunately, there is a go-between standard,
called UTF-16 (16-bit Unicode Transformation Format). As the String class docu‐
mentation puts it:

A String represents a string in the UTF-16 format in which supplementary characters
are represented by surrogate pairs (see the section Unicode Character Representations
in the Character class for more information). Index values refer to char code units, so
a supplementary character uses two positions in a String.

The String class provides methods for dealing with Unicode code points (i.e., charac‐
ters), in addition to those for dealing with Unicode code units (i.e., char values).

The charAt() method of String returns the char value for the character at the speci‐
fied offset. The StringBuilder append() method has a form that accepts a char.
Because char is an integer type, you can even do arithmetic on chars, though this is
not needed as frequently as in, say, C. Nor is it often recommended, because the Char
acter class provides the methods for which these operations were normally used in

3.5 Converting Between Unicode Characters and Strings | 73

languages such as C. Here is a program that uses arithmetic on chars to control a
loop and that also appends the characters into a StringBuilder (see Recipe 3.2):

 // UnicodeChars.java
 StringBuilder b = new StringBuilder();
 for (char c = 'a'; c<'d'; c++) {
 b.append(c);
 }
 b.append('\u00a5'); // Japanese Yen symbol
 b.append('\u01FC'); // Roman AE with acute accent
 b.append('\u0391'); // GREEK Capital Alpha
 b.append('\u03A9'); // GREEK Capital Omega

 for (int i=0; i<b.length(); i++) {
 System.out.printf(
 "Character #%d (%04x) is %c%n",
 i, (int)b.charAt(i), b.charAt(i));
 }
 System.out.println("Accumulated characters are " + b);

When you run it, the expected results are printed for the ASCII characters. On Unix
and characters in Mac systems, the default fonts don’t include all the additional char‐
acters, so they are either omitted or mapped to irregular characters:

$ java -cp target/classes strings.UnicodeChars
Character #0 (0061) is a
Character #1 (0062) is b
Character #2 (0063) is c
Character #3 (00a5) is ¥
Character #4 (01fc) is Ǽ
Character #5 (0391) is Α
Character #6 (03a9) is Ω
Accumulated characters are abc¥ǼΑΩ
$

The Windows system used to try this doesn’t have most of those characters either, but
at least it prints as question marks the ones it knows are lacking (Windows system
fonts are more homogenous than those of the various Unix systems, so it is easier to
know what won’t work). On the other hand, it tries to print the yen sign as an N with
a tilde:

Character #0 is a
Character #1 is b
Character #2 is c
Character #3 is ¥
Character #4 is ?
Character #5 is ?
Character #6 is ?
Accumulated characters are abc¥___

The “_” characters are unprintable characters.

74 | Chapter 3: Strings and Things

See Also
The Unicode program in this book’s online source displays any 256-character section
of the Unicode character set. You can download documentation listing every charac‐
ter in the Unicode character set from the Unicode Consortium.

3.6 Reversing a String by Word or by Character
Problem
You wish to reverse a string, a character at a time or a word at a time.

Solution
You can reverse a string by character easily, using a StringBuilder. There are several
ways to reverse a string a word at a time. One natural way is to use a StringToken
izer and a stack. Stack is a class (defined in java.util; see Recipe 7.16) that imple‐
ments an easy-to-use last-in, first-out (LIFO) stack of objects.

Discussion
To reverse the characters in a string, use the StringBuilder reverse() method:

main/src/main/java/strings/StringRevChar.java
String sh = "FCGDAEB";
System.out.println(sh + " -> " + new StringBuilder(sh).reverse());

The letters in this example list the order of the sharps in the key signatures of Western
music; in reverse, it lists the order of flats. Alternatively, of course, you could reverse
the characters yourself, using character-at-a-time mode (see Recipe 3.3).

A popular mnemonic, or memory aid, to help music students remember the order of
sharps and flats consists of one word for each sharp instead of just one letter. Let’s
reverse this one word at a time. Example 3-6 adds each one to a Stack (see Recipe
7.16), then processes the whole lot in LIFO order, which reverses the order.

Example 3-6. main/src/main/java/strings/StringReverse.java

 String s = "Father Charles Goes Down And Ends Battle";

 // Put it in the stack frontwards
 Stack<String> myStack = new Stack<>();
 StringTokenizer st = new StringTokenizer(s);
 while (st.hasMoreTokens()) {
 myStack.push(st.nextToken());
 }

3.6 Reversing a String by Word or by Character | 75

http://www.unicode.org

 // Print the stack backwards
 System.out.print('"' + s + '"' + " backwards by word is:\n\t\"");
 while (!myStack.empty()) {
 System.out.print(myStack.pop());
 System.out.print(' '); // inter-word spacing
 }
 System.out.println('"');

3.7 Expanding and Compressing Tabs
Problem
You need to convert space characters to tab characters in a file, or vice versa. You
might want to replace spaces with tabs to save space on disk or go the other way to
deal with a device or program that can’t handle tabs.

Solution
Use my Tabs class or its subclass EnTab.

Discussion
Because programs that deal with tabbed text or data expect tab stops to be at fixed
positions, you cannot use a typical text editor to replace tabs with spaces or vice
versa. Example 3-7 is a listing of EnTab, complete with a sample main program. The
program works a line at a time. For each character on the line, if the character is a
space, we see if we can coalesce it with previous spaces to output a single tab charac‐
ter. This program depends on the Tabs class, which we’ll come to shortly. The Tabs
class is used to decide which column positions represent tab stops and which do not.

Example 3-7. main/src/main/java/strings/Entab.java

public class EnTab {

 private static Logger logger = Logger.getLogger(EnTab.class.getSimpleName());

 /** The Tabs (tab logic handler) */
 protected Tabs tabs;

 /**
 * Delegate tab spacing information to tabs.
 */
 public int getTabSpacing() {
 return tabs.getTabSpacing();
 }

76 | Chapter 3: Strings and Things

 /**
 * Main program: just create an EnTab object, and pass the standard input
 * or the named file(s) through it.
 */
 public static void main(String[] argv) throws IOException {
 EnTab et = new EnTab(8);
 if (argv.length == 0) // do standard input
 et.entab(
 new BufferedReader(new InputStreamReader(System.in)),
 System.out);
 else
 for (String fileName : argv) { // do each file
 et.entab(
 new BufferedReader(new FileReader(fileName)),
 System.out);
 }
 }

 /**
 * Constructor: just save the tab values.
 * @param n The number of spaces each tab is to replace.
 */
 public EnTab(int n) {
 tabs = new Tabs(n);
 }

 public EnTab() {
 tabs = new Tabs();
 }

 /**
 * entab: process one file, replacing blanks with tabs.
 * @param is A BufferedReader opened to the file to be read.
 * @param out a PrintWriter to send the output to.
 */
 public void entab(BufferedReader is, PrintWriter out) throws IOException {

 // main loop: process entire file one line at a time.
 is.lines().forEach(line -> {
 out.println(entabLine(line));
 });
 }

 /**
 * entab: process one file, replacing blanks with tabs.
 *
 * @param is A BufferedReader opened to the file to be read.
 * @param out A PrintStream to write the output to.
 */
 public void entab(BufferedReader is, PrintStream out) throws IOException {
 entab(is, new PrintWriter(out));
 }

3.7 Expanding and Compressing Tabs | 77

 /**
 * entabLine: process one line, replacing blanks with tabs.
 * @param line the string to be processed
 */
 public String entabLine(String line) {
 int N = line.length(), outCol = 0;
 StringBuilder sb = new StringBuilder();
 char ch;
 int consumedSpaces = 0;

 for (int inCol = 0; inCol < N; inCol++) { // Cannot use foreach here
 ch = line.charAt(inCol);
 // If we get a space, consume it, don't output it.
 // If this takes us to a tab stop, output a tab character.
 if (ch == ' ') {
 logger.info("Got space at " + inCol);
 if (tabs.isTabStop(inCol)) {
 logger.info("Got a Tab Stop " + inCol);
 sb.append('\t');
 outCol += consumedSpaces;
 consumedSpaces = 0;
 } else {
 consumedSpaces++;
 }
 continue;
 }

 // We're at a non-space; if we're just past a tab stop, we need
 // to put the "leftover" spaces back out, since we consumed
 // them above.
 while (inCol-1 > outCol) {
 logger.info("Padding space at " + inCol);
 sb.append(' ');
 outCol++;
 }

 // Now we have a plain character to output.
 sb.append(ch);
 outCol++;

 }
 // If line ended with trailing (or only!) spaces, preserve them.
 for (int i = 0; i < consumedSpaces; i++) {
 logger.info("Padding space at end # " + i);
 sb.append(' ');
 }
 return sb.toString();
 }
}

78 | Chapter 3: Strings and Things

This code was patterned after a program in Kernighan and Plauger’s classic work Soft‐
ware Tools. While their version was in a language called RatFor (Rational Fortran),
my version has since been through several translations. Their version actually worked
one character at a time, and for a long time I tried to preserve this overall structure.
Eventually, I rewrote it to be a line-at-a-time program.

The program that goes in the opposite direction—putting tabs in rather than taking
them out—is the DeTab class shown in Example 3-8; only the core methods are
shown.

Example 3-8. main/src/main/java/strings/DeTab.java

public class DeTab {
 Tabs ts;

 public static void main(String[] argv) throws IOException {
 DeTab dt = new DeTab(8);
 dt.detab(new BufferedReader(new InputStreamReader(System.in)),
 new PrintWriter(System.out));
 }

 public DeTab(int n) {
 ts = new Tabs(n);
 }
 public DeTab() {
 ts = new Tabs();
 }

 /** detab one file (replace tabs with spaces)
 * @param is - the file to be processed
 * @param out - the updated file
 */
 public void detab(BufferedReader is, PrintWriter out) throws IOException {
 is.lines().forEach(line -> {
 out.println(detabLine(line));
 });
 }

 /** detab one line (replace tabs with spaces)
 * @param line - the line to be processed
 * @return the updated line
 */
 public String detabLine(String line) {
 char c;
 int col;
 StringBuilder sb = new StringBuilder();
 col = 0;
 for (int i = 0; i < line.length(); i++) {
 // Either ordinary character or tab.
 if ((c = line.charAt(i)) != '\t') {

3.7 Expanding and Compressing Tabs | 79

 sb.append(c); // Ordinary
 ++col;
 continue;
 }
 do { // Tab, expand it, must put >=1 space
 sb.append(' ');
 } while (!ts.isTabStop(++col));
 }
 return sb.toString();
 }
}

The Tabs class provides two methods: settabpos() and istabstop(). Example 3-9 is
the source for the Tabs class.

Example 3-9. main/src/main/java/strings/Tabs.java

public class Tabs {
 /** tabs every so often */
 public final static int DEFTABSPACE = 8;
 /** the current tab stop setting. */
 protected int tabSpace = DEFTABSPACE;
 /** the longest line that we initially set tabs for */
 public final static int MAXLINE = 255;

 /** Construct a Tabs object with a given tab stop settings */
 public Tabs(int n) {
 if (n <= 0) {
 n = 1;
 }
 tabSpace = n;
 }

 /** Construct a Tabs object with a default tab stop settings */
 public Tabs() {
 this(DEFTABSPACE);
 }

 /**
 * @return Returns the tabSpace.
 */
 public int getTabSpacing() {
 return tabSpace;
 }

 /** isTabStop - returns true if given column is a tab stop.
 * @param col - the current column number
 */
 public boolean isTabStop(int col) {
 if (col <= 0)
 return false;

80 | Chapter 3: Strings and Things

 return (col+1) % tabSpace == 0;
 }
}

3.8 Controlling Case
Problem
You need to either convert strings to uppercase or lowercase or compare strings
without regard for case.

Solution
The String class has a number of methods for dealing with documents in a particular
case. toUpperCase() and toLowerCase() each return a new string that is a copy of
the current string but converted, as the name implies. Each can be called either with
no arguments or with a Locale argument specifying the conversion rules; this is nec‐
essary because of internationalization. Java’s API provides significant internationaliza‐
tion and localization features, as covered in “Ian’s Basic Steps: Internationalization
and Localization” on page 85. Whereas the equals() method tells you if another
string is exactly the same, equalsIgnoreCase() tells you if all characters are the same
regardless of case. Here, you can’t specify an alternative locale; the system’s default
locale is used:

 String name = "Java Cookbook";
 System.out.println("Normal:\t" + name);
 System.out.println("Upper:\t" + name.toUpperCase());
 System.out.println("Lower:\t" + name.toLowerCase());
 String javaName = "java cookBook"; // If it were Java identifiers :-)
 if (!name.equals(javaName))
 System.err.println("equals() correctly reports false");
 else
 System.err.println("equals() incorrectly reports true");
 if (name.equalsIgnoreCase(javaName))
 System.err.println("equalsIgnoreCase() correctly reports true");
 else
 System.err.println("equalsIgnoreCase() incorrectly reports false");

If you run this, it prints the first name changed to uppercase and lowercase, then it
reports that both methods work as expected:

C:\javasrc\strings>java strings.Case
Normal: Java Cookbook
Upper: JAVA COOKBOOK
Lower: java cookbook
equals() correctly reports false
equalsIgnoreCase() correctly reports true

3.8 Controlling Case | 81

See Also
Regular expressions make it simpler to ignore case in string searching (as we see in
Chapter 4).

3.9 Entering Nonprintable Characters
Problem
You need to put nonprintable characters into strings.

Solution
Use the backslash character and one of the Java string escapes.

Discussion
The Java string escapes are listed in Table 3-1.

Table 3-1. String escapes
To get Use Notes
Tab \t

Linefeed (Unix newline) \n The call System.getProperty("line.separator") will give you the
platform’s line end.

Carriage return \r

Form feed \f

Backspace \b

Single quote \'

Double quote \"

Unicode character \u NNNN Four hexadecimal digits (no \x as in C/C++). See http://www.unicode.org for codes.

Octal(!) character +\+NNN Who uses octal (base 8) these days?

Backslash \\

Here is a code example that shows most of these in action:

public class StringEscapes {
 public static void main(String[] argv) {
 System.out.println("Java Strings in action:");
 // System.out.println("An alarm or alert: \a"); // not supported
 System.out.println("An alarm entered in Octal: \007");
 System.out.println("A tab key: \t(what comes after)");
 System.out.println("A newline: \n(what comes after)");
 System.out.println("A UniCode character: \u0207");
 System.out.println("A backslash character: \\");

82 | Chapter 3: Strings and Things

http://www.unicode.org

 }
}

If you have a lot of non-ASCII characters to enter, you may wish to consider using
Java’s input methods, discussed briefly in the online documentation.

3.10 Trimming Blanks from the End of a String
Problem
You need to work on a string without regard for extra leading or trailing spaces a user
may have typed.

Solution
Use the String class strip() or trim() methods.

Discussion
There are four methods in the String class for this:

strip()

Returns a string with all leading and trailing whitespace removed

stripLeading()

Returns a string whose value is this string, with all leading white space removed

stripTrailing()

Returns the string with all trailing whitespace removed

String trim()

Returns the string with all leading and trailing spaces removed

For the strip() methods, whitespace is as defined by Character.isSpace(). For the
trim() method, space includes any character whose numeric value is less than or
equal to 32, or U+0020 (the space character).

Example 3-10 uses trim() to strip an arbitrary number of leading spaces and/or tabs
from lines of Java source code in order to look for the characters //+ and //-. These
strings are special Java comments I previously used to mark the parts of the programs
in this book that I wanted to include in the printed copy.

Example 3-10. main/src/main/java/strings/GetMark.java (trimming and comparing
strings)

public class GetMark {
 /** the default starting mark */

3.10 Trimming Blanks from the End of a String | 83

https://docs.oracle.com/javase/8/docs/technotes/guides/imf/index.html

 public final String START_MARK = "//+";
 /** the default ending mark */
 public final String END_MARK = "//-";
 /** Set this to TRUE for running in "exclude" mode (e.g., for
 * building exercises from solutions) and to FALSE for running
 * in "extract" mode (e.g., writing a book and omitting the
 * imports and "public class" stuff).
 */
 public final static boolean START = true;
 /** True if we are currently inside marks */
 protected boolean printing = START;
 /** True if you want line numbers */
 protected final boolean number = false;

 /** Get Marked parts of one file, given an open LineNumberReader.
 * This is the main operation of this class, and can be used
 * inside other programs or from the main() wrapper.
 */
 public void process(String fileName,
 LineNumberReader is,
 PrintStream out) {
 int nLines = 0;
 try {
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 if (inputLine.trim().equals(START_MARK)) {
 if (printing)
 // These go to stderr, so you can redirect the output
 System.err.println("ERROR: START INSIDE START, " +
 fileName + ':' + is.getLineNumber());
 printing = true;
 } else if (inputLine.trim().equals(END_MARK)) {
 if (!printing)
 System.err.println("ERROR: STOP WHILE STOPPED, " +
 fileName + ':' + is.getLineNumber());
 printing = false;
 } else if (printing) {
 if (number) {
 out.print(nLines);
 out.print(": ");
 }
 out.println(inputLine);
 ++nLines;
 }
 }
 is.close();
 out.flush(); // Must not close - caller may still need it.
 if (nLines == 0)
 System.err.println("ERROR: No marks in " + fileName +
 "; no output generated!");
 } catch (IOException e) {

84 | Chapter 3: Strings and Things

 System.out.println("IOException: " + e);
 }
 }

Ian’s Basic Steps: Internationalization and Localization
Internationalization and localization consist of the following:

Sensitivity training (Internationalization, or I18N)
Making your software sensitive to these issues

Language lessons (Localization, or L10N)
Writing configuration files for each language

Culture lessons (optional)
Customizing the presentation of numbers, fractions, dates, and message
formatting

For more information, see Java Internationalization by Andy Deitsch and David Czar‐
necki (O’Reilly).

3.11 Creating a Message with I18N Resources
Problem
You want your program to take sensitivity training so that it can communicate well
internationally.

Solution
Your program must obtain all control and message strings via the internationalization
software. Here’s how:

1. Get a ResourceBundle:
ResourceBundle rb = ResourceBundle.getBundle("Menus");

I’ll talk about ResourceBundle in Recipe 3.13, but briefly, a ResourceBundle rep‐
resents a collection of name-value pairs (resources). The names are names you
assign to each GUI control or other user interface text, and the values are the text
to assign to each control in a given language.

2. Use this ResourceBundle to fetch the localized version of each control name.
Old way:

String label = "Exit";
// Create the control, e.g., new JButton(label);

3.11 Creating a Message with I18N Resources | 85

http://shop.oreilly.com/product/9780596000196.do

New way:
try { label = rb.getString("exit.label"); }
catch (MissingResourceException e) { label="Exit"; } // fallback
// Create the control, e.g., new JButton(label);

This may seem quite a bit of code for one control, but you can write a convenience
routine to simplify it, like this:

JButton exitButton = I18NUtil.getButton("exit.label", "Exit");

The file I18NUtil.java is included in the book’s code distribution.

While the example is a Swing JButton, the same approach goes with other UIs, such
as the web tier. In JSF, for example, you might place your strings in a properties file
called resources.properties and store it in src/main/resources. You would load this in
faces-config.xml:

 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>es</supported-locale>
 <supported-locale>fr</supported-locale>
 </locale-config>
 <resource-bundle>
 <base-name>resources</base-name>
 <var>msg</var>
 </resource-bundle>
 </application>

Then in each web page that needs these strings, refer to the resource using the msg
variable in an expression:

// In signup.xhtml:
<h:outputText value="#{msg.prompt_firstname}"/>
<h:inputText required="true" id="firstName" value="#{person.firstName}" />

What happens at runtime?
The default locale is used, because we didn’t specify one. The default locale is platform
dependent:

Unix/POSIX
LANG environment variable (per user)

Windows
Control Panel→Regional Settings

macOS
System Preferences→Language & Text

86 | Chapter 3: Strings and Things

Others
See platform documentation

ResourceBundle.getBundle() locates a file with the named resource bundle name
(Menus, in the previous example), plus an underscore and the locale name (if a non-
default locale is set), plus another underscore and the locale variation (if any variation
is set), plus the extension .properties. If a variation is set but the file can’t be found, it
falls back to just the country code. If that can’t be found, it falls back to the original
default. Table 3-2 shows some examples for various locales.

Note that Android apps—usually written in Java or Kotlin—use a similar mechanism
but with the files in XML format instead of Java Properties and with some small
changes in the name of the file in which the properties files are found.

Table 3-2. Property filenames for different locales
Locale Filename
Default locale Menus.Properties

Swedish Menus_sv.properties

Spanish Menus_es.properties

French Menus_fr.properties

French-Canadian Menus_fr_CA.properties

Locale names are two-letter ISO-639 language codes (lowercase), and they normally
abbreviate the country’s endonym (the name its language speakers refer to it by); thus,
Sweden is sv for Sverige, Spain is es for Espanol, etc. Locale variations are two-letter
ISO country codes (uppercase); for example, e.g., CA for Canada, US for the United
States, SV for Sweden, ES for Spain, etc.

Setting the locale
On Windows, go into Regional Settings in the Control Panel. Changing this setting
may entail a reboot, so exit any editor windows.

On Unix, set your LANG environment variable. For example, a Korn shell user in Mex‐
ico might have this line in her .profile:

export LANG=es_MX

On either system, for testing a different locale, you need only define the locale in the
System Properties at runtime using the command-line option -D, as in:

java -Duser.language=es i18n.Browser

This runs the Java program named Browser in package i18n in the Spanish locale.

3.11 Creating a Message with I18N Resources | 87

You can get a list of the available locales with a call to Locale.getAvailable
Locales().

3.12 Using a Particular Locale
Problem
You want to use a locale other than the default in a particular operation.

Solution
Obtain a Locale by using a predefined instance or the Locale constructor. Optionally
make it global to your application by using Locale.setDefault(newLocale).

Discussion
Classes that provide formatting services, such as DateTimeFormatter and NumberFor
mat, provide overloads so they can be called either with or without a Locale-related
argument.

To obtain a Locale object, you can employ one of the predefined locale variables pro‐
vided by the Locale class, or you can construct your own Locale object giving a lan‐
guage code and a country code:

Locale locale1 = Locale.FRANCE; // predefined
Locale locale2 = new Locale("en", "UK"); // English, UK version

These can then be used in the various formatting operations:

DateFormat frDateFormatter = DateFormat.getDateInstance(
 DateFormat.MEDIUM, frLocale);
DateFormat ukDateFormatter = DateFormat.getDateInstance(
 DateFormat.MEDIUM, ukLocale);

Either of these can be used to format a date or a number, as shown in class Use
Locales:

package i18n;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.time.format.FormatStyle;
import java.util.Locale;

/** Use some locales; based on user's OS "settings"
 * choices or -Duser.lang= or -Duser.region=.
 */
public class UseLocales {
 public static void main(String[] args) {

88 | Chapter 3: Strings and Things

 Locale frLocale = Locale.FRANCE; // predefined
 Locale ukLocale = new Locale("en", "UK"); // English, UK version

 DateTimeFormatter defaultDateFormatter =
 DateTimeFormatter.ofLocalizedDateTime(
 FormatStyle.MEDIUM);
 DateTimeFormatter frDateFormatter =
 DateTimeFormatter.ofLocalizedDateTime(
 FormatStyle.MEDIUM).localizedBy(frLocale);
 DateTimeFormatter ukDateFormatter =
 DateTimeFormatter.ofLocalizedDateTime(
 FormatStyle.MEDIUM).localizedBy(ukLocale);

 LocalDateTime now = LocalDateTime.now();
 System.out.println("Default: " + ' ' +
 now.format(defaultDateFormatter));
 System.out.println(frLocale.getDisplayName() + ' ' +
 now.format(frDateFormatter));
 System.out.println(ukLocale.getDisplayName() + ' ' +
 now.format(ukDateFormatter));
 }
}

The program prints the locale name and formats the date in each of the locales:

$ java i18n.UseLocales
Default: Oct 16, 2019, 4:41:45 PM
French (France) 16 oct. 2019 à 16:41:45
English (UK) Oct 16, 2019, 4:41:45 PM$

3.13 Creating a Resource Bundle
Problem
You need to create a resource bundle for use with I18N.

Solution
A resource bundle is simply a collection of names and values. You could write a
java.util.ResourceBundle subclass, but it is easier to create textual Properties files
(see Recipe 7.10) that you then load with ResourceBundle.getBundle(). The files
can be created using any plain text editor. Leaving it in a text file format also allows
user customization in desktop applications; a user whose language is not provided
for, or who wishes to change the wording somewhat due to local variations in dialect,
should be able to edit the file.

3.13 Creating a Resource Bundle | 89

Note that the resource bundle text file should not have the same name as any of your
Java classes. The reason is that the ResourceBundle constructs a class dynamically
with the same name as the resource files.

Discussion
Here is a sample properties file for a few menu items:

Default Menu properties
The File Menu
file.label=File Menu
file.new.label=New File
file.new.key=N
file.save.label=Save
file.new.key=S

Creating the default properties file is usually not a problem, but creating properties
files for other languages might be. Unless you are a large multinational corporation,
you will probably not have the resources (pardon the pun) to create resource files in-
house. If you are shipping commercial software or using the web for global reach, you
need to identify your target markets and understand which of these are most sensitive
to wanting menus and the like in their own languages. Then, hire a professional
translation service that has expertise in the required languages to prepare the files.
Test them well before you ship, as you would any other part of your software.

If you need special characters, multiline text, or other complex entry, remember that
a ResourceBundle is also a Properties file, so see the documentation for
java.util.Properties.

3.14 Program: A Simple Text Formatter
This program is a primitive text formatter, representative of what people used on
most computing platforms before the rise of standalone graphics-based word pro‐
cessors, laser printers, and, eventually, desktop publishing and office suites. It simply
reads words from a file, previously created with a text editor, and outputs them until
it reaches the right margin, when it calls println() to append a line ending. For
example, here is an input file:

It's a nice
day, isn't it, Mr. Mxyzzptllxy?
I think we should
go for a walk.

Given that file as the input, the Fmt program prints the lines formatted neatly:

It's a nice day, isn't it, Mr. Mxyzzptllxy? I think we should go for a
walk.

90 | Chapter 3: Strings and Things

As you can see, it fits the text we gave it to the margin and discards all the line breaks
present in the original. Here’s the code:

public class Fmt {
 /** The maximum column width */
 public static final int COLWIDTH=72;
 /** The file that we read and format */
 final BufferedReader in;
 /** Where the output goes */
 PrintWriter out;

 /** If files present, format each one, else format the standard input. */
 public static void main(String[] av) throws IOException {
 if (av.length == 0)
 new Fmt(System.in).format();
 else for (String name : av) {
 new Fmt(name).format();
 }
 }

 public Fmt(BufferedReader inFile, PrintWriter outFile) {
 this.in = inFile;
 this.out = outFile;
 }

 public Fmt(PrintWriter out) {
 this(new BufferedReader(new InputStreamReader(System.in)), out);
 }

 /** Construct a Formatter given an open Reader */
 public Fmt(BufferedReader file) throws IOException {
 this(file, new PrintWriter(System.out));
 }

 /** Construct a Formatter given a filename */
 public Fmt(String fname) throws IOException {
 this(new BufferedReader(new FileReader(fname)));
 }

 /** Construct a Formatter given an open Stream */
 public Fmt(InputStream file) throws IOException {
 this(new BufferedReader(new InputStreamReader(file)));
 }

 /** Format the File contained in a constructed Fmt object */
 public void format() throws IOException {
 format(in.lines(), out);
 }

 /** Format a Stream of lines, e.g., bufReader.lines() */
 public static void format(Stream<String> s, PrintWriter out) {
 StringBuilder outBuf = new StringBuilder();

3.14 Program: A Simple Text Formatter | 91

 s.forEachOrdered((line -> {
 if (line.length() == 0) { // null line
 out.println(outBuf); // end current line
 out.println(); // output blank line
 outBuf.setLength(0);
 } else {
 // otherwise it's text, so format it.
 StringTokenizer st = new StringTokenizer(line);
 while (st.hasMoreTokens()) {
 String word = st.nextToken();

 // If this word would go past the margin,
 // first dump out anything previous.
 if (outBuf.length() + word.length() > COLWIDTH) {
 out.println(outBuf);
 outBuf.setLength(0);
 }
 outBuf.append(word).append(' ');
 }
 }
 }));
 if (outBuf.length() > 0) {
 out.println(outBuf);
 } else {
 out.println();
 }
 }

}

A slightly fancier version of this program, Fmt2, is in the online source for this book.
It uses dot commands—lines beginning with periods—to give limited control over the
formatting. A family of dot-command formatters includes Unix’s roff, nroff, troff, and
groff, which are in the same family with programs called runoff on Digital Equipment
systems. The original for this is J. Saltzer’s runoff, which first appeared on Multics and
from there made its way into various OSes. To save trees, I did not include Fmt2 here;
it subclasses Fmt and overrides the format() method to include additional function‐
ality (the source code is in the full javasrc repository for the book).

3.15 Program: Soundex Name Comparisons
The difficulties in comparing American-style names inspired the US Census Bureau
to develop the Soundex algorithm in the early 1900s. Each of a given set of conso‐
nants maps to a particular number, the effect being to map similar-sounding names
together, on the grounds that in those days many people were illiterate and could not
spell their family names consistently. But it is still useful today, for example, in a
company-wide telephone book application. The names Darwin and Derwin map to

92 | Chapter 3: Strings and Things

6 In Unix terminology, a daemon is a server. The old English word has nothing to do with satanic demons but
refers to a helper or assistant. Derwin Daemon was actually a character in Susannah Coleman’s Source Wars
online comic strip, which long ago was online at a now-departed site called darby.daemonnews.org.

D650, and Darwent maps to D653, which puts it adjacent to D650. All of these are
believed to be historical variants of the same name. Suppose we needed to sort lines
containing these names together: if we could output the Soundex numbers at the
beginning of each line, this would be easy. Here is a simple demonstration of the
Soundex class:

public class SoundexSimple {

 /** main */
 public static void main(String[] args) {
 String[] names = {
 "Darwin, Ian",
 "Davidson, Greg",
 "Darwent, William",
 "Derwin, Daemon"
 };
 for (String name : names) {
 System.out.println(Soundex.soundex(name) + ' ' + name);
 }
 }
}

Let’s run it:

> javac -d . SoundexSimple.java
> java strings.SoundexSimple | sort
D132 Davidson, Greg
D650 Darwin, Ian
D650 Derwin, Daemon
D653 Darwent, William
>

As you can see, the Darwin-variant names (including Daemon Derwin6) all sort
together and are distinct from the Davidson (and Davis, Davies, etc.) names that nor‐
mally appear between Darwin and Derwin when using a simple alphabetic sort. The
Soundex algorithm has done its work.

Here is the Soundex class itself—it uses Strings and StringBuilders to convert
names into Soundex codes:

main/src/main/java/strings/Soundex.java
public class Soundex {

 static boolean debug = false;

3.15 Program: Soundex Name Comparisons | 93

 /* Implements the mapping
 * from: AEHIOUWYBFPVCGJKQSXZDTLMNR
 * to: 00000000111122222222334556
 */
 public static final char[] MAP = {
 //A B C D E F G H I J K L M
 '0','1','2','3','0','1','2','0','0','2','2','4','5',
 //N O P W R S T U V W X Y Z
 '5','0','1','2','6','2','3','0','1','0','2','0','2'
 };

 /** Convert the given String to its Soundex code.
 * @return null If the given string can't be mapped to Soundex.
 */
 public static String soundex(String s) {

 // Algorithm works on uppercase (mainframe era).
 String t = s.toUpperCase();

 StringBuilder res = new StringBuilder();
 char c, prev = '?', prevOutput = '?';

 // Main loop: find up to 4 chars that map.
 for (int i=0; i<t.length() && res.length() < 4 &&
 (c = t.charAt(i)) != ','; i++) {

 // Check to see if the given character is alphabetic.
 // Text is already converted to uppercase. Algorithm
 // only handles ASCII letters, do NOT use Character.isLetter()!
 // Also, skip double letters.
 if (c>='A' && c<='Z' && c != prev) {
 prev = c;

 // First char is installed unchanged, for sorting.
 if (i==0) {
 res.append(c);
 } else {
 char m = MAP[c-'A'];
 if (debug) {
 System.out.println(c + " --> " + m);
 }
 if (m != '0' && m != prevOutput) {
 res.append(m);
 prevOutput = m;
 }
 }
 }
 }
 if (res.length() == 0)
 return null;
 for (int i=res.length(); i<4; i++)
 res.append('0');

94 | Chapter 3: Strings and Things

 return res.toString();
 }

There are apparently some nuances of the full Soundex algorithm that are not imple‐
mented by this application. A more complete test using JUnit (see Recipe 1.10) is also
online as SoundexTest.java, in the src/tests/java/strings directory. The dedicated reader
may use this to provoke failures of such nuances and send a pull request with updated
versions of the test and the code.

See Also
The Levenshtein string edit distance algorithm can be used for doing approximate
string comparisons in a different fashion. You can find this in Apache Commons
StringUtils. I show a non-Java (Perl) implementation of this algorithm in Recipe 18.5.

3.15 Program: Soundex Name Comparisons | 95

http://commons.apache.org/proper/commons-lang
http://commons.apache.org/proper/commons-lang

CHAPTER 4

Pattern Matching with Regular Expressions

4.0 Introduction
Suppose you have been on the internet for a few years and have been faithful about
saving all your correspondence, just in case you (or your lawyers, or the prosecution)
need a copy. The result is that you have a 5 GB disk partition dedicated to saved mail.
Let’s further suppose that you remember that somewhere in there is an email message
from someone named Angie or Anjie. Or was it Angy? But you don’t remember what
you called it or where you stored it. Obviously, you have to look for it.

But while some of you go and try to open up all 15,000,000 documents in a word pro‐
cessor, I’ll just find it with one simple command. Any system that provides regular
expression support allows me to search for the pattern in several ways. The simplest
to understand is:

Angie|Anjie|Angy

which you can probably guess means just to search for any of the variations. A more
concise form (more thinking, less typing) is:

An[^ dn]

The syntax will become clear as we go through this chapter. Briefly, the “A” and the
“n” match themselves, in effect finding words that begin with “An”, while the cryptic
[^ dn] requires the “An” to be followed by a character other than (^ means not in this
context) a space (to eliminate the very common English word “an” at the start of a
sentence) or “d” (to eliminate the common word “and”) or “n” (to eliminate “Anne,”
“Announcing,” etc.). Has your word processor gotten past its splash screen yet? Well,
it doesn’t matter, because I’ve already found the missing file. To find the answer, I just
typed this command:

grep 'An[^ dn]' *

97

6 Non-Unix fans fear not, for you can use tools like grep on Windows systems using one of several packages.
One is an open source package alternately called CygWin (after Cygnus Software) or GnuWin32. Another is
Microsoft’s findstr command for Windows. Or you can use my Grep program in Recipe 4.6 if you don’t have
grep on your system. Incidentally, the name grep comes from an ancient Unix line editor command g/RE/p,
the command to find the regex globally in all lines in the edit buffer and print the lines that match—just what
the grep program does to lines in files.

Regular expressions, or regexes for short, provide a concise and precise specification of
patterns to be matched in text. One good way to think of regular expressions is as a
little language for matching patterns of characters in text contained in strings. A reg‐
ular expression API is an interpreter for matching regular expressions.

As another example of the power of regular expressions, consider the problem of
bulk-updating hundreds of files. When I started with Java, the syntax for declaring
array references was baseType arrayVariableName[]. For example, a method with
an array argument, such as every program’s main method, was commonly written like
this:

public static void main(String args[]) {

But as time went by, it became clear to the stewards of the Java language that it would
be better to write it as baseType[] arrayVariableName, like this:

public static void main(String[] args) {

This is better Java style because it associates the “array-ness” of the type with the type
itself, rather than with the local argument name, and the compiler still accepts both
modes. I wanted to change all occurrences of main written the old way to the new
way. I used the pattern main(String [a-z] with the grep utility described earlier to
find the names of all the files containing old-style main declarations (i.e.,
main(String followed by a space and a name character rather than an open square
bracket). I then used another regex-based Unix tool, the stream editor sed, in a little
shell script to change all occurrences in those files from main(String *([a-z][a-
z]*)[] to main(String[] $1 (the regex syntax used here is discussed later in this
chapter). Again, the regex-based approach was orders of magnitude faster than doing
it interactively, even using a reasonably powerful editor such as vi or emacs, let alone
trying to use a graphical word processor.

Historically, the syntax of regexes has changed as they get incorporated into more
tools and more languages, so the exact syntax in the previous examples is not exactly
what you’d use in Java, but it does convey the conciseness and power of the regex
mechanism.6

As a third example, consider parsing an Apache web server logfile, where some fields
are delimited with quotes, others with square brackets, and others with spaces.
Writing ad hoc code to parse this is messy in any language, but a well-crafted regex

98 | Chapter 4: Pattern Matching with Regular Expressions

http://sources.redhat.com/cygwin
https://en.wikipedia.org/wiki/Interpreter_(computing)

can break the line into all its constituent fields in one operation (this example is
developed in Recipe 4.10).

These same time gains can be had by Java developers. Regular expression support has
been in the standard Java runtime for ages and is well integrated (e.g., there are regex
methods in the standard class java.lang.String and in the new I/O package). There
are a few other regex packages for Java, and you may occasionally encounter code
using them, but pretty well all code from this century can be expected to use the
built-in package. The syntax of Java regexes themselves is discussed in Recipe 4.1, and
the syntax of the Java API for using regexes is described in Recipe 4.2. The remaining
recipes show some applications of regex technology in Java.

See Also
Mastering Regular Expressions by Jeffrey Friedl (O’Reilly) is the definitive guide to all
the details of regular expressions. Most introductory books on Unix and Perl include
some discussion of regexes; Unix Power Tools by Mike Loukides, Tim O’Reilly, Jerry
Peek, and Shelley Powers (O’Reilly) devotes a chapter to them.

4.1 Regular Expression Syntax
Problem
You need to learn the syntax of Java regular expressions.

Solution
Consult Table 4-1 for a list of the regular expression characters.

Discussion
These pattern characters let you specify regexes of considerable power. In building
patterns, you can use any combination of ordinary text and the metacharacters, or
special characters, in Table 4-1. These can all be used in any combination that makes
sense. For example, a+ means any number of occurrences of the letter a, from one up
to a million or a gazillion. The pattern Mrs?\. matches Mr. or Mrs. And .* indicates
any character, any number of times, and is similar in meaning to most command-line
interpreters’ meaning of the * alone. The pattern \d+ means any number of numeric
digits. \d{2,3} means a two- or three-digit number.

4.1 Regular Expression Syntax | 99

http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596003302.do

Table 4-1. Regular expression metacharacter syntax
Subexpression Matches Notes
General

\^ Start of line/string

$ End of line/string

\b Word boundary

\B Not a word boundary

\A Beginning of entire string

\z End of entire string

\Z End of entire string (except allowable final line
terminator)

See Recipe 4.9

. Any one character (except line terminator)

[…] “Character class”; any one character from those listed

[\^…] Any one character not from those listed See Recipe 4.2

Alternation and grouping

(…) Grouping (capture groups) See Recipe 4.3

| Alternation

(?:_re_) Noncapturing parenthesis

\G End of the previous match

+\+n Back-reference to capture group number n

Normal (greedy)
quantifiers

{ m,n } Quantifier for from m to n repetitions See Recipe 4.4

{ m ,} Quantifier for m or more repetitions

{ m } Quantifier for exactly m repetitions See Recipe 4.10

{,n } Quantifier for 0 up to n repetitions

* Quantifier for 0 or more repetitions Short for {0,}

+ Quantifier for 1 or more repetitions Short for {1,}; see Recipe 4.2

? Quantifier for 0 or 1 repetitions (i.e., present exactly
once, or not at all)

Short for {0,1}

Reluctant (nongreedy)
quantifiers

{ m,n }? Reluctant quantifier for from m to n repetitions

{ m ,}? Reluctant quantifier for m or more repetitions

{,n }? Reluctant quantifier for 0 up to n repetitions

*? Reluctant quantifier: 0 or more

+? Reluctant quantifier: 1 or more See Recipe 4.10

?? Reluctant quantifier: 0 or 1 times

100 | Chapter 4: Pattern Matching with Regular Expressions

Subexpression Matches Notes
Possessive (very greedy)
quantifiers

{ m,n }+ Possessive quantifier for from m to n repetitions

{ m ,}+ Possessive quantifier for m or more repetitions

{,n }+ Possessive quantifier for 0 up to n repetitions

*+ Possessive quantifier: 0 or more

++ Possessive quantifier: 1 or more

?+ Possessive quantifier: 0 or 1 times

Escapes and shorthands

\ Escape (quote) character: turns most metacharacters off;
turns subsequent alphabetic into metacharacters

\Q Escape (quote) all characters up to \E

\E Ends quoting begun with \Q

\t Tab character

\r Return (carriage return) character

\n Newline character See Recipe 4.9

\f Form feed

\w Character in a word Use \w+ for a word; see Recipe
4.10

\W A nonword character

\d Numeric digit Use \d+ for an integer; see
Recipe 4.2

\D A nondigit character

\s Whitespace Space, tab, etc., as determined
by java.lang.Charac
ter.isWhitespace()

\S A nonwhitespace character See Recipe 4.10

Unicode blocks
(representative samples)

\p{InGreek} A character in the Greek block (Simple block)

\P{InGreek} Any character not in the Greek block

\p{Lu} An uppercase letter (Simple category)

\p{Sc} A currency symbol

POSIX-style character
classes (defined only for
US-ASCII)

\p{Alnum} Alphanumeric characters [A-Za-z0-9]

\p{Alpha} Alphabetic characters [A-Za-z]

\p{ASCII} Any ASCII character [\x00-\x7F]

4.1 Regular Expression Syntax | 101

6 REDemo was inspired by (but does not use any code from) a similar program provided with the now-retired
Apache Jakarta Regular Expressions package.

Subexpression Matches Notes

\p{Blank} Space and tab characters

\p{Space} Space characters [\t\n\x0B\f\r]

\p{Cntrl} Control characters [\x00-\x1F\x7F]

\p{Digit} Numeric digit characters [0-9]

\p{Graph} Printable and visible characters (not spaces or control
characters)

\p{Print} Printable characters Same as \p{Graph}

\p{Punct} Punctuation characters One of !"#$%&'()*
+,-./:;<=>?@[]\^_`{|}
\~

\p{Lower} Lowercase characters [a-z]

\p{Upper} Uppercase characters [A-Z]

\p{XDigit} Hexadecimal digit characters [0-9a-fA-F]

Regexes match any place possible in the string. Patterns followed by greedy quanti‐
fiers (the only type that existed in traditional Unix regexes) consume (match) as
much as possible without compromising any subexpressions that follow. Patterns fol‐
lowed by possessive quantifiers match as much as possible without regard to follow‐
ing subexpressions. Patterns followed by reluctant quantifiers consume as few charac‐
ters as possible to still get a match.

Also, unlike regex packages in some other languages, the Java regex package was
designed to handle Unicode characters from the beginning. The standard Java escape
sequence \u+nnnn is used to specify a Unicode character in the pattern. We use meth‐
ods of java.lang.Character to determine Unicode character properties, such as
whether a given character is a space. Again, note that the backslash must be doubled
if this is in a Java string that is being compiled because the compiler would otherwise
parse this as “backslash-u” followed by some numbers.

To help you learn how regexes work, I provide a little program called REDemo.6 The
code for REDemo is too long to include in the book; in the online directory regex of
the darwinsys-api repo, you will find REDemo.java, which you can run to explore
how regexes work.

In the uppermost text box (see Figure 4-1), type the regex pattern you want to test.
Note that as you type each character, the regex is checked for syntax; if the syntax is
OK, you see a checkmark beside it. You can then select Match, Find, or Find All.
Match means that the entire string must match the regex, and Find means the regex

102 | Chapter 4: Pattern Matching with Regular Expressions

must be found somewhere in the string (Find All counts the number of occurrences
that are found). Below that, you type a string that the regex is to match against.
Experiment to your heart’s content. When you have the regex the way you want it,
you can paste it into your Java program. You’ll need to escape (backslash) any charac‐
ters that are treated specially by both the Java compiler and the Java regex package,
such as the backslash itself, double quotes, and others. Once you get a regex the way
you want it, there is a Copy button (not shown in these screenshots) to export the
regex to the clipboard, with or without backslash doubling, depending on how you
want to use it.

Remember that because a regex is entered as a string that will be
compiled by a Java compiler, you usually need two levels of escap‐
ing for any special characters, including backslash and double
quotes. For example, the regex (which includes the double quotes):

"You said it\."

has to be typed like this to be a valid compile-time Java language
String:

String pattern = "\"You said it\\.\""

In Java 14+ you could also use a text block to avoid escaping the
quotes:

String pattern = """
 "You said it\\.""""

I can’t tell you how many times I’ve made the mistake of forgetting
the extra backslash in \d+, \w+, and their kin!

In Figure 4-1, I typed qu into the REDemo program’s Pattern box, which is a syntacti‐
cally valid regex pattern: any ordinary characters stand as regexes for themselves, so
this looks for the letter q followed by u. In the top version, I typed only a q into the
string, which is not matched. In the second, I have typed quack and the q of a second
quack. Because I have selected Find All, the count shows one match. As soon as I type
the second u, the count is updated to two, as shown in the third version.

Regexes can do far more than just character matching. For example, the two-
character regex ^T would match beginning of line (^) immediately followed by a capi‐
tal T—that is, any line beginning with a capital T. It doesn’t matter whether the line
begins with “Tiny trumpets,” “Titanic tubas,” or “Triumphant twisted trombones,” as
long as the capital T is present in the first position.

But here we’re not very far ahead. Have we really invested all this effort in regex tech‐
nology just to be able to do what we could already do with the java.lang.String
method startsWith()? Hmmm, I can hear some of you getting a bit restless. Stay in
your seats! What if you wanted to match not only a letter T in the first position, but

4.1 Regular Expression Syntax | 103

also a vowel immediately after it, followed by any number of letters in a word, fol‐
lowed by an exclamation point? Surely you could do this in Java by checking starts
With("T") and charAt(1) == 'a' || charAt(1) == 'e', and so on? Yes, but by the
time you did that, you’d have written a lot of very highly specialized code that you
couldn’t use in any other application. With regular expressions, you can just give the
pattern ^T[aeiou]\w*!. That is, ^ and T as before, followed by a character class listing
the vowels, followed by any number of word characters (\w*), followed by the excla‐
mation point.

Figure 4-1. REDemo with simple examples

“But wait, there’s more!” as my late, great boss Yuri Rubinsky used to say. What if you
want to be able to change the pattern you’re looking for at runtime? Remember all
that Java code you just wrote to match T in column 1, plus a vowel, some word char‐
acters, and an exclamation point? Well, it’s time to throw it out. Because this morning
we need to match Q, followed by a letter other than u, followed by a number of digits,
followed by a period. While some of you start writing a new function to do that, the
rest of us will just saunter over to the RegEx Bar & Grille, order a ^Q[^u]\d+\.. from
the bartender, and be on our way.

104 | Chapter 4: Pattern Matching with Regular Expressions

https://en.wikipedia.org/wiki/Yuri_Rubinsky

OK, if you want an explanation: the [^u] means match any one character that is not
the character u. The \d+ means one or more numeric digits. The + is a quantifier
meaning one or more occurrences of what it follows, and \d is any one numeric digit.
So \d+ means a number with one, two, or more digits. Finally, the \.? Well, . by itself
is a metacharacter. Most single metacharacters are switched off by preceding them
with an escape character. Not the Esc key on your keyboard, of course. The regex
escape character is the backslash. Preceding a metacharacter like . with this escape
turns off its special meaning, so we look for a literal period rather than any character.
Preceding a few selected alphabetic characters (e.g., n, r, t, s, w) with escape turns
them into metacharacters. Figure 4-2 shows the ^Q[^u]\d+\.. regex in action. In the
first frame, I have typed part of the regex as ^Q[^u. Because there is an unclosed
square bracket, the Syntax OK flag is turned off; when I complete the regex, it will be
turned back on. In the second frame, I have finished typing the regex, and I’ve typed
the data string as QA577 (which you should expect to match the $$^Q[^u]\d+$$ but
not the period since I haven’t typed it). In the third frame, I’ve typed the period so the
Matches flag is set to Yes.

Figure 4-2. REDemo with “Q not followed by u” example

4.1 Regular Expression Syntax | 105

Because backslashes need to be escaped when pasting the regex into Java code, the
current version of REDemo has both a Copy Pattern button, which copies the regex
verbatim for use in documentation and in Unix commands, and a Copy Pattern
Backslashed button, which copies the regex to the clipboard with backslashes dou‐
bled, for pasting into Java strings.

By now you should have at least a basic grasp of how regexes work in practice. The
rest of this chapter gives more examples and explains some of the more powerful top‐
ics, such as capture groups. As for how regexes work in theory—and there are a lot of
theoretical details and differences among regex flavors—the interested reader is
referred to Mastering Regular Expressions. Meanwhile, let’s start learning how to write
Java programs that use regular expressions.

4.2 Using Regexes in Java: Test for a Pattern
Problem
You’re ready to get started using regular expression processing to beef up your Java
code by testing to see if a given pattern can match in a given string.

Solution
Use the Java Regular Expressions Package, java.util.regex.

Discussion
The good news is that the Java API for regexes is actually easy to use. If all you need is
to find out whether a given regex matches a string, you can use the convenient
boolean matches() method of the String class, which accepts a regex pattern in
String form as its argument:

if (inputString.matches(stringRegexPattern)) {
 // it matched... do something with it...
}

This is, however, a convenience routine, and convenience always comes at a price. If
the regex is going to be used more than once or twice in a program, it is more effi‐
cient to construct and use a Pattern and its Matcher(s). A complete program con‐
structing a Pattern and using it to match is shown here:

public class RESimple {
 public static void main(String[] argv) {
 String pattern = "^Q[^u]\\d+\\.";
 String[] input = {
 "QA777. is the next flight. It is on time.",
 "Quack, Quack, Quack!"
 };

106 | Chapter 4: Pattern Matching with Regular Expressions

http://shop.oreilly.com/product/9780596528126.do

 Pattern p = Pattern.compile(pattern);

 for (String in : input) {
 boolean found = p.matcher(in).lookingAt();

 System.out.println("'" + pattern + "'" +
 (found ? " matches '" : " doesn't match '") + in + "'");
 }
 }
}

The java.util.regex package contains two classes, Pattern and Matcher, which
provide the public API shown in Example 4-1.

Example 4-1. Regex public API

/**
 * The main public API of the java.util.regex package.
 */

package java.util.regex;

public final class Pattern {
 // Flags values ('or' together)
 public static final int
 UNIX_LINES, CASE_INSENSITIVE, COMMENTS, MULTILINE,
 DOTALL, UNICODE_CASE, CANON_EQ;
 // No public constructors; use these Factory methods
 public static Pattern compile(String patt);
 public static Pattern compile(String patt, int flags);
 // Method to get a Matcher for this Pattern
 public Matcher matcher(CharSequence input);
 // Information methods
 public String pattern();
 public int flags();
 // Convenience methods
 public static boolean matches(String pattern, CharSequence input);
 public String[] split(CharSequence input);
 public String[] split(CharSequence input, int max);
}

public final class Matcher {
 // Action: find or match methods
 public boolean matches();
 public boolean find();
 public boolean find(int start);
 public boolean lookingAt();
 // "Information about the previous match" methods
 public int start();
 public int start(int whichGroup);
 public int end();

4.2 Using Regexes in Java: Test for a Pattern | 107

 public int end(int whichGroup);
 public int groupCount();
 public String group();
 public String group(int whichGroup);
 // Reset methods
 public Matcher reset();
 public Matcher reset(CharSequence newInput);
 // Replacement methods
 public Matcher appendReplacement(StringBuffer where, String newText);
 public StringBuffer appendTail(StringBuffer where);
 public String replaceAll(String newText);
 public String replaceFirst(String newText);
 // information methods
 public Pattern pattern();
}

/* String, showing only the RE-related methods */
public final class String {
 public boolean matches(String regex);
 public String replaceFirst(String regex, String newStr);
 public String replaceAll(String regex, String newStr);
 public String[] split(String regex);
 public String[] split(String regex, int max);
}

This API is large enough to require some explanation. These are the normal steps for
regex matching in a production program:

1. Create a Pattern by calling the static method Pattern.compile().
2. Request a Matcher from the pattern by calling pattern.matcher(CharSequence)

for each String (or other CharSequence) you wish to look through.
3. Call (once or more) one of the finder methods (discussed later in this section) in

the resulting Matcher.

The java.lang.CharSequence interface provides simple read-only access to objects
containing a collection of characters. The standard implementations are String and
StringBuffer/StringBuilder (described in Chapter 3), and the new I/O class
java.nio.CharBuffer.

Of course, you can perform regex matching in other ways, such as using the conve‐
nience methods in Pattern or even in java.lang.String, like this:

public class StringConvenience {
 public static void main(String[] argv) {

 String pattern = ".*Q[^u]\\d+\\..*";
 String line = "Order QT300. Now!";
 if (line.matches(pattern)) {
 System.out.println(line + " matches \"" + pattern + "\"");

108 | Chapter 4: Pattern Matching with Regular Expressions

 } else {
 System.out.println("NO MATCH");
 }
 }
}

But the three-step list is the standard pattern for matching. You’d likely use the
String convenience routine in a program that only used the regex once; if the regex
were being used more than once, it is worth taking the time to compile it because the
compiled version runs faster.

In addition, the Matcher has several finder methods, which provide more flexibility
than the String convenience routine match(). These are the Matcher methods:

match()

Used to compare the entire string against the pattern; this is the same as the rou‐
tine in java.lang.String. Because it matches the entire String, I had to put .*
before and after the pattern.

lookingAt()

Used to match the pattern only at the beginning of the string.

find()

Used to match the pattern in the string (not necessarily at the first character of
the string), starting at the beginning of the string or, if the method was previously
called and succeeded, at the first character not matched by the previous match.

Each of these methods returns boolean, with true meaning a match and false
meaning no match. To check whether a given string matches a given pattern, you
need only type something like the following:

Matcher m = Pattern.compile(patt).matcher(line);
if (m.find()) {
 System.out.println(line + " matches " + patt)
}

But you may also want to extract the text that matched, which is the subject of the
next recipe.

The following recipes cover uses of the Matcher API. Initially, the examples just use
arguments of type String as the input source. Use of other CharSequence types is
covered in Recipe 4.5.

4.3 Finding the Matching Text
Problem
You need to find the text that the regex matched.

4.3 Finding the Matching Text | 109

Solution
Sometimes you need to know more than just whether a regex matched a string. In
editors and many other tools, you want to know exactly what characters were
matched. Remember that with quantifiers such as *, the length of the text that was
matched may have no relationship to the length of the pattern that matched it. Do not
underestimate the mighty .*, which happily matches thousands or millions of char‐
acters if allowed to. As you saw in the previous recipe, you can find out whether a
given match succeeds just by using find() or matches(). But in other applications,
you will want to get the characters that the pattern matched.

After a successful call to one of the preceding methods, you can use these information
methods on the Matcher to get information on the match:

start(), end()

Returns the character position in the string of the starting and ending characters
that matched.

groupCount()

Returns the number of parenthesized capture groups, if any; returns 0 if no
groups were used.

group(int i)

Returns the characters matched by group i of the current match, if i is greater
than or equal to zero and less than or equal to the return value of groupCount().
Group 0 is the entire match, so group(0) (or just group()) returns the entire por‐
tion of the input that matched.

The notion of parentheses, or capture groups, is central to regex processing. Regexes
may be nested to any level of complexity. The group(int) method lets you retrieve
the characters that matched a given parenthesis group. If you haven’t used any explicit
parens, you can just treat whatever matched as level zero. Example 4-2 shows part of
REMatch.java.

Example 4-2. Part of main/src/main/java/regex/REMatch.java

public class REmatch {
 public static void main(String[] argv) {

 String patt = "Q[^u]\\d+\\.";
 Pattern r = Pattern.compile(patt);
 String line = "Order QT300. Now!";
 Matcher m = r.matcher(line);
 if (m.find()) {
 System.out.println(patt + " matches \"" +
 m.group(0) +
 "\" in \"" + line + "\"");

110 | Chapter 4: Pattern Matching with Regular Expressions

 } else {
 System.out.println("NO MATCH");
 }
 }
}

When run, this prints:

Q[\^u]\d+\. matches "QT300." in "Order QT300. Now!"

With the Match button checked, REDemo provides a display of all the capture groups
in a given regex; one example is shown in Figure 4-3.

Figure 4-3. REDemo in action

It is also possible to get the starting and ending indices and the length of the text that
the pattern matched (remember that terms with quantifiers, such as the \d+ in this
example, can match an arbitrary number of characters in the string). You can use
these in conjunction with the String.substring() methods as follows:

 String patt = "Q[^u]\\d+\\.";
 Pattern r = Pattern.compile(patt);
 String line = "Order QT300. Now!";
 Matcher m = r.matcher(line);
 if (m.find()) {
 System.out.println(patt + " matches \"" +
 line.substring(m.start(0), m.end(0)) +
 "\" in \"" + line + "\"");
 } else {
 System.out.println("NO MATCH");
 }

Suppose you need to extract several items from a string. If the input is

Smith, John
Adams, John Quincy

and you want to get out

John Smith
John Quincy Adams

4.3 Finding the Matching Text | 111

just use the following:

public class REmatchTwoFields {
 public static void main(String[] args) {
 String inputLine = "Adams, John Quincy";
 // Construct an RE with parens to "grab" both field1 and field2
 Pattern r = Pattern.compile("(.*), (.*)");
 Matcher m = r.matcher(inputLine);
 if (!m.matches())
 throw new IllegalArgumentException("Bad input");
 System.out.println(m.group(2) + ' ' + m.group(1));
 }
}

4.4 Replacing the Matched Text
Problem
Having found some text using a Pattern, you want to replace the text with different
text, without disturbing the rest of the string.

Solution
As we saw in the previous recipe, regex patterns involving quantifiers can match a lot
of characters with very few metacharacters. We need a way to replace the text that the
regex matched without changing other text before or after it. We could do this man‐
ually using the String method substring(). However, because it’s such a common
requirement, the Java Regular Expression API provides some substitution methods.

Discussion
The Matcher class provides several methods for replacing just the text that matched
the pattern. In all these methods, you pass in the replacement text, or “righthand
side,” of the substitution (this term is historical: in a command-line text editor’s sub‐
stitute command, the lefthand side is the pattern and the righthand side is the
replacement text). These are the replacement methods:

replaceAll(newString)

Replaces all occurrences that matched with the new string

replaceFirst(newString)

As above but only the first occurence

appendReplacement(StringBuffer, newString)

Copies up to before the first match, plus the given newString

112 | Chapter 4: Pattern Matching with Regular Expressions

appendTail(StringBuffer)

Appends text after the last match (normally used after appendReplacement)

Despite their names, the replace* methods behave in accord with the immutability
of Strings (see “Timeless, Immutable, and Unchangeable” on page 58): they create a
new String object with the replacement performed; they do not (indeed, could not)
modify the string referred to in the Matcher object.

Example 4-3 shows use of these three methods.

Example 4-3. main/src/main/java/regex/ReplaceDemo.java

/**
 * Quick demo of RE substitution: correct U.S. 'favor'
 * to Canadian/British 'favour', but not in "favorite"
 * @author Ian F. Darwin, http://www.darwinsys.com/
 */
public class ReplaceDemo {
 public static void main(String[] argv) {

 // Make an RE pattern to match as a word only (\b=word boundary)
 String patt = "\\bfavor\\b";

 // A test input
 String input = "Do me a favor? Fetch my favorite.";
 System.out.println("Input: " + input);

 // Run it from a RE instance and see that it works
 Pattern r = Pattern.compile(patt);
 Matcher m = r.matcher(input);
 System.out.println("ReplaceAll: " + m.replaceAll("favour"));

 // Show the appendReplacement method
 m.reset();
 StringBuffer sb = new StringBuffer();
 System.out.print("Append methods: ");
 while (m.find()) {
 // Copy to before first match,
 // plus the word "favor"
 m.appendReplacement(sb, "favour");
 }
 m.appendTail(sb); // copy remainder
 System.out.println(sb.toString());
 }
}

Sure enough, when you run it, it does what we expect:

Input: Do me a favor? Fetch my favorite.
ReplaceAll: Do me a favour? Fetch my favorite.
Append methods: Do me a favour? Fetch my favorite.

4.4 Replacing the Matched Text | 113

The replaceAll() method handles the case of making the same change all through a
string. If you want to change each matching occurrence to a different value, you can
use replaceFirst() in a loop, as in Example 4-4. Here we make a pass through an
entire string, turning each occurrence of either cat or dog into feline or canine.
This is simplified from a real example that looked for bit.ly URLs and replaced them
with the actual URL; the computeReplacement method there used the network client
code from Recipe 12.1.

Example 4-4. main/src/main/java/regex/ReplaceMulti.java

/**
 * To perform multiple distinct substitutions in the same String,
 * you need a loop, and must call reset() on the matcher.
 */
public class ReplaceMulti {
 public static void main(String[] args) {

 Pattern patt = Pattern.compile("cat|dog");
 String line = "The cat and the dog never got along well.";
 System.out.println("Input: " + line);
 Matcher matcher = patt.matcher(line);
 while (matcher.find()) {
 String found = matcher.group(0);
 String replacement = computeReplacement(found);
 line = matcher.replaceFirst(replacement);
 matcher.reset(line);
 }
 System.out.println("Final: " + line);
 }

 static String computeReplacement(String in) {
 switch(in) {
 case "cat": return "feline";
 case "dog": return "canine";
 default: return "animal";
 }
 }
}

If you need to refer to portions of the occurrence that matched the regex, you can
mark them with extra parentheses in the pattern and refer to the matching portion
with $1, $2, and so on in the replacement string. Example 4-5 uses this to interchange
two fields, in this case, turn names in the form Firstname Lastname into Lastname,
FirstName.

114 | Chapter 4: Pattern Matching with Regular Expressions

Example 4-5. main/src/main/java/regex/ReplaceDemo2.java

public class ReplaceDemo2 {
 public static void main(String[] argv) {

 // Make an RE pattern
 String patt = "(\\w+)\\s+(\\w+)";

 // A test input
 String input = "Ian Darwin";
 System.out.println("Input: " + input);

 // Run it from a RE instance and see that it works
 Pattern r = Pattern.compile(patt);
 Matcher m = r.matcher(input);
 m.find();
 System.out.println("Replaced: " + m.replaceFirst("$2, $1"));

 // The short inline version:
 // System.out.println(input.replaceFirst("(\\w+)\\s+(\\w+)", "$2, $1"));
 }
}

4.5 Printing All Occurrences of a Pattern
Problem
You need to find all the strings that match a given regex in one or more files or other
sources.

Solution
This example reads through a file one line at a time. Whenever a match is found, I
extract it from the line and print it.

This code takes the group() methods from Recipe 4.3, the substring method from
the CharacterIterator interface, and the match() method from the regex and sim‐
ply puts them all together. I coded it to extract all the names from a given file; in run‐
ning the program through itself, it prints the words import, java, until, regex, and
so on, each on its own line:

C:\> java ReaderIter.java ReaderIter.java
import
java
util
regex
import
java
io

4.5 Printing All Occurrences of a Pattern | 115

Print
all
the
strings
that
match
given
pattern
from
file
public
...
C:\\>

I interrupted it here to save paper. This can be written two ways: a line-at-a-time pat‐
tern shown in Example 4-6 and a more compact form using new I/O shown in
Example 4-7 (the new I/O package used in both examples is described in Chapter 10).

Example 4-6. main/src/main/java/regex/ReaderIter.java

public class ReaderIter {
 public static void main(String[] args) throws IOException {
 // The RE pattern
 Pattern patt = Pattern.compile("[A-Za-z][a-z]+");
 // See the I/O chapter
 // For each line of input, try matching in it.
 Files.lines(Path.of(args[0])).forEach(line -> {
 // For each match in the line, extract and print it.
 Matcher m = patt.matcher(line);
 while (m.find()) {
 // Simplest method:
 // System.out.println(m.group(0));

 // Get the starting position of the text
 int start = m.start(0);
 // Get ending position
 int end = m.end(0);
 // Print whatever matched.
 // Use CharacterIterator.substring(offset, end);
 System.out.println(line.substring(start, end));
 }
 });
 }
}

Example 4-7. main/src/main/java/regex/GrepNIO.java

public class GrepNIO {
 public static void main(String[] args) throws IOException {

 if (args.length < 2) {

116 | Chapter 4: Pattern Matching with Regular Expressions

 System.err.println("Usage: GrepNIO patt file [...]");
 System.exit(1);
 }

 Pattern p=Pattern.compile(args[0]);
 for (int i=1; i<args.length; i++)
 process(p, args[i]);
 }

 static void process(Pattern pattern, String fileName) throws IOException {

 // Get a FileChannel from the given file
 FileInputStream fis = new FileInputStream(fileName);
 FileChannel fc = fis.getChannel();

 // Map the file's content
 ByteBuffer buf = fc.map(FileChannel.MapMode.READ_ONLY, 0, fc.size());

 // Decode ByteBuffer into CharBuffer
 CharBuffer cbuf =
 Charset.forName("ISO-8859-1").newDecoder().decode(buf);

 Matcher m = pattern.matcher(cbuf);
 while (m.find()) {
 System.out.println(m.group(0));
 }
 fis.close();
 }
}

The non-blocking I/O (NIO) version shown in Example 4-7 relies on the fact that an
NIO Buffer can be used as a CharSequence. This program is more general in that the
pattern argument is taken from the command-line argument. It prints the same out‐
put as the previous example if invoked with the pattern argument from the previous
program on the command line:

java regex.GrepNIO "[A-Za-z][a-z]+" ReaderIter.java

You might think of using \w+ as the pattern; the only difference is that my pattern
looks for well-formed capitalized words, whereas \w+ would include Java-centric odd‐
ities like theVariableName, which have capitals in nonstandard positions.

Also note that the NIO version will probably be more efficient because it doesn’t reset
the Matcher to a new input source on each line of input as ReaderIter does.

4.5 Printing All Occurrences of a Pattern | 117

6 On Unix, the shell or command-line interpreter expands *.txt to all the matching filenames before running
the program, but the normal Java interpreter does this for you on systems where the shell isn’t energetic or
bright enough to do it.

4.6 Printing Lines Containing a Pattern
Problem
You need to look for lines matching a given regex in one or more files.

Solution
Write a simple grep-like program.

Discussion
As I’ve mentioned, once you have a regex package, you can write a grep-like program.
I gave an example of the Unix grep program earlier. grep is called with some optional
arguments, followed by one required regular expression pattern, followed by an arbi‐
trary number of filenames. It prints any line that contains the pattern, differing from
Recipe 4.5, which prints only the matching text itself. Here’s an example:

grep "[dD]arwin" *.txt

The code searches for lines containing either darwin or Darwin in every line of every
file whose name ends in .txt.6 Example 4-8 is the source for the first version of a pro‐
gram to do this, called Grep0. It reads lines from the standard input and doesn’t take
any optional arguments, but it handles the full set of regular expressions that the Pat
tern class implements (it is, therefore, not identical to the Unix programs of the same
name). We haven’t covered the java.io package for input and output yet (see Chap‐
ter 10), but our use of it here is simple enough that you can probably intuit it. The
online source includes Grep1, which does the same thing but is better structured (and
therefore longer). Later in this chapter, Recipe 4.11 presents a JGrep program that
parses a set of command-line options.

Example 4-8. main/src/main/java/regex/Grep0.java

public class Grep0 {
 public static void main(String[] args) throws IOException {
 BufferedReader is =
 new BufferedReader(new InputStreamReader(System.in));
 if (args.length != 1) {
 System.err.println("Usage: MatchLines pattern");
 System.exit(1);
 }

118 | Chapter 4: Pattern Matching with Regular Expressions

 Pattern patt = Pattern.compile(args[0]);
 Matcher matcher = patt.matcher("");
 String line = null;
 while ((line = is.readLine()) != null) {
 matcher.reset(line);
 if (matcher.find()) {
 System.out.println("MATCH: " + line);
 }
 }
 }
}

4.7 Controlling Case in Regular Expressions
Problem
You want to find text regardless of case.

Solution
Compile the Pattern passing in the flags argument Pattern.CASE_INSENSITIVE
to indicate that matching should be case-independent (i.e., that it should fold, ignore
differences in case). If your code might run in different locales (see Recipe 3.12),
then you should add Pattern.UNICODE_CASE. Without these flags, the default is nor‐
mal, case-sensitive matching behavior. This flag (and others) are passed to the
Pattern.compile() method, like this:

// regex/CaseMatch.java
Pattern reCaseInsens = Pattern.compile(pattern, Pattern.CASE_INSENSITIVE |
 Pattern.UNICODE_CASE);
reCaseInsens.matches(input); // will match case-insensitively

This flag must be passed when you create the Pattern; because Pattern objects are
immutable, they cannot be changed once constructed.

The full source code for this example is online as CaseMatch.java.

Pattern.compile() Flags
Half a dozen flags can be passed as the second argument to Pattern.compile(). If
more than one value is needed, they can be or’d together using the bitwise or operator
|. In alphabetical order, these are the flags:

CANON_EQ

Enables so-called canonical equivalence. In other words, characters are matched
by their base character so that the character e followed by the combining charac‐

4.7 Controlling Case in Regular Expressions | 119

ter mark for the acute accent (´) can be matched either by the composite charac‐
ter é or the letter e followed by the character mark for the accent (see Recipe 4.8).

CASE_INSENSITIVE

Turns on case-insensitive matching (see Recipe 4.7).

COMMENTS

Causes whitespace and comments (from # to end-of-line) to be ignored in the
pattern. See CommentedRegEx.java in the regex source directory.

DOTALL

Allows dot (.) to match any regular character or the newline, not just any regular
character other than newline (see Recipe 4.9).

MULTILINE

Specifies multiline mode (see Recipe 4.9).

UNICODE_CASE

Enables Unicode-aware case folding (see Recipe 4.7).

UNIX_LINES

Makes \n the only valid newline sequence for MULTILINE mode (see Recipe 4.9).

4.8 Matching Accented, or Composite, Characters
Problem
You want characters to match regardless of the form in which they are entered.

Solution
Compile the Pattern with the flags argument Pattern.CANON_EQ for canonical
equality.

Discussion
Composite characters can be entered in various forms. Consider, as a single example,
the letter e with an acute accent. This character may be found in various forms in
Unicode text, such as the single character é (Unicode character \u00e9) or the two-
character sequence e´ (e followed by the Unicode combining acute accent, \u0301).
To allow you to match such characters regardless of which of possibly multiple fully
decomposed forms are used to enter them, the regex package has an option for can‐
onical matching, which treats any of the forms as equivalent. This option is enabled by
passing CANON_EQ as (one of) the flags in the second argument to Pattern.com
pile(). This program shows CANON_EQ being used to match several forms:

120 | Chapter 4: Pattern Matching with Regular Expressions

public class CanonEqDemo {
 public static void main(String[] args) {
 String pattStr = "\u00e9gal"; // egal
 String[] input = {
 "\u00e9gal", // egal - this one had better match :-)
 "e\u0301gal", // e + "Combining acute accent"
 "e\u02cagal", // e + "modifier letter acute accent"
 "e'gal", // e + single quote
 "e\u00b4gal", // e + Latin-1 "acute"
 };
 Pattern pattern = Pattern.compile(pattStr, Pattern.CANON_EQ);
 for (int i = 0; i < input.length; i++) {
 if (pattern.matcher(input[i]).matches()) {
 System.out.println(
 pattStr + " matches input " + input[i]);
 } else {
 System.out.println(
 pattStr + " does not match input " + input[i]);
 }
 }
 }
}

This program correctly matches the combining accent and rejects the other charac‐
ters, some of which, unfortunately, look like the accent on a printer, but are not con‐
sidered combining accent characters:

égal matches input égal
égal matches input e?gal
égal does not match input e?gal
égal does not match input e'gal
égal does not match input e´gal

For more details, see the character charts.

4.9 Matching Newlines in Text
Problem
You need to match newlines in text.

Solution
Use \n or \r in your regex pattern. See also the flags constant Pattern.MULTILINE,
which makes newlines match as beginning-of-line and end-of-line (\^ and $).

Discussion
Though line-oriented tools from Unix such as sed and grep match regular expressions
one line at a time, not all tools do. The sam text editor from Bell Laboratories was the

4.9 Matching Newlines in Text | 121

http://www.unicode.org

6 Or a few related Unicode characters, including the next-line (\u0085), line-separator (\u2028), and
paragraph-separator (\u2029) characters.

first interactive tool I know of to allow multiline regular expressions; the Perl script‐
ing language followed shortly after. In the Java API, the newline character by default
has no special significance. The BufferedReader method readLine() normally strips
out whichever newline characters it finds. If you read in gobs of characters using
some method other than readLine(), you may have some number of \n, \r, or \r\n
sequences in your text string.6 Normally all of these are treated as equivalent to \n. If
you want only \n to match, use the UNIX_LINES flag to the Pattern.compile()
method.

In Unix, ^ and $ are commonly used to match the beginning or end of a line, respec‐
tively. In this API, the regex metacharacters \^ and $ ignore line terminators and only
match at the beginning and the end, respectively, of the entire string. However, if you
pass the MULTILINE flag into Pattern.compile(), these expressions match just after
or just before, respectively, a line terminator; $ also matches the very end of the
string. Because the line ending is just an ordinary character, you can match it with .
or similar expressions; and, if you want to know exactly where it is, \n or \r in the
pattern match it as well. In other words, to this API, a newline character is just
another character with no special significance. See the sidebar “Pattern.compile()
Flags” on page 119. An example of newline matching is shown in Example 4-9.

Example 4-9. main/src/main/java/regex/NLMatch.java

public class NLMatch {
 public static void main(String[] argv) {

 String input = "I dream of engines\nmore engines, all day long";
 System.out.println("INPUT: " + input);
 System.out.println();

 String[] patt = {
 "engines.more engines",
 "ines\nmore",
 "engines$"
 };

 for (int i = 0; i < patt.length; i++) {
 System.out.println("PATTERN " + patt[i]);

 boolean found;
 Pattern p1l = Pattern.compile(patt[i]);
 found = p1l.matcher(input).find();
 System.out.println("DEFAULT match " + found);

122 | Chapter 4: Pattern Matching with Regular Expressions

 Pattern pml = Pattern.compile(patt[i],
 Pattern.DOTALL|Pattern.MULTILINE);
 found = pml.matcher(input).find();
 System.out.println("MultiLine match " + found);
 System.out.println();
 }
 }
}

If you run this code, the first pattern (with the wildcard character .) always matches,
whereas the second pattern (with $) matches only when MATCH_MULTILINE is set:

> java regex.NLMatch
INPUT: I dream of engines
more engines, all day long

PATTERN engines
more engines
DEFAULT match true
MULTILINE match: true

PATTERN engines$
DEFAULT match false
MULTILINE match: true

4.10 Program: Apache Logfile Parsing
The Apache web server is the world’s leading web server and has been for most of the
web’s history. It is one of the world’s best-known open source projects, and it’s the first
of many fostered by the Apache Foundation. The name Apache is often claimed to be
a pun on the origins of the server; its developers began with the free NCSA server
and kept hacking at it, or patching, it until it did what they wanted. When it was suffi‐
ciently different from the original, a new name was needed. Because it was now a pat‐
chy server, the name Apache was chosen. Officialdom denies the story, but it’s cute
anyway. One place actual patchiness does show through is in the logfile format. Con‐
sider Example 4-10.

Example 4-10. Apache log file excerpt

123.45.67.89 - - [27/Oct/2000:09:27:09 -0400] "GET /java/javaResources.html
HTTP/1.0" 200 10450 "-" "Mozilla/4.6 [en] (X11; U; OpenBSD 2.8 i386; Nav)"

The file format was obviously designed for human inspection but not for easy pars‐
ing. The problem is that different delimiters are used: square brackets for the date,
quotes for the request line, and spaces sprinkled all through. Consider trying to use a
StringTokenizer; you might be able to get it working, but you’d spend a lot of time
fiddling with it. Actually, no, you wouldn’t get it working. However, this somewhat

4.10 Program: Apache Logfile Parsing | 123

6 You might think this would hold some kind of world record for complexity in regex competitions, but I’m
sure it’s been outdone many times.

contorted regular expression6 makes it easy to parse (this is one single Moby-sized
regex; we had to break it over two lines to make it fit the book’s margins):

\^([\d.]+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(.+?)" (\d{3}) (\d+)
 "([\^"]+)" "([\^"]+)"

You may find it informative to refer back to Table 4-1 and review the full syntax used
here. Note in particular the use of the nongreedy quantifier +? in \"(.+?)\" to match
a quoted string; you can’t just use .+ because that would match too much (up to the
quote at the end of the line). Code to extract the various fields such as IP address,
request, referrer URL, and browser version is shown in Example 4-11.

Example 4-11. main/src/main/java/regex/LogRegExp.java

public class LogRegExp {

 final static String logEntryPattern =
 "^([\\d.]+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+-]\\d{4})\\] " +
 "\"(.+?)\" (\\d{3}) (\\d+) \"([^\"]+)\" \"([^\"]+)\"";

 public static void main(String argv[]) {

 System.out.println("RE Pattern:");
 System.out.println(logEntryPattern);

 System.out.println("Input line is:");
 String logEntryLine = LogParseInfo.LOG_ENTRY_LINE;
 System.out.println(logEntryLine);

 Pattern p = Pattern.compile(logEntryPattern);
 Matcher matcher = p.matcher(logEntryLine);
 if (!matcher.matches() ||
 LogParseInfo.MIN_FIELDS > matcher.groupCount()) {
 System.err.println("Bad log entry (or problem with regex):");
 System.err.println(logEntryLine);
 return;
 }
 System.out.println("IP Address: " + matcher.group(1));
 System.out.println("UserName: " + matcher.group(3));
 System.out.println("Date/Time: " + matcher.group(4));
 System.out.println("Request: " + matcher.group(5));
 System.out.println("Response: " + matcher.group(6));
 System.out.println("Bytes Sent: " + matcher.group(7));
 if (!matcher.group(8).equals("-"))
 System.out.println("Referer: " + matcher.group(8));
 System.out.println("User-Agent: " + matcher.group(9));

124 | Chapter 4: Pattern Matching with Regular Expressions

 }
}

The implements clause is for an interface that just defines the input string; it was used
in a demonstration to compare the regular expression mode with the use of a String
Tokenizer. The source for both versions is in the online source for this chapter. Run‐
ning the program against the sample input from Example 4-10 gives this output:

Using regex Pattern:
\^([\d.]+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(.+?)" (\d{3}) (\d+) "([\^"]
+)"
"([\^"]+)"
Input line is:
123.45.67.89 - - [27/Oct/2000:09:27:09 -0400] "GET /java/javaResources.html
HTTP/1.0" 200 10450 "-" "Mozilla/4.6 [en] (X11; U; OpenBSD 2.8 i386; Nav)"
IP Address: 123.45.67.89
Date&Time: 27/Oct/2000:09:27:09 -0400
Request: GET /java/javaResources.html HTTP/1.0
Response: 200
Bytes Sent: 10450
Browser: Mozilla/4.6 [en] (X11; U; OpenBSD 2.8 i386; Nav)

The program successfully parsed the entire logfile format entry with one call to
matcher.matches().

4.11 Program: Full Grep
Now that we’ve seen how the regular expressions package works, it’s time to write
JGrep, a full-blown version of the line-matching program with option parsing.
Table 4-2 lists some typical command-line options that a Unix implementation of
grep might include. For those not familiar with grep, it is a command-line tool that
searches for regular expressions in text files. There are three or four programs in the
standard grep family, and a newer replacement ripgrep, or rg. This program is my
addition to this family of programs.

Table 4-2. Grep command-line options
Option Meaning
-c Count only; don’t print lines, just count them

-C Context; print some lines above and below each line that matches (not implemented in this version; left as an
exercise for the reader)

-f pattern Take pattern from file named after -f instead of from command line

-h Suppress printing filename ahead of lines

-i Ignore case

-l List filenames only: don’t print lines, just the names they’re found in

-n Print line numbers before matching lines

4.11 Program: Full Grep | 125

Option Meaning
-s Suppress printing certain error messages

-v Invert: print only lines that do NOT match the pattern

The Unix world features several getopt library routines for parsing command-line
arguments, so I have a reimplementation of this in Java. As usual, because main()
runs in a static context but our application main line does not, we could wind up
passing a lot of information into the constructor. To save space, this version just uses
global variables to track the settings from the command line. Unlike the Unix grep
tool, this one does not yet handle combined options, so -l -r -i is OK, but -lri will
fail, due to a limitation in the GetOpt parser used.

The program basically just reads lines, matches the pattern in them, and, if a match is
found (or not found, with -v), prints the line (and optionally some other stuff, too).
Having said all that, the code is shown in Example 4-12.

Example 4-12. darwinsys-api/src/main/java/regex/JGrep.java

/** A command-line grep-like program. Accepts some command-line options,
 * and takes a pattern and a list of text files.
 * N.B. The current implementation of GetOpt does not allow combining short
 * arguments, so put spaces e.g., "JGrep -l -r -i pattern file..." is OK, but
 * "JGrep -lri pattern file..." will fail. Getopt will hopefully be fixed soon.
 */
public class JGrep {
 private static final String USAGE =
 "Usage: JGrep pattern [-chilrsnv][-f pattfile][filename...]";
 /** The pattern we're looking for */
 protected Pattern pattern;
 /** The matcher for this pattern */
 protected Matcher matcher;
 private boolean debug;
 /** Are we to only count lines, instead of printing? */
 protected static boolean countOnly = false;
 /** Are we to ignore case? */
 protected static boolean ignoreCase = false;
 /** Are we to suppress printing of filenames? */
 protected static boolean dontPrintFileName = false;
 /** Are we to only list names of files that match? */
 protected static boolean listOnly = false;
 /** Are we to print line numbers? */
 protected static boolean numbered = false;
 /** Are we to be silent about errors? */
 protected static boolean silent = false;
 /** Are we to print only lines that DONT match? */
 protected static boolean inVert = false;
 /** Are we to process arguments recursively if directories? */
 protected static boolean recursive = false;

126 | Chapter 4: Pattern Matching with Regular Expressions

 /** Construct a Grep object for the pattern, and run it
 * on all input files listed in args.
 * Be aware that a few of the command-line options are not
 * acted upon in this version - left as an exercise for the reader!
 * @param args args
 */
 public static void main(String[] args) {

 if (args.length < 1) {
 System.err.println(USAGE);
 System.exit(1);
 }
 String patt = null;

 GetOpt go = new GetOpt("cf:hilnrRsv");

 char c;
 while ((c = go.getopt(args)) != 0) {
 switch(c) {
 case 'c':
 countOnly = true;
 break;
 case 'f': /* External file contains the pattern */
 try (BufferedReader b =
 new BufferedReader(new FileReader(go.optarg()))) {
 patt = b.readLine();
 } catch (IOException e) {
 System.err.println(
 "Can't read pattern file " + go.optarg());
 System.exit(1);
 }
 break;
 case 'h':
 dontPrintFileName = true;
 break;
 case 'i':
 ignoreCase = true;
 break;
 case 'l':
 listOnly = true;
 break;
 case 'n':
 numbered = true;
 break;
 case 'r':
 case 'R':
 recursive = true;
 break;
 case 's':
 silent = true;
 break;

4.11 Program: Full Grep | 127

 case 'v':
 inVert = true;
 break;
 case '?':
 System.err.println("Getopts was not happy!");
 System.err.println(USAGE);
 break;
 }
 }

 int ix = go.getOptInd();

 if (patt == null)
 patt = args[ix++];

 JGrep prog = null;
 try {
 prog = new JGrep(patt);
 } catch (PatternSyntaxException ex) {
 System.err.println("RE Syntax error in " + patt);
 return;
 }

 if (args.length == ix) {
 dontPrintFileName = true; // Don't print filenames if stdin
 if (recursive) {
 System.err.println("Warning: recursive search of stdin!");
 }
 prog.process(new InputStreamReader(System.in), null);
 } else {
 if (!dontPrintFileName)
 dontPrintFileName = ix == args.length - 1; // Nor if only one file
 if (recursive)
 dontPrintFileName = false; // unless a directory!

 for (int i=ix; i<args.length; i++) { // note starting index
 try {
 prog.process(new File(args[i]));
 } catch(Exception e) {
 System.err.println(e);
 }
 }
 }
 }

 /**
 * Construct a JGrep object.
 * @param patt The regex to look for
 * @throws PatternSyntaxException if pattern is not a valid regex
 */
 public JGrep(String patt) throws PatternSyntaxException {
 if (debug) {

128 | Chapter 4: Pattern Matching with Regular Expressions

 System.err.printf("JGrep.JGrep(%s)%n", patt);
 }
 // compile the regular expression
 int caseMode = ignoreCase ?
 Pattern.UNICODE_CASE | Pattern.CASE_INSENSITIVE :
 0;
 pattern = Pattern.compile(patt, caseMode);
 matcher = pattern.matcher("");
 }

 /** Process one command line argument (file or directory)
 * @param file The input File
 * @throws FileNotFoundException If the file doesn't exist
 */
 public void process(File file) throws FileNotFoundException {
 if (!file.exists() || !file.canRead()) {
 throw new FileNotFoundException(
 "Can't read file " + file.getAbsolutePath());
 }
 if (file.isFile()) {
 process(new BufferedReader(new FileReader(file)),
 file.getAbsolutePath());
 return;
 }
 if (file.isDirectory()) {
 if (!recursive) {
 System.err.println(
 "ERROR: -r not specified but directory given " +
 file.getAbsolutePath());
 return;
 }
 for (File nf : file.listFiles()) {
 process(nf); // "Recursion, n.: See Recursion."
 }
 return;
 }
 System.err.println(
 "WEIRDNESS: neither file nor directory: " + file.getAbsolutePath());
 }

 /** Do the work of scanning one file
 * @param ifile Reader Reader object already open
 * @param fileName String Name of the input file
 */
 public void process(Reader ifile, String fileName) {

 String inputLine;
 int matches = 0;

 try (BufferedReader reader = new BufferedReader(ifile)) {

 while ((inputLine = reader.readLine()) != null) {

4.11 Program: Full Grep | 129

 matcher.reset(inputLine);
 if (matcher.find()) {
 if (listOnly) {
 // -l, print filename on first match, and we're done
 System.out.println(fileName);
 return;
 }
 if (countOnly) {
 matches++;
 } else {
 if (!dontPrintFileName) {
 System.out.print(fileName + ": ");
 }
 System.out.println(inputLine);
 }
 } else if (inVert) {
 System.out.println(inputLine);
 }
 }
 if (countOnly)
 System.out.println(matches + " matches in " + fileName);
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

130 | Chapter 4: Pattern Matching with Regular Expressions

CHAPTER 5

Numbers

5.0 Introduction
Numbers are basic to just about any computation. They’re used for array indices,
temperatures, salaries, ratings, and an infinite variety of things. Yet they’re not as sim‐
ple as they seem. With floating-point numbers, how accurate is accurate? With ran‐
dom numbers, how random is random? With strings that should contain a number,
what actually constitutes a number?

Java has several built-in, or primitive, types that can be used to represent numbers,
summarized in Table 5-1 with their wrapper (object) types, as well as some numeric
types that do not represent primitive types. Note that unlike languages such as C or
Perl, which don’t specify the size or precision of numeric types, Java—with its goal of
portability—specifies these exactly and states that they are the same on all platforms.

Table 5-1. Numeric types
Built-in type Object wrapper Size of built-in (bits) Contents

byte Byte 8 Signed integer

short Short 16 Signed integer

int Integer 32 Signed integer

long Long 64 Signed integer

float Float 32 IEEE-754 floating point

double Double 64 IEEE-754 floating point

char Character 16 Unsigned Unicode character

n/a BigInteger unlimited Arbitrary-size immutable integer value

n/a BigDecimal unlimited Arbitrary-size-and-precision immutable floating-point value

131

As you can see, Java provides a numeric type for just about any purpose. There are
four sizes of signed integers for representing various sizes of whole numbers. There
are two sizes of floating-point numbers to approximate real numbers. There is also a
type specifically designed to represent and allow operations on Unicode characters.
The primitive numeric types are discussed here. The “Big” value types are described
in Recipe 5.12.

When you read a string representing a number from user input or a text file, you
need to convert it to the appropriate type. The object wrapper classes in the second
column have several functions, one of which is to provide this basic conversion func‐
tionality—replacing the C programmer’s atoi/atof family of functions and the
numeric arguments to scanf.

Going the other way, you can convert any number (indeed, anything at all in Java) to
a string just by using string concatenation. If you want a little bit of control over
numeric formatting, Recipe 5.5 shows you how to use some of the object wrappers’
conversion routines. And if you want full control, that recipe also shows the use of
NumberFormat and its related classes to provide full control of formatting.

As the name object wrapper implies, these classes are also used to wrap a number in a
Java object, as many parts of the standard API are defined in terms of objects. Later
on, “Solution” on page 394 shows using an Integer object to save an int’s value to a
file using object serialization and retrieving the value later.

But I haven’t yet mentioned the issues of floating point. Real numbers, you may recall,
are numbers with a fractional part. There is an infinite number of real numbers. A
floating-point number—what a computer uses to approximate a real number—is not
the same as a real number. The number of floating-point numbers is finite, with only
2^32 different bit patterns for floats, and 2^64 for doubles. Thus, most real values
have only an approximate correspondence to floating point. The result of printing the
real number 0.3 works correctly, like this:

// numbers/RealValues.java
System.out.println("The real value 0.3 is " + 0.3);

That code results in this printout:

The real value 0.3 is 0.3

But the difference between a real value and its floating-point approximation can
accumulate if the value is used in a computation; this is often called a rounding error.
Continuing the previous example, the real 0.3 multiplied by 3 yields:

The real 0.3 times 3 is 0.89999999999999991

132 | Chapter 5: Numbers

6 For a low-cost source of randomness, check out the now-defunct Lavarand. The process used digitized video
of 1970s lava lamps to provide “hardware-based” randomness. Fun!

Surprised? Not only is it off by a bit from what you might expect, but you will of
course get the same output on any conforming Java implementation. I ran it on
machines as disparate as an AMD/Intel PC with OpenBSD, a PC with Windows and
the standard JDK, and on macOS. Always the same answer.

And what about random numbers? How random are they? You have probably heard
the term Pseudorandom Number Generator, or PRNG. All conventional random
number generators, whether written in Fortran, C, or Java, generate pseudorandom
numbers. That is, they’re not truly random! True randomness comes only from spe‐
cially built hardware: an analog source of Brownian noise connected to an analog-to-
digital converter, for example.6 Your average PC of today may have some good sour‐
ces of entropy, or even hardware-based sources of randomness (which have not been
widely used or tested yet). However, pseudorandom number generators are good
enough for most purposes, so we use them. Java provides one random generator in
the base library java.lang.Math, and several others; we’ll examine these in Recipe
5.9.

The class java.lang.Math contains an entire math library in one class, including trig‐
onometry, conversions (including degrees to radians and back), rounding, truncating,
square root, minimum, and maximum. It’s all there. Check the javadoc for
java.lang.Math.

The package java.math contains support for big numbers—those larger than the nor‐
mal built-in long integers, for example. See Recipe 5.12.

Java works hard to ensure that your programs are reliable. The usual ways you’d
notice this are in the common requirement to catch potential exceptions—all through
the Java API—and in the need to cast, or convert, when storing a value that might or
might not fit into the variable you’re trying to store it in. I’ll show examples of these.

Overall, Java’s handling of numeric data fits well with the ideals of portability, reliabil‐
ity, and ease of programming.

See Also
The Java Language Specification, and the javadoc page for java.lang.Math.

5.0 Introduction | 133

http://en.wikipedia.org/wiki/Lavarand
https://docs.oracle.com/javase/specs

5.1 Checking Whether a String Is a Valid Number
Problem
You need to check whether a given string contains a valid number, and, if so, convert
it to binary (internal) form.

Solution
To accomplish this, use the appropriate wrapper class’s conversion routine and catch
the NumberFormatException. This code converts a string to a double:

 public static void main(String[] argv) {
 String aNumber = argv[0]; // not argv[1]
 double result;
 try {
 result = Double.parseDouble(aNumber);
 System.out.println("Number is " + result);
 } catch(NumberFormatException exc) {
 System.out.println("Invalid number " + aNumber);
 return;
 }
 }

Discussion
This code lets you validate only numbers in the format that the designers of the wrap‐
per classes expected. If you need to accept a different definition of numbers, you
could use regular expressions (see Chapter 4) to make the determination.

There may also be times when you want to tell if a given number is an integer number
or a floating-point number. One way is to check for the characters ., d, e, or f in the
input; if one of these characters is present, convert the number as a double. Other‐
wise, convert it as an int:

 /*
 * Process one String, returning it as a Number subclass
 */
 public static Number process(String s) {
 if (s.matches("[+-]*\\d*\\.\\d+[dDeEfF]*")) {
 try {
 double dValue = Double.parseDouble(s);
 System.out.println("It's a double: " + dValue);
 return Double.valueOf(dValue);
 } catch (NumberFormatException e) {
 System.out.println("Invalid double: " + s);
 return Double.NaN;
 }
 } else // did not contain . d e or f, so try as int.

134 | Chapter 5: Numbers

 try {
 int iValue = Integer.parseInt(s);
 System.out.println("It's an int: " + iValue);
 return Integer.valueOf(iValue);
 } catch (NumberFormatException e2) {
 System.out.println("Not a number: " + s);
 return Double.NaN;
 }
 }

See Also
A more involved form of parsing is offered by the DecimalFormat class, discussed in
Recipe 5.5.

There is also the Scanner class; see Recipe 10.6.

5.2 Converting Numbers to Objects and Vice Versa
Problem
You need to convert numbers to objects and objects to numbers.

Solution
Use the object wrapper classes listed in Table 5-1 at the beginning of this chapter.

Discussion
Often you have a primitive number and you need to pass it into a method where an
Object is required, or vice versa. Long ago you had to invoke the conversion routines
that are part of the wrapper classes, but now you can generally use automatic conver‐
sion (called auto-boxing/auto-unboxing). See Example 5-1 for examples of both.

Example 5-1. main/src/main/java/structure/AutoboxDemo.java

public class AutoboxDemo {

 /** Shows auto-boxing (in the call to foo(i), i is wrapped automatically)
 * and auto-unboxing (the return value is automatically unwrapped).
 */
 public static void main(String[] args) {
 int i = 42;
 int result = foo(i);
 System.out.println(result);
 }

 public static Integer foo(Integer i) {

5.2 Converting Numbers to Objects and Vice Versa | 135

 System.out.println("Object = " + i);
 return Integer.valueOf(123);
 }
}

Auto-boxing: int 42 is converted to Integer(42). Also auto-unboxing: the
Integer returned from foo() is auto-unboxed to assign to int result.

No auto-boxing: valueOf() returns Integer. If the line said return Inte

ger.intValueOf(123), then it would be a second example of auto-boxing
because the method return value is Integer.

To explicitly convert between an int and an Integer object, or vice versa, you can
use the wrapper class methods:

public class IntObject {
 public static void main(String[] args) {
 // int to Integer
 Integer i1 = Integer.valueOf(42);
 System.out.println(i1.toString()); // or just i1

 // Integer to int
 int i2 = i1.intValue();
 System.out.println(i2);
 }
}

5.3 Taking a Fraction of an Integer Without Using Floating
Point
Problem
You want to multiply an integer by a fraction without converting the fraction to a
floating-point number.

Solution
Multiply the integer by the numerator and divide by the denominator.

This technique should be used only when efficiency is more important than clarity
because it tends to detract from the readability—and therefore the maintainability—
of your code.

Discussion
Because integers and floating-point numbers are stored differently, it may sometimes
be desirable and feasible, for efficiency purposes, to multiply an integer by a

136 | Chapter 5: Numbers

fractional value without converting the values to floating point and back, and without
requiring a cast:

public class FractMult {
 public static void main(String[] u) {

 double d1 = 0.666 * 5; // fast but obscure and inaccurate: convert
 System.out.println(d1); // 2/3 to 0.666 in programmer's head

 double d2 = 2/3 * 5; // wrong answer - 2/3 == 0, 0*5 = 0
 System.out.println(d2);

 double d3 = 2d/3d * 5; // "normal"
 System.out.println(d3);

 double d4 = (2*5)/3d; // one step done as integers, almost same answer
 System.out.println(d4);

 int i5 = 2*5/3; // fast, approximate integer answer
 System.out.println(i5);
 }
}

Running the code looks like this:

$ java numbers.FractMult
3.33
0.0
3.333333333333333
3.3333333333333335
3
$

You should beware of the possibility of numeric overflow and avoid this optimization
if you cannot guarantee that the multiplication by the numerator will not overflow.

5.4 Working with Floating-Point Numbers
Problem
You want to be able to compare and round floating-point numbers.

Solution
Compare with the INFINITY constants, and use isNaN() to check for NaN (not a num‐
ber).

Compare floating values with an epsilon value.

Round floating point values with Math.round() or custom code.

5.4 Working with Floating-Point Numbers | 137

Discussion
Comparisons can be a bit tricky: fixed-point operations that can do things like divide
by zero result in Java notifying you abruptly by throwing an exception. This is
because integer division by zero is considered a logic error.

Floating-point operations, however, do not throw an exception because they are
defined over an (almost) infinite range of values. Instead, they signal errors by pro‐
ducing the constant POSITIVE_INFINITY if you divide a positive floating-point num‐
ber by zero, the constant NEGATIVE_INFINITY if you divide a negative floating-point
value by zero, and NaN if you otherwise generate an invalid result. Values for these
three public constants are defined in both the Float and the Double wrapper classes.
The value NaN has the unusual property that it is not equal to itself (i.e., NaN != NaN).
Thus, it would hardly make sense to compare a (possibly suspect) number against
NaN, because the following expression can never be true:

x == NaN

Instead, the methods Float.isNaN(float) and Double.isNaN(double) must be
used:

 public static void main(String[] argv) {
 double d = 123;
 double e = 0;
 if (d/e == Double.POSITIVE_INFINITY)
 System.out.println("Check for POSITIVE_INFINITY works");
 double s = Math.sqrt(-1);
 if (s == Double.NaN)
 System.out.println("Comparison with NaN incorrectly returns true");
 if (Double.isNaN(s))
 System.out.println("Double.isNaN() correctly returns true");
 }

Note that this, by itself, is not sufficient to ensure that floating-point calculations have
been done with adequate accuracy. For example, the following program demonstrates
a contrived calculation—Heron’s formula for the area of a triangle—both in float
and in double. The double values are correct, but the floating-point value comes out
as zero due to rounding errors. This happens because, in Java, operations involving
only float values are performed as 32-bit calculations. Related languages such as C
automatically promote these to double during the computation, which can eliminate
some loss of accuracy. Let’s take a look:

public class Heron {
 public static void main(String[] args) {
 // Sides for triangle in float
 float af, bf, cf;
 float sf, areaf;

 // Ditto in double

138 | Chapter 5: Numbers

6 Note that an expression consisting entirely of compile-time constants, like Math.PI * 2.1e17, is also consid‐
ered to be Strict-FP.

 double ad, bd, cd;
 double sd, aread;

 // Area of triangle in float
 af = 12345679.0f;
 bf = 12345678.0f;
 cf = 1.01233995f;

 sf = (af+bf+cf)/2.0f;
 areaf = (float)Math.sqrt(sf * (sf - af) * (sf - bf) * (sf - cf));
 System.out.println("Single precision: " + areaf);

 // Area of triangle in double
 ad = 12345679.0;
 bd = 12345678.0;
 cd = 1.01233995;

 sd = (ad+bd+cd)/2.0d;
 aread = Math.sqrt(sd * (sd - ad) * (sd - bd) * (sd - cd));
 System.out.println("Double precision: " + aread);
 }
}

Now let’s run it:

$ java numbers.Heron
Single precision: 0.0
Double precision: 972730.0557076167

If in doubt, use double!

To ensure consistency of very large-magnitude double computations on different Java
implementations, Java provides the keyword strictfp, which can apply to classes,
interfaces, or methods within a class.6 If a computation is Strict-FP, then it must
always, for example, return the value INFINITY if a calculation would overflow the
value of Double.MAX_VALUE (or underflow the value Double.MIN_VALUE). Non-Strict-
FP calculations—the default—are allowed to perform calculations on a greater range
and can return a valid final result that is in range even if the interim product was out
of range. This is pretty esoteric and affects only computations that approach the
bounds of what fits into a double.

Comparing floating-point values
Based on what we’ve just discussed, you probably won’t just go comparing two floats
or doubles for equality. You might expect the floating-point wrapper classes, Float
and Double, to override the equals() method, which they do. The equals() method

5.4 Working with Floating-Point Numbers | 139

returns true if the two values are the same bit for bit (i.e., if and only if the numbers
are the same or are both NaN). It returns false otherwise, including if the argument
passed in is null, or if one object is +0.0 and the other is –0.0.

I said earlier that NaN != Nan, but if you compare with equals(), the result is true:

jshell> Float f1 = Float.valueOf(Float.NaN)
f1 ==> NaN

jshell> Float f2 = Float.valueOf(Float.NaN)
f2 ==> NaN

jshell> f1 == f2 # Comparing object identities
$4 ==> false

jshell> f1.equals(f1) # bitwise comparison of values
$5 ==> true

If this sounds weird, remember that the complexity comes partly from the nature of
doing real number computations in the less-precise floating-point hardware. It also
comes partly from the details of the IEEE Standard 754, which specifies the floating-
point functionality that Java tries to adhere to so that underlying floating-point pro‐
cessor hardware can be used even when Java programs are being interpreted.

To actually compare floating-point numbers for equality, it is generally desirable to
compare them within some tiny range of allowable differences; this range is often
regarded as a tolerance or as epsilon. Example 5-2 shows an equals() method you
can use to do this comparison, as well as comparisons on values of NaN. When run, it
prints that the first two numbers are equal within epsilon:

$ java numbers.FloatCmp
True within epsilon 1.0E-7
$

Example 5-2. main/src/main/java/numbers/FloatCmp.java

public class FloatCmp {

 final static double EPSILON = 0.0000001;

 public static void main(String[] argv) {
 double da = 3 * .3333333333;
 double db = 0.99999992857;

 // Compare two numbers that are expected to be close.
 if (da == db) {
 System.out.println("Java considers " + da + "==" + db);
 // else compare with our own equals overload
 } else if (equals(da, db, 0.0000001)) {
 System.out.println("Equal within epsilon " + EPSILON);

140 | Chapter 5: Numbers

 } else {
 System.out.println(da + " != " + db);
 }

 System.out.println("NaN prints as " + Double.NaN);

 // Show that comparing two NaNs is not a good idea:
 double nan1 = Double.NaN;
 double nan2 = Double.NaN;
 if (nan1 == nan2)
 System.out.println("Comparing two NaNs incorrectly returns true.");
 else
 System.out.println("Comparing two NaNs correctly reports false.");

 if (Double.valueOf(nan1).equals(Double.valueOf(nan2)))
 System.out.println("Double(NaN).equals(NaN) correctly returns true.");
 else
 System.out.println(
 "Double(NaN).equals(NaN) incorrectly returns false.");
 }

 /** Compare two doubles within a given epsilon */
 public static boolean equals(double a, double b, double eps) {
 if (a==b) return true;
 // If the difference is less than epsilon, treat as equal.
 return Math.abs(a - b) < eps;
 }

 /** Compare two doubles, using default epsilon */
 public static boolean equals(double a, double b) {
 return equals(a, b, EPSILON);
 }
}

Note that neither of the System.err messages about incorrect returns prints. The
point of this example with NaNs is that you should always make sure values are not
NaN before entrusting them to Double.equals().

Rounding
If you simply cast a floating value to an integer value, Java truncates the value. A value
like 3.999999 cast to an int or long becomes 3, not 4. To round floating-point num‐
bers properly, use Math.round(). It has two overloads: if you give it a double, you get
a long result; if you give it a float, you get an int.

What if you don’t like the rounding rules used by round? If, for some bizarre reason,
you wanted to round numbers greater than 0.54 instead of the normal 0.5, you could
write your own version of round():

5.4 Working with Floating-Point Numbers | 141

public class Round {
 /** We round a number up if its fraction exceeds this threshold. */
 public static final double THRESHOLD = 0.54;

 /*
 * Round floating values to integers.
 * @return the closest int to the argument.
 * @param d A non-negative values to be rounded.
 */
 public static int round(double d) {
 return (int)Math.floor(d + 1.0 - THRESHOLD);
 }

 public static void main(String[] argv) {
 for (double d = 0.1; d<=1.0; d+=0.05) {
 System.out.println("My way: " + d + "-> " + round(d));
 System.out.println("Math way:" + d + "-> " + Math.round(d));
 }
 }
}

If, on the other hand, you simply want to display a number with less precision than it
normally gets, you probably want to use a DecimalFormat object or a Formatter
object, which we look at in Recipe 5.5.

5.5 Formatting Numbers
Problem
You need to format numbers.

Solution
Use a NumberFormat subclass.

Java did not originally provide C-style printf/scanf functions because they tend to
mix together formatting and input/output in a very inflexible way. Programs using
printf/scanf can be hard to internationalize, for example. Of course, by popular
demand, Java did eventually introduce printf(), which along with String.format()
is now standard in Java; see Recipe 10.4.

Java has an entire package, java.text, full of formatting routines as general and flexi‐
ble as anything you might imagine. As with printf, it has an involved formatting lan‐
guage, described in the javadoc page. Consider the presentation of long numbers. In
North America, the number one thousand twenty-four and a quarter is written
1,024.25; in most of Europe it is 1 024,25; and in some other part of the world it
might be written 1.024,25. Not to mention how currencies and percentages are

142 | Chapter 5: Numbers

formatted! Trying to keep track of this yourself would drive the average small soft‐
ware shop around the bend rather quickly.

Fortunately, the java.text package includes a Locale class; and, furthermore, the
Java runtime automatically sets a default Locale object based on the user’s environ‐
ment (on the Macintosh and Windows, the user’s preferences, and on Unix, the user’s
environment variables). To provide a nondefault locale in code, see Recipe 3.12. To
provide formatters customized for numbers, currencies, and percentages, the Number
Format class has static factory methods that normally return a DecimalFormat with
the correct pattern already instantiated. A DecimalFormat object appropriate to the
user’s locale can be obtained from the factory method NumberFormat.getInstance()
and manipulated using set methods. Surprisingly, the method setMinimumIntegerDi
gits() turns out to be the easy way to generate a number format with leading zeros.
Here is an example:

public class NumFormat2 {
 /** A number to format */
 public static final double data[] = {
 0, 1, 22d/7, 100.2345678
 };

 /** The main (and only) method in this class. */
 public static void main(String[] av) {
 // Get a format instance
 NumberFormat form = NumberFormat.getInstance();

 // Set it to look like 999.99[99]
 form.setMinimumIntegerDigits(3);
 form.setMinimumFractionDigits(2);
 form.setMaximumFractionDigits(4);

 // Now print using it
 for (int i=0; i<data.length; i++)
 System.out.println(data[i] + "\tformats as " +
 form.format(data[i]));
 }
}

This prints the contents of the array using the NumberFormat instance form:

$ java numbers.NumFormat2
0.0 formats as 000.00
1.0 formats as 001.00
3.142857142857143 formats as 003.1429
100.2345678 formats as 100.2346
$

You can also construct a DecimalFormat with a particular pattern or change the pat‐
tern dynamically using applyPattern(). Some of the more common pattern charac‐
ters are shown in Table 5-2.

5.5 Formatting Numbers | 143

Table 5-2. DecimalFormat pattern characters
Character Meaning

Numeric digit (leading zeros suppressed)

0 Numeric digit (leading zeros provided)

. Locale-specific decimal separator (decimal point)

, Locale-specific grouping separator (comma in English)

- Locale-specific negative indicator (minus sign)

% Shows the value as a percentage

; Separates two formats: the first for positive and the second for negative values

' Escapes one of the above characters so it appears

Anything else Appears as itself

The NumFormatDemo program uses one DecimalFormat to print a number with only
two decimal places and a second to format the number according to the default
locale:

 /** A number to format */
 public static final double intlNumber = 1024.25;
 /** Another number to format */
 public static final double ourNumber = 100.2345678;
 NumberFormat defForm = NumberFormat.getInstance();
 NumberFormat ourForm = new DecimalFormat("##0.##");
 // toPattern() will reveal the combination of #0., etc
 // that this particular Locale uses to format with!
 System.out.println("defForm's pattern is " +
 ((DecimalFormat)defForm).toPattern());
 System.out.println(intlNumber + " formats as " +
 defForm.format(intlNumber));
 System.out.println(ourNumber + " formats as " +
 ourForm.format(ourNumber));
 System.out.println(ourNumber + " formats as " +
 defForm.format(ourNumber) + " using the default format");

This program prints the given pattern and then formats the same number using sev‐
eral formats:

$ java numbers.NumFormatDemo
defForm's pattern is #,##0.###
1024.25 formats as 1,024.25
100.2345678 formats as 100.23
100.2345678 formats as 100.235 using the default format
$

144 | Chapter 5: Numbers

Human-readable number formatting
To print a number in what Linux/Unix calls “human readable format” (many display
commands accept a -h argument for this format), use the Java 12 CompactNumberFor
mat, as shown in Example 5-3.

Example 5-3. nmain/src/main/java/numbers/CompactFormatDemo.java

public class CompactFormatDemo {

 static final Number[] nums = {
 0, 1, 1.25, 1234, 12345, 123456.78, 123456789012L
 };
 static final String[] strs = {
 "1", "1.25", "1234", "12.345K", "1234556.78", "123456789012L"
 };

 public static void main(String[] args) throws ParseException {
 NumberFormat cnf = NumberFormat.getCompactNumberInstance();
 System.out.println("Formatting:");
 for (Number n : nums) {
 cnf.setParseIntegerOnly(false);
 cnf.setMinimumFractionDigits(2);
 System.out.println(n + ": " + cnf.format(n));
 }
 System.out.println("Parsing:");
 for (String s : strs) {
 System.out.println(s + ": " + cnf.parse(s));
 }
 }

}

Roman numeral formatting

To work with roman numerals, use my RomanNumberFormat class, as in this demo:

 RomanNumberFormat nf = new RomanNumberFormat();
 int year = LocalDate.now().getYear();
 System.out.println(year + " -> " + nf.format(year));

Running RomanNumberSimple in 2020 produces this output:

2020->MMXX

The source of the RomanNumberFormat class is in src/main/java/numbers/RomanNum‐
berFormat.java. Several of the public methods are required because I wanted it to be a
subclass of Format, which is abstract. This accounts for some of the complexity, like
having three different format methods.

5.5 Formatting Numbers | 145

Note that the RomanNumberFormat.parseObject() method is also required, but the
code doesn’t implement parsing in this version.

See Also
Java I/O by Elliotte Harold (O’Reilly) includes an entire chapter on NumberFormat
and develops the subclass ExponentialNumberFormat.

5.6 Converting Among Binary, Octal, Decimal, and
Hexadecimal
Problem
You want to display an integer as a series of bits—for example, when interacting with
certain hardware devices—or in some alternative number base (binary is base 2, octal
is base 8, decimal is 10, hexadecimal is 16). You want to convert a binary number or a
hexadecimal value into an integer.

Solution
The class java.lang.Integer provides the solutions. Most of the time you can use
Integer.parseInt(String input, int radix) to convert from any type of number
to an Integer, and Integer.toString(int input, int radix) to go the other way.
Example 5-4 shows some examples of using the Integer class.

Example 5-4. main/src/main/java/numbers/IntegerBinOctHexEtc.java

 String input = "101010";
 for (int radix : new int[] { 2, 8, 10, 16, 36 }) {
 System.out.print(input + " in base " + radix + " is "
 + Integer.valueOf(input, radix) + "; ");
 int i = 42;
 System.out.println(i + " formatted in base " + radix + " is "
 + Integer.toString(i, radix));
 }

This program prints the binary string as an integer in various bases, and the integer
42 in those same number bases:

$ java numbers.IntegerBinOctHexEtc
101010 in base 2 is 42; 42 formatted in base 2 is 101010
101010 in base 8 is 33288; 42 formatted in base 8 is 52
101010 in base 10 is 101010; 42 formatted in base 10 is 42
101010 in base 16 is 1052688; 42 formatted in base 16 is 2a
101010 in base 36 is 60512868; 42 formatted in base 36 is 16
$

146 | Chapter 5: Numbers

http://shop.oreilly.com/product/9780596527501.do

Discussion
There are also specialized versions of toString(int) that don’t require you to specify
the radix, for example, toBinaryString() to convert an integer to binary, toHex
String() for hexadecimal, toOctalString(), and so on. The javadoc page for the
Integer class is your friend here.

The String class itself includes a series of static methods—valueOf(int), value
Of(double), and so on—that also provide default formatting. That is, they return the
given numeric value formatted as a string.

5.7 Operating on a Series of Integers
Problem
You need to work on a range of integers.

Solution
For a contiguous set, use IntStream::range and rangeClosed, or the older for loop.

For discontinuous ranges of numbers, use a java.util.BitSet.

Discussion
To process a contiguous set of integers, Java provides both range() / rangeClosed()
methods in the IntStream and LongStream classes. These take a starting and ending
number; range() excludes the ending number while rangeClosed() closes on, or
includes, the ending number. You can also iterate over a range of numbers using the
traditional for loop. Loop control for the for loop is in three parts: initialize, test, and
change. If the test part is initially false, the loop will never be executed, not even once.
You can iterate over the elements of an array or collection (see Chapter 7) using a for-
each loop.

The program in Example 5-5 demonstrates these techniques.

5.7 Operating on a Series of Integers | 147

Example 5-5. main/src/main/java/numbers/NumSeries.java

public class NumSeries {
 public static void main(String[] args) {

 // For ordinal list of numbers n to m, use rangeClosed(start, endInclusive)
 IntStream.rangeClosed(1, 12).forEach(
 i -> System.out.println("Month # " + i));

 // Or, use a for loop starting at 1.
 for (int i = 1; i <= months.length; i++)
 System.out.println("Month # " + i);

 // Or a foreach loop
 for (String month : months) {
 System.out.println(month);
 }

 // When you want a set of array indices, use range(start, endExclusive)
 IntStream.range(0, months.length).forEach(
 i -> System.out.println("Month " + months[i]));

 // Or, use a for loop starting at 0.
 for (int i = 0; i < months.length; i++)
 System.out.println("Month " + months[i]);

 // For e.g., counting by 3 from 11 to 27, use a for loop
 for (int i = 11; i <= 27; i += 3) {
 System.out.println("i = " + i);
 }

 // A discontiguous set of integers, using a BitSet

 // Create a BitSet and turn on a couple of bits.
 BitSet b = new BitSet();
 b.set(0); // January
 b.set(3); // April
 b.set(8); // September

 // Presumably this would be somewhere else in the code.
 for (int i = 0; i<months.length; i++) {
 if (b.get(i))
 System.out.println("Month " + months[i]);
 }

 // Same example but shorter:
 // a discontiguous set of integers, using an array
 int[] numbers = {0, 3, 8};

 // Presumably somewhere else in the code... Also a foreach loop
 for (int n : numbers) {
 System.out.println("Month: " + months[n]);

148 | Chapter 5: Numbers

 }
 }
 /** Names of months. See Dates/Times chapter for a better way to get these */
 protected static String months[] = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
 };
}

5.8 Formatting with Correct Plurals
Problem
You’re printing something like "We used " + n + " items", but in English, “We
used 1 items” is ungrammatical. You want “We used 1 item.”

Solution
Use a ChoiceFormat or a conditional statement.

Use Java’s ternary operator (cond ? trueval : falseval) in a string concatenation.
Both zero and plurals get an “s” appended to the noun in English (“no books, one
book, two books”), so we test for n==1:

public class FormatPlurals {
 public static void main(String[] argv) {
 report(0);
 report(1);
 report(2);
 }

 /** report -- using conditional operator */
 public static void report(int n) {
 System.out.println("We used " + n + " item" + (n==1?"":"s"));
 }
}

Does it work?

$ java numbers.FormatPlurals
We used 0 items
We used 1 item
We used 2 items
$

The final println statement is effectively equivalent to the following:

if (n==1)
 System.out.println("We used " + n + " item");

5.8 Formatting with Correct Plurals | 149

else
 System.out.println("We used " + n + " items");

This is a lot longer, so the ternary conditional operator is worth learning.

The ChoiceFormat is ideal for this. It is actually capable of much more, but here I’ll
show only this simplest use. I specify the values 0, 1, and 2 (or more), and the string
values to print corresponding to each number. The numbers are then formatted
according to the range they fall into:

public class FormatPluralsChoice extends FormatPlurals {

 // ChoiceFormat to just give pluralized word
 static double[] limits = { 0, 1, 2 };
 static String[] formats = { "reviews", "review", "reviews"};
 static ChoiceFormat pluralizedFormat = new ChoiceFormat(limits, formats);

 // ChoiceFormat to give English text version, quantified
 static ChoiceFormat quantizedFormat = new ChoiceFormat(
 "0#no reviews|1#one review|1<many reviews");

 // Test data
 static int[] data = { -1, 0, 1, 2, 3 };

 public static void main(String[] argv) {
 System.out.println("Pluralized Format");
 for (int i : data) {
 System.out.println("Found " + i + " " + pluralizedFormat.format(i));
 }

 System.out.println("Quantized Format");
 for (int i : data) {
 System.out.println("Found " + quantizedFormat.format(i));
 }
 }
}

This generates the same output as the basic version. It is slightly longer, but more
general, and lends itself better to internationalization.

See Also
In addition to ChoiceFormat, the same result can be achieved with a MessageFormat.
The online source in file main/src/main/java/i18n/MessageFormatDemo.java has an
example.

150 | Chapter 5: Numbers

5.9 Generating Random Numbers
Problem
You need to generate pseudorandom numbers in a hurry.

Solution
Use java.lang.Math.random() to generate random numbers. There is no claim that
the random values it returns are very good random numbers, however. Like most
software-only implementations, these are Pseudorandom Number Generators
(PRNGs), meaning that the numbers are not totally random, but devised from an
algorithm. That said, they are adequate for casual use. This code exercises the ran
dom() method:

// numbers/Random1.java
// java.lang.Math.random() is static, don't need any constructor calls
System.out.println("A random from java.lang.Math is " + Math.random());

Note that this method only generates double values. If you need integers, construct a
java.util.Random object and call its nextInt() method; if you pass it an integer
value, this will become the upper bound. Here I generate integers from 1 to 10:

public class RandomInt {
 public static void main(String[] a) {
 Random r = new Random();
 for (int i=0; i<1000; i++)
 // nextInt(10) goes from 0-9; add 1 for 1-10;
 System.out.println(1+r.nextInt(10));
 }
}

To see if my RandomInt demo was really working well, I used the Unix tools sort and
uniq, which together give a count of how many times each value was chosen. For
1,000 integers, each of 10 values should be chosen about 100 times. I ran it twice to
get a better idea of the distribution:

$ java numbers.RandomInt | sort | uniq -c | sort -k 2 -n
 96 1
 107 2
 102 3
 122 4
 99 5
 105 6
 97 7
 96 8
 79 9
 97 10
$ java -cp build numbers.RandomInt | sort | uniq -c | sort -k 2 -n
 86 1

5.9 Generating Random Numbers | 151

 88 2
 110 3
 97 4
 99 5
 109 6
 82 7
 116 8
 99 9
 114 10
$

The next step is to run these through a statistical program to see how really random
they are; we’ll return to this in a minute.

In general, to generate random numbers, you need to construct a java.util.Random
object (not just any old random object) and call its next*() methods. These methods
include nextBoolean(), nextBytes() (which fills the given array of bytes with ran‐
dom values), nextDouble(), nextFloat(), nextInt(), and nextLong(). Don’t be
confused by the capitalization of Float, Double, etc. They return the primitive types
boolean, float, double, etc., not the capitalized wrapper objects. Clear enough?
Maybe an example will help:

 // java.util.Random methods are non-static, so need to construct
 Random r = new Random();
 for (int i=0; i<10; i++)
 System.out.println("A double from java.util.Random is " + r.nextDouble());
 for (int i=0; i<10; i++)
 System.out.println("An integer from java.util.Random is " + r.nextInt());

A fixed value (starting seed) can be provided to generate repeatable values, as for test‐
ing. You can also use the java.util.Random nextGaussian() method, as shown
next. The nextDouble() methods try to give a flat distribution between 0 and 1.0, in
which each value has an equal chance of being selected. A Gaussian or normal distri‐
bution is a bell curve of values from negative infinity to positive infinity, with the
majority of the values around zero (0.0).

// numbers/Random3.java
Random r = new Random();
for (int i = 0; i < 10; i++)
 System.out.println("A gaussian random double is " + r.nextGaussian());

To illustrate the different distributions, I generated 10,000 numbers using nextRan
dom() first and then using nextGaussian(). The code for this is in Random4.java
(not shown here) and is a combination of the previous programs with code to print
the results into files. I then plotted histograms using the R statistics package (see
Chapter 11 and http://www.r-project.org). The R script used to generate the graph,
randomnesshistograms.r, is in javasrc under main/src/main/resources. The results are
shown in Figure 5-1.

152 | Chapter 5: Numbers

http://www.r-project.org

Looks like both PRNGs do their job!

Figure 5-1. Flat (left) and Gaussian (right) distributions

See Also
The javadoc documentation for java.util.Random, and the warning in Recipe 5.0
about pseudorandomness versus real randomness.

For cryptographic use, see class java.security.SecureRandom, which provides cryp‐
tographically strong pseudorandom number generators.

5.10 Multiplying Matrices
Problem
You need to multiply a pair of two-dimensional arrays, as is common in mathematical
and engineering applications.

Solution
Use the following code as a model.

Discussion
It is straightforward to multiply an array of a numeric type. In real life you would
probably use a full-blown package such as the Efficient Java Matrix Library (EJML) or
DeepLearning4Java’s ND4J package. However a simple implementation can serve to
show the concepts involved; the code in Example 5-6 implements matrix
multiplication.

Example 5-6. Matrix.java

public class Matrix {

5.10 Multiplying Matrices | 153

http://ejml.org/wiki/index.php?title=Main_Page
https://deeplearning4j.org/docs/latest/nd4j-overview

 /* Matrix-multiply two arrays together.
 * The arrays MUST be rectangular.
 * @author Adapted from Tom Christiansen & Nathan Torkington's
 * implementation in their Perl Cookbook.
 */
 public static int[][] multiply(int[][] m1, int[][] m2) {
 int m1rows = m1.length;
 int m1cols = m1[0].length;
 int m2rows = m2.length;
 int m2cols = m2[0].length;
 if (m1cols != m2rows)
 throw new IllegalArgumentException(
 "matrices don't match: " + m1cols + " != " + m2rows);
 int[][] result = new int[m1rows][m2cols];

 // multiply
 for (int i=0; i<m1rows; i++) {
 for (int j=0; j<m2cols; j++) {
 for (int k=0; k<m1cols; k++) {
 result[i][j] += m1[i][k] * m2[k][j];
 }
 }
 }

 return result;
 }

 /** Matrix print.
 */
 public static void mprint(int[][] a) {
 int rows = a.length;
 int cols = a[0].length;
 System.out.println("array["+rows+"]["+cols+"] = {");
 for (int i=0; i<rows; i++) {
 System.out.print("{");
 for (int j=0; j<cols; j++)
 System.out.print(" " + a[i][j] + ",");
 System.out.println("},");
 }
 System.out.println("};");
 }
}

Here is a program that uses the Matrix class to multiply two arrays of ints:

 int x[][] = {
 { 3, 2, 3 },
 { 5, 9, 8 },
 };
 int y[][] = {
 { 4, 7 },
 { 9, 3 },

154 | Chapter 5: Numbers

 { 8, 1 },
 };
 int z[][] = Matrix.multiply(x, y);
 Matrix.mprint(x);
 Matrix.mprint(y);
 Matrix.mprint(z);

See Also
Consult a book on numerical methods for more things to do with matrices; one of
our reviewers recommends the series of Numerical Recipes books, available from
http://nrbook.com. (Note that this site has a link to their new web presence, https://
numerical.recipes however, that site requires Adobe Flash, which most browsers no
longer support due to security concerns.) There are several translations of the book’s
code into various languages, including Java. Pricing varies by package.

Commercial software packages can do some of these calculations for you; for one
example, see the numeric libraries available from Rogue Wave Software.

5.11 Using Complex Numbers
Problem
You need to manipulate complex numbers, as is common in mathematical, scientific,
or engineering applications.

Solution
Java does not provide any explicit support for dealing with complex numbers. You
could keep track of the real and imaginary parts and do the computations yourself,
but that is not a very well-structured solution.

A better solution, of course, is to use a class that implements complex numbers.
I once wrote just such a class, but now I recommend using the Apache Commons
Math library for this. The build coordinates for this are
org.apache.commons:commons-math3:3.6.1 (or later). First, an example of using
Apache’s library:

public class ComplexDemoACM {

 public static void main(String[] args) {
 Complex c = new Complex(3, 5);
 Complex d = new Complex(2, -2);
 System.out.println(c);
 System.out.println(c + ".getReal() = " + c.getReal());
 System.out.println(c + " + " + d + " = " + c.add(d));
 System.out.println(c + " + " + d + " = " + c.add(d));
 System.out.println(c + " * " + d + " = " + c.multiply(d));

5.11 Using Complex Numbers | 155

http://nrbook.com
https://numerical.recipes
https://numerical.recipes
http://numerical.recipes/aboutJava.html
http://www.roguewave.com

 System.out.println(c.divide(d));
 }
}

Running this demo program produces the following output:

(3.0, 5.0)
(3.0, 5.0).getReal() = 3.0
(3.0, 5.0) + (2.0, -2.0) = (5.0, 3.0)
(3.0, 5.0) + (2.0, -2.0) = (5.0, 3.0)
(3.0, 5.0) * (2.0, -2.0) = (16.0, 4.0)
(-0.5, 2.0)

Example 5-7 is the source for my version of the Complex class and shouldn’t require
much explanation. The Apache one is admittedly more sophisticated, but I leave
mine here just to demystify the basic operation of complex numbers.

To keep the API general, I provide—for each of add, subtract, and multiply—both a
static method that works on two complex objects and a nonstatic method that applies
the operation to the given object and one other object.

Example 5-7. main/src/main/java/numbers/Complex.java

public class Complex {
 /** The real part */
 private double r;
 /** The imaginary part */
 private double i;

 /** Construct a Complex */
 Complex(double rr, double ii) {
 r = rr;
 i = ii;
 }

 /** Display the current Complex as a String, for use in
 * println() and elsewhere.
 */
 public String toString() {
 StringBuilder sb = new StringBuilder().append(r);
 if (i>0)
 sb.append('+'); // else append(i) appends - sign
 return sb.append(i).append('i').toString();
 }

 /** Return just the Real part */
 public double getReal() {
 return r;
 }
 /** Return just the Real part */
 public double getImaginary() {
 return i;

156 | Chapter 5: Numbers

 }
 /** Return the magnitude of a complex number */
 public double magnitude() {
 return Math.sqrt(r*r + i*i);
 }

 /** Add another Complex to this one
 */
 public Complex add(Complex other) {
 return add(this, other);
 }

 /** Add two Complexes
 */
 public static Complex add(Complex c1, Complex c2) {
 return new Complex(c1.r+c2.r, c1.i+c2.i);
 }

 /** Subtract another Complex from this one
 */
 public Complex subtract(Complex other) {
 return subtract(this, other);
 }

 /** Subtract two Complexes
 */
 public static Complex subtract(Complex c1, Complex c2) {
 return new Complex(c1.r-c2.r, c1.i-c2.i);
 }

 /** Multiply this Complex times another one
 */
 public Complex multiply(Complex other) {
 return multiply(this, other);
 }

 /** Multiply two Complexes
 */
 public static Complex multiply(Complex c1, Complex c2) {
 return new Complex(c1.r*c2.r - c1.i*c2.i, c1.r*c2.i + c1.i*c2.r);
 }

 /** Divide c1 by c2.
 * @author Gisbert Selke.
 */
 public static Complex divide(Complex c1, Complex c2) {
 return new Complex(
 (c1.r*c2.r+c1.i*c2.i)/(c2.r*c2.r+c2.i*c2.i),
 (c1.i*c2.r-c1.r*c2.i)/(c2.r*c2.r+c2.i*c2.i));
 }

 /* Compare this Complex number with another

5.11 Using Complex Numbers | 157

 */
 public boolean equals(Object o) {
 if (o.getClass() != Complex.class) {
 throw new IllegalArgumentException(
 "Complex.equals argument must be a Complex");
 }
 Complex other = (Complex)o;
 return r == other.r && i == other.i;
 }

 /* Generate a hashCode; not sure how well distributed these are.
 */
 public int hashCode() {
 return (int)(r) | (int)i;
 }
}

5.12 Handling Very Large Numbers
Problem
You need to handle integer numbers larger than Long.MAX_VALUE or floating-point
values larger than Double.MAX_VALUE.

Solution
Use the BigInteger or BigDecimal values in package java.math, as shown in
Example 5-8.

Example 5-8. main/src/main/java/numbers/BigNums.java

 System.out.println("Here's Long.MAX_VALUE: " + Long.MAX_VALUE);
 BigInteger bInt = new BigInteger("3419229223372036854775807");
 System.out.println("Here's a bigger number: " + bInt);
 System.out.println("Here it is as a double: " + bInt.doubleValue());

Note that the constructor takes the number as a string. Obviously you couldn’t just
type the numeric digits because, by definition, these classes are designed to represent
numbers larger than will fit in a Java long.

Discussion
Both BigInteger and BigDecimal objects are immutable; that is, once constructed,
they always represent a given number. That said, a number of methods return new
objects that are mutations of the original, such as negate(), which returns the nega‐
tive of the given BigInteger or BigDecimal. There are also methods corresponding
to most of the Java language built-in operators defined on the base types int/long

158 | Chapter 5: Numbers

and float/double. The division method makes you specify the rounding method;
consult a book on numerical analysis for details. Example 5-9 is a simple stack-based
calculator using BigDecimal as its numeric data type.

Example 5-9. main/src/main/java/numbers/BigNumCalc.java

public class BigNumCalc {

 /** an array of Objects, simulating user input */
 public static Object[] testInput = {
 new BigDecimal("3419229223372036854775807.23343"),
 new BigDecimal("2.0"),
 "*",
 };

 public static void main(String[] args) {
 BigNumCalc calc = new BigNumCalc();
 System.out.println(calc.calculate(testInput));
 }

 /**
 * Stack of numbers being used in the calculator.
 */
 Stack<BigDecimal> stack = new Stack<>();

 /**
 * Calculate a set of operands; the input is an Object array containing
 * either BigDecimal objects (which may be pushed onto the Stack) and
 * operators (which are operated on immediately).
 * @param input
 * @return
 */
 public BigDecimal calculate(Object[] input) {
 BigDecimal tmp;
 for (int i = 0; i < input.length; i++) {
 Object o = input[i];
 if (o instanceof BigDecimal) {
 stack.push((BigDecimal) o);
 } else if (o instanceof String) {
 switch (((String)o).charAt(0)) {
 // + and * are commutative, order doesn't matter
 case '+':
 stack.push((stack.pop()).add(stack.pop()));
 break;
 case '*':
 stack.push((stack.pop()).multiply(stack.pop()));
 break;
 // - and /, order *does* matter
 case '-':
 tmp = (BigDecimal)stack.pop();
 stack.push((stack.pop()).subtract(tmp));

5.12 Handling Very Large Numbers | 159

 break;
 case '/':
 tmp = stack.pop();
 stack.push((stack.pop()).divide(tmp,
 BigDecimal.ROUND_HALF_UP));
 break;
 default:
 throw new IllegalStateException("Unknown OPERATOR popped");
 }
 } else {
 throw new IllegalArgumentException("Syntax error in input");
 }
 }
 return stack.pop();
 }
}

Running this produces the expected (very large) value:

> javac -d . numbers/BigNumCalc.java
> java numbers.BigNumCalc
6838458446744073709551614.466860
>

The current version has its inputs hardcoded, as does the JUnit test program, but in
real life you can use regular expressions to extract words or operators from an input
stream (as in Recipe 4.5), or you can use the StreamTokenizer approach of the simple
calculator (see Recipe 10.5). The stack of numbers is maintained using a
java.util.Stack (see Recipe 7.16).

BigInteger is mainly useful in cryptographic and security applications. Its method
isProbablyPrime() can create prime pairs for public key cryptography. BigDecimal
might also be useful in computing the size of the universe.

5.13 Program: TempConverter
The program shown in Example 5-10 prints a table of Fahrenheit temperatures (still
used in daily weather reporting in the US and its territories, Liberia, and some coun‐
tries in the Caribbean) and the corresponding Celsius temperatures (used in science
everywhere and in daily life in the rest of the world).

Example 5-10. main/src/main/java/numbers/TempConverter.java

public class TempConverter {

 public static void main(String[] args) {
 TempConverter t = new TempConverter();
 t.start();
 t.data();

160 | Chapter 5: Numbers

 t.end();
 }

 protected void start() {
 }

 protected void data() {
 for (int i=-40; i<=120; i+=10) {
 double c = fToC(i);
 print(i, c);
 }
 }

 public static double cToF(double deg) {
 return (deg * 9 / 5) + 32;
 }

 public static double fToC(double deg) {
 return (deg - 32) * (5d / 9);
 }

 protected void print(double f, double c) {
 System.out.println(f + " " + c);
 }

 protected void end() {
 }
}

This works, but these numbers print with about 15 digits of (useless) decimal frac‐
tions! The second version of this program subclasses the first and uses printf (see
Recipe 10.4) to control the formatting of the converted temperatures (see
Example 5-11). It will now look right, assuming you’re printing in a monospaced font.

Example 5-11. main/src/main/java/numbers/TempConverter2.java

public class TempConverter2 extends TempConverter {

 public static void main(String[] args) {
 TempConverter t = new TempConverter2();
 t.start();
 t.data();
 t.end();
 }

 @Override
 protected void print(double f, double c) {
 System.out.printf("%6.2f %6.2f%n", f, c);
 }

 @Override

5.13 Program: TempConverter | 161

 protected void start() {
 System.out.println("Fahr Centigrade");
 }

 @Override
 protected void end() {
 System.out.println("-------------------");
 }
}

C:\javasrc\numbers>java numbers.TempConverter2
Fahr Centigrade
-40.00 -40.00
-30.00 -34.44
-20.00 -28.89
-10.00 -23.33
 0.00 -17.78
 10.00 -12.22
 20.00 -6.67
 30.00 -1.11
 40.00 4.44
 50.00 10.00
 60.00 15.56
 70.00 21.11
 80.00 26.67
 90.00 32.22
100.00 37.78
110.00 43.33
120.00 48.89

5.14 Program: Number Palindromes
My wife, Betty, recently reminded me of a theorem that I must have studied in high
school but whose name I have long since forgotten: that any positive integer number
can be used to generate a palindrome by adding to it the number comprised of its
digits in reverse order. Palindromes are sequences that read the same in either direc‐
tion, such as the name “Anna” or the phrase “Madam, I’m Adam” (ignoring spaces
and punctuation). We normally think of palindromes as composed of text, but the
concept can be applied to numbers: 13,531 is a palindrome. Start with the number 72,
for example, and add to it the number 27. The results of this addition is 99, which is a
(short) palindrome. Starting with 142, add 241, and you get 383. Some numbers take
more than one try to generate a palindrome. 1,951 + 1,591 yields 3,542, which is not
palindromic. The second round, however, 3,542 + 2,453, yields 5,995, which is. The
number 17,892, which my son Benjamin picked out of the air, requires 12 rounds to
generate a palindrome, but it does terminate:

C:\javasrc\numbers>java numbers.Palindrome 72 142 1951 17892
Trying 72
72->99

162 | Chapter 5: Numbers

6 Certain values do not work; for example, Ashish Batia reported that this version gets an exception on the
value 8,989 (which it does).

Trying 142
142->383
Trying 1951
Trying 3542
1951->5995
Trying 17892
Trying 47763
Trying 84537
Trying 158085
Trying 738936
Trying 1378773
Trying 5157504
Trying 9215019
Trying 18320148
Trying 102422529
Trying 1027646730
Trying 1404113931
17892->2797227972

C:\javasrc\numbers>

If this sounds to you like a natural candidate for recursion, you are correct. Recursion
involves dividing a problem into simple and identical steps that can be implemented
by a function that calls itself and provides a way of termination. Our basic approach,
as shown in method findPalindrome, is this:

long findPalindrome(long num) {
 if (isPalindrome(num))
 return num;
 return findPalindrome(num + reverseNumber(num));
}

That is, if the starting number is already a palindromic number, return it; otherwise,
add it to its reverse, and try again. The version of the code shown here handles simple
cases directly (single digits are always palindromic, for example). We won’t think
about negative numbers because these have a character at the front that loses its
meaning if placed at the end, and hence are not strictly palindromic. Further, palin‐
dromic forms of certain numbers are too long to fit in Java’s 64-bit long integer.
These cause underflow, which is trapped. As a result, an error message like “too big”
is reported.6 Having said all that, Example 5-12 shows the code.

Example 5-12. main/src/main/java/numbers/Palindrome.java

public class Palindrome {

5.14 Program: Number Palindromes | 163

 public static boolean verbose = true;

 public static void main(String[] argv) {
 for (String num : argv) {
 try {
 long l = Long.parseLong(num);
 if (l < 0) {
 System.err.println(num + " -> TOO SMALL");
 continue;
 }
 System.out.println(num + "->" + findPalindrome(l));
 } catch (NumberFormatException e) {
 System.err.println(num + "-> INVALID");
 } catch (IllegalStateException e) {
 System.err.println(num + "-> " + e);
 }
 }
 }

 /** find a palindromic number given a starting point, by
 * recursing until we get a number that is palindromic.
 */
 static long findPalindrome(long num) {
 if (num < 0)
 throw new IllegalStateException("negative");
 if (isPalindrome(num))
 return num;
 if (verbose)
 System.out.println("Trying " + num);
 return findPalindrome(num + reverseNumber(num));
 }

 /** The number of digits in Long.MAX_VALUE */
 protected static final int MAX_DIGITS = 19;

 // digits array is shared by isPalindrome and reverseNumber,
 // which cannot both be running at the same time.

 /* Statically allocated array to avoid new-ing each time. */
 static long[] digits = new long[MAX_DIGITS];

 /** Check if a number is palindromic. */
 static boolean isPalindrome(long num) {
 // Consider any single digit to be as palindromic as can be
 if (num >= 0 && num <= 9)
 return true;

 int nDigits = 0;
 while (num > 0) {
 digits[nDigits++] = num % 10;
 num /= 10;
 }

164 | Chapter 5: Numbers

 for (int i=0; i<nDigits/2; i++)
 if (digits[i] != digits[nDigits - i - 1])
 return false;
 return true;
 }

 static long reverseNumber(long num) {
 int nDigits = 0;
 while (num > 0) {
 digits[nDigits++] = num % 10;
 num /= 10;
 }
 long ret = 0;
 for (int i=0; i<nDigits; i++) {
 ret *= 10;
 ret += digits[i];
 }
 return ret;
 }
}

While it’s not strictly a numerical solution, Daniel Hinojosa noted that you can use
StringBuilder to do the reversal portion, resulting in shorter, more elegant code that
is only fractionally slower:

 static boolean isPalindrome(long num) {
 long result = reverseNumber(num);
 return num == result;
 }

 private static long reverseNumber(long num) {
 StringBuilder stringBuilder = new StringBuilder();
 stringBuilder.append(num);
 return Long.parseLong(stringBuilder.reverse().toString());
 }

A full version of his code is in the file PalindromeViaStringBuilder.java.

See Also
People using Java in scientific or large-scale numeric computing may wish to check
out the value types forthcoming from “Project Valhalla” in Java. See also a 2019 pre‐
sentation titled “Vectors and Numerics on the JVM”.

5.14 Program: Number Palindromes | 165

https://wiki.openjdk.java.net/display/valhalla/Main
https://www.youtube.com/watch?v=UlnoCj4B8pU

6 For those with an interest in historical arcana, the differences are documented on his blog.

CHAPTER 6

Dates and Times

6.0 Introduction
Developers suffered for a decade and a half under the inconsistencies and ambiguities
of the Date class from Java 1.0 and its replacement wannabe, the Calendar class from
Java 1.1. Several alternative Date replacement packages emerged, including the
simple and sensible Date4J and the more comprehensive Joda-Time package. Java 8
introduced a new, consistent, and well-thought-out package for date and time han‐
dling under the aegis of the Java Community Process, JSR-310, shepherded by devel‐
oper Stephen Colebourne, based on his earlier package Joda-Time, but with several
important design changes.6 This package is biased toward ISO 8601 dates; the default
format is, for example, 2015-10-23T10:22:45. But it can, of course, work with other
calendar schemes.

One of the key benefits of the new API is that it provides useful operations such as
adding/subtracting dates/times. Much time was wasted by developers reimplement‐
ing these useful operations again and again. With the new APIs, one can use the built-
in functionality. That said, millions of lines of code are based on the old APIs, so we’ll
review them briefly, and consider interfacing the new API to legacy code in the final
recipe of this chapter, Recipe 6.9.

Another advantage of the new API is that almost all objects are immutable and thus
thread-safe. This can be of considerable benefit as we move headlong into the mas‐
sively parallel era.

167

http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://date4j.net
http://www.joda.org/joda-time

Because there are no set methods, and thus the getter method paradigm doesn’t
always make sense, the API provides a series of new methods to replace such meth‐
ods, listed in Table 6-1.

Table 6-1. New date/time API: common methods
Name Description

at Combines with another object

format Use provided formatter to produce a formatted string

from Factory: convert input parameters to instance of target

get Retrieve one field from the instance

is Examine the state of the given object

minus Return a copy with the given amount subtracted

now BuilderFactory: get the current time, date, etc.

of Factory: create new method by parsing inputs

parse Factory: parse single input string to produce instance of target

plus Return a copy with the given amount added

to Convert this object to another type

with Return a copy with the given field changed; replaces set methods

The JSR 310 API specifies a dozen or so main classes. Those representing times are
either continuous time or human time. Continuous time is based on Unix time, a
deeper truth from the dawn of (computer) time, and is represented as a single monot‐
onically increasing number. The time value of 0 in Unix represented the first second
of January 1, 1970 UTC—about the time Unix was invented. Each unit of increment
there represented one second of time. This has been used as a time base in most oper‐
ating systems developed since. However, a 32-bit integer representing the number of
seconds since 1970 runs out fairly soon—in the year 2038 AD. Most Unix systems
have, in the aftermath of the Y2K frenzy, quietly and well in advance headed off a
possible Y2038 frenzy by converting the time value from a 32-bit quantity to a 64-bit
quantity. Java also used this time base, but used 64 bits, and stored its time in milli‐
seconds, because a 64-bit time in milliseconds since 1970 will not overlow until quite
a few years into the future (keep this date open in your calendar—August 17,
292,278,994 CE). Here is a calculation that shows how I got that date:

 Date endOfTime = new Date(Long.MAX_VALUE);
 System.out.println("Java time overflows on " + endOfTime);

The new API is in five packages, as shown in Table 6-2; as usual, the top-level one
contains the most commonly used pieces.

168 | Chapter 6: Dates and Times

Table 6-2. New date/time API: packages
Name Description

java.time Common classes for dates, times, instants, and durations

java.time.chrono API for non-ISO calendar systems

java.time.format Formatting classes (see Recipe 6.2)

java.time.temporal Date and time access using fields, units, and adjusters

java.time.zone Support for time zones and their rules

The basic java.time package contains a dozen or so classes, as well as a couple of
enums and one general-purpose exception (shown in Tables 6-3, 6-4, and 6-5).

Table 6-3. New date/time API: basics
Class Description

Clock Replaceable factory for getting current time

Instant A point in time since January 1, 1970, expressed in nanoseconds

Duration A length of time, also expressed in nanoseconds

Human time represents times and dates as we use them in our everyday life. These
classes are listed in Table 6-4.

Table 6-4. New date/time API: human time
Class Description

Calendrical Connects to the low-level API

DateTimeFields Stores a map of field-value pairs, which are not required to be consistent

DayOfWeek A day of the week (e.g., Tuesday)

LocalDate A bare date (day, month, and year) with no adjustments

LocalTime A bare time (hour, minute, seconds) with no adjustments

LocalDateTime The combination of the above

MonthDay Month and day

OffsetTime A time of day with a time zone offset like –04:00, with no date or zone

OffsetDateTime A date and time with a time zone offset like –04:00, with no time zone

Period A descriptive amount of time, such as “2 months and 3 days”

ZonedDateTime The date and time with a time zone and an offset

Year A year by itself

YearMonth A year and month

6.0 Introduction | 169

Almost all the top-level classes directly extend java.lang.Object and are held to
consistency by a variety of interfaces, which are declared in the subpackages. The date
and time classes mostly implement Comparable, which makes sense.

Table 6-5 shows the two time-zone-specific classes used with ZonedDateTime, Offset
DateTime, and OffsetTime.

Table 6-5. New date/time API: support
Class Description

ZoneOffset A time offset from UTC (hours, minutes, seconds)

ZoneId Defines a time zone such as Canada/Eastern and its conversion rules

The new API is a fluent API, in which most operations return the object they have
operated upon, so that you can chain multiple calls without the need for tedious and
annoying temporary variables:

LocalTime time = LocalTime.now().minusHours(5); // the time 5 hours ago

This results in a more natural and convenient coding style, in my opinion. You can
always write code with lots of temporary variables if you want; you’re the one who
will have to read through it later.

6.1 Finding Today’s Date
Problem
You want to find today’s date and/or time.

Solution
Invoke the appropriate builder to obtain a LocalDate, LocalTime, or LocalDateTime
object and call its toString() method.

Discussion
These classes do not provide public constructors, so you will need to call one of its
factory methods to get an instance. They all provide a now() method, which does
what its name implies. The CurrentDateTime demo program shows simple use of all
three:

public class CurrentDateTime {
 public static void main(String[] args) {
 LocalDate dNow = LocalDate.now();
 System.out.println(dNow);
 LocalTime tNow = LocalTime.now();

170 | Chapter 6: Dates and Times

 System.out.println(tNow);
 LocalDateTime now = LocalDateTime.now();
 System.out.println(now);
 }
}

Running it produces this output:

2013-10-28
22:23:55.641
2013-10-28T22:23:55.642

The formatting is nothing spectacular, but it’s adequate. We’ll deal with fancier for‐
matting in Recipe 6.2.

While this works, in full-scale applications, it’s recommended to pass a Clock instance
into all the now() methods. Clock is a factory object that is used internally to find the
current time. In testing, you often want to have a known date or time used so you can
compare against known output. The Clock class makes this easy. Example 6-1 uses a
Clock and allows replacing the default Clock by calling a setter. Alternately you could
use a dependency injection framework like CDI or Spring to provide the correct ver‐
sion of the Clock class.

Example 6-1. main/src/main/java/datetime/TestableDateTime

package datetime;

import java.time.Clock;
import java.time.LocalDateTime;

/**
 * TestableDateTime allows test code to plug in a Fixed clock
 */
public class TestableDateTime {
 private static Clock clock = Clock.systemDefaultZone();
 public static void main(String[] args) {
 System.out.println("It is now " + LocalDateTime.now(clock));
 }
 public static void setClock(Clock clock) {
 TestableDateTime.clock = clock;
 }
}

In normal operation this would get the current date and time. In testing you would
call the setClock() method with a Clock instance obtained from the static method
Clock.fixed(Instant fixedInstant, ZoneId zone), passing in the time that your
testing code expects. The fixed clock does not tick, so don’t worry about the milli‐
seconds between setting the clock to fixed and the invocation of your tests.

6.1 Finding Today’s Date | 171

6.2 Formatting Dates and Times
Problem
You want to provide better formatting for date and time objects.

Solution
Use java.time.format.DateTimeFormatter.

Discussion
The DateTimeFormatter class provides an amazing number of possible formatting
styles. If you don’t want to use one of the provided 20 or so predefined formats, you
can define your own using DateTimeFormatter.ofPattern(String pattern). The
pattern string can contain any characters, but almost every letter of the alphabet has
been defined to mean something, in addition to the obvious Y, M, D, h, m, and s. In
addition, the quote character and square bracket characters are defined, and the
sharp sign (#) and curly braces are reserved for future use.

As is common with date formatting languages, the number of repetitions of a letter in
the pattern gives a clue to its intended length of detail. Thus, for example, “MMM”
gives “Jan,” whereas “MMMM” gives “January.”

Table 6-6 is an attempt at a complete list of the formatting characters, adapted from
the javadoc for JSR-310.

Table 6-6. DateFormatter format characters
Symbol Meaning Presentation Examples

G Era Text AD; Anno Domini

y Year of era Year 2004; 04

u Year of era Year See note.

D Day of year Number 189

M/L Month of year Number/text 7; 07; Jul; July; J

d Day of month Number 10

Q/q Quarter of year Number/text 3; 03; Q3, 3rd quarter

Y Week based year Year 1996; 96

w Week of week based year Number 27

W Week of month Number 4

e/c Localized day of week Number/text 2; 02; Tue; Tuesday; T

E Day of week Text Tue; Tuesday; T

F Week of month Number 3

172 | Chapter 6: Dates and Times

Symbol Meaning Presentation Examples

a am pm of day Text PM

h Clock hour of am pm (1-12) Number 12

K Hour of am pm (0-11) Number 0

k Clock hour of am pm (1-24) Number 0

H Hour of day (0-23) Number 0

m Minute of hour Number 30

s Second of minute Number 55

S Fraction of second Fraction 978

A Millisecond of day Number 1234

n Nanosecond of second Number 987654321

N Nanosecond of day Number 1234000000

V Time zone ID Zone-id America/Los_Angeles; Z; –08:30

z Time zone name Zone-name Pacific Standard Time; PST

X Zone offset Z for zero Offset-X Z; –08; –0830; –08:30; –083015; –08:30:15;

x Zone offset Offset-x +0000; –08; –0830; –08:30; –083015; –08:30:15;

Z Zone offset Offset-Z +0000; –0800; –08:00;

O Localized zone offset Offset-O GMT+8; GMT+08:00; UTC–08:00;

p Pad next Pad modifier 1

y and u work the same for AD years; however, for a year of 3 BC,
the y pattern returns 3, whereas the u pattern returns –2 (a.k.a. pro‐
leptic year).

Example 6-2 contains some examples of converting in both directions between
strings and dates.

Example 6-2. main/src/main/java/datetime/DateFormatter.java (example date
formatting and parsing)

public class DateFormatter {
 public static void main(String[] args) {

 // Format a date ISO8601-like but with slashes instead of dashes
 DateTimeFormatter df = DateTimeFormatter.ofPattern("yyyy/LL/dd");
 System.out.println(df.format(LocalDate.now()));

 // Parse a String to a date using the same formatter
 System.out.println(LocalDate.parse("2014/04/01", df));

 // Format a Date and Time without timezone information

6.2 Formatting Dates and Times | 173

 DateTimeFormatter nTZ =
 DateTimeFormatter.ofPattern("d MMMM, yyyy h:mm a");
 System.out.println(ZonedDateTime.now().format(nTZ));
 }
}

6.3 Converting Among Dates/Times, YMDHMS, and
Epoch Seconds
Problem
You need to convert among dates/times, YMDHMS, epoch seconds, or some other
numeric value.

Solution
Use the appropriate date/time factory or retrieval methods.

Discussion
The epoch is the beginning of time as far as modern operating systems go. Unix time,
and some versions of Windows time, count off inexorably the seconds since the
epoch. When Ken Thompson and Dennis Ritchie came up with this format in 1970,
seconds seemed like a fine measure, and 32 bits’ worth of seconds seemed nearly
infinite. On operating systems that store the epoch in a 32-bit integer, however, time
is running out. Older versions of most operating systems stored this as a 32-bit
signed integer, which unfortunately will overflow in the year 2038.

When Java first came out, it featured a method called System.currentTimeMillis(),
presenting epoch seconds with millisecond accuracy. The new Java API uses epoch
nanoseconds that are still on the same time base and can be obtained with a call to
System.nanoTime().

Any of these epoch-related numbers can be converted into, or obtained from, a local
date/time. Other numbers can also be used, such as integer years, months, and days.
As usual, there are factory methods that create new objects where a change is reques‐
ted. Here is a program that shows some of these conversions in action:

main/src/main/java/datetime/DateConversions.java
 // Convert a number of seconds since the epoch to a local date/time
 Instant epochSec = Instant.ofEpochSecond(1000000000L);
 ZoneId zId = ZoneId.systemDefault();
 ZonedDateTime then = ZonedDateTime.ofInstant(epochSec, zId);
 System.out.println("The epoch was a billion seconds old on " + then);

 // Convert a date/time to epoch seconds

174 | Chapter 6: Dates and Times

 long epochSecond = ZonedDateTime.now().toInstant().getEpochSecond();
 System.out.println("Current epoch seconds = " + epochSecond);

 LocalDateTime now = LocalDateTime.now();
 ZonedDateTime there = now.atZone(ZoneId.of("Canada/Pacific"));
 System.out.printf("When it's %s here, it's %s in Vancouver%n",
 now, there);

6.4 Parsing Strings into Dates
Problem
You need to convert user input into java.time objects.

Solution
Use a parse() method.

Discussion
Many of the date/time classes have a parse() factory method, which tries to parse a
string into an object of that class. For example, LocalDate.parse(String) returns a
LocalDate object for the date given in the input String:

public class DateParse {
 public static void main(String[] args) {

 String armisticeDate = "1914-11-11";
 LocalDate aLD = LocalDate.parse(armisticeDate);
 System.out.println("Date: " + aLD);

 String armisticeDateTime = "1914-11-11T11:11";
 LocalDateTime aLDT = LocalDateTime.parse(armisticeDateTime);
 System.out.println("Date/Time: " + aLDT);

As you probably expect by now, the default format is the ISO8601 date format. How‐
ever, we often have to deal with dates in other formats. For this, the DateTimeFormat
ter allows you to specify a particular pattern. For example, “dd MMM uuuu” repre‐
sents the day of the month (two digits), three letters of the name of the month (Jan,
Feb, Mar, …), and a four-digit year:

 DateTimeFormatter df = DateTimeFormatter.ofPattern("dd MMM uuuu");
 String anotherDate = "27 Jan 2011";
 LocalDate random = LocalDate.parse(anotherDate, df);
 System.out.println(anotherDate + " parses as " + random);

The DateTimeFormatter object is bidirectional; it can both parse input and format
output. We could add this line to the DateParse example:

6.4 Parsing Strings into Dates | 175

System.out.println(aLD + " formats as " + df.format(aLD));

When we run the program, we see the output as follows:

Date: 1914-11-11
Date/Time: 1914-11-11T11:11
27 Jan 2011 parses as 2011-01-27
1914-11-11 formats as 11 Nov 1914

The DateTimeFormatter is also localized (see Recipe 3.12), and can be configured by
calling withLocale() after calling ofPattern().

6.5 Difference Between Two Dates
Problem
You need to compute the difference between two dates.

Solution
Use the static method Period.between() to find the difference between two Local
Dates.

Discussion
Given two LocalDate objects, you can find the difference between them, as a Period,
simply using the static Period.between() method. You can toString() the Period
or, if its default format isn’t good enough, format the result yourself:

import java.time.LocalDate;
import java.time.Period;

/**
 * Tutorial/Example of LocalDate date difference subtraction
 */
public class DateDiff {

 public static void main(String[] args) {
 /** The date at the end of the last century */
 LocalDate endof20thCentury = LocalDate.of(2000, 12, 31);
 LocalDate now = LocalDate.now();
 if (now.getYear() > 2100) {
 System.out.println("The 21st century is over!");
 return;
 }

 Period diff = Period.between(endof20thCentury, now);

 System.out.printf("The 21st century (up to %s) is %s old%n", now, diff);
 System.out.printf(

176 | Chapter 6: Dates and Times

 "The 21st century is %d years, %d months and %d days old",
 diff.getYears(), diff.getMonths(), diff.getDays());
 }
}

I wrote this recipe at the end of October 2013; the 20th century AD ended at the end
of 2000, so the value should be about 12 10/12 years, and it is:

$ java datetime.DateDiff
The 21st century (up to 2013-10-28) is P12Y9M28D old
The 21st century is 12 years, 9 months and 28 days old

Because of the APIs regularity, you can use the same technique with LocalTime or
LocalDateTime.

There is also ChronoUnit, which has numerous range values such as DAYS, HOURS,
MINUTES, etc. (actually ranging from NANOS for nanoseconds up to MILLENIA, ERAS,
and even FOREVER). If you want difference information in a certain unit:

jshell> import java.time.temporal.*;

jshell> ChronoUnit.DAYS.between(LocalDate.now(), LocalDate.parse("2022-02-22"))
$6 ==> 786

jshell> ChronoUnit.DECADES.between(LocalDate.of(1970,01,01),
 LocalDate.of(2020,01,01));
$7 ==> 5

Unix is on its fifth decade!

See Also
A higher-level way of formatting date/time values is discussed in Recipe 6.2.

6.6 Adding to or Subtracting from a Date
Problem
You need to add or subtract a fixed period to or from a date.

Solution
Create a past or future date by using a locution such as LocalDate.plus

(Period.ofDays(N));.

Discussion
java.time offers a Period class to represent a length of time, such as a number of
days or hours and minutes. LocalDate and friends offer plus() and minus()

6.6 Adding to or Subtracting from a Date | 177

methods to add or subtract a Period or other time-related object. Period offers fac‐
tory methods such as ofDays(). The following code computes what the date will be
700 days from now:

import java.time.LocalDate;
import java.time.Period;

/** DateAdd -- compute the difference between two dates
 * (e.g., today and 700 days from now).
 */
public class DateAdd {
 public static void main(String[] av) {
 /** Today's date */
 LocalDate now = LocalDate.now();

 Period p = Period.ofDays(700);
 LocalDate then = now.plus(p);

 System.out.printf("Seven hundred days from %s is %s%n", now, then);
 }
}

Running this program reports the current date and time and what the date and time
will be 700 days from now:

Seven hundred days from 2013-11-09 is 2015-10-10

6.7 Handling Recurring Events
Problem
You need to deal with recurring dates, for example, the third Wednesday of every
month.

Solution
Use the TemporalAdjusters class.

Discussion
The TemporalAdjuster interface and the TemporalAdjusters factory class provide
most of what you need for recurring events. There are many interesting and powerful
adjusters available, shown in Table 6-7, and you can, of course, develop your own.

178 | Chapter 6: Dates and Times

Table 6-7. New date/time API: TemporalAdjusters factory methods
Method signature
public static TemporalAdjuster firstDayOfMonth();

public static TemporalAdjuster lastDayOfMonth();

public static TemporalAdjuster firstDayOfNextMonth();

public static TemporalAdjuster firstDayOfYear();

public static TemporalAdjuster lastDayOfYear();

public static TemporalAdjuster firstDayOfNextYear();

public static TemporalAdjuster firstInMonth(java.time.DayOfWeek);

public static TemporalAdjuster lastInMonth(java.time.DayOfWeek);

public static TemporalAdjuster dayOfWeekInMonth(int, java.time.DayOfWeek);

public static TemporalAdjuster next(java.time.DayOfWeek);

public static TemporalAdjuster nextOrSame(java.time.DayOfWeek);

public static TemporalAdjuster previous(java.time.DayOfWeek);

public static TemporalAdjuster previousOrSame(java.time.DayOfWeek);

public static TemporalAdjuster ofDateAdjuster(java.util.function.UnaryOperator<java.time.LocalDate>);

The names of most of these tell you directly what they do. The last one will make
sense after reading about functional interfaces such as UnaryOperator in Chapter 9.

These are used with the with() method of a date/time object. For example, the
GTABUG group (http://gtabug.org) meets on the third Wednesday of every month.
I have a RecurringEventDatePicker class in the darwinsys-api library; the core
of it started as the method getMeetingDateInMonth(LocalDate dateContaining
Month), which in our case picks the third Wednesday of a given month (given that
dayOfWeek and weekOfMonth are both set in the constructor). We take the month
(dateContainingMonth), adjust it to the first Wednesday in the month using the
firstInMonth() factory method to get a temporal adjuster, then add the number of
weeks to get the Wednesday in the correct week:

// Variant versions from older version of RecurringDatePicker.java
// First version, not for production use!
private LocalDate getMeetingForMonth(LocalDate dateContainingMonth) {
 return
 dateContainingMonth.with(TemporalAdjusters.firstInMonth(dayOfWeek))
 .plusWeeks(Math.max(0, weekOfMonth - 1));
}

The second version simplified it to better use the existing API:

private LocalDate getMeetingForMonth(LocalDate dateContainingMonth) {
 return dateWithMonth.with(
 TemporalAdjusters.dayOfWeekInMonth(weekOfMonth,dayOfWeek)
}

6.7 Handling Recurring Events | 179

http://gtabug.org

Since this version was only one statement and is only used twice, we inlined it into
the getNextMeeting(int howManyMonthsAway) method, which returns a LocalDate
for the correct day of the given month. Its only complexity is that, for the current
month, the meeting might be before or after today’s date, so we adjust accordingly:

public LocalDate getEventLocalDate(int meetingsAway) {
 LocalDate thisMeeting = now.with(
 TemporalAdjusters.dayOfWeekInMonth(weekOfMonth,dayOfWeek));
 // Has the meeting already happened this month?
 if (thisMeeting.isBefore(now)) {
 // start from next month
 meetingsAway++;
 }
 if (meetingsAway > 0) {
 thisMeeting = thisMeeting.plusMonths(meetingsAway).
 with(TemporalAdjusters.dayOfWeekInMonth(weekOfMonth,dayOfWeek));
 }
 return thisMeeting;
}

This in turn is called within a JavaServer Page (JSP) web view (somewhat simplified;
the real code has the complexities of an Add To Calendar API done in JavaScript). If
you’ve not used JSPs, plain HTML code is outputted directly, the contents of <% %>
tags are executed, and the contents of <%= %> tags are evaluated and printed into the
HTML page, like this:

Upcoming Meetings:

 <%
 RecurringEventDatePicker mp =
 new RecurringEventDatePicker(3, DayOfWeek.WEDNESDAY);
 DateTimeFormatter dfm = DateTimeFormatter.ofPattern("MMMM dd, yyyy");
 for (int i = 0; i <= 2; i++) {
 LocalDateTime dt = mp.getEventLocalDateTime(i);
 %>

 <%= dt.format(dfm) %>

 <%
 }
 %>

When visiting this site in June or July of 2015, you would have seen something like
this:

Upcoming Meetings:

* July 15, 2015
* August 19, 2015
* September 16, 2015

180 | Chapter 6: Dates and Times

6.8 Computing Dates Involving Time Zones
Problem
Imagine a problem like “Your kids are traveling on a trans-Atlantic flight from Tor‐
onto to London that takes 5 hours 10 minutes from the actual time of departure from
YYZ. Your in-laws need one hour to get to LHR and find parking. What time should
you phone them to leave for the airport?”

Solution
The solution needs to take account of time zone differences. It can be solved using the
ZonedDateTime class and methods such as plus() and minus() from that class.

Discussion
The basic steps are shown in Example 6-3.

Example 6-3. main/src/main/java/datetime/FlightArrivalTimeCalc.java

public class FlightArrivalTimeCalc {

 static Duration driveTime = Duration.ofHours(1);

 public static void main(String[] args) {
 LocalDateTime when = null;
 if (args.length == 0) {
 when = LocalDateTime.now();
 } else {
 String time = args[0];
 LocalTime localTime = LocalTime.parse(time);
 when = LocalDateTime.of(LocalDate.now(), localTime);
 }
 calulateArrivalTime(when);
 }

 public static ZonedDateTime calulateArrivalTime(LocalDateTime takeOffTime) {
 ZoneId torontoZone = ZoneId.of("America/Toronto"),
 londonZone = ZoneId.of("Europe/London");
 ZonedDateTime takeOffTimeZoned =
 ZonedDateTime.of(takeOffTime, torontoZone);
 Duration flightTime =
 Duration.ofHours(5).plus(10, ChronoUnit.MINUTES);
 ZonedDateTime arrivalTimeUnZoned = takeOffTimeZoned.plus(flightTime);
 ZonedDateTime arrivalTimeZoned =
 arrivalTimeUnZoned.toInstant().atZone(londonZone);
 ZonedDateTime phoneTimeHere = arrivalTimeUnZoned.minus(driveTime);

 System.out.println("Flight departure time " + takeOffTimeZoned);

6.8 Computing Dates Involving Time Zones | 181

 System.out.println("Flight expected length: " + flightTime);
 System.out.println(
 "Flight arrives there at " + arrivalTimeZoned + " London time.");
 System.out.println("You should phone at " + phoneTimeHere + " Toronto
time");
 return arrivalTimeZoned;
 }
}

Get the departure time as a LocalDateTime (defaulting to now() if no arguments
passed into main(), on the assumption that we run the app when the flight takes
off).

Convert departure time to ZonedDateTime.

Convert flight time to a Duration.

Get the arrival time by adding the departure time to the flight duration.

Convert the arrival time to London time with atZone().

Since the family takes an hour to get to the airport, subtract that from the arrival
time. This yields the time when you should phone them.

6.9 Interfacing with Legacy Date and Calendar Classes
Problem
You need to deal with the old Date and Calendar classes.

Solution
Assuming you have code using the original java.util.Date and java.util.Calen
dar, you can convert values as needed using conversion methods.

Discussion
All the classes and interfaces in the new API were chosen to avoid conflicting with the
traditional API. It is thus possible, and will be common for a while, to have imports
from both packages into the same code.

To keep the new API clean, most of the necessary conversion routines were added to
the old API. Table 6-8 summarizes these conversion routines; note that the methods
are static if they are shown being invoked with a capitalized class name, otherwise
they are instance methods.

182 | Chapter 6: Dates and Times

Table 6-8. Legacy date/time interchange
Legacy class Convert to legacy Convert to modern

java.util.Date date.from(Instant) Date.toInstant()

java.util.Calendar calendar.toInstant() -

java.util.GregorianCalen
dar

GregorianCalendar.from(Zoned
DateTime)

calendar.toZonedDate
Time()

java.util.TimeZone - timeZone.toZoneId()

java.time.DateTimeFormat
ter

- dateTimeFormatter.toFor
mat()

Example 6-4 shows some of these APIs in action.

Example 6-4. main/src/main/java/datetime/LegacyDates.java

public class LegacyDates {
 public static void main(String[] args) {

 // There and back again, via Date
 Date legacyDate = new Date();
 System.out.println(legacyDate);

 LocalDateTime newDate =
 LocalDateTime.ofInstant(legacyDate.toInstant(),
 ZoneId.systemDefault());
 System.out.println(newDate);

 Date backAgain =
 Date.from(newDate.atZone(ZoneId.systemDefault()).toInstant());
 System.out.println("Converted back as " + backAgain);

 // And via Calendar
 Calendar c = Calendar.getInstance();
 System.out.println(c);
 LocalDateTime newCal =
 LocalDateTime.ofInstant(c.toInstant(),
 ZoneId.systemDefault());
 System.out.println(newCal);
 }
}

Of course you do not have to use these legacy converters; you are free to write your
own. The file LegacyDatesDIY.java in the javasrc repository explores this option in
the unlikely event you wish to pursue it.

Given the amount of code written before Java 8, it is likely that the legacy Date and
Calendar will be around until the end of Java time.

6.9 Interfacing with Legacy Date and Calendar Classes | 183

The new date/time API has many capabilities that we have not explored. Almost
enough for a small book on the subject, in fact. Meanwhile, you can study the API
details at Oracle.

184 | Chapter 6: Dates and Times

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/time/package-summary.html

CHAPTER 7

Structuring Data with Java

7.0 Introduction
Almost every application beyond “Hello, World” needs to keep track of some struc‐
tured data. A simple numeric problem might work with three or four numbers only,
but most applications have groups of similar data items. A GUI-based application
may need to keep track of a number of dialog windows. A personal information man‐
ager, or PIM, needs to keep track of a number of, well, persons. An operating system
needs to keep track of who is allowed to log in, who is currently logged in, and what
those users are doing. A library needs to keep track of who has books checked out
and when they’re due. A network server may need to keep track of its active clients. A
pattern emerges here, and it revolves around variations of what has traditionally been
called data structuring.

There are data structures in the memory of a running program; there is structure in
the data in a file on disk, and there is structure in the information stored in a data‐
base. In this chapter, we concentrate on the first aspect: in-memory data. We’ll cover
the second aspect in Chapter 10; the third is out of scope for this book.

If you had to think about in-memory data, you might want to compare it to a collec‐
tion of index cards in a filing box or to a treasure hunt where each clue leads to the
next. Or you might think of it like my desk—apparently scattered, but actually a very
powerful collection filled with meaningful information. Each of these is a good anal‐
ogy for a type of data structuring that Java provides. An array is a fixed-length linear
collection of data items, like the card filing box: it can only hold so much, then it
overflows. The treasure hunt is like a data structure called a linked list. The first
release of Java had no standard linked list class, but you could write your own tradi‐
tional data structure classes (and still can; you see a DIY linked list implementation in
Recipe 7.8). The complex collection represents Java’s Collection classes. A document

185

entitled Collections Framework Overview, distributed with the Java Development Kit
documentation (and stored therein as file …/docs/guide/collections/overview.html
online), provides a detailed discussion of the Collections Framework. The framework
aspects of Java collections are summarized in Recipe 7.3.

Beware of typographic issues. The word Arrays (in constant width font) refers to the
class java.util.Arrays; but in the normal typeface, the word “arrays” is simply the
plural of “array” (and will be found capitalized at the beginning of a sentence). Also,
note that HashMap and HashSet follow the rule of having a midcapital at each word
boundary, whereas the older Hashtable does not (the t is not capitalized).

The java.util package has become something of a catch-all over the years. Besides
the legacy date/time API covered in Recipe 6.9, several other classes from java.util
are not covered in this chapter. All the classes whose names begin with Abstract are,
in fact, abstract, and we’ll discuss their nonabstract subclasses. The StringTokenizer
class is covered in Recipe 3.1. BitSet is used less frequently than some of the classes
discussed here and is simple enough to learn on your own. BitSet stores the bits very
compactly in memory, but because it predates the Collection API and wasn’t retrofit‐
ted, it doesn’t implement any of the standard collection interfaces. Also not covered
here are EnumSet and EnumMap, specialized for efficient storage/retrieval of enums.
These are newer than BitSet and do implement the modern collection interfaces.

We start our discussion of data structuring techniques with one of the oldest struc‐
tures, the array. We’ll discuss the overall structure of java.util’s Collections Frame‐
work. Then we’ll go through a variety of structuring techniques using classes from
java.util.

7.1 Using Arrays for Data Structuring
Problem
You need to keep track of a fixed amount of information and retrieve it (usually)
sequentially.

Solution
Use an array.

Discussion
Arrays can be used to hold any linear collection of data. The items in an array must
all be of the same type. You can make an array of any primitive type or any object
type. For arrays of primitive types, such as ints and booleans, the data is stored in the
array. For arrays of objects, a reference is stored in the array, so the normal rules of

186 | Chapter 7: Structuring Data with Java

http://docs.oracle.com/javase/8/docs/technotes/guides/collections/index.html

reference variables and casting apply. Note in particular that if the array is declared as
Object[], object references of any type can be stored in it without casting, although a
valid cast is required to take an Object reference out and use it as its original type. I’ll
say a bit more on two-dimensional arrays in Recipe 7.17; otherwise, you should treat
this as a review example:

main/src/main/java/lang/Array1.java
public class Array1 {
 @SuppressWarnings("unused")
 public static void main(String[] argv) {
 int[] monthLen1; // declare a reference
 monthLen1 = new int[12]; // construct it
 int[] monthLen2 = new int[12]; // short form
 // even shorter is this initializer form:
 int[] monthLen3 = {
 31, 28, 31, 30,
 31, 30, 31, 31,
 30, 31, 30, 31,
 };

 final int MAX = 10;
 LocalDate[] days = new LocalDate[MAX];
 for (int i=0; i<MAX; i++) {
 days[i] = LocalDate.of(2022, 02, i + 1);
 }

 // Two-Dimensional Arrays
 // Want a 10-by-24 array
 int[][] me = new int[10][];
 for (int i=0; i<10; i++)
 me[i] = new int[24];

 // Remember that an array has a ".length" attribute
 System.out.println(me.length);
 System.out.println(me[0].length);

 }
}

Arrays in Java work nicely. The type checking provides reasonable integrity, and array
bounds are always checked by the runtime system, further contributing to reliability.

The only problem with arrays is: what if the array fills up and you still have data com‐
ing in? See Recipe 7.2.

7.1 Using Arrays for Data Structuring | 187

6 You could copy it yourself using a for loop if you wish, but System.arrayCopy() is likely to be faster because
it’s implemented in native code.

7.2 Resizing an Array
Problem
The array filled up, and you got an ArrayIndexOutOfBoundsException.

Solution
Make the array bigger. Or, use an ArrayList.

Discussion
One approach is to allocate the array at a reasonable size to begin with; but if you find
yourself with more data than will fit, reallocate a new, bigger array and copy the ele‐
ments into it.6 Here is code that does so:

main/src/main/java/lang/Array2.java
public class Array2 {
 public final static int INITIAL = 10,
 GROW_FACTOR = 2;

 public static void main(String[] argv) {
 int nDates = 0;
 LocalDateTime[] dates = new LocalDateTime[INITIAL];
 StructureDemo source = new StructureDemo(21);
 LocalDateTime c;
 while ((c=source.getDate()) != null) {

 // if (nDates >= dates.length) {
 // throw new RuntimeException(
 // "Too Many Dates! Simplify your life!!");
 // }

 // better: reallocate, making data structure dynamic
 if (nDates >= dates.length) {
 LocalDateTime[] tmp =
 new LocalDateTime[dates.length * GROW_FACTOR];
 System.arraycopy(dates, 0, tmp, 0, dates.length);
 dates = tmp; // copies the array reference
 // old array will be garbage collected soon...
 }
 dates[nDates++] = c;
 }
 System.out.println("Final array size = " + dates.length);

188 | Chapter 7: Structuring Data with Java

 }
}

A good guess is necessary; know your data!

The growth factor is arbitary; 2 is a good value here but will continue to double
exponentially. You might want to use a factor like 1.5, which would mean more
allocations at the low end but less explosive growth. You need to manage this
somehow!

This technique works reasonably well for simple or relatively small linear collections
of data. For data with a more variable structure, you probably want to use a more
dynamic approach, as in Recipe 7.4.

7.3 The Collections Framework
Problem
You’re having trouble keeping track of all these lists, sets, and iterators.

Solution
There’s a pattern to it. See Figure 7-1 and Table 7-1.

Discussion
List, Set, Map, and Queue are the four fundamental data structures of the Collections
Framework. List and Set are both sequences, with the difference that List preserves
order and allows duplicate entries, whereas Set, true to the mathematical concept
behind it, does not. Map is a key/value store, also known as a hash, a dictionary, or an
associative store. Queues are, as the same suggests, structures that you can push into
at one end and pull out from the other.

Table 7-1 shows some of the important collection-based classes from package
java.util. It is intentionally not 100% complete due to space limitations.

See Also
The javadoc documentation on Collections, Arrays, List, Set, and the classes that
implement them provides more details than there’s room for here. Table 7-1 may fur‐
ther help you to absorb the regularity of the Collections Framework.

7.3 The Collections Framework | 189

Table 7-1. Java collections
Interfaces Implementations

Resizable array Hashed table Linked list Balanced tree

List ArrayList, Vector LinkedList

Set HashSet TreeSet

Map HashMap, HashTable TreeMap

Queue Deques, BlockingQueues, etc.

Figure 7-1 shows the relationships among several of these types.

Figure 7-1. The Collections Framework: Rectangles are interfaces; ovals classes; Solid
lines are inheritance; dashed lines represent implements

Queue and its subtypes are treated in Chapter 16.

7.4 Like an Array, but More Dynamic
Problem
You don’t want to worry about storage reallocation (often because you don’t know
how big the incoming dataset is going to be); you want a standard class to handle it
for you. You want to store your data in any of the Collection classes defined in
Chapter 7 with type safety and without having to write downcasts when retrieving
data from the collection.

Solution
Use a List implementation or one of the other Collections classes, along with Java’s
Generic Types mechanism, declaring the Collection with a type parameter

190 | Chapter 7: Structuring Data with Java

identifying the type of your data. The type parameter name appears in angle brackets
after the declaration and instantiation.

Discussion
The first of the Collections classes we will discuss, ArrayList, is a standard class
from java.util that encapsulates the functionality of an array but allows it to expand
automatically. You can just keep on adding things to it, and each addition behaves the
same. If you watch really closely, you might notice a brief extra pause once in a while
when adding objects as the ArrayList reallocates and copies. But you don’t have to
think about it.

However, because ArrayList is a class and isn’t part of the syntax of Java, you can’t
use Java’s array syntax; you must use methods to access the ArrayList’s data. It has
methods to add objects, retrieve objects, find objects, and tell you how big the List is
and how big it can become without having to reallocate (note that the ArrayList
class is but one implementation of the List interface; more on that later). Like the
other collection classes in java.util, ArrayList’s storing and retrieval methods were
originally defined to have parameters and return values of java.lang.Object.
Because Object is the ancestor of every defined type, you can store objects of any
type in a List (or any collection) and cast it when retrieving it. If you need to store a
small number of built-ins (like int and float) into a collection containing other data,
use the appropriate wrapper class (see the introduction to Chapter 5). To store
booleans, either store them directly in a java.util.BitSet (see the online documen‐
tation) or store them in a List using the Boolean wrapper class.

Because Object is usually too general for accurate work, all modern versions of Java
provide the generic types mechanism. Nowadays, you declare an ArrayList (or other
collection) with a type parameter in angle brackets, and the parameters and returns
are treated as being of that type by the compiler, ensuring that objects of the wrong
type don’t make it into your collections, and avoiding the need to write casts when
retrieving objects. For example, this is how you declare an ArrayList for holding
String object references:

List<String> myList = new ArrayList<>();

It is a good practice to declare the variable as the interface type List, even though you
are defining it (constructing it) as an ArrayList. This makes it easier to change from
one List implementation to another, and it avoids accidentally depending on an
implementation-specific method not in the List interface (which would also make it
harder to change the implementation).

7.4 Like an Array, but More Dynamic | 191

The <> in the definition part is a vestige of legacy Java versions, in which you had to
repeat the type definition, so you’d write new ArrayList<String>() in that example.
Nowadays just use <> (as in the example) to indicate that you want the type copied
from the declaration. The <> is called the diamond operator.

As of Java 13, you can simplify by using the new var keyword (for local variables
only):

var myList = new ArrayList<String>();

Table 7-2 shows some of the most important methods of the List interface, which is
implemented by ArrayList and other List implementations. This means that the
exact same methods can be used with the older Vector class and several other imple‐
menting classes. You’d just have to change the name used in the constructor call.

Table 7-2. Common List<T> methods
Method signature Usage

add(T o) Add the given element at the end

add(int i, T o) Insert the given element at the specified position

clear() Remove all element references from the Collection

contains(T o) True if the List contains the given object

forEach(lambda) Perform the lambda for each element

get(int i) Return the object reference at the specified position

indexOf(T o) Return the index where the given object is found, or –1

of(T t, …) Create a list from multiple objects

remove(T o), remove(int i) Remove an object by reference or by position

toArray() Return an array containing the objects in the Collection

ArrayListDemo stores data in an ArrayList and retrieves it for processing:

public class ArrayListDemo {
 public static void main(String[] argv) {
 List<LocalDate> editions = new ArrayList<>();

 // Add lots of elements to the ArrayList...
 editions.add(LocalDate.of(2001, 06, 01));
 editions.add(LocalDate.of(2004, 06, 01));
 editions.add(LocalDate.of(2014, 06, 20));

 // Use old-style 'for' loop to get index number.
 System.out.println("Retrieving by index:");
 for (int i = 0; i<editions.size(); i++) {
 System.out.printf("Edition %d was %s\n", i + 1, editions.get(i));
 }
 // Use normal 'for' loop for simpler access

192 | Chapter 7: Structuring Data with Java

 System.out.println("Retrieving by Iterable:");
 for (LocalDate dt : editions) {
 System.out.println("Edition " + dt);
 }

 }
}

The older Vector and Hashtable classes predate the Collections Framework, so they
offer additional methods with different names: Vector provides addElement() and
elementAt(). You may still run across these in legacy code, but you should use the
Collection methods add() and get() instead. Another difference is that the meth‐
ods of Vector are synchronized, meaning that they can be accessed safely from multi‐
ple threads (see Recipe 16.5). This does mean more overhead, though, so for single-
threaded access it is faster to use an ArrayList (see timing results in Recipe 7.19).

There are various conversion methods. Table 7-2 mentions toArray(), which will
expose the contents of a List as an array. The List interface in Java 9+ features a
static of() method, which converts in the other direction, from an array into a List.
In conjunction with the variable arguments feature of modern Java, you can create
and populate a list in one call to List.of(), like this:

List<String> firstNames = List.of("Robin", "Jaime", "Joey");

In legacy code that you will find in older apps and in web searches, Arrays.asList()
provided this functionality, so you will come across code like this:

List<String> lastNames = Arrays.asList("Smith", "Jones", "MacKenzie");
// or even
List<String> lastNames =
 Arrays.asList(new String[]{"Smith", "Jones", "MacKenzie"});

Java does indeed get less verbose as time goes by!

You can still instantiate classes such as ArrayList without using a specific type. In
this case, you will get a compiler warning, and the class will behave as in the old days;
that is, the objects returned from a Collection or Iterator will be of type
java.lang.Object and must be downcast before you can call any class-specific meth‐
ods or use them in any application-specific method calls.

As a further example, consider the Map interface mentioned in Chapter 7. A Map
requires a key and a value in its put() method. A Map, therefore, has two parameter‐
ized types. To set up a Map whose keys are Person objects and whose values are
Address objects (assuming these two classes exist in your application), you could
define it like this:

Map<Person, Address> addressMap = new HashMap<>();

7.4 Like an Array, but More Dynamic | 193

This Map expects a Person as its key and an Address as its value in the put() method.
The get() method returns an Address object, the keySet() method returns Set<Per
son> (i.e., a Set specialized for Person objects). There are also convenience routines
for when you want to create a Map from existing objects. The most useful is several
overloads of before existing Map.of(key,value,key,value…) similar to List.of()
(but limited to 10 pairs), and so on.

See Also
Although the generics avoid your having to write downcasts, the casts still occur at
runtime; they are just provided by the compiler. The compiler techniques used in
compiling these new constructs in a backward-compatible way include erasure and
bridging, topics discussed in Java Generics and Collections by Maurice Naftalin and
Philip Wadler.

7.5 Using Generic Types in Your Own Class
Problem
You wish to define your own container classes using the generic type mechanism to
avoid needless casting.

Solution
Define a class using < TypeName > where the container type is declared and TypeName
where it is used.

Discussion
Consider the very simple Stack class in Example 7-1. (We discuss the nature and uses
of stack classes in Recipe 7.16.)

This version has been parameterized to take a type whose local name is T. This type T
will be the type of the argument of the push() method, the return type of the pop()
method, and so on. Because of this return type—more specific than the Object return
type of the original Collections—the return value from pop() does not need to be
downcasted. All containers in the Collections Framework (java.util) are parame‐
terized similarly.

Example 7-1. main/src/main/java/structure/MyStack.java

public class MyStack<T> implements SimpleStack<T> {

 private int depth = 0;

194 | Chapter 7: Structuring Data with Java

http://shop.oreilly.com/product/9780596527754.do

 public static final int DEFAULT_INITIAL = 10;
 private T[] stack;

 public MyStack() {
 this(DEFAULT_INITIAL);
 }

 public MyStack(int howBig) {
 if (howBig <= 0) {
 throw new IllegalArgumentException(
 howBig + " must be positive, but was " + howBig);
 }
 stack = (T[])new Object[howBig];
 }

 @Override
 public boolean empty() {
 return depth == 0;
 }

 /** push - add an element onto the stack */
 @Override
 public void push(T obj) {
 // Could check capacity and expand
 stack[depth++] = obj;
 }

 /* pop - return and remove the top element */
 @Override
 public T pop() {
 --depth;
 T tmp = stack[depth];
 stack[depth] = null;
 return tmp;
 }

 /** peek - return the top element but don't remove it */
 @Override
 public T peek() {
 if (depth == 0) {
 return null;
 }
 return stack[depth-1];
 }

 public boolean hasNext() {
 return depth > 0;
 }

 public boolean hasRoom() {
 return depth < stack.length;
 }

7.5 Using Generic Types in Your Own Class | 195

 public int getStackDepth() {
 return depth;
 }
}

The association of a particular type is done at the time the class is instantiated. For
example, to instantiate a MyStack specialized for holding BankAccount objects, you
would need to code only the following:

MyStack<BankAccount> theAccounts = new MyStack<>();

If you don’t provide a type parameter T, this collection, like the ones in java.util,
will behave as they did in the days before generic collections—accepting input argu‐
ments of any type, returning java.lang.Object from getter methods, and requiring
downcasting—as their default, backward-compatible behavior. Example 7-2 shows a
program that creates two instances of MyStack, one specialized for Strings and one
left general. The general one, called ms2, is loaded up with the same two String
objects as ms1 but also includes a Date object. The printing code is now broken,
because it will throw a ClassCastException: a Date is not a String. I handle this case
specially for pedantic purposes: it is illustrative of the kinds of errors you can get into
when using nonparameterized container classes.

Example 7-2. main/src/main/java/structure/MyStackDemo.java

public class MyStackDemo {

 @SuppressWarnings({"rawtypes","unchecked"})
 public static void main(String[] args) {
 MyStack<String> ms1 = new MyStack<>();
 ms1.push("billg");
 ms1.push("scottm");

 while (ms1.hasNext()) {
 String name = ms1.pop();
 System.out.println(name);
 }

 // Old way of using Collections: not type safe.
 // DO NOT GENERICIZE THIS
 MyStack ms2 = new MyStack();
 ms2.push("billg"); // EXPECT WARNING
 ms2.push("scottm"); // EXPECT WARNING
 ms2.push(new java.util.Date()); // EXPECT WARNING

 // Show that it is broken
 try {
 String bad = (String)ms2.pop();
 System.err.println("Didn't get expected exception, popped " + bad);

196 | Chapter 7: Structuring Data with Java

 } catch (ClassCastException ex) {
 System.out.println("Did get expected exception.");
 }

 // Removed the brokenness, print rest of it.
 while (ms2.hasNext()) {
 String name = (String)ms2.pop();
 System.out.println(name);
 }
 }
}

Because of this potential for error, the compiler warns that you have unchecked raw
types. Like the deprecation warnings discussed in Recipe 1.9, by default, these warn‐
ings are not printed in detail by the javac compiler (they will appear in most IDEs).
You ask for them with the rather lengthy option -Xlint:unchecked:

C:> javac -source 1.5 structure/MyStackDemo.java
Note: MyStackDemo.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
C:> javac -source 1.5 -Xlint:unchecked structure/MyStackDemo.java
MyStackDemo.java:14: warning: unchecked call to push(T) as a member of the raw
type MyStack
 ms2.push("billg");
 ^
MyStackDemo.java:15: warning: unchecked call to push(T) as a member of the raw
type MyStack
 ms2.push("scottm");
 ^
MyStackDemo.java:16: warning: unchecked call to push(T) as a member of the raw
type MyStack
 ms2.push(new java.util.Date());
 ^
3 warnings
C:>

I say more about the development and evolution of MyStack in Recipe 7.16.

7.6 How Shall I Iterate Thee? Let Me Enumerate the Ways
Problem
You need to iterate over some structured data.

Solution
Java provides many ways to iterate over collections of data. Here they are, in newest-
first order:

7.6 How Shall I Iterate Thee? Let Me Enumerate the Ways | 197

• Stream.forEach() method (Java 8)
• Iterable.forEach() method (Java 8)
• Java “foreach” loop (Java 5)
• java.util.Iterator (Java 2)
• Three-part for loop
• while loop * Enumeration

Pick one and use it. Or learn them all and save!

Discussion
A few words on each of the iteration methods are given here. Note that the first few
are the most common.

Stream.forEach method (Java 8)

The Stream mechanism introduced as part of Java’s functional programming provides
one of the two most-recent ways of iterating, Stream.forEach(), and is discussed in
Recipe 9.3. For now, here’s a quick example, using the BufferedReader method
lines() that returns a Stream:

$ jshell
jshell> import java.io.*;
jshell> BufferedReader is =
 new BufferedReader(new FileReader("/home/ian/.profile"));
is ==> java.io.BufferedReader@58651fd0
jshell> is.lines().forEach(System.out::println)
... prints the lines of the file ...

Iterable.forEach method (Java 8)

The other recent iteration technique is the Iterable.forEach() method, added in
Java 8. This method can be called on any Iterable (unfortunately, the array class
does not yet implement Iterable) and takes one argument implementing the func‐
tional interface java.util.function.Consumer. Functional interfaces are discussed
in Chapter 9, but here is one example:

public class IterableForEach {

 public static void main(String[] args) {
 Collection<String> c =
 List.of("One", "Two", "Three");
 c.forEach(s -> System.out.println(s));
 }
}

198 | Chapter 7: Structuring Data with Java

Declare a Collection (a Collection is an Iterable).

Populate it with Arrays.of() with an array or sequence of objects (see Recipe 7.4
for how this arbitrary argument list becomes an array).

Invoke the collection’s forEach() method, passing a lambda expression (see
Chapter 9 for a discussion of how s→System.out.println(s) gets mapped to a
Consumer interface implementation without your even having to import this
interface).

This style of iteration—sometimes called internal iteration—inverts the control from
the traditional for loop; the collection is in charge of when and how the iteration
works.

Both Stream.forEach and Iterable.forEach() take one argu‐
ment, of type java.util.function.Consumer, so they work largely
the same way, at least syntactically. This is intentional.

Java “foreach” loop (Java 5)
This is the for-each loop syntax:

for (Type var : Iterable<Type>) {
 // do something with "var"
}

The for-each loop is probably the most common style of loop in modern Java code.
The Iterable can be an array or anything that implements Iterable (the Collec
tion implementations included).

This style is used throughout the book. In addition, many third-party frameworks/
libraries provide their own types that implement Iterable for use with the for loop.

java.util.Iterator (Java 2)

The older Iterator interface has three methods:

public interface java.util.Iterator<E> {
 public abstract boolean hasNext();
 public abstract E next();
 public default void remove();
}

It was once common to write code like this, which you’ll still find occasionally in
older code:

7.6 How Shall I Iterate Thee? Let Me Enumerate the Ways | 199

Iterator it = ...; // legacy code; might not even have type parameter
while (it.hasNext()) {
 (MyDataType) c = it.next();
 // Do something with c
}

The remove() method throws an UnsupportedOperationException if called on a
read-only collection. In conjunction with Streams and default methods, there is now
a fourth method:

public default void forEachRemaining(java.util.function.Consumer<? super E>);

Three-part for loop

This is the traditional for loop invented by Dennis Ritchie in the early 1970s for the
C language:

for (init; test; change) {
 // do something
}

Its most common form is with an int “index variable” or “loop variable”:

MyDataType[] data = ...
for (int i = 0; i < data.length; i++)
 MyDataType d = data[i];
 // do something with it
}

while loop

A while loop executes its loop body as long as (while) the test condition is true. It’s
commonly used in conjunction with an Enumeration or Iterator, like this:

Iterator<MyData> iterator = ...
while (iterator.hasNext()) {
 MyData md = iterator.next();
 //
}

Enumeration

An Enumeration is like an Iterator (shown earlier), but it lacks the remove()
method, and the control methods have longer names—for example, hasMore
Elements() and nextElement(). For new code, there is little to recommend imple‐
menting Enumeration.

200 | Chapter 7: Structuring Data with Java

6 Both List and Set extend Collection.

7.7 Eschewing Duplicates with a Set
Problem
You want a structure that will avoid storing duplicates.

Solution
Use a Set implementation instead of a List (e.g., Set<String> myNames = new Hash
Set<>()).

Discussion
The Set interface is similar to the List interface,6 with methods like add(), remove(),
contains(), size(), and isEmpty(). The difference is that it doesn’t preserve order;
instead, it enforces uniqueness—if you add the same item (as considered by its
equals() method) twice or more, it will only be present once in the set. For this rea‐
son, the index-based methods such as add(int, Object) and get(int) are missing
from the Set implementation: you might know that you’ve added seven objects but
only five of those were unique, so calling get() to retrieve the sixth one would have
to throw an ArrayIndexOutOfBoundsException! It’s better not to think of a Set as
being indexed.

As the Java 7 Set document states: “Note: Great care must be exer‐
cised if mutable objects are used as set elements. The behavior of a
set is not specified if the value of an object is changed in a manner
that affects equals comparisons while the object is an element in the
set. A special case of this prohibition is that it is not permissible for
a set to contain itself as an element.”

This code shows a duplicate entry being made to a Set, which will contain only one
copy of the string "One":

 Set<String> hashSet = new HashSet<>();
 hashSet.add("One");
 hashSet.add("Two");
 hashSet.add("One"); // DUPLICATE
 hashSet.add("Three");
 hashSet.forEach(s -> System.out.println(s));

Not surprisingly, only the three distinct values are printed.

7.7 Eschewing Duplicates with a Set | 201

If you need a sorted Set, there is in fact a SortedSet interface, of which the most
common implementation is a TreeSet; see a TreeSet example in Recipe 7.12.

As with Lists, the Set interface offers the of method as of Java 9:

Set<Double> nums = Set.of(Math.PI, 22D/7, Math.E);
Set<String> firstNames = Set.of("Robin", "Jaime", "Joey");

7.8 Structuring Data in a Linked List
Problem
Your data isn’t suitable for use in an array.

Solution
Use a linked list; Java’s LinkedList class is quite suitable.

Discussion
Anybody who’s taken Computer Science 101 (or any computer science course) should
be familiar with data structuring, such as linked lists and binary trees. A linked list is
commonly used when you have an unpredictably large number of data items, you
wish to allocate just the right amount of storage, and you want to access them in the
same order that you created them. Figure 7-2 is a diagram showing the normal
arrangement.

Figure 7-2. Linked list structure

Of course, the Collections API provides a LinkedList class; here is a simple program
that uses it:

public class LinkedListDemo {
 public static void main(String[] argv) {
 System.out.println("Here is a demo of Java's LinkedList class");
 LinkedList<String> l = new LinkedList<>();
 l.add(new Object().toString());
 l.add("Hello");
 l.add("end of the list");

 System.out.println("Here is a list of all the elements");

202 | Chapter 7: Structuring Data with Java

 l.forEach(o ->
 System.out.println("Next element: " + o));

 if (l.indexOf("Hello") < 0)
 System.err.println("Lookup does not work");
 else
 System.err.println("Lookup works");

 // Now, for added fun, let's walk the linked list backwards.
 ListIterator<String> li = l.listIterator();
 while (li.hasPrevious()) {
 System.out.println("Back to: " + li.previous());
 }
 }
}

The ListIterator used here is a subinterface of Iterator, which was discussed in
Recipe 7.6.

Just to show how this kind of list works, here is code that shows part of the imple‐
mention of a simple linked list:

public class LinkList<T> implements List<T> {

 /* A TNode stores one node or item in a Linked List */
 private static class TNode<T> {
 private TNode<T> next;
 private T data;
 TNode(T o, TNode<T> next) {
 data = o;
 this.next = next;
 }
 @Override
 public String toString() {
 return String.format("TNode: data='%s', next='%d'", data,
 next == null ? 0 : next.hashCode());
 }
 }

 private boolean DIAGNOSTIC = false;

 /** The root or first TNode in the list; is a dummy pointer,
 * so its data will always be null. Simpler this way.
 */
 protected TNode<T> first;
 /**
 * For certain optimizations: A second ref to the last TNode in the list;
 * initially == first; always valid (never null), always has next == null.
 */
 protected TNode<T> last;

 /** Construct a LinkList: initialize the first and last nodes */
 public LinkList() {

7.8 Structuring Data in a Linked List | 203

 clear();
 }

 /** Construct a LinkList given another Collection.
 * This method is recommended by the general contract of List.
 */
 public LinkList(Collection<T> c) {
 this();
 addAll(c);
 }

 /** Set the List (back) to its initial state.
 * Any references held will be discarded.
 */
 @Override
 public void clear() {
 first = new TNode<T>(null, null);
 last = first;
 }

 /** Add one object to the end of the list. Update the "next"
 * reference in the previous end, to refer to the new node.
 * Update "last" to refer to the new node.
 */
 @Override
 public boolean add(T o) {
 last.next = new TNode<T>(o, null);
 last = last.next;
 return true;
 }

 @Override
 public void add(int where, T o) {
 TNode<T> t = first;
 for (int i=0; i<=where; i++) {
 t = t.next;
 if (t == null) {
 throw new IndexOutOfBoundsException(
 "'add(n,T) went off end of list");
 }
 if (DIAGNOSTIC) {
 System.out.printf("in add(int,T): i = %d, t = %s%n", i, t);
 }
 }
 if (DIAGNOSTIC) {
 System.out.printf("in add(int,T): to insert before %s\n", t);
 }
 final TNode<T> nn = new TNode<>(o, t.next);
 t.next = nn;
 if (DIAGNOSTIC) {
 System.out.printf("add(%d,%s)\n", where, o);
 dump("add(int,T)");

204 | Chapter 7: Structuring Data with Java

 }
 }

 @Override
 public boolean addAll(Collection<? extends T> c) {
 c.forEach(o -> add((T) o));
 return false;
 }

 @Override
 public boolean addAll(int i, Collection<? extends T> c) {
 AtomicInteger j = new AtomicInteger(i);
 c.forEach(o -> { add(j.getAndIncrement(), o); });
 return true;
 }

 @Override
 public boolean contains(Object o) {
 TNode<T> t = first;
 while ((t = t.next) != null) {
 if (t.data.equals(o)) {
 return true;
 }
 }
 return false;
 }

 @Override
 public T get(int where) {
 TNode<T> t = first;
 int i=0;
 // If we get to the end of list before 'where', error out
 while (i++<=where) {
 if (t.next == null) {
 throw new IndexOutOfBoundsException();
 }
 t = t.next;
 }
 return t.data;
 }

 @Override
 public boolean isEmpty() {
 return first == last;
 }

 public Iterator<T> iterator() {
 return new Iterator<T>() {
 final int size = size();
 int n = 0;
 TNode<T> t = first;
 /**

7.8 Structuring Data in a Linked List | 205

 * Two cases in which next == null:
 * 1) The list is empty, we are at first
 * 2) The list is not empty, we are at last.
 */
 public boolean hasNext() {
 return n < size;
 }

 public T next() {
 if (t == first) {
 t = t.next;
 }
 TNode<T> result = t;
 t = t.next;
 ++n;
 return result.data;
 }
 public void remove() {
 throw new UnsupportedOperationException("remove");
 }
 };
 }

 @Override
 public boolean remove(Object o) {
 TNode<T> p = first, prev = null;
 while (p != null) {
 if (p.data == o) {
 prev.next = p.next;
 return true;
 }
 prev = p; p = p.next;
 }
 return false;
 }

 @Override
 public T set(int i, T o) {
 TNode<T> tmp = find(i);
 tmp.data = o;
 return o;
 }

 @Override
 public int size() {
 TNode<T> t = first;
 int i;
 for (i=0; ; i++) {
 if (t == null)
 break;
 t = t.next;
 }

206 | Chapter 7: Structuring Data with Java

 return i - 1; // subtract one for mandatory head node
 }

 @SuppressWarnings("unchecked")
 public T[] toArray(Object[] data) {
 // First is an empty anchor, start at its next
 TNode<T> p = first.next;
 for (int i = 0; p != null && i < data.length; i++) {
 data[i] = p.data;
 p = p.next;
 }
 return (T[]) data;
 }

 public Object[] toArray() {
 Object[] data = new Object[size()];
 return toArray(data);
 }

This is just to show how the implementation of a linked list might
work. Do not use the simple LinkList class shown here; use the
real one, java.util.LinkedList, shown in action in the first
example.

7.9 Mapping with Hashtable and HashMap
Problem
You need a one-way mapping from one data item to another.

Solution
Use a HashMap.

Discussion
HashMap provides a one-way mapping from one set of object references to another.
They are completely general purpose. I’ve used them to map from Swing push but‐
tons to the URL that is to be opened when the button is pushed, to map names to
addresses, and to implement a simple in-memory cache in a web server. You can map
from anything to anything. In the following example, we map from company names
to addresses; the addresses here are String objects, but in real life they’d probably be
Address objects:

public class HashMapDemo {

 public static void main(String[] argv) {

7.9 Mapping with Hashtable and HashMap | 207

 // Construct and load the hash. This simulates loading a
 // database or reading from a file, or wherever the data is.

 Map<String,String> map = new HashMap<String,String>();

 // The hash maps from company name to address.
 // In real life this might map to an Address object...
 map.put("Adobe", "Mountain View, CA");
 map.put("IBM", "White Plains, NY");
 map.put("Learning Tree", "Los Angeles, CA");
 map.put("Microsoft", "Redmond, WA");
 map.put("Netscape", "Mountain View, CA");
 map.put("O'Reilly", "Sebastopol, CA");
 map.put("Sun", "Mountain View, CA");

 // Two versions of the "retrieval" phase.
 // Version 1: get one pair's value given its key
 // (presumably the key would really come from user input):
 String queryString = "O'Reilly";
 System.out.println("You asked about " + queryString + ".");
 String resultString = map.get(queryString);
 System.out.println("They are located in: " + resultString);
 System.out.println();

 // Version 2: get ALL the keys and values
 // (maybe to print a report, or to save to disk)
 for(String key : map.keySet()) {
 System.out.println("Key " + key +
 "; Value " + map.get(key));
 }

 // Version 3: Same but using a Map.Entry lambda
 map.entrySet().forEach(mE ->
 System.out.println("Key + " + mE.getKey()+
 "; Value " +mE.getValue()));
 }
}

For this version we used both a for loop and a forEach() loop; the latter uses the
return from entrySet(), a set of Map.Entry, each of which contains one key and one
value (this may be faster on large maps because it avoids going back into the map to
get the value each time through the loop). If you are modifying the list as you are
going through it (e.g., removing elements), either inside the loop or in another
thread, then these forms will fail with a ConcurrentModificationException. You
then need to use the Iterator explicitly to control the loop:

 // Version 2: get ALL the keys and values
 // with concurrent modification
 Iterator<String> it = map.keySet().iterator();
 while (it.hasNext()) {

208 | Chapter 7: Structuring Data with Java

 String key = it.next();
 if (key.equals("Sun") || key.equals("Netscape")) {
 it.remove();
 continue;
 }
 System.out.println("Company " + key + "; " +
 "Address " + map.get(key));
 }

A more functional (see Chapter 9) way of writing the removal, not involving explicit
looping, would be this:

 // Alternate to just do the removals, without explicit looping
 map.keySet().removeIf(key -> Set.of("Netscape", "Sun").contains(key));
 // or
 map .entrySet()
 .removeIf(entry -> Set.of("Netscape", "Sun")
 .contains(entry.getKey()));
 map.entrySet().forEach(System.out::println);

HashMap methods are not synchronized. The older and similar
Hashtable methods are synchronized, for use with multiple
threads.

7.10 Storing Strings in Properties and Preferences
Problem
You need to store keys and values that are both strings, possibly with persistence
across runs of a program—for example, program customization.

Solution
Use a java.util.prefs.Preferences object or a java.util.Properties object.

Discussion
Here are three approaches to customization based on the user’s environment. Java
offers Preferences and Properties for cross-platform customizations.

Preferences

The Preferences class java.util.prefs.Preferences provides an easy-to-use
mechanism for storing user customizations in a system-dependent way (which might
mean dot files on Unix, a preferences file on the Mac, or the registry on Windows
systems). This class provides a hierarchical set of nodes representing a user’s

7.10 Storing Strings in Properties and Preferences | 209

preferences. Data is stored in the system-dependent storage format but can also be
exported to or imported from an XML format. Here is a simple demonstration of
Preferences:

public class PrefsDemo {

 public static void main(String[] args) throws Exception {

 // Set up the Preferences for this application, by class.
 Preferences prefs = Preferences.userNodeForPackage(PrefsDemo.class);

 // Retrieve some preferences previously stored, with defaults in case
 // this is the first run.
 String text = prefs.get("textFontName", "lucida-bright");
 String display = prefs.get("displayFontName", "lucida-blackletter");
 System.out.println(text);
 System.out.println(display);

 // Assume the user chose new preference values: Store them back.
 prefs.put("textFontName", "times-roman");
 prefs.put("displayFontName", "helvetica");

 // Toss in a couple more values for the curious who want to look
 // at how Preferences values are actually stored.
 Preferences child = prefs.node("a/b");
 child.putInt("meaning", 42);
 child.putDouble("pi", Math.PI);

 // And dump the subtree from our first node on down, in XML.
 prefs.exportSubtree(System.out);
 }
}

When you run the PrefsDemo program the first time, of course, it doesn’t find any
settings, so the calls to preferences.get() return the default values:

$ java -cp target/classes structure.PrefsDemo
lucida-bright
lucida-blackletter
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE preferences SYSTEM "http://java.sun.com/dtd/preferences.dtd">
<preferences EXTERNAL_XML_VERSION="1.0">
 <root type="user">
 <map/>
 <node name="structure">
 <map>
 <entry key="displayFontName" value="helvetica"/>
 <entry key="textFontName" value="times-roman"/>
 </map>
 <node name="a">
 <map/>
 <node name="b">

210 | Chapter 7: Structuring Data with Java

 <map>
 <entry key="meaning" value="42"/>
 <entry key="pi" value="3.141592653589793"/>
 </map>
 </node>
 </node>
 </node>
 </root>
</preferences>

On subsequent runs, it finds and returns the user-provided settings (I’ve elided the
XML output from the second run because most of the XML output is the same):

> java structure.PrefsDemo
times-roman
helvetica
...
>

Properties

The Properties class is similar to a HashMap or Hashtable (it extends the latter) but
with methods defined specifically for string storage and retrieval and for loading/
saving. Properties objects are used throughout Java, for everything from setting the
platform font names to customizing user applications into different Locale settings as
part of internationalization and localization. When stored on disk, a Properties
object looks just like a series of name=value assignments, with optional comments.
Comments are added when you edit a Properties file by hand, ignored when the
Properties object reads itself, and lost when you ask the Properties object to save
itself to disk. Here is an example of a Properties file that could be used to interna‐
tionalize the menus in a GUI-based program:

Default properties for MenuIntl
program.title=Demonstrate I18N (MenuIntl)
program.message=Welcome to an English-localized Java Program
#
The File Menu
#
file.label=File Menu
file.new.label=New File
file.new.key=N
file.open.label=Open...
file.open.key=O
file.save.label=Save
file.save.key=S
file.exit.label=Exit
file.exit.key=Q

Here is another example, showing some personalization properties:

7.10 Storing Strings in Properties and Preferences | 211

name=Ian Darwin
favorite_popsicle=cherry
favorite_rock group=Fleetwood Mac
favorite_programming_language=Java
pencil_color=green

A Properties object can be loaded from a file. The rules are flexible: either =, :, or
spaces can be used after a key name and its values. Spaces after a nonspace character
are ignored in the key. A backslash can be used to continue lines or to escape other
characters. Comment lines may begin with either # or !. Thus, a Properties file con‐
taining the previous items, if prepared by hand, could look like this:

Here is a list of properties
! first, my name
name Ian Darwin
favorite_popsicle = cherry
favorite_rock\ group \
 Fleetwood Mac
favorite_programming_language=Java
pencil_color green

Fortunately, when a Properties object writes itself to a file, it uses the following sim‐
ple format:

key=value

Here is an example of a program that creates a Properties object and adds into it the
list of companies and their locations from Recipe 7.9. It then loads additional proper‐
ties from disk. To simplify the I/O processing, the program assumes that the Proper
ties file to be loaded is contained in the standard input, as would be done using a
command-line redirection on either Unix or DOS:

public class PropsCompanies {

 public static void main(String[] argv) throws java.io.IOException {

 Properties props = new Properties();

 // Get my data
 props.put("Adobe", "Mountain View, CA");
 props.put("IBM", "White Plains, NY");
 props.put("Learning Tree", "Los Angeles, CA");
 props.put("Microsoft", "Redmond, WA");
 props.put("Netscape", "Mountain View, CA");
 props.put("O'Reilly", "Sebastopol, CA");
 props.put("Sun", "Mountain View, CA");

 // Now load additional properties
 props.load(System.in);

 // List merged properties, using System.out
 props.list(System.out);

212 | Chapter 7: Structuring Data with Java

 }
}

Running it as

java structure.PropsCompanies < PropsDemo.out

produces the following output in the file PropsDemo.out:
-- listing properties --
Sony=Japan
Sun=Mountain View, CA
IBM=White Plains, NY
Netscape=Mountain View, CA
Nippon_Kogaku=Japan
Acorn=United Kingdom
Adobe=Mountain View, CA
Ericsson=Sweden
O'Reilly & Associates=Sebastopol, CA
Learning Tree=Los Angeles, CA

In case you didn’t notice in either the HashMap or the Properties examples, the order
in which the outputs appear in these examples is neither sorted nor in the order we
put them in. The hashing classes and the Properties subclass make no claim about
the order in which objects are retrieved. If you need them sorted, see Recipe 7.11.

As a convenient shortcut, my FileProperties class includes a constructor that takes
a filename:

import com.darwinsys.util.FileProperties;
...
Properties p = new FileProperties("PropsDemo.out");

Note that constructing a FileProperties object causes it to be loaded, and therefore
the constructor may throw a checked exception of class IOException.

7.11 Sorting a Collection
Problem
You put your data into a collection in random order or used a Properties object that
doesn’t preserve the order, and now you want it sorted.

Solution
Use the static method Arrays.sort() or Collections.sort(), optionally providing a
Comparator.

7.11 Sorting a Collection | 213

Discussion
If your data is in an array, then you can sort it using the static sort() method of the
Arrays utility class. If it is in a Collection, you can use the static sort() method of
the Collections class. Here is a set of strings being sorted in place in an Array:

public class SortArray {
 public static void main(String[] unused) {
 String[] strings = {
 "painful",
 "mainly",
 "gaining",
 "raindrops"
 };
 Arrays.sort(strings);
 for (int i=0; i<strings.length; i++) {
 System.out.println(strings[i]);
 }
 }
}

What if the default sort order isn’t what you want? Well, you can create an object that
implements the Comparator<T> interface and pass that as the second argument to
sort. Fortunately, for the most common ordering next to the default, you don’t have
to: a public constant String.CASE_INSENSITIVE_ORDER can be passed as this second
argument. The String class defines it as a Comparator<String> that orders String
objects as by compareToIgnoreCase. But if you need something fancier, you probably
need to write a Comparator<T>. In some cases you may be able to use the
Comparator.comparing() method and other static methods on Comparator to create
a custom comparator without having to create a class. Suppose that, for some strange
reason, you need to sort strings using all but the first character of the string. One way
to do this would be to write this Comparator<String>:

/** Comparator for comparing strings ignoring first character.
 */
public class SubstringComparator implements Comparator<String> {
 @Override
 public int compare(String s1, String s2) {
 s1 = s1.substring(1);
 s2 = s2.substring(1);
 return s1.compareTo(s2);
 // or, more concisely:
 // return s1.substring(1).compareTo(s2.substring(1));
 }
}

Using it is just a matter of passing it as the Comparator argument to the correct form
of sort(), as shown here:

214 | Chapter 7: Structuring Data with Java

public class SubstringComparatorDemo {
 public static void main(String[] unused) {
 String[] strings = {
 "painful",
 "mainly",
 "gaining",
 "raindrops"
 };
 Arrays.sort(strings);
 dump(strings, "Using Default Sort");
 Arrays.sort(strings, new SubstringComparator());
 dump(strings, "Using SubstringComparator");

 // tag::functional[]
 System.out.println("Functional approach:");
 Arrays.stream(strings)
 .sorted(Comparator.comparing(s->s.substring(1)))
 .forEach(System.out::println);
 // end::functional[]
 }

 static void dump(String[] args, String title) {
 System.out.println(title);
 for (String s : args)
 System.out.println(s);
 }
}

Again, a more functional (see Chapter 9) way of writing this might be the following:

 System.out.println("Functional approach:");
 Arrays.stream(strings)
 .sorted(Comparator.comparing(s->s.substring(1)))
 .forEach(System.out::println);

Here is the output of running it:

$ java structure.SubstrCompDemo
Using Default Sort
gaining
mainly
painful
raindrops
Using SubstringComparator
raindrops
painful
gaining
mainly

And this is all as it should be.

On the other hand, you may be writing a class and want to build in the comparison
functionality so that you don’t always have to remember to pass the Comparator with

7.11 Sorting a Collection | 215

it. In this case, you can directly implement the java.lang.Comparable interface, as is
done by many classes in the standard API. These include String class; the wrapper
classes Byte, Character, Double, Float, Long, Short, and Integer; BigInteger and
BigDecimal from java.math; most objects in the date/time API in java.time; and
java.text.CollationKey. Arrays or Collections of these types can be sorted
without providing a Comparator. Classes that implement Comparable are said to have
a natural ordering. The documentation strongly recommends that a class’s natural
ordering be consistent with its equals() method. It is consistent with equals() if
and only if e1.compareTo((Object)e2) has the same Boolean value as
e1.equals((Object)e2) for every instance e1 and e2 of the given class. This means
that if you implement Comparable, you should also implement equals(), and the
logic of equals() should be consistent with the logic of the compareTo() method. If
you implement equals(), incidentally, you also should implement hashCode() (as
discussed in “hashCode() and equals()” on page 241). Here, for example, is part of the
appointment class Appt from a hypothetical scheduling program. The class has a
LocalDate date variable and a LocalTime time variable; the latter may be null (e.g., an
all-day appointment or a to-do item); this complicates the compareTo() function a lit‐
tle.

// public class Appt implements Comparable {
 // Much code and variables omitted - see online version
 //---
 // METHODS - COMPARISON
 //---
 /** compareTo method, from Comparable interface.
 * Compare this Appointment against another, for purposes of sorting.
 * <P>Only date and time, then text, participate, not repetition!
 * (Repetition has to do with recurring events, e.g.,
 * "Meeting every Tuesday at 9").
 * This methods is consistent with equals().
 * @return -1 if this<a2, +1 if this>a2, else 0.
 */
 @Override
 public int compareTo(Appt a2) {
 // If dates not same, trigger on their comparison
 int dateComp = date.compareTo(a2.date);
 if (dateComp != 0)
 return dateComp;
 // Same date. If times not same, trigger on their comparison
 if (time != null && a2.time != null) {
 // Neither time is null
 int timeComp = time.compareTo(a2.time);
 if (timeComp != 0)
 return timeComp;
 } else /* At least one time is null */ {
 if (time == null && a2.time != null) {
 return -1; // All-day appts sort low to appear first
 } else if (time != null && a2.time == null)

216 | Chapter 7: Structuring Data with Java

 return +1;
 // else both have no time set, so carry on
 }
 // Same date & time, trigger on text
 return text.compareTo(a2.text);
 }

 @Override
 public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((date == null) ? 0 : date.hashCode());
 result = prime * result + ((text == null) ? 0 : text.hashCode());
 result = prime * result + ((time == null) ? 0 : time.hashCode());
 return result;
 }

 @Override
 public boolean equals(Object o2) {
 if (this == o2)
 return true;
 if (o2.getClass() != Appt.class)
 return false;
 Appt a2 = (Appt) o2;
 if (!date.equals(a2.date))
 return false;
 if (time != null && !time.equals(a2.time))
 return false;
 return text.equals(a2.text);
 }

 /** Return a String representation of this Appt.
 * Output is intended for debugging, not presentation!
 */
 @Override
 public String toString() {
 var sb = new StringBuilder();
 sb.append(date).append(' ');
 if (time != null) {
 sb.append(time.getHour())
 .append(':')
 .append(time.getMinute())
 .append(' ');
 } else {
 sb.append("(All day)").append(' ');
 }
 sb.append(text).toString();
 return sb.toString();
 }

If you’re still confused between Comparable and Comparator, you’re probably not
alone. Table 7-3 summarizes the two comparison interfaces.

7.11 Sorting a Collection | 217

Table 7-3. Comparable compared with Comparator
Interface name Description Method(s)

java.lang.Compara
ble<T>

Provides a natural ordering to objects. Written in the class
whose objects are being sorted.

int compareTo(T o);

java.util.Compara
tor<T>

Provides total control over sorting objects of another class.
Standalone strategy object; pass to sort() method or Col
lection constructor.

int compare(T o1, T
o2); boolean
equals(T c2)

7.12 Avoiding the Urge to Sort
Problem
Your data needs to be sorted, but you don’t want to stop and sort it periodically.

Solution
Not everything that requires order requires an explicit sort operation. Just keep the
data sorted at all times.

Discussion
You can avoid the overhead and elapsed time of an explicit sorting operation by
ensuring that the data is in the correct order at all times, though this may or may not
be faster overall, depending on your data and how you choose to keep it sorted. You
can keep it sorted either manually or by using a TreeSet or a TreeMap. First, here is
some code from a call tracking program that I first wrote on the very first public
release of Java (the code has been modernized slightly!) to keep track of people I had
extended contact with. Far less functional than a Rolodex, my CallTrack program
maintained a list of people sorted by last name and first name. It also had the city,
phone number, and email address of each person. Here is a very small portion of the
code surrounding the event handling for the New User push button:

public class CallTrack {

 /** The list of Person objects. */
 protected List<Person> usrList = new ArrayList<>();

 /** The scrolling list */
 protected java.awt.List visList = new java.awt.List();

 /** Add one (new) Person to the list, keeping the list sorted. */
 protected void add(Person p) {
 String lastName = p.getLastName();
 int i;
 // Find in "i" the position in the list where to insert this person
 for (i=0; i<usrList.size(); i++)

218 | Chapter 7: Structuring Data with Java

 if (lastName.compareTo((usrList.get(i)).getLastName()) <= 0)
 break; // If we don't break, OK, will insert at end of list.
 usrList.add(i, p);

 // Now insert them in the scrolling list, in the same position.
 visList.add(p.getFullName(), i);
 visList.select(i); // ensure current
 }

}

This code uses the String class compareTo(String) routine.

This code uses a linear search, which was fine for the original appli‐
cation but could get very slow on large lists (it is O(n)). You’d need
to use hashing or a binary search to find where to put the values on
large lists.

If I were writing this code today, I might well use a TreeSet (which keeps objects in
order) or a TreeMap (which keeps the keys in order and maps from keys to values; the
keys would be the name and the values would be the Person objects). Both insert the
objects into a tree in the correct order, so an Iterator that traverses the tree always
returns the objects in sorted order. In addition, they have methods such as headSet()
and headMap(), which give a new Set or Map of objects of the same class, containing
the objects lexically before a given value. The tailSet() and tailMap() methods,
similarly, return objects greater than a given value, and subSet() and subMap()
return a range. The first() and last() methods retrieve the obvious components
from the collection. The following program uses a TreeSet to sort some names:

 // A TreeSet keeps objects in sorted order. Use a Comparator
 // published by String for case-insensitive sorting order.
 TreeSet<String> theSet = new TreeSet<>(String.CASE_INSENSITIVE_ORDER);
 theSet.add("Gosling");
 theSet.add("da Vinci");
 theSet.add("van Gogh");
 theSet.add("Java To Go");
 theSet.add("Vanguard");
 theSet.add("Darwin");
 theSet.add("Darwin"); // TreeSet is Set, ignores duplicates.

 System.out.printf("Our set contains %d elements", theSet.size());

 // Since it is sorted we can easily get various subsets
 System.out.println("Lowest (alphabetically) is " + theSet.first());

 // Print how many elements are greater than "k"
 // Should be 2 - "van Gogh" and "Vanguard"
 System.out.println(theSet.tailSet("k").toArray().length +

7.12 Avoiding the Urge to Sort | 219

 " elements higher than \"k\"");

 // Print the whole list in sorted order
 System.out.println("Sorted list:");
 theSet.forEach(name -> System.out.println(name));

One last point to note is that if you have a Hashtable or HashMap, you can convert it
to a TreeMap, and therefore get it sorted, just by passing it to the TreeMap constructor:

TreeMap sorted = new TreeMap(unsortedHashMap);

7.13 Finding an Object in a Collection
Problem
You need to see whether a given collection contains a particular value.

Solution
Ask the collection if it contains an object of the given value.

Discussion
If you have created the contents of a collection, you probably know what is in it and
what is not. But if the collection is prepared by another part of a large application, or
even if you’ve just been putting objects into it and now need to find out if a given
value was found, this recipe’s for you. There is quite a variety of methods, depending
on which collection class you have. The methods in Table 7-4 can be used.

Table 7-4. Finding objects in a collection
Method(s) Meaning Implementing classes

binarySearch() Fairly fast search Arrays, Collections

contains() Search ArrayList, HashSet, Hashtable, Link
List, Properties, Vector

containsKey(),
containsValue()

Checks if the collection contains the
object as a Key or as a Value

HashMap, Hashtable, Properties,
TreeMap

indexOf() Returns location where object is found ArrayList, LinkedList, List, Stack,
Vector

search() Search Stack

The methods whose names start with contains will use a linear search if the collec‐
tion is a collection (List, Set) but will be quite fast if the collection is hashed (Hash
Set, HashMap). So you do have to know what implementation is being used in order to

220 | Chapter 7: Structuring Data with Java

think about performance, particularly when the collection is (or is likely to grow)
large.

The next example plays a little game of find the hidden number (or needle in a hay‐
stack): the numbers to look through are stored in an array. As games go, it’s fairly
pathetic: the computer plays against itself, so you probably know who’s going to win. I
wrote it that way so I would know that the data array contains valid numbers. The
interesting part is not the generation of the random numbers (discussed in Recipe
5.9). The array to be used with Arrays.binarySearch() must be in sorted order, but
because we just filled it with random numbers, it isn’t initially sorted. Hence, we call
Arrays.sort() on the array. Then we are in a position to call Arrays.binary
Search(), passing in the array and the value to look for. If you run the program with
a number, it runs that many games and reports on how it fared overall. If you don’t
bother, it plays only one game:

public class ArrayHunt {
 /** the maximum (and actual) number of random ints to allocate */
 protected final static int MAX = 4000;
 /** the value to look for */
 protected final static int NEEDLE = 1999;
 int[] haystack;
 Random r;

 public static void main(String[] argv) {
 ArrayHunt h = new ArrayHunt();
 if (argv.length == 0)
 h.play();
 else {
 int won = 0;
 int games = Integer.parseInt(argv[0]);
 for (int i=0; i<games; i++)
 if (h.play())
 ++won;
 System.out.println("Computer won " + won +
 " out of " + games + ".");
 }
 }

 /** Construct the hunting ground */
 public ArrayHunt() {
 haystack = new int[MAX];
 r = new Random();
 }

 /** Play one game. */
 public boolean play() {
 int i;

 // Fill the array with random data (hay?)
 for (i=0; i<MAX; i++) {

7.13 Finding an Object in a Collection | 221

 haystack[i] = (int)(r.nextFloat() * MAX);
 }

 // Precondition for binary search is that data be sorted!
 Arrays.sort(haystack);

 // Look for needle in haystack
 i = Arrays.binarySearch(haystack, NEEDLE);

 if (i >= 0) { // Found it, we win.
 System.out.println("Value " + NEEDLE +
 " occurs at haystack[" + i + "]");
 return true;
 } else { // Not found, we lose.
 System.out.println("Value " + NEEDLE +
 " does not occur in haystack; nearest value is " +
 haystack[-(i+2)] + " (found at " + -(i+2) + ")");
 return false;
 }
 }
}

Collections.binarySearch() works almost exactly the same way, except it looks in
a Collection, which must be sorted (presumably using Collections.sort, as dis‐
cussed in Recipe 7.11).

7.14 Converting a Collection to an Array
Problem
You have a Collection but you need a Java language array.

Solution
Use the Collection method toArray().

Discussion
If you have an ArrayList or other Collection and you need an array, you can get it
just by calling the Collection’s toArray() method. With no arguments, you get an
array whose type is Object[]. You can optionally provide an array argument, which is
used for two purposes:

• The type of the array argument determines the type of array returned.
• If the array is big enough (and you can ensure that it is by allocating the array

based on the Collection’s size() method), then this array is filled and returned.
If the array is not big enough, a new array is allocated instead. If you provide an

222 | Chapter 7: Structuring Data with Java

array and objects in the Collection cannot be cast to this type, then you will get
an ArrayStoreException.

Example 7-3 shows code for converting an ArrayList to an array of type Object.

Example 7-3. main/src/main/java/structure/ToArray.java

 List<String> list = new ArrayList<>();
 list.add("Blobbo");
 list.add("Cracked");
 list.add("Dumbo");

 // Convert a collection to Object[], which can store objects
 // of any type.
 Object[] ol = list.toArray();
 System.out.println("Array of Object has length " + ol.length);

 String[] sl = (String[]) list.toArray(new String[0]);
 System.out.println("Array of String has length " + sl.length);

7.15 Making Your Data Iterable
Problem
You have written your own data structure, and you want to publish the data to be
iterable so it can be used in the for-each loop.

Solution
Make your data class Iterable: this interace has only one method, iterator(). Write
your own Iterator. Just implement (or provide an inner class that implements) the
Iterator interface.

Discussion
To be usable in the modern Java for-each loop, your data class must implement
Iterable, a simple interface with one method, Iterator<T> iterator(). Whether
you use this interface or want to use the older Iterator interface directly, the way to
make data from one part of your program available in a storage-independent way to
other parts of the code is to generate an Iterator. Here is a short program that con‐
structs, upon request, an Iterator for some data that it is storing—in this case, in an
array. The Iterator interface has only three methods—hasNext(), next(), and
remove()—demonstrated in Example 7-4.

7.15 Making Your Data Iterable | 223

Example 7-4. main/src/main/java/structure//IterableDemo

public class IterableDemo {

 /** Demo implements Iterable, meaning it must provide an Iterator,
 * and that it can be used in a foreach loop.
 */
 static class Demo implements Iterable<String> {

 // Simple demo: use array instead of inventing new data structure
 String[] data = { "One", "Two", "Three"};

 /** This is the Iterator that makes it all happen */
 class DemoIterator implements Iterator<String> {
 int i = 0;

 /**
 * Tell if there are any more elements.
 * @return true if next() will succeed, false otherwise
 */
 public boolean hasNext() {
 return i < data.length;
 }

 /** @return the next element from the data */
 public String next() {
 return data[i++];
 }

 /** Remove the object that next() just returned.
 * An Iterator is not required to support this interface, and we don't.
 * @throws UnsupportedOperationException unconditionally
 */
 public void remove() {
 throw new UnsupportedOperationException("remove");
 }
 }

 /** Method by which the Demo class makes its iterator available */
 public Iterator<String> iterator() {
 return new DemoIterator();
 }
 }

 public static void main(String[] args) {
 Demo demo = new Demo();
 for (String s : demo) {
 System.out.println(s);
 }
 }
}

224 | Chapter 7: Structuring Data with Java

The comments on the remove() method remind me of an interesting point. This
interface introduces java.util’s attempt at something Java doesn’t really have, the
optional method. Because there is no syntax for this, and they didn’t want to intro‐
duce any new syntax, the developers of the Collections Framework decided on an
implementation using existing syntax. Optional methods that are not implemented
are required to throw an UnsupportedOperationException if they ever get called. My
remove() method does just that. Note that UnsupportedOperationException is sub‐
classed from RuntimeException, so it is not required to be declared or caught.

This code is simplistic, but it does show the syntax and demonstrates how the Itera
tor interface works. In real code, the Iterator and the data are usually separate
objects (the Iterator might be an inner class from the data store class). Also, you
don’t even need to write this code for an array; you can just construct an ArrayList
object, copy the array elements into it, and ask it to provide the Iterator. However, I
believe it’s worth showing this simple example of the internals of an Iterator so that
you can understand both how it works and how you could provide one for a more
sophisticated data structure, should the need arise.

The Iterable interface has only one nondefault method, iterator(), which must
provide an Iterator for objects of the given type. Because the ArrayIterator class
implements this as well, we can use an object of type ArrayIterator in a “foreach”
loop, as in Example 7-5.

Example 7-5. main/src/main/java/structure/ArrayIteratorDemo.java

package structure;

import com.darwinsys.util.ArrayIterator;

public class ArrayIteratorDemo {

 private final static String[] names = {
 "rose", "petunia", "tulip"
 };

 public static void main(String[] args) {
 ArrayIterator<String> arrayIterator = new ArrayIterator<>(names);

 System.out.println("Java 5, 6 way");
 for (String s : arrayIterator) {
 System.out.println(s);
 }

 System.out.println("Java 5, 6 ways");
 arrayIterator.forEach(s->System.out.println(s));
 arrayIterator.forEach(System.out::println);

7.15 Making Your Data Iterable | 225

 }
}

Java 8 Iterable.foreach

Java 8 adds foreach to the Iterator interface, a default method (discussed in Recipe
9.0) that you don’t have to write. Thus, without changing the ArrayIterator, after
moving to Java 8 we can use the newest-style loop, Iterator.foreach(Consumer),
with a lambda expression (see Chapter 9) to print each element (see Example 7-5).

7.16 Using a Stack of Objects
Problem
You need to process data in the order of last in, first out (LIFO) or most recently
added.

Solution
Write your own code for creating a stack; it’s easy. Or, use a java.util.Stack.

Discussion
You need to put things into a holding area quickly and retrieve them in last-in, first-
out order. This is a common data structuring operation and is often used to reverse
the order of objects. The basic operations of any stack are push() (add to stack),
pop() (remove from stack), and peek() (examine top element without removing).
ToyStack in Example 7-6 is a simple class for stacking values of the primitive type
int. I’ll expand it in a page or two to allow stacking of user-defined objects.

Example 7-6. main/src/main/java/structure/ToyStack.java

public class ToyStack {

 /** The maximum stack depth */
 protected int MAX_DEPTH = 10;
 /** The current stack depth */
 protected int depth = 0;
 /* The actual stack */
 protected int[] stack = new int[MAX_DEPTH];

 /** push - add an element onto the stack */
 protected void push(int n) {
 stack[depth++] = n;
 }
 /** pop - return and remove the top element */
 protected int pop() {

226 | Chapter 7: Structuring Data with Java

 return stack[--depth];
 }
 /** peek - return the top element but don't remove it */
 protected int peek() {
 return stack[depth-1];
 }
}

If you are not familiar with the basic idea of a stack, you should work through the
code here; if you are familiar with it, you can skip ahead. While looking at it, of
course, think about what happens if pop() or peek() is called when push() has never
been called or if push() is called to stack more data than will fit.

While working on ToyStack2 (not shown but in the online source), I extracted its
interface into SimpleStack, which just lists the operations. At the same time I added
the empty() method for some compatibility with the standard java.util.Stack
class. And importantly, I made it a generic type, so it can be used with values of any
type. This is shown in SimpleStack:

public interface SimpleStack<T> {

 /** empty - return true if the stack is empty */
 abstract boolean empty();

 /** push - add an element onto the stack */
 abstract void push(T n);

 /** pop - return and remove the top element */
 abstract T pop();

 /** peek - return the top element but don't remove it */
 abstract T peek();
}

I then made another demo stack class, MyStack, to implement the new interface:

public class MyStack<T> implements SimpleStack<T> {

 private int depth = 0;
 public static final int DEFAULT_INITIAL = 10;
 private T[] stack;

 public MyStack() {
 this(DEFAULT_INITIAL);
 }

 public MyStack(int howBig) {
 if (howBig <= 0) {
 throw new IllegalArgumentException(
 howBig + " must be positive, but was " + howBig);
 }

7.16 Using a Stack of Objects | 227

 stack = (T[])new Object[howBig];
 }

 @Override
 public boolean empty() {
 return depth == 0;
 }

 /** push - add an element onto the stack */
 @Override
 public void push(T obj) {
 // Could check capacity and expand
 stack[depth++] = obj;
 }

 /* pop - return and remove the top element */
 @Override
 public T pop() {
 --depth;
 T tmp = stack[depth];
 stack[depth] = null;
 return tmp;
 }

 /** peek - return the top element but don't remove it */
 @Override
 public T peek() {
 if (depth == 0) {
 return null;
 }
 return stack[depth-1];
 }

 public boolean hasNext() {
 return depth > 0;
 }

 public boolean hasRoom() {
 return depth < stack.length;
 }

 public int getStackDepth() {
 return depth;
 }
}

This version has a lot more error checking (and a unit test, in the src/test/java/struc‐
ture folder), as well as some additional methods not in the original. One example is
hasRoom(). Unlike the full-blown java.util.Stack, MyStack does not expand
beyond its original size, so we need a way to see if it is full without throwing an
exception.

228 | Chapter 7: Structuring Data with Java

Now that you see how a stack works, I recommend using the provided
java.util.Stack instead of my demo versions; it is more fully fleshed out, more
fully tested, and widely used. Unlike the major Collections API components List,
Set, and Map, java.util.Stack does not have an interface and implementation
class(es); it is based on Vector, which is a List implementation. The real
java.util.Stack works in a similar manner to mine but has more methods and
more flexibility. To see that in operation, Recipe 5.12 provides a simple stack-based
numeric calculator.

7.17 Multidimensional Structures
Problem
You need a multidimensional array or ArrayList.

Solution
No problem. Java supports this.

Discussion
As mentioned back in Recipe 7.1, Java arrays can hold any reference type. Because an
array is a reference type, it follows that you can have arrays of arrays or, in other ter‐
minology, multidimensional arrays. Further, because each array has its own length
attribute, the columns of a two-dimensional array, for example, do not all have to be
the same length (see Figure 7-3).

Here is code to allocate a couple of two-dimensional arrays, one using a loop and the
other using an initializer. Both are selectively printed:

public class ArrayTwoDObjects {

 /** Return list of subscript names (unrealistic; just for demo). */
 public static String[][] getArrayInfo() {
 String info[][];
 info = new String[10][10];
 for (int i=0; i < info.length; i++) {
 for (int j = 0; j < info[i].length; j++) {
 info[i][j] = "String[" + i + "," + j + "]";
 }
 }
 return info;
 }

 /** Run the initialization method and print part of the results */
 public static void main(String[] args) {
 print("from getArrayInfo", getArrayInfo());

7.17 Multidimensional Structures | 229

 }

 /** Print selected elements from the 2D array */
 public static void print(String tag, String[][] array) {
 System.out.println("Array " + tag + " is " + array.length + " x " +
 array[0].length);
 System.out.println("Array[0][0] = " + array[0][0]);
 System.out.println("Array[0][1] = " + array[0][1]);
 System.out.println("Array[1][0] = " + array[1][0]);
 System.out.println("Array[0][0] = " + array[0][0]);
 System.out.println("Array[1][1] = " + array[1][1]);
 }
}

Figure 7-3. Multidimensional arrays

Running it produces this output:

> java structure.ArrayTwoDObjects
Array from getArrayInfo is 10 x 10
Array[0][0] = String[0,0]
Array[0][1] = String[0,1]
Array[1][0] = String[1,0]
Array[0][0] = String[0,0]
Array[1][1] = String[1,1]
Array from getParameterInfo is 2 x 3
Array[0][0] = fontsize
Array[0][1] = 9-18
Array[1][0] = URL
Array[0][0] = fontsize
Array[1][1] = -
>

230 | Chapter 7: Structuring Data with Java

The same kind of logic can be applied to any of the Collections. You could have an
ArrayList of ArrayLists, or a Vector of linked lists, or whatever your little heart
desires.

As Figure 7-3 shows, it is not necessary for the array to be regular (i.e., it’s possible for
each column of the 2D array to have a different height). That is why I used
array[0].length for the length of the first column in the code example.

7.18 Simplifying Data Objects with Lombok or Record
Problem
You waste time writing data classes that are Plain Old Java Objects (POJO), with
boilerplate code such as setters and getters, equals(), and toString().

Solution
Use Lombok to autogenerate boilerplate methods. In Java 14+, use the new record
data type, which generates the boilerplate methods for you.

Discussion
When Java was new, before there were good IDEs, developers had to write getters and
setters by hand, or by copy-paste-change. Back then I did a study of one existing large
code base and found about a 1/2% failure rate. The setter stored the value in the
wrong place or the getter retrieved the wrong value. Assuming random distribution,
this meant that one getter call in a hundred gave the wrong answer! The application
still worked, so I must assume those wrong answers didn’t matter.

Now we have IDEs that can generate all the boilerplate methods such as setters/
getters, equals, toString(), and so on. But you still have to remember to invoke these
generators.

Lombok
Project Lombok provides one solution. It reads your .class files looking for its own
annotations and, when it finds them, rewrites the class files to have the chosen
methods.

To use Lombok, you need to add the dependency org.projectlombok:lombok:
1.18.4 (or newer) to your build script. Or, if you are using an IDE, download the
Lombok JAR file from https://projectlombok.org and install it as per the instructions
there. Then you can annotate your class with annotations like these:

@Setters @Getters

7.18 Simplifying Data Objects with Lombok or Record | 231

https://projectlombok.org

Presto! No more forgetting to generate these methods; Lombok will do the work for
you.

Other annotations include the following:

@ToString
@EqualsAndHashCode
@AllArgsConstructor

For data classes, there is even @Data, which is a shortcut for @ToString, @EqualsAnd
HashCode, @Getter on all fields, @Setter on all nonfinal fields, and @RequiredArgs
Constructor!

Java 14 record (preview)

The new record type provides another solution. A record is a class-like construct for
data classes, a restricted form of class like enums and annotations. You need only
write the name of a data object and its fields, and the compiler will provide a con‐
structor, getters, hashCode() and equals(), and toString():

public record Person(String name, String emailAddress) { }

The provided constructor has the same signature as the record declaration. All fields
are implicitly final, and the record provides getters but not setters. The getters have
the name of the field; they do not follow the JavaBeans getName() pattern. Immutable
objects are important for reliable code (see Recipe 9.0). You can provide other mem‐
bers such as extra constructors, static fields, and static or instance methods. Records
cannot be abstract and cannot declare additional instance fields. All in keeping with
the fact that the state of the object is as declared in the record header. Here I create a
Person record and make an instance of it, all in JShell:

$ jshell --enable-preview
| Welcome to JShell -- Version 14-ea
| For an introduction type: /help intro

jshell> record Person(String name, String email) {}

jshell> var p = new Person("Covington Roderick Smythe", "roddy@smythe.tld")
p ==> Person[name=Covington Roderick Smythe, email=roddy@smythe.tld]

jshell> p.name()
$3 ==> "Covington Roderick Smythe"

jshell>

One-line record definitions typically don’t need to be in a source file all their own. To
show a complete example, I baked the Person record into a new demo program Per
sonRecordDemo. We can save this into a file, compile it with javac, and then use javap
to view the class’s structure:

232 | Chapter 7: Structuring Data with Java

$ javac --enable-preview -source 14 PersonRecordDemo.java
Note: PersonRecordDemo.java uses preview language features.
Note: Recompile with -Xlint:preview for details.
$ javap PersonRecordDemo'$'Person
Compiled from "PersonRecordDemo.java"
public final class PersonRecordDemo$Person extends java.lang.Record {
 public PersonRecordDemo$Person(java.lang.String, java.lang.String);
 public java.lang.String toString();
 public final int hashCode();
 public final boolean equals(java.lang.Object);
 public java.lang.String name();
 public java.lang.String email();
}

The $ in the filename has to be escaped from the Unix shell. We see that the compiler
has generated the constructor, toString(), hashCode() and equals(), and read-only
accessors name() and email().

As of Java 14 the record mechanism is a preview, so it may change
from what is described here or might even (however unlikely) not
appear in the final Java 14 or in a future Java release (though we
hope it will appear as is, nonpreview, in Java 15). If you are using
Java 14 you need the --enable-preview option on commands like
javap, javac, and jshell, as well as --source 14 on commands that
read the source file.

See Also
The original description of and rationale for the record mechanism is in Java
Enhancement Proposal JEP-359 at OpenJDK.net.

7.19 Program: Timing Comparisons
New developers sometimes worry about the overhead of these collections and think
they should use arrays instead of data structures. To investigate, I wrote a program
that creates and accesses 250,000 objects, once through a Java array and again
through an ArrayList. This is a lot more objects than most programs use. First the
code for the Array version:

public class Array {
 public static final int MAX = 250000;
 public static void main(String[] args) {
 System.out.println(new Array().run());
 }
 public int run() {
 MutableInteger list[] = new MutableInteger[MAX];
 for (int i=0; i<list.length; i++) {
 list[i] = new MutableInteger(i);

7.19 Program: Timing Comparisons | 233

https://openjdk.java.net/jeps/359
https://openjdk.java.net/jeps/359

 }
 int sum = 0;
 for (int i=0; i<list.length; i++) {
 sum += list[i].getValue();
 }
 return sum;
 }
}

And here’s the code for the ArrayList version:

public class ArrayLst {
 public static final int MAX = 250000;
 public static void main(String[] args) {
 System.out.println(new ArrayLst().run());
 }
 public int run() {
 ArrayList<MutableInteger> list = new ArrayList<>();
 for (int i=0; i<MAX; i++) {
 list.add(new MutableInteger(i));
 }
 int sum = 0;
 for (int i=0; i<MAX; i++) {
 sum += ((MutableInteger)list.get(i)).getValue();
 }
 return sum;
 }
}

The Vector-based version, ArrayVec, is sufficiently similar that I don’t feel the need
to kill a tree reprinting its code—it’s online.

How can we time this? As covered in Recipe 17.7, you can either use the operating
system’s time command, if available, or just use a bit of Java that times a run of your
main program. To be portable, I chose to use the latter on an older, slower machine.
Its exact speed doesn’t matter because the important thing is to compare only versions
of this program running on the same machine.

Finally (drum roll, please), the results:

$ java performance.Time Array
Starting class class Array
1185103928
runTime=4.310
$ java performance.Time ArrayLst
Starting class class ArrayLst
1185103928
runTime=5.626
$ java performance.Time ArrayVec
Starting class class ArrayVec
1185103928
runTime=6.699
$

234 | Chapter 7: Structuring Data with Java

Notice that I have ignored one oft-quoted bit of advice that recommends giving a
good initial estimate on the size of the ArrayList. I did time it that way as well; in this
example, it made a difference of less than 4% in the total runtime.

The bottom line is that the efficiency of ArrayList is not totally awful compared to
arrays. Obviously there is more overhead in calling a “get” method than in retrieving
an element from an array. The overhead of objects whose methods actually do some
computation probably outweighs the overhead of fetching and storing objects in an
ArrayList rather than in an Array. Unless you are dealing with large numbers of
objects, you may not need to worry about it. Vector is slightly slower but still only
about two-thirds the speed of the original array version. If you are concerned about
the time, once the finished size of the ArrayList is known, you can convert the Array
List to an array (see Recipe 7.14).

7.19 Program: Timing Comparisons | 235

CHAPTER 8

Object-Oriented Techniques

8.0 Introduction
Java is an Object-Oriented (OO) language in the tradition of Simula-67, SmallTalk,
and C++. It borrows syntax from C++ and ideas from SmallTalk. The Java API has
been designed and built on the OO model. Design patterns (see the book of the same
name), such as Factory and Delegate, are used throughout; an understanding of these
patterns will help you better understand the use of the API and improve the design of
your own classes.

Advice, or Mantras
There are any number of short bits of advice that I could give. A few recurring themes
arise when learning the basics of Java, and I suggest reviewing them when learning
more Java.

Use the API
I can’t say this often enough. A lot of the things you need to do have already been
done by the good folks who develop the standard Java library (and third-party libra‐
ries). And this grows with every release. Learning the API well is a good grounds for
avoiding that deadly “reinventing the flat tire” syndrome—coming up with a second-
rate equivalent of a first-rate product that was available to you the whole time. In fact,
part of this book’s mission is to prevent you from reinventing what’s already there.
One example of this is the Collections API in java.util, discussed in Chapter 7. The
Collections API has a high degree of generality and regularity, so there is often no
need to invent your own data structuring code.

237

Exceptions to the rule

There is one exception to the rule of using the API: the clone() method in
java.lang.Object should generally not be used. If you need to copy an object, just
write a copy method, or a copy constructor. Joshua Bloch’s arguments against the
clone() method in the book Effective Java (Addison-Wesley) are persuasive and
should be read by any dedicated Java programmer. While you’re at it, read that whole
book.

Another exception is the finalize() method in java.lang.Object(). Don’t use it. It
has been deprecated since Java 9 because it isn’t guaranteed to be invoked; but
because it might get invoked, it will cause your dead objects not to be garbage collec‐
ted, resulting in a memory leak. If you need some kind of cleanup, you must take
responsibility for defining a method and invoking it before you let any object of that
class go out of reference. You might call such a method cleanUp(). For application-
level cleanup, see https://darwinsys.com/java/shutdownhook.html.

Generalize
There is a trade-off between generality (and the resulting reusability), which is
emphasized here, and the convenience of application specificity. If you’re writing one
small part of a very large application designed according to OO design techniques,
you’ll have in mind a specific set of use cases. On the other hand, if you’re writing
toolkit-style code, you should write classes with few assumptions about how they’ll be
used. Making code easy to use from a variety of programs is the route to writing reus‐
able code.

Read and write javadoc
You’ve no doubt looked at the Java online documentation in a browser, in part
because I just told you to learn the API well. Do you think Sun/Oracle hired millions
of tech writers to produce all that documentation? No. That documentation exists
because the developers of the API took the time to write javadoc comments, those
funny /** comments you’ve seen in code. So, one more bit of advice: use javadoc. The
standard JDK provides a good, standard mechanism for API documentation. And use
it as you write the code—don’t think you’ll come back and write it in later. That kind
of tomorrow never comes.

See Recipe 15.2 for details on using javadoc.

Use subclassing and delegation
Use subclassing. But don’t overuse subclassing. It is one of the best ways not only for
avoiding code duplication, but for developing software that works. See any number of
good books on the topic of object-oriented design and programming for more details.

238 | Chapter 8: Object-Oriented Techniques

https://darwinsys.com/java/shutdownhook.html

There are several alternatives. One alternative to subclassing is delegation. Think
about “is a” versus “has a.” For example, instead of subclassing NameAndAddress to
make BusinessPartner and Customer, make BusinessPartner and Customer have
instances of NameAndAddress. That is a clearer structure; having BusinessPartner be
a NameAndAddress just because the partner has a name and address would not make
sense. And delegation also makes it easier for a Customer to have both a billing
address and a shipping address. Another alternative is Aspect-Oriented Program‐
ming (AOP), which allows you to bolt on extra functionality from the outside of your
classes. AOP is provided by the Java EE using EJB Interception and by the Spring
Framework AOP mechanism.

Use design patterns
In the Preface, I mentioned Design Patterns as one of the Very Important Books on
object-oriented programming. Often called the “Gang of Four” (GoF) book for its
four authors, it provides a powerful catalog of things that programmers often rein‐
vent. Some people find the GoF book to be somewhat academic in tone; a less-formal
presentation on patterns is Head First Design Patterns by Bert Bates et al. (O’Reilly);
this covers the same two dozen patterns as the GoF book. A design pattern provides a
statement of a problem and its solution(s), rather like the present book, but generally
at a higher level of abstraction. It is as important for giving a standard vocabulary of
design as it is for its clear explanations of how the basic patterns work and how they
can be implemented.

Table 8-1 shows some example uses of design patterns in the standard API.

Table 8-1. Design patterns in the JavaSE API
Pattern
name

Meaning Examples in Java API

Command Encapsulate requests, allowing queues of
requests, undoable operations, etc.

javax.swing.Action;
javax.swing.undo.UndoableEdit

Decorator One class decorates another Swing Borders

Factory
Method

One class makes up instances for you,
controlled by subclasses

getInstance (in Calendar, Format, Locale…);
SocketFactory; RMI InitialContext

Iterator Loop over all elements in a collection, visiting
each exactly once

Iterator; older Enumeration; java.sql.Result
Set

Model-View-
Controller

Model represents data; View is what the user
sees; Controller responds to user requests

ActionListener and friends; Observer/Observa
ble; used internally by all visible Swing components

Proxy One object stands in for another RMI, AOP, Dynamic Proxy

Singleton Only one instance may exist java.lang.Runtime, java.awt.Toolkit

I have written articles on the State, Proxy, Command, Decorator, and Visitor patterns
for Oracle Java Magazine.

8.0 Introduction | 239

https://blogs.oracle.com/javamagazine/the-state-pattern
https://blogs.oracle.com/javamagazine/the-proxy-pattern
https://blogs.oracle.com/javamagazine/the-command-pattern-in-depth
https://blogs.oracle.com/javamagazine/the-decorator-pattern-in-depth
https://blogs.oracle.com/javamagazine/the-visitor-design-pattern-in-depth

8.1 Object Methods: Formatting Objects with toString(),
Comparing with Equals
Problem
You want your objects to have a useful default format and to behave themselves when
placed in Collections classes.

Solution
There are four overridable methods inherited from java.lang.Object; of these,
toString() provides default formatting, while equals() and hashCode() provide
equality testing and efficient usage in Map implementations. The fourth, clone(), is
not recommended for general use.

Discussion

toString()

Whenever you pass an object to System.out.println() or any equivalent method or
involve it in string concatenation, Java automatically calls its toString() method.
Java knows that every object has a toString() method because java.lang.Object
has one and all classes are ultimately subclasses of Object. The default implementa‐
tion, in java.lang.Object, is neither pretty nor interesting: it just prints the class
name, an @ sign, and the object’s hashCode() value. For example, if you run the code

public class ToStringWithout {
 int x, y;

 /** Simple constructor */
 public ToStringWithout(int anX, int aY) {
 x = anX; y = aY;
 }

 /** Main just creates and prints an object */
 public static void main(String[] args) {
 System.out.println(new ToStringWithout(42, 86));
 }
}

240 | Chapter 8: Object-Oriented Techniques

you might see this uninformative output:

ToStringWithout@990c747b

To make it print better, you should provide an implementation of toString() that
prints the class name and some of the important states in all but the most trivial
classes. This gives you formatting control in println(), in debuggers, and anywhere
your objects get referred to in a String context. Here is the previous program rewrit‐
ten with a toString() method:

public class ToStringWith {
 int x, y;

 /** Simple constructor */
 public ToStringWith(int anX, int aY) {
 x = anX; y = aY;
 }

 @Override
 public String toString() {
 return "ToStringWith[" + x + "," + y + "]";
 }

 /** Main just creates and prints an object */
 public static void main(String[] args) {
 System.out.println(new ToStringWith(42, 86));
 }
}

This version produces the more useful output:

ToStringWith[42,86]

This example uses String concatenation, but you may also want to use String.for
mat() or StringBuilder; see Chapter 3.

hashCode() and equals()

To ensure your classes work correctly when any client code calls equals() or when
these objects are stored in Map or other Collection classes, outfit your class with
equals() and hashCode() methods.

How do you determine equality? For arithmetic or Boolean operands, the answer is
simple: you test with the equals operator (==). For object references, though, Java pro‐
vides both == and the equals() method inherited from java.lang.Object. The
equals operator can be confusing because it simply compares two object references
to see if they refer to the same object. This is not the same as comparing the values of
the objects themselves.

8.1 Object Methods: Formatting Objects with toString(), Comparing with Equals | 241

6 A value class is one used mainly to hold state, rather than logic: a Person is a value class, whereas
java.lang.Math is not. Many classes are somewhere in between.

The inherited equals() method is also not as useful as you might imagine. Some
people seem to start their lives as Java developers thinking that the default equals()
magically does some kind of detailed, field-by-field or even binary comparison of
objects. But it does not compare fields! It just does the simplest possible thing: it
returns the value of an == comparison on the two objects involved! So, for any value
classes you write, you probably have to write an equals method.6 Note that both the
equals and hashCode methods are used by Maps or hashes (such as HashMap; see
Recipe 7.9). So if you think somebody using your class might want to create instances
and put them into a Map, or even compare your objects, you owe it to them (and to
yourself!) to implement both equals() and hashCode() and to implement them
properly.

Most IDEs know how to generate correct equals() and hashCode() methods, but it’s
worth your while to understand what these are doing, for the occasional case where
you need to tweak the generated code. The Eclipse IDE (see Recipe 1.3), for example,
offers a Source menu item Generate hashCode() and equals(); it will only do both
at the same time, not let you generate equals() without hashCode() nor vice versa.

Here are the rules for a correct equals() method:

It is reflexive
x.equals(x) must be true.

It is symmetrical
x.equals(y) must be true if and only if y.equals(x) is also true.

It is transitive
If x.equals(y) is true and y.equals(z) is true, then x.equals(z) must also be
true.

It is idempotent (repeatable)
Multiple calls on x.equals(y) return the same value (unless state values used in
the comparison are changed, as by calling a set method).

It is cautious
x.equals(null) must return false rather than accidentally throwing a NullPoin
terException.

In addition, beware of one common mistake: the argument to equals() must be
declared as java.lang.Object, not the class it is in; this is so that polymorphism will
work correctly (some classes may not have an equals() method of their own). To

242 | Chapter 8: Object-Oriented Techniques

prevent this mistake, the @Override annotation is usually added to the equals()
override, as mentioned in Recipe 15.3.

Here is a class that endeavors to implement these rules:

public class EqualsDemo {
 private int int1;
 private SomeClass obj1;

 /** Constructor */
 public EqualsDemo(int i, SomeClass o) {
 int1 = i;
 if (o == null) {
 throw new IllegalArgumentException("Data Object may not be null");
 }
 obj1 = o;
 }

 /** Default Constructor */
 public EqualsDemo() {
 this(0, new SomeClass());
 }

 /** Demonstration "equals" method */
 @Override
 public boolean equals(Object o) {
 if (o == this)
 return true;

 if (o == null)
 return false;

 // Of the correct class?
 if (o.getClass() != EqualsDemo.class)
 return false;

 EqualsDemo other = (EqualsDemo)o; // OK, cast to this class

 // compare field-by-field
 if (int1 != other.int1) // compare primitives directly
 return false;
 if (!obj1.equals(other.obj1)) // compare objects using their equals
 return false;
 return true;
 }

 // ...

Optimization: if same object, true by definition.

If other object null, false by definition.

8.1 Object Methods: Formatting Objects with toString(), Comparing with Equals | 243

Compare class descriptors using !=; see following paragraph.

Optimization: compare primitives first. May or may not be worthwhile; may be
better to order by those most likely to differ—depends on the data and the usage.

Another common mistake to avoid: note the use of class descriptor equality (i.e.,
o.getClass() != EqualsDemo.class) to ensure the correct class, rather than via
instanceof, as is sometimes erroneously done. The reflexive requirement of the
equals() method contract pretty much makes it impossible to compare a subclass
with a superclass correctly, so we now use class equality (see Chapter 17, Reflection, or
“A Class Named Class” for details on the class descriptor).

Here is a basic JUnit test (see Recipe 1.10) for the EqualsDemo class:

/** Some JUnit test cases for EqualsDemo.
 * Writing a full set is left as "an exercise for the reader".
 */
public class EqualsDemoTest {

 /** an object being tested */
 EqualsDemo d1;
 /** another object being tested */
 EqualsDemo d2;

 /** Method to be invoked before each test method */
 @Before
 public void setUp() {
 d1 = new EqualsDemo();
 d2 = new EqualsDemo();
 }

 @Test
 public void testSymmetry() {
 assertTrue(d1.equals(d1));
 }

 @Test
 public void testSymmetric() {
 assertTrue(d1.equals(d2) && d2.equals(d1));
 }

 @Test
 public void testCaution() {
 assertFalse(d1.equals(null));
 }
}

With all that testing, what could go wrong? Well, some things still need care. What if
the object is a subclass of EqualsDemo? We should test that it returns false in this case.

244 | Chapter 8: Object-Oriented Techniques

What else could go wrong? Well, what if either obj1 or other.obj1 is null? You might
have just earned a nice shiny new NullPointerException. So you also need to test for
any possible null values. Good constructors can avoid these NullPointerExceptions,
as I’ve tried to do in EqualsDemo, or else test for them explicitly.

Finally, you should never override equals() without also overriding hashCode(), and
the same fields must take part in both computations.

hashCode()

The hashCode() method is supposed to return an int that should uniquely identify
any set of values in objects of its class.

A properly written hashCode() method will follow these rules:

It is repeatable
hashCode(x) must return the same int when called repeatedly, unless set meth‐
ods have been called.

It is consistent with equality
If x.equals(y), then x.hashCode() must == y.hashCode().

Distinct objects should produce distinct hashCodes
If !x.equals(y), it is not required that x.hashCode() != y.hashCode(), but
doing so may improve performance of hash tables (i.e., hashes may call hash
Code() before equals()).

The default hashCode() on the standard JDK returns a machine address, which con‐
forms to the first rule. Conformance to the second and third rules depends, in part,
on your equals() method. Here is a program that prints the hashcodes of a small
handful of objects:

public class PrintHashCodes {

 /** Some objects to hashCode() on */
 protected static Object[] data = {
 new PrintHashCodes(),
 new java.awt.Color(0x44, 0x88, 0xcc),
 new SomeClass()
 };

 public static void main(String[] args) {
 System.out.println("About to hashCode " + data.length + " objects.");
 for (int i=0; i<data.length; i++) {
 System.out.println(data[i].toString() + " --> " +
 data[i].hashCode());
 }
 System.out.println("All done.");

8.1 Object Methods: Formatting Objects with toString(), Comparing with Equals | 245

 }
}

What does it print?

> javac -d . oo/PrintHashCodes.java
> java oo.PrintHashCodes
About to hashCode 3 objects.
PrintHashCodes@982741a0 --> -1742257760
java.awt.Color[r=68,g=136,b=204] --> -12285748
SomeClass@860b41ad --> -2046082643
All done.
>

The hashcode value for the Color object is interesting. It is actually computed as
something like this:

alpha<<24 + r<<16 + g<<8 + b

In this formula, r, g, and b are the red, green, and blue components, respectively, and
alpha is the transparency. Each of these quantities is stored in 8 bits of a 32-bit inte‐
ger. If the alpha value is greater than 128, the high bit in this word—having been set
by shifting into the sign bit of the word—causes the integer value to appear negative
when printed as a signed integer. Hashcode values are of type int, so they are allowed
to be negative.

Difficulties and Alternatives to Clone
The java.util.Observable class (designed to implement the Model-View-
Controller pattern with AWT or Swing applications) contains a private Vector but no
clone method to deep-clone it. Thus, Observable objects cannot safely be cloned,
ever!

This and several other issues around clone()—such as the uncertainty of whether a
given clone() implementation is deep or shallow—suggest that clone() was not as
well thought out as might be. An alternative is simply to provide a copy constructor
or similar method:

public class CopyConstructorDemo {
 public static void main(String[] args) {
 CopyConstructorDemo object1 = new CopyConstructorDemo(123, "Hello");
 CopyConstructorDemo object2 = new CopyConstructorDemo(object1);
 if (!object1.equals(object2)) {
 System.out.println("Something is terribly wrong...");
 }
 System.out.println("All done.");
 }

 private int number;
 private String name;

246 | Chapter 8: Object-Oriented Techniques

 /** Default constructor */
 public CopyConstructorDemo() {
 }

 /** Normal constructor */
 public CopyConstructorDemo(int number, String name) {
 this.number = number;
 this.name = name;
 }

 /** Copy constructor */
 public CopyConstructorDemo(CopyConstructorDemo other) {
 this.number = other.number;
 this.name = other.name;
 }
 // hashCode() and equals() not shown

8.2 Using Inner Classes
Problem
You need to write a private class, or a class to be used in one other class at most.

Solution
Use a nonpublic class or an inner class.

Discussion
A nonpublic class can be written as part of another class’s source file, but not inside
that class. An inner class is Java terminology for a class defined inside another class.
Inner classes were first popularized with early Java for use as event handlers for GUI
applications, but they have a much wider application.

Inner classes can, in fact, be constructed in several contexts. An inner class defined as
a member of a class can be instantiated anywhere in that class. An inner class defined
inside a method can be referred to later only in the same method. Inner classes can
also be named or anonymous. A named inner class has a full name that is compiler
dependent; the standard JVM uses a name like MainClass$InnerClass for the result‐
ing file. An anonymous inner class, similarly, has a compiler-dependent name; the
JVM uses MainClass$1, MainClass$2, and so on.

These classes cannot be instantiated in any other context; any explicit attempt to refer
to, say, OtherMainClass$InnerClass, is caught at compile time:

main/src/main/java/oo/AllClasses.java

8.2 Using Inner Classes | 247

public class AllClasses {
 public class Data {
 int x;
 int y;
 }
 public void getResults() {
 JButton b = new JButton("Press me");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 Data loc = new Data();
 loc.x = ((Component)evt.getSource()).getX();
 loc.x = ((Component)evt.getSource()).getY();
 System.out.println("Thanks for pressing me");
 }
 });
 }
}

/** Class contained in same file as AllClasses, but can be used
 * (with a warning) in other contexts.
 */
class AnotherClass {
 // methods and fields here...
 AnotherClass() {
 // Inner class from above cannot be used here, of course
 // Data d = new Data(); // EXPECT COMPILE ERROR
 }
}

This is an inner class, which can be used anywhere in class AllClasses.

This shows the anonymous inner class syntax, which uses new with a type fol‐
lowed by (){, a class body, and }. The compiler will assign a name; the class will
extend or implement the given type, as appropriate.

This is a nonpublic class; it can be used in the main class and (with warning) in
other classes.

One issue is that the inner class retains a reference to the outer class. If you want to
avoid memory leaks if the inner class will be held for a longer time than the outer,
you can make the inner class static.

Inner classes implementing a single-method interface can be written in a much more
concise fashion as lambda expressions (see Chapter 9).

248 | Chapter 8: Object-Oriented Techniques

Interface Changes in Java: default and static
Java 8 added two new capabilities to interfaces, default methods and static methods.

Default methods are implicitly added to any implementing class. They cannot directly
access fields in the class. They are useful in functional programming (see Chapter 9).
They are also useful in adding functionality to an existing, widely used interface
without breaking all the implementing classes. For example, in Java 8 the List inter‐
face gained a forEach() instance method for a measure of compatibility with
Streams. It was important that all the List implementations both in java.util and
in applications be able to provide this method without changing all the code, which is
why the mechanism was implemented as it was.

Java also now allows static methods in interfaces. These allow addition of methods,
again without breaking existing implementations. They become static methods in
every implementing class. For example, the List interface gained a static of method
that allows you to write code such as this:

List<String> list = List.of("Hello", "World", "of", "Java");

These two additions could not have been made without the addition of these two key‐
words to the syntax of interfaces. A trivial subset of List, called MyList in the struc‐
ture directory, demonstrates how these two sample methods—the instance forEach()
and the static of()—could be implemented.

8.3 Providing Callbacks via Interfaces
Problem
You want to provide callbacks—that is, have unrelated classes call back into your
code.

Solution
One way is to use a Java interface.

Discussion
An interface is a class-like entity that can contain only abstract methods and final
fields. As we’ve seen, interfaces are used a lot in Java! In the standard API, the follow‐
ing are a few of the commonly used interfaces:

• Runnable, Comparable, and Cloneable (in java.lang).

8.3 Providing Callbacks via Interfaces | 249

• List, Set, Map, and Enumeration/Iterator (in the Collections API; as you’ll see
in Chapter 7).

• ActionListener, WindowListener, and others in the GUI layer.
• Driver, Connection, Statement, and ResultSet in JDBC; see https://darwin

sys.com/javadatabase.
• The remote interface—the contact between the client and the server—is specified

as an Interface (in RMI, CORBA, and EJB).

Subclass, Abstract Class, or Interface?
There is usually more than one way to solve a problem. Some problems can be solved
by subclassing, by use of abstract classes, or by interfaces. The following general
guidelines may help:

• A class can only extend one other class, but it can implement any number of
interfaces; keep this in mind when deciding to use abstract classes or interface.

• Use an abstract class when you want to provide a template for a series of sub‐
classes, all of which may inherit some of their functionality from the parent class
but are required to implement some of it themselves. (Any subclass of a geomet‐
ric Shapes class might have to provide a computeArea() method; because the
top-level Shapes class cannot do this, it would be abstract. This is implemented
in Recipe 8.4.)

• Use an interface with default methods for many of the same things you’d have used
an abstract class for prior to Java 8, which introduced default methods. Default
methods can be added to an interface without breaking existing code, such as
forEach and of methods being added to the Collection interface so that every
List instance has a forEach method built in.

*Subclass when you need to extend a class and add some functionality to it, whether
the parent class is abstract or not. See the standard Java APIs and the examples in
Recipe 1.10, Recipe 8.10, and Recipe 10.10.

• Subclass when you are required to extend a given class. Some APIs such as serv‐
lets use subclassing to ensure base functionality in classes that are dynamically
loaded (see Recipe 17.4).

• Define an interface when there is no common parent class with the desired func‐
tionality and when you want only certain unrelated classes to have that function‐
ality (see the PowerSwitchable interface in Recipe 8.2). You should also choose
this option if you know that you’ll need (or think there is a chance you might
later need) to be able to pass in unrelated classes for testing purposes. Using

250 | Chapter 8: Object-Oriented Techniques

https://darwinsys.com/javadatabase
https://darwinsys.com/javadatabase

6 Of course these lights wouldn’t have remote power-off. But the computers might, for maintenance purposes.

mock objects is a very common strategy in unit testing. Some say that interfaces
should be your first choice at least as often as subclassing.

• Use interfaces as markers to indicate something about a class. Marker interfaces
commonly have no abstract methods. The standard API, for example, uses Seri
alizable as a marker interface to indicate permission to serialize objects of the
implementing class. See “Solution” on page 394 for information on serialization.

Suppose we are generating a building management system. To be energy efficient, we
want to be able to remotely turn off (at night and on weekends) such things as room
lights and computer monitors, which use a lot of energy. Assume we have some kind
of remote control technology. It could be a commercial version of BSR’s house-light
control technology X10, it could be Bluetooth or 802.11—it doesn’t matter. What
matters is that we have to be very careful what we turn off. It would cause great ire if
we turned off computer processors automatically—people often leave things running
overnight. It would be a matter of public safety if we ever turned off the building
emergency lighting.6

So we’ve come up with the design shown in Figure 8-1.

Figure 8-1. Classes for a building management system

8.3 Providing Callbacks via Interfaces | 251

The code for these data classes is not shown (it’s pretty trivial), but it’s in the oo/inter‐
faces directory of the online source. The top-level classes (i.e., BuildingLight and
Asset) are abstract classes. You can’t instantiate them, because they don’t have any
specific functionality. To ensure—both at compile time and at runtime—that we can
never switch off the emergency lighting, we need only ensure that the class represent‐
ing it, EmergencyLight, does not implement the PowerSwitchable interface.

Note that we can’t very well use direct inheritance here. No common ancestor class
includes both ComputerMonitor and RoomLights that doesn’t also include Computer
CPU and EmergencyLight. Use interfaces to define functionality in unrelated classes.

How we use these is demonstrated by the BuildingManagement class; this class is not
part of the hierarchy shown in Figure 8-1, but it uses a collection of Asset objects
from that hierarchy.

Items that can’t be switched must nonetheless be in the database, for various purposes
(auditing, insurance, etc.). In the method that turns things off, the code is careful to
check whether each object in the database is an instance of the PowerSwitchable
interface. If so, the object is casted to PowerSwitchable so that its powerDown()
method can be called. If not, the object is skipped, thus preventing any possibility of
turning out the emergency lights or shutting off a machine that is busy running
SETI@Home, downloading a big MP3 playlist, or performing system backups. The
following code shows this set of classes in action:

public class BuildingManagement {

 List<Asset> things = new ArrayList<>();

 /** Scenario: goodNight() is called from a timer Thread at 2200, or when
 * we get the "shutdown" command from the security guard.
 */
 public void goodNight() {
 things.forEach(obj -> {
 if (obj instanceof PowerSwitchable)
 ((PowerSwitchable)obj).powerDown();
 });
 }

 // tag::functional[]
 public void goodNightFunctional() {
 things.stream().filter(obj -> obj instanceof PowerSwitchable)
 .forEach(obj -> ((PowerSwitchable)obj).powerDown());
 }
 // end::functional[]

 // goodMorning() would be similar, but call each one's powerUp().

 /** Add a Asset to this building */
 public void add(Asset thing) {

252 | Chapter 8: Object-Oriented Techniques

 System.out.println("Adding " + thing);
 things.add(thing);
 }

 /** The main program */
 public static void main(String[] av) {
 BuildingManagement b1 = new BuildingManagement();
 b1.add(new RoomLights(101)); // control lights in room 101
 b1.add(new EmergencyLight(101)); // and emerg. lights.
 // add the computer on desk#4 in room 101
 b1.add(new ComputerCPU(10104));
 // and its monitor
 b1.add(new ComputerMonitor(10104));

 // time passes, and the sun sets...
 b1.goodNight();
 }
}

When you run this program, it shows all the items being added but only the Power
Switchable ones being switched off:

> java oo.interfaces.BuildingManagement
Adding RoomLights@2dc77f32
Adding EmergencyLight@2e3b7f32
Adding ComputerCPU@2e637f32
Adding ComputerMonitor@2f1f7f32
Dousing lights in room 101
Dousing monitor at desk 10104
>

8.4 Polymorphism/Abstract Methods
Problem
You want each of a number of subclasses to provide its own version of one or more
methods.

Solution
Make the method abstract in the parent class; this makes the compiler ensure that
each subclass implements it.

Discussion
A hypothetical drawing program uses a Shape subclass for anything that is drawn.
Shape has an abstract method called computeArea() that computes the exact area of
the given shape:

8.4 Polymorphism/Abstract Methods | 253

public abstract class Shape {
 protected int x, y;
 public abstract double computeArea();
}

A Rectangle subclass, for example, has a computeArea() that multiplies width times
height and returns the result:

public class Rectangle extends Shape {
 double width, height;
 public double computeArea() {
 return width * height;
 }
}

A Circle subclass returns πr2:

public class Circle extends Shape {
 double radius;
 public double computeArea() {
 return Math.PI * radius * radius;
 }
}

This system has a high degree of generality. In the main program, we can iterate over
a collection of Shape objects and—here’s the real beauty—call computeArea() on any
Shape subclass object without having to worry about what kind of shape it is. Java’s
polymorphic methods automatically call the correct computeArea() method in the
class of which the object was originally constructed:

main/src/main/java/oo//shapes/ShapeDriver.java
/** Part of a main program using Shape objects */
public class ShapeDriver {

 Collection<Shape> allShapes; // created in a Constructor, not shown

 /** Iterate over all the Shapes, getting their areas;
 * this cannot use the Java 8 Collection.forEach because the
 * variable total would have to be final, which would defeat the purpose :-)
 */
 public double totalAreas() {
 double total = 0.0;
 for (Shape s : allShapes) {
 total += s.computeArea();
 }
 return total;
 }

Polymorphism is a great boon for software maintenance: if a new subclass is added,
the code in the main program does not change. Further, all the code that is specific to,
say, polygon handling, is all in one place: in the source file for the Polygon class. This

254 | Chapter 8: Object-Oriented Techniques

6 For Java folks not that familiar with C/C++, C is the older, non-OO language; C++ is an OO derivative of C;
and Java is in part a portable, more strongly typesafe derivative of C++.

is a big improvement over older languages, where type fields in a structure were used
with case or switch statements scattered all across the software. Java makes software
more reliable and maintainable with the use of polymorphism.

8.5 Using Typesafe Enumerations
Problem
You need to manage a small list of discrete values within a program.

Solution
Use the Java enum mechanism.

Discussion
To enumerate means to list all the values. You often know that a small list of possible
values is all that’s wanted in a variable, such as the months of the year, the suits or
ranks in a deck of cards, or the primary and secondary colors. The C programming
language provided an enum keyword:

enum { BLACK, RED, ORANGE} color;

Java was criticized in its early years for its lack of enumerations, which many develop‐
ers have wished for. Many have had to develop custom classes to implement the type‐
safe enumeration pattern.

But C enumerations are not typesafe; they simply define constants that can be used in
any integer context. For example, this code compiles without warning, even on gcc 3
with -Wall (all warnings), whereas a C++ compiler catches the error:6

enum { BLACK, RED, ORANGE} color;
enum { READ, UNREAD } state;

/*ARGSUSED*/
int main(int argc, char *argv[]) {
 color = RED;
 color = READ; // In C this will compile, give bad results
 return 0;
}

To replicate this mistake in Java, one needs only to define a series of final int val‐
ues; it will still not be typesafe. By typesafe I mean that you cannot accidentally use
values other than those defined for the given enumeration. The definitive statement

8.5 Using Typesafe Enumerations | 255

on the typesafe enumeration pattern is probably the version defined in item 21 of
Joshua Bloch’s book Effective Java (Addison-Wesley). All modern Java versions
include enumerations in the language; it is no longer necessary to use the code from
Bloch’s book. Bloch was one of the authors of the Typesafe Enumeration specification
(enum keyword), so you can be sure that Java now does a good job of implementing
his pattern. These enums are implemented as classes, subclassed (transparently, by the
compiler) from the class java.lang.Enum. Unlike C, and unlike a series of final
ints, Java typesafe enumerations have the following qualities:

• They are printable (they print as the name, not as an underlying int implementa‐
tion).

• They are almost as fast as int constants, but the code is more readable.
• They can be easily iterated over.
• They use a separate namespace for each enum type, which means you don’t have

to prefix each with some sort of constant name, like ACCOUNT_SAVINGS,
ACCOUNT_CHECKING, etc.

Enum constants are not compiled into clients, giving you the freedom to reorder the
constants within your enum without recompiling the client classes. That does not
mean you should, however; think about the case where objects that use them have
been persisted, and the person designing the database mapping used the numeric val‐
ues of the enums. Bad idea to reorder then!

Additionally, an enum type is a class, so it can, for example, implement arbitrary inter‐
faces; and you can add constructors, fields, and methods to an enum class.

Compared to Bloch’s Typesafe Enum pattern in the book:

• Java enums are simpler to use and more readable (those in the book require a lot
of methods, making them cumbersome to write).

• Enums can be used in switch statements.

So there are many benefits and few pitfalls.

The enum keyword is at the same level as the keyword class in declarations. That is,
an enum may be declared in its own file with public or default access. It may also be
declared inside classes, much like nested or inner classes (see Recipe 8.2). Media.java,
shown in Example 8-1, is a code sample showing the definition of a typesafe enum.

256 | Chapter 8: Object-Oriented Techniques

Example 8-1. structure/Media.java

public enum Media {
 BOOK, MUSIC_CD, MUSIC_VINYL, MOVIE_VHS, MOVIE_DVD;
}

Notice that an enum class is a class; see what javap thinks of the Media class:

C:> javap Media
Compiled from "Media.java"
public class Media extends java.lang.Enum{
 public static final Media BOOK;
 public static final Media MUSIC_CD;
 public static final Media MUSIC_VINYL;
 public static final Media MOVIE_VHS;
 public static final Media MOVIE_DVD;
 public static final Media[] values();
 public static Media valueOf(java.lang.String);
 public Media(java.lang.String, int);
 public int compareTo(java.lang.Enum);
 public int compareTo(java.lang.Object);
 static {};
}
C:>

Product.java, shown in Example 8-2, is a code sample that uses the Media enum.

Example 8-2. main/src/main/java/structure/Product.java

public class Product {
 String title;
 String artist;
 Media media;

 public Product(String artist, String title, Media media) {
 this.title = title;
 this.artist = artist;
 this.media = media;
 }

 @Override
 public String toString() {
 switch (media) {
 case BOOK:
 return title + " is a book";
 case MUSIC_CD:
 return title + " is a CD";
 case MUSIC_VINYL:
 return title + " is a relic of the age of vinyl";
 case MOVIE_VHS:
 return title + " is on old video tape";
 case MOVIE_DVD:

8.5 Using Typesafe Enumerations | 257

 return title + " is on DVD";
 default:
 return title + ": Unknown media " + media;
 }
 }
}

In Example 8-3, MediaFancy shows how operations (methods) can be added to enu‐
merations; the toString() method is overridden for the Book value of this enum.

Example 8-3. main/src/main/java/structure/MediaFancy.java

/** An example of an enum with method overriding */
public enum MediaFancy {
 /** The enum constant for a book, with a method override */
 BOOK {
 public String toString() { return "Book"; }
 },
 /** The enum constant for a Music CD */
 MUSIC_CD,
 /** ... */
 MUSIC_VINYL,
 MOVIE_VHS,
 MOVIE_DVD;

 /** It is generally disparaged to have a main() in an enum;
 * please forgive this tiny demo class for doing so.
 */
 public static void main(String[] args) {
 MediaFancy[] data = { BOOK, MOVIE_DVD, MUSIC_VINYL };
 for (MediaFancy mf : data) {
 System.out.println(mf);
 }
 }
}

Running the MediaFancy program produces this output:

Book
MOVIE_DVD
MUSIC_VINYL

That is, the Book values print in a user-friendly way compared to the default way the
other values print. In real life you’d want to extend this to all the values in the enum.

Finally, EnumList, in Example 8-4, shows how to list all the possible values that a
given enum can take on; simply iterate over the array returned by the enumeration
class’s inherited values() method.

258 | Chapter 8: Object-Oriented Techniques

Example 8-4. structure/EnumList.java

public class EnumList {
 enum State {
 ON, OFF, UNKNOWN
 }
 public static void main(String[] args) {
 for (State i : State.values()) {
 System.out.println(i);
 }
 }
}

The output of the EnumList program is this, of course:

ON
OFF
UNKNOWN

8.6 Avoiding NPEs with Optional
Problem
You worry about null references causing a NullPointerException (NPE) in your
code.

Solution
Use java.util.Optional.

Discusssion
The developer who invented the notion of null pointers, and a key early contributor
to our discipline, has described the null reference as “my billion-dollar mistake”.
However, use of null is not going away anytime soon.

What we can do is make clear that we worry about null pointers in certain contexts.
For this purpose, Java 8 introduced the class java.util.Optional. The Optional is
an object wrapper around a possibly-null object reference. The Optional wrapper has
a long history; a similar construct is found in LLVM’s ADT, where its Optional
describes itself in turn as “in the spirit of OCaml’s opt variant.”

Optionals can be created with one of the creational methods:

Optional.empty()

Returns an empty optional

8.6 Avoiding NPEs with Optional | 259

https://en.wikipedia.org/wiki/Tony_Hoare

Optional.of(T obj)

Returns a nonempty optional containing the given value

Optional.ofNullable(T obj)

Returns either an empty optional or one containing the given value

The basic operation of this class is to behave in one of two ways, depending on
whether it is full or empty. Optional objects are immutable, so they cannot transition
from one state to the other.

The simplest use is to invoke isEmpty() or its opposite isPresent() and use pro‐
gram logic to behave differently. This is not much different from using an if state‐
ment to check for null, but it puts the choice in front of you, making it less likely that
you’ll forget to check:

jshell> Optional<String> opt = Optional.of("What a day!");
opt ==> Optional[What a day!]

jshell> if (opt.isPresent()) {
 ...> System.out.println("Value is " + opt.get());
 ...> } else {
 ...> System.out.println("Value is not present.");
 ...> }
Value is What a day!

A better form would use the orElse method:

jshell> System.out.println("Value is " + opt.orElse("not present"));
Value is What a day!

A useful use case is that of passing values into methods. The object can be wrapped in
an Optional either before it is passed to a method or after; the latter is useful when
migrating from code that didn’t use Optional from the start. The Item demo in
Example 8-5 might represent part of a shipments tracking program, a lending library
manager, or anything else that has time-related data which might be missing.

Example 8-5. main/src/main/java/oo/OptionalDemo.java

 List.of(
 new Item("Item 1", LocalDate.now().plusDays(7)),
 new Item("Item 2")).
 forEach(System.out::println);
 static class Item {
 String name;
 Optional<LocalDate> dueDate;
 Item(String name) {
 this(name, null);
 }
 Item(String name, LocalDate dueDate) {
 this.name = name;

260 | Chapter 8: Object-Oriented Techniques

 this.dueDate = Optional.ofNullable(dueDate);
 }

 public String toString() {
 return String.format("%s %s", name,
 dueDate.isPresent() ?
 "Item is due on " + dueDate.get() :
 "Sorry, do not know when item is due");
 }
 }

There are methods that throw exceptions, that return null, and so on. There are also
methods for interacting with the Streams mechanism (see Recipe 9.3). A full list of
Optional’s methods is at the start of the javadoc page.

8.7 Enforcing the Singleton Pattern
Problem
You want to be sure there is only one instance of your class in a given Java Virtual
Machine, or at least within your application.

Solution
There are several methods of making your class enforce the Singleton pattern:

• Enum implementation
• Having only a private constructor (or multiple) and a getInstance() method
• Use a framework such as Spring or CDI (Recipe 8.9) configured to give

Singleton-style instantiation of plain classes

Discussion
It is often useful to ensure that only one instance of a class gets created, usually to
funnel all requests for some resource through a single point. An example of a Single‐
ton from the standard API is java.lang.Runtime: you cannot create instances of Run
time; you simply ask for a reference by calling the static method Runtime.getRun
time(). Singleton is also an example of a design pattern that can be easily imple‐
mented. In all forms, the point of the Singleton implementation is to provide an
instance in which certain methods can run, typically to control access to some
resource.

The easiest implementation uses a Java enum to provide Singleton-ness. The enum
mechanism already guarantees that only one instance of each enum constant will

8.7 Enforcing the Singleton Pattern | 261

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/Optional.html

exist in a given JVM context, so this technique piggy-backs on that, as shown in
Example 8-6.

Example 8-6. main/src/main/java/oo/EnumSingleton.java

public enum EnumSingleton {

 INSTANCE;

 // instance methods protected by singleton-ness would be here...

 /** A simple demo method */
 public String demoMethod() {
 return "demo";
 }
}

Using it is simple:

 // Demonstrate the enum method:
 EnumSingleton.INSTANCE.demoMethod();

The next easiest implementation consists of a private constructor and a field to hold
its result, as well as a static accessor method with a name like getInstance().

The private field can be assigned from within a static initializer block or, more simply,
by using an initializer. The getInstance() method (which must be public) then sim‐
ply returns this instance:

public class Singleton {

 /**
 * Static Initializer is run before class is available to code, avoiding
 * broken anti-pattern of lazy initialization in instance method.
 * For more complicated construction, could use static block initializer.
 */
 private static Singleton instance = new Singleton();

 /** A private Constructor prevents any other class from instantiating. */
 private Singleton() {
 // nothing to do this time
 }

 /** Static 'instance' method */
 public static Singleton getInstance() {
 return instance;
 }

 // other methods protected by singleton-ness would be here...

 /** A simple demo method */

262 | Chapter 8: Object-Oriented Techniques

 public String demoMethod() {
 return "demo";
 }
}

Note that the method of using lazy evaluation in the getInstance() method (as in
Design Patterns) is not necessary in Java because Java already uses lazy loading. Your
Singleton class will probably not get loaded until its getInstance() is called, so
there is no point in trying to defer the Singleton construction until it’s needed by
having getInstance() test the singleton variable for null and creating the singleton
there.

Using this class is equally simple: simply get the instance reference, and invoke meth‐
ods on it:

 // Demonstrate the codeBased method:
 Singleton.getInstance().demoMethod();

Some commentators believe that a code-based Singleton should also provide a public
final clone() method that just throws an exception, in order to avoid subclasses
that cheat and clone() the Singleton. However, it is clear that a class with only a pri‐
vate constructor cannot be subclassed, so this paranoia does not appear to be
necessary.

See Also
The Collections class in java.util has methods singletonList(), singleton
Map(), and singletonSet(), which give out an immutable List, Map, or Set, respec‐
tively, containing only the one object that is passed to the method. This does not, of
course, convert the object into a Singleton in the sense of preventing that object from
being cloned or other instances from being constructed.

See page 127 of the original Design Patterns book.

8.8 Roll Your Own Exceptions
Problem
You’d like to use an application-specific exception class or two.

Solution
Go ahead and subclass Exception or RuntimeException.

8.8 Roll Your Own Exceptions | 263

Discussion
In theory, you could subclass Throwable directly, but that’s considered rude. You nor‐
mally subclass Exception (if you want a checked exception) or RuntimeException (if
you want an unchecked exception). Checked exceptions are those that an application
developer is required to catch or throw upward by listing them in the throws clause
of the invoking method.

When subclassing either of these, it is customary to provide at least these
constructors:

• A no-argument constructor
• A one-string argument constructor
• A two-argument constructor—a string message and a Throwable cause

The cause will appear if the code receiving the exception performs a stack trace oper‐
ation on it, with the prefix “Root Cause is” or similar. Example 8-7 shows these three
constructors for an application-defined exception, ChessMoveException.

Example 8-7. main/src/main/java/oo/ChessMoveException.java

/** A ChessMoveException is thrown when the user makes an illegal move. */
public class ChessMoveException extends Exception {

 private static final long serialVersionUID = 802911736988179079L;

 public ChessMoveException () {
 super();
 }

 public ChessMoveException (String msg) {
 super(msg);
 }

 public ChessMoveException(String msg, Exception cause) {
 super(msg, cause);
 }
}

See Also
The javadoc documentation for Exception lists a large number of subclasses; you
might look there first to see if there is one you can use.

264 | Chapter 8: Object-Oriented Techniques

8.9 Using Dependency Injection
Problem
You want to avoid excessive coupling between classes, and you want to avoid exces‐
sive code dedicated to object creation/lookup.

Solution
Use a dependency injection framework.

Discussion
A dependency injection framework allows you to have objects passed in to your code
instead of making you either create them explicitly (which ties your code to the
implementing class name, since you’re calling the constructor) or looking for them
(which requires use of a possibly cumbersome lookup API, such as JNDI, the Java
Naming and Directory Interface).

Three of the best-known dependency injection frameworks are the Spring Frame‐
work, the Java Enterprise Edition’s Context and Dependency Injection (CDI), and
Google Guice. Suppose we have three classes, a Model, a View, and a Controller,
implementing the traditional MVC pattern. Given that we may want to have different
versions of some of these, especially the View, we’ll define Java interfaces for simple
versions of the Model (in Example 8-8) and View (in Example 8-9).

Example 8-8. MVC Model interface

public interface Model {
 String getMessage();
}

Example 8-9. main/src/main/java/di/View.java (MVC View interface)

public interface View {

 void displayMessage();

}

The implementations of these are not shown, because they’re so trivial, but they are
online. The Controller in this example is a main program, no interface needed. First,
let’s see a version of the main program not using dependency injection. Obviously the
View requires the Model, to get the data to display:

main/src/main/java/di/ControllerTightlyCoupled.java

8.9 Using Dependency Injection | 265

http://springframework.org
http://springframework.org
http://docs.oracle.com/javaee/6/tutorial/doc/giwhl.html
http://code.google.com/p/google-guice

public class ControllerTightlyCoupled {

 public static void main(String[] args) {
 Model m = new SimpleModel();
 ConsoleViewer v = new ConsoleViewer();
 v.setModel(m);
 v.displayMessage();
 }
}

Here we have four tasks to undertake:

1. Create the Model.
2. Create the View.
3. Tie the Model into the View.
4. Ask the View to display some data.

Now a version using dependency injection:

main/src/main/java/di/spring/MainAndController.java - Spring Controller
public class MainAndController {

 public static void main(String[] args) {
 ApplicationContext ctx =
 new AnnotationConfigApplicationContext("di.spring");
 View v = ctx.getBean("myView", View.class);
 v.displayMessage();
 ((AbstractApplicationContext) ctx).close();
 }
}

In this version, we have only three tasks:

1. Set up the Spring context, which provides the dependency injection framework.
2. Get the View from the context; it already has the Model set into it!
3. Ask the View to display some data.

Furthermore, we don’t depend on particular implementations of the interface.

How does Spring know to inject, or provide, a Model to the View? And how does it
know what code to use for the View? There might be multiple implementations of the
View interface. Of course we have to tell it these things, which we’ll do here with
annotations:

@Named("myView")
public class ConsoleViewer implements View {

 Model messageProvider;

266 | Chapter 8: Object-Oriented Techniques

 @Override
 public void displayMessage() {
 System.out.println(messageProvider.getMessage());
 }

 @Resource(name="myModel")
 public void setModel(Model messageProvider) {
 this.messageProvider = messageProvider;
 }

}

While Spring has provided its own annotations, it will also accept the Java standard
@javax.annotation.Resource annotation for injection and @java.inject.Named to
specify the injectee.

Due to the persistence of information on the web, if you do a web search for Spring
Injection, you will probably find zillions of articles that refer to the older Spring 2.x
way of doing things, which is to use an XML configuration file. You can still use this,
but modern Spring practice is generally to use Java annotations to configure the
dependencies.

Annotations are also used in the Java Enterprise Edition Contexts and Dependency
Injection (CDI). Although this is most widely used in web applications, we’ll reuse
the same example, using the open source Weld implementation of CDI. CDI is quite a
bit more powerful than Spring’s DI; because in CDI we don’t even need to know the
class from which a resource is being injected, we don’t even need the interfaces from
the Spring example! First, the Controller, or main program, which requires a Weld-
specific import or two because CDI was originally designed for use in enterprise
applications:

public class MainAndController {
 public static void main(String[] args) {
 final Instance<Object> weldInstance = new Weld().initial
ize().instance();
 weldInstance.select(ConsoleViewer.class).get().displayMessage();
 }
}

The View interface is shared between both implementations. The ConsoleViewer
implementation is similar too, except it isn’t coupled to the Model; it just asks to have
a String injected. In this simple example there is only one String in the application;
in a larger app you would need one additional annotation to specify which string to
inject. Here is the CDI ConsoleViewer:

public class ConsoleViewer implements View {
 @Inject @MyModel
 private String message;

8.9 Using Dependency Injection | 267

 @Override
 public void displayMessage() {
 System.out.println(message);
 }
}

Where does the injected String come from? From the Model, as before:

main/src/main/java/di/cdi/ModelImpl.java
public class ModelImpl {

 public @Produces @MyModel String getMessage(InjectionPoint ip)
 throws IOException {

 ResourceBundle props = ResourceBundle.getBundle("messages");
 return props.getString(
 ip.getMember().getDeclaringClass().getSimpleName() + "." +
 ip.getMember().getName());
 }
}

See Also
Spring DI, Java EE CDI, and Guice all provide powerful dependency injection. Spring’s
is more widely used; Java EE’s has the same power and is built into every EE con‐
tainer. All three can be used standalone or in a web application, with minor varia‐
tions. In the EE, Spring provides special support for web apps, and in EE containers,
CDI is already set up so that the first statement in the CDIMain example is not needed
in an EE app. There are many books on Spring. One book specifically treats Weld:
JBoss Weld CDI for Java Platform by Ken Finnegan (O’Reilly).

8.10 Program: Plotter
Not because it is very sophisticated, but because it is simple, this program serves as an
example of some of the things we’ve covered in this chapter, and also, in its subclasses,
provides a springboard for other discussions. This class describes a series of old-
fashioned (i.e., common in the 1970s and 1980s) pen plotters. A pen plotter, in case
you’ve never seen one, is a device that moves a pen around a piece of paper and draws
things. It can lift the pen off the paper or lower it, and it can draw lines, letters, and so
on. Before the rise of laser printers and ink-jet printers, pen plotters were the domi‐
nant means of preparing charts of all sorts, as well as presentation slides (this was, ah,
well before the rise of programs like Harvard Presents and Microsoft PowerPoint).
Today, few, if any, companies still manufacture pen plotters, but I use them here
because they are simple enough to be well understood from this brief description.
Today’s 3D printers may be thought of as representing a resurgence of the pen plotter
with just one additional axis of motion. And a fancier pen.

268 | Chapter 8: Object-Oriented Techniques

http://shop.oreilly.com/product/9781782160182.do

I’ll present a high-level class that abstracts the key characteristics of a series of such
plotters made by different vendors. It would be used, for example, in an analytical or
data-exploration program to draw colorful charts showing the relationships found in
data. But I don’t want my main program to worry about the gory details of any partic‐
ular brand of plotter, so I’ll abstract into a Plotter class, whose source is as follows:

main/src/main/java/plotter/Plotter.java
/**
 * Plotter abstract class. Must be subclassed
 * for X, DOS, Penman, HP plotter, etc.
 *
 * Coordinate space: X = 0 at left, increases to right.
 * Y = 0 at top, increases downward (same as AWT).
 *
 * @author Ian F. Darwin
 */
public abstract class Plotter {
 public final int MAXX = 800;
 public final int MAXY = 600;
 /** Current X co-ordinate (same reference frame as AWT!) */
 protected int curx;
 /** Current Y co-ordinate (same reference frame as AWT!) */
 protected int cury;
 /** The current state: up or down */
 protected boolean penUp;
 /** The current color */
 protected int penColor;

 Plotter() {
 penUp = true;
 curx = 0; cury = 0;
 }
 abstract void rmoveTo(int incrx, int incry);
 abstract void moveTo(int absx, int absy);
 abstract void penUp();
 abstract void penDown();
 abstract void penColor(int c);

 abstract void setFont(String fName, int fSize);
 abstract void drawString(String s);

 /* Concrete methods */

 /** Draw a box of width w and height h */
 public void drawBox(int w, int h) {
 penDown();
 rmoveTo(w, 0);
 rmoveTo(0, h);
 rmoveTo(-w, 0);
 rmoveTo(0, -h);
 penUp();

8.10 Program: Plotter | 269

 }

 /** Draw a box given an AWT Dimension for its size */
 public void drawBox(java.awt.Dimension d) {
 drawBox(d.width, d.height);
 }

 /** Draw a box given an AWT Rectangle for its location and size */
 public void drawBox(java.awt.Rectangle r) {
 moveTo(r.x, r.y);
 drawBox(r.width, r.height);
 }

 /** Show the current location; useful for
 * testing, if nothing else.
 */
 public Point getLocation() {
 return new Point(curx, cury);
 }
}

Note the variety of abstract methods. Those related to motion, pen control, or draw‐
ing are left abstract, due to the number of different ways of implementing motion on
radically different devices. However, the method for drawing a rectangle (drawBox)
has a default implementation, which simply puts the currently selected pen onto the
paper at the last-moved-to location, draws the four sides, and raises the pen. Sub‐
classes for smarter plotters will likely override this method, but subclasses for less-
evolved plotters will probably use the default version. This method also has two over‐
loaded convenience methods for cases where the client has an AWT Dimension for
the size or an AWT Rectangle for the location and size.

To demonstrate one of the subclasses of this program, consider the following simple
driver program. This is intended to simulate a larger graphics application such as
gnuplot. The Class.forName() near the beginning of main is discussed in Recipe
17.2; for now, you can take my word that it simply creates an instance of the given
subclass, which we store in a Plotter reference named r and use to draw the plot:

main/src/main/java/plotter/PlotDriver.java
public class PlotDriver {

 /** Construct a Plotter driver, and try it out. */
 public static void main(String[] argv) {
 Plotter r ;
 if (argv.length != 1) {
 System.err.println("Usage: PlotDriver driverclass");
 return;
 }
 try {
 Class<?> c = Class.forName(argv[0]);

270 | Chapter 8: Object-Oriented Techniques

 Object o = c.newInstance();
 if (!(o instanceof Plotter))
 throw new ClassNotFoundException("Not instanceof Plotter");
 r = (Plotter)o;
 } catch (ClassNotFoundException e) {
 System.err.println("Sorry, class " + argv[0] +
 " not a plotter class");
 return;
 } catch (Exception e) {
 e.printStackTrace();
 return;
 }
 r.penDown();
 r.penColor(1);
 r.moveTo(200, 200);
 r.penColor(2);
 r.drawBox(123, 200);
 r.rmoveTo(10, 20);
 r.penColor(3);
 r.drawBox(123, 200);
 r.penUp();
 r.moveTo(300, 100);
 r.penDown();
 r.setFont("Helvetica", 14);
 r.drawString("Hello World");
 r.penColor(4);
 r.drawBox(10, 10);
 }
}

We don’t show any actual subclasses of this Plotter class in upcoming chapters, how‐
ever there is a PlotterAWT proof-of-concept in the same source folder, and one could
implement this for PostScript, PDF, or other output technologies.

8.10 Program: Plotter | 271

6 Haskell was used to write a fairly complete Twitter clone in a few hundred lines; see https://github.com/
Gabriel439/simple-twitter.

CHAPTER 9

Functional Programming Techniques:
Functional Interfaces, Streams,

and Parallel Collections

9.0 Introduction
Java is an Object-Oriented (OO) language. You know what that is. Functional Pro‐
gramming (FP) has been attracting attention lately. There may not be quite as many
definitions of FP as there are FP languages, but it’s close. Wikipedia’s definition of
functional programming is as follows (from https://en.wikipedia.org/wiki/Func
tional_programming, viewed December 2013):

a programming paradigm, a style of building the structure and elements of computer
programs, that treats computation as the evaluation of mathematical functions and
avoids state and mutable data. Functional programming emphasizes functions that
produce results that depend only on their inputs and not on the program state—i.e.
pure mathematical functions. It is a declarative programming paradigm, which means
programming is done with expressions. In functional code, the output value of a func‐
tion depends only on the arguments that are input to the function, so calling a function
f twice with the same value for an argument x will produce the same result f(x) both
times. Eliminating side effects, i.e. changes in state that don’t depend on the function
inputs, can make it much easier to understand and predict the behavior of a program,
which is one of the key motivations for the development of functional programming.

How can we benefit from the FP paradigm? One way would be to switch to using an
FP language; some of the leading ones are Haskell,6 Idris, Ocaml, Erlang, Julia, and

273

https://github.com/Gabriel439/simple-twitter
https://github.com/Gabriel439/simple-twitter
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming

the LISP family. But most of those would require walking away from the Java ecosys‐
tem. You could consider using Scala or Clojure, JVM-based languages that provide
functional programming support in the context of an OO language. And there is Kot‐
lin, the latest Java-like language for the JVM.

But this is the Java Cookbook, so you can imagine we’re going to try to get as many
benefits of functional programming as we can while remaining in the Java language.
Some features of FP include the following:

• Pure functions having no side effects and whose results depend only on their
inputs and not on mutable state elsewhere in the program

• First-class functions (e.g., functions as data)
• Immutable data
• Extensive use of recursion and lazy evaluation

Pure functions are completely self-contained; their operation depends only on the
input parameters and internal logic, not on any variable state in other parts of the
program—indeed, there are no global variables, only global constants. Although this
can be hard to accept for those schooled in imperative languages like Java, it does
make it much easier to test and ensure program correctness! It means that, no matter
what else is going on in the program (even with multiple threads), a method call like
computeValue(27) will always, unconditionally, return the same value every time
(with exceptions, of course, for things like the current time, random seeds, etc., which
are global state).

We’ll use the terms function and method interchangeably in this chapter, although it’s
not strictly correct. FP people use the term function in the mathematical function
sense, whereas in Java methods just means some code you can call (a Java method call
is also referred to as a message being sent to an object, in the OO view of things).

Functions as data means that you can create an object that is a function, pass it into
another function, write a function that returns another function, and so on—with no
special syntax, because, well, functions are data.

One of Java’s approaches to FP is the definition of functional interfaces. A functional
interface in Java is one that has only one abstract method, such as the widely used
Runnable, whose only method is run(), or the common Swing action handler Action
Listener, whose only method is actionPerformed(ActionEvent). Actually, also new
in Java 8, interfaces can have methods annotated with the new-in-this-context
default keyword. A default method in an interface becomes available for use in any
class that implements the interface. Such methods cannot depend on instance state in
a particular class because they would have no way of referring to it at compile time.

274 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

http://www.scala-lang.org
http://clojure.org
https://kotlinlang.org
https://kotlinlang.org

So a functional interface is more precisely defined as one that has a single nondefault
method. You can do functional-style programming in Java if you use functional inter‐
faces and if you restrict code in your methods to not depending on any nonfinal
instance or class fields; using default methods is one way of achieving this. The first
few recipes in this chapter discuss functional interfaces.

Another Java approach to functional-ness is lambda expressions. A lambda is an
expression of a functional interface, and it can be used as data (i.e., assigned,
returned, etc.). Just to give a couple of short examples for now:

ActionListener x = e -> System.out.println("You activated " + e.getSource());

public class RunnableLambda {

 public static void main(String[] args) {
 threadPool.submit(() -> System.out.println("Hello from a thread"));

Immutable data is easy in theory: just have a class with only read accessors (“get”
methods). The standard String class, for example, is immutable: methods like sub
string() or toUpperCase() don’t change the original string, but make up new string
objects with the requested change. Yet strings are universally used, and useful. Enums
are also implicitly immutable. There is a proposal to add a new kind of class-like
object called a record in Java 14 or 15. records are implicitly immutable; the com‐
piler generates “get” methods for the fields (along with a constructor and the three
common Object methods), but not “set” methods.

Also new in Java 8 is the notion of Stream classes. A Stream is like a pipeline that you
can feed into, fan out, collect down—like a cross between the Unix notion of pipe‐
lines and Google’s distributed programming concept of MapReduce, as exemplified in
Hadoop, but running in a single VM, a single program. Streams can be sequential or
parallel; the latter are designed to take advantage of the massive parallelism that is
happening in hardware design (particularly servers, where 12- and 16-core process‐
ors are popular). We discuss Streams in several recipes in this chapter.

If you’re familiar with Unix pipes and filters, this equivalence will make sense to you;
if not, you can skip it for now. The Unix command is this:

cat lines.txt | sort | uniq | wc -l

The Java Streams equivalent is this:

jshell> long numberLines =
 new BufferedReader(
 new FileReader("lines.txt")).lines().sorted().distinct().count();
numberLines ==> 5

These commands are written out in more idiomatic Java in Example 9-1. Both
approaches give the same answer. For small inputs, the Unix pipeline is faster; but for
larger volumes, the Java one should be faster, especially when parallelized.

9.0 Introduction | 275

http://hadoop.apache.org

Example 9-1. main/src/main/java/functional/UnixPipesFiltersReplacement.java

 long numberLines = Files.lines(Path.of(("lines.txt")))
 .sorted()
 .distinct()
 .count();
 System.out.printf("lines.txt contains " + numberLines + " unique lines.");

Tied in with Streams is the notion of a Spliterator, a derivative (logically, not by
inheritance) of the familiar Iterator but designed for use in parallel processing.
Most users will not be expected to develop their own Spliterator and will likely not
even call its methods directly very often, so we do not discuss them in detail.

See Also
For general information on functional programming, see the book Functional Think‐
ing by Neal Ford (O’Reilly).

There is an entire book dedicated to lambda expressions and related tools, Richard
Warburton’s Java 8 Lambdas (O’Reilly).

9.1 Using Lambdas/Closures Instead of Inner Classes
Problem
You want to avoid all the typing that even the anonymous style of inner class requires.

Solution
Use Java’s lambda expressions.

Discussion
The symbol lambda (λ) is the 11th letter of the Greek alphabet and thus as old as
Western society. The Lambda calculus is about as old as our notions of computing. In
this context, Lambda expressions are small units of calculation that can be referred to.
They are functions as data. In that sense, they are a lot like anonymous inner classes,
though it’s probably better to think of them as anonymous methods. They are essen‐
tially used to replace inner classes for a functional interface—that is, an interface with
one abstract method (function) in it. A very common example is the AWT ActionLis
tener interface, widely used in GUI code, whose only method is this one:

public void actionPerformed(ActionEvent);

Using lambdas is now the preferred method of writing for GUI action listeners. Here’s
a single example:

276 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

http://shop.oreilly.com/product/0636920029687.do
http://shop.oreilly.com/product/0636920029687.do
http://shop.oreilly.com/product/0636920030713.do
http://en.wikipedia.org/wiki/Lambda_calculus

6 If you ever have to do this kind of thing where the data is stored in a relational database using the Java Persis‐
tence API (JPA), you should check out the Spring Data or Apache DeltaSpike frameworks. These allow you to
define an interface with method names like findCameraByInterchangeableTrueAndPriceLessThan(double
price) and have the framework implement these methods for you.

7 If you’re just not that into cameras, the description “Interchangeable Lens Camera (ILC)” includes two cate‐
gories of what you might find in a camera store: traditional DSLR (Digital Single Lens Reflex) cameras, and
the newer category of “Compact System Cameras” like the Nikon 1 and Z series, Sony ILCE (formerly known
as NEX), and the Canon EOS-M, all of which are smaller and lighter than the older DSLRs.

quitButton.addActionListener(e -> shutDownApplication(0));

Because not everybody writes Swing GUI applications these days, let’s start with an
example that doesn’t require GUI programming. Suppose we have a collection of
camera model descriptor objects that has already been loaded from a database into
memory, and we want to write a general-purpose API for searching them, for use by
other parts of our application.

The first thought might be along the following lines:

public interface CameraInfo {
 public List<Camera> findByMake();
 public List<Camera> findByModel();
 ...
}

Perhaps you can already see the problem. You will also need to write findByPrice(),
findByMakeAndModel(), findByYearIntroduced(), and so on as your application
grows in complexity.

You could consider implementing a query by example method, where you pass in a
Camera object and all its nonnull fields are used in the comparison. But then how
would you implement finding cameras with interchangeable lenses under $500?6

So a better approach is probably to use a callback function to do the comparison.
Then you can provide an anonymous inner class to do any kind of searching you
need. You’d want to be able to write callback methods like this:

public boolean choose(Camera c) {
 return c.isIlc() && c.getPrice() < 500;
}

Accordingly, we’ll build that into an interface:7

/** An Acceptor accepts some elements from a Collection */
public interface CameraAcceptor {
 boolean choose(Camera c);
}

Now the search application provides a method:

public List<Camera> search(CameraAcceptor acc);

9.1 Using Lambdas/Closures Instead of Inner Classes | 277

https://spring.io/projects/spring-data
http://deltaspike.apache.org

which we can call with code like this:

results = searchApp.search(new CameraAcceptor() {
 public boolean choose(Camera c) {
 return c.isIlc() && c.getPrice() < 500;
 }
}

Or, if you were not comfortable with anonymous inner classes, you might have to
type this:

class MyIlcPriceAcceptor implements CameraAcceptor {
 public boolean choose(Camera c) {
 return c.isIlc() && c.getPrice() < 500;
 }
}
CameraAcceptor myIlcPriceAcceptor = nwq MyIlcPriceAcceptor();
results = searchApp.search(myIlcPriceAcceptor);

That’s really a great deal of typing just to get one method packaged up for sending
into the search engine. Java’s support for lambda expressions or closures was argued
about for many years (literally) before the experts agreed on how to do it. And the
result is staggeringly simple. One way to think of Java lambda expressions is that each
one is just a method that implements a functional interface. With lambda expres‐
sions, you can rewrite the preceding code as just:

results = searchApp.search(c -> c.isIlc() && c.getPrice() < 500);

The arrow notation -> indicates the code to execute. If it’s a simple expression as here,
you can just write it as shown. If there is conditional logic or other statements, you
have to use a block, as is usual in Java.

Here I just rewrite the search example to show it as a block:

results = searchApp.search(c -> {
 if (c.isIlc() && c.getPrice() < 500)
 return true;
 else
 return false;
});

The first c inside the parenthesis corresponds to Camera c in the explicitly imple‐
mented choose() method: you can omit the type because the compiler knows it! If
there is more than one argument to the method, you must parenthesize them. Sup‐
pose we had a compare method that takes two cameras and returns a quantitative
value (oh, and good luck trying to get two photographers to agree on that
algorithm!):

double goodness = searchApp.compare((c1, c2) -> {
 // write some amazing code here
});

278 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

This notion of lambdas seems pretty potent, and it is! You will see much more of this
in Java as Java 8 moves into the mainstream of computing.

Up to here, we still have to write an interface for each type of method that we want to
be able to lambda-ize. The next recipe shows some predefined interfaces that you can
use to further simplify (or at least shorten) your code.

And, of course, there are many existing interfaces that are functional, such as the
ActionListener interface from GUI applications. Interestingly, the IntelliJ IDE (see
Recipe 1.3) automatically recognizes inner class definitions that are replaceable by
lambdas and, when using code folding (the IDE feature of representing an entire
method definition with a single line), replaces the inner class with the corresponding
lambda! Figures 9-1 and 9-2 show a before-and-after picture of this code folding.

Figure 9-1. IntelliJ code unfolded

9.1 Using Lambdas/Closures Instead of Inner Classes | 279

Figure 9-2. IntelliJ code folded

9.2 Using Lambda Predefined Interfaces Instead
of Your Own
Problem
You want to use existing interfaces, instead of defining your own, for use with
Lambdas.

Solution
Use the Java 8 lambda functional interfaces from java.util.function.

Discussion
In Recipe 9.1, we used the interface method acceptCamera() defined in the interface
CameraAcceptor. Acceptor-type methods are quite common, so the package
java.util.function includes the Predicate<T> interface, which we can use instead
of CameraAcceptor. This interface has only one method—boolean test(T t):

interface Predicate<T> {
 boolean test(T t);
}

280 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

This package includes about 50 of the most commonly needed functional interfaces,
such as IntUnaryOperator, which takes one int argument and returns an int value;
LongPredicate, which takes one long and returns boolean; and so on.

To use the Predicate interface, as with any generic type, we provide an actual type
for the parameter Camera, giving us (in this case) the parameterized type Predi
cate<Camera>, which is the following (although we don’t have to write this out):

interface Predicate<Camera> {
 boolean test(Camera c);
}

So now our search application will be changed to offer us the following search
method:

public List<Camera> search(Predicate p);

Conveniently, this has the same signature as our own CameraAcceptor from the point
of view of the anonymous methods that lambdas implement, so the rest of our code
doesn’t have to change! This is still a valid call to the search() method:

results = searchApp.search(c -> c.isIlc() && c.getPrice() < 500);

Here is the implementation of the search method:

main/src/main/java/functional/CameraSearchPredicate.java
 public List<Camera> search(Predicate<Camera> tester) {
 List<Camera> results = new ArrayList<>();
 privateListOfCameras.forEach(c -> {
 if (tester.test(c))
 results.add(c);
 });
 return results;
 }

Suppose we only need the list to do one operation on each element, and then we’ll
discard it. Upon reflection, we don’t actually need to get the list back; we merely need
to get our hooks on each element that matches our Predicate in turn.

Roll Your Own Functional Interface
While the JDK provides a good set of functional interfaces, there may be cases where
you’d want to create your own. This is a simple example of a functional interface:

interface MyFunctionalInterface {
 int compute(int x);
}

9.2 Using Lambda Predefined Interfaces Instead of Your Own | 281

The @FunctionalInterface annotation tells the compiler to ensure that a given
interface is and remains functional. Its use is analogous to @Override (both annota‐
tions are in java.lang). It is always optional.

MyFunctionalInterface could be used to process an array of integers, like this:

public class ProcessIntsUsingFunctional {
 static int[] integers = {1, 2, 3};

 public static void main(String[] args) {
 int total = 0;
 for (int i : integers)
 total += process(i, x -> x * x + 1);
 System.out.println("The total is " + total);
 }

 private static int process(int i, MyFunctionalInterface o) {
 return o.compute(i);
 }
}

If compute were a nonfunctional interface—having multiple abstract methods—you
would not be able to use it in this fashion.

Sometimes, of course, you really do need an interface to have more than one method.
In that case, the illusion (or the effect) of functionality can sometimes be preserved by
denoting all but one of the methods with the default keyword—the nondefault
method will still be usable in lambdas. A default method has a method body:

public interface ThisIsStillFunctional {
 default int compute(int ix) { return ix * ix + 1 };
 int anotherMethod(int y);
}

Only default methods may contain executable statements, and there may only be one
nondefault method per functional interface.

By the way, the MyFunctionalInterface given earlier can be totally replaced by
java.util.function.IntUnaryOperator, changing the method name apply() to
applyAsInt(). There is a version of the ProcessInts program under the name Proc
essIntsIntUnaryOperator in the javasrc repository.

Default methods in interfaces can be used to produce mixins, as described in Recipe
9.7.

282 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

9.3 Simplifying Processing with Streams
Problem
You want to process some data through a pipeline-like mechanism.

Solution
Use a Stream class and its operations.

Discussion
Streams are a new mechanism introduced with Java 8 to allow a collection to send its
values out one at a time through a pipeline-like mechanism where they can be pro‐
cessed in various ways, with varying degrees of parallelism. There are three types of
methods involved with Streams:

• Stream-producing methods (see Recipe 7.3).
• Stream-passing methods, which operate on a Stream and return a reference to it,

in order to allow for fluent programming (chained methods calls); examples
include distinct(), filter(), limit(), map(), peek(), sorted(), and unsor
ted().

• Stream-terminating methods, which conclude a streaming operation; examples
include collect(), count(), findFirst(), max(), min(), reduce(), and sum().

In Example 9-2, we have a list of Hero objects representing superheroes through the
ages. We use the Stream mechanism to filter just the adult heroes and then sum their
ages. We use it again to sort the heroes’ names alphabetically.

In both operations we start with a stream generator (Arrays.stream()); we run it
through several steps, one of which involves a mapping operation (don’t confuse with
java.util.Map!) that causes a different value to be sent along the pipeline. The
stream is wrapped up by a terminal operation. The map and filter operations almost
invariably are controlled by a lambda expression (inner classes would be too tedious
to use in this style of programming!).

Example 9-2. main/src/main/java/functional/SimpleStreamDemo.java

 static Hero[] heroes = {
 new Hero("Grelber", 21),
 new Hero("Roderick", 12),
 new Hero("Francisco", 35),
 new Hero("Superman", 65),
 new Hero("Jumbletron", 22),

9.3 Simplifying Processing with Streams | 283

 new Hero("Mavericks", 1),
 new Hero("Palladin", 50),
 new Hero("Athena", 50) };

 public static void main(String[] args) {

 long adultYearsExperience = Arrays.stream(heroes)
 .filter(b -> b.age >= 18)
 .mapToInt(b -> b.age).sum();
 System.out.println("We're in good hands! The adult superheros have " +
 adultYearsExperience + " years of experience");

 List<Object> sorted = Arrays.stream(heroes)
 .sorted((h1, h2) -> h1.name.compareTo(h2.name))
 .map(h -> h.name)
 .collect(Collectors.toList());
 System.out.println("Heroes by name: " + sorted);
 }

And let’s run it to be sure it works:

We're in good hands! The adult superheroes have 243 years of experience
Heroes by name: [Athena, Francisco, Grelber, Jumbletron, Mavericks, Palladin,
 Roderick, Superman]

See the javadoc for the java.util.stream.Stream interface for a complete list of the
operations.

9.4 Simplifying Streams with Collectors
Problem
You construct Streams but they are complicated or inefficient.

Solution
Use Collectors.

Discussion
Example 9-2 ended the first half with a call to collect(). The argument to col
lect() is of type Collector, which this recipe considers in more detail. Collectors
are a form of what classical FP languages call folds. Folds are also called reduce, accu‐
mulate, aggregate, compress, or inject operations. A fold in functional programming
is a terminal operation, analogous to collapsing a whole string of tickets into a flat
pile (see Figure 9-3). The string of tickets represents the Stream, the folding operation
is represented by a function, and the final result is, well, the final result, all folded up.

284 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

It will often include a combining operation, analogous to counting the tickets as they
are folded.

Figure 9-3. Stream of tickets before folding, during folding, and after folding: a terminal
operation

Note that in the first panel of Figure 9-3 we don’t know how long the Stream is, but
we expect that it will terminate eventually.

Collector as used in Java refers to a terminal function that analyses/summarizes the
content of a Stream. Technically, Collector is an interface whose implementation is
specified by three (or four) functions that work together to accumulate entries into a
Collection or Map or other mutable result container, and optionally a final transform
on the result. The functions are as follows:

• Creating a new result container (the supplier())
• Adding a new data element into the result container (the accumulator())
• Combining two result containers into one (the combiner())
• Performing a final transform on the container (the finisher(), which is

optional)

While you can easily compose your own Collector implementation, it is often expe‐
dient to use one of the many useful ones predefined in the Collectors class. Here are
a couple of simple examples:

9.4 Simplifying Streams with Collectors | 285

int howMany = cameraList.stream().collect(Collectors.counting());
double howMuch = cameraList.filter(desiredFilter).
 collect(Collectors.summingDouble(Camera::getPrice);

In Example 9-3 I implement the classic word frequency count algorithm: take a text
file, break it into individual words, count the occurrence of each word, and list the n
most-used words, sorted by frequency in descending order.

In Unix terms this could be implemented (assuming n = 20) as:

prep $file | sort | uniq -c | sort -nr | head -20

where prep is a script that uses the Unix tool tr to break lines into words and turn
the words into lowercase.

Example 9-3. main/src/main/java/functional/WordFreq.java

package functional;

import java.io.*;
import java.nio.file.*;
import java.util.*;
import java.util.stream.*;

/**
 * Implement word frequency count, in two statements
 */
public class WordFreq {
 public static void main(String[] args) throws IOException {

 // 1) Collect words with a mutable reduction into Map<String,Long>.
 Map<String,Long> map = Files.lines(Path.of(args[0]))
 .flatMap(s -> Stream.of(s.split(" +")))
 .collect(Collectors.groupingBy(
 String::toLowerCase, Collectors.counting()));

 // 2) Print results sorted numerically descending, limit 20
 map.entrySet().stream()
 .sorted(Map.Entry.<String,Long>comparingByValue() .reversed())
 .limit(20)
 .map(entry -> String.format("%4d %s", entry.getValue(), entry.getKey()))
 .forEach(System.out::println);
 }
}

There are two steps. First, create a map of the words and their frequencies. Second,
sort these in reverse order, stop at number 20, and format them neatly and print.

The first part uses Files.lines() from Chapter 10 to get a Stream of Strings, which
is broken into individual words using the Stream method flatMap() combined with

286 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

the String method split() to break on one or more spaces. The result of that is col‐
lected into a map using a Collector. I had initially used a homemade collector:

.collect(HashMap::new, (m,s)->m.put(s, m.getOrDefault(s,0)+1), HashMap::putAll);

This form of collect() takes three arguments:

• A Supplier<R> or factory method to create an empty container; here I’m just
using the HashMap constructor.

• An accumulator of type BiConsumer<R,? super T> to add each element into the
map, adding one each time the same word is found.

• A Combiner of type BiConsumer<R,R> combiner) to combine all the collections
used.

In the case of parallel streams (see Recipe 9.5), the Supplier may be called multiple
times to create multiple containers, and each part of the Stream’s content will be han‐
dled by one Accumulator into one of the containers. The Combiner will merge all the
containers into one at the end of processing.

However, Sander Mak pointed out that it’s easier to use the existing Collectors
class’s predefined Collector groupingBy, combining the toLowerCase() call and the
collect() call with this:

.collect(Collectors.groupingBy(String::toLowerCase, Collectors.counting()));

To further simplify the code, you could combine the two statements into one, by
doing the following:

• Removing the return value and assignment Map<String,Long> =
• Removing the semicolon from the end of the collect call
• Removing the .map() from the entrySet() call

Then you can say you’ve implemented something useful in a single Java statement!

9.5 Improving Throughput with Parallel Streams and
Collections
Problem
You want to combine Streams with parallelism and still be able to use the non-thread-
safe Collections API.

9.5 Improving Throughput with Parallel Streams and Collections | 287

Solution
Use a parallel stream.

Discussion
The standard Collections classes, such as most List, Set, and Map implementations,
are not thread-safe for update; if you add or remove objects from one in one thread
while another thread is accessing the objects stored in the collection, failure will
result. Multiple threads reading from the same collection with no modification is OK.
We discuss multithreading in Chapter 16.

The Collections Framework does provide synchronized wrappers, which provide auto‐
matic synchronization but at the cost of adding thread contention, which reduces
parallelism. To enable efficient operations, parallel streams let you use the non-
thread-safe collections safely, as long as you do not modify the collection while you
are operating on it.

To use a parallel stream, you just ask the collection for it, using parallelStream()
instead of the stream() method we used in Recipe 9.3.

For example, suppose that our camera business takes off, and we need to find cam‐
eras by type and price range quickly (and with less code than we used before):

 public static void main(String[] args) {
 System.out.println("Search Results using For Loop");
 for (Object camera : privateListOfCameras.parallelStream().
 filter(c -> c.isIlc() && c.getPrice() < 500).
 toArray()) {
 System.out.println(camera);
 }

 System.out.println(
 "Search Results from shorter, more functional approach");
 privateListOfCameras.parallelStream().
 filter(c -> c.isIlc() && c.getPrice() < 500).
 forEach(System.out::println);
 }

Create a parallel stream from the List of Camera objects. The end result of the
stream will be iterated over by the foreach loop.

Filter the cameras on price, using the same Predicate lambda that we used in
Recipe 9.1.

Terminate the Stream by converting it to an array.

The body of the foreach loop: print one Camera from the Stream.

288 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

A more concise way of writing the search.

This is reliable as long as no thread is modifying the data at the
same time as the searching is going on. See the thread interlocking
mechanisms in Chapter 16 to see how to ensure this.

9.6 Using Existing Code as Functional with Method
References
Problem
You have existing code that matches a functional interface and want to use it without
renaming methods to match the interface name.

Solution
Use function references such as MyClass::myFunc or someObj::someFunc.

Discussion
The word reference is almost as overloaded in Java as the word Session. Consider the
following:

• Ordinary objects are usually accessed with references.
• Reference types such as WeakReference have defined semantics for garbage col‐

lection.
• And now, for something completely different, Java 8 lets you reference an indi‐

vidual method.
• You can even reference what Oracle documentation calls “an Instance Method of

an Arbitrary Object of a Particular Type.”

The new syntax consists of an object or class name, two colons, and the name of a
method that can be invoked in the context of the object or class name (as per the
usual rules of Java, a class name can refer to static methods and an instance can refer
to an instance method). To refer to a constructor as the method, you can use new—for
example, MyClass::new. The reference creates a lambda that can be invoked, stored
in a variable of a functional interface type, and so on.

In Example 9-4, we create a Runnable reference that holds, not the usual run method,
but a method with the same type and arguments but with the name walk. Note the
use of this as the object part of the method reference. We then pass this Runnable

9.6 Using Existing Code as Functional with Method References | 289

into a Thread constructor and start the thread, with the result that walk is invoked
where run would normally be.

Example 9-4. main/src/main/java/functional/ReferencesDemo.java

/** "Walk, don't run" */
public class ReferencesDemo {

 // Assume this is an existing method we don't want to rename
 public void walk() {
 System.out.println("ReferencesDemo.walk(): Stand-in run method called");
 }

 // This is our main processing method; it runs "walk" in a Thread
 public void doIt() {
 Runnable r = this::walk;
 new Thread(r).start();
 }

 // The usual simple main method to start things off
 public static void main(String[] args) {
 new ReferencesDemo().doIt();
 }
}

The output is as follows:

ReferencesDemo.walk(): Stand-in run method called

Example 9-5 creates an AutoCloseable for use in a try-with-resource. The normal
AutoCloseable method is close(), but ours is named cloz(). The AutoCloseable
reference variable autoCloseable is created inside the try statement, so its close-like
method will be called when the body completes. In this example, we are in a static
main method wherein we have a reference rnd2 to an instance of the class, so we use
this in referring to the AutoCloseable-compatible method.

Example 9-5. main/src/main/java/functional/ReferencesDemo2.java

public class ReferencesDemo2 {
 void cloz() {
 System.out.println("Stand-in close() method called");
 }

 public static void main(String[] args) throws Exception {
 ReferencesDemo2 rd2 = new ReferencesDemo2();

 // Use a method reference to assign the AutoCloseable interface
 // variable "ac" to the matching method signature "c" (obviously
 // short for close, but just to show the method name isn't what matters).
 try (AutoCloseable autoCloseable = rd2::cloz) {

290 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

 System.out.println("Some action happening here.");
 }
 }
}

The output is as follows:

Some action happening here.
Stand-in close() method called

It is, of course, possible to use this with your own functional interfaces, defined as in
“Roll Your Own Functional Interface” on page 281. You’re also probably at least
vaguely aware that any normal Java object reference can be passed to Sys
tem.out.println() and you’ll get some description of the referenced object.
Example 9-6 explores these two themes. We define a functional interface imagina‐
tively known as FunInterface with a method with a bunch of arguments (merely to
avoid it being mistaken for any existing functional interface). The method name is
process, but as you now know the name is not important; our implementation
method goes by the name work. The work method is static, so we could not state that
the class implements FunInterface (even if the method names were the same; a
static method may not hide an inherited instance method), but we can nonetheless
create a lambda reference to the work method. We then print this out to show that it
has a valid structure as a Java object.

Example 9-6. main/src/main/java/functional/ReferencesDemo3.java

public class ReferencesDemo3 {

 interface FunInterface {
 void process(int i, String j, char c, double d);
 }

 public static void work(int i, String j, char c, double d){
 System.out.println("Moo");
 }

 public static void main(String[] args) {
 FunInterface sample = ReferencesDemo3::work;
 System.out.println("My process method is " + sample);
 }
}

This generates the following output:

My process method is functional.ReferencesDemo3$$Lambda$1/713338599@4a574795

The Lambda$1 in the name is structurally similar to the “$1” used in anonymous inner
classes.

9.6 Using Existing Code as Functional with Method References | 291

The fourth way, “an Instance Method of an Arbitrary Object of a Particular Type,”
may be the most esoteric thing in all of Java 8. It allows you to declare a reference to
an instance method but without specifying which instance. Because there is no par‐
ticular instance in mind, you again use the class name. This means you can use it with
any instance of the given class! In Example 9-7, we have an array of Strings to sort.
Because the names in this array can begin with a lowercase letter, we want to sort
them using the String method compareToIgnoreCase(), which nicely ignores case
differences for us.

Because I want to show the sorting several different ways, I set up two array referen‐
cess, the original, unsorted one, and a working one that is re-created, sorted, and
printed using a simple dump routine, which isn’t shown (it’s just a for loop printing
the strings from the passed array).

Example 9-7. main/src/main/java/functional/ReferencesDemo4.java

import java.util.Arrays;
import java.util.Comparator;

public class ReferencesDemo4 {

 static final String[] unsortedNames = {
 "Gosling", "de Raadt", "Torvalds", "Ritchie", "Hopper"
 };

 public static void main(String[] args) {
 String[] names;

 // Sort using
 // "an Instance Method of an Arbitrary Object of a Particular Type"
 names = unsortedNames.clone();
 Arrays.sort(names, String::compareToIgnoreCase);
 dump(names);

 // Equivalent Lambda:
 names = unsortedNames.clone();
 Arrays.sort(names, (str1, str2) -> str1.compareToIgnoreCase(str2));
 dump(names);

 // Equivalent old way:
 names = unsortedNames.clone();
 Arrays.sort(names, new Comparator<String>() {
 @Override
 public int compare(String str1, String str2) {
 return str1.compareToIgnoreCase(str2);
 }
 });
 dump(names);

292 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

 // Simpest way, using existing comparator
 names = unsortedNames.clone();
 Arrays.sort(names, String.CASE_INSENSITIVE_ORDER);
 dump(names);
 }

Using “an Instance Method of an Arbitrary Object of a Particular Type,” declares
a reference to the compareToIgnoreCase method of any String used in the
invocation.

Shows the equivalent lambda expression.

Shows “Your grandparents’ Java” way of doing things.

Using the exported Comparator directly, just to show that there is always more
than one way to do things.

Just to be safe, I ran the demo, and got the expected output:

Amdahl, de Raadt, Gosling, Hopper, Ritchie, Turing
Amdahl, de Raadt, Gosling, Hopper, Ritchie, Turing
Amdahl, de Raadt, Gosling, Hopper, Ritchie, Turing
Amdahl, de Raadt, Gosling, Hopper, Ritchie, Turing

9.7 Java Mixins: Mixing in Methods
Problem
You’ve heard about mixins and want to apply them in Java.

Solution
Use static imports. Or, declare one or more functional interfaces with a default
method containing the code to execute, and simply implement it.

Discussion
Developers from other languages sometimes deride Java for its inability to handle
mixins, the ability to mix in bits of code from other classes.

One way to implement mixins is with the static import feature, which has been in the
language for a decade. This is often done in unit testing (see Recipe 1.10). A limita‐
tion of this approach is that, as the name implies, the methods must be static meth‐
ods, not instance methods.

A newer mechanism depends on an interesting bit of fallout from the Java 8 language
changes in support of lambdas: you can now mix in code from unrelated places into

9.7 Java Mixins: Mixing in Methods | 293

one class. Has Java finally abandoned its staunch opposition to multiple inheritance?
It may seem that way when you first hear it, but relax: you can only pull methods
from multiple interfaces, not from multiple classes. If you didn’t know that you could
have methods defined (rather than merely declared) in interfaces, see “Subclass,
Abstract Class, or Interface?” on page 250. Consider the following example:

main/src/main/java/lang/MixinsDemo.java
interface Bar {
 default String filter(String s) {
 return "Filtered " + s;
 }
}

interface Foo {
 default String convolve(String s) {
 return "Convolved " + s;
 }
}

public class MixinsDemo implements Foo, Bar{

 public static void main(String[] args) {
 String input = args.length > 0 ? args[0] : "Hello";
 String output = new MixinsDemo().process(input);
 System.out.println(output);
 }

 private String process(String s) {
 return filter(convolve(s)); // methods mixed in!
 }
}

If we run this, we see the expected results:

C:\javasrc>javac -d build lang/MixinsDemo.java
C:\javasrc>java -cp build lang.MixinsDemo
Filtered Convolved Hello

C:\javasrc>

Presto—Java now supports mixins!

Does this mean you should go crazy trying to build interfaces with code in them? No.
Remember this mechanism was designed to do the following:

• Provide the notion of functional interfaces for use in lambda calculations.
• Give the ability to retrofit interfaces with new methods, without having to change

old implementations. As with many changes made in Java over the years, back‐
ward compatibility was a huge driver.

294 | Chapter 9: Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections

Used sparingly, functional interfaces can provide the ability to mix in code to build
up applications in another way than direct inheritance, aggregation, or AOP. Over‐
used, it can make your code heavy, drive pre–Java 8 developers crazy, and lead to
chaos.

9.7 Java Mixins: Mixing in Methods | 295

CHAPTER 10

Input and Output: Reading, Writing,
and Directory Tricks

10.0 Introduction
Most programs need to interact with the outside world, and one common way of
doing so is by reading and writing files. Files are normally on some persistent
medium such as a disk drive; and, for the most part, we shall happily ignore the dif‐
ferences between files on a hard disk (and all the operating system–dependent filesys‐
tem types), a USB drive or SD card, a DVD-ROM, and other memory devices. For
now, they’re just files. And, like most other languages and OSes, Java extends the
reading-and-writing model to network (socket) communications, which we’ll touch
on in Chapters 12 and 13.

Java provides many classes for input and output; they are summarized in Figure 10-1.
This chapter covers all the normal input/output operations such as opening/closing
and reading/writing files. Files are assumed to reside on some kind of file store or
permanent storage. Distributed filesystems such as Apache Hadoop HDFS, Sun’s Net‐
work File System (NFS, common on Unix and available for Windows), SMB (the
Windows network filesystem, available for Unix via the open source Samba pro‐
gram), and FUSE (Filesystem in User SpacE, implementations for most Unix/Linux
systems) are assumed to work just like disk filesystems, except where noted.

The support for reading and writing is in two major parts:

• The InputStream/OutputStream/Reader/Writer classes, which are the tradi‐
tional ways of reading/writing files, have been largely unchanged since the days
of Java 1.0 and 1.1. In modern Java, a new class, java.nio.file.Files, is
provided.

297

• All modern operating systems provide the means to organize groups of files into
directories, or folders. This chapter covers directories: how to create them, how
to navigate them. Files provides most of the support for processing directories,
but it also introduces a number of convenience routines for easily reading, writ‐
ing, and copying files that are covered in this chapter. These are generally more
convenient than using the traditional I/O classes. We cover both in this chapter.

There are two different uses of the term stream. The first is for a
stream of bytes to be read or written, and is unrelated to the second
use, which is used in modern Java to refer to a connection among
cooperating methods. I’ll try to keep these meanings straight by
only using InputStream and/or OutputStream for the former, and
Stream for the latter.

To give you control over the format of data that you read and write, the Formatter
and Scanner classes provide formatting and scanning operations. Formatter allows
many formatting tasks to be performed either into a String or to almost any output
destination. Scanner parses many kinds of objects, again either from a String or
from almost any input source. These are fairly powerful; each is given its own recipe
in this chapter.

The second part of the chapter is largely devoted to the Files and Path classes in
java.nio.file. These two classes provide the ability to list directories, obtain file sta‐
tus, rename and delete files on disk, create directories, and perform other filesystem
operations. They also provide the ability to read a file line by line into a
Stream<String>. These two classes together largely supplant the older java.io.File
class. They were introduced in Java 7, so very little new code should be using the
older File class.

Note that many of the methods of this class attempt to modify the permanent file
store, or disk filesystem, of the computer you run them on. Naturally, you might not
have permission to change certain files in certain ways. This can be detected by the
Java Virtual Machine’s SecurityManager, which will throw the unchecked exception
SecurityException if you don’t have permission to do the attempted operation. But
failure can also be detected by the underlying operating system: if the security man‐
ager approves it, but the user running your program lacks permissions on the direc‐
tory, for example, you will either get back an indication (such as false) or an instance
of the checked exception IOException. This must be caught (or declared in the
throws clause) in any code that calls any method that tries to change the filesystem.

298 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

10.1 About InputStreams/OutputStreams and
Readers/Writers
Java provides two sets of classes for reading and writing. The InputStream/Output
Stream section of package java.io (see Figure 10-1) is for reading or writing bytes of
data. Older languages tended to assume that a byte (which is a machine-specific col‐
lection of bits, usually eight bits on modern computers) is exactly the same thing as a
character—a letter, digit, or other linguistic element. However, Java is designed to be
used internationally, and eight bits is simply not enough to handle the many different
character sets used around the world. Script-based languages, and pictographic lan‐
guages like Chinese and Japanese, each have many more than 256 characters, the
maximum that can be represented in an eight-bit byte. The unification of these many
character code sets is called, not surprisingly, Unicode. Both Java and XML use Uni‐
code as their character sets, allowing you to read and write text in any of these human
languages. But you should use Readers and Writers, not Streams, for textual data.

Unicode itself doesn’t solve the entire problem. Many of these human languages were
used on computers long before Unicode was invented, and they didn’t all pick the
same representation as Unicode. And they all have zillions of files encoded in a par‐
ticular representation that isn’t Unicode. So routines are needed when reading and
writing to convert between Unicode String objects used inside the Java machine and
the particular external representation in which a user’s files are written. These con‐
verters are packaged inside a powerful set of classes called Readers and Writers.
Readers and Writers should always be used instead of InputStreams and Output
Streams when you want to deal with characters instead of bytes. We’ll see more on
this conversion, and how to specify which conversion, a little later in this chapter.

10.1 About InputStreams/OutputStreams and Readers/Writers | 299

Figure 10-1. java.io classes

300 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

6 A poor choice of name: it was new in Java SE 1.4. But newer than InputStream/OutputStream (Java 1.0) and
Readers/Writers (1.1).

See Also
One topic not addressed in depth here is the reading/writing capabilities of Channels
classes in the Java “new I/O” package.6 This part of NIO is more complex to use than
either Files or the input/output streams, and the benefits accrue primarily in large-
scale server-side processing. Recipe 4.5 provides one example of using NIO. The NIO
package is given full coverage in the book Java NIO by Ron Hitchens (O’Reilly).

Another topic not covered here is that of having the read or write occur concurrently
with other program activity. This requires the use of threads, or multiple flows of
control within a single program. Threaded I/O is a necessity in many programs: those
reading from slow devices such as tape drives, those reading from or writing to net‐
work connections, and those with a GUI. For this reason, the topic is given consider‐
able attention, in the context of multithreaded applications, in Chapter 16.

For traditional I/O topics, Elliotte Rusty Harold’s Java I/O, although somewhat dated,
should be considered the antepenultimate documentation. The penultimate reference
is the javadoc documentation, while the ultimate reference is, if you really need it, the
source code for the Java API. Due in part to the quality of the javadoc documentation,
I have not needed to refer to the source code in writing this chapter.

10.2 Reading a Text File
Problem
The Java documentation doesn’t have methods for opening files. How do I open and
read a text file and then either process it a line at a time, or get a collection of all the
lines?

Solution
Use the Files::lines() method, which returns a Stream of Strings. Or, use
Files.newBufferedReader(), Files.newBufferedWriter(), Files.newInput

Stream(), and Files.newOutputStream(). Or, construct a FileReader or a FileIn
putStream. Once you have that, construct a BufferedReader, and use the older $
$while ((line == readLine()) != null)$$ pattern.

10.2 Reading a Text File | 301

http://shop.oreilly.com/product/9780596002886.do
http://shop.oreilly.com/product/9780596527501.do

6 Not strictly true; there is, but only in the java.nio.FileChannel class, which we’re not covering.

Discussion
There is no explicit open operation,6 perhaps as a kind of rhetorical flourish of the
Java API’s object-oriented design.

The quickest way to process a text file a line at a time is to use Files.lines(), which
takes a Path argument and returns a functional Stream<String> into which it feeds
the lines from the file:

Files.lines(Path.of("myFile.txt")).forEach(System.out::println);

The Files class has several other static methods which open a file and read some or
all of it:

List<String> Files.readAllLines(Path)

Reads the whole file into a List<String>.

byte[] Files.readAllBytes

Reads the whole file into an array of bytes.

There is a series of methods with names like newReader(), newBufferedWriter(),
etc., each of which takes a Path argument and return the appropriate Reader/Writer
or InputStream/OutputStream. A Path is a descriptor for an abstract path (filename)
that may or may not exist. The explicit constructors for a FileReader, FileWriter,
FileInputStream, or FileOutputStream take a filename or an instance of the older
File class containing the path. These operations correspond to the “open” operation
in most other languages’ I/O packages.

Historically, Java used to require use of the code pattern while ((line == read
Line()) != null to read lines from a BufferedReader. This still works, of course,
and will continue to work until the last JavaBean sets in the west, in the far future.

Example 10-1 shows the code for each of these ways of reading lines from a file.

Example 10-1. main/src/main/java/io/ReadLines.java (reading lines from a file)

 System.out.println("Using Path.lines()");
 Files.lines(Path.of(fileName)).forEach(System.out::println);

 System.out.println("Using Path.readAllLines()");
 List<String> lines = Files.readAllLines(Path.of(fileName));
 lines.forEach(System.out::println);

 System.out.println("Using BufferedReader.lines().forEach()");
 new BufferedReader(new FileReader(fileName)).lines().forEach(s -> {

302 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 System.out.println(s);
 });

 System.out.println("The old-fashioned way");
 BufferedReader is = new BufferedReader(new FileReader(fileName));
 String line;
 while ((line = is.readLine()) != null) {
 System.out.println(line);
 }

Most of these methods can throw the checked exception IOException, so you must
have a throws clause or a try/catch around these invocations.

If you create an InputStream, OutputStream, Reader, or Writer, you should close it
when finished. This avoids memory leaks and, in the case of writing, ensures that all
buffered data is actually written to disk. One way to ensure this is not forgotten is to
use the try-with-resources syntax. This puts the declaration and definition of a Close
able resource into the try statement:

 static void oldWayShorter() throws IOException {
 try (BufferedReader is =
 new BufferedReader(new FileReader(INPUT_FILE_NAME));
 BufferedOutputStream bytesOut = new BufferedOutputStream(
 new FileOutputStream(OUTPUT_FILE_NAME.replace("\\.", "-1.")));) {

 // Read from is, write to bytesOut
 String line;
 while ((line = is.readLine()) != null) {
 line = doSomeProcessingOn(line);
 bytesOut.write(line.getBytes("UTF-8"));
 bytesOut.write('\n');
 }

 }
 }

The lines() and read-related methods in Files obviate the need for closing the
resource, but not the need for handling IOException; the compiler or IDE will
remind you if you forget those.

There are options that can be passed to the Files methods that open a file; these are
discussed in the sidebar “Understanding I/O Options: StandardOpenOptions, FileAt‐
tribute, PosixFileAttribute, and More” on page 321.

To read the entire contents of a file into single string, in Java 8+, use Files.read
String():

String input = Files.readString(Path.of(INPUT_FILE_NAME)));

10.2 Reading a Text File | 303

In older Java versions, use my FileIO.readerToString() method. This will read the
entire named file into one long string, with embedded newline (\n) characters
between each line. To read a binary file, use Files.readAllBytes() instead.

See Also
There is formal documentation online for Files and Path.

10.3 Reading from the Standard Input or from the
Console/Controlling Terminal
Problem
You want to read from the program’s standard input or directly from the program’s
controlling terminal or console terminal.

Solution
For the standard input, read bytes by wrapping a BufferedInputStream() around
System.in. For reading text, use an InputStreamReader and a BufferedReader. For
the console or controlling terminal, use Java’s System.console() method to obtain a
Console object, and use its methods.

Discussion
Sometimes you really do need to read from the standard input, or console. One rea‐
son is that simple test programs are often console-driven. Another is that some pro‐
grams naturally require a lot of interaction with the user and you want something
faster than a GUI (consider an interactive mathematics or statistical exploration pro‐
gram). Yet another is piping the output of one program directly to the input of
another, a very common operation among Unix users and quite valuable on other
platforms, such as Windows, that support this operation.

Standard input
Most desktop platforms support the notion of standard input (a keyboard, a file, or
the output from another program) and standard output (a terminal window, a printer,
a file on disk, or the input to yet another program). Most such systems also support a
standard error output so that error messages can be seen by the user even if the stan‐
dard output is being redirected. When programs on these platforms start up, the
three streams are preassigned to particular platform-dependent handles, or file
descriptors. The net result is that ordinary programs on these operating systems can

304 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html

read the standard input or write to the standard output or standard error stream
without having to open any files or make any other special arrangements.

Java continues this tradition and enshrines it in the System class. The static variables
System.in, System.out, and System.err are connected to the three operating system
streams before your program begins execution (an application is free to reassign
these; see Recipe 10.10). So, to read the standard input, you need only refer to the
variable System.in and call its methods. For example, to read one byte from the stan‐
dard input, you call the read method of System.in, which returns the byte in an int
variable:

int b = System.in.read();

But is that enough? No, because the read() method can throw an IOException. So
you must either declare that your program throws an IOException:

public static void main(String args[]) throws IOException {
...
}

Or you can put a try/catch block around the read() method:

 int b = 0;
 try {
 b = System.in.read();
 System.out.println("Read this data: " + (char)b);
 } catch (Exception e) {
 System.out.println("Caught " + e);
 }

In this case, it makes sense to print the results inside the try block because there’s no
point in trying to print the value you read, if the read() threw an IOException.

That code works and gives you the ability to read a byte at a time from the standard
input. But most applications are designed in terms of larger units, such as integers, or
a line of text. To read a value of a known type, such as int, from the standard input,
you can use the Scanner class (covered in more detail in Recipe 10.6):

Scanner sc = Scanner.create(System.in);
int i = sc.nextInt();

For reading characters of text with an input character converter so that your program
will work with multiple input encodings around the world, use a Reader class. The
particular subclass that allows you to read lines of characters is a BufferedReader.
But there’s a hitch. Remember I mentioned those two categories of input classes,
Streams and Readers? But I also said that System.in is a Stream, and you want a
Reader. How do you get from a Stream to a Reader? A crossover class called Input
StreamReader is tailor-made for this purpose. Just pass your Stream (like System.in)
to the InputStreamReader constructor and you get back a Reader, which you in turn

10.3 Reading from the Standard Input or from the Console/Controlling Terminal | 305

pass to the BufferedReader constructor. The usual idiom for writing this in Java is to
nest the constructor calls:

BufferedReader is = new BufferedReader(new InputStreamReader(System.in));

You can then read lines of text using the readLine() method. This method takes no
argument and returns a String that is made up for you by readLine() containing the
characters (converted to Unicode) from the next line of text in the file. When there
are no more lines of text, the literal value null is returned:

public class CatStdin {

 public static void main(String[] av) {
 try (BufferedReader is =
 new BufferedReader(new InputStreamReader(System.in))) {
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 System.out.println(inputLine);
 }
 } catch (IOException e) {
 System.out.println("IOException: " + e);
 }
 }
}

To read a single Integer from the standard input, read a line and parse it using Inte
ger.parseInt(). To read a series of integers, one per line, you could combine these
with a functional style, since the BufferedReader has a lines() method that pro‐
duces a Stream<String>:

public class ReadStdinIntsFunctional {
 private static Stream<Integer> parseIntSafe(String s) {
 try {
 return Stream.of(Integer.parseInt(s));
 } catch (NumberFormatException e) {
 return Stream.empty();
 }
 }

 public static void main(String[] args) throws IOException {
 try (BufferedReader is =
 new BufferedReader(new InputStreamReader(System.in));) {
 is.lines()
 .flatMap(ReadStdinIntsFunctional::parseIntSafe)
 .forEach(System.out::println);
 }
 }
}

306 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

The Console (Controlling Terminal)
The Console class is intended for reading directly from a program’s controlling termi‐
nal. When you run an application from a terminal window or command prompt win‐
dow on most systems, its console and its standard input are both connected to the
terminal, by default. However, the standard input can be changed by piping or redi‐
rection on most OSes. If you really want to read from wherever the user is sitting,
bypassing any indirections, then the Console class is usually your friend.

You cannot instantiate Console yourself; you must get an instance from the System
class’s console() method. You can then call methods such as readLine(), which
behaves largely like the method of the same name in the BufferedReader class used
in the previous recipe.

The following code shows an example of prompting for a name and reading it from
the console:

main/src/main/java/io/ConsoleRead.java
public class ConsoleRead {
 public static void main(String[] args) {
 String name = System.console().readLine("What is your name?");
 System.out.println("Hello, " + name.toUpperCase());
 }
}

One complication is that the System.console() method can return null if the con‐
sole isn’t connected. Annoyingly, some IDEs, including Eclipse, don’t manage to set
up a controlling terminal when you use the Run As→Java Application mechanism. So
production-quality code should always check for null before trying to use the Con
sole. If it fails, use a logger or just plain System.out.

One facility the Console class is quite useful for is reading a password without having
it echo. This has been a standard facility of command-line applications for decades, as
the most obvious way of preventing shoulder surfing—somebody looking over your
shoulder to see your password. Nonecho password reading is now supported in Java:
the Console class has a readPassword() method that takes a prompt argument,
intended to be used like: cons.readPassword("Password:"). This method returns an
array of bytes, which can be used directly in some encryption and security APIs, or
can easily be converted into a String. It is generally advised to overwrite the byte
array after use to prevent security leaks when other code can access the stack,
although the benefits of this are probably reduced when you’ve constructed a String.
There’s an example of this in the online code in io/ReadPassword.java.

10.3 Reading from the Standard Input or from the Console/Controlling Terminal | 307

6 The central character in Yann Martel’s novel Life of Pi would have been born in 1956, according to informa‐
tion in Wikipedia.

10.4 Printing with Formatter and printf
Problem
You want an easy way to use java.util.Formatter class’s capability for simple print‐
ing tasks.

Solution
Use Formatter for printing values with fine-grained control over the formatting. Use
String.format() or PrintWriter.printf() / PrintStream.printf().

Discussion
The Formatter class is patterned after C’s printf routines. In fact, PrintStream and
PrintWriter have convenience routines named printf() that simply delegate to the
stream or writer’s format() method, which uses a default Formatter instance. Unlike
in C, however, Java is a strongly typed language, so invalid arguments will throw an
exception rather than generating gibberish. There are also convenience routines
static String.format() and printf() in PrintWRiter/PrintStream for use when
you want to format a String without the bother of creating the Formatter explicitly.

The underlying Formatter class in java.util works on a String containing format
codes. For each item that you want to format, you put a format code. The format code
consists of a percent sign, optionally an argument number followed by a dollar sign,
optionally a field width or precision, and a format type (e.g., d for decimal integer,
that is, an integer with no decimal point, and f for floating point). A simple use might
look like the following:

System.out.printf("%1$04d - the year of %2$f%n", 1956, Math.PI);
System.out.printf("%04d - the year of %f%n", 1956, Math.PI);

As shown in Figure 10-2, the “%1$04d” controls formatting of the year, and the
“%2$f ” controls formatting of the value of PI.6

308 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

http://en.wikipedia.org/wiki/Life_of_pi

Figure 10-2. Format codes examined

Many format codes are available; Table 10-1 lists some of the more common ones.
For a complete description, refer to the javadoc for java.util.Formatter.

Table 10-1. Formatter format codes
Code Meaning
c Character (argument must be char or integral type containing valid character value).

d “decimal int”—integer to be printed as a decimal (radix 10) with no decimal point (argument must be integral type).

f Floating-point value with decimal fraction (must be numeric); field width may be followed by decimal point and
fractional digit field width; e.g., 7.2f.

e Floating-point value in scientific notation.

g Floating-point value, as per f or e, depending on magnitude.

s Generic format; if value is null, prints “null”; else if arg implements Formattable, format as per arg.for
matTo(); else format as per arg.toString().

t Date codes; follow with secondary code. Common date codes are shown in Table 10-2. Argument must be long,
Long, Calendar, or Date.

n Newline; insert the platform-dependent line ending character.

% Insert a literal % character.

Note also that you may, but are not required to, put a parameter order number
between the % and the format code. For example, in “%2$04d”, the “2$” means to for‐
mat the second parameter, regardless of the order of the parameters. This is primarily
useful with dates (see the following example, where you need to format several differ‐
ent portions of the same Date or Calendar, or any time you want to format the same
object more than once) and in internationalization, where different languages may
require words to be in a different order within a sentence.

Some examples of using a Formatter are shown in Example 10-2.

10.4 Printing with Formatter and printf | 309

Example 10-2. main/src/main/java/io/FormatterDemo.java

public class FormatterDemo {
 public static void main(String[] args) {

 // The arguments to all these format methods consist of
 // a format code String and 1 or more arguments.
 // Each format code consists of the following:
 // % - code lead-in
 // N$ - OPTIONAL parameter number (1-based) after the format code
 // N - field width
 // L - format letter (d: decimal(int); f: float; s: general; many more)
 // For the full(!) story, see javadoc for java.util.Formatter.

 // Most general (cumbersome) way of proceding.
 Formatter fmtr = new Formatter();
 Object result = fmtr.format("%1$04d - the year of %2$f", 1956, Math.PI);
 System.out.println(result);
 fmtr.close();

 // Shorter way using static String.format(), default parameter numbering.
 Object stringResult = String.format("%04d - the year of %f", 1956, Math.PI);
 System.out.println(stringResult);

 // A shorter way using PrintStream/PrintWriter.format, more in line with
 // other languages. But this way you should provide the newline delimiter
 // using %n (rather than \n as that is platform-dependent!).
 System.out.printf("%04d - the year of %f%n", 1956, Math.PI);

 // Format doubles with more control
 System.out.printf("PI is approximately %4.2f%n", Math.PI);
 }
}

Running FormatterDemo produces this:

C:> javac FormatterDates.java
C:> java io.FormatterDates
1956 - The year of 3.141593
1956 - The year of 3.141593
1956 - The year of 3.141593
PI is about 3.14

For formatting date and time objects, a large variety of format codes are available—
about 40 in all. Date and time objects are discussed in Chapter 6. Table 10-3 shows
the more common date/time format codes. Each must be preceded by a t, so to for‐
mat the first argument as a year, you would use %1$tY.

310 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

Table 10-2. Formatting codes for dates and times
Format code Meaning
Y Year (at least four digits)

m Month as two-digit (leading zeros) number

B Locale-specific month name (b for abbreviated)

d Day of month (two digits, leading zeros)

e Day of month (one or two digits)

A Locale-specific day of week (a for abbreviated)

H or I Hour in 24-hour (H) or 12-hour (I) format (two digits, leading zeros)

M Minute (two digits)

S Second (two digits)

P/p Locale-specific AM or PM in uppercase (if P) or lowercase (if p)

R or T 24-hour time combination: %tH:%tM (if R) or %tH:%tM:%tS (if T)

D Date formatted as %tm/%td/%ty

In my opinion, embedding these codes directly in applications that you distribute
or make available as web applications is often a bad idea, because any direct use of
them assumes that you know the correct order to print these fields in all locales
around the world. Trust me, you don’t. Instead of these, I recommend the use of Date
TimeFormatter, covered in Recipe 6.2, to control the order of arguments. However,
for quick-and-dirty work, as well as for writing log or data files that must be in a
given format because some other program reads them, these are OK.

Some date examples are shown in Example 10-3.

Example 10-3. main/src/main/java/io/FormatterDates.java

public class FormatterDates {
 public static void main(String[] args) {

 // Format number as dates e.g., 2020-06-28
 System.out.printf("%4d-%02d-%2d%n", 2020, 6, 28);

 // Format fields directly from a Date object: multiple fields from "1$"
 // (hard-coded formatting for Date not advisable; see I/O chapter)
 LocalDate today = LocalDate.now();
 // Print in a form like e.g., "July 4, 2020"
 System.out.printf("Today is %1$tB %1$td, %1$tY%n", today);
 }
}

Running this FormatterDates class produces the following output:

10.4 Printing with Formatter and printf | 311

C:> java io.FormatterDates
2020-06-28
Today is January 01, 2020

10.5 Scanning Input with StreamTokenizer
Problem
You need to scan a file with more fine-grained resolution than the readLine()
method of the BufferedReader class and its subclasses.

Solution
Use a StreamTokenizer, readLine() and a StringTokenizer, the Scanner class (see
Recipe 10.6), regular expressions (Chapter 4), or one of several third-party parser
generators.

Discussion
Though you could, in theory, read a file one character at a time and analyze each
character, that is a pretty low-level approach. The read() method in the Reader class
is defined to return int so that it can use the time-honored value -1 (defined as EOF
in Unix <stdio.h> for years) to indicate that you have read to the end of the file:

main/src/main/java/io/ReadCharsOneAtATime.java
public class ReadCharsOneAtATime {

 void doFile(Reader is) throws IOException {
 int c;
 while ((c=is.read()) != -1) {
 System.out.print((char)c);
 }
 }
}

Notice the cast to char; the program compiles fine without it, but it does not print
correctly because c is declared as int. Variable c must be declared int to be able to
compare against the end-of-file value -1. For example, the integer value correspond‐
ing to capital A treated as an int prints as 65, whereas with (char) prints the
character A.

We discussed the StringTokenizer class extensively in Recipe 3.1. The combination
of readLine() and StringTokenizer provides a simple means of scanning a file. Sup‐
pose you need to read a file in which each line consists of a name like
user@host.domain, and you want to split the lines into users and host addresses. You
could use this:

312 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

public class ScanStringTok {

 public static void main(String[] av) throws IOException {
 if (av.length == 0)
 System.err.printf("Usage: %s filename [...]%n",
 ScanStringTok.class.getSimpleName());
 else
 for (int i=0; i<av.length; i++)
 process(av[i]);
 }

 static void process(String fileName) {
 String s = null;
 try (BufferedReader is =
 new BufferedReader(new FileReader(fileName));) {
 while ((s = is.readLine()) != null) {
 StringTokenizer st = new StringTokenizer(s, "@", true);
 String user = (String)st.nextElement();
 st.nextElement();
 String host = (String)st.nextElement();
 System.out.println("User name: " + user +
 "; host part: " + host);

 // Do something useful with the user and host parts...
 }
 } catch (NoSuchElementException ix) {
 System.err.println("Malformed input " + s);
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

The StreamTokenizer class in java.util provides slightly more capabilities for scan‐
ning a file. It reads characters and assembles them into words, or tokens. It returns
these tokens to you along with a type code describing the kind of token it found. This
type code is one of four predefined types (StringTokenizer.TT_WORD, TT_NUMBER,
TT_EOF, or TT_EOL for the end-of-line) or the char value of an ordinary character
(such as 32 for the space character). Methods such as ordinaryCharacter() allow
you to specify how to categorize characters, while others such as slashSlashCom
ment() allow you to enable or disable features.

Example 10-4 shows a StreamTokenizer used to implement a simple immediate-
mode stack-based calculator:

2 2 + =
4
22 7 / =
3.141592857

10.5 Scanning Input with StreamTokenizer | 313

I read tokens as they arrive from the StreamTokenizer. Numbers are put on the
stack. The four operators (+, -, *, and /) are immediately performed on the two ele‐
ments at the top of the stack, and the result is put back on the top of the stack. The =
operator causes the top element to be printed, but is left on the stack so that you can
say this:

4 5 * = 2 / =
20.0
10.0

Example 10-4. main/src/main/java/io/SimpleCalcStreamTok.java (simple calculator
using StreamTokenizer)

public class SimpleCalcStreamTok {
 /** The StreamTokenizer input */
 protected StreamTokenizer tf;
 /** The output file */
 protected PrintWriter out = new PrintWriter(System.out, true);
 /** The variable name (not used in this version) */
 protected String variable;
 /** The operand stack */
 protected Stack<Double> s = new Stack<>();

 /* Driver - main program */
 public static void main(String[] av) throws IOException {
 if (av.length == 0)
 new SimpleCalcStreamTok(
 new InputStreamReader(System.in)).doCalc();
 else
 for (int i=0; i<av.length; i++)
 new SimpleCalcStreamTok(av[i]).doCalc();
 }

 /** Construct by filename */
 public SimpleCalcStreamTok(String fileName) throws IOException {
 this(new FileReader(fileName));
 }

 /** Construct from an existing Reader */
 public SimpleCalcStreamTok(Reader rdr) throws IOException {
 tf = new StreamTokenizer(rdr);
 // Control the input character set:
 tf.slashSlashComments(true); // treat "//" as comments
 tf.ordinaryChar('-'); // used for subtraction
 tf.ordinaryChar('/'); // used for division
 }

 /** Construct from a Reader and a PrintWriter
 */
 public SimpleCalcStreamTok(Reader in, PrintWriter out) throws IOException {
 this(in);

314 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 setOutput(out);
 }

 /**
 * Change the output destination.
 */
 public void setOutput(PrintWriter out) {
 this.out = out;
 }

 protected void doCalc() throws IOException {
 int iType;
 double tmp;

 while ((iType = tf.nextToken()) != StreamTokenizer.TT_EOF) {
 switch(iType) {
 case StreamTokenizer.TT_NUMBER: // Found a number, push value to stack
 push(tf.nval);
 break;
 case StreamTokenizer.TT_WORD:
 // Found a variable, save its name. Not used here.
 variable = tf.sval;
 break;
 case '+':
 // + operator is commutative.
 push(pop() + pop());
 break;
 case '-':
 // - operator: order matters.
 tmp = pop();
 push(pop() - tmp);
 break;
 case '*':
 // Multiply is commutative.
 push(pop() * pop());
 break;
 case '/':
 // Handle division carefully: order matters!
 tmp = pop();
 push(pop() / tmp);
 break;
 case '=':
 out.println(peek());
 break;
 default:
 out.println("What's this? iType = " + iType);
 }
 }
 }
 void push(double val) {
 s.push(Double.valueOf(val));
 }

10.5 Scanning Input with StreamTokenizer | 315

 double pop() {
 return ((Double)s.pop()).doubleValue();
 }
 double peek() {
 return ((Double)s.peek()).doubleValue();
 }
 void clearStack() {
 s.removeAllElements();
 }
}

10.6 Scanning Input with the Scanner Class
Problem
You want to scan a simple input file consisting of various numbers and strings in a
known format.

Solution
Read with Scanner’s next() methods.

Discussion
The Scanner class lets you read an input source by tokens, somewhat analogous to
the StreamTokenizer described in Recipe 10.5. The Scanner is more flexible in some
ways (it lets you break tokens based on spaces or regular expressions) but less in oth‐
ers (you need to know the kind of token you are reading). This class bears some
resemblance to the C-language scanf() function, but in the Scanner you specify the
input token types by calling methods like nextInt(), nextDouble(), and so on. Here
is a simple example of scanning:

 String sampleDate = "25 Dec 1988";

 try (Scanner sDate = new Scanner(sampleDate)) {
 int dayOfMonth = sDate.nextInt();
 String month = sDate.next();
 int year = sDate.nextInt();
 System.out.printf("%d-%s-%02d%n", year, month, dayOfMonth);
 }

The Scanner recognizes Java’s eight built-in types, in addition to BigInteger and Big
Decimal. It can also return input tokens as Strings or by matching regular expres‐
sions (see Chapter 4). Table 10-3 lists the “next” methods and corresponding “has”
methods; the “has” method returns true if the corresponding “next” method would
succeed. There is no nextString() method; just use next() to get the next token as a
String.

316 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

6 If this were code in a maintained project, I might factor out some of the common code among these two cal‐
culators, as well as the one in Recipe 5.12, and divide the code better using interfaces. However, this would
detract from the simplicity of self-contained examples.

Table 10-3. Scanner methods
Returned
type

“has” method “next” method Comment

String hasNext() next() The next complete token from this scanner

String hasNext(Pattern) next(Pattern) The next string that matches the given regular
expression (regex)

String hasNext(String) next(String) The next token that matches the regex pattern
constructed from the specified string

BigDeci
mal

hasNextBigDeci
mal()

nextBigDeci
mal()

The next token of the input as a BigDecimal

BigIn
teger

hasNextBigIn
teger()

nextBigIn
teger()

The next token of the input as a BigInteger

boolean hasNextBoolean() nextBoolean() The next token of the input as a boolean

byte hasNextByte() nextByte() The next token of the input as a byte

double hasNextDouble() nextDouble() The next token of the input as a double

float hasNextFloat() nextFloat() The next token of the input as a float

int hasNextInt() nextInt() The next token of the input as an int

String N/A nextLine() Reads up to the end-of-line, including the line ending

long hasNextLong() nextLong() The next token of the input as a long

short hasNextShort() nextShort() The next token of the input as a short

The Scanner class is constructed with an input source, which can be an InputStream,
a String, or Readable (Readable is an interface that Reader and all its subclasses
implement).

One way to use the Scanner class is based on the Iterator pattern, using while (scan
ner.hasNext()) to control the iteration. Example 10-5 shows the simple calculator
from Recipe 10.5 rewritten6 to use the Scanner class.

Example 10-5. main/src/main/java/io/simpleCalcScanner.java (simple calculator using
java.util.Scanner)

public class SimpleCalcScanner {
 /** The Scanner */
 protected Scanner scan;

 /** The output */
 protected PrintWriter out = new PrintWriter(System.out, true);

10.6 Scanning Input with the Scanner Class | 317

 /** The variable name (not used in this version) */
 protected String variable;

 /** The operand stack; no operators are pushed,
 * so it can be a stack of Double
 */
 protected Stack<Double> s = new Stack<>();

 /* Driver - main program */
 public static void main(String[] args) throws IOException {
 if (args.length == 0)
 new SimpleCalcScanner(
 new InputStreamReader(System.in)).doCalc();
 else
 for (String arg : args) {
 new SimpleCalcScanner(arg).doCalc();
 }
 }

 /** Construct a SimpleCalcScanner by name */
 public SimpleCalcScanner(String fileName) throws IOException {
 this(new FileReader(fileName));
 }

 /** Construct a SimpleCalcScanner from an open Reader */
 public SimpleCalcScanner(Reader rdr) throws IOException {
 scan = new Scanner(rdr);
 }

 /** Construct a SimpleCalcScanner from a Reader and a PrintWriter */
 public SimpleCalcScanner(Reader rdr, PrintWriter pw) throws IOException {
 this(rdr);
 setWriter(pw);
 }

 /** Change the output to go to a new PrintWriter */
 public void setWriter(PrintWriter pw) {
 out = pw;
 }

 protected void doCalc() throws IOException {
 double tmp;

 while (scan.hasNext()) {
 if (scan.hasNextDouble()) {
 push(scan.nextDouble());
 } else {
 String token;
 switch(token = scan.next()) {
 case "+":
 // Found + operator, perform it immediately.

318 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 push(pop() + pop());
 break;
 case "-":
 // Found - operator, perform it (order matters).
 tmp = pop();
 push(pop() - tmp);
 break;
 case "*":
 // Multiply is commutative.
 push(pop() * pop());
 break;
 case "/":
 // Handle division carefully: order matters!
 tmp = pop();
 push(pop() / tmp);
 break;
 case "=":
 out.println(peek());
 break;
 default:
 out.println("What's this? " + token);
 break;
 }
 }
 }
 }

 void push(double val) {
 s.push(Double.valueOf(val));
 }

 double pop() {
 return ((Double)s.pop()).doubleValue();
 }

 double peek() {
 return ((Double)s.peek()).doubleValue();
 }

 void clearStack() {
 s.removeAllElements();
 }
}

10.7 Scanning Input with Grammatical Structure
Problem
You need to parse a file whose structure can be described as grammatical (in the sense
of computer languages, not natural languages).

10.7 Scanning Input with Grammatical Structure | 319

Solution
Use one of many parser generators.

Discussion
Although the StreamTokenizer class (see Recipe 10.5) and Scanner (see Recipe 10.6)
are useful, they know only a limited number of tokens and have no way of specifying
that the tokens must appear in a particular order. To do more advanced scanning, you
need some special-purpose scanning tools. Parser generators have a long history in
computer science. The best-known examples are the C-language yacc (Yet Another
Compiler Compiler) and lex, released with Seventh Edition Unix in the 1970s and
discussed in lex & yacc by Doug Brown et al. (O’Reilly), and their open source clones
bison and flex. These tools let you specify the lexical structure of your input using
some pattern language such as regular expressions (see Chapter 4). For example, you
might say that an email address consists of a series of alphanumerics, followed by an
at sign (@), followed by a series of alphanumerics with periods embedded, like this:

name: [A-Za-z0-9]+@[A-Za-z0-0.]
or
name: \w+#[\w.]

The tool then writes code that recognizes the characters you have described. These
tools also have a grammatical specification, which says, for example, that the keyword
EMAIL must appear, followed by a colon, followed by a name token, as previously
defined.

There are several good third-party parser generator tools for Java. They vary widely
based on complexity, power, and ease of use:

• One of the best known and most elaborate is ANTLR.
• JavaCC is an open source project at https://javacc.org.
• JParsec lets you write the parser in straight Java, so it’s all built at compile time

(most of the others require a separate parse generation step, with the build and
debugging issues that raises). JParsec is on GitHub. * JFlex and CUP work
together like the original yacc and lex, as grammar parser and lexical scanner,
respectively.

• Parboiled uses Parsing Expression Grammar (PEG) to also build the parser at
compile time. See GitHub for more information. * The Rats! parser generator is
part of the eXTensible Compiler Project at New York University.

• There are others; a more complete list is maintained at Java Source.

These parser generators can be used to write grammars for a wide variety of pro‐
grams, from simple calculators—such as the one in Recipe 10.6—through HTML and

320 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

http://shop.oreilly.com/product/9781565920002.do
http://www.antlr.org
https://javacc.org
https://github.com/abailly/jparsec
http://jflex.de
http://www2.cs.tum.edu/projects/cup
https://github.com/sirthias/parboiled
http://cs.nyu.edu/rgrimm/xtc
http://java-source.net/open-source/parser-generators

CORBA/IDL, up to full Java and C/C++ parsers. Examples of these are included with
the downloads. Unfortunately, the learning curve for parsers in general precludes
providing a simple and comprehensive example here, let alone comparing them intel‐
ligently. Refer to the documentation and the numerous examples provided with each
distribution.

As an alternative to using one of these, you could simply roll your own recursive
descent parser; and once you learn how to do so, you may find it’s not really that diffi‐
cult, quite possibly even less hassle than dealing with the extra parser generator soft‐
ware (depending on the complexity of the grammar involved, obviously).

Java developers have a range of choices, including simple line-at-a-time scanners
using StringTokenizer, fancier token-based scanners using StreamTokenizer, a
Scanner class to scan simple tokens (see Recipe 10.6), regular expressions (see Chap‐
ter 4), and third-party solutions including grammar-based scanners based on the
parsing tools listed here.

Understanding I/O Options: StandardOpenOptions, FileAttribute,
PosixFileAttribute, and More

There are several sets of options that can be applied when creating or opening a file.
The main option sets that can be applied include those listed in Table 10-4:

Table 10-4. Sets of options

Name Examples Usage/notes

CopyOption StandardCopyOp
tion.REPLACE_EXISTING

Files methods that copy

LinkOption LinkOption.NOFOL
LOW_LINKS

Files methods that write data or read
attributes

FileAttribute Name-value pair, used in Files.cre
ate*() methods

OpenOption StandardOpenOp
tion.READ,APPEND

Files.new{In,Out}put
Stream()

PosixFilePermis
sion

OWNER_READ,OTHER_WRITE FileAttribute

PosixFilePermis
sions

Set<PosixFilePermission> Conversions to/from rwx strings

A list of the standard OpenOption values is in Table 10-5. These control how a file is to
be accessed.

10.7 Scanning Input with Grammatical Structure | 321

Table 10-5. OpenOption StandardOpenOption values

Name Meaning

APPEND Write at the end of an existing file instead of overwriting it.

CREATE Create the file if it does not exist.

CREATE_NEW Create the file only if it is new; fails with FileAlreadyExistsExcep
tion if file already exists.

DELETE_ON_CLOSE Delete the file when the stream is closed. Useful for temporary files.

DSYNC Write data synchronously, i.e., every write is to be synchronized to disk
immediately.

READ Open the file for reading.

SPARSE Create as a sparse file, e.g., for random-access writing.

SYNC Write data and metadata synchronously, i.e., every write or attribute
change is to be synchronized to disk immediately.

TRUNCATE_EXISTING If the file exists, open for writing at the beginning, removing all contents
at open time.

WRITE Open for write access.

POSIX is the IEEE’s Portable Operating System Specification for Unix-like operating
systems. Java’s PosixPermission and its wrapper PosixPermissions are used to con‐
trol who can do what to a file on disk. These are based on the Unix/POSIX permis‐
sions laid down in early Unix systems in the early 1970s. There are three actors:
owner (which Unix calls user), group, and other (everyone else). Groups is a Unix/
POSIX mechanism: a user can be in one or many groups and has permissions based
on all the groups they are in; this is an early form of privilege separation. There are
three permissions: read, write, and execute. The latter grants permission to execute a
file, but is also used to grant permission to search (list) a directory. For decades these
have been expressed as a nine-character permissions string. For example, rwxr—r--
means the user has read, write, and execute permissions on a given file; other mem‐
bers of the file owner’s group have read-only access, and everyone else also has read-
only access. The PosixPermissions wrapper class has methods for converting
between these concise strings and a Set of individual PosixPermission enum con‐
stants. The enum constants are the nine combinations of OWNER, GROUP, and OTHERS
with READ, WRITE, and EXECUTE. Here is a JShell example showing these file permission
conversion routines:

jshell> Set<PosixFilePermission> perms =
 PosixFilePermissions.fromString("rwxr-xr--");
perms ==> [OWNER_READ, OWNER_WRITE, OWNER_EXECUTE, GROUP_READ,
 GROUP_EXECUTE, OTHERS_READ]

jshell> Set<PosixFilePermission> nPerms =
 Set.of(PosixFilePermission.OWNER_READ, PosixFilePermission.GROUP_READ);
nPerms ==> [GROUP_READ, OWNER_READ]

322 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

jshell> PosixFilePermissions.toString(nPerms)
$7 ==> "r--r-----"

You can further convert the Set<PosixFilePermission> into a FileAttribute to be
used with the Files class createFile() or createDirectory() operations:

jshell> PosixFilePermissions.asFileAttribute(nPerms)
$8 ==> java.nio.file.attribute.PosixFilePermissions$1@ed17bee

jshell> $8.name()
$9 ==> "posix:permissions"

jshell> $8.value()
$10 ==> [OWNER_READ, GROUP_READ]

jshell> Files.createFile(Path.of("/tmp/xx"), $8);
$41 ==> /tmp/xx

jshell> /exit

$ ls -l /tmp/xx
-r--r----- 1 ian wheel 0 Dec 23 11:14 /tmp/xx
$

We see the file was created with only owner-read and group-read permissions, as
requested. Note that on *nix systems there is a user setting umask that may remove or
mask out permissions, so what you ask for may not be exactly what you get.

You can examine the attributes of a file using the FileAttribute interface or its
filesystem-specific subtypes. Here we’ll use the PosixFileAttributeView to show the
owner and permissions of the file we created:

 PosixFileAttributes attrs =
 Files.getFileAttributeView(filePath,
 PosixFileAttributeView.class)
 .readAttributes();
 System.out.format("File %s Owned by %s has perms %s%n",
 filePath,
 attrs.owner().getName(),
 PosixFilePermissions.toString(attrs.permissions()));

There are other filesystem-specific views, such as DosFilewAttributeView for use on
FAT filesystems. FAT was copied from CPM-86 into the earliest releases of MS-DOS,
and expanded versions of it are still in use on USB memory cards and in consumer
devices.

10.7 Scanning Input with Grammatical Structure | 323

10.8 Copying a File
Problem
You need to copy a file in its entirety.

Solution
Use one of the Java 11 Files.copy() methods. If on an older release, use the explicit
read and write methods in the Readers/Writers or InputStream/OutputStreams.

Discussion
The Files class has several overloads of a copy method that makes quick work of this
requirement:

Path copy(Path, Path, CopyOption...) throws java.io.IOException;
long copy(InputStream, Path, CopyOption...) throws IOException;
long copy(Path, OutputStream) throws IOException;

For example:

Path p = Paths.get("my_new_file");
InputStream is = // open some file for reading
long newFileSize = Files.copy(is, p);

Long ago, Java’s I/O facilities did not package a lot of the common operations like
copying one file to another or reading a file into a String. So back then I wrote my
own package of helper methods. Users of older JDK versions may want to use FileIO
from my utilities package com.darwinsys.util. Here’s a simple demo program that
uses FileIO to copy a source file to a backup file:

main/src/demo/java/io/FileIoDemo.java
package com.darwinsys.io;

import java.io.IOException;

public class FileIoDemo {
 public static void main(String[] av) {
 try {
 FileIO.copyFile("FileIO.java", "FileIO.bak");
 FileIO.copyFile("FileIO.class", "FileIO-class.bak");
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

324 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

My copyFile method takes several forms, depending on whether you have two file‐
names, a filename and a PrintWriter, and so on. The code for FileIO itself is not
shown here but is online, in the darwinsys API download.

10.9 Reassigning the Standard Streams
Problem
You need to reassign one or more of the standard streams System.in, System.out, or
System.err.

Solution
Construct an InputStream or PrintStream as appropriate, and pass it to the appro‐
priate set method in the System class.

Discussion
The ability to reassign these streams corresponds to what Unix (or DOS command
line) users think of as redirection, or piping. This mechanism is commonly used to
make a program read from or write to a file without having to explicitly open it and
go through every line of code changing the read, write, print, etc. calls to refer to a
different stream object. The open operation is performed by the command-line inter‐
preter in Unix or DOS or by the calling class in Java.

Although you could just assign a new PrintStream to the variable System.out, best
practice is to use the defined method to replace it:

 String LOGFILENAME = "error.log";
 System.setErr(new PrintStream(new FileOutputStream(LOGFILENAME)));
 System.out.println("Please look for errors in " + LOGFILENAME);
 // Now assume this is somebody else's code; you'll see it
 // writing to stderr...
 int[] a = new int[5];
 a[10] = 0; // here comes an ArrayIndexOutOfBoundsException

The stream you use can be one that you’ve opened, as here, or one you inherited:

System.setErr(System.out); // merge stderr and stdout to same output file.

It could also be a stream connected to or from another Process you’ve started (see
Recipe 18.1), a network socket, or a URL. Anything that gives you a stream can be
used.

10.9 Reassigning the Standard Streams | 325

10.10 Duplicating a Stream as It Is Written; Reassigning
Standard Streams
Problem
You want anything written to a stream, such as the standard output System.out or
the standard error System.err, to appear there but also be logged in to a file.

Solution
Subclass PrintStream and have its write() methods write to two streams. Then use
system.setErr() or setOut() to replace the existing standard stream with a Print
Stream subclass.

Discussion
Some classes are meant to be subclassed. Here we’re just subclassing PrintStream and
adding a bit of functionality: a second PrintStream! I wrote a class called TeePrint
Stream, named after the ancient Unix command tee. That command allowed you to
duplicate, or tee off (from plumber’s pipe tee, not the game of golf or the local pest) a
copy of the data being written on a pipeline between two programs.

The original Unix tee command is used like this: the | character creates a pipeline in
which the standard output of one program becomes the standard input to the next.
This often-used example of pipes shows how many users are logged into a Unix
server:

who | wc -l

This runs the who program (which lists who is logged in to the system, one name per
line, along with the terminal port and login time) and sends its output, not to the ter‐
minal, but rather into the standard input of the word count (wc) program. Here, wc is
being asked to count lines, not words, hence the -l option. To tee a copy of the inter‐
mediate data into a file, you might say:

who | tee wholist | wc -l

which creates a file wholist containing the data. For the curious, the file wholist might
look something like this:

ian ttyC0 Mar 14 09:59
ben ttyC3 Mar 14 10:23
ian ttyp4 Mar 14 13:46 (laptop.darwinsys.com)

So both the previous command sequences would print 3 as their output.

326 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

TeePrintStream is an attempt to capture the spirit of the tee command. It can be used
like this:

System.setErr(new TeePrintStream(System.err, "err.log"));
// ...lots of code that occasionally writes to System.err... Or might.

System.setErr() is a means of specifying the destination of text printed to
System.err (there are also System.setOut() and System.setIn()). This code results
in any messages that printed to System.err to print to wherever System.err was pre‐
viously directed (normally the terminal, but possibly a text window in an IDE) and to
the file err.log.

This technique is not limited to the three standard streams. A TeePrintStream can be
passed to any method that wants a PrintStream. Or, for that matter, an Output
Stream. And you can adapt the technique for BufferedInputStreams, PrintWriters,
BufferedReaders, and so on.

Example 10-6 shows the source code for TeePrintStream.

Example 10-6. main/src/main/java/io/TeePrintStream.java

public class TeePrintStream extends PrintStream {
 /** The original/direct print stream */
 protected PrintStream parent;

 /** The filename we are tee-ing too, if known;
 * intended for use in future error reporting.
 */
 protected String fileName;

 /** The name for when the input filename is not known */
 private static final String UNKNOWN_NAME = "(opened Stream)";

 /** Construct a TeePrintStream given an existing PrintStream,
 * an opened OutputStream, and a boolean to control auto-flush.
 * This is the main constructor, to which others delegate via "this".
 */
 public TeePrintStream(PrintStream orig, OutputStream os, boolean flush)
 throws IOException {
 super(os, true);
 fileName = UNKNOWN_NAME;
 parent = orig;
 }

 /** Construct a TeePrintStream given an existing PrintStream and
 * an opened OutputStream.
 */
 public TeePrintStream(PrintStream orig, OutputStream os)
 throws IOException {
 this(orig, os, true);

10.10 Duplicating a Stream as It Is Written; Reassigning Standard Streams | 327

 }

 /* Construct a TeePrintStream given an existing Stream and a filename.
 */
 public TeePrintStream(PrintStream os, String fn) throws IOException {
 this(os, fn, true);
 }

 /* Construct a TeePrintStream given an existing Stream, a filename,
 * and a boolean to control the flush operation.
 */
 public TeePrintStream(PrintStream orig, String fn, boolean flush)
 throws IOException {
 this(orig, new FileOutputStream(fn), flush);
 fileName = fn;
 }

 /** Return true if either stream has an error. */
 public boolean checkError() {
 return parent.checkError() || super.checkError();
 }

 /** override write(). This is the actual "tee" operation. */
 public void write(int x) {
 parent.write(x); // "write once;
 super.write(x); // write somewhere else."
 }

 /** override write(). This is the actual "tee" operation. */
 public void write(byte[] x, int o, int l) {
 parent.write(x, o, l); // "write once;
 super.write(x, o, l); // write somewhere else."
 }

 /** Close both streams. */
 public void close() {
 parent.close();
 super.close();
 }

 /** Flush both streams. */
 public void flush() {
 parent.flush();
 super.flush();
 }
}

It’s worth mentioning that I do not need to override all the polymorphic forms of
print() and println(). Because these all ultimately use one of the forms of write(),
if you override the print and println methods to do the tee-ing as well, you can get
several additional copies of the data written out.

328 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

10.11 Reading/Writing a Different Character Set
Problem
You need to read or write a text file using a particular encoding.

Solution
Convert the text to or from internal Unicode by specifying a converter when you con‐
struct an InputStreamReader or PrintWriter.

Discussion
Classes InputStreamReader and OutputStreamWriter are the bridge from byte-
oriented Streams to character-based Readers. These classes read or write bytes and
translate them to or from characters according to a specified character encoding. The
UTF-16 character set used inside Java (char and String types) is a 16-bit character
set. But most character sets—such as ASCII, Swedish, Spanish, Greek, Turkish, and
many others—use only a small subset of that. In fact, many European language char‐
acter sets fit nicely into 8-bit characters. Even the larger character sets (script-based
and pictographic languages) don’t all use the same bit values for each particular char‐
acter. The encoding, then, is a mapping between Java characters and an external stor‐
age format for characters drawn from a particular national or linguistic character set.

To simplify matters, the InputStreamReader and OutputStreamWriter constructors
are the only places where you can specify the name of an encoding to be used in this
translation. If you do not specify an encoding, the platform’s (or user’s) default
encoding is used. PrintWriters, BufferedReaders, and the like all use whatever
encoding the InputStreamReader or OutputStreamWriter class uses. Because these
bridge classes only accept Stream arguments in their constructors, the implication is
that if you want to specify a nondefault converter to read or write a file on disk, you
must start by constructing not a FileReader or FileWriter, but a FileInputStream
or FileOutputStream!

// io/UseConverters.java
BufferedReader fromKanji = new BufferedReader(
 new InputStreamReader(new FileInputStream("kanji.txt"), "EUC_JP"));
PrintWriter toSwedish = new PrinterWriter(
 new OutputStreamWriter(new FileOutputStream("sverige.txt"), "Cp278"));

Not that it would necessarily make sense to read a single file from Kanji and output it
in a Swedish encoding. For one thing, most fonts would not have all the characters of
both character sets; and, at any rate, the Swedish encoding certainly has far fewer
characters in it than the Kanji encoding. Besides, if that were all you wanted, you
could use a JDK tool with the ill-fitting name native2ascii (see its documentation for

10.11 Reading/Writing a Different Character Set | 329

details). A list of the supported encodings is also in the JDK documentation, in the
file docs/guide/internat/encoding.doc.html. A more detailed description is found in
Appendix B of Java I/O.

10.12 Those Pesky End-of-Line Characters
Problem
You really want to know about end-of-line characters.

Solution
Use \r and \n in whatever combination makes sense.

Discussion
If you are reading text (or bytes containing ASCII characters) in line mode using the
readLine() method, you’ll never see the end-of-line characters, and if you’re using a
PrintWriter with its println() method, the same applies. Thus you won’t be cursed
with having to figure out whether \n, \r, or \r\n appears at the end of each line.

If you want that level of detail, you have to read the characters or bytes one at a time,
using the read() methods. The only time I’ve found this necessary is in networking
code, where some of the line-mode protocols assume that the line ending is \r\n.
Even here, though, you can still work in line mode. When writing, pass \r\n into the
print() (not +deal with the characters:

outputSocket.print("HELO " + myName + "\r\n");
String response = inputSocket.readLine();

For the curious, the strange spelling of “hello” is used in SMTP, the mail sending pro‐
tocol, where commands are four letters.

10.13 Beware Platform-Dependent File Code
Problem
Chastened by the previous recipe, you now wish to write only platform-independent
code.

Solution
Use readLine() and println(). Avoid use of \n by itself; use File.separator if you
must.

330 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

http://shop.oreilly.com/product/9780596527501.do

Discussion
As mentioned in Recipe 10.12, if you just use readLine() and println(), you won’t
have to think about the line endings. But a particular problem, especially for former
programmers of C and related languages, is using the \n character in text strings to
mean a newline. What is particularly distressing about this code is that it works—
sometimes—usually on the developer’s own platform. But it will probably fail some‐
day, on some other system:

 String myName;
 public static void main(String[] argv) {
 BadNewline jack = new BadNewline("Jack Adolphus Schmidt, III");
 System.out.println(jack);
 }
 /**
 * DON'T DO THIS. THIS IS BAD CODE.
 */
 public String toString() {
 return "BadNewlineDemo@" + hashCode() + "\n" + myName;
 }

 // The obvious Constructor is not shown for brevity; it's in the code

The real problem is not that it fails on some platforms, though. What’s really wrong is
that it mixes formatting and I/O, or tries to. Don’t mix line-based display with
toString(); avoid multiline strings—output from toString() or any other string-
returning method. If you need to write multiple strings, then say what you mean:

 String myName;
 public static void main(String[] argv) {
 GoodNewline jack = new GoodNewline("Jack Adolphus Schmidt, III");
 jack.print(System.out);
 }

 protected void print(PrintStream out) {
 out.println(toString()); // classname and hashcode
 out.println(myName); // print name on next line
 }

Alternatively, if you need multiple lines, you could return an array or List of strings.

10.14 Reading/Writing Binary Data
Problem
You need to read or write binary data, as opposed to text.

10.14 Reading/Writing Binary Data | 331

Solution
Use a DataInputStream or DataOutputStream.

Discussion
The Stream classes have been in Java since the beginning of time and are optimal for
reading and writing bytes rather than characters. The data layer over them, compris‐
ing DataInputStream and DataOutputStream, is configured for reading and writing
binary values, including all of Java’s built-in types. Suppose that you want to write a
binary integer plus a binary floating-point value into a file and read it back later. This
code shows the writing part:

public class WriteBinary {
 public static void main(String[] argv) throws IOException {
 int i = 42;
 double d = Math.PI;
 String FILENAME = "binary.dat";
 DataOutputStream os = new DataOutputStream(
 new FileOutputStream(FILENAME));
 os.writeInt(i);
 os.writeDouble(d);
 os.close();
 System.out.println("Wrote " + i + ", " + d + " to file " + FILENAME);
 }
}

Should you need to write all the fields from an object, you should probably use one of
the methods described in Recipe 12.6.

10.15 Reading and Writing JAR or ZIP Archives
Problem
You need to create and/or extract from a JAR archive or a file in the well-known ZIP
archive format, as established by PkZip and used by Unix zip/unzip and WinZip.

Solution
You could use the jar program in the Java Development Kit because its file format is
identical to the ZIP format with the addition of the META-INF directory to contain
additional structural information. But because this is a book about programming,
you are probably more interested in the ZipFile and ZipEntry classes and the stream
classes to which they provide access.

332 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

6 There is no support for adding files to an existing archive, so make sure you put all the files in at once or be
prepared to re-create the archive from scratch.

Discussion
The class java.util.zip.ZipFile is not an I/O class per se, but a utility class that
allows you to read or write the contents of a JAR or ZIP-format file.6 When construc‐
ted, it creates a series of ZipEntry objects, one to represent each entry in the archive.
In other words, the ZipFile represents the entire archive, and the ZipEntry repre‐
sents one entry, or one file that has been stored (and compressed) in the archive. The
ZipEntry has methods like getName(), which returns the name that the file had
before it was put into the archive, and getInputStream(), which gives you an Input
Stream that will transparently uncompress the archive entry by filtering it as you read
it. To create a ZipFile object, you need either the name of the archive file or a File
object representing it:

ZipFile zippy = new ZipFile(fileName);

To see whether a given file is present in the archive, you can call the getEntry()
method with a filename. More commonly, you’ll want to process all the entries; for
this, use the ZipFile object to get a list of the entries in the archive, in the form of an
Enumeration (see Recipe 7.6), as is done here:

Enumeration all = zippy.entries();
while (all.hasMoreElements()) {
 ZipEntry entry = (ZipEntry)all.nextElement();
 ...
}

We can then process each entry as we wish. A simple listing program could be this:

if (entry.isDirectory())
 println("Directory: " + e.getName());
else
 println("File: " + e.getName());

A fancier version would extract the files. The program in Example 10-7 does both: it
lists by default, but with the -x (extract) switch, it actually extracts the files from the
archive.

Example 10-7. main/src/main/java/io/UnZip.java

public class UnZip {
 /** Constants for mode listing or mode extracting. */
 public static enum Mode {
 LIST,
 EXTRACT;
 }

10.15 Reading and Writing JAR or ZIP Archives | 333

 /** Whether we are extracting or just printing TOC */
 protected Mode mode = Mode.LIST;

 /** The ZipFile that is used to read an archive */
 protected ZipFile zippy;

 /** The buffer for reading/writing the ZipFile data */
 protected byte[] b = new byte[8092];

 /** Simple main program, construct an UnZipper, process each
 * .ZIP file from argv[] through that object.
 */
 public static void main(String[] argv) {
 UnZip u = new UnZip();

 for (int i=0; i<argv.length; i++) {
 if ("-x".equals(argv[i])) {
 u.setMode(Mode.EXTRACT);
 continue;
 }
 String candidate = argv[i];
 // System.err.println("Trying path " + candidate);
 if (candidate.endsWith(".zip") ||
 candidate.endsWith(".jar"))
 u.unZip(candidate);
 else System.err.println("Not a zip file? " + candidate);
 }
 System.err.println("All done!");
 }

 /** Set the Mode (list, extract). */
 protected void setMode(Mode m) {
 mode = m;
 }

 /** Cache of paths we've mkdir()ed. */
 protected SortedSet<String> dirsMade;

 /** For a given Zip file, process each entry. */
 public void unZip(String fileName) {
 dirsMade = new TreeSet<String>();
 try {
 zippy = new ZipFile(fileName);
 @SuppressWarnings("unchecked")
 Enumeration<ZipEntry> all = (Enumeration<ZipEntry>) zippy.entries();
 while (all.hasMoreElements()) {
 getFile((ZipEntry)all.nextElement());
 }
 } catch (IOException err) {
 System.err.println("IO Error: " + err);
 return;
 }

334 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 }

 protected boolean warnedMkDir = false;

 /** Process one file from the zip, given its name.
 * Either print the name, or create the file on disk.
 */
 protected void getFile(ZipEntry e) throws IOException {
 String zipName = e.getName();
 switch (mode) {
 case EXTRACT:
 if (zipName.startsWith("/")) {
 if (!warnedMkDir)
 System.out.println("Ignoring absolute paths");
 warnedMkDir = true;
 zipName = zipName.substring(1);
 }
 // if a directory, just return. We mkdir for every file,
 // since some widely used Zip creators don't put out
 // any directory entries, or put them in the wrong place.
 if (zipName.endsWith("/")) {
 return;
 }
 // Else must be a file; open the file for output
 // Get the directory part.
 int ix = zipName.lastIndexOf('/');
 if (ix > 0) {
 String dirName = zipName.substring(0, ix);
 if (!dirsMade.contains(dirName)) {
 File d = new File(dirName);
 // If it already exists as a dir, don't do anything
 if (!(d.exists() && d.isDirectory())) {
 // Try to create the directory, warn if it fails
 System.out.println("Creating Directory: " + dirName);
 if (!d.mkdirs()) {
 System.err.println(
 "Warning: unable to mkdir " + dirName);
 }
 dirsMade.add(dirName);
 }
 }
 }
 System.err.println("Creating " + zipName);
 FileOutputStream os = new FileOutputStream(zipName);
 InputStream is = zippy.getInputStream(e);
 int n = 0;
 while ((n = is.read(b)) >0)
 os.write(b, 0, n);
 is.close();
 os.close();
 break;
 case LIST:

10.15 Reading and Writing JAR or ZIP Archives | 335

 // Not extracting, just list
 if (e.isDirectory()) {
 System.out.println("Directory " + zipName);
 } else {
 System.out.println("File " + zipName);
 }
 break;
 default:
 throw new IllegalStateException("mode value (" + mode + ") bad");
 }
 }
}

See Also
People sometimes confuse the ZIP archive file format with the similarly named gzip
compression format. Gzip-compressed files can be read or written with the GZipIn
putStream and GZipOutputStream classes from java.io.

10.16 Finding Files in a Filesystem-Neutral Way with
getResource() and getResourceAsStream()
Problem
You want to load objects or files without referring to their absolute location in the
filesystem. You might want to do this for one of the following reasons:

• You are in a server (Java EE) environment.
• You want to be independent of file paths.
• You want to read a file in a unit test.
• You expect users to deploy the resource “somewhere” on the LASSPATH (possibly

even inside a JAR file).

Solution
Use getClass() or getClassLoader() and either getResource() or getResourceAs
Stream().

Discussion
There are three varieties of getResource() methods, some of which exist (with the
exact same signature) both in the Class class (see Chapter 17) and in the Class

336 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

Loader class (see Recipe 17.5). The methods in Class delegate to the ClassLoader, so
there is little difference between them. The methods are summarized in Table 10-6.

Table 10-6. The getResource* methods
Method signature In Class In ClassLoader

public InputStream getResourceAsStream(String); Y Y

public URL getResource(String); Y Y

public Enumeration<URL> getResources(String) throws IOException; N Y

The first method is designed to quickly and easily locate a resource, or file, on your
CLASSPATH. Using the Class version, or the other one with a standard ClassLoader
implementation, the resource can be a physical file or a file inside a JAR file. If you
define your own classloader, your imagination is the limit, as long as it can be repre‐
sented as an InputStream. This is commonly used as shown here:

InputStream is = getClass().getResourceAsStream("foo.properties");
// then do something with the InputStream...

The second form returns a URL, which can be interpreted in various ways (see the dis‐
cussion of reading from a URL in Recipe 12.1).

The third form, only usable with a ClassLoader instance, returns an Enumeration of
URL objects. This is intended to return all the resources that match a given string;
remember that a CLASSPATH can consist of pretty much any number of directories
and/or JAR files, so this will search all of them. This is useful for finding a series of
configuration files and merging them, perhaps. Or for finding out whether there is
more than one resource/file of a given name on your CLASSPATH.

Note that the resource name can be given as either a relative path or as an absolute
path. Assuming you are using Maven (see Recipe 1.7), then for the absolute path,
place the file relative to src/main/resources/ directory. For the relative path, place the
file in the same directory as your source code. The same rules apply in an IDE,
assuming you have made src/main/java and src/main/resources be treated as source
folders in your IDE configuration. The idea is that resource files get copied to your
CLASSPATH folder. For example, if you have two resource files, src/main/resources/
one.txt and src/main/java/MyPackage/two.txt, and your project is configured as
described, these two lines would work, if accessed from a program in MyPackage:

Class<?> c = getClass();
InputStream isOne = getResourceAsStream("/one.txt"); // note leading slash
InputStream isTwo = getResourceAsStream("two.txt"); // without leading slash

10.16 Finding Files in a Filesystem-Neutral Way with getResource() and getResourceAsStream() | 337

In either case, getResource() and getResourceAsStream() will
return null if they don’t find the resource; you should always check
for null to guard against faulty deployment. If it doesn’t find
anything matching, getResources() will return an empty
Enumeration.

If the file path has slashes between components (as in package/subpackage), the name
you path into any of the getResource methods should have a period in place of the
slash.

10.17 Getting File Information: Files and Path
Problem
You need to know all you can about a given file on disk.

Solution
Use java.nio.file.Files methods.

Discussion
The java.nio.file.Files class has a plural name both to differentiate it from the
legacy File class that it replaces and to remind us that it sometimes works on multi‐
ple files. There are two types of static methods in the Files class, information and
operational. The informational ones (see Table 10-7) simply give you information
about one file, such as boolean exists() or long size(). The operational ones (see
Table 10-8) either make changes to the filesystem or open a file for reading or writing.
Each of the operational ones can throw the checked exception IOException; only a
few of the informational ones can.

The vast majority of these methods have argument(s) of type java.nio.file.Path. A
Path represents a path into the filesystem, that is, a set of directories and possibly a
file, like “C:\Users\user\Downloads” or “/home/ian/Downloads”. The path may or
may not exist as a file on disk at the time you create a Path representing it. The Files
class can tell you whether the file represented by a given Path exists, can bring that
Path into being as a file or as a directory, and can either change the corresponding
file’s attributes or even destroy it if it does exist. Path objects are easily created with
Path.of(String name), which has several overloads.

Files in conjunction with Path offers pretty well everything you’d need to write a
full-blown file manager application, let alone the needs of a more typical application

338 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

needing file information and/or directory access. The Files class has a series of static
boolean methods that give basic information.

Table 10-7. Public static informational methods in java.nio.file.Files
Return type Method Notes
boolean exists(Path, LinkOption…);

Object getAttribute(Path, String, LinkOption…);

<V extends FileAttributeView> V getFileAttributeView(Path, Class<V>,
LinkOption…);

FileTime getLastModifiedTime(Path, LinkOption…);

UserPrincipal getOwner(Path, LinkOption…);

Set<PosixFilePermission> getPosixFilePermissions(Path, LinkOption…);

boolean isDirectory(Path, LinkOption…);

boolean isExecutable(Path); If Executable by current user

boolean isHidden(Path); If a “dot file” on Unix, or “hidden”
attribute set on some OSes

boolean isReadable(Path); If Readable by current user

boolean isRegularFile(Path, LinkOption…);

boolean isSameFile(Path, Path) throws IOException; Has to unwind filesys complexities like
“..”, symlinks, …

boolean isSymbolicLink(Path);

boolean isWritable(Path); If Writable by current user

long mismatch(Path, Path);

boolean notExists(Path, LinkOption…);

String probeContentType(Path) throws IOException; Tries to return MIME type of data

Path readSymbolicLink(Path) throws IOException;

long size(Path);

By “current user” we mean the account under which the current JVM instance is
being run.

Most of these methods are demonstrated in Example 10-8.

Example 10-8. main/src/main/java/io/FilesInfos.java

 println("exists", Files.exists(Path.of("/")));
 println("isDirectory", Files.isDirectory(Path.of("/")));
 println("isExecutable", Files.isExecutable(Path.of("/bin/cat")));
 println("isHidden", Files.isHidden(Path.of("~/.profile")));
 println("isReadable", Files.isReadable(Path.of("lines.txt")));
 println("isRegularFile", Files.isRegularFile(Path.of("lines.txt")));
 println("isSameFile", Files.isSameFile(Path.of("lines.txt"),
 Path.of("../main/lines.txt")));

10.17 Getting File Information: Files and Path | 339

 println("isSymbolicLink", Files.isSymbolicLink(Path.of("/var")));
 println("isWritable", Files.isWritable(Path.of("/tmp")));
 println("isDirectory", Files.isDirectory(Path.of("/")));
 println("notexists",
 Files.notExists(Path.of("no_such_file_as_skjfsjljwerjwj")));
 println("probeContentType", Files.probeContentType(Path.of("lines.txt")));
 println("readSymbolicLink", Files.readSymbolicLink(Path.of("/var")));
 println("size", Files.size(Path.of("lines.txt")));

Obviously the paths chosen are somewhat system-specific, but when run on my Unix
system, the boolean methods all returned true, and the last three returned this:

probeContentType returned text/plain
readSymbolicLink returned private/var
size returned 78

Table 10-8 shows the methods that make changes to filesystem entities.

Table 10-8. Public static operational methods in java.nio.file.Files
Return type Method
long copy(InputStream, Path, CopyOption…);

long copy(Path, OutputStream);

Path copy(Path, Path, CopyOption…);

Path createDirectories(Path, FileAttribute<?>…);

Path createDirectory(Path, FileAttribute<?>…);

Path createFile(Path, FileAttribute<?>…);

Path createLink(Path, Path);

Path createSymbolicLink(Path, Path, FileAttribute<?>…);

Path createTempDirectory(Path, String, FileAttribute<?>…);

Path createTempDirectory(String, FileAttribute<?>…);

Path createTempFile(Path, String, String, FileAttribute<?>…);

Path createTempFile(String, String, FileAttribute<?>…);

void delete(Path);

boolean deleteIfExists(Path);

Stream<Path> find(Path, int, BiPredicate<Path, BasicFileAttributes>, FileVisitOption…);

Stream<String> lines(Path);

Stream<String> lines(Path, Charset);

Stream<Path> list(Path);

Path move(Path, Path, CopyOption…);

BufferedReader newBufferedReader(Path);

BufferedReader newBufferedReader(Path, Charset);

BufferedWriter newBufferedWriter(Path, Charset, OpenOption…);

BufferedWriter newBufferedWriter(Path, OpenOption…);

340 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

Return type Method
SeekableByteChannel newByteChannel(Path, OpenOption…);

SeekableByteChannel newByteChannel(Path, Set<? extends OpenOption>, FileAttribute<?>…);

DirectoryStream<Path> newDirectoryStream(Path);

DirectoryStream<Path> newDirectoryStream(Path, String);

InputStream newInputStream(Path, OpenOption…);

OutputStream newOutputStream(Path, OpenOption…);

byte[] readAllBytes(Path);

List<String> readAllLines(Path);

List<String> readAllLines(Path, Charset);

<A extends BasicFileAttributes> A readAttributes(Path, Class<A>, LinkOption…);

Map<String, Object> readAttributes(Path, String, LinkOption…);

String readString(Path);

String readString(Path, Charset);

Path setAttribute(Path, String, Object, LinkOption…);

Path setLastModifiedTime(Path, FileTime);

Path setOwner(Path, UserPrincipal);

Path setPosixFilePermissions(Path, Set<PosixFilePermission>);

Path write(Path, Iterable<? extends CharSequence>, Charset, OpenOption…);

Path write(Path, Iterable<? extends CharSequence>, OpenOption…);

Path write(Path, byte[], OpenOption…);

Path writeString(Path, CharSequence, Charset, OpenOption…);

Path writeString(Path, CharSequence, OpenOption…);

Path is an interface whose implementation is provided by a provider class called File
system. Path has many methods, listed in Table 10-9.

Table 10-9. Public static operational methods in java.nio.file.Path
Access Return type Method
static Path of(String, String…);

static Path of(URI);

abstract FileSystem getFileSystem();

abstract boolean isAbsolute();

abstract Path getRoot();

abstract Path getFileName();

abstract Path getParent();

abstract int getNameCount();

abstract Path getName(int);

abstract Path subpath(int, int);

10.17 Getting File Information: Files and Path | 341

Access Return type Method
abstract boolean startsWith(Path);

default boolean startsWith(String);

abstract boolean endsWith(Path);

default boolean endsWith(String);

abstract Path normalize();

abstract Path resolve(Path);

default Path resolve(String);

default Path resolveSibling(Path);

default Path resolveSibling(String);

abstract Path relativize(Path);

abstract URI toUri();

abstract Path toAbsolutePath();

abstract Path toRealPath(LinkOption…) throws IOException;

default File toFile();

abstract WatchKey register(WatchService, WatchEvent$Kind<?>[], WatchEvent$Modifier…)
throws IOException;

default WatchKey register(WatchService, WatchEvent$Kind<?>…) throws IOException;

default Iterator<Path> iterator();

abstract int compareTo(Path);

abstract boolean equals(Object);

abstract int hashCode();

abstract String toString();

default int compareTo(Object);

To find the information about one file, you can use the informational methods in
Files and Path, as shown in Example 10-9.

Example 10-9. main/src/main/java/dir_file/FileStatus.java (getting file information)

public class FileStatus {
 public static void main(String[] argv) throws IOException {

 // Ensure that a filename (or something) was given in argv[0]
 if (argv.length == 0) {
 System.err.println("Usage: FileStatus filename");
 System.exit(1);
 }
 for (String a : argv) {
 status(a);
 }
 }

342 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 public static void status(String fileName) throws IOException {
 System.out.println("---" + fileName + "---");

 // Construct a Path object for the given file.
 Path p = Path.of(fileName);

 // See if it actually exists
 if (!Files.exists(p)) {
 System.out.println("file not found");
 System.out.println(); // Blank line
 return;
 }
 // Print full name
 System.out.println("Canonical name " + p.normalize());
 // Print parent directory if possible
 Path parent = p.getParent();
 if (parent != null) {
 System.out.println("Parent directory: " + parent);
 }
 // Check if the file is readable
 if (Files.isReadable(p)) {
 System.out.println(fileName + " is readable.");
 }
 // Check if the file is writable
 if (Files.isWritable(p)) {
 System.out.println(fileName + " is writable.");
 }

 // See if file, directory, or other. If file, print size.
 if (Files.isRegularFile(p)) {
 // Report on the file's size and possibly its type
 System.out.printf("File size is %d bytes, content type %s\n",
 Files.size(p),
 Files.probeContentType(p));
 } else if (Files.isDirectory(p)) {
 System.out.println("It's a directory");
 } else {
 System.out.println("I dunno! Neither a file nor a directory!");
 }

 // Report on the modification time.
 final FileTime d = Files.getLastModifiedTime(p);
 System.out.println("Last modified " + d);

 System.out.println(); // blank line between entries
 }

When run on MS Windows with the three arguments shown, it produces this output:

C:\javasrc\dir_file>java dir_file.FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name C:\
File is readable.

10.17 Getting File Information: Files and Path | 343

File is writable.
Last modified 1970-01-01T00:00:00.00000Z
It's a directory

---/tmp/id---
file not found

---/autoexec.bat---
Canonical name C:\AUTOEXEC.BAT
Parent directory: \
File is readable.
File is writable.
Last modified 2019-10-13T12:43:05.123918Z
File size is 308 bytes.

As you can see, the so-called canonical name not only includes a leading directory
root of C:\, but also has had the name converted to uppercase. You can tell I ran that
on Windows. That version of Windows did not maintain timestamps on directories;
the value 0L gets interpreted as January 1, 1970 (not accidentally the same time base
as used on Unix since that time). On Unix, it behaves differently:

$ java dir_file.FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name /
File is readable.
It's a directory
Last modified 2019-12-16T01:14:05.226108Z

---/tmp/id---
Canonical name /tmp/id
Parent directory: /tmp
File is readable.
File is writable.
File size is 36768 bytes, content type null
Last modified 2019-12-21T18:46:27.402108Z

---/autoexec.bat---
file not found

$

A typical Unix system has no autoexec.bat file. And Unix filenames (like those on a
Mac) can consist of upper- and lowercase characters: what you type is what you get.

Legacy compatibility

To use a Path with legacy code that needs the older java.io.File, simply use File
oldType = Path.toFile():

jshell> Path p = Path.of("/");
p ==> /

344 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

jshell> File f = p.toFile();
f ==> /

To go the other way, the File class has been retrofitted with a toPath() method:

jshell> File f = new File("/");
f ==> /

jshell> Path p = f.toPath();
p ==> /

10.18 Creating a New File or Directory
Problem
You need to create a new file on disk but not write any data into it; you need to create
a directory before you can create files in it.

Solution
For an empty file, use a java.nio.file.Files object’s createFile(Path) method.
Use the Files class’s createDirectory() or createDirectories() method to create
a directory.

Discussion

Files

You could easily create a new file by constructing a FileOutputStream or FileWriter
(see Recipe 12.6). But then you’d have to remember to close it as well. Sometimes you
want a file to exist, but you don’t want to bother putting anything into it. This might
be used, for example, as a simple form of interprogram communication: one program
could test for the presence of a file and interpret that to mean that the other program
has reached a certain state. Example 10-10 is code that simply creates an empty file
for each name you give.

Example 10-10. main/src/main/java/dir_file/Creat.java (creation of a file on disk)

/** Create file(s) by name. Final "e" omitted in homage to UNIX system call. */
public class Creat {
 public static void main(String[] argv) throws IOException {

 // Ensure that a filename (or something) was given in argv[0]
 if (argv.length == 0) {
 throw new IllegalArgumentException("Usage: Creat filename [...]");
 }

10.18 Creating a New File or Directory | 345

 for (String arg : argv) {
 // Constructing a Path object doesn't affect the disk, but
 // the Files.createFile() method does.
 final Path p = Path.of(arg);
 final Path created = Files.createFile(p);
 System.out.println(created);
 }
 }
}

java.nio.file.createFile() has an overload that takes a second argument of type
OpenOption. This is an empty interface that is implemented by the StandardOpenOp
tion enumeration. These options are listed in Table 10-5.

Directories

Of the two methods used for creating directories, createDirectory() creates just
one directory, whereas createDirectories() creates any intermediate directories
that are needed. For example, if /home/ian exists and is a directory, the call

shell> Files.createDirectory(Path.of("/Users/ian/abc"))
$11 ==> /Users/ian/abc

will succeed (unless the directory is already there), but the call

jshell> Files.createDirectory(Path.of("/Users/ian/once/twice/again"))

will fail with a java.nio.file.NoSuchFileException because the directory named
once does not exist. To create this path of directories, as you might expect by now, use
createDirectories() (plural):

jshell> Files.createDirectories(Path.of("/Users/ian/once/twice/again"))
$14 ==> /Users/ian/once/twice/again

Both variants return a Path object referring to the new directory if they succeed and
throw an exception if they fail. Notice that it is possible (but not likely) for createDir
ectories() to create some of the directories and then fail; in this case, the newly cre‐
ated directories are left in the filesystem.

10.19 Changing a File’s Name or Other Attributes
Problem
You need to change a file’s name on disk or some of its other attributes, such as set‐
ting the file to read-only or changing its modification time.

346 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

Solution
To change the name (or location), use a java.nio.file.Files static move() method.
For other attributes, use setLastModifiedTime() to change the timestamp, or one of
several other setters for mode or permission attributes.

Discussion
Similar to the Unix command line, there is no separate rename operation; the move
methods provide all functions for putting a file somewhere else, whether that is to the
same name in a different directory, a different name in the same directory, or a differ‐
ent name on a different disk or filesystem. Accordingly, the Files.move() method
requires two Path objects, one referring to the existing file and another referring to
the new name. Then call the Files.move() method, passing both path objects, first
the existing and then the desired name. This is easier to see than to explain, so here
goes:

public class Rename {
 public static void main(String[] argv) throws IOException {

 // Construct the Path object. Does NOT create a file on disk!
 final Path p = Path.of("MyCoolDocument"); // The file we will rename

 // Setup for the demo: create a new "old" file
 final Path oldName = Files.exists(p) ? p : Files.createFile(p);

 // Rename the backup file to "mydoc.bak"
 // Renaming requires a Path object for the target.
 final Path newName = Path.of("mydoc.bak");
 Files.deleteIfExists(newName); // In case previous run left it there
 Path p2 = Files.move(oldName, newName);
 System.out.println(p + " renamed to " + p2);
 }
}

For changing the attributes, there are several methods available, listed in Table 10-10.
Each of these has a return value of type boolean, with true meaning success.

Table 10-10. Files attribute setters
Method signature Description

setExecutable(boolean executable) Convenience method to set owner’s execute permission for
this file

setExecutable(boolean executable,
boolean ownerOnly)

Sets the owner’s or everybody’s execute permission for this
file

setLastModified(long time) Sets the last-modified time of the file or directory that this file
names

10.19 Changing a File’s Name or Other Attributes | 347

Method signature Description

setReadable(boolean readable) Convenience method to set owner’s read permission for this
file

setReadable(boolean readable, boolean
ownerOnly)

Sets the owner’s or everybody’s read permission for this file

setReadOnly() Convenience for setReadable(false)

setWritable(boolean writable) A convenience method to set the owner’s write permission for
this file

setWritable(boolean writable, boolean
ownerOnly)

Set owner’s or everybody’s write permission for this file

For the methods that take two arguments, the first enables or disables the feature on
the given file that matches the method name, and the second controls whether the
operation applies to the owner only or to everyone. The second argument is ignored
if the file lives on a filesystem that doesn’t support multiuser permissions or if the
operating system doesn’t support that. All the methods described in this recipe return
true if they succeed and false otherwise.

For example, boolean setReadable(boolean readable, boolean ownerOnly) lets
you specify who can read the given file. The readable argument is true or false
depending on whether you want it readable or not. The ownerOnly argument tries to
extend the readability choice to all users on a multiuser operating system, and is
ignored if not applicable.

setLastModified() allows you to play games with the modification time of a file.
This is normally not a good game to play, but it is useful in some types of backup/
restore programs. This method takes an argument that is the number of milliseconds
(not seconds) since the beginning of Unix time (January 1, 1970). You can get the
original value for the file by calling getLastModified() (see Recipe 10.17), or you
can get the value for a given date by calling the ZonedDateTime’s toInstant().getE
pochSecond() method (see Recipe 6.3) and multiplying by 1,000 to convert seconds
to milliseconds.

I encourage you to explore the operation of these methods using JShell (see Recipe
1.4). I’d suggest having a second window in which you can run ls -l or dir com‐
mands to see how the file is affected. Example 10-11 shows some of these methods
being explored in JShell.

Example 10-11. Exploring Files

jshell> var f = File.createTempFile("foo", "bar");
f ==> /tmp/foo9391300789087780984bar

jshell> f.createNewFile();
$4 ==> false

348 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

jshell> f.setReadOnly();
$5 ==> true

jshell> f.canRead();
$6 ==> true

jshell> f.canWrite();
$7 ==> false

jshell> f.setReadable(true);
$8 ==> true

jshell> f.canWrite();
$9 ==> false

jshell> f.setReadable(false, false);
$10 ==> true

jshell> f.canWrite();
$11 ==> false

10.20 Deleting a File
Problem
You need to delete one or more files from the disk.

Solution
Use java.nio.file.Files object’s delete(Path) or deleteIfExists(Path) method.
These delete the files referred to by the Path argument (subject of course to permis‐
sions) and directories (subject to permissions and to the directory being empty).

Discussion
This is not complicated. Simply construct a Path object for the file you wish to delete,
and call the static Files.delete() method:

public class Delete {
 public static void main(String[] argv) throws IOException {

 // Construct a File object for the backup created by editing
 // this source file. The file probably already exists.
 // Some text editors create backups by putting ~ at end of filename.
 File bkup = new File("Delete.java~");
 // Now, delete it:
 bkup.delete();

10.20 Deleting a File | 349

 }
}

Recall the caveat about permissions in the introduction to this chapter: if you don’t
have permission, you can get a return value of false or, possibly, a SecurityExcep
tion. Note also that there are some differences between platforms. Some versions of
Windows allow Java to remove a read-only file, but Unix does not allow you to
remove a file unless you have write permission on the directory it’s in. Nor does Unix
allow you to remove a directory that isn’t empty (there is even an exception, Director
yNotEmptyException, for the latter case). Here is a version of Delete with reporting
of success or failure:

public class Delete2 {

 static boolean hard = false; // True for delete, false for deleteIfExists

 public static void main(String[] argv) {
 for (String arg : argv) {
 if ("-h".equals(arg)) {
 hard = true;
 continue;
 }
 delete(arg);
 }
 }

 public static void delete(String fileName) {
 // Construct a File object for the file to be deleted.
 final Path target = Path.of(fileName);

 // Now, delete it:
 if (hard) {
 try {
 System.out.print("Using Files.delete(): ");
 Files.delete(target);
 System.err.println("** Deleted " + fileName + " **");
 } catch (IOException e) {
 System.out.println("Deleting " + fileName + " threw " + e);
 }
 } else {
 try {
 System.out.print("Using deleteIfExists(): ");
 if (Files.deleteIfExists(target)) {
 System.out.println("** Deleted " + fileName + " **");
 } else {
 System.out.println(
 "Deleting " + fileName + " returned false.");
 }
 } catch (IOException e) {
 System.out.println("Deleting " + fileName + " threw " + e);
 }

350 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 }
 }
}

The -h option allows this program to switch between delete() and deleteIfEx
ists(); you can see the difference by running it on things that exist, don’t exist, and
are not empty, using both methods. The output looks something like this on my Unix
box:

$ ls -ld ?
-rw-r--r-- 1 ian 512 0 Dec 21 16:35 a
drwxr-xr-x 2 ian 512 64 Dec 21 16:35 b
drwxr-xr-x 3 ian 512 96 Dec 21 16:22 c
$ java -cp target/classes dir_file.Delete2 a b c d
Using deleteIfExists(): ** Deleted a **
Using deleteIfExists(): ** Deleted b **
Using deleteIfExists(): Deleting c threw
 java.nio.file.DirectoryNotEmptyException: c
Using deleteIfExists(): Deleting d returned false.
Here I put the files back the way they were, then run again with -h
$ java -cp target/classes dir_file.Delete2 -h a b c d
Using Files.delete(): ** Deleted a **
Using Files.delete(): ** Deleted b **
Using Files.delete(): Deleting c threw
 java.nio.file.DirectoryNotEmptyException: c
Using Files.delete(): Deleting d threw java.nio.file.NoSuchFileException: d
$ ls -l c
total 2
drwxr-xr-x 2 ian ian 512 Oct 8 16:50 d
$ java dir_file.Delete2 c/d c
Using deleteIfExists(): ** Deleted c/d **
Using deleteIfExists(): ** Deleted c **
$

10.21 Creating a Transient/Temporary File
Problem
You need to create a file with a unique temporary filename and/or or arrange for a file
to be deleted when your program is finished.

Solution
Use the java.nio.file.Files createTempFile() or createTempDirectory()

method. Use one of several methods to ensure your file is deleted on exit.

10.21 Creating a Transient/Temporary File | 351

Discussion
The Files class has static methods for creating temporary files and directories. Note
that a temporary file in this context is not deleted automatically; it is simply created in
a directory that is set aside for temporary files on that operating system (e.g., /tmp on
Unix). Here are the methods for creating tempory files and directories:

Path createTempFile(Path dir, String prefix, String suffix, FileAttribute<?>… attrs)
Creates a new empty file in the specified directory, using the given prefix and suf‐
fix strings to generate its name

Path createTempFile(String prefix, String suffix, FileAttribute<?>… attrs)
Creates an empty file in the default temporary-file directory, using the given pre‐
fix and suffix to generate its name

Path createTempDirectory(Path dir, String prefix, FileAttribute<?>… attrs)
Creates a new directory in the specified directory, using the given prefix to gener‐
ate its name

Path createTempDirectory(String prefix, FileAttribute<?>… attrs)
Creates a new directory in the default temporary-file directory, using the given
prefix to generate its name

The file attributes are discussed in the sidebar “Understanding I/O Options: Standar‐
dOpenOptions, FileAttribute, PosixFileAttribute, and More” on page 321.

There are various ways to arrange for a file to be deleted automatically. One is to use
the legacy java.io.File class, which has a explicit deleteOnExit() method. This
arranges for any file (no matter how it was created) to be deleted if it still exists when
the program exits. Here we arrange for a backup copy of a program to be deleted on
exit, and we also create a temporary file and arrange for it to be removed on exit.
Both files are gone after the program runs:

public class TempFiles {
 public static void main(String[] argv) throws IOException {

 // 1. Making an existing file temporary
 // Construct a File object for the backup created by editing
 // this source file. The file probably already exists.
 // My editor creates backups by putting ~ at the end of the name.
 File bkup = new File("Rename.java~");
 // Arrange to have it deleted when the program ends.
 bkup.deleteOnExit();

 // 2. Create a new temporary file.

 // Make a file object for foo.tmp, in the default temp directory
 Path tmp = Files.createTempFile("foo", "tmp");
 // Report on the filename that it made up for us.

352 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 System.out.println("Your temp file is " + tmp.normalize());
 // Arrange for it to be deleted at exit.
 tmp.toFile().deleteOnExit();
 // Now do something with the temporary file, without having to
 // worry about deleting it later.
 writeDataInTemp(tmp);
 }

 public static void writeDataInTemp(Path tempFile) throws IOException {
 // This version is dummy. Use your imagination.
 Files.writeString(tempFile, "This is a temp file");
 }
}

When run on a Unix system, this program looked like this, proving that the file was
created but removed when the JVM exited:

$ java TempFiles.java
Your temp file is /tmp/foo8423321910215054689tmp
$ ls -l /tmp/foo8423321910215054689tmp
ls: /tmp/foo8423321910215054689tmp: No such file or directory
$

The createTempFile() method is like createNewFile() (see Recipe 10.18) in that it
does create the file. Also be aware that, should the Java Virtual Machine terminate
abnormally, the deletion probably will not occur. There is no way to undo the setting
of deleteOnExit() short of renaming the file or something drastic like powering off
the computer before the program exits.

Another way to arrange for any file to be deleted when you are finished with it is to
create it with the DELETE_ON_CLOSE option (see Table 10-5) so it will be deleted when
you close the file.

A third, less likely method is to instead use a JVM shutdown hook. DELETE_ON_CLOSE
is probably the best option, particularly in a long-running application, like most
server-side apps. In these situations, the server could be running for weeks, months,
or even years. In the meantime all the temp files would accumulate and the JVM
would accumulate a large list of deferred work that it needs to perform upon shut‐
down. You’d probably run out of disk space or server memory or some other
resource. For most long-running apps of this kind, it’s better to use DELETE_ON_CLOSE
or even the explicit delete() operation. Another alternative is to use a scheduler ser‐
vice to periodically trigger removal of old temporary files.

10.22 Listing a Directory
Problem
You need to list the filesystem entries named in a directory.

10.22 Listing a Directory | 353

https://darwinsys.com/java/shutdownhook.html

Solution
Use the java.nio.file.Files static method Stream<Path> list(Path dir), pass‐
ing the Path representing the directory.

Discussion
The java.nio.file.Files class contains several methods for working with directo‐
ries. If you just want to list the contents of a directory, use its list(Path) method.
For example, to list the filesystem entities named in the current directory, just write
the following:

Files.list(Path.of(".")).forEach(System.out::println);

This can become a complete program with as little as the following code. Note that on
many systems the Path objects are returned in the order they occur in the directory,
which isn’t sorted. In this simple example we use the Stream.sorted() method to
order the entries alphabetically:

public class Ls {
 public static void main(String args[]) throws IOException {
 Files.list(Path.of("."))
 .sorted()
 .forEach(dir -> {
 System.out.println(dir);
 });
 }
}

Of course, there’s lots of room for elaboration. You could print the names in multiple
columns across the page. Or even down the page because you know the number of
items in the list before you print. You could omit filenames with leading periods, as
does the Unix ls program. Or print the directory names first; I once used a directory
lister called lc that did this, and I found it quite useful.

If you want to process the directory recursively, you should not check each entry to
see if it’s a file or directory and recurse on directories. Instead, you should use one of
the walk() or walkFileTree() methods discussed in Recipe 10.26; these handle
recursion for you. There is also a set of Files.newDirectoryStream() methods, with
and without filter callbacks and other arguments, that return a Directory

Stream<Path>.

10.23 Getting the Directory Roots
Problem
You want to know about the top-level directories, such as C:\ and D:\ on Windows.

354 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

Solution
Use the static method FileSystems.getDefault().getRootDirectories(), which
returns an Iterable of Path objects, one for each root directory. You can print them
or do other operations on them.

Discussion
Operating systems differ in how they organize filesystems out of multiple disk drives
or partitions. Microsoft Windows has a low-level device-oriented approach in which
each disk drive has a root directory named A:\ for the first floppy (if you still have
one!), C:\ for the first hard drive, and other letters for CD-ROM and network drives.
This approach requires you to know the physical device that a file is on. Unix, Linux,
and macOS have a high-level approach with a single root directory /; and different
disks or partitions are mounted, or connected, into a single unified tree. This
approach sometimes requires you to figure out where a device file is mounted. Per‐
haps neither is easier, though the Unix approach is a bit more consistent. Either way,
Java makes it easy for you to get a list of the roots.

The static method FileSystems.getDefault().getRootDirectories() returns an
Iterable<Path> containing the available filesystem roots for whatever platform you
are running on. Here is a short program to list these:

FileSystems.getDefault().getRootDirectories().forEach(System.out::println);

C:> java dir_file.DirRoots
A:\
C:\
D:\
C:>

As you can see, the program listed my floppy drive (even though the floppy drive was
not only empty, but left at home while I wrote this recipe on my notebook computer
in my car in a parking lot), the hard disk drive, and the CD-ROM drive.

On Unix there is only one root directory:

$ java dir_file.DirRoots
/
$

One thing that is left out of the list of roots is the so-called UNC filename. UNC file‐
names are used on some Microsoft platforms to refer to a network-available resource
that hasn’t been mounted locally on a particular drive letter. If your system still uses
these, be aware they will not show up in the listDirectoryRoots() output.

10.23 Getting the Directory Roots | 355

10.24 Using the FileWatcher Service to Get Notified About
File Changes
Problem
You want to be notified when some other application updates one or more of the files
in which you are interested.

Solution
Use the java.nio.file.FileWatchService to get notified of changes to files auto‐
matically, instead of having to examine the files periodically.

Discussion
It is fairly common for a large application to want to be notified of changes to files,
without having to go and look at them periodically. For example, a Java Enterprise
web server wants to know when Servlets and other components get updated. An IDE
wants to know when files were modified by an external editor or a build script. Many
modern operating systems have had this capability for some time, and now it is avail‐
able in Java.

These are the basic steps to using the FileWatchService:

1. Create a Path object representing the directory you want to watch.
2. Get a WatchService by calling, for example, FileSystems.getDefault().new

WatchService().
3. Create an array of Kind enumerations for the things you want to watch (in our

example we watch for files being created or modified).
4. Register the WatchService and the Kind array onto the Path object.
5. From then on, you wait for the watcher to notify you. A typical implementation

is to enter a while (true) loop calling the WatchService’s take() method to get
an event and interpret the events to figure out what just happened.

Example 10-12 is a program that does just that. In addition, it starts another thread to
actually do some filesystem operations so that you can see the WatchService
operating.

Example 10-12. main/src/main/java/nio/FileWatchServiceDemo.java

public class FileWatchServiceDemo {

 final static String TEMP_DIR_PATH = "/tmp";

356 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 static final String FILE_SEMA_FOR = "MyFileSema.for";
 final static Path SEMAPHORE_PATH = Path.of(TEMP_DIR_PATH ,FILE_SEMA_FOR);
 static volatile boolean done = false;
 final static ExecutorService threadPool = Executors.newSingleThreadExecutor();

 public static void main(String[] args) throws Throwable {
 String tempDirPath = "/tmp";
 System.out.println("Starting watcher for " + tempDirPath);
 System.out.println("Semaphore file is " + SEMAPHORE_PATH);
 Path p = Paths.get(tempDirPath);
 WatchService watcher =
 FileSystems.getDefault().newWatchService();
 Kind<?>[] watchKinds = { ENTRY_CREATE, ENTRY_MODIFY };
 p.register(watcher, watchKinds);
 threadPool.submit(new DemoService());
 while (!done) {
 WatchKey key = watcher.take();
 for (WatchEvent<?> e : key.pollEvents()) {
 System.out.println(
 "Saw event " + e.kind() + " on " +
 e.context());
 if (e.context().toString().equals(FILE_SEMA_FOR)) {
 System.out.println("Semaphore found, shutting down watcher");
 done = true;
 }
 }
 if (!key.reset()) {
 System.err.println("WatchKey failed to reset!");
 }
 }
 }

 /**
 * Nested class whose only job is to wait a while, create a file in
 * the monitored directory, and then go away.
 */
 private final static class DemoService implements Runnable {
 public void run() {
 try {
 Thread.sleep(1000);
 System.out.println("DemoService: Creating file");
 Files.deleteIfExists(SEMAPHORE_PATH); // clean up from previous run
 Files.createFile(SEMAPHORE_PATH);
 Thread.sleep(1000);
 System.out.println("DemoService: Shutting down");
 } catch (Exception e) {
 System.out.println("Caught UNEXPECTED " + e);
 }
 }
 }
}

10.24 Using the FileWatcher Service to Get Notified About File Changes | 357

10.25 Program: Save User Data to Disk
Problem
You need to save user data to disk in a Java application. This may be in response to
File→Save in a GUI application, saving the file in a text editor, or saving configura‐
tion data in a non-GUI application. You have heard (correctly) that a well-behaved
application should never lose data.

Solution
Use this five-step plan, with appropriate variations:

1. Create a temporary file; arrange for it to be removed automatically with deleteO
nExit(true).

2. Write the user data to this file. Data format translation errors, if any, will be
thrown during this process, leaving the previous version of the user’s data file
intact.

3. Delete the backup file if it exists.
4. Rename the user’s previous file to *.bak.
5. Rename the temporary file to the saved file.

Discussion
As developers, we have to deal with the fact that saving a file to disk is full of risk.
There are many things that can go wrong in saving data, yet it is one of the most criti‐
cal parts of most applications. If you lose data that a person has spent hours input‐
ting, or even lose a setting that a user feels strongly about, she will despise your whole
application. The disk might fill up while we’re writing it, or it might be full before we
start. This is a user’s error, but we have to face it. So here’s a more detailed discussion
of the little five-step dance we should go through:

1. Create a temporary file that we will write to. Set this file to deleteOnExit(true)
so that if we fail in a later step we don’t clutter the disk. Because we are later going
to rename this file to become the user’s real file, and we don’t want to run out of
disk space during the rename, it is important that we create the file on the same
disk drive partition (drive letter or mount point) as the user’s real file; otherwise
the rename will silently morph into a copy-and-delete, which could fail due to
lack of disk space. See Recipe 10.21 for methods of deleting a file on exit.

2. Write the user data to this new temporary file. If we are transforming data—say,
getting it from a JDBC ResultSet or writing objects using a XML transformer—an

358 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

exception could be thrown. If we’re not careful, these exceptions can cause the
user’s data to be lost.

3. Delete the backup file if it exists. First time we do this it won’t exist; after that it
probably will. Be prepared either way.

4. Rename the user’s previous file to *.bak_.
5. Rename the temporary file to the save file.

This may seem like overkill, but it prevents career kill. I’ve done pretty much this in
numerous apps with various save file formats. This plan is the only really safe way
around all the problems that can occur. For example, the final step has to be a rename
not a copy, regardless of size considerations, to avoid the problem of the disk filling
up. So, to be correct, you have to ensure that the temp file gets created on the same
disk partition (drive letter or mount point) as the user’s file.

This is the basic plan to use the FileSaver:

• Instantiate it by calling the constructor.
• Call the getWriter() or getOutputStream() method.
• Use the output file to write the data.
• Call finish() on the FileSaver object.

main/src/main/java/com/darwinsys/io/FileSaver.java
// package com.darwinsys.io;
public class FileSaver {

 private enum State {
 /** The state before and after use */
 AVAILABLE,
 /** The state while in use */
 INUSE
 }
 private State state;
 private final Path inputFile;
 private final Path tmpFile;
 private final Path backupFile;

 private OutputStream mOutputStream;
 private Writer mWriter;

 public FileSaver(Path inputFile) throws IOException {

 // Step 1: Create temp file in right place; must be on same disk
 // as the original file, to avoid disk-full troubles later.
 this.inputFile = inputFile;
 tmpFile = Path.of(inputFile.normalize() + ".tmp");

10.25 Program: Save User Data to Disk | 359

 Files.createFile(tmpFile);
 tmpFile.toFile().deleteOnExit();
 backupFile = Path.of(inputFile.normalize() + ".bak");
 state = State.AVAILABLE;
 }

 /**
 * Return a reference to the contained File object, to
 * promote reuse (File objects are immutable so this
 * is at least moderately safe). Typical use would be:
 * <pre>
 * if (fileSaver == null ||
 * !(fileSaver.getFile().equals(file))) {
 * fileSaver = new FileSaver(file);
 * }
 * </pre>
 * @return the File object for the file to be saved
 */
 public Path getFile() {
 return inputFile;
 }

 /** Return an output file that the client should use to
 * write the client's data to.
 * @return An OutputStream, which should be wrapped in a
 * buffered OutputStream to ensure reasonable performance.
 * @throws IOException if the temporary file cannot be written
 */
 public OutputStream getOutputStream() throws IOException {

 if (state != State.AVAILABLE) {
 throw new IllegalStateException("FileSaver not opened");
 }
 mOutputStream = Files.newOutputStream(tmpFile);
 state = State.INUSE;
 return mOutputStream;
 }

 /** Return an output file that the client should use to
 * write the client's data to.
 * @return A BufferedWriter to write on the new file.
 * @throws IOException if the temporary file cannot be written
 */
 public Writer getWriter() throws IOException {

 if (state != State.AVAILABLE) {
 throw new IllegalStateException("FileSaver not opened");
 }
 mWriter = Files.newBufferedWriter(tmpFile);
 state = State.INUSE;
 return mWriter;
 }

360 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 /** Close the output file and rename the temp file to the original name.
 * @throws IOException If anything goes wrong
 */
 public void finish() throws IOException {

 if (state != State.INUSE) {
 throw new IllegalStateException("FileSaver not in use");
 }

 // Ensure both are closed before we try to rename.
 if (mOutputStream != null) {
 mOutputStream.close();
 }
 if (mWriter != null) {
 mWriter.close();
 }

 // Delete the previous backup file if it exists.
 Files.deleteIfExists(backupFile);

 // Rename the user's previous file to itsName.bak,
 // UNLESS this is a new file.
 if (Files.exists(inputFile) &&
 Files.move(inputFile, backupFile) == null) {
 throw new IOException(
 "Could not rename file to backup file " + backupFile);
 }

 // Rename the temporary file to the save file.
 if (Files.move(tmpFile, inputFile) == null) {
 throw new IOException("Could not rename temp file to save file");
 }
 state = State.AVAILABLE;
 }
}

Acknowledgments
The code in this program is my own, based on my experience in various applications.
I was prompted to package it up this way, and write it up, by a post by Brendon
McLean to the mailing list for the now-defunct Java Application Framework JSR-296.

10.26 Program: Find—Walking a File Tree
The program shown in Example 10-13 implements a subset of the Windows Find
Files dialog or the Unix find command. It has most of the structure needed to build a
more complete version of either of these. It accepts the following options from stan‐
dard Unix find (with limits):

10.26 Program: Find—Walking a File Tree | 361

http://jcp.org/en/jsr/detail?id=296

-n name

Name to look for. Can include shell wildcards if quoted from the shell.

-s size

Size of file to look for. Can prefix with a plus sign to indicate greater than or a
minus sign to indicate less than.

-a, -o
And or or, but only one of these, between a -n and a -s.

The Files class has four methods for walking a file tree. Two return a lazily popula‐
ted Stream<Path>, and the other two invoke a callback FileVisitor for each file or
directory found. My find implementation uses the first one; the four are summarized
in Table 10-11.

Table 10-11. Files tree walk methods
Return Signature

Stream<Path> walk(Path start, FileVisitOption… options)

Stream<Path> walk(Path start, int maxDepth, FileVisitOption… options)

Path walkFileTree(Path start, FileVisitor<? super Path> visitor)

Path walkFileTree(Path start, Set<FileVisitOption> options, int maxDepth, FileVisitor<? super
Path> visitor)

Using the walk() methods is as simple as this:

Files.walk(startingPath).forEach(path -> {
 // Do something with Path path; might be file, directory or other...
}

That code is near the start of the startWalkingAt() method in Example 10-13.

Example 10-13. main/src/main/java/dir_file/Find.java

/**
 * Find - find files by name, size, or other criteria. Non-GUI version.
 */
public class Find {

 public enum Conjunction { AND, OR };

 private static Logger logger = Logger.getLogger(Find.class.getSimpleName());
 static boolean started;

 /** Main program
 * @throws IOException If the Files.walkTree does so
 */
 public static void main(String[] args) throws IOException {

362 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 Find finder = new Find();

 if (args.length == 0) {
 finder.startWalkingAt(".");
 } else {
 for (int i = 0; i < args.length; i++) {
 if (args[i].charAt(0) == '-') {
 switch(args[i].substring(1)) {
 case "name":
 finder.filter.setNameFilter(args[++i]);
 continue;
 case "size":
 finder.filter.setSizeFilter(args[++i]);
 continue;
// Not implemented by back-end yet
// case "a":
// finder.filter.addConjunction(Conjunction.AND);
// continue;
// case "o":
// finder.filter.addConjunction(Conjunction.OR);
// continue;
 default: throw new IllegalArgumentException(
 "Unknown argument " + args[i]);
 }
 }
 finder.startWalkingAt(args[i]);
 }
 if (!started) {
 finder.startWalkingAt(".");
 }
 }
 }

 protected FindFilter filter = new FindFilter();

 public static void usage() {
 System.err.println(
 "Usage: Find [-n namefilter][-s sizefilter][dir...]");
 System.exit(1);
 }

 /** doName - handle one filesystem object by name */
 private void startWalkingAt(String s) throws IOException {
 logger.info("doName(" + s + ")");
 started = true;
 Path f = Path.of(s);
 if (!Files.exists(f)) {
 System.out.println(s + " does not exist");
 return;
 }
 Files.walk(f).forEach(fp -> {
 try {

10.26 Program: Find—Walking a File Tree | 363

 if (Files.isRegularFile(fp))
 doFile(fp);
 else if (Files.isDirectory(fp)) {
 doDir(fp);
 } else {
 System.err.println("Unknown type: " + s);
 }
 } catch (IOException e) {
 throw new RuntimeException("IO Exception: " + e);
 }
 });
 }

 /** doFile - process one regular file.
 * @throws IOException */
 private void doFile(Path f) throws IOException {
 if (filter.accept(f)) {
 System.out.println("f " + f);
 }
 }

 /** doDir - process a directory */
 private void doDir(Path d) {
 System.out.println("d " + d.normalize());
 }
}

Example 10-14 shows a class called FindFilter, the backend implementation of Find.

Example 10-14. main/src/main/java/dir_file/FindFilter.java

/** Class to encapsulate the filtration for Find.
 * For now just set*Filter() methods. Really needs to be a real
 * data structure (maybe LinkedList<FilterOp> or a Tree) for complex
 * requests like:
 * -n "*.html" -a \(-size < 0 -o mtime < 5 \).
 */
public class FindFilter {
 private enum SizeMode {GT, EQ, LT};
 SizeMode sizeMode;
 Find.Conjunction conj;
 long size;
 String name;
 Pattern nameRE;
 boolean debug = false;

 void setSizeFilter(String sizeFilter) {
 System.out.println("FindFilter.setSizeFilter()");
 sizeMode = SizeMode.EQ;
 char c = sizeFilter.charAt(0);
 if (c == '+') {
 sizeMode = SizeMode.GT;

364 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

 sizeFilter = sizeFilter.substring(1);
 } else {
 if (c == '-') {
 sizeMode = SizeMode.LT;
 sizeFilter = sizeFilter.substring(1);
 }
 }
 size = Long.parseLong(sizeFilter);
 }

 /** Add a conjunction */
 public void addConjunction(Find.Conjunction conj) {
 System.out.println("FindFilter.addConjunction()");
 if (this.conj != null) {
 throw new IllegalArgumentException(
 "Only one conjucntion allowed in this version");
 }
 this.conj = conj;
 }

 /** Convert the given shell wildcard pattern into internal form (an RE) */
 void setNameFilter(String nameToFilter) {
 nameRE = makeNameFilter(nameToFilter);
 }

 Pattern makeNameFilter(String name) {
 StringBuilder sb = new StringBuilder('^');
 for (char c : name.toCharArray()) {
 switch(c) {
 case '.': sb.append("\\."); break;
 case '*': sb.append(".*"); break;
 case '?': sb.append('.'); break;
 // Some chars are special to RE and have to be escaped
 case '[': sb.append("\\["); break;
 case ']': sb.append("\\]"); break;
 case '(': sb.append("\\("); break;
 case ')': sb.append("\\)"); break;
 default: sb.append(c); break;
 }
 }
 sb.append('$');
 if (debug) {
 System.out.println("RE=\"" + sb + "\".");
 }
 // Should catch PatternException and rethrow for better diagnostics
 return Pattern.compile(sb.toString());
 }

 /** Do the filtering. For now, only filter on name, size or name+size */
 public boolean accept(Path p) throws IOException {
 if (debug) {
 System.out.println("FindFilter.accept(" + p + ")");

10.26 Program: Find—Walking a File Tree | 365

 }

 if (nameRE != null) {
 return nameRE.matcher(p.getFileName().toString()).matches();
 }

 // size handling
 if (sizeMode != null) {
 long sz = Files.size(p);
 switch (sizeMode) {
 case EQ:
 return (sz == size);
 case GT:
 return (sz > size);
 case LT:
 return (sz < size);
 }
 }

 // Catchall
 return false;
 }

 public String getName() {
 return name;
 }
}

366 | Chapter 10: Input and Output: Reading, Writing, and Directory Tricks

6 Map/Reduce is a famous algorithm pioneered by Google to handle large data problems. An unspecified num‐
ber of generators process map data—such as words on a web page or the page’s URL—and a single (usually)
reduce process reduces the maps to a manageable form, such as a list of all the pages that contain the given
words. Early on, data science went overboard on trying to do everything with Map/Reduce; now the pendu‐
lum has swung back to using compute engines like Spark.

CHAPTER 11

Data Science and R

Data science is a relatively new discipline that first came to the attention of many with
this article by O’Reilly’s Mike Loukides. While there are many definitions in the field,
Loukides distills his detailed observation of and participation in the field into this
definition:

A data application acquires its value from the data itself, and creates more data as a
result. It’s not just an application with data; it’s a data product. Data science enables the
creation of data products.

One of the main open source ecosystems for data science software is at Apache and
includes Hadoop (which includes the HDFS distributed filesystem, Hadoop Map/
Reduce,6 Ozone object store, and Yarn scheduler), the Cassandra distributed data‐
base, and the Spark compute engine. Read the “Modules and Related Tools” section of
the Hadoop page for a current list.

What’s interesting here is that a great deal of this infrastructure, which is taken for
granted by data scientists, is written in Java and Scala (a JVM language). Much of the
rest is written in Python, a language that complements Java.

Data science problems may involve a lot of setup, so we’ll only give one example from
traditional DS, using the Spark framework. Spark is written in Scala so it can be used
directly by Java code.

367

https://www.oreilly.com/ideas/what-is-data-science
https://hadoop.apache.org
https://cassandra.apache.org
https://cassandra.apache.org
https://spark.apache.org

In the rest of the chapter I’ll focus on a language called R, which is widely used both
in statistics and in data science (well, also in many other sciences; many of the graphs
you see in refereed journal articles are prepared with R). R is widely used and is use‐
ful to know. Its primary implementation was not written in Java, but in a mixture of
C, Fortran, and R itself. But R can be used within Java, and Java can be used within R.
I’ll talk about several implementations of R and how to select one, and then I’ll show
techniques for using Java from R and R from Java, as well as using R in a web
application.

11.1 Machine Learning with Java
Problem
You want to use Java for machine learning and data science, but everyone tells you to
use Python.

Solution
Use one of the many powerful Java toolkits available for free download.

Discussion
It’s sometimes said that machine learning (ML) and deep learning have to be done in
C++ for efficiency or in Python for the wide availability of software. While these lan‐
guages have their advantages and their advocates, it is certainly possible to use Java
for these purposes. However, setting up these packages and presenting a short demo
tends to be longer than would fit in this book’s typical recipe format.

With industry giant Amazon having released its Java-based Deep Java Learning (DJL)
library as this book was going to press, and many other good libraries available (with
quite a few supporting CUDA for faster GPU-based processing) (see Table 11-1),
there is no reason to avoid using Java for ML. With the exception of DJL, I’ve tried to
list packages that are still being maintained and have a decent reputation among
users.

Table 11-1. Some Java machine learning packages
Library name Description Info URL Source URL
ADAMS Workflow engine for

building/maintaining
data-driven, reactive
workflows; integration
with business processes

https://adams.cms.waikato.ac.nz/ https://github.com/waikato-datamini
ng/adams-base

Deep Java
Library

Amazon’s ML library https://djl.ai https://github.com/awslabs/djl

368 | Chapter 11: Data Science and R

https://developer.nvidia.com/cuda-zone
https://adams.cms.waikato.ac.nz/
https://github.com/waikato-datamining/adams-base
https://github.com/waikato-datamining/adams-base
https://djl.ai
https://github.com/awslabs/djl

6 DataBricks offers several free ebooks on Spark from their website; it also offers commercial Spark add-ons.

Library name Description Info URL Source URL
Deeplearning4j DL4J, Eclipse’s

distributed deep-
learning library;
integrates w/ Hadoop
and Apache Spark

https://deeplearning4j.org/ https://github.com/eclipse/deeplearni
ng4j

ELKI Data mining toolkit https://elki-project.github.io/ https://github.com/elki-project/elki

Mallet ML for text processing mallet.cs.umass.edu https://github.com/mimno/Mallet.git

Weka ML algorithms for data
mining; tools for data
preparation,
classification, regression,
clustering, association
rules mining, and
visualization

https://www.cs.waikato.ac.nz/ml/weka
/index.html

https://svn.cms.waikato.ac.nz/svn/we
ka/trunk/weka

See Also
The book Data Mining: Practical Machine Learning and Techniques by Ian Witten et
al. (Morgan Kaufmann) was written by the team behind Weka.

See also Eugen Parschiv’s list of Java AI software packages.

11.2 Using Data In Apache Spark
Problem
You want to process data using Spark.

Solution
Create a SparkSession, use its read() function to read a DataSet, apply operations,
and summarize results.

Discussion
Spark is a massive subject! Entire books have been written on using it. Quoting Data‐
bricks, home of much of the original Spark team:6

Apache Spark™ has seen immense growth over the past several years, becoming the de-
facto data processing and AI engine in enterprises today due to its speed, ease of use,
and sophisticated analytics. Spark unifies data and AI by simplifying data preparation
at massive scale across various sources, providing a consistent set of APIs for both data

11.2 Using Data In Apache Spark | 369

https://deeplearning4j.org/
https://github.com/eclipse/deeplearning4j
https://github.com/eclipse/deeplearning4j
https://elki-project.github.io/
https://github.com/elki-project/elki
https://github.com/mimno/Mallet.git
https://www.cs.waikato.ac.nz/ml/weka/index.html
https://www.cs.waikato.ac.nz/ml/weka/index.html
https://svn.cms.waikato.ac.nz/svn/weka/trunk/weka
https://svn.cms.waikato.ac.nz/svn/weka/trunk/weka
https://www.baeldung.com/java-ai
https://databricks.com
https://databricks.com

engineering and data science workloads, as well as seamless integration with popular
AI frameworks and libraries such as TensorFlow, PyTorch, R and SciKit-Learn.

I cannot convey the whole subject matter in this book. However, one thing Spark is
good for is dealing with lots of data. In Example 11-1, we read an Apache-format log‐
file and find (and count) the lines with 200, 404, and 500 responses.

Example 11-1. spark/src/main/java/sparkdemo/LogReader.java

import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.Dataset;
import org.apache.spark.api.java.function.FilterFunction;

/**
 * Read an Apache Logfile and summarize it.
 */
public class LogReader {

 public static void main(String[] args) {

 final String logFile = "/var/wildfly/standalone/log/access_log.log";
 SparkSession spark =
 SparkSession.builder().appName("Log Analyzer").getOrCreate();
 Dataset<String> logData = spark.read().textFile(logFile).cache();

 long good = logData.filter(
 new FilterFunction<>() {public boolean call(String s) {
 return s.contains("200");
 }
 }).count();

 long bad = logData.filter(new FilterFunction<>() {
 public boolean call(String s) {
 return s.contains("404");
 }
 }).count();

 long ugly = logData.filter(new FilterFunction<>() {
 public boolean call(String s) {
 return s.contains("500");
 }
 }).count();

 System.out.printf(
 "Successful transfers %d, 404 tries %d, 500 errors %d\n",
 good, bad, ugly);

 spark.stop();
 }
}

370 | Chapter 11: Data Science and R

Set up the filename for the logfile. It probably should come from args.

Start up the Spark SparkSession object—the runtime.

Tell Spark to read the logfile and keep it in memory (cache).

Define the filters for 200, 404, and 500 errors. They should be able to use lambdas
to make the code shorter, but there’s an ambiguity between the Java and Scala
versions of FilterFunction.

Print the results.

To make this compile, you need to add the following to a Maven POM file:

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-sql_2.12</artifactId>
 <version>2.4.4</version>
 <scope>provided</scope>
</dependency>

Then you should be able to do mvn package to get a JAR file packaged.

The use of the provided scope is because we will also download the Apache Spark
runtime package from the Spark Download page in order to run the application.
Unpack the distribution and set the SPARK_HOME environment to the root of it:

SPARK_HOME=~/spark-3.0.0-bin-hadoop3.2/

Then you can use the run script that I’ve provided in the source download (javasrc/
spark).

Spark is designed for larger-scale computing than what’s in this simple example, so its
voluminous output simply dwarfs the output from my simple sample program.
Nonetheless, for an approximately 42,000-line file, I did get this result, buried among
the logging:

Successful transfers 32555, 404 tries 6539, 500 errors 183

As mentioned, Spark is a massive subject but a necessary tool for most data scientists.
You can program Spark in Java (obviously), or in Scala. Scala is a JVM language that
promotes functional programming (see this Scala tutorial for Java devs) in Python
and probably other languages. You can learn more at https://spark.apache.org or from
the many books, videos, and tutorials online.

11.2 Using Data In Apache Spark | 371

https://spark.apache.org/downloads.html
https://www.dhgarrette.com/nlpclass/scala/basics.html
https://spark.apache.org

11.3 Using R Interactively
Problem
You don’t know the first thing about R, and you want to.

Solution
R has been around for ages, and its predecessor S for a decade before that. There are
many books and online resources devoted to this language. The official home page is
at https://www.r-project.org. There are many online tutorials; the R Project hosts one.
R itself is available in most systems’ package managers, and it can be downloaded
from the official download site. The name CRAN in these URLs stands for Compre‐
hensive R Archive Network, named in a similar fashion to TeX’s CTAN and the Perl
language’s CPAN.

In this example we’ll write some data from a Java program and then analyze and
graph it using R interactively.

Discussion
This is merely a brief intro to using R interactively. Suffice to say that R is a valuable
interactive environment for exploring data. Here are some simple calculations to
show the flavor of the language: a chatty startup (so long I had to cut part of it), sim‐
ple arithmetic, automatic printing of results if not saved, half-decent errors when you
make a mistake, and arithmetic on vectors. You may see some similarities to Java’s
JShell (see Recipe 1.4); both are REPL (Read-Evaluate-Print Loop) interfaces. R adds
the ability to save your interactive session (workspace) when exiting the program, so
all your data and function definitions are restored next time you start R. A simple
interactive session showing a bit of the syntax of R might look like this:

$ R

R version 3.6.0 (2019-04-26) -- "Planting of a Tree"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

...

> 2 + 2
[1] 4
> x = 2 + 2
> x

372 | Chapter 11: Data Science and R

https://www.r-project.org
https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
https://cran.r-project.org/mirrors.html

[1] 4
> r = 10 20 30 40 50
Error: unexpected numeric constant in "r = 10 20"
> r = c(10,20,30,45,55,67)
> r
[1] 10 20 30 45 55 67
> r+3
[1] 13 23 33 48 58 70
> r / 3
[1] 3.333333 6.666667 10.000000 15.000000 18.333333 22.333333
>quit()
Save workspace image? [y/n/c]: n
$

R purists will usually use the assignment arrow ← in lieu of the = sign when assigning.
If you like that, go for it.

This short session barely scratches the surface: R offers hundreds of built-in func‐
tions, sample datasets, over a thousand add-on packages, built-in help, and much
more. For interactive exploration of data, R is really the one to beat.

Some people prefer a GUI frontend to R. RStudio is the most widely used GUI front‐
end.

Now we want to write some data from Java and process it in R (we’ll use Java and R
together in later recipes in this chapter). In Recipe 5.9 we discussed the
java.util.Random class and its nextDouble() and nextGaussian() methods. The
nextDouble() and related methods try to give a flat distribution between 0 and 1.0, in
which each value has an equal chance of being selected. A Gaussian or normal distri‐
bution is a bell curve of values from negative infinity to positive infinity, with the
majority of the values clustered around zero (0.0). We’ll use R’s histogramming and
graphics functions to examine visually how well they do so:

Random r = new Random();
for (int i = 0; i < 10_000; i++) {
 System.out.println("A normal random double is " + r.nextDouble());
 System.out.println("A gaussian random double is " + r.nextGaussian());

To illustrate the different distributions, I generated 10,000 numbers each using nex
tRandom() and nextGaussian(). The code for this is in Random4.java (not shown
here) and is a combination of the preceding sample code with code to print just the
numbers into two files. I then plotted histograms using R; the R script used to gener‐
ate the graph is in javasrc under src/main/resources, but its core is shown in
Example 11-2. The results are shown in Figure 11-1.

Example 11-2. R commands to generate histograms

png("randomness.png")
us <- read.table("normal.txt")[[1]]

11.3 Using R Interactively | 373

https://rstudio.com

ns <- read.table("gaussian.txt")[[1]]

layout(t(c(1,2)), respect=TRUE)

hist(us, main = "Using nextRandom()", nclass = 10,
 xlab = NULL, col = "lightgray", las = 1, font.lab = 3)

hist(ns, main = "Using nextGaussian()", nclass = 16,
 xlab = NULL, col = "lightgray", las = 1, font.lab = 3)
dev.off()

The png() call tells R which graphics device to use. Others include X11() and Post
script(). read.table() reads data from a text file into a table; the [1] gives us just
the data column, ignoring some metadata. The layout() call says we want two
graphics objects displayed side by side. Each hist() call draws one of the two histo‐
grams. And dev.off() closes the output and flushes any writing buffers to the PNG
file. The result is shown in Figure 11-1.

Figure 11-1. Flat (left) and Gaussian (right) distributions

11.4 Comparing/Choosing an R Implementation
Problem
You’re not sure which implementation of R to use.

Solution
Look at original R, Renjin, and FastR.

Discussion
The original for R was S, an environment for interactive programming developed by
John Chambers and others at AT&T Bell Labs starting in 1976. I ran into S when sup‐
porting the University of Toronto Statistics Department, and again when reviewing a

374 | Chapter 11: Data Science and R

commercial implementation of it, SPlus, for a long-ago glossy magazine called Sun
Expert. AT&T was only making S source available to universities and to commercial
licensees who could not further distribute the source. Two developers at the Univer‐
sity of Auckland, Ross Ihaka and Robert Gentleman, developed a clone of S, starting
in 1995. They named it R after their own first initials and as a play on the name S.
(There is precedent for this: the awk language popular on Unix/Linux was named for
the initials of its designers Aho, Weinberger, and Kernighan). R grew quickly because
it was very largely compatible with S and was more readily available. This implemen‐
tation of original R is actively managed by the R Foundation for Statistical Comput‐
ing, which also manages the Comprehensive R Archive Network.

Renjin is a fairly complete implementation of R in Java. This project provides built
JAR files via their own Maven repository.

FastR is another implementation in Java, designed to run in the faster GraalVM and
supporting direct invocation of JVM code from almost any other programming lan‐
guage. The technical lead of the FastR descibes the implementation in this blog post.

Besides these implementations, R’s popularity has led to development of many access
libraries for invoking R from many popular programming languages. Rserve is a
TCP/IP networked access mode for R, for which Java wrappers exist.

11.5 Using R from Within a Java App: Renjin
Problem
You want to access R from within a Java application using Renjin.

Solution
Add Renjin to your Maven or Gradle build, and call it via the Script Engines mecha‐
nism described in Recipe 18.3.

Discussion
Renjin is a pure-Java, open source reimplementation of R and provides a script
engines interface. Add the following dependency to your build tool:

org.renjin:renjin-script-engine:3.5-beta76

Of course there is probably a later version of Renjin than the one shown above by the
time you read this; use the latest unless there’s a reason not to.

Note that you will also need a <repository> entry since the maintainers put their
artifacts in the repo at nexus.betadriven.com instead of the usual Maven Central.
Here’s what I used (obtained from https://www.renjin.org/downloads.html):

11.5 Using R from Within a Java App: Renjin | 375

https://r-project.org
https://r-project.org
https://cran.r-project.org
http://renjin.org
https://jaxenter.com/fastr-r-virtual-machine-java-140667.html
https://medium.com/graalvm/faster-r-with-fastr-4b8db0e0dceb
https://www.rforge.net/Rserve
https://www.renjin.org/downloads.html

<repositories>
 <repository>
 <id>bedatadriven</id>
 <name>bedatadriven public repo</name>
 <url>https://nexus.bedatadriven.com/content/groups/public/</url>
 </repository>
</repositories>

Once that’s done, you should be able to access Renjin via the Script Engines frame‐
work, as in Example 11-3.

Example 11-3. main/src/main/java/otherlang/RenjinScripting.java

 /**
 * Demonstrate interacting with the "R" implementation called "Renjin"
 */
 public static void main(String[] args) throws ScriptException {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("Renjin");
 engine.put("a", 42);
 Object ret = engine.eval("b <- 2; a*b");
 System.out.println(ret);
 }

Because R treats all numbers as floating point, like many interpreters, the value
printed is 84.0.

One can also get Renjin to invoke a script file; Example 11-4 invokes the same script
used in Recipe 11.3 to generate and plot a batch of pseudorandom numbers.

Example 11-4. Renjin with a script file

 private static final String R_SCRIPT_FILE = "/randomnesshistograms.r";
 private static final int N = 10000;

 public static void main(String[] argv) throws Exception {
 // java.util.Random methods are non-static, do need to construct
 Random r = new Random();
 double[] us = new double[N], ns = new double[N];
 for (int i=0; i<N; i++) {
 us[i] = r.nextDouble();
 ns[i] =r.nextGaussian();
 }
 try (InputStream is =
 Random5.class.getResourceAsStream(R_SCRIPT_FILE)) {
 if (is == null) {
 throw new IllegalStateException("Can't open R file ");
 }
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("Renjin");
 engine.put("us", us);

376 | Chapter 11: Data Science and R

 engine.put("ns", ns);
 engine.eval(FileIO.readerToString(new InputStreamReader(is)));
 }
 }

Renjin can also be used as a standalone R implementation if you download an all-
dependencies JAR file from https://renjin.org/downloads.html.

11.6 Using Java from Within an R Session
Problem
You are partway through a computation in R and realize that there’s a Java library to
do the next step. Or for any other reason, you need to call Java code from within an R
session.

Solution
Install rJava, call .jinit(), and use J() to load classes or invoke methods.

Discussion
Here is the part of an interactive R session in which we install rJava, initialize it by
calling .jinit(), and invoke java.time.LocalDate.now() to get the current date:

> install.packages('rJava')
trying URL 'http://.../rJava_0.9-11.tgz'
Content type 'application/x-gzip' length 745354 bytes (727 KB)
==
downloaded 727 KB

The downloaded binary packages are in
 /tmp//Rtmp6XYZ9t/downloaded_packages
> library('rJava')
> .jinit()
> J('java.time.LocalDate', 'now')
[1] "Java-Object{2019-11-22}"
> d=J('java.time.LocalDate', 'now')$toString()
> d
[1] "2019-11-22"

Install the rJava package; only needs to be done once.

load rJava, and initialize it with .jinit(); both needed in every R session.

The J function takes one argument of a full class name. If only that argument is
given, a class descriptor (like a java.lang.Class object) is returned. If more

11.6 Using Java from Within an R Session | 377

https://renjin.org/downloads.html

than one argument is given, the second is a static method name, and any subse‐
quent arguments are passed to that method.

Returned objects can have Java methods invoked with the standard R \$ notation;
here the toString() method is invoked to return just a character string instead
of a LocalDate object.

The .jcall function gives you more control over calling method and return types:

> d=J('java.time.LocalDate', 'now')
> .jcall(d, "I", 'getYear')
[1] 2019
>
> .jcall("java/lang/System","S","getProperty","user.dir")
[1] "/home/ian"
> c=J('java/lang/System')
> .jcall(c, "S", 'getProperty', 'user.dir')
[1] "/home/ian"
>

Invoke Java LocalDate.now() method and save result in R variable d.

Invoke Java getYear() method on the LocalDate object; the “I” tells jcall to
expect an integer result.

Call System.getProperty("user.dir") and print the result; the “S” tells .jcall
to expect a string return.

If you will be using a class several times, save the Class object, and pass it as the
first argument of .jcall().

There are more capabilities here; consult the documentation and a developer.com
article.

11.7 Using FastR, the GraalVM Implementation of R
Problem
You use the R language but feel a need for speed.

Solution
Use FastR, Oracle’s GraalVM reimplementation of the R language.

378 | Chapter 11: Data Science and R

https://cran.r-project.org/web/packages/rJava
https://www.developer.com/java/ent/getting-started-with-r-using-java.html
https://www.developer.com/java/ent/getting-started-with-r-using-java.html

Discussion
Assuming you have installed GraalVM as described in Recipe 1.2, you can just type
the following command:

$ gu install R
Downloading: Component catalog from www.graalvm.org
Processing component archive: FastR
Downloading: Component R: FastR from github.com
Installing new component: FastR (org.graalvm.R, version 19.2.0.1)
NOTES:

The user specific library directory was not created automatically.
You can either create the directory manually or edit file
/Library/Java/JavaVirtualMachines/graalvm-ce-19.2.0.1/Contents/
 Home/jre/languages/R/etc/Renviron
to change it to any desired location. Without user specific library
directory, users will need write permission for the GraalVM home
directory in order to install R packages.
...
[more install notes]

If you have set your PATH to have GraalVM before other directories, the command R
will now give you the GraalVM version of R. To access the standard R, you will have
to either set your PATH or give a full path to the R installation. On all Unix and Unix-
like systems, the command which R will reveal all R commands on your PATH:

$ which R
/Library/Java/JavaVirtualMachines/graalvm-ce-19.2.0.1/Contents/Home/bin/R
/usr/local/bin/R

Let’s just run it:

$ R
R version 3.5.1 (FastR)
Copyright (c) 2013-19, Oracle and/or its affiliates
Copyright (c) 1995-2018, The R Core Team
Copyright (c) 2018 The R Foundation for Statistical Computing
Copyright (c) 2012-4 Purdue University
Copyright (c) 1997-2002, Makoto Matsumoto and Takuji Nishimura
All rights reserved.

FastR is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information.

Type 'q()' to quit R.
[Previously saved workspace restored]

> 2 + 2

11.7 Using FastR, the GraalVM Implementation of R | 379

[1] 4
> ^D
Save workspace image? [y/n/c]: n
$

From that point on, you should be able to do practically anything that you would do
in standard R, since this R’s source code is largely derived from the R Foundation’s
source.

11.8 Using R in a Web App
Problem
You want to display R’s data and graphics in a web page on a web server.

Solution
There are several approaches that would achieve this effect:

• Prepare the data, generate graphics as we did in Recipe 11.3, and then incorpo‐
rate both into a static web page.

• Use one of several R add-on web frameworks, such as shiny or Rook.
• Invoke a JVM implementation of R from within a Servlet, JSF, Spring Bean, or

other web-tier component.

Discussion
The first approach is trivial, and doesn’t need discussion here.

For the second, I’ll actually use timevis, which in turn uses shiny. This isn’t built in
to the R library, so we first have to install it, using R’s install.packages():

$ R
> install.packages('timevis')
> quit()
$

This may take a while as it downloads and builds multiple dependencies.

For this demo I have a small dataset with some basic information on medieval litera‐
ture, which I load and display using shiny:

Draw the timeline for the epics.

epics = read.table("epics.txt", header=TRUE, fill=TRUE)

epics

380 | Chapter 11: Data Science and R

https://cran.r-project.org/web/views/WebTechnologies.html#web-and-server-frameworks
https://cran.r-project.org/web/packages/shiny/index.html
https://cran.r-project.org/web/packages/Rook/index.html

library("timevis")

timevis(epics)

When run, this creates a temporary file containing HTML and JavaScript to allow
interactive exploration of the data. The library also opens this in a browser, shown in
Figure 11-2. One can explore the data by expanding or contracting the timeline and
scrolling sideways.

Figure 11-2. TimeVis (shiny) in action

Where there are two boxes (Cid, Sagas), the first is when the life or stories took place,
and the second is when they were written down.

To expose this on the public web, copy the file (whose full path is revealed in the
browser titlebar) and the lib folder in that same directory into a directory served by
the web server. Or just use File→Save As→Complete Web Page within the browser.
Either way, you must do this while the R session is running, as the temporary files are
deleted when the session ends. Or, if you are familiar with the shiny framework, you
can insert the timevis visualization into a shiny application.

11.8 Using R in a Web App | 381

CHAPTER 12

Network Clients

12.0 Introduction
Java can be used to write many types of networked programs. In traditional socket-
based code, the programmer is responsible for structuring the interaction between
the client and server; the TCP socket code simply ensures that whatever data you send
gets to the other end. In higher-level types, such as HTTP, RMI, CORBA, and EJB, the
software takes over more control. Sockets are often used for connecting to legacy
servers; if you were writing a new application from scratch, you’d be better off using a
higher-level service.

It may be helpful to compare sockets with the telephone system. Telephones were
originally used for analog voice traffic, which is pretty unstructured. Then it began to
be used for some layered applications; the first widely popular one was facsimile
transmission, or fax. Where would fax be without the widespread availability of voice
telephony? The second wildly popular layered application historically was dial-up
TCP/IP. This coexisted with the web to become popular as a mass-market service.
Where would dial-up IP be without widely deployed voice lines? And where would
the internet be without dial-up IP? Fax and dial-up are mostly gone now, but they
paved the way for your smartphone’s networked ability, which is what makes it useful
(and even seductive as a time sink).

Sockets are layered like that too. The web, RMI, JDBC, CORBA, and EJB are all lay‐
ered on top of sockets. HTTP is now the most common protocol and should gener‐
ally be used for new applications when all you want is to get data from point b to
point a.

Ever since the alpha release of Java (originally as a sideline to the HotJava browser) in
May 1995, Java has been popular as a programming language for building network
applications. It’s easy to see why, particularly if you’ve ever built a networked

383

application in C. First, C programmers have to worry about the platform they are on.
Unix uses synchronous sockets, which work rather like normal disk files vis-à-vis
reading and writing, whereas Microsoft OSes use asynchronous sockets, which use
callbacks to notify when a read or write has completed. Java glosses over this distinc‐
tion. Further, the amount of code needed to set up a socket in C is intimidating. Just
for fun, Example 12-1 shows the typical C code for setting up a client socket. And
remember, this is only the Unix part. And only the part that makes and closes the
connection. To be portable to Windows, it would need some additional conditional
code (using C’s #ifdef mechanism). C’s #include mechanism requires that exactly
the right files be included, and some files have to be listed in particular orders (Java’s
import mechanism is much more flexible).

Example 12-1. main/src/main/java/network/Connect.c (C client setup)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>

int
main(int argc, char *argv[])
{
 char* server_name = "localhost";
 struct hostent *host_info;
 int sock;
 struct sockaddr_in server;

 /* Look up the remote host's IP address */
 host_info = gethostbyname(server_name);
 if (host_info == NULL) {
 fprintf(stderr, "%s: unknown host: %s\n", argv[0], server_name);
 exit(1);
 }

 /* Create the socket */
 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("creating client socket");
 exit(2);
 }

 /* Set up the server's socket address */
 server.sin_family = AF_INET;
 memcpy((char *)&server.sin_addr, host_info->h_addr,
 host_info->h_length);
 server.sin_port = htons(80);

384 | Chapter 12: Network Clients

 /* Connect to the server */
 if (connect(sock,(struct sockaddr *)&server,sizeof server) < 0) {
 perror("connecting to server");
 exit(4);
 }

 /* Finally, we can read and write on the socket. */
 /* ... */

 (void) close(sock);
}

In the first recipe, we’ll see how to do the connect in essentially one line of Java (plus
a bit of error handling). We’ll then cover error handling and transferring data over a
socket. Next, we’ll take a quick look at a datagram or UDP client that implements
most of the TFTP (Trivial File Transfer Protocol) that has been used for two decades
to boot diskless workstations. We’ll end with a program that connects interactively to
a chat server.

A common theme through most of these client examples is to use existing servers so
that we don’t have to generate both the client and the server at the same time. Most of
these are services that exist on any standard Unix platform. If you can’t find a Unix
server near you to try them on, let me suggest that you take an old PC, maybe one
that’s underpowered for running the latest Microsoft software, and put up a free,
open source Unix system on it. My personal favorite is OpenBSD, and the market’s
overall favorite is Linux. Both are readily available and can be installed for free over
the internet, and they offer all the standard services used in the client examples,
including the time servers and TFTP. Both have free Java implementations available.

I also provide basic coverage of web services clients. The term “web services” has
come to mean program-to-program communication using HTTP. The two general
categories are SOAP-based and REST-based. REST services are very simple—you
send an HTTP request and get back a response in plain text, or JSON (Chapter 14) or
XML. SOAP is more complicated and not covered in this book. There is more infor‐
mation on the client-side connections in Java Network Programming by Elliotte Har‐
old (O’Reilly). I don’t cover the server-side APIs for building web services—JAX-RS
and JAX-WS—because these are covered in several O’Reilly books.

12.1 HTTP/REST Web Client
Problem
You need to read from a URL, for example, to connect to a RESTful web service or to
download a web page or other resource over HTTP/HTTPS.

12.1 HTTP/REST Web Client | 385

https://openbsd.org
http://shop.oreilly.com/product/0636920028420.do
http://search.oreilly.com/?q=java+enterprise

Solution
Use the standard Java 11 HttpClient or the URLConnection class.

This technique applies anytime you need to read from a URL, not just a RESTful web
service.

Discussion
Prior to Java 11, you had to either use the URLConnection class or download and use
the older Apache HTTP Client Library. With Java 11, there is a fairly easy-to-use and
flexible API in standard Java. It also supports HTTP/2.0; which the Apache
HttpClient does not as of early 2020, and the legacy URLConnection, which is
unlikely ever to support HTTP/2.0.

As our simple example, we’ll use Google’s Suggest service, that is, what you see when
you type the first few characters of a search into the Google web search engine.

This Google service supports various output formats. The base URL is just the
following:

https://suggestqueries.google.com/complete/search?client=firefox&q=

Append to it the word you want suggestions on. The client=firefox tells it we want
a simple JSON format; with client=chrome it contains more fields.

To use the Java HTTP Client API, you need a HttpClient object, which you get using
the Builder pattern, then create a Request object:

 // This object would be kept for the life of an application
 HttpClient client = HttpClient.newBuilder()
 .followRedirects(Redirect.NORMAL)
 .version(Version.HTTP_1_1)
 .build();

 // Build the HttpRequest object to "GET" the urlString
 HttpRequest req =
 HttpRequest.newBuilder(URI.create(urlString +
 URLEncoder.encode(keyword)))
 .header("User-Agent", "Dept of Silly Walks")
 .GET()
 .build();

The HttpRequest object can be sent using the client to get a HttpResponse object,
from which you can get the status and/or the body. Sending can be done either syn‐
chronously (if you need the results right away) or asynchronously (if you can usefully
do something else in the meantime). This example shows sending it both synchro‐
nously and asynchronously:

386 | Chapter 12: Network Clients

 // Send the request - synchronously
 HttpResponse<String> resp =
 client.send(req, BodyHandlers.ofString());

 // Collect the results
 if (resp.statusCode() == 200) {
 String response = resp.body();
 System.out.println(response);
 } else {
 System.out.printf("ERROR: Status %d on request %s\n",
 resp.statusCode(), urlString);
 }

 // Send the request - asynchronously
 client.sendAsync(req, BodyHandlers.ofString())
 .thenApply(HttpResponse::body)
 .thenAccept(System.out::println)
 .join();

Here is the output; the line has been broken at commas to make it fit on the page:

$ java HttpClientDemo.java
["darwin",["darwin thompson","darwin","darwin awards","darwinism",
 "darwin australia","darwin thompson fantasy","darwin barney",
 "darwin theory","darwinai","darwin dormitorio"]]

Should you not wish to use the HttpClient library, you could use the legacy code in
java.net, since all we usually need here is the ability to open and read from a URL.
Here is the code using a URLConnection:

public class RestClientURLDemo {
 public static void main(String[] args) throws Exception {
 URLConnection conn = new URL(
 HttpClientDemo.urlString + HttpClientDemo.keyword)
 .openConnection();
 try (BufferedReader is =
 new BufferedReader(new InputStreamReader(conn.getInputStream()))) {

 String line;
 while ((line = is.readLine()) != null) {
 System.out.println(line);
 }
 }
 }
}

The output should be identical to what the HttpClient version produced.

See Also
Don’t confuse this HttpClient with the older Apache HttpClient Library.

12.1 HTTP/REST Web Client | 387

https://hc.apache.org/httpcomponents-client-ga/index.html

You can find more information on REST services (including implementing the
server-side components for them) in Bill Burke’s RESTful Java with JAX-RS 2.0, 2nd
Edition (O’Reilly).

12.2 Contacting a Socket Server
Problem
You need to contact a server using TCP/IP.

Solution
Just create a java.net.Socket, passing the hostname and port number into the
constructor.

Discussion
There isn’t much to this in Java. When creating a socket, you pass in the hostname
and the port number. The java.net.Socket constructor does the gethostbyname()
and the socket() system call, sets up the server’s sockaddr_in structure, and exe‐
cutes the connect() call. All you have to do is catch the errors, which are subclassed
from the familiar IOException. Example 12-2 sets up a Java network client but
doesn’t actually do any I/O yet. It uses try-with-resources to ensure that the socket is
closed automatically when we are done with it.

Example 12-2. main/src/main/java/network/ConnectSimple.java (simple client
connection)

import java.net.Socket;

/* Client with NO error handling */
public class ConnectSimple {

 public static void main(String[] argv) throws Exception {

 try (Socket sock = new Socket("localhost", 8080)) {

 /* If we get here, we can read and write on the socket "sock" */
 System.out.println(" *** Connected OK ***");

 /* Do some I/O here... */

 }
 }
}

388 | Chapter 12: Network Clients

http://shop.oreilly.com/product/0636920028925.do
http://shop.oreilly.com/product/0636920028925.do

This version does no real error reporting, but a version called ConnectFriendly does;
we’ll see this version in Recipe 12.4.

See Also
Java supports other ways of using network applications. You can also open a URL and
read from it (see Recipe 12.8). You can write code so that it will run from a URL,
when opened in a web browser, or from an application.

12.3 Finding and Reporting Network Addresses
Problem
You want to look up a host’s address name or number or get the address at the other
end of a network connection.

Solution
Get an InetAddress object.

Discussion
The InetAddress object represents the internet address of a given computer or host.
It has no public constructors; you obtain an InetAddress by calling the static getBy
Name() method, passing in either a hostname like darwinsys.com or a network
address as a string, like 1.23.45.67. All the “lookup” methods in this class can throw
the checked UnknownHostException (a subclass of java.io.IOException), which
must be caught or declared on the calling method’s header. None of these methods
actually contact the remote host, so they do not throw the other exceptions related to
network connections.

The method getHostAddress() gives you the numeric IP address (as a string) corre‐
sponding to the InetAddress. The inverse is getHostName(), which reports the name
of the InetAddress. This can be used to print the address of a host given its name, or
vice versa:

public class InetAddrDemo {
 public static void main(String[] args) throws IOException {
 String hostName = "darwinsys.com";
 String ipNumber = "8.8.8.8"; // currently a well-known Google DNS server

 // Show getting the InetAddress (looking up a host) by host name
 System.out.println(hostName + "'s address is " +
 InetAddress.getByName(hostName).getHostAddress());

 // Look up a host by address

12.3 Finding and Reporting Network Addresses | 389

6 The location where it is looked up varies. It might be in a file named /etc/services on Unix; in the services file in
a subdirectory of \ or _\winnt in Windows; in a centralized registry such as Sun’s Network Information Serv‐
ices (NIS, formerly YP); or in some other platform- or network-dependent location.

 System.out.println(ipNumber + "'s name is " +
 InetAddress.getByName(ipNumber).getHostName());

 // Look up my localhost addresss
 final InetAddress localHost = InetAddress.getLocalHost();
 System.out.println("My localhost address is " + localHost);

 // Show getting the InetAddress from an open Socket
 String someServerName = "google.com";
 // assuming there's a web server on the named server:
 try (Socket theSocket = new Socket(someServerName, 80)) {
 InetAddress remote = theSocket.getInetAddress();
 System.out.printf("The InetAddress for %s is %s%n",
 someServerName, remote);
 }
 }
}

You can also get an InetAddress from a Socket by calling its getInetAddress()
method. You can construct a Socket using an InetAddress instead of a hostname
string. So, to connect to port number myPortNumber on the same host as an existing
socket, you’d use this:

InetAddress remote = theSocket.getInetAddress();
Socket anotherSocket = new Socket(remote, myPortNumber);

Finally, to look up all the addresses associated with a host—a server may be on more
than one network—use the static method getAllByName(host), which returns an
array of InetAddress objects, one for each IP address associated with the given name.

A static method getLocalHost() returns an InetAddress equivalent to localhost or
127.0.0.1. This can be used to connect to a server program running on the same
machine as the client.

If you are using IPv6, you can use Inet6Address instead.

See Also
See NetworkInterface in Recipe 13.2, which lets you find out more about the net‐
working of the machine you are running on. There is no way to look up services in
the standard API yet—that is, to find out that the HTTP service is on port 80. Full
implementations of TCP/IP have always included an additional set of resolvers; in C,
the call getservbyname("http", "tcp"); would look up the given service6 and return
a servent (service entry) structure whose s_port member would contain the value

390 | Chapter 12: Network Clients

80. The numbers of established services do not change, but when services are new or
installed in nonroutine ways, it is convenient to be able to change the service number
for all programs on a machine or network (regardless of programming language) just
by changing the services definitions. Java should provide this capability in a future
release.

12.4 Handling Network Errors
Problem
You want more detailed reporting than just IOException if something goes wrong.

Solution
Catch a greater variety of exception classes. SocketException has several subclasses;
the most notable are ConnectException and NoRouteToHostException. The names
are self-explanatory: the first means that the connection was refused by the machine
at the other end (the server machine), and the second completely explains the failure.
Example 12-3 is an excerpt from the Connect program, enhanced to handle these
conditions.

Example 12-3. ConnectFriendly.java

public class ConnectFriendly {
 public static void main(String[] argv) {
 String server_name = argv.length == 1 ? argv[0] : "localhost";
 int tcp_port = 80;
 try (Socket sock = new Socket(server_name, tcp_port)) {

 /* If we get here, we can read and write on the socket. */
 System.out.println(" *** Connected to " + server_name + " ***");

 /* Do some I/O here... */

 } catch (UnknownHostException e) {
 System.err.println(server_name + " Unknown host");
 return;
 } catch (NoRouteToHostException e) {
 System.err.println(server_name + " Unreachable");
 return;
 } catch (ConnectException e) {
 System.err.println(server_name + " connect refused");
 return;
 } catch (java.io.IOException e) {
 System.err.println(server_name + ' ' + e.getMessage());
 return;
 }

12.4 Handling Network Errors | 391

 }
}

12.5 Reading and Writing Textual Data
Problem
Having connected, you wish to transfer textual data.

Solution
Construct a BufferedReader or PrintWriter from the socket’s getInputStream() or
getOutputStream().

Discussion
The Socket class has methods that allow you to get an InputStream or OutputStream
to read from or write to the socket. It has no method to fetch a Reader or Writer,
partly because some network services are limited to ASCII, but mainly because the
Socket class was decided on before there were Reader and Writer classes. You can
always create a Reader from an InputStream or a Writer from an OutputStream
using the conversion classes. This is the paradigm for the two most common forms:

BufferedReader is = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
PrintWriter os = new PrintWriter(sock.getOutputStream(), true);

Example 12-4 reads a line of text from the daytime service, which is offered by full-
fledged TCP/IP suites (such as those included with most Unixes). You don’t have to
send anything to the Daytime server; you simply connect and read one line. The
server writes one line containing the date and time and then closes the connection.

Running it looks like the following code. I started by getting the current date and
time on the local host, then ran the DaytimeText program to see the date and time on
the server (machine darian is one of my Unix servers):

C:\javasrc\network>date
Current date is Sun 01-23-2000
Enter new date (mm-dd-yy):
C:\javasrc\network>time
Current time is 1:13:18.70p
Enter new time:
C:\javasrc\network>java network.DaytimeText darian
Time on darian is Sun Jan 23 13:14:34 2000

The code is in class DaytimeText, shown in Example 12-4.

392 | Chapter 12: Network Clients

6 It used to be universal, when most networked systems were administered by full-time systems people who had
been trained or served an apprenticeship. Today many machines on the internet don’t have localhost config‐
ured properly.

Example 12-4. DaytimeText.java

public class DaytimeText {
 public static final short TIME_PORT = 13;

 public static void main(String[] argv) {
 String server_name = argv.length == 1 ? argv[0] : "localhost";

 try (Socket sock = new Socket(server_name,TIME_PORT);
 BufferedReader is = new BufferedReader(new
 InputStreamReader(sock.getInputStream()));) {
 String remoteTime = is.readLine();
 System.out.println("Time on " + server_name + " is " + remoteTime);
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

The second example, shown in Example 12-5, shows both reading and writing on the
same socket. The Echo server simply echoes back whatever lines of text you send it.
It’s not a very clever server, but it is a useful one. It helps in network testing and also
in testing clients of this type!

The converse() method holds a short conversation with the Echo server on the
named host; if no host is named, it tries to contact localhost, a universal alias6 for
the machine the program is running on.

Example 12-5. main/src/main/java/network/EchoClientOneLine.java

public class EchoClientOneLine {
 /** What we send across the net */
 String mesg = "Hello across the net";

 public static void main(String[] argv) {
 if (argv.length == 0)
 new EchoClientOneLine().converse("localhost");
 else
 new EchoClientOneLine().converse(argv[0]);
 }

 /** Hold one conversation across the net */
 protected void converse(String hostName) {
 try (Socket sock = new Socket(hostName, 7);) { // echo server.
 BufferedReader is = new BufferedReader(new

12.5 Reading and Writing Textual Data | 393

 InputStreamReader(sock.getInputStream()));
 PrintWriter os = new PrintWriter(sock.getOutputStream(), true);
 // Do the CRLF ourself since println appends only a \r on
 // platforms where that is the native line ending.
 os.print(mesg + "\r\n"); os.flush();
 String reply = is.readLine();
 System.out.println("Sent \"" + mesg + "\"");
 System.out.println("Got \"" + reply + "\"");
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

It might be a good exercise to isolate the reading and writing code from this method
into a NetWriter class, possibly subclassing PrintWriter and adding the \r\n and
the flushing.

12.6 Reading and Writing Binary or Serialized Data
Problem
Having connected, you wish to transfer binary data, either raw binary data or serial‐
ized Java objects.

Solution
For plain binary date, construct a DataInputStream or DataOutputStream from the
socket’s getInputStream() or getOutputStream(). For serialized Java object data,
construct an ObjectInputStream or ObjectOutputStream.

Discussion
The simplest paradigm for reading/writing on a socket is this:

DataInputStream is = new DataInputStream(sock.getInputStream());
DataOutputStream is = new DataOutputStream(sock.getOutputStream());

If the volume of data might be large, insert a buffered stream for efficiency. The para‐
digm is this:

DataInputStream is = new DataInputStream(
 new BufferedInputStream(sock.getInputStream()));
DataOutputStream is = new DataOutputStream(
 new BufferedOutputStream(sock.getOutputStream()));

The program example in Example 12-6 uses another standard service that gives out
the time as a binary integer representing the number of seconds since 1900. Because
the Java Date class base is 1970, we convert the time base by subtracting the difference

394 | Chapter 12: Network Clients

between 1970 and 1900. When I used this exercise in a course, most of the students
wanted to add this time difference, reasoning that 1970 is later. But if you think
clearly, you’ll see that there are fewer seconds between 1999 and 1970 than there are
between 1999 and 1900, so subtraction gives the correct number of seconds. And
because the Date constructor needs milliseconds, we multiply the number of seconds
by 1,000.

The time difference is the number of years multiplied by 365, plus the number of leap
days between the two dates (in the years 1904, 1908, . . . , 1968)—19 days.

The integer that we read from the server is a C-language unsigned int. But Java
doesn’t provide an unsigned integer type; normally when you need an unsigned num‐
ber, you use the next-larger integer type, which would be long. But Java also doesn’t
give us a method to read an unsigned integer from a data stream. The DataInput
Stream method readInt() reads Java-style signed integers. There are readUnsigned
Byte() methods and readUnsignedShort() methods, but no readUnsignedInt()
method. Accordingly, we synthesize the ability to read an unsigned int (which must
be stored in a long, or else you’d lose the signed bit and be back where you started
from) by reading unsigned bytes and reassembling them using Java’s bit-shifting
operators:

At the end of the code, we use the new date/time API (see Chapter 6) to construct and
print a LocalDateTime object to show the current date and time on the local (client)
machine:

$ date
Thu Dec 26 09:48:36 EST 2019
java network.RDateClient aragorn
Remote time is 3786360519
BASE_DIFF is 2208988800
Time diff == 1577371719
Time on aragorn is 2019-12-26T09:48:39
Local date/time = 2019-12-26T09:48:41.208180
$

The name aragorn is the hostname of one of my OpenBSD Unix computers. Looking
at the output, you can see that the server agrees within a second or two. That con‐
firms the date calculation code in Example 12-6. This protocol is commonly known
as rdate, so the client code is called RDateClient.

Example 12-6. main/src/main/java/network/RDateClient.java

public class RDateClient {
 /** The TCP port for the binary time service. */
 public static final short TIME_PORT = 37;
 /** Seconds between 1970, the time base for dates and times
 * Factors in leap years (up to 2100), hours, minutes, and seconds.

12.6 Reading and Writing Binary or Serialized Data | 395

 * Subtract 1 day for 1900, add in 1/2 day for 1969/1970.
 */
 protected static final long BASE_DAYS =
 (long)((1970-1900)*365 + (1970-1900-1)/4);

 /* Seconds since 1970 */
 public static final long BASE_DIFF = (BASE_DAYS * 24 * 60 * 60);

 public static void main(String[] argv) {
 String hostName;
 if (argv.length == 0)
 hostName = "localhost";
 else
 hostName = argv[0];

 try (Socket sock = new Socket(hostName,TIME_PORT);) {
 DataInputStream is = new DataInputStream(new
 BufferedInputStream(sock.getInputStream()));
 // Read 4 bytes from the network, unsigned.
 // Do it yourself; there is no readUnsignedInt().
 // Long is 8 bytes on Java, but we are using the
 // existing time protocol, which uses 4-byte ints.
 long remoteTime = (
 ((long)(is.readUnsignedByte()) << 24) |
 ((long)(is.readUnsignedByte()) << 16) |
 ((long)(is.readUnsignedByte()) << 8) |
 ((long)(is.readUnsignedByte()) << 0));
 System.out.println("Remote time is " + remoteTime);
 System.out.println("BASE_DIFF is " + BASE_DIFF);
 System.out.println("Time diff == " + (remoteTime - BASE_DIFF));
 Instant time = Instant.ofEpochSecond(remoteTime - BASE_DIFF);
 LocalDateTime d = LocalDateTime.ofInstant(time, ZoneId.systemDefault());
 System.out.println("Time on " + hostName + " is " + d.toString());
 System.out.println("Local date/time = " + LocalDateTime.now());
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

Object serialization is the ability to convert in-memory objects to an external form
that can be sent serially (a byte at a time). To read or write Java objects via serializa‐
tion, you need only construct an ObjectInputStream or ObjectOutputStream from
an InputStream or OutputStream; in this case, the socket’s getInputStream() or
getOutputStream().

This program (and its server) provide a service that isn’t a standard part of the
TCP/IP stack; it’s a service I made up as a demo. The server for this service is intro‐
duced in Recipe 13.3. The client code in Example 12-7 is quite similar to the Daytime
Binary program in the previous recipe, but the server sends us a LocalDateTime

396 | Chapter 12: Network Clients

object already constructed. Example 12-7 shows the portion of the client code that
differs from Example 12-6.

Example 12-7. main/src/main/java/network/DaytimeObject.java

 try (Socket sock = new Socket(hostName, TIME_PORT);) {
 ObjectInputStream is = new ObjectInputStream(new
 BufferedInputStream(sock.getInputStream()));

 // Read and validate the Object
 Object o = is.readObject();
 if (o == null) {
 System.err.println("Read null from server!");
 } else if ((o instanceof LocalDateTime)) {

 // Valid, so cast to LocalDateTime, and print
 LocalDateTime d = (LocalDateTime) o;
 System.out.println("Time on " + hostName + " is " + d);
 } else {
 throw new IllegalArgumentException(
 String.format("Wanted LocalDateTime, got %s, a %s",
 o, o.getClass()));
 }

I ask the operating system for the date and time, and then I run the program, which
prints the date and time on a remote machine:

$ date
Thu Dec 26 09:29:02 EST 2019
C:\javasrc\network>java network.DaytimeObject aragorn
Time on aragorn is 2019-12-26T09:29:05.227397
C:\javasrc\network>

Again, the results agree within a few seconds.

12.7 UDP Datagrams
Problem
You need to use a datagram connection (UDP) instead of a stream connection (TCP).

Solution
Use DatagramSocket and DatagramPacket.

Discussion
Datagram network traffic is a kindred spirit to the underlying packet-based Ethernet
and IP (Internet Protocol) layers. Unlike a stream-based connection such as TCP,

12.7 UDP Datagrams | 397

6 The UDP packet may need to be fragmented by some networks, but this is not germane to us at the UDP
level, because it will reassemble the network packets into our single-entity UDP packet at the other end.

datagram transports like UDP transmit each packet, or chunk of data, as a single
entity with no necessary relation to any other.6 A common analogy is that TCP is like
talking on the telephone, whereas UDP is like sending postcards or maybe fax
messages.

The differences show up most in error handling. Packets can, like postcards, go
astray. When was the last time the postman rang your bell to tell you that the post
office had lost one of several postcards it was supposed to deliver to you? That’s not
going to happen, because the post office doesn’t keep track of postcards. On the other
hand, when you’re talking on the phone and there’s a noise burst—like somebody
yelling in the room, or even a bad connection—you notice the failure in real time,
and you can ask the person at the other end to repeat what they just said.

With a stream-based connection like a TCP socket, the network transport layer han‐
dles errors for you: it asks the other end to retransmit. With a datagram transport
such as UDP, you have to handle retransmission yourself. It’s kind of like numbering
the postcards you send so that you can go back and resend any that don’t arrive—a
good excuse to return to your vacation spot, perhaps.

Another difference is that datagram transmission preserves message boundaries. That
is, if you write 20 bytes and then write 10 bytes when using TCP, the program reading
from the other end will not know if you wrote one chunk of 30 bytes, two chunks of
15, or even 30 individual characters. With a DatagramSocket, you construct a Data
gramPacket object for each buffer, and its contents are sent as a single entity over the
network; its contents will not be mixed together with the contents of any other buffer.
The DatagramPacket object has methods like getLength() and setPort().

Ian’s Basic Steps: UDP Client
UDP is a bit more involved, so I’ll list the basic steps for generating a UDP client:

1. Create a DatagramSocket with no arguments (the form that takes two arguments
is used on the server).

2. Optionally connect() the socket to an InetAddress (see Recipe 12.3) and port
number.

3. Create one or more DatagramPacket objects; these are wrappers around a byte
array that contains data you want to send and is filled in with data you receive.

4. If you did not connect() the socket, provide the InetAddress and port when
constructing the DatagramPacket.

398 | Chapter 12: Network Clients

5. Set the packet’s length and use sock.send(packet) to send data to the server.
6. Use sock.receive() to retrieve data.

So why would we even use UDP? UDP has a lot less overhead than TCP, which can be
particularly valuable when sending huge amounts of data over a reliable local net‐
work or a few hops on the internet. Over long-haul networks, TCP is probably prefer‐
red because TCP handles retransmission of lost packets for you. And obviously, if
preserving record boundaries makes your life easier, that may be a reason for consid‐
ering UDP. UDP is also the way to perform Multicast (broadcast to many receivers
simultaneously), though Multicast is out of scope for this discussion.

Example 12-8 is a short program that connects via UDP to the Daytime date and time
server used in Recipe 12.5. Because UDP has no real notion of connection, the client
typically initiates the conversation, which sometimes means sending an empty
packet; the UDP server uses the address information it gets from that to return its
response.

Example 12-8. main/src/main/java/network/DaytimeUDP.java

public class DaytimeUDP {
 /** The UDP port number */
 public final static int DAYTIME_PORT = 13;

 /** A buffer plenty big enough for the date string */
 protected final static int PACKET_SIZE = 100;

 /** The main program that drives this network client.
 * @param argv[0] hostname, running daytime/udp server
 */
 public static void main(String[] argv) throws IOException {
 if (argv.length < 1) {
 System.err.println("usage: java DayTimeUDP host");
 System.exit(1);
 }
 String host = argv[0];
 InetAddress servAddr = InetAddress.getByName(host);
 DatagramSocket sock = new DatagramSocket();
 //sock.connect(servAddr, DAYTIME_PORT);
 byte[] buffer = new byte[PACKET_SIZE];

 // The udp packet we will send and receive
 DatagramPacket packet = new DatagramPacket(
 buffer, PACKET_SIZE, servAddr, DAYTIME_PORT);

 /* Send empty max-length (-1 for null byte) packet to server */
 packet.setLength(PACKET_SIZE-1);
 sock.send(packet);

12.7 UDP Datagrams | 399

 System.out.println("Sent request");

 // Receive a packet and print it.
 sock.receive(packet);
 System.out.println("Got packet of size " + packet.getLength());
 System.out.print("Date on " + host + " is " +
 new String(buffer, 0, packet.getLength()));

 sock.close();
 }
}

I’ll run it to my Unix box just to be sure that it works:

$
$ java network.DaytimeUDP aragorn
Sent request
Got packet of size 26
Date on aragorn is Sat Feb 8 20:22:12 2014
$

12.8 URI, URL, or URN?
Problem
Having heard these terms, you want to know the difference between a URI, URL, and
URN.

Solution
Read on. Or see the javadoc for java.net.uri.

Discussion
A URL is the traditional name for a network address consisting of a scheme (like
HTTP) and an address (site name) and resource or pathname. But there are three dis‐
tinct terms in all:

• URI (Uniform Resource Identifier)
• URL (Uniform Resource Locator)
• URN (Uniform Resource Name)

A discussion near the end of the Java documentation for the new class explains the
relationship among URI, URL, and URN. URIs form the set of all identifiers. URLs
and URNs are subsets.

400 | Chapter 12: Network Clients

URIs are the most general; a URI is parsed for basic syntax without regard to the
scheme, if any, that it specifies, and it need not refer to a particular server. A URL
includes a hostname, scheme, and other components; the string is parsed according
to rules for its scheme. When you construct a URL, an InputStream is created auto‐
matically. URNs name resources but do not explain how to locate them; typical exam‐
ples of URNs that you will have seen include mailto: and news: references.

The main operations provided by the URI class are normalization (removing extrane‐
ous path segments including “..”) and relativization (this should be called “making rel‐
ative,” but somebody wanted a single word to make a method name). A URI object
does not have any methods for opening the URI; for that, you would normally use a
string representation of the URI to construct a URL object, like so:

URL x = new URL(theURI.toString());

The program in Example 12-9 shows examples of normalizating, making relative, and
constructing a URL from a URI.

Example 12-9. main/src/main/java/network/URIDemo.java

public class URIDemo {
 public static void main(String[] args)
 throws URISyntaxException, MalformedURLException {

 URI u = new URI("https://darwinsys.com/java/../openbsd/../index.jsp");
 System.out.println("Raw: " + u);
 URI normalized = u.normalize();
 System.out.println("Normalized: " + normalized);
 final URI BASE = new URI("https://darwinsys.com");
 System.out.println("Relativized to " + BASE + ": " + BASE.relativize(u));

 // A URL is a type of URI
 URL url = new URL(normalized.toString());
 System.out.println("URL: " + url);

 // Demo of non-URL but valid URI
 URI uri = new URI("bean:WonderBean");
 System.out.println(uri);
 }
}

12.9 Program: TFTP UDP Client
This program implements the client half of the TFTP application protocol, a once-
well-known service that has been used in the Unix world for network booting of
workstations since before Windows 3.1, now primarily used for network bootstrap‐
ping of computers. I chose this protocol because it’s widely implemented on the
server side, so it’s easy to find a test server for it.

12.9 Program: TFTP UDP Client | 401

6 When the application doesn’t care, these port numbers are usually made up by the operating system. For
example, when you call a company from a pay phone or cell phone, the company doesn’t usually care what
number you are calling from, and if it does, there are ways to find out. Generated port numbers generally
range from 1024 (the first nonprivileged port; see Chapter 13) to 65535 (the largest value that can be held in a
16-bit port number).

The TFTP protocol is a bit odd. The client contacts the server on the well-known
UDP port number 69, from a generated port number,6 and the server responds to the
client from a generated port number. Further communication is on the two generated
port numbers.

Getting into more detail, as shown in Figure 12-1, the client initially sends a read
request with the filename and reads the first packet of data. The read request consists
of two bytes (a short) with the read request code (short integer with a value of 1,
defined as OP_RRQ), two bytes for the sequence number, then the ASCII filename, null
terminated, and the mode string, also null terminated. The server reads the read
request from the client, verifies that it can open the file and, if so, sends the first data
packet (OP_DATA), and then reads again. The client reads from its end and, if the read
is OK, turns the packet into an acknowledgement packet, and sends it. This read-
acknowledge cycle is repeated until all the data is read. Note that each packet is 516
bytes (512 bytes of data, plus 2 bytes for the packet type and 2 more for the packet
number) except the last, which can be any length from 4 (zero bytes of data) to 515
(511 bytes of data). If a network I/O error occurs, the packet is resent. If a given
packet goes astray, both client and server are supposed to perform a timeout cycle.
This client does not, but the server does. You could add timeouts either using a
thread (see Recipe 16.4) or by invoking setSoTimeout() on the socket and, if packets
do get lost, catching the SocketTimeoutException, retransmitting the ACK (or
RRQ), perhaps up to some max number of attempts. This is left as an exercise for the
reader. The current version of the client code is shown in Example 12-10.

402 | Chapter 12: Network Clients

Figure 12-1. The TFTP protocol packet formats

Example 12-10. main/src/main/java/network/RemCat.java

public class RemCat {
 /** The UDP port number */
 public final static int TFTP_PORT = 69;
 /** The mode we will use - octet for everything. */
 protected final String MODE = "octet";

 /** The offset for the code/response as a byte */
 protected final int OFFSET_REQUEST = 1;
 /** The offset for the packet number as a byte */
 protected final int OFFSET_PACKETNUM = 3;

 /** Debugging flag */
 protected static boolean debug = false;

 /** TFTP op-code for a read request */
 public final int OP_RRQ = 1;
 /** TFTP op-code for a read request */
 public final int OP_WRQ = 2;
 /** TFTP op-code for a read request */
 public final int OP_DATA = 3;
 /** TFTP op-code for a read request */
 public final int OP_ACK = 4;
 /** TFTP op-code for a read request */

12.9 Program: TFTP UDP Client | 403

 public final int OP_ERROR = 5;

 protected final static int PACKET_SIZE = 516; // == 2 + 2 + 512
 protected String host;
 protected InetAddress servAddr;
 protected DatagramSocket sock;
 protected byte buffer[];
 protected DatagramPacket inp, outp;

 /** The main program that drives this network client.
 * @param argv[0] hostname, running TFTP server
 * @param argv[1..n] filename(s), must be at least one
 */
 public static void main(String[] argv) throws IOException {
 if (argv.length < 2) {
 System.err.println("usage: rcat host filename[...]");
 System.exit(1);
 }
 if (debug)
 System.err.println("Java RemCat starting");
 RemCat rc = new RemCat(argv[0]);
 for (int i = 1; i<argv.length; i++) {
 if (debug)
 System.err.println("-- Starting file " +
 argv[0] + ":" + argv[i] + "---");
 rc.readFile(argv[i]);
 }
 }

 RemCat(String host) throws IOException {
 super();
 this.host = host;
 servAddr = InetAddress.getByName(host);
 sock = new DatagramSocket();
 buffer = new byte[PACKET_SIZE];
 outp = new DatagramPacket(buffer, PACKET_SIZE, servAddr, TFTP_PORT);
 inp = new DatagramPacket(buffer, PACKET_SIZE);
 }

 /* Build a TFTP Read Request packet. This is messy because the
 * fields have variable length. Numbers must be in
 * network order, too; fortunately Java just seems
 * naturally smart enough :-) to use network byte order.
 */
 void readFile(String path) throws IOException {
 buffer[0] = 0;
 buffer[OFFSET_REQUEST] = OP_RRQ; // read request
 int p = 2; // number of chars into buffer

 // Convert filename String to bytes in buffer , using "p" as an
 // offset indicator to get all the bits of this request
 // in exactly the right spot.

404 | Chapter 12: Network Clients

 byte[] bTemp = path.getBytes(); // i.e., ASCII
 System.arraycopy(bTemp, 0, buffer, p, path.length());
 p += path.length();
 buffer[p++] = 0; // null byte terminates string

 // Similarly, convert MODE ("stream" or "octet") to bytes in buffer
 bTemp = MODE.getBytes(); // i.e., ASCII
 System.arraycopy(bTemp, 0, buffer, p, MODE.length());
 p += MODE.length();
 buffer[p++] = 0; // null terminate

 /* Send Read Request to tftp server */
 outp.setLength(p);
 sock.send(outp);

 /* Loop reading data packets from the server until a short
 * packet arrives; this indicates the end of the file.
 */
 do {
 sock.receive(inp);
 if (debug)
 System.err.println(
 "Packet # " + Byte.toString(buffer[OFFSET_PACKETNUM])+
 "RESPONSE CODE " + Byte.toString(buffer[OFFSET_REQUEST]));
 if (buffer[OFFSET_REQUEST] == OP_ERROR) {
 System.err.println("rcat ERROR: " +
 new String(buffer, 4, inp.getLength()-4));
 return;
 }
 if (debug)
 System.err.println("Got packet of size " +
 inp.getLength());

 /* Print the data from the packet */
 System.out.write(buffer, 4, inp.getLength()-4);

 /* Ack the packet. The block number we
 * want to ack is already in buffer so
 * we just change the opcode. The ACK is
 * sent to the port number which the server
 * just sent the data from, NOT to port
 * TFTP_PORT.
 */
 buffer[OFFSET_REQUEST] = OP_ACK;
 outp.setLength(4);
 outp.setPort(inp.getPort());
 sock.send(outp);
 } while (inp.getLength() == PACKET_SIZE);

 if (debug)
 System.err.println("** ALL DONE** Leaving loop, last size " +
 inp.getLength());

12.9 Program: TFTP UDP Client | 405

6 Beware of security holes; don’t turn a TFTP server loose on the internet without first reading a good security
book, such as Building Internet Firewalls by D. Chapman et al. (O’Reilly).

7 For an open source program that provides an IM service to let you talk to both from the same program, check
out Jabber at http://www.jabber.org.

 }
}

To test this client, you need a TFTP server. If you are on a Unix system that you
administer, you can enable the TFTP server to test this client just by editing the
file /etc/inetd.conf and restarting or reloading the inetd server (Linux uses a different
mechanism, which may vary depending on which distribution you are on). inetd is a
program that listens for a wide range of connections and starts the servers only when
a connection from a client comes along (a kind of lazy evaluation).6 I set up the tradi‐
tional /tftpboot directory, put this line in my inetd.conf, and reloaded inetd:

tftp dgram udp wait root /usr/libexec/tftpd tftpd -s /tftpboot

Then I put a few test files, one named foo, into the /tftpboot directory. Running

$ java network.RemCat localhost foo

produced what looked like the file. But just to be safe, I tested the output of RemCat
against the original file, using the Unix diff comparison program. No news is good
news:

$ java network.RemCat localhost foo | diff - /tftpboot/foo

So far so good. Let’s not slip this program on an unsuspecting network without exer‐
cising the error handling at least briefly:

$ java network.RemCat localhost nosuchfile
remcat ERROR: File not found
$

12.10 Program: Sockets-Based Chat Client
This program is a simple chat program. You can’t break in on ICQ or AIM with it,
because they each use their own protocol.7 Rather, this program simply writes to and
reads from a server. The server for this will be presented in Chapter 13. How does it
look when you run it? Figure 12-2 shows me chatting all by myself one day.

The code is reasonably self-explanatory. We read from the remote server in a thread
to make the input and the output run without blocking each other; this is discussed
in Chapter 16. The reading and writing are discussed in this chapter. The program is
shown in Example 12-11.

406 | Chapter 12: Network Clients

http://shop.oreilly.com/product/9781565928718.do
http://www.jabber.org

Figure 12-2. Chat client in action

Example 12-11. main/src/main/java/chat/ChatClient.java

public class ChatClient extends JFrame {

 private static final long serialVersionUID = -3686334002367908392L;
 private static final String userName =
 System.getProperty("user.name", "User With No Name");
 /** The state of logged-in-ness */
 protected boolean loggedIn;
 /* The main Frame. */
 protected JFrame cp;
 /** The default port number */
 protected static final int PORTNUM = ChatProtocol.PORTNUM;
 /** The actual port number */
 protected int port;
 /** The network socket */
 protected Socket sock;
 /** PrintWriter for sending lines on socket */
 protected PrintWriter pw;
 /** TextField for input */
 protected JTextField tf;
 /** TextArea to display conversations */
 protected JTextArea ta;
 /** The Login Button */
 protected JButton loginButton;
 /** The LogOUT button */
 protected JButton logoutButton;
 /** The TitleBar title */
 final static String TITLE = "ChatClient: Ian Darwin's Chat Room Client";

 final Executor threadPool = Executors.newSingleThreadExecutor();

 /** set up the GUI */
 public ChatClient() {
 cp = this;
 cp.setTitle(TITLE);

12.10 Program: Sockets-Based Chat Client | 407

 cp.setLayout(new BorderLayout());
 port = PORTNUM;

 // The GUI
 ta = new JTextArea(14, 80);
 ta.setEditable(false); // readonly
 ta.setFont(new Font("Monospaced", Font.PLAIN, 11));
 cp.add(BorderLayout.NORTH, ta);

 JPanel p = new JPanel();

 // The login button
 p.add(loginButton = new JButton("Login"));
 loginButton.setEnabled(true);
 loginButton.requestFocus();
 loginButton.addActionListener(e -> {
 login();
 loginButton.setEnabled(false);
 logoutButton.setEnabled(true);
 tf.requestFocus(); // set keyboard focus in right place!
 });

 // The logout button
 p.add(logoutButton = new JButton("Logout"));
 logoutButton.setEnabled(false);
 logoutButton.addActionListener(e -> {
 logout();
 loginButton.setEnabled(true);
 logoutButton.setEnabled(false);
 loginButton.requestFocus();
 });

 p.add(new JLabel("Message here:"));
 tf = new JTextField(40);
 tf.addActionListener(e -> {
 if (loggedIn) {
 pw.println(ChatProtocol.CMD_BCAST+tf.getText());
 tf.setText("");
 }
 });
 p.add(tf);

 cp.add(BorderLayout.SOUTH, p);

 cp.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 cp.pack();
 }

 protected String serverHost = "localhost";

 /** LOG ME IN TO THE CHAT */
 public void login() {

408 | Chapter 12: Network Clients

 /** BufferedReader for reading from socket */
 BufferedReader is;

 showStatus("In login!");
 if (loggedIn)
 return;
 try {
 sock = new Socket(serverHost, port);
 is = new BufferedReader(new InputStreamReader(sock.getInputStream()));
 pw = new PrintWriter(sock.getOutputStream(), true);
 showStatus("Got socket");

 // FAKE LOGIN FOR NOW - no password needed
 pw.println(ChatProtocol.CMD_LOGIN + userName);

 loggedIn = true;

 } catch(IOException e) {
 warn("Can't get socket to " +
 serverHost + "/" + port + ": " + e);
 cp.add(new JLabel("Can't get socket: " + e));
 return;
 }

 // Construct and start the reader: from server to textarea.
 // Make a Thread to avoid lockups.
 Runnable readerThread = new Runnable() {
 public void run() {
 String line;
 try {
 while (loggedIn && ((line = is.readLine()) != null))
 ta.append(line + "\n");
 } catch(IOException e) {
 showStatus("Lost another client!\n" + e);
 return;
 }
 }
 };
 threadPool.execute(readerThread);
 }

 /** Log me out, Scotty, there's no intelligent life here! */
 public void logout() {
 if (!loggedIn)
 return;
 loggedIn = false;
 try {
 if (sock != null)
 sock.close();
 } catch (IOException ign) {
 // so what?
 }

12.10 Program: Sockets-Based Chat Client | 409

 }

 public void showStatus(String message) {
 System.out.println(message);
 }

 private void warn(String message) {
 JOptionPane.showMessageDialog(this, message);
 }

 /** A main method to allow the client to be run as an Application */
 public static void main(String[] args) {
 ChatClient room101 = new ChatClient();
 room101.pack();
 room101.setVisible(true);
 }
}

See Also
There are many better-structured ways to write a chat client, including WebSockets,
RMI, and JMS. RMI is Java’s RPC interface and is included both in Java SE and Java
EE; it is not described in this edition of this book, but you can find the RMI chapter
from previous editions on the my website. The other technologies are part of the Java
Enterprise so, again, I refer you to Arun Gupta’s Java EE 7 Essentials.

If your communication goes over the public internet, you do need to encrypt your
socket connection, so check out Sun’s JSSE (Java Secure Socket Extension). If you
took my earlier advice and used the standard HTTP protocol, you can encrypt the
conversation just by changing the URL to https.

For a good overview of network programming from the C programmer’s point of
view, see the late W. Richard Stevens’ Unix Network Programming (Prentice Hall).
Despite the book’s name, it’s really about socket and TCP/IP/UDP programming and
covers all parts of the (Unix) networking API and protocols such as TFTP in amazing
detail.

12.11 Program: Simple HTTP Link Checker
Checking links is an ongoing problem for website owners as well as those who write
technical documentation that links to external sources (e.g., people like the author of
the book you are now reading). Link checkers are the tool they inevitably use to vali‐
date the links in their pages, be they web pages or book pages. Implementing a link
checker is basically a matter of (a) extracting links and (b) opening them. Thus, we
have the program in Example 12-12. I call it KwikLinkChecker as it is a bit on the
quick-and-dirty side—it doesn’t validate the content of the link to be sure it still con‐
tains what it once did; so if, say, an open source project forgets to renew its domain

410 | Chapter 12: Network Clients

http://darwinsys.com/java/rmi
http://shop.oreilly.com/product/0636920030614.do

registration, and it gets taken over by a porn site, well, KwikLinkChecker will never
know. But that said, it does its job reasonably well, and reasonably quickly.

Example 12-12. darwinsys-api/src/main/java/com/darwinsys/tools/
KwikLinkChecker.java

 /**
 * Check one HTTP link; not recursive. Returns a LinkStatus with
 * boolean success, and the filename or an error message in the
 * message part of the LinkStatus. The end of this method is one of
 * the few places where a whole raft of different "catch" clauses is
 * actually needed for the intent of the program.
 * @param urlString the link to check
 * @return the link's status
 */
 @SuppressWarnings("exports")
 public LinkStatus check(String urlString) {
 try {
 HttpResponse<String> resp = client.send(
 HttpRequest.newBuilder(URI.create(urlString))
 .header("User-Agent", getClass().getName())
 .GET()
 .build(),
 BodyHandlers.ofString());

 // Collect the results
 if (resp.statusCode() == 200) {
 System.out.println(resp.body());
 } else {
 System.out.printf("ERROR: Status %d on request %s\n",
 resp.statusCode(), urlString);
 }

 switch (resp.statusCode()) {
 case 200:
 return new LinkStatus(true, urlString);
 case 403:
 return new LinkStatus(false,"403: " + urlString);
 case 404:
 return new LinkStatus(false,"404: " + urlString);
 }
 return new LinkStatus(true, urlString);
 } catch (IllegalArgumentException | MalformedURLException e) {
 // JDK throws IAE if host can't be determined from URL string
 return new LinkStatus(false, "Malformed URL: " + urlString);
 } catch (UnknownHostException e) {
 return new LinkStatus(false, "Host invalid/dead: " + urlString);
 } catch (FileNotFoundException e) {
 return new LinkStatus(false,"NOT FOUND (404) " + urlString);
 } catch (ConnectException e) {
 return new LinkStatus(false, "Server not listening: " + urlString);

12.11 Program: Simple HTTP Link Checker | 411

 } catch (SocketException e) {
 return new LinkStatus(false, e + ": " + urlString);
 } catch (IOException e) {
 return new LinkStatus(false, e.toString()); // includes failing URL
 } catch (Exception e) {
 return new LinkStatus(false, urlString + ": " + e);
 }
 }

Fancier link checkers are surely available, but this one works for me.

412 | Chapter 12: Network Clients

CHAPTER 13

Server-Side Java

13.0 Introduction
Sockets form the underpinnings of almost all networking protocols. JDBC, RMI,
CORBA, EJB, and the non-Java RPC (Remote Procedure Call) and NFS (Network
File System) are all implemented by connecting various types of sockets together.
Socket connections can be implemented in most any language, not just Java: C, C++,
Perl, and Python are also popular, and many others are possible. A client or server
written in any one of these languages can communicate with its opposite written in
any of the other languages. Therefore, it’s worth taking a quick look at how the Serv
erSocket behaves, even if you wind up utilizing the higher-level services such as
RMI, JDBC, CORBA, or EJB.

The discussion looks first at the ServerSocket itself, then at writing data over a
socket in various ways. Finally, I show a complete implementation of a usable net‐
work server written in Java: the chat server from the client in the previous chapter.

413

6 You may not be able to pick just any port number for your own service, of course. Certain well-known port
numbers are reserved for specific services and listed in your services file, such as 22 for Secure Shell and 25 for
SMTP. Also, on server-based operating systems, ports below 1024 are considered privileged ports and require
root or administrator privilege to create. This was an early security mechanism; today, with zillions of single-
user desktops connected to the internet, it provides little real security, but the restriction remains.

Most production work in server-side Java uses the Java Enterprise
Edition (Java EE), recently transferred from Oracle to the Eclipse
Software Foundation and renamed to Jakarta but widely referred to
by the previous name (and occasionally by its very old name,
“J2EE,” which was retired in 2005). Java EE provides scalability and
support for building well-structured, multitiered distributed appli‐
cations. EE provides the servlet framework; a servlet is a strategy
object that can be installed into any standard Java EE web server.
EE also provides two web view technologies: the original JSP (Java‐
Server Pages) and the newer, component-based JSF (JavaServer
Faces). Finally, EE provides a number of other network-based serv‐
ices, including EJB3 remote access and Java Messaging Service
(JMS). These are outside the scope of this book; they are covered in
other books, such as Arun Gupta’s Java EE 7 Essentials: Enterprise
Developer Handbook. This chapter is only for those who need or
want to build their own server from the ground up.

13.1 Opening a Server Socket for Business
Problem
You need to write a socket-based server.

Solution
Create a ServerSocket for the given port number.

Discussion
The ServerSocket represents the other end of a connection, the server that waits
patiently for clients to come along and connect to it. You construct a ServerSocket
with just the port number.6 Because it doesn’t need to connect to another host, it
doesn’t need a particular host’s address as the client socket constructor does.

Assuming the ServerSocket constructor doesn’t throw an exception, you’re in busi‐
ness. Your next step is to await client activity, which you do by calling accept(). This
call blocks until a client connects to your server; at that point, the accept() returns to
you a Socket object (not a ServerSocket) that is connected in both directions to the

414 | Chapter 13: Server-Side Java

http://shop.oreilly.com/product/0636920030614.do
http://shop.oreilly.com/product/0636920030614.do

ServerSocket object on the client (or its equivalent, if written in another language).
Example 13-1 shows the code for a socket-based server.

Example 13-1. main/src/main/java/network/Listen.java

public class Listen {
 /** The TCP port for the service. */
 public static final short PORT = 9999;

 public static void main(String[] argv) throws IOException {
 ServerSocket sock;
 Socket clientSock;
 try {
 sock = new ServerSocket(PORT);
 while ((clientSock = sock.accept()) != null) {

 // Process it, usually on a separate thread
 // to avoid blocking the accept() call.
 process(clientSock);
 }

 } catch (IOException e) {
 System.err.println(e);
 }
 }

 /** This would do something with one client. */
 static void process(Socket s) throws IOException {
 System.out.println("Accept from client " + s.getInetAddress());
 // The conversation would be here.
 s.close();
 }
}

You would normally use the same socket for both reading and writing, as shown in
the next few recipes.

You may want to listen only on a particular network interface. Though we tend to
think of network addresses as computer addresses, the two are not the same. A net‐
work address is actually the address of a particular network card, or network interface
connection, on a given computing device. A desktop computer, laptop, tablet, or
mobile phone might have only a single interface, hence a single network address. But
a large server machine might have two or more interfaces, usually when it is connec‐
ted to several networks. A network router is a box, either special purpose (e.g., a
Cisco router), or general purpose (e.g., a Unix host), that has interfaces on multiple
networks and has both the capability and the administrative permission to forward
packets from one network to another. A program running on such a server machine
might want to provide services only to its inside network or its outside network. One

13.1 Opening a Server Socket for Business | 415

way to accomplish this is by specifying the network interface to be listened on. Sup‐
pose you want to provide a different view of web pages for your intranet than you
provide to outside customers. For security reasons, you probably wouldn’t run both
these services on the same machine. But if you wanted to, you could do this by pro‐
viding the network interface addresses as arguments to the ServerSocket

constructor.

However, to use this form of the constructor, you don’t have the option of using a
string for the network address’s name, as you did with the client socket; you must
convert it to an InetAddress object. You also have to provide a backlog argument,
which is the number of connections that can queue up to be accepted before clients
are told that your server is too busy. The complete setup is shown in Example 13-2.

Example 13-2. main/src/main/java/network/ListenInside.java

public class ListenInside {
 /** The TCP port for the service. */
 public static final short PORT = 9999;
 /** The name of the network interface. */
 public static final String INSIDE_HOST = "acmewidgets-inside";
 /** The number of clients allowed to queue */
 public static final int BACKLOG = 10;

 public static void main(String[] argv) throws IOException {
 ServerSocket sock;
 Socket clientSock;
 try {
 sock = new ServerSocket(PORT, BACKLOG,
 InetAddress.getByName(INSIDE_HOST));
 while ((clientSock = sock.accept()) != null) {

 // Process it.
 process(clientSock);
 }

 } catch (IOException e) {
 System.err.println(e);
 }
 }

 /** Hold server's conversation with one client. */
 static void process(Socket s) throws IOException {
 System.out.println("Connected from " + INSIDE_HOST +
 ": " + s.getInetAddress());
 // The conversation would be here.
 s.close();
 }
}

416 | Chapter 13: Server-Side Java

6 Digital Equipment was absorbed by Compaq, which was then absorbed by HP, but the name remains de
because the engineers who name such things don’t care for corporate mergers anyway.

InetAddress.getByName() looks up the given hostname in a system-dependent way,
referring to a configuration file in the /etc or \windows directory, or to some kind of
resolver such as the Domain Name System. Consult a good book on networking and
system administration if you need to modify this data.

13.2 Finding Network Interfaces
Problem
You wish to find out about the computer’s networking arrangements.

Solution
Use the NetworkInterface class.

Discussion
Every computer on a network has one or more “network interfaces.” On typical desk‐
top machines, a network interface represents a network card or network port or some
software network interface, such as the loopback interface. Each interface has an
operating system–defined name. On most versions of Unix, these devices have a two-
or three-character device driver name plus a digit (starting from 0), for example, eth0
or en0 for the first Ethernet on systems that hide the details of the card manufacturer,
or de0 and de1 for the first and second Digital Equipment6 DC21x4x-based Ethernet
card, xl0 for a 3Com EtherLink XL, and so on. The loopback interface is almost
invariably lo0 on all Unix-like platforms.

So what? Most of the time this is of no consequence to you. If you have only one net‐
work connection, like a cable link to your ISP, you really don’t care. Where this mat‐
ters is on a server, where you might need to find the address for a given network, for
example. The NetworkInterface class lets you find out. It has static methods for list‐
ing the interfaces and other methods for finding the addresses associated with a given
interface. The program in Example 13-3 shows some examples of using this class.
Running it prints the names of all the local interfaces. If you happen to be on a com‐
puter named laptop, it prints the machine’s network address; if not, you probably
want to change it to accept the local computer’s name from the command line; this is
left as an exercise for the reader.

13.2 Finding Network Interfaces | 417

Example 13-3. main/src/main/java/network/NetworkInterfaceDemo.java

public class NetworkInterfaceDemo {
 public static void main(String[] a) throws IOException {
 Enumeration<NetworkInterface> list =
 NetworkInterface.getNetworkInterfaces();
 while (list.hasMoreElements()) {
 // Get one NetworkInterface
 NetworkInterface iface = list.nextElement();
 // Print its name
 System.out.println(iface.getDisplayName());
 Enumeration<InetAddress> addrs = iface.getInetAddresses();
 // And its address(es)
 while (addrs.hasMoreElements()) {
 InetAddress addr = addrs.nextElement();
 System.out.println(addr);
 }

 }
 // Try to get the Interface for a given local (this machine's) address
 InetAddress destAddr = InetAddress.getByName("laptop");
 try {
 NetworkInterface dest = NetworkInterface.getByInetAddress(destAddr);
 System.out.println("Address for " + destAddr + " is " + dest);
 } catch (SocketException ex) {
 System.err.println("Couldn't get address for " + destAddr);
 }
 }
}

13.3 Returning a Response (String or Binary)
Problem
You need to write a string or binary data to the client.

Solution
The socket gives you an InputStream and an OutputStream. Use them.

Discussion
The client socket examples in the previous chapter called the getInputStream() and
getOutputStream() methods. These examples do the same. The main difference is
that these ones get the socket from a ServerSocket’s accept() method. Another dis‐
tinction is, by definition, that normally the server creates or modifies the data and
sends it to the client. Example 13-4 is a simple Echo server, which the Echo client of

418 | Chapter 13: Server-Side Java

Recipe 12.5 can connect to. This server handles one complete connection with a cli‐
ent, then goes back and does the accept() to wait for the next client.

Example 13-4. main/src/main/java/network/EchoServer.java

public class EchoServer {
 /** Our server-side rendezvous socket */
 protected ServerSocket sock;
 /** The port number to use by default */
 public final static int ECHOPORT = 7;
 /** Flag to control debugging */
 protected boolean debug = true;

 /** main: construct and run */
 public static void main(String[] args) {
 int p = ECHOPORT;
 if (args.length == 1) {
 try {
 p = Integer.parseInt(args[0]);
 } catch (NumberFormatException e) {
 System.err.println("Usage: EchoServer [port#]");
 System.exit(1);
 }
 }
 new EchoServer(p).handle();
 }

 /** Construct an EchoServer on the given port number */
 public EchoServer(int port) {
 try {
 sock = new ServerSocket(port);
 } catch (IOException e) {
 System.err.println("I/O error in setup");
 System.err.println(e);
 System.exit(1);
 }
 }

 /** This handles the connections */
 protected void handle() {
 Socket ios = null;
 while (true) {
 try {
 System.out.println("Waiting for client...");
 ios = sock.accept();
 System.err.println("Accepted from " +
 ios.getInetAddress().getHostName());
 try (BufferedReader is = new BufferedReader(
 new InputStreamReader(ios.getInputStream(), "8859_1"));
 PrintWriter os = new PrintWriter(
 new OutputStreamWriter(ios.getOutputStream(), "8859_1"),

13.3 Returning a Response (String or Binary) | 419

 true);) {
 String echoLine;
 while ((echoLine = is.readLine()) != null) {
 System.err.println("Read " + echoLine);
 os.print(echoLine + "\r\n");
 os.flush();
 System.err.println("Wrote " + echoLine);
 }
 System.err.println("All done!");
 }
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 /* NOTREACHED */
 }
}

To send a string across an arbitrary network connection, some authorities recom‐
mend sending both the carriage return and the newline character; many protocol
specifications require that you do so. This explains the \r\n in the code. If the other
end is a DOS program or a Telnet-like program, it may be expecting both characters.
On the other hand, if you are writing both ends, you can simply use println()—fol‐
lowed always by an explicit flush() before you read—to prevent the deadlock of hav‐
ing both ends trying to read with one end’s data still in the PrintWriter’s buffer!

If you need to process binary data, use the data streams from java.io instead of the
readers/writers. I need a server for the DaytimeBinary program of Recipe 12.6. In
operation, it should look like the following:

C:\javasrc\network>java network.DaytimeBinary
Remote time is 3161316799
BASE_DIFF is 2208988800
Time diff == 952284799
Time on localhost is Sun Mar 08 19:33:19 GMT 2014

C:\javasrc\network>time/t
Current time is 7:33:23.84p

C:\javasrc\network>date/t
Current date is Sun 03-08-2014

C:\javasrc\network>

Well, it happens that I have such a program in my arsenal, so I present it in
Example 13-5. Note that it directly uses certain public constants defined in the client
class. Normally these are defined in the server class and used by the client, but I
wanted to present the client code first.

420 | Chapter 13: Server-Side Java

Example 13-5. main/src/main/java/network/DaytimeServer.java

public class DaytimeServer {
 /** Our server-side rendezvous socket */
 ServerSocket sock;
 /** The port number to use by default */
 public final static int PORT = 37;

 /** main: construct and run */
 public static void main(String[] argv) {
 new DaytimeServer(PORT).runService();
 }

 /** Construct a DaytimeServer on the given port number */
 public DaytimeServer(int port) {
 try {
 sock = new ServerSocket(port);
 } catch (IOException e) {
 System.err.println("I/O error in setup\n" + e);
 System.exit(1);
 }
 }

 /** This handles the connections */
 protected void runService() {
 Socket ios = null;
 DataOutputStream os = null;
 while (true) {
 try {
 System.out.println("Waiting for connection on port " + PORT);
 ios = sock.accept();
 System.err.println("Accepted from " +
 ios.getInetAddress().getHostName());
 os = new DataOutputStream(ios.getOutputStream());
 long time = System.currentTimeMillis();

 time /= 1000; // Daytime Protocol is in seconds

 // Convert to Java time base.
 time += RDateClient.BASE_DIFF;

 // Write it, truncating cast to int since it is using
 // the Internet Daytime protocol which uses 4 bytes.
 // This will fail in the year 2038, along with all
 // 32-bit timekeeping systems based from 1970.
 // Remember, you read about the Y2038 crisis here first!
 os.writeInt((int)time);
 os.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }

13.3 Returning a Response (String or Binary) | 421

 }
}

13.4 Returning Object Information Across a Network
Connection
Problem
You need to return an object across a network connection.

Solution
Create the object you need, and write it using an ObjectOutputStream created on top
of the socket’s output stream.

Discussion
The program in Example 12-7 in the previous chapter reads a Date object over an
ObjectInputStream. Example 13-6, the DaytimeObjectServer (the other end of that
process), is a program that constructs a Date object each time it’s connected to and
returns it to the client.

Example 13-6. main/src/main/java/network/DaytimeObjectServer.java

public class DaytimeObjectServer {
 /** The TCP port for the object time service. */
 public static final short TIME_PORT = 1951;

 public static void main(String[] argv) {
 ServerSocket sock;
 Socket clientSock;
 try {
 sock = new ServerSocket(TIME_PORT);
 while ((clientSock = sock.accept()) != null) {
 System.out.println("Accept from " +
 clientSock.getInetAddress());
 ObjectOutputStream os = new ObjectOutputStream(
 clientSock.getOutputStream());

 // Construct and write the Object
 os.writeObject(LocalDateTime.now());

 os.close();
 }

 } catch (IOException e) {
 System.err.println(e);
 }

422 | Chapter 13: Server-Side Java

6 There are some limits to how many threads you can have, which affect only very large, enterprise-scale
servers. You can’t expect to have thousands of threads running in the standard Java runtime. For large, high-
performance servers, you may wish to resort to native code (see Recipe 18.6) using select() or poll().

 }
}

13.5 Handling Multiple Clients
Problem
Your server needs to handle multiple clients.

Solution
Use a thread for each.

Discussion
In the C world, several mechanisms allow a server to handle multiple clients. One is
to use a special system call select() or poll(), which notifies the server when any of
a set of file/socket descriptors is ready to read, ready to write, or has an error. By
including its rendezvous socket (equivalent to our ServerSocket) in this list, the C-
based server can read from any of a number of clients in any order. Java does not pro‐
vide this call, because it is not readily implementable on some Java platforms. Instead,
Java uses the general-purpose Thread mechanism, as described in Chapter 16
(threads are now commonplace in many programming languages, though not always
under that name). Each time the code accepts a new connection from the Server
Socket, it immediately constructs and starts a new thread object to process that
client.6

The Java code to implement accepting on a socket is pretty simple, apart from having
to catch IOExceptions:

/** Run the main loop of the Server. */
void runServer() {
 while (true) {
 try {
 Socket clntSock = sock.accept();
 new Handler(clntSock).start();
 } catch(IOException e) {
 System.err.println(e);
 }
 }
}

13.5 Handling Multiple Clients | 423

To use a thread, you must either subclass Thread or implement Runnable. The Han
dler class must be a subclass of Thread for this code to work as written; if Handler
instead implemented the Runnable interface, the code would pass an instance of the
Runnable into the constructor for Thread, as in:

Thread t = new Thread(new Handler(clntSock));
t.start();

But as written, Handler is constructed using the normal socket returned by accept()
and normally calls the socket’s getInputStream() and getOutputStream() methods
and holds its conversation in the usual way. I’ll present a full implementation, a threa‐
ded echo client. First, a session showing it in use:

$ java network.EchoServerThreaded
EchoServerThreaded ready for connections.
Socket starting: Socket[addr=localhost/127.0.0.1,port=2117,localport=7]
Socket starting: Socket[addr=darian/192.168.1.50,port=13386,localport=7]
Socket starting: Socket[addr=darian/192.168.1.50,port=22162,localport=7]
Socket ENDED: Socket[addr=darian/192.168.1.50,port=22162,localport=7]
Socket ENDED: Socket[addr=darian/192.168.1.50,port=13386,localport=7]
Socket ENDED: Socket[addr=localhost/127.0.0.1,port=2117,localport=7]

Here I connected to the server once with my EchoClient program and, while still
connected, called it up again (and again) with an operating system–provided Telnet
client. The server communicated with all the clients concurrently, sending the
answers from the first client back to the first client, and the data from the second cli‐
ent back to the second client. In short, it works. I ended the sessions with the end-of-
file character in the program and used the normal disconnect mechanism from the
Telnet client. Example 13-7 is the code for the server.

Example 13-7. main/src/main/java/network/EchoServerThreaded.java

public class EchoServerThreaded {

 public static final int ECHOPORT = 7;

 public static void main(String[] av) {
 new EchoServerThreaded().runServer();
 }

 public void runServer() {
 ServerSocket sock;
 Socket clientSocket;

 try {
 sock = new ServerSocket(ECHOPORT);

 System.out.println("EchoServerThreaded ready for connections.");

 /* Wait for a connection */

424 | Chapter 13: Server-Side Java

 while (true) {
 clientSocket = sock.accept();
 /* Create a thread to do the communication, and start it */
 new Handler(clientSocket).start();
 }
 } catch (IOException e) {
 /* Crash the server if IO fails. Something bad has happened */
 System.err.println("Could not accept " + e);
 System.exit(1);
 }
 }

 /** A Thread subclass to handle one client conversation. */
 class Handler extends Thread {
 Socket sock;

 Handler(Socket s) {
 sock = s;
 }

 public void run() {
 System.out.println("Socket starting: " + sock);
 try (BufferedReader is = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
 PrintStream os = new PrintStream(
 sock.getOutputStream(), true);) {
 String line;
 while ((line = is.readLine()) != null) {
 os.print(line + "\r\n");
 os.flush();
 }
 sock.close();
 } catch (IOException e) {
 System.out.println("IO Error on socket " + e);
 return;
 }
 System.out.println("Socket ENDED: " + sock);
 }
 }
}

A lot of short transactions can degrade performance, because each client causes the
creation of a new threaded object. If you know or can reliably predict the degree of
concurrency that is needed, an alternative paradigm involves the precreation of a
fixed number of threads. But then how do you control their access to the Server
Socket? A look at the ServerSocket class documentation reveals that the accept()
method is not synchronized, meaning that any number of threads can call the
method concurrently. This could cause bad things to happen. So I use the synchron
ized keyword around this call to ensure that only one client runs in it at a time,
because it updates global data. When no clients are connected, you will have one

13.5 Handling Multiple Clients | 425

(randomly selected) thread running in the ServerSocket object’s accept() method,
waiting for a connection, plus n-1 threads waiting for the first thread to return from
the method. As soon as the first thread manages to accept a connection, it goes off
and holds its conversation, releasing its lock in the process so that another randomly
chosen thread is allowed into the accept() method. Each thread’s run() method has
an infinite loop beginning with an accept() and then holding the conversation. The
result is that client connections can get started more quickly, at a cost of slightly
greater server startup time. Doing it this way also avoids the overhead of constructing
a new Handler or Thread object each time a request comes along. This general
approach is similar to what the popular Apache web server does, although it normally
creates a number or pool of identical processes (instead of threads) to handle client
connections. Accordingly, I have modified the EchoServerThreaded class shown in
Example 13-7 to work this way, as you can see in Example 13-8.

Example 13-8. main/src/main/java/network/EchoServerThreaded2.java

public class EchoServerThreaded2 {

 public static final int ECHOPORT = 7;

 public static final int NUM_THREADS = 4;

 /** Main method, to start the servers. */
 public static void main(String[] av) {
 new EchoServerThreaded2(ECHOPORT, NUM_THREADS);
 }

 /** Constructor */
 public EchoServerThreaded2(int port, int numThreads) {
 ServerSocket servSock;

 try {
 servSock = new ServerSocket(port);

 } catch (IOException e) {
 /* Crash the server if IO fails. Something bad has happened */
 throw new RuntimeException("Could not create ServerSocket ", e);
 }

 // Create a series of threads and start them.
 for (int i = 0; i < numThreads; i++) {
 new Handler(servSock, i).start();
 }
 }

 /** A Thread subclass to handle one client conversation. */
 class Handler extends Thread {
 ServerSocket servSock;

426 | Chapter 13: Server-Side Java

 int threadNumber;

 /** Construct a Handler. */
 Handler(ServerSocket s, int i) {
 servSock = s;
 threadNumber = i;
 setName("Thread " + threadNumber);
 }

 public void run() {
 /*
 * Wait for a connection. Synchronized on the ServerSocket while
 * calling its accept() method.
 */
 while (true) {
 try {
 System.out.println(getName() + " waiting");

 Socket clientSocket;
 // Wait here for the next connection.
 synchronized (servSock) {
 clientSocket = servSock.accept();
 }
 System.out.println(
 getName() + " starting, IP=" +
 clientSocket.getInetAddress());
 try (BufferedReader is = new BufferedReader(
 new InputStreamReader(clientSocket.getInputStream()));
 PrintStream os = new PrintStream(
 clientSocket.getOutputStream(), true);) {
 String line;
 while ((line = is.readLine()) != null) {
 os.print(line + "\r\n");
 os.flush();
 }
 System.out.println(getName() + " ENDED ");
 clientSocket.close();
 }
 } catch (IOException ex) {
 System.out.println(getName() + ": IO Error on socket " + ex);
 return;
 }
 }
 }
 }
}

It is quite possible to implement a server of this sort with NIO, the “new” (back in
J2SE 1.4) I/O package. However, the code to do so outweighs anything in this chapter,
and it is fraught with issues. There are several good tutorials on the internet for the

13.5 Handling Multiple Clients | 427

person who truly needs the performance gain of using NIO to manage server
connections.

13.6 Serving the HTTP Protocol
Problem
You want to serve up a protocol such as HTTP.

Solution
Create a ServerSocket and write some code that speaks the particular protocol. Or,
better, use a Java-powered web server such as Apache Tomcat or a Java Enterprise
Edition (Java EE) server such as JBoss WildFly.

Discussion
You can implement your own HTTP protocol server for very simple applications,
which we’ll do here. For any serious development, you want to use the Java Enterprise
Edition; see the note at the beginning of this chapter.

This example just constructs a ServerSocket and listens on it. When connections
come in, they are replied to using the HTTP protocol. So it is somewhat more
involved than the simple Echo server presented in Recipe 13.3. However, it’s not a
complete web server; the filename in the request is ignored, and a standard message
is always returned. This is thus a very simple web server; it follows only the bare min‐
imum of the HTTP protocol needed to send its response back. For a real web server
written in Java, get Tomcat from the Apache Tomcat website or any of the Jakarta/
JavaEE Application Servers. The code shown in Example 13-9, however, is enough to
understand how to build a simple server that responds to requests using a protocol.

Example 13-9. main/src/main/java/network/WebServer0.java

public class WebServer0 {
 public static final int HTTP = 80;
 public static final String CRLF = "\r\n";
 ServerSocket s;
 /** A link to the source of this program, used in error message */
 static final String VIEW_SOURCE_URL =
 "https://github.com/IanDarwin/javasrc/tree/master/main/src/main/
 java/network";

 /**
 * Main method, just creates a server and call its runServer().
 */
 public static void main(String[] args) throws Exception {

428 | Chapter 13: Server-Side Java

http://tomcat.apache.org

 System.out.println("DarwinSys JavaWeb Server 0.0 starting...");
 WebServer0 w = new WebServer0();
 int port = HTTP;
 if (args.length == 1) {
 port = Integer.parseInt(args[0]);
 }
 w.runServer(port); // never returns!!
 }

 /** Get the actual ServerSocket; deferred until after Constructor
 * so subclass can mess with ServerSocketFactory (e.g., to do SSL).
 * @param port The port number to listen on
 */
 protected ServerSocket getServerSocket(int port) throws Exception {
 return new ServerSocket(port);
 }

 /** RunServer accepts connections and passes each one to handler. */
 public void runServer(int port) throws Exception {
 s = getServerSocket(port);
 while (true) {
 try {
 Socket us = s.accept();
 Handler(us);
 } catch(IOException e) {
 System.err.println(e);
 return;
 }

 }
 }

 /** Handler() handles one conversation with a Web client.
 * This is the only part of the program that "knows" HTTP.
 */
 public void Handler(Socket s) {
 BufferedReader is; // inputStream, from Viewer
 PrintWriter os; // outputStream, to Viewer
 String request; // what Viewer sends us.
 try {
 String from = s.getInetAddress().toString();
 System.out.println("Accepted connection from " + from);
 is = new BufferedReader(new InputStreamReader(s.getInputStream()));
 request = is.readLine();
 System.out.println("Request: " + request);

 os = new PrintWriter(s.getOutputStream(), true);
 os.print("HTTP/1.0 200 Here is your data" + CRLF);
 os.print("Content-type: text/html" + CRLF);
 os.print("Server-name: DarwinSys NULL Java WebServer 0" + CRLF);
 String reply1 = "<html><head>" +
 "<title>Wrong System Reached</title></head>\n" +

13.6 Serving the HTTP Protocol | 429

 "<h1>Welcome, ";
 String reply2 = ", but...</h1>\n" +
 "<p>You have reached a desktop machine " +
 "that does not run a real Web service.\n" +
 "<p>Please pick another system!</p>\n" +
 "<p>Or view " +
 "the WebServer0 source on github.</p>\n" +
 "<hr/>Java-based WebServer0<hr/>\n" +
 "</html>\n";
 os.print("Content-length: " +
 (reply1.length() + from.length() + reply2.length()) + CRLF);
 os.print(CRLF);
 os.print(reply1 + from + reply2 + CRLF);
 os.flush();
 s.close();
 } catch (IOException e) {
 System.out.println("IOException " + e);
 }
 return;
 }
}

13.7 Securing a Web Server with SSL and JSSE
Problem
You want to protect your network traffic from prying eyes or malicious modification
while the data is in transit.

Solution
Use the Java Secure Socket Extension, JSSE, to encrypt your traffic.

Discussion
JSSE provides services at a number of levels, but the simplest way to use it is simply to
get your ServerSocket from an SSLServerSocketFactory instead of using the Serv
erSocket constructor directly. SSL is the Secure Sockets Layer; a revised version is
known as TLS. It is specifically for use on the web. To secure other protocols, you’d
have to use a different form of the SocketFactory.

The SSLServerSocketFactory returns a ServerSocket that is set up to do SSL
encryption. Example 13-10 uses this technique to override the getServerSocket()
method in Recipe 13.6. If you’re thinking this is too easy, you’re wrong!

430 | Chapter 13: Server-Side Java

Example 13-10. main/src/main/java/network/JSSEWebServer0

/**
 * JSSEWebServer - subclass trivial WebServer0 to make it use SSL.
 * N.B. You MUST have set up a server certificate (see the
 * accompanying book text), or you will get the dreaded
 * javax.net.ssl.SSLHandshakeException: no cipher suites in common
 * (because without it JSSE can't use any of its built-in ciphers!).
 */
public class JSSEWebServer0 extends WebServer0 {

 public static final int HTTPS = 8443;

 public static void main(String[] args) throws Exception {
 if (System.getProperty("javax.net.ssl.keyStore") == null) {
 System.err.println(
 "You must pass in a keystore via -D; see the documentation!");
 System.exit(1);
 }
 System.out.println("DarwinSys JSSE Server 0.0 starting...");
 JSSEWebServer0 w = new JSSEWebServer0();
 w.runServer(HTTPS); // never returns!!
 }

 /** Get an HTTPS ServerSocket using JSSE.
 * @see WebServer0#getServerSocket(int)
 * @throws ClassNotFoundException the SecurityProvider can't be instantiated.
 */
 protected ServerSocket getServerSocket(int port) throws Exception {

 SSLServerSocketFactory ssf =
 (SSLServerSocketFactory)SSLServerSocketFactory.getDefault();

 return ssf.createServerSocket(port);
 }

}

That is, indeed, all the Java code one needs to write. You do have to set up an SSL
Certificate. For demonstration purposes, this can be a self-signed certificate; the steps
in https://darwinsys.com/java/selfsigncert.html (steps 1–4) will suffice. You have to tell
the JSSE layer where to find your keystore:

java -Djavax.net.ssl.keyStore=/home/ian/.keystore -Djavax.net.ssl.
keyStorePassword=secrit JSSEWebServer0

The typical client browser raises its eyebrows at a self-signed certificate (see
Figure 13-1), but, if the user okays it, will accept the certificate.

Figure 13-2 shows the output of the simple WebServer0 being displayed over the
HTTPS protocol (notice the padlock in the lower-right corner).

13.7 Securing a Web Server with SSL and JSSE | 431

https://darwinsys.com/java/selfsigncert.html

Figure 13-1. Browser caution

432 | Chapter 13: Server-Side Java

Figure 13-2. With encryption

See Also
JSSE can do much more than encrypt web server traffic; this is, however, sometimes
seen as its most exciting application. For more information on JSSE, see the Sun web‐
site or Java Security by Scott Oaks (O’Reilly).

13.8 Creating a REST Service with JAX-RS
Problem
You want to implement a RESTful server by using the provided Java EE/Jakarta EE
APIs.

Solution
Use JAX-RS annotations on a class that provides a service; install it in an enterprise
application server.

Discussion
This operation consists of both coding and configuration.

The coding steps consist of creating a class that extends the JAX-RS Application
class and adding annotations to a class that provides a service.

Here is a minimal Application class:

13.8 Creating a REST Service with JAX-RS | 433

http://java.sun.com/products/jsse
http://java.sun.com/products/jsse
http://shop.oreilly.com/product/9780596001575.do

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("")
public class RestApplication extends Application {
 // Empty
}

Example 13-11 is a “Hello, World"–type service class with the annotations needed to
make it a service class and to have three sample methods.

Example 13-11. restdemo/src/main/java/rest/RestService.java

@Path("")
@ApplicationScoped
public class RestService {

 public RestService() {
 System.out.println("RestService.init()");
 }

 @GET @Path("/timestamp")
 @Produces(MediaType.TEXT_PLAIN)
 public String getDate() {
 return LocalDateTime.now().toString();
 }

 /** A Hello message method
 */
 @GET @Path("/greeting/{userName}")
 @Produces("text/html")
 public String doGreeting(@PathParam("userName")String userName) {
 System.out.println("RestService.greeting()");
 if (userName == null || userName.trim().length() <= 3) {
 return "Missing or too-short username";
 }
 return String.format(
 "<h1>Welcome %s</h1><p>%s, We are glad to see you back!",
 userName, userName);
 }

 /** Used to download all items */
 @GET @Path("/names")
 @Produces(MediaType.APPLICATION_JSON)
 public List<String> findTasksForUser() {
 return List.of("Robin", "Jedunkat", "Lyn", "Glen");
 }
}

Now the class must be deployed. If we have created a proper Maven project structure
(see Recipe 1.7) and have provided an application-server-specific Maven plug-in, and

434 | Chapter 13: Server-Side Java

our development server is running, we can use some variation on mvn deploy. In the
present case I have set this up, in the rest subdirectory, for deployment to WildFly, a
Java Enterprise server from the JBoss open source community (though somewhat
dated), funded by RedHat Inc. I need only say mvn wildfly:deploy to have the appli‐
cation compiled, packaged, and deployed to my server.

For deploying REST services as a microservice based on Eclipse MicroProfile, you
may wish to investigate the Quarkus Framework.

Once the service is deployed, you can explore it interactively with a browser or, for
simple GET requests, a Telnet client:

$ telnet localhost 8080 # output cleaned up
Escape character is '^]'.
GET /rest/timestamp HTTP/1.0
Connection: keep-alive

HTTP/1.1 200 OK
Content-Type: text/plain;charset=UTF-8

2019-10-16T19:54:31.42

GET /rest/greeting/Ian%20Darwin HTTP/1.0

HTTP/1.1 200 OK
Content-Type: text/html;charset=UTF-8

<h1>Welcome Ian Darwin</h1><p>Ian Darwin, We are glad to see you back!

get /rest/names HTTP/1.0
Accept: Application/JSON

HTTP/1.1 200 OK
Content-Type: application/json

["Robin","Jedunkat","Lyn","Glen"]
^] (CTRL/C)
$

An issue with REST is that there is not an official standard for documenting the API
or protocol offered by a server (there are several competing specifications). So people
writing clients must either rely on plain documentation offered by the server’s devel‐
opers, or use trial and error to discover the protocol. Our example here is simple
enough that we don’t have this problem, but imagine a class with 20 or 30 methods in
it.

The Spring Framework offers an API that is very similar to the JAX-RS API used
here; if you are already using Spring, it may be simpler to use their annotations.

13.8 Creating a REST Service with JAX-RS | 435

https://quarkus.io

13.9 Network Logging
Problem
Your class is running inside a server container, and its debugging output is hard to
obtain.

Solution
Use a network-based logger like the Java Logging API (JUL), the Apache Logging
Services Project’s Log4j, or the simple one shown here.

Discussion
Getting the debug output from a desktop client is fairly easy on most operating sys‐
tems. But if the program you want to debug is running in a container like a servlet
engine or an EJB server, it can be difficult to obtain debugging output, particularly if
the container is running on a remote computer. It would be convenient if you could
have your program send messages back to a program on your desktop machine for
immediate display. Needless to say, it’s not that hard to do this with Java’s socket
mechanism.

Many logging APIs can handle this:

• Java has had for years a standard logging API JUL (discussed in Recipe 13.12)
that talks to various logging mechanisms, including Unix syslog.

• The Apache Logging Services Project produces Log4j, which is used in many
open source projects that require logging (see Recipe 13.11).

• The Apache Jakart Commons Logging (JCL). Not discussed here; similar to the
others.

• SLF4J (Simple Logging Facade For Java, see Recipe 13.10) is the newest and, as
the name implies, a facade that can use the others.

• And, before these became widely used, I wrote a small, simple API to handle this
type of logging function. My netlog is not discussed here because it is preferable
to use one of the standard logging mechanisms; its code is in the logging subdir‐
ectory of the javasrc repo if you want to exhume it.

The JDK logging API, Log4j, and SFL4J are more fully fleshed out and can write to
such destinations as a file; an OutputStream or Writer; or a remote Log4j, Unix
syslog, or Windows Event Log server.

The program being debugged is the client from the logging API’s point of view—even
though it may be running in a server-side container such as a web server or

436 | Chapter 13: Server-Side Java

http://commons.apache.org/proper/commons-logging

application server—because the network client is the program that initiates the con‐
nection. The program that runs on your desktop machine is the “server” program for
sockets because it waits for a connection to come along.

If you want to run any network-based logger reachable from any public network, you
need to be more aware of security issues. One common form of attack is a simple
denial-of-service (DoS), during which the attacker makes a lot of connections to your
server in order to slow it down. If you are writing the log to disk, for example, the
attacker could fill up your disk by sending lots of garbage. In common use, your log
listener would be behind a firewall and not reachable from outside; but if this is not
the case, beware of the DoS attack.

13.10 Setting Up SLF4J
Problem
You want to use a logging API that lets you use any of the other logging APIs, for
example, so that your code can be used in other projects without requiring them to
switch logging APIs.

Solution
Use SLF4J: get a Logger from the LoggerFactory, and use its various methods for
logging.

Discussion
Using SLF4J requires only one JAR file to compile, slf4j-api-1.x.y.jar (where x and y
will change over time). To actually get logging output, you need to add one of several
implementation JARs to your runtime CLASSPATH, the simplest of which is slf4j-
simple-1.x.y.jar (where x and y should match between the two files).

Once you’ve added those JAR files to your build script or on your CLASSPATH, you can
get a Logger by calling LoggerFactory.getLogger(), passing either the string name
of a class or package or just the current Class reference. Then call the logger’s logging
methods. A simple example is in Example 13-12.

Example 13-12. main/src/main/java/logging/Slf4jDemo.java

public class Slf4jDemo {

 final static Logger theLogger =
 LoggerFactory.getLogger(Slf4jDemo.class);

 public static void main(String[] args) {

13.10 Setting Up SLF4J | 437

 Object o = new Object();
 theLogger.info("I created this object: " + o);

 }
}

There are various methods used to log information at different levels of severity,
which are shown in Table 13-1.

Table 13-1. SLF4j logging methods
Name Meaning
trace Verbose debugging (disabled by default)

debug Verbose debugging

info Low-level informational message

warn Possible error

error Serious error

One of the advantages of SLF4j over most of the other logging APIs is the avoidance
of the dead string anti-pattern. In the use of many other logger APIs you may find
code like the following:

logger.log("The value is " + object + "; this is not good");

This can lead to a performance problem, in that the object’s toString() is implicitly
called, and two string concatenations are performed, before we even know if the log‐
ger is going to use them! If this is in code that is called repeatedly, a lot of overhead
can be wasted.

This led the other logging packages to offer code guards, based on logger methods
that can find out very quickly if a logger is enabled, leading to code like the following:

if (logger.isEnabled()) {
 logger.log("The value is " + object + "; this is not good");
}

This solves the performance problem but clutters the code! SLF4J’s solution is to use a
mechanism similar to (but not quite compatible with) Java’s MessageFormat mecha‐
nism, as shown in Example 13-13.

Example 13-13. main/src/main/java/logging/Slf4jDemo2.java

public class Slf4jDemo2 {

 final static Logger theLogger = LoggerFactory.getLogger(Slf4jDemo2.class);

 public static void main(String[] args) {

438 | Chapter 13: Server-Side Java

 try {
 Person p = new Person();
 // populate person's fields here...
 theLogger.info("I created an object {}", p);

 if (p != null) { // bogus, just to show logging
 throw new IllegalArgumentException("Just testing");
 }
 } catch (Exception ex) {
 theLogger.error("Caught Exception: " + ex, ex);
 }
 }
}

Although this doesn’t demonstrate network logging, it is easy to accomplish that in
conjunction with a logging implementation like Log4j or JUL (Java Util Logging, a
standard part of the JDK), which allow you to provide configurable logging. Log4j is
described in the next recipe.

See Also
The SLF4J website contains a manual that discusses the various CLASSPATH options.
There are also some Maven artifacts for the various options.

13.11 Network Logging with Log4j
Problem
You wish to write log file messages using Log4j.

Solution
Get a Logger and use its log() method or the convenience methods. Control logging
by changing a properties file. Use the org.apache.logging.log4j.net package to
make it network based.

13.11 Network Logging with Log4j | 439

http://www.slf4j.org/manual.html
http://mvnrepository.com/artifact/org.slf4j

Discussion

This recipe describes Version 2 of the Log4j API. Between Version
1 and Version 2, there are changes to the package names, filenames,
and the method used to obtain a logger. If you see code using, for
example, Logger.getLogger("class name"), that code is written
to the older API, which is no longer maintained (the Log4j website
refers to Log4j 1.2, and versions up to 2.12, as “legacy”; we are
using 2.13 in this recipe). A good degree of compatibility is offered
for code written to the 1.x API; see https://logging.apache.org/
log4j/2.x/manual/compatibility.html.

Logging using Log4j is simple, convenient, and flexible. You need to get a Logger
object from the static method LogManager.getLogger(), The Logger has public void
methods (debug(), info(), warn(), error(), and fatal()), each of which takes one
Object to be logged (and an optional Throwable). As with System.out.println(), if
you pass in anything that is not a String, its toString() method is called. A generic
logging method is also included:

public void log(Level level, Object message);

The Level class is defined in the Log4j 2 API. The standard levels are, in order, DEBUG
< INFO < WARN < ERROR < FATAL. That is, debug messages are considered the least
important, and fatal the most important. Each Logger has a level associated with it;
messages whose level is less than the Logger’s level are silently discarded.

A simple application can log messages using these few statements:

public class Log4JDemo {

 private static Logger myLogger = LogManager.getLogger();

 public static void main(String[] args) {

 Object o = new Object();
 myLogger.info("I created an object: " + o);

 }
}

If you compile and run this program with no log4j2.properties file, it does not pro‐
duce any logging output (see the log4j2demos script in the source folder). We need to
create a configuration file whose default name is log4j2.properties. You can also pro‐
vide the logfile name via System Properties: -Dlog4j.configurationFile=URL.

440 | Chapter 13: Server-Side Java

https://logging.apache.org/log4j/2.x/manual/compatibility.html
https://logging.apache.org/log4j/2.x/manual/compatibility.html

Log4j configuration is very flexible, and therefore very complex.
Even their own documentation admits that “Trying to configure
Log4j without understanding [the logging architecture] will lead to
frustration.” See this Apache website for full details on the logging
configuration file location and format.

Every Logger has a Level to specify what level of messages to write. It will also have
an Appender, which is the code that writes the messages out. A ConsoleAppender
writes to System.out, of course; other loggers write to files, operating system–level
loggers, and so on. A simple configuration file looks something like this:

Log4J2 properties file for the logger demo programs.
tag::generic[] # Ensure file gets copied for Java Cookbook

WARNING - log4j2.properties must be on your CLASSPATH,
not necessarily in your source directory.

The configuration file for Version 2 is different from V1!

rootLogger.level = info
rootLogger.appenderRef.stdout.ref = STDOUT

appender.console.type = Console
appender.console.name = STDOUT
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %m%n
appender.console.filter.threshold.type = ThresholdFilter
appender.console.filter.threshold.level = debug

This file gives the root logger a level of DEBUG, which causes it to write all messages.
The config file also sets up an appender of APPENDER1, which is configured on the
next few lines. Note that I didn’t have to refer to the com.darwinsys Logger. Because
every Logger inherits from the root logger, a simple application needs to configure
only the root logger. The properties file can also be an XML document, or you can
write your own configuration parser (almost nobody does this).

If the logging configuration file is not found, the default root logger
defaults the root logger to Level.ERROR, so you will not see any
output below the ERROR level.

With the configuration file in place, the demonstration works better. Running this
program (with the appropriate CLASSPATH as done in the scripts) produces this
output:

13.11 Network Logging with Log4j | 441

https://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/configuration.html

$ java Log4j2Demo
I created an object: java.lang.Object@477b4cdf
$

A common use of logging is to log a caught Exception, as shown in Example 13-14.

Example 13-14. main/src/main/java/Log4JDemo2.java (Log4j—catching and logging)

public class Log4JDemo2 {

 private static Logger myLogger = LogManager.getLogger();

 public static void main(String[] args) {

 try {
 Object o = new Object();
 myLogger.info("I created an object: " + o);
 if (o != null) { // bogus, just to show logging
 throw new IllegalArgumentException("Just testing");
 }
 } catch (Exception ex) {
 myLogger.error("Caught Exception: " + ex, ex);
 }
 }
}

When run, Log4JDemo2 produces the expected output:

$ java Log4JDemo2
I created an object: java.lang.Object@477b4cdf
Caught Exception: java.lang.IllegalArgumentException: Just testing
java.lang.IllegalArgumentException: Just testing
 at logging.Log4JDemo2.main(Log4JDemo2.java:17) [classes/:?]
$

Much of the flexibility of Log4j 2 stems from its use of external configuration files;
you can enable or disable logging without recompiling the application. A properties
file that eliminates most logging might have this entry:

rootLogger.level = fatal

Only fatal error messages print; all levels less than that are ignored.

To log from a client to a server on a remote machine, the SocketAppender can be
used. There is also an SmtpAppender to send urgent notices via email. See https://
logging.apache.org/log4j/2.x/manual/appenders.html for details on all the supported
Appenders. Here is log4j2-network.properties, the socket-based networking version of
the configuration file:

Log4J2 properties file for the NETWORKED logger demo programs.
tag::generic[] # Ensure file gets copied for Java Cookbook

442 | Chapter 13: Server-Side Java

https://logging.apache.org/log4j/2.x/manual/appenders.html
https://logging.apache.org/log4j/2.x/manual/appenders.html

WARNING - log4j2.properties must be on your CLASSPATH,
not necessarily in your source directory.

The configuration file for Version 2 is different from V1!

rootLogger.level = info
rootLogger.appenderRef.stdout.ref = STDOUT

appender.console.type = Socket
appender.console.name = STDOUT
appender.console.host = localhost
appender.console.port = 6666
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %m%n
appender.console.filter.threshold.type = ThresholdFilter
appender.console.filter.threshold.level = debug

This file gets passed to the demo programs via a Java System Property in the netde
mos script:

build=../../../../target/classes
log4j2_jar=\
${HOME}/.m2/repository/org/apache/logging/log4j/log4j-api/2.13.0/log4j-
api-2.13.0.jar:\
${HOME}/.m2/repository/org/apache/logging/log4j/log4j-core/2.13.0/log4j-
core-2.13.0.jar

echo "==> Log4JDemo"
java -Dlog4j.configurationFile=log4j2-network.properties \
 -classpath ".:${build}:${log4j2_jar}" logging.Log4JDemo

echo "==> Log4JDemo2"
java -Dlog4j.configurationFile=log4j2-network.properties \
 -classpath ".:${build}:${log4j2_jar}" logging.Log4JDemo2

When run with the log4j2-network.properties file, you have to arrange for a listener on
the other end. On Unix systems the nc (or netcat) program will work fine:

$ nc -kl 6666
I created an object: java.lang.Object@37ceb1df
I created an object: java.lang.Object@37ceb1df
Caught Exception: java.lang.IllegalArgumentException: Just testing
java.lang.IllegalArgumentException: Just testing
 at logging.Log4JDemo2.main(Log4JDemo2.java:17) [classes/:?]
^C
$

Netcat option -l says to listen on the numbered port; -k tells it to keep listening, that
is, to reopen the connection when the client closes it, as happens when each demo
program exits.

13.11 Network Logging with Log4j | 443

There is a performance issue with some logging calls. Consider some expensive oper‐
ation, like a toString() or two along with several string concatenations passed to a
Log.info() call in an often-used piece of code. If this is placed into production with
a higher logging level, all the work will be done but the resultant string will never be
used. In older APIs we used to use “code guards,” methods like “isLoggerEna‐
bled(Level),” to determine whether to bother creating the string. Nowadays, the pre‐
ferred method is to create the string inside a lambda expression (see Chapter 9). All
the log methods have an overload that accepts a Supplier argument
(Example 13-15).

Example 13-15. main/src/main/java/logging/Log4J2Lambda.java

public class Log4JLambda {

 private static Logger myLogger = LogManager.getLogger();

 public static void main(String[] args) {

 Person customer = getPerson();
 myLogger.info(() -> String.format(
 "Value %d from Customer %s", customer.value, customer));

 }

This way the string operations will only be performed if needed: if the logger is oper‐
ating at the INFO level it will call the Supplier and if not, it won’t do the expensive
operation.

When run as part of the log4j2demos script, this prints:

Value 42 from Customer Customer[Robin]

For more information on Log4j, visit its main website. Log4j 2 is free software, dis‐
tributed under the Apache Software Foundation license.

13.12 Network Logging with java.util.logging
Problem
You wish to write logging messages using the Java logging mechanism.

Solution
Get a Logger, and use it to log your messages and/or exceptions.

444 | Chapter 13: Server-Side Java

http://logging.apache.org/log4j

Discussion
The Java Logging API (package java.util.logging) is similar to, and was obviously
inspired by, the Log4j package. You acquire a Logger object by calling the static
Logger.getLogger() with a descriptive String. You then use instance methods to
write to the log; these methods include the following:

public void log(java.util.logging.LogRecord);
public void log(java.util.logging.Level,String);
// and a variety of overloaded log() methods
public void logp(java.util.logging.Level,String,String,String);
public void logrb(java.util.logging.Level,String,String,String,String);

// Convenience routines for tracing program flow
public void entering(String,String);
public void entering(String,String,Object);
public void entering(String,String,Object[]);
public void exiting(String,String);
public void exiting(String,String,Object);
public void throwing(String,String,Throwable);

// Convenience routines for log() with a given level
public void severe(String);
public void warning(String);
public void info(String);
public void config(String);
public void fine(String);
public void finer(String);
public void finest(String);

As with Log4j, every Logger object has a given logging level, and messages below that
level are silently discarded:

public void setLevel(java.util.logging.Level);
public java.util.logging.Level getLevel();
public boolean isLoggable(java.util.logging.Level);

As with Log4j, objects handle the writing of the log. Each logger has a Handler:

public synchronized void addHandler(java.util.logging.Handler);
public synchronized void removeHandler(java.util.logging.Handler);
public synchronized java.util.logging.Handler[] getHandlers();

Each Handler has a Formatter, which formats a LogRecord for display. By providing
your own Formatter, you have more control over how the information being passed
into the log gets formatted.

Unlike Log4j, the Java SE logging mechanism has a default configuration, so
Example 13-16 is a minimal logging example program.

13.12 Network Logging with java.util.logging | 445

Example 13-16. main/src/main/java/logging/JulLogDemo.java

public class JulLogDemo {
 public static void main(String[] args) {

 Logger myLogger = Logger.getLogger("com.darwinsys");

 Object o = new Object();
 myLogger.info("I created an object: " + o);
 }
}

Running it prints the following:

$ juldemos
Jan 31, 2020 1:03:27 PM logging.JulLogDemo main
INFO: I created an object: java.lang.Object@5ca881b5
$

As with Log4j, one common use is in logging caught exceptions; the code for this is in
Example 13-17.

Example 13-17. main/src/main/java/logging/JulLogDemo2.java (catching and logging
an exception)

public class JulLogDemo2 {
 public static void main(String[] args) {

 System.setProperty("java.util.logging.config.file",
 "logging/logging.properties");

 Logger logger = Logger.getLogger("com.darwinsys");

 try {
 Object o = new Object();
 logger.info("I created an object: " + o);
 if (o != null) { // bogus, just to show logging
 throw new IllegalArgumentException("Just testing");
 }
 } catch (Exception t) {
 // All-in-one call:
 logger.log(Level.SEVERE, "Caught Exception", t);
 // Alternate: Long form, more control.
 // LogRecord msg = new LogRecord(Level.SEVERE, "Caught exception");
 // msg.setThrown(t);
 // logger.log(msg);
 }
 }
}

As with Log4j, java.util.logging accepts a lambda expression (and has since Java
8); see Example 13-18.

446 | Chapter 13: Server-Side Java

Example 13-18. main/src/main/java/logging/JulLambdaDemo.java

/** Demonstrate how Java 8 Lambdas avoid extraneous object creation
 * @author Ian Darwin
 */
public class JulLambdaDemo {
 public static void main(String[] args) {

 Logger myLogger = Logger.getLogger("com.darwinsys.jullambda");

 Object o = new Helper();

 // If you change the log call from finest to info,
 // you see both the systrace from the toString,
 // and the logging output. As it is here,
 // you don't see either, so the toString() is not called!
 myLogger.finest(() -> "I created this object: " + o);
 }

 static class Helper {
 public String toString() {
 System.out.println("JulLambdaDemo.Helper.toString()");
 return "failure!";
 }
 }
}

See Also
A good general reference on this chapter’s topic is Java Network Programming by
Elliotte Harold.

The server side of any network mechanism is extremely sensitive to security issues. It
is easy for one misconfigured or poorly written server program to compromise the
security of an entire network! Of the many books on network security, two stand out:
Firewalls and Internet Security by William R. Cheswick et al. (Addison-Wesley) and a
series of books with Hacking Exposed in the title, the first in the series by Stuart
McClure et al. (McGraw-Hill).

This completes my discussion of server-side Java using sockets. A chat server could
be implemented using several technologies, such as RMI (Remote Methods Invoca‐
tion), an HTTP web service, JMS (Java Message Service), and a Java Enterprise API
that handles store-and-forward message processing. This is beyond the scope of this
book, but there’s an example of an RMI chat server in the chat folder of the source
distribution, and there’s an example of a JMS chat server in Java Message Service by
Mark Richards et al. (O’Reilly).

13.12 Network Logging with java.util.logging | 447

http://oreil.ly/java-network-prgamming
http://shop.oreilly.com/product/9780596522056.do

CHAPTER 14

Processing JSON Data

14.0 Introduction
JSON, or JavaScript Object Notation, is all of the following:

• A simple, lightweight data interchange format.
• A simpler, lighter alternative to XML.
• Easy to generate with println() or with one of several APIs.
• Recognized directly by the JavaScript parser in all web browsers.
• Supported with add-on frameworks for all common languages (Java, C/C++,

Perl, Ruby, Python, Lua, Erlang, Haskell, to name a few); a ridiculously long list
of supported languages (including two dozen parsers for Java alone) is right on
the home page.

A simple JSON message might look like this:

json/src/main/resources/json/softwareinfo.json/
{
 "name": "robinparse",
 "version": "1.2.3",
 "description": "Another Parser for JSON",
 "className": "RobinParse",
 "contributors": [
 "Robin Smythe",
 "Jon Jenz",
 "Jan Ardann"
]
}

As you can see, the syntax is simple, nestable, and amenable to human inspection.

449

http://json.org

The JSON home page provides a concise summary of JSON syntax. There are two
kinds of structure: JSON objects (maps) and JSON arrays (lists). JSON objects are sets
of name and value pairs, which can be represented either as a java.util.Map or as
the properties of a Java object. For example, the fields of a LocalDate (see Recipe 6.1)
object for April 1, 2019, might be represented like this:

{
 "year": 2019,
 "month": 4,
 "day" : 1
}

JSON arrays are ordered lists, represented in Java either as arrays or as
java.util.Lists. A list of two dates might look like this:

{
 [{
 "year": 2019,
 "month": 4,
 "day" : 1
 },{
 "year": 2019,
 "month": 5,
 "day" : 15
 }]
}

JSON is free-format, so the preceding could also be written, with some loss of human
readability but no loss of information or functionality, as this:

{[{"year":2019,"month":4,"day":1},{"year":2019,"month":5,"day":15}]}

Hundreds of parsers have, I’m sure, been written for JSON. A few that come to mind
in the Java world include the following:

stringtree.org

Very small and lightweight

json.org parser

Widely used because it’s free and has a good domain name

jackson.org parser

Widely used because it’s very powerful and used with Spring Framework and
with JBoss RESTEasy and Wildfly

javax.json

Oracle’s official but currently EE-only standard

This chapter shows several ways of processing JSON data using some of the various
APIs just listed. The official javax.json API is only included in the Java EE, not the
Java SE, so it is unlikely to see very much use on the client side. This API uses some

450 | Chapter 14: Processing JSON Data

http://json.org

names in common with the org.json API, but not enough to be considered
compatible.

Because this is a book for client-side Java developers, nothing will be made of the
ability to process JSON directly in server-generated, browser-based JavaScript,
though this can be very useful in building enterprise applications.

14.1 Generating JSON Directly
Problem
You want to generate JSON without bothering to use an API.

Solution
Get the data you want, and use println() or String.format() as appropriate.

Discussion
If you are careful, you can generate JSON data yourself. For the utterly trivial cases,
you can just use PrintWriter.println() or String.format(). For significant vol‐
umes, however, it’s usually better to use one of the APIs.

This code prints the year, month, and date from a LocalTime object (see Recipe 6.1).
Some of the JSON formatting is delegated to the toJson() method:

/**
 * Convert an object to JSON, not using any JSON API.
 * BAD IDEA - should use an API!
 */
public class LocalDateToJsonManually {

 private static final String OPEN = "{";
 private static final String CLOSE = "}";

 public static void main(String[] args) {
 LocalDate dNow = LocalDate.now();
 System.out.println(toJson(dNow));
 }

 public static String toJson(LocalDate dNow) {
 StringBuilder sb = new StringBuilder();
 sb.append(OPEN).append("\n");
 sb.append(jsonize("year", dNow.getYear()));
 sb.append(jsonize("month", dNow.getMonth()));
 sb.append(jsonize("day", dNow.getDayOfMonth()));
 sb.append(CLOSE).append("\n");
 return sb.toString();
 }

14.1 Generating JSON Directly | 451

 public static String jsonize(String key, Object value) {
 return String.format("\"%s\": \"%s\",\n", key, value);
 }
}

Of course, this is an extremely trivial example. For anything more involved, or for the
common case of having to parse JSON objects, using one of the frameworks will be
easier on your nerves.

14.2 Parsing and Writing JSON with Jackson
Problem
You want to read and/or write JSON using a full-function JSON API.

Solution
Use Jackson, the full-blown JSON API.

Discussion
Jackson provides many ways of working. For simple cases, you can have POJO (Plain
Old Java Objects) converted to/from JSON more or less automatically, as is illustrated
in Example 14-1.

Example 14-1. json/src/main/java/json/ReadWriteJackson.java (reading and writing
POJOs with Jackson)

public class ReadWriteJackson {

 public static void main(String[] args) throws IOException {
 ObjectMapper mapper = new ObjectMapper();

 String jsonInput =
 "{\"id\":0,\"firstName\":\"Robin\",\"lastName\":\"Wilson\"}";
 Person q = mapper.readValue(jsonInput, Person.class);
 System.out.println("Read and parsed Person from JSON: " + q);

 Person p = new Person("Roger", "Rabbit");
 System.out.print("Person object " + p +" as JSON = ");
 mapper.writeValue(System.out, p);
 }
}

Create a Jackson ObjectMapper that can map POJOs to/from JSON.

Map the string jsonInput into a Person object with one call to readValue().

452 | Chapter 14: Processing JSON Data

Convert the Person object p into JSON with one call to writeValue().

Running this example produces the following output:

Read and parsed Person from JSON: Robin Wilson
Person object Roger Rabbit as JSON = {"id":0,"firstName":"Roger",
 "lastName":"Rabbit","name":"Roger Rabbit"}

As another example, this code reads the example file that opened this chapter (which
happens to have been a description of a JSON parser). Notice the declaration
List<String> for the array of contributors:

public class SoftwareParseJackson {
 final static String FILE_NAME = "/json/softwareinfo.json";

 public static void main(String[] args) throws Exception {
 ObjectMapper mapper = new ObjectMapper();

 InputStream jsonInput =
 SoftwareParseJackson.class.getResourceAsStream(FILE_NAME);
 if (jsonInput == null) {
 throw new NullPointerException("can't find " + FILE_NAME);
 }
 SoftwareInfo sware = mapper.readValue(jsonInput, SoftwareInfo.class);
 System.out.println(sware);
 }

}

The ObjectMapper does the actual parsing of the JSON input.

Running this example produces the following output:

Software: robinparse (1.2.3) by [Robin Smythe, Jon Jenz, Jan Ardann]

Of course there are cases where the mapping gets more involved; for this purpose,
Jackson provides a set of annotations to control the mapping. But the default map‐
ping is pretty good!

There is also a streaming API for Jackson; refer to the website for details.

14.3 Parsing and Writing JSON with org.json
Problem
You want to read/write JSON using a midsized, widely used JSON API.

14.3 Parsing and Writing JSON with org.json | 453

Solution
Consider using the org.json API , also known as JSON-Java; it’s widely used and is
also used in Android.

Discussion
The org.json package is not as advanced as Jackson, nor as high level; it makes you
think and work in terms of the underlying JSON abstractions instead of at the Java
code level. For example, here is the org.json version of reading the software descrip‐
tion from the opening of this chapter:

public class SoftwareParseOrgJson {
 final static String FILE_NAME = "/json/softwareinfo.json";

 public static void main(String[] args) throws Exception {

 InputStream jsonInput =
 SoftwareParseOrgJson.class.getResourceAsStream(FILE_NAME);
 if (jsonInput == null) {
 throw new NullPointerException("can't find" + FILE_NAME);
 }
 JSONObject obj = new JSONObject(new JSONTokener(jsonInput));
 System.out.println("Software Name: " + obj.getString("name"));
 System.out.println("Version: " + obj.getString("version"));
 System.out.println("Description: " + obj.getString("description"));
 System.out.println("Class: " + obj.getString("className"));
 JSONArray contribs = obj.getJSONArray("contributors");
 for (int i = 0; i < contribs.length(); i++) {
 System.out.println("Contributor Name: " + contribs.get(i));
 }
 }

}

Create the JSONObject from the input.

Retrieve individual String fields.

Retrieve the JSONArray of contributor names.

org.json.JSONArray doesn’t implement Iterable, so you can’t use a forEach
loop.

Running it produces the expected output:

Software Name: robinparse
Version: 1.2.3
Description: Another Parser for JSON
Class: RobinParse

454 | Chapter 14: Processing JSON Data

Contributor Name: Robin Smythe
Contributor Name: Jon Jenz
Contributor Name: Jan Ardann

JSONObject and JSONArray use their toString() method to produce (correctly for‐
matted) JSON strings, like this:

public class WriteOrgJson {
 public static void main(String[] args) {
 JSONObject jsonObject = new JSONObject();
 jsonObject.put("Name", "robinParse").
 put("Version", "1.2.3").
 put("Class", "RobinParse");
 String printable = jsonObject.toString();
 System.out.println(printable);
 }
}

Nice that it offers a fluent API to allow chaining of method calls.

toString() converts to textual JSON representation.

Running this produces the following:

{"Name":"robinParse","Class":"RobinParse","Version":"1.2.3"}

See Also
The org.json library code including its javadoc documentation is online at https://
github.com/stleary/JSON-java. (under the name JSON-java to differentiate it from the
other packages).

14.4 Parsing and Writing JSON with JSON-B
Problem
You want to read/write JSON using a midsized, standards-conforming JSON API.

Solution
Consider using JSON-B, the new Java standard (JSR-367).

Discussion
The JSON-B (JSON Binding) API is designed to make it simple to read/write Java
POJOs. This is neatly illustrated by the code in Example 14-2.

14.4 Parsing and Writing JSON with JSON-B | 455

https://github.com/stleary/JSON-java
https://github.com/stleary/JSON-java

Example 14-2. json/src/main/java/json/ReadWriteJsonB.java (reading/writing JSON
with JSON-B)

public class ReadWriteJsonB {

 public static void main(String[] args) throws IOException {

 Jsonb jsonb = JsonbBuilder.create();

 // Read
 String jsonInput =
 "{\"id\":0,\"firstName\":\"Robin\",\"lastName\":\"Williams\"}";
 Person rw = jsonb.fromJson(jsonInput, Person.class);
 System.out.println(rw);

 String result = jsonb.toJson(rw);
 System.out.println(result);
 }
}

Create a Jsonb object, your gateway to JSON-B services.

Obtain a JSON string, and convert it to a Java object using jsonb.fromJson().

Convert a Person object back to a JSON string using the inverse jsonb.toJ
son().

Note that the methods are sensibly named and that no annotations are needed on the
Java entity class to make this work. However, there is an API that allows us to cus‐
tomize it. For example, the fullName property is really just a convenience for concat‐
enating the first name and last name with a space between. As such, it’s completely
redundant and does not need to be transmitted over a JSON network stream. How‐
ever, running the program produces this output:

{"firstName":"Robin","fullName":"Robin Williams","id":0,"lastName":"Williams"}

We need only add the @JsonbTransient annotation to the getFullName() accessor in
the Person class to eliminate the redundancy; running the program now produces
this smaller output:

{"firstName":"Robin","id":0,"lastName":"Williams"}

See Also
As with most other JSON APIs, there is full support for customization, ranging from
the simple annotation shown here up to writing complete custom serializer/deserial‐
izer helpers. See the JSON-B spec page, the JSON-B home page, and this longer tuto‐
rial online.

456 | Chapter 14: Processing JSON Data

https://javaee.github.io/jsonb-spec
http://json-b.net
https://www.baeldung.com/java-json-binding-api
https://www.baeldung.com/java-json-binding-api

14.5 Finding JSON Elements with JSON Pointer
Problem
You have a JSON document and want to extract only selected values from it.

Solution
Use javax.json’s implementation of JSON Pointer, the standard API for extracting
selected elements from JSON.

Discussion
The Internet Standard RFC 6901 spells out in detail the syntax for JSON Pointer, a
language-independent syntax for matching elements in JSON documents. Obviously
inspired by the XML syntax XPath, JSON Pointer is a bit simpler than XPath because
of JSON’s inherent simpllicity. Basically a JSON Pointer is a string that identifies an
element (either simple or array) within a JSON document. The javax.json package
provides an object model API somewhat similar to the XML DOM API for Java, let‐
ting you create immutable objects to represent objects (via JsonObjectBuilder and
JsonArrayBuilder) or to read them from JSON string format via a Reader or Input
Stream.

JSON Pointers begin with a “/” (inherited from XPath), followed by the name of the
element or subelement we want to look for. Suppose we extend our Person example
from Example 14-2 to add an array of roles the comedian played, looking like this:

{"firstName":"Robin","lastName":"Williams",
 "age": 63,"id":0,
 "roles":["Mork", "Mrs. Doubtfire", "Patch Adams"]}

Then the following JSON Pointers should generate the given matches:

/firstName => Robin
/age => 63
/roles => ["Mork","Mrs. Doubtfire","Patch Adams"]
/roles/1 => "Mrs. Doubtfire"

The program in Example 14-3 demonstrates this.

Example 14-3. json/src/main/java/json/JsonPointerDemo.java

public class JsonPointerDemo {

 public static void main(String[] args) {
 String jsonPerson =
 "{\"firstName\":\"Robin\",\"lastName\":\"Williams\"," +
 "\"age\": 63," +

14.5 Finding JSON Elements with JSON Pointer | 457

https://tools.ietf.org/html/rfc6901

 "\"id\":0," +
 "\"roles\":[\"Mork\", \"Mrs. Doubtfire\", \"Patch Adams\"]}";

 System.out.println("Input: " + jsonPerson);

 JsonReader rdr =
 Json.createReader(new StringReader(jsonPerson));
 JsonStructure jsonStr = rdr.read();
 rdr.close();

 JsonPointer jsonPointer;
 JsonString jsonString;

 jsonPointer = Json.createPointer("/firstName");
 jsonString = (JsonString)jsonPointer.getValue(jsonStr);
 String firstName = jsonString.getString();
 System.out.println("/firstName => " + firstName);

 JsonNumber num =
 (JsonNumber) Json.createPointer("/age").getValue(jsonStr);
 System.out.println("/age => " + num + "; a " + num.getClass().getName());

 jsonPointer = Json.createPointer("/roles");
 JsonArray roles = (JsonArray) jsonPointer.getValue(jsonStr);
 System.out.println("/roles => " + roles);
 System.out.println("JsonArray roles.get(1) => " + roles.get(1));

 jsonPointer = Json.createPointer("/roles/1");
 jsonString = (JsonString)jsonPointer.getValue(jsonStr);
 System.out.println("/roles/1 => " + jsonString);
 }
}

Create the JsonStructure, the gateway into this API, from a JsonReader, using a
StringReader.

Create a JSON Pointer for the firstName element, and get the JsonString from
the element’s value. Since getValue() will throw an exception if the element is
not found, use jsonPointer.containsValue(jsonStr) to check first, if not sure
if the element will be found.

Same for age, but using more fluent syntax. If you print the class name for the
match in /age, it will report an implementation-specific implementation class,
such as org.glassfish.json.JsonNumberImpl$JsonIntNumber. Change the age
in the XML from 63 to 63.5 and it will print a class with BigDecimal in its name.
Either way, toString() on this object will return just the numeric value.

458 | Chapter 14: Processing JSON Data

In the JSON file, roles is an array. Thus, getting it using a JSON Pointer should
return a JsonArray object, so we cast it to a reference of that type. This behaves
somewhat like an immutable List implementation, so we call get(). JSON array
indices start at zero, as in Java.

Retrieve the same array element directly, using a pattern with “/1” to mean the
numbered element in the array.

It is possible (but fortunately not common) for a JSON element name to contain spe‐
cial characters such as a slash. Most characters are not special to JSON Pointer, but to
match a name containing a slash (/), the slash must be entered as ~1, and since that
makes the tilde (~) special, tilde characters must be entered as ~0. Thus if the Person
JSON file had an element like "ft/pt/~", you would look for it with Json.create
Pointer("/ft~1pt~1~0");.

See Also
The JSON Pointer API has additional methods that let you modify values and add/
remove elements. The offical home page for javax.json, which includes JSON
Pointer, is at jakarta.ee. The javadoc for javax.json is linked to from that page.

Summary
Many APIs exist for Java. Jackson is the biggest and most powerful; org.json,
javax.json, and JSON-B are in the middle and StringTree (which I didn’t give an
example of because it doesn’t have a Maven Artifact available) is the smallest. For a
list of these and other JSON APIs, consult https://www.json.org/json-en.html and
scroll past the syntax summary.

14.5 Finding JSON Elements with JSON Pointer | 459

https://jakarta.ee/specifications/jsonp/1.1
https://www.json.org/json-en.html

6 This is not strictly true. On Unix in C, at least, there is a distinction between normal include files and those in
the sys subdirectory, and many structures have names beginning with one or two letters and an underscore in
the password structure, like pw_name, pw_passwd, and pw_home. But this is nowhere near as consistent as Java’s
java.* naming conventions.

CHAPTER 15

Packages and Packaging

15.0 Introduction
One of the better aspects of the Java language is that it has defined a very clear pack‐
aging mechanism for categorizing and managing its large API. Contrast this with
most other languages, where symbols may be found in the C library itself or in any of
dozens of other libraries, with no clearly defined naming conventions.6 APIs consist
of one or more package, packages consist of classes, and classes consist of methods
and fields. Anybody can create a package, with one important restriction: you or I
cannot create a package whose name begins with the four letters java. Packages
named java. or javax. are reserved for use by Oracle’s Java developers, under the
management of the Java Community Process (JCP). When Java was new, there were
about a dozen packages in a structure that is very much still with us, though it has
quadrupled in size; some of these packages are shown in Table 15-1.

Table 15-1. Java packages basic structure
Name Function

java.awt Graphical user interface

java.io Reading and writing

java.lang Intrinsic classes (String, etc.)

java.lang.annotation Library support for annotation processing

java.math Math library

461

Name Function

java.net Networking (sockets)

java.nio “New” I/O (not new anymore): channel-based I/O

java.sql Java database connectivity

java.text Handling and formatting/parsing dates, numbers, messages

java.time Java 8: modern date/time API (JSR-311)

java.util Utilities (collections, date)

java.util.regex Regular expressions

javax.naming JNDI

javax.print Support for printing

javax.script Java 6: scripting engines support

javax.swing Modern graphical user interface

Many packages have been added over the years, but the initial structure has stood the
test of time fairly well. In this chapter, I’ll show you how to create and document your
own packages, and then I’ll discuss a number of issues related to deploying your
package in various ways on various platforms.

This chapter also covers the more traditional meaning of packaging, as in, creating a
package of your program for others to use. This covers the Java Platform Modules
System (JPMS) introduced in Java 9. We also cover jlink, a tool for creating a mini-
Java distribution containing your application and only the parts of the JDK that you
actually use. We do not yet cover the jpackage tool for packaging applications,
because it’s not yet in the JDK; it may arrive with Java 14 or 15.

15.1 Creating a Package
Problem
You want to be able to import classes and/or organize your classes, so you want to
create your own package.

Solution
Put a package statement at the front of each file, and recompile with -d or a build tool
or IDE.

Discussion
The package statement must be the very first noncomment statement in your Java
source file—preceding even import statements—and it must give the full name of the
package. Package names are expected to start with your domain name backward; for

462 | Chapter 15: Packages and Packaging

example, my internet domain is darwinsys.com, so most of my packages begin with
com.darwinsys and a project name. The utility classes used in this book and meant
for reuse are in one of the com.darwinsys packages listed in Recipe 1.6, and each
source file begins with a statement, such as this:

package com.darwinsys.util;

The demonstration classes in the JavaSrc repository do not follow this pattern; they
are in packages with names related to the chapter they are in or the java.* package
they relate to; for example, lang for basic Java stuff, structure for examples from the
data structuring chapter (Chapter 7), threads for the threading chapter (Chapter 16),
and so on. It is hoped that you will put them in a “real” package if you reuse them in
your application!

Once you have package statements in place, be aware that the Java runtime, and even
the compiler, will expect the compiled .class files to be found in their rightful place
(i.e., in the subdirectory corresponding to the full name somewhere in your CLASS
PATH settings). For example, the class file for com.darwinsys.util.FileIO must not
be in the file FileIO.class in my CLASSPATH but must be in com/darwinsys/util/
FileIO.class relative to one of the directories or archives in my CLASSPATH. Accord‐
ingly, if you are compiling with the command-line compiler, it is customary (almost
mandatory) to use the -d command-line argument when compiling. This argument
must be followed by the name of an existing directory (often . is used to signify the
current directory) to specify where to build the directory tree. For example, to com‐
pile all the .java files in the current directory, and create the directory path under it
(e.g., create ./com/darwinsys/util in the example), use this:

javac -d . *.java

This creates the path (e.g., com/darwinsys/util/) relative to the current directory and
puts the class files into that subdirectory. This makes life easy for subsequent compi‐
lations and also for creating archives, which is covered in Recipe 15.5.

Of course, if you use a build tool such as Maven (see Recipe 1.7), this will be done
correctly by default (Maven), so you won’t have to remember to keep doing it!

Note that in all modern Java environments, classes that do not belong to a package
(the anonymous package) cannot be listed in an import statement, although they can
be referred to by other classes in that package. They also cannot become part of a
JPMS module.

15.1 Creating a Package | 463

15.2 Documenting Classes with Javadoc
Problem
You have heard about this thing called code reuse and would like to promote it by
allowing other developers to use your classes.

Solution
Use javadoc. Write the comments when you write the code.

Discussion
Javadoc is one of the great inventions of the early Java years. Like so many good
things, it was not wholly invented by the Java folks; earlier projects such as Knuth’s
Literate Programming had combined source code and documentation in a single
source file. But the Java folks did a good job on it and came along at the right time.
Javadoc is to Java classes what man pages are to Unix, or what Windows Help is to
Windows applications: it is a standard format that everybody expects to find and
knows how to use. Learn it. Use it. Write it. Live long and prosper (well, perhaps that’s
not guaranteed). But all that HTML documentation that you learned from writing
Java code, the complete reference for the JDK—did you think they hired dozens of
tech writers to produce it? Nay, that’s not the Java way. Java’s developers wrote the
documentation comments as they went along, and when the release was made, they
ran javadoc on all the zillions of public classes and generated the documentation bun‐
dle at the same time as the JDK. You can, should, and really must do the same when
you are preparing classes for other developers to use.

All you have to do to use javadoc is to put special javadoc comments into your Java
source files. These are similar to multiline Java comments, but they begin with a slash
and two stars and end with the normal star-slash. Javadoc comments must appear
immediately before the definition of the class, method, or field that they document; if
placed elsewhere, they are ignored.

A series of keywords, prefixed by the at sign, can appear inside doc comments in cer‐
tain contexts. Some are contained in braces. The keywords as of Java 8 are listed in
Table 15-2.

464 | Chapter 15: Packages and Packaging

Table 15-2. Javadoc keywords
Keyword Use

@author Author name(s)

{@code text} Displays text in code font without HTML interpretation

@deprecated Causes deprecation warning

{@docroot} Refers to the root of the generated documentation tree

@exception Alias for @throws

{@inheritDoc} Inherits documentation from nearest superclass/superinterface

@link Generates inline link to another class or member

@linkplain As @link but displays in plain text

{@literal text} Displays text without interpretation

@param name description Argument name and meaning (methods only)

@return Return value

@see Generate cross-reference link to another class or member

@serial Describes serializable field

@serialData Describes order and types of data in serialized form

@serialField Describes serializable field

@since JDK version in which introduced (primarily for Sun use)

@throws Exception class and conditions under which thrown

{@value [ref]} Displays values of this or another constant field

@version Version identifier

Example 15-1 is a somewhat contrived example that shows some common javadoc
keywords in use. The output of running this through javadoc is shown in a browser
in Figure 15-1.

Example 15-1. main/src/main/java/javadoc/JavadocDemo.java

public class JavadocDemo extends JPanel {

 private static final long serialVersionUID = 1L;

 /**
 * Construct the GUI
 * @throws java.lang.IllegalArgumentException if constructed on a Sunday.
 */
 public JavadocDemo() {
 // We create and add a pushbutton here,
 // but it doesn't do anything yet.
 Button b = new Button("Hello");
 add(b); // connect Button into component
 // Totally capricious example of what you should not do

15.2 Documenting Classes with Javadoc | 465

 if (Calendar.getInstance().get(Calendar.DAY_OF_WEEK) == Calendar.SUNDAY) {
 throw new IllegalArgumentException("Never On A Sunday");
 }
 }

 /** paint() is an AWT Component method, called when the
 * component needs to be painted. This one just draws colored
 * boxes in the window.
 *
 * @param g A java.awt.Graphics that we use for all our
 * drawing methods.
 */
 public void paint(Graphics g) {
 int w = getSize().width, h = getSize().height;
 g.setColor(Color.YELLOW);
 g.fillRect(0, 0, w/2, h);
 g.setColor(Color.GREEN);
 g.fillRect(w/2, 0, w, h);
 g.setColor(Color.BLACK);
 g.drawString("Welcome to Java", 50, 50);
 }
}

The javadoc tool works fine for one class but really comes into its own when dealing
with a package or collection of packages. You can provide a package summary file for
each package, which will be incorporated into the generated files. Javadoc generates
thoroughly interlinked and crosslinked documentation, just like that which accompa‐
nies the standard JDK. There are several command-line options; I normally use
-author and -version to get it to include these items, and often -link to tell it where
to find the standard JDK to link to.

Run javadoc -help for a complete list of options, or see the full documentation
online at Oracle’s website. Figure 15-1 shows one view of the documentation that the
class shown in Example 15-1 generates when run as the following:

$ javadoc -author -version JavadocDemo.java

If you run this with Java 9+, it will also include a fully functional search box, shown in
the upper right of Figure 15-1. This is implemented in JavaScript, so it should work in
any modern browser.

Be aware that quite a few files are generated, and one of the generated files will have
the same name as each class, with the extension .html. If you happened to have an
HTML file documenting the class, and you generate javadoc in the source directory,
the .html file is silently overwritten with the javadoc output. If you wish to avoid clut‐
tering up your source directories with the generated files, the -d __directorypath
option to javadoc allows you to place the generated files into the specified directory.

466 | Chapter 15: Packages and Packaging

https://docs.oracle.com/en/java/javase/13/docs/specs/man/javadoc.html

Figure 15-1. Javadoc opened in a browser

See Also
Javadoc has numerous other command-line arguments. If documentation is for your
own use only and will not be distributed, you can use the -link option to tell it where
your standard JDK documentation is installed so that links can be generated to stan‐
dard Java classes (like String, Object, and so on). If documentation is to be dis‐
tributed, you can omit -link or use -link with a URL to the appropriate Java API
page on Oracle’s website. See the online tools documentation for all the command-
line options.

The output that javadoc generates is fine for most purposes. It is possible to write
your own Doclet class to make the javadoc program into a class documentation veri‐
fier, a Java-to-other-format (such as Java-to-RTF) documentation generator, or what‐
ever you like. Those are actual examples; see the javadoc tools documentation that
comes with the JDK for documents and examples, or go to Oracle’s website. Visit
Doclet for a somewhat dated but useful collection of Doclets and other javadoc-based
tools.

Javadoc Versus JavaHelp
Javadoc is for programmers using your classes; for a GUI application, end users will
probably appreciate standard online help. This is the role of the JavaHelp API, which
is not covered in this book but is fully explained in Creating Effective JavaHelp by
Kevin Lewis (O’Reilly), which every GUI application developer should read. JavaHelp
is another useful specification that was somewhat left to coast during the Sun sellout
to Oracle; it is now hosted on java.net at javahelp.

15.2 Documenting Classes with Javadoc | 467

https://docs.oracle.com/en/java/javase/13/docs/specs/man/javadoc.html
http://www.doclet.com
http://shop.oreilly.com/product/9781565927193.do
https://javaee.github.io/javahelp

15.3 Beyond Javadoc: Annotations/Metadata
Problem
You want to generate not just documentation from your source code, but also other
code artifacts. You want to mark code for additional compiler verification.

Solution
Use the Java Annotations, or Metadata, facility.

Discussion
The continuing success of the open source tool XDoclet—originally used to generate
the tedious auxiliary classes and deployment descriptor files for the widely criticized
EJB2 framework—led to a demand for a similar mechanism in standard Java. Java
Annotations were the result. The annotation mechanism uses an interface-like syntax,
in which both declaration and use of annotations use the name preceded by an at
character (@). This was chosen, according to the designers, to be reminiscent of “Java‐
doc tags, a preexisting ad hoc annotation facility in the Java programming language.”
Javadoc is ad hoc only in the sense that its @ tags were never fully integrated into the
language; most were ignored by the compiler, but @deprecated was always under‐
stood by the compiler (see Recipe 1.9).

Annotations can be read at runtime by use of the Reflection API; this is discussed in
Recipe 17.10, where I also show you how to define your own annotations. Annota‐
tions can also be read post–compile time by tools such as code generators (and others
to be invented, perhaps by you, gentle reader!).

Annotations are also read by javac at compile time to provide extra information to
the compiler.

For example, a common coding error is overloading a method when you mean to
override it, by mistakenly using the wrong argument type. Consider overriding the
equals method in Object. If you mistakenly write

public boolean equals(MyClass obj) {
 ...
}

then you have created a new overload that will likely never be called, and the default
version in Object will be called. To prevent this, an annotation included in java.lang
is the Override annotation. This has no parameters but simply is placed before the
method call, like this:

/**
 * AnnotationOverrideDemo - Simple demonstation of Metadata being used to

468 | Chapter 15: Packages and Packaging

http://xdoclet.sourceforge.net

 * verify that a method does in fact override (not overload) a method
 * from the parent class. This class provides the method.
 */
abstract class Top {
 public abstract void myMethod(Object o);
}

/** Simple demonstation of Metadata being used to verify
 * that a method does in fact override (not overload) a method
 * from the parent class. This class is supposed to do the overriding,
 * but deliberately introduces an error to show how the modern compiler
 * behaves
 */
class Bottom {

 @Override
 public void myMethod(String s) { // EXPECT COMPILE ERROR
 // Do something here...
 }
}

Attempting to compile this results in a compiler error that the method in question
does not override a method, even though the annotation says it does; this is a fatal
compile-time error:

C:> javac AnnotationOverrideDemo.java
AnnotationOverrideDemo.java:16: method does not override a method
 from its superclass
 @Override public void myMethod(String s) { // EXPECT COMPILE ERROR
 ^
1 error
C:>

15.4 Preparing a Class as a JavaBean
Problem
You have a class that you would like to use as a JavaBean.

Solution
Make sure the class meets the JavaBeans requirements. Optionally, create a JAR file
containing the class, a manifest, and any ancillary entries.

Discussion
Several kinds of Java components are called either Beans or JavaBeans:

• Visual components for use in GUI builders, as discussed in this recipe.

15.4 Preparing a Class as a JavaBean | 469

• Plain Old Java Objects (POJOs), or components meant for reuse.
• Java Enterprise has Enterprise JavaBeans (EJBs), JSP JavaBeans, JSF Managed

Beans, and CDI Beans, containing features for building enterprise-scale applica‐
tions. Creating and using Java EE components is more involved than regular Jav‐
aBeans and would take us very far afield, so they are not covered in this book.
When you need to learn about enterprise functionality, turn to Java EE 7 Essen‐
tials by Arun Gupta.

• The Spring Framework also uses the term “Beans” (or “Spring Beans”) for the
objects it manages.

What all these types of beans have in common are certain naming paradigms. All
public properties should be accessible by get/set accessor methods. For a given prop‐
erty Prop of type Type, the following two methods should exist (note the capitaliza‐
tion):

public Type getProp();
public void setProp(Type)

For example, the various AWT and Swing components that have textual labels all
have the following pair of methods:

public String getText();
public void setText(String newText);

One commonly permitted variance to this pattern is that, for boolean or Boolean
arguments, the getter method is usually called isProp() rather than getProp().

You should use this set/get design pattern (set/get methods) for methods that control
a bean. Indeed, this technique is useful even in nonbean classes for regularity. The
bean containers for the APIs listed at the start of this section generally use Java intro‐
spection (see Chapter 17) to find the set/get method pairs, and some use these to con‐
struct properties editors for your bean. Bean-aware IDEs, for example, provide edi‐
tors for all standard types (colors, fonts, labels, etc.). You can supplement this with a
BeanInfo class to provide or override information.

The bare minimum a class requires to be usable as a JavaBean is the following:

• The class must have a no-argument constructor.
• The class should use the set/get paradigm.
• The class must implement java.io.Serializable, although many containers

don’t enforce this.
• Depending on the intended use, the class file might need to be packaged into a

JAR file (see Recipe 15.5).

470 | Chapter 15: Packages and Packaging

http://oreil.ly/javaee7
http://oreil.ly/javaee7
http://springframework.org

Note that a JavaBean with no required inheritance or implements is also called a
POJO. Most new Java frameworks accept POJO components, instead of (as in days of
yore) requiring inheritance (e.g., Struts 1 org.struts.Action class) or implementa‐
tion of interfaces (e.g., EJB2 javax.ejb.SessionBean interface).

Here is a sample JavaBean that might have been a useful addition to one’s Java GUI
toolbox, the LabelText widget. It combines a label and a one-line text field into a sin‐
gle unit, making it easier to compose GUI applications. A demo program in the
online source directory sets up three LabelText widgets, as shown in Figure 15-2.

Figure 15-2. LabelText bean

The code for LabelText is shown in Example 15-2. Notice that it is serializable and
uses the set/get paradigm for most of its public methods. Most of the public set/get
methods simply delegate to the corresponding methods in the label or the text field.
There isn’t really a lot to this bean, but it’s a good example of aggregation, in addition
to being a good example of a bean.

Example 15-2. darwinsys-api/src/main/java/com/darwinsys/swingui/LabelText.java

// package com.darwinsys.swingui;
public class LabelText extends JPanel implements java.io.Serializable {

 private static final long serialVersionUID = -8343040707105763298L;
 /** The label component */
 protected JLabel theLabel;
 /** The text field component */
 protected JTextField theTextField;
 /** The font to use */
 protected Font myFont;

 /** Construct the object with no initial values.
 * To be usable as a JavaBean there must be a no-argument constructor.
 */
 public LabelText() {
 this("(LabelText)", 12);
 }

 /** Construct the object with the label and a default textfield size */
 public LabelText(String label) {
 this(label, 12);
 }

15.4 Preparing a Class as a JavaBean | 471

 /** Construct the object with given label and textfield size */
 public LabelText(String label, int numChars) {
 this(label, numChars, null);
 }

 /** Construct the object with given label, textfield size,
 * and "Extra" component
 * @param label The text to display
 * @param numChars The size of the text area
 * @param extra A third component such as a cancel button
 * may be null, in which case only the label and textfield exist.
 */
 public LabelText(String label, int numChars, JComponent extra) {
 super();
 setLayout(new BoxLayout(this, BoxLayout.X_AXIS));
 theLabel = new JLabel(label);
 add(theLabel);
 theTextField = new JTextField(numChars);
 add(theTextField);
 if (extra != null) {
 add(extra);
 }
 }

 /** Get the label's horizontal alignment */
 public int getLabelAlignment() {
 return theLabel.getHorizontalAlignment();
 }

 /** Set the label's horizontal alignment */
 public void setLabelAlignment(int align) {
 theLabel.setHorizontalAlignment(align);
 }

 /** Get the text displayed in the text field */
 public String getText() {
 return theTextField.getText();
 }

 /** Set the text displayed in the text field */
 public void setText(String text) {
 theTextField.setText(text);
 }

 /** Get the text displayed in the label */
 public String getLabel() {
 return theLabel.getText();
 }

 /** Set the text displayed in the label */
 public void setLabel(String text) {
 theLabel.setText(text);

472 | Chapter 15: Packages and Packaging

 }

 /** Set the font used in both subcomponents. */
 public void setFont(Font f) {
 // This class' constructors call to super() can trigger
 // calls to setFont() (from Swing.LookAndFeel.installColorsAndFont),
 // before we create our components, so work around this.
 if (theLabel != null)
 theLabel.setFont(f);
 if (theTextField != null)
 theTextField.setFont(f);
 }

 /** Adds the ActionListener to receive action events from the textfield */
 public void addActionListener(ActionListener l) {
 theTextField.addActionListener(l);
 }

 /** Remove an ActionListener from the textfield. */
 public void removeActionListener(ActionListener l) {
 theTextField.removeActionListener(l);
 }
}

Once it’s compiled, it’s ready to be packaged into a JAR. Most build tools such as
Maven will do this work for you.

15.5 Archiving with JAR
Problem
You want to create a Java archive (JAR) file from your package (or any other collec‐
tion of files).

Solution
Use jar.

Discussion
The jar archiver is Java’s standard tool for building archives. Archives serve the same
purpose as the program libraries that some other programming languages use. Java
normally loads its standard classes from archives, a fact you can verify by running a
simple “Hello, World” program with the -verbose option:

java -verbose HelloWorld

Creating an archive is a simple process. The jar tool takes several command-line
arguments: the most common are c for create, t for table of contents, and x for

15.5 Archiving with JAR | 473

6 Some people like to use names like MyPackage.mf so that it’s clear which package it is for; the extension .mf is
arbitrary, but it’s a good convention for identifying manifest files.

extract. The archive name is specified with -f and a filename. The options are fol‐
lowed by the files and directories to be archived, like this:

jar cvf /tmp/MyClasses.jar .

The dot at the end is important; it means the current directory. This command cre‐
ates an archive of all files in the current directory and its subdirectories into the
file /tmp/MyClasses.jar.

Most applications of JAR files depend on an extra file that is always present in a true
JAR file, called a manifest. This file always lists the contents of the JAR and their
attributes; you can add extra information into it. The attributes are in the form name:
value, as used in email headers, properties files (see Recipe 7.10), and elsewhere.
Some attributes are required by the application, whereas others are optional. For
example, Recipe 15.6 discusses running a main program directly from a JAR; this
requires a Main-Program header. You can even invent your own attributes, such as the
following:

MySillyAttribute: true
MySillynessLevel: high (5'11")

You store this in a file called, say, manifest.stub,6 and pass it to jar with the -m switch.
jar includes your attributes in the manifest file it creates:

jar -cv -m manifest.stub -f /tmp/com.darwinsys.util.jar .

The jar program and related tools add additional information to the manifest, includ‐
ing a listing of all the other files included in the archive.

If you use a tool like Maven (see Recipe 1.7), it automatically cre‐
ates a JAR file from your source project just by saying mvn package.

15.6 Running a Program from a JAR
Problem
You want to distribute a single large file containing all the classes of your application
and run the main program from within the JAR.

474 | Chapter 15: Packages and Packaging

Solution
Create a JAR file with a Main-Class: line in the manifest; run the program with the
java -jar option.

Discussion
The java command has a -jar option that tells it to run the main program found
within a JAR file. In this case, it will also find classes it needs to load from within the
same JAR file. How does it know which class to run? You must tell it. Create a one-
line entry like this, noting that the attribute fields are case-sensitive and that the colon
must be followed by a space:

Main-Class: com.somedomainhere.HelloWorld

Place that in a file called, say, manifest.stub, and assuming that you want to run the
program HelloWorld from the given package. You can then use the following com‐
mands to package your app and run it from the JAR file:

C:> javac HelloWorld.java
C:> jar cvmf manifest.stub hello.jar HelloWorld.class
C:> java -jar hello.jar
Hello, World of Java
C:>

You can now copy the JAR file anywhere and run it the same way. You do not need to
add it to your CLASSPATH or list the name of the main class.

On GUI platforms that support it, you can also launch this application by double-
clicking the JAR file. This works on macOS, Microsoft Windows, and many X Win‐
dows desktops.

In real life you would probably automate this with Maven, where your POM file
would contain, among other things, the following:

<project ...>
 ...
 <packaging>jar</packaging>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <archive>
 <manifest>
 <addclasspath>true</addclasspath>
 <mainClass>${main.class}</mainClass>
 </manifest>

15.6 Running a Program from a JAR | 475

 </archive>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

With this in place, mvn package will build a runnable JAR file. However, if your class
has external dependencies, the preceding steps will not package them, and you will
get a missing class exception when you run it. For this, you need to use the Maven
assembly plug-in:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <addDefaultImplementationEntries>true
 </addDefaultImplementationEntries>
 <mainClass>${main.class}</mainClass>
 <!-- <manifestFile>manifest.stub</manifestFile> -->
 </manifest>
 <manifestEntries>
 <Vendor-URL>http://YOURDOMAIN.com/SOME_PATH/</Vendor-URL>
 </manifestEntries>
 </archive>
 </configuration>
</plugin>

Now, the invocation mvn package assembly:single will produce a runnable JAR
with all dependencies. Note that your target folder will contain both foo-0.0.1-
SNAPSHOT.jar and foo-0.0.1-SNAPSHOT-jar-with-dependencies.jar; the latter is the
one you need.

The jpackage tool (mentioned in this chapter’s introduction) will do much the same
job as assembly:single, and is expected to ship with Java 14.

15.7 Packaging Web Tier Components into a WAR File
Problem
You have some web-tier resources and want to package them into a single file for
deploying to the server.

476 | Chapter 15: Packages and Packaging

Solution
Use jar to make a web archive (WAR) file. Or, as mentioned earlier, use Maven with
packaging=war.

Discussion
Servlets are server-side components for use in web servers. They can be packaged for
easy installation into a web server. A web application in the Servlet API specification
is a collection of HTML and/or JSP pages, servlets, and other resources. A typical
directory structure might include the following:

Project Root Directory
├── README.asciidoc
├── index.html - typical web pages
|── signup.jsp - ditto
├── WEB-INF Server directory
 ├── classes - Directory for individual .class files
 ├── lib - Directory for Jar files needed by app
 └── web.xml - web app Descriptor ("Configuration file")

Once you have prepared the files in this way, you just package them up with a build
tool. Using Maven, with <packaging>war</packaging>, your tree might look like
this:

Project Root Directory
├── README.asciidoc
├── pom.xml
└── src
 └── main
 ├── java
 │ └── foo
 │ └── WebTierClass.java
 └── webapp
 ├── WEB-INF
 │ ├── classes
 │ ├── lib
 │ └── web.xml
 ├── index.html
 └── signup.jsp

Then mvn package will compile things, put them in place, and create the WAR file for
you, leaving it under target. Gradle users would use a similar directory structure.

You could also invoke jar manually, though this has little to recommend it. You then
deploy the resulting WAR file into your web server. For details on the deployment
step, consult the documentation on the particular server you’re using.

15.7 Packaging Web Tier Components into a WAR File | 477

See Also
For more information on signing and permissions, see Java Security by Scott Oaks.
For more information on the JDK tools mentioned here, see the documentation that
accompanies the JDK you are using.

15.8 Creating a Smaller Distribution with jlink
Problem
You are distributing your application to end users, and you want to minimize the size
of your download.

Solution
Modularize your application (see Recipe 15.9), use jdeps to get a complete list of the
modules it uses, then use jlink to create the mini-Java, and distribute that to your
users.

Discussion
jlink is a command-line tool introduced in Java 9 that can make up a mini-Java dis‐
tribution containing only your application and the JDK classes it uses. That is, it
omits any of the thousands of JDK classes that your app will never use.

First, you need to compile and package your module-info and your application code.
You can use Maven or Gradle, or just use the JDK tools directly:

$ javac -d . src/*.java
$ jar cvf demo.jar module-info.class demo

If you wish to see the list of modules that will be included, you can optionally run the
jdeps tool to get this list:

$ jdeps --module-path . demo.jar
demo
 [file:///Users/ian/workspace/javasrc/jlink/./]
 requires mandated java.base (@11.0.2)
demo -> java.base
 demo -> java.io java.base
 demo -> java.lang java.base

Once the classes have been compiled, you can run the jlink tool to build a mini-java
distribution with your demo app imbedded:

jlink --module-path . --no-header-files \
 --no-man-pages --compress=2 --strip-debug \
 --launcher rundemo=demo/demo.Hello \
 --add-modules demo --output mini-java

478 | Chapter 15: Packages and Packaging

http://shop.oreilly.com/product/9780596001575.do

The --launcher name=module/main argument asks jlink to create a script file
named name to run the application.

If you got no errors, you should be able to run it either with the java command or
with the generated shell script:

$ mini-java/bin/java demo.Hello
Hello, world.
$ mini-java/bin/rundemo
Hello, world.
$

You might want to copy the entire mini-Java folder to a machine that doesn’t have a
regular Java installation and run it there in order to be sure you don’t have any miss‐
ing dependencies.

The concept of a mini-distribution is appealing, but you must con‐
sider these issues:

• There is no upgrade mechanism for such mini-Javas. These are
quite suitable for microservice deployments where you rebuild
often. For applications shipped to customers, though, you’d
have to regenerate them and get your customers to download
and reinstall (on short notice whenever there’s a security
update).

• Disk space is generally no longer expensive relative to the cost
of your time in maintaining such a distribution.

Thus, you have to decide if this is worthwhile for your application.

15.9 Using JPMS to Create a Module
Problem
You want your packaged archive to work smoothly with the Java Modules System
(JPMS).

Solution
Create a module-info.java file in the root of the source directory.

Discussion
The file module-info.java was introduced in Java 9 to provide the compiler and tools
with information about your library’s needs and what it provides. Note that this is not
even a valid Java class filename because it contains a minus sign. The module also has

15.9 Using JPMS to Create a Module | 479

a group of pseudokeywords, which only have their special meaning inside a module
file. The simplest module-info is the following:

module foo {
 // Empty
}

But just as a Java class with no members won’t get you very far in the real world, nei‐
ther will this empty module file. We need to provide some additional information.
For this example, I will modularize my darwinsys-api, a collection of 40 or so ran‐
domly accumulated classes that I reuse sometimes. Remember that Jigsaw (the mod‐
ule system’s early name) was initially proposed as a way of modularizing the over‐
grown JDK itself. Most applications will need the module java.base (which is always
included). If they need AWT, Swing, or certain other desktop-application-related
classes, they also need java.desktop. Thus I add the following line into the module
definition:

require java.desktop

This code also has some JUnit-annotated classes and makes use of JavaMail API, so
we need those as well. JUnit, however, is only needed at test time. While Maven offers
scopes for compile, test, and runtime, the modules system does not. Thus we could
omit JUnit from the POM file and add it to Eclipse. But then maven test will not
work.

And unfortunately, as of this writing, there does not appear to be modularized ver‐
sion of JavaMail either. Fortunately, there is a feature known as automatic modules, by
which if you place a JAR file on the module path that doesn’t declare a module, its
JAR filename will be used as the basis of an automatically generated module. So we’ll
also add the following:

requires mail;

Unfortunately, when we compile, Maven’s Java Compiler module spits out this scary-
looking warning:

[WARNING] ***
[WARNING] * Required filename-based automodules detected. Please don't publish
 this project to a public artifact repository! *
[WARNING] ***

Given that there are so many public Java API libraries out there, and that most of
them depend on other libraries in turn, I wonder: how is that state supposed to end?
Nonetheless, I have heeded that warning, and so people will continue to use the auto-
module version of com.darwinsys.api until I stumble across modularized JavaMail
and JUnit4 APIs.

The module-info also lists any packages that your module desires to make available,
that is, its public API. So we need a series of export commands:

480 | Chapter 15: Packages and Packaging

exports com.darwinsys.calendar;
exports com.darwinsys.csv;
exports com.darwinsys.database;
...

By default, packages that are exported can not be examined using the Reflection API.
To allow a module to introspect (use the Reflection API) on another, say, a domain
model used with JPA, use opens.

One of the points of Java interfaces is to allow multiple implementations of a service.
This is supported in JPMS by the service feature. Where an API is defined as one or
more interfaces in one module, and multiple implementations are provided, each in
its own module, the implementation module(s) can define an implementation using
provides ... with, as in the following:

requires com.foo.interfacemodule;
provides com.foo.interfacemodule.Interface with com.foo.implmodule.ImplClass;

The completed module-info for the darwinsys-api module is shown in
Example 15-3.

Example 15-3. DarwinSys-API module-info

module com.darwinsys.api {

 requires java.desktop;
 requires java.persistence;
 requires java.prefs;
 requires java.sql;
 requires java.sql.rowset;
 requires javax.servlet.api;
 requires mail;
 requires junit;

 exports com.darwinsys.calendar;
 exports com.darwinsys.csv;
 exports com.darwinsys.database;
 exports com.darwinsys.diff;
 exports com.darwinsys.formatting;
 exports com.darwinsys.locks;
 provides com.darwinsys.locks.LockManager
 with com.darwinsys.locks.LockManagerImpl;
 exports com.darwinsys.model;
 opens com.darwinsys.model;
 // another dozen and a half packages...

}

A module wanting to use the lock interface feature would need a requires com.dar
winsys and might do something like this in code:

15.9 Using JPMS to Create a Module | 481

import java.util.ServiceLoader;
import java.util.Optional;

Optional<LockManager> opt = ServiceLoader.load(LockManager.class).findFirst();
if (!opt.isPresent()) {
 throw new RuntimeException("Could not find implementation of LockManager");
}
LockManager mgr = opt.get();

The Optional interface is described in Recipe 8.6.

See Also
JPMS is relatively new, and library providers are still learning to use it properly. An
early posting was https://openjdk.java.net/projects/jigsaw/quick-start. A plan for
migrating to modules can be found at http://tutorials.jenkov.com/java/
modules.html#migrating-to-java-9. A discussion about preparing a multi-module
Maven application is at https://www.baeldung.com/maven-multi-module-project-java-
jpms. The book Java 9 Modularity: Patterns and Practices for Developing Maintainable
Applications by Sander Mak and Paul Bakker is probably the most comprehensive
treatment of JPMS.

482 | Chapter 15: Packages and Packaging

https://openjdk.java.net/projects/jigsaw/quick-start
http://tutorials.jenkov.com/java/modules.html#migrating-to-java-9
http://tutorials.jenkov.com/java/modules.html#migrating-to-java-9
https://www.baeldung.com/maven-multi-module-project-java-jpms
https://www.baeldung.com/maven-multi-module-project-java-jpms
http://shop.oreilly.com/product/0636920049494.do
http://shop.oreilly.com/product/0636920049494.do

CHAPTER 16

Threaded Java

16.0 Introduction
We live in a world of multiple activities. A person may be talking on the phone while
doodling or reading a memo. A multifunction office machine may scan one fax while
receiving another and printing a document from somebody’s computer. We expect
the GUI programs we use to be able to respond to a menu while updating the screen.
But ordinary computer programs can do only one thing at a time. The conventional
computer programming model—that of writing one statement after another, punctu‐
ated by repetitive loops and binary decision making—is sequential at heart.

Sequential processing is straightforward but not as efficient as it could be. To enhance
performance, Java offers threading, the capability to handle multiple flows of control
within a single application or process. Java provides thread support and, in fact,
requires threads: the Java runtime itself is inherently multithreaded. For example,
window system action handling and Java’s garbage collection—that miracle that lets
us avoid having to free everything we allocate, as others must do when working in
languages at or below C level—run in separate threads.

Just as multitasking allows a single operating system to give the appearance of run‐
ning more than one program at the same time on a single-processor computer, multi‐
threading can allow a single program or process to give the appearance of working on
more than one thing at the same time. Multithreading leads to more interactive
graphics and more responsive GUI applications (the program can draw in a window
while responding to a menu, with both activities occurring more or less independ‐
ently), more reliable network servers (if one client does something wrong, the server
continues communicating with the others), and so on.

Note that I did not say “multiprocessing” in the previous paragraph. The term multi-
tasking is sometimes erroneously called multiprocessing, but that term in fact refers

483

6 JSR stands for Java Specification Request. The Java Community Process calls standards, both proposed and
adopted, JSRs. See http://www.jcp.org for details.

to different issue: it’s the case of two or more CPUs running under a single operating
system. Multiprocessing per se is nothing new: IBM mainframes did it in the 1970s,
Sun SPARCstations did it in the 1980s, and Intel PCs did it in the 1990s. Since the
mid-2010s, it has become increasingly hard to buy a single-processor computer pack‐
aged inside anything larger than a wristwatch. True multiprocessing allows you to
have more than one process running concurrently on more than one CPU. Java’s sup‐
port for threading includes multiprocessing, as long as the operating system supports
it. Consult your system documentation for details.

Though most modern operating systems provide threads, Java was the first main‐
stream programming language to have intrinsic support for threaded operations built
right into the language. The semantics of java.lang.Object, of which all objects are
instances, includes the notion of monitor locking of objects, and some methods
(notify, notifyAll, wait) are meaningful only in the context of a multithreaded
application. Java also has language keywords such as synchronized to control the
behavior of threaded applications.

Now that the world has had years of experience with threaded Java, experts have
started building better ways of writing threaded applications. The Concurrency Utilit‐
ies, specified in JSR 1666 and included in all modern Java releases, are heavily based
on the util.concurrent package by Professor Doug Lea of the Computer Science
Department at the State University of New York at Oswego. This package aims to do
for the difficulties of threading what the Collections classes (see Chapter 7) did for
structuring data. This is no small undertaking, but they pulled it off.

The java.util.concurrent package includes several main sections:

• Executors, thread pools (ExecutorServices), and Futures/CompletableFutures
• Queues and BlockingQueues
• Locks and conditions, with JVM support for faster locking and unlocking
• Synchronizers, including Semaphores and Barriers
• Atomic variables

In this chapter I will focus on the first set of these, thread pools and Futures.

An implementation of the Executor interface is, as the name implies, a class that can
execute code for you. The code to be executed can be the familiar Runnable or a new
interface Callable. One common kind of Executor is a thread pool. The Future
interface represents the future state of something that has been started; it has

484 | Chapter 16: Threaded Java

http://www.jcp.org

methods to wait until the result is ready. A CompletableFuture is an implementation
of Future that adds many additional methods for chaining CompletableFutures and
post-applied methods.

These brief definitions are oversimplifications. Addressing all the issues is beyond the
scope of this chapter, but I do provide several examples.

16.1 Running Code in a Different Thread
Problem
You need to write a threaded application.

Solution
Write code that implements Runnable; pass it to an Executor, or instantiate a Thread
and start it.

Discussion
There are several ways to implement threading, and they all require you to implement
the Runnable or Callable interface. Runnable has only one method, and it returns no
value; this is its signature:

public interface java.lang.Runnable {
 public abstract void run();
}

Callable has similarly only one method, but the call() method returns a specific
type so the interface has a type parameter (V here, for “value”):

public interface java.util.concurrent.Callable<V> {
 public abstract V call() throws Exception;
}

You must provide an implementation of the run() or call() method. There is noth‐
ing special to this method; it’s an ordinary method and you could call it yourself. But
if you did, what then? There wouldn’t be the special magic that launches it as an inde‐
pendent flow of control, so it wouldn’t run concurrently with your main program or
flow of control. For this, you need to invoke the magic of thread creation.

The original way of using threads, no longer generally recommended, is to create
Thread objects directly and call their start() method, which would cause the thread
to call the run() method after the new thread had been initialized. There was no sup‐
port for the Callable interface in the original threads model. You create threads by
doing one of the following things:

16.1 Running Code in a Different Thread | 485

• Subclass java.lang.Thread (which implements Runnable) and override the
run() method.

• Create your Runnable and pass it into the Thread constructor.
• With Java 8+, as shown in Recipe 9.0, you can use a lambda expression to imple‐

ment Runnable.

This approach is no longer recommended because of issues such as performance
(Thread objects are expensive to create and tear down, and a thread is unusable once
its run() method returns). Because it is no longer recommended to invoke threading
in this fashion, I no longer show examples of doing so. There are some examples in
the online source, in the threads directory; see especially ThreadsDemo4.

Instead, the recommended way to perform threaded operations is to use the
java.util.concurrent package’s ExecutorService. An ExecutorService is, as its
name implies, a service class that can execute code for you. The code to be executed
can be in a Runnable or a Callable. You obtain an ExecutorService by invoking a
factory method on the Executors class. The code in Example 16-1 shows a simple
example of a thread pool.

Example 16-1. main/src/main/java/threads/ThreadPoolDemo.java

 final ExecutorService pool = Executors.newFixedThreadPool(HOWMANY);
 List<Future<Integer>> futures = new ArrayList<>(HOWMANY);
 for (int i = 0; i < HOWMANY; i++) {
 Future<Integer> f = pool.submit(new DemoRunnable(i));
 System.out.println("Got 'Future' of type " + f.getClass());
 futures.add(f);
 }
 Thread.sleep(3 * 1000);
 done = true;
 for (Future<Integer> f : futures) {
 System.out.println("Result " + f.get());
 }
 pool.shutdown();

This will print a series of lines like the following, showing the threads running inter‐
spersed:

Running Thread[pool-1-thread-3,5,main]
Running Thread[pool-1-thread-3,5,main]
Running Thread[pool-1-thread-1,5,main]
Running Thread[pool-1-thread-1,5,main]

Note that there are several submission methods, the first in the parent interface Execu
tor and two more in ExecutorService:

486 | Chapter 16: Threaded Java

public void execute(Runnable);
public Future<T> submit(Callable<T>);
public Future<T> submit(Runnable);

That is, execute() takes a Runnable and returns nothing, whilst the submit() meth‐
ods both return a Future<T> (for the method submit(Runnable), the type parameter
x is always java.lang.Void).

When you are finished with the thread pool, you should call its shutDown() method.

Understanding Future and CompletableFuture
Future is an interface representing a claim ticket on some deliverable that may or
may not be ready. It’s a software analogue of the claim ticket you are given when you
take laundry in to a dry cleaning service or take some item in to be repaired. The fol‐
lowing describes the important methods of the Future interface:

public interface java.util.concurrent.Future<V> {
 public abstract boolean isDone();
 public abstract V get() throws InterruptedException,
 java.util.concurrent.ExecutionException;
 public abstract V get(long, java.util.concurrent.TimeUnit)
 throws InterruptedException,
 java.util.concurrent.ExecutionException,
 java.util.concurrent.TimeoutException;
 public abstract boolean cancel(boolean);
 public abstract boolean isCancelled();
}

The purpose of each method in this interface is shown here:

isDone()

Returns true if the operation that will deliver the result has completed

get()

Will return the deliverable immediately if isDone() is true; else will block indefi‐
nitely until it becomes true

get(long, TimeUnit)

Will return the deliverable immediately if isDone() is true, blocking until it
becomes true, or until the specified time has elapsed, in which case it will throw a
TimeoutException

cancel(boolean)

Will cancel the operation if it hasn’t started (if the boolean is false) or even if it is
in process (if the boolean is true)

isCancelled()

Returns true if the operation has been canceled

16.1 Running Code in a Different Thread | 487

Future is commonly returned from a thread pool execute() operation, as shown in
Example 16-2.

Example 16-2. main/src/main/java/threads/FutureFromThreadpool.java

 double d = 2;
 Callable<Double> computeTotal = () -> d + d;
 Future<Double> future = threadPool.submit(computeTotal);
 while (!future.isDone()) {
 Thread.sleep(100);
 }
 double value = future.get();
 process(value);
 threadPool.shutdown();

There are many classes implementing Future in various parts of Java SE and Jakarta.
The most general and powerful is CompletableFuture<V>, so called because you can
control it by calling a complete(V) method at any time. This has far too many public
methods (120) for a complete treatment here. In fairness, the number of methods is
high because many methods can accept either a Runnable or a Callable, and many
have multiple overloads (a plain one, one with Async appended to the name, and one
with Async that lets you provide the Executor). I’ll show examples of these shortly.

You can create an empty CompletableFuture by calling a no-argument constructor,
making this available to some calling code, and calling its complete() method when
you have a result:

CompletableFuture<Integer> cf = new CompletableFuture<>();
// Do some work
cf.complete();

Many of the more interesting methods in CompletableFuture have to do with chain‐
ing operations. First, you can specify a function to be invoked automatically when the
result is ready:

 public CompletableFuture<Void> thenRun(java.lang.Runnable);
 public CompletableFuture<Void> thenRunAsync(java.lang.Runnable);
 public CompletableFuture<Void> thenRunAsync(java.lang.Runnable, Executor);
 public <U> CompletableFuture<U> thenApply(
 Function<? super T,
 ? extends U>);
 public <U> CompletableFuture<U> thenApplyAsync(
 Function<? super T,
 ? extends U>);
 public <U> CompletableFuture<U> thenApplyAsync(
 Function<? super T,
 ? extends U>, Executor);
 public CompletableFuture<Void> thenAccept(Consumer<? super T>);
 public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T>);
 public CompletableFuture<Void> thenAcceptAsync(
 Consumer<? super T>, Executor);

488 | Chapter 16: Threaded Java

These methods will invoke the given Runnable, Consumer, or Function after the
Future is completed. Each of these exists in the three forms as mentioned above. The
first will run it on the same thread as the main task. The second method will run it in
a default executor. The third allows you to provide your own executor. Example 16-3
is a simple demo of creating a CompletableFuture, giving it a thenApply method call
and a final run method, both of which don’t fire until the Future is completed.

Example 16-3. main/src/main/java/threads/CompletableFutureSimple.java

class CompletableFutureSimple {
 static String twice(String x) { return x + ' ' + x; }

 public static void main(String[] args) {
 CompletableFuture<String> cf = new CompletableFuture<>();
 cf.thenApply(x -> twice(x))
 .thenAccept(x -> System.out.println(x));
 // Possibly some computation going on here... Then:
 cf.complete("Hello");
 }
}

The online source includes CompletableFutureDemo.java, which offers some more
sophisticated examples.

16.2 Displaying a Moving Image with Animation
Problem
You need to update a graphical display while other parts of the program are running.

Solution
Use a background thread to drive the animation.

Discussion
One common use of threads is an animator, a class that displays a moving image.
This animator program does just that. It draws a graphical image at locations around
the screen; the location is updated and redrawn from a different Thread for each such
image so that all the animations run in parallel. You can see the program running in
Figure 16-1.

16.2 Displaying a Moving Image with Animation | 489

6 The title belies some unfulfilled ambitions to make the animations follow the bouncing curves seen in some
flashier animation demonstrations.

Figure 16-1. Animator

The code for the animator program consists of two classes, Sprite (see
Example 16-4) and Bounce6 (see Example 16-5). A Sprite is one image that moves
around; Bounce is the main program.

Example 16-4. main/src/main/java/threads/Sprite.java (part of animator program)

/** A Sprite is one Image that moves around the screen on its own */
public class Sprite extends Component implements Runnable {
 private static final long serialVersionUID = 1L;
 protected static int spriteNumber = 0;
 protected int number;
 protected int x, y;
 protected Component parent;
 protected Image image;
 protected volatile boolean done = false;
 /** The time in mSec to pause between each move. */
 protected volatile int sleepTime = 250;

490 | Chapter 16: Threaded Java

 /** The direction for this particular sprite. */
 protected Direction direction;
 enum Direction {
 VERTICAL, HORIZONTAL, DIAGONAL
 }
 /** Construct a Sprite with a Component parent, image and direction.
 * Construct and start a Thread to drive this Sprite.
 */
 public Sprite(Component parent, Image image, Direction direction) {
 this.parent = parent;
 this.image = image;
 this.direction = direction;
 this.number = Sprite.spriteNumber++;
 setSize(image.getWidth(this), image.getHeight(this));
 }

 /** Construct a Sprite with the default direction */
 public Sprite(Component parent, Image image) {
 this(parent, image, Direction.DIAGONAL);
 }

 /** Stop this Sprite. */
 public void stop() {
 System.out.println("Stopping " + number);
 done = true;
 }

 /** Adjust the motion rate */
 protected void setSleepTime(int n) {
 sleepTime = n;
 }

 /**
 * Run one Sprite around the screen.
 * This version just moves them around either across, down, or
 * at some 45-degree angle.
 */
 public void run() {
 int width = parent.getSize().width;
 int height = parent.getSize().height;
 // Set initial location
 x = (int)(Math.random() * width);
 y = (int)(Math.random() * height);
 // Flip coin for x & y directions
 int xincr = Math.random()>0.5?1:-1;
 int yincr = Math.random()>0.5?1:-1;
 while (!done) {
 width = parent.getSize().width;
 height = parent.getSize().height;
 if ((x+=xincr) >= width)
 x=0;
 if ((y+=yincr) >= height)

16.2 Displaying a Moving Image with Animation | 491

 y=0;
 if (x<0)
 x = width;
 if (y<0)
 y = height;
 switch(direction) {
 case VERTICAL:
 x = 0;
 break;
 case HORIZONTAL:
 y = 0;
 break;
 case DIAGONAL:
 // Let it wrap around
 break;
 }
 //System.out.println("from " + getLocation() + "->" + x + "," + y);
 setLocation(x, y);
 repaint();
 try {
 Thread.sleep(sleepTime);
 } catch (InterruptedException e) {
 return;
 }
 }
 }

 /** paint -- just draw our image at its current location */
 public void paint(Graphics g) {
 g.drawImage(image, 0, 0, this);
 }
}

This example features several uses of the volatile keyword. The volatile keyword
is used to inform Java that a variable is subject to change by more than one thread, so
that its current value must always be fetched when it is used. Absent this keyword, it
is legal for Java to use a cached version of the given variable. That increases perfor‐
mance when a variable is only used in one thread, but (without volatile) can give
incorrect results when the variable is modified in one thread and observed in another.

Example 16-5. main/src/main/java/threads/Bounce.java (part of animator program)

public class Bounce extends JPanel {

 private static final long serialVersionUID = -5359162621719520213L;
 /** The main Panel */
 protected JPanel p;
 /** The image, shared by all the Sprite objects */
 protected Image img;
 /** A Thread Pool */

492 | Chapter 16: Threaded Java

 protected ExecutorService tp = Executors.newCachedThreadPool();
 /** A Vector of Sprite objects. */
 protected List<Sprite> v = new Vector<Sprite>(); // multithreaded, use Vector;

 public static void main(String[] args) {
 JFrame jf = new JFrame("Bounce Demo");
 jf.add(new Bounce(args.length > 0 ? args[0] : null));
 jf.setSize(300, 300);
 jf.setVisible(true);
 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public Bounce(String imgName) {
 setLayout(new BorderLayout());
 JButton b = new JButton("Add a Sprite");
 b.addActionListener(e -> {
 System.out.println("Creating another one!");
 Sprite s = new Sprite(this, img);
 tp.execute(s);
 p.add(s);
 v.add(s);
 });
 add(b, BorderLayout.NORTH);
 add(p = new JPanel(), BorderLayout.CENTER);
 p.setLayout(null);
 if (imgName == null) imgName = "duke.gif";
 final URL resource = getClass().getResource("/" + imgName);
 if (resource == null) {
 throw new IllegalStateException("Could not load image " + imgName);
 }
 img = Toolkit.getDefaultToolkit().getImage(resource);
 MediaTracker mt = new MediaTracker(this);
 mt.addImage(img, 0);
 try {
 mt.waitForID(0);
 } catch(InterruptedException e) {
 throw new IllegalArgumentException(
 "InterruptedException while loading image " + imgName);
 }
 if (mt.isErrorID(0)) {
 throw new IllegalArgumentException(
 "Couldn't load image " + imgName);
 }
 JButton stopper = new JButton("Shut down");
 stopper.addActionListener(e -> {
 stop();
 tp.shutdown();
 });
 add(stopper, BorderLayout.SOUTH);
 }

 public void stop() {

16.2 Displaying a Moving Image with Animation | 493

 for (Sprite s : v) {
 s.stop();
 }
 v.clear();
 try {
 tp.awaitTermination(5, TimeUnit.SECONDS);
 System.out.println("ThreadPool is shut down, ending program");
 System.exit(0);
 } catch (InterruptedException e) {
 // Empty
 }
 }
}

16.3 Stopping a Thread
Problem
You need to stop a thread.

Solution
Don’t use the Thread.stop() method; instead, use a boolean tested at the top of the
main loop in the run() method.

Discussion
Though you can use the thread’s stop() method, it is not recommended. That’s
because the method is so drastic that it can never be made to behave reliably in a pro‐
gram with multiple active threads. That is why, when you try to use it, the compiler
will generate deprecation warnings. The recommended method is to use a boolean
variable in the main loop of the run() method. The program in Example 16-6 prints
a message endlessly until its shutDown() method is called; it then sets the controlling
variable done to false, which terminates the loop. This causes the run() method to
return, ending its processing.

Example 16-6. main/src/main/java/threads/StopBoolean.java

public class StopBoolean {

 // Must be volatile to ensure changes visible to other threads.
 protected volatile boolean done = false;

 Runnable r = () -> {
 while (!done) {
 System.out.println("StopBoolean running");
 try {

494 | Chapter 16: Threaded Java

 Thread.sleep(720);
 } catch (InterruptedException ex) {
 // nothing to do
 }
 }
 System.out.println("StopBoolean finished.");
 };

 public void shutDown() {
 System.out.println("Shutting down...");
 done = true;
 }

 public void doDemo() throws InterruptedException {
 ExecutorService pool = Executors.newSingleThreadExecutor();
 pool.submit(r);
 Thread.sleep(1000*5);
 shutDown();
 pool.shutdown();
 pool.awaitTermination(2, TimeUnit.SECONDS);
 }

 public static void main(String[] args) throws InterruptedException {
 new StopBoolean().doDemo();
 }
}

Running it looks like this:

StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean finished.

But what if your thread is blocked reading from a network connection? You then can‐
not check a boolean, because the thread that is reading is asleep. This is what the
stop method was designed for, but, as we’ve seen, it is now deprecated. Instead, you
can simply close the socket. The program shown in Example 16-7 intentionally dead‐
locks itself by reading from a socket that you are supposed to write to, simply to
demonstrate that closing the socket does in fact terminate the loop.

Example 16-7. main/src/main/java/threads/StopClose.java

public class StopClose extends Thread {
 protected Socket io;

 public void run() {

16.3 Stopping a Thread | 495

 try {
 io = new Socket("java.sun.com", 80); // HTTP
 BufferedReader is = new BufferedReader(
 new InputStreamReader(io.getInputStream()));
 System.out.println("StopClose reading");

 // The following line will deadlock (intentionally), since HTTP
 // enjoins the client to send a request (like "GET / HTTP/1.0")
 // and a null line, before reading the response.

 String line = is.readLine(); // DEADLOCK

 // Should only get out of the readLine if an interrupt
 // is thrown, as a result of closing the socket.

 // So we shouldn't get here, ever:
 System.out.printf("StopClose FINISHED after reading %s!?", line);
 } catch (IOException ex) {
 System.out.println("StopClose terminating: " + ex);
 }
 }

 public void shutDown() throws IOException {
 if (io != null) {
 // This is supposed to interrupt the waiting read.
 synchronized(io) {
 io.close();
 }
 }
 System.out.println("StopClose.shutDown() completed");
 }

 public static void main(String[] args)
 throws InterruptedException, IOException {
 StopClose t = new StopClose();
 t.start();
 Thread.sleep(1000*5);
 t.shutDown();
 }
}

When run, it prints a message that the close is happening:

StopClose reading
StopClose terminating: java.net.SocketException: Resource temporarily unavail-
able

“But wait,” you say. “What if I want to break the wait, but not really terminate the
socket?” A good question, indeed, and there is no perfect answer. But you can inter‐
rupt the thread that is reading; the read is interrupted by a java.io.Interrupte
dIOException, and you can retry the read. The file Intr.java in this chapter’s source
code shows this.

496 | Chapter 16: Threaded Java

16.4 Rendezvous and Timeouts
Problem
You need to know whether something finished or whether it finished in a certain
length of time.

Solution
Start that something in its own thread and call its join() method with or without a
timeout value.

Discussion
The join() method of the target thread is used to suspend the current thread until
the target thread is finished (returns from its run() method). This method is overloa‐
ded; a version with no arguments waits forever for the thread to terminate, whereas a
version with arguments waits up to the specified time. For a simple example, I create
(and start!) a simple thread that just reads from the console terminal, and the main
thread simply waits for it. When I run the program, it looks like this:

darwinsys.com$ java threads.Join
Starting
Joining
Reading
hello from standard input # waits indefinitely for me to type this line
Thread Finished.
Main Finished.
darwinsys.com$

Example 16-8 lists the code for the join() demo.

Example 16-8. main/src/main/java/threads/Join.java

public class Join {
 public static void main(String[] args) {
 Thread t = new Thread() {
 public void run() {
 System.out.println("Reading");
 try {
 System.in.read();
 } catch (java.io.IOException ex) {
 System.err.println(ex);
 }
 System.out.println("Thread Finished.");
 }
 };
 System.out.println("Starting");

16.4 Rendezvous and Timeouts | 497

 t.start();
 System.out.println("Joining");
 try {
 t.join();
 } catch (InterruptedException ex) {
 // should not happen:
 System.out.println("Who dares interrupt my sleep?");
 }
 System.out.println("Main Finished.");
 }
}

As you can see, it uses an inner class Runnable (see Recipe 16.1) in Thread t to be
runnable.

16.5 Synchronizing Threads with the synchronized
Keyword
Problem
You need to protect certain data from access by multiple threads.

Solution
Use the synchronized keyword on the method or code you wish to protect.

Discussion
I discussed the synchronized keyword briefly in Recipe 13.5. This keyword specifies
that only one thread at a time is allowed to run the given method (or any other
synchronized method in the same class) in a given object instance (for static meth‐
ods, only one thread is allowed to run the method at a time). You can synchronize
methods or smaller blocks of code. It is easier and safer to synchronize entire meth‐
ods, but this can be more costly in terms of blocking threads that could run. You can
simply add the synchronized keyword on the method. For example, many of the
methods of Vector (see Recipe 7.4) are synchronized in order to ensure that the vec‐
tor does not become corrupted or give incorrect results when two threads update or
retrieve from it at the same time.

Bear in mind that threads can be interrupted at almost any time, in which case con‐
trol is given to another thread. Consider the case of two threads appending to a data
structure at the same time. Let’s suppose we have the same methods as Vector, but
we’re operating on a simple array. The add() method simply uses the current number
of objects as an array index, then increments it:

498 | Chapter 16: Threaded Java

public void add(Object obj) {
 data[max] = obj;
 max = max + 1;
}

Threads A and B both wish to call this method. Suppose that Thread A gets interrup‐
ted after but before , and then Thread B gets to run.

Thread B does , overwriting the contents of data[max]; we’ve now lost all refer‐
ence to the object that Thread A passed in!

Thread B then increments max at and returns. Later, Thread A gets to run
again; it resumes at and increments max past the last valid object. So not only
have we lost an object, but we have an uninitialized reference in the array. This
state of affairs is shown in Figure 16-2.

Figure 16-2. Non-thread-safe add method in operation: normal and failed updates

Now you might think, “No problem, I’ll just combine the two lines of code!”:

data[max++] = obj;

As the game show host sometimes says, “Bzzzzt! Thanks for playing!” This change
makes the code a bit shorter but has absolutely no effect on reliability. Interrupts
don’t happen conveniently on Java statement boundaries; they can happen between
any of the many JVM machine instructions that correspond to your program. The
code can still be interrupted after the store and before the increment. The only good
solution is to use proper synchronization.

Making the method synchronized means that any invocations of it will wait if one
thread has already started running the method:

16.5 Synchronizing Threads with the synchronized Keyword | 499

6 A servlet is a low-level server-side API for interacting with remote clients; today it would probably be written
in the form of a JavaServer Faces (JSF) handler.

public synchronized void add(Object obj) {
 ...
}

Any time you wish to synchronize some code, but not an entire method, use the
synchronized keyword on an unnamed code block within a method, like this:

public void add(Object obj) {
 synchronized (someObject) {
 // this code will execute in one thread at a time
 }
}

The choice of object to synchronize on is up to you. Sometimes it makes sense to syn‐
chronize on the object containing the code, as in Example 16-9. For synchronizing
access to an ArrayList, it would make sense to use the ArrayList instance, like this:

synchronized(myArrayList) {
 if (myArrayList.indexOf(someObject) != -1) {
 // do something with it.
 } else {
 create an object and add it...
 }
}

Example 16-9 is a web servlet that I wrote for use in the classroom, following a sug‐
gestion from fellow Learning Tree instructor Scott Weingust.6 It lets you play a quiz
show game of the style where the host asks a question and the first person to press
their buzzer (buzz in) gets to try to answer the question correctly. To ensure against
having two people buzz in simultaneously, the code uses a synchronized block around
the code that updates the Boolean buzzed variable. And for reliability, any code that
accesses this Boolean is also synchronized.

Example 16-9. main/src/main/java/threads/BuzzInServlet.java

public class BuzzInServlet extends HttpServlet {

 /** The attribute name used throughout. */
 protected final static String WINNER = "buzzin.winner";

 /** doGet is called from the contestants web page.
 * Uses a synchronized code block to ensure that
 * only one contestant can change the state of "buzzed".
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

500 | Chapter 16: Threaded Java

 ServletContext application = getServletContext();

 boolean iWon = false;
 String user = request.getRemoteHost() + '@' + request.getRemoteAddr();

 // Do the synchronized stuff first, and all in one place.
 synchronized(application) {
 if (application.getAttribute(WINNER) == null) {
 application.setAttribute(WINNER, user);
 application.log("BuzzInServlet: WINNER " + user);
 iWon = true;
 }
 }

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<html><head><title>Thanks for playing</title></head>");
 out.println("<body bgcolor=\"white\">");

 if (iWon) {
 out.println("YOU GOT IT");
 // TODO - output HTML to play a sound file :-)
 } else {
 out.println("Thanks for playing, " + request.getRemoteAddr());
 out.println(", but " + application.getAttribute(WINNER) +
 " buzzed in first");
 }
 out.println("</body></html>");
 }

 /** The Post method is used from an Administrator page (which should
 * only be installed in the instructor/host's localweb directory).
 * Post is used for administrative functions:
 * 1) to display the winner;
 * 2) to reset the buzzer for the next question.
 */
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ServletContext application = getServletContext();

 response.setContentType("text/html");
 HttpSession session = request.getSession();

 PrintWriter out = response.getWriter();

 if (request.isUserInRole("host")) {
 out.println("<html><head><title>Welcome back, " +
 request.getUserPrincipal().getName() + "</title><head>");
 out.println("<body bgcolor=\"white\">");
 String command = request.getParameter("command");
 if (command.equals("reset")) {

16.5 Synchronizing Threads with the synchronized Keyword | 501

 // Synchronize what you need, no more, no less.
 synchronized(application) {
 application.setAttribute(WINNER, null);
 }
 session.setAttribute("buzzin.message", "RESET");
 } else if (command.equals("show")) {
 String winner = null;
 synchronized(application) {
 winner = (String)application.getAttribute(WINNER);
 }
 if (winner == null) {
 session.setAttribute("buzzin.message",
 "No winner yet!");
 } else {
 session.setAttribute("buzzin.message",
 "Winner is: " + winner);
 }
 }
 else {
 session.setAttribute("buzzin.message",
 "ERROR: Command " + command + " invalid.");
 }
 RequestDispatcher rd = application.getRequestDispatcher(
 "/hosts/index.jsp");
 rd.forward(request, response);
 } else {
 out.println("<html><head><title>Nice try, but... </title><head>");
 out.println("<body bgcolor=\"white\">");
 out.println(
 "I'm sorry, Dave, but you know I can't allow you to do that.");
 out.println("Even if you are " + request.getUserPrincipal());
 }
 out.println("</body></html>");
 }
}

Two HTML pages lead to the servlet. The contestant’s page simply has a large link (). Anchor links generate an HTML GET, so the
servlet engine calls doGet():

<html><head><title>Buzz In!</title></head>
<body>
<h1>Buzz In!</h1>
<p>

Press here to buzz in!

The HTML is pretty plain, but it does the job. Figure 16-3 shows the look and feel.

502 | Chapter 16: Threaded Java

Figure 16-3. BuzzInServlet in action

The game show host has access to an HTML form with a POST method, which calls
the doPost() method. This displays the winner to the game show host and resets the
buzzer for the next question.

<html><head><title>Reset Buzzer</title></head>
<body>
<h1>Display Winner</h1>
<p>
The winner is:
<form method="post" action="servlet/BuzzInServlet">
 <input type="hidden" name="command" value="show">
 <input type="hidden" name="password" value="syzzy">
 <input type="submit" name="Show" value="Show">
</form>
<h1>Reset Buzzer</h1>
<p>
Remember to RESET before you ask the contestants each question!
<form method="post" action="servlet/BuzzInServlet">
 <input type="hidden" name="command" value="reset">
 <input type="hidden" name="password" value="syzzy">
 <input type="submit" name="Reset" value="RESET!">
</form>

16.5 Synchronizing Threads with the synchronized Keyword | 503

A password is provided; it’s hardcoded here, but in reality the password would come
from a properties file (Recipe 7.10) or a servlet initialization parameter (as described
in Java Servlet Programming [O’Reilly]):

The game show host functionality is shown in Figure 16-4.

Figure 16-4. BuzzInServlet game show host function

For a more complete game, of course, the servlet would keep a Stack (see Recipe
7.16) of people in the order they buzzed in, in case the first person doesn’t answer the
question correctly. Access to this would have to be synchronized, too.

16.6 Simplifying Synchronization with Locks
Problem
You want an easier means of synchronizing threads.

Solution
Use the Lock mechanism in java.util.concurrent.locks.

504 | Chapter 16: Threaded Java

http://shop.oreilly.com/product/9780596000400.do

Discussion
Use the java.util.concurrent.locks package; its major interface is Lock. This
interface has several methods for locking and one for unlocking. Here is the general
pattern for using it:

Lock thelock =
try {
 lock.lock();
 // do the work that is protected by the lock
} finally {
 lock.unlock();
}

The point of putting the unlock() call in the finally block is, of course, to ensure
that it is not bypassed if an exception occurs (the code may also include one or more
catch blocks, as required by the work being performed).

The improvement here, compared with the traditional synchronized methods and
blocks, is that using a Lock actually looks like a locking operation! And, as I men‐
tioned, several means of locking are available, shown in Table 16-1.

Table 16-1. Locking methods of the Lock class
Return
type

Method Meaning

void lock() Get the lock, even if you have to wait until another thread
frees it first

boolean tryLock() Get the lock only if it is free right now

boolean tryLock(long time, TimeUnit
units) throws
InterruptedException

Try to get the lock, but only wait for the length of time
indicated

void lockInterruptibly() throws
InterruptedException

Get the lock, waiting unless interrupted

void unlock() Release the lock

The TimeUnit class lets you specify the units for the amount of time specified, includ‐
ing TimeUnit.SECONDS, TimeUnit.MILLISECONDS, TimeUnit.MICROSECONDS, and Time
Unit.NANOSECONDS.

In all cases, the lock must be released with unlock() before it can be locked again.

The standard Lock is useful in many applications, but depending on the application’s
requirements, other types of locks may be more appropriate. Applications with asym‐
metric load patterns may benefit from a common pattern called the reader-writer
lock; I call this one a readers-writer lock to emphasize that there can be many readers
but only one writer. It’s actually a pair of interconnected locks; any number of readers

16.6 Simplifying Synchronization with Locks | 505

can hold the read lock and read the data, as long as it’s not being written (shared read
access). A thread trying to lock the write lock, however, waits until all the readers are
finished and then locks them out until the writer is finished (exclusive write access).
To support this pattern, both the ReadWriteLock interface and the implementing
class ReentrantReadWriteLock are available. The interface has only two methods,
readLock() and writeLock(), which provide a reference to the appropriate Lock
implementation. These methods do not, in themselves, lock or unlock the locks; they
only provide access to them, so it is common to see code like this:

rwlock.readLock().lock();
...
rwlock.readLock().unlock();

To demonstrate ReadWriteLock in action, I wrote the business logic portion of a web-
based voting application. It could be used in voting for candidates or for the more
common web poll. Presuming that you display the results on the home page and
change the data only when somebody takes the time to click a response to vote, this
application fits one of the intended criteria for ReadWriteLock—that is, that you have
more readers than writers. The main class, ReadersWritersDemo, is shown in
Example 16-10. The helper class BallotBox is online; it simply keeps track of the
votes and returns a read-only Iterator upon request. Note that in the run() method
of the reading threads, you could obtain the iterator while holding the lock but
release the lock before printing it; this allows greater concurrency and better perfor‐
mance, but it could (depending on your application) require additional locking
against concurrent update.

Example 16-10. main/src/main/java/threads/ReadersWriterDemo.java

public class ReadersWriterDemo {
 private static final int NUM_READER_THREADS = 3;

 public static void main(String[] args) {
 new ReadersWriterDemo().demo();
 }

 /** Set this to true to end the program */
 private volatile boolean done = false;

 /** The data being protected. */
 private BallotBox theData;

 /** The read lock / write lock combination */
 private ReadWriteLock lock = new ReentrantReadWriteLock();

 /**
 * Constructor: set up some quasi-random initial data
 */

506 | Chapter 16: Threaded Java

 public ReadersWriterDemo() {
 List<String> questionsList = new ArrayList<>();
 questionsList.add("Agree");
 questionsList.add("Disagree");
 questionsList.add("No opinion");
 theData = new BallotBox(questionsList);
 }

 /**
 * Run a demo with more readers than writers
 */
 private void demo() {

 // Start two reader threads
 for (int i = 0; i < NUM_READER_THREADS; i++) {
 new Thread() {
 public void run() {
 while (!done) {
 lock.readLock().lock();
 try {
 theData.forEach(p ->
 System.out.printf("%s: votes %d%n",
 p.getName(),
 p.getVotes()));
 } finally {
 // Unlock in "finally" to be sure it gets done.
 lock.readLock().unlock();
 }

 try {
 Thread.sleep(((long)(Math.random()* 1000)));
 } catch (InterruptedException ex) {
 // nothing to do
 }
 }
 }
 }.start();
 }

 // Start one writer thread to simulate occasional voting
 new Thread() {
 public void run() {
 while (!done) {
 lock.writeLock().lock();
 try {
 theData.voteFor(
 // Vote for random candidate :-)
 // Performance: should have one PRNG per thread.
 (((int)(Math.random()*
 theData.getCandidateCount()))));
 } finally {
 lock.writeLock().unlock();

16.6 Simplifying Synchronization with Locks | 507

 }
 try {
 Thread.sleep(((long)(Math.random()*1000)));
 } catch (InterruptedException ex) {
 // nothing to do
 }
 }
 }
 }.start();

 // In the main thread, wait a while then terminate the run.
 try {
 Thread.sleep(10 * 1000);
 } catch (InterruptedException ex) {
 // nothing to do
 } finally {
 done = true;
 }
 }
}

Because this is a simulation and the voting is random, it does not always come out
50/50. In two consecutive runs, the following were the last line of each run:

Agree(6), Disagree(6)
Agree(9), Disagree(4)

See Also
The Lock interface also makes available Condition objects, which provide even more
flexibility. Consult the online documentation for more information.

16.7 Simplifying Producer/Consumer with the Queue
Interface
Problem
You need to control producer/consumer implementations involving multiple threads.

Solution
Use the Queue interface or the BlockingQueue subinterface.

Discussion
As an example of the simplifications possible with the java.util.Concurrent pack‐
age, consider the standard producer/consumer program. An implementation
synchronized using traditional Thread code (wait() and notifyAll()) is in the

508 | Chapter 16: Threaded Java

online source as ProdCons2. Example 16-11, ProdCons15.java, uses the java

.util.BlockingQueue (a subinterface of java.util.Queue) to reimplement Prod
Cons2 in about two-thirds the number of lines of code, and it’s simpler. The applica‐
tion simply puts items into a queue and takes them from it. In the example, I have
four producers and only three consumers, so the producers eventually wait. Running
the application on one of my older notebooks, the producers’ lead over the consum‐
ers increases to about 350 over the 10 seconds or so of running it.

Example 16-11. main/src/main/java/threads/ProdCons15.java

public class ProdCons15 {

 protected volatile boolean done = false;

 /** Inner class representing the Producer side */
 class Producer implements Runnable {

 protected BlockingQueue<Object> queue;

 Producer(BlockingQueue<Object> theQueue) { this.queue = theQueue; }

 public void run() {
 try {
 while (!done) {
 Object justProduced = getRequestFromNetwork();
 queue.put(justProduced);
 System.out.println(
 "Produced 1 object; List size now " + queue.size());
 }
 } catch (InterruptedException ex) {
 System.out.println("Producer INTERRUPTED");
 }
 }

 Object getRequestFromNetwork() { // Simulation of reading from client
 try {
 Thread.sleep(10); // simulate time passing during read
 } catch (InterruptedException ex) {
 System.out.println("Producer Read INTERRUPTED");
 }
 return new Object();
 }
 }

 /** Inner class representing the Consumer side */
 class Consumer implements Runnable {
 protected BlockingQueue<Object> queue;

 Consumer(BlockingQueue<Object> theQueue) { this.queue = theQueue; }

16.7 Simplifying Producer/Consumer with the Queue Interface | 509

 public void run() {
 try {
 while (true) {
 Object obj = queue.take();
 int len = queue.size();
 System.out.println("List size now " + len);
 process(obj);
 if (done) {
 return;
 }
 }
 } catch (InterruptedException ex) {
 System.out.println("CONSUMER INTERRUPTED");
 }
 }

 void process(Object obj) {
 // Thread.sleep(123) // Simulate time passing
 System.out.println("Consuming object " + obj);
 }
 }

 ProdCons15(int nP, int nC) {
 BlockingQueue<Object> myQueue = new LinkedBlockingQueue<>();
 for (int i=0; i<nP; i++)
 new Thread(new Producer(myQueue)).start();
 for (int i=0; i<nC; i++)
 new Thread(new Consumer(myQueue)).start();
 }

 public static void main(String[] args)
 throws IOException, InterruptedException {

 // Start producers and consumers
 int numProducers = 4;
 int numConsumers = 3;
 ProdCons15 pc = new ProdCons15(numProducers, numConsumers);

 // Let the simulation run for, say, 10 seconds
 Thread.sleep(10*1000);

 // End of simulation - shut down gracefully
 pc.done = true;
 }
}

ProdCons15 is superior to ProdCons2 in almost all aspects. However, the queue sizes
that are output no longer necessarily exactly reflect the size of the queue after the
object is inserted or removed. Because there’s no longer any locking ensuring atomic‐
ity here, any number of queue operations could occur on other threads between the
Producer thread’s queue.put() and the Consumer thread’s queue size query.

510 | Chapter 16: Threaded Java

16.8 Optimizing Parallel Processing with Fork/Join
Problem
You want to optimize use of multiple processors and/or large problem spaces.

Solution
Use the Fork/Join framework.

Discussion
Fork/Join is an ExecutorService intended mainly for reasonably large tasks that can
naturally be divided recursively, where you don’t have to ensure equal timing for each
division. It uses work-stealing to keep threads busy.

The basic means of using Fork/Join is to extend RecursiveTask or RecursiveAction
and override its compute() method along these lines:

if (assigned portion of work is “small enough”) {
 perform the work myself
} else {
 split my work into two pieces
 invoke the two pieces and await the results
}

There are two classes: RecursiveTask and RecursiveAction. The main difference is
that RecursiveTask has each step of the work returning a value, whereas
RecursiveAction does not. In other words, the RecursiveAction method compute()
has a return type of void, whereas the RecursiveAction method of the same name
has a return type of T, some type parameter. You might use RecursiveTask when each
call returns a value that represents the computation for its subset of the overall task,
in other words, to divide a problem like summarizing data—each task would summa‐
rize one part and return that. You might use RecursiveAction to operate over a large
data structure performing some transform of the data in place.

There are two demos of the Fork/Join framework here, named after the ForkJoin
Task that each subclasses:

• RecursiveTaskDemo uses fork() and join() directly.
• RecursiveActionDemo uses invokeAll() to invoke the two subtasks. invoke() is

just a fork() and a join(); and invokeAll() just does this repeatedly until done.
Compare the versions of compute() in Examples 16-12 and 16-13 and this will
make sense.

16.8 Optimizing Parallel Processing with Fork/Join | 511

Example 16-12. main/src/main/java/threads/RecursiveActionDemo.java

/** A trivial demonstration of the "Fork-Join" framework:
 * square a bunch of numbers using RecursiveAction.
 * We use RecursiveAction here b/c we don't need each
 * compute() call to return its result; the work is
 * accumulated in the "dest" array.
 * @see RecursiveTaskDemo when each computation has to return a value.
 * @author Ian Darwin
 */
public class RecursiveActionDemo extends RecursiveAction {

 private static final long serialVersionUID = 3742774374013520116L;

 static int[] raw = {
 19, 3, 0, -1, 57, 24, 65, Integer.MAX_VALUE, 42, 0, 3, 5
 };
 static int[] sorted = null;

 int[] source;
 int[] dest;
 int length;
 int start;
 final static int THRESHOLD = 4;

 public static void main(String[] args) {
 sorted = new int[raw.length];
 RecursiveActionDemo fb =
 new RecursiveActionDemo(raw, 0, raw.length, sorted);
 ForkJoinPool pool = new ForkJoinPool();
 pool.invoke(fb);
 System.out.print('[');
 for (int i : sorted) {
 System.out.print(i + ",");
 }
 System.out.println(']');
 }

 public RecursiveActionDemo(int[] src, int start, int length, int[] dest) {
 this.source = src;
 this.start = start;
 this.length = length;
 this.dest = dest;
 }

 @Override
 protected void compute() {
 System.out.println("RecursiveActionDemo.compute()");
 if (length <= THRESHOLD) { // Compute Directly
 for (int i = start; i < start + length; i++) {
 dest[i] = source[i] * source[i];
 }

512 | Chapter 16: Threaded Java

 } else { // Divide and Conquer
 int split = length / 2;
 invokeAll(
 new RecursiveActionDemo(source, start, split, dest),
 new RecursiveActionDemo(source, start + split, length - split, dest));
 }
 }
}

Example 16-13. main/src/main/java/threads/RecursiveTaskDemo.java

/**
 * Demonstrate the Fork-Join Framework to average a large array.
 * Running this on a multi-core machine as e.g.,
 * $ time java threads.RecursiveTaskDemo
 * shows that the CPU time is always greater than the elapsed time,
 * indicating that we are making use of multiple cores.
 * That said, it is a somewhat contrived demo.
 *
 * Use RecursiveTask<T> where, as in this example, each call returns
 * a value that represents the computation for its subset of the overall task.
 * @see RecursiveActionDemo when each computation does not return a value,
 * e.g., when each is just working on some section of a large array.
 * @author Ian Darwin
 */
public class RecursiveTaskDemo extends RecursiveTask<Long> {

 private static final long serialVersionUID = 3742774374013520116L;

 static final int N = 10000000;
 final static int THRESHOLD = 500;

 int[] data;
 int start, length;

 public static void main(String[] args) {
 int[] source = new int[N];
 loadData(source);
 RecursiveTaskDemo fb = new RecursiveTaskDemo(source, 0, source.length);
 ForkJoinPool pool = new ForkJoinPool();
 long before = System.currentTimeMillis();
 pool.invoke(fb);
 long after = System.currentTimeMillis();
 long total = fb.getRawResult();
 long avg = total / N;
 System.out.println("Average: " + avg);
 System.out.println("Time :" + (after - before) + " mSec");
 }

 static void loadData(int[] data) {
 Random r = new Random();
 for (int i = 0; i < data.length; i++) {

16.8 Optimizing Parallel Processing with Fork/Join | 513

 data[i] = r.nextInt();
 }
 }

 public RecursiveTaskDemo(int[] data, int start, int length) {
 this.data = data;
 this.start = start;
 this.length = length;
 }

 @Override
 protected Long compute() {
 if (length <= THRESHOLD) { // Compute Directly
 long total = 0;
 for (int i = start; i < start + length; i++) {
 total += data[i];
 }
 return total;
 } else { // Divide and Conquer
 int split = length / 2;
 RecursiveTaskDemo t1 =
 new RecursiveTaskDemo(data, start, split);
 t1.fork();
 RecursiveTaskDemo t2 =
 new RecursiveTaskDemo(data, start + split, length - split);
 return t2.compute() + t1.join();
 }
 }
}

The biggest undefined part there is “small enough”; you may have to do some experi‐
mentation to see what works well as a chunk size. Or, better yet, write more code
using a feedback control system, measuring the system throughput as the parameter
is dynamically tweaked up and down, and have the system automatically arrive at the
optimal value for that particular computer system and runtime. This is left as an
extended exercise for the reader.

16.9 Scheduling Tasks: Future Times, Background Saving
in an Editor
Problem
You need to schedule something for a fixed time in the future. You need to save the
user’s work periodically in an interactive program.

514 | Chapter 16: Threaded Java

Solution
For one-shot future tasks, use the Timer service with a TimerTask object. For recur‐
ring tasks, either use a background thread, or use the Timer service and recompute
the next time. For more complex tasks, such as running something at high noon
every second Thursday, consider using a third-party scheduling library such as
Quartz or, in JavaEE/Jakarta, the EJB Timer Service.

Discussion
There are several ways of scheduling things in the future. For one-shot scheduling,
you can use the Timer service from java.util. For recurring tasks, you can use a
Runnable, which sleeps in a loop.

Here is an example of the Timer service in java.util. These are the basics of using
this API:

1. Create a Timer service object.
2. Use it to schedule instances of TimerTask with a legacy Date object indicating the

date and time.

The example code in Example 16-14 uses Item as a subclass of TimerTask to perform
a simple notification action in the future, based on reading lines with year-month-
day-hour-minute Task, such as the following:

2020 12 25 10 30 Get some sleep.
2020 12 26 01 27 Finish this program
2020 12 25 01 29 Document this program

Example 16-14. main/src/main/java/threads/ReminderService.java

public class ReminderService {

 /** The Timer object */
 Timer timer = new Timer();

 class Item extends TimerTask {
 String message;
 Item(String m) {
 message = m;
 }
 public void run() {
 message(message);
 }
 }

 public static void main(String[] argv) throws Exception {
 new ReminderService().loadReminders();

16.9 Scheduling Tasks: Future Times, Background Saving in an Editor | 515

http://www.quartz-scheduler.org
https://eclipse-ee4j.github.io/jakartaee-tutorial/ejb-basicexamples005.html

 }

 private String dfPattern = "yyyy MM dd hh mm ss";
 private SimpleDateFormat formatter = new SimpleDateFormat(dfPattern);

 protected void loadReminders() throws Exception {

 Files.lines(Path.of("ReminderService.txt")).forEach(aLine -> {

 ParsePosition pp = new ParsePosition(0);
 Date date = formatter.parse(aLine, pp);
 String task = aLine.substring(pp.getIndex());
 if (date == null) {
 System.out.println("Invalid date in " + aLine);
 return;
 }
 System.out.println("Date = " + date + "; task = " + task);
 timer.schedule(new Item(task), date);
 });
 }

In real life the program would need to run for long periods of time and use some
more sophisticated messaging pattern; here we only show the timing scheduling por‐
tion.

The code fragment in Example 16-15 creates a background thread to handle back‐
ground saves, as in most word processors.

Example 16-15. main/src/main/java/threads/ReminderService.java

public class AutoSave extends Thread {
 /** The FileSave interface is implemented by the main class. */
 protected FileSaver model;
 /** How long to sleep between tries */
 public static final int MINUTES = 5;
 private static final int SECONDS = MINUTES * 60;

 public AutoSave(FileSaver m) {
 super("AutoSave Thread");
 setDaemon(true); // so we don't keep the main app alive
 model = m;
 }

 public void run() {
 while (true) { // entire run method runs forever.
 try {
 sleep(SECONDS*1000);
 } catch (InterruptedException e) {
 // do nothing with it
 }
 if (model.wantAutoSave() && model.hasUnsavedChanges())

516 | Chapter 16: Threaded Java

 model.saveFile(null);
 }
 }

 // Not shown:
 // 1) saveFile() must now be synchronized.
 // 2) method that shuts down main program be synchronized on *SAME* object
}

/** Local copy of FileSaver interface, for compiling AutoSave demo. */
interface FileSaver {
 /** Load new model from fn; if null, prompt for new fname */
 public void loadFile(String fn);

 /** Ask the model if it wants AutoSave done for it */
 public boolean wantAutoSave();

 /** Ask the model if it has any unsaved changes, don't save otherwise */
 public boolean hasUnsavedChanges();

 /** Save the current model's data in fn.
 * If fn == null, use current fname or prompt for a filename if null.
 */
 public void saveFile(String fn);
}

As you can see in the run() method, this code sleeps for five minutes (300 seconds),
then checks whether it should do anything. If the user has turned autosave off, or
hasn’t made any changes since the last save, nothing needs to be done. Otherwise, we
call the saveFile() method in the main program, which saves the data to the current
file. It would be smarter to save it to a recovery file of some name, as the better word
processors do.

What’s not shown is that now all the methods must be synchronized. It’s easy to see
why if you think about how the save method would work if the user clicked the Save
button at the same time that the autosave method called it, or if the user clicked Exit
while the file save method had just opened the file for writing. The strategy of saving
to a recovery file gets around some of this, but it still needs a great deal of care.

See Also
For details on java.util.concurrent, see the documentation accompanying the
JDK. For background on JSR 166, see Doug Lea’s home page and his JSR 166 page.

A great reference on Java threading is Java Concurrency in Practice by Brian Goetz et
al. (Addison-Wesley).

Project Loom: Fibers and Continuations aims to promote easier-to-use, lighter-
weight concurrency mechanisms.

16.9 Scheduling Tasks: Future Times, Background Saving in an Editor | 517

http://gee.cs.oswego.edu
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
https://wiki.openjdk.java.net/display/loom/Main

CHAPTER 17

Reflection, or “A Class Named Class”

17.0 Introduction
The class java.lang.Class and the reflection package java.lang.reflect provide a
number of mechanisms for gathering information from the Java Virtual Machine.
Known collectively as reflection, these facilities allow you to load classes on the fly, to
find methods and fields in classes, to generate listings of them, and to invoke meth‐
ods on dynamically loaded classes. There is even a mechanism to let you construct a
class from scratch (well, actually, from an array of bytes) while your program is run‐
ning. This is about as close as Java lets you get to the magic, secret internals of the
Java machine.

The JVM itself is a large program, normally written in C and/or C++, that imple‐
ments the Java Virtual Machine abstraction. You can get the source for OpenJDK and
other JVMs via the internet, which you could study for months. Here we concentrate
on just a few aspects, and only from the point of view of a programmer using the
JVM’s facilities, not how it works internally; that is an implementation detail that
could vary from one vendor’s JVM to another.

I’ll start with loading an existing class dynamically, move on to listing the fields and
methods of a class and invoking methods, and end by creating a class on the fly using
a ClassLoader. One of the more interesting aspects of Java, and one that accounts for
its flexibility (applets in days of yore, servlets, web services, and other dynamic APIs)
while also once being part of its perceived speed problem, is the notion of dynamic
loading. For example, even the simplest “Hello, Java” program has to load the class file
for your HelloJava class, the class file for its parent (usually java.lang.Object), the
class for PrintStream (because you used System.out), the class for PrintStream’s
parent, and IOException, and its parent, and so on. To see this in action, try some‐
thing like this:

519

java -verbose HelloJava | more

To take another example, when applets were popular, a browser would download an
applet’s bytecode file over the internet and run it on your desktop. How does it load
the class file into the running JVM? We discuss this little bit of Java magic in Recipe
17.4. The chapter ends with replacement versions of the JDK tools javap and a cross-
reference tool that you can use to become a famous Java author by publishing your
very own reference to the complete Java API.

17.1 Getting a Class Descriptor
Problem
You want to get a Class object from a class name or instance.

Solution
If the type name is known at compile time, you can get the class instance using the
compiler keyword .class, which works on any type that is known at compile time,
even the eight primitive types.

Otherwise, if you have an object (an instance of a class), you can call the
java.lang.Object method getClass(), which returns the Class object for the
object’s class (now that was a mouthful!):

 System.out.println("Trying the ClassName.class keyword:");
 System.out.println("Object class: " + Object.class);
 System.out.println("String class: " + String.class);
 System.out.println("String[] class: " + String[].class);
 System.out.println("Calendar class: " + Calendar.class);
 System.out.println("Current class: " + ClassKeyword.class);
 System.out.println("Class for int: " + int.class);
 System.out.println();

 System.out.println("Trying the instance.getClass() method:");
 System.out.println("Sir Robin the Brave".getClass());
 System.out.println(Calendar.getInstance().getClass());

When we run it, we see this:

C:\javasrc\reflect>java ClassKeyword
Trying the ClassName.class keyword:
Object class: class java.lang.Object
String class: class java.lang.String
String[] class: class [Ljava.lang.String;
Calendar class: class java.util.Calendar
Current class: class ClassKeyword
Class for int: int

520 | Chapter 17: Reflection, or “A Class Named Class”

Trying the instance.getClass() method:
class java.lang.String
class java.util.GregorianCalendar

C:\javasrc\reflect>

Nothing fancy, but as you can see, you can get the Class object for almost anything
known at compile time, whether it’s part of a package or not.

17.2 Finding and Using Methods and Fields
Problem
You need to find arbitrary method or field names in arbitrary classes.

Solution
Use the reflection package java.lang.reflect.

Discussion
If you just wanted to find fields and methods in one particular class, you wouldn’t
need this recipe; you could simply create an instance of the class using new and refer
to its fields and methods directly. But this allows you to find methods and fields in
any class, even classes that have not yet been written! Given a class object created as
in Recipe 17.1, you can obtain a list of constructors, a list of methods, or a list of
fields. The method getMethods() lists the methods available for a given class as an
array of Method objects. Similarly, getFields() returns a list of Field objects.
Because constructor methods are treated specially by Java, there is also a getConstruc
tors() method, which returns an array of Constructor objects. Even though Class is
in the package java.lang, the Constructor, Method, and Field objects it returns are
in java.lang.reflect, so you need an import of this package. The ListMethods class
(see Example 17-1) shows how get a list of methods in a class whose name is known
at runtime.

Example 17-1. main/src/main/java/reflection/ListMethods.java

public class ListMethods {
 public static void main(String[] argv) throws ClassNotFoundException {
 if (argv.length == 0) {
 System.err.println("Usage: ListMethods className");
 return;
 }
 Class<?> c = Class.forName(argv[0]);
 Constructor<?>[] cons = c.getConstructors();
 printList("Constructors", cons);

17.2 Finding and Using Methods and Fields | 521

 Method[] meths = c.getMethods();
 printList("Methods", meths);
 }
 static void printList(String s, Object[] o) {
 System.out.println("*** " + s + " ***");
 for (int i=0; i<o.length; i++)
 System.out.println(o[i].toString());
 }
}

For example, you could run Example 17-1 on a class like java.lang.String and get a
fairly lengthy list of methods; I’ll only show part of the output so you can see what it
looks like:

> java reflection.ListMethods java.lang.String
*** Constructors ***
public java.lang.String()
public java.lang.String(java.lang.String)
public java.lang.String(java.lang.StringBuffer)
public java.lang.String(byte[])
// and many more...
*** Methods ***
public static java.lang.String java.lang.String.copyValueOf(char[])
public static java.lang.String java.lang.String.copyValueOf(char[],int,int)
public static java.lang.String java.lang.String.valueOf(char)
// and more valueOf() forms...
public boolean java.lang.String.equals(java.lang.Object)
public final native java.lang.Class java.lang.Object.getClass()
// and more java.lang.Object methods...
public char java.lang.String.charAt(int)
public int java.lang.String.compareTo(java.lang.Object)
public int java.lang.String.compareTo(java.lang.String)

You can see that this could be extended (almost literally) to write a BeanMethods class
that would list only the set/get methods defined in a JavaBean (see Recipe 15.4).

Alternatively, you can find a particular method and invoke it, or find a particular field
and refer to its value. Let’s start by finding a given field, because that’s the easiest.
Example 17-2 is code that, given an Object and the name of a field, finds the field
(gets a Field object) and then retrieves and prints the value of that Field as an int.

Example 17-2. main/src/main/java/reflection/FindField.java

public class FindField {

 public static void main(String[] unused)
 throws NoSuchFieldException, IllegalAccessException {

 // Create instance of FindField
 FindField gf = new FindField();

522 | Chapter 17: Reflection, or “A Class Named Class”

 // Create instance of target class (YearHolder defined below).
 Object o = new YearHolder();

 // Use gf to extract a field from o.
 System.out.println("The value of 'currentYear' is: " +
 gf.intFieldValue(o, "currentYear"));
 }

 int intFieldValue(Object o, String name)
 throws NoSuchFieldException, IllegalAccessException {
 Class<?> c = o.getClass();
 Field fld = c.getField(name);
 int value = fld.getInt(o);
 return value;
 }
}

/** This is just a class that we want to get a field from */
class YearHolder {
 /** Just a field that is used to show getting a field's value. */
 public int currentYear = Calendar.getInstance().get(Calendar.YEAR);
}

What if we need to find a method? The simplest way is to use the methods
getMethod() and invoke(). But this is not altogether trivial. Suppose that somebody
gives us a reference to an object. We don’t know its class but have been told that it
should have this method:

public void work(String s) { }

We wish to invoke work(). To find the method, we must make an array of Class
objects, one per item in the parameter list. So, in this case, we make an array contain‐
ing only a reference to the class object for String. Because we know the name of the
class at compile time, we’ll use the shorter invocation String.class instead of
Class.forName(). This, plus the name of the method as a string, gets us entry into
the getMethod() method of the Class object. If this succeeds, we have a Method
object. But guess what? In order to invoke the method, we have to construct yet
another array, this time an array of Object references actually containing the data to
be passed to the invocation. We also, of course, need an instance of the class in whose
context the method is to be run. For this demonstration class, we need to pass only a
single string, because our array consists only of the string. Example 17-3 is the code
that finds the method and invokes it.

Example 17-3. main/src/main/java/reflection/GetAndInvokeMethod.java

/**
 * Get a given method, and invoke it.
 * @author Ian F. Darwin, http://www.darwinsys.com/

17.2 Finding and Using Methods and Fields | 523

 */
public class GetAndInvokeMethod {

 /** This class is just here to give us something to work on,
 * with a println() call that will prove we got into it.
 */
 static class X {
 public void work(int i, String s) {
 System.out.printf("Called: i=%d, s=%s%n", i, s);
 }
 // The main code does not use this overload.
 public void work(int i) {
 System.out.println("Unexpected call!");
 }
 }
 public static void main(String[] argv) {
 try {
 Class<?> clX = X.class; // or Class.forName("X");

 // To find a method we need the array of matching Class types.
 Class<?>[] argTypes = {
 int.class,
 String.class
 };

 // Now find a Method object for the given method.
 Method worker = clX.getMethod("work", argTypes);

 // To INVOKE the method, we need the invocation
 // arguments, as an Object array.
 Object[] theData = {
 42,
 "Chocolate Chips"
 };

 // The obvious last step: invoke the method.
 // First arg is an instance, null if static method
 worker.invoke(new X(), theData);

 } catch (Exception e) {
 System.err.println("Invoke() failed: " + e);
 }
 }
}

Not tiny, but it’s still not bad. In most programming languages, you couldn’t do that
in the 40 lines it took us here.

A word of caution: when the arguments to a method are of a primitive type, such as
int, you do not pass Integer.class into getMethod(). Instead, you must use the
class object representing the primitive type int. The easiest way to find this class is in

524 | Chapter 17: Reflection, or “A Class Named Class”

the Integer class, as a public constant named TYPE, so you’d pass Integer.TYPE. The
same is true for all the primitive types; for each, the corresponding wrapper class has
the primitive class referred to as TYPE.

Java also includes a mechanism called a MethodHandle that was intended both to sim‐
plify and to generalize use of Reflection to invoke methods; we do not cover it here
because in practice it has not shown to be a significant improvement over using the
Reflection API.

17.3 Accessing Private Methods and Fields via Reflection
Problem
You want to access private fields and have heard you can do so using the Reflection
API.

Solution
It’s generally a bad idea to access private fields. But if you have to, and the Security
Manager allows you to use Reflection, you can.

Discussion
There is occasionally a need to access private fields in other classes. For example, I
did so recently in writing a JUnit test case that needed to see all the fields of a target
class. The secret is to call the Field or Method descriptor’s setAccessible() method
passing the value true before trying to get the value or invoke the method. It really is
that easy, as shown in Example 17-4.

Example 17-4. main/src/main/java/reflection/DefeatPrivacy.java

class X {
 @SuppressWarnings("unused") // Used surreptitiously below.
 private int p = 42;
 int q = 3;
}

/**
 * Demonstrate that it is, in fact, all too easy to access private members
 * of an object using Reflection, using the default SecurityManager
 */
public class DefeatPrivacy {

 public static void main(String[] args) throws Exception {
 new DefeatPrivacy().process();
 }

17.3 Accessing Private Methods and Fields via Reflection | 525

 private void process() throws Exception {
 X x = new X();
 System.out.println(x);
 // System.out.println(x.p); // Won't compile
 System.out.println(x.q);
 Class<? extends X> class1 = x.getClass();
 Field[] flds = class1.getDeclaredFields();
 for (Field f : flds) {
 f.setAccessible(true); // bye-bye "private"
 System.out.println(f + "==" + f.get(x));
 f.setAccessible(false); // reset to "correct" state
 }
 }
}

Use this with extreme care, because it can defeat some of the most
cherished principles of Java programming.

17.4 Loading and Instantiating a Class Dynamically
Problem
You want to load classes dynamically, just like web servers load your servlets.

Solution
Use class.forName("ClassName"); and the class’s newInstance() method.

Discussion
Suppose you are writing a Java application and want other developers to be able to
extend your application by writing Java classes that run in the context of your appli‐
cation. In other words, these developers are, in essence, using Java as an extension
language, in the same way that applets are an extension of a web browser. You would
probably want to define a small set of methods that these extension programs would
have and that you could call for such purposes as initialization, operation, and termi‐
nation. The best way to do this is, of course, to publish a given, possibly abstract, class
that provides those methods and get the developers to subclass from it. Sound famil‐
iar? It should. This is just how web browsers such as Netscape allow the deployment
of applets.

We’ll leave the thornier issues of security and of loading a class file over a network
socket for now and assume that the user can install the classes into the application

526 | Chapter 17: Reflection, or “A Class Named Class”

directory or into a directory that appears in the CLASSPATH at the time the program is
run. First, let’s define our class. We’ll call it Cooklet (see Example 17-5) to avoid
infringing on the overused word applet. Pretend each subclass will represent the code
to drive some elaborate kind of food-preparing-and-cooking appliance through the
steps of one traditional recipe. And we’ll initially take the easiest path from ingredi‐
ents to cookies before we complicate it.

Example 17-5. Cooklet.java

/** A simple class, just to provide the list of methods that
 * users need to provide to be usable in our application.
 * Note that the class is abstract so you must subclass it,
 * but the methods are non-abstract so you don't have to provide
 * dummy versions if you don't need a particular functionality.
 */
public abstract class Cooklet {

 /** The initialization method. The Cookie application will
 * call you here (AFTER calling your no-argument constructor)
 * to allow you to initialize your code
 */
 public void initialize() {
 }

 /** The work method. The cookie application will call you
 * here when it is time for you to start cooking.
 */
 public void work() {
 }

 /** The termination method. The cookie application will call you
 * here when it is time for you to stop cooking and shut down
 * in an orderly fashion.
 */
 public void terminate() {
 }
}

Now, because we’ll be baking, er, making this available to other people, we’ll probably
want to cook up a demonstration version too; see Example 17-6.

Example 17-6. main/src/main/java/reflection/DemoCooklet.java

public class DemoCooklet extends Cooklet {
 public void work() {
 System.out.println("I am busy baking cookies.");
 }
 public void terminate() {
 System.out.println("I am shutting down my ovens now.");

17.4 Loading and Instantiating a Class Dynamically | 527

 }
}

But how does our application use it? Once we have the name of the user’s class, we
need to create a Class object for that class. This can be done easily using the static
method Class.forName(). Then we can create an instance of it using the Class
object’s newInstance() method; this calls the class’s no-argument constructor. Then
we simply cast the newly constructed object to our Cooklet class, and we can call its
methods! It actually takes longer to describe this code than to look at the code, so let’s
do that now; see Example 17-7.

Example 17-7. main/src/main/java/reflection/Cookies.java

public class Cookies {
 public static void main(String[] argv) {
 System.out.println("Cookies Application Version 0.0");
 Cooklet cooklet = null;
 String cookletClassName = argv[0];
 try {
 Class<Cooklet> cookletClass =
 (Class<Cooklet>) Class.forName(cookletClassName);
 cooklet = cookletClass.newInstance();
 } catch (Exception e) {
 System.err.println("Error " + cookletClassName + e);
 }
 cooklet.initialize();
 cooklet.work();
 cooklet.terminate();
 }
}

And if we run it?

$ java Cookies DemoCooklet
Cookies Application Version 0.0
I am busy baking cookies.
I am shutting down my ovens now.
$

Of course, this version has rather limited error handling. But you already know how
to fix that. Your ClassLoader can also place classes into a package by constructing a
Package object; you should do this if loading any medium-sized set of application
classes.

528 | Chapter 17: Reflection, or “A Class Named Class”

17.5 Constructing a Class from Scratch with a ClassLoader
Problem
You need to load a class from a nonstandard location and run its methods.

Solution
Examine the existing loaders such as java.net.URLClassLoader. If none is suitable,
write and use your own ClassLoader.

Discussion
A ClassLoader, of course, is a program that loads classes. One ClassLoader is built
into the Java Virtual Machine, but your application can create others as needed.
Learning to write and run a working ClassLoader and using it to load a class and run
its methods is a nontrivial exercise. In fact, you rarely need to write a ClassLoader,
but knowing how is helpful in understanding how the JVM finds classes, creates
objects, and calls methods.

ClassLoader itself is abstract; you must subclass it, presumably providing a load
Class() method that loads classes as you wish. It can load the bytes from a network
connection, a local disk, RAM, a serial port, or anywhere else. Or you can construct
the class file in memory yourself, if you have access to a compiler.

There is a general-purpose loader called java.net.URLClassLoader that can be used
if all you need is to load classes via the web protocol (or, more generally, from one or
more URLs).

You must call the ClassLoader loadClass() method for any classes you wish to
explicitly load from it. Note that this method is called to load all classes required for
classes you load (superclasses that aren’t already loaded, for example). However, the
JVM still loads classes that you instantiate with the new operator normally via
classpath.

When writing a ClassLoader, your loadClass() method needs to get the class file
into a byte array (typically by reading it), convert the array into a Class object, and
return the result.

What? That sounds a bit like “And Then a Miracle Occurs…” And it is. The miracle of
class creation, however, happens down inside the JVM, where you don’t have access
to it. Instead, your ClassLoader has to call the protected defineClass() method in
your superclass (which is java.lang.ClassLoader). This is illustrated in Figure 17-1,
where a stream of bytes containing a hypothetical Chicken class is converted into a
ready-to-run Chicken class in the JVM by calling the defineClass() method.

17.5 Constructing a Class from Scratch with a ClassLoader | 529

Figure 17-1. ClassLoader in action

What next?

To use your ClassLoader subclass, you need to instantiate it and call its loadClass()
method with the name of the class you want to load. This gives you a Class object for
the named class; the Class object in turn lets you construct instances, find and call
methods, etc. Refer back to Recipe 17.2.

17.6 Constructing a Class from Scratch with JavaCompiler
Problem
You’d rather construct a class dynamically by generating source code and compiling
it.

Solution
Use the JavaCompiler from javax.tools.

Discussion
There are many cases where you might need to generate code on the fly. If you’re
writing a framework, you might want to introspect on a model class to find its fields,
and generate accessors for them on the fly. As we’ve seen in Recipe 17.2, you can do
this with the Field class. However, for a high-volume operation it may well be more
efficient to generate direct access code.

The Java Compiler API has been around since Java 1.6 and is fairly easy to use for
simple cases. Here are the basic steps:

• Get the JavaCompiler object for your current Java Runtime. If it’s not available,
either give up altogether, or fall back to using reflection.

530 | Chapter 17: Reflection, or “A Class Named Class”

• Get a CompilerTask (which is also a Callable) to run the compilation, passing
input and outputs.

• Invoke the Callable, either directly or by using an ExecutorService.
• Check the results. If true, invoke the class.

This is demonstrated in Example 17-8.

Example 17-8. main/src/main/java/reflection/JavaCompilerDemo.java

package reflection;

import java.lang.reflect.Method;
import java.net.URI;
import java.util.List;
import java.util.concurrent.Callable;

// tag::main[]
import javax.tools.JavaCompiler;
import javax.tools.SimpleJavaFileObject;
import javax.tools.ToolProvider;

/** Demo the Java Compiler API: Create a class, compile, load, and run it.
 * N.B. Will not run under Eclipse due to classpath settings;
 * best run it standalone using "java JavaCompiler.java"
 * @author Ian Darwin
 */
public class JavaCompilerDemo {
 private final static String PACKAGE = "reflection";
 private final static String CLASS = "AnotherDemo";
 private static boolean verbose;
 public static void main(String[] args) throws Exception {
 String source = "package " + PACKAGE + ";\n" +
 "public class " + CLASS + " {\n" +
 "\tpublic static void main(String[] args) {\n" +
 "\t\tString message = (args.length > 0 ? args[0] : \"Hi\")" + ";\n" +
 "\t\tSystem.out.println(message + \" from AnotherDemo\");\n" +
 "\t}\n}\n";
 if (verbose)
 System.out.print("Source to be compiled:\n" + source);

 JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();
 if (compiler == null) {
 throw new IllegalStateException("No default compiler, giving up.");
 }
 Callable<Boolean> compilation =
 compiler.getTask(null, null, null, List.of("-d","."), null,
 List.of(new MySource(CLASS, source)));
 boolean result = compilation.call();
 if (result) {
 System.out.println("Compiled OK");

17.6 Constructing a Class from Scratch with JavaCompiler | 531

 Class<?> c = Class.forName(PACKAGE + "." + CLASS);
 System.out.println("Class = " + c);
 Method m = c.getMethod("main", args.getClass());
 System.out.println("Method descriptor = " + m);
 Object[] passedArgs = { args };
 m.invoke(null, passedArgs);
 } else {
 System.out.println("Compilation failed");
 }
 }
}
// end::main[]

class MySource extends SimpleJavaFileObject {
 final String source;
 MySource(String fileName, String source) {
 super(URI.create("string:///" + fileName.replace('.', '/') +
 Kind.SOURCE.extension), Kind.SOURCE);
 this.source = source;
 }
 @Override
 public CharSequence getCharContent(boolean ignoreEncodingErrors) {
 return source;
 }
}

The source code that we want to compile. In real life it would probably be
dynamically generated, maybe using a StringBuffer.

Get a reference to the default JavaCompiler object.

Ask the compiler to create a CompilerTask to do the compilation. CompilerTask
is also Callable and we save it under that type. The -d and . are standard javac
arguments. MySource extends the compiler-provided API class SimpleJavaFi
leObject to give access to a file by creating a file:// URL.

A Callable can be put into a thread pool (ExecutorService) (see Recipe 16.1);
we don’t need this capability but the Compiler API returns it. We invoke the Call
able directly.

Assuming the result was true indicating success, we load the class with
Class.forName().

We have to find the main() method in the generated class. We reuse the
String[].class type from args, since all main methods have the same argument.

532 | Chapter 17: Reflection, or “A Class Named Class”

Finally, we can invoke the main method, reusing the incoming args array to pass
any welcome message along.

Running this program with and without an argument shows that the argument
passed to the JavaCompilerDemo is being passed correctly to the generated Another
Demo class:

$ java src/main/java/reflection/JavaCompilerDemo.java
Compiled OK
Class = class reflection.AnotherDemo
Method descriptor = public static void
 reflection.AnotherDemo.main(java.lang.String[])
Hi from AnotherDemo
$ java src/main/java/reflection/JavaCompilerDemo.java Welcome
Compiled OK
Class = class reflection.AnotherDemo
Method descriptor = public static void
 reflection.AnotherDemo.main(java.lang.String[])
Welcome from AnotherDemo
$

There is a lot to explore in the Compiler API, including the JavaFileManager that
lets you control the placement of class files (other than by using -d as we did here),
listeners to monitor compilation, and control of output and error streams. Consult
the javax.tools.JavaCompiler documentation for details.

17.7 Performance Timing
Problem
Slow performance?

Solution
Use a profiler, or time individual methods using System.currentTimeMillis()
before and after invoking the target method; the difference is the time that method
took.

Discussion

Profilers
Profiling tools—profilers—have a long history as one of the important tools in a pro‐
grammer’s toolkit. A commercial profiling tool will help find bottlenecks in your pro‐
gram by showing both the number of times each method was called and the amount
of time in each.

17.7 Performance Timing | 533

https://docs.oracle.com/javase/8/docs/api/javax/tools/JavaCompiler.html

Quite a bit of useful information can be obtained from a Java application by use of the
VisualVM tool, which was part of the Oracle JDK up until Java 8. With Java 9 this tool
was open-sourced, and it’s now available from the VisualVM project.

Another tool that is part of the JDK is Java Flight Recorder, which is now open-
sourced and built into the JDK. Its data is meant to be analyzed by Java Mission Con‐
trol. There are also third-party profilers that will give more detailed information; a
web search will find current commercial offerings.

Measuring a single method
The simplest technique is to save the JVM’s accumulated time before and after
dynamically loading a main program and then calculate the difference between those
times. Code to do just this is presented in Example 17-11; for now, just remember
that we have a way of timing a given Java class.

One way of measuring the efficiency of a particular operation is to run it many times
in isolation. The overall time the program takes to run thus approximates the total
time of many invocations of the same operation. Gross numbers like this can be com‐
pared if you want to know which of two ways of doing something is more efficient.
Consider the case of string concatenation versus println(). The code

println("Time is " + n.toString() + " seconds");

will probably work by creating a StringBuilder; appending the string "Time is", the
value of n as a string, and "seconds"; and finally converting the finished
StringBuilder to a String and passing that to println(). Suppose you have a pro‐
gram that does a lot of this, such as a Java servlet that creates a lot of HTML this way,
and you expect (or at least hope) your website to be sufficiently busy so that doing
this efficiently will make a difference. There are two ways of thinking about this:

• Theory A: this string concatenation is inefficient.
• Theory B: string concatenation doesn’t matter; println() is inefficient, too.

A proponent of Theory A might say that because println() just puts stuff into a
buffer, it is very fast and that string concatenation is the expensive part.

How to decide between Theory A and Theory B? Assume you are willing to write a
simple test program that tests both theories. Let’s just write a simple program both
ways and time it. Example 17-9 is the timing program for Theory A.

Example 17-9. main/src/main/java/performance/StringPrintA.java

public class StringPrintA {
 public static void main(String[] argv) {
 Object o = "Hello World";

534 | Chapter 17: Reflection, or “A Class Named Class”

https://visualvm.github.io/index.html
https://en.wikipedia.org/wiki/JDK_Flight_Recorder
https://en.wikipedia.org/wiki/JDK_Mission_Control
https://en.wikipedia.org/wiki/JDK_Mission_Control

 for (int i=0; i<100000; i++) {
 System.out.println("<p>" + o.toString() + "</p>");
 }
 }
}

StringPrintAA (in the javasrc repo but not printed here) is the same but explicitly
uses a StringBuilder for the string concatenation. Example 17-10 is the tester for
Theory B.

Example 17-10. main/src/main/java/performance/StringPrintB.java

public class StringPrintB {
 public static void main(String[] argv) {
 Object o = "Hello World";
 for (int i=0; i<100000; i++) {
 System.out.print("<p>");
 System.out.print(o.toString());
 System.out.print("</p>");
 System.out.println();
 }
 }
}

Timing results

I ran StringPrintA, StringPrintAA, and StringPrintB twice each on the same com‐
puter. To eliminate JVM startup times, I ran them from a program called TimeNoArgs,
which takes a class name and invokes its main() method, using the Reflection API.
TimeNoArgs and a shell script to run it, stringprinttimer.sh, are in the performance
folder of the javasrc source repository. Here are the results:

2004 program Seconds

StringPrintA 17.23, 17.20 seconds

StringPrintAA 17.23, 17.23 seconds

StringPrintB 27.59, 27.60 seconds

2014 program Seconds

StringPrintA 0.714, 0.525 seconds

StringPrintAA 0.616, 0.561 seconds

StringPrintB 1.091, 1.039 seconds

Although the times went down by a factor of roughly 20 over a decade due to both
JVM improvements and faster hardware, the ratios remain remarkably consistent:

17.7 Performance Timing | 535

StringPrintB, which calls print() and println() multiple times, takes roughly
twice as long.

Moral: don’t guess. If it matters, time it.

Another moral: multiple calls to System.out.print() cost more than the same num‐
ber of calls to a StringBuilder’s append() method, by a factor of roughly 1.5 (or
150%). Theory B wins; the extra println calls appear to save a string concatenation
but make the program take substantially longer.

Other aspects of performance: GC
There are many other aspects of software performance. One that is fundamental
to Java is garbage collection behavior. Sun/Oracle usually discusses this at JavaOne.
For example, see the 2003 JavaOne presentation “Garbage Collection in the Java Hot‐
Spot Virtual Machine”. See also the 2007 JavaOne talk by the same GC development
team, “Garbage Collection-Friendly Programming,” TS-2906. JavaOne 2010 featured
an updated presentation entitled “The Garbage Collection MythBusters”.

A timing program

It’s pretty easy to build a simplified time command in Java, given that you have
System.currentTimeMillis() to start with. Run my Time program, and, on the com‐
mand line, specify the name of the class to be timed, followed by the arguments (if
any) that class needs for running. The program is shown in Example 17-11. The time
that the class took is displayed. But remember that System.currentTimeMillis()
returns clock time, not necessarily CPU time. So you must run it on a machine that
isn’t running a lot of background processes. And note also that I use dynamic loading
(see Recipe 17.4) to let you put the Java class name on the command line.

Example 17-11. main/src/main/java/performance/Time.java

public class Time {
 public static void main(String[] argv) throws Exception {
 // Instantiate target class, from argv[0]
 Class<?> c = Class.forName(argv[0]);

 // Find its static main method (use our own argv as the signature).
 Class<?>[] classes = { argv.getClass() };
 Method main = c.getMethod("main", classes);

 // Make new argv array, dropping class name from front.
 // Normally Java doesn't get the class name, but in
 // this case the user puts the name of the class to time
 // as well as all its arguments...
 String nargv[] = new String[argv.length - 1];
 System.arraycopy(argv, 1, nargv, 0, nargv.length);

536 | Chapter 17: Reflection, or “A Class Named Class”

http://www.oracle.com/technetwork/java/javase/tech/ts-3153-coomes-19899-dsf-150093.pdf
http://www.oracle.com/technetwork/java/javase/tech/ts-3153-coomes-19899-dsf-150093.pdf
https://docs.huihoo.com/javaone/2007/java-se/TS-2906.pdf
https://oreil.ly/java-world-the-garbage-collection-mythbusters

 Object[] nargs = { nargv };

 System.err.println("Starting class " + c);

 // About to start timing run. Important to not do anything
 // (even a println) that would be attributed to the program
 // being timed, from here until we've gotten ending time.

 // Get current (i.e., starting) time
 long t0 = System.currentTimeMillis();

 // Run the main program
 main.invoke(null, nargs);

 // Get ending time, and compute usage
 long t1 = System.currentTimeMillis();

 long runTime = t1 - t0;

 System.err.println(
 "runTime=" + Double.toString(runTime/1000D));
 }
}

Of course, you can’t directly compare the results from the operating system time
command with results from running this program. There is a rather large, but fairly
constant, initialization overhead—the JVM startup and the initialization of Object
and System.out, for example—that is included in the former and excluded from the
latter. One could even argue that my Time program is more accurate because it
excludes this constant overhead. But, as noted, it must be run on a single-user
machine to yield repeatable results. And no fair running an editor in another window
while waiting for your timed program to complete!

See Also
Java Performance by Scott Oaks (O’Reilly) provides information on tuning Java
performance.

17.8 Printing Class Information
Problem
You want to print all the information about a class, similar to the way javap does.

Solution
Get a Class object, call its getFields() and getMethods(), and print the results.

17.8 Printing Class Information | 537

http://shop.oreilly.com/product/0636920272250.do

Discussion
The JDK includes a program called javap, the Java Printer. Sun’s JDK version nor‐
mally prints the outline of a class file—a list of its methods and fields—but can also
print out the Java bytecodes or machine instructions. The Kaffe package did not
include a version of javap, so I wrote one and contributed it (see Example 17-12). The
Kaffe folks have expanded it somewhat, but it still works basically the same. My ver‐
sion doesn’t print the bytecodes; it behaves rather like Sun’s behaves when you don’t
give its version any command-line options.

The getFields() and getMethods() methods return arrays of Field and Method,
respectively; these are both in package java.lang.reflect. I use a Modifiers object
to get details on the permissions and storage attributes of the fields and methods. In
many Java implementations, you can bypass this and simply call toString() in each
Field and Method object (as I do here for Constructors). Doing it this way gives me
a bit more control over the formatting.

Example 17-12. main/src/main/java/reflection/MyJavaP.java

public class MyJavaP {

 /** Simple main program, construct self, process each class name
 * found in argv.
 */
 public static void main(String[] argv) {
 MyJavaP pp = new MyJavaP();

 if (argv.length == 0) {
 System.err.println("Usage: MyJavaP className [...]");
 System.exit(1);
 } else for (int i=0; i<argv.length; i++)
 pp.doClass(argv[i]);
 }

 /** Format the fields and methods of one class, given its name.
 */
 protected void doClass(String className) {
 try {
 Class<? extends Object> c = Class.forName(className);

 final Annotation[] annotations = c.getAnnotations();
 for (Annotation a : annotations) {
 System.out.println(a);
 }

 System.out.println(c + " {");

 Field fields[] = c.getDeclaredFields();
 for (Field f : fields) {

538 | Chapter 17: Reflection, or “A Class Named Class”

 final Annotation[] fldAnnotations = f.getAnnotations();
 for (Annotation a : fldAnnotations) {
 System.out.println(a);
 }
 if (!Modifier.isPrivate(f.getModifiers()))
 System.out.println("\t" + f + ";");
 }

 Constructor<? extends Object>[] constructors = c.getConstructors();
 for (Constructor<? extends Object> con : constructors) {
 System.out.println("\t" + con + ";");
 }

 Method methods[] = c.getDeclaredMethods();
 for (Method m : methods) {
 final Annotation[] methodAnnotations = m.getAnnotations();
 for (Annotation a : methodAnnotations) {
 System.out.println(a);
 }
 if (!Modifier.isPrivate(m.getModifiers())) {
 System.out.println("\t" + m + ";");
 }
 }
 System.out.println("}");
 } catch (ClassNotFoundException e) {
 System.err.println("Error: Class " +
 className + " not found!");
 } catch (Exception e) {
 System.err.println("JavaP Error: " + e);
 }
 }
}

17.9 Listing Classes in a Package
Problem
You want to get a list of all the classes in a package.

Solution
You can’t, in the general case. There are some limited approaches, most involving
CLASSPATH scanning.

Discussion
There is no way to find out all the classes in a package, in part because, as we just saw
in Recipe 17.5, you can add classes to a package at any time! And, for better or for

17.9 Listing Classes in a Package | 539

worse, the JVM and standard classes such as java.lang.Package do not even allow
you to enumerate the classes currently in a given package.

The nearest you can come is to look through the CLASSPATH. And this will surely
work only for local directories and JAR files; if you have locally defined or network-
loaded classes, this is not going to help. In other words, it will find compiled classes,
but not dynamically loaded ones. There are several libraries that can automate this for
you, and you’re welcome to use them. The code to scan the CLASSPATH is fairly simple
at heart, though, so classy developers with heart will want to examine it.
Example 17-13 shows my ClassesInPackage class with its one static method. The
code works but is rather short on error handling, and it will crash on nonexistent
packages and other failures.

The code goes through a few gyrations to get the CLASSPATH as an enumeration of
URLs, then looks at each element.

file
URLs will contain the pathname of the file containing the .class file, so we can
just list it.

jar
URLs contain the filename as “file:/path_to_jar_file!package/name,” so we have
to pull this apart; the “package name” suffix is slightly redundant in this case
because it’s the package we asked the ClassLoader to give us.

Example 17-13. main/src/main/java/reflection/ClassesInPackage.java

public class ClassesInPackage {

 /** This approach began as a contribution by Paul Kuit at
 * http://stackoverflow.com/questions/1456930/, but his only
 * handled single files in a directory in classpath, not in Jar files.
 * N.B. Does NOT handle system classes!
 * @param packageName
 * @return
 * @throws IOException
 */
 public static String[] getPackageContent(String packageName)
 throws IOException {

 final String packageAsDirName = packageName.replace(".", "/");
 final List<String> list = new ArrayList<>();
 final Enumeration<URL> urls =
 Thread.currentThread().
 getContextClassLoader().
 getResources(packageAsDirName);
 while (urls.hasMoreElements()) {
 URL url = urls.nextElement();

540 | Chapter 17: Reflection, or “A Class Named Class”

 // System.out.println("URL = " + url);
 String file = url.getFile();
 switch (url.getProtocol()) {
 case "file":
 // This is the easy case: "file" is
 // the full path to the classpath directory
 File dir = new File(file);
 for (File f : dir.listFiles()) {
 list.add(packageAsDirName + "/" + f.getName());
 }
 break;
 case "jar":
 // This is the harder case; "file" is of the form
 // "jar:/home/ian/bleah/darwinsys.jar!com/darwinsys/io"
 // for some jar file that contains at least one class from
 // the given package.
 int colon = file.indexOf(':');
 int bang = file.indexOf('!');
 String jarFileName = file.substring(colon + 1, bang);
 JarFile jarFile = new JarFile(jarFileName);
 Enumeration<JarEntry> entries = jarFile.entries();
 while (entries.hasMoreElements()) {
 JarEntry e = entries.nextElement();
 String jarEntryName = e.getName();
 if (!jarEntryName.endsWith("/") &&
 jarEntryName.startsWith(packageAsDirName)) {
 list.add(jarEntryName);
 }
 }
 break;
 default:
 throw new IllegalStateException(
 "Dunno what to do with URL " + url);
 }
 }
 return list.toArray(new String[] {});
 }

 public static void main(String[] args) throws IOException {
 String[] names = getPackageContent("com.darwinsys.io");
 for (String name : names) {
 System.out.println(name);
 }
 System.out.println("Done");
 }
}

Note that if you run this application in the javasrc project, it will list the members of
the demonstration package (com.darwinsys.io) twice, because it will find them both
in the build directory and in the JAR file. If this is an issue, change the List to a Set
(see Recipe 7.3).

17.9 Listing Classes in a Package | 541

17.10 Using and Defining Annotations
Problem
You need to know how to use annotations in code or to define your own annotations.

Solution
Apply annotations in your code using @AnnotationName before a class, method, field,
etc. Define annotations with @interface at the same level as class, interface, etc.

Discussion
Annotations are a way of adding additional information beyond what the source code
conveys. Annotations may be directed at the compiler or at runtime examination.
Their syntax was somewhat patterned after javadoc annotations (such as @author,
@version inside doc comments). Annotations are what I call class-like things (so they
have initial-cap names) but are prefixed by @ sign where used (e.g., @Override). You
can place them on classes, methods, fields, and a few other places; they must appear
immediately before what they annotate (ignoring space and comments). A given
annotation may only appear once in a given position (this is relaxed in Java 8 or 9).

As an example of the benefits of a compile-time annotation, consider the common
error made when overriding: as shown in Example 17-14, a small error in the method
signature can result it an overload when an override was intended.

Example 17-14. MyClass.java (an example of why we need annotations)

public class MyClass {

 public boolean equals(MyClass object2) {
 // compare, return boolean
 }
}

The code will compile just fine on any release of Java, but it is incorrect. The standard
contract of the equals() method (see Recipe 8.1) requires a method whose solitary
argument is of type java.lang.Object. The preceding version creates an accidental
overload. Because the main use of equals() (and its buddy method hashCode(); see
Recipe 8.1) is in the Collections classes (see Chapter 7), this overloaded method will
never get called, resulting both in dead code and in incorrect operation of your class
within Sets and Maps.

The solution is very simple: using the annotation java.lang.Override, as in
Example 17-15, informs the compiler that the annotated method is required to over‐

542 | Chapter 17: Reflection, or “A Class Named Class”

ride a method inherited from a supertype (such as a superclass or an interface). If not,
the code will not compile.

Example 17-15. MyClass.java with @Override annotation

public class MyClass {

 @Override
 public boolean equals(MyClass object2) {
 // compare, return boolean
 }
}

This version of equals(), while still incorrect, will be flagged as erroneous at compile
time, potentially avoiding a lot of debugging time. This annotation, on your own
classes, will help both at the time you write new code and as you maintain your code‐
base; if a method is removed from a superclass, all the subclasses that still attempt to
override it and have the @Override annotation will cause an error message, allowing
you to remove a bunch of dead code.

The second major use of annotations is to provide metadata at runtime. For example,
the Java Persistence API (JPA, see https://darwinsys.com/db_in_java) uses its own set
of annotations from the package javax.persistence to mark up entity classes to be
loaded and/or persisted. A JPA entity class might look like Example 17-16.

Example 17-16. main/src/main/java/domain/Person.java (JPA annotations)

@Entity
public class Person {

 int id;
 protected String firstName;
 protected String lastName;

 public Person() {
 // required by JPA; must code it since we need 2-arg form.
 }

 public Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 @Id @GeneratedValue(strategy=GenerationType.AUTO, generator="my_poid_gen")
 public int getId() {
 return id;
 }

 public void setId(int id) {

17.10 Using and Defining Annotations | 543

https://darwinsys.com/db_in_java

 this.id = id;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 @Column(name="surname")
 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 @Override
 public String toString() {
 return getFullName();
 }

 @Transient /* synthetic: cannot be used in JPA queries. */
 public String getFullName() {
 StringBuilder sb = new StringBuilder();
 if (firstName != null)
 sb.append(firstName).append(' ');
 if (lastName != null)
 sb.append(lastName);
 if (sb.length() == 0)
 sb.append("NO NAME");
 return sb.toString();
 }
}

The @Entity annotation at class level directs JPA to treat this as a data object to be
mapped into the database. The @Id informs JPA that this id is the primary key
property, and the @GeneratedValue tells it how to assign the primary key values for
newly created objects. The @Column annotation is only needed when the column
name in the relational database differs from the expected name based on the prop‐
erty; in this case, the SQL database designer has used surname, whereas the Java
developer wants to use lastName.

I said that annotations are class-like things, and therefore, you can define your own.
The syntax here is a bit funky; you use @interface. It is rumored that the team devel‐
oping this feature was either told not to, or was afraid to, introduce a new keyword
into the language, due to the trouble that doing so had caused when the enum

544 | Chapter 17: Reflection, or “A Class Named Class”

keyword was introduced in Java SE 1.4. Or, maybe they just wanted to use a syntax
that was more reminiscent of the annotation’s usage. At any rate, Example 17-17 is a
trivial example of a custom annotation.

Example 17-17. Trivial annotation defined

package lang;

public @interface MyToyAnnotation {
}

Annotations are class-like things, so they should be named the same way—that is,
names that begin with a capital letter and, if public, are stored in a source file of the
same name (e.g, MyToyAnnotation.java).

Compile the Example 17-17 with javac and you’ll see there’s a new MyToyAnnota‐
tion.class file. In Example 17-18, we examine this with javap, the standard JDK class
inspection tool.

Example 17-18. Running javap on trivial annotation

$ javap lang.MyToyAnnotation
Compiled from "MyToyAnnotation.java"
public interface lang.MyToyAnnotation extends java.lang.annotation.Annotation {
}
$

As it says, an Annotation is represented in the class file format as just an interface
that extends Annotation (to answer the obvious question, you could write simple
interfaces this way, but it would be a truly terrible idea). In Example 17-19, we take a
quick look at Annotation itself.

Example 17-19. The Annotation Interface in Detail

$ javap java.lang.annotation.Annotation
Compiled from "Annotation.java"
public interface java.lang.annotation.Annotation {
 public abstract boolean equals(java.lang.Object);
 public abstract int hashCode();
 public abstract java.lang.String toString();
 public abstract java.lang.Class<? extends java.lang.annotation.Annotation>
 annotationType();
}
$

Annotations can be made such that the compiler will only allow them in certain
points in your code. Example 17-20 is one that can only go on classes or interfaces.

17.10 Using and Defining Annotations | 545

Example 17-20. Sample Annotation for Classes, Interfaces, etc.

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface MyAnnotation {
}

The @Target specifies where the annotation can be used: ElementType.TYPE makes it
usable on classes, interfaces, class-like things such as enums, even annotations! To
restrict it to use just on annotations, there is ElementType.ANNOTATION_TYPE. Other
types include METHOD, FIELD, CONSTRUCTOR, LOCAL_VARIABLE, PACKAGE, and PARAME
TER. So, this annotation is itself annotated with two @ANNOTATION_TYPE-targeted
annotations.

Usage of annotations with an existing framework requires consulting their documen‐
tation. Using annotations for your own purpose at runtime requires use of the Reflec‐
tion API, as shown in Example 17-21.

One more thing to note about annotations is that they may have attributes. These are
defined as methods in the annotation source code but used as attributes where the
annotation is used. Example 17-21 is an annotated annotation with one such
attribute.

Example 17-21. main/src/main/java/lang/AnnotationDemo.java

/**
 * A sample annotation for types (classes, interfaces);
 * it will be available at run time.
 */
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface AnnotationDemo {
 public boolean fancy() default false;
 public int order() default 42;
}

/** A simple example of using the annotation */
@AnnotationDemo(fancy=true)
@Resource(name="Dumbledore")
class FancyClassJustToShowAnnotation {

 /** Print out the annotations attached to this class */
 public static void main(String[] args) {
 Class<?> c = FancyClassJustToShowAnnotation.class;
 System.out.println("Class " + c.getName() + " has these annotations:");
 for (Annotation a : c.getAnnotations()) {
 if (a instanceof AnnotationDemo) {
 AnnotationDemo ad = (AnnotationDemo)a;
 System.out.println("\t" +a +

546 | Chapter 17: Reflection, or “A Class Named Class”

 " with fancy=" + ad.fancy() +
 " and order " + ad.order());
 } else {
 System.out.println("\tSomebody else's annotation: " + a);
 }
 }
 }
}

AnnotationDemo has the meta-annotation @Target(ElementType.TYPE) to indicate
that it can annotate user-defined types (such as classes). Other ElementType choices
include METHOD, FIELD, and PARAMETER. If more than one is needed, use array initial‐
izer syntax.

AnnotationDemo also has the @Retention(RetentionPolicy.RUNTIME) annotation to
request that it be preserved until runtime. This is obviously required for any annota‐
tion that will be examined by a framework at runtime.

These two meta-annotations are common on user-defined annotations that will be
examined at runtime.

The class FancyClassJustToShowAnnotation shows using the AnnotationDemo anno‐
tation, along with a standard Java one (the @Resource annotation).

Refer to Recipe 17.11 for a full example of using this mechanism.

17.11 Finding Plug-In-Like Classes via Annotations
Problem
You want to do plug-in-like things without using an explicit plug-in API.

Solution
Define an annotation for the purpose, and use it to mark the plug-in classes.

Discussion
Suppose we want to model how the Java EE standard javax.annotations.Named or
javax.faces.ManagedBean annotations work; for each class that is so annotated, con‐
vert the class name to an instance-like name (e.g, lowercase the first letter), and do
something special with it. You’d want to do something like the following:

1. Get the list of classes in the given package(s) (see Recipe 17.9).
2. Check if the class is annotated.

17.11 Finding Plug-In-Like Classes via Annotations | 547

3. If so, save the name and Class descriptor for later use.

This is implemented in Example 17-22.

Example 17-22. main/src/main/java/reflection/PluginsViaAnnotations

/** Discover "plugins" or other add-in classes via Reflection using Annotations */
public class PluginsViaAnnotations {

 /**
 * Find all classes in the given package which have the given
 * class-level annotation class.
 */
 public static List<Class<?>> findAnnotatedClasses(String packageName,
 Class<? extends Annotation> annotationClass) throws Exception {

 List<Class<?>> ret = new ArrayList<>();
 String[] clazzNames = ClassesInPackage.getPackageContent(packageName);
 for (String clazzName : clazzNames) {
 if (!clazzName.endsWith(".class")) {
 continue;
 }
 clazzName = clazzName.replace('/', '.').replace(".class", "");
 Class<?> c = null;
 try {
 c = Class.forName(clazzName);
 } catch (ClassNotFoundException ex) {
 System.err.println("Weird: class " + clazzName +
 " reported in package but gave CNFE: " + ex);
 continue;
 }
 if (c.isAnnotationPresent(annotationClass) &&
 !ret.contains(c))
 ret.add(c);

 }
 return ret;
 }

We can take this one step further and support particular method annotations, similar
to javax.annotations.PostCreate, which is meant to decorate a method that is to
be called after an instance of the bean has been instantiated by the framework. Our
flow is now something like this, and the code is shown in Example 17-23:

1. Get the list of classes in the given package(s) (again, see Recipe 17.9).
2. If you are using a class-level annotation, check if the class is annotated.
3. If this class is still of interest, get a list of its methods.
4. For each method, see if it contains a given method-specific annotation.

548 | Chapter 17: Reflection, or “A Class Named Class”

5. If so, add the class and method to a list of invocable methods.

Example 17-23. main/src/main/java/reflection/PluginsViaAnnotations (find annotated
methods)

 /**
 * Find all classes in the given package which have the given
 * method-level annotation class on at least one method.
 */
 public static List<Class<?>> findClassesWithAnnotatedMethods(String packageName,
 Class<? extends Annotation> methodAnnotationClass) throws Exception {
 List<Class<?>> ret = new ArrayList<>();
 String[] clazzNames = ClassesInPackage.getPackageContent(packageName);
 for (String clazzName : clazzNames) {
 if (!clazzName.endsWith(".class")) {
 continue;
 }
 clazzName = clazzName.replace('/', '.').replace(".class", "");
 Class<?> c = null;
 try {
 c = Class.forName(clazzName);
 // System.out.println("Loaded " + c);
 } catch (ClassNotFoundException ex) {
 System.err.println("Weird: class " + clazzName +
 " reported in package but gave CNFE: " + ex);
 continue;
 }
 for (Method m : c.getDeclaredMethods()) {
 // System.out.printf("Class %s Method: %s\n",
 // c.getSimpleName(), m.getName());
 if (m.isAnnotationPresent(methodAnnotationClass) &&
 !ret.contains(c)) {
 ret.add(c);
 }
 }
 }
 return ret;
 }

See Also
Recipe 17.10 and the rest of this chapter.

17.12 Program: CrossRef
You’ve probably seen those other Java books that consist entirely of listings of the Java
API for version thus-and-such of the JDK. I don’t suppose you thought the authors of
these works sat down and typed the entire contents from scratch. As a programmer,
you would have realized, I hope, that there must be a way to obtain that information

17.12 Program: CrossRef | 549

from Java. But you might not have realized how easy it is! If you’ve read this chapter
faithfully, you now know that there is one true way: make the computer do the walk‐
ing. Example 17-24 is a program that puts most of the techniques together. This ver‐
sion generates a cross-reference listing, but by overriding the last few methods, you
could easily convert it to print the information in any format you like, including an
API reference book. You’d need to deal with the details of this or that publishing soft‐
ware—FrameMaker, troff, TEX, or whatever—but that’s the easy part.

This program makes fuller use of the Reflection API than did MyJavaP in Recipe 17.8.
It also uses the java.util.zip classes (see Recipe 10.15) to crack the JAR archive
containing the class files of the API. Each class file found in the archive is loaded and
listed; the listing part is similar to MyJavaP.

Example 17-24. main/src/main/java/reflection/CrossRef.java

public class CrossRef extends APIFormatter {

 /** Simple main program, construct self, process each .ZIP file
 * found in CLASSPATH or in argv.
 */
 public static void main(String[] argv) throws IOException {
 CrossRef xref = new CrossRef();
 xref.doArgs(argv);
 }

 /**
 * Print the fields and methods of one class.
 */
 protected void doClass(Class<?> c) {
 startClass(c);
 try {
 Field[] fields = c.getDeclaredFields();
 Arrays.sort(fields, new Comparator<Field>() {
 public int compare(Field o1, Field o2) {
 return o1.getName().compareTo(o2.getName());
 }
 });
 for (int i = 0; i < fields.length; i++) {
 Field field = (Field)fields[i];
 if (!Modifier.isPrivate(field.getModifiers()))
 putField(field, c);
 // else System.err.println("private field ignored: " + field);
 }

 Method methods[] = c.getDeclaredMethods();
 Arrays.sort(methods, new Comparator<Method>() {
 public int compare(Method o1, Method o2) {
 return o1.getName().compareTo(o2.getName());
 }

550 | Chapter 17: Reflection, or “A Class Named Class”

 });
 for (int i = 0; i < methods.length; i++) {
 if (!Modifier.isPrivate(methods[i].getModifiers()))
 putMethod(methods[i], c);
 // else System.err.println("pvt: " + methods[i]);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 endClass();
 }

 /** put a Field's information to the standard output. */
 protected void putField(Field fld, Class<?> c) {
 println(fld.getName() + " field " + c.getName() + " ");
 }

 /** put a Method's information to the standard output. */
 protected void putMethod(Method method, Class<?> c) {
 String methName = method.getName();
 println(methName + " method " + c.getName() + " ");
 }

 /** Print the start of a class. Unused in this version,
 * designed to be overridden */
 protected void startClass(Class<?> c) {
 }

 /** Print the end of a class. Unused in this version,
 * designed to be overridden */
 protected void endClass() {
 }

 /** Convenience routine, short for System.out.println */
 protected final void println(String s) {
 System.out.println(s);
 }
}

You probably noticed the methods startClass() and endClass(), which are null.
These methods are placeholders designed to make subclassing easy for when you
need to write something at the start and end of each class. One example might be a
fancy text formatting application in which you need to output a bold header at the
beginning of each class. Another would be XML, where you’d want to write a tag like
<class> at the front of each class and </class> at the end. Example 17-25 is an XML-
specific subclass that generates (limited) XML for each field and method.

17.12 Program: CrossRef | 551

Example 17-25. main/src/main/java/reflection/CrossRefXML.java

public class CrossRefXML extends CrossRef {

 public static void main(String[] argv) throws IOException {
 CrossRef xref = new CrossRefXML();
 xref.doArgs(argv);
 }

 /** Print the start of a class.
 */
 protected void startClass(Class<?> c) {
 println("<class><classname>" + c.getName() + "</classname>");
 }

 protected void putField(Field fld, Class<?> c) {
 println("<field>" + fld + "</field>");
 }

 /** put a Method's information to the standard output.
 * Marked protected so you can override it (hint, hint).
 */
 protected void putMethod(Method method, Class<?> c) {
 println("<method>" + method + "</method>");
 }

 /** Print the end of a class.
 */
 protected void endClass() {
 println("</class>");
 }
}

By the way, if you publish a book using either of these and get rich, “Remember,
remember me!”

See Also
We have not investigated all the ins and outs of reflection or the ClassLoader mecha‐
nism, but by now you should have a basic idea of how it works.

Perhaps the most important omissions are SecurityManager and ProtectionDomain.
Only one SecurityManager can be installed in a given instance of the JVM (e.g., to
prevent malicious code from providing its own!). A browser running the old Java
Applet API, for example, provides a SecurityManager that is far more restrictive than
the standard one. Writing such a SecurityManager is left as an exercise for the reader
—an important exercise for anyone planning to load classes over the internet! (For
more information about security managers and the Java Security APIs, see Java Secu‐

552 | Chapter 17: Reflection, or “A Class Named Class”

http://oreil.ly/java-security-2nd

rity by Scott Oaks (O’Reilly). A ProtectionDomain can be provided with a Class
Loader to specify all the permissions needed for the class to run.

I’ve also left unexplored many topics in the JVM; see the (somewhat dated) O’Reilly
books Java Virtual Machine by Troy Downing and Jon Meyer, and Java Language Ref‐
erence by Mark Grand. You can also read the Sun/Oracle Java Language Specification
and JVM Specification documents (both updated with new releases, available online),
for a lifetime of reading enjoyment and edification!

The Apache Software Foundation maintains a vast array of useful software packages
that are free to get and use. Source code is always available without charge from its
website. Two packages you might want to investigate include the Commons BeanU‐
tils and the Byte Code Engineering Library (BCEL). The Commons BeanUtils claims
to provide easier-to-use wrappers around some of the Reflection API. BCEL is a
third-party toolkit for building and manipulating bytecode class files. Written by
Markus Dahm, BCEL has become part of the Apache Commons Project.

17.12 Program: CrossRef | 553

http://oreil.ly/java-security-2nd
http://shop.oreilly.com/product/9781565921948.do
http://shop.oreilly.com/product/9781565923263.do
http://shop.oreilly.com/product/9781565923263.do
https://docs.oracle.com/en/java/javase/13/docs
http://commons.apache.org/beanutils
http://commons.apache.org/bcel

CHAPTER 18

Using Java with Other Languages

18.0 Introduction
Java has several methods of running programs written in other languages. You can
invoke a compiled program or executable script using Runtime.exec(), as I’ll
describe in Recipe 18.1. There is an element of system dependency here, because you
can only run external applications under the operating system they are compiled for.
Alternatively, you can invoke one of a number of scripting languages (or dynamic lan‐
guages)—running the gamut: awk, bsh, Clojure, Ruby, Perl, Python, Scala—using
javax.script, as illustrated in Recipe 18.3. Or you can drop down to C level with
Java’s native code mechanism and call compiled functions written in C/C++; see
Recipe 18.6. From native code, you can call to functions written in just about any lan‐
guage. Not to mention that you can contact programs written in any language over a
socket (see Chapter 13), with HTTP services (see Chapter 13), or with Java clients in
RMI or CORBA clients in a variety of languages.

There is a wide range of other JVM languages, including these:

• BeanShell, a general scripting language for Java.
• Groovy is a Java-based scripting language that pioneered the use of closures in

the Java language ecosystem. It also has a rapid-development web package called
Grails and a build tool called Gradle (see Recipe 1.8). Gradle is also used as the
build tool in modern Android development.

• Jython, a full Java implementation of Python.
• JRuby, a full Java implementation of the Ruby language.
• Scala, a JVM language that claims to offer the “best of functional and OO” lan‐

guages.

555

https://groovy-lang.org
http://grails.org
http://jython.org
http://jruby.org
http://scala-lang.org

6 kwrite is Unix-specific; it’s a part of the K Desktop Environment (KDE).

• Clojure, a predominantly functional Lisp-1 dialect for the JVM.
• Renjin (pronounced “R engine”), a fairly complete open source clone of the R

statistics package with the ability to scale to the cloud. See Recipe 11.5 for an
example using Renjin.

These are JVM-centric, and some can be called directly from Java to script, or vice
versa, without using javax.script. A list of these languages can be found on
Wikipedia.

18.1 Running an External Program from Java
Problem
You want to run an external program from within a Java program.

Solution
Use one of the exec() methods in the java.lang.Runtime class. Or set up a Process
Builder and call its start() method.

Discussion
The exec() method in the Runtime class lets you run an external program. The com‐
mand line you give is broken into strings by a simple StringTokenizer (see Recipe
3.1) and passed on to the operating system’s “execute a program” system call. As an
example, here is a simple program that uses exec() to run kwrite, a windowed text
editor program.6 On Windows, you’d have to change the name to notepad or word
pad, possibly including the full pathname, for example, c:/windows/notepad.exe (you
can also use backslashes, but be careful to double them because the backslash is spe‐
cial in Java strings):

public class ExecDemoSimple {
 public static void main(String av[]) throws Exception {

 // Run the "notepad" program or a similar editor
 Process p = Runtime.getRuntime().exec("kwrite");

 p.waitFor();
 }
}

When you compile and run it, the appropriate editor window appears:

556 | Chapter 18: Using Java with Other Languages

http://www.kde.org
http://clojure.org
https://en.wikipedia.org/wiki/Common_Lisp#The_function_namespace
http://renjin.org
http://en.wikipedia.org/wiki/List_of_JVM_languages

$ javac -d . ExecDemoSimple.java
$ java otherlang.ExecDemoSimple # causes a KWrite window to appear.
$

This version of exec() assumes that the pathname contains no blanks because these
break proper operation of the StringTokenizer. To overcome this potential problem,
use an overloaded form of exec(), taking an array of strings as arguments.
Example 18-1 runs the Windows or Unix version of the Firefox web browser, assum‐
ing that Firefox was installed in the default directory (or another directory that is on
your PATH). It passes the name of a help file as an argument, offering a kind of primi‐
tive help mechanism, as displayed in Figure 18-1.

Example 18-1. main/src/main/java/otherlang/ExecDemoNS.java

public class ExecDemoNS extends JFrame {
 private static final String BROWSER = "firefox";

 Logger logger = Logger.getLogger(ExecDemoNS.class.getSimpleName());

 /** The name of the help file. */
 protected final static String HELPFILE = "./help/index.html";

 /** A stack of process objects; each entry tracks one running process */
 Stack<Process> pStack = new Stack<>();

 /** main - instantiate and run */
 public static void main(String av[]) throws Exception {
 String program = av.length == 0 ? BROWSER : av[0];
 new ExecDemoNS(program).setVisible(true);
 }

 /** The path to the binary executable that we will run */
 protected static String program;

 /** Constructor - set up strings and things. */
 public ExecDemoNS(String program) {
 super("ExecDemo: " + program);
 this.program = program;

 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 JButton b;
 cp.add(b=new JButton("Exec"));
 b.addActionListener(e -> runProgram());
 cp.add(b=new JButton("Wait"));
 b.addActionListener(e -> doWait());
 cp.add(b=new JButton("Exit"));
 b.addActionListener(e -> System.exit(0));
 pack();
 }

18.1 Running an External Program from Java | 557

 /** Start the help, in its own Thread. */
 public void runProgram() {

 new Thread() {
 public void run() {

 try {
 // Get a "file:" URL for the Help File
 URL helpURL = this.getClass().getClassLoader().
 getResource(HELPFILE);

 // Start the external browser from the Java Application.

 String osname = System.getProperty("os.name");
 String run;
 if ("Mac OS X".equals(osname)) {
 run = "open -a " + program;
 // "if" allows for other OSes needing special handling
 } else {
 run = program;
 }

 pStack.push(Runtime.getRuntime().exec(run + " " + helpURL));

 logger.info("In main after exec " + pStack.size());

 } catch (Exception ex) {
 JOptionPane.showMessageDialog(ExecDemoNS.this,
 "Error" + ex, "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 }.start();

 }

 public void doWait() {
 if (pStack.size() == 0) {
 logger.info("Nothing to wait for.");
 return;
 }
 logger.info("Waiting for process " + pStack.size());
 try {
 Process p = pStack.pop();
 p.waitFor();
 // wait for process to complete
 // (may not work as expected for some old Windows programs)
 logger.info("Process " + p + " is done.");
 } catch (Exception ex) {
 JOptionPane.showMessageDialog(this,
 "Error" + ex, "Error",

558 | Chapter 18: Using Java with Other Languages

 JOptionPane.ERROR_MESSAGE);
 }
 }

}

Figure 18-1. ExecDemoNS in action

A newer class, ProcessBuilder, replaces most nontrivial uses of Runtime.exec().
This ProcessBuilder uses generic collections to let you modify or replace the envi‐
ronment, as shown in Example 18-2.

Example 18-2. main/src/main/java/otherlang/ProcessBuilderDemo.java

 List<String> command = new ArrayList<>();
 command.add("notepad");
 command.add("foo.txt");
 ProcessBuilder builder = new ProcessBuilder(command);
 builder.environment().put("PATH",
 "/windows;/windows/system32;/winnt");
 final Process godot = builder.directory(
 new File(System.getProperty("user.home"))).
 start();
 System.err.println("Waiting for Godot");
 godot.waitFor();

Set up the command-line argument list: editor program name and filename.

Use that to start configuring the ProcessBuilder.

18.1 Running an External Program from Java | 559

Configure the builder’s environment to a list of common MS Windows
directories.

Set the initial directory to the user’s home, and start the process!

I always wanted to be able to use this line in code.

Wait for the end of our little play.

For more on ProcessBuilder, see the javadoc for java.lang.ProcessBuilder.

18.2 Running a Program and Capturing Its Output
Problem
You want to run a program but also capture its output.

Solution
Use the Process object’s getInputStream(); read and copy the contents to Sys
tem.out or wherever you want them.

Discussion
The original notion of standard output and standard error was that they would
always be connected to the terminal; this notion dates from an earlier time when
almost all computer users worked at the command line. Today, a program’s standard
output and error output do not always automatically appear anywhere. Arguably
there should be an automatic way to make this happen. But for now, you need to add
a few lines of code to grab the program’s output and print it:

public class ExecDemoLs {

 private static Logger logger =
 Logger.getLogger(ExecDemoLs.class.getSimpleName());

 /** The program to run */
 public static final String PROGRAM = "ls"; // "dir" for Windows
 /** Set to true to end the loop */
 static volatile boolean done = false;

 public static void main(String argv[]) throws IOException {

 final Process p; // Process tracks one external native process
 BufferedReader is; // reader for output of process
 String line;

560 | Chapter 18: Using Java with Other Languages

 p = Runtime.getRuntime().exec(PROGRAM);

 logger.info("In Main after exec");

 // Optional: start a thread to wait for the process to terminate.
 // Don't just wait in main line, but here set a "done" flag and
 // use that to control the main reading loop below.
 Thread waiter = new Thread() {
 public void run() {
 try {
 p.waitFor();
 } catch (InterruptedException ex) {
 // OK, just quit.
 return;
 }
 System.out.println("Program terminated!");
 done = true;
 }
 };
 waiter.start();

 // getInputStream gives an Input stream connected to
 // the process p's standard output (and vice versa). We use
 // that to construct a BufferedReader so we can readLine() it.
 is = new BufferedReader(new InputStreamReader(p.getInputStream()));

 while (!done && ((line = is.readLine()) != null))
 System.out.println(line);

 logger.info("In Main after EOF");

 return;
 }
}

This is such a common occurrence that I’ve packaged it up into a class called ExecAnd
Print, which is part of my com.darwinsys.lang package. ExecAndPrint has several
overloaded forms of its run() method (see the documentation for details), but they
all take at least a command and optionally an output file to which the command’s
output is written. Example 18-3 shows the code for some of these methods.

Example 18-3. darwinsys-api/src/main/java/com/darwinsys/lang/ExecAndPrint.java

 /** Need a Runtime object for any of these methods */
 protected final static Runtime r = Runtime.getRuntime();

 /** Run the command given as a String, output to System.out
 * @param cmd The command
 * @return The command's exit status
 * @throws IOException if the command isn't found
 */

18.2 Running a Program and Capturing Its Output | 561

 public static int run(String cmd) throws IOException {
 return run(cmd, new OutputStreamWriter(System.out));
 }

 /** Run the command given as a String, output to "out"
 * @param cmd The command and list of arguments
 * @param out The output file
 * @return The command's exit status
 * @throws IOException if the command isn't found
 */
 public static int run(String cmd, Writer out) throws IOException {

 Process p = r.exec(cmd);

 FileIO.copyFile(new InputStreamReader(p.getInputStream()), out, true);
 try {
 p.waitFor(); // wait for process to complete
 } catch (InterruptedException e) {
 return -1;
 }
 return p.exitValue();
 }

As a simple example of using exec() directly along with ExecAndPrint, I’ll create
three temporary files, list them (directory listing), and then delete them. When I run
the ExecDemoFiles program, it lists the three files it has created:

-rw------- 1 ian wheel 0 Jan 29 14:29 file1
-rw------- 1 ian wheel 0 Jan 29 14:29 file2
-rw------- 1 ian wheel 0 Jan 29 14:29 file3

Its source code is in Example 18-4.

Example 18-4. main/src/main/java/otherlang/ExecDemoFiles.java

 // Get and save the Runtime object.
 Runtime rt = Runtime.getRuntime();

 // Create three temporary files (the slow way!)
 rt.exec("mktemp file1");
 rt.exec("mktemp file2");
 rt.exec("mktemp file3");

 // Run the "ls" (directory lister) program
 // with its output sent into a file
 String[] args = { "ls", "-l", "file1", "file2", "file3" };
 ExecAndPrint.run(args);

 rt.exec("rm file1 file2 file3");

562 | Chapter 18: Using Java with Other Languages

A process isn’t necessarily destroyed when the Java program that created it exits or
bombs out. Simple text-based programs will be, but window-based programs like
kwrite Netscape, or even a Java-based JFrame application, will not. For example, our
ExecDemoNS program started Netscape, and when ExecDemoNS’s Exit button is clicked,
ExecDemoNS exits but Netscape stays running. What if you want to be sure a process
has completed? The Process object has a waitFor() method that lets you do so, and
an exitValue() method that tells you the return code from the process. Finally,
should you wish to forcibly terminate the other process, you can do so with the Pro
cess object’s destroy() method, which takes no argument and returns no value.
Example 18-5 is ExecDemoWait, a program that runs whatever program you name on
the command line (along with arguments), captures the program’s standard output,
and waits for the program to terminate.

Example 18-5. main/src/main/java/otherlang/ExecDemoWait.java

 // A Runtime object has methods for dealing with the OS
 Runtime r = Runtime.getRuntime();
 Process p; // Process tracks one external native process
 BufferedReader is; // reader for output of process
 String line;

 // Our argv[0] contains the program to run; remaining elements
 // of argv contain args for the target program. This is just
 // what is needed for the String[] form of exec.
 p = r.exec(argv);

 System.out.println("In Main after exec");

 // getInputStream gives an Input stream connected to
 // the process p's standard output. Just use it to make
 // a BufferedReader to readLine() what the program writes out.
 is = new BufferedReader(new InputStreamReader(p.getInputStream()));

 while ((line = is.readLine()) != null)
 System.out.println(line);

 System.out.println("In Main after EOF");
 System.out.flush();
 try {
 p.waitFor(); // wait for process to complete
 } catch (InterruptedException e) {
 System.err.println(e); // "Can't Happen"
 return;
 }
 System.err.println("Process done, exit status was " + p.exitValue());

18.2 Running a Program and Capturing Its Output | 563

See Also
You wouldn’t normally use any form of exec() to run one Java program from another
in this way; instead, you’d probably create it as a thread within the same process,
because this is generally quite a bit faster (the Java interpreter is already up and run‐
ning, so why wait for another copy of it to start up?). See Chapter 16.

When building industrial-strength applications, note the cautionary remarks in the
Java API docs for the Process class concerning the danger of losing some of the I/O
due to insufficient buffering by the operating system.

18.3 Calling Other Languages via javax.script
Problem
You want to invoke a script written in some other language from within your Java
program, running in the JVM, with the ability to pass variables directly to/from the
other language.

Solution
If the script you want is written in any of the two-dozen-plus supported languages,
use javax.script. Those languages include awk, Perl, Python, Ruby, BeanShell,
PNuts, Ksh/Bash, R (Renjin), and several implementations of JavaScript.

Discussion
One of the first tasks when using this API is to find out the installed scripting
engines, and then pick one that is available. The ScriptEnginesDemo program in
Example 18-6 lists the installed engines and runs a simple script in the default lan‐
guage, ECMAScript (aka JavaScript).

Example 18-6. main/src/main/java/otherlang/ScriptEnginesDemo.java

public class ScriptEnginesDemo {

 public static void main(String[] args) throws ScriptException {
 ScriptEngineManager scriptEngineManager = new ScriptEngineManager();

 // Print list of supported languages
 scriptEngineManager.getEngineFactories().forEach(factory ->
 System.out.println(factory.getLanguageName()));

 // Run a script in the JavaScript language
 String lang = "JavaScript";
 ScriptEngine engine =

564 | Chapter 18: Using Java with Other Languages

 scriptEngineManager.getEngineByName(lang);
 if (engine == null) {
 System.err.println("Could not find engine");
 return;
 }
 engine.eval("print(\"Hello from " + lang + "\");");
 }
}

Example 18-7 is a very simple demo of calling Python from Java using javax.script
ing. We know the name of the scripting engine we want to use: Python. We’ll use the
in-vm implementation known as jython, which was originally called JPython but was
changed due to a trademark issue. Once we put the jython-standalone-2.nnn.jar onto
our CLASSPATH, the script engine is automatically detected. Just in case it fails, we
print a verbose message including a list of the engines that are available.

Example 18-7. main/src/main/java/otherlang/PythonFromJava.java

/**
 * demo using Python (jython) to get a Java variable, print, and change it.
 * @author Ian Darwin
 */
public class PythonFromJava {
 private static final String PY_SCRIPTNAME = "pythonfromjava.py";

 public static void main(String[] args) throws Exception {
 ScriptEngineManager scriptEngineManager = new ScriptEngineManager();

 ScriptEngine engine = scriptEngineManager.getEngineByName("python");
 if (engine == null) {
 final String message =
 "Could not find 'python' engine; add its jar to CLASSPATH";
 System.out.println(message);
 System.out.println("Available script engines are: ");
 scriptEngineManager.getEngineFactories().forEach(factory ->
 System.out.println(factory.getLanguageName()));
 throw new IllegalStateException(message);
 }

 final Bindings bindings = engine.getBindings(ScriptContext.ENGINE_SCOPE);
 bindings.put("meaning", 42);

 // Let's run a python script stored on disk (well, on classpath):
 InputStream is =
 PythonFromJava.class.getResourceAsStream("/" + PY_SCRIPTNAME);
 if (is == null) {
 throw new IOException("Could not find file " + PY_SCRIPTNAME);
 }
 engine.eval(new InputStreamReader(is));
 System.out.println("Java: Meaning is now " + bindings.get("meaning"));

18.3 Calling Other Languages via javax.script | 565

 }
}

See Also
Before Oracle dismantled java.net, there used to be a list of many languages (see this
archived list; the links don’t work, but it shows the extent of the languages that were
available). Back then, you could download the script engines from that site. I am not
aware of a current official list of engines, unfortunately. However, the list maintained
as part of the scripting project per se can be found in an unofficial source code repos‐
itory, by viewing https://github.com/scijava/javax-scripting, from which it should in
theory be possible to build the one you want. A dozen or so other engines are main‐
tained by others outside this project; for example, there is a Perl5 script engine from
Google Code.

There is a also a list of Java-compatible scripting languages (not necessarily all using
javax.script).

It is possible to roll your own scripting engine; see my write-up at https://darwin
sys.com/java/scriptengines.html.

18.4 Mixing Languages with GraalVM
Problem
GraalVM aims to be multilanguage, and you’d like to use different languages in the
VM.

Solution
Use gu (graal utility) to install additional language packs and call other languages.

Discussion
While GraalVM positions itself as able to support a wide variety of programming lan‐
guages, the number currently supported is small but growing. Let’s try invoking
Python code from within Java. Assuming you’ve installed Graal itself as per Recipe
1.2, you should have gu on your executable path, so try the following:

$ gu install python
Downloading: Component catalog from www.graalvm.org
Processing component archive: Graal.Python
Downloading: Component python: Graal.Python from github.com
Installing new component: Graal.Python (org.graalvm.python, version 19.2.0.1)

IMPORTANT NOTE:

566 | Chapter 18: Using Java with Other Languages

https://web.archive.org/web/20140909141915/https://java.net/projects/scripting/sources/svn/show/trunk/engines
https://web.archive.org/web/20140909141915/https://java.net/projects/scripting/sources/svn/show/trunk/engines
https://github.com/scijava/javax-scripting
https://code.google.com/archive/p/javaperlscripting
http://java-source.net/open-source/scripting-languages
https://darwinsys.com/java/scriptengines.html
https://darwinsys.com/java/scriptengines.html

Set of GraalVM components that provide language implementations have changed.
 The Polyglot native image and polyglot native C library may be out of sync:
- new languages may not be accessible
- removed languages may cause the native binary to fail on missing resources
 or libraries.
To rebuild and refresh the native binaries, use the following command:
 Library/Java/JavaVirtualMachines/graalvm-ce-19.2.0.1/Contents/Home/bin/gu
 rebuild-images

You may need to install "native-image" component which provide the rebuild
tools.

Then the code in Example 18-8 can be used.

Example 18-8. graal/src/JavaCallPython.java

import java.io.*;
import java.util.stream.*;
import org.graalvm.polyglot.*;

/**
 * GraalVM polyglot: calling Python from Java/
 */
// tag::main[]
public class JavaCallPython {

 public static void main(String[] args) throws java.io.IOException {

 try (Context context = Context.create("jython")) {
 Value result = context.execute("2 + 2");
 System.out.println(result.asString());
 }
 }
}
// end::main[]

18.5 Marrying Java and Perl
Problem
You want to call Java from Perl, or vice versa.

Solution
To call Java from Perl, use the Perl Inline::Java module. To go the other way—call‐
ing Perl from Java—use javax.script, as in Recipe 18.3.

18.5 Marrying Java and Perl | 567

Discussion
Perl is often called a glue language that can be used to bring together diverse parts of
the software world. But, in addition, it is a full-blown language for creating software.
A wealth of extension modules provide ready-to-run solutions for quite diverse prob‐
lems, and most of these modules are available free from CPAN, the Comprehensive
Perl Archive Network. Also, as a scripting language, it is ideally suited for rapid pro‐
totyping. On the other hand, although building graphical user interfaces is definitely
possible in Perl, it is not exactly one of the language’s strengths. So you might want to
construct your GUI using Java Swing, and, at the same time, reuse business logic
implemented in Perl.

Fortunately, among the many CPAN modules, Inline::Java makes the integration
of Perl and Java a breeze. Let’s assume first that you want to call into Java from Perl.
For business logic, I have picked a CPAN module that measures the similarity of two
strings (the so-called Levenshtein edit distance). Example 18-9 shows the complete
source. You need at least version 0.44 of the module Inline::Java; previous versions
did not support threaded applications properly, so use of Swing wasn’t possible.

Using the module this way requires that the Java source be included in the Perl script
with special delimiters, as shown in Example 18-9.

Example 18-9. Swinging.pl

#! /usr/bin/perl
Calling Java from Perl

use strict;
use warnings;

use Text::Levenshtein qw();
 # Perl module from CPAN to measure string similarity

use Inline 0.44 "JAVA" => "DATA"; # pointer to the Inline java source
use Inline::Java qw(caught); # helper function to determine exception type

my $show = new Showit; # construct Java object using Perl syntax
$show->show("Just another Perl hacker"); # call method on that object

eval {
 # Call a method that will call back to Perl;
 # catch exceptions, if any.
 print "matcher: ", $show->match("Japh", shift||"Java"),
 " (displayed from Perl)\n";
};
if ($@) {
 print STDERR "Caught:", caught($@), "\n";
 die $@ unless caught("java.lang.Exception");

568 | Chapter 18: Using Java with Other Languages

http://www.cpan.org
http://www.cpan.org

 print STDERR $@->getMessage(), "\n";
}

__END_ _

__JAVA_ _
// Java starts here
import javax.swing.*;
import org.perl.inline.java.*;

class Showit extends InlineJavaPerlCaller {
 // extension only neeeded if calling back into Perl

 /** Simple Java class to be called from Perl, and to call back to Perl
 */
 public Showit() throws InlineJavaException { }

 /** Simple method */
 public void show(String str) {
 System.out.println(str + " inside Java");
 }

 /** Method calling back into Perl */
 public int match(String target, String pattern)
 throws InlineJavaException, InlineJavaPerlException {

 // Calling a function residing in a Perl Module
 String str = (String)CallPerl("Text::Levenshtein", "distance",
 new Object [] {target, pattern});

 // Show result
 JOptionPane.showMessageDialog(null, "Edit distance between '" + target +
 "' and '" + pattern + "' is " + str,
 "Swinging Perl", JOptionPane.INFORMATION_MESSAGE);
 return Integer.parseInt(str);
 }

}

Since this uses the Text::Levenshtein and the Inline::Java modules, you will have
to install that. Here’s the standard way:

$ perl -MCPAN -e shell
> install Text::Levenshtein
> install Inline::Java
> quit

On some systems there may be an OS-specific module; for example, on OpenBSD
Unix, it’s this:

$ doas pkg_add p5-Text-LevenshteinXS

18.5 Marrying Java and Perl | 569

In a simple Perl+Java program like this, you don’t even need to write a separate Java
source file: you combine all the code, Perl and Java alike, in one single file. You do not
need to compile anything, either; just execute it by typing:

perl Swinging.pl

(You can also add a string argument.) After a little churning, a Java message box pops
up, telling you that the distance between Japh and Java is 2. At the same time, your
console shows the string “Just another Perl hacker inside Java.” When you close the
message box, you get the final result “matcher: 2 (displayed from Perl).”

In between, your Perl program has created an instance of the Java class Showit by
calling its constructor. It then called that object’s show() method to display a string
from within Java. It then proceeded to call the match() method, but this time, some‐
thing more complicated happens: the Java code calls back into Perl, accessing method
distance of module Text::Levenshtein and passing it two strings as arguments. It
receives the result, displays it in a message box, and finally, for good measure, returns
it to the Perl main program that it had been called from.

Incidentally, the eval { } block around the method call is the Perlish way of catching
exceptions. In this case, the exception is thrown from within Java.

If you restart the program, you will notice that startup time is much shorter, which is
always good news. Why is that so? On the first call, Inline::Java took the input
apart, precompiled the Java part, and saved it to disk (usually, in a subdirectory called
_Inline). On subsequent calls, it just makes sure that the Java source has not changed
and then calls the class file that is already on disk. (Of course, if you surreptitiously
changed the Java code, it is recompiled just as automagically.) Behind the scenes, even
stranger things are going on, however. When the Perl script is executed, a Java server
is constructed and started unbeknownst to the user, and the Perl part and the Java bits
communicate through a TCP socket (see Chapter 13).

Marrying two platform-independent languages, like Perl and Java, in a portable way
skirts many portability problems. When distributing inlined applications, be sure to
supply not just the source files but also the contents of the _Inline directory. (It is
advisable to purge that directory and to rebuild everything just before distribution
time; otherwise, old compiled versions left lying around might make it into the distri‐
bution.) Each target machine needs to repeat the magic steps of Inline::Java, which
requires a Java compiler. In any case, the Inline::Java module must be installed.

Because Perl has Inline modules for a number of other languages (ordinary lan‐
guages like C, but others as exotic as Befunge), one might even consider using Perl as
glue for interoperation between those other languages, jointly or separately, and Java.
I am sure many happy hours can be spent working out the intricacies of such
interactions.

570 | Chapter 18: Using Java with Other Languages

See Also
You can find full information on Inline::Java on CPAN or in the POD (Plain Old
Documentation) that is installed along with the module itself.

18.6 Calling Other Languages via Native Code
Problem
You wish to call native C/C++ functions from Java, either for efficiency or to access
hardware- or system-specific features.

Solution
Use JNI, the Java Native Interface. Or, use GraalVM.

Discussion
Java lets you load native or compiled code into your Java program. Why would you
want to do such a thing? The best reason would probably be to access OS-dependent
functionality, or existing code written in another language. A less good reason would
be speed: native code can sometimes run faster than Java, though this is becoming
less important as computers get faster and more multicore. Like everything else in
Java, the native code mechanism is subject to security restrictions; for example, app‐
lets were not allowed to access native code.

The native code language bindings are defined for code written in C or C++. If you
need to access a language other than C/C++, write a bit of C/C++ and have it pass
control to other functions or applications, using any mechanism defined by your
operating system.

Due to such system-dependent features as the interpretation of header files and the
allocation of the processor’s general-purpose registers, your native code may need to
be compiled by the same C compiler used to compile the Java runtime for your plat‐
form. For example, on Solaris you can use SunPro C or maybe gcc. On Win32 plat‐
forms, use Microsoft visual C++ Version 4.x or higher (32 bit). For Linux and macOS,
you should be able to use the provided gcc-based compiler. For other platforms, see
your Java vendor’s documentation.

Also note that the details in this section are for the Java Native Interface (JNI) of Java
1.1 and later, which differs in some details from 1.0 and from Microsoft’s native
interface.

18.6 Calling Other Languages via Native Code | 571

http://search.cpan.org

Ian’s Basic Steps: Java Calling Native Code
To call native code from Java, follow these steps:

1. Write Java code that calls a native method.
2. Compile this Java code.
3. Create an .h file using javah.
4. Write a C function that does the work.
5. Compile the C code into a loadable object.
6. Try it!

The first step is to write Java code that calls a native method. To do this, use the key‐
word native to indicate that the method is native, and provide a static code block
that loads your native method using System.loadLibrary(). (The dynamically load‐
able module is created in step 5.) Static blocks are executed when the class containing
them is loaded; loading the native code here ensures it is in memory when needed!

Object variables that your native code may modify should carry the volatile modi‐
fier. The file HelloJni.java, shown in Example 18-10, is a good starting point.

Example 18-10. main/src/main/java/jni/HelloJni.java

/**
 * A trivial class to show Java Native Interface 1.1 usage from Java.
 */
public class HelloJni {
 int myNumber = 42; // used to show argument passing

 // declare native class
 public native void displayHelloJni();

 // Application main, call its display method
 public static void main(String[] args) {
 System.out.println("HelloJni starting; args.length="+
 args.length+"...");
 for (int i=0; i<args.length; i++)
 System.out.println("args["+i+"]="+args[i]);
 HelloJni hw = new HelloJni();
 hw.displayHelloJni();// call the native function
 System.out.println("Back in Java, \"myNumber\" now " + hw.myNumber);
 }

 // Static code blocks are executed once, when class file is loaded
 static {
 System.loadLibrary("hello");

572 | Chapter 18: Using Java with Other Languages

 }
}

The second step is simple; just use javac HelloJni.java as you normally would. You
probably won’t get any compilation errors on a simple program like this; if you do,
correct them and try the compilation again.

Next, you need to create an .h file. Use javah to produce this file:

javah jni.HelloJni // produces HelloJni.h

The .h file produced is a glue file, not really meant for human consumption and par‐
ticularly not for editing. But by inspecting the resulting .h file, you’ll see that the C
method’s name is composed of the name Java, the package name (if any), the class
name, and the method name:

JNIEXPORT void JNICALL Java_HelloJni_displayHelloWorld(JNIEnv *env,
 jobject this);

Then create a C function that does the work. You must use the same function signa‐
ture as is used in the .h file.

This function can do whatever it wants. Note that it is passed two arguments: a JVM
environment variable and a handle for the this object. Table 18-1 shows the corre‐
spondence between Java types and the C types (JNI types) used in the C code.

Table 18-1. Java and JNI types
Java type JNI Java array type JNI

byte jbyte byte[] jbyteArray

short jshort short[] jshortArray

int jint int[] jintArray

long jlong long[] jlongArray

float jfloat float[] jfloatArray

double jdouble double[] jdoubleArray

char jchar char[] jcharArray

boolean jboolean boolean[] jbooleanArray

void jvoid

Object jobject Object[] jobjectArray

Class jclass

String jstring

array jarray

Throwable jthrowable

18.6 Calling Other Languages via Native Code | 573

Example 18-11 is a complete C native implementation. Passed an object of type Hello
Jni.java, it increments the integer myNumber contained in the object.

Example 18-11. main/src/main/java/jni/HelloJni.c

#include <jni.h>
#include "HelloJni.h"
#include <stdio.h>
/*
 * This is the Java Native implementation of displayHelloJni.
 */
JNIEXPORT void JNICALL Java_HelloJni_displayHelloJni(JNIEnv *env, jobject this) {
 jfieldID fldid;
 jint n, nn;

 (void)printf("Hello from a Native Method\n");

 if (this == NULL) {
 fprintf(stderr, "'this.' pointer is null!\n");
 return;
 }
 if ((fldid = (*env)->GetFieldID(env,
 (*env)->GetObjectClass(env, this), "myNumber", "I")) == NULL) {
 fprintf(stderr, "GetFieldID failed");
 return;
 }

 n = (*env)->GetIntField(env, this, fldid);/* retrieve myNumber */
 printf("\"myNumber\" value is %d\n", n);

 (*env)->SetIntField(env, this, fldid, ++n);/* increment it! */
 nn = (*env)->GetIntField(env, this, fldid);

 printf("\"myNumber\" value now %d\n", nn); /* make sure */
 return;
}

Finally, you compile the C code into a loadable object. Naturally, the details depend
on platform, compiler, etc. For example, on Windows, you could use this:

> set JAVA_HOME=C:\java # or wherever
> set INCLUDE=%JAVA_HOME%\include;%JAVA_HOME%\include\Win32;%INCLUDE%
> set LIB=%JAVA_HOME%\lib;%LIB%
> cl HelloJni.c -Fehello.dll -MD -LD

And on Unix, you could use this:

$ export JAVAHOME=/local/java # or wherever
$ cc -I$JAVAHOME/include -I$JAVAHOME/include/solaris \
 -G HelloJni.c -o libhello.so

Example 18-12 is a makefile for Unix.

574 | Chapter 18: Using Java with Other Languages

Example 18-12. main/src/main/java/jni/Makefile (Unix version)

Configuration Section

CFLAGS_FOR_SO = -G # Solaris
CFLAGS_FOR_SO = -shared
CSRCS = HelloJni.c
JAVA_HOME should be been set in the environment
#INCLUDES = -I$(JAVA_HOME)/include -I$(JAVAHOME)/include/solaris
#INCLUDES = -I$(JAVA_HOME)/include -I$(JAVAHOME)/include/openbsd
INCLUDES = -I$(JAVA_HOME)/include

all: testhello testjavafromc

This part of the Makefile is for C called from Java, in HelloJni
testhello: hello.all
 @echo
 @echo "Here we test the Java code \"HelloJni\" that calls C code."
 @echo
 LD_LIBRARY_PATH=`pwd`:. java HelloJni

hello.all: HelloJni.class libhello.so

HelloJni.class: HelloJni.java
 javac HelloJni.java

HelloJni.h: HelloJni.class
 javah -jni HelloJni

HelloJni.o:: HelloJni.h

libhello.so: $(CSRCS) HelloJni.h
 $(CC) $(INCLUDES) $(CFLAGS_FOR_SO) $(CSRCS) -o libhello.so

This part of the Makefile is for Java called from C, in javafromc
testjavafromc: javafromc.all hello.all
 @echo
 @echo "Now we test HelloJni using javafromc instead of java"
 @echo
 ./javafromc HelloJni
 @echo
 @echo "That was, in case you didn't notice, C->Java->C. And,"
 @echo "incidentally, a replacement for JDK program \"java\" itself!"
 @echo

javafromc.all: javafromc

javafromc: javafromc.o
 $(CC) -L$(LIBDIR) javafromc.o -ljava -o $@

javafromc.o: javafromc.c

18.6 Calling Other Languages via Native Code | 575

 $(CC) -c $(INCLUDES) javafromc.c

clean:
 rm -f core *.class *.o *.so HelloJni.h
clobber: clean
 rm -f javafromc

And you’re done! Just run the Java interpreter on the class file containing the main
program. Assuming that you’ve set whatever system-dependent settings are necessary
(possibly including both CLASSPATH and LD_LIBRARY_PATH or its equivalent), the pro‐
gram should run as follows:

C> java jni.HelloJni
Hello from a Native Method // from C
"myNumber" value is 42 // from C
"myNumber" value now 43 // from C
Value of myNumber now 43 // from Java

Congratulations! You’ve called a native method. However, you’ve given up portability;
the Java class file now requires you to build a loadable object for each operating sys‐
tem and hardware platform. Multiply {Windows, Mac OS X, Sun Solaris, HP/UX,
Linux, OpenBSD, NetBSD, FreeBSD} times {Intel-32, Intel-64/AMD64, Arm,
Arm-64, and maybe SPARC64, PowerPC, and HP-PA}, and you begin to see the
portability issues.

Beware that problems with your native code can and will crash the runtime process
right out from underneath the Java Virtual Machine. The JVM can do nothing to pro‐
tect itself from poorly written C/C++ code. Memory must be managed by the pro‐
grammer; there is no automatic garbage collection of memory obtained by the system
runtime allocator. You’re dealing directly with the operating system and sometimes
even the hardware, so, be careful. Be very careful.

See Also
If you need more information on Java native methods, you might be interested in the
comprehensive treatment found in Essential JNI: Java Native Interface by Rob Gordon
(Prentice Hall).

18.7 Calling Java from Native Code
Problem
You need to go the other way, calling Java from C/C++ code.

Solution
Use JNI again.

576 | Chapter 18: Using Java with Other Languages

Discussion
JNI (Java Native Interface) provides an interface for calling Java from C, with calls to:

1. Create a JVM.
2. Load a class.
3. Find and call a method from that class (e.g., main).

JNI lets you add Java to legacy code. That can be useful for a variety of purposes and
lets you treat Java code as an extension language.

The code in Example 18-13 takes a class name from the command line, starts up the
JVM, and calls the main() method in the class.

Example 18-13. main/src/main/java/jni/javafromc.c (Calling Java from C)

/*
 * This is a C program that calls Java code.
 * This could be used as a model for building Java into an
 * existing application as an extention language, for example.
 */

#include <stdio.h>
#include <jni.h>

int
main(int argc, char *argv[]) {
 int i;
 JavaVM *jvm; /* The Java VM we will use */
 JNIEnv *myEnv; /* pointer to native environment */
 JDK1_1InitArgs jvmArgs; /* JNI initialization arguments */
 jclass myClass, stringClass; /* pointer to the class type */
 jmethodID myMethod; /* pointer to the main() method */
 jarray args; /* becomes an array of Strings */
 jthrowable tossed; /* Exception object, if we get one. */

 JNI_GetDefaultJavaVMInitArgs(&jvmArgs); /* set up the argument pointer */
 /* Could change values now, like: jvmArgs.classpath = ...; */

 /* initialize the JVM! */
 if (JNI_CreateJavaVM(&jvm, &myEnv, &jvmArgs) < 0) {
 fprintf(stderr, "CreateJVM failed\n");
 exit(1);
 }

 /* find the class named in argv[1] */
 if ((myClass = (*myEnv)->FindClass(myEnv, argv[1])) == NULL) {
 fprintf(stderr, "FindClass %s failed\n", argv[1]);
 exit(1);

18.7 Calling Java from Native Code | 577

 }

 /* find the static void main(String[]) method of that class */
 myMethod = (*myEnv)->GetStaticMethodID(
 myEnv, myClass, "main", "([Ljava/lang/String;)V");
 /* myMethod = (*myEnv)->GetMethodID(myEnv, myClass, "test", "(I)I"); */
 if (myMethod == NULL) {
 fprintf(stderr, "GetStaticMethodID failed\n");
 exit(1);
 }

 /* Since we're calling main, must pass along the command line arguments,
 * in the form of Java String array
 */
 if ((stringClass = (*myEnv)->FindClass(myEnv, "java/lang/String")) == NULL){
 fprintf(stderr, "get of String class failed!!\n");
 exit(1);
 }

 /* make an array of Strings, subtracting 1 for progname & 1 for the
 * java class name */
 if ((args = (*myEnv)->NewObjectArray(myEnv, argc-2, stringClass, NULL))==NULL) {
 fprintf(stderr, "Create array failed!\n");
 exit(1);
 }

 /* fill the array */
 for (i=2; i<argc; i++)
 (*myEnv)->SetObjectArrayElement(myEnv,
 args, i-2, (*myEnv)->NewStringUTF(myEnv, argv[i]));

 /* finally, call the method. */
 (*myEnv)->CallStaticVoidMethodA(myEnv, myClass, myMethod, &args);

 /* And check for exceptions */
 if ((tossed = (*myEnv)->ExceptionOccurred(myEnv)) != NULL) {
 fprintf(stderr, "%s: Exception detected:\n", argv[0]);
 (*myEnv)->ExceptionDescribe(myEnv); /* writes on stderr */
 (*myEnv)->ExceptionClear(myEnv); /* OK, we're done with it. */
 }

 (*jvm)->DestroyJavaVM(jvm); /* no error checking as we're done anyhow */
 return 0;
}

====

578 | Chapter 18: Using Java with Other Languages

Afterword

Writing this book—and keeping it up to date—has been a humbling experience. It has
taken far longer than I had predicted or than I would like to admit. And, of course,
it’s not finished yet. Despite my best efforts and those of the technical reviewers, edi‐
tors, and many other talented folks, a book this size is bound to contain errors, omis‐
sions, and passages that are less clear than they might be. Do let us know if you hap‐
pen across any of these things; you can view and submit errata through them the
book’s catalog page. Subsequent editions will incorporate changes sent in by readers
just like you!

It has been said that you don’t really know something until you’ve taught it. I have
found this true of lecturing, and I find it equally true of writing.

I tell my students that when Java was very young, it was possible for one person to
study hard and know almost everything about it. After a release or two, this was no
longer true. Today, nobody in his or her right mind would seriously claim to “know
all about Java”—if they do, it should cause your bogosity detector to go off at full vol‐
ume. And the amount you need to know keeps growing. How can you keep up? Java
books? Java magazines? Java courses? Conferences? There is no single answer; all of
these are useful to some people. Oracle and others have programs that you should be
aware of:

• For many years, JavaOne was the dominant conference on Java, put on by Sun
Microsystems and briefly by Oracle. Recently, Oracle has folded this into Code
One, the annual Oracle conference.

• Marcus Biel has a pretty complete list of worldwide Java conferences.
• The Oracle Java Technology Network, a free web-based service for getting the lat‐

est APIs, news, and views.
• Over Java’s lifetime, the publishing industry has changed a lot. There used to be

several Java-related magazines published in print, some of whose articles would
appear on the web. Today there are, so far as I know, no print magazines dedica‐

dlxxix

https://shop.oreilly.com/product/0636920304371.do
https://oracle.com/code-one
https://oracle.com/code-one
https://marcus-biel.com/java-conferences-2019
https://www.oracle.com/technetwork/java

ted to Java. Oracle currently (2020) publishes the online-only Java Magazine
every month with technical articles on many aspects of Java (including some by
yours truly); see the magazine’s website to view the latest issue and back issues.

• The Java Community Process, the home of Java standardization and enhance‐
ment.

• The OpenJDK community maintains and builds the open source version of the
“official” JDK.

• O’Reilly books and conferences are among the very best available!
• I keep my own list of Java resources that I update sporadically, on my Java site;

follow the link to Java Resources.
• The most interesting advanced topic discussions show up in Heinz Kabutz’s Java

Specialists Newsletter.

There is no end of Java APIs to learn about. And there are still more books to be
written . . . and read.

dlxxx | Afterword

https://blogs.oracle.com/javamagazine
https://jcp.org
https://openjdk.java.net
https://java.oreilly.com
https://conferences.oreilly.com
https://darwinsys.com/java
https://www.javaspecialists.eu
https://www.javaspecialists.eu

6 Sun Microsystems, “Java Technology: The Early Years” article can be found at https://web.archive.org/web/
20090311011509/http://java.sun.com/features/1998/05/birthday.html and on the Paderborn University website
at http://gcc.upb.de/www/WI/WI2/wi2_lit.nsf/7544f3043ee53927c12573e70058bbb6/
abf8d70f07c12eb3c1256de900638899/$FILE/Java%20Technology%20-%20An%20early%20history.pdf.

APPENDIX A

Java Then and Now

Introduction: Always in Motion the Java Is
Java has always been a moving target for developers and writers. I meet developers
in my commercial training programs who are still not aware of some of the features
added to ancient Java releases, let alone current ones. This appendix looks at each of
the major releases of Java. See Jon Byous’s Sun Microsystems article “Java Technology:
The Early Years” for a review of Java’s early history. You can also find a copy at the
Paderborn University website.6

Details on releases prior to Java 8 are considered ancient history and have been
moved to my website, https://darwinsys.com/java/ancientHistory.html.

What Was New in Java 8
Java 8 Language Changes
The biggest new feature in the Java 8 language is lambda expressions. After a decade
of debate on how to implement them, closures, or lambda expressions, finally arrived
with Java 8. This is such a vast topic that it gets an entire chapter in this edition; see
Chapter 9.

Annotations can now be placed on structured types.

581

https://web.archive.org/web/20090311011509/http://java.sun.com/features/1998/05/birthday.html
https://web.archive.org/web/20090311011509/http://java.sun.com/features/1998/05/birthday.html
http://gcc.upb.de/www/WI/WI2/wi2_lit.nsf/7544f3043ee53927c12573e70058bbb6/abf8d70f07c12eb3c1256de900638899/$FILE/Java%20Technology%20-%20An%20early%20history.pdf
http://gcc.upb.de/www/WI/WI2/wi2_lit.nsf/7544f3043ee53927c12573e70058bbb6/abf8d70f07c12eb3c1256de900638899/$FILE/Java%20Technology%20-%20An%20early%20history.pdf
https://darwinsys.com/java/ancientHistory.html

Java 8 API Changes
Java 8 brings in the new date/time API from JSR-310. This provides a more consistent
and sensible set of classes and routines for dealing with time. Chapter 6 has been
completely rewritten to use the new API, ending with a recipe showing various con‐
versions between the old and new APIs.

Java 8 introduced functional programming techniques such as closures, Streams, and
parallel collections, which we discuss in Chapter 9. In support of Streams, there are
new methods in interfaces such as List, Map, and Set, which had until now been
largely unchanged since the long-gone days of Java 1.1. Fortunately the Java 8 lan‐
guage support adds a default method type in interfaces, so your custom implemen‐
tations of these interfaces are not required to change (as long as you make sure you
change your IDE settings to an up-to-date compiler level).

As one example of default methods in action, Iterable gets a new default method
called forEach(), which lets you write code like this:

myList.forEach(e -> /* do something with e here... */);

This is discussed further in “Iterable.forEach method (Java 8)” on page 198.

A new JavaScript implementation codenamed Nashorn is available via javax.script
(see Recipe 18.3) and can also be run from the command line.

Javadoc (see Recipe 15.2) was extended to the javax.tools API.

Annotations can be repeated, obviating the need to manually code wrapper annota‐
tions, for example, javax.persistence.NamedQueries (plural), which is just a con‐
tainer for a list of javax.persistence.NamedQuery (singular) annotations.

Finally, Java provides support for Base 64 encoding/decoding in the form of
java.util.Base64 with two nested classes for encoding and decoding.

There were also dozens of other small changes, such as those covered by OpenJDK.

What Was New in Java 9
Java 9 is best known for introducing the Java Platform Module System, JPMS.

Since the JDK itself is modularized (the original intention of JPMS!), the new jlink
tool lets you build a minimal JDK with only the parts needed for your modularized
application.

Another new tool is JShell, a REPL (Read-Evaluate-Print-Loop) expression evaluator
for Java. Also known as an interactive Java, JShell is useful for prototyping, trying out
new ideas, and so on. JShell is covered in Recipe 1.4.

582 | Appendix A: Java Then and Now

http://openjdk.java.net/projects/jdk8/features

This release also marked the beginning of the six-month major release cadence, in
which a new major release (Java 10, Java 11, etc) would be made available every six
months. At the same time, Java 8 and Java 11 were declared to be LTS (Long-Term
Support) releases.

Java 9 Language Changes
The new module-info file introduces several pseudokeywords, words which have
reserved meaning only in a module-info file, but can still be used as user-defined
names in Java classes. These include module, requires, exports, provides, with, and a
few others. This also impacts the meaning of the visibility modifiers when used
within a module.

Interfaces (which added default methods in Java 8) now allow private methods as
well, for use by default methods.

Java 9 API Changes
Improvements to the Streams API, with several new methods in the Stream interface.

Improvements to the Collections API, including the of() factory method to quickly
create a List or Set from several values.

What Was New in Java 10 (March 2018)
Java 10 is famous for the var keyword and the first actual release on the six-month
cadence.

Java 10 introduces GraalVM, a just-in-time compiler (like HotSpot) but written in
Java.

In Java 10, the OpenJDK version of the cacerts file is fully populated, making it far
more likely that connecting via https will work out of the box.

The javah tool for native code headers is removed, replaced by equivalent-or-better
functionality in javac itself.

Java 10 Language Changes
The var keyword, for local variables only, allows you to not fuss over the actual type
of a variable. Of course the compiler must be able to infer the type of the variable.
Let’s explore some options in jshell:

jshell> var x = 10;
x ==> 10

jshell> var y = 123.4d;

Java Then and Now | 583

y ==> 123.4

jshell> var z = java.time.LocalDateTime.now();
z ==> 2019-08-31T20:47:36.440491

jshell> var map = new HashMap<String,Integer>();
map ==> {}

jshell> map.put("Meh", 123);
$4 ==> null

jshell> var huh;
| Error:
| cannot infer type for local variable huh
| (cannot use 'var' on variable without initializer)
| var huh;
| ^------^

jshell>

Somewhat surprisingly, var is not actually a language keyword, so this word can still
be used as a user-defined name:

jshell> var var = 123;
var ==> 123

jshell> var
var ==> 123

See https://developer.oracle.com/java/jdk-10-local-variable-type-inference.html for
explanation and more details on var.

Java 10 API Changes
List and Set add the new copyOf() method to make a truly unmodifiable copy; the
previous List.unmodifiableList() made an unmodifiable view, which would
appear to change if the underlying List were changed.

See Also
Quite a few old features were removed or deprecated; see this list on DZone.

Simon Ritter has an article titled “Java 10 Pitfalls for the Unwary”.

584 | Appendix A: Java Then and Now

https://developer.oracle.com/java/jdk-10-local-variable-type-inference.html
https://dzone.com/articles/java-10-new-features-and-enhancements
https://www.azul.com/jdk-10-pitfalls-for-the-unwary

What Was New in Java 11 (September 2018)
Java 11 introduced what I call “single-file run-from-source” (JEP 330); you can now
type the following:

java HelloWorld.java

and the Java command will both compile and run the named program. This makes it
much easier to work with single files, which is the primary thing it works with. If you
have two or more files, the second through nth must be compiled and on your CLASS
PATH; the source file you specify on the command line must be the one with main()
and must not be compiled on your CLASSPATH. So it’s good for simple things, but not
for complex applications.

See also this list on DZone.

Java 11 API Changes
For a more complete list of Java 11 changes, see this DZone list.

What Was New in Java 12 (March 2019)
Java 12 introduced the notion of Preview Changes, features added to the JDK but not
yet made part of the official specification. This is basically what others might have
called beta mode; if enough users indicate that they have serious issues with a Preview
Mode feature, the JDK team can fix it or even kill it off before declaring it part of the
JDK specification (or declaring it dead).

Java 12 Language Changes
• switch statements that can yield a value (Preview)

Java 12 API Changes
Some of the more visible changes:

• A Tee Collector for Streams (copies input to multiple output Streams).
• A CompactNumberFormat, replacing my ScaledNumberFormat (prints the number

2,048 as 2K, for example).
• String.indent(n) returns a copy of the String with n spaces prepended.
• GC improvements (JEP 189: Shenandoah: Low-Pause-Time GC); pause-time

improvements to G1 GC.

Java Then and Now | 585

https://dzone.com/articles/90-new-features-and-apis-in-jdk-11
https://dzone.com/articles/90-new-features-and-apis-in-jdk-11

There are numerous other minor changes; see https://www.azul.com/39-new-features-
and-apis-in-jdk-12 and https://openjdk.java.net/projects/jdk/12.

What Is New in Java 13 (September 2019)
Java 13 was the latest official release as of this writing. It includes the following
features:

• Improved garbage collection (again)
• Improved application class-data sharing (AppCDS) to allow writing an archive of

all classes used in an app
• Text blocks to replace and simplify multiline String literals (Preview)
• Improvements to switch statements that can yield a value
• Rewrite of the Socket and ServerSocket implementation (not changing the API)

See also this JavaWorld article.

Looking Ahead
There will be a Java 14 in 2020, around the time that this book goes to press.

These are some of the features that are in the works:

• Record types (in Preview; see Recipe 7.18).
• Sealed types, which permit a class designer to control subclassing by enumerating

all the allowed subclasses. The syntax at present looks like this:
public abstract sealed class Person permits Customer, SalesRep {
 ...
}
class Customer extends Person {
 ...
}

• Text blocks, a.k.a. multiline text strings, delimited with a triplet of double quotes:
String long = """
This is a long
text String."""

• A new packaging tool, jpackage, which will generate a complete self-installing
application on the main supported operating systems.

There are several other interesting JEPs for Java 14. A complete list can be found at
OpenJDK. The JEPs linked from that page are interesting reading for those interested

586 | Appendix A: Java Then and Now

https://www.azul.com/39-new-features-and-apis-in-jdk-12
https://www.azul.com/39-new-features-and-apis-in-jdk-12
https://openjdk.java.net/projects/jdk/12
http://cr.openjdk.java.net/~jlaskey/Strings/TextBlocksGuide_v9.html
https://www.javaworld.com/article/3341388/jdk-13-the-new-features-coming-to-java-13.html
https://openjdk.java.net/projects/jdk/14

in the rationale for (and the amount of work that goes into) each of these new fea‐
tures.

There will also be a Java 15 in 2020, but it entered Early Access just as this book was
going to print, so we don’t have coverage of it in this edition. “Always in motion Java’s
future is,” Yoda says.

The Evolution of Client-Side Java: Applets, Browser Wars, Swing, JavaFX

While you can infer some of this from the per-JDK revision notes given in the rest of
this appendix, it seems fitting to provide a unified narrative on the role of Java in the
desktop.

Java began its public life as a vehicle for embedding flashy dynamic content in web
pages via Java applets. Applets got off to a flying start with their incorporation in the
Netscape line of browsers in 1995–96. Incidentally, part of the cross-licensing agree‐
ment between Sun and Netscape was that Netscape could use the term “JavaScript”
for what was then its “LiveScript” web scripting language.

Applets never took over the world for a variety of reasons, including the fact that
Microsoft never allowed Java applets to become a full player in Internet Explorer (at
that time one of the most widely used browsers), users’ fear of security issues (some of
which surfaced from time to time), difficulties of installing and updating, and the
increasing capabilities of CSS and JavaScript, and later HTML5.

There were some large users—for example, the Blackboard product used for student–
instructor communication in hundreds of colleges and universities. However, even
these have had issues of compatibility, sometimes requiring students to load a particu‐
lar update like JDK 1.6 Update 42 in order to be supported on a given release of
Blackboard.

Along the way, the original AWT GUI package was supplanted by Swing, a newer and
better GUI package. Around this time, the Applet class was supplemented with the
JApplet class to allow Applets to be full users of Swing GUI classes.

Yet Java was never without competition on the desktop. Adobe Flash came along soon
after Java. It was single-sourced and came from the home of Illustrator and Photo‐
shop, which the web’s graphic designers loved, and therefore Flash prospered.

More recently, the browsers themselves have become competitors to both Java and
Flash. The HTML5 standard introduces a large number of technologies such as
increased JavaScript, the Canvas object for graphics, and access to some local devices.
Many new projects today are starting with HTML5. Though JavaScript is not as nice a
programming environment as Java, its familiarity to the large number of web devel‐
opers in circulation has helped it dominate large areas of desktop development. So
both Java applets and Adobe Flash are dead or dying, replaced by browser-native
capabilities.

Java Then and Now | 587

http://blackboard.com

One of Sun’s responses was to target a new technology that is now called JavaFX to the
desktop. JavaFX can be used in browsers or in desktop applications. It does provide
considerable benefits to GUI and graphics developers. There is information on Jav‐
aFX at https://openjfx.io.

Also in the area of client-side technologies, Sun insisted from the beginning that
mobile phone developers use the Java Micro Edition (ME), based on a severely cut-
down JVM and a totally different user interface package. Fortunately for Sun, Black‐
Berry (then called Research In Motion, or RIM), agreed to this. At the time, it made
sense—when the early versions of BlackBerry OS came out, mobile CPUs were slow,
and memory was limited, so a tiny LCDUI made sense.

When Google wanted to expand into the mobile space to expand the reach of its
advertising business, it soon found—and bought—a company called Android that
had a Linux-based OS with a rewritten Java implementation. Android’s developers
had tried to reason with Sun about using more complete Java on mobile, given how
mobile device CPU and memory were growing, but the negotiations were not suc‐
cessful. So Android went off and built its own user interface, which has since become
the most widely used Java platform. But during this time, Sun was acquired by Oracle.

Live on stage at the first JavaOne conference after the acquisition, Larry Ellison wel‐
comed Android as part of the Java ecosystem. But when Android continued its mete‐
oric rise, Oracle’s lawyers thought they could muscle in on this, and Oracle sued Goo‐
gle for a billion dollars, alleging copyright, trademark, and trade secret violations. The
suit was very complex, but one of the most important aspects was Oracle’s claim that
it could copyright the API separately from the code. Thus, anybody ever wanting to
write a class called String with the methods described in the String class’s javadoc
page would—in Oracle’s theory—have to apply for permission from Oracle. Needless
to say, several old-line software companies like Microsoft lined up with Oracle, while
the entire open source world lined up with Google, fearing the “chilling effects” this
would have on the entire open source world. And, fortunately for Android and for
the open source world, so did the judge. This suit was won by Google, but Oracle
launched an appeal, which unfortunately for the open source world, was successful.

Oh, and back to BlackBerry. Unfortunately for BlackBerry, as time and Moore’s law
marched on in tandem, Java ME did not keep in step and was left behind. BlackBerry,
obligated to stay on the ME platform, and unable to modify the Java ME classes, had
to spend billions of dollars in R&D through the late 1990s and the 2000s building a
parallel package structure to provide modern GUI and device capabilities, which it
did all through OS versions 5, 6, and 7. When it finally dawned on RIM management
that the JVM+OS combination itself was the bottleneck, they first tried to make their
current JVM run on QNX, a Unix-based operating system from a company of the
same name, which RIM acquired. This was doomed to failure, but a skunkworks
project within the company took the open source Android and made that run in a
matter of weeks. Management decided to abandon Java ME and Java as its main
development language but allow Java-based Android apps to run as almost-first-class

588 | Appendix A: Java Then and Now

https://openjfx.io

citizens in the BB10 environment. Alas, it took them a year and a half to get QNX
working well enough on its new BlackBerry 10 devices that they could release it. Dur‐
ing this time of uncertainty its sales tanked. BB10 was available for a while and
worked well enough (and ran most Android apps). But unfortunately, the delay in
getting to market was fatal, and BlackBerry devices now run Android. BlackBerry is
repositioning QNX as an automotive platform and is selling security software. Black‐
Berry as a mobile platform is thus dead.

Java continues to be used on the desktop (although the market for desktop apps is
steadily losing ground to mobile devices and increasingly capable native applications)
and in mobile (particularly on Android devices). Java also continues to be heavily
used in enterprise environments using packages like Java EE servers, JSP/JSF pages,
Spring Framework, and Hibernate.

Java Then and Now | 589

Index

Symbols
+ operator, 65
- (dash), 48
/ (filename separator), 48
/bin/false command, 37
: (PATH separator), 48
:$PATH, 4
\ (escape character), 48

A
abstract class, 250
abstract methods, 253
accented characters, 120
accept() method, 418, 424, 426
acceptCamera() method, 280
actionPerformed() method, 274
ADAMS, 368
add() method, 192, 193, 201, 201, 498
add-on libraries, JSF, 42
addElement() method, 193
addresses, network, 389-391
Agile Software Development Ecosystems

(Highsmith), xx
aligning strings, 69-72
alternatives command, 4
Android

about, 588
developing for, 6
locales and, 87

Android Cookbook (Darwin), xvii
animation, 489-492
annotations

about, 468
defining with reflection, 542-547

plug-in-like classes, finding with, 547
using with reflection, 542-547

anonymous methods, 276
anonymous package, 463
Ant (Apache), 21, 22
ANTLR, 320
Apache (website), 22
Apache Ant, 21, 22
Apache Buildr, 21, 22
Apache Commons Math library, 155
Apache Commons Project, 553
Apache Commons StringUtils, 95
Apache DeltaSpike, 42, 277
Apache Harmony, 3
Apache Jakarta Commons Logging (JCL), 436
Apache Logfile Parsing program, 123
Apache Logging Services Project, 436
Apache Maven

about, 15, 21, 22, 23
automating with, 23-27
dependency management and, 22, 26
modules, 16
pros and cons of, 26
repositories and, 19

Apache Software Foundation, 41
Apache Spark, 369-371
Apache Subversion, 20
APIs, packaged, 51
append() methods, 65, 66, 73, 536
appendReplacement() method, 112
appendTail() method, 113
applets, 587
apply() method, 282
applyAsInt() method, 282

591

applyPattern() method, 143
ArrayList, 190, 233-235
arrays, 188, 222
Arrays.asList() method, 193
Arrays.binarySearch() method, 221
Arrays.of() method, 199
Arrays.sort() method, 213, 221
arrow notation, 278
The Art of Computer Programming (Knuth),

xix
AsciiDoctor, xiv
AssertJ, 33
assertThat() method, 33
assignment arrow (R language), 373
asynchronous sockets, 384
atZone() method, 182
auto-boxing/auto-unboxing, 135

B
Bakker, Paul

Java 9 Modularity: Patterns and Practices
for Developing Maintainable Applica‐
tions, xviii, 52, 482

Bates, Bert
Head First Design Patterns, 239
Head First Java, xiv, xviii

BeanShell, 555
Beck, Kent

eXtreme Programming, 31
Extreme Programming Explained, xx

Biel, Marcus, dlxxix
Bien, Adam

Real World Java EE Patterns: Rethinking
Best Practices, xviii

Big Data (see data science)
big numbers, 133
binary data

as input/output, 331
reading/writing over networks, 394-397
returning over sockets, 418-420

binary numbers, 146
binarySearch() method, 220
bison, 320
Bitbucket, 41
BlackBerry, 588
Bloch, Joshua

Effective Java, 238, 256
Java Puzzlers books, xiii

boolean matches() method, 106

BootsFaces (JSF), 42
bridging, 194
Brown, Doug, 320
browsers, 587
BSD license, 19
BSD make, 21
Build Now icon, 37
Buildr (Apache), 21, 22
Burke, Bill

RESTful Java with JAX-RS 2.0, 2nd Edition,
388

ButterFaces (JSF), 42

C
Calendar classes, 30, 182-184
calendars, adding to/subtracting from, 177
call() method, 485
cancel() method, 487
CANON-EQ flag, 119
canonical matching, 120
canonical name, 344
case, 81, 119
CASE_INSENSITIVE flag, 120
catch clause, 39
CDI (Context and Dependency Injection), 265,

267
CDI Beans, 470
Chambers, John, 374
character sets, converting, 329
character strings (see strings)
charAt() method, 58, 68, 73
Chat Client program, 406-410
checksum, 69
Cheswick, William R.

Firewalls and Internet Security, 447
ChoiceFormat, 149
choose() method, 278
CI (Continuous Integration), 21, 34-38
CircleCI, 35
class statement, 13
class-like constructs, 542
Class.forName() method, 270
classes

ClassLoader, constructing with, 529-530
JavaCompiler, constructing with, 530-533
listing, in packages, 539-541
loading/instantiating dynamically, 526-528
plug-in-like, 547
preparing as JavaBeans, 469-473

592 | Index

printing information of, 537-538
reflection and, 520

ClassLoader, 529-530
CLASSPATH

about, 2
environment variable, setting as an, 14
JAR files, adding, 51
using, 13

clean command (Maven), 25
cleanUp() method, 238
clear() method, 192
Clojure, 274, 556
clone() method, 238, 246, 263
close() method, 290
closures, 276-279
cloz() method, 290
Coad, Peter

Java Design, xx
code

completion, 5
Continuous Integration (CI) and, 34-38
downloading examples, 15-22
examples, xxii

code folding, 279
Code One, dlxxix
code reuse, 464
Codehaus, 41
codePointAt() method, 68
Colebourne, Stephen, 167
collect() method, 284, 287
collections

converting to arrays, 222
finding objects in, 220-222
sorting, 213-218

Collections API, 237
Collections Framework, 186, 189
Collections.binarySearch() method, 222
Collections.sort() method, 213
collectors, simplifying streams with, 284-287
com.darwinsys packages, 17
command prompt window, 307
command-line Git client, 20
COMMENTS flag (regex), 120
Commons BeanUtils, 553
Comparator.comparing() method, 214
compareToIgnoreCase() method, 292
compile command (Maven), 25
compiling, 2, 23-29
complete() method, 488

complex numbers, 155-156
composite characters, matching, 120
compressing tabs, 76-80
compute() method, 511
computeArea() method, 253
computeReplacement method, 114
Concurrency Utilities, 484
Concurrent Versions System (CVS), 20
console() method, 307
consoles, reading from, 304-307
contains() method, 192, 201, 220
containsKey() method, 220
containsValue() method, 220
Context and Dependency Injection (CDI), 265,

267
Continuous Integration (CI), 21, 34-38
continuous time, 168
copyOf() method, 584
CPAN (Comprehensive Perl Archive Network),

568
CRAN (Comprehensive R Archive Network),

372
createDirectories() method, 345
createDirectory() method, 323, 345
createFile() method, 323, 345
createNewFile() method, 353
createTempDirectory() method, 351
createTempFile() method, 351, 353
Creating Effective JavaHelp (Lewis), 467
CrossRef program, 549-553
CruiseControl, 35
culture lessons, 85
CUP, 320
CVS (Concurrent Versions System), 20
CygWin, 98
Czarnecki, David

Java Internationalization, 85

D
daemon, 93
Dahm, Markus, 553
Darwin, Ian

Android Cookbook, xvii
darwinsys-api repository, 16, 17-18, 26
Data Mining: Practical Machine Learning and

Techniques (Witten), 369
data science, 367
data structures, 185-235

about, 185

Index | 593

ArrayLists and, 190
arrays and, 186
collections framework, 189
converting collections to arrays, 222
generic types in classes, 194-197
HashMap, 207-209
Hashtable, 207-209
iterating over, 197-200
Iterator interface and, 223-226
linked lists, 202-207
multidimensional, 229-231
object stacks, 226-229
resizing arrays, 188
Set inteface, 201
simplifying data objects, 231-233
sorting collections, 213-218
sorting, avoiding, 218-220
storing strings, 209-213
Timing Comparisons program, 233-235

data, using in Apache Spark, 369-371
Database Programming with JDBC & Java

(Reese), xviii
Databricks, 369
Date class, 30
Date/Time API, 167-184

about, 167
adding to, 177
basics of, 169
Calendar classes, 182-184
computing periods between dates with, 176
converting, 174
current date/time, finding, 170
formatting with, 172-173
human time, 169
legacy code and, 182-184
methods, 168
packages, 168
parsing strings, 175
periods, adding or subtracting, 177
recurring events, 178-180
support, 170
time zones and, 181

DateFormat class, 30
DateFormatter, 172
debug() method, 440
decimal numbers, 146
Deep Java Learning (DJL), 368
DeepLearning4Java, 153, 368
default method, 226

defineClass() method, 529
Deitsch, Andy

Java Internationalization, 85
delegation, 238
delete() method, 66, 351
deleteCharAt() method, 66
deleteIfExists() method, 351
deleteOnExit() method, 352, 353
dependency, 23-29
dependency injection, 265-268
deploy command (Maven), 25
deployment, automating, 23-29
deprecation warnings, 29-31
DercimalFormat, 143
design books, xx
design patterns, 239
Design Patterns (Gamma, Helm, Johnson and

Vlissades), xx, 31
desktop module (Maven), 16
destroy() method, 563
diamond operator, 192
Digital Equipment, 417
directories

creating, 345
listing, 48, 353
roots of, 354

DJL (Deep Java Learning), 368
documentation, javadoc, 464
doPost() method, 503
DOS directory list command, 48
dot commands, 92
DOTALL flag, 120
Double.equals() method, 141
Double.isNaN() method, 138
Downing, Troy

Java Virtual Machine, xviii, 553
downloading, 1, 15-22
drive letter, 358
dynamic languages, 555

E
Eckstein, Robert

Java Swing, xviii
Eclipse

about, 6
New Java Class Wizard, 7
repositories and, 19
Run Configuration dialog, 46
support for Maven from, 25

594 | Index

support for running JUnit, 33
website, 10, 25

Eclipse Marketplace, 10
Eclipse Software Foundation, 41
editions, GraalVM, 4
ee module (javasrc repository), 16
EE Web containers, 15
Effective Java (Bloch), 238, 256
Efficient Java Matrix Library (EJML), 153
EJB Timer Service, 515
EJBs (Enterprise JavaBeans), 470
EJML (Efficient Java Matrix Library), 153
elementAt() method, 193
The Elements of Programming Style (Ker‐

nighan and Plauger), xx
ELKI, 368
Ellison, Larry, 588
email() method, 233
empty() method, 227
end() method, 110
end-of-line characters, 330
endClass() method, 551
endonym, 87
Enterprise JavaBeans (EJBs), 470
entrySet() method, 208
enum constants, 256
enumerations, 198, 200, 255-259
environment variables, 43
epoch seconds, 174
epsilon, 140
equals() method, 81, 139, 140, 201, 216, 231,

233, 241-245, 542
equalsIgnoreCase() method, 81
erasure, 194
error handling, 391
error() method, 440
escape character (\), 48
escapes, 82
Essential JNI: Java Native Interface (Gordon),

576
Evans, Benjamin

Java in a Nutshell, xiv, xviii
events, recurring, 178-180
exception handling, custom, 263
exec() method, 556, 562, 564
execute() method, 487
exitValue() method, 563
expanding tabs, 76-80
extensions, 51

eXtreme Programming (Beck), 31
Extreme Programming (XP), 31
Extreme Programming Explained (Beck), xx

F
factory methods, 143
FastR, 375, 378-380
fatal() method (logging), 440
fields, reflection and, 521-525
File class, 48
filename separator (/), 48
files

copying, 324
creating, 345
deleting, 349-351
finding, 336-338
path and, 338-345
properties of, 48
reading, 301-304
renaming, 346-348
transient/temporary, 351-353

Files.copy() method, 324
Files.delete() method, 349
Files.lines() method, 286
Files.move() method, 347
Files::lines() method, 301
FileWatcher service, 356
finalize() method, 238
find() method (regex), 109, 110
Find: Walking a File Tree program, 361-364
findstr command, 98
finish() method, 359
Finnegan, Ken

JBoss Weld CDI for Java Platform, 268
Firewalls and Internet Security (Cheswick), 447
first() method (collections), 219
firstInMonth() method, 179
Flanagan, David

Java in a Nutshell, xiv, xviii
flatMap() method, 286
flex, 320
Float.isNaN() method, 138
floating point numbers, 132, 136, 137-142
fluent API, 170
fluent programming, 283
flush() method, 420
folds, 284
foo() method, 136
for each loop, 68, 198, 199

Index | 595

for loop, 68, 198, 200, 208
Ford, Neal

Functional Thinking, 276
forEach() method, 192, 199, 208, 249, 582
fork() method, 511
fork/join framework, 511-514
format() method, 70, 92, 308
formatting

dates/times, 172-173
numbers, 142-146
with correct plurals, 149

Fowler, Martin
on Continuous Integration (CI), 34
Refactoring, xx
UML Distilled, xxi

Friedl, Jeffrey
Mastering Regular Expressions, 99

functional interface, 198, 274, 276
functional programming, 273-295

about, 273-276
closures, 276-279
custom interfaces, 280-282
lambdas, 276-279
method references, 289-293
mixins, 293-295
parallel streams, 287-289
streams and, 283-287

Functional Thinking (Ford), 276
Future interface, 487

G
Gafter, Neal

Java Puzzlers books, xiii
Gamma, Erich

Design Patterns, xx, 31
Gang of Four (GoF), xx, 239
Garbage Collection in the Java HotSpot Virtual

Machine paper, 536
The Garbage Collection MythBusters presenta‐

tion, 536
Garbage-Collection-Friendly Programming,

TS-2906, 536
general programming books, xix
generic types, 191, 194-197
Gentleman, Robert, 375
get() method, 193, 194, 201, 487
getByName() method, 389
getCharAt() method, 59
getClass() method, 336, 520

getClassLoader() method, 336
getConstructors() method, 521
getenv() method, 44
getFields() method, 521, 537
getHostAddress() method, 389
getInetAddress() method, 390
getInputStream() method, 333, 392, 394, 396,

418, 424, 560
getInstance() method, 262
getLastModified() method, 348
getLength() method, 398
getLocalHost() methd, 390
GetMark program, xiv
getMethod() method, 521, 523, 537
getName() method, 333
getNextMeeting() method, 180
getopt library, 126
getOutputStream() method, 359, 392, 394, 396,

418, 424
getProp() method, 470
getResource() method, 336-338, 336
getResourceAsStream() method, 336-338, 336
getWriter() method, 359
getYear() method, 378
Git, 20
git clone command, 16, 19
git pull command, 16, 19
GitHub (website), 20, 41
GitLab, 41
GNU make, 21
GnuWin32, 98
Goetz, Brian

Java Concurrency in Practice, 517
GoF (Gang of Four), xx, 239
Google Code, 566
Google Guice, 265
Gordon, Rob

Essential JNI: Java Native Interface, 576
graal module (Maven), 16
GraalVM

about, 3-5, 583
FastR, 378-380
mixing languages with, 566
website, 4

Gradle
about, 15, 21, 22, 555
automating with, 27-29
dependency management and, 22
website, 22, 28

596 | Index

Grails, 555
grammatical structures, input/output with,

319-323
Grand, Mark

Java Language Reference, 553
grep, 98, 118, 121
groff, 92
Groovy, 28, 555
group() method, 110, 115
groupCount() method, 110
Gupta, Arun

Java EE 7 Essentials: Enterprise Developer
Handbook, xviii, 410, 414, 470

gzip compression, 336

H
Hacking Exposed (McClure), 447
Hadoop, 275, 367
Hamcrest matchers, 33
Harold, Elliotte

Java I/O, xviii, 146, 301
Java Network Programming, xviii, 385, 447

hashCode() method, 231, 233, 241-246
HashMap, 207-209
Hashtable, 207-209
hasMoreElements() method, 67, 200
hasMoreTokens() method, 60
hasNext() method, 223
hasRoom() method, 228
Head First Design Patterns (Bates), 239
Head First Java (Bates and Sierra), xiv, xviii
headMap() method, 219
headSet() method, 219
Helm, Richard

Design Patterns, xx, 31
hexadecimal numbers, 146
Highsmith, Jim

Agile Software Development Ecosystems, xx
Hinojosa, Daniel, 165
hist() method, 374
Hitchens, Ron

Java NIO, 301
HTTP protocol, 428
HTTP/REST web client, 385-388
human time, 169
human-readable number formatting, 145
Hunt, Andrew

The Pragmatic Programmer, xx

I
I18N, 85-88
Ian's Rule, 5
Icefaces, 42
IDE (see Integrated Development Environment

(IDE))
IEEE Standard 754, 140
Ihaka, Ross, 375
incremental compiling features, as a feature of

IDE, 5
indent() method (String class), 57
indenting strings, 69-72
indexOf() method, 61, 192, 220
InetAddress.getByName() method, 417
info() method (logging), 440
inner classes, 247-253
input/output, 297-364

binary data as, 331
converting character sets, 329
directories, creating, 345
directories, listing, 353
directory roots, 354
end-of-line characters, 330
files and path, 338-345
files, copying, 324
files, creating, 345
files, deleting, 349-351
files, finding, 336-338
files, renaming, 346-348
FileWatcher service, 356
Find: Walking a File Tree program, 361-364
from console, 304-307
from terminal, 304-307
java.util.Formatter, 308
of JAR files, 332-336
of ZIP files, 332-336
platform-independent code, 330
reading text files, 301-304
reassigning standard streams, 326-328
Save User Data to Disk program, 358-361
Scanner class, 316-317
standard in, 304-307
streams, 299, 325-328
streams, duplicating, 326-328
StreamTokenizer and, 312-314
transient/temporary files, 351-353
with grammatical structures, 319-323

insert() method, 66
install command (Maven), 25

Index | 597

install.packages() method, 380
Integer.parseInt() method, 306
integers, 136, 147
Integrated Development Environment (IDE)

choosing, 9
compiling, running and testing with an,

5-11
features of, 5
support for Maven from, 25
support for running JUnit, 33

IntelliJ IDEA
about, 6
Git and, 20
website, 10

internal iteration, 199
internationalization, 85
invoke() method, 523
isBlank() method, 57
isCancelled() method, 487
isDone() method, 487
isEmpty() method, 201, 260
isNaN() method, 137
isPresent() method, 260
isProbablyPrime() method, 160
isProp() method, 470
istabstop() method, 80
iterable data, 223-226
Iterable interface, 223
Iterable.forEach() method, 198, 198
iterating, 197-200
iterator() method, 225

J
Jackson, 452
Jakarta, xvii, 6, 35
Japhar, 3
JAR files

about, 14
archive files, 473-474
input/output of, 332-336
pickling JavaBeans into, 469-473
running programs from, 474-476

Jar Packager, 3
Java

books on, xvii
build tools for, 21
calling from native code, 576-578
calling languages via native code, 571-576
collections, 189

compiling and running, 2-13
downloading, 1
evolution of client-side, 587
input/output in, 297-301
javax.script, 564-566
JSON in, 449
machine learning (ML) with, 368
mixing languages with GraalVM, 566
networking in, 383-385
object-oriented programming in, 237-239
packages in, 461
Perl and, 567-571
reflection in, 519
running external programs from, 556-560
running programs and capturing output,

560-564
sockets in, 413
testing with an IDE, 5-11
threading in, 483-485
using from within R sessions, 377
using R from within apps, 375-377
using with other languages, 555-577
versions of, 46-51

Java 8, 226, 581
Java 8 Lambdas (Warburton), xviii, 276
Java 9, 582
Java 9 Modularity: Patterns and Practices for

Developing Maintainable Applications (Mak
and Bakker), xviii, 52, 482

Java 10, 583
Java 11, 585
Java 12, 585
Java 13, 586
Java 14 record, 233
Java API, source code for, 39
Java CC, 320
java command, 2, 55
Java Community Process (JCP), 461, dlxxx
Java Concurrency in Practice (Goetz), 517
Java Design (Coad), xx
Java Development Kit (JDK), 1, 2-3, 14
Java EE 7 Essentials: Enterprise Developer

Handbook (Gupta), xviii, 410, 414, 470
Java EE 8 Cookbook (Moraes), xvii
Java Enterprise Edition (Java EE), 265, 267, 414
Java Flight Recorder, 534
Java Generics and Collections (Naftalin and

Wadler), 194
Java Help API, 467

598 | Index

Java I/O (Harold), xviii, 146, 301
Java in a Nutshell (Flanagan and Evans), xiv,

xviii
Java Internationalization (Deitsch and Czar‐

necki), 85
Java Language Reference (Grand), 553
Java libraries, 40-42
Java Magazine, dlxxx
Java Message Service (Richards), 447
Java Micro Edition (ME), xvii, 588
Java Mission Control, 534
Java Network Programming (Harold), xviii,

385, 447
Java NIO (Hitchens), 301
Java Performance), 537
Java Persistence API, 543
Java Platform Module System (JPMS), 52-56,

479-482
Java Puzzlers book (Bloch and Gafter), xiii
Java Runtime Environment (JRE), 1
Java SDK, 1, 2-3, 14
Java Security (Oaks), 433, 478, 552
Java Servlet & JSP Cookbook (Perry), xvii
Java Servlet Programming, 504
Java Specialists Newsletter, dlxxx
Java Specification Request (JSR), 484
Java Swing (Eckstein), xviii
Java Technology: The Early Years article, 581
Java Virtual Machine (Downing and Meyer),

xviii, 553
java.awtTaskbar class, 51
java.io.File class, 48
java.io.Reader, 40
java.lang.Math.random() method, 151
java.lang.Runtime class, 43
java.util.Date class, 29
java.util.Formatter, 308
java.util.Iterator() method, 198, 199
java.util.logging, 444-447
JavaBeans, pickling into JAR, 469-473
javac command, 2, 15, 39, 197, 233
JavaCompiler, 530-533
javadoc, 238, 464
JavaFX, 587
JavaOne, dlxxix
javap command, 233, 538
JavaServer Faces (JSF), 41, 470
javasrc repository, xiv, 16, 26, 92, 183, 282, 463
javaw command, 2

javax.script, 564-566
java_home command, 4
JAX-RS, 433-435
JBoss community, 41
JBoss Weld CDI for Java Platforms (Finnegan),

268
JCP (Java Community Process), 461, dlxxx
JDK (Java Development Kit), 1, 2-3, 14
Jenkins/Hudson, 21, 35, 38
JFlex, 320
JGrep program, 125
Jigsaw, 480
jlink, 1, 16, 478
JNode, 3
jobs, 35
Joda-Time package, 167
Johnson, Ralph

Design Patterns, xx, 31
join() method, 497, 511
JParsec, 320
JPMS (Java Platform Module System), 52-56,

479-482
JRE (Java Runtime Environment), 1
JRuby, 555
JSF (JavaServer Faces), 41, 470
JSFUnit, 42
JShell

about, 11, 582
command, 233
features and benefits of, 12
file/directory methods in, 348
prototyping Java code with, 12
running Java with, 11-13

JSON, 449-459
generating, 451
in Java, 449-451
Jackson, 452
JSON-B, 455
JSON-Pointer, 457-459
org.json, 453-455

json module (javasrc repository), 16
JSON-B, 455
JSON-Pointer, 457-459
JSP JavaBeans, 470
JSR (Java Specification Request), 484
JSR-310 API (see Date/Time API)
JSSE, 430-433
JUnit, 31-34
JVM shutdown hook, 353

Index | 599

Jython, 555

K
Kabutz, Heinz, dlxxx
Kaffe, 3
Keith, Mike

Pro JPA 2: Mastering the Java Persistence
API, xviii

Kernighan, Brian W.
Elements of Programming Style, The, xx
Practice of Programming, The, xx
Software Tools, xx, 79
Software Tools in Pascal, xx
UNIX: A History and a Memoir, xx

Knuth, Donald E.
The Art of Computer Programming, xix

L
lambda expressions, 276-279
language lessons, 85
last() method, 219
lastIndexOf() method, 61
Lavarand, 133
layout() method, 374
lazy evaluation, 263
Lea, Doug, 484, 517
Learning Java, xiv
legacy dates, 182-184
Levenshtein string edit distance algorithm, 95,

568
Lewis, Kevin

Creating Effective JavaHelp, 467
lex, 320
line() method (Files class), 303
lines() method (Files class), 306
linked lists, 185, 202-207
Linux, 53, 145
list() method, 354
List.of() method, 193
Literate Programming, 464
load average, 53
load() method, 46
loadAverage() method, 53
loadClass() method, 529
LocalDate class, 30
LocalDate.now() method, 378
LocalDateTime class, 30
Locale.getAvailableLocales() method, 88
locales, 87, 88

localization, 85
locks, 504-508
log() method, 439
log4j, 436, 439-444
logging, 436, 439-444
logic error, 138
Lombok, 231
lookingAt() method, 109
Loukides, Mike

Unix Power Tools, 99
What Is Data Science, 367

M
Mac, 74
machine learning (ML), 368
macOS, 3, 86
main module (javasrc repository), 16
main() method, 13, 39, 182, 532, 535, 577, 585
Mak, Sander

Java 9 Modularity: Patterns and Practices
for Developing Maintainable Applica‐
tions, xviii, 52, 482

make, 21
Makefiles, 21
Mallet (ML for text), 368
manifest, 474
Map/Reduce algorithm, 367
Mastering Regular Expressions (Friedl), 99
match() method, 109, 115, 570
matcher.matches() method, 125
matches() method, 110
Math.round() method, 137, 141
matrices, multiplying, 153-155
Maven (see Apache Maven)
Maven Central, 26, 41
McClure, Stuart

Hacking Exposed, 447
ME (Java Micro Edition), xvii, 588
MessageFormat class, 150
metacharacters, 99
metadata, 468
method references, 289-293
methods, reflection and, 521-525
Meyer, Jon

Java Virtual Machine, xviii, 553
Microsoft VSCode, 9
minus() method, 177, 181
mixins, 293-295
MKIndex tool, xiv

600 | Index

ML (see machine learning (ML))
mock objects, 34
Mockito, 34
module path, 15
module-info.java file, 54, 55
Moraes, Elder

Java EE 8 Cookbook, xvii
MoreUnit plugin, 33
mount point, 358
multidimensional structures, 229-231
MULTILINE flag, 120
multiline strings, 331
multiline text strings (see text blocks)

N
Naftalin, Maurice

Java Generics and Collections, 194
name() method, 233
native code, 555, 571-576, 576-578
native-image tool, 5
native2ascii, 329
ND4J package, 153
negate() method, 158
NetBeans, 6, 10
Network Information Services (NIS), 390
networking, 383-412

binary data, reading/writing, 394-397
Chat Client program, 406-410
contacting servers, 388
errors, handling, 391
HTTP/REST web client, 385-388
in Java, 383-385
java.util.logging and, 444-447
log4j, logging with, 436, 439-444
network addresses, 389-391
network interfaces, finding, 417
returning objects over, 422
serialized data, reading/writing, 394-397
Simple HTTP Link Checker program,

410-412
text data, reading/writing, 392-394
TFTP UDP Client program, 401-406
UDP datagrams, 397-400
URI, 400
URL, 400
URN, 400

newInstance() method, 526, 528
newlines, matching in text, 121
next() method, 223, 316

nextBoolean() method, 152
nextBytes() method, 152
nextDouble() method, 152, 316, 373
nextElement() method, 200
nextFloat() method, 152
nextGaussian() method, 152, 373
nextInt() method, 151, 152, 316
nextLong() method, 152
nextRandom() method, 152, 373
nextString() method, 316
nextToken() method, 60
NIS (Network Information Services), 390
nonprintable characters, 82
now() method, 170
NPEs, 259
nroff, 92
Number Palindromes program, 162-165
NumberFormat.getInstance() method, 143
numbers, 131-165

about, 131
checking validity of strings of, 131-165
complex, 155-156
converting to/from objects, 135
converting types of, 146
formatting, 142-146
formatting with correct plurals, 149
fractions of integers, 136
matrices, multiplying, 153-155
Number Palindromes program, 162-165
random number generators, 151-153
series of integers, 147
TempConverter program, 160-161
types of, 131
very large, 158-160

numeric expression, 58
Numerical Recipes books, 155

O
O'Reilly Online Learning Platform, xvii
O'Reilly, Tim

Unix Power Tools, 99
Oaks, Scott

Java Performance, 537
Java Security, 433, 478, 552

object orientation, 52
object serialization, 396
object stacks, 226-229
object wrappers, 132
object-oriented programming, 237-271

Index | 601

abstract methods, 253
dependency injection, 265-268
enumerations, 255-259
exceptions, custom, 263
in Java, 237-239
inner classes, 247-253
NPEs, 259
object methods, 240-246
Plotter program, 268-271
polymorphism, 253
singleton patterns, 261-263

objects
arrays for, 186
converting to/from numbers, 135
finding in collections, 220-222

octal numbers, 146
of() method, 193
ofDays() method, 178
ofPettern() method, 176
OmniFaces (JSF), 42
open source, 41
OpenFaces (JSF), 42
OpenJDK community, dlxxx
OpenJDK JShell Tutorial, 13
operating systems, 46
Oracle (website), 1
Oracle Java Technology Network, dlxxix
orElse() method, 260
org.json, 453-455

P
package goal (Maven), 25
packaged APIs, 51
packages, 461-482

creating, 462
distributing, 478
documenting, 464
in Java, 461
JAR files, 473-474
JavaBeans as, 469-473
listing classes in, 539-541
WAR files as, 476

parallel streams, 287-289
parallelStream() method, 288
parameter order, 309
parse() method, 175
Parsing Expression Grammar (PEG), 320
parsing strings into dates, 175
PATH separator (:), 48

paths, files and, 338-345
pathSeparator property, 48
pathSeparatorChar property, 48
pattern matching, 97-126

accented characters, 120
composite characters, 120
finding matching text, 109-112
newlines in text, 121
printing lines containing, 118
printing occurrences of, 115-117
replacing matched text, 112-114
testing for patterns, 106-109
with regular expressions, 97-126

Pattern.compile() method, 108, 119, 122
peek() method, 226
Peek, Jerry

Unix Power Tools, 99
PEG (Parsing Expression Grammar), 320
performance timing, 533-537
Period.between() method, 176
Perl, Java and, 567-571
Perry, Bruce

Java Servlet & JSP Cookbook, xvii
Pike, Rob

The Practice of Programming, xx
piping, 325
platform-independent code, 330
Plauger, P. J.

Elements of Programming Style, The, xx
Software Tools, xx, 79
Software Tools in Pascal, xx

Plotter program, 268-271
plug-in-like classes, 547
plus() method, 177, 181
png() method, 374
poll() method, 423
polymorphism, 253
pom.xml file, 19, 23
pom.xml module (Maven), 16
pop() method, 194, 226
Powers, Shelley

Unix Power Tools, 99
The Practice of Programming (Kernighan and

Pike), xx
The Pragmatic Programmer (Hunt and Tho‐

mas), xx
preferences, storing strings in, 209-213
preferences.get() method, 210
Preview Changes, 585

602 | Index

PrimeFaces, 42
primitive types, 131, 186
print() method, 328, 330, 536
printf() method, 142, 308
printing, 115-117
println() method, 90, 241, 328, 330, 449, 451,

534, 536
printStackTrace() method, 39
PRNG (Pseudorandom Number Generator),

133, 151
Pro JPA 2: Mastering the Java Persistence API

(Keith and Schincariol), xviii
processing strings, 67
producer-consumer implementation, 508-510
profiler, 533
Project Jigsaw (see Java Platform Module Sys‐

tem (JPMS))
Project Loom: Fibers and Continuations, 517
properties, 45, 209-213
Properties class, 45, 211
Pseudorandom Number Generator (PRNG),

133, 151
pure functions, 274
push() method, 194, 226
put() method, 194

Q
QNX, 588
Quartz, 515
queue interface, 508-510

R
R, 367-381

about, 367
FastR, 378-380
implementations, comparing/choosing, 374
using from withing Java apps, 375-377
using in web apps, 380
using interactively, 372-374
using Java from within sessions, 377

R Foundation for Statistical Computing, 375
R statistics package, 152
random numbers, 133, 151-153
random() method, 151
range() method, 147
rangeClosed() method, 147
RatFor (Rational Fortran), 79
Rats! (parser generator), 320
Rdemo-web module (javasrc repository), 16

read() method, 40, 305, 312, 330, 369
read-evaluate-print loop (REPL), 11, 372
readInt() method, 395
readLine() method, 58, 306, 312, 330
readLock() method, 506
readPassword() method, 307
readUnsignedByte() method, 395
readUnsignedShort() method, 395
real numbers, 132
Real World Java EE Patterns: Rethinking Best

Practices (Bien), xviii
recurring events, 178-180
REDemo, 102
redirection, 325
Reese, George

Database Programming with JDBC & Java,
xviii

Refactoring (Fowler), xx
refactoring, as a feature of IDE, 5
reflection, 519-553

annotations, using/defining, 542-547
class descriptors and, 520
classes, loading/instantiating dynamically,

526-528
ClassLoader and, 529-530
fields, accessing, 521-525
in Java, 519
JavaCompiler, 530-533
listing classes and, 539-541
methods, accessing, 521-525
performance timing, 533-537
printing class information with, 537-538
private fields/methods, accessing, 525

regular expressions (regex)
about, 98
controlling case in, 82, 119
JGrep program, 125
pattern matching with, 97-126
patterns, testing for, 106-109
strings and, 61
syntax, 99-106

remote interface, 250
remove() method, 192, 200, 200, 201, 223, 225
rendezvous, 497
Renjin, 375, 375-377, 556
REPL (read-evaluate-print loop), 11, 372
replace() method, 66
replaceAll() method, 112, 114
replaceFirst() method, 112, 114

Index | 603

repository (see Git) (see javasrc repository) (see
SCM (source code management) reposi‐
tory)

resizing arrays, 188
resource bundles, 89
ResourceBundle, 85
ResourceBundle.getBundle() method, 87, 89
REST web services, 433-435
restdemo module (javasrc repository), 16
RESTful Java with JAX-RS 2.0, 2nd Edition

(Burke), 388
reverse() method, 66, 75
reversing strings by word or character, 75
Richards, Mark

Java Message Service, 447
RichFaces, 42
ripgrep (rg), 125
Ritchie, Dennis, 174, 200
Rogue Wave Software, 155
Roman numeral formatting, 145
RomanNumberFormat.parseObject() method,

146
round() method, 141
rounding, 141
Rserve, 375
run() method, 274, 426, 485, 494, 497, 506, 517,

561
runenv_jpms, 56
runtime environment, 43-56

environment variables, acquiring, 43
extensions and, 51
Java Platform Module System (JPMS), 52
JDK version, finding, 46-51
packaged APIs and, 51
system properties, acquiring, 44-46

Runtime.exit() method, 43
Runtime.getRuntime() method, 261

S
S, 374
Saltzer, J., 92
sam text editor, 121
Save User Data to Disk program, 358-361
saveFile() method, 517
Scala, 274, 555
scanf() method, 316
Scanner class, 316-317
Schincariol, Merrick

Pro JPA 2: Mastering the Java Persistence
API, xviii

SCM (source code management) repository, 35
search() method, 220, 281
sed, 121
select() method, 423
sensitivity training, 85
separator property, 48
separatorChar property, 48
serialized data, reading/writing over networks,

394-397
servers, contacting, 388
ServerSocket class documentation, 425
servlets, 476
set methods, 143
setAccessible() method, 525
setCharAt() method, 59
setClock() method, 171
setLastModifiedTime() method, 347
setMinimumIntegerDigits() method, 143
setPort() method, 398
sets, 201
setSoTimeout() method, 402
settabpos() method, 80
shoulder surfing, 307
show() method, 570
shutDown() method, 494
Sierra, Kathy

Head First Java, xiv, xviii
Simple HTTP Link Checker program, 410-412
Simple Logging Facade for Java (SLF4J), 436,

437-439
singleton patterns, 261-263
size() method, 201, 222
slashSlashComment() method, 313
SLF4J (Simple Logging Facade For Java), 436,

437-439
sockets, 413-447

binary/string data, returning over, 418-420
HTTP protocol, 428
in Java, 413
java.util.logging and, 444-447
JAX-RS, 433-435
log4j, 439-444
logging, 436
multiple, 423-428
network interfaces, finding, 417
opening, 414-417
returning objects over, 422

604 | Index

returning responses, 418-420
SLF4J, 437-439
SSL, securing with, 430-433

Software Tools (Kernighan and Plauger), xx, 79
Software Tools in Pascal (Kernighan and

Plauger), xx
sort tool (Unix), 151
sort() method, 214, 214
sorting, 213-218, 218-220
Soundex Name Comparisons program, 92-95
source code, 39
source code management (SCM) repository, 35
Sourceforge.net, 41
Spark (Apache), 369-371
spark module (javasrc repository), 16
split() method, 287
SPlus, 375
Spring Framework, 41, 42, 265, 277, 435, 470
SSL, 430-433
stack traces, 38
standalone GUI clients, 20
standard input, 304-307, 304
Standard JDK, 2-3
start() method, 110, 485, 556
startClass() method, 551
starting seed, 152
startsWith() method, 103
static import feature, 293
Steven, W. Richard

Unix Network Programming, 410
stop() method, 494
stream() method, 288
Stream.forEach() method, 198, 198
Stream.sorted() method, 354
streams

duplicating, 326-328
functional programming and, 283-287
input/output, 299
reassigning, 325-328

StreamTokenizer, 312-314
String objects, immutability of, 58
String trim() method, 83
String.format() method, 69, 142
String.join() method, 67
String.substring() methods, 111
StringAlign class, 70
StringBuffer, 65
StringBuilder, 59, 65-67, 165
StringBuilder.length() method, 67

strings, 57-95
about, 57
aligning, 69-72
blanks, trimming, 83
characters, processing, 67-69
controlling case in, 81
converting to Unicode characters, 73-75
creating messages with I18N resources,

85-88
immutability of, 65
indenting, 69-72
nonprintable characters and, 82
of numbers, checking validity of, 134-135
parsing into dates, 175
resource bundles, 89
returning over sockets, 418-420
reversing, 75
storing in properties/preferences, 209-213
StringBuilder and, 65-67
substrings, 60-65
tabs, expanding/compressing, 76-80
tokenizing, 60-65
un-indenting, 69-72
using locales, 88

StringTokenizer, 62
strip() method, 83
stripLeading() method, 57, 83
stripTrailing() method, 57, 83
subclassing, 238, 250
substring() method, 60, 112, 115, 275
substrings, 60-65
supplementary characters, 73
surrogate pairs, 73
Swing, 587
Swing JButton, 86
synchronization, 498-504, 504-508
synchronized wrappers, 288
synchronous sockets, 384
System class, 43
system properties object, 49
system properties, getting information from,

44-46
System.arrayCopy() method, 188
System.currentTimeMillis() method, 174
System.exit() method, 43
System.getenv() method, 44
System.getProperties() method, 45
System.getProperty() method, 45, 47, 378
System.nanoTime() method, 174

Index | 605

System.out.println() method, 58
System.properties, 47
System.setErr() method, 327
System.setOut() method, 327

T
Tabs class, 76, 80
tabs, expanding and compressing, 76-80
tailMap() method, 219
tailSet() method, 219
TDD (Test Driven Development), 31
TeamCity, 35
tee command (Unix), 326
TempConverter program, 160-161
terminals, reading from, 304-307
Test Driven Development (TDD), 31
test goal (Maven), 25
testing

automating, 23-29
for patterns, 106-109
Java with an IDE, 5-11

testing module (Maven), 16
TestNG, 33
text blocks, 58, 586
text data, reading/writing, 392
Text Formatter program, 90-92
TFTP (trivial file transfer protocol), 385
TFTP UDP Client program, 401-406
Thalinger, Chris, 4
third-party frameworks, 40
Thomas, David

The Pragmatic Programmer, xx
Thompson, Ken, 174
thread pool, 484
threading, 483

animation, 489-492
constructing threads, 485-489
fork/join framework, 511-514
in Java, 483-485
locks, 504-508
queue interface, 508-510
rendezvous, 497
scheduling tasks, 514
stopping, 494-496
synchronization of, 498-504
timeouts, 497

tilde characters, 459
time zones, 181
timeouts, 497

times, 172-173, 174
Timing Comparisons program, 233-235
toArray() method, 193, 222
toBinaryString() method, 147
toCharArray() method, 68
toHexString() method, 147
tokenizing, 60-65
tolerance, 140
toLowerCase() method, 81, 287
Tomcat (web server), 22
toOctalString() method, 147
toString() method, 59, 65, 66, 147, 170, 176,

231, 231, 240, 258, 331, 378, 438, 440, 444,
455, 538

toUpperCase() method, 59, 81, 275
transform() method, 57
TravisCI, 35
TreeMap, 219
TreeSet, 219
trim() method, 83
trimming blanks from ends of strings, 83
trivial file transfer protocol (TFTP), 385
troff, 92
type parameter, 190

U
UDP datagrams, 397-400
UML Distilled (Fowler), xxi
UML Process, xxi
UML User Guide, xxi
un-indenting strings, 69-72
UNC filename, 355
Understanding Open Source and Free Software

Licensing (O'Reilly), 40
Unicode, converting between strings and, 73-75
UNICODE_CASE flag, 120
uniq tool (Unix), 151
unit testing, 31-34
Unix

characters in, 74
default locale in, 86
directory list command, 48
getopt library, 126
grep, 118
groff, 92
human-readable number formatting and,

145
load average in, 53
locales in, 87

606 | Index

nroff, 92
roff, 92
sort tool, 151
time in, 168
troff, 92
Uniq tool, 151
uptime command, 55

Unix Network Programming (Stevens), 410
Unix Power Tools (Loukides, O'Reilly, Peek and

Powers), 99
UNIX: A History and Memoir (Kernighan), xx
UNIX_LINES flag, 120
unlock() method, 505
unmodifiable view, 584
Unsafe class, 53
unsafe module (Maven), 16
unsafe subdirectory, 53
uptime command, 55
URI, 400
URL, 400
URN, 400
useful operations, 167
UTF-16 (16-bit Unicode Transformation For‐

mat), 73

V
value() method, 258
valueOf() method, 136, 147
Visual Studio make, 21
VisualVM project, 534
Vlissades, John

Design Patterns, xx, 31

W
Wadler, Philip

Java Generics and Collections, 194
waitFor() method, 563
walkFileTree() method, 354
WAR files, servlets packaged as, 476
Warburton, Richard

Java 8 Lambdas, xviii, 276
warn() method, 440

warning messages, 53
web application, 477
web apps, 380
web tier resources, 42
Weka, 368
What Is Data Science (Loukides), 367
while loop, 198, 200
who program (Unix), 326
wholist, 326
WildFly (EE application server), 22, 26
Windows

characters in, 74
default locale in, 86
grep, 98
locales in, 87

with() method, 179
withLocale() method, 176
Witten, Ian

Data Mining: Pratical Machine Learning
and Techniques, 369

word frequency count algorithm, 286
wrapper types, 131
write() method, 326
writeLock() method, 506

X
X11() method, 374
XCode, 3, 9
XCode make, 21
Xenix, 48
xml module (Maven), 16
XmlForm, xiv
XP (Extreme Programming), 31

Y
yacc, 320
YMDHMS, 174

Z
zero-based index, 61
ZIP files, input/output of, 332-336

Index | 607

About the Author
Ian F. Darwin has worked in the computer industry for several decades. He wrote the
freeware file(1) command used on Linux and BSD, and is the author of Checking C
Programs with Lint, Android Cookbook, and more than a hundred articles and several
courses on C, Unix, and Java. In addition to programming and consulting, Ian
teaches Unix and Java courses for Learning Tree International, one of the world’s larg‐
est technical training companies. He has a M.Sc. in Computing from Staffordshire
University and several technical certifications. His eclectic website can be found at
https://darwinsys.com. Along with his wife and children, Ian used to raise chickens on
a rural property.

Colophon
The animal on the cover of Java Cookbook, Fourth Edition, is a domestic chicken
(Gallus domesticus). Domestic chickens are descended from the wild red jungle fowl
of India. Domesticated over 8,000 years ago in the area that is now Vietnam and
Thailand, chickens are raised for meat and eggs, and the males for sport as well
(although cockfighting is currently illegal in many places).

With their big, heavy bodies and small wings, these birds are well suited to living on
the ground, and they can fly only short distances. Their four-toed feet are designed
for scratching in the dirt, where they find the elements of their usual diet: worms,
bugs, seeds, and various plant matter.

A male chicken is called a rooster and a female is known as a hen. The incubation
period for a chicken egg is about three weeks; newly hatched chickens are precocial,
meaning they have downy feathers and can walk around on their own right after
emerging from the egg. They’re also not dependent on their mothers for food; not
only can they procure their own, but they also can live for up to a week after hatching
on egg yolk that remains in their abdomen after birth.

The topic of chickens comes up frequently in ancient writings. Chinese documents
date their introduction to China to 1400 BC, Babylonian carvings mention them in
600 BC, and Aristophanes wrote about them in 400 BC. The rooster has long symbol‐
ized courage: the Romans thought chickens were sacred to Mars, god of war, and the
first French Republic chose the rooster as its emblem.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Dover. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font
is Dalton Maag’s Ubuntu Mono.

https://darwinsys.com

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://learning.oreilly.com/home/

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What’s in This Book?
	Organization of This Book

	Java Books
	General Programming Books
	Design Books

	Conventions Used in This Book
	Programming Conventions
	Typesetting Conventions
	Code Examples

	O’Reilly Online Learning
	Comments and Questions
	Acknowledgments
	At O’Reilly
	Technical Reviewers
	Readers
	Etc.
	Book Production Software

	Chapter 1. Getting Started: Compiling and Running Java
	1.0 Introduction
	1.1 Compiling and Running Java: Standard JDK
	Problem
	Solution

	1.2 Compiling and Running Java: GraalVM for Better Performance
	Problem
	Solution
	Discussion

	1.3 Compiling, Running, and Testing with an IDE
	Problem
	Solution
	Discussion
	See Also

	1.4 Exploring Java with JShell
	Problem
	Solution
	Discussion

	1.5 Using CLASSPATH Effectively
	Problem
	Solution
	Discussion

	1.6 Downloading and Using the Code Examples
	Problem
	Solution
	Discussion

	1.7 Automating Dependencies, Compilation, Testing, and Deployment with Apache Maven
	Problem
	Solution
	Discussion
	See Also

	1.8 Automating Dependencies, Compilation, Testing, and Deployment with Gradle
	Problem
	Solution
	Discussion
	See Also

	1.9 Dealing with Deprecation Warnings
	Problem
	Solution
	Discussion
	See Also

	1.10 Maintaining Code Correctness with Unit Testing: JUnit
	Problem
	Solution
	Discussion
	See Also

	1.11 Maintaining Your Code with Continuous Integration
	Problem
	Solution
	Discussion

	1.12 Getting Readable Stack Traces
	Problem
	Solution
	Discussion

	1.13 Finding More Java Source Code
	Problem
	Solution
	Discussion

	1.14 Finding Runnable Java Libraries
	Problem
	Solution
	Discussion

	Chapter 2. Interacting with the Environment
	2.0 Introduction
	2.1 Getting Environment Variables
	Problem
	Solution
	Discussion

	2.2 Getting Information from System Properties
	Problem
	Solution
	Discussion
	See Also

	2.3 Dealing with Code That Depends on the Java Version or the Operating System
	Problem
	Solution
	Discussion

	2.4 Using Extensions or Other Packaged APIs
	Problem
	Solution
	Discussion

	2.5 Using the Java Modules System
	Problem
	Solution
	Discussion

	Chapter 3. Strings and Things
	3.0 Introduction
	3.1 Taking Strings Apart with Substrings or Tokenizing
	Problem
	Solution
	Discussion
	See Also

	3.2 Putting Strings Together with StringBuilder
	Problem
	Solution
	Discussion

	3.3 Processing a String One Character at a Time
	Problem
	Solution
	Discussion

	3.4 Aligning, Indenting, and Unindenting Strings
	Problem
	Solution
	Discussion
	See Also

	3.5 Converting Between Unicode Characters and Strings
	Problem
	Solution
	Discussion
	See Also

	3.6 Reversing a String by Word or by Character
	Problem
	Solution
	Discussion

	3.7 Expanding and Compressing Tabs
	Problem
	Solution
	Discussion

	3.8 Controlling Case
	Problem
	Solution
	See Also

	3.9 Entering Nonprintable Characters
	Problem
	Solution
	Discussion

	3.10 Trimming Blanks from the End of a String
	Problem
	Solution
	Discussion

	3.11 Creating a Message with I18N Resources
	Problem
	Solution

	3.12 Using a Particular Locale
	Problem
	Solution
	Discussion

	3.13 Creating a Resource Bundle
	Problem
	Solution
	Discussion

	3.14 Program: A Simple Text Formatter
	3.15 Program: Soundex Name Comparisons
	See Also

	Chapter 4. Pattern Matching with Regular Expressions
	4.0 Introduction
	See Also

	4.1 Regular Expression Syntax
	Problem
	Solution
	Discussion

	4.2 Using Regexes in Java: Test for a Pattern
	Problem
	Solution
	Discussion

	4.3 Finding the Matching Text
	Problem
	Solution

	4.4 Replacing the Matched Text
	Problem
	Solution
	Discussion

	4.5 Printing All Occurrences of a Pattern
	Problem
	Solution

	4.6 Printing Lines Containing a Pattern
	Problem
	Solution
	Discussion

	4.7 Controlling Case in Regular Expressions
	Problem
	Solution

	4.8 Matching Accented, or Composite, Characters
	Problem
	Solution
	Discussion

	4.9 Matching Newlines in Text
	Problem
	Solution
	Discussion

	4.10 Program: Apache Logfile Parsing
	4.11 Program: Full Grep

	Chapter 5. Numbers
	5.0 Introduction
	See Also

	5.1 Checking Whether a String Is a Valid Number
	Problem
	Solution
	Discussion
	See Also

	5.2 Converting Numbers to Objects and Vice Versa
	Problem
	Solution
	Discussion

	5.3 Taking a Fraction of an Integer Without Using Floating Point
	Problem
	Solution
	Discussion

	5.4 Working with Floating-Point Numbers
	Problem
	Solution
	Discussion

	5.5 Formatting Numbers
	Problem
	Solution
	See Also

	5.6 Converting Among Binary, Octal, Decimal, and Hexadecimal
	Problem
	Solution
	Discussion

	5.7 Operating on a Series of Integers
	Problem
	Solution
	Discussion

	5.8 Formatting with Correct Plurals
	Problem
	Solution
	See Also

	5.9 Generating Random Numbers
	Problem
	Solution
	See Also

	5.10 Multiplying Matrices
	Problem
	Solution
	Discussion
	See Also

	5.11 Using Complex Numbers
	Problem
	Solution

	5.12 Handling Very Large Numbers
	Problem
	Solution
	Discussion

	5.13 Program: TempConverter
	5.14 Program: Number Palindromes
	See Also

	Chapter 6. Dates and Times
	6.0 Introduction
	6.1 Finding Today’s Date
	Problem
	Solution
	Discussion

	6.2 Formatting Dates and Times
	Problem
	Solution
	Discussion

	6.3 Converting Among Dates/Times, YMDHMS, and Epoch Seconds
	Problem
	Solution
	Discussion

	6.4 Parsing Strings into Dates
	Problem
	Solution
	Discussion

	6.5 Difference Between Two Dates
	Problem
	Solution
	Discussion
	See Also

	6.6 Adding to or Subtracting from a Date
	Problem
	Solution
	Discussion

	6.7 Handling Recurring Events
	Problem
	Solution
	Discussion

	6.8 Computing Dates Involving Time Zones
	Problem
	Solution
	Discussion

	6.9 Interfacing with Legacy Date and Calendar Classes
	Problem
	Solution
	Discussion

	Chapter 7. Structuring Data with Java
	7.0 Introduction
	7.1 Using Arrays for Data Structuring
	Problem
	Solution
	Discussion

	7.2 Resizing an Array
	Problem
	Solution
	Discussion

	7.3 The Collections Framework
	Problem
	Solution
	Discussion
	See Also

	7.4 Like an Array, but More Dynamic
	Problem
	Solution
	Discussion
	See Also

	7.5 Using Generic Types in Your Own Class
	Problem
	Solution
	Discussion

	7.6 How Shall I Iterate Thee? Let Me Enumerate the Ways
	Problem
	Solution
	Discussion

	7.7 Eschewing Duplicates with a Set
	Problem
	Solution
	Discussion

	7.8 Structuring Data in a Linked List
	Problem
	Solution
	Discussion

	7.9 Mapping with Hashtable and HashMap
	Problem
	Solution
	Discussion

	7.10 Storing Strings in Properties and Preferences
	Problem
	Solution
	Discussion

	7.11 Sorting a Collection
	Problem
	Solution
	Discussion

	7.12 Avoiding the Urge to Sort
	Problem
	Solution
	Discussion

	7.13 Finding an Object in a Collection
	Problem
	Solution
	Discussion

	7.14 Converting a Collection to an Array
	Problem
	Solution
	Discussion

	7.15 Making Your Data Iterable
	Problem
	Solution
	Discussion

	7.16 Using a Stack of Objects
	Problem
	Solution
	Discussion

	7.17 Multidimensional Structures
	Problem
	Solution
	Discussion

	7.18 Simplifying Data Objects with Lombok or Record
	Problem
	Solution
	Discussion
	See Also

	7.19 Program: Timing Comparisons

	Chapter 8. Object-Oriented Techniques
	8.0 Introduction
	Advice, or Mantras

	8.1 Object Methods: Formatting Objects with toString(), Comparing with Equals
	Problem
	Solution
	Discussion
	Difficulties and Alternatives to Clone

	8.2 Using Inner Classes
	Problem
	Solution
	Discussion

	8.3 Providing Callbacks via Interfaces
	Problem
	Solution
	Discussion

	8.4 Polymorphism/Abstract Methods
	Problem
	Solution
	Discussion

	8.5 Using Typesafe Enumerations
	Problem
	Solution
	Discussion

	8.6 Avoiding NPEs with Optional
	Problem
	Solution
	Discusssion

	8.7 Enforcing the Singleton Pattern
	Problem
	Solution
	Discussion
	See Also

	8.8 Roll Your Own Exceptions
	Problem
	Solution
	Discussion
	See Also

	8.9 Using Dependency Injection
	Problem
	Solution
	Discussion
	See Also

	8.10 Program: Plotter

	Chapter 9. Functional Programming Techniques: Functional Interfaces, Streams, and Parallel Collections
	9.0 Introduction
	See Also

	9.1 Using Lambdas/Closures Instead of Inner Classes
	Problem
	Solution
	Discussion

	9.2 Using Lambda Predefined Interfaces Instead of Your Own
	Problem
	Solution
	Discussion
	Roll Your Own Functional Interface

	9.3 Simplifying Processing with Streams
	Problem
	Solution
	Discussion

	9.4 Simplifying Streams with Collectors
	Problem
	Solution
	Discussion

	9.5 Improving Throughput with Parallel Streams and Collections
	Problem
	Solution
	Discussion

	9.6 Using Existing Code as Functional with Method References
	Problem
	Solution
	Discussion

	9.7 Java Mixins: Mixing in Methods
	Problem
	Solution
	Discussion

	Chapter 10. Input and Output: Reading, Writing, and Directory Tricks
	10.0 Introduction
	10.1 About InputStreams/OutputStreams and Readers/Writers
	See Also

	10.2 Reading a Text File
	Problem
	Solution
	Discussion
	See Also

	10.3 Reading from the Standard Input or from the Console/Controlling Terminal
	Problem
	Solution
	Discussion
	The Console (Controlling Terminal)

	10.4 Printing with Formatter and printf
	Problem
	Solution
	Discussion

	10.5 Scanning Input with StreamTokenizer
	Problem
	Solution
	Discussion

	10.6 Scanning Input with the Scanner Class
	Problem
	Solution
	Discussion

	10.7 Scanning Input with Grammatical Structure
	Problem
	Solution
	Discussion

	10.8 Copying a File
	Problem
	Solution
	Discussion

	10.9 Reassigning the Standard Streams
	Problem
	Solution
	Discussion

	10.10 Duplicating a Stream as It Is Written; Reassigning Standard Streams
	Problem
	Solution
	Discussion

	10.11 Reading/Writing a Different Character Set
	Problem
	Solution
	Discussion

	10.12 Those Pesky End-of-Line Characters
	Problem
	Solution
	Discussion

	10.13 Beware Platform-Dependent File Code
	Problem
	Solution
	Discussion

	10.14 Reading/Writing Binary Data
	Problem
	Solution
	Discussion

	10.15 Reading and Writing JAR or ZIP Archives
	Problem
	Solution
	Discussion
	See Also

	10.16 Finding Files in a Filesystem-Neutral Way with getResource() and getResourceAsStream()
	Problem
	Solution
	Discussion

	10.17 Getting File Information: Files and Path
	Problem
	Solution
	Discussion

	10.18 Creating a New File or Directory
	Problem
	Solution
	Discussion

	10.19 Changing a File’s Name or Other Attributes
	Problem
	Solution
	Discussion

	10.20 Deleting a File
	Problem
	Solution
	Discussion

	10.21 Creating a Transient/Temporary File
	Problem
	Solution
	Discussion

	10.22 Listing a Directory
	Problem
	Solution
	Discussion

	10.23 Getting the Directory Roots
	Problem
	Solution
	Discussion

	10.24 Using the FileWatcher Service to Get Notified About File Changes
	Problem
	Solution
	Discussion

	10.25 Program: Save User Data to Disk
	Problem
	Solution
	Discussion
	Acknowledgments

	10.26 Program: Find—Walking a File Tree

	Chapter 11. Data Science and R
	11.1 Machine Learning with Java
	Problem
	Solution
	Discussion
	See Also

	11.2 Using Data In Apache Spark
	Problem
	Solution
	Discussion

	11.3 Using R Interactively
	Problem
	Solution
	Discussion

	11.4 Comparing/Choosing an R Implementation
	Problem
	Solution
	Discussion

	11.5 Using R from Within a Java App: Renjin
	Problem
	Solution
	Discussion

	11.6 Using Java from Within an R Session
	Problem
	Solution
	Discussion

	11.7 Using FastR, the GraalVM Implementation of R
	Problem
	Solution
	Discussion

	11.8 Using R in a Web App
	Problem
	Solution
	Discussion

	Chapter 12. Network Clients
	12.0 Introduction
	12.1 HTTP/REST Web Client
	Problem
	Solution
	Discussion
	See Also

	12.2 Contacting a Socket Server
	Problem
	Solution
	Discussion
	See Also

	12.3 Finding and Reporting Network Addresses
	Problem
	Solution
	Discussion
	See Also

	12.4 Handling Network Errors
	Problem
	Solution

	12.5 Reading and Writing Textual Data
	Problem
	Solution
	Discussion

	12.6 Reading and Writing Binary or Serialized Data
	Problem
	Solution
	Discussion

	12.7 UDP Datagrams
	Problem
	Solution
	Discussion

	12.8 URI, URL, or URN?
	Problem
	Solution
	Discussion

	12.9 Program: TFTP UDP Client
	12.10 Program: Sockets-Based Chat Client
	See Also

	12.11 Program: Simple HTTP Link Checker

	Chapter 13. Server-Side Java
	13.0 Introduction
	13.1 Opening a Server Socket for Business
	Problem
	Solution
	Discussion

	13.2 Finding Network Interfaces
	Problem
	Solution
	Discussion

	13.3 Returning a Response (String or Binary)
	Problem
	Solution
	Discussion

	13.4 Returning Object Information Across a Network Connection
	Problem
	Solution
	Discussion

	13.5 Handling Multiple Clients
	Problem
	Solution
	Discussion

	13.6 Serving the HTTP Protocol
	Problem
	Solution
	Discussion

	13.7 Securing a Web Server with SSL and JSSE
	Problem
	Solution
	Discussion
	See Also

	13.8 Creating a REST Service with JAX-RS
	Problem
	Solution
	Discussion

	13.9 Network Logging
	Problem
	Solution
	Discussion

	13.10 Setting Up SLF4J
	Problem
	Solution
	Discussion
	See Also

	13.11 Network Logging with Log4j
	Problem
	Solution
	Discussion

	13.12 Network Logging with java.util.logging
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Processing JSON Data
	14.0 Introduction
	14.1 Generating JSON Directly
	Problem
	Solution
	Discussion

	14.2 Parsing and Writing JSON with Jackson
	Problem
	Solution
	Discussion

	14.3 Parsing and Writing JSON with org.json
	Problem
	Solution
	Discussion
	See Also

	14.4 Parsing and Writing JSON with JSON-B
	Problem
	Solution
	Discussion
	See Also

	14.5 Finding JSON Elements with JSON Pointer
	Problem
	Solution
	Discussion
	See Also
	Summary

	Chapter 15. Packages and Packaging
	15.0 Introduction
	15.1 Creating a Package
	Problem
	Solution
	Discussion

	15.2 Documenting Classes with Javadoc
	Problem
	Solution
	Discussion
	See Also
	Javadoc Versus JavaHelp

	15.3 Beyond Javadoc: Annotations/Metadata
	Problem
	Solution
	Discussion

	15.4 Preparing a Class as a JavaBean
	Problem
	Solution
	Discussion

	15.5 Archiving with JAR
	Problem
	Solution
	Discussion

	15.6 Running a Program from a JAR
	Problem
	Solution
	Discussion

	15.7 Packaging Web Tier Components into a WAR File
	Problem
	Solution
	Discussion
	See Also

	15.8 Creating a Smaller Distribution with jlink
	Problem
	Solution
	Discussion

	15.9 Using JPMS to Create a Module
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. Threaded Java
	16.0 Introduction
	16.1 Running Code in a Different Thread
	Problem
	Solution
	Discussion

	16.2 Displaying a Moving Image with Animation
	Problem
	Solution
	Discussion

	16.3 Stopping a Thread
	Problem
	Solution
	Discussion

	16.4 Rendezvous and Timeouts
	Problem
	Solution
	Discussion

	16.5 Synchronizing Threads with the synchronized Keyword
	Problem
	Solution
	Discussion

	16.6 Simplifying Synchronization with Locks
	Problem
	Solution
	Discussion
	See Also

	16.7 Simplifying Producer/Consumer with the Queue Interface
	Problem
	Solution
	Discussion

	16.8 Optimizing Parallel Processing with Fork/Join
	Problem
	Solution
	Discussion

	16.9 Scheduling Tasks: Future Times, Background Saving in an Editor
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. Reflection, or “A Class Named Class”
	17.0 Introduction
	17.1 Getting a Class Descriptor
	Problem
	Solution

	17.2 Finding and Using Methods and Fields
	Problem
	Solution
	Discussion

	17.3 Accessing Private Methods and Fields via Reflection
	Problem
	Solution
	Discussion

	17.4 Loading and Instantiating a Class Dynamically
	Problem
	Solution
	Discussion

	17.5 Constructing a Class from Scratch with a ClassLoader
	Problem
	Solution
	Discussion

	17.6 Constructing a Class from Scratch with JavaCompiler
	Problem
	Solution
	Discussion

	17.7 Performance Timing
	Problem
	Solution
	Discussion
	See Also

	17.8 Printing Class Information
	Problem
	Solution
	Discussion

	17.9 Listing Classes in a Package
	Problem
	Solution
	Discussion

	17.10 Using and Defining Annotations
	Problem
	Solution
	Discussion

	17.11 Finding Plug-In-Like Classes via Annotations
	Problem
	Solution
	Discussion
	See Also

	17.12 Program: CrossRef
	See Also

	Chapter 18. Using Java with Other Languages
	18.0 Introduction
	18.1 Running an External Program from Java
	Problem
	Solution
	Discussion

	18.2 Running a Program and Capturing Its Output
	Problem
	Solution
	Discussion
	See Also

	18.3 Calling Other Languages via javax.script
	Problem
	Solution
	Discussion
	See Also

	18.4 Mixing Languages with GraalVM
	Problem
	Solution
	Discussion

	18.5 Marrying Java and Perl
	Problem
	Solution
	Discussion
	See Also

	18.6 Calling Other Languages via Native Code
	Problem
	Solution
	Discussion
	See Also

	18.7 Calling Java from Native Code
	Problem
	Solution
	Discussion

	Afterword
	Appendix A. Java Then and Now
	Introduction: Always in Motion the Java Is
	What Was New in Java 8
	Java 8 Language Changes
	Java 8 API Changes

	What Was New in Java 9
	Java 9 Language Changes
	Java 9 API Changes

	What Was New in Java 10 (March 2018)
	Java 10 Language Changes
	Java 10 API Changes
	See Also

	What Was New in Java 11 (September 2018)
	Java 11 API Changes

	What Was New in Java 12 (March 2019)
	Java 12 Language Changes
	Java 12 API Changes

	What Is New in Java 13 (September 2019)
	Looking Ahead

	Index
	About the Author

