([~~~

-
Beginning Programming
with Java

dummies

A Wiley Bra

Learn basic programming

h‘b" concepts and methods

W com.project.
Build a foundation of code
blic class *IMT% before writing ﬂ“ own program

Explore the new features
in Java 17

public static void main(St

S printin(Y
}

Barry Burd, PhD

Java Champion and author of

Java For Dummies

ummies

A Wiley Brand

[~ "~ Y

060

Beginning
Programming

with Java

by Barry Burd

dummies
A Wiley Brand

Beginning Programming with Java® For Dummies®, 6th Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2021 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Java is a registered trademark of Oracle America, Inc. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2021944241

ISBN: 978-1-119-80691-2; 978-1-119-80692-9 (ebk); 978-1-119-80693-6 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies#_blank
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance

Introduction..................... 1
Part 1: Getting Started with Java Programming 5
CHAPTER1: The Big Picture. e 7
cHAPTER 2: Setting Up Your Computero s 21
CHAPTER3: RUNNING Programst i e 47
Part 2: Writing Your Own Java Programs..................... 71
cHAPTER 4: Exploring the Partsof a Program........... 73
CHAPTER5: COMPOSINg @ Programt s 95
cHapTER 6: Using the Building Blocks: Variables, Values, and Types 127
cHAPTER7: NUmMbers and TYPesS. oottt e e 149
cHapTER 8 Numbers? Who Needs Numbers?o, 173
Part 3: ControllingtheFlow.................................... 197
cHAPTER9: ForksintheRoad i 199
cHAPTER 10: Which Way Did He GO?.o vt 219
cHAPTER 11: Around and Around [t GOeSo 251
cHAPTER 12: Circling Back to Java LoOPS . ..o oo 275
Part4:ThelnsideScOOPoii. 293
CHAPTER 13: Programming with Objectsand Classes.......................... 295
cHAPTER 14: Using Methods and Fields fromajavaClass...................... 315
cHAPTER 15: Creating New Java Methodst 347
Part 5: Smart Java Techniques 375
cHAPTER 16: Piles of Files: Dealing with Information Overload.................. 377
cHAPTER 17: HOw to Flick a Virtual Switch....... ... 401
cHAPTER 18: Creating Loops within Loops ... 423
cHAPTER19: OUt Of Many, ONneot 443
cHAPTER 20: O00ey-GUIWasaWorm ... 477
Part6:ThePartofTens... 503
cHAPTER 21: Ten Useful ClassesintheJava APl oo, 505
CHAPTER 22: Ten Bits of Advice for New Software Developers 511

Table of Contents

INTRODUCTION ... e 1
About ThiS BOOK.o 1
Foolish ASSumptions.t i e 2
lcons Used iNnThiSBOOKovvun i e 2
Beyond the BoOK.ot 4
Whereto GofromHere ... 4
PART 1: GETTING STARTED WITH
JAVAPROGRAMMING ... 5
charter1: The Big Picture 7
What's It AILADOUL?o e e 7
Telling a computerwhattodo............ ..o, 8
Pick your poisON ..o 9
From Your Mind to the Computer's Processor.................... 10
Translatingyourcode.ot 10
Runningcode. ...t e e 13
Code yoU CaN USE ottt ettt e et 16
Your Java Programming Toolseto it 17
Atool forcreatingcode ... 18
What's already onyour harddrive? 19
cuarrer 2. Setting Up Your Computer............................. 21
Let'sGetStartedt e 22
Firingup Intelli] IDEA. o e e e 23
InstallingJavao e 28
If YouNeed More Details 30
Shining light on filename extensions 31
Dealing with a Mac's security features........................ 32
Using Intelli) IDEA with finesse ...t 32
Help! My course instructor doesn't want me to use
Intelli] IDEA .. 35
Downloading Java without IntelliJ IDEA 35
Abitofnewsaboutbits 36
The Javasmorgasbord 38
Getting the documentation, 42
What's NeXt?. . .o e 45

Table of Contents vii

ciarrerz: RUNNING Programs....................................... 47

Running a Canned Java Programooiiiiniiiinnnenn. 47
Gettingthe code ittt 48
Adding the codetoIntelli IDEA. 48
Runningthecode. i 52

Some Programs DontComeinCans..........cooviiivineenn.... 54

What's All That Stuff in the Intelli) IDEAWindow?.................. 61
StAMtING UP o+ttt 62
The main Windowot 63

PART 2: WRITING YOUR OWN JAVA PROGRAMS........... 71
caerera: Exploring the Parts of a Program..................... 73

Checking Out Java Code for the First Time 73
Behold! Aprogram!. oo 74
What the program’slinessay.cooiiiiiiiinneennn... 75

The ElementsinajavaProgram ...t iiinnan. 76
Keywords and their close cousins. ..o, .. 77
Identifiers thatyou or I candefine............................ 79
Identifiers with agreed-upon meanings....................... 80
Literals. . oo 81
Punctuation o 82
ComMMENtS ... 84

Understanding a Simple Java Programot 85
Whatisamethod?....... ... i 85
The main method inaprogramcccoiiiiinn... 88
At Last! Tell the computer to do something!................... 89
Methods, methods everywhere i ... 91
TheJavaclass 92

CHAPTER 5: Composing a Program 95

Computers Are StUpido ot 96

Building an Echo Chamber....... o i 97
Typing and running a programuuieeiiuneeeennn... 98
How the EchoLine programworks, 100
Getting numbers, words, and otherthings................... 102

Make Intellij Do Allthe Work o i 105

Expectingthe Unexpected....... ...t 108
Diagnosingaproblem. i 110
Misspelling words (and other missteps) 118
RUNtime error MesSSages . ..o vt et 119
What problem? I don'tseeaproblem 121

viii Beginning Programming with Java For Dummies

cerere: Using the Building Blocks: Variables, Values,
and Types ...

Various Variables and Ways in Which They Vary
Usingavariable i i
Understanding assignment statements......................

Moving variables from placetoplace........................
Combining variable declarations.
Experimenting with JShell.

ciarer: Numbersand Types....................

UsingWhole Numbers o i
Reading whole numbers from the keyboard
Whatyoureadiswhatyouget,

Creating New Values by Applying Operators
Findingaremainder it
Take control of your program'soutput
The increment and decrementoperators....................
ASSigNMENt OPeratorscovuiiiiiiiii i

Size Matterso

cuarters: Numbers? Who Needs Numbers?

ABrief Character Study ...ttt e
L igreSS o ettt e
One characteronly,please.......... ...,
Variablesandrecycling. ...
When nottoreuseavariable...........
Reading charactersot

The Moment of Truth (and Falsehood)
Expressionsand conditions. ...
Comparing numbers; comparing characters

The Remaining Primitive Types.o it

Table of Contents

X

PART 3: CONTROLLING THEFLOW........................... 197

cuaerere: FOrksintheRoad 199
Decisions, Decisions!. 200
Making Decisions (Java if Statements) oL 201

A careful look atif statements. o i 202
Acomplete program. ...« 205
A treatise on the importance of helpful indentation........... 209
VariationsontheTheme it 210
Lo.orelsewhat? . 211
Packing more stuffinto an if statement...................... 213
Some handy importdeclarations, 215

cuarrer 10: Which Way DidHeGo?................................. 219

Forming Bigger and Better Conditions. 219
Combining conditions: Anexample 222
Whentoinitialize? o 224
More and more conditions ... 225
A condition always revealsitssecrets 227
Mixing different logical operators together................... 229
The mating calls of left and right parentheses 231

Buildinga Nest.o i i e e 232
Thebestofthenest 234
Cascading if statements.. ...t 236

Enumerating the Possibilities o i i 239
Creatingan enUM tyPe. ..ottt 239
USiNg an enumM type ..ottt 240

When One LinelsntEnough ...t 243
Escape to the \next l\neo\nthescree\n..................... 244
MOre @SCaPISM. . o\ttt et e 246

cuaerer 11: Around and Around It Goes. ... 251

Repeating Instructions Again and Again and Again and Again. 252
Following the actioninaloop, 254
Noearlybailout. 256

Where Does Each StatementBelong? 257
Finding some piecest 258
Assemblingthepieces 260
Getting values forvariables. i 261
From infinity to affinity. i i 262

Priming the PUMp . ..ot e e e 265
Workingontheproblem i i 268
Fixingthe problem i 271

Beginning Programming with Java For Dummies

cuaerer 122 Circling Back to Javaloops 275
Repeating Statements a Certain Number of Times (Java for

StAtEMEBNTS) vttt e e e 276
Espritdeforo 278
Initializingaforloop ... 279
Shutupandchew!. i 282

Repeating Until You Get What You Need (Java do Statements) 284
Holding out for a trustworthy response 285
Deleting afile. ..ot i i 287
Tamingofthedo ...t i 289
Repeat performance. ... i 290

PART 4: THE INSIDESCOOP............... 293
cwaerer 13: Programming with Objects and Classes............. 295

The Class Is Always Cleaner. ... 296
Reference typesandJavaclasses 297
How to use a newly definedclass...................cona.. 298
What's goingonhere?. 299
Why bother?. ... 300

From Classes Come Objectsot 301
Understanding (or ignoring) the subtleties................... 303
Making reference to an object'sparts 304
Creating severalobjects.........co it 305
If it looks like a Purchase and smells like a Purchase 307

Another Way to Think about Classesccoiiviinn.. 309
Classes, objects,andtables.......... ... iiviiii.. 309
Some questions and @anNSWerSt n e iin i enn, 310

What's Next?. . ..o 311

cuaerer 14: Using Methods and Fields from a Java Class. ... 315

Long Livethe String! it 316
Asimpleexample 316
Putting String variablesto gooduse. 317
Reading and writing strings 318

Using an Object's Methodsottt 320
Comparing StriNgS. . ..o vt 323
The truth about classesand methods 324
Calling an objectsmethods............coiiiiiniinn.. 326
Combiningandusingdata..........covviiiiiin i, 326

How to Achieve Static Equilibrium 327
Calling static and nonstaticmethods 328
Turning stringsintonumbers o i i, 329
Turning numbersintostringsoviiviiniinenn... 332

Table of Contents xi

Turning numbers into nice looking strings 334

YOUr COUNEY; YOUN CUMTENCY &« vt ettt et e iee e eaeennen 334
The View from OnHigh. ... i 335
Unravelling Java's import declarations. 336
Shedding light on the staticdarkness 338
Barry makes good on an age-old promise.................... 339
cuarter 1s: Creating New Java Methods 347
Defining a Method withinaClass..............oo ... 347
Makingamethod. ... it 348
Examining the method'sheader............................ 350
Examining the method'sbody..............., 350
Callingthemethod i 351
Followingtheflow...... i 353
USINg PUNCEUALION. . oottt e 354
Combining characters. ...ttt 354
Let the Objects DotheWork ...t 357
Passingthe Buck ... i 358
Handingoffavalue.......... ..o 361
Working with a method header............. ont. 362
Using each object'sfieldvalues.ot 363
Passing more than one parameter..............ccovvvunn... 364
Gettinga ValuefromaMethod........... ..o, 366
Returnonaninvestment......... ..., 366
How return types and return valueswork. 368
Working with the method header (again) 370
What NexXt?. .. e 373
PART 5: SMART JAVATECHNIQUES 375
cuarrer 16: Piles of Files: Dealing with Information
Overload 377
Running a Disk-Oriented Programccoviviiiinaennn. 378
Readingand writingot 380
Messing with files on your harddrive 382
Running disk-oriented code.o i 387
Fileand error ... 390
Writing a Disk-Oriented Programooviiiiinneinnn 392
Reading fromafile i 393
Writingtoafile........ i 394
Writing, Rewriting, and Re-Rewriting oot 397

Xii Beginning Programming with Java For Dummies

cuarter 17: HOW to Flick a Virtual Switch......................... 401

Meet the switch Statement 401
Anatomy of a switch statement................, 403
Picky details about the switch statement 405

ASwitchinTime. ... e 409
Dissecting the switch expression, 411
Can you switch between two kinds of switch? 411

Your Grandparents’ switch Statement............ 416

Using a Conditional Operatorcooiviiiiiin . 420

cuaerer 13 Creating Loops withinLoops 423

Paying Your Old Code a Little Visit, 424
Reworking some existingcodeot 425
RUNningyour codeooiiuniniiii i, 426

Nested Developmentttt e 427
Checking fortheend ofafile............. ... it 428
How it feelstobeacomputer.......... ..., 429
Why the computer accidentally pushes past the
endofthefile..... ... 431
LoOP therapy «.vvi e e 432

Using Nested for LOOPSvvvin i i i 437

charter 10: OUt OF Many, ONe. ... 443

Some LoopS iNACHION . ..ot 443
Deciding on a loop's limitatruntime 445
Using all kinds of conditionsinaforloop.................... 448

Reader, Meet Arrays; Arrays, Meetthe Reader................... 450
Storingvaluesinanarray.........c.cooiiiiiiiiiiiiii. 454
Creating arePort. .. .ovvu it e 455
Stuffing valuesintoanarraycooveiiiiineiinennnenn. 457

Working with Arrays i i e e 459

Looping in Style ..o 462

When Good ArraysGoBad i 468

What to Do When Arrays GOAWIY ... oov v 469
Usingan ArrayListt e 469
Java's many collectionclasses ..., 474

CHAPTER 20: Oooey-GUI WasaWorm............................... 477

Put Some SwinginYourStep. ... 478
The merry Window.ttt i n 479
Aclassact. ... e 481
Constructorcalls ... 483
Adivisionoflabor o 486
Frame changer. 487

Table of Contents xiii

Drag-and-Drop for GUI Greatnessccoiiieiinneennn. 490

Hello, GUIDeSIgNer. . . oo vttt 490
Window dressing.ooer i 494
Taking actionttt 498
PART 6: THEPARTOFTENS................... . 503
cuaeter 21: T€N Useful Classes in the Java APl................... 505
ArrayList .o 505
File o o 506
L= == PP 506
JRramE . e e 506
JOptionPane e 507
Math .o 508
NumberFormato 508
=] o < 509
SHMIN g . e et e 509
R} A= 1 0 N 509
cuarter 22: T€N Bits of Advice for New
Software Developers...........................oil, 511
How Long Does It Taketo Learnjava?ooovivinnen.. 512
Which of Barry's Books Should I[Read? 512
Are Books Other than Barry's Good for Learning Java and
Android Development?. i 513
Which Computer Programming Language(s) Should | Learn? 513
What Skills Other than Computer Coding Should | Learn?......... 513
How Should | Continue My Learning as a Software Developer?. 514
How Else Should | Continue My Learning as a Developer?......... 514
How Can | Get a Job Developing Software?...................... 515
| Still Don't Know What to Do with My Life....................... 515
If | Have Other Questions, How Can | Contact Barry Burd? 516
INDEX 517

XiV Beginning Programming with Java For Dummies

Introduction

hat’s your story?

¥ Are you a working stiff, interested in knowing more about the way your
company’'s computers work?

¥ Are you a student who needs to complete some extra reading in order to
survive a beginning computer course?

¥ Are you a typical computer user — you've done lots of word processing and
you want to do something more interesting with your computer?

3 Areyou a job seeker with an interest in entering the fast-paced, glamorous,
high-profile world of computer programming (or, at least, the decent-paying
world of computer programming)?

Well, if you want to write computer programs, this book is for you. This book
avoids the snobby of-course-you-already-know assumptions and describes com-
puter programming from scratch.

About This Book

The book uses Java — a powerful, general-purpose computer programming
language. But Java’s subtleties and eccentricities aren’t the book’s main focus.
Instead, this book emphasizes a process — the process of creating instructions for
a computer to follow. Many highfalutin books describe the mechanics of this
process — the rules, the conventions, and the formalisms. But those other books
aren’t written for real people. Those books don’t take you from where you are to
where you want to be.

In this book, I assume very little about your experience with computers. As you
read each section, you get to see inside my mind. You see the problems that I face,
the things that I think, and the solutions that I find. Some problems are the kind
that I remember facing when I was a novice; other problems are the kind that I
face as an expert. I help you understand, I help you visualize, and I help you create
solutions on your own. I even get to tell a few funny stories.

Introduction 1

Foolish Assumptions

In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are incor-
rect . . . well, buy the book anyway.

3 | assume that you have access to a computer. Here's good news. You can
run the code in this book on almost any computer. The only computers you
can't use to run this code are ancient things that are more than eight years old
(give or take a few years). You can run the latest version of Java on Windows,
Macintosh, and Linux computers.

3 | assume that you can navigate your computer's common menus and
dialog boxes. You don't have to be a Windows, Linux, or Macintosh power
user, but you should be able to start a program, find a file, put a file into a
certain directory — that sort of thing. Most of the time, when you practice the
stuff in this book, you're typing code on your keyboard, not pointing and
clicking the mouse.

On those rare occasions when you need to drag and drop, cut and paste, or
plug and play, | guide you carefully through the steps. But your computer may
be configured in any of several billion ways, and my instructions may not quite
fit your special situation. So, when you reach one of these platform-specific
tasks, try following the steps in this book. If the steps don't quite fit, send me
an email message or consult a book with instructions tailored to your system.

3 lassume that you can think logically. That's all there is to computer
programming — thinking logically. If you can think logically, you have it made.
If you don't believe that you can think logically, read on. You may be pleasantly
surprised.

3 | assume that you know little or nothing about computer programming.
This isn't one of those all-things-to-all-people books. | don't please the novice
while | tease the expert. | aim this book specifically toward the novice — the
person who has never programmed a computer or has never felt comfortable
programming a computer. If you're one of these people, you're reading the
right book.

Icons Used in This Book

If you could watch me write this book, you’d see me sitting at my computer, talk-
ing to myself. I say each sentence several times in my head. When I have an extra
thought, a side comment, or something that doesn’t belong in the regular stream,

2 Beginning Programming with Java For Dummies

©

TIP

®

WARNING

@

~
m
=
m
=
@
m
o

®

TRY IT OUT

TECHNICAL
STUFF

ON THE
WEB

&

I twist my head a little bit. That way, whoever’s listening to me (usually nobody)
knows that I'm off on a momentary tangent.

Of course, in print, you can’t see me twisting my head. I need some other way of
setting a side thought in a corner by itself. I do it with icons. When you see a Tip
icon or a Remember icon, you know that I’m taking a quick detour.

Here’s a list of icons that I use in this book:

A tip is an extra piece of information — something helpful that the other books
may forget to tell you.

Everyone makes mistakes. Heaven knows that I’ve made a few in my time. Any-
way, when I think of a mistake that people are especially prone to make, I write
about the mistake in a Warning icon.

Sometimes I want to hire a skywriting airplane crew. “Barry,” says the white
smoky cloud, “if you want to compare two numbers, use the double equal sign.
Please don’t forget to do this.” Because I can’t afford skywriting, I have to settle
for something more modest. I create a paragraph with the Remember icon.

Writing computer code is an activity, and the best way to learn an activity is to
practice it. That’s why I’ve created things for you to try in order to reinforce your
knowledge. Many of these are confidence-builders, but some are a bit more chal-
lenging. When you first start putting things into practice, you discover all kinds of
issues, quandaries, and roadblocks that didn’t occur to you when you started
reading about the material. But that’s a good thing. Keep at it! Don’t become
frustrated. Or, if you do become frustrated, visit this book’s website (http://
beginprog.allmycode.com) for hints and solutions.

Occasionally, I run across a technical tidbit. The tidbit may help you understand
what the people behind the scenes (the people who developed Java) were thinking.
You don’t have to read it, but you may find it useful. You may also find the tidbit
helpful if you plan to read other (more geeky) books about Java.

This icon calls attention to useful material that you can find online. (You don’t
have to wait long to see one of these icons. I use one at the end of this
introduction!)

“If you don’t remember what such-and-such means, see blah-blah-blah,” or
“For more information, read blahbity-blah-blah.”

Introduction 3

http://beginprog.allmycode.com/
http://beginprog.allmycode.com/

Beyond the Book

In addition to what you’re reading right now, this book comes with a free access-
anywhere Cheat Sheet containing code that you can copy and paste into your own
Java program. To get this Cheat Sheet, simply go to www.dummies.com and type
Beginning Programming with Java For Dummies Cheat Sheet in the Search box.

Where to Go from Here

4

ON THE
WEB

If you’ve gotten this far, you’re ready to start reading about computer program-
ming. Think of me (the author) as your guide, your host, your personal assistant.
I do everything I can to keep things interesting and, most importantly, help you
understand.

If you like what you read, send me an email, post on my Facebook wall, or give me
a tweet. My email address, which I created just for comments and questions about
this book, is BeginProg@allmycode.com. My Facebook page is /allmycode, and
my Twitter handle is @al 1mycode. And don’t forget: To get the latest information,
visit this book’s support website: http://beginprog.allmycode.com.

Beginning Programming with Java For Dummies

http://www.dummies.com/
mailto:BeginProg@allmycode.com
https://www.facebook.com/allmycode
https://twitter.com/allmycode?lang=en
http://beginprog.allmycode.com/

Getting
Started

with Java
Programming

IN THIS PART ...

Getting psyched up to be a Java developer
Installing the software

Running some sample programs

IN THIS CHAPTER

» Recognizing what computer
programming is all about

» Understanding the software that
enables you to write programs

» Revving up to use an integrated
development environment

Chapter 1
The Big Picture

omputer programming? What'’s that? Is it technical? Does it hurt? Is it
politically correct? Does Google control it? Why would anyone want to do it?
And what about me? Can I learn to do it?

What's It All About?

You’ve probably used a computer to do word processing: Type a letter, print it, and
then send the printout to someone you love. If you have easy access to a computer,
you’ve probably surfed the web: Visit a page, click a link, and see another page.
It’s easy, right?

Well, it’s easy only because someone told the computer exactly what to do. If you
take a computer fresh from the factory and give no instructions to it, it can’t do
word processing, it can’t surf the web, and it can’t do anything. All a computer can
do is follow the instructions that people give to it.

Now imagine that you’re using Microsoft Word to write the great American novel
and you come to the end of a line. (You’re not at the end of a sentence; just the end
of a line.) As you type the next word, the computer’s cursor jumps automatically
to the next line of type. What’s going on here?

CHAPTER 1 The Big Picture 7

Well, someone wrote a computer program — a set of instructions telling the
computer what to do. Another name for a program (or part of a program) is code.
Listing 1-1 shows you what some of Microsoft Word’s code may look like.

m A Few Lines in a Computer Program

8

if (columnNumber> 60) {
wrapToNextLine();

} else {
continueSamelLine();

If you translate Listing 1-1 into plain English, you get something like this:

If the column number is greater than 60,
then go to the next line.
Otherwise (if the column number isn't greater than 60),

then stay on the same line.

Somebody has to write code of the kind shown in Listing 1-1. This code, along with
millions of other lines of code, makes up the program called Microsoft Word.

And what about web surfing? You click a link that’s supposed to take you directly
to Facebook. Behind the scenes, someone has written code of the following kind:

Go to Facebook .

One way or another, someone has to write a program. That someone is called a
programmer.

Telling a computer what to do

Everything you do with a computer involves gobs and gobs of code. For example,
every computer game is really a big (make that “very big”!) bunch of computer
code. At some point, someone had to write the game program:

if (person.touches(goldenRing)) {
person.getPoints(10);

Without a doubt, the people who write programs have valuable skills. These peo-
ple have two important qualities:

PART 1 Getting Started with Java Programming

3 They know how to break big problems into smaller, step-by-step procedures.

¥ They can express these steps in a precise language.

A language for writing steps is called a programming language, and Java is just one
of several thousand useful programming languages. The stuff in Listing 1-1 is
written in the Java programming language.

James Gosling and others at Sun Microsystems created Java in the early to mid-
1990s. In 2010, Java became part of Oracle Corporation as part of Oracle’s acquir-
ing Sun Microsystems.

Pick your poison

This book isn’t about the differences among programming languages, but you
should see code in some other languages so that you understand the bigger pic-
ture. For example, there’s another language, Visual Basic, whose code looks a bit
different from code written in Java. An excerpt from a Visual Basic program may
look like this:

If columnNumber > 60 Then
Call wrapToNextLine
Else
Call continueSameline
End If

The Visual Basic code looks more like ordinary English than the Java code in
Listing 1-1. But, if you think that Visual Basic is like English, then just look at
some code written in COBOL:

IF COLUMN-NUMBER IS GREATER THAN 6@ THEN
PERFORM WRAP-TO-NEXT-LINE

ELSE
PERFORM CONTINUE-SAME-LINE

END-IF.

At the other end of the spectrum, you find languages like Forth. Here’s a snippet
of code written in Forth:

: WRAP? 6@ > IF WRAP_TO_NEXT_LINE? ELSE CONTINUE_SAME_LINE? THEN ;
Computer languages can be very different from one another, but in some ways,

they’re all the same. When you get used to writing IF COLUMN-NUMBER IS GREATER
THAN 60, you can also become comfortable writing if (columnNumber> 60).

CHAPTER 1 The Big Picture 9

It’s just a mental substitution of one set of symbols for another. Eventually, writ-
ing things like if (columnNumber> 6@) becomes second nature.

From Your Mind to the
Computer’s Processor

10

When you create a new computer program, you complete a multistep process. The
process involves three important tools:

3 Compiler: A compiler translates your code into computer-friendly (human-
unfriendly) instructions.

3 Virtual machine: A virtual machine steps through the computer-friendly
instructions.

3 Application programming interface: An application programming interface
contains useful prewritten code.

The next three sections describe each of the three tools.

Translating your code

You may have heard that computers deal with zeros and ones. That’s certainly
true, but what does it mean? Well, for starters, computer circuits don’t deal
directly with letters of the alphabet. When you see the word Start on your com-
puter screen, the computer stores the word internally as 01010011 01110100
01100001 01110010 01110100. That feeling you get of seeing a friendly-looking,
five-letter word is your interpretation of the computer screen’s pixels and noth-
ing more. Computers break everything down into very low-level, unfriendly
sequences of zeros and ones and then put things back together so that humans
can deal with the results.

So, what happens when you write a computer program? Well, the program has to
get translated into zeros and ones. The official name for the translation process is
compilation. Without compilation, the computer can’t run your program.

I compiled the code in Listing 1-1. Then I did some harmless hacking to help me
see the resulting zeros and ones. What I saw was the mishmash in Figure 1-1.

PART 1 Getting Started with Java Programming

FIGURE 1-1:

My computer
understands
these zeros and
ones, but | don't.

FIGURE 1-2:

The computer
compiles source
code to create
object code.

11001010
515151551515]5)
ABB0R1 61
]6]5161915151)
080100610
pBR10160
A11611108
fBAneA11
APABA100
5101515 (515]15]5)
P1061110@
71016160
5151515515515
p1161160
71100160
AB101661
A1110810
011661061
p1166161
91161110
f1016011
P11811104

11111118
09161110
5151505515 5]
ARA1A0A1
08060111
ulalalalalli el
A1161601
09101606
A100001 1
A8ne1111
91110161
71166001
08061611
A11608661
alalilalnla o
910161106
A1106001
9111106606
julalalals]lip
91110100
01160061
A110091061

19111010
5151514 5151515
#BB10060
ARRA1A10
615 05]% 55 15]5)
51515155]5]5]5)
91116166
#9161081
A1181111
A10811680
A1181181
71100010
#11801680
A11110881
)55] 15]a 515)
5151515151515y
71110000
011101680
5141515 515]5]5)
a1101061
A1161181
AnBaAAa1

10111118
98010181
pBBA1610
AABRARARA
8610611
ABBAR116
99111118
91610116
91180100
#110A1681
91180816
91181100
911081681
#10108111
9rBna100
514151515 1515]5)
91916100
91081180
86106080
91191118
91100181
5161515 5151515

URA14@4441 A114A101 AI41ARIA A1 AGR11 A11AA101 AI1ARA1406 |

09ANARAR PRRRARGA
00001610 BHOBABOO
00000000 BORBO1 00
AARNA1AR PERRRARA
00000111 BBOBAGO0
00111106 B1161061
09000001 PEPOBR000
HA0NAnA1 BHABABBA
91190101 BARAAAA1
11011160 9116808181
911001981 61110610
91100101 AARBAAAL
111606811 61110660
91191111 611190618
09101000 01061601
00001110 911168111
A1101111 A1001110
911016801 61161110
A1100611 A1161111
911168101 61160101
01001100 91161001
A9AN1910 P10A10011

The compiled mumbo jumbo in Figure 1-1 goes by many different names:

¥ Most Java programmers call it bytecode.

¥ loftencallita.class file. That's because, in Java, the bytecode gets stored in

files named SomethingOrOther .class.

¥ To emphasize the difference, Java programmers call Listing 1-1 the source code

and refer to the zeros and ones in Figure 1-1 as object code.

To visualize the relationship between source code and object code, see Figure 1-2.
You can write source code and then get the computer to create object code from
your source code. To create object code, the computer uses a special software tool
called a compiler.

Compiler

11001010 11111110

Objectfile (a . c1ass file) also known as bytecode

if (columnNumber > 60)... | Javasourcefile(a . java file)

CHAPTER 1 The Big Picture

11

WHAT IS BYTECODE, ANYWAY?

Look at Listing 1-1 and at the listing's translation into bytecode in Figure 1-1. You may be
tempted to think that a bytecode file is just a cryptogram — substituting zeros and ones
for the letters in words like i f and else. But it doesn't work that way at all. In fact, the
most important part of a bytecode file is the encoding of a program'’s logic.

The zeros and ones in Figure 1-1 describe the flow of data from one part of your com-
puter to another. | illustrate this flow in the following figure. But remember: This figure
is just an illustration. Your computer doesn't look at this particular figure, or at anything
like it. Instead, your computer reads a bunch of zeros and ones to decide what to do
next.

columnNumber 60

Subtract 60 from columnNumber.
Store the following info:
Is the result negative?
Is the result zero?

result not
negative

\

result is
negative

ot 26ro resylt
wrap continue

Don't bother to absorb the details in my attempt at graphical representation in the fig-
ure. It's not worth your time. The thing you should glean from my mix of text, boxes,
and arrows is that bytecode (the stuff in a . class file) contains a complete description
of the operations that the computer is to perform. When you write a computer pro-
gram, your source code describes an overall strategy — a big picture. The compiled
bytecode turns the overall strategy into hundreds of tiny, step-by-step details. When the
computer “runs your program,” the computer examines this bytecode and carries out
each of the little step-by-step details.

12 PART 1 Getting Started with Java Programming

LD,
TECHNICAL
STUFF

Your computer’s hard drive may have a file named javac or javac.exe. This file
contains that special software tool — the compiler. (Hey, how about that? The
word javac stands for “Java compiler!”) As a Java programmer, you often tell your
computer to build some new object code. Your computer fulfills this wish by going
behind the scenes and running the instructions in the javac file.

Running code

Several years ago, I spent a week in Copenhagen. I hung out with a friend who
spoke both Danish and English fluently. As we chatted in the public park, I vaguely
noticed some kids orbiting around us. I don’t speak a word of Danish, so I assumed
that the kids were talking about ordinary kid stuff.

Then my friend told me that the kids weren’t speaking Danish. “What language
are they speaking?” I asked.

“They’re talking gibberish,” she said. “It’s just nonsense syllables. They don’t
understand English, so they’re imitating you.”

Now to return to present-day matters. I look at the stuff in Figure 1-1, and I’m
tempted to make fun of the way my computer talks. But then I’d be just like the
kids in Copenhagen. What’s meaningless to me can make perfect sense to my
computer. When the zeros and ones in Figure 1-1 percolate through my comput-
er’s circuits, the computer “thinks” the thoughts shown in Figure 1-3.

Everyone knows that computers don’t think, but a computer can carry out the
instructions depicted in Figure 1-3. With many programming languages (lan-
guages like C++ and COBOL, for example), a computer does exactly what I’m
describing. A computer gobbles up some object code and does whatever the object
code says to do.

That’s how it works in many programming languages, but that’s not how it works
in Java. With Java, the computer executes a different set of instructions. The com-
puter executes instructions like the ones in Figure 1-4.

The instructions in Figure 1-4 tell the computer how to follow other instructions.
Instead of starting with Get columnNumber from memory, the computer’s first
instruction is, “Do what it says to do in the bytecode file.” (Of course, in the byte-
code file, the first instruction happens to be Get columnNumber from memory.)

A special piece of software carries out the instructions in Figure 1-4. That special piece
of software is called the Java Virtual Machine (JVM). The JVM walks your computer
through the execution of some bytecode instructions. When you run a Java program,
your computer is really running the JVM. That JVM examines your bytecode, zero by
zero, one by one, and carries out the instructions described in the bytecode.

CHAPTER 1 The Big Picture 13

FIGURE 1-3:
What the
computer
gleans from a
bytecode file.

FIGURE 1-4:

How a computer
runs ajava
program.

Get columnNumber from memory.
Get 60 from memory.

Subtract 60 from columnNumber.
Store the following info:

Is the result negative?

Is the result zero?

If the result is not negative, then
check to see if the result is zero.

If the result is negative, then continue.

If the result is zero, then continue.
If the result is not zero, then wrap.

01001110 01110101 01101101 01100010 01100101
01010100 01100001 01100010 01101100 01100101
00000000 00001011 01100100 01101001 01110011
01101100 01100001 01111001 01010111 01101111

01110010
00000001
01110000
01110010

Carry out the first instruction in Figure 1-3.
Carry out the second instruction in Figure 1-3.
Carry out the third instruction in Figure 1-3.
Keep going until you encounter an "If."
When you encounter an "If," then decide which of
the two alternative paths you should follow.
Carry out the instructions in the path that you choose.

14 PART 1 Getting Started with Java Programming

FIGURE 1-5:

Two ways to run
a computer
program.

Many good metaphors can describe the JVM. Think of the JVM as a proxy, an
errand boy, a go-between. One way or another, you have the situation shown in
Figure 1-5. On the (a) side is the story you get with most programming languages —
the computer runs some object code. On the (b) side is the story with Java — the
computer runs the JVM, and the JVM follows the bytecode’s instructions.

yov@ thEC‘ode

(a)

WRITE ONCE, RUN ANYWHERE

When Java first hit the tech scene in 1995, the language became popular almost imme-
diately. This happened in part because of the VM. The JVM is like a foreign language
interpreter, turning Java bytecode into whatever native language a particular computer
understands. So, if you hand my Windows computer a Java bytecode file, the comput-
er's VM interprets the file for the Windows environment. If you hand the same Java
bytecode file to my colleague’s Macintosh, the Macintosh JVM interprets that same byte-
code for the Mac environment.

Look again at Figure 1-5. Without a virtual machine, you need a different kind of object
code for each operating system. But with the JVM, just one piece of bytecode works on
Windows machines, Unix boxes, Macs, or whatever. This is called portability, and in the
computer programming world, portability is a precious commodity. Think about all the
people using computers to browse the Internet. These people don't all run Microsoft
Windows, but each person’s computer can have its own bytecode interpreter — its
own JVM.

The marketing folks at Oracle call it the Write Once, Run Anywhere model of computing. |
call it a great way to create software.

CHAPTER 1 The Big Picture 15

16

LD,
TECHNICAL
STUFF

Your computer’s hard drive may have files named javac and java (or javac.exe
and java.exe). A java (or java.exe) file contains the instructions illustrated pre-
viously, in Figure 1-4 — the instructions in the JVM. As a Java programmer, you
often tell your computer to run a Java program. Your computer fulfills this wish by
going behind the scenes and running the instructions in the java file.

Code you can use

During the early 1980s, my cousin-in-law Chris worked for a computer software
firm. The firm wrote code for word processing machines. (At the time, if you wanted
to compose documents without a typewriter, you bought a “computer” that did
nothing but word processing.) Chris complained about being asked to write the
same old code over and over again. “First, I write a search-and-replace program.
Then I write a spell checker. Then I write another search-and-replace program.
Then a different kind of spell checker. And then, a better search-and-replace.”

How did Chris manage to stay interested in his work? And how did Chris’s
employer manage to stay in business? Every few months, Chris had to reinvent the
wheel — toss out the old search-and-replace program and write a new program
from scratch. That’s inefficient. What’s worse, it’s boring.

For years, computer professionals were seeking the holy grail — a way to write
software so that it’s easy to reuse. Don’t write and rewrite your search-and-
replace code. Just break the task into tiny pieces. One piece searches for a single
character, another piece looks for blank spaces, and a third piece substitutes one
letter for another. When you have all the pieces, just assemble these pieces to form
a search-and-replace program. Later on, when you think of a new feature for your
word processing software, you reassemble the pieces in a slightly different way.
It’s sensible, it’s cost efficient, and it’s much more fun.

The late 1980s saw several advances in software development, and by the early
1990s, many large programming projects were being written from prefab compo-
nents. Java came along in 1995, so it was natural for the language’s founders to
create a library of reusable code. The library included about 250 programs, includ-
ing code for dealing with disk files, code for creating windows, and code for pass-
ing information over the Internet. Since 1995, this library has grown to include
more than 4,000 programs. This library is called the Application Programming
Interface (API).

Every Java program, even the simplest one, calls on code in the Java API. This Java
API is both useful and formidable. It’s useful because of all the things you can do
with the API’s programs. It’s formidable because the API is extensive. No one
memorizes all the features made available by the Java API. Programmers remem-
ber the features that they use often, and they look up the features that they need

PART 1 Getting Started with Java Programming

in a pinch. They look up these features in an online document called the API Spec-
ification (known affectionately to most Java programmers as the API documenta-
tion, or the Javadocs).

The API documentation (see https://docs.oracle.com/en/java/javase/17/
docs/api) describes the thousands of features in the Java API. As a Java program-
mer, you consult this API documentation daily. You can bookmark the documen-
tation at the Oracle website and revisit the site whenever you need to look up
something, or you can save time by downloading your own copy of the API docs
using the links found at www . oracle.com/technetwork/java/javase/downloads/
index.html.

Your Java Programming Toolset

©

REMEMBER

To write Java programs, you need the tools described previously in this chapter:

3 You need a Java compiler. Refer to the section “Translating your code.”
3 You need a JVM. Refer to the section “Running code.”
3 You need the Java API. Refer to the section “Code you can use.”

3 You need access to the Java APl documentation. Again, refer to the
“Code you can use” section.

You also need some less exotic tools:

3 You need an editor to compose your Java programs. Listing 1-1 contains
part of a computer program. When you come right down to it, a computer
program is a big bunch of text. So, to write a computer program, you need an
editor — a tool for creating text documents.

An editor is a lot like Microsoft Word, or like any other word processing
program. The big difference is that an editor adds no formatting to your
text — no bold, italic, or distinctions among fonts. Computer programs have
no formatting whatsoever. They have nothing except plain old letters,
numbers, and other familiar keyboard characters.

When you edit a program, you may see bold text, italic text, and text in several
colors. But your program contains none of this formatting. If you see stuff
that looks like formatting, it's because the editor you're using does syntax
highlighting. With syntax highlighting, an editor makes the text appear to be
formatted in order to help you understand the structure of your program.
Believe me, syntax highlighting is very helpful.

CHAPTER 1 The Big Picture 17

https://docs.oracle.com/en/java/javase/17/docs/api/
https://docs.oracle.com/en/java/javase/17/docs/api/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

18

3 You need a way to issue commands. You need a way to say things like
“compile this program” and “run the JVM."” Every computer provides ways of
issuing commands. (You can double-click icons or type verbose commands in
a Run dialog box.) But when you rely on your computer’s own facilities, you're
forced to jump from one window to another. You open one window to read
Java documentation, another window to edit a Java program, and a third
window to start up the Java compiler. The process can be tedious.

A tool for creating code

In the best of all possible worlds, you do all your program editing, documentation
reading, and command issuing through one nice interface. This interface is called
an integrated development environment (IDE).

A typical IDE divides your screen’s work area into several panes — one pane for
editing programs, another pane for listing the names of programs, a third pane for
issuing commands, and other panes to help you compose and test programs. You
can arrange the panes for quick access. Better yet, if you change the information
in one pane, the IDE automatically updates the information in all the other panes.

An IDE helps you move seamlessly from one part of the programming endeavor to
another. With an IDE, you don’t have to worry about the mechanics of editing,
compiling, and running a JVM. Instead, you can worry about the logic of writing
programs. (Wouldn’t you know it? One way or another, you always have some-
thing to worry about!)

In the chapters that follow, I describe basic features of the Intelli] IDEA IDE
(known simply as “Intelli]” by most Java professionals). Intelli] has many bells
and whistles, but you can ignore most of them and learn to repeat a few routine
sequences of steps. After using IntelliJ a few times, your brain automatically per-
forms the routine steps. From then on, you can stop worrying about Intelli] and
concentrate on Java programming.

As you read my paragraphs about IntelliJ, remember that Java and Intelli] aren’t
wedded to one another. The programs in this book work with any IDE that can run
Java. Instead of using Intelli], you can use Eclipse, NetBeans, BlueJ, or any other
Java IDE. In fact, if you enjoy roughing it, you can write and run this book’s pro-
grams without an IDE. You can use Notepad, TextEdit, or vi, along with your oper-
ating system’s command prompt or Terminal. It’s all up to you.

PART 1 Getting Started with Java Programming

What's already on your hard drive?

You may already have some of the tools you need for creating Java programs. But,
on an older computer, your tools may be obsolete. Many of this book’s examples
run on all versions of Java. But some examples don’t run on versions earlier than
Java 8. Other examples run only on Java 11, Java 12, Java 13, or later.

The safest bet is to download tools afresh. To find detailed instructions on doing
the downloads, see Chapter 2.

CHAPTER 1 The Big Picture 19

IN THIS CHAPTER

» Downloading and installing the
IntelliJ IDEA development
environment

» Installing Java

» Getting Java documentation

Chapter 2

Setting Up Your
Computer

his chapter goes into much more detail than you normally need. If you’re

like most readers, you’ll follow the steps in the “Let’s Get Started” section.

Then you’ll check the table of contents for any other sections you want to
read. After reading about a third of this chapter’s material and skimming the
remaining two-thirds, you’ll have everything you need to begin learning about
Java programming.

Of course, you may need to read more than just a third of the chapter.

Everyone’s situation is unique. One person has an older computer. Another person
has some conflicting software. Joe has a PC, and Jane has a Mac. Joe’s PC runs
Windows 10, and Elaine’s runs Windows 8. Joe misreads one of my instructions
and, as a result, nothing on his screen matches the steps that I describe. Seventy
percent of this chapter describes the things you do in those rare situations in
which you must diagnose a problem.

If you find yourself in a real jam, there’s always an alternative. You can send an
email to me at BeginProg@allmycode.com. You can also find me on Facebook at
/allmycode or on Twitter at @al1mycode. I’'m happy to answer questions and help
you figure out what’s wrong.

CHAPTER 2 Setting Up Your Computer 21

http://BeginProg@allmycode.com
http://facebook.com/allmycode
http://twitter.com/allmycode

©

REMEMBER

So, by all means, skip anything in this chapter that you don’t need to read. You
won’t break anything by following your instincts. And if you do break anything,
there’s always a way to fix it.

The websites that I describe in this chapter are always changing. The software
that you download from these sites changes, too. A specific instruction such as
“Click the button in the upper right corner” may become obsolete (and even mis-
leading) in no time at all. So in this chapter I provide long lists of steps, but I also
describe the ideas behind the steps. When you visit a website, look for ways to get
the software that I describe. If a site offers you several options, check the instruc-
tions in this chapter for hints on choosing the best one. At one point, you install
and run the Intelli] IDEA application. If the application window doesn’t look quite
like the window in this chapter’s figures, scan your computer screen for whatever
options I describe. If, after all that, you can’t find what you’re looking for, check
this book’s website (http://beginprog.allmycode.com) or send an email to me
at BeginProg@al 1mycode . com.

Let's Get Started

22

To start writing Java programs, you need the software that I describe in Chapter 1:
a Java compiler and a Java virtual machine (JVM, for short). You can also use a
good integrated development environment (IDE) and some sample code.

Fortunately, all this software is available for free. To get it, just follow these steps:
1. visitwww. jetbrains.com/idea/download and download the Intelli) IDEA

Community Edition.

Intellij IDEA comes in two different editions: Ultimate Edition or Community
Edition. The Community Edition is free.

When you click the web page’'s Download button, the kind of file you get
depends on your computer's operating system:

On Windows, you choose either an executable installer file (with the . exe
extension) or a Zip archive (with the .zip extension).

If you want to avoid headaches, choose the executable installer (. exe)
option.

On a Mac, you choose between the Intel and Apple Silicon downloads.

The one you download depends on the kind of processor in your com-
puter. If you're not sure which to download, go to your computer’s own

PART 1 Getting Started with Java Programming

http://beginprog.allmycode.com/
mailto:BeginProg@allmycode.com
https://www.jetbrains.com/idea/download/

&

CROSS
REFERENCE

TIP

menu bar and choose Apple => About This Mac. In the resulting dialog box,
look for information about your computer’s processor. If you see the word
Intel, you want the website’s Intel download. Otherwise, you want Apple
Silicon.

One way or another, you get a disk image file with the extension . dmg.
On Linux, you get a GZip archive file with the extension . gz.

The file that you download has a name like idealC-2021 .exe, idealC-2021.
dmg, or idealC-2021 . tar .gz. If your computer doesn't display the file
extension (such as .exe or .dmg), check the section entitled “Shining light on
filename extensions,” later in this chapter.

2. Check your web browser for its list of downloaded files. In that list, find
the most recent download (IntelliJ IDEA) and double-click that download’s
button or link.

Most web browsers save files to a Downloads folder on your computer's hard
drive, but your browser may be configured a bit differently. One way or
another, it helps to make note of the folder containing the downloaded Intelli)
installation file.

What happens when you double-click depends on the kind of operating system
you're running:

On Windows, a dialog box offers to guide you through the installation.

On a Mac, a Finder window tells you to drag an icon to your computer’s
Applications folder.

On Linux, well, ... (sorry!) ... you're on your own.

Linux has too many variations for me to cover all the possibilities here.
Besides, if you're a Linux user, you're probably tech-savvy. You know what
to do without reading these steps.

3. Finish installing Intelli) IDEA.

If the installation presents you with options, don't think too hard about them.
It's usually safe to accept the defaults.

Firing up Intelli) IDEA

Imagine that you’re expecting a delivery from a local confectioner. In the late
afternoon, the mail carrier delivers a box containing your favorite chocolate candy.
Naturally, you want to open the box as soon as it arrives.

CHAPTER 2 Setting Up Your Computer 23

The same is true about this book’s software. Here’s how you open your newly
downloaded Intelli] IDEA box:

1. Launchthe Intelli) IDEA application.

When you do, you see a flashy banner display. After a few seconds, the banner
disappears and you see the Welcome to Intellij IDEA dialog box. The box is
shown in Figure 2-1.

You can change the Intellj) color theme by selecting Customize in the Welcome
dialog box's side panel.
TIP
o0e Welcome to IntelliJ IDEA
i \»nt»eﬂ\liJ_\DEA
Customiza Welcome to IntelliJ IDEA
Plugins
Create a new project to start from scratch.
Learn IntelliJ IDEA Open existing project from disk or version control
+ = 14
MNew Project Open Get from VCS
FIGURE 2-1:
Willkommen,
bienvenue, -
welcome!

2. Inthe Welcome dialog box, choose New Project.

AJava application may consist of several files, including code files, image files,
data files, installation instructions, and other stuff. With Intelli] IDEA, you
manage an application’s files by combining them into a single project.

In this book, a typical project contains only one file. Why bother “collecting” one
file into a bigger thing called a “project”? The answer is, Intelli IDEA wants each
application to be part of a project, just in case the application grows to include
dozens or even hundreds of files.

When you select New Project, a dialog box appears. To no one’s surprise, the
box's title is New Project. (See Figure 2-2.)

24 PART 1 Getting Started with Java Programming

® @ New Project

Maven
Gradle Additional Libraries and Frameworks:

Java FX 8 Groovy
Android K Kotlin/Jvm

IntelliJ Platform Plugin
& Groovy
K Kotlin

Empty Project

[Mo library selected] Create

FIGURE 2-2:

Everything 2) | cancel evious | R

starts here.

3. Make sure that the topmost entry (namely, Java) is selected in the dialog
box’s side panel. (Refer to Figure 2-2.)

4. Atthe top of the dialog box’s main body, look for the drop-down list
labeled Project SDK. (Refer again to Figure 2-2.)

The letters SDK stand for software development kit. During its long history, Java
has come in many different shapes and sizes. Even now, the kind of Java you

LD,
6 run depends on the kind of Java you need. This drop-down box asks you to
TECHNICAL select the kind of Java you'll be using in your new project.
STUFF

For more than you'd like to know about Java’'s many incarnations, see the later
section “The Java smorgasbord.”
What you do next depends on what you see in that drop-down list.

CROSS

REFERENCE 5 £ vou see <No SDK> in the drop-down list, jump temporarily to the later

section “Installing Java.”

Likewise, if you see Version 16 or any version lower than 16 (including
versions like 1.8.0_241) in the drop-down list, jump temporarily to the
later section “Installing Java.”

If you see Version 17 or any version number higher than 17, leave the
drop-down list as it is and click Next.

CHAPTER 2 Setting Up Your Computer 25

After clicking Next, you see a second New Project dialog box. You can proceed
to the next step in this list of instructions.

6. The second New Project dialog box displays the Create Project from
Template check box. Put a check mark in the Create Project from
Template check box. (See Figure 2-3.)

® @ New Project

Create project from template

2 Command Line App

Simple Java application that includes a class with main() method

FIGURE 2-3:

Caretouse a 78 Cancel previous | ([EEEN

project template? =

7. Inthe same New Project dialog box, make sure that the Command Line
App item is selected. (Refer again to Figure 2-3.)

8. At the bottom of this New Project dialog box, click Next.

When you click Next, a third (and, thankfully, final) New Project dialog box asks
for a project name, a project location, and a base package. (See Figure 2-4.)

For the project name, almost any sequence of characters will do. In Figure 2-4,
| use the name 02-01. After all, this is Chapter 2, and this is the first (and only)
project in Chapter 2.

For the project location, | recommend keeping the default.

| JoN] New Project
Project name: 02-01
Project location: ~/ldeaProjects/02-01

FIGURE 2-4: Base package:
What, where,
and how.

26 PART 1 Getting Started with Java Programming

LD,
TECHNICAL
STUFF

FIGURE 2-5:
Intelli) IDEA's
main window.

A

WARNING

9. Delete any text in the Base Package field. (Refer to 2-4.)

My Java colleagues will rip me to pieces for telling you to leave the Base
Package field empty. A package is a group of one or more Java code files, and
experienced Java professionals never write code without naming a package.
The trouble is, having a named base package would make it slightly more
difficult for you to run this book’s sample programs. The quickest (and dirtiest)
solution is to have you clear out the Base Package field. Don't tell anyone. It's
our little secret.

10. in this final New Project dialog box, click Finish.

At last! Intelli)'s main window appears on your computer screen.

Figure 2-5 contains a screen shot of the main window. In the figure, I've labeled
a few of the main window’s parts.

Project tool button Run button Editor

[] ® 02-01 - Main.java
02-01 src & Main A ain~ | b | G ® OQ
g Project v €3 T T & — Main.java
§ v 02-01 [untitled104] ~/IdeaPro public class Main { Indexing..
L] > .idea
src public static void main(String[] args) {
muntitied104.im| }
> lllh External Libraries }
o Scratches and Consoles
2
5
E
&
g
‘§
2
*
IZTODO O Problems [M Terminal () Event Log
o | indexing JDK ‘openjdk-15"_ sm—— 1:15_LF_UTF-8 4 spaces ‘i |
Project tool window Status bar

It may take a while for Intelli] to finish creating a new project. You may see only
a big gray area in most of the main window. You may see some messages
about indexing on the status bar. If so, be patient. Wait for the text on the
status bar to stop changing. Figure 2-6 shows what you see when the status
bar in Figure 2-5 stops changing.

CHAPTER 2 Setting Up Your Computer 27

FIGURE 2-6:

Tranquility on the

28

status bar.

FIGURE 2-7:
Not much
to see here.

1115 LF UTF-8 4 spaces ‘Ia

With no turmoil on the status bar, you may still not see the Editor or the Project
tool window.

If you don't see the Project tool window, you can coax it out of hiding: Just
click the Project tool button along the window’s leftmost edge.

If you don't see the Editor, expand the Project tool window's tree and
double-click the tree's Main branch. (Refer to Figure 2-5.)

Enough preliminaries. It's time to run some Java code.
11. click the Run button.

When you do, you should see some new messages on the Intelli] status bar.
After a number of seconds, you see a new tool window — the Intelli] Run tool
window — along the bottom of the screen. (See Figure 2-7.) Along with some
technical gobbledygook, the Run tool window displays the words Process
finished with exit code 0.

=

’g Run: Main -

& [/Users/barryburd/Library/Java/JavaVirtualMachines/openjdk-15.08.1/Contents/Home/bin/java -javaagent:/Appli
&4 . . .

w __ Process finished with exit code @

£ =

g o

g =

* » »
B Run i=TODO @ Problems M Terminal %, Build Q) Event Log

IC] _Build completed successfully in 20 sec, 258 ms (moments ago) 1115 _LF _UTF-8 4 spaces ‘i

That’s it! You’re done setting up the software. For answers to questions about any
of these steps, see the later section “If You Need More Details”

Installing Java

What? You say you were following the previous section’s steps and then Step 5 in
that section made you take a detour? Well, you’ve come to the right place!

When you reached Step 5, you were staring at the New Project dialog box. Maybe
the text <No SDK> appeared in the dialog box’s Project SDK drop-down list. (Refer
to Figure 2-2.) Or maybe the drop-down list displayed a version number lower
than 17.

PART 1 Getting Started with Java Programming

FIGURE 2-8:
Intelli) offers to
download Java

for you.

FIGURE 2-9:
Pick your poison.

REMEMBER

In either case, here’s what you do next:

1. Inthe Project SDK drop-down list, select Download JDK. (See Figure 2-8.)

e ® New Project
Maven
Gradle Additional Lipy 0% _<NosDK>
uJava FX & Groovy Download JDK...
= Android K KotlinfJ 5 Add JOK...

IntelliJ Platform Plugin
& Groovy

K Kotlin

When you select Download DK, Intelli] displays a new Download JDK dialog
box. (See Figure 2-9.)

[] Download JDK
Version: | 15 hd
Vendor: | Oracle OpenJDK 15.0.1 v

location AdoptOpenJDK (HotSpot) 15.0.1 [15.0.1-1
AdoptOpenJDK (OpenJ8) 15.0.1
Amazon Corretto 15.0.1

Azul Zulu Community™ 15.0.1

BellSoft Liberica JDK 15.0.1

Oracle OpenJDK 16.0.1 o
SAP SapMachine 15.0.1

2. Inthe Download JDK dialog box's Version list, select the highest number

available.

3. For the Vendor drop-down list, | recommend the Oracle Open)DK option.

I don't have a particularly good reason for recommending this option. Oracle
owns the rights to Java, so using Oracle’s product means getting Java “from the
horse’s mouth.” And the prefix Open in Open)DK means that this version of
Java is free to use for noncommercial purposes.

No matter which vendor option you pick, you'll be okay. This book’s examples
run on any newer version of Java.

The third item in the Download JDK dialog box is a Location field.

CHAPTER 2 Setting Up Your Computer 29

4.

In the Location field, your safest move is to accept the defaulit.

In other words, leave that field alone.

When you're finished making selections, click the Download button.
As if by magic, Intellij downloads Java and installs it on your computer.

In the New Project dialog box, click Next.

As a result, another dialog box with the same title (New Project) appears. With
this second New Project dialog box staring you in the face, you can return to
Step 6 in the previous section.

It was fun guiding you through this section'’s steps. Please say hello to the
“Firing up Intelli) IDEA” section for me!

If You Need More Details...

30

I just put the finishing touches on a script for a new horror film. Here’s an excerpt
from the story:

The scene is an old country mansion on a dark, windy night. Victoria J. Venom sits alone
in her well-appointed office. She’s about to install some software on her laptop, but the
procedure for installing it isn't straightforward. Victoria must follow many steps (twenty
of them, to be precise), and some of the steps involve unfamiliar choices. The software
vendor has made changes since the steps were written, so some of the instructions’
screen shots don’t match what she sees on her computer. Her laptop has some older
software that her stepmother once installed. This old software presents options that
differ from the ones in the installation instructions.

[Cue the foreboding background music.] The instructions tell Victoria what to do but not
why to do it. So one false move on her part and the whole installation goes awry. Early
on, she ignores a warning message, and things go smoothly in the next few steps. But
then, several steps later, Victoria sees nothing but error messages. Unfortunately, the
messages give no guidance to help her fix the problems.

[Cue the sounds of wolves howling in the distance.] Victoria tries to retrace her steps to
correct any bad decisions she made along the way, but this only makes things worse.
She tries to roll everything back to Step 1, but that doesn’t work. The system remembers
some of her bad choices, and any further tinkering gets her in deeper trouble.

PART 1 Getting Started with Java Programming

In desperation, Victoria picks up her laptop and throws it against the wall. With a scow!
on her face and veins throbbing on her neck, she vows to seek revenge.

[Cut to the scene with the unsuspecting software vendor.]

I wonder. Does Wiley plan to start its own video entertainment streaming service?
If so, will the service need new movie ideas?

Anyway, installing software can be a pain in the neck. I get plenty of emails from
my books’ readers, and the number-one question from them is, “What went
wrong when I followed the installation instructions?”

The next several sections provide details on the previous section’s steps and offer
hints to fix any problems that arise.

Shining light on filename extensions

The filenames displayed in Windows File Explorer or macOS Finder can be mis-
leading. You may browse one of your folders and see the name idealC-2021. The
file’s real name might be idealC-2021.exe, idealC-2021.dmg, idealC-
2021 .somethingElse, or plain old idealC-2021. Filename endings like .exe
and .dmg are called filename extensions.

The ugly truth is that, by default, Windows and Macs hide many filename exten-
sions. This awful feature tends to confuse programmers. So, if you don’t want to
be confused, change your computer’s system-wide settings. Here’s how you do it:

3 In Windows 10: In the taskbar’s Search box, type File Explorer Options and
then press Enter. When the File Explorer Options dialog box appears, click the
View tab. Look for the Hide Extensions for Known File Types option. Make
sure that this check box isn't selected.

3 In Mac OS X: On the menu bar for Finder, choose Finder = Preferences. In the
resulting dialog box, select the Advanced tab and look for the Show All
Filename Extensions option. Make sure that this check box is selected.

3 In Linux: Linux distributions tend not to hide filename extensions. So, if you
use Linux, you probably don't have to worry about it. But | haven't checked all
Linux distributions. If your Intellij download is named idealC instead of
idealC.tar.gz or idealC.whatever, check the documentation specific to
your Linux distribution.

CHAPTER 2 Setting Up Your Computer 31

Dealing with a Mac's security features

If you have a Mac, you might encounter some speed bumps during your IntelliJ
installation:

3 The Safari browser may ask whether you want to allow downloads from
www. jetbrains.com.

If so, click Allow.

3 You may see a troubling dialog box warning you that “Intellij IDEA is an
app downloaded from the Internet” and asking, “Are you sure you want
to open it?”

If so, your answer should be “Yes. Open it.”
3 Your Mac might be set up to install only App Store software.

If so, you'll see a message saying, “Intelli) IDEA CE can't be opened because it
was not downloaded from the App Store,” or something like that. Here's how
you deal with that problem:

1. Choose Apple => System Preferences = Security & Privacy.
2. Inthe Security & Privacy dialog box, select the General tab.

3. Click the lock in the dialog box’s lower-left corner and confirm the unlocking by
typing your account password.

It's the same password you use whenever you log on to the computer.

In the Security & Privacy dialog box, a group of radio buttons begins with
the prompt Allow Apps Downloaded From.

4. Select the radio button labeled App Store and Identified Developers.
Hooray! The company that makes Intellij IDEA is an identified developer.

5. Close the Security & Privacy dialog box.

Using Intelli) IDEA with finesse

On a cold day one January, while I was rushing to the Milwaukee airport, my car
turned itself off. I got out of the car, looked under the hood, and noticed some
unattached cables. I had been taking an introductory auto mechanics course, so I
didn’t have to wait for a repair service to arrive. I reattached the cables and was
immediately on my way.

What little I had learned in the auto mechanics course had paid off! Sure, I knew
how to drive a car. But, on that day in Milwaukee, getting to the airport on time

required knowing a tiny bit more than the absolute minimum.

32 PART 1 Getting Started with Java Programming

http://www.jetbrains.com

The same idea is true about working with software. The more you understand, the
better off you are. With that in mind, this section goes beyond the minimum
knowledge you need for using Intelli] IDEA.

Stopping and starting work with Intelli) IDEA

The instructions in this chapter’s earlier section “Firing up Intelli] IDEA” leave
you hanging. After the last step, you see the run of a Java program. The run is une-
ventful because the program that IntelliJ creates isn’t meant to do anything. So,
what happens after you’ve finished following these instructions? Here are some
possibilities:

»

»

»

»

You leave Intellij IDEA open.

Without shutting down your computer, you drive to Las Vegas, get married,
and go on a honeymoon in Niagara Falls. (Oh, oh! Did someone say “Niagara
Falls"? Slowly | turn. .. .) When you return home, your computer is still on.
Intelli)'s main window is still showing on the screen. The main window still
contains the project in the “Firing up Intellij IDEA” section. If you want, you can
continue working on that project.

That's one way to proceed after following the steps in the “Firing up Intellj)
IDEA” section. Here's another:

With Intelli) running and your project in the main window, you close the
entire Intelli) application.

Of course, the Intelli] application stops running. The next time you launch
Intelli), you see Intelli)'s main window. The project from the earlier section
“Firing up Intelli] IDEA” appears in that window.

Here's yet another possibility:

With Intelli) running and your project in the main window, you choose
File> Close Project.

As a result, Intelli] displays a Welcome window, much like the one shown in
Figure 2-1. In addition to the New Project, Open, and Get from VCS buttons,
this new window displays a list of your most recent projects. If you click an
item in that list, Intelli) opens the corresponding project in a main window.

And, finally:
With only a Welcome window showing, you close the Intelli} application.

The next time you launch Intellij, you see its familiar Welcome window. You
can select one of your recent projects or start from scratch by selecting New
Project.

CHAPTER 2 Setting Up Your Computer 33

Projects by the barrelful

Intelli] can display several projects at a time, each in its own main window. To
make this happen, have at least one main window showing. Then, on the IntelliJ
main menu bar, choose File> New=> Project or File=> Open Recent. In either case,
Intelli] prompts you with a dialog box, asking “Where would you like to open the
project?” If you select New Window, Intelli] leaves all existing windows open and
creates an additional window for your newly opened project.

Running code

A single project may contain several Java code files. When you’re ready to test your
code, you click the Run button, shown in Figure 2-5. That’s usually okay. But once
in a while, you get some unexpected results. Intelli] starts running one of your
project’s Java files. How does Intelli] decide which file to run?

The safest way around this issue is to avoid clicking the Run button. Figure 2-10
shows part of the main window for a project containing three Java code files. The
files’ names are MyData, MyFrame, and ShowAFrame.

To run the file named ShowAFrame, begin by right-clicking either the ShowAFrame
branch in the Project tool window’s tree or the ShowAFrame tab at the top of the
Editor. In either case, IntelliJ displays a context menu. On the context menu, select
Run ShowAFrame or Run ShowAFrame.main().

Project with 3 files = src = € ShowAFrame = m main
g Project v & = of — @ MyFramejava @ MyData.java @ ShowAFrame java
E hd Project with 3 files ~/IdeaProjects/Project with 1 # public class ShowAFrame {
I > .idea 3 public static void main(String[] args) {
v src = new MyFrame();
£ MyData }
< MyFrame }
€' ShowAFrame
L Project with 3 files.iml | NéW >
> Il External Libraries & Cut #X
o Scratches and Consoles =] Copy #C
Copy Path...
O Paste BV
Find Usages XF7
Analyze ’
Refactor >
Add to Favorites >
Browse Type Hierarchy ~H
Reformat Code L
Optimize Imports A0
Delete... £
Build Module ‘Project with 3 files'
Run 'ShowAFrame.main()* 2 ~OR
FIGURE 2-10: ® # Debug 'ShowAFrame.main()' ~GD
Asrc folder with |E MorelRun/BDebug) ’
threeJava files. & [Open in Right Split &a

34 PART 1 Getting Started with Java Programming

©

REMEMBER

While Intelli] churns away in preparation for dealing with your code, you don’t see
a Run option on either of these context menus. Be patient and wait until there’s no
activity on the main window’s status bar. (Refer to Figure 2-6.) Occasionally, you
don’t see a Run option even with a status bar like the one shown in Figure 2-6. In
that case, the file you’re trying to run may not be runnable. For more information,
see Chapter 13.

Help! My course instructor doesn't
want me to use Intelli) IDEA!

Most professional Java developers use one of three integrated development envi-
ronments: Intelli] IDEA, Eclipse, or NetBeans. Other development environments —
such as Blue]J, DrJava, Greenfoot, JCreator, JDeveloper, and jGRASP — are popular
among educators. Some people don’t use any software development environ-
ments. Instead, they type code in NotePad or TextEdit and run code by typing
command-line instructions.

However you choose to develop Java programs, the examples in this book will run
just fine. If your boss or your instructor wants you to use Eclipse instead of IntelliJ
IDEA, that’s no problem. You’ll have to learn some different editing commands
and some different ways to get Java programs to run. But, aside from learning to
use Eclipse instead of Intelli], your Java coding experience will be exactly the
same. All you need is a fairly recent version of Java. Java 17 or higher will work
just fine.

Downloading Java without Intelli) IDEA

Intelli] IDEA’s menus make installing Java a breeze. But Intelli] and Java are two
separate products. At some point, you may have to install Java without running
Intelli] IDEA. If so, visit https://adoptopenjdk.net to get the latest available
version of the JDK.

Near the top of the AdoptOpen]JDK page, you might see links and buttons for
Java 8 and Java 11. Those versions of Java are okay, but I recommend a version of
Java numbered 17 or higher to get the most from this book’s content.

The AdoptOpen]DK page offers you a download of the software that matches your

operating system (Windows, Macintosh, or whatever). Beyond that, the website
may offer you some choices:

3 Windows users may choose one of two operating system architectures:
x86 and x64.

CHAPTER 2 Setting Up Your Computer 35

https://adoptopenjdk.net/

36

Oddly enough, x86 means that your version of Windows uses 32-bit registers,
and x64 means it uses 64-bit registers. These days, most people run 64-bit
operating systems. So, if you're in a hurry, choose x64.

For all the gory details, see the later section “A bit of news about bits.”
3 Windows users may choose one of two file extensions: .msi or .zip.

For a fairly painless installation, choose .msi. With an .msi file, you click a few
buttons and accept a few defaults. Installing from a . zip file takes more work
and is more prone to error.

3 Mac users may choose between an Intel or Apple Silicon download.

When you face this choice, follow my advice from Step 1 in the earlier “Let's
Get Started” section.

When you feel comfortable with any choices you’ve made, click the page’s Down-
load button and proceed with the installation. (Double-click whatever file you’ve
downloaded and then follow the installation instructions.)

A bit of news about bits

When you get Java from AdoptOpenJDK or some other site, you may be confronted
with a choice between x86 and x64 downloads. The Windows operating system
comes in two sizes: 32-bit and 64-bit. In the same way, a computer that runs
Windows has either a 32- or 64-bit processor. On top of all that, there are two
kinds of Java Windows computers — 32-bit Java and 64-bit Java.

For historical reasons, 32-bit processors, operating systems, and applications are
often marked with the label x86. Less surprisingly, the 64-bit processors, operat-
ing systems, and applications are often marked with the label x64.

Figure 2-11 shows what you can do with various processors and their operating
systems.

According to Figure 2-11, you can run 32-bit Java on a 64-bit processor, and you
can do this with either 32-bit Windows or 64-bit Windows. To help you decide
where you live in Figure 2-11, type about your PC in the taskbar’s search box. In
the About window that appears, look for the words System Type. Alongside those
words, you may see something like “64-bit operating system, x64-based proces-
sor.” That settles it. You’re in the bottommost cells of the left and middle col-
umns. You can run 32- or 64-bit Java.

PART 1 Getting Started with Java Programming

— 32-bit processor

32-bit Windows
’/ 32-bit Java JDK

—— 64-bit processor

32-bit Windows
’, 32-hit Java JDK

—— 64-bit processor
64-bit Windows

F 32-bit Java JDK —‘ ’/ 64-bit Java JDK —‘

FIGURE 2-11:
Mix and match.

Figure 2-11 says you can’t run 64-bit Java on 32-bit Windows. If you try down-
loading 64-bit Java on a 32-bit Windows system, the download proceeds without
a hitch. But when the download finishes and you try to run 64-bit Java, Windows
complains vigorously. “This installation package is not supported by this product
type,” says Windows. In that case, revisit https://adoptopenjdk.net and choose
the x86 option.

Another issue arises if you mix one kind of Java with another kind of IntelliJ
IDEA. For example, if you try to run 32-bit Java on 64-bit Intelli] IDEA, you might
see a message of the following kind:

Error: LinkageError occurred while loading main class Main

java.lang.UnsupportedClassVersionError: Main has been compiled

by a more recent version of the Java Runtime, this version of

the Java Runtime only recognizes class file versions up to 55.0

If you do, look for a Download link or Configure link in the upper right corner of
Intelli]’s main window. Click either of those links to get yourself out of hot water.

CHAPTER 2 Setting Up Your Computer 37

https://adoptopenjdk.net/

38

TECHNICAL
STUFF

Greetings from January 2021! When I check the system requirements for Intelli]
IDEA, the website tells me that I need “64-bit versions of Microsoft Windows 10,
8.” In spite of that, I can run Intelli] IDEA on a 32-bit system. Go figure!

This section’s advice about Windows and Java applies to other software as well.
For example, you can’t run a 64-bit accounting application on 32-bit Linux with
a 32-bit processor.

The Java smorgasbord

I could write a whole book about the different makes and models of Java over the
years. If I did, the book would be painful to read — like a dictionary, but with no
interesting word-origin stories. Anyway, this section explains some of the termi-
nology you might see as you travel through the Java ecosystem.

Medium Java, little Java, and gigantic Java

At some point, you may see mention of Java SE, Java ME, or Java EE. Here’s the
lowdown on these three kinds of “Java E”:

3 Java Standard Edition (Java SE): This is the only edition you should think
about (for now, anyway). Java SE includes all the code you need in order to
create general-purpose applications on a typical computer. Nowadays, when
you hear the word Java, it almost always refers to Java SE.

3 Java Micro Edition (Java ME): The Micro Edition contains code for program-
ming special-purpose devices such as television sets, printers, and other
gadgets. The book that you're reading contains no Java ME examples.

3 Java Enterprise Edition (Java EE): In 1999, the stewards of Java released an
edition that was tailored for the needs of big companies. The starring role in this
edition was a framework called Enterprise JavaBeans — a way of managing data
storage across connected computers. In 2017, Oracle walked away from Java EE,
handing it over to the Eclipse Foundation, which renamed it Jakarta EE.

The rest of this book deals exclusively with Java Standard Edition.

Java for developers and Java for consumers

What comes to mind when you think about a chair? If you’re a typical consumer,
you think about a horizontal surface — a place to put your bottom. You may also
think about a supporting structure for the chair (such as four legs) and some extra
parts for resting your arms and your back.

PART 1 Getting Started with Java Programming

LD,
TECHNICAL
STUFF

If you’re a carpenter, you may think differently about chairs. You think about
wood, nails, hammers, screwdrivers, glue, the cost of materials, the marketability
of your design, and other things.

You don’t need nails or hammers to sit down on a chair. Likewise, you don’t need
a programmer’s software tools to run an existing Java program. To run a Java
program that someone else created, the only software you need is a Java runtime
environment (JRE). But to create new programs, you need more tools. This big
bunch of tools is known as a Java development kit (JDK).

This book is about creating Java programs. So, if a website makes you choose
between a JRE and a JDK, download the JDK.

Other languages have their own development kits. In general, any one of these is
called a software development kit (SDK).

Java evolves over time

If you want to drive yourself crazy, try making sense of Java’s version numbering.
It all started in 1996 with JDK 1.0. Next came JDK 1.1. In 1998, some marketing
people decided on Java 2 SE 1.2. (The additional number 2 was quite confusing, but
that’s beside the point.) Things marched along until Java 1.5 was renamed Java 5.0
(but only for external numbering purposes). Java 6 had to do without any .o part.

The road from Java 1.0 to Java 9 took 21 years. But, in 2017, Oracle changed to a
6-month cycle for new versions of Java. So, in March 2018, Oracle released Java 10.
And, in September 2018, Oracle released Java 11.

Java 11 was declared to be a long-term support (LTS) release. Oracle promised assis-
tance with Java 11 for several years after the software’s 2018 debut. When you see
version numbers like Java 11.0.10, it’s because Oracle was posting Java 11 updates
as long as three years after the introduction of Java 11.

Other versions, such as Java 10 and Java 12, came with no long-term support. For
example, Oracle released Java 12 in March 2019, Java 12.0.1 a month later, and Java
12.0.2 three months later. But in September 2019, Oracle released Java 13 and bid
farewell to Java 12. If you wanted help with Java 12, Oracle said, “We’re done with
Java 12. Go ask somebody else.”

Oracle’s plan is to create long-term support releases every three years. After

Java 11 in September 2018, the next long-term Java release is Java 17 in
September 2021. After that, you have Java 23 in September 2024.

CHAPTER 2 Setting Up Your Computer 39

40

o
T
TECHNICAL
STUFF

DON'T LOOK BACK!

In my travels as a For Dummies author, readers sometimes ask me if they should avoid
versions of Java beyond the ones | mention in my books. This book refers to Java 17, but
when you read the book, Intellij IDEA offers to install Java 19. What to do?

In general, the higher the version number, the better your Java experience. The people
who manage Java's versions maintain a strict policy of backward compatibility, so the
code that you and | write doesn't break over time. An app that ran correctly with Java 1.0
is very likely to run correctly with Java 17, and the examples you find in this book are
likely to run under Java 18, 19, 20, and beyond.

Backward compatibility is a wonderful thing. Professional programmers work with pro-
grams that are thousands (and even millions) of lines long. With backward compatibility,
programmers avoid having to fish through old programs to fix bugs caused by new
releases.

Over the years, Java’s numbering system has taken all kinds of twists and turns.
The name Java 1.8.0_ 241 means something to some people, but it’s of no concern
to you as a novice programmer.

Everyone gets into the act

Oracle has two versions of the Java JDK. One of them is called Oracle JDK; the other
is called Oracle OpenJDK. The difference between the two is the licensing agree-
ment. Whereas Oracle OpenJDK is free and open-source, Oracle JDK is mainly for
commercial use.

In addition, many other companies have their own versions of Java. For example,
Amazon publishes an open-source JDK named Corretto. The Eclipse Foundation
has a Java virtual machine called OpenJ9.

The first time you run Intelli] IDEA, you may be prompted to choose between Ora-
cle OpenJDK, Amazon Corretto, Azul Zulu, and other flavors of Java. Should you
stress for more than a millisecond about this choice? No, you shouldn’t. The dif-
ferences among these products are of concern to big companies running massive
applications, but they don’t matter at all for the running of this book’s examples.
Just install a copy of Java and then sit back and enjoy the ride.

PART 1 Getting Started with Java Programming

REMEMBER

FIGURE 2-12:
Finding your
way around the
Project Structure
dialog box.

Juggling JDKs

Java’s versions aren’t like indoor cats — they can coexist on the same computer
without fighting or hissing at one another. If you have more than one version of
Java on your computer, you’re okay. You can install Java 8, 11, and 17. You can
install Oracle OpenJDK alongside Amazon Corretto. On Windows or Linux, you can
mix 32- and 64-bit versions of Java.

The first time you create an IntelliJ project, the New Project dialog box looks for
any JDKs that you have on your computer. If you haven’t already installed a JDK,
you can select the dialog box’s Download JDK option. (That option is in the dialog
box’s Project SDK drop-down list. For more info, refer to the earlier “Installing
Java” section.)

Later, when you start another project from scratch, the New Project dialog box
assumes that you want to use the same JDK you used when you created the previ-
ous project. In the dialog box’s Project SDK drop-down list, you’ll find all the JDKs
that you’ve already installed. If you want to use a JDK that you haven’t already
installed, select Download JDK in the drop-down list.

In the Project SDK drop-down list, the default is always whatever JDK you chose
the last time you created a new project.

Imagine this. You’ve been struggling for days on a project for work or a course
assignment. At the last minute, someone tells you to use a brand-new feature of
Java — a feature that’s available only in the very newest JDK. How do you change
an ongoing project’s JDK?

With the project showing in the main Intelli] window, go to the Intelli] main menu
bar and choose File= Project Structure. When the Project Structure dialog box
appears, look in the left side panel for an item named Project. (It’s the first item
in the Project Settings section. See Figure 2-12.)

[BeN] Project Structure

Project name:

. . 02-01
Project Settings
Project SDK:
Modules This SDK is default for all project modules.

. . A module specific SDK can be configured for each of the modules as required.
Libraries

Eacets = openjdk-15 version 15.0.1 > Edit
Artifacts F &g <No SDK>
Platform Settings T i= openjdk-15 version 15.0.1 ules.
SDKs -1 L

Add SDK Download JDky, .

Global Libraries JDK...

Project compiler output: IntelliJ Platform Plugin SDK...
Problems) ‘) - droid §
This path is used to store all project compilation Android SDK....

A directory corresponding to each module is created under this path.

This directory contains two subdirectories: Production and Test for production code and test

CHAPTER 2 Setting Up Your Computer 41

42

After selecting Project, look in the dialog box’s main body for a Project SDK drop-
down list. In the drop-down list, choose Add SDK=> Download JDK, or select a JDK
that’s already in the list.

Getting the documentation

What follows is a scene from Barry Burd’s childhood:

Mom: “What did you do in school today?”

Barry: “We had a substitute who didn’t know what to do all day.”
Mom: “So what happened?”

Barry: “We just watched a boring movie. I didn’t understand any of the big words
in the movie.”

Mom: “What kinds of big words?”

Barry: “Words like acnestis. What does acnestis mean?”

Mom: “Look it up!”

Barry: “Awwww, Mom! That’s too much work. I don’t want to look it up!”

In Chapter 1, I refer to a website where you can find Java’s API documentation.
That website is a life-saver. But sometimes, finding web pages interrupts your
workflow. What if you’re like young Barry Burd and you don’t like looking
things up?

Intelli] IDEA has an external documentation feature. Using this feature, you can look
things up quickly and easily.

The one-time setup
Before you can use Intelli]’s external documentation feature, you have to tell
Intelli] where the external docs live.
1 . On the Intelli) main menu bar, choose File > Project Structure.
A Project Structure dialog box appears. (See Figure 2-13.)
2. Inthe dialog box's left panel, select SDKs. (Refer to Figure 2-13.)

3. Inthe dialog box’s main body, select the Documentation Paths tab. (You
guessed it! Refer to Figure 2-13.)

PART 1 Getting Started with Java Programming

FIGURE 2-13:
More Project
Structure stuff.

FIGURE 2-14:
A hard-to-
find icon.

FIGURE 2-15:
The URL of
Java's API
documentation.

L EeN]
« + -

Project Settings _clil il

Project
Modules
Libraries
Facets
Artifacts

Platform Settings

Global Libraries

Problems

Project Structure

Mame: openjdk-15

JDK home path: /Users/barryburd/Library/Java/JavaVirtualMachines

Classpath Sourcepath Annotations Documentation Paths

Nothing to show

4. Inthe area beneath the tabs, look for an icon with a tiny globe next to a

plus sign.

In Figure 2-14, | enlarge the icon so that you can find it more easily. In this icon,
the plus sign means “Add something,” and the globe means “The thing you're
adding is somewhere else in the world, not on your own computer’s hard drive.

o

When you click the icon, Intellij shows you a small dialog box with the title

Specify Documentation URL. (See Figure 2-15.) If you're lucky, a URL is already

in the dialog box's text field. The URL is something like this:

https://docs.oracle.com/en/ java/javase/17/docs/api

Enter documentation URL:

1J

o @ Specify Documentation URL

https://docs.oracle.com/en/java/fjavase/15/docsfapif

Cancel “

CHAPTER 2 Setting Up Your Computer

"

43

https://docs.oracle.com/en/java/javase/17/docs/api

5. click ok to accept the URL.

If the small dialog box's text field is empty, you can find a URL by searching
the web for Java 17 API docs, Java 18 API docs, or Java some-number
API docs. In place of some—-number, use whatever number you chose in Step 2
TIP of the earlier “Installing Java" section. For example, if you chose OpenJDK 19.0.2,

search for Java 19 API docs.

When you dismiss the small dialog box, you're tossed back to the big Project
Structure dialog box.

6. Click OK to dismiss the Project Structure dialog box.

You're done setting up the Intelli] external-docs feature. Good work!

Looking stuff up

After completing the previous section’s one-time setup, try these steps:

1. Open an existing project or create a brand-new project.

For complete instructions, refer to the earlier sections “Firing up Intelli) IDEA”
and “Stopping and starting work with Intellij IDEA.”

The code in the Editor contains the word String. (See Figure 2-16.) This word
has an official meaning in Java programs. (To learn more about words with
official meanings, see Chapter 4.)

&' Main.java

2 public class Main {

3 public static void main(Strfing[] args) {

/7 write ur code hep

FIGURE 2-16 } S

The cursor, on
the word String.

2. In the Editor, click the mouse anywhere on the word String. (Refer to
Figure 2-16.)

3. onthe Intelli) main menu bar, choose View > External Documentation.
When you do, your web browser displays a brand-new page. For a preview of

that page, see Figure 2-17.

A Java documentation page contains loads of useful information, but reading the
documentation isn’t always easy. For a lesson in making sense of Java’s API doc
pages, see my helpful little explainer on such documentation at www.dummies.
com/programming/java/making-sense-of-javas—-api-documentation/.

44, PART 1 Getting Started with Java Programming

http://www.dummies.com/programming/java/making-sense-of-javas-api-documentation/
http://www.dummies.com/programming/java/making-sense-of-javas-api-documentation/

docs.oracle.com

OVERVIEW MODULE PACKAGE USE TREE DEPRECATED INDEX HELP Java SE 15 & JDK 15

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
SEARCH: C, Search *x
Module java.base
Package java.lang

Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:
Serializable, CharSequence, Comparable<String>, Constable, ConstantDesc

public final class String
extends Object
implements Serializable, Comparable<String=, CharSequence, Constable, ConstantDesc

The String class represents character strings. All string literals in Java programs, such as "abc", are
implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support
mutable strings. Because String objects are immutable they can be shared. For example:

String str = "abc";

is equivalent to:
FIGURE 2-17 char data[] = {'a', 'b', 'c'};
The tOmeSt part String str = new String(data);

of aJava
R Here are some more examples of how strings can be used:
documentation
page' System.out.println("abc");

What's Next?

If you’re reading this paragraph, you’ve probably finished installing Intelli] IDEA
and Java on your computer. In Chapter 3, you start reaping the benefits of your
software installation efforts. Don’t wait! Turn the page right now!

CHAPTER 2 Setting Up Your Computer 45

IN THIS CHAPTER

» Running a program

» Editing your own Java code

» A grand tour of the Intelli) window

Chapter 3
Running Programs

f you’re a programming newbie, for you, running a program probably means
clicking a mouse. You want to run Microsoft Word, so you double-click the
Microsoft Word icon. That’s all there is to it.

When you create your own programs, the situation is a bit different. With a new
program, the programmer (or someone from the programmer’s company) creates
the program’s icon. Before that process, a perfectly good program may not even
have an icon. So, what do you do with a brand-new Java program? How do you get
the program to run? This chapter tells you what you need to know.

Running a Canned Java Program

The best way to get to know Java is to do Java. When you’re doing Java, you’re
writing, testing, and running your own Java programs. This section prepares you
by describing how to run and test a program. Rather than write your own pro-
gram, you run a program that I’ve already written for you.

CHAPTER 3 Running Programs 47

Getting the code

To get a copy of all the programs that I've written for you, follow these steps:

1.

Visit this book’s website: http://beginprog.allmycode.com.

I'm a world leader in the effort to create plain-looking, no-frills websites. You
may even call my site “ugly.” If so, that's fine with me.

The website’s front page has a link labeled Download the Code. That link refers
to a file named BeginProgJavaDummies6.zip.

Click the page’s Download the Code link and save the BeginProgJava
Dummies6.zip file on your computer’s hard drive.

In a File Explorer or Finder window, navigate to the folder containing the
downloaded BeginProgJavaDummies6. zip file.

Most web browsers save files to the Downloads folder on the computer's hard
drive, but your browser may be configured a bit differently.

The BeginProgJavaDummies6.zip file is a compressed archive file. When you
uncompress this file, a new folder, full of smaller files, is created. Your com-
puter’'s web browser may have already uncompressed the archive file
automatically.

If your web browser hasn't already uncompressed the BeginProgJava
Dummies6.zip download, uncompress that file using your computer’s File
Explorer or Finder.

For details, see the nearby “Compressed archive files” sidebar.

Make note of the place on your hard drive where you can find the
uncompressed download.

As you work your way through this book’s examples, you'll return to this place
again and again.

Adding the code to Intelli) IDEA

This chapter’s first program calculates your monthly payments on a home mort-
gage loan. The mortgage-calculating program doesn’t open its own window.
Instead, the program runs in Intelli] IDEA’s Run tool window. The Run tool
window normally appears in the lower portion of the Intelli] IDEA application.
(See Figure 3-1.) A program that operates completely in the Run tool window is
called a command line application (or command line program).

48 PART 1 Getting Started with Java Programming

http://beginprog.allmycode.com/

COMPRESSED ARCHIVE FILES

When you visithttp: //beginprog.allmycode.com and you download this book’s
Java examples, you download a file named BeginProgJavaDummies6.zip. A . zip file
is a single file that encodes a bunch of smaller files and folders. For example, my
BeginProgJavaDummies6.zip file encodes folders named Chapter 03,Chapter 04,
and so on. The Chapter 06 folder contains some subfolders, which in turn contain
files. (The subfolder folder named @6-02 contains the code in Listing 6-2 — the second
listing in Chapter 6.)

A .zip file is an example of a compressed archive file. Other examples of compressed
archives are .tar . gz files, . rar files, and . 7x files. Uncompressing a file means extract-
ing the original files stored inside the big archive file. (For a . zip file, another word for
uncompressing is unzipping.) Uncompressing normally re-creates the folder structure
encoded in the archive file. So, after uncompressing my BeginProgJavaDummies6.zip
file, your hard drive has a folder named BeginProgJavaDummies6 with subfolders
named Chapter 03,Chapter ©4, and so on. Each chapter subfolder contains subfold-
ers of its own.

When you download BeginProgJavaDummies6.zip, your web browser may uncom-
press the file automatically for you. If the icon next to BeginProgJavaDummies6 in File
Explorer or Finder looks like a typical folder's icon, then your browser has done the
uncompressing. If not, you have to tell your computer to uncompress the . zip file.

Don't get me started on listing the dozens of ways to uncompress a . zip file! Some
ways work on certain systems; other ways work on some other systems. If you're not
sure how to uncompress my . zip file, try one of these tricks:

® On Windows: In File Explorer, navigate to the folder containing the downloaded
.zip file. Right-click the . zip file. In the resulting context menu, select Extract All.
In the resulting dialog box, put a check mark in the Show Extracted Files When
Complete check box, and then press Extract. When all is said and done, Windows
displays the contents of your new uncompressed BeginProgJavaDummies6
folder.

® On a Mac: In a Finder window, navigate to the folder containing the downloaded
.zip file. When you double-click this . zip file, your Mac creates a brand-new
folder with the name BeginProgJavaDummies6. (The icon for this item looks like a
typical folder's icon.) This new folder contains the uncompressed versions of the
files that were encoded in the . zip file.

CHAPTER 3 49

http://beginprog.allmycode.com/

FIGURE 3-1:
A run of this
chapter's
mortgage
program.

TIP

CROSS
REFERENCE

FIGURE 3-2:

No template and
no French fries
with my order,
please.

Run: Mortgage
J/Users/barryburd/Library/Java/JavaVirtvalMachines/openjd
How much are you borrowing? 1066000.060

What's the interest rate? 5.26

How many years are you taking to pay? 30

Structure

i [O | I

Your monthly payment is $552.20

As you run the mortgage program, you see two things in the Run tool window:

3 Messages and results that the mortgage program sends to you: Messages
include things like How much are you borrowing?, and results include lines
like Your monthly payment is $552.20.

¥ Responses that you give to the mortgage program while it runs: If you
type 100000.00 in response to the program’s question about how much
you're borrowing, you see that number echoed in the Run tool window.

You don’t see the Run tool window until you start the run of a Java program. For
more information about the Run tool window (and about other Intelli] IDEA
features), see the section entitled “What’s All That Stuff in the Intelli] IDEA
Window?” later in this chapter.

A graphical user interface (GUI) program is one that displays nice-looking windows
with buttons, text fields, and other such items. Chapter 20 shows you how to start
writing GUI programs. For even more GUI program examples, visit this book’s
website (http://beginprog.allmycode.com).

Here’s how you prepare to run the mortgage program:

1. use Intelli) IDEA to create a new Java project.
Follow the steps in Chapter 2, but make these two tiny changes:

When Intelli) offers to create the project from a template, tell Intelli) to
go jump in the lake. (See Figure 3-2.)

When Intelli) asks for a project name, give it the name @3-Mortgage.
(See Figure 3-3.)

®
[]

New Project
Create project from template

Command Line App

50 PART 1 Getting Started with Java Programming

http://beginprog.allmycode.com/

e @ Mew Project

Project name: 03-Mortgage
FIGURE 3-3:
The last of three Project location: ~/IdeaProjects/03-Mortgage
New Project
dialog boxes.
In truth, the project name that you select can be almost any sequence of
characters. It can even be the default name that Intelli] offers (the name
untitled). But, if you use the name 03-Mortgage, you won't have to think
much when you reach some of this section’s later steps.
2. Expand the tree in Intelli)’s Project tool window until you see a branch
named src. (See Figure 3-4.)
The name src is short for source, so your Java source code lives on this branch.
To read more about source code, refer to Chapter 1.
CROSS
REFERENCE
E Project « RN - I
g v 03-Mortgage ~/ldeaProjects
=] > .idea
src
s 03-Mortgage.iml
FIGURE 3-4: >l External Libraries
Finding the o Scratches and Consoles
src folder.

3. If the src branch contains an item named Main, delete that item.

If you unchecked Create Project from Template in Step 1, you shouldn't see an
item named Main. But if you expand the src branch and find aMain item,
right-click it. On the resulting context menu, choose Delete. After removing all
check marks in the confirmation dialog box, click OK.

You're ready to add this book's mortgage example to the newly created Intelli)
project.

4. n your computer’s File Explorer or Finder, navigate to the folder where
you uncompressed the BeginProgJavaDummies6 download.

Refer to this chapter’s earlier section “Getting the code.”

Next, you're going to drill down inside the uncompressed
BeginProgJavaDummies6 folder.

5. InFile Explorer or Finder, double-click the BeginProgJavaDummies6 folder.

As a result, you see subfolders named Chapter 03, Chapter ©4,Chapter 05,
and so on.

CHAPTER 3 Running Programs 51

FIGURE 3-5:

Woo-hoo! You're

52

running some
Java code!

6.

7.

8.
o.

10.

Double-click the Chapter 03 folder.

As a result, you see a subfolder named ©3-Mortgage.
Double-click the 03-Mortgage folder.

Lo and behold! You see a file named Mortgage . java.

Right-click the Mortgage. java file, and then choose Copy from the menu
that appears.

Right-click the src branch of Intelli}’s Project tool window, and then
choose Paste from the resulting context menu.

To make absolutely sure that you know what you're doing, Intelli] displays a
confirmation dialog box containing the filename (Mortgage. java) and the
destination folder (a name ending in src).

Click OK to accept the dialog box’s suggestions.

Good work! It's time to run the Mortgage . java program.

Running the code

If you had a $100,000 mortgage, how much would you pay each month? To find
out, follow these steps:

1. Follow the steps in the earlier sections entitled “Getting the code” and
“Adding the code to Intelli) IDEA.”
2. Right-click either the Mortgage branch in the Project tool window or the
Mortgage tab at the top of the editor.
3. onthe resulting context menu, choose Run 'Mortgage.main()'.
After a brief delay, Intelli] displays its Run tool window. The words How much
are you borrowing? appear in the window. (See Figure 3-5.)
Run: 1 Mortgage a —
e 4 /Users/barryburd/Library/Java/JavaVirtualMachines/openjdk-15.0.1/Contents/Home/bin/java -javaagent:/AppL
A How much are you borrowing?
tm ®
Pa
4. click anywhere inside the Run tool window, type a number, like

100000.00, and then press Enter. (See Figure 3-6.)

PART 1 Getting Started with Java Programming

A\

WARNING

FIGURE 3-6:
That's a lot of
money!

FIGURE 3-7:
Five-and-a-
quarter percent
interest.

When you type a number in Step 4, don't include your country's currency
symbol and don't group the digits. (US residents: Don't type a dollar sign and
don't use any commas.) Amounts like $100000.00 and 1,000,000.00 cause this
mortgage program to crash. You see a NumberFormatException message in
the Run tool window.

Grouping separators vary from one country to another. The partial run shown
in Figure 3-6 is for a computer configured in the United States where 700000.00
(with a dot) means “one hundred thousand.” But the run might look different
on a computer that's configured in what | call a “comma country” — a country
where 700000,00 (with a comma) means “one hundred thousand.” If you live in
a comma country and you type 100000.00 exactly as it's shown in Figure 3-6,
you probably get an error message (an InputMismatchException). If so,
rerun the program using your country’s number format. When you do, you
should be okay.

After you press Enter, the Java program displays another message What's
the interest rate?)in the Run tool window. (Again, refer to Figure 3-6.)

Ru

P E Y Q

heture

n: . Mortgage
J/Users/barryburd/Library/Java/JavaVirtvalMachines/openjdk-15.0.1
How much are you borrowing? 100000.060

What's the interest rate? |

il « >

"
-

5.

In response to the interest rate question, type a number, like 5.25, and
press Enter.

After you press Enter, the Java program displays another message (How many
years ... ?)in Console view. (See Figure 3-7.)

Ru

BE »Q

IStructure

n: . Mortgage
/Users/barryburd/Library/Java/JavaVirtvalMachines/openjdk|
How much are you borrowing? 1660600.00

What's the interest rate? 5.25

How many years are you taking to pay? |

& Ul « =

6.

Type a number, like 30, and press Enter.

In response to the numbers that you type, the Java program displays a monthly
payment amount. (See Figure 3-8.)

Disclaimer: Your local mortgage company charges fees of all kinds. To get a
mortgage in real life, you pay more than the amount that my Java program
calculates. (A lot more.)

CHAPTER 3 Running Programs 53

Run: Mortgage
p 4 [Users/barryburd/Library/Java/JavaVirtvalMachines/openjdk
A How much are you borrowing? 1660600.00
_ What's the interest rate? 5.25
g “® How many years are you taking to pay? 30
FIGURE 3-8: | e
Your monthly 5: - Your monthly payment is $552.20
payment. =
& When you type a number in Step 6, don't include a decimal point. Numbers like
30.0 cause this mortgage program to crash. You see a
NumberFormatException message in Console view.
WARNING
Occasionally, you decide in the middle of a program’s run that you've made a
@ mistake of some kind. You want to stop the program’s run dead in its tracks.
Simply click the Stop button — little red square near the upper right corner of
TP the main Intellij) window. (See Figure 3-9.)

FIGURE3-9: |« ' Morgage v | ¢ % G W s B1Q
How to k
prematurely
terminate a
program’s run.

Stop ‘Mortgage' F2

If you follow this section’s instructions and you don’t get the results I describe,
you can try three things. I list them in order, from best to worst:

3 Check all the steps to make sure that you did everything correctly.

¥ Send an email to me at BeginProg@al 1Imycode . com, post to my Facebook
wall (/allmycode), or tweet to the Burd (@allmycode). If you describe what
happened, | can probably figure out what went wrong and tell you how to
correct the problem.

¥ Panic.

Some Programs Don’t Come in Cans

The previous section is about running someone else’s Java code (code that you
download from this book’s website — http://beginprog.allmycode.com). But
eventually, you’ll write code on your own. This section shows you how to create
code with Intelli] IDEA. Follow these steps:

54 PART 1 Getting Started with Java Programming

mailto:BeginProg@allmycode.com
http://www.facebook.com/allmycode
http://twitter.com/allmycode
http://beginprog.allmycode.com/

FIGURE 3-10:
Template, please!

FIGURE 3-11:

What better

name for this
project?

REMEMBER

FIGURE 3-12:
A shiny new
project.

1. use Intelli) IDEA to create a new Java project.

Follow the steps in Chapter 2. As you march through these steps, put a check
mark in the Create Project from Template check box and make sure that the
Command Line App item is selected. (See Figure 3-10.)

[NeN) New Project

Create project from template

Command Line App

In Figure 3-11, | create the name MyFirstProject.

[] [] New Project
Project name: MyFirstProject
Project location: ~/ldeaProjects/MyFirstProject

Base package:

The project name that you select can be almost any sequence of characters.
Select descriptive names so that you can find projects easily. Cryptic names,
such as Stuffo1 and Project123, are useless when you're looking for your
work from three weeks ago — work that you only vaguely remember.

When you've finished creating the new project, Intellij shows you a window like
the one in Figure 3-12. Your new project contains a file named Main. java. For
your convenience, the Main. java file already has some code init. IntelliJ's
editor displays the Java code.

2 MyFirstProject ~ Mainv | b ¥ G K EQ
5 Project v €3 = T @ — | @ Mainjava
E ~ I, MyFirstProject ~/ldeaProjec 1 » public class Main { v
s > .idea

4 src > public static void main(String[] args) {
< Main // write your code here
= MyFirstProject.iml }
> Il External Libraries }

© Scratches and Consoles

CHAPTER 3 Running Programs 55

2. Replace an existing line of code in your new Java program.
Type a line of code in IntelliJ's editor. Replace the line

// write your code here

with the line

System.out.println("Chocolate, royalties, sleep")

See Listing 3-1.

Here are some tips:
Spell each word exactly the way I spell it in Listing 3-1.
Capitalize each word exactly the way | do in Listing 3-1.

Include all the punctuation symbols — the dots, the quotation marks, the
semicolon — everything.

Distinguish between the lowercase letter 1 and the digit 1. The word
println tells the computer to print a whole line. Each character in the

word println is a lowercase letter. The word contains no digits.
REMEMBER

m A Program to Display the Things I Like

public class Main {
public static void main(String[] args) {
System.out.println("Chocolate, royalties, sleep");

& Java is case-sensitive, which means that system.out . printLn isn't the same as
System.out.println. If yOu tyPe system.out . printlLn, your progrAm won't
ARG worK. Be sUre to cAPItalize your codE eXactly as it is shown in LiSTIng 3-1.
If you copy-and-paste code from an ebook, make sure that the quotation
& marks in the code are straight quotation marks (""), not curly quotation marks
(““*). In a Java program, straight quotation marks are good; curly quotation
WARNING marks are troublesome.

If you typed everything correctly, you see the stuff in Figure 3-13.

If you don't type the code exactly as it's shown in Listing 3-1, you may see

jagged red underlines, red-colored words, or other red marks in the editor. In
the Project tool window of Figure 3-14, the words MyFirstProject, src, and
Main have jagged red underlines. The name Main. java on the tab above the
editor has a jagged red underline. In the editor itself, a little red mark appears

56 PART 1 Getting Started with Java Programming

FIGURE 3-13:

A Java program,
in the Intelli)
editor.

FIGURE 3-14:
A Java program,
typed incorrectly.

TIP

to the far right of Line 4. And, finally, the word system on Line 4 is a mean-
looking, reddish color. (If your copy of Figure 3-14 has no colors, you'll have to
take my word for that last assertion.)

] Main_java
» public class Main { v
> public static void main(String[] args) {
System.out.println("Chocolate, royalties, sleep");
}
+
B FProjecty @ T T © — @ Mainjava
2 - . MyFirstProject ~/IdeaProjec © F public class Main { 01 A v
L > .idea
> out » public static void main(String[] args) {
sre system.out.println("Chocolate, royalties, sleep");
& Main }]
n MyFirstProject.iml }

> Il External Libraries

The red marks in IntelliJ's editor refer to compile-time errors in your Java code.
A compile-time error (also known as a compiler error) is an error that prevents
the computer from translating your code. (See the talk about code translation
in Chapter 1.)

The error marker in Figure 3-14 appears on Line 4 of the Java program. Line
numbers appear in the editor’s left margin. You can make IntelliJ's editor start
or stop displaying line numbers. To do so, choose File => Settings (in Windows)
or Intelli] IDEA > Preferences (on a Mac). In the resulting dialog box, choose Edi
tor=> General = Appearance. When you do all that, you see the Show Line
Numbers check box.

To fix compile-time errors, you must become a dedicated detective. You join an
elite squad known as Law & Order: Java Programming Unit. You seldom find easy
answers. Instead, you comb the evidence slowly and carefully for clues. You
compare everything you see in the editor, character by character, with my code
in Listing 3-1. You don't miss a single detail, including spelling, punctuation, and
uppercase-versus-lowercase.

Intelli) IDEA has a few nice features to help you find the source of a compile-
time error. For example, you can hover the mouse pointer over a red word or a
jagged red underline. When you do, you see a brief explanation of the error.
(See Figure 3-15.)

CHAPTER 3 Running Programs 57

FIGURE 3-15:
What the heck
does 'system’
mean?

[] @ MyFirstProject — Main.java

MyFirstProject = src = € Main N Main v b ¥ G m BQ
H O — @ Mainjava
g ~/ldeaProjec/ 1 » public class Main { L
=]
> public static void main(String[] args) {
systefn.out.println("Chocolate, royalties, sleep");
© Main ¥ Cannot resalve symbol ‘system _
!MyFirstProject_iml } annot resolve symboel 'system

External Libraries Create local variable 'system' o Moare actions.

Scratches and Consoles

In Figure 3-15, a pop-up message tells you that Java doesn’t know what the
word system means — that is, cannot resolve symbol 'system’. Where | typed
system with a lowercase letter s, Java wants System with an uppercase letter
S. If I edit the code by replacing system with System, everything is fine. The red
text becomes black, and all the intimidating red marks disappear.

DO | SEE FORMATTING IN
MY JAVA PROGRAM?

When you use IntelliJ's editor to write a Java program, you see words in various colors.
Certain words are always blue. Other words are always black. You even see some bold
and italic phrases. You may think you see formatting, but you don't. Instead, what you
see is called syntax coloring or syntax highlighting.

No matter what you call it, the issue is as follows:

® |n Microsoft Word, things like bold formatting are marked inside a document. When
you save MyPersonalDiary . docx, the instructions to make the words /ove and
hate bold are recorded inside the MyPersonalDiary . docx file.

® |n aJava program editor, things like bold and coloring aren’t marked inside the Java
program file. Instead, the editor displays each word in a way that makes the Java
program easy to read.

For example, in a Java program, certain words (words like class, public, and void)
have their own, special meanings. So IntelliJ's editor displays class, public, and void
in blue letters. When | save my Java program, the computer stores nothing about col-
ored letters in my Java program file. But the editor uses its discretion to highlight special
words with blue coloring.

Certain other editors may display the same words in a bold, brown font. Another editor
(like Windows Notepad) displays all words in plain old black.

58 PART 1 Getting Started with Java Programming

WHAT CAN POSSIBLY GO WRONG?

Ridding the editor of red words and jagged underlines is cause for celebration. Intellij
likes the look of your code, so from that point on, it's smooth sailing. Right?

Well, it ain't necessarily so. In addition to some conspicuous compile-time errors, your
code can have other, less obvious errors.

Imagine someone telling you to “go to the intersection and then rurn tight.” You notice
immediately that the speaker made a mistake, and you respond with a polite “Huh?”
The nonsensical rurn tight phrase is like a compile-time error. Your “Huh?” is like the jag-
ged underlines in Intelli)'s editor. As a listening human being, you may be able to guess
what rurn tight means, but IntelliJ's editor never dares to fix your code’s mistakes.

In addition to compile-time errors, some other kinds of gremlins can hide inside a Java
program:

® Unchecked runtime exceptions: You have no compile-time errors, but when you
run your program, the run ends prematurely. Somewhere in the middle of the run,
your instructions tell Java to do something that can't be done. For example, while
you're running the Mortgage program in the earlier “Running the code” section, you
type 1,000,000.00 instead of 1000000.00. Java doesn't like the commas in the num-
ber, so your program crashes and displays a nasty-looking message, as shown in
the sidebar figure.

Run: Mortgage o —
SRS /Users/barryburd/Library/Java/JavaVirtualMachines/openjdk-15.0.1/Contents/Home/bin/java -javaagent:/Appl:
Fle How much are you borrowing? 1,000,000.00
_ Exception in thread "main" java.lang.NumberFormatEx i Create breakpoint : For input string: "1,000,000.
el at java.base/java.lang.Double.parseDouble(java:549)
E By at Mortgage.main(Mortgage,java;20)
L
:’; & Process finished with exit code 1

This is an example of an unchecked runtime exception — the equivalent of someone tell-
ing you to turn right at the intersection when the only thing to the right is a big brick
wall. Intellif's editor doesn’t warn you about an unchecked runtime exception, because,
until you run the program, the computer can't predict that the exception will occur.

® Logic errors: You see no error markers in IntelliJ's editor, and when you run your
code, the program runs to completion. But the answer isn't correct. Instead of
$552.20 in the figure, the output is $552,203,702.14. (See the next sidebar figure.)
The program wrongly tells you to pay thousands of times what your house is worth
and tells you to pay this amount each month! It's the equivalent of being told to turn
right instead of turning left. You can drive in the wrong direction for a very long time.

(continued)

CHAPTER 3 Running Programs 59

(continued)

Run: Mortgage
» 4 [fUsers/barryburd/Library/Java/JavaVirtualMachines/openjdk-15
sy How much are you borrowing? 166000.66
__ What's the interest rate? 5.25
“® How many years are you taking to pay? 30
g =
g - Your monthly payment is $552,203,702.14
w

Logic errors are the most challenging errors to find and to fix. And worst of all, logic
errors often go unnoticed. In March 1985, | got a monthly home heating bill for
$1,328,932.21. Clearly, some computer had printed the incorrect amount. When |
called the gas company to complain about it, the telephone service representative
said, “Don’t be upset. Pay only half that amount.”

Compile-time warnings: A warning isn't as severe as an error message. So, when
Intelli] notices something suspicious in your program, the editor displays a non-
intrusive clue.

For example, in the second sidebar figure, | add something about amount = 10 to
the code from Listing 3-1. (It's that bit on Line 4.) The problem is, | never make use
of amount or of the number 10 anywhere in my program. Intelli] displays the word
amount in a light-grey shade and a faint yellow mark appears to the far right of Line
4. When | hover over the word amount (or over the faint yellow mark), Intelli) effec-
tively tells me, “Your amount = 1@ code isn't bad enough to be a showstopper.
Intelli] can still manage to run your program. But are you sure you wantamount =
10 (the stuff that seems to serve no purpose) in your program?”

£ Main.java
» public class Main { 1 A v
» public static void main(String[] args) {
int amount = 18;
' Systes.ouk.printly Variable ‘amount’ is never used : @
} Remove local variable 'amount' X&& More actions e

Imagine being told to “turn when you reach the intersection.” The direction may be
just fine. But if you're suspicious, you ask, “Which way should | turn? Left or right?”

When you're sure that you know what you're doing, you can ignore warnings and
worry about them at some later time. But a warning can be an indicator that some-
thing more serious is wrong with your code. My sweeping recommendation is this:
Pay attention to warnings. But, if you can't figure out why you're getting a particular
warning, don't let the warning prevent you from moving forward.

60 PART 1 Getting Started with Java Programming

Some of IntelliJ's pop-up messages aren't as helpful as the one in Figure 3-15. If

you don't understand a pop-up message, don't be discouraged. Just keep
WARNING working with your code until you figure out what's wrong.

3. Make any changes or corrections to the code in Intelli)’s editor.

When at last you see no red flags in the editor, you're ready to try running the
program.

4, Right-click either the Main branch in the Project tool window or the Main
tab at the top of the editor.

5. onthe resulting context menu, choose Run ‘Main’.

After a brief delay, Intelli] displays its Run tool window. The words Chocolate,
royalties, sleep appear in the window. (See Figure 3-16.)

=]
S Run: Main
2
& p 4 f/Users/barryburd/Library/Java/JavaVirtualMac|
’= F Chocolate, royalties, sleep
FIGURE3-16: |8 — " . e
: s] rocess finished with exit code
o
The best Fhlrjgs g "
in life. L

What's All That Stuff in the
Intelli) IDEA Window?

Believe it or not, an editor once rejected one of my book proposals. In the margins,
the editor scribbled, “This is not a word” next to things like can’t, it’s, and I’ve. To
this day, I still do not know what this editor did not like about contractions. My
own opinion is that language always needs to expand. Where would we be without
new words — words like crowdfunding, livestream, and cryptocurrency?

Even the Oxford English Dictionary (the last word in any argument about words)
grows by more than 4,000 entries each year. That’s an increase of more than
1 percent per year. It’s about 11 new words per day!

The fact is, human thought is like a big high-rise building: You can’t build the
50th floor until you’ve built at least part of the 49th. You can’t talk about spam
until you have a word like email. With all that goes on these days, you need verbal
building blocks. That’s why this section contains a bunch of new terms.

CHAPTER 3 Running Programs 61

62

(= =)
T
TECHNICAL
STUFF

In this section, each newly defined term describes an aspect of Intelli] IDEA. So,
before you read all this Intelli] terminology, I provide the following disclaimers:

¥ This section is optional reading. Refer to this section if you have trouble
understanding some of this book’s instructions. But if you have no trouble
navigating Intelli] IDEA, don't complicate things by fussing over the terminol-
ogy in this section.

3 This section provides explanations of terms, not formal definitions of
terms. Yes, my explanations are fairly precise, but no, they're not airtight.
Almost every description in this section has hidden exceptions, omissions,
exemptions, and exclusions. Take the paragraphs in this section to be friendly
reminders, not legal contracts.

3 Intelli) is a very useful tool. But Intelli) isn't officially part of the Java ecosys-
tem. Although | don't describe details in this book, you can write Java pro-
grams without ever using Intelli.

In this section, you get an overview of Intelli] IDEA’s main window. I focus on the
most useful features that help you create Java programs, but keep in mind that
Intelli] IDEA has hundreds of features and many ways to access each feature.

Starting up

Each Java program belongs to a project. You can have dozens of projects on your
computer’s hard drive. When you run Intelli] IDEA, each of your projects is either
open or closed. An open project appears in a window (its own window) on your
computer screen. A closed project doesn’t appear in a window.

Several of your projects can be open at the same time. You can switch between
projects by moving from window to window.

I often refer to an open project’s window as Intelli] IDEA’s main window. This term
can be slightly misleading because, with several projects open at a time, you have
several main windows open at a time. In a way, none of these windows is more
“main” than the others. When I write main window, I’m referring to the window
whose Java project you’re working on at that moment.

If Intelli] IDEA is running and no projects are open, Intelli] displays its Welcome
screen. (See Figure 3-17.) The Welcome screen may display some recently closed
projects. If so, you can open a project by clicking its name on the Welcome screen.
For an existing project that’s not on the Recent Projects list, you can click the
Welcome screen’s Open button.

PART 1 Getting Started with Java Programming

FIGURE 3-17:
Look familiar?

TIP

REMEMBER

IntelliJ IDEA 1 Search projects MNew Project X Open Get from VCS
= 2020.3.2

03-Mortgage
Projects ~/ldeaProjects/03-Mortgage
Customize MyFirstProject

~[IdeaProjects/MyFirstProjec

Plugins
02-01

Learn IntelliJ IDEA

If you have any open projects, Intelli] doesn’t display the Welcome screen. In that
case, you can open another project by choosing File=> Open or File=> Open Recent
in an open project’s window. To close a project, you can choose File> Close Proj-
ect, or you can do whatever you normally do to close one of the windows on your
computer. (On a PC, click the X in the window’s upper right corner. On a Mac, click
the little red button in the window’s upper left corner.)

Intelli] IDEA remembers which projects were open from one run to the next. If any
projects are open when you quit IntelliJ, those projects open again (with their
main windows showing) the next time you launch Intelli]. You can override this
behavior (so that only the Welcome screen appears each time you launch Intelli]).
With Intelli] on a Windows computer, start by choosing File= Settings Appear-
ance and Behavior= System Settings. With Intelli] on a Mac, choose IntelliJ
IDEA > Preferences= Appearance and Behavior=> System Settings. In either case,
uncheck the Reopen Projects on Startup check box.

The main window

Intelli]’s main window is divided into several areas. Some of these areas can
appear and disappear on your command. What comes next is a description of the
areas in Figure 3-18, moving from the top of the main window to the bottom.

The areas you see on your computer screen may differ from the areas in Figure 3-18.
Usually, that’s okay. You can make areas come and go by choosing certain menu
options, including the View option on Intelli]’s main menu bar. You can also click
the little tool buttons on the edges of the main window.

CHAPTER 3 Running Programs 63

Project tool button

Path to an item in the Project tool window Action buttons Editor
oK) MyFirstProject — Main java
MyFirstProject = src € Main I I’\ Main v | b X G x Q
] Project v & = + B — | @ Mainjave
2 MyFirstProject ~/ldeaProjec]’ b public class Main { v
Ll .idea
1 out » public static void main(String[] args) {

Sre System.out.println("Chocolate, royalties, sleep");
}
w MyFirstProject.iml ¥
External Libraries —
© Scratches and Consoles
£
& | Run: Main o -
Z » 4 /Users/pbarryburd/Library/Java/JavaVirtualMachines/openjdk-15.0.1/Contents/Home/bin/java -javaagent:/ApplL.
- Fou Chocolate, royalties, sleep
£l = 7 erocess finished with exit code 0
H =
g =
*
b Run i TODO @ Problems M Terminal 4, Build () Event Log
[\ Al files are up-to-date (11 minutes ago) LF_UTF-8_4spaces ‘W |
FIGURE 3-18: Run tool window Status bar
The main window

has several areas. Project tool window

The top of the main window

The topmost area contains the navigation bar and the toolbar.

3 The navigation bhar displays the path to one of the branches in the Project
tool window.

If you can't see the forest for the Project tool window's tree, check the
navigation bar.

3 The toolbar contains action buttons, such as Run, Debug, and Stop.

When you hover over a button, Intelli] displays a hint telling you what that
button does.

The Project tool window

Below the main menu and the toolbars, you see two different areas. The area on
the left contains the Project tool window, which you use to navigate from one file to
another within your Java project.

64 PART 1 Getting Started with Java Programming

FIGURE 3-19:
Selecting
Packages view.

©

REMEMBER

At any given moment, the Project tool window displays one of several possible
views. For example, back in Figure 3-18, the Project tool window displays its Proj-
ect view. In Figure 3-19, I click the drop-down list and select Packages view
(instead of Project view).

MyFirstProject src € Main
8 Project v = |8 —| @wm
E Project rojec »
| [Packages
Project Files »
Production
1 Tests

Packages view displays many of the same files as Project view, but in Packages
view, the files are grouped differently. For most of this book’s instructions,
I assume that the Project tool window is in its default view — namely, Project view.

If Intelli] doesn’t display the Project tool window, look for the Project tool
button — the little button displaying the word Project on the left edge of the main
window. Click that Project tool button. (But wait! What if you can’t find the
little Project button? In that case, go to Intelli]’s main menu and choose
Window=> Restore Default Layout.)

The editor area

The area to the right of the Project tool window is the editor area. When you edit a
Java program file, the editor displays the file’s text. (Refer to Figure 3-18.) You can
type, cut, copy, and paste text as you would in other text editors.

The editor area can have several tabs. Each tab contains a file that’s open for edit-
ing. To open a file for editing, double-click the file’s branch in the Project tool
window. To close the file, click the little x next to the file’s name on the editor tab.

The lower area

Below the Project tool window and the editor area is another area that contains
several tool windows. When you’re not using any of these tool windows, you
might not see this lower area.

In the lower area, the tool window that I use most often is the Run tool window.
(Refer to the lower third of the window in Figure 3-18.) The Run tool window
appears automatically when you start running a program. This tool window dis-
plays information about the run of a Java program. If your program isn’t running
correctly, the Run tool window may contain useful diagnostic information.

CHAPTER 3 Running Programs 65

You can force other tool windows to appear in the lower area by clicking tool but-
tons near the bottom of the Intelli] window. For example, when you click the
Problems tool button, IntelliJ lists any errors it finds in your code along with any
warnings about suspicious-looking aspects of your code. The Problems tool win-
dow in Figure 3-20 shows an unusable Main. java file and the corresponding
Problems tool window.

o Scratch

» public class Main {

> public static void main(String[] args) {
int amount = 18;
system.out.println{"Chocolate, royalties, sleep");

}
+
Problems: Current File 2 Project Errors

€ Main.java ~/IdeaProjects/MyFirstProject/src 2 problems

2 Structure

‘;)‘ @ Cannot resolve symbol 'system' :8
P Variable 'amount’ is never used :17
FIGURE3-20: (%
The bearer
of bad news. = TODO = @ Problems B Terminal S Build

& A particular tool button might not appear when there’s nothing you can do with

it. For example, the Run tool button might not appear until you start running a

wamnmg Program. Don’t worry about that. The tool button shows up whenever you need it.

In the Intelli] window, the Run button is different from the Run tool button. The

Run button is a green “play” icon — one of the action buttons near the top of the

window. The Run tool button is a rectangular region containing a dark grey “play”

rememser icon alongside the word “Run.” The Run tool button is in the lower left part of the
Intelli] window. You can see both of these buttons in Figure 3-18.

Finishing your tour of the areas in Figure 3-18. ...

The status bar

The status bar is at the bottom of the Intelli] window.

The status bar tells you what’s happening now. For example, if the cursor is on the
37th character of the 11th line in the editor, you see 11 : 37 somewhere on the sta-

tus line. When you tell IntelliJ to run your app, the status bar contains the Run tool
window’s most recent message.

66 PART 1 Getting Started with Java Programming

FIGURE 3-21:
Hiding the area
that contains the
Project tool
window.

&

TRY IT OUT

The kitchen sink

In addition to the areas that I mention in this section, other areas might pop up as
the need arises. You can dismiss an area by clicking its Hide button. (See
Figure 3-21.)

MyFirstProject src € Main
fg Project v €3 = = & — (@ Main.java
5 . . . :
. v MyFirstProject --.-'id(-._ﬂ-‘-row5 » nyblic cl
& > .idea Hide &9
> out » publi
v src il

Here are some things for you to try to help you understand the material in this
chapter. If trying these things builds your confidence, that’s good. If trying these
things makes you question what you’ve read, that’s good, too. If trying these
things makes you nervous, don’t be discouraged. You can find answers and other
help at this book’s website (http://beginprog.allmycode.com). You can also
email me with your questions (BeginProg@allmycode.com).

INTELLIJ IDEA BASICS

Follow the instructions in this chapter’s earlier section “Running a Canned Java
Program.” Then try the following tasks:

3 Make sure you can see the mortgage-calculating program’s code in the
window on the left side of the Intellij window. Expand the @3-Mortgage
branch until you see a branch labeled Mortgage. Double-click the
Mortgage branch.

3 In the Intelli] editor, make any change to the text in the mortgage-calculating
program. After making the change, undo the change by choosing Edit=> Undo
from Intelli)'s main menu.

¥ Look for Intelli)'s Terminal tab in the lower portion of the Intellij window. If you
don't see that tab, make the Terminal tab appear by clicking the Terminal tool
button at the bottom of the Intellij window.

¥ The Intellij window has several areas. Use the mouse to drag the boundaries
between the areas (and thus resize each of the areas). To return the areas to
the way they were before resizing, choose Window => Restore Default Layout
from Intelli)'s main menu.

CHAPTER 3 Running Programs 67

http://beginprog.allmycode.com/
mailto:BeginProg@allmycode.com

EXPERIMENTING WITH ERROR MESSAGES

Follow the instructions in this chapter’s earlier section “Some Programs Don’t
Come in Cans” Look for MyFirstProject in Intelli]’s Project tool window. As you
expand that MyFirstProject branch, look for a branch labeled Main. When
you double-click the Main branch, the code for the Main. java program appears in
the IntelliJ editor.

Try these two experiments:

3 In the Intelli] editor, change the lowercase letter ¢ in the word class to an
uppercase letter C. When you do this, notice that lots of red underlines
appear. These red underlines indicate that your program has a compile-time
error. Java is case-sensitive. So, in a Java program, the word Class (with an
uppercase letter C) doesn't mean the same thing as the word class (with a
lowercase letter c).

There are a few places in MyFirstProject where changing the capitalization
doesn't cause errors. But for most of the text, a change in capitalization
causes red error warnings to appear in the Intelli] editor.

3 In the Intelli] editor, change
System.out.println("You'll love Java!");
» to
System.out.println(6/0);

No error markers appear in the Intelli] editor. But, when you try to run the
program, you see ArithmeticException in Intelli)'s Run tool window. The red
text indicates that an arithmetic exception has occurred. In Java, any attempt
to divide by 0 gives you an ArithmeticException.

CHANGING A NAME

Follow the instructions in this chapter’s earlier section “Some Programs Don’t

Come in Cans” and look for the places where the word Main appears. (That’s Main

with an uppercase M, not main with a lowercase m.) In the IntelliJ editor, change
public class Main {

to

public class ThingsILike {

68 PART 1 Getting Started with Java Programming

When you make this change, Intelli] complains with some red underlines, so undo
the change before anyone else sees it!

Now, rather than change Main in the editor, right-click the word Main in the Proj-
ect tool window. On the resulting context menu, choose Refactor=> Rename. When

a dialog box appears, type ThingsILike in the box’s text field.

After dismissing the dialog box, look for two occurrences of the name
ThingsILike — one in the Project tool window and another in the editor.

CHAPTER 3 Running Programs 69

Writing Your
Own’java
Programs

IN THIS PART ...

Dissecting programs and examining the pieces
Working with numbers

Working with things that aren't numbers

IN THIS CHAPTER

» ldentifying the words in a Java
program

» Using punctuation and indentation

» Understanding Java statements and
methods

Chapter 4

Exploring the Parts
of a Program

work in the science building at a liberal arts college. When I walk past the biol-
ogy lab, I always say a word of thanks under my breath. I’m thankful for not
having to dissect small animals. In my line of work, I dissect computer pro-
grams instead. Computer programs smell much better than preserved dead ani-
mals. Besides, when I dissect a program, I’m not reminded of my own mortality.

In this chapter, I invite you to dissect a program with me. I have a small program,
named ThingsILike. I cut apart the program and carefully investigate the pro-
gram’s innards. Get your scalpel ready. Here we go!

Checking Out Java Code for the First Time

I have a confession to make. The first time I look at somebody else’s computer
program, I feel a bit queasy. The realization that I don’t understand something
(or many things) in the code makes me nervous. I’ve written hundreds (maybe
thousands) of programs, but I still feel insecure whenever I start reading someone
else’s code.

CHAPTER 4 Exploring the Parts of a Program 73

The truth is, learning about a computer program is a bootstrapping experience.
First, I gawk in awe of the program. Then I run the program to see what it does.
Then I stare at the program for a while or read someone’s explanation of the pro-
gram and its parts. Then I gawk a little more and run the program again. Eventu-
ally, I come to terms with the program. Don’t believe the wise guys who say they
never go through these steps. Even experienced programmers approach a new
project slowly and carefully.

Behold! A program!

In Listing 4-1, you get a blast of Java code. Like all novice programmers, you’re
expected to gawk humbly at the code. Don’t be intimidated. When you get the hang
of it, programming is pretty easy. Yes, it’s fun, too.

A Simple Java Program

74

FIGURE 4-1:
Running the
program in
Listing 4-1.

/*

* A program to list the good things in life

* Author: Barry Burd, BeginProg@allmycode.com
x February 13, 2021

*/

public class ThingsILike {

public static void main(String[] args) {
System.out.println("Chocolate, royalties, sleep");

When I run the program in Listing 4-1, I get the result shown in Figure 4-1:
The computer shows the text Chocolate, royalties, sleep in IntelliJ’s Run
tool window. Now, I admit that writing and running a Java program is a lot of
work just to display Chocolate, royalties, sleep, but every endeavor has to
start somewhere.

g Run: ThingslLike

& > 1 fUsers/barryburd/Library/Java/JavaVir
= FaR Chocolate, royalties, sleep

t —

§ “® Process finished with exit code 0

g

H =+

2 B

PART 2 Writing Your Own Java Programs

mailto:BeginProg@allmycode.com

ON THE
WEB

Most of the programs in this book are command line programs. When you run one
of these programs, the input and output appear in a text-only part of the screen —
a place like Intelli]’s Run tool window. In contrast, a GUI (graphical user interface)
program displays windows, buttons, text fields, and other widgets to interact with
the user. You can see GUI versions of the program in Listing 4-1, and in many
other examples from this book, by visiting the book’s website (http://
beginprog.allmycode.com).

You can run the code in Listing 4-1 on your computer. Here’s how:

1. Follow the instructions in Chapter 2 for installing Intelli) IDEA and Java.
2. Then follow the instructions in the first half of Chapter 3.

Those instructions tell you how to run the project named @3-Mortgage,
which comes in a download from this book’s website (http: //beginprog.
allmycode.com). To run the code in Listing 4-1, follow the same instructions
for the 04-01 project, which comes in the same download.

What the program’s lines say

If the program in Listing 4-1 ever becomes famous, someone will write a Cliffs
Notes book to summarize the program. The book won’t have many pages because
you can summarize the action of Listing 4-1 in just one sentence. Here’s the
sentence:

Display Chocolate, royalties, sleep in a text-only area.

Now compare the preceding sentence with the bulk in Listing 4-1. Because
Listing 4-1 has many more lines, you may guess that it has lots of boilerplate
code. Well, your guess is correct. You can’t write a Java program without writing
the boilerplate stuff, but, fortunately, the boilerplate text doesn’t change much
from one Java program to another. Here’s my best effort at summarizing all the
Listing 4-1 text in 66 words or fewer:

This program lists the good things in life.
Barry Burd wrote this program on February 13, 2021.
Barry realizes that you may have questions about this

code, so you can reach him at BeginProg@allmycode.com.
This code defines a Java class named ThingsILike.

Here's the main starting point for the instructions:

Display Chocolate, royalties, sleep in a text-only area.

CHAPTER 4 Exploring the Parts of a Program 75

http://beginprog.allmycode.com/
http://beginprog.allmycode.com/
http://beginprog.allmycode.com/
http://beginprog.allmycode.com/
mailto:BeginProg@allmycode.com

The rest of this chapter (about 5,000 more words) explains the Listing 4-1 code in
more detail.

The Elements in a Java Program

FIGURE 4-2:

The things you
find in a simple

76

sentence.

That both English and Java are called languages is no coincidence. You use a lan-
guage to express ideas. English expresses ideas to people, and Java expresses ideas
to computers. What’s more, both English and Java have things like words, names,
and punctuation. In fact, the biggest difference between the two languages is that
Java is easier to learn than English. (If English were easy, computers would under-
stand English. Unfortunately, they can’t.)

Take an ordinary English sentence and compare it with the code in Listing 4-1.
Here’s the sentence:

Ann doesn't pronounce the “r" sound because she’s from New York.

In your high school grammar class, you worried about verbs, adjectives, and other
parts of speech. But in this book, you think in terms of keywords and identifiers,
as summarized in Figure 4-2.

Keywords:
Ann [doesn't] [pronounce](the] “r" [sound) (because][shes][from] New York .

An identifier that you or | can define:

doesn't pronounce the “r” sound because she’s from New York .
An identifier with a commonly agreed upon meaning:

Ann doesn’t pronounce the “r” sound because she’s from(New York].
Aliteral:

Ann doesn’t pronounce thesound because she’s from New York .
Punctuation:

Ann doesn’t pronounce the “r” sound because she’s from New YorkO

A comment:

Ann doesn’t pronounce the “r” sound because she’s from New York .| (That's a sentence.)

Ann’s sentence has all kinds of things in it. They’re the same kinds of things that
you find in a computer program. So here’s the plan: Compare the elements in
Figure 4-2 with similar elements in Listing 4-1. You already understand English,
so you can use this understanding to figure out some new things about Java.

PART 2 Writing Your Own Java Programs

WARNING

But first, here’s a friendly reminder: In the next several paragraphs, I draw com-
parisons between English and Java. As you read these paragraphs, keep an open
mind. In comparing Java with English, I may write, “Names of things aren’t the
same as dictionary words.” Sure, you can argue that some dictionaries list proper
nouns and that some people have first names like Hope, Prudence, and Spike, but
please don’t. You’ll get more out of the reading if you avoid nitpicking. Okay? Are
we still friends?

Keywords and their close cousins

A keyword is a dictionary word — a word that’s built right into a language.

In Figure 4-2, a word like from is a keyword because from plays the same role
whenever it’s used in an English sentence. The other keywords in Ann’s sentence
are doesn’t, pronounce, the, sound, because, and she’s.

Computer programs have keywords, too. In fact, the program in Listing 4-1 uses
some of Java’s keywords (shown in bold):

public class ThingsILike {
public static void main(String[] args) {

Each Java keyword has a specific meaning — a meaning that remains unchanged
from one program to another. For example, whenever I write a Java program, the
word public always signals a part of the program that’s accessible to any other
piece of code.
The java proGRAMMing lanGUage is case-sensitive. ThIS MEans that if you change
a lowerCASE LETTer in a wORD TO AN UPPercase letter, you chANge the wORD’S
MEaning. ChangiNG CASE CAN MakE the enTIRE WORD GO FROM BeiNG MEAN-
INGFul to bEING MEaningless. In Listing 4-1, you can’t replace public with Pub-
lic. If you do, the WHOLE PROGRAM STOPS WORKING.
This chapter has little or no detail about the meanings of the keywords class,
public, static, and void. You can peek ahead at the material in other chapters,
or you can get along by cheating. When you write a program, just start with

public class SomethingOrOther {

followed by

public static void main(String[] args) {

CHAPTER 4 Exploring the Parts of a Program 77

In your first few programs, this strategy serves you well.

Table 4-1 has a complete list of Java keywords.

TABLE 4-1: Java Keywords
abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while
_ (underscore)

Here’s one thing to remember about keywords: In Java, each keyword has an offi-
cial, predetermined meaning. The people who have the final say on what consti-
tutes a Java program created all of Java’s keywords. You can’t make up your own
meaning for any of the Java keywords. For example, you can’t use the word

public in a calculation:

//This is BAD, BAD CODE:

public = 6;

If you try to use a keyword this way, the compiler displays an error message and
refuses to translate your source code. It works the same way in English. Have a

baby and name it Because:

“Let's have a special round of applause for tonight's master of ceremonies —
Because O. Borel.”

You can do it, but the kid will never lead a normal life.

78 PART 2 Writing Your Own Java Programs

In addition to keywords, Java has restricted identifiers, restricted keywords, boolean
literals, and a null literal. (See Table 4-2.) The words in these categories are some-
what like keywords, but, for technical reasons, they’re not really called keywords.
One way or another, I recommend handling these words with kid gloves. Don’t use
a word in Table 4-2 without considering the word’s official meaning.

TABLE 4-2: Treat These Words as If They're Java Keywords
exports null provides transitive var
false open requires true with
module opens to uses yield

Despite my ardent claims in this section, two of Java’s keywords have no meaning

v %n a Java program. Those keywm{ds — const and goto —are reserved for nonuse

in Java. If you try to create a variable named goto, Intelli] displays an error mes-

tecunicar sage. The creators of Java figure that if you use either of the words const or goto
STUFF in your code, you should be told politely to move to the C++ programmers’ table.

Identifiers that you or | can define

I like the name Ann, but if you don’t like traditional names, make up a brand-new
name. You're having a new baby. Call her Deneen or Chrisanta. Name him Belton
or Merk.

A name is a word that identifies something, so I’ll stop calling these things names
and start calling them identifiers. In computer programming, an identifier is a noun
of some kind. An identifier refers to a value, a part of a program, a certain kind of
structure, or any number of things.

Listing 4-1 has two identifiers that you or I can define on our own. They’re the
made-up words ThingsILike and args.

public class ThingsILike {
public static void main(String[] args) {

Just as the names Ann and Chrisanta have no special meaning in English, the
names ThingsILike and args have no special meaning in Java. In Listing 4-1, I use
ThingsILike for the name of my program, but I could also have used a name like
GooseCrease, Enzyme, or Kalamazoo. I have to put (String[] someName) in my
program, but I could use (String[] args), (String[] commandLineArguments)
or (String[] cheese).

CHAPTER 4 Exploring the Parts of a Program 79

80

®

REMEMBER

Make up sensible, informative names to use in your Java programs. Names like
GooseCrease are legal, and they’re certainly cute, but they don’t help you keep
track of your program writing strategy.

When I name my Java program, I can use ThingsILike or GooseGrease, but I can’t
use the word public. Words like class, public, static, and void are keywords in
Java.

The args in (String[] args) holds extra values that you type when you issue the
command to run a Java program. For example, there’s a way to run Listing 4-1 by
typing java ThingsILike won too 3. When you do, args refers to the extra values
won, too, and 3. As a beginning programmer, you don’t need to think about this
feature of Java. Just have (String[] args) in each of your programs.

Identifiers with agreed-upon meanings

Many people are named Ann, but only one well-known city is named New York.
That’s because there’s a standard, well-known meaning for the term New York.
It’s the city that never sleeps. If you start your own city, you should avoid naming
it New York, because naming it New York would just confuse everyone. (I know, a
town in Florida is named New York, but that doesn’t count. Remember to ignore
exceptions like this one.)

Most programming languages have identifiers with agreed-upon meanings. In
Java, almost all these identifiers are defined in the Java API. Listing 4-1 has five
such identifiers. They’re the words main, String, System, out, and println:

public static void main(String[] args) {
System.out.println("Chocolate, royalties, sleep");

Here’s a quick rundown on the meaning of each of these names (and more detailed
descriptions appear throughout this book):

¥ main: The main starting point for execution in every Java program.
¥ String: A bunch of text; a row of characters, one after another.

¥ System: A canned program in the Java API. This program accesses some
features of your computer that are outside the direct control of the Java
virtual machine (JVM).

PART 2 Writing Your Own Java Programs

REMEMBER

)
T
TECHNICAL
STUFF

)

T
TECHNICAL

STUFF

¥ out: The place where a command line program displays its text. (For a
program running in Intelli), the word out represents the Run tool window. To
read more about command line programs, check the first several paragraphs
of Chapter 3.)

3 printin: Displays text on your computer screen.

The name println comes from the words “print a line.” If you were allowed to
write the name in uppercase letters, it would be PRINTLN, with a letter L near the
end of the word. When the computer executes println, the computer puts some
text in Intelli]’s Run tool window and then immediately moves to the beginning of
the next line, in preparation for whatever else will appear in the Run tool window.

Strictly speaking, the meanings of the identifiers in the Java API aren’t cast in
stone. Although you can make up your own meanings for words like System or
println, doing so isn’t a good idea — because you’d confuse the dickens out of
other programmers, who are used to the standard API meanings for these familiar
identifier names.

Literals

A literal is a chunk of text that looks like whatever value it represents. In Ann’s
sentence (refer to Figure 4-2), “r” is a literal because “r” refers to the letter r.

Programming languages have literals, too. For example, in Listing 4-1, the stuff
in double quotes is a literal:

System.out.println("Chocolate, royalties, sleep");

When you run the ThingsILike program, you see the text Chocolate, royal-
ties, sleep in Intelli]’s Run tool window. In Listing 4-1, the text “Chocolate,
royalties, sleep” refers to this text, exactly as it appears on the screen (minus
the quotation marks).

Depending on the context, I may refer to "Chocolate, royalties, sleep" asa
string literal, a string of characters, or simply a string. One way or another, the word
string refers to a bunch of characters, one after another.

You’re probably not surprised if I tell you that String plays an important role in

Java. Near the start of each program, the word String refers to strings of charac-
ters. For more insight on the meaning of String, see Chapter 14.

CHAPTER 4 Exploring the Parts of a Program 81

82

LD,
TECHNICAL
STUFF

Most of the numbers that you use in computer programs are literals. If you put the
statement

mySalary = 1000000.00;

in a computer program, then 1000000.00 is a literal. It stands for the number
1000000.00 (one million).

If you don’t enjoy counting digits, you can put the following statement in your
program:

mySalary = 1_000_000.00;
Starting with Java 7, numbers with underscores are permissible as literals.

Different countries use different number separators and different number for-
mats. For example, in the United States, you write 1,234,567,890.55. In France,
you write 1234567890,55. In India, you group digits in sets of two and three. You
write 1,23,45,67,890.55. In Switzerland, you may write 1’234’567’890.55 for cur-
rency and 1234 567 890,55 for other numbers. No matter where you live, you can’t
put a statement like mySalary = 1,000,000.00 in your Java program. Java’s
numeric literals have no commas in them. But you can write mySalary =
10_00_000.00 for easy-to-read programming in India. And for a program’s
output, you can display numbers like 1234567890,55 using Java’s Locale and
NumberFormat classes. (For more on Locale and NumberFormat, check out
Chapter 14.)

Punctuation

A typical computer program has lots of punctuation. For example, consider the
program in Listing 4-1:

public class ThingsILike {

public static void main(String[] args) {
System.out.println("Chocolate, royalties, sleep");

Each bracket, each brace, each squiggle of any kind plays a role in making the
program meaningful.

PART 2 Writing Your Own Java Programs

FIGURE 4-3:

A pair of

curly braces
acts like a box.

FIGURE 4-4:

The ideasina
computer
program are
nested inside one
another.

REMEMBER

In English, you write all the way across one line and then you wrap the text to the
start of the next line. In programming, you seldom work this way. Instead, the
code’s punctuation guides the indenting of certain lines. The indentation shows
which parts of the program are subordinate to which other parts. It’s as though,
in English, you wrote a sentence like this:

Ann doesn’t pronounce the “r” sound because

as we all know

she’s from New York.

The diagrams in Figures 4-3 and 4-4 show you how parts of the ThingsILike
program are contained inside other parts. Notice how a pair of curly braces acts
like a box. To make the program’s structure visible at a glance, you indent all the
stuff inside each box.

public class ThingsILike {—\4

public static void main(Stringl[]l args) {—\‘

|System.out.println("Chocolate, royalties, sleep");|
) —
y—

Here's a Java class named ThingsILike: T

Here's the main starting point for the instructions: ——\

Display Chocolate, royalties, sleep ina text-onlyarea.

I can’t emphasize this point enough: If you don’t indent your code or if you indent
but you don’t do it carefully, your code still compiles and runs correctly. But this
successful run gives you a false sense of confidence. The minute you try to update
some poorly indented code, you become hopelessly confused. Take my advice:

CHAPTER 4 Exploring the Parts of a Program 83

84

TIP

Keep your code carefully indented at every step in the process. Make its indenta-
tion precise, whether you’re scratching out a quick test program or writing code
for a billionaire customer.

Intelli] can indent your code automatically for you. Click the mouse in Intelli)’s
editor. (Don’t select text. Just click.) Then, on Intelli’s main menu, choose
Code=> Reformat Code. IntelliJ rearranges the lines in the editor, indenting things
that should be indented and generally making your code look good.

Comments

A comment is text that’s outside the normal flow. In Figure 4-2, the words “That’s
a sentence” aren’t part of the Ann sentence. Instead, these words are about the
Ann sentence.

The same is true of comments in computer programs. The first five lines in
Listing 4-1 form one big comment. The computer doesn’t act on this comment.
There are no instructions for the computer to perform inside this comment.
Instead, the comment tells other programmers something about your code.

Comments are for your own benefit, too. Imagine that you set aside your code for
a while and work on something else. When you return later to work on the code
again, the comments help you remember what you were doing.

The Java programming language has three kinds of comments:

¥ Traditional comments: The comment in Listing 4-1 is a traditional comment.
The comment begins with /x and ends with x/. Everything between the
opening /* and the closing */ is for human eyes only. Nothing between /x
and x/ gets translated by the compiler.

The second, third, and fourth lines in Listing 4-1 have extra asterisks. | call
them “extra” because these asterisks aren’t required when you create a
comment. They just make the comment look pretty. | include themin
Listing 4-1 because, for some reason that | don't entirely understand, most
Java programmers add these extra asterisks.

¥ End-of-line comments: Here's some code with end-of-line comments:
public class ThingsILike { // Two things are missing
public static void main(String[] args) {

System.out.println("sleep"); // Missing from here

}

PART 2 Writing Your Own Java Programs

An end-of-line comment starts with two slashes and extends to the end of a

line of type.
You may hear programmers talk about commenting out certain parts of their
@ code. When you're writing a program and something's not working correctly, it
often helps to remove some of the code. If nothing else, you find out what
TIP happens when that suspicious code is removed. Of course, you may not like

what happens when the code is removed, so you don't want to delete the
code completely. Instead, you turn your ordinary Java statements into
comments. For example, turn

System.out.println("Sleep");
¥» into
// System.out.println("Sleep");

This line keeps the Java compiler from seeing the code while you try to figure
out what's wrong with your program.

¥ Javadoc comments: A special Javadoc comment is any traditional comment
that begins with two asterisks (not just one):

/%%
* Print a String and then terminate the line.
*/

This is a cool Java feature. The Java software that you download in Chapter 2
includes a little program called javadoc. The javadoc program looks for
these special comments in your code. The program uses these comments to
create a brand-new web page — a customized documentation page for your
code. To find out more about turning Javadoc comments into web pages, visit
this book’s website (http://beginprog.allmycode.com).

Understanding a Simple Java Program

The following sections present, explain, analyze, dissect, and otherwise demystify
the Java program in Listing 4-1.

What is a method?

You’re working as an auto mechanic in an upscale garage. Your boss, who’s always
in a hurry and has a habit of running words together, says, “fixTheAlternator on
that junkyOldFord.” Mentally, you run through a list of tasks. “Drive the car into

CHAPTER 4 Exploring the Parts of a Program 85

http://beginprog.allmycode.com/

the bay, lift the hood, get a wrench, loosen the alternator belt,” and so on. Three
things are going on here:

3 You have a name for the thing you're supposed to do. The name is
fixTheAlternator.

3 Inyour mind, you have a list of tasks associated with the name fixTheAl-
ternator. The list includes “Drive the car into the bay, lift the hood, get a
wrench, loosen the alternator belt,” and so on.

3 You have a grumpy boss who's telling you to do all this work. Your boss
gets you working by saying, “fixTheAlternator.” In other words, your boss gets
you working by saying the name of the thing you're supposed to do.

In this scenario, using the word method isn’t a big stretch. You have a method for
doing something with an alternator. Your boss calls that method into action, and
you respond by doing all the things in the list of instructions that you’ve associ-
ated with the method.

Java methods

If you believe all that stuff in the preceding section, you’re ready to read about
Java methods. In Java, a method is a list of things to do. Every method has a name,
and you tell the computer to do the things in the list by using the method’s name
in your program.

I’ve never written a program to get a robot to fix an alternator. But, if I were to,
the program might include a method named fixTheAlternator. The list of
instructions in my fixTheAlternator method would look something like the text
in Listing 4-2.

m A Method Declaration

86

void fixTheAlternator(onACertainCar) ({
drivelnto(car, bay);
1i ft(hood);
get(wrench);
loosen(alternatorBelt);

Somewhere else in my Java code (somewhere outside of Listing 4-2), I need an
instruction to call my fixTheAlternator method into action. The instruction to
call the fixTheAlternator method into action may look like the line in
Listing 4-3.

PART 2 Writing Your Own Java Programs

Calling a Method

WARNING

(= =)
T
TECHNICAL
STUFF

fixTheAlternator(junkyOldFord);

Don’t scrutinize Listings 4-2 and 4-3 too carefully. These listings are fakes! I
made up these examples so that they look like Java code, but you can’t run the
code in these two listings. If you have a grain of salt handy, take Listings 4-2
and 4-3 with it.

Almost every computer programming language has something akin to Java’s
methods. If you’ve worked with other languages, you may remember things like
subprograms, procedures, functions, subroutines, Sub procedures, or PERFORM
statements. Whatever you call it in your favorite programming language, a method
is a bunch of instructions collected together and given a new name.

The declaration, the header, and the call

If you have a basic understanding of what a method is and how it works (see the
preceding section), you can dig a little deeper into some useful terminology:

¥ If 'm being lazy, | refer to the code in Listing 4-2 as a method. If I'm not being
lazy, | refer to this code as a method declaration.

3 The method declaration in Listing 4-2 has two parts. The first line (the part
with the name fixTheAlternator in it, up to but not including the open curly
brace) is called a method header. The rest of Listing 4-2 (the part surrounded
by curly braces) is a method body.

¥ The term method declaration distinguishes the list of instructions in Listing 4-2
from the instruction in Listing 4-3, which is known as a method call.

For a handy illustration of all the method terminology, see Figure 4-5.

A method’s header and body are like an entry in a dictionary: An entry doesn’t use
the word that it defines. Instead, an entry tells you what happens if and when you
use the word:

chocolate (choc-o-late) n. 1. The most habit-forming substance on Earth. 2.
Something you pay for with money from royalties. 3. The most important nutri-
tional element in a person’s diet.

fixTheAlternator(onACertainCar) Drive the car into the bay, lift the hood, get the
wrench, loosen the alternator belt, and then eat some chocolate.

CHAPTER 4 Exploring the Parts of a Program 87

FIGURE 4-5:

The terminology
describing
methods.

REMEMBER

method header

drivelInto (car, bay);
1lift (hood) ;

get (wrench) ;

loosen (alternatorBelt) ;

_.-=-| method body

R SURRREEE

\\ -- /_ method declaration

(or “method” for short)

fixTheAlternator(junkyOldFord);]
method call

In contrast, a method call is like the use of a word in a sentence. A method call sets
some code in motion:

“l want some chocolate, or I'll throw a fit.”

“fixTheAlternator on that junkyOldFord.”

A method’s declaration tells the computer what will happen if you call the method
into action. A method call (a separate piece of code) tells the computer to actually
call the method into action. A method’s declaration and the method’s call tend to
be in different parts of the Java program.

The main method in a program

In Listing 4-1, the bulk of the code is the declaration of a method named main. For
now, just look for the word main in the code’s method header. Don’t worry about
the other words in the method header — the words public, static, void, String,
or args. I explain these words (on a need-to-know basis) in the next several
chapters.

Like any Java method, the main method is a recipe:

How to make biscuits:

Preheat the oven.

88 PART 2 Writing Your Own Java Programs

REMEMBER

Roll the dough.
Bake the rolled dough.

or

How to follow the main instructions in the ThingsILike code:

Display Chocolate, royalties, sleep in a text-only area.

The word main plays a special role in Java. In particular, you never write code that
explicitly calls a main method into action. The word main is the name of the
method that is called into action automatically when the program begins running.

When the ThingsILike program runs, the computer automatically finds the pro-
gram’s main method and executes any instructions inside the method’s body. In
the ThingsILike program, the main method’s body has only one instruction. That
instruction tells the computer to print Chocolate, royalties, sleep in a text-
only area.

None of the instructions in a method is executed until the method is called into
action. But if you give a method the name main, that method is called into action
automatically.

At last! Tell the computer to do something!

Buried deep in the heart of Listing 4-1 is the single line that actually issues a
direct instruction to the computer. The line

System.out.println("Chocolate, royalties, sleep");

tells the computer to display Chocolate, royalties, sleep. (If you use Intelli]
IDEA, the computer displays Chocolate, royalties, sleep inthe Run tool win-
dow.) I can describe this line of code in at least two different ways:

¥ It's a statement. In Java, a direct instruction that tells the computer to do
something is called a statement. The statement in Listing 4-1 tells the com-
puter to display some text. The statements in other programs may tell the
computer to put the number 7 in a certain memory location or make a
window appear on the screen. The statements in computer programs do all
kinds of things.

¥ It's a method call. Earlier in this chapter, | describe something named a
method call. The statement

fixTheAlternator (junkyOldFord);

CHAPTER 4 Exploring the Parts of a Program 89

90

©

REMEMBER

is an example of a method call, and so is
System.out.println("Chocolate, royalties, sleep");

Java has many different kinds of statements. A method call is just one kind.

Ending a statement with a semicolon

In Java, each statement ends with a semicolon. The code in Listing 4-1 has only
one statement in it, so only one line in Listing 4-1 ends with a semicolon.

Take any other line in Listing 4-1 — the method header, for example. The method
header (the line with the word main in it) doesn’t directly tell the computer to do
anything. Instead, the method header describes some action for future reference.
The header announces “Just in case someone ever calls the main method, the next
few lines of code tell you what to do in response to that call.”

Every complete Java statement ends with a semicolon. A method call is a state-
ment, so it ends with a semicolon, but neither a method header nor a method
declaration is a statement.

The method named System.out.printin

The statement in the middle of Listing 4-1 calls a method named System.out.
println. This method is defined in the Java API. Whenever you call the System.
out.println method, the computer displays text in Intelli]’s Run tool window. (If
you’re not using Intelli] IDEA, the display appears in some other text-only area.)

Think about names. Believe it or not, I know two people named Pauline Ott. One
of them is a nun; the other is a physicist. Of course, there are plenty of Paulines in
the English-speaking world, just as there are several things named println in the
Java API. To distinguish the physicist Pauline Ott from the film critic Pauline Kael,
I write the full name Pauline Ott. And to distinguish the nun from the physicist, I
write “Sister Pauline Ott.” In the same way, I write either System.out.println or
DriverManager .println. The first (which you use often) writes text on the com-
puter’s screen. The second (which you don’t use at all in this book) writes to a
database log file.

Just as Pauline and Ott are names in their own right, so System, out, and println
are names in the Java API. But to use println, you must write the method’s full
name. You never write print1ln alone. It’s always System.out .print1n or another
combination of API names.

PART 2 Writing Your Own Java Programs

The Java programming language is cAsE-sEnSiTiVe. If you change a lowercase
& letter to an uppercase letter (or vice versa), you change a word’s meaning. You
can’t replace System.out.println with system.out.Println. If you do, your

wArRNING program won'’t work.

Methods, methods everywhere

Two methods play roles in the ThingsILike program. Figure 4-6 illustrates the
situation, and the next few bullets give you a guided tour:

3 There's a declaration for amain method. | wrote the main method
myself. Thismain method is called automatically whenever | start running
the ThingsILike program.

¥ There's a call to the System.out . print1n method. The method call for the
System.out.println method is the only statement in the body of themain
method. In other words, calling the System.out . print1ln method is the only
thing on the main method's to-do list.

The declaration for the System.out . print1ln method is buried inside the
official Java API. For a refresher on the Java API, refer to Chapter 1.

10101000111000...

The Java virtual machine calls your main
method automatically, and then ...

public class Thing3ILlike {

public static void main(String[] args)
[System.out.println|("Chocolate, royalties, sleep");

... a statement in your main method calls
the System.out .println method.

public void println(String s) {
ensureOpen () ;

FIGURE 4-6: Somewhere inside the Java API Eengut : ‘g;ltiésg 0
Calling the extout.flushButffer();
System.out.

println method.

CHAPTER 4 Exploring the Parts of a Program o1

92

LD,
TECHNICAL
STUFF

When I say things like “System.out.println is buried inside the API,” I’m not
doing justice to the API. True, you can ignore all the nitty-gritty Java code inside
the API. All you need to remember is that System.out.println is defined some-
where inside that code. But I’'m not being fair when I make the API code sound like
something magical. The API is just another bunch of Java code. The statements in
the API that tell the computer what it means to carry out a call to System.out.
println look a lot like the Java code in Listing 4-1.

The Java class

Have you heard the term object-oriented programming (also known as OOP)? OOP is
a way of thinking about computer programming problems — a way that’s sup-
ported by several different programming languages. OOP started in the 1960s with
a language called Simula. It was reinforced in the 1970s with another language,
named Smalltalk. In the 1980s, OOP took off big-time with the language C++.

Some people want to change the acronym and call it COP — class-oriented pro-
gramming. That’s because object-oriented programming begins with something
called a class. In Java, everything starts with classes, everything is enclosed in
classes, and everything is based on classes. You can’t do anything in Java until
you’ve created a class of some kind. It’s like being on Jeopardy! and saying “Let’s
make it a daily double.” Then the host says, “I’'m sorry. You must phrase your
instruction inside a Java class.”

It’s important for you to understand what a class is, so I dare not give a haphazard
explanation in this chapter. Instead, I devote much of Chapter 13 to the question
“What is a class?” Anyway, in Java, your main method has to be inside a class. I
wrote the code in Listing 4-1, so I got to make up a name for my new class. I chose
the name ThingsILike, so the code in Listing 4-1 starts with the words public
class ThingsIlLike.

Take another look at Listing 4-1 and notice what happens after the line public
class ThingsILike. The rest of the code is enclosed in curly braces. These braces
mark all the stuff inside the class. Without these braces, you’d know where the
declaration of the ThingsILike class starts, but you wouldn’t know where the
declaration ends.

It's as though the stuff inside the ThingsILike class is in a box. (Refer to
Figure 4-3.) To box off a chunk of code, you do two things:

3 You use curly braces. These curly braces tell the compiler where a chunk of
code begins and ends.

PART 2 Writing Your Own Java Programs

¥ You indent code. Indentation tells your human eye (and the eyes of other
programmers) where a chunk of code begins and ends.

Don’t forget. You have to do both.

I%I THE WORDS IN A PROGRAM

Listing 4-1 contains several kinds of words. Find out what happens when you

TRY IT OUT
change some of these words:

3 Change one keyword. For example, change the word class to the word
bologna. Look for an error message in Intelli)'s editor.

3 Change the word args to the word malarkey. After doing so, can your
program still run?

¥ Change the word ThingsILike to the word MyFavorites. After doing so, can
your program still run?

The words ThingsILike and MyFavorites are both words that you or | can
make up. So why doesn't Intelli] like MyFavorites?

The answer is, the name in the editor doesn't match the name in the Project
tool window. Right-click the word ThingsILike in the Project tool window.
From the resulting context menu, choose Refactor => Rename. When a dialog
box appears, type MyFavorites in the box’s text field. After dismissing the
dialog box, the two names match and Intelli] is happy again.

¥ Change an identifier that has an agreed-upon meaning. For example, change
println todisplay. Look for an error message in IntelliJ's editor.

¥ Change the program’s punctuation. For example, remove a pair of curly
braces. Look for an error message in IntelliJ's editor.

¥ Comment out the entire System.out .println("Chocolate, royalties,
sleep"); line. (Use the end-of-line commenting style.) What happens when
you run the program?

¥ Comment out the entire System.out .println("Chocolate, royalties,
sleep"); line. (Use the traditional commenting style.) What happens when
you run the program?

VALID IDENTIFIERS

There are limits to the kinds of names you can make up. For example, a person’s
name might include a dash, but it can’t include a question mark. (At least it can’t
where I come from.) A well-known celebrity can get away with adopting a name

CHAPTER 4 Exploring the Parts of a Program 93

that’s an unpronounceable symbol. But for most of us, plain old letters, dashes,
and hyphens are all we can use.

What kinds of names can you make up as part of a Java program? Find out by
changing the word args to these other words in IntelliJ’s editor. Which of the
changes are okay and which are not?

¥ helloThere
¥ hello_there
¥ args7

¥ ar7gs

» 75

¥ Targs

¥ hello there
¥ hello-there
¥ public

¥ royalties
¥ @args

¥ #args

¥» /args

YOUR FAVORITE THINGS

Change the code in Listing 4-1 so that it displays things that you like. Run the
program to make sure that it displays these things in Intelli]’s Run tool window.

94 PART 2 Writing Your Own Java Programs

IN THIS CHAPTER

» Reading input from the keyboard

» Editing a program

» Shooting at trouble

Chapter 5
Composing a Program

ust yesterday, I was chatting with my servant, RoboJeeves. (RoboJeeves is an
upscale model in the RJ-3000 line of personal robotic life-forms.) Here’s how
the discussion went:

Me: RoboJeeves, tell me the velocity of an object after it's been falling for three
seconds in a vacuum.

Robojeeves: All right, | will. “The velocity of an object after it's been falling for three
seconds in a vacuum.” There, | told it to you.

Me: RoboJeeves, don't give me that smart-alecky answer. | want a number. | want
the actual velocity.

Robojeeves: Okay! “A number; the actual velocity.”

Me: RJ, these cheap jokes are beneath your dignity. Can you or can't you tell me the
answer to my question?

Robojeeves: Yes.

Me: “Yes” what?

Robojeeves: Yes, | either can or can't tell you the answer to your question.
Me: Well, which is it? Can you?

Robojeeves: Yes, | can.

Me: Then do it. Tell me the answer.

CHAPTER 5 Composing a Program 95

Robojeeves: The velocity is 153,984,792 miles per hour.

Me (after pausing to think): R}, | know you never make a mistake, but that
number — 153,984,792 — is much too high.

Robojeeves: Too high? That's impossible. Things fall very quickly on the giant
planet Mangorrrrkthongo. Now, if you wanted to know about objects falling to
Earth, you should have said so in the first place.

Sometimes that robot rubs me the wrong way. The truth is, RoboJeeves does
whatever I tell him to do — nothing more and nothing less. If I say, “Feed the
cat,” then RJ says, “Feed it to whom? Which of your guests will be having cat for
dinner?”

Computers Are Stupid

96

Handy as they are, all computers do the same darn thing: They do exactly what you
tell them to do, and that’s sometimes very unfortunate. For example, in 1962, a
Mariner spacecraft to Venus was destroyed just four minutes after its launch. Why?
It was destroyed because of a missing keystroke in a FORTRAN program. Around
the same time, NASA scientists caught an error that could have trashed the Mer-
cury space flights. (Yup — these were flights with people on board!) The error was
a line with a period instead of a comma. (A computer programmer wrote DO 10
I1=1.10 instead of DO 10 I1=1,10.)

With all due respect to my buddy RoboJeeves, he and his computer cousins are all
incredibly stupid. Sometimes they look as though they’re second-guessing us
humans, but actually they’re just doing what other humans told them to do. They
can toss virtual coins and use elaborate schemes to mimic creative behavior, but
they never really think on their own. If you say, “Jump,” they do what they’re
programmed to do in response to the letters j-u-m-p.

So, when you write a computer program, you have to imagine that a genie has
granted you three wishes. Don’t ask for eternal love because, if you do, the genie
will give you a slobbering, adoring mate — someone you don’t like at all. And
don’t ask for a million dollars unless you want the genie to turn you into a bank
robber.

Everything you write in a computer program has to be precise. Take a look at an
example next.

PART 2 Writing Your Own Java Programs

Building an Echo Chamber

Listing 5-1 contains a small Java program. The program lets you type one line of
characters on the keyboard. As soon as you press Enter, the program displays a
second line that copies whatever you typed.

ICSIITEEN Ajova Program

import java.util.Scanner;

public class EcholLine {

public static void main(String[] args) {
Scanner keyboard = new Scanner(System.in);

System.out.println(keyboard.nextLine());

keyboard.close();

Most of the programs in this book are command line programs. When you run one of

these programs, the input and output appear in Intelli]’s Run tool window. You can

see GUI versions of the program in Listing 5-1 — and in many other examples from
rememper this book — by visiting the book’s website (http: //beginprog.allmycode.com).

Figure 5-1 shows a run of the EcholL ine code (the code in Listing 5-1). The text in
the figure is a mixture of my own typing and the computer’s responses.

EcholLine

fUsers/barryburd/Library/Java/JavaVirtual
Please don't repeat this to anyone.
FIGURE 5-1: Please don't repeat this to anyone.

What part of the

word don’t do you

not understand?

— =

I« Jl

Process finished with exit code 8

In Figure 5-1, I type the first line (the first Please don't repeat this to anyone
line), and the computer displays the second line. Here’s what happens when you
run the code in Listing 5-1:

1. at first, the computer does nothing.

The computer is waiting for you to type something.

CHAPTER 5 Composing a Program Q7

http://beginprog.allmycode.com/

FIGURE 5-2:

The computer
waits for you to
type something.

FIGURE 5-3:
You type a
sentence.

FIGURE 5-4:
The computer
echoes your
input.

2. You click inside the Run tool window.

As a result, you see the cursor on the left edge of the Run tool window, as
shown in Figure 5-2.

3. You type one line of text — any text at all. (See Figure 5-3.)

4. You press Enter, and the computer displays another copy of the line that
you typed, as shown in Figure 5-4.

. EcholLine

/Users/barryburd/Library/Java/JavaVirtuval

,» EcholLine

T /Users/barryburd/Library/Java/JavaVirtual
Please don't repeat this to ﬂnyone,l
EchoLine

T [Users/barryburd/Library/Java/JavaVirtual

J, Please don't repeat this to anyone.

_ Please don't repeat this to anyone.

-

=t process finished with exit code @

After a copy of your input is displayed, the program’s run comes to an end.

Typing and running a program

This book’s website (http://beginprog.allmycode.com) has a link for down-
loading all the book’s Java programs. After you download the programs, you can
follow the instructions in Chapter 3 to add a listing’s code to Intelli] IDEA.

But instead of running the ready-made code, I encourage you to start from
scratch — to type Listing 5-1 yourself and then to test your newly created code.
Just follow these steps:

98 PART 2 Writing Your Own Java Programs

http://beginprog.allmycode.com/

A

WARNING

TIP

Use Intelli] IDEA to create a new Java project.

Follow the steps in Chapter 3. As you march through these steps, put a check
mark in the Create Project from Template check box and make sure that the
Command Line App item is selected.

When you've finished creating the new project, Intelli) shows you a main
window. The window's editor contains the contents of a newly created Main.
java file.

Change the name of the Main. java file.

To do so, right-click the word Main in the Project tool window. In the resulting
context menu, choose Refactor &> Rename. When a dialog box appears, type
EchoL ine in the box's text field.

This step gives your code the same name as the one in Listing 5-1.

When you choose Refactor &> Rename, Intellij changes two things. First, the
name of the file on your hard drive changes fromMain. java to EcholLine.
java. Also, the second line of code in the file changes from

public class Main {
to
public class EcholLine {

Don'treplacepublic class Main withpublic class EcholLine by typingin
the editor. Doing so wouldn't change the Main. java file's name, and that
would make Java very angry. (You don't want to make Java angry. Do you?)

At this point, your code looks like the code in Listing 5-1, but several lines are
missing.

In Intelli)’s editor, type the missing lines from Listing 5-1.

Copy the code exactly as you see it in Listing 5-1. When you're finished typing,
check the spelling, the capitalization, and the punctuation.

Intelli] IDEA has hundreds of tricks up its virtual sleeve. Many of these tricks
make typing a breeze. For more information, see the later section entitled
“Make Intellij Do All the Work."

If you typed everything correctly, you don't see any error markers in the editor.

If you see error markers, go back and compare everything you typed with the
stuff in Listing 5-1. Compare every letter, every word, every squiggle, every
smudge.

Make any changes or corrections to the code in the editor.

When at last you see no error markers, you're ready to run the program.

CHAPTER 5 Composing a Program 99

5. Right-click either the EchoL ine branch in the Project tool window or the
EchoLine. java tab at the top of the editor.

6. In the resulting context menu, select Run ‘EchoLine.main()'.
Your new Java program runs, but nothing much happens.
7. Cclickinside Intelli}’'s Run tool window.

As a result, the cursor sits on the left edge of the Run tool window. (Refer to
Figure 5-2.) The computer is waiting for you to type something.

& If you forget to click inside the Run tool window, Intellij may not send your
keystrokes to the running Java program. Instead, Intellijj may send your
keystrokes to the editor or to some other part of the project's main window.

WARNING
. Type a line of text and then press Enter.

In response, the computer displays a second copy of your line of text. Then the
program’s run comes to an end. (Refer to Figure 5-4.)

If this list of steps seems a bit sketchy, you can find much more detail in
Chapter 3. (Look first at the section in Chapter 3 about typing and running your
own code.) For the most part, the steps here are a quick summary of the material
in Chapter 3.

So, what’s the big deal when you type the program yourself? Well, lots of interest-

ing things can happen when you apply fingers to keyboard. That’s why the second
half of this chapter is devoted to troubleshooting.

How the EchoLine program works

When you were a tiny newborn, resting comfortably in your mother’s arms, she
told you how to send characters to the computer screen:

System.out.println(whatever text you want displayed);

What she didn’t tell you was how to fetch characters from the computer keyboard.
There are lots of ways to do it, but the one I recommend in this chapter is

keyboard.nextLine()
Now, here’s the fun part. Calling the nextlL ine method doesn’t just scoop charac-
ters from the keyboard. When the computer runs your program, the computer

substitutes whatever you type on the keyboard in place of the text keyboard.
nextLine().

100 PART 2 Writing Your Own Java Programs

FIGURE 5-5:

The computer
substitutes text in
place of the
nextLine call.

To understand this, look at the statement in Listing 5-1:
System.out.println(keyboard.nextLine());

When you run the program, the computer sees your call to nextLine and stops

dead in its tracks. (Refer to Figure 5-2.) The computer waits for you to type a line

of text. So (refer to Figure 5-3) you type this line:

Hey, there's an echo in here.

The computer substitutes this entire Hey line for the keyboard.nextLine() call in
your program. The process is illustrated in Figure 5-5.

Hey, there’s an

echo in here.

System.out.printin("Hey, there's an ..." };

System.out.printlin(keyboard .nextLine());

The call to keyboard.nextLine() is nestled inside the System.out.println call.
So, when all is said and done, the computer behaves as though the statement in
Listing 5-1 looks like this:

System.out.println("Hey, there's an echo in here.");

The computer displays another copy of the text Hey, there's an echo in here.
on the screen. That’s why you see two copies of the Hey line in Figure 5-5.

CHAPTER 5 Composing a Program 101

Getting numbers, words, and other things

In Listing 5-1, the words keyboard.nextLine() get an entire line of text from the
computer keyboard. If you type

Testing 1 2 3
the program in Listing 5-1 echoes back the entire Testing 1 2 3 line of text.

Sometimes you don’t want a program to get an entire line of text. Instead, you
want the program to get a piece of a line. For example, when you type 1 2 3, you
may want the computer to get the number 1. (Maybe the number 1 stands for one
customer or something like that.) In such situations, you don’t put keyboard.
nextLine() in your program. Instead, you use keyboard.nextInt().

Table 5-1 shows you a few variations on the keyboard.next business. Unfortu-
nately, the table’s entries aren’t very predictable. To read a line of input, you call
nextlLine. But to read a word of input, you don’t call nextWord. (The Java API has
no nextWord method.) Instead, to read a word, you call next.

TABLE 5-1: Some Scanner Methods
A number with no decimal pointin it nextInt()
A number with a decimal point in it nextDouble()
Aword (ending in a blank space, for example) next()

Aline (or what remains of a line after you've already read nextLine()
some data from the line)

A single character (such as a letter, digit, or punctuation findWithinHorizon(".",@).charAt(Q)

character)

Also, the table’s story has a surprise ending. To read a single character, you don’t
call nextSomething. Instead, you can call the bizarre findWithinHorizon(".",0).
charAt(@) combination of methods. (You'll have to excuse the folks who created
the Scanner class. They created Scanner from a specialized point of view.)

To see some of the table’s methods in action, check other program listings in this
book. Chapters 6, 7, and 8 have some particularly nice examples.

102 PART 2 Writing Your Own Java Programs

GETTING SINGLE WORDS AND ENTIRE LINES OF TEXT

Follow the instructions in this chapter’s earlier section “Typing and running a

TRYITOUT - hrogram,” but make these two changes:

¥ InStep 2, change Main. java to GetInput. java.
¥ Rather than type the code in Listing 5-1, type the following program:

import java.util.Scanner;
public class GetInput {

public static void main(String[] args) {

Scanner keyboard = new Scanner(System.in);
System.out.println(keyboard.next());
System.out.println(keyboard.next());

System.out.println(keyboard.nextlLine());

keyboard.close();

When the program runs, type the following text (all on one line) in Intelli]’s Run
tool window, and then press Enter. How does the computer respond? Why?

I enjoy learning Java.

TYPE THREE LINES OF CODE AND DON'T LOOK BACK

Buried innocently inside Listing 5-1 are three extra lines of code. These lines help
the computer read input from the keyboard. The three lines are

import java.util.Scanner;
Scanner keyboard = new Scanner(System.in);
keyboard.close();

Concerning these three lines, I have bad news and good news:

3 The bad news is, the reasoning behind these lines is difficult to under-
stand. That's especially true here in Chapter 5, where | introduce Java's most
fundamental concepts.

CHAPTER 5 Composing a Program 103

3 The good news is, you don’t have to understand the reasoning behind
these three lines. You can copy-and-paste these lines into any program that
gets input from the keyboard. You don't have to change the lines in any way.
These lines work with no modifications in all kinds of Java programs.

Just be sure to put these lines in the right places:

¥ Make the import java.util.Scanner line the first line in your program.

¥ Putthe Scanner keyboard = new Scanner(System.in) line inside the
main method immediately after the public static void main(String[]
args) { line.

¥ Make the keyboard.close() line the last full line in your program. Put it
immediately before the two lines with close curly braces (}).

At some point in the future, you may have to be more careful about the positioning
of these three lines. But for now, the rules I give will serve you well.

A QUICK LOOK AT THE SCANNER

In this chapter, | advise you to ignore any of the meanings behind the lines import
java.util.Scanner and Scanner keyboard. Just paste these two lines mindlessly in
your code and then move on.

Of course, you may not want to take my advice. You may not like ignoring things in your
code. If you happen to be such a stubborn person, | have a few quick facts for you:
® The word Scanner is defined in the Java API.
A Scanner is something you can use for getting input.
® The words System and in are defined in the Java API.
Taken together, the words System. in stand for the computer keyboard.

In later chapters, you see things like new Scanner(new File("myData.txt")).
In those chapters, | replace System. in with the wordsnew File('myData.txt")
because I'm not getting input from the keyboard. Instead, I'm getting input from a
file on the computer’s hard drive.

® The word keyboard doesn’t come from the Java API.

The word keyboard is a Barry Burd creation. Instead of keyboard, you can use
readingThingie (or any other name you want to use as long as you use the name
consistently). So, if you want to be creative, you can write

104 PART 2 Writing Your Own Java Programs

Scanner readingThingie = new Scanner(System.in);

System.out.println(readingThingie.nextLine());
The revised Listing 5-1 (with readingThingie instead of keyboard) compiles and
runs without a hitch.

® Theline import java.util.Scanner is an example of an import declaration.

The optional import declaration allows you to abbreviate names in the rest of your
program. You can remove the import declaration from Listing 5-1. But if you do,
you must use the Scanner class's fully qualified name throughout your code.
Here's how:

public class EcholLine {

public static void main(String[] args) {

java.util.Scanner keyboard = new java.util.Scanner (System.in);
System.out.println(keyboard.nextLine());

keyboard.close();
}
}

Make Intelli) Do All the Work

You may have noticed things popping into view while you type code in IntelliJ’s
editor. The editor has a boatload of features to ease your typing burden. For a look
at some of these features, follow these steps:

1. Expand the tree of Intelli}'s Project tool window and look for a branch
named src.

The src branch contains your project’s Java code files.

2. Right-click the src branch. On the resulting context menu, choose
New = Java Class.

When you do, a small dialog box asks you for a new class's name.

3. In Figure 5-6, | name the class TypingTips.

CHAPTER 5 Composing a Program 105

FIGURE 5-6:
Naming the class.

© TypingTips]

I Interface
E Enum

@ Annotation

New Java Class

4,

To dismiss the dialog box, press Enter.

As aresult, Intelli)'s editor shows you an empty TypingTips class. (See
Figure 5-7.)

€ TypingTips.java

FIGURE 5-7:
Intelli) is happy to
oblige.

public class TypingTips {

}

o

In the editor, add a blank line between the open and close curly braces.
On the new blank line, start typing the word main.

As you type, Intelli) offers to create amain() method declaration. (See
Figure 5-8.)

FIGURE 5-8: }
Intelli) reads your
mind.

public class TypingTips {

main|
main main() method declaration

Press ~Space to see non-imported classes Next Tip w

7.

8.

o.

Accept Intelli)'s offer by pressing Enter.

Amain method appears in the Intelli] editor. Intelli] positions its cursor on a line
between the method's open and close curly braces. (See Figure 5-9.)

Start typing the word Scanner.
Intelli] offers to finish the typing for you. (See Figure 5-10.)
Accept Intelli)'s offer by pressing Enter.

Intellij completes your typing of the word Scanner, but it also adds a Scanner
import declaration. (For a few words about this import declaration, refer to the
earlier sidebar entitled “A quick look at the scanner.”)

106 PART 2 Writing Your Own Java Programs

FIGURE 5-9:
Intelli] places the
cursor exactly
where you

want it.

FIGURE 5-10:

It's as if you

and Intelli) are
telepathic twins.

FIGURE 5-11:
How to say
“something” in
Scotland.

public class TypingTips {
public static void main(String[] args) {

|

public class TypingTips {
public static void main(String[] args) {

sq

} '© Scanner java.util

D ScheduledFuture<V> java.util.concurrent

D Scrollable javax.swing

} D SchedvledExecutorService java.util.concurrent

10. continue to type this line from Listing 5-1:
Scanner keyboard = new Scanner(System.in);

and please type slowly.

As you type, notice the places where Intelli] offers to complete each of your
words. When the whole Scanner blah-blah line appears in the editor, you're

ready to move on.

11. onthe next line, type sout and then press Enter. (See Figure 5-11.)

The word sout is Intelli)'s own abbreviation for System.out .print1n(). Intelli
inserts those characters into your code and positions the cursor between the

open and close parentheses.

import java.util.Scanner;

public class TypingTips {
public static void main(String[] args) {
Scanner keyboard = new Scanner(System.in);

sout]
} sout Prints a string
} soutm Prints current class and method names
soutp Prints method parameter names and values
soutv Prints a value
Press ¢ to insert, = to replace Next Tip

to
to
to
to

System.
System.
System.
System.

out
out
out
out

the places where Intelli) offers to write the code for you.

Are you finished typing the lines in Listing 5-17? If so, try this:

CHAPTER 5 Composing a Program

12. continue typing the code in Listing 5-1. Type slowly so that you can see all

FIGURE 5-12:
"Do you mean
java.util.
Random?" says
Intelli).

13. on abrand-new line of code, type the word Random followed by a blank
space.

Intelli) displays a helpful hint because the word Random would benefit from the
presence of an import declaration. (See Figure 5-12.)

import java.util.Scanner;

» public class TypingTips {
B public static void main
Scanner keyboard =
% java.util.Random? xe& Println

' '-_.'l:yuuuru.(.l.ose(] 3

Randon |

14. press Alt+Enter (also known as Option-Enter on a Mac).

As aresult, Intelli) adds import java.util.Random to the top of your
program.

15. pelete the word Random that you typed in Step 13.

With this word deleted, the line import java.util.Random no longer serves
a purpose, so Intellij displays import java.util.Random in a light grey shade.

16. 0n Intelli)’s main menu bar, choose Code > Optimize Imports.

When you do, Intelli] deletes the line import java.util.Random.No muss,
no fuss.

Expecting the Unexpected

Not long ago, I met an instructor with an interesting policy. He said, “Sometimes
when I’m lecturing, I compose a program from scratch on the computer. I do it
right in front of my students. If the program compiles and runs correctly on the
first try, I expect the students to give me a big round of applause.”

At first, you may think this guy has an enormous ego, but you have to put things
in perspective. It’s unusual for a program to compile and run correctly the first
time. There’s almost always a typo or another error of some kind.

108 PART 2 Writing Your Own Java Programs

This section deals with the normal, expected errors that you see when you compile
and run a program for the first time. Everyone makes these mistakes, even the
most seasoned travelers. The key is keeping a cool head. Here’s my general advice:

»

»

»

»

»

»

»

Don't expect a program that you type to compile the first time.
Be prepared to return to your editor and fix some mistakes.
Don't expect a program that compiles flawlessly to run correctly.

Even with no error markers in Intelli)'s editor, your program might still contain
flaws. After Intelli) compiles your program, you still have to run it successfully.
That is, your program should finish its run and display the correct output.

You compile, and then you run. Getting a program to compile without errors
is the easier of the two tasks.

Read what's in the Intelli] editor, not what you assume is in the Intelli)
editor.

Don't assume that you've typed words correctly, that you've capitalized words
correctly, or that you've matched curly braces or parentheses correctly.
Compare the code you typed with any sample code that you have. Make sure
that every detail is in order.

Be patient.

Every good programming effort takes a long time to get right. If you don't
understand something right away, be persistent. Stick with it (or put it away
for a while and come back to it). There's nothing you can't understand if you
put in enough time.

Don’t become frustrated.

Don't throw your pie crust. Frustration (not lack of knowledge) is your enemy.
If you're frustrated, you can't accomplish anything.

Don’t think you're the only person who's slow to understand.
I'm slow, and I'm proud of it. (Becky, Chapter 6 will be two weeks late.)
Don't be timid.

If your code isn't working and you can't figure out why it's not working, ask
someone. Post a message in an online forum. And don't be afraid of anyone's
snide or sarcastic answer. (For a list of gestures you can make in response to
peoples’ snotty answers, see Appendix Z.)

To ask me directly, send me an email message, tweet me, or post to me on
Facebook. (Send email to BeginProg@al lmycode . com, tweets to @al Imycode,
or posts to Facebook at /allmycode.)

CHAPTER 5 Composing a Program 109

mailto:BeginProg@allmycode.com
http://twitter.com/allmycode
http://www.facebook.com/allmycode

FIGURE 5-13:

The Java compiler

understands

println, but not

110

Println.

Diagnosing a problem

The “Typing and running a program” section, earlier in this chapter, tells you
how to run the Echol ine program. If all goes well, your screen ends up looking
like the one shown in Figure 5-1. But things don’t always go well. Sometimes your
finger slips, inserting a typo into your program. Sometimes you ignore one of the
details in Listing 5-1 and you get a nasty error message.

Of course, some things in Listing 5-1 are okay to change. Not every word in
Listing 5-1 is cast in stone. Here’s a nasty wrinkle: I can’t tell you that you must
always retype Listing 5-1 exactly as it appears. Some changes are okay; others are
not. Keep reading for some “f’rinstances.”

Case sensitivity

Java is case-sensitive. Among other things, case-sensitive means that, in a Java
program, the letter P isn’t the same as the letter p. If you send me some email and
start with “Hi barry” instead of “Hi Barry,” I still know what you mean. But Java
doesn’t work that way.

Change just one character in a Java program and, instead of an uneventful compi-
lation, you get a big headache! Change p to P, like so:

//The following line is incorrect:

System.out.Println(keyboard.nextLine());

When you type the program in Intelli]’s editor, you get the ugliness shown in
Figure 5-13.

System.uut.Pr‘int‘IIh(keylmar‘d .nextLine());

Cannot resolve method 'Printin' in 'PrintStream’
keyboard.close();

} Rename reference &€ More actions... &2

When you see error markers like the ones in Figure 5-13, your best bet is to stay
calm and read the messages carefully. Sometimes the messages contain useful
hints. (Of course, sometimes they don’t.) The message in Figure 5-13 is Cannot
resolve method 'Println' in 'PrintStream'. In plain English, this means,
“The Java compiler can’t interpret the word Print1n.” (The message stops short
of saying, “Don’t type the word Print1ln, you dummy!” In any case, if the com-
puter says you’re one of us dummies, you should take it as a compliment.) Now,
for plenty of reasons the compiler may not be able to understand a word like

PART 2 Writing Your Own Java Programs

FIGURE 5-14:
What should we
name the baby?

Println. But, for a beginning programmer, you should check two important
things right away:

3 Have you spelled the word correctly?

Did you accidentally type print1n with the digit 1 instead of print1n with the
lowercase letter 1?

3 Have you capitalized all letters correctly?

Did you incorrectly type Println or PrintLn instead of print1n?

Either of these errors can send the Java compiler into a tailspin. So compare your
typing with the approved typing word-for-word (and letter-for-letter). When
you find a discrepancy, go back to the editor and fix the problem. Then try compil-
ing the program again.

When in doubt, you can ask Intelli] for some help. Look again at Figure 5-13 and
notice the words Rename reference and More actions in the pop-up box. These
are called quick fixes. You can hide them or make them reappear by clicking the
three-dot icon by the right edge of the pop-up.

If you click the first quick fix (the Rename reference link), Intelli] offers several
suggestions. (See Figure 5-14.) The list of suggestions may contain several
println items. That’s okay. If you select any of these println items, IntelliJ fixes
your code.

import java.util.Scanner;
public class Echoline {

public static void main(String[] args) {
Scanner userInput = new Scanner(System.in);

System.out .(userlnput .nextLine());

Println
userInput.iprint
} print
} print
print
print
print
print
print
print
println
println
println
nrintln

Pre to replace

CHAPTER 5 Composing a Program 111

FIGURE 5-15:

A helpful error

112

message.

Not enough punctuation

In English and in Java, using the; proper! punctuation is important)

Take, for example, the semicolons in Listing 5-1. What happens if you forget to
type a semicolon?

//The following code is incorrect:
System.out.println(keyboard.nextLine())
keyboard.close();

If you leave off the semicolon, you see the message shown in Figure 5-15.

System.out.println(keyboard.nextLine())I_

' expected
keyboard.close();

A message like the one in Figure 5-15 makes your life much simpler. I don’t have
to explain the message, and you don’t have to puzzle over the message’s meaning.
Just take the message ' ; ' expected at its face value. Insert the semicolon between
the end of the System.out.println(keyboard.nextLine()) statement and
whatever code comes after the statement. (For code that’s easier to read and
understand, tackonthesemicolonattheendoftheSystem.out.println(keyboard.
nextLine()) statement.)

Too much punctuation

In junior high school, my English teacher said I should use a comma whenever I
would normally pause for a breath. This advice doesn’t work well during allergy
season, when my sentences have two commas for every three or four words. Even
as a paid author, I have trouble deciding where the commas should go, so I often
add extra commas for good measure. This makes more work for my copy editor,
Becky, who has a trash can full of commas by the desk in her office.

It’s the same way in a Java program. You can get carried away with punctuation.
Consider, for example, the main method header in Listing 5-1. This line is a dan-

gerous curve for novice programmers.

For information on the terms method header and method body, refer to Chapter 4.

PART 2 Writing Your Own Java Programs

WHY CAN'T THE COMPUTER FIX IT?

How often do you get to finish someone else’s sentence? “Please,” says your supervisor,
“go over there and connect the —"

“Wires,"” you say. “I'll connect the wires.” If you know what someone means to say, why
wait for them to say it?

This same question comes up in connection with computer error messages. Take a look
at the message in Figure 5-15. The computer expects a semicolon after the statement
on Line 8. Well, Mr. Computer, if you know where you want a semicolon, just add the
semicolon and be done with it. Why are you bothering me about it?

The answer is simple: The computer isn't interested in taking any chances. What if you
don't really want a semicolon after the statement on Line 8? What if the missing semico-
lon represents a more profound problem? If the computer added the extra semicolon,
it could potentially do more harm than good.

Returning to you and your supervisor:

“Please,” says your supervisor, “go over there and connect the —"

“Wires,” you say. “I'l connect the wires.”

Boom! A big explosion. “Not the wires, you dummy. The dots. | wanted you to connect
the dots.”

“Sorry,” you say.

Normally, you shouldn’t end a method header with a semicolon. But people add
semicolons anyway. Maybe, in some subtle way, a method header looks like it

should end with a semicolon:

//The following line is incorrect:

public static void main(String[] args); {

If you add this extraneous semicolon to the code in Listing 5-1, you get the mes-

sage shown in Figure 5-16.

The error message in Figure 5-16 is a bit misleading. The message says Missing

method body, or declare abstract.But the method has a body. Doesn’t it?

CHAPTER 5 Composing a Program

113

9 public static void main(Strina[] aras) i

Scanner keyboard = new Scanner(Sy \y..ino method body, or declare abstract

. Add method body &2 More actions... &
FIGURE 5-16: System.out.println(keyboard.nextL
An unwanted String[] args
semicolon keyboard.close(); -
messes things up. 1

114

FIGURE 5-17:
What's on this
computer's mind?

When the computer tries to compilepublic static void main(String[] args);
(ending with a semicolon), the computer gets confused. I illustrate the confusion
in Figure 5-17. Your eye sees an extra semicolon, but the computer’s eye inter-
prets this as a method without a body. So that’s the error message — the com-
puter says, “This method requires a body instead of a semicolon.”

A semicolon means that this is the
end of the method. Since the end
comes hefore a body, this method
must not have a body.

import java.util.Scanner;

public class EchoLine @)

public static void main(String[] args) ;
Scanner keyboard = new Scanner (System.in) ;

System.out.println (keyboard.nextLine()) ;

keyboard.close() ; O

1
} O

The Scanner and println stuff
can't be part of the method body
because the body ends with the
semicolon on the header line.

If you select the Add method body quick fix, Intelli] creates the following (really
horrible) code:

import java.util.Scanner;

public class EcholLine {

PART 2 Writing Your Own Java Programs

public static void main(String[] args) {

Scanner keyboard = new Scanner(System.in);
System.out.println(keyboard.nextLine());

keyboard.close();

This “fixed” code has no compile-time errors. But when you run this code, noth-
ing happens. The program starts running and then stops running with Process
finished in the Run tool window.

We all know that a computer is a very patient, very sympathetic machine. That’s
why it looks at your code and decides to give you one more chance. The computer
remembers that Java has an advanced feature in which you write a method header
without writing a method body. When you do this, you get what’s called an abstract
method — something that I don’t use in this book. Anyway, in Figure 5-17, the
computer sees a header with no body. So the computer says to itself, “I know!
Maybe the programmer is trying to write an abstract method. The trouble is, an
abstract method’s header has to have the word abstract in it. I should remind the
programmer about that.” So the computer offers the declare abstract quick fix
in Figure 5-16.

One way or another, you can’t interpret the error message and the quick fixes in
Figure 5-9 without reading between the lines. So here are some tips to help you
decipher murky messages:

3 Avoid the knee-jerk response.

Some people see the declare abstract suggestion in Figure 5-16 and
wonder how to make the code be abstract. Unfortunately, this isn't the right
approach. If you don't know what abstract means, chances are that you
didn't mean to make anything be abstract in the first place.

3 Stare at the bad line of code for a long, long time.

If you look carefully at the public static line in Figure 5-16, eventually you'll
notice that it's different from the corresponding line in Listing 5-1. The line in
Listing 5-1 has no semicolon, but the line in Figure 5-16 has one.

CHAPTER 5 Composing a Program 115

116

Of course, you won't always start with some prewritten code like the stuff in
Listing 5-1. That's where practice makes perfect. The more code you write, the
more sensitive your eyes will become to things like extraneous semicolons
and other programming goofs.

Too many curly braces

You’re looking for the nearest gas station, so you ask one of the locals. “Go to the
first traffic light and make a left,” says the local. You go straight for a few streets
and see a blinking yellow signal. You turn left at the signal and travel for a mile or
so. What? No gas station? Maybe you mistook the blinking signal for a real traffic
light.

You come to a fork in the road and say to yourself, “The directions said nothing
about a fork. Which way should I go?” You veer right, but a minute later you’re
forced onto a highway. You see a sign that says Next Exit 24 Miles. Now you’re
really lost, and the gas gauge points to S. (The S stands for Stranded.)

Here’s what happened: You made an honest mistake. You shouldn’t have turned
left at the yellow blinking light. That mistake alone wasn’t so terrible. But that
first mistake led to more confusion, and eventually, your choices made no sense
at all. If you hadn’t turned at the blinking light, you’d never have encountered
that stinking fork in the road and you’d never have gotten stuck on a highway to
nowhere.

Is there a point to this story? Of course there is. A computer can get itself into the
same sort of mess. The computer notices an error in your program. Then, meta-
phorically speaking, the computer takes a fork in the road — a fork based on the
original error — a fork for which none of the alternatives leads to good results.

Here’s an example. You’re retyping the code in Listing 5-1, and you mistakenly
type an extra curly brace:

//The following code is incorrect:

import java.util.Scanner;
public class EcholLine {
public static void main(String[] args) {

}

Scanner keyboard = new Scanner(System.in);

PART 2 Writing Your Own Java Programs

FIGURE 5-18:
Three error
messages.

REMEMBER

System.out.println(keyboard.nextLine());

keyboard.close();

You hover over one of the markers on the right side of IntelliJ’s editor. You see the
messages shown in Figure 5-18.

public static void main(String[] args) {
+

Scanner keyboard = new Scanner(System.in);

System.out.println(keyboard.nextLine());

keyboard. close(); Cannot resolve symbol 'nextLine
} Cannot resolve symbol 'printin’
Unnecessary semicolon ';'

Remove unnecessary semicolon T4 More actions... X&

Intelli] is confused because some of the program’s code is completely out of place.
Intelli] displays three messages: Cannot resolve symbol 'keyboard', Cannot
resolve symbol 'println', and Unnecessary semicolon ';'. None of these
messages addresses the cause of the problem. Intelli] is trying to make the best of
a bad situation, but at this point, you shouldn’t believe a word that Intelli] says.

Computers aren’t smart animals, and if someone programs Intelli] to suggest
Remove unnecessary semicolon, that’s exactly what Intelli] suggests. (Some
people say that computers make them feel stupid. For me, it’s the opposite.
A computer reminds me how dumb a machine can be and how smart a person can
be. I like that.)

When you see a bunch of error messages, read each error message carefully. Ask
yourself what you can learn from each message. But don’t take each message as
the authoritative truth. When you’ve exhausted your efforts with Intelli]’s mes-
sages, return to your efforts to stare carefully at the code.

If you get more than one error message, always look carefully at each message in

the bunch. Sometimes a helpful message hides among a bunch of not-so-helpful
messages.

CHAPTER 5 Composing a Program 117

18

©

REMEMBER

Misspelling words (and other missteps)

You’ve found an old family recipe for deviled eggs (one of my favorites). You fol-
low every step as carefully as you can, but you leave out the salt because of your
grandmother’s high blood pressure. You hand your grandmother an egg (a fin-
ished masterpiece). “Not enough pepper,” she says, and she walks away.

The next course is beef bourguignon. You take an unsalted slice to dear old Granny.
“Not sweet enough,” she groans, and she leaves the room. “But that’s impossi-
ble,” you think. “There’s no sugar in beef bourguignon. I left out the salt.” Even
so, you go back to the kitchen and prepare mashed potatoes. You use unsalted
butter, of course. “She’ll love it this time,” you think.

“Sour potatoes! Yuck!” Granny says, as she goes to the sink to spit it all out.
Because you have a strong ego, you’re not insulted by your grandmother’s behav-
ior. But you’re somewhat confused. Why is she saying such different things about
three unsalted recipes? Maybe there are some subtle differences that you don’t
know about.

Well, the same kind of thing happens when you’re writing computer programs.
You can make the same kind of mistake twice (or at least, make what you think is
the same kind of mistake twice) and get different error messages each time.

For example, if you change the spelling or capitalization of println in Listing 5-1,
Intelli] tells you the method Cannot resolve method 'Println' in 'Print-
Stream'. But if you change System to system, Intelli] says that Cannot resolve
symbol 'system'. And with System misspelled, Intelli] doesn’t notice whether
println is spelled correctly.

In Listing 5-1, if you change the spelling of args, nothing goes wrong. The pro-
gram compiles and runs correctly. But if you change the spelling of main, you face
some unusual difficulties. (If you don’t believe me, read the “Runtime error mes-
sages” section, a little later in this chapter.)

Still in Listing 5-1, change the number of close curly braces at the end of the pro-
gram. With two close braces, everybody’s happy. If you accidentally type only one
close brace, Intelli] steers you back on course, telling you '}' expected. (See
Figure 5-19.) But if you go crazy and type three close braces, Intelli] misinterprets
everything and says 'class' or 'interface' expected. Unfortunately, adding
either word (class or inter face) is no help at all. (See Figure 5-20.)

Java responds to errors in many different ways. Two changes in your code might
look alike, but similar changes don’t always lead to similar results. Each problem
in your code requires its own, individualized attention.

PART 2 Writing Your Own Java Programs

FIGURE 5-19:
Remove the
second of two
close curly
braces.

FIGURE 5-20:

You have too
many close curly
braces, but Intelli)
fails to notice.

public class EchoLine {

public static void main(St
Scanner keyboard = new

System.out.println(key|

keyboard.close();
H

'} expected

public class EchoLine {

public static void main(Stri
Scanner keyboard = new §

System.out.println(keybo|

keyboard.close();
+
}
i

‘class' or 'interface’ expected

Runtime error messages

Up to this point in the chapter, I emphasize errors that crop up when you compile
a program. Another category of errors hides until you run the program. One exam-
ple is when you accept the Add method body quick fix in Figure 5-16. Another case
is when you spell the method name main incorrectly.

Assume that, in a moment of wild abandon, you incorrectly spell main with a capi-

tal M:

//The following line is incorrect:

public static void Main(String[] args) {

When you type the code, everything is hunky-dory. You don’t see any error

markers.

CHAPTER 5 Composing a Program

FIGURE 5-21:

Whadaya mean
“Main method

120

not found"?

But then you try to run your program. At this point, the bits hit the fan. The catas-
trophe is illustrated in Figure 5-21.

public class EcholLine {

public static void Main(String[] args) {
Scanner keyboard = new Scanner(System.in);

Echoline

fUsers/barryburd/Library/Java/JavaVirtvalMachines/openjdk-15.0.1/Contents/Ho

Error: Main method not found in class Echoline, please define the main metho
public static void main(String[] args)

or a JavaFX application class must extend javafx.application.Application

Sure, your program has something named Main, but does it have anything named
main? (Yes, I've heard of a famous poet named e. e. cummings, but who the heck
is E. E. Cummings?) The computer doesn’t presume that your word Main means
the same thing as the expected word main. To make matters worse, the error mes-
sage in the Run tool window is somewhat misleading. The message starts with
Main instead of main. The English language rule about capitalizing the start of
sentence is leading you astray.

One way or another, you need to change Main back to main. Then everything will
be okay.

But in the meantime (or in the “maintime”), how does this improper capitaliza-
tion make it past the compiler? Why don’t you get error messages when you com-
pile the program? And if a capital M doesn’t upset the compiler, why does this
capital M mess everything up at runtime?

The answer goes back to the different kinds of words in the Java programming
language. As I say in Chapter 4, Java has identifiers, keywords, and a few other
kinds of words.

The keywords in Java are cast in stone. If you change class toClass or public to
Public, you get something new — something that the computer probably can’t
understand. That’s why the compiler chokes on improper keyword capitalizations.
It’s the compiler’s job to make sure that all the keywords are used properly.

On the other hand, the identifiers can bounce all over the place. Sure, there’s an
identifier named main, but you can make up a new identifier named Main. (In fact,
when you ask Intelli] to create a command line app, IntelliJ creates a file contain-
ing the words public class Main.) When the compiler sees a mistyped line, like
public static void Main, the compiler just assumes that you’re making up a

PART 2 Writing Your Own Java Programs

brand-new name. So the compiler lets the line pass. You get no complaints from
your old friend, the compiler.

But then, when you try to run the code, the computer goes ballistic. The Java vir-
tual machine (JVM) runs your code. (For details, see Chapter 1.) The JVM needs to
find a place to start executing statements in your code, so it looks for a starting
point named main, with a small m. If the JVM doesn’t see anything named main, it
gets upset. It screams, “Main method not found in class EchoLine.” So at runtime,
the JVM, and not the compiler, gives you an error message.

What problem? | don’t see a problem

I end this chapter on an upbeat note by showing you some of the things you can
change in Listing 5-1 without rocking the boat.

The identifiers that you create
If you create an identifier, that name is up for grabs. For example, in Listing 5-1,
you can change keyboard to userInput:
Scanner userInput = new Scanner(System.in);
System.out.println(userInput.nextlLine());

userInput.close();

A change of this kind is fine as long as you make that change consistently through-
out your program. Here’s the best way to change a name in your program:
1. startwith Listing 5-1 in the Intelli) editor.
For details, refer to the earlier “Typing and running a program” section.
2. Inthe Intelli) editor, click on any occurrence of the word keyboard.

When you do, Intelli) highlights all occurrences of the word keyboard. That's
handy!

3. Right-click the mouse. On the resulting context menu, choose
Refactor => Rename.

As a result, Intelli suggests some alternatives for the name keyboard. (See
Figure 5-22.)

4, Type userinput.

As you type, Intelli] changes all occurrences of the word keyboard. (See
Figure 5-23.)

CHAPTER 5 Composing a Program 121

import java.util.Scanner;
public class Echoline {

public static void main(String[] args) {
Scanner keyboard = new Scanner(System.in);

System.out.println(keyboard.nextLine());

keyboarhl. cLose() ;

} close
} aVoid
FIGURE 5-22: scanner
How does keyboard
aVoid.close Press € or =+ tor

sound?

import java.util.Scanner;
public class EcholLine {

public static void main(String[] args) {
Scanner userInp = new Scanner(System.in);

System.out.printin(userInp.nextLine());

.[:'Luse();

FIGURE 5-23: |}
Inp without ut.

5. When you're finished typing userinput, press Enter.

The Enter key tells Intelli] that you're finished with the renaming. All occur-
rences of keyboard have been replaced by the word user Input. For IntelliJ's
editor, it's back to business as usual.

Intelli]’s Refactor=> Rename command makes renaming a breeze. More impor-
tantly, this feature performs the renaming safely and efficiently. When you’re
changing keyboard to user Input, there’s no danger of accidentally changing pia-
noKeyboard to pianouserInput.

Spaces and indentation

Java isn’t fussy about the use of spaces and indentation. All you need to do is keep
your program well-organized and readable. Here’s an alternative to spacing and
indentation of the code in Listing 5-1:

122 PART 2 Writing Your Own Java Programs

import java.util.Scanner;

public class EcholLine

{
public static void Main(String[] args)
{
Scanner userlnput =
new Scanner(System.in);
System.out.println
(userInput.nextLine());
userInput.close();
}
}

If your code isn’t formatted in a consistent way, you can get IntelliJ to enforce
consistency. Here’s how:
1. startwith Listing 5-1 in the Intelli) editor.
For details, refer to the earlier “Typing and running a program” section.
2. Change the code’s indentation and spacing so that it looks like this:
import java.util.Scanner;
public class EcholLine {
public static void main(String[] blah) {
Scanner keyboard = new Scanner(System.in);

System.out.println(keyboard.nextLine());

keyboard.close();

b}
3. Try to run the newly formatted code.

The program runs correctly, but the code is as ugly as red-lipped batfish. Aside
from any aesthetic considerations, poorly formatted code is difficult to
understand. You want to fix this code as soon as you can.

4. Click the mouse anywhere inside Intelli)'s editor. Then, on Intelli)'s main
menu bar, choose Code > Reformat Code.

With that simple act, Intelli] restores indentation-sanity to your code. Intellj)
reformats your code to look like the code in Listing 5-1. Wow!

CHAPTER 5 Composing a Program 123

124

&

TRY IT OUT

How you choose to do things

A program is like a fingerprint. No two programs look much alike. Say that I dis-
cuss a programming problem with a colleague. Then we go our separate ways and
write our own programs to solve the same problem. Sure, we’re duplicating the
effort. But will we create the exact same code? Absolutely not. Everyone has their
own style, and everyone’s style is unique.

I asked fellow Java programmer David Herst to write his own EcholLine program,
without showing him my code from Listing 5-1. Here’s what he wrote:

import java.io.BufferedReader;
import java.io. InputStreamReader;

import java.io.IOException;

public class EcholLine {
public static void main(String[] args) throws IOException {
InputStreamReaderisr = new InputStreamReader(System.in);
BufferedReaderbr = new BufferedReader(isr);
String input = br.readlLine();
System.out.println(input);

Don’t worry about BufferedReader, InputStreamReader, or things like that. Just
notice that, like snowflakes, no two programs are written exactly alike, even if
they accomplish the same task. That’s nice. It means that your code, however dif-
ferent, can be as good as the next person’s. That’s encouraging.

COMPILE-TIME ERRORS

The MCV vaccine helps you build an immunity to measles by giving you a mild
case of measles. In the same way, you can enhance your immunity against pro-
gramming errors by making mistakes intentionally in small, throwaway Java
programs.

No matter how many years you spend writing code, you’ll always have some pro-
gramming errors in any new code you write. Even the most experienced profes-
sional programmers make mistakes. But by practicing with some simple errors,
you can discover some errors that beginners make most often, and become accus-
tomed to the “code, test, fix, code again” cycle.

PART 2 Writing Your Own Java Programs

Try these ways of introducing errors in Listing 5-1:

¥ Inthe word println, change the lowercase letter 1 to a digit 1.

¥ Move the entire System.out.println line so that it's above the public
static void main line.

¥ Delete the parentheses surrounding System. in.

¥ Change (keyboard.nextLine()) to (userInput.nextlLine) but
don't change any other occurrences of the word keyboard in the code.

¥ Change System.out.println(keyboard.nextLine()); to the following:

System.out.println("I think that I shall never see

A poem lovely as a tree.");

3 Experiment by making some other changes. Which of these changes create
compile-time errors?

DON'T COPY THIS CODE!

Open your favorite word processing program (Microsoft Word, Apple Pages, or
whatever) and create a document containing only the text “Chocolate, royalties,
sleep”. Most likely, your word processor will automatically use curly quotation
marks (“”) instead of straight quotation marks ("), and curly quotation marks
aren’t good for a Java program. So copy this curly-quoted text from your word
processor. In IntelliJ’s editor, paste the curly-quoted text into Listing 3-1 (over in
Chapter 3). Replace the original "Chocolate, royalties, sleep" text in that
listing — curly quotation marks and all. See the kind of error messages that Intel-
liJ displays.

ALLOWABLE CHANGES IN SPACING AND INDENTATION
Change the spacing and indentation in Listing 5-1. Try running this code:
import java.util.Scanner;

public class EcholLine

{
public static void main(String[] args)
{
Scanner keyboard = new Scanner(System.in);
System.out.println(keyboard.nextLine()); keyboard.close();
}
}

CHAPTER 5 Composing a Program 125

IN THIS CHAPTER

» Declaring variables

» Assigning values to variables
» Working with numbers

» Using Java types

Chapter 6

Using the Building
Blocks: Variables,
Values, and Types

ack in 1946, John von Neumann wrote a groundbreaking paper about the

newly emerging technology of computers and computing. Among other

things, he established one fundamental fact: For all their complexity, the
main business of computers is to move data from one place to another. Take a
number — the balance in a person’s bank account. Move this number from the
computer’s memory to the computer’s processing unit. Add a few dollars to the
balance and then move it back to the computer’s memory. The movement of
data . .. that’s all there is; there ain’t no more.

Good enough! This chapter shows you how to move your data around.

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 127

Various Variables and Ways
in Which They Vary

Here’s an excerpt from a software company’s website:

SnitSoft recognizes its obligation to the information technology community. For
that reason, SnitSoft is making its most popular applications available for a nominal
charge. For just $5.95 plus shipping and handling, you receive a flash drive
containing SnitSoft's premier products.

Go ahead. Click the Order Now! link. Just see what happens. You get an order form
with two items on it. One item is labeled $5.95 (Flash drive), and the other
item reads $25.00 (Shipping and handling). What a rip-off! Thanks to Snit-
Soft’s generosity, you can pay $30.95 for ten cents’ worth of software.

Behind the scenes of the SnitSoft web page, a computer program does some
scoundrel’s arithmetic. The program looks something like the code in

Listing 6-1.

m SnitSoft's Grand Scam

public class SnitSoft {

128

public static void main(String[] args) {

double

amount
amount

System
System
System

amount;

= 5.95;

= amount + 25.00;
.out.print("We will bill $");

.out.print(amount);
.out.println(" to your credit card.");

When I run the code in Listing 6-1 on my own computer (not on the SnitSoft com-
puter), I get the output shown in Figure 6-1.

PART 2 Writing Your Own Java Programs

FIGURE 6-1:
Running the code
from Listing 6-1.

FIGURE 6-2:
A variable (before
and after).

SnitSoft

/Users/barryburd/Library/Java/JavaVirtvalMa
We will bill $30.95 to your credit card.

Process finished with exit code 0

Using a variable

The code in Listing 6-1 makes use of a variable named amount. A variable is a
placeholder. You can stick a number like 5.95 into a variable. After you’ve placed a
number in the variable, you can change your mind and put a different number,
like 30.95, into the variable. (That’s what varies in a variable.) Of course, when
you put a new number in a variable, the old number is no longer there. If you
didn’t save the old number somewhere else, the old number is gone.

Figure 6-2 gives a before-and-after picture of the code in Listing 6-1. When the
computer executes amount = 5.95, the variable amount has the number 5.95 in it.
Then, after the amount = amount + 25.00 statement is executed, the variable
amount suddenly has 30.95 in it. When you think about a variable, picture a place
in the computer’s memory where wires and transistors store 5.95, 30.95, or
whatever. In Figure 6-2, imagine that each box is surrounded by millions of other
such boxes.

— amount = 5.95; amount = 5.95;
amount = amount + 25.00;7 — amount = amount + 25.00;
amount amount
505 585
30.95
Before executing After executing
amount = amount + 25.00; amount = amount + 25.00;

Now you need some terminology. (You can follow along in Figure 6-3.) The thing
stored in a variable is called a value. A variable’s value can change during the run
of a program (when SnitSoft adds the shipping-and-handling cost, for example).
The value stored in a variable isn’t necessarily a number. (You can, for example,
create a variable that always stores a letter.) The kind of value stored in a variable
is a variable’s type. (You can read more about types in the rest of this chapter and
in the next two chapters.)

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 129

130

FIGURE 6-3:

A variable, its
value, and
its type.

LD,
TECHNICAL
STUFF

REMEMBER

type double <:££EEEEEE:EEEEEEz>

Houb]e”amount%

amount = 5.95;
[
amount
5.95

There’s a subtle, almost unnoticeable difference between a variable and a variable’s
name. Even in formal writing, I often use the word variable when I mean variable
name. Strictly speaking, amount is the variable name, and all the memory storage
associated with amount (including the value and type of amount) is the variable itself.
If you think this distinction between variable and variable name is too subtle for you
to worry about, join the club.

Every variable name is an identifier — a name that you can make up in your own
code (for more about this topic, see Chapter 4). In preparing Listing 6-1, I made
up the name amount.

Understanding assighment statements

The statements with equal signs in Listing 6-1 are called assignment statements.
In an assignment statement, you assign a value to something. In many cases, this
something is a variable.

You should get into the habit of reading assignment statements from right to left.
For example, the first assignment statement in Listing 6-1 says, “Assign 5.95 to
the amount variable.” The second assignment statement is just a bit more compli-
cated. Reading the second assignment statement from right to left, you get “Add
25.00 to the value that’s already in the amount variable and make that number
(30.95) be the new value of the amount variable.” For a graphic, hit-you-over-
the-head illustration of this concept, see Figure 6-4.

In an assignment statement, the thing being assigned a value is always on the left
side of the equal sign.

PART 2 Writing Your Own Java Programs

amount = 5.95

"Assign 5.95 to j
<—> amount.”

amount = amount + 25.00;
FIGURE 6-4: "Add 5.95 (that is, amount's old value) and 25.00 j
Reading an _
assignment < ...and assign the sum to....
statement from amount.”
right to left.

FORGET WHAT YOU'VE SEEN

In Listing 6-1, and in other examples throughout this book, | do something that experi-
enced programmers avoid doing: | put actual numbers, such as5.95 and 25.00, in my
Java code. This is called hard-coding the values. | hard-coded values to keep these intro-
ductory programming examples as simple as possible.

But in most real-life applications, hard-coding is bad. Imagine a day when SnitSoft raises
its shipping-and-handling fee from $25.00 to $35.00. Then the program in Listing 6-1 no
longer works correctly. Someone has to launch Intelli), look over the code, change the
code, test the new code, and distribute the new code to the people who run it. What a
pain! For the 10-line program in Listing 6-1, this process takes minutes. For a 10,000-line
program in a real-life setting, this process might take days, weeks, or months.

Rather than hard-code values, you should type values on the keyboard during the run
of the program. If that's not practical, your program can read values from a computer’s
hard disk. (Chapter 16 has the scoop on reading from disk files.) One way or another,
you should design your program to work with all values, not only with specific values
such as5.95 and 25. 00.

Keep reading this book’s examples. When you see my hard-coded values, remember
that | use hard-coded values to keep you from being distracted by input and output
problems. | keep you focused on whatever new ideas each example has to offer. | don't
do hard-coding to convince you that hard-coding is good programming practice. In fact,
it's not.

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 131

FIGURE 6-5:

The roles played
by System.out.
print and
System.out.
println.

REMEMBER

To wrap or not to wrap?

The last three statements in Listing 6-1 use a neat trick. You want the program to
display just one line on the screen, but this line contains three different things:

¥ The line starts withwWe will bill $.
¥ The line continues with the amount variable's value.

¥ Theline ends with to your credit card.

These are three separate things, so you put these things in three separate
statements. The first two statements are calls to System.out.print. The last
statement is a call to System.out.println.

Calls to System.out . print display text on part of a line and then leave the cursor
at the end of the current line. After System.out.print is executed, the cursor is
still at the end of the same line, so the next System.out.whatever can continue
printing on that same line. With several calls to print capped off by a single call
to println, the result is just one nice-looking line of output, as Figure 6-5
illustrates.

print

rint
$ P

We will bill 30.95 to your credit card.—

println

A call to System.out . print writes some things and leaves the cursor sitting at the
end of the line of output. A call to System.out.println writes things and then
finishes the job by moving the cursor to the start of a brand-new line of output.

What Do All Those Zeros and Ones Mean?

Here’s a word:
gift

The question for discussion is, what does that word mean? Well, it depends on
who looks at the word. For example, an English-speaking reader would say that

132 PART 2 Writing Your Own Java Programs

FIGURE 6-6:

An extreme
close-up of eight
black-and-white
screen pixels.

gift stands for something one person bestows upon another in a box covered in
brightly colored paper and ribbons:

Look! I'm giving you a gift!
But in German, the word gift means “poison:”

Let me give you some gift, my dear.

And in Swedish, gift can mean either “married” or “poison:”

As soon as they got gift, she slipped a gift into his drink.

Then there’s French. In France, there’s a candy bar named “Gift”:

He came for the holidays, and all he gave me was a bar of Gift.

What do the letters g-i-f-t really mean? Well, they mean nothing until you decide
on a way to interpret them. The same is true of the 0’s and 1’s inside a computer’s
circuitry.

Take, for example, the sequence 01001010. This sequence can stand for the letter J,
but it can also stand for the number 74. That same sequence of zeros and ones can
stand for 1.0369608636003646x10-43. And when interpreted as screen pixels, the
same sequence can represent the pixels shown in Figure 6-6. The meaning of
01001010 depends entirely on the way the software interprets this sequence.

Types and declarations

How do you tell the computer what 01001010 stands for? The answer is in the con-
cept called type. The type of a variable describes the kinds of values that the vari-
able is permitted to store.

In Listing 6-1, look at the first line in the body of the main method:

double amount;

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 133

134

o
T
TECHNICAL
STUFF

&

TRY IT OUT

This line is called a variable declaration. Putting this line in your program is like
saying, “I’m declaring my intention to have a variable named amount in my pro-
gram.” This line reserves the name amount for your use in the program.

In this variable declaration, the word double is a Java keyword. This word double
tells the computer which kinds of values you intend to store in amount. In partic-
ular, the word double stands for numbers between —1.8x103°8 and 1.8x103°8. That’s
an enormous range of numbers. Without the fancy x10 notation, the second of
these numbers is

1800000002V AVVVVIYVVVYVYVVVIVVYVAD
0000002V AVVVVYVAVVYVVVVVVVVAD
0000002V AVVVVVYVVVIYVYVIVVVVVAD
0000002V AVVVVYVAVVVVVYVVVIVVVAD
0000002V AVVVVVVAVVYVVVVVIVVYVAD
0000002V AVVAVVAVVAVVAVAAQ . O

If the folks at SnitSoft ever charge that much for shipping and handling, they can
represent the charge with a variable of type double.

What's the point?

More important than the humongous range of the double keyword’s numbers is
the fact that a double value can have digits to the right of the decimal point. After
you declare amount to be of type double, you can store all sorts of numbers in
amount. You can store 5.95, 0.02398479, or -3.0. In Listing 6-1, if hadn’t declared
amount to be of type double, I wouldn’t have been able to store 5.95. Instead, I
would have had to store plain old 5 or dreary old 6, with no digits beyond the deci-
mal point.

For more info on numbers without decimal points, see Chapter 7.

This paragraph deals with a really picky point, so skip it if you’re not in the mood.
People often use the phrase decimal number to describe a number with digits to the
right of the decimal point. The problem is, the syllable “dec” stands for the num-
ber 10, so the word decimal implies a base-10 representation. Because computers
store base-2 (not base-10) representations, the word decimal to describe such a
number is a misnomer. But in this book, I just can’t help myself. I’m calling them
decimal numbers, whether the techies like it or not.

Here are some things for you to try:

PART 2 Writing Your Own Java Programs

NUMBER CRUNCHING

Change the number values in Listing 6-1 and run the program with the new
numbers.

VARYING A VARIABLE

In Listing 6-1, change the variable name amount to another name. Change the
name consistently throughout the Listing 6-1 code. Then run the program with its
new variable name.

USING UNDERSCORES

Modify the code in Listing 6-1 so that shipping-and-handling costs $1 million.
Use 1_000_000 .00 (with underscores) to represent the million-dollar amount.

MORE INFORMATION, PLEASE

Modify the code in Listing 6-1 so that it displays three values: the original price of
the flash drive, the cost of shipping and handling, and the combined cost.

Reading Decimal Numbers
from the Keyboard

FIGURE 6-7:
Getting the
value of a
double variable.

I don’t believe it! SnitSoft is having a sale! For one week only, you can get the
SnitSoft flash drive for the low price of just §5.75! Better hurry up and order one.

No, wait! Listing 6-1 has the price fixed at $5.95. I have to revise the program.

I know. I’ll make the code more versatile. I’ll input the amount from the keyboard.
Listing 6-2 has the revised code, and Figure 6-7 shows a run of the new code.

What's the price of a flash drive? 5.75
We will bill $30.75 to your credit card.

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 135

m Getting a Double Value from the Keyboard

136

AN

WARNING

import java.util.Scanner;

public class VersatileSnitSoft {

public static void main(String[] args) {
Scanner keyboard = new Scanner(System.in);
double amount;

System.out.print("What's the price of a flash drive? ");
amount = keyboard.nextDouble();
amount = amount + 25.00;

System.out.print("We will bill $");
System.out.print(amount);

System.out.println(" to your credit card.");

keyboard.close();

As I mention over in Chapter 4, grouping separators vary from one country to
another. The run shown in Figure 6-7 is for a computer configured in the United
States, where 5.75 means “five and seventy-five hundredths.” But the run might
look different on a computer that’s configured in what I call a “comma country” —
a country where 5,75 means “five and seventy-five hundredths.” If you live in a
comma country and you type 5.75 exactly as it’s shown in Figure 6-7, you probably
get an error message (an InputMismatchException). If so, change the number
amounts in your file to match your country’s number format. When you do, you
should be okay.

Though these be methods,
yet there is madness in't

Notice the call to the nextDouble method in Listing 6-2. Over in Listing 5-1, in
Chapter 5, I use nextlLine; but here in Listing 6-2, I use nextDouble.

In Java, each type of input requires its own, special method. If you’re getting a line
of text, then nextLine works just fine. But if you’re reading stuff from the key-
board and you want that stuff to be interpreted as a number, you need a method
like nextDouble.

PART 2 Writing Your Own Java Programs

To go from Listing 6-1 to Listing 6-2, I added an import declaration and some
stuff about new Scanner(System.in). You can find out more about these concepts
by reading the “Getting numbers, words, and other things” section in Chapter 5.
(You can find out even more about input and output by visiting Chapter 16.) And
more examples (more keyboard.nextSomething methods) are in Chapters 7
and 8.

Methods and assignments

Note how I use keyboard.nextDouble in Listing 6-2. The call to method
keyboard.nextDouble is part of an assignment statement. If you look in Chapter 5
at the section on how the EcholLine program works, you see that the computer
can substitute something in place of a method call. The computer does this in
Listing 6-2. When you type 5.75 on the keyboard, the computer turns

amount = keyboard.nextDouble();
into

amount = 5.75;
(The computer doesn’t really rewrite the code in Listing 6-2. This amount = 5.75
line simply illustrates the effect of the computer’s action.) In the second assign-
ment statement in Listing 6-2, the computer adds 25.00 to the 5.75 that’s stored

in amount.

Some method calls have this substitution effect, and others (like System.out.
println) don’t. To find out more about this topic, see Chapter 15.

WHO DOES WHAT, AND HOW?

When you write a program, you're called a programmer, but when you run a program,
you're called a user. So when you test your own code, you're both the programmer and
the user.

Suppose that your program contains a keyboard . nextSomething() call, like the calls
in Listings 5-1 (in Chapter 5) and 6-2. Then your program gets input from the user. But,
when the program runs, how does the user know to type something on the keyboard?

If the user and the programmer are the same person, and the program is fairly simple,

(continued)

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 137

(continued)

knowing what to type is no big deal. For example, when you start running the code in
Listing 5-1, you have this book in front of you, and the book says “The computer is wait-
ing for you to type something. You type one line of text.” So you type the text and press
Enter. Everything is fine.

But very few programs come with their own books. In many instances, when a program
starts running, the user has to stare at the screen to figure out what to do next. The
code in Listing 6-2 works in this stare-at-the-screen scenario. In Listing 6-2, the first call
to print puts an informative message What's the price of a flash drive?)on
the user’s screen. A message of this kind is called a prompt.

When you start writing programs, you can easily confuse the roles of the prompt and
the user’s input. Remember: No preordained relationship exists between a prompt and
the subsequent input. To create a prompt, you call print or println. Then, to read
the user’s input, you call nextLine, nextDouble, or one of the Scanner class's other
nextSomething methods. These print and next calls belong in two separate state-
ments. Java has no commonly used, single statement that does both the prompting and
the "next-ing.”

As the programmer, your job is to combine the prompting and the next-ing. You can
combine prompting and next-ing in all kinds of ways. Some ways are helpful to the
user, and some ways aren't, as described in this list:

® If you don’t have a call to print or println, the user sees no prompt. A blink-
ing cursor sits quietly and waits for the user to type something. The user has to
guess what kind of input to type. Occasionally that's okay, but usually it isn't.

® Ifyou callprint or println but you don’t call a keyboard. nextSomething
method, the computer doesn’t wait for the user to type anything. The pro-
gram races to execute whatever statement comes immediately after the print or
println.

® If your prompt displays a misleading message, you mislead the user. Java has
no built-in feature that checks the appropriateness of a prompt. That's not surpris-
ing. Most computer languages have no prompt-checking feature.

Be careful with your prompts. Be nice to your user. Remember that you were once a
humble computer user, too.

138 PART 2 Writing Your Own Java Programs

Variations on a Theme

In Listing 6-1, it takes two lines to give the amount variable its first value:

double amount;

amount = 5.95;
You can do the same thing with just one line:
double amount = 5.95;

When you do this, you don’t say that you’re “assigning” a value to the amount
variable. The line double amount = 5.95 isn’t called an “assignment statement.”
Instead, this line is called a “declaration with an initialization.” You’re initializing
the amount variable. You can do all sorts of things with initializations — even
arithmetic:

double gasBill = 174.59;
double elecBill 84.21;
double H20Bill = 22.88;
double total = gasBill + elecBill + H20Bill;

If it looks like a double and smells
like a double...

This chapter’s “Types and declarations” section suggests that some variables
don’t store decimal numbers. Take, for example, the following declaration:

char newValue = 'B';

Two parts of this declaration indicate that newvalue doesn’t store a decimal
number:

¥ The word char isn't the same as the word double.

¥ The letter 'B' isn't a decimal number.

In fact, two parts of the declaration

double amount = 5.95;

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 139

140

A

WARNING

indicate that amount stores a decimal number:

¥ The word double means “decimal number.”

¥ Thevalue5.95 is a decimal number.

Wouldn’t it be nice if you didn’t have to tell Java the same thing more than once?
The good news is, you can:

var amount = 5.95;

In this declaration, the word var indicates that amount stands for a variable. Java
decides on the variable’s type based on the value after the equal sign. So Java,
because it’s a very smart programming language, looks at the value 5. 95 and decides
that amount is a variable of type double. In a way, Java looks at var amount = 5.95
and mentally replaces the word var with the word double. (Okay. Saying that Java
does anything “mentally” is a stretch, but you know what I mean.)

Using var, you can remove the redundancy from lines like
Scanner keyboard = new Scanner(System.in);

(See Listing 6-2.) In this declaration, why do you bother repeating the word
Scanner? You convey the same message when you write

var keyboard = new Scanner(System.in);

This new-and-improved var keyboard declaration is easier to read and under-
stand. How much time do you save? Let’s take a wild guess and say that you save
one millisecond every time you read var keyboard instead of Scanner keyboard.
Over the course of a programmer’s career, those milliseconds add up. If you stack
those milliseconds end to end, the programmer saves several days’ worth of
needless effort. (Okay, “several days’ worth” is also a wild guess. But you get the
idea.)

The word var doesn’t work in a declaration with no initialization. For example, if
you write

var amount;
amount = 5.95;

on two separate lines, Java tells you to go fly a kite.

PART 2 Writing Your Own Java Programs

Moving variables from place to place

It helps to remember the difference between initializations and assignments. For
one thing, you can drag a declaration with its initialization outside of a method:

//This is okay:
public class SnitSoft {
static double amount = 5.95;

public static void main(String[] args) {
amount = amount + 25.00;

System.out.print("We will bill $");
System.out.print(amount);

System.out.println(" to your credit card.");

You can’t do the same thing with assignment statements (see the following code
and Figure 6-8):

//This does not compile:
public class BadSnitSoftCode {

static double amount;
amount = 5.95; //Misplaced statement

public static void main(String[] args) {
amount = amount + 25.00;

System.out.print("We will bill $");
System.out.print(amount);

System.out.println(" to your credit card.");

amount = 5.95; //Misplaced statement

Identifier expected

public static veoid main(String[] args) { Unexpected token

FIGURE 6-8: amount = amount + 25.00;
A failed attempt Unknown class: ‘amount’
to compile System.out.print("We will bill $"); Unnecessary semicolon *;'
BadSnit :::t:::::::i:;(.:zj?u::);four credit card."); Create type parameter 'amount’ <&@ More actions... &
SoftCode.

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 141

142

A

WARNING

You can’t drag statements outside of methods. (Even though a variable declaration
ends with a semicolon, a variable declaration isn’t considered to be a statement.
Go figure!)

The advantage of putting a declaration outside of a method is illustrated in
Chapter 13. While you wait impatiently to reach that chapter, notice how I added
the word static to each declaration that I pulled out of the main method. I had to
do this because the main method’s header has the word static in it. Not all meth-
ods are static. In fact, most methods aren’t static. But whenever you pull a decla-
ration out of a static method, you have to add the word static at the beginning
of the declaration. All the mystery surrounding the word static is resolved in
Chapter 14.

The previous section introduces var to make declaring variables easier, and this
section touches on the idea that you can declare a variable outside of a method.
Both of these tricks work well on their own, but you can’t combine the two of
them in the same declaration. For example, the following code gives you nothing
but grief:

//This is NOT okay:
public class SnitSoft {

static var amount = 5.95;

In this code, the declaration of amount isn’t inside of a method, so you can’t use
var to declare amount. Instead, use the type name double.

Combining variable declarations

The code in Listing 6-1 has only one variable (as if variables are in short supply).
You can get the same effect with several variables:

public class SnitSoftNew {

public static void main(String[] args) {
double flashDrivePrice;
double shippingAndHandling;
double total;

flashDrivePrice = 5.95;
shippingAndHandling = 25.00;
total = flashDrivePrice + shippingAndHandling;

PART 2 Writing Your Own Java Programs

TRY IT OUT

System.out.print("We will bill $");
System.out.print(total);

System.out.println(" to your credit card.");

This new code gives you the same output as the code in Listing 6-1. (Refer to
Figure 6-1.)

The new code has three declarations — one for each of the program’s three vari-
ables. Because all three variables have the same type (the type double), I can
modify the code and declare all three variables in one fell swoop:

double flashDrivePrice, shippingAndHandling, total;

Which is better — one declaration or three declarations? Neither is better. It’s a
matter of personal style.

You can even add initializations to a combined declaration. When you do, each
initialization applies to only one variable. For example, with the line

double flashDrivePrice, shippingAndHandling = 25.00, total;

the value of shippingAndHandling becomes 25.00, but the variables flashDrive-
Price and total get no particular value.

Would you like some practice with this section’s concepts? You got it!

TIP THE PARKING ATTENDANT

An online blog advises a $2 tip when a parking attendant fetches your car in a
New York City garage. Write a program like the one in Listing 6-2. When the pro-
gram runs, you type the garage’s posted price for parking your car. The program
tells you how much you’ll pay after adding the $2 tip.

DOUBLE PRICE

Modify the code in Listing 6-2 so that whatever a flash drive normally costs, the
program charges twice that amount. In other words, the price for a $5 flash drive
ends up being $10, and the price for a $100 flash drive becomes $200.

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 143

Experimenting with JShell

FIGURE 6-9:
The JShell editor.

LD,
TECHNICAL
STUFF

The programs in this book all begin with the same old tiresome refrain:
public class SomethingOrOther {
public static void main(String[] args) {
Dealing with this boilerplate code can be annoying, especially when your goal is to
test the effect of executing a few simple statements. Fortunately, there’s a way

avoid all this public class and public static business. Here’s what you do:

1. on Intelli)’s main menu, choose Tools = JShell Console.

As a result, Intelli] creates an empty Editor tab. The tab’s name includes the
words jshell_console. (See Figure 6-9.)

3 ishell_console.snippet

Use classpath of: <whole project>

JShell is Java's universal scratch pad. You can test all kinds of ideas on the JShell
tab. And the best part is, you don't have to write a complete program. In some
cases, you don't even have to write complete Java statements.

JShell is only one example of a language’s Read Evaluate Print Loop (REPL). Many
programming languages have REPLs. If you've installed Python on your
computer, you can launch Python's REPL by typing python in the Command
Prompt or Terminal window. With Node.js installed, typing the word node
starts up a JavaScript REPL.

2. Inthe new editor area (the JShell tab), type the following line:
double amount = 5.95
3. On Windows, press Ctrl+Enter; on a Mac, press Cmd+Enter.

Intelli)'s Run tool window displays the message shown in Figure 6-10.

144 PART 2 Writing Your Own Java Programs

FIGURE 6-10:
JShell
acknowledges
that you've
declared

the amount
variable.

FIGURE 6-11:
JShell follows
your Java
instructions.

J jshell_console.snippet

» W Useclasspath of: <whole projects|

double amount = 5.95_

$$jshell_root_class$$0 amount

Run: JShell jshell_console

field double amount = 5.95

4. 0nthe nextline of the editor, type

amount = amount + 25.00

and then press Ctrl+Enter or Cmd+Enter.
Intelli)'s Run tool window adds two new lines, as shown in Figure 6-11.

When you press Ctrl+Enter or Cmd+Enter, Intelli] runs all statements in the
JShell editor, even if it means repeating the run of some of those statements.

3 ishell_conscle.snippet

> 0 Use classpath of: <whole project>

double amount = 5.95_
amount = amount + 25.080

$3jshell_root_class$$0 _8jshell_holder_meg

Run: JShell jshell_console

field double amount = 5.95

£ field double amount = 5.95
=3

& double amount = 30.95

]

5. click the Trash Can icon on the left edge of the Run tool window.

When you do, Intelli] clears the Run tool window so that you can start afresh.

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 145

146

TIP

6. Addanewlinein the JShell editor. The new line looks like this:

7 + 10

Theline 7 + 10 isn't a complete Java statement — even if you add a semicolon
at the end. You won't get away with a line like 7 + 10; in aregular Java
program, but JShell isn't finicky. When you press Ctrl+Enter or Cmd+Enter, the
following line shows up in the Run tool window:

7+ 10 = 17

7. Add another new line in the JShell editor. The new line looks like this:

amount + 100.00

When you press Ctrl+Enter or Cmd+Enter, the following line shows up in the
Run tool window:

amount + 100.00 = 130.95

8. Click the X icon on the JShell tab at the top of the editor.
Intelli] asks whether you want to terminate the JShell process.
9. 1o confirm, choose Terminate.

Intelli] closes the JShell tab. Your experiment with JShell has come to an end.

When you use JShell, you hardly ever type an entire program. Instead, you type a
Java statement, and then JShell responds to your statement, and then you type a
second statement, and then JShell responds to your second statement, and then
you type a third statement, and so on. A single statement is enough to get a
response from JShell.

With JShell, you can test your statements before you put them into a full-blown
Java program. That makes JShell a truly useful tool.

Intelli]’s JShell Console has some quirks. For example, I see a little red line when
I type the declaration

double amount = 5.95

If I hover the mouse over that red line, a little popup says ’;’ expected. A red marker
normally means “This is an error. Intelli] refuses to run this code.” But, when I
press Ctrl+Enter or Cmd+Enter, Intelli] runs the code and shows me the result in
the Run tool window. Go figure!

If the red line makes me nervous, I can add a semicolon. I’'ve heard rumors that
Intelli] sometimes refuses to run a statement that doesn’t end with a semicolon,
but I've never observed this behavior myself.

PART 2 Writing Your Own Java Programs

FUN WITH JSHELL

On Intelli)’s main menu, choose Tools= JShell Console. Then type the following
code into the JShell editor. When you finish typing, press Ctrl+Enter (on Windows)
or Cmd-+Enter (on a Mac).

TRY IT OUT

double bananaCalories = 100.0
double appleCalories = 95.0

double dietSodaCalories = 0.0
double cheeseburgerCalories = 500.0
bananaCalories + appleCalories +

dietSodaCalories + cheeseburgerCalories

Keep JShell running in preparation for the next experiment.

ADDING AND REMOVING JSHELL CODE
This experiment has several parts. After each part, see what new text appears in
the Run tool window. Decide for yourself why that particular text appears.
1. In the JShell editor, type
height = 5.6
and then press Ctrl+Enter or Cmd+Enter.
2. Onthe next line in the editor, type

double height

and then press Ctrl+Enter or Cmd+Enter.

3. without typing anything new in the editor, press Ctrl+Enter or Cmd+Enter
again.

4. Inthe JShell editor, erase the line
double height
and then press Ctrl+Enter or Cmd+Enter.
5. Look for a Trash Can icon at the top of the JShell editor.

When you hover the cursor over that icon, a tip labeled Drop All Code Snippets
appears.

o

Click the Trash Canicon.

N

With the cursor in the Intelli) editor, press Ctrl+Enter or Cmd+Enter
once again.

CHAPTER 6 Using the Building Blocks: Variables, Values, and Types 147

IN THIS CHAPTER

» Processing whole numbers

» Making new values from old values

» Understanding Java's more exotic
types

Chapter 7
Numbers and Types

ot so long ago, people thought computers did nothing but perform big,
number-crunching calculations. Computers solved arithmetic problems,
and that was the end of the story.

In the 1980s, with the widespread use of word processing programs, the myth of
the big metal math brain went by the wayside. But even then, computers made
great calculators. After all, computers are very fast and very accurate. Computers
never need to count on their fingers. Best of all, computers don’t feel burdened
when they do arithmetic. I hate ending a meal in a good restaurant by worrying
about the tax and tip, but computers don’t mind that stuff at all. (Even so,
computers seldom go out to eat.)

Using Whole Numbers

Let me tell you, it’s no fun being an adult. Right now I have four little kids in my
living room. They’re all staring at me because I have a bag full of gumballs in my
hand. With 30 gumballs in the bag, the kids are all thinking, “Who’s the best? Who
gets more gumballs than the others? And who’s going to be treated unfairly?” They
insist on a complete, official gumball count, with each kid getting exactly the same
number of tasty little treats. I must be careful. If I'm not, I’ll never hear the end of it.

With 30 gumballs and four kids, there’s no way to divide the gumballs evenly. Of
course, if I get rid of a kid, I can give 10 gumballs to each kid. The trouble is,

CHAPTER 7 Numbers and Types 149

gumballs are disposable; kids are not. So my only alternative is to divvy up what
gumballs I can and dispose of the rest. “Okay, think quickly,” I say to myself.
“With 30 gumballs and 4 kids, how many gumballs can I promise to each kid?”

I waste no time in programming my computer to figure out this problem for me.
When I’'m finished, I have the code in Listing 7-1.

m How to Keep Four Kids from Throwing Tantrums

FIGURE 7-1:
Fair and square.

public class KeepingKidsQuiet {

public static void main(String[] args) {
int gumballs;
int kids;
int gumballsPerKid;

gumballs = 30;
kids = 4;
gumballsPerKid = gumballs / kids;

System.out.print("Each kid gets ");
System.out.print(gumballsPerKid);
System.out.println(" gumballs.");

Figure 7-1 shows a run of the KeepingKidsQuiet program. If each kid gets seven
gumballs, then the kids can’t complain that I’'m playing favorites. They’ll have to
find something else to squabble about.

Each kid gets 7 gumballs.

At the core of the gumball problem, I have whole numbers — numbers with no digits
beyond the decimal point. When I divide 30 by 4, I get 7%, but I can’t take the 12
seriously. No matter how hard I try, I can’t divide a gumball in half, at least not
without hearing “my half is bigger than their half.” This fact is reflected nicely in
Java. In Listing 7-1, all three variables (gumballs, kids, and gumballsPerKid) are of
type int. An int value is a whole number. When you divide one int value by another
(as you do with the slash in Listing 7-1), you get another int. When you divide 30
by 4, you get 7 — not 7Y2. You see this in Figure 7-1. Taken together, the statements

150 PART 2 Writing Your Own Java Programs

gumballsPerKid = gumballs/kids;
System.out.print(gumballsPerKid);

put the number 7 on the computer screen.

Reading whole numbers from the keyboard

What a life! Yesterday there were four kids in my living room and I had 30 gum-
balls. Today there are six kids in my house and I have 80 gumballs. How can I cope
with all this change? I know! I'll write a program that reads the numbers of gum-
balls and kids from the keyboard. The program is in Listing 7-2, and a run of the
program is shown in Figure 7-2.

FIGURE 7-2:

Next thlnyg How many gumballs? How many kids? 8@ &
you know, I'll Each kid gets 13 gumballs.
have 70 kids and

1,000 gumballs.

m A More Versatile Program for Kids and Gumballs

import java.util.Scanner;

public class KeepingMoreKidsQuiet {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
int gumballs;
int kids;
int gumballsPerKid;

System.out.print("How many gumballs? How many kids? ");
gumballs = keyboard.nextInt();
kids = keyboard.nextInt();

gumballsPerKid = gumballs / kids;
System.out.print("Each kid gets ");
System.out.print(gumballsPerKid);

System.out.println(" gumballs.");

keyboard.close();

CHAPTER 7 Numbers and Types 151

FIGURE 7-3:

Three numbers

152

for three
Scanner
method calls.

You should notice a couple of things about Listing 7-2. First, you can read an int
value with the nextInt method. (Refer to the table in Chapter 5.) Second, you can
issue successive calls to Scanner methods. In Listing 7-2, I call nextInt twice.
All T have to do is separate the numbers I type by blank spaces. In Figure 7-2,
I put one blank space between my 80 and my 6, but more blank spaces would
work as well.

This blank-space rule applies to many of the Scanner methods. For example,
here’s some code that reads three numeric values:

gumballs = keyboard.nextInt();
costOfGumballs = keyboard.nextDouble();

kids = keyboard.nextInt()

Figure 7-3 shows valid input for these three method calls.

5@ 7.35 6

By the way, if you’re staring at Listing 7-2 and wondering what var keyboard
means, refer to Chapter 6.

What you read is what you get

When you’re writing your own code, you should never take anything for granted.
Suppose that you accidentally reverse the order of the gumballs and kids assign-
ment statements in Listing 7-2:

//This code is misleading:

System.out.print("How many gumballs? How many kids? ");

kids = keyboard.nextInt();
gumballs = keyboard.nextInt();

Here, the line How many gumballs? How many kids? is misleading. Because the
kids assignment statement comes before the gumballs assignment statement,
the first number you type becomes the value of kids, and the second number you
type becomes the value of gumballs. It doesn’t matter that your program dis-
plays the message How many gumballs? How many kids?. What matters is the
order of the assignment statements in the program.

PART 2 Writing Your Own Java Programs

FIGURE 7-4:
How to make six
kids very
unhappy.

TRY IT OUT

If the kids assignment statement accidentally comes first, you can get a strange
answer, like the zero answer in Figure 7-4. That’s how int division works. It just
cuts off any remainder. Divide a small number (like 6) by a big number (like 80)
and you get 0.

How many gumballs? How many kids? 80 6
Bach kid gets 9 gumballs.

kids =/ myScanner.nextInt ()
gumballs = myScanner.nextInt();

gurballsPerkKid = gumballs / kids;
0 = 6/80

Like the mad scientist in an old horror movie, try these fascinating experiments!

MAKE IT AND BREAK IT

Run the program in Listing 7-2. When the program asks How many gumballs? How
many kids?, type 80.5 6. (Actually, if you live in a country where 80,5 represents
eighty-and-a-half, type 80,5 instead of 80.5.)

What unpleasant message do you see during this run of the program? Why do you
see this message?

BREAK IT AGAIN

Run the program in Listing 7-2. When the program asks How many gumballs? How
many kids?, type “80” “6” (quotation marks and all).

What unpleasant message do you see during this run of the program? Why do you
see this message?

ATINY ADDING MACHINE

Write a program that gets two numbers from the keyboard and displays the sum
of the two numbers.

CHAPTER 7 Numbers and Types 153

Creating New Values by
Applying Operators

154

TIP

What could be more comforting than your old friend the plus sign? It was the first
thing you learned about in elementary school math. Almost everybody knows how
to add two and two. In fact, in English usage, adding two and two is a metaphor
for something that’s easy to do. Whenever you see a plus sign, one of your brain
cells says, “Thank goodness, it could be something much more complicated.”

So Java has a plus sign. You can use the plus sign to add two numbers:

int apples, oranges, fruit;
apples = 5;
oranges = 16;

fruit = apples + oranges;
Of course, the old minus sign is available, too:
apples = fruit - oranges;
Use an asterisk for multiplication and a forward slash for division:

double rate, pay, withholding;

int hours;

rate = 6.25;

hours = 35;

pay = rate x hours;
withholding = pay / 3.0;

When you divide an int value by another int value, you get an int value. The
computer doesn’t round. Instead, the computer chops off any remainder. If you
put System.out.println(11 / 4) in your program, the computer prints 2, not
2.75. If you need a decimal answer, make either (or both) of the numbers you’re
dividing double values. For example, if you put System.out.println(11.0 / 4)
in your program, the computer divides a double value, 11.0, by an int value, 4.
Because at least one of the two values is double, the computer prints 2. 75.

Finding a remainder

There’s a useful arithmetic operator called the remainder operator. The symbol for
the remainder operator is the percent sign (%). When you put System.out.
println(11 % 4) in your program, the computer prints 3. It does so because 4
goes into 11 who-cares-how-many times, with a remainder of 3.

PART 2 Writing Your Own Java Programs

.?6% Another name for the remainder operator is the modulus operator.

TECHNICAL The remainder operator turns out to be fairly useful. After all, a remainder is the
amount you have left over after you divide two numbers. What if you’re making
change for $1.38? After dividing 138 by 25, you have 13 cents left over, as shown in
Figure 7-5.

138 cents

— 138/25is 5

FIGURE 7-5:
Hey, bud!

Got change for -
138 sticks?

— 138%25is 13

The code in Listing 7-3 makes use of this remainder idea.

m Making Change

import java.util.Scanner;

public class MakeChange {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
int quarters, dimes, nickels, cents;
int whatsLeft, total;

System.out.print("How many cents do you have? ");
total = keyboard.nextInt();

(continued)

CHAPTER 7 Numbers and Types 155

quarters = total / 25;
whatsLeft = total % 25;

dimes = whatsLeft / 10;
whatsLeft = whatsLeft % 10;

nickels = whatsLeft / 5;
whatsLeft = whatsLeft % 5;

cents = whatslLeft;

System.out.printin();
System.out.println("From " + total +

System.out.println(quarters +
System.out.println(dimes + " dimes");

n

System.out.println(nickels +

System.out.println(cents + " cents");

keyboard.close();

cents you get");
quarters");

nickels");

A run of the code in Listing 7-3 is shown in Figure 7-6. You start with a total of

138 cents. The statement

quarters = total / 25;

divides 138 by 25, giving you 5. That means you can make 5 quarters from 138 cents.

Next, the statement

whatsLeft = total % 25;

divides 138 by 25 again and puts only the remainder, 13, intowhatsLe ft. Now you’re
ready for the next step, which is to take as many dimes as you can out of 13 cents.

How many cents do you have? 138

From 138 cents you get
5 quarters
1 dimes
@ nickels
FIGURE 7-6: 3 cents
Change for $1.38.

156 PART 2 Writing Your Own Java Programs

LD,
TECHNICAL
STUFF

A

WARNING

You keep going like this until you’ve divided away all the nickels. At that point, the
value of whatsLeft is just 3 (meaning 3 cents).

The code in Listing 7-3 makes change in US currency with the following coin
denominations: 1 cent, 5 cents (one nickel), 10 cents (one dime), and 25 cents (one
quarter). With these denominations, the MakeChange program gives you more
than simply a set of coins adding up to 138 cents. The MakeChange class gives you
the smallest number of coins that add up to 138 cents. With some minor tweaking,
you can make the code work in any country’s coinage. You can always get a set of
coins adding up to a total. But, for the denominations of coins in some countries,
you won'’t always get the smallest number of coins that add up to a total. Before
1970, England’s currency included 6 pence, 12 pence, 24 pence, and 30 pence
coins. With input 48, a program like the one in Listing 7-3 would have told you to
add up three coins: 30 + 12 + 6 = 48. But you could do better by combining only two
coins: 24 + 24 = 48.

When two or more variables have similar types, you can create the variables
with combined declarations. For example, Listing 7-3 has two combined
declarations — one for the variables quarters, dimes, nickels, and cents (all
of type int) and another for the variables whatsLeft and total (both of type
int). But to create variables of different types, you need separate declarations.
For example, to create an int variable named total and a double variable named
amount, you need one declaration int total; and another declaration double
amount ;.

Take control of your program’s output

Listing 7-3 has a call to System.out.println() with nothing in the parentheses.
When the computer executes this statement, the cursor jumps to a new line on the
screen. (I often use this statement to put a blank line in a program’s output.)
The last five print1n calls in Listing 7-3 use another cute trick. In Java, you can
concatenate strings with a plus sign (+). When you concatenate strings, you scrunch
them together, one right after another. For example, the expression

"Barry” + " " + "Burd"

scrunches together Barry, a blank space, and Burd. The new scrunched-up string
is (you guessed it) Barry Burd.

In the following statement from Listing 7-3

System.out.println("From " + total + " cents you get");

CHAPTER 7 Numbers and Types 157

158

IF THINE INT OFFENDS THEE, CAST IT OUT

The run in Figure 7-6 seems artificial. Why would you start with 138 cents? Why not

use the more familiar $1.38? The reason is that the number 1.38 isn't a whole number,
and whole numbers are more accurate than other kinds of numbers. In fact, without
whole numbers, the remainder operator isn't very useful. For example, the value of
1.38 % ©.25is0.1299999999999999. All those nines are tough to work with. Imagine
reading your credit card statement and seeing that you owe $0.1299999999999999.
You'd probably pay $0.13 and let the credit card company keep the change. But after
years of rounding numbers, the credit card company would make a fortune! Chapter 8
describes, in a bit more detail, inaccuracies that may come from using double values.

Throughout this book, | illustrate Java's double type with programs about money. Many
authors do the same thing. But for greater accuracy, avoid using double values for
money. Instead, you should use int values or use the long values that | describe in the
last section of this chapter. Even better, look upBigInteger and BigDecimal in Java's
APl documentation. These BigSomethingOrOther types are cumbersome to use, but
they provide industrial-strength numeric range and accuracy.

Now, what if you want to input 1 . 38 and then have the program take your 1.38 and
turn it into 138 cents? How can you get your program to do this?

My first idea is to multiply 1.38 by 100:

//This doesn't quite work.
double amount;

int total;

amount = keyboard.nextDouble();
total = amount*100;

In everyday arithmetic, multiplying by 100 does the trick. But computers are fussy. With
a computer, you have to be very careful when you mix int values and double values.
(See the first figure in this sidebar.)

System.out.print("How much money do you have? ");
amount = keyboard.nextDouble();
total = amount * 100;
red type: int
guarters = total / 2
whatslLeft = total % Provided double

Cast to 'int' & More actions...
dimes = whatsLeft / 1u;

PART 2 Writing Your Own Java Programs

To cram a double value into an int variable, you need something called casting. When
you cast a value, you essentially say, “I'm aware that I'm trying to squish a double value
into an int variable. It's a tight fit, but | want to do it anyway.”

To do casting, select Intelli'sCast to 'int' quick fix. Casting puts the name of a type
in parentheses, as follows:

//This works!
total = (int) (amount * 100);

The casting notation (int) turns the double value 138.00 into the int value 138, and
everybody’'s happy. (See the second figure in this sidebar.)

double amount;
int total;

féfaW = (int) (amount*100);

A

1.38 100

\—’—l

138.00

138

the variable total stores an int value, while the literals "From " and " cents you
get" are strings. To understand this, remember that the value of total isn’t a
string of digit characters like "138". Instead, total is an amount such as 138. In
everyday life, the difference between "138" and 138 is rarely important. But in

computer programming, the difference is a big deal.

Fortunately, Java’s plus sign concatenates strings to numbers and numbers to
strings. When you put a plus sign between two such values, you get a string, not a

number. For example, in Listing 7-3, Java sees

"From " + total + " cents you get"

CHAPTER 7 Numbers and Types 159

160

&

TRY IT OUT

With the input shown in Figure 7-6, Java turns the expression into
"From " + 138 + " cents you get"

Then, Java does you a favor and replaces the number 138 with its most sensible
string representation

"From " + "138" + " cents you get"
Finally, Java concatenates the three strings to give you the output you want.

From 138 cents you get
When Java does all this work, is Java being fussy about the types of its values? Yes.
it is. Is this fussiness necessary? Yes, it is. Do you have to worry about this fussi-

ness whenever you write a Java program? Probably not. Java does most of the
fussing for you.

JAVA ARITHMETIC

What’s the value of each of the following expressions? Type each expression on a
separate line in JShell to find out whether your answers are correct:

10 / 3

10 % 3

3/ 10

3 % 10

8 x3 +4

4 +8 %3

8 x (3 +4)

34 %5-2%x2+21/5

VARIABLE VALUES

What'’s the value of each of the following variables (a, b, c, and so on)? Type each
statement on a separate line in JShell to find out whether your answers are correct:

PART 2 Writing Your Own Java Programs

int a =8
int b = 3
int c=b / a
intd=a/b
inte=a%b

int f=5+exd-2

HIRING A PLUMBER

A local plumber charges $75 to come to my house. In addition, for every hour the
plumber works at my house, the plumber charges an additional $125. Write a pro-
gram that inputs the number of hours that a plumber works at my house and
outputs the total amount that the plumber charges.

MAKING CHANGE AGAIN

Modify the code in Listing 7-3 so that it starts by getting a number of dollars and
a number of cents from the keyboard. For example, rather than type 138 (meaning
138 cents), the user types 1 38 (1 dollar and 38 cents).

HOW TALL AM I?

Where I come from, we don’t use metric measurements. Instead, we measure each
person’s height in feet and inches. A foot is 12 inches, and I'm five-and-a-half
feet tall. (My height in feet is the double value 5.5.) Write a program to find my
height in inches. (That is, from 5.5 feet, calculate 66 inches.)

Modify the program so that it asks for the user’s height in feet and then reports
the person’s height in inches.

Modify the program so that it asks for the user’s height in feet and inches. For
example, a person who’s five-and-a-half feet tall types the number 5 (for five
feet) followed by the number 6 (for six more inches). The program reports the
person’s height in inches.

HOW MANY ANNIVERSARIES?

My wife and I were married on February 29, so we have one anniversary every
four years. Write a program with a variable named years. Based on the value of
the years variable, the program displays the number of anniversaries we’ve had.

CHAPTER 7 Numbers and Types 161

FIGURE 7-7:
Using

preincrement.

FIGURE 7-8:
A run of the

preincrement
code (the code in

162

Figure 7-7).

For example, if the value of years is 4, the program displays the sentence Number
of anniversaries: 1. If the value of years is 7, the program still displays
Number of anniversaries: 1. But if the value of years is 8, the program dis-
plays Number of anniversaries: 2.

The increment and decrement operators

Java has some neat little operators that make life easier (for the computer’s
processor, for your brain, and for your fingers). Altogether, there are four such
operators — two increment operators and two decrement operators. The incre-
ment operators add one, and the decrement operators subtract one. To see how
they work, you need some examples.

Using preincrement

The first example is in Figure 7-7.

public class AddMoreGumballs {

/gﬁ | gumballs becomes 27 |
public static void main(Stri [1 args) {
int gumballs = 27;
///—— | gumballs becomes 28 ‘
++gumballs;
System.out.println(gumballs) ;

System.out.println (++gumballs) ;
System.out.println (gumballs) ; \

gumballs becomes 29,
and Java prints 29

Java prints 29 again

A run of the program in Figure 7-7 is shown in Figure 7-8. In this horribly une-
ventful run, the count of gumballs is displayed three times.

28
29
29

PART 2 Writing Your Own Java Programs

FIGURE 7-9:

The preincrement
operator in
action.

The double plus sign goes under two different names, depending on where you
put it. When you put the ++ before a variable, the ++ is called the preincrement
operator. In the word preincrement, the pre stands for before. In this setting, the
word before has two different meanings:

¥ You're putting ++ before the variable.

3 The computer adds 1 to the variable's value before the variable is used in any
other part of the statement.

Figure 7-9 has a slow-motion, instant replay of the preincrement operator’s
action. In Figure 7-9, the computer encounters the System.out.println
(++gumballs) statement. First, the computer adds 1 to gumballs (raising the
value of gumballs to 29). Then the computer executes System.out.println,
using the new value of gumballs (29).

System.out.printIn(++gumballs);

S[‘e
D
! gumballs

el
- — 29

e

System.out.printIn(29)

Using postincrement

An alternative to preincrement is postincrement. With postincrement, the post
stands for after. The word after has two different meanings:

¥ You put ++ after the variable.

3 The computer adds 1 to the variable’s value after the variable is used in any
other part of the statement.

Figure 7-10 shows a close-up view of the postincrement operator’s action. In
Figure 7-10, the computer encounters the System.out.println(gumballs++)
statement. First, the computer executes System.out.println, using the old value
of gumballs (28). Then the computer adds 1 to gumballs (raising the value of
gumballs to 29).

CHAPTER 7 Numbers and Types 163

FIGURE 7-10:
The
postincrement
operator

in action.

FIGURE 7-11:
Using
postincrement.

REMEMBER

gumballs

28

System.out.printIn(gumballs++);

System.out.printIn(28

‘\ gumba] 1s
N 28
29

Look at the bold line of code in Figure 7-11. The computer prints the old value of
gumballs (28) on the screen. Only after printing this old value does the computer
add 1 to gumballs (raising the gumballs value from 28 to 29).

int

System.out.println(gumballs);
System.out.println(gumballs++) ;

System.out.println(gumballs); ¥

public class AddEvenMoreGumballs {

public static void mai

‘ gumballs becomes 27 |
i i in(Stri [] args) {
gumballs = 27;

/——‘ gumballs becomes 28 |
gumballs++;

Java prints 29

Java prints 28

Java prints 28,
and then gumballs becomes 29

With System.out.println(gumballs++), the computer adds 1 to gumballs after
printing the old value that gumballs already had.

A run of the code in Figure 7-11 is shown in Figure 7-12. Compare Figure 7-12 with
the run in Figure 7-8.

¥ With preincrement in Figure 7-8, the second number that's displayed is 29.

¥ With postincrement in Figure 7-12, the second number that's displayed is 28.

In Figure 7-12, the number 29 doesn’t show up on the screen until the end of the
run, when the computer executes one last System.out.println(gumballs).

164 PART 2 Writing Your Own Java Programs

FIGURE 7-12:
Arun of the
postincrement
code (the code in
Figure 7-11).

TIP

TRY IT OUT

28
28
29

Are you trying to decide between using preincrement or postincrement? Ponder
no longer. Most programmers use postincrement. In a typical Java program, you
often see things like gumballs++. You seldom see things like ++gumballs.

In addition to preincrement and postincrement, Java has two operators that
use ——:

¥ With predecrement (——gumballs), the computer subtracts 1 from the
variable's value before the variable is used in the rest of the statement.

¥ With postdecrement (qumbal ls—-), the computer subtracts 1 from the variable’s
value after the variable is used in the rest of the statement.

EXPLORE PREINCREMENT AND POSTINCREMENT
USING JSHELL

Type the boldface text, one line after another, into JShell, and see how JShell
responds:

int i =8

i++

i++

++1

CHAPTER 7 Numbers and Types 165

166

PART 2

STATEMENTS AND EXPRESSIONS

Any part of a computer program that has a value is called an expression. If you write

gumballs = 30;

then 30 is an expression (an expression whose value is the quantity 30). If you write

amount = 5.95 + 25.00;

then5.95 + 25.00 is an expression (because 5.95 + 25.00 has the value 30.95). If you
write

gumballsPerKid = gumballs / kids;

thengumballs / kids is an expression. (The value of the expression gumballs /
kids depends on whatever values the variables gumballs and kids have when the
statement with the expression in it is executed.)

This brings us to the subject of the pre- and postincrement and decrement operators.
You can think about these operators in two ways: the way everyone understands it
and the right way. The way | explain it in most of this section (in terms of time, with
before and after) is the way everyone understands the concept. Unfortunately, the way
everyone understands the concept isn't really the right way. When you see ++ or ——,
you can think in terms of time sequence. But occasionally some programmer uses ++
or — in a convoluted way, and the notions of before and after break down. So if you're
ever in a tight spot, you should think about these operators in terms of statements
and expressions.

First, remember that a statement tells the computer to do something, and an expres-
sion has a value. (Statements are described in Chapter 4, and expressions are described
earlier in this sidebar.) Which category does gumbal 1s++ belong to? The surprising
answer is both. The Java code gumbal 1s++ is both a statement and an expression.

Suppose that, before executing the code System.out.println(gumballs++), the
value of gumballs is 28:

® As a statement, gumballs++ tells the computer to add 1 to gumballs.

® As an expression, the value of gumballs++ is 28, not 29.

So, even though gumballs gets 1 added to it, the code System.out .println
(gumballs++) really means System.out .println(28). (See the figure in this
sidebar.)

Postincrement

ystem.out.println :,2:2€31.‘+):
... and, by the way, add 1 to

gumballs, changingthe value
of gumballs from 28 to 29.

Preincrement

System.out.println{ ++ 29 11s)7

... and, by the way, add 1to
gumballs, changingthe value
of gumballs from 28 to 29.

Now, almost everything you've just read about gumballs++ is true about ++gumballs.
The only difference is that, as an expression, ++gumballs behaves in a more intuitive
way. Suppose that before executing the code System.out .println(++gumballs),
the value of gumballs is 28:

® As a statement, ++gumballs tells the computer to add 1 to gumballs.

® As an expression, the value of ++gumballs is 29.

So, with System.out . println(++gumballs), the variable gumballs gets 1 added
to it, and the code System.out . println(++gumballs) really means System.out.
println(29).

EXPLORE PREINCREMENT AND POSTINCREMENT
IN A JAVA PROGRAM

Before you run the following code, try to predict what the code’s output will be.
Then run the code to find out whether your prediction is correct:

public class Main {

public static void main(String[] args) {
inti = 10;
System.out.println(i++);
System.out.println(—-i)

—1i,;

CHAPTER 7 Numbers and Types 167

168

i-—;
System.out.println(i);
System.out.println(++i);
System.out.println(i--);
System.out.println(i);

Assignment operators

If you’ve read the previous section — the section about operators that add 1 — you
may be wondering whether you can manipulate these operators to add 2 or add 5
or add 1000000. Can you write gumballs++++ and still call yourself a Java pro-
grammer? Well, you can’t. If you try it, Intelli] will give you an error message:

Variable expected
If you don’t use Intelli], you may see a different error message:

error: unexpected type

gumballs++++;

N

required: variable

found: value

IntelliJ or no IntelliJ, the bottom line is the same: Namely, your code contains an
error, and you have to fix it.

How can you add values other than 1? As luck would have it, Java has plenty of
assignment operators you can use. With an assignment operator, you can add,
subtract, multiply, or divide by anything you want. You can do other cool opera-
tions, too.

For example, you can add 1 to the kids variable by writing

kids += 1;

Is this better than kids++ or kids = kids + 1? No, it’s not better. It’s just an
alternative. But you can add 5 to the kids variable by writing

kids += 5;

PART 2 Writing Your Own Java Programs

CROSS
REFERENCE

&

TRY IT OUT

You can’t easily add 5 with preincrement or postincrement. And what if the kids
get stuck in an evil scientist’s cloning machine? The statement

kids x= 2;
multiplies the number of kids by 2.

With the assignment operators, you can add, subtract, multiply, or divide a
variable by any number. The number doesn’t have to be a literal. You can use a
number-valued expression on the right side of the equal sign:

double amount = 5.95;
double shippingAndHandling = 25.00, discount = 0.15;
amount += shippingAndHandling;

amount —= discount x 2;
The preceding code adds 25.00 (shippingAndHandling) to the value of amount.
Then the code subtracts 0.30 (discount x 2) from the value of amount. How
generous!
If the word literal doesn’t ring any bells for you, refer to Chapter 4.

EXPERIMENT WITH ASSIGNMENT OPERATORS

Before you run the following code, try to predict what the code’s output will be.
Then run the code to find out whether your prediction is correct:

public class Main {

public static void main(String[] args) {
inti = 10;

System.out.println(i);
System.out.println(i += 3);
System.out.println(i /= 2);

CHAPTER 7 Numbers and Types 169

MAKING CHANGE YET AGAIN

In addition to the assignment operators that I describe in this section, Java also
has a %= operator. The %= operator does for remainders what the += operator does
for addition. Modify the code in Listing 7-3 so that it uses the %= assignment
operator wherever possible.

Size Matters

170

FIGURE 7-13:
Storing the
digits 4221.

Here are today’s new vocabulary words:
foregift (fore-gift) n. A premium that a lessee pays to the lessor upon the taking of
a lease.

hereinbefore (here-in-be-fore) adv. In a previous part of this document.

Now imagine yourself scanning some compressed text. In this text, all blanks
have been removed to conserve storage space. You come upon the following
sequence of letters:

hereinbeforegiftedit

The question is, what do these letters mean? If you knew each word’s length, you
could answer the question:

here in be foregift edit
hereinbefore gifted it

herein before gift Ed it

A computer faces the same kind of problem. When a computer stores several
numbers in memory or on a disk, the computer doesn’t put blank spaces between
the numbers. So imagine that a small chunk of the computer’s memory looks like
the stuff in Figure 7-13. (The computer works exclusively with zeros and ones, but
Figure 7-13 uses ordinary digits. With ordinary digits, it’s easier to see what’s
going on.)

412121

PART 2 Writing Your Own Java Programs

TABLE 7-1:

What number or numbers are stored in Figure 7-13? Is it two numbers, 42 and 21?7
Or is it one number, 4,221? And what about storing four numbers, 4, 2, 2, and 1? It
all depends on the amount of space each number consumes.

Imagine a variable that stores the number of paydays in a month. This number
never exceeds 31. You can represent this small number with just eight zeros and
ones. But what about a variable that counts stars in the universe? That number
could easily be more than a trillion, and to represent 1 trillion accurately, you need
6/ zeros and ones.

At this point, Java comes to the rescue. Java has four types of whole numbers. Just
as in Listing 7-1, I declare

int gumballsPerKid;
I can also declare
byte paydaysInAMonth;
short sickDaysDuringYourEmployment;

long numberOfStars;

Each of these types (byte, short, int, and long) has its own range of possible
values. (See Table 7-1.)

Java’s Primitive Numeric Types

Type Name Range of Values

Whole Number Types

byte -128 to 127

short -32768 to 32767

int -2147483648 to 2147483647

long -9223372036854775808 to 9223372036854775807

Decimal Number Types

float -3.4x10% to 3.4x1038

double -1.8x103% to 1.8x10308

CHAPTER 7 Numbers and Types 171

172

Java has two types of decimal numbers (numbers with digits to the right of the
decimal point). Just as in Listing 6-1 (over in Chapter 6), I declare

double amount;
I can also declare
float monthlySalary;

Given the choice between double and float, I always choose double. A variable of
type double has a greater possible range of values and much greater accuracy.
(See Table 7-1.)

Table 7-1 lists six of Java’s primitive types (also known as simple types). Java has
only eight primitive types, so only two of Java’s primitive types are missing from
Table 7-1.

Chapter 8 describes the two remaining primitive types. Chapter 13 introduces
types that aren’t primitive.

As a beginning programmer, you don’t have to choose among the types in
Table 7-1. Just use int for whole numbers and double for decimal numbers. If, in
your travels, you see something like short or float in someone else’s program,
just remember the following:

¥ The typesbyte, short, int, and long represent whole numbers.

¥ The types float and double represent decimal numbers.

Most of the time, that’s all you need to know.

PART 2 Writing Your Own Java Programs

IN THIS CHAPTER

» Working with characters

» Dealing with “true” or “false” values

» Rounding out your knowledge of
Java's primitive types

Chapter S

Numbers? Who Needs
Numbers?

don’t particularly like fax machines. They’re so inefficient. Send a short fax and

what do you have? You have two slices of a tree — one at the sending end and

another at the receiving end. You also have millions of dots — dots that scan
tiny little lines across the printed page. The dots distinguish patches of light from
patches of darkness. What a waste!

Compare a fax with an email message. Using email, I can send a 25-word contest
entry with just 2,500 zeros and ones, and I don’t waste any paper. Best of all, an
email message doesn’t describe light dots and dark dots. An email message con-
tains codes for each of the letters — a short sequence of zeros and ones for the
letter A, a different sequence of zeros and ones for the letter B, and so on. What
could be simpler?

Now imagine sending a one-word fax. The word is true, which is understood to
mean, “True, I accept your offer to write Beginning Programming with Java For
Dummies, 6th Edition.” A fax with this message sends a picture of the four letters
t-r-u-e, with fuzzy lines where dirt gets on the paper and little white dots where
the cartridge runs short on toner.

CHAPTER 8 Numbers? Who Needs Numbers? 173

But really, what’s the essence of the “true” message? There are just two possibili-
ties, aren’t there? The message could be “true” or “false,” and to represent those
possibilities, I need very little fanfare. How about o for “false” and 1 for “true”?

They ask, “Do you accept our offer to write Beginning Programming with java For
Dummies, 6th Edition?”
“1," I reply.

Too bad I didn’t think of that a few months ago. Anyway, this chapter deals with
letters, truth, falsehood, and other such things.

A Brief Character Study

In Chapters 6 and 7, you store numbers in all your variables. That’s fine, but
there’s more to life than numbers. For example, I wrote this book with a com-
puter, and this book contains thousands and thousands of nonnumeric things
called characters.

The Java type that’s used to store characters is char. Listing 8-1 has a simple pro-
gram that uses the char type, and a run of the Listing 8-1 program is shown in
Figure 8-1.

m Using the char Type

FIGURE 8-1:
Exciting program
output!

public class LowerToUpper {

public static void main(String[] args) {
char smallletter, biglLetter;

smalllLetter = 'b';
bigLetter = Character.toUpperCase(smalllLetter);
System.out.println(biglLetter);

174 PART 2 Writing Your Own Java Programs

LD,
TECHNICAL
STUFF

FIGURE 8-2:
The action in
Listing 8-1.

REMEMBER

In Listing 8-1, the first assignment statement stores the letter b in the
smallletter variable. In that statement, notice how b is surrounded by single
quote marks (' '). In a Java program, every char literal starts and ends with a
single quote mark.

When you surround a letter with quote marks, you tell the computer that the letter
isn’t a variable name. For example, in Listing 8-1, the incorrect statement
smalllLetter = b would tell the computer to look for a variable named b. Because
there’s no variable named b, Intelli] would display b in an alarming, red color.

In the second assignment statement of Listing 8-1, the program calls an API
method whose name is Character.toUpperCase. The method Character.to
UpperCase does what its name suggests — the method produces the uppercase
equivalent of a lowercase letter. In Listing 8-1, this uppercase equivalent (the
letter B) is assigned to the variable bigLetter, and the B that’s in bigLetter is
printed on the screen, as illustrated in Figure 8-2.

smallletter = 'b';

biglLetter = ‘Character.toUpperCase(sma] lLetter);

. - ‘

System.out.printIn(biglLetter);

When the computer displays a char value on the screen, the computer doesn’t
surround the character with single quote marks.

| digress...

A while ago, I wondered what would happen if I called the Character . toUpper
Case method and fed the method a character that isn’t lowercase to begin with.
I yanked out the Java API documentation, but I found no useful information.
The documentation said that toUpperCase “converts the character argument to

CHAPTER 8 Numbers? Who Needs Numbers? 175

uppercase using case mapping information from the UnicodeData file.” Thanks,
but that’s not useful to me.

Silly as it seems, I asked myself what I’d do if I were the toUpperCase method.
What would I say if someone handed me a capital R and told me to capitalize that
letter? I'd say, “Take back your stinking capital R.” In the lingo of computing, I'd
send that person an error message. So I wondered whether I’d get an error mes-
sage if I applied Character . toUpperCase to the letter R.

I tried it. I cooked up the experiment in Listing 8-2.

m Investigating the Behavior of toUpperCase

public class MyExperiment {

public static void main(String[] args) {
char smalllLetter, biglLetter;

smalllLetter = 'R';

bigLetter = Character.toUpperCase(smalllLetter);
System.out.println(bigLetter);

smalllLetter = '3';
bigLetter = Character.toUpperCase(smalllLetter);
System.out.println(biglLetter);

In my experiment, I didn’t mix chemicals and blow things up. Here’s what I did
instead:

3 lassigned 'R' tosmallletter.

The toUpperCase method took the uppercase R and gave me back another
uppercase R. (See Figure 8-3.) | got no error message. This told me what the
toUpperCase method does with a letter that's already uppercase. The
method does nothing.

3 lassigned '3' tosmallletter.

The toUpperCase method took the digit 3 and gave me back the same digit 3.
(See Figure 8-3.) | got no error message. This told me what the toUpperCase
method does with a character that's not a letter. It does nothing — zip, zilch,
bupkis.

176 PART 2 Writing Your Own Java Programs

FIGURE 8-3:
Running the code
in Listing 8-2.

w o

I write about this experiment to make an important point. When you don’t under-
stand something about computer programming, it often helps to write a test pro-
gram. Make up an experiment and see how the computer responds.

I guessed that handing a capital R to the toUpperCase method would give me an
error message, but I was wrong. See? The answers to questions aren’t handed
down from heaven. The people who created the Java API made decisions. They
made some obvious choices, and they also made some unexpected choices. No one
knows everything about Java’s features, so don’t expect to cram all the answers
into your head.

The Java documentation is great, but for every question that the documentation
answers, it ignores three other questions. So be bold. Don’t be afraid to tinker.
Write lots of short, experimental programs. You can’t break the computer, so play
tough with it. Your inquisitive spirit will always pay off.

One character only, please

A char variable stores only one character. So if you’re tempted to write the follow-
ing statements

char smallletters;
smallletters = 'barry'; //Don't do this

please resist the temptation. You can’t store more than one letter at a time in a
char variable, and you can’t put more than one letter between a pair of single
quotes. If you’re trying to store words or sentences (not just single letters), then
you need to use double quote marks, as in this statement from a listing in
Chapter 7:

System.out.print("How many gumballs? How many kids? ");
The text in double quote marks is an example of a string. For an introduction to

strings, refer to Chapter 4. For a more careful look at Java’s String type, see
Chapter 14.

CHAPTER 8 Numbers? Who Needs Numbers? 177

Variables and recycling

In Listing 8-2, I use smalllLetter twice, and I use bigLetter twice. That’s why
they call these things variables. First, the value of smalllLetter isR. Later, I vary
the value of smalllLetter so that the value of smalllLetter becomes 3.

When I assign a new value to smalllLetter, the old value of smalllLetter gets
obliterated. For example, in Figure 8-4, the second smallletter assignment puts
3 into smalllLetter. When the computer executes this second assignment state-
ment, the old valueR is gone.

smallletter

R <—

smalllLetter = 'R';
bigLetter = Character.toUpperCase(smalllLetter);
System.out.printin(bigletter);

smallletter

R
FIGURE 8-4: 3 smalllLetter = '3";
Varying the bigletter = Character.toUpperCase(smallletter);
value of System.out.printIn(biglLetter)

smalllLetter.

Is that okay? Can you afford to forget the value that smalllLetter once had? Yes,
in Listing 8-2, it’s okay. After you’ve assigned a value to bigLetter with the
statement

bigLetter = Character.toUpperCase(smalllLetter);
you can forget all about the existing smalllLetter value. You don’t need to do this:

// This code is cumbersome.

// The extra variables are unnecessary.
char smallletteril, bigletteri;

char smallletter2, biglLetter2;

smallLetterl = 'R';
bigLetterl = Character.toUpperCase(smalllLetterl);
System.out.println(biglLettert);

smallLetter2 = '3';

bigLetter2 = Character.toUpperCase(smalllLetter2);
System.out.println(biglLetter2);

178 PART 2 Writing Your Own Java Programs

You don’t need to store the old and new values in separate variables. Instead, you
can reuse the variables smalllLetter and bigLetter as in Listing 8-2.

This reuse of variables doesn’t save you from a lot of extra typing. It doesn’t save
much memory space, either. But reusing variables keeps the program uncluttered.
When you look at Listing 8-2, you can see at a glance that the code has two parts,
and you see that both parts do roughly the same thing.

The code in Listing 8-2 is simple and manageable. In such a small program, sim-
plicity and manageability don’t matter much. But in a large program, it helps to
think carefully about the use of each variable.

When not to reuse a variable

The previous section discusses the reuse of variables to make a program slick and
easy to read. This section shows you the flip side. In this section, the problem at
hand forces you to create new variables.

Suppose that you’re writing code to reverse the letters in a four-letter word. You

store each letter in its own, separate variable. Listing 8-3 shows the code, and
Figure 8-5 shows the code in action.

m Making a Word Go Backward

import java.util.Scanner;

public class ReverseWord {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
char c1, c2, c3, c4;

cl = keyboard. findWithinHorizon(".", @).charAt(Q);
c2 = keyboard. findWithinHorizon(".", ©@).charAt(Q);
c3 = keyboard. findWithinHorizon(".", ©).charAt(Q);
c4 = keyboard. findWithinHorizon(".", ©@).charAt(Q);

System.out.print(c4);
System.out.print(c3);
System.out.print(c2);
System.out.print(cl);
System.out.printin();

keyboard.close();

CHAPTER 8 Numbers? Who Needs Numbers? 179

FIGURE 8-5:
Stop those pots!

FIGURE 8-6:
Using four
variables.

pots
stop

The trick in Listing 8-3 is as follows:

¥ Assign values to variables c1, c2, ¢3, and c4 in that order.

¥ Display these variables’ values on the screen in reverse order: ¢4, ¢3, c2, and
then c1, as illustrated in Figure 8-6.

Keyboard input: pots

cl c2 c3 o

The computer's memory: p 0 t S
Screen output: stop

If you don’t use four separate variables, you don’t get the result that you want. For
example, imagine that you store characters in only one variable. You run the pro-
gram and type the word pots. When it’s time to display the word in reverse, the
computer remembers the final s in the word pots. But the computer doesn’t
remember the p, the o, or the t, as shown in Figure 8-7.

I wish I could give you 12 simple rules to help you decide when and when not to
reuse variables. The problem is, I can’t. It all depends on what you’re trying to
accomplish. So, how do you figure out on your own when and when not to reuse
variables? Like the guy says to the fellow who asks how to get to Carnegie Hall,
“Practice, practice, practice.”

180 PART 2 Writing Your Own Java Programs

FIGURE 8-7:
Getting things
wrong because
you used only
one variable.

Keyboard input: pots

{7

The computer's memory: Ws

Screen output: S §$S S

Reading characters

The people who created Java’s Scanner class didn’t create a next method for
reading a single character. So, to input a single character, I paste two Java API
methods together. I use the findWithinHorizon and charAt methods.

Table 5-1 (over in Chapter 5) introduces this findwWithinHorizon(".",).
charAt(Q) technique for reading a single input character, and Listing 8-3 uses the
technique to read one character at a time. (In fact, Listing 8-3 uses the technique
four times to read four individual characters.)

Notice the format for the input shown earlier, in Figure 8-5. To enter the char-
acters in the word pots, I type four letters, one after another, with no blank
spaces between the letters and no quote marks. The findWithinHorizon
(".", 0).charAt(Q@) technique works that way, but don’t blame me or my tech-
nique. Other developers’ character-reading methods work the same way. No
matter whose methods you use, reading a character differs from reading a num-
ber. Here’s how:

3 With methods like nextDouble and nextInt, you type blank spaces
between numbers.

If | type 80 6, then two calls to nextInt read the number 80, followed by the
number 6. If | type 806, then a single call to nextInt reads the number 806
(eight hundred six), as illustrated in Figure 8-8.

CHAPTER 8 Numbers? Who Needs Numbers? 181

182

PART 2

WHAT'S BEHIND ALL THIS
FINDWITHINHORIZON NONSENSE?

Without wallowing in too much detail, here's how the findWithinHorizon(".", @).
charAt (@) technique works:

Java's findWithinHorizon method looks for things in the input. The things the
method finds depend on the stuff you put in parentheses. For example, a call to
findWithinHorizon("\\d\\d\\d", @) looks for a group consisting of three digits.
With the following line of code

System.out.println(keyboard. findWithinHorizon("\\d\\d\\d", 0));
| can type

Testing 123 Testing Testing
and the computer responds by displaying

123

In the call findWithinHorizon("\\d\\d\\d", @), each \\d stands for a single digit.
This \\d business is one of many abbreviations in special code called regular expressions.

Now, here's something strange. In the world of regular expressions, a dot stands for
any character at all. (That is, a dot stands for “any character, not necessarily a dot.”) So

findWithinHorizon(".", @) tells the computer to find the next character of any
kind that the user types on the keyboard. When you're trying to input a single character,
findWithinHorizon(".", @) is mighty useful.

In the call findWithinHorizon("\\d\\d\\d", @), the tells findWithinHorizon
to keep searching until the end of the input. This value @ is a special case because any-
thing other than @ limits the search to a certain number of characters. (That's why the
method name contains the word horizon. The horizon is as far as the method sees.)
Here are a few examples:

® With the same input Testing 123 Testing Testing, the call findWithin
Horizon("\\d\\d\\d", 9) returnsnull. It returnsnnull because the first nine
characters of the input (the characters Testing 1 — seven letters, a blank space,
and a digit) don't contain three consecutive digits. These nine characters don't
match the pattern \\d\\d\\d.

® With the same input, the call findWithinHorizon("\\d\\d\\d", 10) also
returnsnull. It returnsnull because the first ten characters of the input (the
characters Testing 12) don't contain three consecutive digits.

® With the same input, the call findWithinHorizon("\\d\\d\\d", 11) returns
123. It returns 123 because the first 11 characters of the input (the characters
Testing 123) contain these three consecutive digits.

® With the input A57B442123 Testing, the call findWithinHorizon("\\d\\
d\\d", 12) returns442. It returns 442 because, among the first 12 characters of
the input (the characters A57B442123 Test), the first sequence consisting of three
consecutive digits is the sequence 442.

But wait! To grab a single character from the keyboard, | call findWithinHorizon
(".", @).charAt(@).What's the role of charAt (@) in reading a single character?
Unfortunately, any findWithinHorizon call behaves as though it's finding a bunch
of characters, not just a single character. Even when you call findWithinHorizon
(".", @) and the computer fetches just one letter from the keyboard, the Java
program treats that letter as one of possibly many input characters.

The call to charAt (@) takes care of the multicharacter problem. This charAt (@)
call tells Java to pick the initial character from any of the characters that findWithin
Horizon fetches.

Yes, it's complicated. And yes, | don't like having to explain it. But no, you don't have to
understand any of the details in this sidebar. Just read the details if you want to read
them and skip the details if you don't care.

¥ With findWithinHorizon(".", @).charAt(Q), you don't type blank
spaces between characters.
If | type po, then two successive calls to findWithinHorizon(".", Q).
charAt(Q) read the letter p, followed by the letter o. If | type p o, then two
callsto findWithinHorizon(".", @).charAt(@) read the letter p, followed
by a blank space character. (Yes, the blank space is a character!) Again, see
Figure 8-8.

To represent a lone character in the text of a computer program, you surround the
character with single quote marks. But, when you type a character as part of a

program’s input, you don’t surround the character with quote marks.
REMEMBER

CHAPTER 8 Numbers? Who Needs Numbers? 183

FIGURE 8-8:

Reading numbers
and characters.

184

A

WARNING

&

TRY IT OUT

firstInt = keyboard .nextInt () ;‘/2\

secondInt = keyboard.nextInt () ; 80 ©

— 2%
" 508

onlyInt = keyboard.nextInt();

firstChar = keyboard.findWithinHorizon(".", 0).charAt(‘/2‘
secondChar = keyboard.findWithinHorizon{".", 0). charAt O) ; N

firstChar = keyboard.findWithinHorizon(".", 0).charAt(‘/,l‘

secondChar = keyboard.findwithinHorizon{".", 0). charAt O) ; \)

Suppose that your program calls nextInt and then findwWithinHorizon
(".", @).charAt(0). If you type 80x on the keyboard, you get an error message.
(The message says InputMismatchException. The nextInt method expects you
to type a blank space after each int value.) Now, what happens if, instead of typ-
ing 80%, you type 80 x on the keyboard? Then the program gets 80 for the int
value, followed by a blank space for the character value. For the program to get the
%, the program has to call findWithinHorizon(".", ©).charAt(@) one more
time. It seems wasteful, but it makes sense in the long run.

WHAT'S IN A NAME?

In addition to its Character.toUpperCase method, Java has a Character.to
LowerCase method. With that in mind, write a program that reads a three-letter
word and outputs the word as it’s capitalized when it’s a person’s name. For
example, if the program reads the letters ann, the program outputs Ann. If the
program inputs BoB, the program outputs Bob.

ARRANGEMENTS OF LETTERS

Write a program that reads three letters from the keyboard and outputs all possi-
ble arrangements of the three letters. For example, if the program reads the letters

box

PART 2 Writing Your Own Java Programs

the program outputs

box
bxo
obx
oxb
xbo

xob

The Moment of Truth (and Falsehood)

I'm in big trouble. I have 140 gumballs, and 15 kids are running around and
screaming in my living room. They’re screaming because each kid wants 10 gum-
balls, and they’re running because that’s what kids do in a crowded living room.
I need a program that tells me whether I can give 10 gumballs to each kid.

I need a variable of type boolean. A boolean variable stores one of two values —
true or false (true, I can give ten gumballs to each kid; or false, I can’t give ten
gumballs to each kid). Anyway, the kids are going berserk, so I’ve written a short
program and put it in Listing 8-4. The output of the program is shown in
Figure 8-9.

m Using the boolean Type

public class CanlKeepKidsQuiet {

public static void main(String[] args) {
int gumballs;
int kids;
int gumballsPerKid;
boolean eachKidGetsTen;

gumballs = 140;
kids = 15;
gumballsPerKid = gumballs / kids;

System.out.print("True or false? ");
System.out.println("Each kid gets 10 gumballs.");
eachKidGetsTen = gumballsPerKid >= 10;
System.out.println(eachKidGetsTen);

CHAPTER 8 Numbers? Who Needs Numbers? 185

FIGURE 8-9:
Oh, no!

FIGURE 8-10:
Assigning a
value to the

eachKidGetsTen

186

variable.

True or false? Each kid gets 1@ gumballs.
false

In Listing 8-4, the variable eachKidGetsTen is of type boolean. So the value
stored in the eachKidGetsTen variable can be either true or false. (I can’t store
a number or a character in the eachKidGetsTen variable.)

To find a value for the variable eachKidGetsTen, the program checks to see
whether gumballsPerKid is greater than or equal to ten. (The symbols > = stand for
“greater than or equal to.” What a pity! There’s no > key on the standard computer
keyboard.) Because gumballsPerKid is only nine, gumballsPerKid »>= 10
is false. So eachKidGetsTen becomes false. Yikes! The kids will tear the house
apart! (Before they do, take a look at Figure 8-10.)

gumballs = 140;
kids = 15;
gumballsPerKid = gumballs/kids;

9 140/15
eachKidGetsTen = gumballsPerKid>=10;
false True or False? 9 is gr?:ltseg than or equal to 10...

Expressions and conditions

In Listing 8-4, the code gumballsPerKid >= 10 is an expression. The expression’s
value depends on the value stored in the variable gumballsPerKid. On a bad day,
the value of gumballsPerKid >= 10 is false. So the variable eachKidGetsTen is
assigned the value false.

An expression like gumballsPerKid >= 10, whose value is either true or false,
is sometimes called a condition.

PART 2 Writing Your Own Java Programs

LD,
TECHNICAL
STUFF

TABLE 8-1:

AN

WARNING

Values like true and false may look as though they contain characters, but they
really don’t. Internally, the Java Virtual Machine doesn’t store boolean values
with the letters t-r-u-e or f-a-1-s-e. Instead, the JVM stores codes, like 0 for
false and 1 for true. When the computer displays a boolean value (as in System.
out.println(eachKidGetsTen)), the Java Virtual Machine converts a code like 0
into the five-letter word false.

Comparing numbers; comparing characters

In Listing 8-4, I compare a variable’s value with the number 10. I use the >=
operator in the expression

gumballsPerKid >= 10
Of course, the greater-than-or-equal-to comparison gets you only so far.

Table 8-1 shows you the operators you can use to compare things with one
another.

Comparison Operators

Operator Symbol Meaning Example

== is equal to myGuess == winningNumber

1= is not equal to 5 I= numberOfCows

< is less than strikes < 3

> is greater than numberOfBoxtops > 1000

<= is less than or equal to lowNumber + highNumber <= 25
5= is greater than or equalto gumballsPerKid >= 10

With the operators in Table 8-1, you can compare both numbers and characters.

Notice the double equal sign in the first row of Table 8-1. Don’t try to use a single
equal sign to compare two values. The expression myGuess = winningNumber
(with a single equal sign) doesn’t compare myGuess with winningNumber. Instead,
myGuess = winningNumber changes the value of myGuess. (It assigns the value of
winningNumber to the variable myGuess.)

You can compare other things (besides numbers and characters) with the == and

I= operators. But when you do, you have to be careful. For more information, see
Chapter 14.

CHAPTER 8 Numbers? Who Needs Numbers? 187

Comparing numbers

Nothing is more humdrum than comparing numbers. “True or false? Five is
greater than or equal to ten.” False. Five is neither greater than nor equal to ten.
See what I mean? Bo-ring.

Comparing whole numbers is an open-and-shut case. But unfortunately, when
you compare decimal numbers, there’s a wrinkle. Take a program for converting
from Celsius to Fahrenheit. Wait! Don’t take just any such program; take the
program in Listing 8-5.

m It's Warm and Cozy in Here

import java.util.Scanner;

public class CelsiusToFahrenheit {
public static void main(String[] args) {
var keyboard = new Scanner(System.in);

double celsius, fahrenheit;

System.out.print("Enter the Celsius temperature: ");
celsius = keyboard.nextDouble();

fahrenheit = 9.0 / 5.0 % celsius + 32.0;

System.out.print("Room temperature? ");
System.out.println(fahrenheit == 69.8);

keyboard.close();

If you run the code in Listing 8-5 and input the number 21, the computer finds the
value of 9.0 / 5.0 x 21 + 32.0. Believe it or not, you want to check the
computer’s answer. (Who knows? Maybe the computer gets it wrong!) You need to
do some arithmetic, but please don’t reach for your calculator. A calculator is just
a small computer, and machines of that kind stick up for one another. To check
the computer’s work, you need to do the arithmetic by hand. What? You say you’re
math-phobic? Well, don’t worry. I've done all the math in Figure 8-11.

If you do the arithmetic by hand, the value you get for9.0 / 5.0 * 21 + 32.01is

exactly 69.8. So run the code in Listing 8-5 and give celsius the value 21. You
should get true when you display the value of fahrenheit == 69.8, right?

188 PART 2 Writing Your Own Java Programs

(:) 21 <:> 37.8<~ 37.8
X 9 5V189.0 | +32
189 15 i 69.8
39 i A
3B 3
40
40

FIGURE 8-11: !
The Fahrenheit S
temperature is

exactly 69.8.
Well, no. Take a look at the run in Figure 8-12. When the computer evaluates
fahrenheit == 69.8, the value turns out to be false, not true. What’s going
on here?

Enter the Celsius temperature: 21
FIGURE 8-12: Room temperature? false
Arun of the code
in Listing 8-5.

Grouping separators vary from one country to another. The run shown in
Figure 8-12 works almost everywhere in the world. But if the Celsius temperature
is twenty-one-and-a-half degrees, you type 21.5 (with a dot) in some countries

rememeer and 21,5 (with a comma) in others. Your computer’s hardware doesn’t have a
built-in “country-ometer,” but when you install the computer’s operating sys-
tem, you tell it which country you live in. Java programs access this information
and use it to customize the way the nextDouble method works.

A little detective work can go a long way. Review the facts:

¥ Fact: The value of fahrenheit should be exactly 69.8.
¥ Fact: If fahrenheit is 69.8, then fahrenheit == 69.8 is true.

¥ Fact: In Figure 8-12, the computer displays the word false. So the expression
fahrenheit == 69.8 isn't true.

How do you reconcile these facts? There can be little doubt that fahrenheit ==
69.8 is false, so what does that say about the value of fahrenheit? Nowhere in
Listing 8-5 is the value of fahrenheit displayed. Could that be the problem?

CHAPTER 8 Numbers? Who Needs Numbers? 189

The

FIGURE 8-13:
fahrenheit

variable’s full

190

value.

REMEMBER

LD,
TECHNICAL
STUFF

At this point, I use a popular programmer’s trick. I add statements to display the
value of fahrenheit:

fahrenheit = 9.0 / 5.0 % celsius + 32.0;
System.out.print("fahrenheit: "); //Added
System.out.println(fahrenheit); //Added

A run of the enhanced code is shown in Figure 8-13. As you can see, the computer
misses its mark. Instead of the expected value 69.8, the computer’s value for
9.0 / 5.0 x 21 + 32.0 is 69.80000000000001. That’s just the way the cookie
crumbles. The computer does all its arithmetic with zeros and ones, so
the computer’s arithmetic doesn’t look like the base-10 arithmetic in Figure 8-11.
The computer’s answer isn’t wrong. The answer is just slightly inaccurate.

Enter the Celsius temperature: 21
[fahrenheit: 69.80000000000001
Room temperature? false

In an example in Chapter 7, Java’s remainder operator (%) gives you the answer
0.1299999999999999 instead of the ©.13 that you expect. The same strange kind
of thing happens in this section’s example. But this section’s code doesn’t use an
exotic remainder operator. This section’s code uses your old friends division,
multiplication, and addition.

Be careful when you compare two numbers for equality (with ==) or for inequality
(with !=). Little inaccuracies can creep in almost anywhere when you work with
Java’s double type or with Java’s float type. And several little inaccuracies can
build on one another to become very large inaccuracies. When you compare two
double values or two float values, the values are almost never dead-on equal to
one another.

If your program isn’t doing what you think it should do, check your suspicions
about the values of variables. Add print and println statements to your code.

When you compare double values, give yourself some leeway. Instead of compar-
ing for exact equality, ask whether a particular value is reasonably close to the
expected value. For example, use a condition like fahrenheit >= 69.8 - 0.01 &&
fahrenheit <= 69.8 + 0.01 to find out whether fahrenheit is within 0.01 of the
value 69.8. To read more about conditions containing Java’s &_& operator, see
Chapter 10.

PART 2 Writing Your Own Java Programs

AUTOMATED DEBUGGING

If your program isn't working correctly, you can try something called a debugger. An
automated debugger can pause your program’s run and accept special commands to
display variables' values. With some debuggers, you can pause a run and change a
variable's value (just to see whether things go better when you do).

In this book, | don't promote the use of an automated debugger. But for any large pro-
gramming project, automated debugging is an essential tool. If you plan to write bigger
and better programs, please give Intelli's debugging capabilities a try. For a peek at the
things Intelli)'s debugger can do, follow these steps:

1. Create an Intelli) project containing Listing 8-5.

2. In IntelliJ's editor, click in the margin to the left of a line of code.

In the first sidebar figure, | click the System.out .println line from Listing 8-5.

A little red dot appears in the editor's margin. This dot indicates a breakpoint in the
code. In the steps that follow, you'll make the run of the program pause immedi-
ately before the line with the breakpoint.

System.out.print("Room temperature? ");
® System.ovt.println(fahrenheit == 69.8);

keyboard.close();

3. Right-click either the CelsiusToFahrenheit branch in the Project tool win-
dow or the CelsiusToFahrenheit tab at the top of the editor.

4. In the resulting context menu, select Debug 'CelsiusToFahrenheit.
main()"'.
Remember to select the Debug menu item, not the Run item.
When you click Debug 'CelsiusToFahrenheit.main()', your code begins
running. Intelli] replaces the Run tool window with its Debug tool window. The
Debug tool window has two tabs — a Debugger tab and a Console tab. (See this

sidebar’s second figure.) On the Console tab, Intellij prompts you to enter the
Celsius temperature.

(continued)

CHAPTER 8 Numbers? Who Needs Numbers? 191

(continued)

(2 Debugger E Console

y /Users/barryburd/Library/Java/JavaVirtvalMac
Connected to the target VM, address: '127.0.
OpenJDK 64-Bit Server VM warning: Sharing ic

192

Il ™ Enter the Celsius temperature:
m =
..,'E'

(]

W

iZ TODO @ Problems = 4 Debug M Terminal 4 Build

5. On the Console tab, type the number 21 and then press Enter.

Your code continues running until execution reaches the breakpoint. At the break-
point, the execution pauses and Intellij switches to the Debugger tab. (See this side-

bar's third figure.)

(% Debugger ElConsole = 2 ¥+ + 1t w H
re Frames Variables
» "ma.l. v I Y + P args = {String[0]@966} []

5 . > keyboard = {Scanner@267} "java.util. Scanner[deli
main:15, CelsiusToFahrenhe i
o1 celsius = 21.0

u @1 fahrenheit = 69.80000000000001

e
%

iZTODO @ Problems | # Debug [Terminal %, Build

The Debugger tab has two panels — a Frames panel and a Variables panel.
The Variables panel displays the values of the program'’s variables. (That's not
surprising.) In this sidebar’s third figure, the fahrenheit variable's value is
69 . 8000YVVYVRA1 . How nice! Using the debugging tools, you can examine

variables' values in the middle of a run!

If you compare the fahrenheit variable’s actual value, 69 . 8000000001, with
the number 69. 8 the code, you understand why the program is about to display

the word false.

PART 2 Writing Your Own Java Programs

6. To finish running your program, click the Resume Program icon along the left
edge of the Debug tool window. (See this sidebar’s fourth figure.)

Ct | Debugger HElConsodle = 2 + L+ 1t

& Frames Variables

] “ma..l.. ¥ Y|t P args =
k > keyboi

i & .
Resume Program Y 3£R celsius
o1 fahren

wn e

= TODO © Problems | # Debug [Terminal 4

When the program’s run ends, Intellij continues to display the Debugger tab.

7. To see the program'’s output, select the Debug tool window’s Console tab. (See
this sidebar’s final figure.)

£+ Debugger El Congole
/Users/barryburd/Library/Java/JavaVirtuallac

K
I Connected to the target VM, address: '127.0.
_ OpenJDK 64-Bit Server VM warning: Sharing is
¥ Enter the Celsius temperature: 21
¥ Room temperature? false

= =3 Disconnected from the target VM, address: "1

®

% = Process finished with exit code 8

= TODO © Problems = 3% Debug B Terminal %, Build

Comparing characters

The comparison operators in Table 8-1 work overtime for characters. Roughly
speaking, the operator < means “comes earlier in the alphabet.” But you have to
be careful of the following:

¥ Because B comes alphabetically before H, the condition 'B' < 'H' istrue.
That's not surprising.

CHAPTER 8 Numbers? Who Needs Numbers? 193

FIGURE 8-14:
The ordering of
the letters.

(= =)
T
TECHNICAL
STUFF

¥ Because b comes alphabetically before h, the condition 'b' < 'h' istrue.
That's no surprise, either.

¥ Every uppercase letter comes before any of the lowercase letters, so the
condition 'b' < 'H' is false. Now, that's a surprise. (See Figure 8-14.)

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz
lesser < greater

In practice, you seldom have reason to compare one letter with another. But
in Chapter 14, you can read about Java’s String type. With the String type, you
can compare words, names, and other good stuff. At that point, you have to think
carefully about alphabetical ordering, and the ideas in Figure 8-14 come in
handy.

Under the hood, the letters A through Z are stored with numeric codes 65 through
90. The letters a through z are stored with codes 97 through 122. That’s why each
uppercase letter is “less than” any of the lowercase letters.

The Remaining Primitive Types

TABLE 8-2:

In Chapter 7, I tell you that Java has eight primitive types, but Table 7-1 lists only
six of eight types. Table 8-2 describes the remaining two types — the types char
and boolean. Table 8-2 isn’t too exciting, but I can’t just leave you with the
incomplete story in Table 7-1.

Java’s Primitive Non-Numeric Types

Character Type

char Thousands of characters, glyphs, and symbols
Logical Type

boolean Only true or false

194 PART 2 Writing Your Own Java Programs

LD,
TECHNICAL
STUFF

OLAOD,
TECHNICAL
STUFF

&

TRY IT OUT

If you dissect parts of the Java Virtual Machine, you find that Java considers char
to be a numeric type. That’s because Java represents characters with something
called Unicode — an international standard for representing alphabets of the
world’s many languages. For example, the Unicode representation of an upper-
case letter C is 67. The representation of a Hebrew letter & is 1488. And (to take a
more obscure example) the representation for the voiced retroflex approximant in
phonetics is 635. But don’t worry about all of this. The only reason I'm writing
about the char type’s being numeric is to save face among my techie friends.
After looking at Table 8-2, you may be wondering what a glyph is. (In fact, I'm
proud to be writing about this esoteric concept, whether you have any use for the
information or not.) A glyph is a particular representation of a character. For
example, a and a are two different glyphs, but both of these glyphs represent the
same lowercase letter of the Roman alphabet. (Because these two glyphs have the
same meaning, the glyphs are called allographs. If you want to sound smart, find a
way to inject the words glyph and allograph into a casual conversation!)

MORE CHARACTER METHODS

Type the following code into JShell to see how JShell responds:
Character.isDigit('a")
Character.isDigit('2")
Character.islLetter('a')
Character .isLetter('2"')
Character.isLetterOrDigit('4")
Character .isLetterOrDigit('@")
Character . isLowerCase('b")
Character . isLowerCase('B")
Character . isLowerCase('7T")
Character.isJavaldentifierPart('x"')
Character.isJavaldentifierPart('7")
Character.isJavaldentifierPart('-'

Character .isJavaldentifierPart(' ')

CHAPTER 8 Numbers? Who Needs Numbers? 195

Controlling
the Flow

IN THIS PART ...

Making big decisions (or, more accurately, making
not-so-big decisions)

Repeating yourself
Repeating yourself

Repeating yourself again

IN THIS CHAPTER

» Writing statements that choose
between alternatives

» Putting statements inside one
another

» Writing several kinds of decision-
making statements

Chapter9
Forks in the Road

ere’s an excerpt from Beginning Programming with Java For Dummies,
6th Edition, Chapter 8:

If you're trying to store words or sentences (not just single letters), then you need
to use something called a String.*

This excerpt illustrates two important points: First, you may have to use something
called a String. Second, your choice of action can depend on something being true
or false:

If it's true that you're trying to store words or sentences,
you need to use something called a String.
This chapter deals with decision-making, which plays a fundamental role in the

creation of instructions. With the material in this chapter, you expand your pro-
gramming power by leaps and bounds.

* This excerpt is reprinted with permission from John Wiley & Sons, Inc. If you
can’t find a copy of Beginning Programming with Java For Dummies, 6th Edition, in
your local bookstore, visit www.dummies . com.

CHAPTER 9 Forks in the Road 199

http://www.dummies.com/

Decisions, Decisions!

Picture yourself walking along a quiet country road. You’re enjoying a pleasant
summer day. It’s not too hot, and a gentle breeze from the north makes you feel
fresh and alert. You’re holding a copy of this book, opened to Chapter 9. You read
the paragraph about storing words or sentences, and then you look up.

You see a fork in the road. You see two signs — one pointing to the right and
the other pointing to the left. One sign reads, “Storing words or sentences? True.”
The other sign reads, “Storing words or sentences? False.” You evaluate the
words-or-sentences situation and march on, veering right or left depending on
your software situation. A diagram of this story is shown in Figure 9-1.

Use something
called a String.

FIGURE 9-1:
Which way to go?

Life is filled with forks in the road. Take an ordinary set of directions for heating
a frozen snack:

3 Microwave cooking directions:
Place on microwave-safe plate.
Microwave on high for 2 minutes.
Turn product.

Microwave on high for 2 more minutes.

200 PART 3 Controlling the Flow

3 Conventional oven directions:
Preheat oven to 350 degrees.
Place product on baking sheet.

Bake for 25 minutes.

Again, you choose between alternatives. If you use a microwave oven, do this.
Otherwise, do that.

In fact, it’s hard to imagine useful instructions that don’t involve choices. If you’re
a homeowner with two dependents and earning more than $30,000 per year, check
here. If you don’t remember how to use curly braces in Java programs, see Chapter 4.
Did the user correctly type the password? If yes, then let the user log in; if no, then
kick the bum out. If you think the market will go up, then buy stocks; otherwise, buy
bonds. And if you buy stocks, which should you buy? And when should you sell?

Making Decisions (Java if Statements)

When you work with computer programs, you make one decision after another.
Almost every programming language has a way of branching in one of two direc-
tions. In Java (and in many other languages), the branching feature is called an if
statement. Check out Listing 9-1 to see an i f statement.

m An if Statement

if (randomNumber > 5) {

System.out.println("Yes. Isn't it obvious?");
} else {
System.out.println("No, and don't ask again.");

To see a complete program containing the code from Listing 9-1, skip to
Listing 9-2 (or, if you prefer, walk, jump, or run to Listing 9-2).

The if statement in Listing 9-1 represents a branch, a decision, two alternative
courses of action. In plain English, this statement has the following meaning:

If the randomNumber variable's value is greater than 5,
display "Yes. Isn't it obvious?" on the screen.
Otherwise,

display "No, and don't ask again." on the screen.

CHAPTER 9 Forks in the Road 201

FIGURE 9-2:
Arandom
number decides
your fate.

Pictorially, you get the fork shown in Figure 9-2.

¢ randomNumber > 5 ?

Display Display
"Yes. Isn't it obvious?" "No, and don't ask again."

A careful look at if statements

An if statement can take the following form:

if (Condition) {
SomeStatements

} else {
OtherStatements

To get a real-life if statement, substitute meaningful text for the three place-
holders Condition, SomeStatements, and OtherStatements. Here’s how I make the

substitutions in Listing 9-1:

¥ | substitute randomNumber > 5 for Condition.

¥ | substitute System.out.printin("Yes. Isn't it obvious?"); for

SomeStatements.

¥ | substitute System.out.printin("No, and don't ask again."); for

OtherStatements.

The substitutions are illustrated in Figure 9-3.

202 PART 3 Controlling the Flow

randomNumber > 5

SomeStatements ,
System.out.println
(also known as

"Yes. I 't it obvi 2"y ;
the "if clause") (fres. Isn't 1t cbvious?’)

} else {

(also known as ("No, and don't ask again.");

the "else clause’)

OtherStatements System.out.println

FIGURE 9-3:
An i f statement }
and its format.

Sometimes, I need alternative names for parts of an i f statement. I call them the
if clause and the else clause:

if (Condition) {
if clause
} else {

else clause

An if statement is an example of a compound statement — a statement that
includes other statements within it. The i f statement in Listing 9-1 includes two
println calls, and these calls to print1n are statements.

Notice how I use parentheses and semicolons in the i f statement of Listing 9-1.
In particular, notice the following:
¥ The condition must be in parentheses.

¥ Statements inside the i f clause end with semicolons. So do statements inside
the else clause.

¥ There's no semicolon immediately after the condition.

¥ There's no semicolon immediately after the word else.

As a beginning programmer, you may think these rules are arbitrary. But they’re
not. These rules belong to a carefully crafted grammar. They’re like the grammar
rules for English sentences, but they’re even more logical! (Sorry, Becky.)

CHAPTER 9 Forks in the Road 203

Table 9-1 shows you the kinds of things that can go wrong when you break the i f
statement’s punctuation rules. The table’s last two items are the most notorious.
In these two situations, the compiler doesn’t catch the error. This lulls you into a
false sense of security. The trouble is, when you run the program, the code’s

behavior isn’t what you expect it to be.

TABLE 9-1:
Error

Missing parentheses surround-
ing the condition

Example

if randomNumber > 5 {

Common if Statement Error Messages

Most Likely Messages or Results
'"(' expected
'; ' expected

'else' without 'if'

Missing semicolon after a state-
ment that's inside the i f clause
or theelse clause

if (randomNumber > 5) {
System.out.printin("Y")

}

'; ' expected

Semicolon immediately after
the condition

if (randomNumber > 5); {
System.out.printin("Y");

}else {

'if' statement has empty body

'else' without 'if'

Semicolon immediately after
the word else

} else; {

The program compiles without errors,
but the statement after the word else
is always executed, whether the condi-
tion is true or false.

Missing curly braces

if (randomNumber > 5)
otherValue = 7;

System.out.
println("Y");

else
otherValue = 9;

System.out.
println("N");

'else' without '"if'

The program sometimes compiles
without errors, but the program’s run
may not do what you expect it to do.
(The bottom line: Don't omit the
curly braces.)

As you compose code, it helps to think of an i f statement as one indivisible unit.
Rather than type the whole first line (condition and all), try typing the if state-
ment’s skeletal outline:

204 PART 3 Controlling the Flow

if () { //To do: Fill in the condition.
//To do: Fill in the if clause.
} else {

//To do: Fill in the else clause.

With the entire outline in place, you can start working on the items on your to-do
list. When you apply this kind of thinking to a compound statement, it’s harder to
make a mistake.

A complete program

Listing 9-2 contains a complete program with a simple i f statement. The listing’s
code behaves like an electronic oracle. Ask the program a yes-or-no question and
the program answers you back. Of course, the answer to your question is ran-
domly generated. Who cares? It’s fun to ask anyway.

I Know Everything

import java.util.Scanner;
import java.util.Random;

public class AnswerYesOrNo {

public static void main(String[] args) {
Scanner keyboard = new Scanner(System.in);
Random myRandom = new Random();
int randomNumber;

System.out.print("Type your question, my child: ");
keyboard.nextlLine();

randomNumber = myRandom.nextInt(10) + 1
if (randomNumber > 5) {
System.out.println("Yes. Isn't it obvious?");

} else {
System.out.println("No, and don't ask again.");

keyboard.close();

CHAPTER 9 Forks in the Road 205

Figure 9-4 shows several runs of the program in Listing 9-2. The program’s
action has four parts:

1. Prompt the user.
Call System.out.print, telling the user to type a question.
2. Getthe user's question from the keyboard.

In Figure 9-4, | run the AnswerYesOrNo program four times, and | type a
different question each time. Meanwhile, back in Listing 9-2, the statement

keyboard.nextLine();

swallows up my question and does absolutely nothing with it. This is an
anomaly, but you're smart, so you can handle it.

Type your question, my child: Will I write a bestseller?
Yes. Isn't it obvious?

Type your question, my child: Will I earn lots of money?
No, and don't ask again.

(23

Type your question, my child: Is "no" the correct answer to this question?
Yes. Isn't it obvious?

FIGURE 9-4: . hild - : mminel K
The all-knowing Type your question, my child: Fritz ate air meow swimmingly crackers

Yes. Isn't it obvious?
Java program

in action.

Normally, when a program gets input from the keyboard, the program does
something with the input. For example, the program can assign the input to a
variable:

amount = keyboard.nextDouble();

Alternatively, the program can display the input on the screen:

System.out.println(keyboard.nextLine());

206 PART 3 Controlling the Flow

But the code in Listing 9-2 is different. When this AnswerYesOrNo program
runs, the user has to type something. (The call to nextL ine waits for the user
to type some stuff and then press Enter.) But the AnswerYesOrNo program has
no need to store the input for further analysis. (The computer does what | do
when my wife asks me whether | plan to clean up after myself — I ignore the
question and make up an arbitrary answer.) So the program doesn't do
anything with the user’s input. The call to keyboard. nextL ine just sits there in
a statement of its own, doing nothing, behaving like a big, black hole. It's
unusual for a program to do this, but an electronic oracle is an unusual thing. It
calls for some slightly unusual code.

3. Getarandom number — any int value from 1 to 10.

Okay, wise guys. You've just trashed the user’s input. How will you answer yes
or no to the user’s question?

No problem! None at all! You'll display an answer randomly. The user won't
know the difference. (Ha-ha!) You can do this as long as you can generate
random numbers. The numbers from 1 to 10 will do just fine.

In Listing 9-2, the stuff about Random and myRandom looks much like the
familiar Scanner code. From a beginning programmer’s point of view, Random
and Scanner work almost the same way. Of course, there's an important
difference: A call to the Random class's nextInt(1@) method doesn't fetch
anything from the keyboard. Instead, this nextInt (10) method gets a number
out of the blue.

The name Random is defined in the Java API. The call to myRandom. nextInt(1@)
in Listing 9-2 gets a number from 0 to 9. Then my code adds 1 (making a
number from 1 to 10) and assigns that number to the variable randomNumber.
When that's done, you're ready to answer the user’s question.

e In Java's API, the word Random is the name of a Java class, and nextInt is the
6 name of a Java method. For more information on the relationship between

TECHNICAL classes and methods, see Part 4.

STUFF
4. Answer yes or no.

Calling myRandom . nextInt(10) is like spinning a wheel on a TV game show.
The wheel has slots numbered from 1 to 10. The i f statement in Listing 9-2
turns your number into a yes-or-no alternative. If you roll a number that's
greater than 5, the program answers yes. Otherwise (if you roll a number
that's less than or equal to 5), the program answers no.

You can trust me on this one. I've made lots of important decisions based on
my AnswerYesOrNo program.

CHAPTER 9 Forks in the Road 207

208

PART 3

RANDOMNESS MAKES ME DIZZY

When you call myRandom.nextInt(10) + 1,you geta number from 1 to 10. As a test,
| wrote a program that calls myRandom.nextInt(10) + 1 20 times:

Random

System.
System.
System.
System.
System.

/A

myRandom=new Random();

out.
out.
out.
out.
out .

And

print(myRandom.nextInt(10) + 1);
print(" ");
print(myRandom.nextInt(10) + 1);
print(" ");
print(myRandom.nextInt(10) + 1);

SO on.

| ran the program several times and got the results shown in the following figure.
(Actually, | copied the results from IntelliJ's Run tool window to Windows Notepad.) Stare
briefly at the figure and notice two trends:

® There's no obvious way to predict what number comes next.

® No number occurs much more often than any of the others.

[CRARAR A ER - R
7216410105 7745979268 78310
2487681572357 18%2e6583
2110622433 6527448825974
7584732976773 65310483
G4 3144727141982 77251
11231052 %77T7623 %2635 10102
S 40 1 40 @ £ 2 2 40 1 A e 2 10 1 8 7 a3 4n

The Java Virtual Machine jumps through hoops to maintain these trends. That's because
cranking out numbers in a random fashion is a tricky business. Here are some interest-
ing facts about the process:

® Scientists and nonscientists use the term random number, but in reality,
there’s no such thing as a single random number. After all, how random is a
number like 9?

A number is random only when it's one in a disorderly collection of numbers. More
precisely, a number is random if the process used to generate the number follows
the two preceding trends. When they're being careful, scientists avoid the term ran-
dom number and use the term randomly generated number instead.

® |t's hard to generate numbers randomly. Computer programs do the best they
can, but ultimately, today’s computer programs follow a pattern, and that pattern
isn't truly random.

To generate numbers in a truly random fashion, you need a big tub of ping-pong
balls, like the kind they use in state lottery drawings. The problem is, most comput-
ers don't come with big tubs of ping-pong balls among their peripherals. So, strictly
speaking, the numbers generated by Java's Random class aren’t random. Instead,
scientists call these numbers pseudorandom.

® If you don’t have a big tub of ping-pong balls, you can find other ways to gen-
erate numbers randomly. For example, a quantum computer can create some-
thing called a qubit and put the qubit in a state that's halfway between 0 and 1.
When you measure the qubit’s state, you don't see the halfway business. You
always observe either regular old 0 or regular old 1. Quantum theory dictates that
the outcome of the measurement (0 or 1) is truly random.

In 1935, a fellow named Erwin Schrédinger considered making a qubit out of a real,
live cat. Schrédinger's cat could be alive (1) or dead (0), and only the random

whim of nature would determine the cat's state of being. Things went well until
Schrédinger tried to generate 100 values in a row. His landlady heard the meowing,
smelled the cat boxes, and immediately called the local health department.
Schrédinger's experiment came to an abrupt end.

Rumors about an experiment named “Schrodinger’s Landlady” persist to this day.

® It surprises us all, but knowing one randomly generated value is of no help in
predicting the next randomly generated value.

For example, if you toss a coin twice and it lands heads-up both times, is it more
likely to land tails-up on the third flip? No. It's still 50-50.

If you have three sons and you're expecting a fourth child, is the fourth child more
likely to be a girl? No. A child’s gender has nothing to do with the genders of the
older children. (’'m ignoring any biological effects, which | know absolutely nothing
about. Wait! | do know some biological trivia: A newborn child is more likely to be a
boy than a girl. In the United States, for every 21 newborn boys, there are only

20 newborn girls. Boys are weaker, so guys like me die off faster. That's why nature
makes more of us at birth.)

A treatise on the importance of
helpful indentation

Notice how, in Listing 9-2, the print1n calls inside the i f statement are indented.
Strictly speaking, you don’t have to indent the statements that are inside an if
statement. For all the compiler cares, you can write your whole program on a
single line or place all your statements in an artful, misshapen zigzag. The prob-
lem is, if you don’t indent your statements in some logical fashion, neither you

CHAPTER 9 Forks in the Road 209

©

REMEMBER

nor anyone else can make sense of your code. In Listing 9-2, the indenting of the
println calls helps your eyes (and brain) see quickly that these statements are
subordinate to the overall i f/else flow.

In a small program, unindented or poorly indented code is barely tolerable. But in
a complicated program, indentation that doesn’t follow a neat, logical pattern is a
big, ugly nightmare.

Always indent your code to make the program’s flow apparent at a glance.

You don’t have to think about indenting your code, because Intelli] can indent
your code automatically. For details, see Chapter 4.

Variations on the Theme

210

I don’t like to skin cats. But I’ve heard that, if I ever need to skin one, I have a
choice of several techniques. I’ll keep that in mind the next time my cat Histamine
mistakes the carpet for a litter box.*

Anyway, whether you’re skinning catfish, skinning kitties, or writing computer
programs, the same principle holds true: You always have alternatives. Listing 9-2
shows you one way to write an i f statement. The rest of this chapter (and all of
Chapter 10) shows you some other ways to create i f statements.

* Rick Ross, who read about skinning cats in one of my other books, sent me this
information via email: “ . . . you refer to ‘skinning the cat’ and go on to discuss
litter boxes and whatnot. Please note that the phrase “more than one way to skin
a cat” refers to the difficulty in removing the inedible skin from catfish, and that
there is more than one way to do same. These range from nailing the critter’s tail
to a board and taking a pair of pliers to peel it down to letting the furry kind of cat
have the darn thing and just not worrying about it. I grew up on The River (the big
one running north/south down the US that begins with M and has so many
repeated letters), so it’s integral to our experience there.” Another reader, Alan
Wilson, added his two cents to this discussion: “. . . the phrase skinning a
cat . .. actually has an older but equally interesting British naval origin — it refers
to the activity of attaching the nine ropes to the whip used to punish recalcitrant
sailors up to a couple of hundred years ago. The cat-o0’-nine-tails was the name
of the whip, and there was more than one way to attach the ropes or ‘skin’ the
whip.” One way or another, it’s time for me to apologize to my little house pet.

PART 3 Controlling the Flow

...or else what?

You can create an if statement without an else clause. For example, imagine a
web page on which one in ten randomly chosen visitors receives a special offer. To
keep visitors guessing, I call the Random class’s nextInt method and make the
offer to anyone whose number is lucky 7:

¥ IfmyRandom.nextInt(1@) + 1 generates the number 7, display a special
offer message.

¥ IfmyRandom.nextInt(1@) + 1 generates any number other than 7, do
nothing. Don't display a special offer message, and don't display the discour-
aging message “Sorry, no offer for you.”

The code to implement such a strategy is shown in Listing 9-3. A few runs of the
code are shown in Figure 9-5.

m Aren't You Lucky?

import java.util.Random;

public class SpecialOffer {

public static void main(String[] args) {
var myRandom = new Random();
int randomNumber = myRandom.nextInt(10@) + 1;

if (randomNumber == T7) {
System.out.println("An offer just for you!");
}
System.out.println(randomNumber);
}
}
4
3
FIGURE 9-5:
Three runs of &n offer just for youl
the code in 7
Listing 9-3.

CHAPTER 9 Forks in the Road 211

FIGURE 9-6:
If you have

nothing good to

212

say, don't say
anything.

REMEMBER

The if statement in Listing 9-3 has no else clause. This if statement has the
following form:

if (Condition) {

SomeStatements

When randomNumber is 7, the computer displays An offer just for you! When
randomNumber isn’t 7, the computer doesn’t display An offer just for you! The
action is illustrated in Figure 9-6.

¢ randomNumber ==7 ?

Display "An offer just for you!"

Display randomNumber

Always (I mean always) use a double equal sign when you compare two numbers
or characters in an i f statement’s condition. Never (that’s never, ever, ever) use a
single equal sign to compare two values. A single equal sign does assignment, not
comparison.

In Listing 9-3, I took the liberty of adding an extra println. This println (at the
end of the main method) displays the random number generated by my call to
nextInt. On a web page with special offers, you probably wouldn’t see the ran-
domly generated number, but I can’t test my SpecialOffer code without knowing
which numbers the code generates.

Anyway, notice that the value of randomNumber is displayed in every run. The
println for randomNumber isn’t inside the if statement. (This println comes
after the i f statement.) So the computer always executes this print1n. Whether
randomNumber == 7 is true or false, the computer takes the appropriate i f action
and then marches on to execute System.out.println(randomNumber).

PART 3 Controlling the Flow

Packing more stuff into an if statement

Here’s an interesting situation: You have two baseball teams — the Hankees and
the Socks. You want to display the teams’ scores on two separate lines, with the
winner’s score coming first. (On the computer screen, the winner’s score is dis-
played above the loser’s score. In case of a tie, you display the two identical scores,
one above the other.) Listing 9-4 has the code.

m May the Best Team Be Displayed First

import java.util.Scanner;

import static java.lang.System.in;
import static java.lang.System.out;

public class TwoTeams {

public static void main(String[] args) {
var keyboard = new Scanner(in);
int hankees, socks;

out.print("Hankees and Socks scores? ");
hankees = keyboard.nextInt();

socks = keyboard.nextInt();
out.println();

if (hankees > socks) {
out.print("Hankees: ");
out.println(hankees);
out.print("Socks: ");
out.println(socks);

} else {
out.print("Socks: ");
out.println(socks);
out.print("Hankees: ");
out.println(hankees);

keyboard.close();

Figure 9-7 has a few runs of the code. (To show a few runs in one figure, I copied
the results from Intelli]’s Run tool window to Windows Notepad.)

CHAPTER 9 Forks in the Road 213

Hankees and Socks scores? 9 4

L)

Hankees:
Socks: 4

Hankees and Socks scores? 3 8

Socks: 8
Hankees: 3

Hankees and Socks scores? 00

FIGURE 9-7:
See? The code in
Listing 9-4 really

Socks: o
Hankees: 0

works!
With curly braces, a bunch of print and println calls are tucked away safely
inside the i f clause. Another group of print and println calls is squished inside
the else clause. This creates the forking situation shown in Figure 9-8.
¢ hankees > socks ?
Display hankees Display socks
Display socks Display hankees
FIGURE 9-8:
Cheer for your
favorite team.

214 PART 3 Controlling the Flow

STATEMENTS AND BLOCKS

An elegant way to think about i f statements is to realize that you can put only one
statement inside each clause of an i f statement:

if (Condition)
aStatement

else
anotherStatement

On your first reading of this 1-statement rule, you're probably thinking that there's a
misprint. After all, in Listing 9-4, each clause (the i f clause and the else clause) seems
to contain four statements, not just one.

But technically, the i f clause in Listing 9-4 has only one statement, and the else clause
in Listing 9-4 has only one statement. The trick is, when you surround a bunch of state-
ments with curly braces, you get what's called a block, and a block behaves, in all respects,
like a single statement. In fact, the official Java documentation lists a block as a kind of
statement (one of many different kinds of statements). So, in Listing 9-4, the block

out.print("Hankees: ");
out.println(hankees);
out.print("Socks: ");
out.println(socks);

is a single statement. It's a statement that has four smaller statements within it. So this
big block, this single statement, serves as the one-and-only statement inside the i f
clause in Listing 9-4.

That's how the 1-statement rule works. In an i f statement, when you want the com-
puter to execute several statements, you combine those statements into one big state-
ment. To do this, you make a block using curly braces.

Some handy import declarations

When I wrote this section’s example, [was tired of writing the word System. After
all, Listing 9-4 has ten System.out.print lines. By this point in the book,
shouldn’t my computer remember what out . print means?

Of course, computers don’t work that way. If you want a computer to “know”

what out.print means, you have to code that knowledge somewhere inside the
Java compiler.

CHAPTER 9 215

216

REMEMBER

&

TRY IT OUT

Fortunately for me, the ability to abbreviate things like System.out.print is
available from Java 5.0 onward. (An older Java compiler simply chokes on the code
in Listing 9-4.) This ability to abbreviate things is called static import. It’s illus-
trated in the second and third lines of Listing 9-4.

Whenever I start a program with the line
import static java.lang.System.out;

I can replace System.out with plain out in the remainder of the program. The
same holds true of System.in. With an import declaration near the top of
Listing 9-4, I can replace new Scanner(System.in) with the simpler new
Scanner(in).

You may be wondering what all the fuss is about. If I can abbreviate java.util.
Scanner by writing Scanner, what’s so special about abbreviating System.out?
And why do I have to write out .print? CanI trim System.out .print to the single
word print? Look again at the first few lines of Listing 9-4. When do you need the
word static? And what’s the difference between java.util and java.lang?

I’'m sorry. My response to these questions won’t thrill you. The fact is, I can’t
explain away any of these issues until Chapter 14. Before I can explain static
import declarations, I need to introduce some ideas. I need to describe classes,
packages, and static members.

Until you reach Chapter 14, please bear with me. Just paste three import declara-
tions to the top of your Java programs and trust that everything will work well.

You can abbreviate System.out with the single word out. And you can abbreviate
System. in with the single word in. Just be sure to copy the import declarations
exactly as you see them in Listing 9-4. With any deviation from the lines in
Listing 9-4, you may get a compiler error.

Get some practice writing i f statements!
OOPS!
What’s wrong with the following code? How can the code be fixed?

System.out.println("How many donuts are in a dozen?");

int number = keyboard.nextInt();

if (number = 12) {

System.out.println("That's correct.");

PART 3 Controlling the Flow

} else {

System.out.println("Sorry. That's incorrect");

DON'T WRITE CODE THIS WAY

When I wrote the following code, I didn’t indent the code properly. What’s the
output of this bad code? Why?

int n = 100;

if (n > 100)

System.out.println("n is big");

System.out.println("Will Java display this line of text?");
if (n <= 100)

System.out.println("n is small");

System.out.println("How about this line of text?");

THE WORLD SMILES WITH YOU

Write a program that asks the users whether they want to see a smiley face. If the
user replies Y (meaning “yes”), the code displays this:

i=))
Otherwise, the code displays this:
a=(

SUCCESSIVE IF STATEMENTS

Modify the previous program (the smiley face program) to take three possibilities
into account:

¥ If the user replies Y (meaning “yes”), the code displays :-).
¥ If the user replies N (meaning “no”), the code displays : (.

¥ If the user replies ? (meaning “l don't know"), the code displays : - 1.

Use three separate i f statements, one after another.

CHAPTER 9 Forks in the Road 217

218

GUESSING GAME

Write a program that randomly generates a number from 1 to 10. The program
then reads a number that the user enters on the keyboard. If the user’s number is
the same as the randomly generated number, the program displays You win!.
Otherwise, the program displays You lose.

CONVERTING LENGTHS

Write a program that reads a number of meters from the keyboard. The program
also reads a letter from the keyboard. If the letter is ¢, the program converts the
number of meters into centimeters and displays the result. If the letter is m, the
program converts the number of meters into millimeters and displays the result.
For any other number, the program displays no result.

PUTTING SEVERAL STATEMENTS INSIDE AN IF STATEMENT

Find a short poem (maybe four or five lines long). Write a program that asks the
users whether they want to read the poem. If the user replies Y (meaning “yes”),
display the poem in Intelli]’s Run tool window. If the user’s reply is anything
other than Y, display the following:

Sorry!
I thought you were a poetry buff.

Maybe you'll want to see the poem the next time you run this program.

PART 3 Controlling the Flow

IN THIS CHAPTER

» Untangling complicated conditions

» Writing cool conditional code

» Intertwining your i f statements

Chapter 10
Which Way Did He Go?

t’s tax time again. At the moment, I’m working on Form 12432-89B. Here’s
what it says:

Under this regulation, the undeclared possession of certain goods, items, articles,
materials, or fragments, whether living or dead, or held as proxy for other individu-
als or agents, or in any form comparable to the ownership of such goods will be
subject to all provisions under Section 6.1.03-89(b) [and consequently 6.1.03-90(ak)]
of the aforementioned act or acts, whereupon said parties will be liable for all holds,
leans, and obligations in perpetuity or under such limits as provided by law, or in the
execution (supplemental or non-supplemental), handling, or consideration thereof.

No wonder I have no time to write! I’'m too busy interpreting these tax forms.
Anyway, this chapter deals with the potential complexity of if statements. This

chapter has nothing as complex as Form 12432-89B, but if you ever encounter
something that complicated, you’ll be ready for it.

Forming Bigger and Better Conditions

In Listing 9-2 (refer to Chapter 9), the code chooses a course of action based on
one call to the Random class’s next Int method. That’s fine for the electronic oracle
program described in Chapter 9, but what if you’re rolling a pair of dice? In

CHAPTER 10 Which Way Did He Go? 219

TABLE 10-1:

FIGURE 10-1:
When you satisfy
a condition,
you're happy.

backgammon and other dice games, rolling 3 and 5 isn’t the same as rolling 4 and
4, even though the total for both rolls is 8. The next move varies, depending on
whether you roll doubles. To get the computer to roll two dice, you execute myRan-
dom.nextInt(6) + 1 two times. Then you combine the two rolls into a larger,
more complicated i f statement.

To simulate a backgammon game (and many other, more practical situations) you

need to combine conditions:

If diel + die2 equals 8 and diel equals die2, ...

You need things like and and or — things that can wire conditions together. Java
has operators to represent these concepts, which are described in Table 10-1 and

illustrated in Figure 10-1.

Logical Operators

Operator Symbol Meaning Example Illustration
& and 4 ¢ age &% age < 8 Figure 10-1(a)
[or age < 4 || 8 < age Figure 10-1(b)
! not leachKidGetsTen Figure 10-1(c)

4 < age && age < 8 (a)

age < 4 || 8 < age (b)

leachKidGetsTen (c)

BBOBBOOOBBBBB

1

OOOBBBBBOOOO

2 3 4 5 6 7 8 9 1011 12

1

2 3 4 5 6 7 8 9 1011 12

eachKidGetsTen is true @

eachKidGetsTen is fal se@

Combined conditions, like the ones in Table 10-1, can be mighty confusing. That’s
why I tread carefully when I use such things. Here’s a short explanation of each

example in the table:

220 PART 3 Controlling the Flow

Q

TIP

AN

WARNING

» 4 < age 8&& age < 8

The value of the age variable is greater than 4 and is less than 8. The numbers
5,6,7,8,9...areall greater than 4. But among these numbers, only 5, 6, and 7
are less than 8. So only the numbers 5, 6, and 7 satisfy this combined condition.

¥ age < 4 || 8 < age

The value of the age variable is less than 4 or is greater than 8. To create the
or condition, you use two pipe symbols. On many US English keyboards, you
can find the pipe symbol immediately above the Enter key (the same key as
the backslash, but shifted).

In this combined condition, the value of the age variable is either less than 4
or greater than 8. For example, if a number is less than 4, the number satisfies
the condition. Numbers like 1, 2, and 3 are all less than 4, so these numbers
satisfy the combined condition.

Also, if a number is greater than 8, the number satisfies the combined
condition. Numbers like 9, 10, and 11 are all greater than 8, so these numbers
satisfy the condition.

¥ leachKidGetsTen

If | weren't experienced with computer programming languages, I'd be
confused by the exclamation point. I'd think that ! eachKidGetsTen means,
“Yes, each kid does get ten.” But that's not what this expression means. This
expression says, “The variable eachKidGetsTen does not have the value
true.” In Java and other programming languages, an exclamation point stands
for negative, for no way, for not.

Listing 8-4 (refer to Chapter 8) has a boolean variable named eachKidGetsTen.
Aboolean variable's value is either true or false. Because ! means not, the
expressions eachKidGetsTen and ! eachKidGetsTen have opposite values. So,
when eachKidGetsTen is true, !eachKidGetsTen is false (and vice versa).

Java’s | | operator is inclusive. This means that you get true whenever the thing on
the left side is true, the thing on the right side is true, or both things are true.
For example, the condition2 < 10 || 20 < 30 is true.

In Java, you can’t combine comparisons the way you do in ordinary English. In
English, you may say, “We’ll have between three and ten people at the dinner
table.” But in Java, you get an error message if you write 3 <= people <= 10.To
do this comparison, you need something like 3 <= people && people <= 10.

CHAPTER 10 Which Way Did He Go? 221

Combining conditions: An example

Here’s a handy example of the use of logical operators. A movie theater posts its
prices for admission:

Regular price: $9.25
Kids under 12: $5.25
Seniors (65 and older): $5.25

Because the kids’ and seniors’ prices are the same, you can combine these prices
into one category. (That’s not always the best programming strategy, but do it
anyway for this example.) To find a particular moviegoer’s ticket price, you need
one or more if statements. You can structure the conditions in many ways, and I
chose one of these ways for the code in Listing 10-1.

m Are You Paying Too Much?

222

import java.util.Scanner;
public class TicketPrice {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
int age;
double price = 0.00;

System.out.print("How old are you? ")
age = keyboard.nextInt();

if (age >= 12 && age < 65) {
price = 9.25;

}

if (age < 12 || age >= 65) {
price = 5.25;

System.out.print("Please pay $")
System.out.print(price);
System.out.print(". ");
System.out.println("Enjoy the show!");

keyboard.close();

PART 3 Controlling the Flow

FIGURE 10-2:
Admission prices
for Beginning
Programming with
Java For Dummies:
The Movie.

FIGURE 10-3:
The meanings of
the conditions in

Listing 10-1.

TIP

Several runs of the TicketPrice program (refer to Listing 10-1) are shown in
Figure 10-2. (For your viewing pleasure, I’ve copied the runs from Intelli]’s Run
tool window to Windows Notepad.) When you turn 12, you start paying full price.
You keep paying the full price until you turn 65. At that point, you pay the reduced

price again.

How old are you?

How old are you?

How old are you?

How old are you?

How old are you?

Please pay 55.25.

Please pay $9.25.

Please pay $%.23.

Please pay 59.25.

Please pay 53.25.

11
Enjoy

1z
Enjoy

35
Enjoy

64
Enjoy

65
Enjoy

the

the

the

the

the

show!l

showrl

showl

showl

show!l

The pivotal part of Listing 10-1 is the lump of i f statements in the middle, which
are illustrated in Figure 10-3.

¥ Thefirstif statement’s condition tests for the regular-price group. Anyone
who's at least 12 years of age and is under 65 belongs in this group.

¥ The second if statement’s condition tests for the fringe ages. A person who's
under 12 or is 65 or older belongs in this category.

age >= 12 && age < 65

age < 12 || age >= 65

BOOOOOOOOOBB
e —e—e—\ e

OB RBOO
e\

1M 12 13 64 65 66

1M 12 13 64 65 66

When you form the opposite of an existing condition, you can often follow the
pattern in Listing 10-1. Change >= to <. Change < to >=. Change&& to | |.

CHAPTER 10 Which Way Did He Go? 223

224,

A

WARNING

If you change the dollar amounts in Listing 10-1, you can get into trouble. For
example, with the statement price = 5.00, the program displays Please pay
$5.0. Enjoy the show! This happens because Java doesn’t store the two zeros
to the right of the decimal point (and Java doesn’t know or care that 5.00 is a
dollar amount). To fix this kind of thing, see the discussion of NumberFormat.
getCurrencylInstance in Chapter 14.

When to initialize?

Take a look at Listing 10-1 and notice the price variable’s initialization:
double price = 0.00;

This line declares the price variable and sets the variable’s starting value to 0.00.
When I omit this initialization, I get an error message:

The local variable price may not have been initialized

What’s the deal here? I don’t initialize the age variable, but the compiler doesn’t
complain about that. Why is the compiler fussing over the price variable?

The answer is in the placement of the code’s assignment statements. Consider the
following two facts:

3 The statement that assigns a value to the age variable (age = keyboard.
nextInt())isn'tinside an i f statement.

That assignment statement always gets executed, and (as long as nothing
extraordinary happens) the variable age is sure to be assigned a value.

3 Both statements that assign a value to the price variable (price = 9.25
andprice = 5.25)are inside i f statements.

If you look at Figure 10-3, you see that every age group is covered. No one
shows up at the ticket counter with an age that forces both i f conditions to
be false. So, whenever you run the TicketPrice program, either the first or
the second price assignment is executed.

The problem is that the compiler isn't smart enough to check all of this. The
compiler just sees the structure in Figure 10-4 and becomes scared that the
computer won't take either of the true detours.

If (for some unforeseen reason) both of the i f statements’ conditions are
false, then the variable price isn't assigned a value. So, without an initializa-
tion, price has no value. (More precisely, price has no value that's intention-
ally given to it in the code.)

PART 3 Controlling the Flow

FIGURE 10-4:
The choices in
Listing 10-1.

Eventually, the computer reaches the System.out.print(price) statement.
It can't display price unless price has a meaningful value. At that point, the
compiler throws up its virtual hands in disgust.

(blah-blah-blah)

price = ...

(blah-blah-blah)

price = ...

A
System.out.print(price)

More and more conditions

Last night I had a delicious meal at the neighborhood burger joint. As part of a
promotion, I got a discount coupon along with the meal. The coupon is good for
$2.00 off the price of a ticket at the local movie theater.

To make use of the coupon in the TicketPrice program, I have to tweak the code

in Listing 10-1. The revised code is in Listing 10-2. In Figure 10-5, I take that new
code around the block a few times.

CHAPTER 10 Which Way Did He Go? 225

m Do You Have a Coupon?

import java.util.Scanner;

public class TicketPriceWithDiscount {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
int age;
double price = 0.00;
char reply;

System.out.print("How old are you? ");
age = keyboard.nextInt();

System.out.print("Have a coupon? (Y/N) ");
reply = keyboard.findWithinHorizon(".", @).charAt(Q);

if (age >= 12 && age < 65) {
price = 9.25;

}

if (age < 12 || age >= 65) {
price = 5.25;

}

if (reply == 'Y' || reply == 'y') {
price -= 2.00;

}

if (reply != 'Y' &% reply != 'y' &% reply!='N' && reply!='n') {
System.out.println("Huh?");

}

System.out.print("Please pay $");
System.out.print(price);
System.out.print(". ");
System.out.println("Enjoy the show!");

keyboard.close();

226 PART 3 Controlling the Flow

FIGURE 10-5:
Running the code
in Listing 10-2.

TIP

How old are you? 51
Hawve a coupon? (¥/N) Y
FPlease pay $7.25. Enjoy the show!

How old are you? 51
Hawe a coupon? (Y/N) v
FPlease pay $7.25. Enjoy the show!

How old are you? 51
Hawve a <oupon? (¥/N) N
FPlease pay $9.25. Enjoy the show!

How old are you? 51

Hawve a coupon? (¥/N) X

Huh?

Please pay $9.25. Enjoy the show!

Listing 10-2 has two i f statements whose conditions involve characters:

¥ In the first such statement, the computer checks to see whether the reply
variable stores the letter Y or the letter y. If either is the case, it subtracts 2.00
from the price. (For information on operators like —=, see Chapter 7.)

¥ The second such statement has a hefty condition. The condition tests to see
whether the reply variable stores any reasonable value. If the reply isnt Y and
isn'ty and isn’tN and isn’t n, then the computer expresses its concern by
displaying, “Huh?” (If you're a paying customer, the word Huh? on the auto-
mated ticket teller's screen will certainly get your attention.)

When you create a big, multipart condition, you always have several ways to think
about the condition. For example, you can rewrite the last condition in Listing 10-2
asif (!(reply == 'Y' || reply == 'y' || reply == 'N' || reply == 'n')).
“If it’s not the case that the reply is either Y, y, N, or n, then display ‘Huh?’” So,
which way of writing the condition is better — the way I do it in Listing 10-2 or
the way I do it in this tip? It depends on your taste. Whichever makes the logic

easier for you to understand is the better way.

A condition always reveals its secrets

No matter how good a program is, you can always make it a little better. Take the
code in Listing 10-2. Does the forest of i f statements make you nervous? Do you
slow to a crawl when you read each condition? Wouldn’t it be nice if you could
glance at a condition and make sense of it very quickly?

To some extent, you can. If you’re willing to create some additional variables, you
can make your code easier to read. Listing 10-3 shows you how.

CHAPTER 10 Which Way Did He Go? 227

m George Boole Would Be Proud

import java.util.Scanner;

public class NicePrice {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
int age;
double price = 0.00;
char reply;
boolean isKid, isSenior, hasCoupon, hasNoCoupon;

System.out.print("How old are you? ")
age = keyboard.nextInt();

System.out.print("Have a coupon? (Y/N) ");
reply = keyboard. findWithinHorizon(".", @).charAt(Q);

isKid = age < 12;
isSenior = age »>= 65;
hasCoupon = reply == 'Y' || reply == 'y';

hasNoCoupon = reply == 'N' || reply == 'n';
if (!isKid && !isSenior) {

price = 9.25;

}

if (isKid || isSenior) {
price = 5.25;

}

if (hasCoupon) {
price -= 2.00;

}

if (!hasCoupon && !hasNoCoupon) {
System.out.println("Huh?");

System.out.print("Please pay $");
System.out.print(price);
System.out.print(". ");
System.out.println("Enjoy the show!");

keyboard.close();

228 PART 3 Controlling the Flow

Runs of the code in Listing 10-3 look like the stuff in Figure 10-5. The only differ-
ence between Listings 10-2 and 10-3 is the use of boolean variables. In Listing 10-3,
you get past all the less-than signs and double equal signs before the start of any
if statements. By the time you encounter the two i f statements, the conditions
can use simple words — words like isKid, isSenior, and hasCoupon. With all
these boolean variables, expressing each if statement’s condition is a snap. You
can read more about boolean variables in Chapter 8.

Adding a boolean variable can make your code more manageable. But because
some programming languages have no boolean variables, many programmers
prefer to create if conditions on the fly. That’s why I mix the two techniques
(conditions with and without boolean variables) in this book.

Mixing different logical operators together

If you read about Listing 10-2, you know that my local movie theater offers dis-
count coupons. The trouble is, I can’t use a coupon along with any other discount.
I tried to convince the ticket taker that I’'m under 12 years of age, but he didn’t buy
it. When that didn’t work, I tried combining the coupon with the senior citizen
discount. That didn’t work, either.

Apparently, the theater uses some software that checks for people like me. It looks

something like the code in Listing 10-4. To watch the code run, take a look at
Figure 10-6.

m No Extra Break for Kids or Seniors

import java.util.Scanner;

public class CheckAgeForDiscount {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
int age;
double price = 0.00;
char reply;

System.out.print("How old are you? ");
age = keyboard.nextInt();

System.out.print("Have a coupon? (Y/N) ");
reply = keyboard.findWithinHorizon(".", @).charAt(Q);

(continued)

CHAPTER 10 Which Way Did He Go? 229

AL B (continued)

if (age >= 12 && age < 65) {

FIGURE 10-6:
Running the code
in Listing 10-4.

25;

if (age < 12 || age >= 65) {

25;

ryr

|| reply == 'y') && (age >= 12 && age < 65)) {

price = 9.
}
price = 5.
}
if ((reply ==
price -= 2.00;
}

System.out.print("Please pay $")

System.out.print(price);

System.out.print(". ");

System.out.println("Enjoy the show!");

keyboard.close();

How old are you? 7
Hawe a coupon? (Y/N} ¥
Please pay $5.25. Enjoy

How old are you? Z5
Have a coupon? (Y/HN) ¥
Please pay $7.25. Enjoy

How old are you? Z5
Hawe a coupon? (¥/HN) n
Please pay §9.25. Enjoy

How old are you? E85
Have a coupon? (Y/N) v
Please pay $5.25. Enjoy

How old are you? E85
Have a coupon? (Y/N) ¥
Please pay $5.25. Enjoy

the

the

the

the

the

show!

show!

showl

show!l

showl

Listing 10-4 is a lot like its predecessors, Listings 10-1 and 10-2. The big differ-
ence is the bolded if statement. This if statement tests two things, and each

thing has two parts of its own:

3 Does the customer have a coupon?

That is, did the customer reply with either Y ory?

3 Is the customer in the regular age group?

That is, is the customer at least 12 years old and younger than 65?

230 PART 3 Controlling the Flow

FIGURE 10-7:
Both the reply
and the age
criteria must
be true.

FIGURE 10-8:
A capital offense.

In Listing 10-4, I join items 1 and 2 using the && operator. I do this because both
items (item 1 and item 2) must be true in order for the customer to qualify for the
$2.00 discount, as illustrated in Figure 10-7.

How old are you? 85
Have a coupon? (Y/N) Y
price = 5.25;
if (.(reply=="Y" || reply=="y') && (age >= 12 && age < 65))

| | | | | | |

true false true false
true false
false
prEEEI>f:Z:§b;
‘Please pay $5.25. Enjoy the show!

The mating calls of left and right
parentheses

Listing 10-4 demonstrates something important about conditions: Sometimes,
you need parentheses to make a condition work correctly. Take, for example, the
following incorrect i f statement:

//This code is incorrect:
if (reply == 'Y' || reply == 'y' 8& age >= 12 8&& age < 65) {
price -= 2.00;

Compare this code with the correct code in Listing 10-4. This incorrect code has
no parentheses to groupreply == 'Y' withreply == 'y', or to group age >= 12
with age < 65. The result is the bizarre pair of runs in Figure 10-8.

How old are you? 85
Have a coupon? [¥/N) v
Please pay $53.253. Enjoy the showl

How old are you? 85
Have a coupon? [¥/N) ¥
Please pay $3.25. Enjoy the showl

CHAPTER 10 Which Way Did He Go? 231

FIGURE 10-9:
“True or false”
makes “true.”

In Figure 10-8, notice that the y and Y inputs yield different ticket prices, even
though the age is 85 in both runs. This happens because, without parentheses, any
&% operator gets evaluated before any || operator. (That’s the rule in the Java
programming language — evaluate && before | |.) When reply is Y, the condition
in the bad i f statement takes the following form:

reply == 'Y' || some-other-stuff-that-does-not-matter

Whenever reply == 'Y' is true, the whole condition is automatically true, as
illustrated in Figure 10-9.

How old are you? 85
Have a coupon? (Y/N) Y

price = 5.25;

if (.reply::'Y' || reply=="y' && age >= 12 && age < 65)
\ | \ | \ | \ |

true false true false

false

false

true

price -= 2.00;

Please pay $3.25. Enjoy the show!

Building a Nest

The year is 1968 and The Prisoner is on TV. In the last episode, the show’s hero
meets his nemesis, Number One. At first, Number One wears a spooky happy-
face/sad-face mask, and when the mask comes off, there’s a monkey mask under-
neath. To find out what’s behind the monkey mask, you have to rent the series
and watch it yourself. But in the meantime, notice the layering: a mask within a
mask. You can do the same kind of thing with i f statements. This section’s exam-
ple shows you how.

232 PART 3 Controlling the Flow

But first, take a look at Listing 10-4. In that code, the condition age >= 12 8& age
< 65 is tested twice.

if (age >= 12 && age < 65) {
price = 9.25;

// ... and a bit later ...

if ((reply == 'Y' || reply == 'y') && (age >= 12 && age < 65)) {
price —-= 2.00;

Both times, the computer sends 12, 65, and the value of age through its jumble of
circuits; and both times, the computer gets the same answer. This is wasteful, but
waste isn’t your only concern.

What if you decide to change the age limit for senior tickets? From now on, no one
under 100 gets a senior discount. You fish through the code and see the first age
>= 12 && age < 65 test. You change 65 to 100, pat yourself on the back, and go
home. The problem is, you’ve changed one of the two age >= 12 && age < 65
tests, but you haven’t changed the other. Wouldn’t it be better to keep all the age
>= 12 && age < 65 testing in just one place?

Listing 10-5 comes to the rescue. In Listing 10-5, I smoosh all my if statements
together into one big glob. The code is dense, but it gets the job done nicely.

m Nested if Statements

import java.util.Scanner;

public class AnotherAgeCheck {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
int age;
double price = 0.00;
char reply;

System.out.print("How old are you? ")
age = keyboard.nextInt();

System.out.print("Have a coupon? (Y/N) ");
reply = keyboard. findWithinHorizon(".", @).charAt(Q);

(continued)

CHAPTER 10 Which Way Did He Go? 233

234

if (age >= 12 && age < 65) {
price = 9.25;
if (reply == 'Y' || reply == 'y') {
price -= 2.00;
}
} else {
price = 5.25;

System.out.print("Please pay $")
System.out.print(price);
System.out.print(". ");
System.out.println("Enjoy the show!");

keyboard.close();

The best of the nest

A run of the code in Listing 10-5 looks identical to a run of Listing 10-4. You can
see several runs in Figure 10-6. The main idea in Listing 10-5 is to put an i f state-
ment inside another i f statement. After all, Chapter 9 says that an i f statement
can take the following form:

if (Condition) {
SomeStatements

} else {
OtherStatements

Who says SomeStatements can’t contain an if statement? For that matter, Other-
Statements can also contain an i f statement. And, yes, you can create an if state-
ment within an i f statement within an i f statement. There’s no predefined limit
on the number of i f statements you can have.

if (age >= 12 && age < 65) {
price = 9.25;
if (reply == 'Y' || reply == 'y') {
if (isSpecialFeature) {

price -= 1.00;

PART 3 Controlling the Flow

FIGURE 10-10:
The flow in
Listing 10-5.

A

WARNING

} else {
price —= 2.00;

}
} else {
price = 5.25;

When you put one if statement inside another, you create nested if statements.
Nested statements aren’t difficult to write, as long as you take things slowly and
keep a clear picture of the code’s flow in your mind. If it helps, draw yourself a
diagram like the one shown in Figure 10-10.

[& age>-12 && age<65 ?

price = 9.25 <
‘&rep]y::'Y' || reply=="y'?
price -= 2.00 «———— price = 5.25

"Please pay $..."

When you nest statements, you must be compulsive about the use of indentation
and braces. (See Figure 10-11.) When code has misleading indentation, no one (not
even the programmer who wrote the code) can figure out how the code works.
A nested statement with sloppy indentation is a programmer’s nightmare.

CHAPTER 10 Which Way Did He Go? 235

if (age >= 12 && age < 65)
{
Two statements price = 9.25;
inan i f clause; if (reply=="Y"' || reply=="y') One statement
FIGURE 10-11: braces required. price -= 2.00; > inanif clause;
Be careful } braces optional.
about adding One statementin ~_else
the proper anelse clause; «{_ price = 5.25;
indentation braces optional.
and braces.

Cascading if statements

Here’s a riddle: You have two baseball teams — the Hankees and the Socks. You
want to display the teams’ scores on two separate lines, with the winner’s score
listed first. (On the computer screen, the winner’s score is displayed above the
loser’s score.) What happens when the scores are tied?

Do you give up? The answer is, there’s no right answer. What happens depends on
the way you write the program. Take a look at Listing 9-4, in Chapter 9. When the
scores are equal, the condition hankees > socks is false. So the program’s flow
of execution drops down to the else clause. That clause displays the Socks score
first and the Hankees score second. (Refer to Figure 9-7, in Chapter 9.)

The program doesn’t have to work this way. If I take Listing 9-4 and change
hankees > socks to hankees >= socks, then, in case of a tie, the Hankees score
comes first.

Suppose that you want a bit more control. When the scores are equal, you want to
see a message indicating a tie. To do this, think in terms of a three-pronged fork.
You have a prong for a Hankees win, another prong for a Socks win, and a third
prong for a tie. You can write this code in several different ways, but one way that
makes lots of sense is in Listing 10-6. For three runs of the code in Listing 10-6,
see Figure 10-12.

m In Case of a Tie...

236

import java.util.Scanner;
import static java.lang.System.out;
public class WinLoseOrTie {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);

PART 3 Controlling the Flow

FIGURE 10-12:
Go, team, go!

int hankees, socks;

out.print("Hankees and Socks scores? ");

hankees
socks =

keyboard.nextInt();

keyboard.nextInt();

out.printin();

if (hankees > socks) {

out.println("Hankees win...");

out.print("Hankees: ");

out.println(hankees);

out.print("Socks: ");

out.println(socks);

} else if (socks > hankees)

out.println("Socks win..

out.print("Socks: ");

out.println(socks);

out.print("Hankees: ");

out.println(hankees);

} else {

out.println("It's a tie..

out.print("Hankees: ");

out.println(hankees);

out.print("Socks: ");

out.println(socks);

keyboard

.close();

")

")

Hankees and Socks

Hankees win...
Hankees: 9
Jocks: 4

Hankees and Socks

Socks win. ..

Jocks: g

Hankees: 3

Hankees and Socks

It’s a tie...

Hankees: O
docks: [u]

scores? 904

scores? 38

scores? 00

CHAPTER 10 Which Way Did He Go?

237

238

Listing 10-6 illustrates a way of thinking about a problem. You have one question
with more than two answers. (In this section’s baseball problem, the question is
“Who wins?” and the answers are “Hankees,” “Socks,” or “Neither.”) The prob-
lem begs for an if statement, but an if statement has only two branches — the
true branch and the false branch. So you combine alternatives to form cascading
if statements.

In Listing 10-6, the format of the cascading i f statements is

if (Conditiont) {
SomeStatements

} else if (Condition2) {
OtherStatements

} else {

EvenMoreStatements

In general, you can use else if as many times as you want:

if (hankeesWin) {
out.println("Hankees win...");
out.print("Hankees: ");
out.println(hankees);
out.print("Socks: ");
out.println(socks);

} else if (socksWin) {
out.println("Socks win...");
out.print("Socks: ");
out.println(socks);
out.print("Hankees: ");
out.println(hankees);

} else if (isATie) {
out.println("It's a tie...");
out.print("Hankees: ");
out.println(hankees);
out.print("Socks: ");

out.println(socks);

-

else if (gameCancelled) {
out.println("Sorry, sports fans.");
} else {

out.println("The game isn't over yet.");

PART 3 Controlling the Flow

Nothing is special about cascading i f statements. This isn’t a new programming
language feature. Cascading i f statements take advantage of a loophole in Java —
a loophole about omitting curly braces in certain circumstances. Other than that,
cascading i f statements just give you a new way to think about decisions within
your code.

Note: Listing 10-6 uses a static import declaration to avoid needless repetition of
the words System.out. To read a little bit about the static import declaration
(along with an apology for my not explaining this concept more thoroughly), see
Chapter 9. Then to get the real story on static import declarations, see
Chapter 14.

Enumerating the Possibilities

Chapter 8 describes Java’s boolean type — the type with only two values (true
and false). The boolean type is handy, but sometimes you need more values.
After all, a traffic light’s values can be green, yellow, or red. A playing card’s suit
can be spade, club, heart, or diamond. And a weekday can be Monday, Tuesday,
Wednesday, Thursday, or Friday.

Life is filled with small sets of possibilities, and Java has a feature that can reflect
these possibilities. The feature is called an enum type.

Creating an enum type

The story in Listing 10-6 has three possible endings — the Hankees win, the
Socks win, or the game is tied. You can represent the possibilities with the follow-
ing line of Java code:

enum WhoWins {home, visitor, neither}

This week’s game is played at Hankeeville’s SnitSoft Stadium, so the value home
represents a win for the Hankees, and the value visitor represents a win for the
Socks.

One goal in computer programming is for each program’s structure to mirror
whatever problem the program solves. When a program reminds you of its under-
lying problem, the program is easy to understand and inexpensive to maintain.
For example, a program to tabulate customer accounts should use names like cus-
tomer and account. And a program that deals with three possible outcomes (home

CHAPTER 10 Which Way Did He Go? 239

wins, visitor wins, and tie) should have a variable with three possible values. The
line enum WhoWins{home, visitor, neither} creates a type to store three values.

The WhoWins type is called an enum type. Think of the new WhoWins type as a
boolean on steroids. Instead of two values (true and false), the WhoWins type has
three values (home, visitor, and neither). You can create a variable of type
WhoWins:

WhoWins who;
and then assign a value to the new variable:

who = WhoWins.home;

In the next section, I put the WwhoWins type to good use.

Using an enum type

Listing 10-7 shows you how to use the brand-new WhoWins type.

m Proud Winners and Sore Losers

import java.util.Scanner;

import static java.lang.System.out;
public class Scoreboard {
enum WhoWins {home, visitor, neither}

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
int hankees, socks;
WhoWins who;

out.print("Hankees and Socks scores? ");
hankees = keyboard.nextInt();

socks = keyboard.nextInt();
out.printin();

if (hankees > socks) {
who = WhoWins.home;
out.println("The Hankees win :-)");
} else if (socks > hankees) {
who = WhoWins.visitor;

240 PART 3 Controlling the Flow

out.println("The Socks win :=(");
} else {

who = WhoWins.neither;

out.println("It's a tie :-|");

out.println();
out.println("""

Today's game is brought to you by
SnitSoft, the number one software
vendor in the Hankeeville area.
SnitSoft is featured proudly in
Chapter 6. And remember, four out
of five doctors recommend
SnitSoft to their patients.""");

out.println();

if (who == WhoWins.home) {
out.println("We beat 'em good. Didn't we?");

}
if (who == WhoWins.visitor) {

out.println("The umpire made an unfair call.");
}

if (who == WhoWins.neither) {
out.println("The game goes into extra innings.");

keyboard.close();

Three runs of the program in Listing 10-7 are pictured in Figure 10-13.

Here’s what happens in Listing 10-7:

3 I create a variable to store values of type WhoWins.
Just as the line
double amount;
declares amount to store double values (values like 5.95 and 30.95), the line
WhoWins who;

declares who to store WhoWins values (values like home, visitor, and neither).

CHAPTER 10 Which Way Did He Go? 241

Hankees and Socks scores? 9 4
The Hankees win :-)

Today’s game is brought to you by
SnitSoft, the number one software
vendor in the Hankeeville area.
SnitSoft is featured proudly in
Chapter 6. And remember, four out
of five doctors recommend
SnitSoft to their patients.

We beat ‘em good. Didn’t we?

Hankees and Socks scores? 3 8
The Socks win :-(

Today’s game is brought to you by
SnitSoft, the number one software
vendor in the Hankeeville area.
SnitSoft is featured proudly in
Chapter 6. And remember, four out
of five doctors recommend
SnitSoft to their patients.

The umpire made an unfair call.

Hankees and Socks scores? 0 0O
It’s a tie :-|

Today’s game is brought to you by
SnitSoft, the number one software
vendor in the Hankeeville area.
SnitSoft is featured proudly in
Chapter 6. And remember, four out
of five doctors recommend

FIGURE 10-13: SnitSoft to their patients.

Joyin
Hankeeville?

The game goes into extra innings

3 | assign a value to the who variable.
| execute one of the
who = WhoWins.something;

assignment statements. The statement that | execute depends on the
outcome of the i f statement's hankees > socks comparison.

242 PART 3 Controlling the Flow

Notice that | refer to each of the WhoWins values in Listing 10-7. | write
WhoWins . home, WhoWins.visitor, or WhoWins.neither. If | forget the
WhoWins prefix and type

who = home; //This assignment doesn't work!

the compiler gives me ahome cannot be resolved to a variable error
message. That's just the way enum types work.

3 | compare the variable’s value with each of the whowins values.

In one i f statement, | check thewho == WhoWins.home condition. In the
remaining two i f statements, | check for the other WhoWins values.

Near the end of Listing 10-7, I could have done without enum values. I could have
tested things like hankees > socks a second time:

if (hankees > socks) {
out.println("The Hankees win :-)");

// And later in the program ...

if (hankees > socks) {

out.println("We beat 'em good. Didn't we?");

But that tactic would be clumsy. In a more complicated program, I may end up
checking hankees > socks a dozen times. It would be like asking the same ques-
tion over and over again.

Rather than repeatedly check the hankees > socks condition, I store the game’s

outcome as an enum value. Then I check the enum value as many times as I want.
That’s a tidy way to solve the repeated checking problem.

When One Line Isn't Enough

Listing 10-7 uses a feature that didn’t become an official part of Java until Sep-
tember 2020 (with Java 15). A text block is a bunch of text surrounded on both sides
by three double quotes (""").

out.println("""
Today's game is brought to you by

CHAPTER 10 Which Way Did He Go? 243

244

SnitSoft, the number one software

of five doctors recommend
SnitSoft to their patients.""");

A text block starts with three double quotation marks, and the remainder of that
block’s first line must be blank. If you mistakenly put text after those first three
quotation marks, Java becomes sick to its stomach:

// Don't do this:
out.println("""Today's game is brought to you by
SnitSoft, the number one software

vendor in the Hankeeville area.""");

Text blocks are useful because the text inside a block can straddle more than one
line. Without text blocks, you may be tempted to put one quotation mark at each
end, but that doesn’t work. The following code, with traditional Java string nota-
tion, is forbidden:

// This code is incorrect:

out.println("
Today's game is brought to you by
SnitSoft, the number one software

vendor in the Hankeeville area.");

This book’s 5th edition hit the shelves in 2017 before Java had text blocks. In that
edition, Listing 10-7 had a truckload of out.println calls:

out.println("Today's game is brought to you by");
out.println("SnitSoft, the number one software");
out.println("vendor in the Hankeeville area.");
out.println("SnitSoft is featured proudly in");
out.println("Chapter 6. And remember, four out");
out.println("of five doctors recommend");
out.println("SnitSoft to their patients.");

That was very ugly code! In retrospect, I could have used an escape sequence — a
trick that’s featured in the very next section.

Escape to the \next li\ne o\n the scree\n

Robert Louis Stevenson was born in 1850 and died in 1894. His poem “Bed in
Summer” started with these two lines:

PART 3 Controlling the Flow

¥ Inwinter | get up at night

3 And dress by yellow candle-light.

Stevenson never wrote any Java code. But, if he could, he might have composed
the lines this way:

out.println("In winter I get up at night\nAnd dress by yellow candle-light.");

The \n combination of characters is an example of an escape sequence. Think of \n
as a temporary escape from the burden of displaying exactly the characters in the
quoted string. When you run the code, you don’t see night\nAnd in Intelli]’s Run
tool window. Instead, you see the word night followed by the start of a new line
and then the word And. It’s as if the string of characters looked like this:

// This is fake code:
"In winter I get up at night(Go to the next line)And dress by ..."

You can replace the text block in Listing 10-7 with one long line of code:
out.println("Today's game is brought to you by\nSnitSoft, the number one ...

Imagine that this line of code is 241 characters wide. (In this book’s seventh edi-
tion, a holographic image will extend this line far to the right of the book’s physi-
cal page!)

If you don’t like long lines of code, you can combine the use of escape sequences
and string concatenation:

out.println("Today's game is brought to you by\n" +
"SnitSoft, the number one software\n" +
"vendor in the Hankeeville area.\n" +
"SnitSoft is featured proudly in\n" +
"Chapter 6. And remember, four out\n" +
"of five doctors recommend\n" +
"SnitSoft to their patients.");

Code of this kind isn’t pleasant to write. When I write it, I always make mistakes.
So why in the world would you want to know about the \n escape sequence? I can
think of three reasons:

¥ The \n sequence appears in millions of existing Java programs.

¥ The \n sequence works in many other programming languages including C/
C++, JavaScript, Python, Ruby, and R.

CHAPTER 10 Which Way Did He Go? 245

TABLE 10-2:

FIGURE 10-14:
Java is confused.

¥ Java has several other kinds of escape sequences. Even if you never use \n,
there's no escaping the use of escape sequences in computer programming.

Table 10-2 lists some of Java’s most useful escape sequences:

Escape Sequences

Escape sequence Meaning Where to read about it

\n New line In this section

\" Double quote In the next section (Keep reading!)
\t Tab In Chapter 11

\s Blank space In Chapter 14

A\ Backslash In Chapter 16

More escapism

The poet Henry Wadsworth Longfellow was born in 1807 and died in 1882. Who
knows? Maybe Longfellow did some computer programming during his lifetime.
If so, I hope he didn’t write this println call:

// Think of this ode As very bad code.
out.println("Then he said, "Good night!" and with muffled ocar\n" +

"Silently rowed to the Charlestown shore,");

In this code, the first line of poetry has four quote marks. That makes it impossi-
ble for Java to decide where the line of poetry starts and ends. (See Figure 10-14.)

This " is the
start of a
string.

These are
characters in the

o string. This " is the
end _ofthe
o 5 string.
) S O
r 1 ~O
@Then he said, @Goood night!" and with muffled oar\n"
o

O

What is this G doing here?
','" or '")' expected

246 PART 3 Controlling the Flow

FIGURE 10-15:
Java understands
everything.

&

TRY IT OUT

Wouldn’t it be nice if there was a way to tell Java that the middle two quote marks
don’t signal the boundaries of a string of characters?

Well, wha’ da’ ya’ know? There is a way! Figure 10-15 illustrates the use of
Java’s \" escape sequence.

This " is the
start of a
string.

These are
characters in the

The next character

string.
o g doesn’t mean what
o g) it usually means.
o Oo
@Then he said, ®gGood night!\" and with muffled oar\n"
o) : o >
o) o

©)

These are more
characters in the
string!

This " is an ordinary
character inside the
string.

In Figure 10-15, each backslash tells Java to escape from the usual interpretation
of a double quotation mark. So Java doesn’t think of the quotation mark as the
beginning or end of a string. Instead, Java thinks of it as an ordinary character — a
character to be displayed in Intelli]’s Run tool window.

Of course, this isn’t the end of the escape sequence story. For more escapist enter-
tainment, see Chapters 14 and 16.

It’s okay to read about Java, but it’s even better if you work with Java. Here are
some things you can do to flex your Java muscles:

MYSTERIOUS WAYS

Explain why the following code always displays The first is smaller, no matter
which numbers the user types. For example, if the user types 7 and then 5, the
program displays The first is smaller:

int firstNumber = keyboard.nextInt();
int secondNumber = keyboard.nextInt();

boolean firstSmaller = firstNumber < secondNumber;

if (firstSmaller = true) {

System.out.println("The first is smaller.");

CHAPTER 10 Which Way Did He Go? 247

248

WHAT KIND OF NUMBER?

Write a program that reads a number from the keyboard and displays one of the
words positive, negative, or zero to describe that number. Use cascading if
statements.

APPROACHING A TRAFFIC SIGNAL

Your driver’s handbook says, “When approaching a green light, proceed through
the intersection unless it’s unsafe to do so, or unless a police officer directs you to
do otherwise.”

Write a program that asks the user three questions:

3 Are you approaching a green light?
¥ Is it safe to proceed through the intersection?

¥ Is a police officer directing you not to proceed?

In response to each question, the user replies Y or N. Based on the three replies, the
program displays either Go or Stop.

Needless to say, you shouldn’t run this program while you drive a vehicle.

“YES” AND “YES” AGAIN

Modify the program in the earlier task “Approaching a traffic signal” so that the
program allows the user to reply “yes” with either an uppercase letter Y or a low-
ercase lettery.

RED LIGHT OR YELLOW LIGHT

Modify the program in the “Approaching a traffic signal” task so that the program
asksWhat color is the traffic light? (G/Y/R).When the user replies Y orR,
and either it’s unsafe to proceed or an officer is directing drivers not to proceed,
the program displays Stop. Otherwise, the program doesn’t display anything.

WHAT? ANOTHER TRAFFIC SIGNAL PROGRAM?

You can use System.out.println to display an enum value. For example, in
Listing 10-7, if you add the statement

System.out.println(who);

PART 3 Controlling the Flow

to the end of the main method, the program displays one of the words home,
visitor, orneither. Try this by creating an enum named Color with values green,
yellow, and red. Write a program that asks What color is the traffic light?
(G/Y/R). Use the user’s response to assign one of the values Color .green, Color.
yellow, or Color.red to a variable named signal. Use System.out.println to
display the value of the signal variable.

BUYING 3D GLASSES

My local movie theater charges an extra three dollars for a movie showing in 3D.
(The theater makes me buy a new pair of 3D glasses. I can’t bring the pair that
I bought the last time I saw a 3D movie.) Modify the code in Listing 10-5 so that
the program asks How many dimensions: 2 or 3?. For a 3D movie, the program
adds three dollars to the price of admission. (Note: The old Twilight Zone television
series began with narrator Rod Serling talking about a fifth dimension. I wonder
what I’d have to pay nowadays to see the Twilight Zone in my local movie
theater!)

GOING ALL\N

In Listing 10-7, I surround the SnitSoft advertisement with two out.println()
lines. Neither line has anything inside the call’s parentheses. Modify the code so
that it has exactly the same output but doesn’t use either of these out.printin()
lines. Make sure to display blank lines before and after the SnitSoft advertisement.

CHAPTER 10 Which Way Did He Go? 249

IN THIS CHAPTER

» Creating program loops

» Formulating solutions to problems
with loops

» Diagnosing loop problems

Chapter 11

Around and Around
It Goes

hapter 8 has code to reverse the letters in a four-letter word that the user
enters. In case you haven’t read Chapter 8 or you just don’t want to flip to
it, here’s a quick recap of the code:

cl = keyboard. findWithinHorizon(".",@).charAt(Q);
c2 = keyboard. findWithinHorizon(".",@).charAt(Q);
c8 = keyboard. findWithinHorizon(".",@).charAt(Q);
c4 = keyboard. findWithinHorizon(".",@).charAt(Q);

System.out.print(c4);
System.out.print(c3);
System.out.print(c2);
System.out.print(ct);

The code is just dandy for words with exactly four letters, but how do you reverse
a five-letter word? As the code stands, you have to add two new statements:

cl
c2

keyboard. findWithinHorizon(".",@).charAt(Q);
keyboard. findWithinHorizon(".",@).charAt(Q);
c3 = keyboard. findWithinHorizon(".",@).charAt(Q);

CHAPTER 11 251

c4 = keyboard. findWithinHorizon(".",@).charAt(Q);
c5 = keyboard. findWithinHorizon(".",@).charAt(9Q);

System.out.print(c5);
System.out.print(c4);
System.out.print(c3);
System.out.print(c2);
System.out.print(ct);

What a drag! You add statements to a program whenever the size of a word
changes! You remove statements when the input shrinks! That can’t be the best
way to solve the problem. Maybe you can command a computer to add statements
automatically. (But then again, maybe you can’t.)

As luck would have it, you can do something that’s even better: You can write a
statement once and tell the computer to execute the statement many times. How
many times? You can tell the computer to execute a statement as many times as it

needs to be executed.

That’s the big idea. The rest of this chapter has the details.

Repeating Instructions Again and Again
and Again and Again

Here’s a simple dice game: Keep rolling two dice until you roll 7 or 11. Listing 11-1
has a program that simulates the action in the game, and Figure 11-1 shows two
runs of the program.

import java.util.Random;

import static java.lang.System.out;
public class SimpleDiceGame {
public static void main(String[] args) {
var myRandom = new Random();

int diel = @, die2 = ©Q;

while (diel + die2 != 7 && diel + die2 I= 11) {

252 PART 3 Controlling the Flow

diel = myRandom.nextInt(6) + 1;
die2 = myRandom.nextInt(6) + 1;
out.print(diel);

out.print(" ");
out.println(die2);

out.print("Rolled ");
out.println(diel + die2);

}
}
31
4 3
Rolled 7
21
4 6
5 3
6 4
4 6
15
z 2
15
13
2 6
FIGURE 11-1: 14
Momma 65
needsanew [Rolled 11
pair of shoes.

At the core of Listing 11-1 is a thing called a while statement (also known as a while
loop). Awhile statement has the following form:

while (Condition) {

Statements

Rephrased in English, the while statement in Listing 11-1 would say

while the sum of the two dice isn't 7 and isn't 11

keep doing all the stuff in curly braces: {

The stuff in curly braces (the stuff that’s repeated over and over) is the code
that gets two new random numbers and displays those random numbers’ values.

CHAPTER 11 Around and Around It Goes 253

The statements in curly braces are repeated as long asdiel + die2 != 7 && diel
+ die2 != 11 keeps being true.

Each repetition of the statements in the loop is called an iteration of the loop. In
Figure 11-1, the first run has 2 iterations, and the second run has 12 iterations.

Whendiel + die2 != 7 && diel + die2 != 11 is no longer true (that is, when
the sum is either 7 or 11), the repeating of statements stops dead in its tracks. The
computer marches on to the statements that come after the loop.

Following the action in a loop

To trace the action of the code in Listing 11-1, ’ll borrow numbers from the first
run in Figure 11-1:

¥ Atthe start, the values of die1 and die2 are both Q.

3 The computer reaches the top of the while statement and checks to see whether
diel + die2 != 7 & diel + die2 != 11 istrue. (See Figure 11-2.) The
condition is true, so the computer takes the true path in Figure 11-3.

diel+die2 != 7 && diel+die2 != 11
[[|
Onotequalto7? 0 notequalto 11 ?
That's true. That's true.
true true
FIGURE 11-2:
Two wrongs
don’t make a "true and true"
right, but two That makes "true.
trues make true
atrue.

The computer performs an iteration of the loop. During this iteration, the
computer gets new values for die1 and die2 and prints those values on the
screen. In the first run of Figure 11-1, the new values are 3 and 1.

3 The computer returns to the top of the while statement and checks to see
whetherdiel + die2 != 7 && diel + die2 != 11 isstill true. The
condition is true, so the computer takes the true path in Figure 11-3.

254 PART 3 Controlling the Flow

FIGURE 11-3:
Paths through
the code in
Listing 11-1.

FIGURE 11-4:
Look! | rolled
a seven!

int diel = 0, die2 = 0;

false >

> ¢ diel + die2 = 7 && diel + die2 = 117

diel = myRandom.nextInt(6) + 1;
die2 = myRandom.nextInt (&) + 1;
out.print(diel);
out.print("™ ");

out.println(dieZ2) ;

.

out.print ("Rolled ") ;
out.println{diel + die2);

The computer performs another iteration of the loop. During this iteration,
the computer gets new values for diel and die2 and prints those values
on the screen. In Figure 11-1, the new values are 4 and 3.

¥ The computer returns to the top of the while statement and checks to see
whetherdiel + die2 != 7 && diel + die2 != 11 isstill true. Lo and
behold! This condition has become false! (See Figure 11-4.) The computer
takes the false path in Figure 11-3.

The computer leaps to the statements after the loop. The computer displays
Rolled 7 and ends its run of the program.

diel+die2 =7 && ‘diel+d1e2 I= 11‘
|
7 notequalto7? 7 notequalto11?
That's false. That's true.
false true

"false and true"
That makes "false."

false

CHAPTER 11 Around and Around It Goes 255

No early bailout

In Listing 11-1, when the computer finds diel + die2 != 7 && diel + die2 !=
11 to be true, the computer marches on and executes all five statements inside the
loop’s curly braces. The computer executes

diel = myRandom.nextInt(6) + 1;
die2 = myRandom.nextInt(6) + 1;

STATEMENTS AND BLOCKS (PLAGIARIZING
MY OWN SENTENCES FROM CHAPTER 9)

Java's while statements have a lot in common with i f statements. Like an i f state-
ment, awhile statement is a compound statement — that is, awhile statement
includes other statements within it. Also, both i f statements and while statements
typically include blocks of statements. When you surround a bunch of statements with
curly braces, you get what's called a block, and a block behaves, in all respects, like a sin-
gle statement.

In a typical while statement, you want the computer to repeat several smaller state-
ments over and over again. To repeat several smaller statements, you combine those
statements into one big statement. To do this, you make a block using curly braces.

In Listing 11-1, the block
diel=myRandom.nextInt(6)+;
die2=myRandom.nextInt(6)+l;
out.print(diel);

out.print(" ");
out.println(die2);

is a single statement. It's a statement that has, within it, five smaller statements. So this
big block (this single statement) serves as one big statement inside the whi le statement
in Listing 11-1.

That's the story about while statements and blocks. To find out how this stuff applies
to if statements, see the “Statements and blocks” sidebar near the end of Chapter 9.

256 PART3

Maybe (just maybe), the new values of die1 and die2 add up to 7. Even so, the
computer doesn’t jump out in midloop. The computer finishes the iteration and
executes

out.print(diel);
out.print(" ");
out.println(die2);

one more time. The computer performs the test again (to see whether die1+ die2
I= 7 && diel + die2 != 11 is still true) only after it fully executes all five state-
ments in the loop.

Where Does Each Statement Belong?

FIGURE 11-5:
You win sum;
you lose sum.

Here’s a simplified version of the card game Twenty-One: You keep taking cards
until the total is 21 or higher. Then, if the total is 21, you win. If the total is higher,
you lose. (By the way, each face card counts as a 10.) To play this game, you want
a program whose runs look like the runs in Figure 11-5.

Card Total
g g

4] 14

3 17

4 21
You win :-)
Card Total
1 1

7 8

3 11

4 15

Z 17

2 13

3 22
You lose :-{

In most sections of this book, I put a program’s listing before the description
of the program’s features. But this section is different. This section deals with
strategies for composing code. So in this section, I start by brainstorming about
strategies.

CHAPTER 11 Around and Around It Goes 257

Finding some pieces

How do you write a program that plays a simplified version of Twenty-One? I start
by fishing for clues in the game’s rules, spelled out in this section’s first paragraph.
The big fishing expedition is illustrated in Figure 11-6.

"Keep doing”
something. That means
I need a loop.

There's the loop's

condition. Keep
repeating as long as
total<21.

- O

\ \ \ \
Keep taking cards until the total is 21 or higher.

If the total is 21, you win. If the total is higher, you lose.

| smell an i f statement.
if (total==21)...

FIGURE 11-6:
Thinking about a
programming
problem.

With the reasoning in Figure 11-6, I need a loop and an i f statement:

while (total < 21) {
//do stuff

if (total == 21) {
//You win

} else {
//You lose

What else do I need to make this program work? Look at the sample output in
Figure 11-5. I need a heading with the words Card and Total. That’s a call to
System.out.println:

System.out.println("Card Total");

I also need several lines of output — each containing two numbers. For example,
in Figure 11-5, the line 6 14 displays the values of two variables. One variable

258 PART 3 Controlling the Flow

FIGURE 11-7:
...and where
they stop, nobody
knows.

stores the most recently picked card; the other variable stores the total of all cards
picked so far:

System.out.print(card);
System.out.print(" ");
System.out.println(total);

Now I have four chunks of code, but I haven’t decided how they all fit together.
Well, you can go right ahead and call me crazy. But at this point in the process, I
imagine those four chunks of code circling around one another, like part of a
dream sequence in a low-budget movie. As you may imagine, I’'m not very good
at illustrating circling code in dream sequences. Even so, [handed my idea to the
art department folks at Wiley Publishing and they came up with the picture in
Figure 11-7.

while (total < 21) {
//do stuff

;) }
if (total == 21} { %
J/Y¥ou win)
System.out.printlni("Card Total™);
1 else {
//You lose
¥ System.out.print (card);
System.out.print (" "
System.out.println(total);

CHAPTER 11 Around and Around It Goes 259

Assembling the pieces

Where should I put each piece of code? The best way to approach the problem is to
ask how many times each piece of code should be executed:

3 The program displays card and total values more than once. For
example, in the first run of Figure 11-5, the program displays these values four
times (first8 8 and then6 14 and so on). To get this repeated display, | put
the code that creates the display inside the loop:

while (total < 21) {
System.out.print(card);
System.out.print(" ");
System.out.println(total)

}

3 The program displays the Card Total heading only once per run. This
display comes before any of the repeated number displays, so | put the
heading code before the loop:

System.out.println("Card Total");

while (total < 21) {
System.out.print(card);
System.out.print(" ");
System.out.println(total);

}

3 The program displays You win or You lose only once per run. This
message display comes after the repeated number displays. So | put the win/
lose code after the loop:

//Preliminary draft code -- NOT ready for prime time:

System.out.println("Card Total");

while (total < 21) {
System.out.print(card);
System.out.print(" ");
System.out.println(total)

if (total == 21) {
System.out.println("You win :=)");
} else {
System.out.println("You lose :—(");

260 PART 3 Controlling the Flow

Getting values for variables

I almost have a working program. But if I take the code that I’ve developed for a
mental test run, I face a few problems. To see what I mean, picture yourself in the
computer’s shoes for a minute. (Well, a computer doesn’t have shoes. Picture
yourself in the computer’s boots.)

You start at the top of the code shown in the previous section (the code that starts
with the Preliminary draft comment). In the code’s first statement, you display
the words Card Total. So far, so good. But then you encounter the while loop and
test the condition total < 21.Well, is total less than 21, or isn’t it? Honestly,
I’'m tempted to make up an answer because I’'m embarrassed about not knowing
what the total variable’s value is. (I’m sure the computer is embarrassed, too.)

The variable total must have a known value before the computer reaches the top
of the while loop. Because a player starts with no cards at all, the initial total
value should be 0. That settles it. I declare int total = © at the top of the program.

But what about my friend the card variable? Should I set card to zero also? No.
There’s no zero-valued card in a deck (at least, not when I’m playing fair). Besides,
card should get a new value several times during the program’s run.

Wait! In the previous sentence, the phrase several times tickles a neuron in my
brain. It stimulates the inside a loop reflex. So I place an assignment to the card
variable inside my while loop:

//This is a DRAFT —- still NOT ready for prime time:

int card, total = O;
System.out.println("Card Total");

while (total < 21) {
card = myRandom.nextInt(10) + 1;

System.out.print(card);
System.out.print(" ");
System.out.println(total)

if (total == 21) {
System.out.println("You win :=)");
} else {
System.out.println("You lose :—(");

CHAPTER 11 Around and Around It Goes 261

FIGURE 11-8:

An incorrect run.

262

REMEMBER

The code still has an error, and I can probably find the error with more computer
role-playing. But instead, I get daring. I run this beta code to see what happens.
Figure 11-8 shows part of a run.

Card Total
5 0
10 1]
3 0
4 1]
8 0
5 1]
5 0
1 1]
6 0
7 1]
2 0
1 1]
3 0
4 1]
8 0
3 a
Q [u]

Unfortunately, the run in Figure 11-8 doesn’t stop on its own. This kind of pro-
cessing is called an infinite loop. The loop runs and runs until someone trips over
the computer’s extension cord.

You can stop a program’s run dead in its tracks. Look for the tiny red rectangle at
the top of Intelli]’s main window. When you hover the cursor over the rectangle,
the tooltip displays the word Stop along with the name of whatever class is run-
ning. When you click the rectangle, the active Java program stops running and the
rectangle turns grey.

From infinity to affinity

For some problems, an infinite loop is normal and desirable. Consider, for exam-
ple, a real-time, mission-critical application — air traffic control or the monitor-
ing of a heart-lung machine. In these situations, a program should run and run
and run.

But a game of Twenty-One should end pretty quickly. In Figure 11-8, the game
doesn’t end, because the total never reaches 21 or higher. In fact, the total is
always 0. The problem is that my code has no statement to change the total vari-
able’s value. I should add each card’s value to the total:

total += card;
Again, I ask myself where this statement belongs in the code. How many times

should the computer execute this assignment statement? Once at the start of the
program? Once at the end of the run? Repeatedly?

PART 3 Controlling the Flow

The computer should repeatedly add a card’s value to the running total. In fact,
the computer should add to the total each time a card gets drawn. So the preceding
assignment statement should be inside the while loop, right alongside the state-
ment that gets a new card value:

card = myRandom.nextInt(10) + 1;
total += card;

With this revelation, I’'m ready to see the complete program. The code is in
Listing 11-2, and two runs of the code are shown in Figure 11-5.

m A Simplified Version of the Game Twenty-One

import java.util.Random;

public class PlayTwentyOne {

public static void main(String[] args) {
var myRandom = new Random();
int card, total = ©9;

System.out.println("Card Total");

while (total < 21) {
card = myRandom.nextInt(10) + 1;
total += card;

System.out.print(card);
System.out.print(" "),
System.out.println(total);

if (total == 21) {
System.out.println("You win :-)");
} else {
System.out.println("You lose :-(");

If you’ve read this whole section, you’re probably exhausted. Creating a loop can
be a lot of work. Fortunately, the more you practice, the easier it becomes.

CHAPTER 11 Around and Around It Goes 263

REAL ALIGNMENT

In Figure 11-5, you see the numbers 8 8, and then6 14 (and so on) displayed. | wanted
these numbers to be right under the heading words Card and Total. So, in Listing 11-2,
| put blank spaces in print and println calls. This strategy doesn't work if the pro-
gram randomly draws a 10 card. The two digits in the number 10 throw the alignment
out of whack.

Card Total

6 6
10 16
9 25

You may be tempted to replace the blank spaces with tabs. Java's \t escape sequence
stands for the tab character.

System.out.println("Card\tTotal");
System.out.print(card);
System.out.print("\t");

System.out.println(total);

Unfortunately, the tab idea has problems of its own. In the Windows command prompt
and Macintosh Terminal, tab stops are eight spaces apart. So, in those environments,
the program'’s output may look like this:

Card Total

6 6
7 13
8 21

But in IntelliJ's Run tool window, tab stops are only four spaces apart, in which case you
may see this:

Card Total

6 6
7 13
8 21

264 PART 3 Controlling the Flow

I never use tabs — not in my code and not in the code’s output.” For more reliable align-
ment of the columns and their headings, | recommend Java's System.out .printf
method.

System.out.println("Card Total");
System.out.printf("%2d", card);
System.out.print(" "),
System.out.printf("%2d\n", total);

You can learn all about the print f method by visiting https: //docs.oracle.com/
javase/tutorial/java/data/number format.html. On the other hand, this book is
a real page-turner. You may not want to put it down to learn about printf. For a nice
way to display currency amounts, see Chapter 14.

Priming the Pump

I remember when I was a young boy. We lived on Front Street in Philadelphia, near
where the El train turned onto Kensington Avenue. Come early morning, I’d have
to go outside and get water from the well. I'd pump several times before any water
would come out. Ma and Pa called it “priming the pump.”

These days, I don’t prime pumps. I prime while loops. Consider the case of a busy
email system administrator. She needs a program that extracts a username from
an email address. For example, the program reads

John@BurdBrain.com

and writes

John

* A “religious war” among programmers concerning tabs versus spaces rages
on to this day. The Silicon Valley TV show drew laughs with the issue in Season 3
Episode 6. There’s even been a study to determine who earns more money —
programmers who use tabs or programmers who use spaces. If you believe
in such studies, visit https://stackoverflow.blog/2017/06/15/developers—
use-spaces—-make—-money-use-tabs/.

CHAPTER 11 Around and Around It Goes 265

mailto:John@BurdBrain.com
https://docs.oracle.com/javase/tutorial/java/data/numberformat.html
https://docs.oracle.com/javase/tutorial/java/data/numberformat.html
https://stackoverflow.blog/2017/06/15/developers-use-spaces-make-money-use-tabs/
https://stackoverflow.blog/2017/06/15/developers-use-spaces-make-money-use-tabs/

How does the program do it? Like other examples in this chapter, this problem
involves repetition:

Repeatedly do the following:
Read a character.

Write the character.

The program then stops the repetition when it finds the @ sign. I take a stab at
writing this program. My first attempt doesn’t work, but it’s a darn good start. It’s
in Listing 11-3.

m Trying to Get a Username from an Email Address

/%
* This code does NOT work, but I'm not discouraged.
*/

import java.util.Scanner;

public class FirstAttempt {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
char symbol = ' ';

while (symbol != '@') {
symbol = keyboard.findWithinHorizon(".",®).charAt(Q);
System.out.print(symbol);

}
System.out.printin();

keyboard.close();

When you run the code in Listing 11-3, you get the output shown in Figure 11-9.
The user types one character after another — the letter J, then o, then h, and so
on. At first, the program in Listing 11-3 does nothing. (The computer sends the
user’s input to the program only after the user presses Enter.) After the user
types a whole email address and presses Enter, the program gets its first character
(the J in John).

266 PART 3 Controlling the Flow

El Console 2

<terminated> FirstAttempt [J4

JohnfiBurdBrain. com

FIGURE 11-9: John@

Oops! Got the
@ sign, too.

Unfortunately, the program’s output isn’t what you expect. Rather than just the
username John, you get the username and the @ sign.

To find out why this happens, follow the computer’s actions as it reads the input
John@BurdBrain.com:

i

Set symbol to ' ' (a blank space).
Is that blank space the same as an @ sign?
No, so perform a loop iteration.

Input the letter 'J'.

Print the letter 'J'.

Is that 'J' the same as an @ sign?
No, so perform a loop iteration.
Input the letter 'o'.

Print the letter 'o'.

Is that 'o' the same as an @ sign?
No, so perform a loop iteration.
Input the letter 'h'.
Print the letter 'h'.

Is that 'h' the same as an @ sign?
No, so perform a loop iteration.
Input the letter 'n’'.

Print the letter 'n'.

Is that 'n' the same as an @ sign? //Here's the problem.
No, so perform a loop iteration.

Input the @ sign.

Print the @ sign. //0ops!

Is that @ sign the same as an @ sign?

Yes, so stop iterating.

CHAPTER 11 Around and Around It Goes 267

mailto:John@BurdBrain.com

268

Near the end of the program’s run, the computer compares the letter n with the @
sign. Because n isn’t an @ sign, the computer dives right into the loop:

¥ The first statement in the loop reads an @ sign from the keyboard.

¥ The second statement in the loop doesn't check to see whether it's time to
stop printing. Instead, that second statement just marches ahead and displays
the @ sign.

After you’ve displayed the @ sign, there’s no going back. You can’t change your
mind and undisplay the @ sign. So the code in Listing 11-3 doesn’t quite work.

Working on the problem

You learn from your mistakes. The problem with Listing 11-3 is that, between
reading and writing a character, the program doesn’t check for an @ sign. Rather
than do “Test, Input, Print,” it should do “Input, Test, Print.” That is, rather than
do this:

Is that 'o' the same as an @ sign?
No, so perform a loop iteration.
Input the letter 'h'.
Print the letter 'h'.

Is that 'h' the same as an @ sign?
No, so perform a loop iteration.
Input the letter 'n’'.

Print the letter 'n'.

Is that 'n' the same as an @ sign? //Here's the problem.
No, so perform a loop iteration.

Input the @ sign.

Print the @ sign. //0Oops!

the program should do this:

Input the letter 'o'.
Is that 'o' the same as an @ sign?
No, so perform a loop iteration.

Print the letter 'o'.

Input the letter 'n'.

Is that 'n' the same as an @ sign?

PART 3 Controlling the Flow

No, so perform a loop iteration.
Print the letter 'n'.

Input the @ sign.
Is that @ sign the same as an @ sign?

Yes, so stop iterating.

This cycle is shown in Figure 11-10.

/Input
FIGURE 11-10: \

What the Print Test
program
needs to do.

You can try to imitate the following informal pattern:

Input a character.
Is that character the same as an @ sign?
If not, perform a loop iteration.

Print the character.

The problem is, you can’t put a while loop’s test in the middle of the loop:

//This code doesn't work the way you want it to work:

{

symbol = keyboard. findWithinHorizon(".",@).charAt(Q);
while (symbol != '@")
System.out.print(symbol);

You can’t sandwich a while statement’s condition between two of the statements
that you intend to repeat. What can you do? You need to follow the flow in
Figure 11-11. Because every while loop starts with a test, that’s where you jump
into the circle, First Test, and then Print, and then, finally, Input.

CHAPTER 11 Around and Around It Goes 269

Enter the
loop here.
Input
Print Test
FIGURE 11-11: k__ﬂ///
Jumping
into a loop.

Listing 11-4 shows the embodiment of this “test, then print, then input” strategy.

/*
% This code almost works, but there's one tiny error:
*/

import java.util.Scanner;

public class SecondAttempt {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
char symbol = ' ';

’

while (symbol != '@') {
System.out.print(symbol);
symbol = keyboard.findWithinHorizon(".",0).charAt(Q);

System.out.printin();

keyboard.close();

A run of the code in Listing 11-4 is shown in Figure 11-12.

FIGURE 11-12: John@BurdBrain. com
The computer John

displays an extra
blank space.

270 PART 3 Controlling the Flow

The code is almost correct, but I still have a slight problem. Notice the blank space
before the user’s input. The program races prematurely into the loop. The first
time the computer executes the statements

System.out.print(symbol);
symbol = keyboard.findWithinHorizon(".",@).charAt(Q);

the computer displays an unwanted blank space. Then the computer gets the J in
John. In some applications, an extra blank space is no big deal. But in other appli-
cations, extra output can be disastrous.

Fixing the problem

Disastrous or not, an unwanted blank space is the symptom of a logical flaw. The
program shouldn’t display results before it has any meaningful results to display.
The solution to this problem is called — drumroll, please — priming the loop. You
pump findWithinHorizon(".",@).charAt(@) once to get some values flowing.
Listing 11-5 shows you how to do it.

m How to Prime a Loop

/*
% This code works correctly!
*/

import java.util.Scanner;
public class GetUserName {
public static void main(String[] args) {

var keyboard = new Scanner(System.in);
char symbol;

symbol = keyboard.findWithinHorizon(".", ©).charAt(Q);
while (symbol != '@') {

System.out.print(symbol);

symbol = keyboard.findWithinHorizon(".", @).charAt(Q);

System.out.printin();

keyboard.close();

CHAPTER 11 Around and Around It Goes 271

Listing 11-5 follows the strategy shown in Figure 11-13. First you get a character
(the letter J in John, for example), and then you enter the loop. After you’re in the
loop, you test the letter against the @ sign and print the letter if it’s appropriate
to do so. Figure 11-14 shows a beautiful run of the GetUserName program.

Input
Enter the
loop here.
Input
Print Test
FIGURE 11-13: \/
The strategy in
Listing 11-5.
John@BurdBrain. com
John
FIGURE 11-14:
A run of the code
in Listing 11-5.
The priming of loops is an important programming technique. But it’s not the end
of the story. In Chapters 12, 18, and 19, you can read about some other useful loop-
ing tricks.
Face Java’s loops head-on with the following programming challenges.
TRY IT OUT

LIVING LARGE

Write a program that repeatedly reads numbers from the user’s keyboard. The
program stops looping when the user types a number that’s larger than 100.

ARE WE THERE YET?

Write a program that repeatedly prompts the user with the same question: Are we
there yet? The program stops looping when the user replies with the uppercase
letter Y or the lowercase letter y. Here’s a sample run:

272 PART 3 Controlling the Flow

=

Are we there yet?
Are we there yet?
Are we there yet?
Are we there yet?

Are we there yet?

< =Z2 Z2 Z2 5

Are we there yet?
Whew!

TALLY UP

Write a program that uses a loop to repeatedly read numbers from the keyboard.
The program stops reading numbers when the user enters a negative number. The
program reports the sum of the numbers, excluding the last (negative) number.

GUESS AGAIN

In Chapter 9, you write a guessing-game program. The program compares what-
ever number the user enters with a number that the program generates randomly.
The user wins if the two numbers are equal, and loses otherwise.

Modify this program as follows:

¥ Asinthe original version, the program generates a number randomly only
once, but. ..

¥ ...the program repeatedly asks the user for guesses until the user guesses
correctly.

TWO IN A ROW

Write a program that repeatedly reads numbers from the user’s keyboard. The
program stops looping when the user types the same number twice in a row.
Here’s a sample run of the program:

CHAPTER 11 Around and Around It Goes 273

IN THIS CHAPTER

» Creating repetitive actions

» Insisting on a valid response from
the user

» Deleting incriminating evidence

Chapter 12

Circling Back to
Java Loops

remember it distinctly — the sense of dread I would feel on the way to Aunt
Edna’s house. She was a kind old woman, and her intentions were good. But
visits to her house were always agonizing.

First, we’d sit in the living room and talk about our other relatives. That was okay,
as long as I understood what people were talking about. Sometimes, the gossip
would be about adult topics and I’d become bored.

After all the family chatter ended, my father would help Aunt Edna with paying
her bills. That was fun to watch because she had a genetically inherited family
ailment: Like me and many of my ancestors, Aunt Edna couldn’t keep track of
paperwork to save her life. It was as if the paper had allergens that made Aunt
Edna’s skin crawl. After ten minutes of useful bill paying, my father would find a
mistake, an improper tally, or something else in the ledger that needed attention.
He’d ask Aunt Edna about it, and she’d shrug her shoulders. He’d become agitated
trying to track down the problem while Aunt Edna rolled her eyes and smiled with
ignorant satisfaction. It was great entertainment.

Then, when the bill paying was done, we’d sit down to eat dinner. That’s when
I would remember why I dreaded these visits: Dinner was unbearable. Aunt Edna
believed in Fletcherism — a health-oriented movement whose followers chewed
each mouthful of food 100 times. The more devoted followers used a chart, with a

CHAPTER 12 Circling Back to Java Loops 275

different number for the mastication of each kind of food. The minimal number of
chews for any food was 32 — one chomp for each tooth in your mouth. People who
did this said they were “Fletcherizing.”

Mom and Dad thought the whole Fletcher business was silly, but they respected
Aunt Edna and felt that people her age should be humored, not defied. As for me,
I thought I'd explode from the monotony. Each meal lasted forever. Each mouth-
ful was an ordeal. I can still remember my mantra — the words I’d say to myself
without meaning to do so:

I've chewed @ times so far.
Have I chewed 100 times yet? If not, then
Chew!
Add 1 to the number of times that I've chewed.
Go back to "Have I chewed" to find out if I'm done yet.

Repeating Statements a Certain Number
of Times (Java for Statements)

Life is filled with examples of counting loops. And computer programming mirrors
life. (Or is it the other way around?) When you tell a computer what to do, you're
often telling the computer to print three lines, process ten accounts, dial a million
phone numbers, or whatever. Because counting loops are common in programming,
the people who create programming languages have developed statements just for
loops of this kind. In Java, the statement that repeats something a certain number
of times is called a for statement. An example of a for statement is in Listing 12-1.

m Horace Fletcher's Revenge

276

import static java.lang.System.out;
public class AuntEdnaSettlesForTen {
public static void main(String[] args) {
for (int count = ©@; count < 10; count++) {
out.print("I've chewed ");

out.print(count);
out.println(" time(s).");

PART 3 Controlling the Flow

out.println("10@ times! Hooray!");
out.println("I can swallow!");

Figure 12-1 shows you what you get when you run the program in Listing 12-1:

¥ The for statement in Listing 12-1 starts by setting the count variable
equal to 0.

¥ Then the for statement tests to make sure that count is less than 10 (which it
certainly is).

¥ Then the for statement dives ahead and executes the printing statements
between the curly braces. At this early stage of the game, the computer prints
I've chewed 0 time(s).

¥ Then the for statement executes count++ — that last thing inside the for
statement’s parentheses. This last action adds 1 to the value of count.

I've chewed 2 time(s
I've chewed 3 time(s
I've chewed 4 time(s)
I've chewed 5 time(s)
I've chewed 6 time(s).
I've chewed 7 time(s).
(s)
(s)

).
).

I've chewed 8 time
I've chewed 9 time(s
FIGURE 12-1: |1@ times! Hooray!
Chewingten |I can swallow!
times.

This ends the first iteration of the for statement in Listing 12-1. Of course, this
loop has more to it than just one iteration:

¥ With count now equal to 1, the for statement checks again to make sure that
count is less than 10. (Yes, 1 is smaller than 10.)

¥ Because the test turns out okay, the for statement marches back into the
curly-braced statements and prints I 've chewed 1 time(s) on the screen.

¥ Then the for statement executes that last count++ inside its parentheses.
The statement adds 1 to the value of count, increasing the value of count to 2.

And so on. This whole process repeats over and over again until, after ten
iterations, the value of count finally reaches 10. When this happens, the check for

CHAPTER 12 Circling Back to Java Loops 277

count being less than 10 fails, and the loop’s execution ends. The computer
jumps to whatever statement comes immediately after the for statement. In
Listing 12-1, the computer prints 10 times! Hooray! I can swallow! The whole
process is illustrated in Figure 12-2.

int count = 0;

" ¢ count < 10 ?

out.print ("I've chewed ");
out.print (count) ;7
out.println(" time(s)."):

o

count++

FIGURE 12-2:
The action of the
for loopin
Listing 12-1.

10 times! Hooray! I can swallow!

Esprit de for
A typical for statement looks like this:
for (Initialization; Condition; Update) {
Statements
After the word for, you put three things in parentheses: an initialization, a condi-
tion, and an update.

Each of the three items in parentheses plays its own, distinct role:

¥ Initialization: The initialization is executed once, when the run of your
program first reaches the for statement.

¥ Condition: The condition is tested several times (at the start of each iteration).

3 Update: The update is also evaluated several times (at the end of each iteration).

278 PART 3 Controlling the Flow

A

WARNING

If it helps, think of the loop as though its text is shifted all around:

//This is NOT real code

int count = @

for count < @ {
out.print("I've chewed ");
out.print(count);
out.println(" time(s).");

count++;

You can’t write a real for statement this way. (The compiler would throw code
like this right into the garbage can.) Even so, this is the order in which the parts
of the for statement are executed.

The first line of a for statement (the word for followed by stuff in parentheses)
isn’t a complete statement. So you almost never put a semicolon after the stuff in
parentheses. If you make a mistake and type a semicolon, like this:

// DON'T DO THIS:
for (int count = @; count < 10; count++); {

you usually put the computer into a do-nothing loop. The computer counts to
itself from o to 9. After counting, the computer executes whatever statements
come immediately after the open curly brace. (The loop ends at the semicolon, so
the statements after the open curly brace aren’t inside the loop.)

Initializing a for loop

Look at the first line of the for loop in Listing 12-1 and notice the declaration int
count = 0. That’s something new. When you create a for loop, you can declare a
variable (like count) as part of the loop initialization.

If you declare a variable in the initialization of a for loop, you can’t use that vari-
able outside theloop. For example, in Listing 12-1, try puttingout . print1n(count)
after the end of the loop:

//This code does not compile.

for (int count = @; count < 10; count++) {
out.print("I've chewed ");
out.print(count);

out.println(" time(s).");

out.print(ecount); //The count variable doesn't exist here.

CHAPTER 12 Circling Back to Java Loops 279

With this extra reference to the count variable, the compiler gives you an error
message. You can see the message in Figure 12-3. If you’re not experienced with
for statements, the message may surprise you — “Whadaya mean Cannot
resolve symbol 'count'?You can see a count variable declaration just four lines
above that statement.” Ah, yes. But the count variable is declared in the for loop’s
initialization. Outside the for loop, that count variable doesn’t exist.

public static void main(String[] args) {

for (int gount = 8; gount < 18; count++) {
out.print("I've chewed ");
out.print(count);
out.println(" time(s).");

}
FIGURE 12-3: out.print(counf); //The count variable doesn’t exist here
What count
. , Cannot resolve symbol 'count’
variable? | don't
see acount Create local variable 'count' Y&& More actions.]
variable.

To use a variable outside of a for statement, you have to declare that variable out-
side the for statement. You can even do this with the for statement’s counting
variable. Listing 12-2 has an example.

m Using a Variable Declared Outside of a for Loop

import static java.lang.System.out;

public class AuntEdnaDoesItAgain {

public static void main(String[] args) {
int count;

for (count = @; count < 10; count++) {
out.print("I've chewed ");
out.print(count);
out.println(" time(s).");

out.print(count);
out.println(" times! Hooray!");
out.println("I can swallow!");

280 PART 3 Controlling the Flow

A run of the code in Listing 12-2 looks exactly like the run for Listing 12-1. The run
is pictured in Figure 12-1. Unlike its predecessor, Listing 12-2 enjoys the luxury of
using the count variable to display the number 10. It can do this because in
Listing 12-2, the count variable belongs to the entire main method and not to the
for loop alone.

Notice the words for (count = @ in Listing 12-2. Because count is declared before
the for statement, you don’t declare count again in the for statement’s initial-
ization. I tried declaring count twice, as in the following code:

//This does NOT work:

int count;

for (int count = @; count < 10; count++) {

cFCE
And IntelliJ told me to clean up my act:

Variable 'count' is already defined in the scope

VERSATILE LOOPING STATEMENTS

If you were stuck on a desert island with only one kind of loop, what kind would you
want to have? The answer is, you can get along with any kind of loop. The choice
between awhile loop and a for loop is about the code’s style and efficiency. It's not
about necessity.

Anything you can do with a for loop, you can do with awhile loop as well. Consider,
for example, the for loop in Listing 12-1. Here's how you can achieve the same effect
with awhile loop:

int count = 0;

while (count < 10) {
out.print("I've chewed ");
out.print(count);
out.printin(" time(s).");
count++;

}

In the while loop, you have explicit statements to declare, initialize, and increment the
count variable.

(continued)

CHAPTER 12 Circling Back to Java Loops 281

(continued)

The same kind of trick works in reverse. Anything you can do with awhile loop, you can
do with a for loop as well. But turning certain while loops into for loops seems
strained and unnatural. Consider awhile loop from Listing 11-2, in Chapter 11:

while (total < 21) {
card = myRandom.nextInt(10) + 1;
total += card;
System.out.print(card);
System.out.print(" ");
System.out.println(total);

Turning this loop into a for loop means wasting most of the stuff inside the for loop's
parentheses:

for (; total < 21 ;) {
card = myRandom.nextInt(10) + 1;
total += card;
System.out.print(card);
System.out.print(" ");
System.out.println(total);

The preceding for loop has a condition, but it has no initialization and no update. That's
okay. Without an initialization, nothing special happens when the computer first enters
the for loop. And without an update, nothing special happens at the end of each itera-
tion. It's strange, but it works.

Usually, when you write a for statement, you're counting how many times to repeat
something. But, in truth, you can do just about any kind of repetition with a for
statement.

Shut up and chew!

Look again at Figure 12-1. Do you really want the code to report each and every
time through the loop? Maybe not. Listing 12-3 honks its horn only after three
chews in a row.

282 PART 3 Controlling the Flow

m Enjoying a Quieter Meal

import static java.lang.System.out;

public class LessTalking {

public static void main(String[] args) {

for (int count = ©@; count < 10; count++) {
if (count % 3 == 0) {
out.print("I've chewed ");
out.print(count);
out.println(" time(s).");

}

out.println("10 times! Hooray!");
out.println("I can swallow!");

Listing 12-3 contains an if statement inside of a loop. The effect is to print
messages during certain loop iterations and to skip the printing during other
iterations. Figure 12-4 shows the output of the code in Listing 12-3.

I've chewed 0 time(s).
I've chewed 3 time(s).
I've chewed 6 time(s).
I've chewed 9 time(s).

FIGURE 12-4:
A modest amount 10 times! Hooray!
of information I can swallow!

about chewing.

Chapter 7 tells you about Java’s remainder operator (%). Here’s how it works:

3 When count is 4, the i f statement in Listing 12-3 finds 4 % 3 — the
remainder when you divide 4 by 3.

That remainder is 1, not 0. So Java doesn't execute the code’s out . print calls.

3 When count is 5, the i f statement finds5 % 3 — the remainder when
you divide 5 by 3.

That remainder is 2, not 0. So Java doesn't execute the code’s out . print calls.

CHAPTER 12 Circling Back to Java Loops 283

3 When count is 6, the i f statement finds6 % 3 — the remainder when
you divide 6 by 3.

That remainder is 0. So Java executes the code’s out . print calls. The same
reasoning works for all the numbers from 0 to 9.

When it comes to writing code with loops, there’s no such thing as having too
much practice. Try these problems. Work slowly and don’t get discouraged.
Remember that solutions are available at http://beginprog.allmycode.com.

TRY IT OUT

NARCISSIST'S CODE

Write a program that reads the user’s name and a number (howMany) from the
keyboard. The program uses a for loop to display the user’s name howMany times
on the screen.

BRITISH POUNDS TO US DOLLARS

In April 2017, one British pound was worth 1.25 US dollars. Write a program to
create a simple currency conversion table. In your program, use a for loop to dis-
play the following table:

Pounds Dollars
1 1.25
2 2.5
3 8.9
4 5.0
) 6.25
6 .
7 8.75
8 10.0
9 11.25

Repeating Until You Get What You Need
(Java do Statements)

I introduce Java’s while loop in Chapter 11. When you create a while loop, you
write the loop’s condition first. After the condition, you write the code that gets
repeatedly executed.

284 PART 3 Controlling the Flow

http://beginprog.allmycode.com/

while (Condition) {
Code that gets repeatedly executed

This way of writing a while statement is no accident. The look of the statement
emphasizes an important point — that the computer always checks the condition
before executing any of the repeated code.

If the loop’s condition is never true, the stuff inside the loop is never executed — not
even once. In fact, you can easily cook up a while loop whose statements are never
executed (although I can’t think of a reason why you would ever want to do it):

//This code doesn't print anything:
int twoPlusTwo = 2 + 2;
while (twoPlusTwo == 5) {
System.out.println("""
Are you kidding? 2+2 doesn't equal 5.
Everyone knows that 2+2 equals 3.""");

In spite of this silly twoPlusTwo example, the while statement turns out to be the
most useful of Java’s looping constructs. In particular, the while loop is good for
situations in which you must look before you leap. For example: “While money is
in my account, write a mortgage check every month.” When you first encounter
this statement, if your account has a zero balance, you don’t want to write a mort-
gage check — not even one check.

But at times (not many), you want to leap before you look. In a situation when
you’re asking the user for a response, maybe the user’s response makes sense, but
maybe it doesn’t. Maybe the user’s finger slipped, or perhaps the user didn’t
understand the question. In many situations, it’s important to correctly interpret
the user’s response. If the user’s response doesn’t make sense, you must ask again.

Holding out for a trustworthy response

Consider a program that deletes a file. Before deleting the file, the program asks for
confirmation from the user. If the user types Y, delete; if the user types N, don’t
delete. Of course, deleting a file is serious stuff. Mistaking a bad keystroke for a
‘“yes” answer can delete the company’s records. (And mistaking a bad keystroke for
a “no” answer can preserve the company’s incriminating evidence.) If there’s any
doubt about the user’s response, the program should ask the user to respond again.

Pause a moment to think about the flow of actions — what should and shouldn’t
happen when the computer executes the loop. A loop of this kind doesn’t need to

check anything before getting the user’s first response. Indeed, before the user

CHAPTER 12 Circling Back to Java Loops 285

gives the first response, the loop has nothing to check. The loop shouldn’t start
with, “as long as the user’s response is invalid, get another response from the
user.” Instead, the loop should just leap ahead, get a response from the user, and
then check the response to see whether it made sense. The code to do all of this is
in Listing 12-4.

Repeat Before You Delete

DISCLAIMER: Neither the author nor John Wiley & Sons,
Inc., nor anyone else even remotely connected with the
creation of this book, assumes any responsibility

for any damage of any kind due to the use of this code,

including any work created partially or in full by

*
*
*
*
*x or the use of any work derived from this code,
*
* the reader.

*

*

Sign here:

import java.io.File;
import java.util.Scanner;

public class IHopeYouKnowWhatYoureDoing {

public static void main(String[] args) {

var keyboard = new Scanner(System.in);
char reply;

do {

System.out.print("Reply with Y or N...");
System.out.print(" Delete the importantData file? ");
reply = keyboard.findWithinHorizon(".", @).charAt(Q0);

} while (reply != 'Y' && reply != 'N');

if (reply == 'Y') {
new File("importantData.txt").delete();
System.out.println("Deleted!");

} else {
System.out.println("No harm in asking!");

keyboard.close();

286 PART 3 Controlling the Flow

FIGURE 12-5:
No! Don't do it!

FIGURE 12-6:
Adding a file to
your project.

Deleting a file

A run of the program in Listing 12-4 is shown in Figure 12-5. Before deleting a
file, the program asks the user whether it’s okay to make the deletion. If the user
gives one of the two expected answers (Y or N), the program proceeds according to
the user’s direction. But if the user enters any other letter (or any digit, punctua-
tion symbol, or whatever), the program asks the user for another response.

Delete the importantData file?
Delete the importantData file?
Delete the importantData file? vy
Delete the importantData file? r
Delete the importantData files

Reply with ¥ or
Reply with ¥ or
Reply with ¥ or
Reply with ¥ or
Reply with ¥ or
Deleted!

< o

=====

In Figure 12-4, the user hems and haws for a while, first with the letter U, and
then with the digit 8, and then with lowercase letters. Finally, the user enters Y
and the program deletes the importantData.txt file. If you compare the files on
your hard drive (before and after the run of the program), you see that the pro-
gram trashes the file named importantData. txt.

If you use Intelli] IDEA, here’s how you can tell that a file is being deleted:

1. create a Java project containing the code in Listing 12-4.

2. Inthe Project tool window, right-click the tree’s topmost branch. (See
Figure 12-6.)

Project « @G T = & — & IHopeYouKnowWhatYoureDoing.java
|

N e
idea Add Framework Support...

= src - .
€ IHopeYouKnowWhatYour & Cut 9 | = Sr‘:ra ch File GHN
w12-03.iml & copy s Dlrector‘y
> Il External Libraries Copy Path... % HTML File
> g Scratches and Consoles O Paste sgy | ‘g Kotlin Script
Find Usages +F7 ‘& Kotlin Worksheet £i

Figure 12-6 shows part of Intelli)'s main window. This window describes a
project named 12-03. Notice the label 12-03 at the top of the Project tool
window's tree. The 12-03 project’s files live primarily in a folder named 12-03
on the computer's hard drive. That 12-03 folder is called the project's root
folder. The root folder has subfolders named . idea and src along with some
other useful goodies.

CHAPTER 12 Circling Back to Java Loops 287

REMEMBER

(= =
T
TECHNICAL
STUFF

FIGURE 12-7:
Your new file
hangs on a
branch of the
Project tool
window's tree.

CROSS
REFERENCE

288

To the right of the 12-03 label, Intelli] faintly displays the characters ~/Idea
Projects/12-03. So, on the computer's hard drive, the project's 12-03 root
folder is a subfolder of a folder named IdeaProjects.

Don't right-click any of the project’s subfolders. (For example, don't right-click
the project’s src folder.) Instead, right-click the project’s root.

The tree in IntelliJ's Project tool window is a useful summary of a project’s
resources, but it isn't quite the same as the tree in your computer’s File Explorer
or Finder. Some items on the Project tool window's tree are neither files nor
folders, and some items on your hard drive don't appear on IntelliJ's tree.

On the resulting context menu, choose New = File.

Intelli)'s New File dialog box appears.

In the dialog box’s text field, type the name of your new file.
Type importantData.txt.

With the cursor still in the dialog box’s text field, press Enter.

Observe that the file's name appears in Intelli)'s Project tool window. (See
Figure 12-7.)

W

»

>

il src

£l importantData.txt

Q== |-\ @
2 12-03 ~/ldeaProjects/12-03
> .idea

Project «

€' IHopeYouKnowWhatYourel
4 12-03.iml

Il External Libraries &
o Scratches and Consoles

The name is in the project’s root directory. If you're unsure about this, collapse
the tree's src branch. When you do, the project's
IHopeYouKnowWhatYoureDoing branch disappears, but the importantData.
txt branch doesn't. (See Figure 12-8.)

You put your new file in the root directory because, in Listing 12-4, the name
importantData. txt (with no slashes or backslashes) refers only to a name in the
project's root directory. The program's run has no effect on any files outside of
the root directory, even if any of those files has the name importantData. txt.

To find out how to refer to files outside of the project's root directory, see
Chapter 16.

For this experiment, you don't have to add any text to the file. The file exists
only to be deleted. (What a shame!)

PART 3 Controlling the Flow

FIGURE 12-8:
The important
Data.txt file
isn't inside the
src branch.

Project « B I - g — @

v Bg12-03 ~/ldeaProjects/12-03
> .idea
> src
= 12-03.iml

= importantData.txt
> |l External Libraries
> “p Scratches and Consoles

7. Runthe program.
When the program runs, type Y to delete the importantData. txt file.

8. After running the program, look for importantData. txt in the Project
tool window.

Sure enough, you can't find an importantData. txt file. You've deleted it!
In Listing 12-4, the statement
new File("importantData.txt").delete();

is tricky. At first glance, you seem to be creating a new file, only to delete that file
in the same line of code! But in reality, the words new File create only a repre-
sentation of a file inside your program. To be more precise, the words new File
create, inside your program, a representation of a disk file that may or may not
already exist on your computer’s hard drive. Here’s what the new File statement
really means:

"Letnew File("importantData.txt") refer to a file named importantData.
txt. If such afile exists, then delete it."

Yes, the devil is in the details. But smiles are in the subtleties, and nobility is in
the nuance.

Taming of the do

To write the program in Listing 12-4, you need a loop — a loop that repeatedly
asks the user whether the importantData.txt file should be deleted. (The action
of the loop in Listing 12-4 is illustrated in Figure 12-9.) The loop continues to ask
until the user gives a meaningful response. The loop tests its condition at the end
of each iteration, after each of the user’s responses.

CHAPTER 12 Circling Back to Java Loops 289

FIGURE 12-9:
Here we go loop,

290

do loop.

v
System.out.print (" Delete the importantData file? ");

——
reply = keyboard.findWithinHorizon(".", 0).charAt(0);

v
¢ reply doesn’t make sense ?

< ¢ (reply is neither 'Y' nor 'N’)?

as|e

v

Delete or don’t delete importantData (depending on the reply).

That’s why the program in Listing 12-4 has a do loop (also knownasado ... while
loop). With a do loop, the program jumps right in, executes some statements, and
then checks a condition. If the condition is true, the program goes back to the top
of the loop for another go-around. If the condition is false, the computer leaves
the loop (and jumps to whatever code comes immediately after the loop).

Repeat performance

The format of a do loop is

do {
Statements
} while (Condition)

Writing the Condition at the end of the loop reminds me that the computer exe-
cutes the Statements inside the loop first. After the computer executes the State-
ments, it goes on to check the Condition. If the Condition is true, the computer
goes back for another iteration of the Statements.

With a do loop, the computer always executes the statements inside the loop at
least once:

//This code prints something:
int twoPlusTwo = 2 + 2;
do {

System.out.println("""

PART 3 Controlling the Flow

Are you kidding? 2+2 doesn't equal 5.
Everyone knows that 2+2 equals 3.""");
} while (twoPlusTwo == 5);

This code displays Are you kidding? 2+2 doesn't equal 5 ...and soon and
then tests the condition twoPlusTwo == 5. Because twoPlusTwo == 5 is false, the
computer doesn’t go back for another iteration. Instead, the computer jumps to
whatever code comes immediately after the loop.

I%I Get some practice using Java’s do statement.

™TT DO I HEAR AN ECHO?
In a do statement, repeatedly read numbers from the keyboard. Display each
number back to the user on the screen. After displaying a number, ask whether the
user wants to continue entering numbers. When the user replies with the letter n,
stop.

Here’s a sample run of the program:

Enter a number: 5
5
Continue? (y/n) y

Enter a number: 81
81
Continue? (y/n) y

Enter a number: 29
29

Continue? (y/n) n

Done!

TALLYHO!

In a do statement, repeatedly read int values from the keyboard and keep track of
the running total. The user says, “I want to stop entering values” by typing one
final int value — the value 0. At that point, the program displays the total of all
values that the user entered.

CHAPTER 12 Circling Back to Java Loops 201

The Inside
ScOOP

IN THIS PART ...

Understanding object-oriented programming (and not
just pretending to understand)

Dividing your code into manageable chunks

Creating recipes to use over and over again

IN THIS CHAPTER

» Programming with class (and with
style and finesse)

» Making objects from classes

» Joining the exclusive “l understand
classes and objects” society

Chapter 13

Programming with
Objects and Classes

hapters 7 and 8 introduce Java’s primitive types — things like int, double,
char, and boolean. That’s great, but how often does a real-world problem
deal exclusively with such simple values? Consider an exchange between a
merchant and a customer. The customer makes a purchase, which can involve
item names, model numbers, credit card info, sales tax rates, and lots of other
stuff. A purchase is more complicated than an int value. It’s more complicated
than a double value. How do you represent an entire purchase in a Java program?

In older computer programming languages, you treat an entire purchase like a big
pile of unbundled laundry. Imagine a mound of socks, shirts, and other items of
clothing. You have no basket, so you grab as much as you can handle. As you walk
to the washer, you drop a few things — a sock here and a washcloth there. This is
like the older way of storing the values in a purchase. In older languages, there’s
no purchase. There are only double values, char values, and other loose items.
You put the purchase amount in one variable, the customer’s name in another,
and the sales tax data somewhere else. But that’s awful. You tend to drop things
on your way to the compiler. With small errors in a program, you can easily drop
an amount here and a customer’s name there.

With laundry and computer programming, you’re better off if you have a basket.
The newer programming languages, like Java, allow you to combine values and

CHAPTER 13 Programming with Objects and Classes 295

make new, more useful kinds of values. For example, in Java, you can combine a
double value, an int value, a boolean value, and maybe other kinds of values to
create something that you call a Purchase. Because your purchase info is all in
one big bundle, keeping track of the purchase’s pieces is easier. That’s the start
of an important computer programming concept: the notion of object-oriented
programming.

The Class Is Always Cleaner

I start with a “traditional” example. The program in Listing 13-1 processes simple
purchase data. A run of the program is shown in Figure 13-1.

m Doing It the Old-Fashioned Way

import java.util.Scanner;

public class ProcessData {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
double unitPrice;
int quantity;
boolean taxable;

System.out.print("Unit price: ");

unitPrice = keyboard.nextDouble();
System.out.print("Quantity: ");

quantity = keyboard.nextInt();
System.out.print("Taxable? (true/false) ");
taxable = keyboard.nextBoolean();

double total = unitPrice x quantity;

if (taxable) {
total = total x 1.05;

System.out.print("Total: ");
System.out.println(total);

keyboard.close();

296 PART 4 The Inside SCOOP

FIGURE 13-1:
Processing a
customer’s
purchase.

Unit price: 20.00
Quantity: 2

Taxable? (truve/false) true
Total: 42.0

If the output in Figure 13-1 looks funny, it’s because I do nothing in the code to
control the number of digits beyond the decimal point. So in the output, the value
$42.00 looks like 42.0. That’s okay. I show you how to fix the problem in
Chapter 14.

Reference types and Java classes

The code in Listing 13-1 involves a few simple values: unitPrice, quantity, and
taxable. So here’s the main point of this chapter: By combining several simple
values, you can get a single, more useful value. That’s the way it works — you take
some of Java’s primitive types, whip them together to make a primitive type stew,
and what do you get? You get a more useful type called a reference type. Listing 13-2
has an example.

m What It Means to Be a Purchase

REMEMBER

public class Purchase {
double unitPrice;
int quantity;
boolean taxable;

The code in Listing 13-2 has nomain method, so you can’t tell IntelliJ to start run-
ning that code. If you right-click the editor’s Purchase tab or the Project tool
window’s Purchase branch, the resulting context menu has no Run item. If you
click the little green Run button at the top of Intelli]’s main window, Intelli] may
start running some other listing’s code, but it won’t start running the code in
Listing 13-2. Having a method named main is the only way to tell Java to “start
running code here.”

The code in Listing 13-2 is quite useful, but Listing 13-2 isn’t a complete, runnable

application. Don’t ask IntelliJ to start running the code in Listing 13-2. IntelliJ
can’t do that.

CHAPTER 13 Programming with Objects and Classes 297

How to use a newly defined class

To do something useful with the code in Listing 13-2, you need a main method.
That main method belongs in a separate file. Listing 13-3 shows you such a file.

m Using Your Purchase Class

import java.util.Scanner;

public class ProcessPurchase {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
Purchase onePurchase = new Purchase();

System.out.print("Unit price: ");
onePurchase.unitPrice = keyboard.nextDouble();
System.out.print("Quantity: ");
onePurchase.quantity = keyboard.nextInt();
System.out.print("Taxable? (true/false) ");
onePurchase.taxable = keyboard.nextBoolean();

double total = onePurchase.unitPrice *x onePurchase.quantity;

if (onePurchase.taxable) {
total = total % 1.05;

System.out.print("Total: ");
System.out.println(total);

keyboard.close();

To compile and run this section’s example, you must have two files in your IntelliJ
project’s src folder. One file, named ProcessPurchase. java, contains the code
in Listing 13-3. The other file, named Purchase. java contains the code in
Listing 13-2. Figure 13-2 drives this point home.

E Project « @ z = ®©» — (@ Purchase.java € ProcessPurchase.java
E v Ig13-03 ~/ldeaProjects/13-0: public class Purchase {
] > .idea = double unitPrice;
¥ sre int quantity;
FIGURE 13-2: & ProcessPurchase boolean taxable;
Two for the © Purchase }
price of two. m 13-03.iml

298 PART 4 The Inside ScOOP

REMEMBER

A

WARNING

TABLE 13-1:

With both ProcessPurchase.java and Purchase.java in your project’s
src folder, right-click either the ProcessPurchase branch in the Project tool
window’s tree or the ProcessPurchase. java tab at the top of the Editor. In
either case, Intelli]J displays a context menu. On the context menu, select Run
ProcessPurchase or Run ProcessPurchase.main().

The code to run is the ProcessPurchase code. Right-clicking the Purchase branch
or the Purchase. java tab won’t do any harm, but it won’t help you run this
section’s example.

Java looks carefully at the names of the files on your computer’s hard drive. If you
mistakenly put public class ProcessPurchase in a file named Purchase. java
or FileWithMainMethod. java, Intelli] tells you to rethink your choices.

What's going on here?

The best way to understand the code in Listing 13-3 is to compare it, line by line,
with the code in Listing 13-1. In fact, there’s a mechanical formula for turning
the code in Listing 13-1 into the code in Listing 13-3. Table 13-1 describes the
formula.

Converting Your Code to Use a Class
In Listing 13-1 In Listing 13-3

double unitPrice; Purchase onePurchase = new Purchase();
int quantity;

boolean taxable;

unitPrice onePurchase.unitPrice
quantity onePurchase.quantity
taxable onePurchase.taxable

The two programs (in Listings 13-1 and 13-3) do essentially the same thing, but
one uses primitive variables, and the other leans on the Purchase code from
Listing 13-2. Both programs have runs like the one shown earlier, in Figure 13-1.

CHAPTER 13 Programming with Objects and Classes 299

300

Why bother?

On the surface, the code in Listing 13-3 is longer, more complicated, and harder to
read. But think about a big pile of laundry: It may take time to find a basket and to
shovel socks into the basket, but when you have clothes in the basket, the clothes
are much easier to carry. It’s the same way with the code in Listing 13-3. When
you have your data in a Purchase basket, it’s much easier to do complicated things
with purchases.

AN APOLOGY OF SORTS (ALONG
WITH AN EXCUSE!)

As far as most professional programmers are concerned, the code in Listings 13-2

and 13-3 is quite simple. In fact, it's too simple. Java programmers don't like expressions
such as onePurchase.unitPrice, and they hate declarations such as double
unitPrice. Instead, they prefer private double unitPrice along with expressions
such as onePurchase . getUnitPrice(). These programmers will tell you that “the
code in Burd's examples isn't safe,” “Burd’s examples promote bad programming prac-
tices,” and “In the summertime, Burd wears colors that don’t match.” In fact, these pro-
grammers are absolutely correct.

But in my opinion, you learn to walk before you learn to run. Classes and objects are
difficult concepts, so | present them in as simple a form as | possibly can. Object-
oriented programming is an art as well as a science. It's a way of thinking — a way
whose mastery requires time and patience. | have students at the university (some
outstanding students) who spend months wrestling with the fundamentals of classes
and objects.

In this book, | don't present the most time-honored, expert-approved way of dealing
with classes and objects. Instead, | follow the simplest path to help you get classes and
objects into your consciousness. You can learn the better way of doing things after
you've become comfortable dividing problems into their object-oriented parts.

And besides, for all the nasty things someone might say about this chapter's simple
examples, the examples aren’t fake. They run, they produce output, and they illustrate
the separating of a class from the main program'’s code. At the core, that's what object-

oriented programming is all about.

So there!

PART 4 The Inside ScOOP

From Classes Come Objects

The code in Listing 13-2 defines a class. A class is a design plan; it describes the
way in which you intend to combine and use pieces of data. For example, the code
in Listing 13-2 announces your intention to combine double, int, and boolean
values to make new Purchase values.

Classes are central to all Java programming. But Java is called an object-oriented
language. Java isn’t called a class-oriented language. In fact, no one uses the term
class-oriented language. Why not?

Well, you can’t put your arms around a class. A class isn’t real. A class without an
object is like a day without chocolate. If you’re sitting in a room right now, glance
at all the chairs in the room. How many chairs are in the room? Two? Five? Twenty?
In a room with five chairs, you have five chair objects. Each chair (each object) is
something real, something you can use, something you can sit on.

A language like Java has classes and objects. What’s the difference between a class
and an object?

3 Anobjectis a thing.

¥ Adclass is a design plan for things of that kind.

For example, how would you describe what a chair is? Well, a chair has a seat, a
back, and legs. In Java, you may write the stuff in Listing 13-4.

m What It Means to Be a Chair

/%
x This is real Java code, but this code

* cannot be compiled on its own:

*/

public class Chair {
FlatHorizonalPanel seat;
FlatVerticalPanel back;
LongSkinnyVerticalRods legs;

The code in Listing 13-4 is a design plan for chairs. The code tells you that each
chair has three parts. The code names the parts (seat, back, and legs) and tells
you a little bit about each part. (For example, a seat is a FlatHorizontalPanel.)
In the same way, the code in Listing 13-2 tells you that each purchase has three

CHAPTER 13 Programming with Objects and Classes 301

FIGURE 13-3:

Objects from the

302

Chair class.

components. The code names the components (unitPrice, quantity, and
taxable) and tells you the primitive type of each component.

Imagine some grand factory at the edge of the universe. While you sleep each
night, this factory stamps out tangible objects — objects that you’ll encounter
during the next waking day. Tomorrow you’ll go for an interview at the Sloshy
Shoes Company. So tonight the factory builds chairs for the company’s offices.
The factory builds chair objects, as shown in Figure 13-3, from the almost-real
code in Listing 13-4.

public class Chair {
FlatHorizonalPanel seat;
FlatVerticalPanel back;
LongSkinnyVerticalRods legs;

In Listing 13-3, the line

Purchase onePurchase = new Purchase();
behaves like that grand factory at the edge of the universe. Rather than create
chair objects, that line in Listing 13-3 creates a Purchase object, as shown in
Figure 13-4. That particular line in Listing 13-3 is a declaration with an initializa-

tion. Just as the line

int count = 0;

PART 4 The Inside ScOOP

public class Purchase ({
double unitPrice;
int quantity;
boolean taxable;

onePurchase (an object)

FIGURE 13-4: . .
An object unitPrice 20.00
uantit 3
created from the g b4
taxable true
Purchase class.

declares the count variable and sets count to 0, the line in Listing 13-3 declares
the onePurchase variable and makes onePurchase point to a brand-new object.
That new object contains three parts: a unitPrice part, a quantity part, and a
taxable part.

If you want to be picky, there’s a difference between the stuff in Figure 13-4 and

&S the action of the statement Purchase onePurchase = new Purchase() from

6 Listing 13-3. Figure 13-4 shows an object with the values 20.00, 2, and true stored

tecHnicaL in it. The statement Purchase onePurchase = new Purchase() creates a new

STUFF object, but it doesn’t fill the object with useful values. Getting values comes later
in Listing 13-3.

Understanding (or ignoring) the subtleties

Sometimes, when you refer to a particular object, you want to emphasize which
class the object came from. Well, subtle differences in emphasis call for big differ-
ences in terminology. Here’s how Java programmers use the terminology:

¥ In Listing 13-3, the statement Purchase onePurchase = new Purchase()
creates a new object.

¥ In Listing 13-3, the statement Purchase onePurchase = new Purchase()
creates a new instance of the Purchase class.

CHAPTER 13 Programming with Objects and Classes 303

304

)
TECHNICAL
STUFF

The words object and instance are almost synonymous, but Java programmers
never say “object of the Purchase class” (or if they do, they feel funny).

By the way, if you mess up this terminology and say something like “object of the
Purchase class,” no one jumps down your throat. Everyone understands what you
mean, and life goes on as usual. In fact, I often use a phrase like “Purchase object”
to describe an instance of the Purchase class. The difference between object and
instance isn’t terribly important. But it’s important to remember that the words
object and instance have the same meaning. (Okay! They have nearly the same
meaning.)

Making reference to an object’s parts

In the Purchase code of Listing 13-2, I declare three variables: a unitPrice
variable, a quantity variable, and a taxable variable. In real life, you might say
that each purchase has three parts: the unitPrice of an item being purchased, the
quantity of items purchased, and the fact that the purchase is or isn’t taxable.

When you create a Java class, each of these variables is called a field. The Purchase
class has three fields — namely, the unitPrice field, the quantity field, and the
taxable field.

After you’ve created an object, you use dots to refer to the object’s fields. For
example, in Listing 13-3, I put a value into the onePurchase object’s unitPrice
field with the following code:

onePurchase.unitPrice = keyboard.nextDouble();
Later in Listing 13-3, I get the unitPrice field’s value with the following code:
double total = onePurchase.unitPrice x onePurchase.quantity;

This dot business may look cumbersome, but it really helps programmers when
they’re trying to organize the code. In Listing 13-1, each variable is a separate
entity. But in Listing 13-3, each use of the word unitPrice is inextricably linked
to the notion of a purchase. That’s good.

Every field is a variable, but not every variable is a field. For example, in the fol-
lowing code, the amount variable isn’t a field because it’s declared inside of the
main method.

public static void main(String[] args) {
double amount;
amount = 5.95;
// ... Etc.

PART 4 The Inside ScOOP

One way or another, I don’t want you to get bogged down thinking about the
words field and variable. A field is simply a variable that has a special role inside of
a class. When I want to emphasize that special role, I use the word field. When
I don’t want to emphasize that special role, I use the word variable. I may even
switch back and forth between field and variable in the same sentence. Who knows?
I might call something a fariable or a vield.

If you care about which word I use and when I use it, good for you. If you don’t
care, don’t worry about it.

Creating several objects

After you’ve created a Purchase class, you can create as many purchase objects as
you want. For example, in Listing 13-5, I create two purchase objects.

m Processing Purchases

public class ProcessPurchases {

public static void main(String[] args) {
var purchasel = new Purchase();
purchasel.unitPrice = 20.00;
purchasel.quantity = 3;
purchasel.taxable = true;

var purchase2 = new Purchase();
purchase2.unitPrice = 20.00;
purchase2.quantity = 3;
purchase2.taxable = false;

double purchaseiTotal = purchasel.unitPrice x purchasel.quantity;
if (purchasel.taxable) {
purchaselTotal %= 1.05;

double purchase2Total = purchase2.unitPrice x purchase2.quantity;
if (purchase2.taxable) {
purchase2Total *x= 1.05;

if (purchaseilTotal == purchase2Total) {
System.out.println("No difference");
} else {
System.out.println("These purchases have different totals.");

CHAPTER 13 Programming with Objects and Classes 305

Figure 13-5 has a run of the code in Listing 13-5, and Figure 13-6 illustrates the

concept.
FIGURE 13-5:
Running the code These purchases have different totals.
in Listing 13-5.
public class Purchase {
double unitPrice;
int quantity;
boolean taxable;
onePurchase (an object) onePurchase (an object)
unitPrice 20.00 unitPrice 20.00
FIGURE13-6: | quantity 2 quantity 3
From one,dass taxable true taxable false
come two objects.

To compile the code in Listing 13-5, you must have a copy of the Purchase class
in the same project. (The Purchase class is in Listing 13-2.)

REMEMBER
Listing 13-5 has two purchase objects because the code

new Purchase();
is executed two times.

Just as you can separate an int variable’s assignment from the variable’s
declaration
TIP
int count;

count = Q;

306 PART 4 The Inside ScOOP

you can also separate a Purchase variable’s assignment from the variable’s
declaration:

Purchase purchaset;

purchasel = new Purchase();

After you’ve created the code in Listing 13-2, the word Purchase stands for a
brand-new type — a reference type. Java has eight built-in primitive types and
has as many reference types as people can define during your lifetime. In
Listing 13-2, I define the Purchase reference type, and you can define reference
types, too.

Table 13-2 has a brief comparison of primitive types and reference types.

TABLE 13-2: Java Types

Primitive Type Reference Type

How it's created

Built into the language

Defined as a Java class

How many are there Eight Indefinitely many

Examples

Variable declaration int count; Purchase aPurchase;
Assignment count = @; aPurchase = new Purchase();

Variable declaration
with initialization

int count = 0;
or

var count = 0;

Purchase aPurchase =
new Purchase();

or

var aPurchase = new Purchase();

Assigning a value to one
of its parts

(Not applicable. A primitive type
has no parts.)

aPurchase.unitPrice = 20.00;

If it looks like a Purchase and smells
like a Purchase...

Chapter 6 introduces the word var and, from Chapter 7 onward, I use var to avoid
repeating the word Scanner in the examples’ declarations. In Listing 13-5, I use
var to avoid repeating the word Purchase. That is, I write

CHAPTER 13 Programming with Objects and Classes

307

308

var purchasel = new Purchase();

var purchase2 = new Purchase();
instead of writing

Purchase purchasel = new Purchase();

Purchase purchase2 = new Purchase();

Whether you start a declaration with var or with Purchase, the code works cor-
rectly. But remember that you must not separate a var from its initialization. The
declarations of purchaset and purchase? in Listing 13-5 are fine, but the follow-
ing code, with assignments instead of initializations, would make alarms go off:

// Don't do this:

var purchasel;

purchasel = new Purchase();

var purchase?2;

purchase2 = new Purchase();

A line like var purchasel; contains no mention of the Purchase class that you
declared in Listing 13-2, so Java can’t deal with it.

The word var comes with another noteworthy restriction. Imagine this variation
on the Purchase class from Listing 13-2:

public class PurchaseWithDefault {
double unitPrice;
int quantity = 100;

boolean taxable;

In this scenario, you’re not interested in selling fewer than 100 units at a time.
Most of your customers buy the minimum of 100 units but, occasionally. someone
wants to buy more. In that case you change quantity to the larger number.

int userlInput = keyboard.nextInt();

if (userInput > 100) {

onePurchase.quantity = userInput;

PART 4 The Inside ScOOP

In the PurchaseWithDefault declaration, you give the quantity field an initial
value, so you may be tempted to change int quantity tovar quantity.But that
doesn’t work.

public class PurchaseWithDefault {
double unitPrice;
var quantity = 100; // No! No! No! Don't do this!
boolean taxable;

}

Sorry! You can’t use var to declare a class’s field.

Another Way to Think about Classes

When you start learning object-oriented programming, you may think that this
class idea is a big hoax. Some geeks in Silicon Valley had nothing better to do, so
they went to a bar and made up some confusing gibberish about classes. They
don’t know what it means, but they have fun watching people struggle to under-
stand it.

Well, that’s not what classes are all about. Classes are serious stuff. What’s more,
classes are useful. Many reputable studies have shown that classes and object-
oriented programming save time and money.

Even so, the notion of a class can be elusive. Even experienced programmers —
the ones who are new to object-oriented programming — have trouble under-
standing how an object differs from a class.

Classes, objects, and tables

Because classes can be mysterious, I’ll expand your understanding with another
analogy. Figure 13-7 has a table containing three purchases. The table’s title
consists of one word (the word Purchase), and the table has three column head-
ings: the words unitPrice, quantity, and taxable. Well, the code in Listing 13-2 has
the same stuff — Purchase, unitPrice, quantity, and taxable. So, in
Figure 13-7, think of the top part of the table (the title and column headings) as
a class. Like the code in Listing 13-2, this top part of the table tells you what it
means to be a Purchase. (It means having a unitPrice value, a quantity value,
and a taxable value.)

CHAPTER 13 Programming with Objects and Classes 309

public class Purchase
double unitPrice;
int quantity;
boolean taxable;

}
Purchase
unitPrice quantity taxable
FIGURE 13-7: 20.00 3 true
Atableof 50 oo 3 false
purchases.
A class is like the top part of a table. And what about an object? Well, an object is
like a row of a table. For example, with the code in Listing 13-5, I create two
objects (two instances of the Purchase class). The first object has unitPrice value
20.00, quantity value 3, and taxable value true. In the corresponding table, the
first row has these three values — 20.00, 3, and true, as shown in Figure 13-8.
Purchase
unitPrice quantity taxable
I =
20.00 3 false
var purchasel = new Purchase() ;
FIGURE 13-8: purchasel.unitPrice = 20.00;
A purchase purchasel.quantity = 3;
corresponds toa purchasel.taxable = true;

row of the table.

Some questions and answers

Here’s the world’s briefest object-oriented programming FAQ:

3 Can | have an object without having a class?
No, you can't. In Java, every object is an instance of a class.
3 Can | have a class without having an object?

Yes, you can. In fact, almost every program in this book creates a class without
an object. Take Listing 13-5, for example. The code in Listing 13-5 defines a

310 PART 4 The Inside ScOOP

class named ProcessPurchases. And nowhere in Listing 13-5 (or anywhere
else) do | create an instance of the ProcessPurchases class. | have a class
with no objects. That's just fine. It's business as usual.

¥ After I've created a class and its instances, can | add more instances to
the class?

Yes, you can. In Listing 13-5, | create one instance and then another. In a for
loop, | could create a dozen instances and I'd have a dozen rows in the table of
Figure 13-8. With no objects, three objects, four objects, or more objects, | still
have the same old Purchase class.

3 Can an object come from more than one class?

Bite your tongue! Maybe other object-oriented languages allow this nasty
class cross-breeding, but in Java, it's strictly forbidden. That's one thing that
distinguishes Java from some of the languages that preceded it: Java is
cleaner, more uniform, and easier to understand.

What's Next?

Listing 13-5 contains some code that makes me nervous. In Listing 13-5, the
statements that compute a purchase total appear once, and then appear a second
time with only one tiny change:

double purchaselTotal = purchasel.unitPrice % purchasel.quantity;
if (purchasel.taxable) {
purchaselTotal %= 1.05;

double purchase2Total = purchase2.unitPrice % purchase2.quantity;
if (purchase2.taxable) {
purchase2Total x= 1.05;

To me, this repetition seems silly. Aren’t computers supposed to save us from
mundane burdens such as repetitive typing? What if I type these statements cor-
rectly the first time but make a mistake the second time? Maybe I'll copy the bad
version a third and fourth time and end up with code that’s all messed up!

Repetitive code is error-prone. It’s inconvenient and unnecessary. Rather than

repeat code, you should be able to summarize your code and then refer to
that summarized code repeatedly. With Java’s methods, you have precisely that

CHAPTER 13 Programming with Objects and Classes 311

312

TRY IT OUT

capability. You’ve used other peoples’ methods in many examples throughout this
book, and in Chapter 15, you create methods of your own.

This is your chance to write some exceedingly classy code.

WHAT'S YOUR BMI?

A person’s body mass index (BMI) is the person’s weight (in kilograms) divided
by the square of the person’s height (in meters). For example, a 65 kg person
who’s 1.65 meters tall has a BMI of 23.875.

¥ Create aPerson class. Each Person has a weight and a height. In other words,
the Person class has two fields: aweight field (a double value) and aheight
field (another double value).

¥ Create another class containing amain method. In the main method, create a
Person object. Assign values to the Person object's weight and height fields
by reading input from the keyboard. Use the Person object's weight and
height fields to calculate the person’s BMI. Then output the person’s BMI.

¥ Modify the main method that you wrote for the previous bullet so that it
creates three Person objects and calculates each object's BMI.

A BIT OF MACROECONOMICS

A country’s debt-to-GDP ratio is the amount of the government’s debt divided
by the country’s gross domestic product (GDP). For example, a country with
$14.3 trillion of debt and $18.5 trillion GDP has a debt-to-GDP ratio of approxi-
mately 77 percent. A low debt-to-GDP ratio means that a country can pay off its
debts without having to incur even more debt.

Try writing the following code:

¥ Create a Country class. Each Country has a debt and a gdp. In other words,
the Country class has two fields: a debt field (a double value) and a gdp field
(another double value).

¥ Create another class containing amain method. In the main method, create a
Country object. Assign values to the Country object's debt and gdp fields by
reading input from the keyboard.

Also in the main method, ask the user for an acceptable debt-to-GDP ratio. If
your Country object's debt-to-GDP ratio is lower than the acceptable value,
output the words That's acceptable. Otherwise, output That's not
acceptable.

PART 4 The Inside ScOOP

¥ Modify the main method you wrote for the previous bullet so that it creates
three Country objects and displays That's acceptable or That's not
acceptable for each object.

NOTHING IN PARTICULAR

This program isn’t about a Purchase class, a Person class, a Country class, or a
class with any obvious real-world relevance:

¥ Create a Thing class. The Thing class has two fields: a value1 field (an int

value) and a value2 field (another int value).

¥ Create another class containing amain method. In the main method, create a
Thing object. Assign values to the Thing object’s valuet and value2 fields by
reading input from the keyboard. Use the Thing object's valuel and value2
fields to display a sentence about the object. A typical sentence might be

This thing has values 42 and 91.

¥ Modify the main method you wrote for the previous bullet so that it creates
three Thing objects and displays a sentence about each of them.

MAKE A HIT RECORD

Newer versions of Java have a fancy feature called record classes. For an introduc-
tion to these beauties, name two files PurchaseRecord. java and Process
PurchaseRecord. java. Put the following code in these files and then give the
code a spin.
// PurchaseRecord. java
public record PurchaseRecord(double unitPrice,
int quantity,
boolean taxable) {
// ProcessPurchaseRecord. java
import java.util.Scanner;

public class ProcessPurchaseRecord {

public static void main(String[] args) {

CHAPTER 13 Programming with Objects and Classes 313

314 PART 4 The Inside SCOOP

IN THIS CHAPTER

» Using Java’s String class

» Calling methods

» Understanding static and nonstatic
methods and fields

» Making numbers look good

Chapter 14

Using Methods and
Fields from a Java Class

hope you didn’t read Chapter 13, because I tell a big lie at the beginning of that
chapter. Actually, it’s not a lie. It’s an exaggeration.

Actually, it’s not an exaggeration. It’s a careful choice of wording. In Chapter 13,
I write that the gathering of data into a class is the start of object-oriented pro-
gramming. Well, that’s true. Except that some programming languages had data-
gathering features before object-oriented programming became popular. Pascal
had records. C had structs.

To be painfully precise, the grouping of data into usable chunks is only a prereq-
uisite to object-oriented programming. You’re not really doing object-oriented

programming until you combine both data and methods in your classes.

This chapter starts the data-and-methods ball rolling, and Chapter 15 rounds out
the picture.

CHAPTER 14 Using Methods and Fields from a Java Class 315

Long Live the String!

The String class is declared in the Java API. This means that somewhere in the
stuff you download from https://adoptopenjdk.net is a file named String.
java. If you hunt down this String. java file and peek at the file’s code, you find
some familiar-looking stuff:

public class String {
// ... And so on.

In your own code, you can use this String class without ever seeing what’s inside
the String.java file. That’s one of the great things about object-oriented
programming.

A simple example

A String is a bunch of characters. It’s like having several char values in a row. You
can declare a variable to be of type String and store several letters in the variable.
Listing 14-1 has a tiny example.

m I'm Repeating Myself Again (Again)

316

import java.util.Scanner;
public class JazzyEcholLine {
public static void main(String[] args) {
var keyboard = new Scanner(System.in);

String lineln;

lineIn = keyboard.nextLine();
System.out.println(lineln);

keyboard.close();

A run of Listing 14-1 is shown in Figure 14-1. This run bears an uncanny resem-
blance to runs in Listing 5-1 (in Chapter 5). That’s because Listing 14-1 is a reprise
of the effort in Listing 5-1.

PART 4 The Inside ScOOP

https://adoptopenjdk.net/

The new idea in Listing 14-1 is the role that String plays. In Listing 5-1, I have no
variable to store the user’s input. But in Listing 14-1, I create the 1ineIn variable.
This variable stores a bunch of letters, like the letters Do as I write, not as

I do.
FIGURE 14-1: Do as I write, not as I do.
Running the code Do as I write, not as I do.
in Listing 14-1.

Putting String variables to good use

The program in Listing 14-1 takes the user’s input and echoes it back on the
screen. This is a wonderful program, but (like many college administrators that I
know) it doesn’t seem to be particularly useful.

Take a look at a more useful application of Java’s String type. A nice one is in
Listing 14-2.

m Putting a Name in a String Variable

import java.util.Scanner;

import static java.lang.System.out;
public class ProcessMoreData {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
String fullName;
double amount;
boolean taxable;
double total;

out.print("Customer's full name: ");
fullName = keyboard.nextLine();
out.print("Amount: ");
amount = keyboard.nextDouble();
out.print("Taxable? (true/false) ");
taxable = keyboard.nextBoolean();
if (taxable) {

total = amount x 1.05;
} else {

total = amount;

(continued)

CHAPTER 14 Using Methods and Fields from aJava Class 317

out.println();
out.print("The total for ");
out.print(fullName);

out.print(" is ");
out.print(total);
out.println(".");

keyboard.close();

A run of the code in Listing 14-2 is shown in Figure 14-2. The code stores Barry
A. Burd in a variable called ful 1Name and displays the fullName variable’s con-
tent as part of the output. To make this program work, you have to store Barry
A. Burd somewhere. After all, the program follows a certain outline:

Get a name.

Get some other stuff.

Compute the total.

Display the name (along with some other stuff).

Customer's full name: Barry A. Burd

Amount: 20.00

Taxable? (true/false) true

FIGURE 14-2:
Making a The total for Barry A. Burd is 21.@.

purchase.

If you don’t have the program store the name somewhere, by the time it finishes
getting other stuff and computing the total, it forgets the name (so the program
can’t display the name).

Reading and writing strings

To read a String value from the keyboard, you can call either next or nextLine:

3 The method next reads up to the next blank space.
For example, with the inputBarry A. Burd, the statements

String firstName = keyboard.next();
String middlelnit = keyboard.next();
String lastName = keyboard.next();

318 PART 4 The Inside ScCOOP

¥ assignBarry to firstName, A. tomiddlelInit, and Burd to lastName.
The method nextLine reads to the end of the current line.
For example, with inputBarry A. Burd, the statement
String fullName = keyboard.nextLine();

assignsBarry A. Burd to the variable ful 1Name. (Hey, being an author has
some hidden perks.)

To display a String value, you can call one of your old friends — System.out.
print or System.out.println. In fact, most of the programs in this book display
String values. In Listing 14-2, a statement like

out.print("Customer's full name: ");

n

displays the String value "Customer's full name:
You can use print and println to write String values to a disk file. For details,
see Chapter 16.

TIP
Chapter 4 introduces a bunch of characters, enclosed in double quote marks:

"Chocolate, royalties, sleep"

In Chapter 4, I call this a literal of some kind. (It’s a literal because, unlike a vari-
able, it looks just like the stuff it represents.) Well, in this chapter, I can continue
the story about Java’s literals:

¥ In Listing 14-2, amount and total are double variables, and1.05 is a double
literal.

¥ InListing 14-2, ful1Name is a String variable, and things like "Customer 's
full name: " areString literals.

In a Java program, you surround the letters in a String literal with double quote
marks.

REMEMBER

CHAPTER 14 Using Methods and Fields from a Java Class 319

TRY IT OUT

With enough practice using Java String values, you’ll never get tied up in knots.

PLUS-SIZE PRINTS

Using Java’s plus sign (+), replace all statements from out.print("The total
for ") toout.println(".") with a single out.println call.

FILL IN THE BLANKS

Linguist Noam Chomsky once wrote that “Colorless green ideas sleep furiously.”
Chomsky wasn’t crazy. He was showing that a grammatically correct sentence can
be completely meaningless. Write a program that prompts the user for five words:
two adjectives, a plural noun, a verb, and an adverb. In the end, the program dis-
plays the sentence containing those five words. Red big toads marry nightmares.
Electric international oceans eat cheese.

FILL IN MORE BLANKS

Expand your fill-in-the-blanks code so that it has a more varied sentence struc-
ture. A deliberate mistake makes houses into prunes. All dashboards fly when you
buy an atom.

Using an Object’'s Methods

FIGURE 14-3:
But | typed the
correct password!

If you’re not too concerned about classes and reference types, the use of the type
String in Listing 14-2 is no big deal. Almost everything you can do with a primi-
tive type seems to work with the String type as well. But danger lies around the
next curve. Take a look at the code in Listing 14-3 and the run of the code shown
in Figure 14-3.

What's the password? swordfish
You're a menace.

320 PART 4 The Inside ScOOP

m A Faulty Password Checker

/*
% This code does not work:
*/

import java.util.Scanner;
import static java.lang.System.out;
public class TryToCheckPassword {
public static void main(String[] args) {
var keyboard = new Scanner(System.in);
String password = "swordfish";

String userlInput;

out.print("What's the password? ");
userInput = keyboard.next();

if (password == userInput) {
out.println("You're okay!");

} else {
out.println("You're a menace.");

keyboard.close();

Here are the facts as they appear in this example:

¥ According to the code in Listing 14-3, the value of password is "swordfish".

¥ In Figure 14-3, in response to the program’s prompt, the user types sword
fish. So, in the code, the value of userInput is "swordfish".

¥ The if statement checks the condition password == userInput. Because
both variables have the value "swordfish", the condition should be true,
but...

¥ ...the condition is not true because the program’'s output is You're a menace.

What’s going on here? I try beefing up the code to see whether I can find any clues.
An enhanced version of the password-checking program is in Listing 14-4, with a
run of the new version shown in Figure 14-4.

CHAPTER 14 Using Methods and Fields from aJavaClass 321

What's the password? swordfish

You typed swordfish
But the password is swordfish
FIGURE 14-4:
This looks even You're a menace.
worse.

An Attempt to Debug the Code in Listing 14-3

import java.util.Scanner;

import static java.lang.System.out;

public class DebugCheckPassword {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
String password = "swordfish";
String userlnput;

out.print("What's the password? ");
userInput = keyboard.next();

out.println();

out.print("You typed ");
out.println(userInput);
out.print("But the password is ");
out.println(password);
out.printin();

if (password == userlInput) {
out.println("You're okay!");

} else {
out.println("You're a menace.");

keyboard.close();

Ouch! I'm stumped this time. The run in Figure 14-4 shows that both the user In-
put and password variables have value swordfish. Why doesn’t the program
accept the user’s input?

When you compare two things with a double equal sign, reference types and prim-
itive types don’t behave the same way. Consider, for example, int versus String:

322 PART 4 The Inside ScOOP

3 You can compare two int values with a double equal sign. When you do,
things work exactly as you would expect. For example, the condition in the
following code is true:

int apples = 7;

int oranges = 7;

if (apples == oranges) {
System.out.println("They're equal.");

}

3 When you compare two String values with the double equal sign, things
don't work the way you expect. The computer doesn't check to see whether
the two String values contain the same letters. Instead, the computer checks
some esoteric property of the way variables are stored in memory.

For your purposes, the term reference type is just a fancy name for a class. Because

String is defined to be a class in the Java API, I call String a reference type. This

terminology highlights the parallel between primitive types (such as int) and
rememeer Classes (that is, reference types, such as String).

Comparing strings

In the bullets in the previous section, the difference between int and String is
mighty interesting. But if the double equal sign doesn’t work for String values,
how do you check to see if Joe User enters the correct password? You do it with the
code in Listing 14-5.

m Calling an Object's Method

/%
* This program works!
*/

import java.util.Scanner;
import static java.lang.System.out;
public class CheckPassword {
public static void main(String[] args) {
var keyboard = new Scanner(System.in);
String password = "swordfish";

String userlInput;
(continued)

CHAPTER 14 Using Methods and Fields from a Java Class 323

At last, Joe User

324

FIGURE 14-5:

can login.

REMEMBER

out.print("What's the password? ");
userInput = keyboard.next();

if (password.equals(userInput)) {
out.println("You're okay!");

} else {
out.println("You're a menace.");

keyboard.close();

A run of the new password-checking code is shown in Figure 14-5, and let me tell
you, it’s a big relief! The code in Listing 14-5 actually works! When the user types
swordfish, the if statement’s condition is true.

What's the password? swordfish
You're okay!

The truth about classes and methods

The magic in Listing 14-5 is the use of a method named equals. I have two ways
to explain the equals method: a simple way and a more detailed way. First, here’s
the simple way: The equals method compares the characters in one string with
the characters in another. If the characters are the same, the condition inside the
if statement is true. That’s all there is to it.

Don’t use a double equal sign to compare two String objects. Instead, use one of
the object’s equals methods.

For a more detailed understanding of the equals method, flip to Chapter 13 and
take a look at Figures 13-6 and 13-7. Those figures illustrate the similarities
between classes, objects, and the parts of a table. In the figures, each row repre-
sents a purchase, and each column represents a feature that purchases possess.

You can observe the same similarities for any class, including Java’s String class.
In fact, what Figure 13-6 does for purchases, Figure 14-6 does for strings.

PART 4 The Inside ScCOOP

FIGURE 14-6:
Viewing the
String class and
String objects as
parts of a table.

String

value count equals
swordfish 9 (A method to compare swordfish with any string)
catfish 7 (A method to compare cat fish with any string)

The stuff shown in Figure 14-6 is much simpler than the real String class story.
But Figure 14-6 makes a good point. Like the purchases in Figure 13- 6, each string
has its own features. For example, each string has a value (the actual characters
stored in the string), and each string has a count (the number of characters stored
in the string). You can’t really write the following line of code because the stuff in
Figure 14-6 omits a few subtle details:

//This code does NOT work:
System.out.println(password.count);

Anyway, each row in Figure 14-6 has three items: a value, acount, and an equals
method. So each row of the table contains more than just data. Each row contains
an equals method, a way of doing something useful with the data. It’s as though
each object (each instance of the String class) has three things:

3 Abunch of characters (the object’s value)
¥ A number (the object's count)

9 Away of being compared with other strings (the object's equals method)

That’s the essence of object-oriented programming. Each string has its own, per-
sonal copy of the equals method. For example, in Listing 14-5, the password
string has its own equals method. When you call the password string’s equals
method and put the userInput string in the method’s parentheses, the method
compares the two strings to see whether those strings contain the same
characters.

The userInput string in Listing 14-5 has an equals method, too. I could use the
userInput string’s equals method to compare this string with the password
string. But I don’t. In fact, in Listing 14-5, I don’t use the userInput string’s
equals method at all. (To compare the user Input with the password, I had to use
either the password string’s equals method or the userInput string’s equals
method. I made an arbitrary choice: I chose the password string’s method.)

CHAPTER 14 Using Methods and Fields from a Java Class 325

326

Calling an object’'s methods

In Chapter 13, I create a Purchase class:

public class Purchase {
double unitPrice;
int quantity;

boolean taxable;

I refer to the unitPrice variable, the quantity variable, and the taxable variable
as the Purchase class’s fields.

Calling a string’s equals method is like getting a purchase’s unitPrice. With
both equals and unitPrice, you use your old friend, the dot. For example, in
Listing 13-3 (in Chapter 13), you write

onePurchase.unitPrice = keyboard.nextDouble();
and in Listing 14-5, you write
if (password.equals(userInput))

A dot works the same way for an object’s fields and its methods. In either case, a
dot takes the object and picks out one of the object’s parts. It works whether that
part is a field (as in onePurchase.unitPrice) or a method (as in password.
equals).

In fact, fields and methods are similar in so many ways that it’s handy to have one
word to describe both fields and methods. The word is members. In Chapter 13, the
Purchase class has three members: unitPrice, quantity, and taxable. And in
the Java API, the String class has about 60 members, one of which is equals.

Combining and using data

At this point in the chapter, I can finally say, “I told you so.” Here’s a quotation
from Chapter 13:

A class is a design plan; it describes the way in which you intend to combine and use
pieces of data.

A class can define the way you use data. How do you use a password and a user’s
input? You check to see whether they’re the same. That’s why Java’s String class
defines an equals method.

PART 4 The Inside ScOOP

@ An object can be more than just a bunch of data. With object-oriented program-
rememper IMiNg, each object possesses copies of methods for using that object.

E ! Java’s String class is impressive, with nearly 60 methods. But that’s nothing
compared with Java’s JFrame class. The JFrame class has hundreds of methods.
TRY IT OUT

SHOW A FRAME

Identify the method calls in the following code:
import javax.swing.JFrame;
public class Main {

public static void main(String[] args) {
JFrame frame = new JFrame();
frame.setSize(300, 300);
frame.setTitle("This is a frame");

frame.setVisible(true);

}

Run the code to find out what it does. (End the run of the code by clicking the little
red square near the upper-right corner of IntelliJ’s main window. For details,
refer to Chapter 3.)

CHECK THE DOCUMENTATION

Visit https://docs.oracle.com/en/java/javase/17/docs/api/ java.base/
java/lang/String.html to read about the methods belonging to Java’s JFrame
class. In particular, read about methods named setSize, setTitle, and
setVisible.

How to Achieve Static Equilibrium

You have a fistful of checks. Each check has a number, an amount, and a payee.
You print checks like these with your very own printer. To print the checks, you
use a Java class. Each object made from the Check class has three fields (number,
amount, and payee). And each object has one method (a print method). You can
see all of this in Figure 14-7.

CHAPTER 14 Using Methods and Fields from a Java Class 327

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

FIGURE 14-7:

The Check class

and

328

some Check
objects.

Check

number amount payee print
1705 $25.09 The Butcher (method to cut the check) "
1699 $31.27 The Baker (method to cut the check) 3_
1702 $12.35 The Candlestick (method to cut the check)

Maker

You’d like to print the checks in numerical order. So you need a method to sort the
checks. If the checks in Figure 14-7 were sorted, the check with number 1699
would come first, and the check with number 1705 would come last.

The big question is, should each check have its own sort method? Does the check
with number 1699 need to sort itself? And the answer is no. Some methods just
shouldn’t belong to the objects in a class.

Where do such methods belong? How can you have a sort method without creat-
ing a separate sort for each check?

Here’s the answer: You make the sort method be static. Anything that’s static
belongs to a whole class, not to any particular instance of the class. If the sort
method is static, the entire Check class has just one copy of the sort method. This
copy stays with the entire Check class. No matter how many instances of the Check
class you create — three, ten, or none — you have just one sort method.

For an illustration of this concept, refer to Figure 14-7. The whole class has just one
sort method. So the sort method is static. No matter how you call the sort method,
that method uses the same values to do its work. For the data in Figure 14-7, a
single call to the sort method uses all three rows (the 1705, 1699, and 1702 rows).

Of course, each individual check (each object, each row of the table in Figure 14-7)
still has its own number, its own amount, its own payee, and its own print method.
When you print the first check, you get one amount, and when you print the
second check, you get another. Because there’s a number, an amount, a payee, and
a print method for each object, I call these things nonstatic. I call them nonstatic
because . . . well . . . because they’re not static.

Calling static and nonstatic methods

In this book, my first use of the word static is in Listing 3-1. I use static as part
of every main method (and this book’s listings have lots of main methods). In Java,
your main method has to be static. That’s just the way it goes.

PART 4 The Inside ScOOP

&N

WARNING

To call a static method, you use a class’s name along with a dot. This is just
slightly different from the way you call a nonstatic method:

3 To call an ordinary (nonstatic) method, you follow an object with a dot.

For example, a program to process the checks in Figure 14-7 may contain
code of the following kind:

Check firstCheck;
firstCheck.number = 1705;
firstCheck.amount = 25.09;
firstCheck.payee = "The Butcher";
firstCheck.print();

3 To call a class's static method, you follow the class name with a dot.
For example, to sort the checks in Figure 14-7, you may call

Check.sort();

Turning strings into numbers

The code in Listing 14-5 introduces a nonstatic method named equals. To com-
pare the password string with the userInput string, you preface .equals with
either of the two string objects. In Listing 14-5, I preface .equals with the pass-
word object:

if (password.equals(userInput))

Each string object has an equals method of its own, so I can achieve the same
effect by writing

if (userlInput.equals(password))

But Java has another class named Integer, and the whole Integer class has a
static method named parseInt. If someone hands you a string of characters and
you want to turn that string into an int value, you can call the Integer class’s
parselnt method. Listing 14-6 has a small example.

Don’t confuse Integer with int. In Java, int is the name of a primitive type (a
type that I use throughout this book). But Integer is the name of a class. Java’s
Integer class contains handy methods for dealing with int values. For example,
in Listing 14-6, the Integer class’s parseInt method makes an int value from a
string. Java’s Integer class is an example of a wrapper class. You can read more
about wrapper classes in Chapter 19.

CHAPTER 14 Using Methods and Fields from a Java Class 329

m More Chips, Please

import java.util.Scanner;

import static java.lang.System.out;

public class AddChips {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
String reply;
int numberOfChips;

out.print("""
How many chips do you have?
(Type a number, or type 'Not playing')\s""");
reply = keyboard.nextLine();

if (!'reply.equals("Not playing")) {
numberOfChips = Integer.parselnt(reply);
numberOfChips += 10;

out.print("You now have ");

out.print(numberOfChips);
out.println(" chips.");

keyboard.close();

Some runs of the code in Listing 14-6 are shown in Figure 14-8. You want to give
each player ten chips. But some party poopers in the room aren’t playing. So two
people, each with no chips, may not get the same treatment. An empty-handed
player gets ten chips, but an empty-handed party pooper gets none.

In Listing 14-6, you call the Scanner class’s nextLine method, allowing a user to
enter any characters at all — not just digits. If the user types Not playing, you
don’t give the killjoy any chips.

If the user types some digits, you’re stuck holding these digits in the string vari-
able named reply. You can’t add ten to a string like reply. So you call the Integer
class’s parseInt method, which takes your string and hands you back a nice int
value. From there, you can add ten to the int value.

330 PART 4 The Inside ScOOP

TIP

FIGURE 14-8:
Running the code
in Listing 14-6.

When you create a text block, Java takes liberties with the blank space in the text.

For example, the text block in Listing 14-6 has many blank spaces (represented

here by dots).
........ out.print("""

................ How many chips do you have?

.................. (Type a number, or type 'Not playing')\s""");
But, in Figure 14 -8, there are no blank spaces before How many chips and only two
blank spaces before (Type a number. Text blocks also ignore blank spaces at the

ends of lines. So you have to remind Java that you don’t want this ugly business:

(Type a number, or type 'Not playing')1@

AddChips
- -
How many chips do youv have?
(Type a number, or type 'Not playing') 30
You now have 48 chips.

Process finished with exit code ©

AddChips
/ = .
How many chips do you have?
(Type a number, or type 'Not playing') @
You now have 10 chips.

Process finished with exit code 0

AddChips
/L / - .
How many chips do you have?
(Type a number, or type 'Not playing') Not playing

Process finished with exit code 0

It’s ugly because the user’s response (the number 10) butts right up against the
program’s prompt. In Listing 14-6, the escape sequence \s reminds Java to put a
blank space after the program’s prompt.

CHAPTER 14 Using Methods and Fields from a Java Class 331

A

WARNING

FIGURE 14-9:
Do you have
change for
20.3385000
000000037

Don’t confuse Integer with int. In Java, int is the name of a primitive type (a
type that I use throughout this book). But Integer is the name of a class. Java’s
Integer class contains handy methods for dealing with int values. For example,
in Listing 14-6, the Integer class’s parseInt method makes an int value from a
string.

Turning numbers into strings

In Chapter 13, Listing 13-1 computes the price of a purchase. But a run of the code in
Listing 13-1 has an anomaly. (Refer to Figure 13-1.) With 5 percent tax on 40 dollars,
the program displays a total of 42.0. That’s peculiar — where I come from, currency
amounts aren’t normally displayed with just one digit beyond the decimal point.

If you don’t choose your purchase amount carefully, the situation is even worse.
For example, in Figure 14-9, I run the same program (the code in Listing 13-1)
with the purchase amount 19.37. The resulting display looks nasty.

Unit price: 19.37
Quantity: 1

Taxable? (true/false) true
Total: 20.338500000000003

With its internal zeros and ones, the computer doesn’t do arithmetic quite the way
you and I are used to doing it. So, how do you fix this problem?

The Java API has a class named NumberFormat, and the NumberFormat class has a
static method named getCurrencyInstance. When you call NumberFormat.
getCurrencylInstance() with nothing inside the parentheses, you get an object
that can mold numbers into US currency amounts. Listing 14-7 has an example.

m The Right Way to Display a Dollar Amount

import java.text.NumberFormat;
import java.util.Scanner;
public class BetterProcessData {
public static void main(String[] args) {

var keyboard = new Scanner(System.in);
double unitPrice;

332 PART 4 The Inside ScOOP

FIGURE 14-10:
See the pretty
numbers.

int quantity;

boolean taxable;

NumberFormat currency = NumberFormat.getCurrencyInstance();

System.out.print("Unit price: ");

unitPrice = keyboard.nextDouble();

System.out.print("Quantity: ");

quantity = keyboard.nextInt();
System.out.print("Taxable? (true/false) ");
taxable = keyboard.nextBoolean();

double total = unitPrice x quantity;
if (taxable) {
total = total x 1.05;

String niceTotal = currency.format(total);

System.out.print("Total: ");

System.out.println(niceTotal);

keyboard.close();

To see some beautiful runs of the code in Listing 14-7, check out Figure 14-10.
Now at last, you see a total like $20.34, not 20.338500000000003. Ah! That’s

much better.

BetterProcessData

Unit price: 20
Quantity: 2

Total: $42.00

—_— :

Taxable? (true/false) true

Process finished with exit code ©

BetterProcessData

Quantity: 1

Total: $20.34

—_— -
Unit price: 19.37

Taxable? (true/false) true

Process finished with exit code 8

CHAPTER 14 Using Methods and Fields from a Java Class

333

FIGURE 14-11:

Arun of

Listing 14-7 on a

computer in
France.

Turning numbers into nice looking strings

For my current purposes, the code in Listing 14-7 contains three interesting
variables:

¥ The variable total stores a number, such as 42.0.

¥ The variable currency stores an object that can mold numbers into US
currency amounts.

¥ The variable niceTotal is set up to store a bunch of characters.

The currency object has a format method. To get the appropriate bunch of char-
acters into the niceTotal variable, you call the currency object’s format method.
You apply this format method to the variable total.

Your country; your currency

The code in Listing 14-7 works well in the United States. But in another country,
the currency symbol might not be the dollar sign ($), and you might represent
twenty with characters other than 20.00.

Java shapes its input and output to match your computer’s locale. Imagine, for
example, that your computer runs the version of Windows sold in France. Then,
as far as Java is concerned, your computer’s locale is Locale . FRANCE, and a run of
the code in Listing 14-7 looks like the run shown in Figure 14-11.

Unit price: 20,00
Quantity: 2

Taxable? (true/false) true
Total: 42,00 €

In fact, you can customize your code for many countries, and you don’t have to
buy airplane tickets to do it! My computer is configured to run in the United States.
But in Listing 14-8, I use Java’s Locale class to get the run shown in
Figure 14-11.

NG [R AN Using a Java Locale

334

import java.text.NumberFormat;

import java.util.lLocale;
import java.util.Scanner;

PART 4 The Inside ScOOP

public class EvenBetterProcessData {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
keyboard.uselLocale(Locale.FRANCE);

double unitPrice;
int quantity;
boolean taxable;

var currency = NumberFormat.getCurrencyInstance(Locale.FRANCE);

System.out.print("Unit price: ");

unitPrice = keyboard.nextDouble();
System.out.print("Quantity: ");

quantity = keyboard.nextInt();
System.out.print("Taxable? (true/false) ");
taxable = keyboard.nextBoolean();

double total = unitPrice x quantity;
if (taxable) {
total = total % 1.05;

String niceTotal = currency.format(total);
System.out.print("Total: ");
System.out.println(niceTotal);

keyboard.close();

The View from On High

In this section, I answer some of the burning questions that I raise throughout
this book: “What does java.util stand for?” “Why do I need the word static at
certain points in the code?” “How can a degree in horticultural studies help you
sort canceled checks?”

I also explain static in some unique and interesting ways. After all, static fields

and methods aren’t easy to grasp. It helps to read about Java’s static feature from
several points of view.

CHAPTER 14 Using Methods and Fields from a Java Class 335

336

o
T
TECHNICAL
STUFF

Unravelling Java’'s import declarations

In Java, you can group a bunch of classes into something called a package. In fact,
the classes in Java’s standard API are divided into about 200 packages. This book’s
examples make heavy use of three packages: the packages named java.util,
java.lang, and java.io.

The class java.util.Scanner

The package java.util contains about 75 classes, including the useful Scanner
class. Like most other classes, this Scanner class has two names: a fully qualified
name and an abbreviated simple name. The class’s fully qualified name is java.
util.Scanner, and the class’s simple name is Scanner. You get the fully qualified
name by adding the package name to the class’s simple name. (That is, you add the
package name java.util tothe simple name Scanner.You get java.util.Scanner.)

An import declaration lets you abbreviate a class’s name. With the declaration
import java.util.Scanner;

the Java compiler figures out where to look for the Scanner class. So rather than
write java.util.Scanner throughout your code, you can just write Scanner.

The class java.lang.System

The package java.lang contains about 100 classes, including the ever-popular
System class. (The class’s fully qualified name is java.lang.System, and the
class’s simple name is System.) Rather than write java.lang.System throughout
your code, you can just write System. You don’t even need an import declaration.

Among all of Java’s packages, the java.lang package is special. With or without
an import declaration, the compiler imports everything in the java.lang package.
You can start your program with import java.lang.System. But if you don’t, the
compiler adds this declaration automatically.

The static System.out variable

What kind of importing must you do in order to abbreviate System.out.println?
How can you shorten it to out . print1n? An import declaration lets you abbreviate
a class’s name. But in the expression System.out, the word out isn’t a class. The
word out is a static variable. (The out variable refers to the place where a Java
program sends text output.) So you can’t write

//This code is bogus. Don't use it:

import java.lang.System.out;

PART 4 The Inside ScOOP

ALL YE NEED TO KNOW

| can summarize much of Java's complexity in only a few sentences:

® The Java API contains many packages.
® A package contains classes.
® From a class, you can create objects. Each such object is an instance of the class.

® An object has its own copy of each of the class's fields and methods (each of the
class's members).

® A class has the one-and-only copy of each of the class's static fields and static meth-

ods (the class's static members).

If you care to know, Java groups its packages into even larger units called modules. For a
quick peek at this concept, see the sidebar figure.

— Java API
- java.base module —— ~ java.desktop module

~ java.lang package — — javax.swing package 4
String class JButton class
Systemclass JCheckBox class
... many other classes ... many other classes

- java.util package — — java.awt package —

v packag . packag ... many other modules

Random class Color class
Scanner class Component class
... many other classes ... many other classes

- java.text package — — javax.print package 4
NumberFormat class SimpleDoc class
... many other classes ... many other classes

... many other packages ... many other packages

CHAPTER 14 Using Methods and Fields from a Java Class 337

338

LD,
TECHNICAL
STUFF

What do you do instead? You write
import static java.lang.System.out;

To find out more about the out variable’s being a static variable, read the next
section.

In this chapter, I refer to out as a static variable. That’s okay. But a more descrip-
tive way to refer to out is to call it a static field of Java’s System class.

Shedding light on the static darkness

I love to quote myself. When I quote my own words, I don’t need written permis-
sion. I don’t have to think about copyright infringement, and I never hear from
lawyers. Best of all, I can change and distort anything I say. When I paraphrase my
own ideas, I can’t be misquoted.

With all that in mind, here’s a quote from an earlier section:

Anything that's static belongs to a whole class, not to any particular instance of the
class. [...] To call a static method, you use a class's name along with a dot.

How profound! In Listing 14-6, I introduce a static method named parselnt.
Here’s the same quotation applied to the static parseInt method:

The static parseInt method belongs to the whole Integer class, not to any
particular instance of the Integer class. [...] To call the static parseInt method,
you use the Integer class's name along with a dot. You write something like
Integer.parselnt(reply).

That’s very nice! How about the System. out business that I introduce in Chapter 3?
I can apply my quotation to that, too.

The static out variable belongs to the whole System class, not to any particular
instance of the System class. [.. .] To refer to the static out variable, you use the
System class's name along with a dot. You write something like System.out.
println().

If you think about what System.out means, this static business makes sense.
After all, the name System.out refers to the place where a Java program sends
text output. (When you use Intelli] IDEA, the name System.out refers to Intelli]’s
Run tool window.) A typical program has only one place to send its text output. So
a Java program has only one out variable. No matter how many objects you

PART 4 The Inside ScOOP

create — three, ten, or none — you have just one out variable. And when you
make something static, you ensure that the program has only one of those things.

All right, then! The out variable is static.
To abbreviate the name of a static variable (or a static method), you don’t use an
ordinary import declaration. Instead, you use a static import declaration. That’s

why, in Chapter 9 and beyond, I use the word static to import the out variable:

import static java.lang.System.out;

Barry makes good on an age-old promise

In Chapter 6, I pull a variable declaration outside of a main method. I go from code
of the kind in Listing 14-9 to code of the kind that’s in Listing 14-10.

m Declaring a Variable Inside the main Method

public class SnitSoft {

public static void main(String[] args) {
double amount = 5.95;

amount = amount + 25.00;
System.out.println(amount);

m Pulling a Variable Outside the main Method

public class SnitSoft {
static double amount = 5.95;

public static void main(String[] args) {
amount = amount + 25.00;
System.out.println(amount);

CHAPTER 14 Using Methods and Fields from a Java Class 339

340

In Listing 14-9, amount is a variable belonging to the main method. But in
Listing 14-10, amount is a static field belonging to the SnitSoft class.

In Chapter 6, I promise to explain why Listing 14-10 needs the extra word
static (in static double amount = 5.95). Well, with all the fuss about static
methods in this chapter, I can finally explain everything.

Refer to Figure 14-7. In that figure, you have checks, and you have a sort method.
Each individual check has its own number, its own amount, and its own payee. But
the entire Check class has just one sort method.

I don’t know about you, but to sort my canceled checks, I hang them on my exotic
Yucca elephantipes tree. I fasten the higher-numbered checks to the upper leaves
and put the lower-numbered checks on the lower leaves. When I find a check
whose number comes between two other checks, I select a free leaf (one that’s
between the upper and lower leaves).

A program to mimic my sorting method looks something like this:

public class Check {
int number;
double amount;

String payee;

static void sort() {

Yucca tree;

if (myCheck.number > 1700) {
tree.attachHigh(myCheck);

}
// ... etc.

Because of the word static, the Check class has only one sort method. And
because I declare the tree variable inside the static sort method, this program
has only one tree variable. (Indeed, I hang all my canceled checks on just one
yucca tree.) I can move the tree variable’s declaration outside of the sort method.
But if I do, I may have too many yucca trees:

public class Check {
int number;
double amount;

String payee;

PART 4 The Inside ScOOP

TIP

Yucca tree; //This is bad!

//Each check has its own tree.

static void sort() {
if (myCheck.number > 5000) {
tree.attachHigh(myCheck);
}
// ... etc.

In this nasty code, each check has its own number, its own amount, its own payee,
and its own tree. But that’s ridiculous! I don’t want to fasten each check to its own
yucca tree. Everybody knows you’re supposed to sort checks with just one yucca
tree. (That’s the way the big banks do it.)

When I move the tree variable’s declaration outside of the sort method, I want to
preserve the fact that I have only one tree. (To be more precise, I have only one
tree for the entire Check class.) To make sure that I have only one tree, I declare
the tree variable to be static:

public class Check {
int number;
double amount;
String payee;
static Yucca tree; //That's better!

static void sort() {
if (myCheck.number > 5000) {
tree.attachHigh(myCheck);
}
// ... etc.

For exactly the same reason, I write static double amount when I move from
Listing 14-9 to 14-10.

To find out more about sorting, read Algorithms For Dummies, by John Paul Mueller
and Luca Massaron. To learn more about bank checks, read Managing Your Money
Online For Dummies, by Kathleen Sindell. To learn more about trees, read Landscap-
ing For Dummies, by Phillip Giroux, Bob Beckstrom, and Lance Walheim (all pub-
lished by Wiley).

CHAPTER 14 Using Methods and Fields from a Java Class 341

342

&

TRY IT OUT

These experiments will help you understand static methods and static fields.

MORE MONEY

Run the following code and identify the static methods that are called in the code:
import java.text.NumberFormat;
import javax.swing.JOptionPane;
public class Main {

public static void main(String[] args) {
var currency = NumberFormat.getCurrencylnstance();
String inputString = JOptionPane.showInputDialog("Enter an amount");
double inputAmount = Double.parseDouble(inputString);
double oneMore = inputAmount + 1;
String oneMoreMoney = currency.format(oneMore);
String message = "One more than that amount is " + oneMoreMoney +

non,
L

JOptionPane.showMessageDialog(null, message);

Hint: Most Java programmers begin the names of classes with capital letters. Any
name that starts with a capital letter is probably the name of a class. If you’re
unsure about a particular name, you can look up that name in Java’s API docu-
mentation. The documentation is online at https://docs.oracle.com/en/java/
javase/17/docs/api/index.html.

BOOKS FOR DUMMIES

Have a gander at the following code. How many copies of the author field exist
during a run of this code? How many copies of the publisher field exist during a
run of the code? Why?

public class Book {
String title;
String author;
static String publisher = "Wiley";

public class Main {

public static void main(String[] args) {

PART 4 The Inside ScCOOP

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

var javaForDummies = new Book();
JjavaForDummies.title = "Java For Dummies";

JjavaForDummies.author = "Barry Burd";

var dosForDummies = new Book();
dosForDummies.title = "DOS For Dummies";

dosForDummies.author = "Dan Gookin";

Remember that public class Book code must be in a file named Book . java, and
thepublic class Main code must be in a different file — a file named Main. java.

Would the number of copies of the publisher field change if you added these two
statements to the main method?

Book.publisher = "John Wiley & Sons, Inc.";

Book . publisher "A publisher in the United States";

If so, why? If not, why not?

STATIC AND NONSTATIC FIELDS

Run the following code. Then examine the code to determine why it produces the
output you see in the Run tool window:

public class IntegerHolder {
int value;

static int howMany = O;

public class Main {

public static void main(String[] args) {
var holderl = new IntegerHolder();
holderl.value = 79;
IntegerHolder . howMany++;

var holder2 = new IntegerHolder();
holder2.value = 443;

IntegerHolder . howMany++;

System.out.println(holderi.value);
System.out.println(holder2.value);

CHAPTER 14 Using Methods and Fields from a Java Class 343

344

System.out.println(IntegerHolder .howMany);
//System.out.println(IntegerHolder.value); Why is this statement illegal?

System.out.println(holder1.howMany); // This statement is legal
// but the statement is
// misleading. Why?

SOMETHING'S WRONG HERE

What’s wrong with the following code? How does the meaning of the word static
make a difference? Would adding another static keyword fix the problem? Why?

import java.util.Scanner;

public class Main {

Scanner keyboard = new Scanner(System.in);

public static void main(String[] args) {
int numberOfCats = keyboard.nextInt();
System.out.println(numberOfCats);

Remember that, in this example, you can’t use var keyboard in the declaration of
the Scanner. You can use var when you initialize a variable inside a method, but
you can’t use var when you declare a field. This prohibition applies to fields with
initialization and fields without initialization. For details, refer to Chapter 13.

JUST THE FACTS

In the following code, why are the fields static?

public class Facts {
static int numberOfPlanets = 8;
static int numberOfMoons = 1;
static int numberOfContinents = 7;

static int numberOfOceans = 5;

PART 4 The Inside ScOOP

You can improve on the Facts class even better by adding Java’s final keyword to
each field declaration:

public class BetterFacts {
static final int numberOfPlanets = 8;
static final int numberOfMoons = 1;
static final int numberOfContinents = 7;
static final int numberOfOceans = 5;
A final variable’s value can’t be changed. So, in a main method, the code
System.out.println(BetterFacts.numberOfPlanets);
is legal, but the code

BetterFacts.numberOfPlanets = 9; // Bad code

is not legal.

CHAPTER 14 Using Methods and Fields from a Java Class 345

IN THIS CHAPTER

» Writing methods that work with
existing values

» Building methods that modify
existing values

» Making methods that return new
values

Chapter 15

Creating New Java
Methods

n Chapters 4 and 5, I introduce Java methods. I show you how to create a main

method, how to call the System.out.println method, and how to use the

Scanner class’s nextlL ine method. Between Chapters 5 and 14, I make very little
noise about methods. In Chapter 14, I introduce a bunch of new methods for you
to call, but that’s only half the story.

This chapter completes the circle. In this chapter, you create your own Java
methods — not the tired old main method that you’ve been using all along, but
rather some new, powerful Java methods.

Defining a Method within a Class

In Chapter 14, Figure 14-6 introduces an interesting notion — a notion that’s at
the core of object-oriented programming. Each Java string has its own equals
method. That is, each string has, built within it, the functionality to compare itself
to other strings. That’s an important point. When you do object-oriented

CHAPTER 15 Creating New Java Methods 347

348

FIGURE 15-1:
Atable of
accounts.

LD,
TECHNICAL
STUFF

programming, you bundle data and functionality into a lump called a class. Just
remember Barry’s immortal words from Chapter 13:

Aclass ... describes the way in which you intend to combine and use pieces
of data.

And why are these words so important? They’re important because, in object-
oriented programming, chunks of data take responsibility for themselves. With
object-oriented programming, everything you have to know about a string is
located in the file String. java. So, if people have problems with the strings, they
know just where to look for all the code. That’s great!

This is the deal: Objects contain methods. Chapter 14 shows you how to use an
object’s methods, and this chapter shows you how to create an object’s methods.

Making a method

Imagine a table containing the information about three accounts. (If you have
trouble imagining such a thing, just look at Figure 15-1.) In the figure, each
account has a last name, an identification number, and a balance. In addition (and
here’s the important part), each account knows how to display itself on the screen.
Each row of the table has its own copy of a display method.

Account
lastName id balance display
Aju 9936 58,734.00 (method to display account info)
Iap 3492 $6,718.00 (method to display account info)
Ngp 2151 $1,008.00 (method to display account info)

The last names in Figure 15-1 may seem strange to you. That’s because I gener-
ated the table’s data randomly. Each last name is a haphazard combination of
three letters: one uppercase letter followed by two lowercase letters.

Though it may seem strange, generating account values at random is common
practice. When you write new code, you want to test the code to find out whether
it runs correctly. You can make up your own data (with values like "Smith", 0000,
and 1000.00). But to give your code a challenging workout, you should use some
unexpected values. If you have values from some real-life case studies, you should
use them. But if you don’t have real data, randomly generated values are easy to
create.

PART 4 The Inside ScOOP

To find out how I randomly generate three-letter names, see this chapter’s later
sidebar, “Generating words randomly.”

I need some code to implement the ideas in Figure 15-1. Fortunately, I have some
code in Listing 15-1.

m An Account Class

REMEMBER

import java.text.NumberFormat;

import static java.lang.System.out;

public class Account {
String lastName;
int id;
double balance;

void display() {
var currency = NumberFormat.getCurrencylnstance();

out.print("The account with last name ")
out.print(lastName);

out.print(" and ID number ");
out.print(id);

out.print(" has balance ");
out.println(currency. format(balance));

The Account class in Listing 15-1 defines four members: a lastName field, an id
field, a balance field, and a display method. So each instance of Account class
has its own lastName, its own id, its own balance, and its own way of doing dis-
play. These things match up with the four columns in Figure 15-1.

You can’t use var in the declaration of a field. This rule holds true even if you give
the field an initial value. In Listing 15-1, the following declaration would be legal:

String lastName = "(UNKNOWN)";
But the use of var would be illegal:

// Java doesn't like this at all:
var lastName = "(UNKNOWN)";

CHAPTER 15 Creating New Java Methods 349

350

Examining the method’s header

Listing 15-1 contains the display method’s declaration. Like a main method’s
declaration, the display declaration has a header and a body. (See Chapter 4.) The
header has two words and some parentheses:

3 The word void tells the computer that, when the display method is
called, the display method doesn’t return anything to the place that
called it.

Later in this chapter, a method does return something. For now, the display
method returns nothing.

¥ The word display is the method’s name.

Every method must have a name. Otherwise, you don't have a way to call the
method.

3 The parentheses contain all the things you're going to pass to the
method when you call it.

When you call a method, you can pass information to that method on the fly.
This display example, with its empty parentheses, looks strange. That's
because no information is passed to the display method when you call it.
That's okay. | give a meatier example later in this chapter.

Examining the method’'s body

The display method’s body contains some print and print1n calls. The interest-
ing thing here is that the body makes reference to the lastName, id, and balance
fields. A method’s body can do that. But with each object having its own lastName,
id, and balance variables, what does a variable in the display method’s body
mean?

Well, when I use the Account class, I create little account objects. Maybe I create
an object for each row of the table in Figure 15-1. Each object has its own values
for the lastName, id, and balance variables, and each object has its own copy of
the display method.

Take the first display method in Figure 15-1 — the method for Aju’s account. The
display method for that object behaves as though it had the code in
Listing 15-2.

PART 4 The Inside ScOOP

m How the display Method Behaves When No One’s Looking

FIGURE 15-2:
Two objects,
each with its
owndisplay
method.

/*

% This is not real code:
*/

void display() {

var currency = NumberFormat.getCurrencylnstance();

out.print("The account with last name ");

out.print("Aju");

out.print(" and ID number ")

out.print(9936);

out.print(" has balance ");

out.println(currency.format(8734.00));

In fact, each of the three display methods behaves as though its body has a
slightly different code. Figure 15-2 illustrates this idea for two instances of the

Account class.

The Account class

balance = 8734.00;

vold display() {
out.print ("Aju™);
out.print (3936) ;
out.println(8734.00);

Aju's object lap's object
lastName = "Aju"; lastName = "Iap";
id = 9936; id = 3492;

balance = 6718.00;

vold display () {
out.print ("Iap™);
out.print (3492) ;
out.println(6718.00);

Calling the method

To put the previous section’s ideas into action, you need more code. So the next
listing (see Listing 15-3) creates instances of the Account class.

CHAPTER 15 Creating New Java Methods

351

m Making Use of the Code in Listing 15-1

import java.util.Random;

public class ProcessAccounts {
public static void main(String[] args) {

var myRandom = new Random();
Account anAccount;

for (int i = 0; i < 3; i++) {
anAccount = new Account();

anAccount.lastName = "" +
(char) (myRandom.nextInt(26) + 'A') +
(char) (myRandom.nextInt(26) + 'a') +
(char) (myRandom.nextInt(26) + 'a');

1

anAccount.id = myRandom.nextInt(10000);
anAccount .balance = myRandom.nextInt(10000);
anAccount .display();

Here’s a summary of the action in Listing 15-3:

Do the following three times:
Create a new object (an instance of the Account class).
Randomly generate values for the object's lastName, id and balance.

Call the object's display method.
The first of the three display calls prints the first object’s lastName, id, and bal-
ance values. The second display call prints the second object’s 1astName, id, and

balance values. And so on.

A run of the code from Listing 15-3 is shown in Figure 15-3.

The account with last name Aju and ID number 9936 has balance $8,734,00
FIGURE 15-3: The account with last name Iap and ID number 3492 has balance $6,718.00
Running the code The account with last name Ngp and ID number 2151 has balance $1,0208,00
in Listing 15-3.

352 PART 4 The Inside ScOOP

A

WARNING

FIGURE 15-4:
The flow of
control between
Listings 15-1
and 15-3.

Concerning the code in Listing 15-3, your mileage may vary. You don’t see the
same values as the ones in Figure 15-3. In fact, if you run Listing 15-3 more than
once, you (almost certainly) get different three-letter names, different ID num-
bers, and different account balances each time. That’s what happens when a pro-
gram generates values randomly.

Following the flow

Suppose that you’re running the code in Listing 15-3. The computer reaches the
display method call:

anAccount .display();

At that point, the computer starts running the code inside the display method.
In other words, the computer jumps to the middle of the Account class’s code
(the code in Listing 15-1).

After executing the display method’s code (that forest of print and println
calls), the computer returns to the point where it departed from in Listing 15-3.
That is, the computer goes back to the display method call and continues on
from there.

When you run the code in Listing 15-3, the flow of action in each loop iteration
isn’t exactly from the top to the bottom. Instead, the action goes from the for loop
to the display method and then back to the for loop. The whole business is
pictured in Figure 15-4.

public class Account {
Yada, yada, yada, . . .

void display() {+

i

1
! :
: 3 1
| out [print . . .:
I

I
I

public class ProcessAccounta {
Blabitty, blah, blah, . . .

for (int i = 0; i < 3; i++) {

tanAccount .display () ; :
L

_______ LI

CHAPTER 15 Creating New Java Methods 353

354

©

REMEMBER

Using punctuation

In Listing 15-3, notice the use of dots. To refer to the lastName stored in the
anAccount object, you write

anAccount . lastName
To get the anAccount object to display itself, you write
anAccount .display();

That’s great! When you refer to an object’s field or call an object’s method, the
only difference is parentheses:

¥ To refer to an object’s field, you don't use parentheses.

¥ To call an object's method, you use parentheses.

When you call a method, you put parentheses after the method’s name. You do
this even if you have nothing to put inside the parentheses.

Combining characters

In Listing 15-3, the statement

anAccount . lastName = "" +
(char) (myRandom.nextInt(26) + 'A') +
(char) (myRandom.nextInt(26) + 'a') +
(char) (myRandom.nextInt(26) + 'a')

has many plus signs, and each plus sign concatenates things together. The first
thing is an empty string (""). This empty string contains no characters, so it’s
invisible. It doesn’t get in the way of your seeing the second, third, and fourth
things. The later “Generating words randomly” sidebar reveals the mysterious
purpose of that invisible empty string.

Onto the empty string, the program concatenates a second thing. This second
thing is the value of the expression (char) (myRandom.nextInt(26) + 'A').The
expression may look complicated, but it’s really no big deal. This expression rep-
resents an uppercase letter (any uppercase letter, generated randomly). Once
again, the later “Generating words randomly” sidebar tells a more complete story.

Onto the empty string and the uppercase letter, the program concatenates a
third thing. This third thing is the value of the expression (char) (myRandom.
nextInt(26) + 'a'). This expression represents a lowercase letter (any lower-
case letter, generated randomly).

PART 4 The Inside ScCOOP

LD,
TECHNICAL
STUFF

REMEMBER

Onto all this stuff, the program concatenates another lowercase letter. So alto-
gether you have a randomly generated three-letter name.

In Listing 15-3, the statement anAccount.balance = myRandom.nextInt
(10000) assigns an int value to balance. But balance is a double variable, not
an int variable. That’s okay. In a rare case of permissiveness, Java allows you
to assign an int value to a double variable. The result of the assignment is no
big surprise. If you assign the int value 8734 to the double variable balance,
the value of balance becomes 8734.00. The result is shown on the first line of
Figure 15-3.

Using the double type to store an amount of money is generally a bad idea. In this
book, I use double to keep the examples as simple as possible. But the int type is
better for money values, and the BigDecimal type is even better. For more details,
see Chapter 7.

GENERATING WORDS RANDOMLY

Most programs don't work correctly the first time you run them, and some programs
don't work without extensive trial-and-error. This section’s code is a case in point.

To write this section’s code, | needed a way to generate three-letter words randomly.
After about a dozen attempts, | got the code to work. But | didn't stop there. | kept work-
ing for a few hours looking for a simple way to generate three-letter words randomly. In
the end, | settled on the following code (in Listing 15-3):

anAccount. lastName = "" +
(char) (myRandom.nextInt(26) + 'A')
(char) (myRandom.nextInt(26) + 'a')
(char) (myRandom.nextInt(26) + 'a')

+
+
’

This code isn't simple, but it's not nearly as bad as my original working version. Anyway,
here's how the code works:

® Each call to myRandom.nextInt(26) generates a number from 0 to 25.
® Adding 'A' gives you a number from 65 to 90.

To store a letter A", the computer puts the number 65 in its memory. That's why
adding 'A" to 0 gives you 65 and why adding 'A" to 25 gives you 90. (For more

(continued)

CHAPTER 15 Creating New Java Methods 355

(continued)

information on letters being stored as numbers, see the discussion of Unicode
characters at the end of Chapter 8.)

Applying (char) to a number turns the number into a char value.

To store the letters 'A' through 'Z', the computer puts the numbers 65 through
90 in its memory. So, applying (char) to a number from 65 to 90 turns the number
into an uppercase letter. For more information about applying things like (char),
see the discussion of casting in a sidebar in Chapter 7.

Pause for a brief summary. The expression (char) (myRandom.nextInt(26) +
'A') represents a randomly generated uppercase letter. In a similar way,
(char) (myRandom.nextInt(26) + 'a') represents arandomly generated
lowercase letter.

Watch out! The next couple of steps can be tricky:

® Java doesn't allow you to assign a char value to a string variable.

In Listing 15-3, the following statement would lead to a compiler error:

//Bad statement:
anAccount . lastName = (char) (myRandom.nextInt(26) + 'A');

In Java, you can use a plus sign to add a char value to a string. When you do,
the result is a string:

So,"" + (char) (myRandom.nextInt(26) + 'A'") is a string containing
one randomly generated uppercase character. And when you add (char)
(myRandom.nextInt(26) + 'a') to the end of that string, you get another
string — a string containing two randomly generated characters. Finally, when
you add another (char) (myRandom.nextInt(26) + 'a') to the end of that
string, you get a string containing three randomly generated characters. So you
can assign that big string to anAccount . 1astName. That's how the statement in
Listing 15-3 works.

When you write a program like the one in Listing 15-3, you have to be careful with
numbers, char values, and strings. | don't do this kind of programming every day of
the week — before | got this section’s example to work, | had many false starts. That's
okay. I'm persistent.

356 PART 4 The Inside ScOOP

Let the Objects Do the Work

When I was a young object, I wasn’t as smart as the objects you have nowadays.
Consider, for example, the object in Listing 15-4. This object not only displays
itself, but it can also fill itself with values.

A Class with Two Methods

import java.util.Random;

import java.text.NumberFormat;
import static java.lang.System.out;

public class BetterAccount {
String lastName;
int id;
double balance;

void fillWithData() {
var myRandom = new Random();

lastName = "" +
(char) (myRandom.nextInt(26) + 'A')
(char) (myRandom.nextInt(26) + 'a')
(char) (myRandom.nextInt(26) + 'a');

id = myRandom.nextInt(10000);

balance = myRandom.nextInt(10000);

void display() {
var currency = NumberFormat.getCurrencylnstance();

out.print("The account with last name ")
out.print(lastName);

out.print(" and ID number ");
out.print(id);

out.print(" has balance ");
out.println(currency. format(balance));

I wrote some code to use the class in Listing 15-4. This new code is in
Listing 15-5.

CHAPTER 15 Creating New Java Methods 357

m This Is So Cool!

public class ProcessBetterAccounts {
public static void main(String[] args) {
BetterAccount anAccount;
for (int i = 0; i < 3; i++) {
anAccount = new BetterAccount();

anAccount.fillWithData();
anAccount.display();

Listing 15-5 is pretty slick. Because the code in Listing 15-4 is so darn smart, the
new code in Listing 15-5 has very little work to do. This new code just creates a
BetterAccount object and then calls the methods in Listing 15-4. When you run
all this stuff, you get results like the ones in Figure 15-3.

Passing the Buck

358

Think about sending someone to the supermarket to buy bread. When you do this,
you say, “Go to the supermarket and buy some bread.” (Try it at home. You’ll have
a fresh loaf of bread in no time at all!) Of course, some other time, you send that
same person to the supermarket to buy bananas. You say, “Go to the supermarket
and buy some bananas.” And what’s the point of all of this? Well, you have a
method, and you have some on-the-fly information that you pass to the method
when you call it. The method is named “Go to the supermarket and buy some. . .”
The on-the-fly information is either “bread” or “bananas,” depending on your
culinary needs. In Java, the method calls would look like this:

goToTheSupermarketAndBuySome(bread);
goToTheSupermarketAndBuySome(bananas) ;

The things in parentheses are called parameters or parameter lists. With parame-
ters, your methods become much more versatile. Rather than get the same thing
each time, you can send somebody to the supermarket to buy bread one time,
bananas another time, and birdseed the third time. When you call your goToThe-
SupermarketAndBuySome method, you decide right there and then what you’re
going to ask your pal to buy.

PART 4 The Inside ScOOP

These concepts are made more concrete in Listings 15-6 and 15-7.

m Adding Interest

import java.text.NumberFormat;

import static java.lang.System.out;

public class NiceAccount {
String lastName;
int id;
double balance;

void addInterest(double rate) {
out.print("Adding ");
out.print(rate);
out.println(" percent...");

balance += balance % (rate / 100.0);

void display() {

var currency = NumberFormat.getCurrencylnstance();

out.print("The account with last name ")
out.print(lastName);

out.print(" and ID number ");
out.print(id);

out.print(" has balance ");
out.println(currency. format(balance));

IEEITEEEA calling the addInterest Method

import java.util.Random;

public class ProcessNiceAccounts {

public static void main(String[] args) {
var myRandom = new Random();
NiceAccount anAccount;
double interestRate;

(continued)

CHAPTER 15 Creating New Java Methods 359

360

REMEMBER

for (int i = @; i < 3; i++) {
anAccount = new NiceAccount();

anAccount.lastName = "" +
(char) (myRandom.nextInt(26) + 'A') +
(char) (myRandom.nextInt(26) + 'a') +
(char) (myRandom.nextInt(26) + 'a');
anAccount.id = myRandom.nextInt(10000);
anAccount .balance = myRandom.nextInt(10000);

anAccount .display();

interestRate = myRandom.nextInt(5);
anAccount.addInterest(interestRate);

anAccount .display();
System.out.println();

In Listing 15-7, the line
anAccount .addInterest(interestRate);

plays the same role as the line goToTheSupermarketAndBuySome(bread) in my
little supermarket example. The word addInterest is a method name, and the
word interestRate in parentheses is a parameter. Taken as a whole, this
statement tells the code in Listing 15-6 to execute its addInterest method. This
statement also tells Listing 15-6 to use a certain number (whatever value is stored
in the interestRate variable) in the method’s calculations. The value of
interestRate canbe 1.0, 2.0, or whatever other value you get by calling myRandom.
nextInt(5). In the same way, the goToTheSupermarketAndBuySome method
works for bread, bananas, or whatever else you need from the market.

The next section has a detailed description of addInterest and its action. In the
meantime, a run of the code in Listings 15-6 and 15-7 is shown in Figure 15-5.

Java has strict rules about the use of types. For example, you can’t assign a double
value (like 3.14) to an int variable. (The compiler simply refuses to chop off the
.14 part. You get an error message. So what else is new?) But Java isn’t completely
unreasonable about the use of types. Java allows you to assign an int value (like
myRandom.nextInt(5)) to a double variable (like interestRate). If you assign the
int value 2 to the double variable interestRate, then the value of interestRate
becomes 2.0. The result is shown on the second line of Figure 15-5.

PART 4 The Inside ScOOP

FIGURE 15-5:
Running the code
in Listing 15-7.

FIGURE 15-6:
Passing a value
to a method's
parameter.

The account with last name Cbj and ID number 6151 has balance $8,983.00
Adding 2.0 percent...
The account with last name Cbj and ID number 6151 has balance $9,162.66

The account with last name Bry and ID number 529 has balance $3,756.00
Adding @.@ percent...
The account with last name Bry and ID number 529 has balance $3,756.00

The account with last name Dco and ID number 2162 has balance $8,474.00
Adding 3.0 percent...
The account with last name Dco and ID number 2162 has balance $8,728.22

Handing off a value

When you call a method, you can pass information to that method on the fly. This
information is in the method’s parameter list. Listing 15-7 has a call to the
addInterest method:

anAccount .addInterest(interestRate);

The first time through the loop, the value of interestRate is 2.0. (Remember,
I’m using the data in Figure 15-5.) At that point in the program’s run, the method
call behaves as though it’s the following statement:

anAccount .addInterest(2.0);

The computer is about to run the code inside the addInterest method (a method
in Listing 15-6). But first, the computer passes the value 2.0 to the parameter in
the addInterest method’s header. Inside the addInterest method, the value of
rate becomes 2.0. For an illustration of this idea, see Figure 15-6.

balance += balance * (ra‘tbe / 100.0) ;7

NiceAccount

ProcessNiceAccounts

anAccount.addInterest (inter estRaté) 1

CHAPTER 15 Creating New Java Methods 361

362

Here’s something interesting. The parameter in the addInterest method’s header
is rate. But, inside the ProcessNiceAccounts class, the parameter in the method
call is interestRate. That’s okay. In fact, it’s standard practice.

In Listings 15-6 and 15-7, the names of the parameters don’t have to be the same.
The only thing that matters is that both parameters (rate and interestRate)
have the same type. In Listings 15-6 and 15-7, both of these parameters are of
type double. So everything is fine.

Inside the addInterest method, the += assignment operator adds balance x
(rate / 100.0) to the existing balance value. For some info about the += assign-
ment operator, see Chapter 7.

Working with a method header

In the next few bullets, I make some observations about the addInterest method
header (in Listing 15-6):

3 The word void tells the computer that when the addInterest method is
called, the addInterest method doesn’t send a value back to the place
that called it.

The next section has an example in which a method sends a value back.
¥ The word addInterest is the method's name.

That's the name you use to call the method when you're writing the code for
the ProcessNiceAccounts class. (See Listing 15-7.)

3 The parentheses in the header contain placeholders for all the things
you're going to pass to the method when you call it.

When you call a method, you can pass information to that method on the fly.
This information is the method's parameter list. The addInterest method's
header says that the addInterest method takes one piece of information,
and that piece of information must be of type double:

voidaddInterest(double rate)

Sure enough, if you look at the call to addInterest (down in the
ProcessNiceAccounts class'smain method), that call has the variable
interestRate init. And interestRate is of type double. When | call
addInterest, I'm giving the method a value of type double.

PART 4 The Inside ScOOP

FIGURE 15-7:
Cbj's account and
Bry's account.

Using each object’s field values

The addInterest method in Listing 15-6 is called three times from the main
method in Listing 15-7. The actual account balances and interest rates are differ-
ent each time:

»

»

»

In the first call of Figure 15-5, the balance is 8983.00, and the interest
rate is 2.0.

When this call is made, the expressionbalance * (rate / 100.0) stands
for 8983.00 * (2.0 / 100.00). See Figure 15-7.

In the second call of Figure 15-5, the balance is 3756.00, and the interest
rate is 0.0.

When the call is made, the expression balance * (rate / 100.0) stands
for 3756.00 * (0.0 / 100.00). Again, see Figure 15-7.

In the third call of Figure 15-5, the balance is 8474.00, and the interest
rate is 3.0.

When the addInterest call is made, the expressionbalance * (rate /
100.0) stands for 8474.00 * (3.0 / 100.00).

An instance of Another instance of
the Nicehccount class the Wi ceiccount class
lastName |Cbj lastName |Bry

id [6151 id
balance 85983.00 balance 3756.00

NiceAccount \
ProcessNiceAccounts
anhAccount anhccount

interestRate interestRate

CHAPTER 15 Creating New Java Methods 363

Passing more than one parameter

Take a look at Listings 15-6 and 15-7. In those listings, the display method has
no parameters and the addInterest method has one parameter. Now consider the
following code from Chapter 12:

char reply;
reply = keyboard. findWithinHorizon(".", @).charAt(Q);

In that code, the findWithinHorizon method call has two parameters: the String
parameter " ." and the int parameter @. That’s not unusual. You can create meth-
ods with as many parameters as you like. The only restriction is this: When you
call a method, the types of the parameters in the call must match up with the
types of parameters in the method declaration’s header. For example, in Java’s
API code, the first line of the findwithinHorizon method looks like this:

public String findWithinHorizon(String pattern, int horizon) {

And, in the method call findWithinHorizon(".", @), the first parameter "." isa
String, and the second parameter 9 is an int.

Listings 15-8 and 15-9 are variations on the code in Listings 15-6 and 15-7. In the
new listings, the addInterest method has two parameters: one for the interest
rate and another for a number of years. When you call the addInterest method,

the method repeatedly adds interest for the number of years you’ve specified.

A run of the code in Listings 15-8 and 15-9 is shown in Figure 15-8.

m Adding Interest for a Certain Number of Years

import java.text.NumberFormat;

import static java.lang.System.out;

public class NiceAccount {
String lastName;
int id;
double balance;

void addInterest(double rate, int howManyYears) {
for (int i = 1; i <= howManyYears; i++) {
out.print("Adding ")
out.print(rate);
out.println(" percent...");

364 PART 4 The Inside ScCOOP

balance += balance * (rate / 100.0);

void display() {

var

out.
out.
out.
out.
out.
out.

currency = NumberFormat.getCurrencyInstance();

print("The account with last name ");
print(lastName);

print(" and ID number ");

print(id);

print(" has balance ");
println(currency. format(balance));

m Calling the Beefed-Up addInterest Method

import java.

util.Random;

public class ProcessNiceAccounts {

public static void main(String[] args) {

var

myRandom = new Random();

NiceAccount anAccount;

double interestRate;

for

(int 1 = @; i < 3; i++) {
anAccount = new NiceAccount();

anAccount.lastName = "" +
(char) (myRandom.nextInt(26) + 'A') +
(char) (myRandom.nextInt(26) + 'a') +
(char) (myRandom.nextInt(26) + 'a');
anAccount.id = myRandom.nextInt(10000);
anAccount .balance = myRandom.nextInt(10000);

anAccount .display();

interestRate = myRandom.nextInt(5);
anAccount.addInterest(interestRate, 3);

anAccount .display();
System.out.println();

CHAPTER 15 Creating New Java Methods

365

FIGURE 15-8:
Running the code
in Listing 15-9.

The account with last name Vhg and ID number 6419 has balance $2,489.00
Adding 2.9 percent...
Adding 2.0 percent...
Adding 2.0 percent...
The account with last name Vhg and ID number 6419 has balance $2,556.45

The account with last name Bcz and ID number 2329 has balance $91.00
Adding 3.0 percent...
Adding 3.8 percent...
Adding 3.9 percent...
The account with last name Bcz and ID number 2329 has balance $99.44

The account with last name Ggp and ID number 2749 has balance $9,816.00
Adding 8.9 percent...
Adding 0.9 percent...
Adding 9.0 percent...
The account with last name Ggp and ID number 2749 has balance $9,816.00

Getting a Value from a Method

Say that you’re sending a friend to buy groceries. You make requests for groceries
in the form of method calls. You issue calls such as

goToTheSupermarketAndBuySome(bread);
goToTheSupermarketAndBuySome(bananas) ;

The things in parentheses are parameters. Each time you call your goToThe
SupermarketAndBuySome method, you put a different value in the method’s
parameter list.

Now, what happens when your friend returns from the supermarket? “Here’s the
bread you asked me to buy,” says your friend. As a result of carrying out your
wishes, your friend returns something to you. You made a method call, and the
method returns information (or better yet, the method returns some food).

The thing returned to you is called the method’s return value, and the type of thing
returned to you is called the method’s return type.

Return on an investment

To see how return values and return types work in a real Java program, check out
the code in Listings 15-10 and 15-11.

366 PART 4 The Inside SCOOP

m A Method That Returns a Value

import java.text.NumberFormat;

import static java.lang.System.out;

public class GoodAccount {
String lastName;
int id;
double balance;

double getlnterest(double rate) {
double interest;

out.print("Adding ");
out.print(rate);
out.println(" percent...");

interest = balance x (rate / 100.0);
return interest;

void display() {
var currency = NumberFormat.getCurrencylnstance();

out.print("The account with last name ")
out.print(lastName);

out.print(" and ID number ");
out.print(id);

out.print(" has balance ");
out.println(currency. format(balance));

m Calling the Method in Listing 15-10

import java.util.Random;

import java.text.NumberFormat;
public class ProcessGoodAccounts {

public static void main(String[] args) {
var myRandom = new Random();
var currency = NumberFormat.getCurrencylnstance();
GoodAccount anAccount;

double interestRate;
(continued)

CHAPTER 15 Creating New Java Methods 367

double yearlylnterest;

for (int i = 0; i < 3; i++) {
anAccount = new GoodAccount();

anAccount.lastName = "" +
(char) (myRandom.nextInt(26) + 'A') +
(char) (myRandom.nextInt(26) + 'a') +
(char) (myRandom.nextInt(26) + 'a');
anAccount.id = myRandom.nextInt(10000);
anAccount .balance = myRandom.nextInt(10000);

’

anAccount .display();

interestRate = myRandom.nextInt(5);
yearlyInterest = anAccount.getlnterest(interestRate);

System.out.print("This year's interest is ");
System.out.println(currency. format(yearlyInterest));

System.out.println();

To see a run of code from Listings 15-10 and 15-11, take a look at Figure 15-9.

The account with last name Cpb and ID number 7862 has balance $9,508.00
Adding 2.@ percent...
This year's interest is $19@2.16

The account with last name Nuvw and ID number 46@3 has balance $7,648.00

Adding 2.@ percent...
This year's interest is $152.96

The account with last name Set and ID number 9302 has balance $3,114.00
FIGURE 15-9: Adding 4.@ percent...
Running the code This year's interest is $124.56

in Listing 15-11.

How return types and return values work

I want to trace a piece of the action in Listings 15-10 and 15-11. For input data,
I use the first set of values in Figure 15-9.

368 PART 4 The Inside ScOOP

FIGURE 15-10:
A method call is
an expression
with a value.

REMEMBER

Here’s what happens when getInterest is called (you can follow along in
Figure 15-10):

¥ The value of balance is 9508 .00, and the value of rate is 2.0. So the value of
balance * (rate / 100.0) is190.16 — one hundred ninety dollars and
sixteen cents.

¥ Thevalue 190.16 gets assigned to the interest variable, so the statement
return interest;

¥ has the same effect as
return 190.16;

¥ Thereturn statement sends this value 190.16 back to the code that called
the method. At that point in the process, the entire method call in Listing 15-11 —
anAccount .getInterest(interestRate) — takes on the value 190.16.

¥ Finally, the value 190. 16 gets assigned to the variable yearlyInterest.

double getInterest(double rate) {
double interest;

190.16

interest = balance * (rate / 100.0);

return (Interest;

GoodAccount

ProcessGoodAccounts

yearlylnterest = r:.iflAccount.getInterest (interestRateS) ;

- T et

If a method returns anything, a call to the method is an expression with a value.
That value can be printed, assigned to a variable, added to something else, or
whatever. Anything you can do with any other kind of value, you can do with a
method call.

CHAPTER 15 Creating New Java Methods 369

370

Working with the method header (again)

When you create a method or a method call, you have to be careful to use Java’s
types consistently. Make sure that you check for the following:

¥ InListing 15-10, the getInterest method's header starts with the word
double. When the method is executed, it should send a double value back
to the place that called it.

¥ Againin Listing 15-10, the last statement in the get Interest method is return
interest. The method returns whatever value is stored in the interest
variable, and the interest variable has type double. So far, so good.

¥ InListing 15-11, the value returned by the call to getInterest is assigned to a
variable named yearlyInterest. Sure enough, yearlyInterest is of type
double.

That settles it! The use of types in the handling of method getInterest is consis-
tent in Listings 15-10 and 15-11. 'm thrilled!

I%I Write a few programs to learn about creating Java methods.
T ONE, TWO, THREE

In the code that follows, replace the comments with statements that do what the
comments suggest:

public class Counter {

int count = 9;

void increment() {
// Add 1 to the value of count

public class Main {

public static void main(String[] args) {

var counter = new Counter();
// Call the counter object's increment method

System.out.println(counter.count);

PART 4 The Inside ScOOP

TWO, SEVEN, NINETEEN

Modify the code in the first paragraph of the previous section, “One, two, three,”
so that

¥ The increment method has a parameter.

¥ Themain method calls increment several times, each time with a different
parameter value.

The increment method uses its parameter to decide how much to increase the
count value.

MOVE THINGS AROUND
Change the code in Listing 15-3 so that the main method begins with these lines:

public static void main(String[] args) {
var myRandom = new Random();

for (int i = @; i < 3; i++) {

var anAccount = new Account();

Does the new code run? If so, does it work correctly? Why, or why not?

PROCESS PURCHASES

At the end of Chapter 13, I complain about the repetitive code in Listing 13-5.
When you see repetitive code, you can think about creating a method. You replace
each repetition with a call to that method. The code’s logic lives in one place (the
method declaration), and the method calls repeatedly refer to that place. Et voila!
The repetition problem is solved!

Modify the code in Chapter 13 as follows:

¥ Add agetTotal method to the Purchase class code in Listing 13-2. The
getTotal method takes no parameters and returns a double value.

¥ Replace the repetitive code in Listing 13-5 with two getTotal method calls.

CHAPTER 15 Creating New Java Methods 371

372

More specifically:

¥ ThegetTotal method declares its own total variable.

¥ The getTotal method multiplies the Purchase object'sunitPrice by the
object's quantity and assigns the result to the total variable.

3 Depending on the object's taxable value, the getTotal method either
increases or doesn't increase the total variable's value.

¥ ThegetTotal method returns the value of the total variable.

HAS YOUR BMI CHANGED SINCE CHAPTER 13?

In the “What’s your BMI?” experiment at the end of Chapter 13, you create a
Person class, and your main method calculates a Person object’s body mass index
(BMI). Improve on that code so that the Person class contains its own getBmi
method. The getBmi method calculates the Person object’s body mass index from
the values of the object’s own weight and height fields.

In a separate class, the main method creates three Person objects, assigns values
to each Person object’s weight and height fields, and calls each Person object’s
getBmi method.

TWO TIMES NOTHING IS STILL NOTHING

In the “Nothing in particular” experiment at the end of Chapter 13, you create a
Thing class, and your main method displays a sentence about a Thing object.
Improve on that code so that the Thing class contains its own display method.
The display method prints a Thing object’s sentence based on the values of the
object’s own valuel and value?2 fields.

In a separate class, the main method creates three Thing objects, assigns values
to each Thing object’s valuel and value2 fields, and calls each Thing object’s
display method.

MORE MACROECONOMICS

In the “A bit of macroeconomics” experiment at the end of Chapter 13, you create
a Country class. Your main method asks the user for an acceptable debt-to-GDP
ratio and reports That's acceptable or That's not acceptable after comparing
a country’s ratio to the acceptable ratio.

Improve on that code so that the Country class contains its own hasAcceptable
Ratio method. The hasAcceptableRatio method has one double parameter.

PART 4 The Inside ScOOP

That parameter represents the debt-to-GDP ratio that the user has signified is
acceptable. The hasAcceptableRatio method calculates the Country object’s
debt-to-GDP ratio from the values of object’s own debt and gdp fields. The
hasAcceptableRatio method returns a boolean value: true if the Country
object’s ratio is acceptable and false otherwise.

In a separate class, the main method creates three Country objects, assigns values

to each Country object’s debt and gdp fields, and calls each Country object’s
hasAcceptableRatio method.

EASY-PEASY

The “Make a hit record” experiment at the end of Chapter 13 introduces record
classes. Why not try another example of Java’s record class feature?

Put this code in a file named Journey . java:
public record Journey(int miles, double hours) {

public double getSpeed() {

return miles / hours;

Also, put this code in a file named TakeAJourney . java:
public class TakeAJourney {

public static void main(String[] args) {
var journey = new Journey(400, 8);

System.out.println(journey.getSpeed() + " miles per hour");

And finally, run the TakeAJourney program.

What Next?

Object-oriented programming (OOP) is a pillar of modern programming, and
every introduction to Java must include mention of it. But OOP isn’t easy to master.
Learning OOP presents special challenges for novice programmers.

CHAPTER 15 Creating New Java Methods 373

This book covers only some shavings off the tip of the OOP iceberg. With that in
mind, I heartily recommend a book written by my evil twin (and published by
Wiley). Java For Dummies starts from scratch, but it includes about twice as much
material as the book you’re reading right now. In particular, Java For Dummies has
more coverage of object-oriented programming.

Pick up the latest edition of Java For Dummies at your local bookstore. And,

if you happen to make contact with the book’s author, please tell him that
I recommended his book.

374 PART 4 The Inside ScOOP

Smart Java
Techniques

IN THIS PART ...

Getting input from your computer’s hard drive
Doing more with decisions and loops
Working with bunches of things

Creating windows and other beautiful things

IN THIS CHAPTER

» Using data on your hard drive

» Writing code to access the hard drive

» Troubleshooting input/output
behavior

Chapter 16

Piles of Files: Dealing
with Information
Overload

onsider these scenarios:

3 You're a business owner who handles hundreds of invoices each day.
You store invoice data in a file on your hard drive. You need customized code
to sort and classify the invoices.

3 You're an astronomer with data from scans of the night sky. When you're
ready to analyze a chunk of data, you load the chunk onto your computer’s
hard drive.

¥ You're the author of a popular self-help book. Last year's fad was the
Self-Mirroring Method. This year's craze is the Make Your Cake System. You
can't modify your manuscript without converting to the publisher's new
specifications. You need software to make the task bearable.

CHAPTER 16 Piles of Files: Dealing with Information Overload 377

Each situation calls for a new computer program, and each program reads from a
large data file. On top of all of that, each program creates a brand-new file con-
taining bright, shiny results.

In previous chapters, the examples get input from the keyboard and send output
to Intelli]’s Run tool window. That’s fine for small tasks, but you can’t have the
computer prompt you for each bit of night sky data. For big problems, you need
lots of data, and the best place to store the data is on a computer’s hard drive.

Running a Disk-Oriented Program

378

LD,
TECHNICAL
STUFF

To deal with volumes of data, you need tools for reading from (and writing to) disk
files. At the mere mention of disk files, some people’s hearts start to palpitate
with fear. After all, a disk file is elusive and invisible. It’s stored somewhere inside
your computer, with some magic magnetic process.

The truth is, getting data from a disk is much like getting data from the keyboard.
And printing data to a disk is like printing data to the computer screen.

In this book, displaying a program’s text output “on the computer screen” means
displaying text in Intelli]’s Run tool window. If you shun Intelli] in favor of a dif-
ferent IDE (such as Eclipse or NetBeans) or you shun all IDEs in favor of your
system’s command window, then, for you, “on the computer screen” means
something slightly different. Please read between the lines as necessary. Also, I’'m
well aware that many computers have SSD drives with no honest-to-goodness
disks inside them. So, terms like disk-oriented and disk files are showing signs of
age. But let’s face facts: A “record store” no longer focuses on vinyl records, and
in US measurement units, 12 inches is no longer the length of the king’s foot.
Today’s LCD screens no longer need saving. And, unlike the old mechanical car
radios, a web page’s radio buttons don’t mark your favorite stations.

Consider the scenario when you run the code in earlier chapters. You type some
stuff on the keyboard. The program takes this stuff and spits out some stuff of its
own. The program sends this new stuff to the Run tool window. In effect, the flow
of data goes from the keyboard to the computer’s innards and then to the screen,
as shown in Figure 16-1.

Of course, the goal in this chapter is illustrated in Figure 16-2. It shows a file con-
taining data on a hard drive. The program takes data from the disk file and spits
out some brand-new data. The program then sends the new data to another file
on the hard drive. In effect, the flow of data goes from a disk file to the computer’s
innards and on to another disk file.

PART 5 Smart Java Techniques

FIGURE 16-1:
Using the
keyboard

and screen.

FIGURE 16-2:
Using disk files.

LTI

99.75

rawData.txt|

10|

cookedData.txt
99.75

CHAPTER 16 Piles of Files: Dealing with Information Overload

379

The scenarios in Figures 16-1 and 16-2 are similar. In fact, it helps to remember
these fundamental points:

¥ The stuff in a disk file is no different from the stuff you type on a
keyboard.

If a keyboard-reading program expects you to type 19.95 5, then the
corresponding disk-reading program expects a file containing those same
characters, 19.95 5. If a keyboard-reading program expects you to press
Enter and type more characters, then the corresponding disk-reading
program expects more characters on the next line in the file.

3 The stuff in a disk file is no different from the stuff you see in Intelli)’s
Run tool window.

If a screen-printing program displays the number 99. 75, the corresponding
disk-writing program writes the number 99.75 to a file. If a screen-printing
program moves the cursor to the next line, then the corresponding disk-
writing program creates a new line in the file.

If you have trouble imagining what you have in a disk file, just imagine the text
you would type on the keyboard or the text you would see on the computer
screen (that is, in Intelli]’s Run tool window). That same text can appear in a file
on your disk.

Reading and writing

Listing 16-1 contains a keyboard/screen program. The program multiplies unit
price by quantity to produce the total price. A run of the code is shown in
Figure 16-3.

m Using the Keyboard and the Screen

380

import java.util.Scanner;
public class ComputeTotal {
public static void main(String[] args) {
var keyboard = new Scanner(System.in);
double unitPrice, total;

int quantity;

unitPrice = keyboard.nextDouble();
quantity = keyboard.nextInt();

PART 5 Smart Java Techniques

total = unitPrice x quantity;

System.out.println(total);

keyboard.close();

FIGURE16-3: |[19-95 5
Read fromthe [99. 75

keyboard; write

to the screen.

Grouping separators vary from one country to another. The run shown in
Figure 16-3 works almost everywhere in the world. But if the unit price is 19-and-
95-hundredths, you type 19.95 (with a dot) in some countries and 19,95 (with a

rememser comma) in others. When you install the computer’s operating system, you tell it
which country you live in. Java programs access this information and use it to
customize the way the nextDouble method works.

The goal is to write a program like the one in Listing 16-1. But, rather than talk to
your keyboard and screen, this new program talks to your hard drive. The new
program reads unit price and quantity from your hard drive and writes the total
back to your hard drive.

Java’s API has everything you need for interacting with a hard drive. A nice exam-
ple is in Listing 16-2.

m Using Input and Output Files

import java.util.Scanner;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

public class ReadAndWrite {

public static void main(String[] args) throws FileNotFoundException {
var diskScanner = new Scanner(new File("rawData.txt"));
var diskWriter = new PrintStream("cookedData.txt");
double unitPrice, total;
int quantity;

(continued)

CHAPTER 16 Piles of Files: Dealing with Information Overload 381

unitPrice = diskScanner.nextDouble();
quantity = diskScanner.nextInt();

total = unitPrice % quantity;

diskWriter.println(total);

diskScanner.close();
diskWriter.close();

For a guide to the care and feeding of the rawData.txt file (wWhose name appears

in Listing 16-2), see the later section “Creating an input file.”

Messing with files on your hard drive

I, [print your name], agree to pay $, each month on the __th day of the

month.

Fill in the blanks. That’s all you have to do. Reading input from a disk can work

the same way. Just fill in the blanks in Listing 16-3.

m A Template to Read Data from a Disk File

382

/*
* Before IntelliJ can compile this code,
% you must fill in the blanks.
*/

import java.util.Scanner;

import java.io.File;

import java.io.FileNotFoundException;
public class ___________ {

public static void main(String[] args) throws FileNotFoundException {

var diskScanner = new Scanner(new File("_________));

diskScanner.nextInt();

= diskScanner.nextDouble();

PART 5 Smart Java Techniques

______ = diskScanner.nextLine();
diskScanner.findWithinHorizon(".",Q).charAt(Q);

// Etc.

diskScanner.close();

To use Listing 16 -3, make up a name for your class. Insert that name into the first
blank space. Type the name of the input file in the second space (between the
quotation marks). Then, to read a whole number from the input file, call
diskScanner.nextInt. To read a number that has a decimal point, call
diskScanner .nextDouble. You can call any of the Scanner methods in Chapter 5’s
Table 5-1 — the same methods you call when you get keystrokes from the
keyboard.

The stuff in Listing 16-3 isn’t a complete program. Instead, it’s a template — a
half-baked piece of code, with spaces for you to fill in. You can type Listing 16-3’s
lines into Intelli]’s editor and fill in the blanks at your leisure. But Intelli] has a
feature that deals specifically with templates. For more information, see this
chapter’s nearby sidebar, “Filling in the blanks.”

FILLING IN THE BLANKS

When you right-click a project’s src folder and choose New = Java Class, Intelli] creates
a file with some code in it. The code looks something like this:

public class MyNewClass {
}

To create this code, Intellj uses a built-in template. You can see the template’s inner
workings. Here's how:
1. Choose File=> Settings in Windows or Intelli) IDEA => Preferences on a Mac.

2. In the leftmost panel of the resulting dialog box, choose Editor => File and
Code Templates.

3. In the next-to-leftmost panel, select the Files tab.

A list of built-in templates appears.

(continued)

CHAPTER 16 Piles of Files: Dealing with Information Overload 383

(continued)

384

PART 5

. In the list of templates, select Class.

At that point, Intellij shows you some text that includes the following lines:

public class ${NAME} {
}

That's not Java code. It's an Intelli]-specific description of a template for creating new
class files.

You can create your own templates like the ones in Listings 16-3 and 16-4, but it's easier
for you to scoop up templates that I've created for you. To do so, follow these instructions:

11.

. On IntelliJ's main menu bar, choose File <> Manage IDE Settings => Import Settings.

As a result, the Open dialog box appears.

. In the Open dialog box, navigate to the place on your hard drive where you

downloaded this book’'s sample code.

. In the sample code folder, drill down into the Chapter 16/16-03 subfolder.

. In the Chapter 16/16-03 subfolder, double-click on theFileTemplates.zip

file.

When you do, a dialog box asks you politely to check all components to import.

. Look for a check mark in the File Templates check box. Then click OK.

A new pop-up box asks whether you want to import and restart.

. Of course you do!

Intelli] stops running and then begins its life anew. Now you can test the file han-
dling templates.

. Right-click a project’s src folder as though you're creating a new Java class.

. Rather than choose New = Java Class, choose New &> Dummies Read from Disk.

Pretty cool! Isn't it?

A dialog box with the title New Dummies Read from Disk appears.

. In the File Name text field, type a new name for a Java class.

. In the text field labeled Disk File Name Including the Extension, type the

name of a file on your computer’s hard drive — a name like rawData. txt.
With much fanfare and a sense of victory in your heart, click OK.

As a result, Intelli] creates a brand-new Java class modeled after the code in
Listing 16-3. Excellent!

With the template in Listing 16-3, you can input data from a disk file. With a simi-
lar template, you can write output to a file. The template is in Listing 16-4.

A Template to Write Data to a Disk File

/*
* Before IntelliJ can compile this code,

% you must fill in the blanks.
*/

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

public class ___________ {

public static void main(String[] args) throws FileNotFoundException {

var diskWriter = new PrintStream("_________ ");
diskWriter.print(_____);
diskWriter.println(_____);

// Etc.

diskWriter.close();

To use Listing 16-4, insert the name of your class into the first blank space. Type
the name of the output file in the space between the quotation marks. Then, to
write part of a line to the output file, call diskWriter.print. To write the remain-
der of a line to the output file, call diskWriter.println.

If your program gets input from one disk file and writes output to another, com-

bine the stuff from Listings 16-3 and 16-4. When you do, you get a program like
the one in Listing 16-2.

CHAPTER 16 Piles of Files: Dealing with Information Overload 385

386

PART 5

A QUICK LOOK AT JAVA'S DISK ACCESS
FACILITIES

Templates like the ones in Listings 16-3 and 16-4 look very nice. But knowing how the
templates work is even better. Here are a few tidbits describing the inner workings of
Java's disk access code:

® APrintStream is something you can use for writing output.

APrintStream is like a Scanner. The big difference is that a Scanner is for read-
ing input, and a PrintStream is for writing output. To see what | mean, look at
Listing 16-2. Notice the similarity between the statements that use Scanner and
the statements that use PrintStream.

The word PrintStream is defined in the Java API.

® In Listing 16-2, the expressionnew File("rawData.txt") plays the same role
that System. in plays in many other programs.

Just as System. in stands for the computer’s keyboard, the expressionnew File
("rawData.txt") stands for a file on your computer’s hard drive. When the com-
puter callsnew File("rawData.txt"), the computer creates something like
System. in — something you can stuff inside the new Scanner() parentheses.

The word File is defined in the Java API.

® AFileNotFoundException is something that may go wrong during an
attempt to read input from a disk file (or an attempt to write output to a
disk file).

Disk file access is loaded with pitfalls. Even the best programs run into disk access
trouble occasionally. To brace against such pitfalls, Java insists on your adding some
extra words to your code.

In Listing 16-2, the added words throws FileNotFoundException form a throws
clause. A throws clause is a kind of disclaimer. Putting a throws clause in your code
is like saying, “I realize that this code can run into trouble.”

Of course, in the legal realm, you often have no choice about signing disclaimers.
“If you don't sign this disclaimer, the surgeon won't operate on you.” Okay then, I'll
sign it. The same is true with a Java throws clause. If you put things 1ike new
PrintStream("cookedData.txt") in your code and you don't add something
like throws FileNotFoundException, the Java compiler refuses to compile
your code.

So, when do you need this throws FileNotFoundException clause, and when
should you do without it? Well, having certain things in your code — things like new
PrintStream("cookedData.txt") — forces you to create a throws clause. You
can spend some time learning all about the kinds of things that demand throws
clauses. But at this point, it's better to concentrate on other programming issues.
Because you're a beginning Java programmer, the safest thing to do is to follow the
templates in Listings 16-3 and 16-4.

The word FileNotFoundException is — you guessed it — defined in the Java API.

® To create this chapter’s code, | made up the names diskScanner and
diskWriter.

The words diskScanner and diskWriter don't come from the Java API. In place
of diskScanner and diskWriter, you can use any names you want. All you have
to do is to use the names consistently within each of your Java programs.

® A call to the close method ends the connection between your program and
the file.

In many of this book's examples, you sever the connection between your program
and the computer keyboard by calling keyboard.close(). The same is true when
you call the close method for a disk file's scanner or a disk file's PrintStream
instance. Calling the close method reminds Java to finish all pending read or write
operations and to break the program’s connection to the disk file or the keyboard
or to whatever else holds data for the program.

This book’s examples are simple. If you omit a close method call in one of these
examples, you might get a warning message from Intelli], but the world doesn't end.
(That is, your program still runs correctly.) However, in a serious, make-it-or-break-it
application, the proper placement of close calls is important. These close calls
ensure the proper completion of the program'’s input and output actions and help
free up disk resources for use by other running programs.

Running disk-oriented code

Testing the code in Listing 16-2 is a three-step process. Here’s an outline of the
three steps:

1. create the rawData. txt file.
2. Runthe codein Listing 16-2.

3. View the contents of the newly created cookedData . txt file.

The next few sections cover each step in detail.

CHAPTER 16 Piles of Files: Dealing with Information Overload 387

388

TIP

REMEMBER

Creating an input file

You can use any plain old text editor to create an input file for the code in

Listing 16-2. In this section, I show you how to use IntelliJ’s built-in editor.

If you don’t want to create your own input file, you can skip this set of instruc-
tions. I’ve already created a rawData. txt file and included it in the material you
download from this book’s website. After uncompressing my BeginProgJava

Dummies6.zip file, look for rawData.txt inside the Chapter 16/16-02 folder.

To create an input file:

1.

Right-click the topmost branch of the tree in Intelli}’s Project tool window.

For example, if you've created a project named 16-02, select the tree's 16-02
branch.

In the Project tool window, select a branch whose label is the name of a
project. Don't select an item within a project. (For example, don't select the src
branch.)

In the resulting context menu, choose New ~> File.
Intelli's New File dialog box opens.
In the Name field, type the name of your new data file.

You can type any name that your computer considers to be a valid filename.
For this section’s example, | used the name rawData. txt, but other names —
such as rawData.dat, rawData, and raw123.01 .dataFile — are fine. | try to
avoid troublesome names (including short, uninformative names and names
containing blank spaces), but the name you choose is entirely up to you (and
your computer’s operating system and your boss's whims and your customer’s
specifications).

Press Enter.
What happens next depends on the name you typed.

If Intelli) shows you a dialog box complaining that the name you entered
isn't associated with any particular file type, select Text from the list of
types and then click OK.

At last, your new file’s name appears in Intelli's Project tool window.

If Intelli) doesn’t automatically open your file in the editor, double-click
the file's branch in the Project tool window.

An empty editor (with the new file’s name on its tab) appears in IntelliJ's editor.

PART 5 Smart Java Techniques

FIGURE 16-4:
Editing an
input file.

WARNING

7. Type text in the editor.

To create this section’s example, | typed the text19.95 5, as shown in
Figure 16-4. To create your own example, type whatever text your program
needs during its run.

Project « B = — ¥ — & rawDatatxt
v 16-02 19.95 5
.idea I
* out

sre
& ReadAndWrite

& 16-02.iml

= rawData.txt

This section’s steps apply whenever you use Intelli] IDEA to create an input file.
You can use other programs to create input files, such as Windows Notepad or
Macintosh TextEdit. But if you do, you have to be careful about file formats and
filename extensions. For example, to create a file named raw123.01.dataFile
using Windows Notepad, type “raw123.01.dataFile” (with quotation marks) in the
File Name field of the Save As dialog box. If you don’t surround the name with
quotation marks, Notepad might add . txt to the file’s name (turning raw123.01 .
dataFile into raw123.01.dataFile.txt). A similar issue applies to the Macin-
tosh’s TextEdit program. By default, TextEdit adds the .rt f extension to each new
file. To override the .rtf default for a particular file, choose Format= Make Plain
Text before saving the file. Then, whenever you save the file, TextEdit offers to
add the .txt extension to the name of the file. In the Save As dialog box, if you
don’t want the file’s name to end in .txt, uncheck the check box labeled If No
Extension Is Provided, Use .txt.

Running the code

To have Intelli] run the code, do the same thing you do with any other Java pro-
gram. For example, to run the code in Listing 16-2, right-click the ReadAndWrite
branch in the Project tool window. Then choose Run ‘ReadAndWrite.main()’.

When you run the program in Listing 16-2, no text appears in Intelli]’s Run tool
window. This total lack of any noticeable output gives some people the willies. The
truth is, a program like the one in Listing 16-2 does all its work behind the scenes.
The program has no statements that read from the keyboard and has no state-
ments that print to the screen. So, if you have a very loud hard drive, you may hear
a little chirping sound when you run the code, but you won’t type any program
input and you won’t see any program output.

CHAPTER 16 Piles of Files: Dealing with Information Overload 389

FIGURE 16-5:
Viewing an
output file.

FIGURE 16-6:
The computer
can't find
your file.

TIP

The program sends all its output to a file on your hard drive. To see the program’s
output, double-click the newly formed cookedData. txt branch of the Project tool
window’s tree. (See Figure 16-5.)

Project « € T = & — # cookedData.txt
v W316-02 ~/IdeaProjects/16-0; 99.75
> .idea
out
v I sre
& ReadAndWrite
116-02.iml
i cookedData.txt
£ rawData.txt

File and error

When you run the code in Listing 16-2, the computer executes new Scanner (new
File("rawData.txt")). If the Java virtual machine can’t find the rawData.txt
file, you see a message like the one shown in Figure 16-6. This error message can
be frustrating. In many cases, you know darn well that there’s a rawData. txt file
on your hard drive. The stupid computer simply can’t find it.

ReadAndWwrite e
Lusers/bacryburd/Library/Java/JavaVirtualMachines/openidi-15.8.1/Contents/Hone/bin/java -javaagent:/Applications/Inte1lid IDEA CE.app/Con)
Exception in thread "main' java.io . Create breakpoint : rawbata.txt (No such file or directory)

©

at java.base/java.io.FileInputStream.open8(! b
at java.base/java.io.FileInputStream.open(11)
at java.base/java.io.FileInputStream.<init>(¥)

at java.base/java.util.Scanner.<init>(s v 9)
at ite.main(ndiirite. java:9)

There’s no quick, surefire way to fix this problem. But you should always check
the following things first:

¥ Check again for a file named rawData. txt.

Open Windows File Explorer or Macintosh Finder and poke around for a file
with that name.

The filenames displayed in File Explorer and Finder can be misleading. You
may see the name rawData, even though the file's real name is rawData. txt.
To fix this problem once and for all, refer to Chapter 2.

3 Check the spelling of the file’s name.

Make sure that the name in your program is exactly the same as the name of
the file on your hard drive. Just one misplaced letter can keep the computer
from finding a file.

390 PART 5 Smart Java Techniques

REMEMBER

»

»

If you use Linux (or a flavor of UNIX other than Mac OS X), check the
capitalization of the file’'s name.

In Linux, and in many versions of UNIX, the difference between uppercase and
lowercase can baffle the computer.

Ensure that the file is in the correct directory.

Sure, you have a file named rawData . txt. But don't expect your Java
program to look in every folder on your hard drive to find the file. How do you
know which folder should house files like rawData . txt?

Here's how it works: Chapter 12 says that each Intelli] project has its own root
folder on your computer’'s hard drive. In Figure 16-5, you see the 16-02
project’s root folder, the root folder's src subfolder, and some other stuff.
Look carefully, and notice that the rawData. txt and cookedData. txt files
are inside the 16-02 root folder. They're not inside the src subfolder, the out
subfolder, or any other subfolder. If this were a family tree, rawData. txt and
cookedData. txt would be children of ©6-02, not grandchildren.

When you run this section’s example, the rawData . txt file should be in the
root of the 16-02 project folder on your hard drive. That's why, in Step 1 of
the earlier “Creating an input file"” section, | remind you to select the 16-02
project folder and not the project's src subfolder.

Figure 16-5 shows input and output files in the root of their Intelli] IDEA project.
But in general, file locations can be tricky, especially if you switch from Intelli) to an
unfamiliar IDE. The general rule (about putting input and output files immediately
inside a project directory) may not apply in other programming environments.

Here's a trick you can use: Whatever IDE you use (or even if you create Java
programs without an IDE), run this stripped-down version of the code in
Listing 16-2:

import java.io.File;

import java.io.FileNotFoundException;
import java.io.PrintStream;

public class JustWrite {

public static void main(String[] args) throws FileNotFoundException {

var diskWriter = new PrintStream("cookedData.txt");
diskWriter.println(99.75);

diskWriter.close();

CHAPTER 16 Piles of Files: Dealing with Information Overload 301

This program has no need for a stinking rawData. txt file. If you run this code
and see no error messages, search your hard drive for this program’s output
(the cookedData . txt file). Note the name of the folder that contains the
cookedData . txt file. When you put rawData. txt in this same folder, any
problem you had running the Listing 16-2 code should go away.

¥ Check the rawData. txt file's content.

It never hurts to peek inside the rawData. txt file and make sure that the file
contains the numbers19.95 5. Double-clicking the Project tool window's
rawData. txt branch makes that file appear in Intelli)'s editor area.

By default, Java's Scanner class looks for blank spaces between input values.
So, this example’s rawData.. txt file should contain19.95 5, not19.955 and

not19.95,5.
REMEMBER

The Scanner class looks for any kind of white space between the values.
T These white space characters may include blank spaces, tabs, and end-of-line
6 markers. For example, the rawData. txt file may contain19.95 5 (with
TECHNICAL several blank spaces between 19.95 and 5), or it may have 19.95 and 5 on
STUFF two separate lines.

Writing a Disk-Oriented Program

Listing 16-2 is much like Listing 16-1. In fact, you can go from Listing 16-1 to
Listing 16-2 with some simple editing. Here’s how:

3 Add the following import declarations to the beginning of your code:

import java.io.File;
import java.io.FileNotFoundException;

import java.io.PrintStream;

3 Add the following throws clause to the method header:

throws FileNotFoundException

3 Inthe call tonew Scanner, replace System.in with a call tonew File as
follows:

var aVariableName = new Scanner(new File("inputfileName"))

In a declaration of this kind, you can always use the word Scanner instead of
var. In fact, if this declaration isn't inside of a method, you must use the word

Scanner instead of var. For details, refer to Chapter 13.
REMEMBER

392 PART5 Smart Java Techniques

¥ Create aPrintStream for writing output to a disk file:

var anotherVariableName = new PrintStream("outputFileName");

3 Use the Scanner variable name in calls to nextInt, nextLine, and so on.
For example, to go from Listing 16-1 to Listing 16-2, | change

unitPrice = keyboard.nextDouble();
quantity = keyboard.nextInt();

to

unitPrice = diskScanner.nextDouble();

quantity = diskScanner.nextInt();

¥ Use the PrintStream variable name in calls to print and println.
For example, to go from Listing 16-1 to Listing 16-2, | change

System.out.println(total);

to

diskWriter.println(total);

3 Use the Scanner variable name in the call to close.
For example, to go from Listing 16-1 to Listing 16-2, | change

keyboard.close();

to

diskScanner.close();

3 Use the PrintStream variable name in a call to close.
For example, to go from Listing 16-1 to Listing 16-2, | add

diskWriter.close();

at the end of the main method.

Reading from a file

All the Scanner methods can read from existing disk files. For example, to read a
word from a file named mySpeech, use code of the following kind:

var diskScanner = new Scanner(new File("mySpeech"));

String oneWord = diskScanner.next();

CHAPTER 16 Piles of Files: Dealing with Information Overload 303

394

To read a character from a file named letters.dat and then display the character
on the screen, you can do something like this:

var diskScanner = new Scanner(new File("letters.dat"));
System.out.println(diskScanner. findWithinHorizon(".", @).charAt(Q));

Notice how I read from a file named mySpeech, not mySpeech.txt or mySpeech.
06“ doc. Anything you put after the dot is called a filename extension, and for a file full
of numbers and other data, the filename extension is optional. Sure, a Java pro-

TecunicaL gram must be called something. java, but a data file can be named mySpeech. txt,

STUFF mySpeech.reallymine.allmine, or just mySpeech. As long as the name in your

new File call is the same as the filename on your computer’s hard drive, every-
thing is okay.

Writing to a file
The print and print1n methods can write to disk files. Here are some examples:
¥ During a run of the code in Listing 16-2, the variable total stores the number
99.75. To deposit 99.75 into the cookedData . txt file, you execute

diskWriter.println(total);

This print1n call writes to a disk file because of the following line in
Listing 16-2:

var diskWriter = new PrintStream("cookedData.txt");

¥ Inanother version of the program, you may decide not to use a total
variable. To write 99.75 to the cookedData. txt file, you can call

diskWriter.println(unitPrice * quantity);

¥ To display OK on the screen, you can make the following method call:

System.out.print("OK");

To write OK to a file named approval . txt, you can use the following code:

var diskWriter = new PrintStream("approval.txt");
diskWriter.print("OK")

¥ You may decide to write OK as two separate characters. To write to the screen,
you can make the following calls:

System.out.print('0');
System.out.print('K");

PART 5 Smart Java Techniques

»

And to write OK to the approval . txt file, you can use the following code:

var diskWriter = new PrintStream("approval.txt");

diskWriter.print('0');
diskWriter.print('K');

Like their counterparts for System. out, the disk writing print and println
methods differ in their end-of-line behaviors. Say you want to display the
following text on the screen:

Hankees Socks
7 3

To do this, you can make the following method calls:

System.out.print("Hankees ");
System.out.println("Socks");
System.out.print(7);
System.out.print(" ");
System.out.println(3);

To plant the same text into a file named scores . dat, you can use the
following code:

var diskWriter = new PrintStream("scores.dat");

diskWriter.print("Hankees ");
diskWriter.println("Socks");
diskWriter.print(7);
diskWriter.print(" ");
diskWriter.println(3);

NAME THAT FILE

What if a file that contains data isn’t in your program'’s project folder? If that's the case, when you call
new File, the file's name must include folder names. For example, in Windows, your TallyBudget.
java program might be in your ¢ : \Users\MyUserName \IdeaPro jects\16-09 folder, and a file
named totals might be in a folder named c: \advertisements. (See the following figure.)

(continued)

CHAPTER 16 Piles of Files: Dealing with Information Overload 3905

(continued)

396

= | advertisements - u] x
Home Share e (7]

This PC Local Disk (C:) advertisements

v [This PC

[Desktop
Documents
& Downloads
D Music annoyingSpam evilTelemarketing magatines newspapers radio
&= Pictures
B videos
v i Local Disk (C:)
advertisements

Algorithms skywriting sportingEvents television totals

AlgerithmsComputability

Then, to refer to the totals file, you include the folder name, the filename, and (to be
on the safe side) the drive letter:

var diskScanner = new Scanner(new File("c:\\advertisements\\totals"));

Notice that | use double backslashes to separate the drive letter, the folder name, and
the filename. To find out why, look at the material on escape sequences in Chapters 10
and 11. The string " \totals" with a single backslash stands for a tab, followed by
otals. But in this example, the file's name is totals, nototals. And with only one
backslash, "\advertisements" makes no sense. Intellij would flag \a as an illegal
escape character.

Inside quotation marks, you use the double backslash to indicate what would usually
be a single backslash. So the string "c: \\advertisements\\totals" stands for
c:\advertisements\totals. That's good because c: \advertisements\totals is
the way you normally refer to a file in Windows.

If you want to sidestep all this backslash confusion, you can use forward slashes to
specify each file's location. Windows responds exactly the same way to new
File("ec:\\advertisements\\totals") andtonew File("c:/advertisements/
totals"). And, if you use UNIX, Linux, or a Macintosh, the double backslash nonsense
doesn't apply to you. Just write

var diskScanner = new Scanner (new File("/Users/me/advertisements/totals"));

or something similar that reflects your system'’s directory structure.

PART 5 Smart Java Techniques

Writing, Rewriting, and Re-Rewriting

Given my mischievous ways, I tried a little experiment. I asked myself what would
happen if I ran the same file writing program more than once. So I created a tiny
program (the program in Listing 16-5), and I ran the program twice. Then I exam-
ined the program’s output file. The output file (shown in Figure 16-7) contains
only two letters.

m A Little Experiment

import java.io.File;
import java.io.FileNotFoundException;

import java.io.PrintStream;
public class WriteOK {
public static void main(String[] args) throws FileNotFoundException {
var diskWriter = new PrintStream(new File("approval.txt"));

diskWriter.print ('0');
diskWriter.println('K');

diskWriter.close();

= approval.txt

0K

FIGURE 16-7:
Testing the
waters.

Here’s the sequence of events, from the start to the end of the experiment:

1. Beforelrun the code in Listing 16-5, my computer’s hard drive has no
approval . txt file.

That's okay. Every experiment has to start somewhere.
2. Irunthe codein Listing 16-5.

The call tonew PrintStream in Listing 16-5 creates a file named approval .
txt. Initially, the new approval . txt file contains no characters. Later in

CHAPTER 16 Piles of Files: Dealing with Information Overload 397

Listing 16-5, calls to print and println put characters in the file. So, after | run
the code, the approval . txt file contains two letters: the letters OK.

3. Irun the code from Listing 16-5 a second time.

At this point, | could imagine seeing OKOK in the approval . txt file. But that's
not what | see in Figure 16-7. After running the code twice, the approval . txt
file contains just one OK. Here's why:

The call to new PrintStream in Listing 16-5 deletes my existing approval .
txt file. The call creates a new, empty approval . txt file.

After a new approval . txt file is created, the print method call drops the
letter O into the new file.

The print1ln method call adds the letter K to the same approval . txt file.

That’s the story. Each time you run the program, it trashes whatever approval .
txt file is already on the hard drive. Then the program adds data to a newly cre-
ated approval . txt file.

E ! File handling can be tricky. If you run into trouble early on, it’s easy to become
frustrated. Fortunately, these experiments will get you started on the right track.

TRY IT OUT

RUN BARRY’'S CODE

Test the waters by downloading the code from this book’s website (http://
beginprog.allmycode.com). The 16-02 folder comes with its own rawData.txt
file. Follow the instructions in this chapter’s “Running disk-oriented code”
section for running the code in Listing 16-2. After running the program, check
Intelli)’s Project tool window to make sure that the run has created a cookedData.
txt file.

WHERE'S MY FILE?
Create an IntelliJ project containing the following code:
import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

public class ReadAndWrite {

public static void main(String[] args) throws FileNotFoundException {

var diskScanner = new Scanner(new File("data.txt"));

398 PART 5 Smart Java Techniques

http://beginprog.allmycode.com/
http://beginprog.allmycode.com/

var diskWriter = new PrintStream("data.txt");
diskWriter.println("Hello");
System.out.println(diskScanner.next());

diskScanner.close();

diskWriter.close();

When you run the code, you see an error message in Intelli]’s Run tool win-
dow. Why?

WRITE AND THEN READ
Modify the code from the where’s-my-file experiment so that the var diskWriter

declaration comes before the var diskScanner declaration.

When you run the code, the word Hello should appear in Intelli]’s Run tool win-
dow. After running the code, check to make sure that your IntelliJ project contains
a file named data. txt.

RANDOM NUMBERS IN A FILE

Create a program that writes ten randomly generated numbers in a disk file. After
writing the numbers, the program reads the numbers from the file and displays
them in Intelli]’s Run tool window.

CHAPTER 16 Piles of Files: Dealing with Information Overload 399

IN THIS CHAPTER

» Dealing with many alternatives

» Jumping out from the middle of a
statement

» Handling alternative assignments

Chapter 17

How to Flick a Virtual
Switch

magine playing Let’s Make a Deal with ten different doors: “Choose door number
1, door number 2, door number 3, door number 4 — wait! Let’s break for a com-
mercial. When we come back, I’ll say the names of the other six doors.”

What Wayne Brady (the show’s host) needs is Java’s switch statement.

Meet the switch Statement

The code in Listing 9-2 (refer to Chapter 9) simulates a fortune-telling toy — an
electronic oracle. Ask the program a question and the program randomly generates
a yes-or-no answer. But, as toys go, the code in Listing 9-2 isn’t much fun. The
code has only two possible answers. There’s no variety. Even the earliest talking
dolls could say about ten different sentences.

Suppose that you want to enhance the code of Listing 9-2. The call to myRandom.
nextInt(10) + 1 generates numbers from 1 to 10. So maybe you can display a

CHAPTER 17 How to Flick a Virtual Switch 401

different sentence for each of the ten numbers. A big pile of i f statements should
do the trick:

if (randomNumber == 1) {
System.out.println("Yes. Isn't it obvious?");
}
if (randomNumber == 2) {
System.out.println("What part of 'no' don't you understand?");
}
if (randomNumber == 3) {
System.out.print("Yessir, yessir! Three bags full.");
}

if (randomNumber == 4)

if (randomNumber < 1 || randomNumber > 10) {

System.out.println("My random number generator is broken!");

But that approach seems wasteful. Why not create a statement that checks the
value of randomNumber just once and then takes an action based on the value it
finds? Fortunately, just such a statement exists: the switch statement. Listing 17-1
has an example of a switch statement.

m A Rude Answer for Every Occasion

import java.util.Random;

import java.util.Scanner;
import static java.lang.System.out;
public class TheOldSwitcheroo {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
var myRandom = new Random();
int randomNumber;

out.print("Type your question, my child: ");
keyboard.nextLine();
randomNumber = myRandom.nextInt(10) + 1;

switch (randomNumber) {
case 1 -> out.printin("Yes. Isn't it obvious?");

case 2 -> out.println("What part of 'no' don't you understand?");

402 PART5 SmartJava Techniques

FIGURE 17-1:
Running the code
from Listing 17-1.

case 3 -> out.println("Yessir, yessir! Three bags full.");
case 4, 5 —> out.println("No, and don't ask again.");
case 6 —> out.println("Sure, whatever.");
case T -> out.println("Yes, but only if you're nice to me.");
case 8 —> {

out.print("Yes (as if I care).");

out.println(" Next time, take your problem somewhere else.");
}
case 9 —> out.println("No, not until Cromwell seizes Dover.");
case 10 -> out.println("No, not until Nell squeezes Rover.");
default -> out.println("My random number generator is broken!");

out.println("Goodbye");

keyboard.close();

Figure 17-1 shows four runs of the program in Listing 17-1.

Type your question, my child: Is the Continuvum Hypothesis true?
What part of 'no' don't you understand?
Goodbye

Type your question, my child: Does P egual NP?
No, and don't ask again.

Goodbye

Type your question, my child: Does Turing machine T halt on input i?
Yes (as if I care). Next time, take your problem somewhere else.
Goodbye

Type your question, my child: Is "no" the correct answer to the guestion that I'm asking?

My random number generator is broken!
Goodbye

Anatomy of a switch statement

The overall idea behind the program in Listing 17-1 is illustrated in Figure 17-2.

CHAPTER 17 How to Flick a Virtual Switch 403

¢ Value of randomNumber ?

FIGURE 17-2:
A fork with many

404

prongs.

1 2 3 4 5 6 7 8 9 10 othe
~< < w =< =< =2 = =
B = g ! £ 2 8 E E &
— =3 @, z o = = =] =
EX E < S s g) S g g
~ 2 @] = by = c = o
g a o =3 El - =2 2 3
o =] = o @ < I = =
= = < [t} 3
=3 = - e =) = 3 Q = c
=, — =} = @ =3 [+
5 o E = ; s = El z E
S o @ H =8 =2 g 2 @
-~ o @ ~ = @ =
3 3 Y = < @
] <3 @ = @)
= @ « 2. = » @ S
S @ 2 2 3 e @ @
< — B pury o 5 @ =
5 = g 2 & e g
o y 3 =~ o 2 -
2 ® 8 g 8 z
2% = H o
E; | ‘ | 2 ‘ 8
S = =~
o . (1]
3 : l g
Goodbye

Here’s what happens during the first run in Figure 17-1:

»

»

»

»

The user types a heavy question, and the variable randomNumber gets a value.
In the first run of Figure 17-1, this value is 2.

Execution of the code in Listing 17-1 reaches the top of the switch statement,
so the computer starts checking this statement's case clauses. The value 1 in
the topmost case clause doesn’'t match the randomNumber value 2, so the
computer moves on to the next case clause.

The value in the next case clause (the number 2) matches the value of the
randomNumber variable, so the computer executes the statement

out.println("What part of 'no' don't you understand?");

in this case 2 clause. The computer displaysWhat part of 'no' don't
you understand? in Intelli's Run tool window. Then the computer skips right
pastcase 3,case 4, and so on. The computer jumps to the statement just
after the end of the switch statement.

The computer displays Goodbye because that's what the statement after the
switch statement tells the computer to do.

The second run in Figure 17-1 portrays a slightly different situation.

»
»

In that run, the value of randomNumber is either 4 or 5.

Execution of the code in Listing 17-1 reaches the top of the switch statement,
so the computer starts checking this statement's case clauses. The values in

PART 5 Smart Java Techniques

the topmost three case clauses don't match the randomNumber value, so the
computer moves on to the case 4, 5 clause.

¥ One of the valuesin the case 4, 5 clause matches the value of the random-
Number variable, so the computer executes the statementin thecase 4, 5
clause:

out.println("No, and don't ask again.");

Then the computer skips right past case 6, case 7, and so on. The computer
jumps to the statement just after the end of the switch statement.

3 The computer displays Goodbye because that's what the statement after the
switch statement tells the computer to do.

For the third run in Figure 17-1, the value of randomNumber is 8. Nothing exciting
happens during the run. But, in Listing 17-1, notice how curly braces surround the
case 8 clause’s statements. If a case clause contains more than one statement,
curly braces are mandatory.

To create the fourth run in Figure 17-1, I cheated. I added the line

randomNumber = 11;
immediately before the switch statement. The computer responded by dropping
past all the case clauses. Rather than land on a case clause, the computer jumped
to the default clause. In the default clause, the computer displayed My random
number generator is broken! and then moved out of the switch statement.

When the computer was out of the switch statement, the computer displayed
Goodbye.

Picky details about the switch statement

A switch statement can take the following form:
switch (Selector) {
case FirstValue —> Statements
case SecondValue -> MoreStatements

// ... more cases ...

default -> EvenMoreStatements

CHAPTER 17 How to Flick a Virtual Switch 405

Here are some tidbits about switch statements:

¥ The Selector doesn’t have to have an int value. It can also be a char, byte,
short, String, or enum value.

For example, the following code samples turn achar into aString and turn a
String into achar:

// char to String
char letterGrade = keyboard.findWithinHorizon(".", @).charAt(Q);

switch (letterGrade) {
case 'A' —> out.println("Excellent");
case 'B' -> out.println("Good");
case 'C' -> out.println("Average");
default -> out.println("Other");

// String to char
String description = keyboard.next();

switch (description) {
case "Excellent" -> out.println('A');
case "Good" -> out.println('B');
case "Average" -> out.println('C');
default -> out.println("Other");

}

| introduce enum types in Chapter 10 and describe the String class with
enthusiasm in Chapter 14.

ReoRoss 3 The Selector doesn’t have to be a single variable. It can have any value of
type char, byte, short, int, String, or enum.

For example, you can simulate the rolling of two dice with the following code:

int diel, die2;

diel = myRandom.nextInt(6) + 1;
die2 = myRandom.nextInt(6) + 1;

switch (diel + die2) {
// ... etc.

406 PART 5 Smart Java Techniques

»

»

»

The case clauses in a switch statement don’t have to be in order.
Here's some acceptable code:

switch (randomNumber) {
case 2 —> out.println("What part of 'no' don't you understand?");
case 1 —> out.println("Yes. Isn't it obvious?");
case 3 —> out.println("Yessir, yessir! Three bags full.");

// ... etc.

This mixing of case clauses may slow you down when you're trying to read
and understand a program, but it's legal, nonetheless.

You don’t need a case for each expected value of the Selector. You can
leave some expected values to the default.

Here's an example:

switch (randomNumber) {
case 1 —> out.println("Yes. Isn't it obvious?");
case 4, 5 —> out.println("No, and don't ask again.");
case 10 -> out.println("No, not until Nell squeezes Rover.");
default -> out.println("Sorry, I just can't decide.");

}
The default clause is optional.

If you have no default clause and a value that's not covered by any of the
cases comes up, the switch statement does nothing. The computer marches
on and executes whatever statement comes immediately after the switch
statement.

What happens if you make one tiny change to the code in Listing 17-1? You
remove the switch statement's default clause. The answer is that nothing
happens. The value of myRandom.nextInt(1@) + 1 is always a number from
1to 10. The program runs correctly, and all's right with the world. So, why
bother with adefault clause in the first place? The computer will never
execute the switch statement's default clause. Right?

No, that's not right. Most real-life programming problems are quite compli-
cated. Determining that variables have the values you expect is never simple.
What if another programmer on your team changes the way randomNumber
gets its value? When you anticipate the things that can go wrong with your
code, you build a more secure line of defense. It's always best to guard against
possible problems — problems that you know can occur and problems that
you think will never occur. Put a default clause in each of your switch
statements.

CHAPTER 17 How to Flick a Virtual Switch 407

408

TRY IT OUT

3 In some situations, i f statements are more versatile than switch
statements.

For example, you can't use a condition in a switch statement's Selector:

//You can't do this:
switch (age >= 12 && age < 65)

You can't use a condition as a case value, either:

//You can't do this:
switch (age) {

case age <= 12 -> // ... etc.

Here’s where you gain some practice using switch statements.

DAYS OF THE WEEK

Write a program that reads a number (from 1 to 7) and displays the day of the week
corresponding to that number. For example, in the United States, Sunday is
counted as the first day of the week. So, if the user types 1, my program displays
Sunday. If the user types 2, my program displays Monday. And so on.

TIME TO EAT

Write a program that asks the user what the current hour is, and uses a switch
statement to inform the user about mealtime. If the hour is between 06:00 and
09:00, tell the user, “Breakfast is served.” If the hour is between 11:00 and 13:00,
tell the user, “Time for lunch.” If the hour is between 17:00 and 20:00, tell the
user, “It’s dinnertime.” For any other hours, tell the user, “Sorry. You’ll have to
wait or go find a snack.”

TIME TO EAT IN THE UNITED STATES

Redo this section’s Time To Eat program so that it works with a 12-hour clock.
From 6 a.m. to 9 a.m., it’s time for breakfast. From 11 a.m. to 1 p.m., lunch is avail-
able. And from 5 p.m. to 8 p.m., you can chow down on dinner.

ATINY CALCULATOR

Write a program that prompts the user for two numbers and a character. In a
switch statement, the program applies the character’s operation to the two num-
bers and displays the result. A run of the program might look like this:

PART 5 Smart Java Techniques

First number: 21.0

Second number: 8.0
Operation (+ - x or /): +
29.0

The program accepts any one of the characters +, -, x, or /. For an additional chal-
lenge, enhance the program’s output as follows:

First number: 31.0
Second number: 10.0
Operation (+ — x or /): %
31.0 x 10.0 = 310.0

Remember that you can’t use Java’s + sign to display a char value next to a numeric
value. If you execute System.out.println(5 + ' ' + 'x'),Java doesn’t display
5 x. Instead, Java displays 79. (If you don’t believe me, try it in JShell.)

COLOR BY NUMBERS

In the RGB color model, numeric values indicate amounts of red, green, and blue.
If you mix red, green, and blue to show only eight colors, 0 is black, 1 is blue, 2 is
green, 3 is cyan, 4 is red, 5 is magenta, 6 is yellow, and 7 is white. Write a program
that reads a number from the keyboard and displays the name of that number’s
color.

A Switch in Time

In 2020, with the release of Java 14, the Java world “switched gears” (pun
intended). The stewards of Java introduced a brand-new feature — namely, the
switch expression. Here’s the story:

If you look again at Listing 17-1, you wonder why someone took so much delight
in typing the words out.println. Those words appear ten times in the switch
statement, and the only difference is the choice of a snappy retort. This repeated
use of out .println seems wasteful. Why not have only one call to out.println
for all the different answers the program can display?

Java’s switch expression addresses this issue. Listing 17-2 shows you how.

CHAPTER 17 How to Flick a Virtual Switch 409

IEITRIZA out with the Old out.printin!

import java.util.Random;

410

import java.util.Scanner;

import static java.lang.System.out;

public class TheNewSwitcheroo {

public static void main(String[] args) {

var keyboard = new Scanner(System.in);

var myRandom

new Random();

int randomNumber ;

String output;

out.print("What's your question, my child? ");

keyboard.nextLine();

randomNumber = myRandom.nextInt(10) + 1;

output =
case
case
case
case
case
case
case

case
case

switch (randomNumber) {

1 -
2 -
3 -
4, 5
6 —>
T =
8 —>

"Yes. Isn't it obvious?"

"What part of 'no' don't you understand?";
"Yessir, yessir! Three bags full.";

—-> "No, and don't ask again.";

"Sure, whatever.";

"Yes, but only if you're nice to me.";

Yes (as if I care).

Next time, take your problem somewhere else.

9 -

RINTIN
’

"No, not until Cromwell seizes Dover.";

10 —> "No, not until Nell squeezes Rover.";

default -> "My random number generator is broken!";

b

out.println(output);

keyboard.close();

& If you’re using an older version of Java, don’t bother trying to run the code in

Listing 17-2. It won’t work.

WARNING

Runs of the code in Listing 17-2 look exactly the same as the runs of Listing 17-1.
(See Figure 17-1.) The big change is that Listing 17-2 consolidates most of
the out.println calls. The change saves lots of typing. But, more importantly,
Listing 17-2 is conceptually tighter than Listing 17-1. Needless repetition leads to

errors, so Listing 17-2 is more likely to run correctly.

PART 5 Smart Java Techniques

Dissecting the switch expression

In any computer language, the word expression refers to a bunch of code that
stands for a value. In Listing 17-2, the entire switch expression stands for a string
of characters. For example, when randomNumber is 2, the code

switch (randomNumber) {
case 1 —> "Yes. Isn't it obvious?";
case 2 —> "What part of 'no' don't you understand?";
// ...

default -> "My random number generator is broken!";

IF

stands for the string "What part of 'no' don't you understand?" So, in that
scenario, Listing 17-2 does the same thing as this code:

output = "What part of 'no' don't you understand?";

out.println(output);

In this small snippet of code, notice how the first line ends with a semicolon.
That’s why there’s a semicolon at the end of the big switch expression in
Listing 17-2.

Can you switch between two kinds of
switch?

Java’s switch expression looks a lot like Java’s switch statement, but with a few
important differences:

¥ Inaswitch expression, each case clause must have a value.
For example, the following code is illegal:

// Bad code!

output = switch (randomNumber) {
case 1 —> out.println("Yes. Isn't it obvious?");
case 2 —> "What part of 'no' don't you understand?";

// Etc

The textout.println("Yes. Isn't it obvious?") can tell the computer
to display something, but that text doesn't stand for a value of any kind. In the
same way, Java won't accept the following assignment statement:

// Bad code!

output = out.println("Yes. Isn't it obvious?");

CHAPTER 17 How to Flick a Virtual Switch 411

412

CROSS
REFERENCE

TIP

»

»

Despite appearances, out.println("Yes. Isn't it obvious?") doesn't
stand for the string "Yes. Isn't it obvious?".Theout.println call and
the "Yes. .. " string aren't interchangeable. It's the same way in English. An
instruction to “Say cheese” isn't the same as saying only the word cheese. If it
were, some photos would capture large groups of people with their mouths in
the shape of the word Say.

| can show you ways to squeeze out . println calls and other such things into
switch expressions. For more info, see the next section.

A switch statement can stand on its own, but a switch expression can't.

In an effort to make Listing 17-2 look more like Listing 17-1, try changing
the line

output = switch (randomNumber) {

by removing the output = part. When you do, Intelli] displays a bunch of
squiggly, red lines to tell you that your code is damaged goods. The problem
is, a switch expression on its own doesn't tell the computer to do anything.
Imagine having the following lines in a Java program:

// Bad code!
"Yes. Isn't it obvious?";
out.println(output);

It's like asking someone how to bake a cake and having them reply with
nothing but the ingredients.

There are many ways to keep a switch expression from standing on its own.
For example, in Listing 17-2, you can bypass the use of the output variable
with code of the following kind:

out.println(switch (randomNumber) {
case 1 —> "Yes. Isn't it obvious?";
case 2 —> "What part of 'no' don't you understand?";
// ... Etc.
default —> "My random number generator is broken!";

};
In most situations, a switch expression’s default clause isn’t optional.

Go ahead: | dare you to remove the default clause from the code in
Listing 17-2! In fact, | double-dare you, which means that | have to try it, too.

In the end, neither of us is happy. A switch expression must account for
every possible Selector value, even the values you think are impossible. The
switch expression in Listing 17-2 must have a default clause justin case
randomNumber is 11 or -17 or 2147483647. That's the rule.

PART 5 Smart Java Techniques

S
S5
TECHNICAL
STUFF

&

TRY IT OUT

The one exception to the rule about having a default clause is when the
Selector is an enum value. For example, the following code is okay:

enum WhoWins {home, visitor, neither}

WhoWins who;
// After getting a value for the who variable . ..

output = switch(who) {
case home —> "Hankees wins.";
case visitor -> "Socks wins.";
case neither -> "It's a tie.";

i

Redo the examples named Days of the Week and Time to Eat from the previous Try
It Out section. This time, use switch expressions.

TAKE A FLYING LEAP

Every four years, my wife and I celebrate our wedding anniversary. We were mar-
ried many years ago on February 29. In honor of that occasion, I present another
switch statement example. This example reports the number of days in any par-
ticular month of the year.

The example comes in two forms — one with a switch statement and the other
with a switch expression. Listing 17-3 has the switch statement.

Thirty Days Hath September

import java.util.Scanner;
import static java.lang.System.out;
public class StateYourTerms {
public static void main(String[] args) {

var keyboard = new Scanner(System.in);
String month;

int numberOfDays = O;

boolean islLeapYear;

out.print("Which month? ");
month = keyboard.next();

switch (month) {

case "January", "March", "May", "July", .
(continued)

CHAPTER 17 How to Flick a Virtual Switch 413

ICEITETE (continued)
"August", "October", "December" -> numberOfDays = 31;

case "April", "June", "September", "November" -> numberOfDays = 30;
case "February" -> {
out.print("Leap year (true/false)? ");
isLeapYear = keyboard.nextBoolean();
if (isLeapYear) {
numberOfDays = 29;
} else {

numberOfDays = 28;

out.print(numberOfDays);
out.println(" days");

keyboard.close();

Figure 17-3 shows four runs of the code in Listing 17-3.

Which month? December
31 days

Which month? February
Leap year (true/false)? true
29 days

Which month? February
Leap year (true/false)? false
28 days

FIGURE 17-3: Which month? Intercalaris
What the heck is

Intercalaris? 9 days

The "February" clause in Listing 17-3 has a life of its own. In Chapter 10, I nest i f
statements within other i f statements. But in this "February" clause, Inestanif
statement within a switch statement. That’s cool.

Maybe the switch statement in Listing 17-3 doesn’t make you giddy with glee. In
that case, you can check out the switch expression in Listing 17-4. The code in

414 PART 5 Smart Java Techniques

Listing 17-4 has exactly the same behavior as the program in Listing 17-3. You can
see some runs earlier, in Figure 17-3.

B EV2ZE8S From Statements Come Values

import java.util.Scanner;

import static java.lang.System.out;

public class ExpressYourFeelings {

public static void main(String[] args) {

var keyboard = new Scanner(System.in);
String month;

int numberOfDays = O;

boolean islLeapYear;

out.print("Which month? ");
month = keyboard.next();

out.println(switch (month) {
case "January", "March", "May", "July",
"August", "October", "December" -»> 31;
case "April", "June", "September", "November" -> 30;
case "February" -> {
out.print("Leap year (true/false)? ");
isLeapYear = keyboard.nextBoolean();
if (isLeapYear) {
yield 29;
} else {
yield 28;

}
default -> ©;

} + " days");

keyboard.close();

Here’s a quote from a wise old man:

"In a switch expression, each case clause must have a value.”

The old man forgot to add that a switch expression’s case clause may include
statements that have no values. For example, in Listing 17-4, the line out.

CHAPTER 17 How to Flick a Virtual Switch 415

print("Leap year (true/false)? ") hasno value. How do you mixout.println
calls and numeric values (29 or 28) in a single case clause?

The answer is, you use ayield statement. A yield statement tells Java to end the
execution of any statements in the current case clause. In addition, the yield
statement assigns a value (such as 29 or 28) to the entire case clause. When all is
said and done, the value of the entire switch expression becomes either 29 or 28,
and Java adds that value to the " days" string. It’s as if the code for February 2022
looked like this:

switch (month) {
case "February" -> 28;
} + " days"

Java’s newest switch facilities are quite versatile. But Java existed for 24 years
without having these fancy switch features. For years to come, many program-
mers will continue to use the old form of the switch statement, so the next sec-
tion covers that older form.

Redo the examples named Days of the Week in the United States and A Tiny Cal-
culator from the previous Try It Out section. This time, use switch expressions

with yield statements.
TRY IT OUT

Your Grandparents’ switch Statement

In versions of Java before Java 14, the code in Listings 17-1 through 17-4 would
have failed. That’s because Java’s switch statement came originally from the
switch statement in the C/C++ language family, and the C/C++ switch statement
was quite clunky. The code in Listing 17-5 does the same thing as the code in
Listings 17-1 and 17-2, but the Listing 17-5 code works in all versions of Java —
old and new.

m A la recherche du temps perdu

import java.util.Random;

import java.util.Scanner;
import static java.lang.System.out;

public class TheVeryOldSwitcheroo {

416 PART 5 Smart Java Techniques

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
var myRandom = new Random();
int randomNumber;

out.print("Type your question, my child: ");
keyboard.nextLine();
randomNumber = myRandom.nextInt(10) + 1;

switch (randomNumber) {

case 1:
out.println("Yes. Isn't it obvious?");
break;

case 2:
out.println("What part of 'no' don't you understand?");
break;

case 3:
out.println("Yessir, yessir! Three bags full.");
break;

case 4:

case 5:
out.println("No, and don't ask again.");
break;

case 6:
out.println("Sure, whatever.");
break;

case T:
out.println("Yes, but only if you're nice to me.");
break;

case 8:
out.print("Yes (as if I care).");

~

out.println(" Next time, take your problem somewhere else.
break;
case 9:
out.println("No, not until Cromwell seizes Dover.");
break;
case 10:
out.println("No, not until Nell squeezes Rover.");
break;
default:
out.println("My random number generator is broken!");

out.println("Goodbye");

keyboard.close();

CHAPTER 17 How to Flick a Virtual Switch 417

FIGURE 17-4:
Follow the
bouncing ball.

When you run the code in Listing 17-5, you see the same old stuff — the output in
Figure 17-1. But compare Listing 17-5 with Listings 17-1 and 17-2. This new
Listing 17-5 has much more baggage. To get the same results with randomNumber
values 4 and 5, you have to write

case 4:
case 5:
out.println("No, and don't ask again.");

break;

The reason for this is a feature called fall-through. With this older form of the
switch statement, execution falls through case after case until it encounters a
break statement. For example, when randomNumber is 4, the computer follows the
path shown in Figure 17-4.

case 3:
out.println("Yessir, yessir! Three bags full.");

break;
case 4:

<y case 5:

<::Z§i§zfifout.println("No, and don't ask again.");
break;

case 6:
out.println("Sure, whatever.");
break;

case 10:
out.println("No, not until Nell squeezes Rover.");
break;

default:
out.println("My random number generator is broken!");

}

out.println ("Goodbye") ;

The break statement tells the computer, “Go directly to whatever statement
comes after the end of the switch statement. Do not pass default. Do not print My
random number generator is broken!”

You have to know about this older form of the switch statement because you find
it in so many Java programs, but I don’t recommend writing new code this way.
Besides being horribly verbose, the use of break statements is an endless source
of errors.

418 PART 5 Smart Java Techniques

Even experienced Java programmers occasionally forget to include break state-
ments. While I was preparing Listing 17-5 for inclusion in this book, I accidentally
omitted the break statement in case 10. Figure 17-5 shows you a run of the buggy
code.

|5it1;gigzi;;;2 Type your question, my child: Do foul-mouthed ondroids dreom of electric (bleep)?
unexpected No, not until Nell squeezes Rover.
number? Please My random number generator is broken!
make up your Goodbye
mind.

The worst part about break statements is that they’re easy to miss. When you
omit a break statement, Intelli] doesn’t complain. You get no squiggly, red lines,
no honking horns, no wagging fingers. The code runs just fine until you stumble
on a case clause that’s missing its break statement. If you blink and don’t catch
the error, that error stays in your code.

If you use the older form of Java’s switch statement, add break statements wher-
ever you don’t want fall-through to occur.
REMEMBER . qe .
For the sake of overall tidiness, some programmers end their old switch state-
ments with break statements. For example, they’d end the switch statement in
Listing 17-5 like this:
TIP
default:
out.println("My random number generator is broken!");

break;

If it makes you feel better, you can do it too.
I%I Get some practice using Ye Olde Java switch statement.

TRY IT OUT

DON'T DO THIS AT HOME (OR ANYWHERE ELSE)

What’s wrong with the following code, and how can you fix it?

switch (amount) {
case 1:

System.out.println("US cent");
case 5:

System.out.println("US nickel");

case 10:

CHAPTER 17 How to Flick a Virtual Switch 419

Using a

System.out.println("US dime");
case 25:

System.out.println("US quarter");
case 50:

System.out.println("US half dollar");
case 100:

System.out.println("US dollar");
default:

System.out.println("Not a US coin");

ROUGHING IT

Rewrite Listing 17-3 so that it runs with an older version of Java — Java 11, for
example.

Conditional Operator

Having read this chapter’s description of the switch expression, you may ask,
“Does Java have an if expression?” And the answer (whether you asked the ques-
tion or not) is yes. But Java doesn’t call it an if expression. Java calls it a conditional
operator. The conditional operator works in every version of Java — old and new.

Listing 17-6 contains a tiny guessing game program, and Figure 17-6 shows two
runs of the program.

One Good Ternary Deserves Another

import java.util.Random;
import java.util.Scanner;

public class GuessingGame {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
var myRandom = new Random();
int randomNumber;
int guess;
String reply;

randomNumber = myRandom.nextInt(10) + 1;

420 PART 5 SmartJava Techniques

FIGURE 17-6:
Everyone's a
winner (almost).

System.out.print("Guess a number from 1 to 10: ");
guess = keyboard.nextInt();

reply = (guess == randomNumber) ? "You win!" : "You lose.";
System.out.printin(reply);

keyboard.close();

Guess a number from 1 to 10: 7
You win!

Guess a number from 1 to 10: 5

You lose.

}

Taken as a whole, (guess == randomNumber) ? "You win!" : "You lose." is
an expression with a value. And what value does this expression have? Well, the
value of (guess == randomNumber) ? "You win!" : "You lose." is either "You
win!" or "You lose." It depends on whether guess == randomNumber is or isn’t
true.

That’s how the conditional operator works:

¥ If the stuff before the question mark is true, the whole expression's value is
whatever comes between the question mark and the colon.

¥ If the stuff before the question mark is false, the whole expression’s value is
whatever comes after the colon.

In Listing 17- 6, the conditional operator’s overall effect is as though the computer
is executing

reply = "You win!";
or

reply = "You lose.";

CHAPTER 17 How to Flick a Virtual Switch 421

&

TRY IT OUT

FIGURE 17-7:
Have you ever
seen an
expression
talking to itself?

To reinforce these ideas, Figure 17-7 provides a rare glimpse into the mind of a
conditional operator as it figures out what its value is.

Get some practice using Java’s conditional operator.

DRESSED TO THE NINES

Listing 17-6 borrows an idea from one of the Try It Out programs in Chapter 9.
Rewrite some of the chapter’s other Try It Out programs using conditional
operators:

¥ Ask the user if they want to see a smiley face. Display : -) if the user replies Y;
display : -(otherwise.

¥ Read a number of meters from the keyboard. Then read a letter (either ¢ orm)
from the keyboard. If the letter is ¢, convert meters to centimeters and display
the result. If the letter is m, convert meters to millimeters and display the
result. (Assume that the user always types either the letter c or the letter m.)

¥ Read a number of meters from the keyboard. Then read a letter from the
keyboard. If the letter is ¢, convert meters to centimeters and display the
result. If the letter is m, convert meters to millimeters and display the result.
For any other letters, display the original number of meters.

randomNumber is 7
guessis?’

If it's true, my
value is the stuff
between the
question mark
and the colon.

Qo @)

Is this stuff before
the question mark
true or false?

If it's false, my
value is the stuff
after the colon.

(o] % g)
reply = (guess == randomNumber) ? "You win!" : "You lose.";
L !]
°o
L -E@ -]
©

... so my value is the stuff
between the question

reply = "You win!"; mark and the colon.

422 PART 5 Smart Java Techniques

IN THIS CHAPTER

» Analyzing loop strategies

» Diagnosing loop problems

» Creating nested loops

Chapter 18

Creating Loops within
Loops

f you’re an editor at Wiley Publishing, please don’t read the next few para-
graphs. In the next few paragraphs, I give away an important trade secret
(something you really don’t want me to do).

I’m about to describe a surefire process for writing a best-selling For Dummies
book. Here’s the process:

Write several words to create a sentence. Do this several times to create a
paragraph:

Repeat the following to form a paragraph:
Repeat the following to form a sentence:

Write a word.

Repeat these instructions several times to make a section. Make several sections
and then make several chapters:

Repeat the following to form a best-selling book in the For Dummies series:
Repeat the following to form a chapter:
Repeat the following to form a section:

Repeat the following to form a paragraph:

CHAPTER 18 423

Repeat the following to form a sentence:

Write a word.

This process involves a loop within a loop within a loop within a loop within a
loop. It’s like a verbal M.C. Escher print. Is it useful, or is it frivolous?

Well, in the world of computer programming, this kind of thing happens all the
time. Most five-layered loops are hidden behind method calls, but two-layered
loops within loops are everyday occurrences. So this chapter tells you how to com-
pose a loop within a loop. It’s very useful stuff.

By the way, if you’re a Wiley editor, you can start reading again from this point
onward.

Paying Your Old Code a Little Visit

424

The program in Listing 11-5 (over in Chapter 11) extracts a username from an
email address. For example, the program reads

John@BurdBrain.com
from the keyboard and then writes
John

to the screen. Let me tell you, in this book I have some pretty lame excuses for
writing programs, but this simple email example tops the list! Why would you
want to type something on the keyboard, only to have the computer display part
of what you typed? There must be a better use for code of this kind.

Sure enough, there is. The BurdBrain.com email system administrator has a list of
10,000 employees’ email addresses. More precisely, the administrator’s hard drive
has a file named email.txt. This file contains 10,000 email addresses, with a
single address on each line, as shown in Figure 18-1.

The company’s email software has an interesting feature. To send email within
the company, you don’t need to type an entire email address. For example, to send
email to John, you can type the username John instead of John@BurdBrain.com.
(This @BurdBrain.com part is called the hostname.)

The company’s email administrator wants to distill the content of the email.txt
file. She wants a new file, usernames . txt, that contains usernames with no host-
names, as shown in Figure 18-2.

PART 5 Smart Java Techniques

mailto:John@BurdBrain.com
mailto:John@BurdBrain.com

FIGURE 18-1:
A list of email
addresses.

FIGURE 18-2:
Usernames
extracted from
the list of email
addresses.

= email.txt

John@BurdBrain.com
Susan@BurdBrain.com
Horace@BurdBrain.com
Tom@BurdBrain.com
Margaret@BurdBrain.com
Darlene@BurdBrain.com
Dan@BurdBrain.com
James@BurdBrain.com

= usernames.txt

John
Susan
Horace
Tom
Margaret
Darlene
Dan
James

Reworking some existing code

To solve the administrator’s problem, you need to modify the code in Listing 11-5.
The new version gets an email address from a disk file and writes a username to
another disk file. The new version is in Listing 18-1.

From One File to Another

import
import
import
import

public

java.
java.
Jjava.
Jjava.

io.File;
io.FileNotFoundException;
io.PrintStream;
util.Scanner;

class ListOneUsername {

public static void main(String[] args) throws FileNotFoundException {

var diskScanner = new Scanner(new File("email.txt"));

var diskWriter = new PrintStream("usernames.txt");

char symbol;

(continued)

CHAPTER 18 Creating Loops within Loops 425

IR (concinue)

symbol = diskScanner.findWithinHorizon(".", @).charAt(Q);
while (symbol != '@') {

diskWriter.print(symbol);

symbol = diskScanner.findWithinHorizon(".", @).charAt(Q);

}
diskWriter.println();

diskScanner.close();
diskWriter.close();

Listing 18-1 does almost the same thing as its forerunner in Listing 11-5. The only
difference is that the code in Listing 18-1 doesn’t interact with the user. Instead,
the code in Listing 18-1 interacts with disk files.

Running your code

Here’s how you run the code in Listing 18-1:

1. create afile named email.txt in your Intelli) project directory.

Intheemail . txt file, put just one email address. Any address will do, as long
as the address contains an at-sign (@).

2. PutthelistOneUsername. Jjava file (the code from Listing 18-1) in your
project’s src directory.

3. Runthe codein Listing 18-1.

When you run the code, you see nothing interesting in the Run tool window.
What a pity!

4. View the contents of the usernames. txt file.

If your email . txt file contains John@BurdBrain.com, the usernames.txt file
contains John.

For more details on any of these steps, refer to Chapter 16.

426 PART 5 Smart Java Techniques

mailto:John@BurdBrain.com

Nested Development

The previous section describes an email system administrator’s problem —
creating a file filled with usernames from a file filled with email addresses. The
code in Listing 18-1 solves part of the problem — it extracts just one email address.
That’s a good start, but to get just one username, you don’t need a computer
program. A pencil and some paper do the trick.

Don’t keep the email administrator waiting any longer. In this section, you develop
a program that processes dozens, hundreds, and even thousands of email
addresses from a file on your hard drive.

First, you need a strategy to create the program. Take the statements in
Listing 18-1 and run them over and over again. Better yet, have the statements run
themselves over and over again. Fortunately, you already know how to do
something over and over again: You use a loop. (See Chapter 11 for the basics on
loops.)

Here’s the strategy: Take the statements in Listing 18-1 and enclose them in a
larger loop:

while (not at the end of the email.txt file) {

Execute the statements in Listing 18-1

Looking back at the code in Listing 18-1, you see that the statements in that code
have a while loop of their own. So this strategy involves putting one loop inside
another loop:

while (not at the end of the email.txt file) {
//Blah-blah

while (symbol != '@') {
//Blah-blah-blah

//Blah-blah-blah-blah

Because one loop is inside the other, they’re called nested loops. The old loop (the
symbol != '@' loop) is the inner loop. The new loop (the end-of-file loop) is called
the outer loop.

CHAPTER 18 Creating Loops within Loops 427

Checking for the end of a file

Now all you need is a way to test the loop’s condition. How do you know when
you're at the end of the email.txt file?

The answer comes from Java’s Scanner class. This class’s hasNext method
answers true or false to the following question:

Does theemail . txt file have anything to read in it (beyond what you've already
read)?

If the program’s findWithinHorizon calls haven’t gobbled up all the characters in
the email.txt file, the value of diskScanner.hasNext() is true. So, to keep
looping while you’re not at the end of the email . txt file, you do the following:

while (diskScanner.hasNext()) {

Execute the statements in Listing 18-1

The first realization of this strategy is in Listing 18-2.

m The Mechanical Combining of Two Loops

/%
* This code does NOT work (but you learn from your mistakes).
*/

import java.io.File;

import java.io.FileNotFoundException;
import java.io.PrintStream;

import java.util.Scanner;

public class ListAllUsernames {
public static void main(String[] args) throws FileNotFoundException {
var diskScanner = new Scanner(new File("email.txt"));
var diskWriter = new PrintStream("usernames.txt");

char symbol;

while (diskScanner.hasNext()) {

symbol = diskScanner.findWithinHorizon(".", @).charAt(Q);
while (symbol != '@') {

diskWriter.print(symbol);

symbol = diskScanner.findWithinHorizon(".", @).charAt(Q);
}

428 PART 5 Smart Java Techniques

FIGURE 18-3:
You goofed.

FIGURE 18-4:
Role-playing the
code in

Listing 18-2.

diskWriter.println();

diskScanner.close();
diskWriter.close();

When you run the code in Listing 18-2, you get the disappointing response shown

in Figure 18-3.

Run: ListAllUsernames

dl « =

le

fUsers/barryburd/Libracy/Java/JavaVirtualMachines/openjdk-1
Exception in thread "main" java.lang.! a X C
at ListAllUsernanmes. maln(Ll_stB_LLUS_chlaﬂes_.Jaj.f_a_._ZS)

Process finished with exit code 1

How it feels to be a computer

What’s wrong with the code in Listing 18-2? To find out, I role-play the computer.
“If I were a computer, what would I do when I execute the code in Listing 18-2?”

The first several things that I’d do are pictured in Figure 18-4. I would read the J
in John, and then write the J in John, and then read the letter o (also in John).

After a few trips through the inner loop, I’d get the @ sign in John@BurdBrain.

com, as shown in Figure 18-5.

John@BurdBrain.com
Susanld ...Etc.

John@BurdBrain.com
Susanll ...Etc.

Enter the outer loop

Get the J
while (not end of file) {

symbol = next character /— Enter the inner loop
hil 14 t B-=1 N
while (sywbol is no sign) | Write the o

Write symbol to usernames.txt

synbol = next character —— Get the o
}

Start a new line of usernames.txt

CHAPTER 18 Creating Loops within Loops

mailto:John@BurdBrain.com
mailto:John@BurdBrain.com

Start another iteration
of the inner loop

while (not end of file) {

John@BurdBrain.com < ol — next character

Susanl ...Etc. hil 13 t B-si
while (symbol is no sign) { Write the o

Write symbol to usernames.txt

John@BurdBrain.com symbol = next character ————| et the o

FIGURE 18-5: Susanll ...Etc. +

Start a new line of usernames.txt

Reaching the end 4
of the username.

Finding this @ sign would jump me out of the inner loop and back to the top of the
outer loop, as shown in Figure 18-6.

while (not end of file) {

symlbol = next character /_‘ Leave the inner laop
while (symbol is not B-sign) |

John@BurdBrain.com Write symbol to usernames.txt
Susan@d ...Ftc. synbol = next character

i

Start a new line of usernames.txt
}
FIGURE 18-6: _
Leaving the inner \

loop.

Go back to the top of the outer loop

I'd get the B in BurdBrain and sail back into the inner loop. But then (horror of
horrors!) I’d write that B to the usernames. txt file. (See Figure 18-7.)

| Start another iteration of the outer loop ‘

l while (not end of file) { Get the B
John@BurdBrain.com svmbol = next character / Enter the inner loop

Susanl ...Etc. while (symbol is not @-sign) {
f Write the B ®

Write symbol to usernames.txt
syubol = next character

}

FIGURE 18-7:
Start a new line of usernames.txt

The error of my !
ways.

There’s the error! You don’t want to write hostnames to the usernames. txt file.
When the computer found the @ sign, it should have skipped past the rest of
John’s email address.

430 PART5 Smart Java Techniques

FIGURE 18-8:
The journey’s
last leg.

o

T
TECHNICAL

STUFF

At this point, you have a choice: You can jump straight to the corrected code in
Listing 18-3 (a couple of sections from here), or you can read on to find out about
the error message in Figure 18-3.

Why the computer accidentally pushes past
the end of the file

Ah! You’re wondering why Figure 18-3 has that nasty error message.

I role-play the computer to help me figure out what’s going wrong. Imagine that
I've already role-played the steps in Figure 18-7. I shouldn’t process the first let-
ter B (let alone the entire BurdBrain.com hostname) with the inner loop. But,
unfortunately, I do.

I keep running and processing more email addresses. When I get to the end of the
last email address, I grab the m in BurdBrain.com and go back to test for an @
sign, as shown in Figure 18-8.

while (not end of file) {
@BurdBral§.com symbol = next character

James@BurdBraln.co? while (symbol is not @-sign) {
Write symbol to usernames.txt
symbol = next character

}

Start a new line of usernames.txt

Go back to the top of the inner loop |

Now I’'m in trouble. This last m certainly isn’t an @ sign. So I jump into the inner
loop and try to get yet another character. (See Figure 18-9.) The email.txt file
has no more characters, so Java sends an error message to the computer screen.
(Refer to the NullPointerException error message in Figure 18-3.)

Here’s why I get aNullPointerException: The email.txt file has no more char-
acters, so the call to findWithinHorizon(".", @) comes up empty. (There’s
nothing to find.) In Java, a more precise way of describing that emptiness is with
the word null. The call findWithinHorizon(".", @) is null, so pointing to a
character that was found (charAt(@)) is a fruitless endeavor. Thus, Java displays
aNullPointerException message.

CHAPTER 18 Creating Loops within Loops 431

Start another iteration
of the inner loop

while (not end of file) {

@Burdbrain.com

; symlbol = next character
James@BurdBrain. com

hil 14 t B-s1 {
while (symbol is no sigm) Write the m

Write symbol to usernames.txt
symbol = next character
i

Start a new line of usernames.txt

FIGURE 18-9: }
Trying to read
past the end of ®‘ There's no “next character" to get!
the file.

Loop therapy

Listing 18-3 has the solution to the problem described with Figures 18-1 and 18-2.
The code in this listing is almost identical to the code in Listing 18-2. The only
difference is the added call to nextLine. When the computer reaches an @ sign,
this nextLine call swallows the rest of the input line without actually tasting it.
(The nextLine call gets the rest of the email address but doesn’t output that part
of the email address. The idea works because each email address is on its own,
separate line.) After gulping down @BurdBrain.com, the computer moves grace-
fully to the next line of input.

m That's Much Better!

/%
*x This code is correct!!
*/

import java.io.File;

import java.io.FileNotFoundException;
import java.io.PrintStream;

import java.util.Scanner;

public class ListAllUsernames {
public static void main(String[] args) throws FileNotFoundException {
var diskScanner = new Scanner(new File("email.txt"));
var diskWriter = new PrintStream("usernames.txt");
char symbol;
while (diskScanner.hasNext()) {

symbol = diskScanner.findWithinHorizon(".", @).charAt(Q);
while (symbol != '@') {

432 PART 5 SmartJava Techniques

&

TRY IT OUT

diskWriter.print(symbol);
symbol = diskScanner.findWithinHorizon(".", @).charAt(Q);

diskScanner.nextLine();
diskWriter.println();

diskScanner.close();
diskWriter.close();

To run the code in Listing 18-3, you need an email . txt file — a file like the one
shown earlier, in Figure 18-1. In the email . txt file, type several email addresses.
Any addresses will do, as long as each address contains an @ sign and each address
is on its own separate line. Save the email . txt file in your project directory along
with the ListAllUsernames. java file (the code from Listing 18-3). For more
details, refer to Chapter 16.

With Listing 18-3, you’ve reached an important milestone. You’ve analyzed a del-
icate programming problem and found a complete, working solution. The tools
you used included thinking about strategies and role-playing the computer. As
time goes on, you can use these tools to solve bigger and better problems.

Nothing is more challenging for novice programmers than creating nested loops.
That’s why I cover looping techniques in four of this book’s chapters
(Chapters 11, 12, 18, and 19). You might say that I loop through my coverage of
programming loops.

Try writing the code that I suggest in the next few paragraphs. Don’t be afraid to
make lots of mistakes. If you get stuck, slow down, take a step back, and think
about what the computer will do when it follows instructions to the letter.

The solutions are on my web page at http://beginprog.allmycode.com. But
don’t jump to the solutions until you’ve experimented with lots of different ideas.
Follow this tried-and-true formula:

Write some code;
Run your code,
while (your program doesn't work correctly) {
Step through your code, one statement after another, keeping track
of the values of the variables and the computer's output as

Java follows your instructions exactly as they're written;

CHAPTER 18 Creating Loops within Loops 433

http://beginprog.allmycode.com/

In the step by step execution of statements, notice the place where
Java does something that you don't want it to do,

Ask yourself how you'd change the statements so that Java would do
what you want it to do,

Change the statements in your code,

Run your code again;

END OF THE ROAD

A file named input.txt contains only four characters:
Java

What'’s the output when you run the following code?
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class Main {

public static void main(String[] args) throws FileNotFoundException {

var diskScanner = new Scanner(new File("input.txt"));

while (diskScanner.hasNext()) {
char symbol = diskScanner.findWithinHorizon(".", @).charAt(Q);
System.out.print(Character . toUpperCase(symbol));

diskScanner.close();

WHAT'S IN THE STARS?

In this chapter’s earlier “How it feels to be a computer” section, I examine each
line of a program’s code and ask myself what the computer does when it executes
that line. Do the same thing with the following program:

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

434 PART 5 Smart Java Techniques

public class ReadStars {
public static void main(String[] args) throws FileNotFoundException {

var diskScanner = new Scanner(new File("input.txt"))

char symbol;

while (diskScanner.hasNext()) {
symbol = diskScanner.findWithinHorizon(".", @).charAt(Q);

while (symbol == 'x') {
System.out.print(symbol);
symbol = diskScanner.findWithinHorizon(".", @).charAt(Q);

System.out.println();

diskScanner.close();

What happens when the input . txt file contains the following characters?

kkokokkXkkk Y kkkokkZ

LOOP SOUP

Make a chart to keep track of the changes to the values of i and j as Java executes
the following code:

int i = 5;
int j;
while (i » @) {
System.out.println(i);
i—;
j=3;
while (j > @) {
System.out.print(j);
J—i
}
System.out.println();

CHAPTER 18 Creating Loops within Loops 435

Based on the values in your chart, what will be the output of the code? After mak-
ing your chart, run the code in Intelli] IDEA to find out whether your prediction is
correct.

MAKE SOME CHANGES AROUND HERE

Modify the code from the previous experiment (the “Loop soup” one) so that the
output has no lines containing the 321 digit sequence. In place of the 321 lines, the
output has lines containing the 123 digit sequence.

SEEING STARS

This experiment comes in two parts. The first part requires only one loop; the
second part requires nested loops:

3 Write a program that asks the user how many stars to display. When the user
enters a number, the program displays that many stars. Here's a sample run:

How many stars? 5

kekskokok

¥ Write a program that repeatedly asks whether the user wants to see a row of
stars. As long as the user replies with the letter y, the program does what it
did in the previous bullet. That is, the program asks the user how many stars
to display and then displays that many stars. As soon as the user replies with
the letter n, the program stops running.

Here's a sample run of the program:

Do you want a row of stars? (y/n) y
How many stars? 5

*kokokok

Do you want a row of stars? (y/n) y
How many stars? 2

*k

Do you want a row of stars? (y/n) y
How many stars? 8

Hokokok kK FoK

Do you want a row of stars? (y/n) n

To create this program, take the code that you wrote in the previous bullet
(the first part of “Seeing stars”) and surround some of that code inside a
second loop.

436 PART 5 Smart Java Techniques

APROPOS OF NOTHING

In Figure 18-3, the run of a Java program throws a Nul1PointerException. These
NullPointerException messages are never fun, but the more of these messages
you encounter, the less frightening they are.

To help desensitize you to NullPointerException messages, generate one of
them intentionally. Run the following two-line code snippet with Intelli]’s JShell
console:

String name = null;

System.out.println(name.length());

Using Nested for Loops

FIGURE 18-10:

A file containing
hotel occupancy
data.

Because you’re reading Beginning Programming with Java For Dummies, 6th Edition,
I assume that you manage a big-name hotel. Chapter 19 tells you everything you
need to know about hotel management. But before you begin reading that chapter,
you can get a little preview in this section.

I happen to know that your hotel has nine floors, and that each floor of your hotel
has 20 rooms. On this sunny afternoon, someone hands you a flash drive contain-
ing a file full of numbers. You copy this hotelData file to your hard drive and then
display the file in IntelliJ’s editor. You see the stuff shown in Figure 18-10.

= hotelData
2123431121324444224402243310214
2331421314201210041231433241404
3234144342122021142024201122003
2001044341124333312204243230433
130040123323022440013012413401 4
3330103240121343414321434

This file gives the number of guests in each room. For example, at the start of the
file, you see 2 1 2. This means that, on the first floor, Room 1 has two guests,
Room 2 has one guest, and Room 3 has two guests. After reading 20 of these num-
bers, you see@ 2 2. So, on the second floor, Room 1 has zero guests, Room 2 has
two guests, and Room 3 has two guests. The story continues until the last number
in the file. According to that number, Room 20, on the ninth floor, has four guests.

CHAPTER 18 Creating Loops within Loops 437

FIGURE 18-11:
A readable
display of the
data in
Figure 18-10.

You’d like a more orderly display of these numbers — a display of the kind in
Figure 18-11. So you whip out your keyboard to write a quick Java program.

Run: DisplayHotelData
[Users/barryburd/Library/Java/JavaVirtualMachines/open]
Floor 1: 212 3 43 112132444427244

Floor

- =

Ji

Floor

I

Floor
Floor

am g

Floor
Floor
» Floor
Floor

N R XS
@D oD WD D
W D oD NN
N DO W N WD N
P A o L
@ W= MR W R W
= O WD = W
MR D W e @D
= N O W e N0 O
[T I A 7 S T A)
F R I R N P T
L2 S i~ B R o R
P - - L T -~ I <
= @ LN N 2w
F S = B I -)
LB S I R S
R WD D N
Ll S B S
E- L S S I T T -
LE I < I S S L
E- T T - - T - -

Process finished with exit code @

As in some other examples, you decide which statements go where, by asking
yourself how many times each statement should be executed. For starters, the
display in Figure 18-11 has nine lines, and each line has 20 numbers:

for (each of 9 floors)
for (each of 20 rooms on a floor)

get a number from the file and display the number on the screen.
So your program has a for loop within a for loop — a pair of nested for loops.

Next, you look at in Figure 18-11 and notice how each line begins. Each line con-
tains the word Floor, followed by the floor number. Because this Floor display
occurs only nine times in Figure 18-11, the statements to print this display belong
in the for-each-of-9-floors loop (and not in the for-each-of-20-rooms loop).
The statements should come before the for-each-of-20-rooms loop because this
Floor display comes once before each line’s 20-number display:

for (each of 9 floors)
display "Floor" and the floor number,
for (each of 20 rooms on a floor)

get a number from the file and display the number on the screen.

You’re almost ready to write the code. But there’s one detail that’s easy to forget.
(Well, it’s a detail that I always forget.) After displaying 20 numbers, the program
advances to a new line. This new-line action happens only nine times during the
run of the program, and it always happens after the program displays 20 numbers:

438 PART 5 Smart Java Techniques

for (each of 9 floors)
display "Floor" and the floor number,
for (each of 20 rooms on a floor)
get a number from the file and display the number on the screen,
Go to the next line.

That does it. That’s all you need. The code to create the display of Figure 18-11 is
in Listing 18-4.

Hey! Is This a For-by-For?

import java.io.File;

import java.io.FileNotFoundException;
import java.util.Scanner;

import static java.lang.System.out;
class DisplayHotelData {
public static void main(String[] args) throws FileNotFoundException {
var diskScanner = new Scanner(new File("hotelData"));
for (int floor = 1; floor <= 9; floor++) {
out.print("Floor ");
out.print(floor);
out.print(": ");
for (int roomNum = 1; roomNum <= 20; roomNum++) {

out.print(diskScanner.nextInt());
out.print(' ');

out.println();
}

diskScanner.close();

The code in Listing 18-4 has the variable floor going from 1 to 9 and has the vari-
able roomNum going from 1 to 20. Because the roomNum loop is inside the floor
loop, the writing of 20 numbers happens nine times. That’s good. It’s exactly
what I want.

CHAPTER 18 Creating Loops within Loops 439

440

I%I When it comes to writing code with loops, there’s no such thing as having too
much practice. Try these problems. Work slowly and don’t get discouraged.
TrRviToutr Remember that solutions are available at http://beginprog.allmycode.com.

MYSTERY CODE

This experiment comes in two parts:

¥ Without running the following code, try to predict the code’s output:

for (int row = @; row < 5; row++) {
for (int column = @; column < 5; column++) {
System.out.print("*");
}

System.out.println();

After making your prediction, run the code to find out whether your predic-
tion is correct.

3 The code in this bullet is a slight variation on the code in the previous bullet.
First, try to predict what the code will output. Then run the code to find out
whether your prediction is correct:

for (int row = @; row < 5; row++) {
for (int column = @; column <= row; column++) {
System.out.print("*");
}

System.out.println();

DRAW A PATTERN

This experiment comes in four parts:

¥ Write a program that reads a number from the keyboard. The program uses a
for loop to display that number of dashes.

For example, if the user types the number 5, the program displays

PART 5 Smart Java Techniques

http://beginprog.allmycode.com/

¥ Modify the program you wrote in the previous bullet. The modified program
uses two for loops to display two lines of characters. The second line is one
character shorter than the first line. For example, if the user types the number 7,
the program displays

3 Modify the program you wrote in the previous bullet. The modified program
uses nested for loops to display several lines of characters, each shorter than
the line that comes before it. For example, if the user types the number 5, the
program displays

Hint: The code in this program is much like one of the snippets in the earlier
“Mystery code” experiment.

¥ For an extra challenge, modify the code you wrote in the previous bullet so
that it displays a slash (/) at the end of each line. For example, if the user types
the number 5, the program displays

—
—
—/
~/

/

TIMES TABLE

This experiment comes in four parts:

¥ Write a program that reads a number from the keyboard. The program uses a
for loop to display all numbers up to and including that number. For exam-
ple, if the user types 9, the program displays

1 2 3 4 5 6 7 8 9

For some suggestions about displaying space between the numbers, refer to
Chapter 11.

TIP

CHAPTER 18 Creating Loops within Loops 441

442

¥ Write a program that reads a number from the keyboard. The program uses a
for loop to display two times 1, two times 2, and so on, up to and including
two times the user’s number. For example, if the user types 9, the program

displays

¥ Write a program that uses nested for loops to display a multiplication table:

© 0 N O O b W N

w O B N

18

3

12
15
18
21
24
27

12
16
20
24
28
32
36

10

5

10
15
20
25
30
35
40
45

12

6

12
18
24
30
36
42
48
54

14

T

14
21
28
35
42
49
56
63

16

8

16
24
32
40
48
56
64
T2

18

9

18
27
36
45
54
63
72
81

¥ For an extra challenge, add a header row and header column to your multipli-

cation table. The resulting display looks like this:

1 2 3 4 5 6 T 8 9
1 [1 2 5 6 T 8 9
2 |2 4 10 12 14 16 18
3 I3 6 12 15 18 21 24 27
4 |4 8 12 16 20 24 28 32 36
5 |5 10 15 20 25 30 35 40 45
6 |16 12 18 24 30 36 42 48 54
T |7 14 21 28 35 42 49 56 63
8 |8 16 24 32 40 48 56 64 72
9 9 18 27 36 45 54 63 72 81

PART 5 Smart Java Techniques

IN THIS CHAPTER

» Using for loops to the max

» Storing many values in a single
variable

» Working with groups of values

Chapter 19
Out of Many, One

his chapter has nine illustrations. For these illustrations, the people

at Wiley Publishing insist on the following numbering: Figure 19-1,

Figure 19-2, Figure 19-3, Figure 19-4, Figure 19-5, Figure 19-6, Figure 19-7,
Figure 19-8, and Figure 19-9. But I like a different kind of numbering. I’d like
to number the illustrations figure[@], figure[1], figure[2], figure[3],
figure[4], figure[5], figure[6], figure[7], and figure[8]. In this chapter,
you find out why.

Some Loops in Action

The Java Motel, with its ten comfortable rooms, sits in a quiet place off the main
highway. Aside from a small, separate office, the motel is just one long row of
ground-floor rooms. Each room is easily accessible from the spacious front park-
ing lot.

0ddly enough, the motel’s rooms are numbered 0 through 9. I could say that the

numbering is a fluke — something to do with the builder’s original design plan.
But the truth is, starting with 0 makes the examples in this chapter easier to write.

CHAPTER 19 Out of Many, One 443

You, as the Java Motel’s manager, store occupancy data in a file on your computer’s
hard drive. The file has one entry for each room in the motel. For example, in
Figure 19-1, Room 0 has one guest, Room 1 has four guests, Room 2 is empty, and

SO on.
FIGURE 19-1: = occupancy
Occupancy data 1402214302
for the Java
Motel.
You want a report showing the number of guests in each room. Because you know
how many rooms you have, this problem begs for a for loop. The code to solve this
problem is in Listing 19-1, and a run of the code is shown in Figure 19-2.
Room Guests
0 1
1 4
2 2]
3 2
4 2
5 1
6 4
7 3
FIGURE 19-2: 8 8
Running the code 9 2
in Listing 19-1.

m A Program to Generate an Occupancy Report

import java.io.File;

import java.io.FileNotFoundException;
import java.util.Scanner;

import static java.lang.System.out;
public class ShowOccupancy {

public static void main(String[] args) throws FileNotFoundException {
var diskScanner = new Scanner(new File("occupancy"));

L4/4. PART 5 Smart Java Techniques

©

REMEMBER

out.println("Room Guests");

for (int roomNum = @; roomNum < 10; roomNum++) {
out.print(roomNum);
out.print(" ");
out.println(diskScanner.nextInt());

}

diskScanner.close();

Listing 19-1 uses a for loop — a loop of the kind described in Chapter 12. As the
roomNum variable’s value marches from 0 to 9, the program displays one number
after another from the occupancy file. To read more about getting numbers from
a disk file like my occupancy file, see Chapter 16.

This example’s input file is named occupancy — not occupancy . txt. If you use
Windows Notepad to make an occupancy file, you must use quotation marks in
the Save As dialog box’s File Name field. That is, you must type “occupancy”
(with quotation marks) in the File Name field. If you don’t surround the name
with quotation marks, Notepad adds a default extension to the file’s name (turn-
ing occupancy into occupancy.txt). A similar issue applies to the Macintosh’s
TextEdit program. By default, TextEdit adds the .rtf extension to each new file.
To override the . rt f default for a particular file, choose Format=> Make Plain Text.
Then, in the Save As dialog box, remove the check mark from the check box labeled
If No Extension Is Provided, Use “.txt”. (To override the default for all newly cre-
ated files, choose TextEdit=> Preferences. Then, in the Format part of the Prefer-
ences dialog box’s New Document tab, select Plain Text.)

Deciding on a loop’s limit at runtime

On occasion, you may want a more succinct report than the one in Figure 19-2.
“Don’t give me a long list of rooms,” you say. “Just give me the number of guests
in Room 3.” To get such a report, you need a slightly smarter program. The pro-
gram is in Listing 19-2, with runs of the program shown in Figure 19-3.

CHAPTER 19 Out of Many, One 445

Some individual
room reports.

446

FIGURE 19-3:

Which room? 3
Poom 3 has Z guest(s).

Which room? 5
Foom 5 has 1 guest(s).

Which room? 8
Foom 8 has 0 guest(s).

Which room? 10
Foom 10 has Exception in thread "main" jawva.util.NoSuchElementException

at jawva.util. Zcanner. throwFor (Scanner.java:817)

at jawva.util.Scanner.next(8canner.java:1431)

at java.util. Scanner.nextInt(Scanner.java:2040)

at jawva.util.Scanner.nextInt{8canner.java:2000)

at ShowOneRoomOccupancy.main({ShowOneRoomdccupancy.java:Z6)

Report on One Room Only, Please

import
import
import

import

public

java.io.File;
java.io.FileNotFoundException;
java.util.Scanner;

static java.lang.System.out;

class ShowOneRoomOccupancy {

public static void main(String[] args) throws FileNotFoundException {

var keyboard = new Scanner(System.in);
var diskScanner = new Scanner(new File("occupancy"));
int whichRoom;

out.print("Which room? ");

whichRoom = keyboard.nextInt();

for (int roomNum = @; roomNum < whichRoom; roomNum++) {
diskScanner.nextInt();

out.print("Room ");
out.print(whichRoom);

out.print(" has ");
out.print(diskScanner.nextInt());
out.println(" guest(s).");

keyboard.close();
diskScanner.close();

PART 5 Smart Java Techniques

GRABBING INPUT HERE AND THERE

Listing 19-2 illustrates some pithy issues surrounding the input of data. For one thing,
the program gets input from both the keyboard and a disk file. (The program gets a
room number from the keyboard. Then the program gets the number of guests in that
room from the occupancy file.) To make this happen, Listing 19-2 sports two Scanner
declarations: one to declare keyboard and a second to declare diskScanner.

Later in the program, the call keyboard.nextInt reads from the keyboard, and
diskScanner .nextInt reads from the file. Within the program, you can read from the
keyboard or the disk as many times as you want. You can even intermingle the calls —
reading once from the keyboard, and then three times from the disk, and then twice
from the keyboard, and so on. All you have to do is remember to use keyboard
whenever you read from the keyboard and use diskScanner whenever you read from
the disk.

Another interesting tidbit in Listing 19-2 concerns the occupancy file. Many of this
chapter's examples read from an occupancy file, and | use the same data in each of
the examples. (I use the data shown in Figure 19-1.) To run an example, | copy the
occupancy file from one Intelli] project to another. (Before running the code in
Listing 19-2, | right-click the occupancy file in Intelli)'s Project tool window and choose
Copy from the context menu. Then | right-click the topmost branch in the Project tool
window for Listing 19-2. On the resulting context menu, | choose Paste.)

In real life, having several copies of a data file can be dangerous. You can modify one
copy and then accidentally read out-of-date data from a different copy. Sure, you
should have backup copies, but you should have only one master copy — the copy from
which all programs get the same input.

In a real-life program, you don't copy the occupancy file from one project to another.
What do you do instead? You put an occupancy file in one place on your hard drive and
then have each program refer to the file using the names of the file's directories. For
example, if your occupancy file is in the c: \Oct \22 directory, you write

var diskScanner = new Scanner(new File("c:\\Oct\\22\\occupancy"));

The “Name that file” sidebar in Chapter 16 has more details about filenames and dou-
ble backslashes.

CHAPTER 19 Out of Many, One 447

If Listing 19-2 has a moral, it’s that the number of for loop iterations can vary
from one run to another. The loop in Listing 19-2 runs on and on as long as the
counting variable roomNum is less than a room number specified by the user. When
the roomNum is the same as the number specified by the user (that is, when roomNum
is the same as whichRoom), the computer jumps out of the loop. Then the computer
grabs one more int value from the occupancy file and displays that value on the
screen.

As you stare at the runs in Figure 19-3, it’s important to remember the unusual
numbering of rooms. Room 3 has two guests because Room 3 is the fourth room
in the occupancy file of Figure 19-1. That’s because the motel’s rooms are num-
bered o through 9.

Using all kinds of conditions in a for loop

Look at the run in Figure 19-3 and notice the program’s awful behavior when the
user mistakenly asks about a nonexistent room: The motel has no Room 10. If you
ask for the number of guests in Room 10, the program tries to read more numbers
than the occupancy file contains. This unfortunate attempt causes a
NoSuchElementException.

Listing 19-3 fixes the end-of-file problem.

m A More Refined Version of the One-Room Code

448

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

import static java.lang.System.out;
public class BetterShowOneRoom {

public static void main(String[] args) throws FileNotFoundException {
var keyboard = new Scanner(System.in);
var diskScanner = new Scanner(new File("occupancy"));
int whichRoom;

out.print("Which room? ");
whichRoom = keyboard.nextInt();

for (int roomNum = 0;
roomNum < whichRoom && diskScanner.hasNext();
roomNum++) {
diskScanner.nextInt();

PART 5 Smart Java Techniques

FIGURE 19-4:
The bad room
number 10 gets
no response.

)
S
TECHNICAL
STUFF

if (diskScanner.hasNext()) {
out.print("Room ");
out.print(whichRoom);
out.print(" has ");
out.print(diskScanner.nextInt());
out.println(" guest(s).");

keyboard.close();
diskScanner.close();

The code in Listing 19-3 isn’t earth-shattering. To get this code, you take the code
in Listing 19-2 and add a few tests for the end of the occupancy file. You perform
the diskScanner . hasNext test before each call to nextInt. That way, if the call to
nextInt is doomed to failure, you catch the potential failure before it happens.
A few test runs of the code in Listing 19-3 are shown in Figure 19-4.

Which room? 0
Room 0 has 1 guest(s).

Which room? 6
Room 6 has 4 guest(s).

Which room? 2
Room 2 has 0O guest(s).

Which room? 10

In Listing 19-3, I want to know whether the occupancy file contains any more
data (any data that I haven’t read yet). So I call the Scanner class’s hasNext
method. The hasNext method looks ahead to see whether I can read any kind of
data — an int value, a double value, a word, a boolean, or whatever. That’s okay
for this section’s example, but in some situations, you need to be pickier about
your input data. For example, you may want to know whether you can call nextInt
(as opposed to nextDouble or nextLine). Fortunately, Java has methods for your
pickiest input needs. A method like i f (diskScanner.hasNextInt()) tests to see
whether you can read an int value from the disk file. Java also has methods like
hasNextlLine, hasNextDouble, and so on. For more information on the plain old
hasNext method, see Chapter 18.

CHAPTER 19 Out of Many, One 449

Listing 19-3 has a big, fat condition to keep the for loop going:

for (int roomNum = ©;
roomNum < whichRoom && diskScanner.hasNext();

roomNum++) {

Many for loop conditions are simple “less-than” tests, but there’s no rule saying
that all for loop conditions have to be so simple. In fact, any expression can be a
for loop’s condition, as long as the expression has the value true or false. The
condition in Listing 19-3 combines a less-than with a call to the Scanner class’s
hasNext method.

Reader, Meet Arrays; Arrays,
Meet the Reader

A weary traveler steps up to the Java Motel’s front desk. “I’d like a room,”
says the traveler. So the desk clerk runs a report like the one in Figure 19-2.
Noticing the first vacant room in the list, the clerk suggests Room 2. “I’ll take it,”
says the traveler.

It’s hard to get good help these days. How many times have you told the clerk to
fill the higher-numbered rooms first? The lower-numbered rooms are older, and
they are badly in need of repair. For example, Room 3 has an indoor pool. (The
pipes leak, so the carpet is soaking wet.) Room 2 has no heat (not in wintertime,
anyway). Room 1 has serious electrical problems (for that room, you always get
payment in advance). Besides, Room 8 is vacant, and you charge more for the
higher-numbered rooms.

Here’s where a subtle change in presentation can make a big difference. You need
a program that lists vacant rooms in reverse order. That way, Room 8 catches the
clerk’s eye before Room 2 does.

Think about strategies for a program that displays data in reverse. With the input
from Figure 19-1, the program’s output should look like the display shown in

Figure 19-5.
FIGURE 19-5:
A list of vacant R 3 i
rooms, with oom 1s vacant.

higher-numbered | Rgom 2 is vacant.
rooms shown

first.

450 PART5 Smart Java Techniques

Here’s the first (bad) idea for a programming strategy:

Get the last value in the occupancy file.

If the value is ©, print the room number.

Get the next-to-last value in the occupancy file.

If the value is ©, print the room number.
And so on. ..

With some fancy input/output programs, this strategy may be workable. But no
matter what input/output program you use, jumping directly to the end or to the
middle of a file is a big pain in the boot. It’s especially bad if you plan to jump
repeatedly. So go back to the drawing board and think of something better.

Here’s an idea! Read all values in the occupancy file and store each value in a vari-
able of its own. Then step through the variables in reverse order, displaying a
room number when it’s appropriate to do so.

This idea works, but the code is so ugly that I refuse to dignify it by calling it a
listing. No, this is just a “see the following code” kind of thing. So please, see the
following ugly code:

/%

* Ugh! T can't stand this ugly code!
*/

guestsIn@ = diskScanner.nextInt();
guestsInt = diskScanner.nextInt();
guestsIn2 = diskScanner.nextInt();
guestsIn3 = diskScanner.nextInt();
guestsInd = diskScanner.nextInt();
guestsIn5 = diskScanner.nextInt();
guestsIn6 = diskScanner.nextInt();
guestsIn7 = diskScanner.nextInt();
guestsIn8 = diskScanner.nextInt();

guestsIn9 = diskScanner.nextInt();

if (guestsIn9 == 0) {
System.out.println(9);

}
if (guestsIn8 == @) {
System.out.println(8);

}
if (guestsIn7 == @) {

CHAPTER 19 Out of Many, One 451

452

System.out.println(7);

}
if (guestsIn6é == @) {

// And so on ...

What you’re lacking is a uniform way of naming ten variables. That is, it would be
nice to write

/%
*x Nice idea, but this is not real Java code:
*/

//Read forward
for (int roomNum = @; roomNum < 10; roomNum++) {

guestsInroomNum = diskScanner.nextInt();

//Write backward
for (int roomNum = 9; roomNum >= @; roomNum——) {
if (guestsInroomNum == Q) {

System.out.println(roomNum);

Well, you can write loops of this kind. All you need are some square brackets.
When you add square brackets to the idea shown in the preceding code, you get
what’s called an array. An array is a row of values, like the row of rooms in a one-
floor motel. To picture the array, just picture the Java Motel:

¥ First, picture the rooms lined up next to one another.

¥ Next, picture the same rooms with their front walls missing. Inside each room,
you can see a certain number of guests.

¥ If you can, forget that the two guests in Room 9 are putting piles of bills into a
big briefcase. Ignore the fact that the guest in Room 5 hasn't moved away
from the TV set in a day-and-a-half. Instead of all these details, just see
numbers. In each room, see a number representing the count of guests in
that room. (If freeform visualization isn't your strong point, take a look at
Figure 19-6.)

In the lingo of Java programming, the entire row of rooms is called an array. Each
room in the array is called a component of the array (also known as an array ele-
ment). Each component has two numbers associated with it:

PART 5 Smart Java Techniques

FIGURE 19-6:

An abstract
snapshot of
rooms in the Java
Motel.

A component
whose index is 6,
and whose value is 4

v Thevalue4

N

The index 6

¥ Index: In the case of the Java Motel array, the index is the room number (a
number from 0 to 9).

¥ Value: In the Java Motel array, the value is the number of guests in a given
room (a number stored in a component of the array).

Using an array saves you from having to declare ten separate variables: guest-

sIn@, guestsIni, guestsIn2, and so on. To declare an array with ten values in it,
you can write two fairly short lines of code:

int[] guestsln;

guestsIn = new int[10];
You can even squish these two lines into one longer line:

int[] guestsIn = new int[10];

And, under the right circumstances, you can avoid repeating yourself by using the
word var:

var guestsIn = new int[10];

In any of these code snippets, notice the use of the number 1@. This number tells
the computer to make the guestsIn array have ten components. Each component
of the array has a name of its own. The starting component is named guestsIn[@],

the next is named guestsIn[1], and so on. The last of the ten components is
named guestsIn[9].

CHAPTER 19 Outof Many, One 453

454

©

REMEMBER

In creating an array, you always specify the number of components. The array’s
indices always start with 0 and end with the number that’s one fewer than the
total number of components. For example, if your array has ten components (and
you declare the array with new int[10]), the array’s indices go from o to 9.

When you create an array variable, you can put square brackets after either the
type name or the variable name. In other words, you can write

int[] guestsln;
as I do in this section, or you can write
int guestsIn(];

as some programmers do. Either way, you’re defining exactly the same array vari-
able. In the same way, you see

public static void main(String[] args)
and you also see
public static void main(String args[])

These two method headers have precisely the same meaning.

Storing values in an array

After you’ve created an array, you can put values into the array’s components. For
example, the guests in Room 6 are fed up with all those mint candies that you put
on people’s beds. So they check out and Room 6 becomes vacant. You should put
the value @ into the 6 component. You can do it with this assignment statement:

guestsIn[6] = O;

On one weekday, business is awful. No one’s staying at the motel. But then you get
a lucky break: A big bus pulls up to the motel. The side of the bus sports a Loners’
Convention sign. Out of the bus come 25 people, each walking to the motel’s small
office, none paying attention to the others who were on the bus. Each person
wants a private room. Only 10 of them can stay at the Java Motel, but that’s okay
because you can send the other 15 loners down the road to the old C-Side Resort
and Motor Lodge.

PART 5 Smart Java Techniques

REMEMBER

Anyway, to register ten of the loners at the Java Motel, you put one guest in each
of your ten rooms. Having created an array, you can take advantage of the array’s
indexing and write a for loop, like this:

for (int roomNum = @; roomNum < 1Q; roomNum++) {

guestsIn[roomNum] = 1;

This loop takes the place of ten assignment statements because the computer
executes the statement guestsIn[roomNum] = 1 ten times. The first time around,
the value of roomNum is @, so in effect, the computer executes

guestsin[@] = 1;

In the next loop iteration, the value of roomNum is 1, so the computer executes the
equivalent of the following statement:

guestsIn[1] = 1;
During the next iteration, the computer behaves as though it’s executing
guestsIn[2] = 1;

And so on. When roomNum gets to be 9, the computer executes the equivalent of the
following statement:

guestsIn([9] = 1;

Notice that the loop’s counter goes from 0 to 9. Compare this with Figure 19-6 and
remember that the indices of an array go from 0 to one fewer than the number of
components in the array. Looping with room numbers from 0 to 9 covers all rooms
in the Java Motel.

When you work with an array and you step through the array’s components using
a for loop, you normally start the loop’s counter variable at 0. To form the condi-
tion that tests for another iteration, you often write an expression like roomNum <
arraySize, where arraySize is the number of components in the array.

Creating a report

The code to create the report in Figure 19-5 is shown in Listing 19-4. This new
program uses the idea in the world’s ugliest code (the code from several pages
back, with variables guestsIn@, guestsIni, and so on). But rather than have ten
separate variables, Listing 19-4 uses an array.

CHAPTER 19 Out of Many, One 455

Traveling through Data Both Forward and Backward

456

import java.io.File;
import java.io.FileNotFoundException;

import java.util.Scanner;
public class VacanciesInReverse {

public static void main(String[] args) throws FileNotFoundException {
var diskScanner = new Scanner(new File("occupancy"));
var guestsIn = new int[10];

for (int roomNum = ©; roomNum < 10; roomNum++) {
guestsIn[roomNum] = diskScanner.nextInt();

for (int roomNum = 9; roomNum >= @; roomNum--) {
if (guestsIn[roomNum] == @) {
System.out.print("Room ");
System.out.print(roomNum);
System.out.printin(" is vacant.");

diskScanner.close();

Notice the stuff in parentheses in the VacanciesInReverse program’s second for
loop. It’s easy to get these things wrong. You’re aiming for a loop that checks
Room 9, and then Room 8, and so on:

if (guestsIn[9] == 0) {
System.out.print(roomNum);

}
if (guestsIn[8] == 0) {
System.out.print(roomNum);

}

if (guestsIn[7] == 0) {
System.out.print(roomNum);

// ... And so on, until you get to ...

if (guestsIn[@] == 0) {

System.out.print(roomNum);

PART 5 Smart Java Techniques

Some observations about the code:

¥ The loop's counter must start at 9:
for (int roomNum = 9; roomNum >= @; roomNum——)

¥ Each time through the loop, the counter goes down by one:
for (int roomNum = 9; roomNum >= @; roomNum--)

¥ The loop keeps going as long as the counter is greater than or equal to 0:
for (int roomNum = 9; roomNum >= @; roomNum--)

Think through each of these three items and you’ll write a perfect for loop.

Stuffing values into an array

In Listing 19-4, you put values into the guestsIn array by repeatedly reading
numbers from a disk file and storing the numbers, element by element, in the
array. Rather than drop array values in one by one, you can populate an array in
one fell swoop. This section describes a few ways for you to do it:

¥ Youcan use Java’'s fill method.

When your hotel is brand-spanking-new, you start off with no guests in any of
the rooms. You can put zeros in each room with the following statement:

Arrays.fill(guestsln, Q);

If for some reason you want to put two guests in each room, you'd do this:
Arrays.fill(guestsIn, 2);

The only prerequisite is an import declaration at the start of your program:
import java.util.Arrays;

What's going on when you call Arrays. fil1? Java has a class named Arrays,

OAD,
6 and that class has a static method named fill. For more on static methods,

TECHNICAL refer to Chapter 14.
STUFF

CHAPTER 19 Out of Many, One 457

3 You can use curly braces.

The Arrays. fill method is useful for putting several copies of a particular
value into an array. For more flexibility, you can do this:

public class Vacancies {
public static void main(String[] args) {

int[] guestsIn;
guestsIn = new int[]{1, 4, 0, 2, 2, 1, 4, 3, 0, 2};

for (int roomNum = @; roomNum < 10Q; roomNum++) {

System.out.println(guestsIn[roomNum]);

}

In this code, the bold assignment statement tells Java to create a new array
with 1 in guestsIn[@], 4inguests[1], 0inguestsIn[2], and so on.

You don't have to count the number of values that you typed between the
open and close braces. The word length can do the counting for you:

TIP
for (int roomNum = @; roomNum < guestsIn.length; roomNum++) {

3 You can initialize an array.

When you combine a declaration and an assignment, you get an array
initialization. In an array initialization, you can omit words like new int[]:

int[] guestsin = {1, 4, 0, 2, 2, 1, 4, 3, 0, 2};
But beware! Initializations and assignments are two different kinds of things.
In an ordinary assignment statement, you need more than just curly braces:
int[] guestsin = {1, 4, 0, 2, 2, 1, 4, 3, 0, 2}; // This is good.

int[] bedslIn;
bedsIn = new int[]{2, 1, 1, 1, 2, 1, 1, 1, 1, 2}; // This is good.

int[] towelsIn;
towelsIn = {2, 4, 2, 2, 2, 4, 4, 0, @, 2}; // This is bad.

In some programming languages, a line like the one marked This is badisa
valid assignment statement. But Java isn't one of those languages. Java thinks
that this line stinks.

458 PART 5 Smart Java Techniques

Working with Arrays

Earlier in this chapter, a busload of loners showed up at your motel. When they
finally left, you were glad to get rid of them, even if it meant having all your rooms
empty for a while. But now another bus pulls into the parking lot. This bus sports
a Gregarian Club sign. Out of the bus come 50 people, each more gregarious than
the next. Now everybody in the parking lot is clamoring to meet everyone else.
While they meet-and-greet, they’re all frolicking toward the front desk, singing
the club’s theme song. (Oh, no! It’s the Gregarian chant!)

The first five Gregarians all want Room 7. It’s a tight squeeze, but you were never
big on fire codes, anyway. Next comes a group of three with a yen for Room o.
(They’re computer programmers, and they think the room number is cute.) Then
there’s a pack of four Gregarians who want Room 3. (The in-room pool sounds
attractive to them.)

With all this traffic, you had better switch on your computer. You start a program
that enables you to enter new occupancy data. The program has five parts:

3 Create an array and put 0 in each of the array’s components.

When the Loners’ Club members left, the motel was suddenly empty. (Heck,
even before the Loners’ Club members left, the motel seemed empty.) To
declare an array and fill the array with zeros, you execute code of the
following kind:

var guestsIn = new int[10];

Arrays.fill(guestsin, Q);

3 Get a room number and then get the number of guests who will be
staying in that room.

Reading numbers typed by the user is pretty humdrum stuff. Do a little
prompting and a little nextInt calling and you're all set:

out.print("Room number: ");
whichRoom = keyboard.nextInt();
out.print("How many guests? ");

numGuests = keyboard.nextInt();

3 Use the room number and the number of guests to change a value in the
array.

Earlier in this chapter, to put one guest in Room 2, you executed

guestsIn([2] = 1;

CHAPTER 19 Out of Many, One 459

So now you have two variables: numGuests and whichRoom. Maybe
numGuests is 5 and whichRoom is 7. To put numGuests in whichRoom (that is,
to put five guests in Room 7), you can execute

guestsIn[whichRoom] = numGuests;

That's the crucial step in the design of your new program.
3 Ask the user whether the program should continue.
Are there more guests to put in rooms? To find out, execute this code:

out.print("Do another? ");
} while (keyboard.findWithinHorizon(".",@).charAt(@) == 'Y');

3 Display the number of guests in each room.

No problem! You already did this. You can steal the code (almost verbatim)
from Listing 19-1:

out.println("Room Guests")

for (int roomNum = @; roomNum < 1@; roomNum++) {
out.print(roomNum);
out.print(" ");
out.println(guestsIn[roomNum]);

}

The only difference between this latest code snippet and the stuff in
Listing 19-1 is that this new code uses the guestsIn array. The first time
through this loop, the code does

out.println(guestsin[@]);

displaying the number of guests in Room 0. The next time through the loop,
the code does

out.println(guestsin[1]);

displaying the number of guests in Room 1. The last time through the loop,
the code does

out.println(guestsin([9]);
That's perfect.

The complete program (with these five pieces put together) is in Listing 19-5.
A run of the program is shown in Figure 19-7.

460 PART 5 Smart Java Techniques

Room number: 0
How many guests? 3

Do another? Y
Room number: 3

How many guests? 4

Do another? N

Room Guests
e 3
1 (]
2]
3 4
4 0
5]
6]
7]
FIGURE 19-7: 8 0
Running the code 9 0
in Listing 19-5.

m Storing Occupancy Data in an Array

import java.util.Arrays;

import java.util.Scanner;
import static java.lang.System.out;
public class AddGuests {

public static void main(String[] args) {
var keyboard = new Scanner(System.in);
int whichRoom, numGuests;
var guestsIn = new int[10];

Arrays.fill(guestsIn, 0);

do {

out.print("Room number: ");

whichRoom = keyboard.nextInt();

out.print("How many guests? ");

numGuests = keyboard.nextInt();

guestsIn[whichRoom] = numGuests;

out.println();

out.print("Do another? ");
} while (keyboard.findWithinHorizon(".", @).charAt(Q) == 'Y');
out.println();

(continued)

CHAPTER 19 Out of Many, One 461

out.println("Room Guests");

for (int roomNum = @; roomNum < 10; roomNum++) {
out.print(roomNum);
out.print(" "),
out.println(guestsIn[roomNum]);

keyboard.close();

Hey! The program in Listing 19-5 is big! It may be the biggest program so far in
this book. But big doesn’t necessarily mean difficult. If each piece of the program
makes sense, you can create each piece on its own and then put all the pieces
together. Voila! The code is manageable.

Looping in Style

462

The last loop in Listing 19-5 program looks something like this:

for (int roomNum = @; roomNum < 1@; roomNum-++) {

out.println(guestsIn[roomNum]);

You can simplify this code by using an enhanced for loop. To create an enhanced
for loop, you make up a new variable name. What about the name howMany? I like
that name:

for (int howMany : guestsIn) {
out.println(howMany);

Whatever name you choose, the new variable ranges over the values in the guest-
sIn array. For example, if the guestsIn array stores the int values 1, 4, 0, 2, 2, 1,
4, 3, 0, and 2, then the value of howMany becomes 1, then 4, then 0, then 2, and so
on. The output of the code looks like this:

PART 5 Smart Java Techniques

TRY IT OUT

N © W b » NN O B

Enhanced for loops are nice and concise. But don’t be too eager to use enhanced
loops with arrays. This feature has some nasty limitations. For example, my new
howMany loop doesn’t display room numbers — the array indices 0 through 9.
Unfortunately, an enhanced loop doesn’t provide ready access to an array’s
indices.

Here's another unpleasant surprise. Start with the following loop from
Listing 19-4:

for (int roomNum = @; roomNum < 10; roomNum++) {
guestsIn[roomNum] = diskScanner.nextInt();
Turn this traditional for loop into an enhanced for loop and you get the following
misleading code:
for (int howMany : guestsIn) {

howMany = diskScanner.nextInt(); //Don't do this

The new enhanced for loop doesn’t do what you want it to do. This loop reads
values from an input file and then dumps these values into the garbage can. In the
end, the array’s values remain unchanged.

It’s sad but true. To make full use of an array, you have to fall back on Java’s plain
old for loop.

Would you like to flex some array muscles? If so, here are some things for you
to try:

CHAPTER 19 Out of Many, One 463

INITIALIZE AN ARRAY

This experiment comes in three parts:

3 Run the following program to find out how array initialization works:

public class Main {
public static void main(String[] args) {
int[] myArray = { 9, 21, 35, 16, 21, 7 };
System.out.println(myArray[Q]);

)
)
[61);

o]
System.out.println(myArray[1]
System.out.println(myArray[5]
// System.out.println(myArray
}

3 What happens when you uncomment the last System.out.println call in
the previous bullet's program and then run the program? Why does this
happen?

3 What happens when you try to replace one line of code with two lines in the
first bullet's program?

int[] myArray;
myArray = { 9, 21, 35, 16, 21, 7 };

Does this explain why an array initialization isn't called an array assignment?

PICK AN ELEMENT
Create a program containing the following array initialization:
int[] amounts = {19, 21, 16, 14, 99, 86, 31, 19, @, 101};
In your program, ask the user to input a position number — a number from 0 to 9.
Have your program respond by displaying the value in that position of the

amounts array. For example, if the user inputs 0, the program displays 19. If the
user inputs 1, the program displays 21. And so on.

DISPLAY THE ELEMENTS

Create a program containing the following array initialization:

int[] amounts = {19, 21, 16, 14, 99, 86, 31, 19, @, 101};

46/, PART 5 SmartJava Techniques

Add code to display all indices and values in the array. The first three lines of out-
put should look like this:

The @ element's value is 19.

The 1 element's value is 21.

The 2 element's value is 16.

DISPLAY SOME OF THE ELEMENTS

Create a program containing the following array initialization:
int[] amounts = {19, 21, 16, 14, 99, 86, 31, 19, 0, 101};

Add a loop that displays the values in even-numbered positions of the array. The
program’s output is 19 16 99 31 0.

GENERATE SQUARES

I've created a program that uses a loop to generate an array of the first 50 perfect
squares. Here’s my program, with some code missing:

public class Main {

public static void main(String[] args) {

int[] squares = ___________ ;

for () {

squares[i] = _____ ;

’

)
)7
)
]

System.out.println(squares[Q]
1]
2]

System.out.println(squares[49

System.out.println(squares

System.out.println(squares

[
[
[21);
[49]);

Fill in the missing code. When you run the program, the output looks like this:

2401

CHAPTER 19 Out of Many, One 465

FIND ONE VACANCY

Someone shows up at the front desk, asking for a room. The hotel clerk doesn’t
need a list of all vacant rooms. All the clerk needs is the number of a single vacant
room. Any vacant room will do. Modify the code in Listing 19-4 so that it shows
only one room number (the number of a room that’s vacant).

SELECT A ROOM

Modify the code in Listing 19-5 so that it doesn’t ask the user which room number
to put guests in. The code automatically selects a room from the rooms that are
vacant.

HOW MANY GUESTS?

Modify the code in Listing 19-4 or Listing 19-5 so that the program displays the
total number of guests in the motel. (To do this, the code adds up the numbers of
guests in each room.)

AN ARRAY OF STRINGS

A fancy hotel in Philadelphia has seven conference rooms — each named after one
of the city’s distinguishing characteristics. Add code to display the names of the
seven rooms:

public class MeetingRooms {

public static void main(String[] args) {
var roomName = new String[7];
roomName[@] = "Liberty Bell";

roomName [1] = "Mummers";

roomName[2] = "Rocky Balboa";

(0]
[1]
[2]
roomName [3] = "Cheesesteak";
[4]
(5]
(6]

roomName[4] = "Hoagie";
roomName [5] = "Water Ice";
roomName[6] = "El Train";

// Your code goes here.

466 PART 5 Smart)ava Techniques

AN ARRAY OF PURCHASES

With the guestsIn array from Listing 19-4, each value is an int. Create an array
in which each value is a Purchase. Use the Purchase class from Chapter 13.

FUN WITH WORD ORDER

Write a program that inputs six words from the keyboard. The program outputs
six sentences, each with the first word in a different position. For example, the
output of one run might look like this:

only I have eyes for you.
I only have eyes for you.
I have only eyes for you.
I have eyes only for you.
I have eyes for only you.
I have eyes for you only.

PARALLEL ARRAYS

Create a new Intelli] project and put the following code in the project’s main
method:

char[] cipher :{ g, UEY, Yk, T0Y, Y@l 'e", YA, ‘=", . e,
&, e, "m', "g’, "w', "w', "i', ‘@', "=", ‘W', "y, ‘@,
g, e, ", ‘@ };

char[] plain :{ @, g, "s', "€', "', ‘@, Y@, ‘w’, "®", k",

.g.l =, '@", vyv, UgRl e e gl Yt Y@, et Y,

®, .j., v, @ }’

This code creates two arrays. In the first array, cipher[@] is 's', cipher[1] is
"f', cipher[2] is 'k', and so on. In the second array, plain[@] is 'e',plain[1]
is 'q',plain[2] is 's', and so on.

Finish writing the main method so that when the user types a lowercase letter, the
program looks for that letter in the cipher array and responds by displaying the
corresponding letter in the plain array.

For example, if the user types the letter s, the program answers back with the let-
ter e. (The program discovers that s is in the 0 position of the cipher array, so the
program displays the letter in the 0 position of the plain array. And the letter in
the o0 position of the plain array is e.)

Similarly, if the user types £, the program displays g because £ is in the 1 position
of the cipher array and q is in the 1 position of the plain array.

CHAPTER 19 Out of Many, One 467

DECIPHER CIPHERTEXT

Here’s a challenging task for all you ciphertext enthusiasts! Enclose in a loop the
code that you just wrote for the “Parallel arrays” experiment. Have the user type
a word, followed immediately by a blank space. When the user presses Enter,
the program repeatedly does what the code in the parallel-arrays experiment
did: The program looks up all the user’s letters in the cipher array and displays
the corresponding plain array letters. For example, if the user types rwpw, the
program responds by displaying the word java.

When Good Arrays Go Bad

468

Arrays are useful, but they have some serious limitations. Imagine that you store
customer names in some predetermined order. Your code contains an array, and
the array has space for 100 names:

var name = new String[100];

for (int i = ©; i < 100; i++) {

name[i] = diskScanner.next();

All is well until, one day, your 101st customer shows up. You enter data for the
101st customer, hoping desperately that the array with 100 components can
expand to fit your growing needs.

No such luck. Arrays don’t expand. You have to turn away your 101st customer.
Too bad! That one was planning to write you a stellar review!

“In my next life, I’ll create arrays of length 1,000,” you say to yourself. And when
your next life rolls around, you do just that:

var name = new String[1000];
for (int i = ©; i < 1000; i++) {

name[i] = = diskScanner.next();

But during your next life, an economic recession occurs. Rather than have 101
customers, you have only 3 customers. Now you’re wasting space for 1,000 names
when space for 3 names would do.

And what if no economic recession occurs? You have 825 customers. You're sailing
along with your array of size 1,000, using a tidy 825 spaces in the array.

PART 5 Smart Java Techniques

The components with indices 0 through 824 are being used, and the components
with indices 825 through 999 are waiting quietly to be filled.

One day, a brand-new customer shows up. Because your customers are stored in
order (alphabetically by last name or numerically by Social Security number or
whatever), you want to squeeze this customer into the correct component of your
array. The trouble is that this customer belongs very early on in the array, at the
component with index 7. What happens then?

You take the name in component number 824 and move it to component 825.
Then you take the name in component 823 and move it to component 824. Take
the name in component 822 and move it to component 823. You keep doing this
until you’ve moved the name in component 7. Then you put the new customer’s
name into component 7. What a pain! Sure, the computer doesn’t complain. (If the
computer has feelings, it probably likes this kind of busy work.) But, as you move
around all these names, you waste processing time, you waste power, and you
waste all kinds of resources.

“In my next life, I’ll leave three empty components between every two names.”
And, of course, your business expands. Eventually, you find that three aren’t enough.

What to Do When Arrays Go Awry

The issues raised in the previous section aren’t new. Computer scientists have
been working on these issues for a long time. They haven’t discovered any magic
one-size-fits-all solution, but they’ve discovered some clever tricks.

The Java API has a bunch of classes known as collection classes. Each collection
class has methods for storing bunches of values, and each collection class’s meth-
ods use some clever tricks. For you, the bottom line is this: Certain collection
classes deal as efficiently as possible with the issues raised in the previous section.
If you have to deal with such issues when writing code, you can use these collec-
tion classes and call the classes’ methods. Rather than fret about a customer
whose name belongs in position 7, you can just call a class’s add method. The
method inserts the name at a position of your choice and deals reasonably with
whatever ripple effects have to take place. In the best circumstances, the insertion
is very efficient. In the worst circumstances, you can rest assured that the code
does everything the best way it can.

Using an ArrayList

One of the most versatile of Java’s collection classes is the Arrayl ist. Listing 19-6
shows you how it works.

CHAPTER 19 Out of Many, One 469

m Working with a Java Collection

import java.io.File;

import java.io.FileNotFoundException;
import java.util.Arraylist;

import java.util.Scanner;

import static java.lang.System.out;
public class ShowNames {

public static void main(String[] args) throws FileNotFoundException {

var people = new ArraylList<String>();
var diskScanner = new Scanner(new File("names.txt"));

while (diskScanner.hasNext()) {
people.add(diskScanner.nextLine());
out.println(people);

people.remove(Q);
out.println(people);

people.add(2, "Walter Poleshuck");
out.println(people);

out.println(people.get(4));

diskScanner.close();

Figure 19-8 shows you a sample names. txt file. The code in Listing 19-6 reads
that names . txt file and prints the stuff in Figure 19-9.

= names.txt
Gracie Katz
James Newton
Felicia Katz

FIGURE 19-8: Joe Fisher
Several names in Harriet Ritter
afile.

470 PART5 Smart Java Techniques

FIGURE 19-9:
The code in
Listing 19-6
changes some of
the names.

CROSS
REFERENCE

[6racie Katz, James Newton, Felicia Katz, Joe Fisher, Harriet Ritter]
[James Newton, Felicia Katz, Joe Fisher, Harriet Ritter]

[James Newton, Felicia Katz, Walter Poleshuck, Joe Fisher, Harriet Ritter]
Harriet Ritter

When you declare an array, you give Java two important pieces of information —
the number of values stored in the array and the type of each value in the array.
For example, in Listing 19-5, the line

var guestsIn = new int[10];

tells Java that guestsIn stores ten values and that each of these values is an int
value. In contrast, when you declare an ArraylL ist, you give Java only one piece of
information — namely, the type of each value in the ArrayL ist. For example, in
Listing 19-6, the declaration

var people = new ArraylList<String>();

tells Java that the people list will be storing String values. In this declaration, the
word <String> with angle brackets is called a generic parameter. Later on in the
program, if you try to hide an int value inside the people list, Java tells you to put
that stinking int value somewhere else.

For more details about generic parameters, see the “Esoteric generics” sidebar,
later in this chapter.

The Arrayl ist declaration in Listing 19-6 says nothing about the number of val-
ues the list can store. To bring this point home, look at the loop in Listing 19-6:

while (diskScanner.hasNext()) {

people.add(diskScanner.nextlLine());

The loop repeatedly takes whatever name it finds on a line of the input file and
appends that name to the end of the list. What happens if the input file contains
10,000 names? Does the ArraylList run out of space? Might the ArraylList waste
lots of space?

None of the above. Java’s ArrayList knows how to shrink and grow. Starting with
the file shown in Figure 19-8, the ArrayList ends up storing 5 values. But if the
names . txt file were 100,000 lines long, the ArraylL ist in Listing 19-6 would end
up having 100,000 values.

CHAPTER 19 Out of Many, One 471

When the program in Listing 19-6 finishes reading the names.txt file, some
interesting things happen:

3 The program displays the values it read from the names. txt file.

This display is the top line in Figure 19-9. When you call print1n with an
Arrayl ist parameter, Java puts commas between the list's values and
surrounds the entire list with square brackets. If you don't like commas and
square brackets, you can get more control using an enhanced for loop:

for (String aName : people) {
out.println("Hello, " + aName);

}
3 The program removes an element from the list.

The people variable refers to an ArrayL ist object. When you call that
object's remove method,

people.remove(0Q);

you eliminate a value from the list. In this case, you eliminate whatever value
is in the list's initial position (the position numbered 0). So, in Listing 19-6, the
call to remove takes the name Gracie Katz out of the list. (Refer to the
second line in Figure 19-9.)

3 The program adds an element in the middle of the list.

An ArraylL ist object has two different add methods. The add method inside
the loop has only one parameter. This one-parameter add method appends
its value to what's currently the end of the ArrayList object.

In contrast, the method that adds Walter Poleshuck to the list has two
parameters: a position number and a value to be added. The statement

people.add(2, "Walter Poleshuck");

inserts a name into position number 2. (After Gracie has been removed,
position number 2 is the position occupied by Joe Fisher, so Joe moves to
position 3, and Walter Poleshuck becomes the number 2 person.) The result
appears in the third line of Figure 19-9.

3 The program displays a particular element in the list.

The call people.get(4) stands for the string "Harriet Ritter", so Harriet's
name appears on the fourth line in Figure 19-9. Calling people.get(4) in
Listing 19-6 is like asking for guestsIn[4] in any of this chapter's hotel array
examples. With either an array or an ArraylL ist, you can pinpoint individual
elements.

4772 PART 5 SmartJava Techniques

ESOTERIC GENERICS

In the ArraylList of Listing 19-6, each element is a String. The declaration’s generic
parameter tells you so:

var people = new Arraylist<String>();
You can shove almost any type into a generic parameter. For example, in Chapter 13,
you declare your own Purchase class. You can create an ArrayList to store Purchase
instances:

var recentPurchases = new Arrayl ist<Purchases();

In Chapter 15, you declare your own Account class. You can make an ArraylL ist to
hold your Account instances:

var activeAccounts = new Arraylist<Account>();

Imagine a program that reads from ten different files. You can create an ArraylL ist of
File objects and an Arrayl ist of Scanner objects.

The only gotcha for a novice programmer is that you can't store primitive type values in
anArrayl ist. For example, you can't write

var tallies = new Arraylist<int>(); //Bad!
Chapter 7 lists six of Java's primitive types, but that chapter doesn't describe the corre-
sponding wrapper types. You get a glimpse of the wrapper types in Chapter 14, where
you encounter Java's Integer class. The word Integer represents a class, and a class
can have methods. So, in Chapter 14, you use the Integer class's parseInt method:
numberOfChips = Integer.parselnt(reply);
Best of all, Integer can be a generic parameter.
var tallies = new Arraylist<Integer>(); // Good!
tallies.add(150);
tallies.add(225);

out.printin(tallies.get(@) + tallies.get(1)); // Displays 375

Each of Java’s primitive types has a corresponding wrapper class. The Table 19-1 tells
you all about it.

CHAPTER 19 473

TABLE 1

9-1:

Wrapper Classes for Primitive Types

Primitive Type

Wrapper Class

byte Byte
short Short
int Integer
long Long
float Float
double Double
char Character
boolean Boolean
Follow my lead from Listing 19-6. When you use an ArraylL ist in your code, begin
by importing java.util.ArraylList.
REMEMBER . . .
Editor’s note: Near the start of this section, that untrustworthy author Barry Burd
writes, “. . . when you declare an ArraylList, you give Java only one piece of
N4 information — namely, the type of each value in the ArraylList.” He wrote this
because, in his words, “the paragraph flows better when I don’t write about all the
TECHNICAL

474

STUFF

details.” What a schmo he is! In truth, you can supply more than one piece of
information when you declare a new ArraylList. You can even omit the generic
parameter and supply almost no information. For more about all this, consult
Oracle’s official Java API documentation at

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/
java/util/ArraylList.html

Java’'s many collection classes

The Arrayl ist class is only the tip of the Java collections iceberg. The Java library
contains many collections classes, each with its own advantages. Table 19-2 con-
tains an abbreviated list.

Each collection class has its own set of methods. To learn about these methods
and to find out which collection classes best meet your needs, visit the Java API
documentation pages at

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/
java/util/package-summary.html#CollectionsFramework

PART 5 Smart Java Techniques

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/package-summary.html#CollectionsFramework
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/package-summary.html#CollectionsFramework

TABLE 19-2: Some Collection Classes

Class Name Characteristic

ArraylList Aresizable array.
LinkedList A list of values, each having a field that points to the next one on the list.
Stack A structure that grows from bottom to top. The structure is optimized for access to the top-

most value. You can easily add a value to the top or remove the value from the top.

Queue A structure that grows at one end. The structure is optimized for adding values to one end
(the rear) and removing values from the other end (the front).

Priority- A structure, like a queue, that lets certain (higher-priority) values move toward the front.
Queue

HashSet A collection containing no duplicate values.

HashMap A collection of key/value pairs.

I%I Once again, I'd like to put you to work:

AT THE NAME GAME
Using the names. txt file in Figure 19-8, modify Listing 19-6 so that the output
looks like this:

Harriet Ritter
CGracie Katz
Felicia Katz
James Newton

Joe Fisher

Use the Arrayl ist class’s add and remove methods.

FIND THE LARGEST VALUE

Create an Arrayl ist containing Integer values. Then step through the values in
the list to find the largest value among all values in the list. For example, if the list
contains the numbers 85, 19, 0, 103, and 13, display the number 103.

GET YOUR DUCKS IN A ROW

Create an ArraylList containing String values in alphabetical order. When the
user types an additional word on the keyboard, the program inserts the new word
into the ArraylL ist in the proper (alphabetically ordered) place.

CHAPTER 19 Out of Many, One 475

For example, imagine that the list starts off containing the words "cat", "dog",
"horse", and "zebra" (in that order). After the user types the word fish on the
keyboard (and presses Enter), the list contains the words "cat", "dog", "fish",
"horse", and "zebra" (in that order).

To write this program, you may find the String class’s compareToIgnoreCase
method and the ArraylList class’s size method useful. You can find out about
these methods by visiting one of these:

https://docs.oracle.com/en/java/javase/17/docs/api/ java.base/
java/lang/String.html

https://docs.oracle.com/en/java/javase/17/docs/api/ java.base/
java/util/ArraylList.html

1..76 PART 5 Smart Java Techniques

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html

IN THIS CHAPTER

» Swinging into action

» Displaying an image

» Using buttons and text boxes

Chapter 20
Oooey-GUI Was a Worm

ON THE
WEB

ave you ever heard that wonderful old joke about a circus acrobat jumping
over mice? Unfortunately, I'd get sued for copyright infringement if I
included the joke in this book.

Anyway, the joke is about starting small and working your way up to bigger things.
That’s what you do when you read Beginning Programming with Java For Dummies,
6th Edition.

Most of the examples in this book are command line programs. A command line
program has no windows, no dialog boxes — nothing of that kind. With a com-
mand line program, the user types characters in Console view, and the program
displays output in the same Console view.

These days, few publicly available programs are command line. Almost all pro-
grams use a GUI — a graphical user interface. So if you’ve read every word of this
book so far, you’re probably saying to yourself, “When am I going to find out how
to create a GUI?”

Well, now’s the time! This chapter introduces you to the world of GUI program-
ming in Java.

You can see GUI versions of many examples from this book by visiting the book’s
website (http://beginprog.allmycode.com).

CHAPTER 20 Oooey-GUI Was aWorm 477

http://beginprog.allmycode.com/

Put Some Swing in Your Step

478

PART 5

Java’s Swing classes create graphical objects on a computer screen. The objects can
include buttons, icons, text fields, check boxes, and other good things that make
windows so useful.

JAVA GUIs

Java comes with three sets of classes for creating GUI applications:

® The Abstract Window Toolkit (AWT): The original set of classes, dating back to
JDK 1.0.

Classes in this set belong to packages whose names begin with java.awt.
Components in this set have names like Button, TextField, Frame, and so on.

The AWT implements only the kinds of components that were available on all com-
mon operating systems in the mid-1990s. So, using AWT, you can add a button to
your application, but you can't easily add a table or a tree.

® Java Swing: A set of classes created to fix some of the difficulties posed by the
use of the AWT. Swing was introduced in 1998 as part of Java 1.2 (also known as
J2SE 1.2).

Classes in this set belong to packages whose names begin with javax.swing.
Components in this set have names like JButton, JTextField, and JFrame.

In a Swing program, you can create table components, tree components, and many
other kinds of components. Java’'s Swing classes replace some (but not all) of the
classes in the older AWT. To use some of the Swing classes, you have to call on
some of the old AWT classes.

® JavaFX: An alternative to Swing, announced in May 2007. JavaFX comes with
new(er) versions of Java 7 and with all later versions of Java.

Classes in this set belong to packages whose names begin with javafx.

JavaFX supports over 100 kinds of components. (Sure, you want a Button compo-
nent. But do you also want an Accordion component? JavaFX has one.) In addition,
JavaFX supports multitouch operations and takes advantage of each processor's
specialized graphics capabilities. Unlike AWT and Swing, the JavaFX platform isn't
included as part of the standard Java SDK. So, if you want to create a JavaFX applica-
tion, you have to do some additional project setup steps.

For more information about JavaFX, visit https: //openjfx.io.

https://openjfx.io/

The name Swing isn’t an acronym. When the stewards of the Java programming
language were first creating the code for these classes, one of the developers
named it Swing because swing music was enjoying a nostalgic revival. And yes, in
addition to String and Swing, the standard Java API has a Spring class. But that’s
another story.

Actually, Java’s API has several sets of windowing components. For details, see the
nearby “Java GUIs” sidebar.

The merry window

The program in Listing 20-1 displays a window on your computer screen. To see
the window, look at Figure 20-1.

FIGURE 20-1:
What a nice
window!

The code in Listing 20-1 has little logic of its own. Instead, this code pulls together
a bunch of classes from the Java API.

m Creating a Window with an Image in It

import javax.swing.Imagelcon;

import javax.swing.JFrame;
import javax.swing.JLabel;

public class ShowPicture {
public static void main(String[] args) {

var frame = new JFrame();

var icon = new Imagelcon("androidBook. jpg"); .
(continued)

CHAPTER 20 Oooey-GUlWasaWorm 479

var label = new JLabel(icon);

frame.add(label);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();

frame.setVisible(true);

Over in Listing 13-5 (in Chapter 13), I created an instance of the Purchase class
with the line

var purchasel = new Purchase();

In Listing 20-1, I do the same kind of thing — I create instances of the JFrame,
Imagelcon, and JLabel classes with the following lines:

var frame = new JFrame();
var icon = new Imagelcon("androidBook.jpg");

var label = new JLabel(icon);

Here’s some gossip about each of these lines:

¥ A JFrame is like a window (except that it's called a JFrame, not a window).
In Listing 20-1, the line

var frame = new JFrame();

creates a JFrame object, but this line doesn't display the JFrame object
anywhere. (The displaying comes later in the code.)

3 An Imagelcon object is a picture. At the root of the program'’s project
directory, | have a file named androidBook . jpg. That file contains the picture
shown earlier, in Figure 20-1. So, in Listing 20-1, the line

var icon = new Imagelcon("androidBook.jpg");

creates an ImageIcon object — an icon containing the androidBook . jpg
picture.

For some reason that I'll never understand, you may not want to use my
androidBook . jpg image file when you run Listing 20-1. You can use almost
any .gif, . jpg, or .png file in place of my (lovely) Android book cover image.

REMEMBER To do so, copy your own image file to IntelliJ's Project tool window. (Drag it to
the root of this example’s project folder.) Then, in IntelliJ's editor, change the
name androidBook . jpg to your own image file's name. That's it!

480 PART 5 Smart Java Techniques

REMEMBER

LD,
TECHNICAL
STUFF

3 I need a place to put the icon. | can put it on something called a JLabel. So,
in Listing 20-1, the line

var label = new JlLabel(icon);

creates a JLabel object and puts the androidBook . jpg icon on the new
label's face.

If you read the previous bullets, you may get a false impression. The wording may
suggest that the use of each component (JFrame, ImageIcon, JLabel, and so on)
is a logical extension of what you already know. “Where do you put an ImageIcon?
Well, of course, you put it on a JLabel.” When you’ve worked long and hard with
Java’s Swing components, all these things become natural to you. But until then,
you look up everything in Java’s API documentation.

You never need to memorize the names or features of Java’'s API classes. Instead,
you keep Java’s API documentation handy. When you need to know about a
class, you look it up in the documentation. If you need a certain class often
enough, you’ll remember its features. For classes that you don’t use often, you
always have the docs.

For tips on using Java’'s API documentation, see my article “Making Sense of
Java’s API Documentation,” at

www . dummies.com/programming/java/making-sense—-of-javas-
api-documentation

A class act

What is a JFrame? Like any other class, a JFrame has several parts. For a simplified
view of some of these parts, see Figure 20-2.

Like the String in Figure 14-6 (in Chapter 14), the JFrame class has both fields
and methods. The fields include the frame’s height and width. The methods
include add, setDefaultCloseOperation, pack, and setVisible. All told, the
JFrame class has about 320 methods.

For technical reasons too burdensome for this book, you can’t refer to the height
andwidth fields of a JFrame with statements like frame . height = 485 ormyWidth =
frame.width. Those statements don’t work. But you can use methods that access
those fields. For example, you can write myWidth = frame.getWidth() or frame.
setSize(375, 485). For more information, visit

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/
javax/swing/JFrame.html

CHAPTER 20 Oooey-GUIWasaWorm 481

http://www.dummies.com/programming/java/making-sense-of-javas-api-documentation
http://www.dummies.com/programming/java/making-sense-of-javas-api-documentation
https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/JFrame.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/JFrame.html

public class JFrame {
int height;
int width;
public Component add()
public void setDefaultCloseOperation ()
public void pack()
public void setVisible()

JFrame
height width add setDefaultCloseOperation pack setVisible
FIGl'JRE 2'9'2: 485 375 (method to place (method to decide what (method to shrink- (method to make the
A simplified something onthe happens when the user closes wrap the frame) frame visible or invisible)

depiction of the the frame)

JFrame class.

frame)

Here’s the scoop on the JFrame methods in Listing 20-1:

¥ The call frame.add(label) plops the label onto the frame. The label displays
my androidBook . jpg picture, so this call makes the picture appear on
the frame.

3 Acallto frame.setDefaultCloseOperation tells Java what to do when you
try to close the frame. (In Windows, you click the X in the upper right corner,
by the title bar. On a Mag, the little red Close button is in the frame’s upper left
corner.) For a frame that's part of a larger application, you may want the
frame to disappear when you click the X or the Close button, but you probably
don't want the application to stop running.

In Listing 20-1, the frame is the entire application — the whole enchilada.
When you click the X or the red Close button, you want the Java Virtual
Machine to shut itself down. To make this happen, you call the setDefault
CloseOperation method with parameter JFrame .EXIT_ON_CLOSE. The
other alternatives are described in this list:

JFrame.HIDE_ON_CLOSE: The frame disappears, but it still exists in the
computer’'s memory.

JFrame.DISPOSE_ON_CLOSE: The frame disappears and no longer exists in
the computer's memory.

JFrame.DO_NOTHING_ON_CLOSE: The frame still appears, still exists, and
still does everything it did before you clicked the X. Nothing happens when
you click X. So, with this DO_NOTHING_ON_CLOSE option, you can become
quite confused.

482 PART 5 Smart)ava Techniques

If you don't call setDefaultCloseOperation, Java automatically chooses the

HIDE_ON_CLOSE option. When you click the X, the frame disappears but the
Java program keeps running. Of course, with no visible frame, the running of

WARNING Listing 20-1 doesn't do much. The only noticeable effect of the run is your
development environment's behavior. With Intellij IDEA, a little square near
the top of the main window retains its bright red color. When you hover over
the square, you see the Stop tooltip. To end the Java program'’s run (and to
return the square to its light-gray hue), simply click this little square.

¥ Aframe’s pack method shrink-wraps the frame around whatever has been
added to the frame. Without calling pack, the frame can be much bigger or
much smaller than is necessary.

Unfortunately, the default is to make a frame much smaller than necessary. If,
in Listing 20-1, you forget to call frame . pack(), you get the tiny frame shown
in Figure 20-3. Sure, you can enlarge the frame by dragging the frame’s edges
with the mouse. But why should you have to do that? Just call frame . pack()
instead.

¥ Calling setVisible(true) makes the frame appear on your screen. If you
forget to call setVisible(true) (and | often do), when you run the code in
Listing 20-1, you see nothing on your screen. It's always disconcerting until you
figure out what you did wrong.

FIGURE 20-3:

On aMag, a
frame that hasn't ®
been packed or
otherwise
resized.

®

Constructor calls

In Listing 13-5 (in Chapter 13), I created an instance of the Purchase class with
the line

var purchasel = new Purchase();

The code in Listing 20-1 does the same kind of thing. In Listing 20-1, I create an
instance of the JFrame class with the following line:

var frame = new JFrame();

Compare Figure 13-4 (in Chapter 13) with this chapter’s Figure 20-4.

CHAPTER 20 Oooey-GUIWasaWorm 483

FIGURE 20-4:

An object created
from the JFrame
class.

5, JFrame java

public class Jframe {
int height;
int width;
public Component add() ...

®®

frame (an object)
height
width
add ()

In both figures, a new SomethingOrOther () call creates an object from an existing
class:

3 In Chapter 13, | create an instance of my Purchase class.

This object represents an actual purchase (with a purchase amount and a tax,
for example).

3 In this chapter, | create an instance of the JFrame class.

This object represents a frame on the computer screen (a frame with borders,
a Close button, and so on). In a more complicated application — an app that
displays several frames — the code might create several objects from a class
such as JFrame. (See Figure 20-5.)

In Listing 20-1, the lines

var frame = new JFrame();
var icon = new Imagelcon("androidBook.jpg");
var label = new JlLabel(icon);

look as though they contain method calls. After all, a method call consists of a
name followed by parentheses. You might put some parameters between the open
and close parentheses. The expression keyboard.nextLine() is a call to a method
named nextlLine. So, in Listing 20-1, is JFrame() a call to a method named
JFrame? No, it’s not.

484 PART 5 Smart Java Techniques

FIGURE 20-5:
Creating three
objects from the
JFrame class.

s JFrame java

public class Jframe {
int height;
int width;
publiec Component add() ...

4

.)
N
e B o
595> %3
2%
)
2% %(o
z
[]] ® e [] [
framel (an object) frame2 (an cbject) frame3 (an object)
height height height
width width width
add () add () add()

In the expression new JFrame(), Java’s new keyword signals a call to a construc-
tor. A constructor is like a method, except that a constructor’s name is the same
as the name of a Java class. Java’s standard API contains classes named JFrame,
Imagelcon, and JLabel, and the code in Listing 20-1 calls the JFrame, ImageIcon,
and JLabel constructors.

As the terminology suggests, a constructor is a piece of code that constructs an
object. So, in Listing 20-1, when you call

var frame = new JFrame();

you make a frame variable refer to a newly constructed object (an object con-
structed from the JFrame class). In the same way, the declaration

var purchasel = new Purchase();

in Chapter 13 makes purchase1 refer to a new Purchase object using the new Pur-
chase() constructor call.

Constructors and methods have a lot in common with one another. You can’t call
a method without having a corresponding method declaration somewhere in the
code. (In the case of Java’s nextL ine method, the method declaration lives some-
where inside Java’s enormous bunch of API classes.) The same is true of construc-
tors. You can’t call new JFrame() without having a constructor for the JFrame
class somewhere in your code. And, sure enough, inside the Java API class, you can

CHAPTER 20 Oooey-GUIWasaWorm 485

find a declaration for the JFrame() constructor. The code looks something like
this:

public class JFrame {
int height;
int width;
public Component add() ...
public void setDefaultCloseOperation() ...
public void pack() ...
public void setVisible() ...

/%%

% Constructs a new frame that is initially invisible.
*/

public JFrame() {

The constructor declaration looks almost like a method declaration. But notice
that the constructor declaration doesn’t start with public void JFrame() or with
public double JFrame() or with public anything JFrame(). Aside from the
optional word public, a constructor declaration contains only the name of the
class whose object is being constructed. More on this in the next section.

A division of labor

In your Java-related travels, you see several variations on the code in Listing 20-1.
This section explores one such variation.

This section’s example does exactly what the previous section’s example does —

the only difference is the way the two examples deal with the JFrame class. This
section’s code is in Listings 20-2 and 20-3.

m Extending Java's JFrame Class

import javax.swing.Imagelcon;

import javax.swing.JFrame;
import javax.swing.JLabel;

public class MyFrame extends JFrame {

486 PART 5 Smart Java Techniques

public MyFrame() {
var icon = new Imagelcon("androidBook. jpg");
var label = new JLabel(icon);

add(label);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

pack();
setVisible(true);

m Making a MyFrame Object

REMEMBER

public class ShowPictureAgain {

public static void main(String[] args) {
new MyFrame();

To run the code in Listings 20-2 and 20-3, one Intelli] project must contain two
different files — a file named MyFrame. java and another file named ShowPic—
tureAgain. java. For details, refer to Chapter 13.

Frame changer

In Listing 20-2, the words extends JFrame are particularly important. When you
see Java’s extends keyword, imagine replacing that keyword with the phrase is a
kind of:

public class MyFrame is a kind of JFrame {

When you type MyFrame extends JFrame, you declare that your new MyFrame
class has the fields and methods that are built into Java’s own JFrame class, and
possibly more. For example, a JFrame instance has setDefaultCloseOperation,
pack, and setVisible methods, so every new MyFrame instance has setDefault-
CloseOperation, pack, and setVisible methods (see Figure 20-6).

When you put the words extends JFrame in your code, you get the JFrame meth-
ods for free. The MyFrame class’s code doesn’t need declarations for methods, such
as setDefaultCloseOperation, pack, and setVisible. Those declarations are
already in the JFrame class in Java’s API. The only declarations in the MyFrame

CHAPTER 20 Oooey-GUIWasaWorm 487

class’s code are for brand-new things — things that are specific to your newly
declared MyFrame class. It’s as though Listing 20-2 contained the following
information:

public class MyFrame is a kind of JFrame {
// And in addition to what's in JFrame, MyFrame also has

// a brand new constructor:

public MyFrame() {

// Etc.
}
}
4% JFrame jova
public class MyFrame extends JFrame {
public MyFrame() (
}
}
e ®
frame (an cbject)
add ()
FIGURE 20-6: pack ()
Defaul tC1 e 0
AMyFrame satvisible()
instance has ...and many more!
many methods.

In Listing 20-3, the words new MyFrame() get the MyFrame constructor to do its
work. And the constructor in Listing 20-2 does quite a bit of work! The construc-
tor does the stuff that the main method does in Listing 20-1:

3 The constructor creates an ImageIcon containing the androidBook .
Jjpg picture.

3 The constructor creates a JLabel object and puts the androidBook . jpg icon
on the new label's face.

3 The constructor adds the JLabel object.

Time out! What's being added to what? In Listing 20-1, the statement

frame.add(label);

488 PART 5 SmartJava Techniques

&

TRY IT OUT

adds the JLabel object to the frame. But in Listing 20-2, there's no frame
variable. In Listing 20-2, all you have is

add(label);

Well, here's the good news: Inside a constructor declaration, the object that
you're constructing is “a given.” You don't name that new object in order to
refer to that new object. It's as though the constructor’s code looked like this:

public MyFrame() {
var icon = new Imagelcon("androidBook.jpg");
var label = new JlLabel(icon);
new_frame_that _is_being constructed.add(label);
new._frame_that is_being _constructed

.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

new_frame_that _is_being constructed. pack() ;
new_frame_that_is_being constructed.setVisible(true);

Here’s how the constructor in Listing 20-2 finishes its work:

»

»

»

»

The extends keyword adds a fundamental idea to Java programming — the notion
of inheritance. In Listing 20-2, the newly created MyFrame class inherits fields and
methods that are declared in the existing JFrame class. Inheritance is a pivotal

The constructor adds the JLabel object to the MyFrame object that's being
constructed.

The constructor tells the Java Virtual Machine to shut itself down when you
close the frame.

The constructor shrink-wraps the frame around the image that appears on
the frame.

The constructor makes the frame appear on your screen.

feature of an object-oriented programming language.

Make some changes to this chapter’s programs.

MIXIT UP

Change the order of the statements in the main method of Listing 20-1. Do the
same with the statements in the constructor of Listing 20-2. Does the ordering of
the statements make a difference? Must any statements come before other state-

ments in the code?

CHAPTER 20 Oooey-GUI Was a Worm

MAKE IT YOUR OWN

Run the code in Listing 20-1 with your own image file in place of my androidBook .
jpg file. Do the same with the code in Listings 20-2 and 20-3.

Drag-and-Drop for GUI Greatness

GUI programs have these two interesting characteristics:

3 GUI programs typically contain lots of code.
Much of this code differs little from one GUI program to another.
3 GUI programs involve visual elements.
The best way to describe visual elements is to “draw” them. Describing them

with code can be slow and unintuitive.

To make your GUI life easier, you can use Intelli]’s GUI Designer to describe your
program visually, and then it automatically turns your visual description into a
Java application.

Hello, GUI Designer

Consider this wise old saying: “A picture is worth a thousand words.” In this sec-
tion, you use pictures instead of words to create a new GUI window. Follow these
steps:

1. use Intelli) IDEA to create a new Java project.

As you march through IntelliJ's dialog boxes, don't put a check mark in the
Create Project from Template check box.

When you finish creating the new project, Intelli] shows you a main window.

N

In Intelli)’s Project tool window, right-click your project's src folder.

3. Fromthe resulting context menu, choose New > Swing Ul Designer > GUI

Form.

When you choose New, is the Swing Ul Designer menu item greyed-out? If so,
you probably right-clicked the wrong folder. In Step 2, remember to click the
src folder.

TIP
If all goes well, a small dialog box appears. To absolutely no one’s surprise, the
box's title is New GUI Form.

490 PART5 Smart Java Techniques

4. Inthe dialog box’s Form Name field, type MyForm. (See Figure 20-7.)

& Don't put any blank spaces in the Form Name field. Intelli] automatically copies
your Form Name text into the dialog box's Class Name field, and you can't have
a blank space in a Java class name.
WARNING
Later, when you run the Java code, the word MyForm appears on the app's title
bar. At that point in the game, you can add blank spaces.
5. Put a check mark in the dialog box’s Create Bound Class check box. (Refer
to Figure 20-7.)
[JoN] New GUI Form
Form name: MyForm !
Base layout manager: GridLayoutManager (IntelliJ) v
Create bound class
Class name: MyForm
FIGURE 20-7:
Creating a new Cancel “
form.
6. Click OK to dismiss the New GUI Form dialog box.
To paraphrase the movie Babe, “That'll do, dialog box.”
When the dust settles, you see Intelli)'s GUI Designer. In the Designer's upper
left corner, you see a component tree. The tree contains a branch labeled Form
(MyForm). See Figure 20-8.
€ MyForm.java MyForm.form
Component Tree O —
i Form (MyForm)
FIGURE 20-8: e
Components
grow on trees.

7. Expand the Form (MyForm) branch to reveal another branch; namely, the
JPanel branch.

When you select the JPanel branch, a list of properties and their values
appears below the component tree. This list is called a property sheet. (See
Figure 20-9.)

CHAPTER 20 Oooey-GUIWas aWorm 491

Java's APl has a class named JPanel, and your new form contains an instance
of that class. That instance’s properties include its border, margins, background
color, and several others. According to Figure 20-9, your JPanel object's
background color is [242, 242, 242] — a slightly off shade of white. The trouble
is, your JPanel object doesn't yet have a field name.

Property Value

Custom Create

Layout Manager GridLayoutManager (I...
border None
margins [0,0,0,0]

Horizontal Gap -1

Vertical Gap -1

Same Size Horizontally
Same Size Vertically

Client Properties

background D [242,242,242)
enabled
font <default>
foreground . [0,0,0]
tool TipText
FIGURE 20-9:
The JPanel
component’s Show expert properties
property sheet.

8. In the JPanel object’s property sheet, select the Value column of the Field
Name row.

9. In that Field Name/Value cell, type the name jpanell ...
...or any other name, as long as it's a valid Java variable name.

After naming the panel, you're finished with this section’s GUI Designer
instructions. All that's left for you to do is to create a bit of Java code.
Fortunately, Intellij can write the code for you. Here's how:

10.1n Intelli)’s Project tool window, look for a MyForm branch inside of
another MyForm branch, which is, in turn, inside the src branch. (See
Figure 20-10.) Double-click that branch.

Your MyForm Java code appears in the Intelli] editor. That code consists of an
import declaration followed by apublic class MyForm declaration.

11. Right-click anywhere inside the public class MyForm declaration.

492 PART 5 Smart Java Techniques

FIGURE 20-10:
Finding the
MyForm Java file.

FIGURE 20-11:
Blinded by the
white.

Project = DT & -
v [, 20-04
> .idea
ki src
W MyForm
MyForm.form !
n 20-04.iml

> llln External Libraries
> Yg Scratches and Consoles

1 2. From the resulting context menu, choose Generate ~> Form main().
If all goes well, Intelli) adds a main method to your code. Nice!

So far, your frame has no components in it, so you don't want to pack the
frame. That would be like sucking the air out of an empty bag.

13.1n Intelli)'s editor, replace the line frame.pack() with frame.setSize

(200, 200). See Listing 20-4.

Ah, that's better! It's time to run your code.

14. At the top of Intelli)’s editor, right-click the tab labeled MyForm. java.
From the resulting context menu, choose Run ‘MyForm.main()'.

15. Try not to be too excited when your computer displays the window

shown in Figure 20-11.

The fact that this window contains no images, no buttons, no text fields — no
nothing — comes from the way the GUI Designer creates your project. The

designer populates the project with a minimum amount of code. That way, the

new project is a blank slate — an empty shell to which you add buttons, text
fields, or other useful components.

® ® MyForm

CHAPTER 20 Oooey-GUI Was a Worm

493

N TFLZES Enlarging a Frame

494

S
T
TECHNICAL
STUFF

import javax.swing.x;

public class MyForm {
private JPanel jpanelt;

public static void main(String[] args) {
JFrame frame = new JFrame("MyForm");
frame.setContentPane(new MyForm().jpanell);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize (200, 200);
frame.setVisible(true);

The code in Listing 20-4 uses features of Java that I don’t cover in this book. If you
want to read about these features, rush out and buy the most recent edition of Java
For Dummies, by Barry Burd (and published by Wiley). That book starts from
scratch, but it covers twice as much material as this beginning programming
book.

Window dressing

I like empty spaces. When I lived on my own right out of college, my apartment
had no pictures on the walls. I didn’t want to stare at the same works of art day
after day. I preferred to fill in the plain white spaces with images from my own
imagination. So, for me, the empty window in Figure 20-11 is soothing.

But if Figure 20-11 isn’t acquired by New York’s Museum of Modern Art, the win-
dow is quite useless. (By the way, I'm still waiting to hear back from the muse-
um’s curator.) When you create a high-powered GUI program, you start by
creating a window with buttons and other widgets. Then you add methods to
respond to keystrokes, button clicks, and other such things.

The next section contains some code to respond to a user’s button clicks. But in
this section, you use Intelli]’s GUI Designer to describe a text field and a button.

Start with the project you created in this chapter’s earlier section “Hello, GUI
Designer”:

1. Inthe Project tool window, double-click the MyForm. form branch.

The GUI Designer appears once again.

PART 5 Smart Java Techniques

2. Inthe component tree, select jpanell.

On the jpanell property sheet, the Layout Manager row's Value cell contains
a drop-down list.

3. Inthe drop-down list, select FlowLayout.

When you start putting components on the panel, Java's FlowLayout positions
them automatically.

The middle of the GUI Designer looks like an empty square. This square is
called the Form Workspace.

The rightmost part of the GUI Designer is a palette. The palette offers you a
choice of components such as JButton, JCheckBox, JLabel, JTextField, and
many more. To create an application’s window, you drag items from the
palette to the Form Workspace. (See Figure 20-12.)

Palette o —
FIGURE 20-12: . L]
Dragging a | |
JTextField JPasswordField
component. LE. dkodTasxtQiald

4, Drag a JTextField component from the Palette to the Form Workspace.

Don't worry about the text field's size or position. Just plop the text field on the
Form Workspace and march on to the next step.

You don’t even have to assign a name to the new text field. The first row of the
text field's property sheet contains the name textFieldd. If you want, you can
change this name, but I'm lazy. | don’t want to change it.

5. onthetextFieldt property sheet, change the Columns value from
0to 15.

As a result, the Form Workspace displays a wider text field.
6. Drag a JButton component from the Palette to the Form Workspace.

Intellij automatically names this thing button1. Don't concern yourself with the
position of buttont. Itis where it is.

7. onthebuttont property sheet, change the Text value from Button to
Click Me.

Happily, that change shows up in the Form Workspace. Intelli] also changes the
button’s name from button1 to clickMeButton. If you don't like the name
clickMeButton, you can type a different name on the button’s property sheet.

Figure 20-13 shows you how the Form Workspace looks after all these steps.

CHAPTER 20 Oooey-GUlWasaWorm 495

FIGURE 20-13: Click Me
A preview of the
new window.

8. Atthe top of Intelli)’s editor, right-click the tab labeled MyForm. java.
From the resulting context menu, choose Run ‘MyForm.main()'.

When you do, the window shown in Figure 20-14 appears on your computer
screen. Take a minute to stare at it and enjoy the fruits of your labor.

@ ® MyForm

Click Me

FIGURE 20-14:
This makes me
want to click the
button!

When the project runs, the application doesn’t do anything. When you click the
button, nothing happens. When you type in the text field, nothing happens. What
a waste!

In the next section, you get the button and the text field to do something.

INTELLI)'S SECRETS

The Java code in Listing 20-4 produces the window in Figure 20-14. Do you notice any-
thing unusual? The button in Figure 20-14 has the words Click Me on its face, but there's
no mention of the string "Click Me" in the Java code. In Step 5 of the earlier section
“Window dressing,” you set the text field's Columns property to 15 but your Java code
says nothing about Columns being 15. What gives?

While you were dragging-and-dropping GUI Designer components, Intellij was adding
code to a file named MyForm. form. This MyForm. form file contains a textual descrip-
tion of the scene that you're creating in the designer's Form Workspace. You never have
to look at that text, but you can if you want to. If you open MyForm. form with Windows
Notepad or Mac TextEdit, you see the following crazy stuff:

496 PART 5 Smart Java Techniques

<?xml version="1.0" encoding="UTF-8"7?>
<form xmlns="http://www.intellij.com/uidesigner/form/" version="1"
bind-to-class="MyForm">
<grid id="27dc6" binding="jpanell" layout-manager="FlowlLayout"
hgap="5" vgap="5" flow-align="1">
<constraints»>
<xy x="20" y="20" width="500" height="400"/>
</constraints>
<properties/>
<border type="none"/>
<children>
<component id="6e26c" class="javax.swing.JTextField"
binding="textField1" default-binding="true">
<constraints/»>
<properties>
<columns value="15"/>
</properties>
</component>
<component id="10c39" class="javax.swing.JButton"
binding="clickMeButton" default-binding="true">
<constraints/>
<properties>
<text value="Click Me"/>
</properties>
</component>
</children>
</grid>
</form>

This isn't Java code. It's eXtensible Markup Language (XML) code. In this code, you find
the columns value 15, the text value "Click Me", the layout-manager FlowlLayout
and lots of other good stuff. To add this XML information to your application, Intellij
puts the following line in Listing 20-4:

frame.setContentPane(new MyForm(). jpanell);

Under the hood, Intelli) groups some of its own Java files along with your MyForm. java
and MyForm. form files to create one mighty MyForm. class file. When you run your
app, Intelli) runs the MyForm. class file.

lintroduce . class files in Chapter 1. You don't need Intelli) to run the MyForm.class
file. Any computer with Java installed can run your GUI application.

CHAPTER 20 497

FIGURE 20-15:
Listeners galore!

Taking action

The window in Figure 20-14 looks nice, but it’s quite useless. When you click the
button, nothing happens. What good is that? In this section, you make the button
respond to a mouse click. You do this by typing only one line of code! You start
with the project you created in this chapter’s earlier section “Window dressing.”
1 . Inthe Project tool window, double-click the MyForm. form branch.

The GUI Designer appears once again.
2. Inthe component tree, right-click the c1ickMeButton.

A context menu appears.

3. From the context menu, choose Create Listener.

A pop-up with the title Create Listener appears. The pop-up contains a long list
of items. (See Figure 20-15.)

Create Listener

1 ActionListener

2 ComponentListener

3 ContainerListener

4 FocusListener

5 HierarchyBoundsListener

6 HierarchyListener

7 InputMethodListener

S ItemListener

9 KeyListener

0 MouseListener
MouseMotionListener
MouseWheellListener
PropertyChangeListener
VetoableChangelListener
AncestorlListener
Changelistener

4. From the Create Listener pop-up, choose ActionListener.
A dialog box labeled Select Methods to Implement appears. (See Figure 20-16.)
5. Inthe dialog box, double-click actionPer formed(e:ActionEvent):void.

Intelli] returns you to the editor where MyForm. java has magically acquired
some new lines of code. These new lines “listen” for a user to click the button.
To be a bit more precise, when a user clicks the button, Java responds by
calling a newly created actionPer formed method. It's your job to put instruc-
tions inside the actionPer formed method.

498 PART 5 Smart Java Techniques

@ ® Select Methods to Implement

12

~ ajava.awt.event.ActionListener

A% actionPerformed(e:ActionEvent):void

FIGURE 20-16: Copy JavaDoc
Not much C:Oircee Insert @Override 1 Cancel m
ere.

6. Tothe code in the editor, add one new line — the bold line in Listing 20-5.
Your new line of code tells Java to do the following:

® textFieldl.getText: Get whatever characters the user has typed in the
text field.

® toUpperCase: Create an uppercase copy of those characters.
® textFieldl.setText: Put the uppercase copy back into the text field.
So much for all your sly maneuvering. It's time to run the code.

7. Atthe top of Intelli}'s editor, right-click the tab labeled MyForm. java.
From the resulting context menu, choose Run ‘MyForm.main()'.

When you run the program, you see something like the screen shots in
Figures 20-17, 20-18, and 20-19. Et voild! When you click the button, Java
capitalizes your text!

® ® MyForm

Click Me

FIGURE 20-17:
A brand-new
frame.

CHAPTER 20 Oooey-GUlWas aWorm 499

FIGURE 20-18:
The user types in
the text box.

FIGURE 20-19:
Clicking the
button capitalizes
the text in the
text box.

® O ® MyForm
e. e cummings|

Click Me

® ® MyForm
E. E. CUMMINGS

Click Me

m The Bold and the Beautiful

500

import javax.swing.x;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class MyForm {
private JPanel jpaneli;
private JTextField textField?l;
private JButton clickMeButton;

public MyForm() {
clickMeButton.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {

textFieldl.setText(textFieldl.getText().toUpperCase());

1)

public static void main(String[] args) {
JFrame frame = new JFrame("MyForm");
frame.setContentPane(new MyForm().jpanell);

PART 5 Smart Java Techniques

TRY IT OUT

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(200, 200);
frame.setVisible(true);

Tweak the program in this section for some exciting results. (Okay, the results
may be uninteresting to some people, but they’re exciting to me!)

COPY TEXT TO A TEXT FIELD

Use Intelli]’s GUI Designer to create a frame with a button and two text fields.
When the user clicks the button, Java copies text from the first text field to the
second text field.

COPY TEXT TO A LABEL

In Java Swing, a label is similar to a text field. Like a text field, a label may display
text. In fact, Swing’s JLabel component has a setText method, like the setText
method used in Listing 20-5.

But a label looks different. A label’s appearance doesn’t invite the user to change
the label’s text. A label looks like text that’s been planted permanently on the
frame. Of course, the text isn’t permanent, because your code can change a label’s
text.

Use the GUI Designer to create a frame with a JButton, a JTextField, and a JLa-
bel. When the user clicks the button, Java copies text from the text field to the
label.

COPY BETWEEN TEXT FIELDS

Use the GUI Designer to create a frame with two buttons and two text fields. When
the user clicks the first button, Java copies text from the first text field to the sec-
ond text field. When the user clicks the second button, Java copies text from the
second text field to the first text field.

Hint: Follow Steps 2 through 6 two times in this chapter’s earlier section “Taking
action” — once for button1 and a second time for button2.

CHAPTER 20 Oooey-GUI Was a Worm 501

CREATE A SMALL CALCULATOR

Use the GUI Designer to create a frame with two text fields, a button, and a label.
The user types a number in one of the text fields and another number in the other
text field. When the user clicks the button, Java displays the sum of the two num-
bers in the label.

Hint: Whatever Java gets from a text field’s getText method has String type.
When you put a plus sign (+) between two String values, Java simply pastes the
values together — for example, "42" + "98" is "4298". Before you can add these
values together, you have to convert them to numbers. You do this with Java’s
Integer .parselnt method. (Refer to Chapter 14.)

When you call a label’s setText method, the call’s parameter must have the

String type. To get a String value from an int value, use the Integer.toString
method — for example, Integer.toString(86) is "86".

502 PART5 Smart Java Techniques

The Part of Tens

IN THIS PART ...

Seeing the tip of the iceberg — a few of Java’s most
useful classes

The Dear Barry advice column

IN THIS CHAPTER

» Finding out more about classes

» Discovering other helpful classes

Chapter 21

Ten Useful Classes in the
Java API

'm proud of myself. I’ve written around 400 pages in this book about Java using
fewer than 30 classes from the Java API. The standard API has thousands of
classes, so I think I’m doing very well.

Anyway, to help acquaint you with some of my favorite Java API classes, this
chapter contains a brief list. Some of the classes in this list appear in examples
throughout this book. Others are so darn useful that I can’t finish the book with-
out including them.

For more information on the classes in this chapter, check Java’s online API doc-
umentation at https://docs.oracle.com/en/java/javase/17/docs/api.

ArrayList

How often do you deal with many things at once? You have many customers, many
contacts, many bills to pay, many social media posts — many, many, many! Each
Java collection class has its own, special characteristics. A Queue stores things as
they wait to take their turn. A Stack ignores older things in favor of more recent
things. A Set has no ordering. A Map connects names with their values.

CHAPTER 21 Ten Useful Classes in the Java API 505

https://docs.oracle.com/en/java/javase/17/docs/api

File

Integer

JFrame

My go-to collection class is the ArrayList. An ArraylList is like an array, except
that ArraylL ist objects grow and shrink as needed. You can also insert new values
without pain using the ArraylList class’s add method. ArrayList objects are use-
ful because they do all kinds of nice things that arrays can’t do.

To get started with the ArrayList class, refer to Chapter 19.

Talk about your useful Java classes! The File class does a bunch of things that
aren’t included in this book’s examples. Method canRead tells you whether you
can read from a file. Method canwWrite tells you whether you can write to a file.
Calling method setReadOnly ensures that you can’t accidentally write to a file.
Method deleteOnExit erases a file, but not until your program stops running.
Method exists checks to see whether you have a particular file. Methods isHid-
den, lastModified, and length give you even more information about a file. You
can even create a new directory by calling the mkdir method. Face it: This File
class is powerful stuff!

Want to read about the File class? Refer to Chapters 12 and 16.

Chapter 14 describes the Integer class and its parseInt method. The Integer
class has lots of other features that come in handy when you work with int values.
For example, Integer .MAX_VALUE stands for the number 2147483647. That’s the
largest value that an int variable can store. (Refer to Chapter 7.) The expression
Integer .MIN_VALUE stands for the number -2147483648 (the smallest value that
an int variable can store). A call to Integer.toBinaryString takes an int and
returns its base 2 (binary) representation. And what Integer.toBinaryString
does for base 2, Integer . toHexString does for base 16 (hexadecimal).

Chapter 20 has a JFrame example. A JFrame can be the starting point for an app’s
appearance on the screen. A JFrame is like a window, so you can put buttons, text
fields, and other useful widgets on a JFrame. In Chapter 20, I put an image on a
JFrame.

506 PART 6 The Part of Tens

A UFrame has one of several different layouts. For example, a border layout divides
the JFrame into five regions: the NORTH, SOUTH, EAST, WEST, and CENTER regions. An
item in the CENTER region is usually the largest. It’s the centerpiece of the JFrame.
Items in the other border layout regions live on the four edges of the JFrame.

With a grid layout, you put items into table cells, and with a flow layout, you place
items one after another in a row.

JOptionPane

For a quick-and-easy graphical user interface, use a JOptionPane. Here’s some
code:

String word = JOptionPane.showInputDialog("Enter a word");
JOptionPane.showMessageDialog(null, word);

String string = JOptionPane.showInputDialog("Enter an int value");
int number = Integer.parselnt(string);

number++;

JOptionPane.showMessageDialog(null, "One more is " + number);

When you run this code, you see the dialog boxes in Figures 21-1 through 21-4.

@ Input
Enter a word
=’ Hellol
= |
FIGURE 21-1: Cancel R —
Input dialog box.
[] Message
=ty Hello
=
FIGURE 21-2:
Message ﬁ
dialog box.

CHAPTER 21 Ten Useful Classes in the Java API 507

FIGURE 21-3:
Another input
dialog box.

FIGURE 21-4:
Another message
dialog box.

Math

@ Input

Enter an int value
=’ 99

Cancel |

[] Message

One more is 100

(W] -

Do you have any numbers to crunch? Do you use your computer to do exotic cal-
culations? If so, try Java’s Math class. (It’s a piece of code, not a place to sit down
and listen to lectures about algebra.) The Math class deals with uc, e, logarithms,
trig functions, square roots, and all those other mathematical doodads that give
most people the creeps.

NumberFormat

Chapter 14 has a section about the NumberFormat . getCurrencyInstance method.
With this method, you can turn 20.338500000000003 into $20.34. If the United
States isn’t your home, or if your company sells products worldwide, you can
enhance your currency instance with a Java Locale. For example, with euro =
NumberFormat .getCurrencylInstance(Locale.FRANCE), a call to euro.for-
mat(3) returns 3,00 € instead of $3.00.

The NumberFormat class also has methods for displaying things that aren’t cur-
rency amounts. For example, you can display a number with or without commas,
with or without leading zeros, and with as many digits beyond the decimal point
as you care to include.

508 PART 6 The Part of Tens

Scanner

String

System

Java’s Scanner class can do more than what it does in this book’s examples. Like
the NumberFormat class, the Scanner can handle numbers from various locales.
For example, to input 3,5 and have it mean “three-and-a-half,” you can type
myScanner .uselLocale(Locale.FRANCE). You can also tell a Scanner to skip cer-
tain input strings or use numeric bases other than 10. All in all, the Scanner class
is quite versatile.

Chapter 14 examines Java’s String class. The chapter describes (in gory detail) a
method named equals. The String class has many other useful methods. For
example, with the length method, you find the number of characters in a string.
With replaceAll, you can easily change the phrase "my fault" to "your fault"
wherever "my fault" appears inside a string. And, with compareTo, you can sort
strings alphabetically.

You’re probably familiar with System.in and System.out. What about System.
getProperty? The getProperty method reveals all kinds of information about
your computer. Some of the information you can find includes your operating
system’s name, your processor’s architecture, your Java virtual machine version,
your classpath, your username, and whether your system uses a backslash or for-
ward slash to separate folder names from one another. Sure, you may already
know all this stuff. But does your Java code need to discover it on the fly?

CHAPTER 21 Ten Useful Classes in the Java API 509

IN THIS CHAPTER

» What to learn

» How to learn more

» What to do when you're looking for
ajob

» Other free advice

Chapter 22

Ten Bits of Advice for
New Software
Developers

enjoy hearing from the people who read my books. “Nice job!” one reader says.

Another reader asks, “Can I run Java programs without installing Intelli] IDEA?”

Yet another posts this comment: “You’re Barry Burd. Does that mean you’re
related to Larry Bird?”

In all the questions I receive from readers, one of the popular themes is “What to
do next?” More specifically, people ask me what else to learn, what else to read,
how to get practice writing software, how to find work, and other questions of
that kind. I’m flattered to be asked, but I'm reluctant to think of myself as an
authority on such matters. No two people give you the same answers to these
questions, and if you ask enough people, you’re sure to find disagreement.

This article contains ten pieces of advice based on questions I’ve received from
readers. But remember that, in addition to these ten hints for living and learning,

I have one additional, overriding piece of advice:

Think critically about the advice you receive. When in doubt, trust your intuition.

CHAPTER 22 Ten Bits of Advice for New Software Developers 511

Collect opinions. Talk to people about the issues. Try things and, if they work (or
even if they don’t work but they show some promise), keep doing them. If they
show no promise, try other things. And, sharing is important. Don’t forget to
share.

How Long Does It Take to Learn Java?

REMEMBER

The answer depends on you — on your goals, on your existing knowledge, on your
capacity to think logically, on the amount of spare time you have, and on your
interest in the subject.

The more excited you are about computer programming, the quicker you learn.
The more ambitious your goals, the longer it takes to achieve them.

There’s no such thing as “knowing all about Java.” No matter how much you
know, you always have more to learn. I’ve written several Java books and, as far
as I’m concerned, I’ve barely scratched the surface.

Which of Barry’'s Books Should | Read?

512

Funny you should ask! I’ve written several books, including these three:

¥ Beginning Programming with Java For Dummies
¥ Java For Dummies

¥ Java Programming for Android Developers For Dummies

Each book starts from scratch, so you don’t need to know anything about app
development to read any of these books. But each book covers (roughly) twice as
much material as the previous book in the list. For example, Java For Dummies goes
twice as fast and covers twice as much material as Beginning Programming with
Java For Dummies. Which book you read depends on your level of comfort with
technical subjects. If you’re in doubt about where to start, find some sample pages
from any of these books to help you determine which book is best for you.

PART 6 The Part of Tens

Are Books Other than Barry’s Good for
Learning Java and Android Development?

Yes. I'd love to recommend some, but I’m not conscientious enough to carefully
read and review other peoples’ books.

Which Computer Programming
Language(s) Should | Learn?

The answer depends on your goals and (if you plan to work as a developer) on-
the-job opportunities where you live. The TIOBE Programming Community Index
(www.tiobe.com/index.php/content/paperinfo/tpci) provides monthly
ratings for popular programming languages. But the TIOBE Index might not apply
specifically to your situation. In June 2021, the Haskell language ranks only 47th
among the languages used around the world. But maybe there’s a hotbed of
Haskell programming in the town where you live.

Do you want to write applications for large enterprises? Then Java is a must-have
language. Do you want to write code for the iPhone? You probably want to learn
Swift. Do you want to create web pages? Learn HTML, CSS, and JavaScript.

What Skills Other than Computer Coding
Should | Learn?

Sorry to disappoint you, but you’re asking someone who has an ax to grind. I'm a
college professor. I believe that no learning, no matter how impractical it might
seem to be, is ever wasted.

If you insist on a more definitive answer, go learn a little about databases. Data-
base work isn’t necessarily coding, but it’s important stuff. Also, read as much as
you can about software engineering — the study of techniques for the effective
design and maintenance of computer code. Don’t be afraid of math, either (because
learning math stretches your logical-thinking muscles). And, whenever you can,
hone your communication skills. The better you communicate, the more valuable
your work is to other people.

CHAPTER 22 Ten Bits of Advice for New Software Developers 513

http://www.tiobe.com/index.php/content/paperinfo/tpci

How Should | Continue My Learning as a
Software Developer?

REMEMBER

Practice, practice, practice. Take the examples you find in my book (or anywhere
else) and think of ways to change the code. Add an option here or a button there.

Find out what happens when you try to improve the code. If it works, think of
another way to make a change. If it doesn’t work, search the documentation for a
solution to your problem. If the documentation doesn’t help (and often, docu-
mentation doesn’t help) search the web for answers to your problem. Post ques-
tions at an online forum. If you don’t find an answer, put the problem aside for a
while and let it incubate in your mind.

You don’t learn programming by only reading about it — you have to scrape some
knuckles while writing code and seeking solutions. Only after trying, failing, and
trying again can you appreciate the work involved in developing computer
software.

How Else Should | Continue My Learning as
a Developer?

514

How did you know that I have a second suggestion? I recommend finding like-
minded people where you live and getting together with them regularly. These
days, you can find tech user groups in almost every corner of the globe. Find a Java
user group that meets in your area and attend the group’s meetings frequently. If
you’re a novice, you might not understand much of the discussion, but you’ll be
exposed to the issues that concern today’s Java developers.

Look for more tech groups and attend their meetings. Find meetings about other
programming languages, other technologies, and other topics that aren’t solely
about technology. Meet people face-to-face and find out which topics will be in
next year’s books.

To complement those face-to-face meetings, search the web for screen-to-screen
meetings. You can find free online technical sessions almost any day of the year.

PART 6 The Part of Tens

How Can | Get a Job Developing
Software?

Do all the things you’d normally do when you look for a job, but don’t forget about
the advice in the previous two paragraphs. User groups are fantastic places for
networking.

Go to meetings and be a good listener. Don’t think about selling yourself. Be
patient and enjoy the ride. I landed a great consulting opportunity only after sev-
eral years of attending one group’s meetings. In the meantime, I learned a lot
about software (and quite a bit about dealing with other people).

| Still Don't Know What to
Do with My Life

That’s not a question. But it’s okay anyway.

Everyone has to make ends meet. If you manage to put food on your table, the next
step is to find out what you love to do. I’ve spent a lifetime teaching college stu-
dents, writing books, and developing computer code — and I love doing all of it.
(Well, I love most of it. I detest grading papers, and I dislike proofreading my own
work.)

Fortunately, I can make money teaching, writing, and developing. I could make
more money working 9-to-5 for a big company, managing a software team or
creating the next big start-up, but I don’t like doing those things. My life has been
enriched because I do what I like doing, whether I’m working or not.

My advice is, find the best match of the things you like to do and the things that
help you earn a living. Compromise, if you must, but be honest with yourself about
the things that make you happy. (Of course, these things shouldn’t make other
people unhappy.)

CHAPTER 22 Ten Bits of Advice for New Software Developers 515

Finally, be specific about your likes and dislikes. For example, saying, “I’'d like to
be rich” isn’t specific at all. Saying, “I’d like to create a great game” is more spe-
cific, but you can do better. Saying, “I like to design game software, but I need a
partner who can do the marketing for me” is quite specific and makes quite a tidy
set of goals.

If | Have Other Questions,
How Can | Contact Barry Burd?

Send email to BeginProg@allmycode.com. Follow me on Facebook (/allmycode)
or Twitter (@al lmycode). Visit my ugly-but-informative website: www.al lmycode.
com. Attach two tin cans to a very long string. Put a note in an old pneumatic tube.
Train a carrier pigeon to fly to my office. Hire a chimpanzee to. . ..

516 PART 6 The Part of Tens

mailto:BeginProg@allmycode.com
https://facebook.com/allmycode
https://twitter.com/allmycode
http://www.allmycode.com/
http://www.allmycode.com/

Index

Special Characters

-- predecrement operator, 165-168

.msi files, 36

.zip files, 36, 49

; (semicolon), 90, 113

\\ escape sequence, 246

\" escape sequence, 246

\n escape sequence, 245-246

\s escape sequence, 246

\t escape sequence, 246

| | operator, 220, 221

++ (preincrement operator), 162-168

== (is equal to)operator, 187

! operator, 220

!= (is not equal to) operator, 187

&& operator, 220

< (is less than) operator, 187

<= (is less than or equal to) operator, 187
> (is greater than) operator, 187

>= (is greater than or equal to) operator, 187

Numbers
32-bit processor, 36-38
64-bit processor, 36-38

A

A la recherche du temps perdu code listing,
416-417

abstract method, 115
Abstract Window Toolkit (AWT), 478
An Account Class code listing, 349
action

of code, tracing, 254-255

flow of, 353

of program loops, 443-444
add method, 481

Add method body quick fix, 114, 119
adding

boolean variables, 227-229

code to Intelli) IDEA, 48-52
Adding Interest code listing, 359

Adding Interest for a Certain Number of Years

code listing, 364-365
addInterest method header, 362
AdoptOpen)DK page, 35

Algorithms For Dummies (Mueller, Massaron), 341

allographs, 195

Amazon Corretto, 39, 40

amount variable, initializing, 129, 139
An if Statement code listing, 201

API (Application Programming Interface), 16-17

defined, 10
documentation for, 17
archive files, compressed, 49

Are You Paying Too Much? code listing, 222

Aren't You Lucky? code listing, 211
args, 80
array element, 452
array initialization, 458, 464
Arraylist class, 469-474, 475, 505-506
arrays
ArraylList, 469-474
collection classes for, 474-476
creating reports, 455-457
limitations of, 468-469
overview, 450-454
storing data in, 459-462
storing values in, 454-455
values of, 457-458
assignment statements
assigning value to variables with, 130-131
method calls for, 137-138

An Attempt to Debug the Code in Listing 14-3

code listing, 322

Index

517

automated debuggers, 191-193
AWT (Abstract Window Toolkit), 478
Azul Zulu, 39

backward compatibility, 39, 40
Beckstrom, Bob, 341

Beginning Programming with Java For Dummies
(Burd), 512

biglLetter variable, 178-179
bits, 36-38
blocks

if statements and while statements
including, 256

in single statements, 215
of text, 243-244
body, of methods, 86, 350-351
The Bold and the Beautiful code listing, 500-501
boolean literals, 79
boolean type, 194-195, 239, 474
boolean variables, 185, 227-229
Boolean wrapper class, 474
border layout, 507
braces, 82, 92
creating errors in programs, 116-117
curly, 83,119
brackets, 82
breakpoint, 191
buttons, code for, 494-502
byte type, 171, 474
Byte wrapper class, 474
bytecode, 11, 12, 13-16

C

C++ programming language, 92
Calling a Method code listing, 87
Calling an Object's Method code listing, 323-324
calling methods, 86
addInterest header, 362
field values, 363
main, 88, 89-90

overview, 358-361
parameters, 364-366
values, 361-362

Calling the addInterest Method code listing,
359-360

Calling the Beefed-Up addInterest Method code
listing, 365-366

Calling the Method in Listing 15-10 code listing,
367-368

calls
for assignment statements, 137-138
Check class, 328-329
to keyboard.nextSomething(), 137
to methods
addInterest header, 362
field values, 363
main, 88, 89-90
overview, 358-361
parameters, 364-366
values, 361-362
when creating, 351-353
new Purchase() constructor, 485
to nonstatic methods, 328-329
to static methods, 328-329
to Swing classes, 483-486
to System.out.printin, 101, 132
canRead method, 506
Can't resolve method error, 110
canWrite method, 506
capitalization, 121
cascading if statements, 236-239
case sensitivity, 56, 77,91, 110-111
char type, 194, 474
Char wrapper class, 474
character-reading methods, 181-184
characters
combining, 354-356
comparing, 193-194
experimenting with, 176-177
methods for, 195
overview, 173-175
reading, 181-185

518 Beginning Programming with Java For Dummies

reusing, 178-181 Locale, 82

storing, 177 MakeChange, 156
string of, 247 Math, 508
Character .toUpper Case method, 175-177, 184 methods within, 347-348
Check class NumberFormat, 82, 508
calling nonstatic methods in, 328-329 overview, 92-94, 295-296
calling static methods in, 328-329 Priority—Queue, 475
currency symbols for, 334-335 Queue, 475
overview, 327-328 reference types in, 297
turning numbers into strings, 332-333 Scanner, 509
turning strings into numbers, 329-332, 334 Stack, 475
ciphertext, 468 String
.class file, 11 example codes of, 316-317
class keyword, 58, 80 methods of, 509
A Class with Two Methods code listing, 357 overview, 316
classes reading and writing, 318-320
ArraylList, 469-474, 475, 505-506 variables of, 317-318
calling, 483-486 Swing
Check calling, 483-486
calling nonstatic methods in, 328-329 code variations for, 486-497
calling static methods in, 328-329 JFrame for, 481-483, 487-490
currency symbols for, 334-335 overview, 478-479
overview, 327-328 window of, 479-481
turning numbers into strings, 332-333 System, 509
turning strings into numbers, 329-332, 334 closed parentheses, putting parameters
code for, 486-497 between, 484
collection of, 469, 474-476 closed projects, in Intelli) IDEA, 62
converting code to use, 299-300 COBAL programming language, 9
creating an instance for Purchase, 484 code
differences between objects and, 309-310 adding or removing from JShell editor, 144-147
File, 506 adding to Intelli] IDEA, 48-52
HashMap, 475 APIs and, 16-17
HashSet, 475 for buttons, 494-502
Integer, 506 for classes, 486-497
in Java API, 505-509 converting to use classes, 299-300
java.lang.System, 336 creating for Java programs, 54-61
java.util.Scanner, 336 for disk-oriented programs
JFrame creating input files, 388-389
creating an instance for, 481-483 error messages in, 390-392
layouts of, 506-507 examples of, 380-382
methods of, 487-490 output files, 389-390
JOptionPane, 507-508 overview, 387
LinkedList, 475 for EcholLine program, 97-98

Index 519

code (continued)
examples of
classes, 296-299, 316-317
conditions, 225-227
if statements, 205-209, 225-227
import declarations, 105
loops, 443-444
nested loops, 434-437
objects of methods, 357-358
OOP, 296-299
for statements in loops, 278
switch statements, 402-403
indented, 93
in Java programs
creating programs from, 74-75
Listing 4-1 text, 75-76
overview, 73-74
ProcessPurchase, 299
for program loops, 424-426, 443-444
for reading templates, 383-384
running, 13-16
summarizing, 311-314
for Swing classes, 486-497
for text fields, 494-502
translating, 10-13
code listings
An Account Class, 349
Adding Interest, 359

Adding Interest for a Certain Number of Years,
364-365

Are You Paying Too Much? 222
Aren't You Lucky? 211

An Attempt to Debug the Code in Listing
14-3, 322

The Bold and the Beautiful, 500-501
Calling a Method, 87

Calling an Object's Method, 323-324
Calling the addInterest Method, 359-360

Calling the Beefed-Up addInterest Method,
365-366

Calling the Method in Listing 15-10, 367-368

In Case of aTie. .., 226-227

A Class with Two Methods, 357

Creating a Window with an Image in It, 479-480

Declaring a Variable Inside the main
Method, 339

Do You Have a Coupon? 226

Doing It the Old-Fashioned Way, 296
Enjoying a Quieter Meal, 283

Enlarging a Frame, 494
Extending Java's JFrame Class, 486-487
A Faulty Password Checker, 321

A Few Lines in a Computer Program, 8
George Boole Would Be Proud, 228
Hey! Is This a For-by-For? 439

Horace Fletcher's Revenge, 276-277

How to Keep Four Kids from Throwing
Tantrums, 150

How to Prime a Loop, 271

| Know Everything, 205

An if Statement, 201

I'm Repeating Myself Again (Again), 316
Investigating the Behavior of toUpperCase, 176
It's Warm and Cozy in Here, 188

A Java Program, 97

A la recherche du temps perdu, 416-417

A Little Experiment, 397

Making a MyFrame Object, 487

Making a Word Go Backward, 179

Making Change, 155-156

Making Use of the Code in Listing 15-1, 352
May the Best Team Be Displayed First, 213

The Mechanical Combining of Two Loops,
428-429

A Method Declaration, 86
A Method That Returns a Value, 367
More Chips, Please, 330

A More Refined Version of the One-Room Code,
448-449

A More Versatile Program for Kids and
Gumballs, 151

Nested if Statements, 223-224

Nice Try, But. . ., 270

No Extra Break for Kids or Seniors, 229-230
From One File to Another, 425-426

One Good Ternary Deserves Another, 420-421
Out with the Old out.printin! 410

A Program to Display the Things | Like, 56

520 Beginning Programming with Java For Dummies

A Program to Generate an Occupancy Report, compilation, 10-13
444-445 compilers

Proud Winners and Sore Losers, 240-241 compiling code with, 10-13
Pulling a Variable Outside the main Method, 339 defined, 10

Putting a Name in a String Variable, 317-318 compile-time errors, 57, 124-125
Repeat Before You Delete, 286 compile-time warnings, 60
Report on One Room Only, Please, 446 components
The Right Way to Display a Dollar Amount, of arrays, 452-453

332-333

of JPanel, 491-492
compound statement, 203
compressed archive file, 48
computer, setting up to code, 38-40

Roll 7 or 11, 252-253

A Rude Answer for Every Occasion, 402-403
A Simple Java Program, 74

A Simplified Version of the Game Twenty-

One, 263 t?itS, 36-38 .
SnitSoft's Grand Scam, 128 fllenéme extensions, 31
From Statements Come Values, 415 Intelli] IDEA

downloading Java without, 35-36
installing, 23-28

Storing Occupancy Data in an Array, 461-462
A Template to Read Data from a Disk File,

382-383 using, 32-35
A Template to Write Data to a Disk File, 385 Java
That's Much Better! 432-433 installing, 28-30
Thirty Days Hath September, 413-414 kinds of, 38-42
This Is So Cool! 358 Mac security features, 32
Traveling through Data Both Forward and overview, 21-22
Backward, 456 software, obtaining, 22-23
Trying to Get a Username from an Email computer programming

Address, 266
Using a Java Locale, 334-335

Using a Variable Declared Outside of a for
Loop, 280

Using the boolean Type, 185

Using the char Type, 174

Using the Keyboard and the Screen, 380-381
Using Your Purchase Class, 298

What It Means to Be a Purchase, 297
Working with a Java Collection, 470

coding in programming languages, 8-9
defined, 8
overview, 7-8
Condition, 202-203
conditional operator, 420-425
conditions
for i f statements
adding boolean variables, 227-229
combining, 222-224

collection classes. 469, 474-476 combining logical operators together, 229-231
coloring, syntax ég ' example codes of, 225-227
' X initializing, 224

combining conditions, 222-224
command line program, 48-49, 477
commenting out, 85

comments, 84-85

comparison operators, 187
compatibility, 39

overview, 219-221
parentheses, 231-232
in program loops, 448-450
putting into parentheses, 278
testing, 428-429
values of, 186-187

Index 521

const keyword, 79
constructors, 485-489
consumers, Java for, 38-39
converting code, 299-300
count method, 325

count variable, 280-281

Creating a Window with an Image in It code listing,
479-480

curly braces, 83,92, 119
curly quotation marks, 125
currency symbols, 334-335

D

data, storing in program loops, 459-462
debuggers, automated, 191-193
decimal points, 134-135
declarations
combining, 142-143
importing
example of, 105
static, 215-218
types of, 336-337
for methods, 87-88
PurchaseWithDefault, 305-306
static import, 338-339
for var keyboard, 140

Declaring a Variable Inside the main Method code
listing, 339

deleteOnExit method, 506
developers, Java for, 38-39
development environments, 35
disk files, 378-380
disk-oriented programs
rewriting, 397-399
running
code for, 387-392
overview, 378-380
reading and writing, 380-382
templates for reading, 382-387
writing
example code for, 380-382
filename extensions, 393-394

overview, 392-393

with print and println methods,
394-396

do loops, 288-291
do statements
deleting files, 285-288
do loops, 288-291
overview, 284-285
Do You Have a Coupon? code listing, 226
documentation, for Java, 42-45
looking up information, 44-45
obtaining, 42
setting up, 42-44
Doing It the Old-Fashioned Way code listing, 296
double type, 171, 474
double values, 136
double variables, 135-136, 139-140
Double wrapper class, 474

E

Echoline program

code for, 97-98

how works, 100-101

scanner methods for, 102-105

typing and running, 98-100
editor area, Intelli) IDEA, 65, 105-108
editors, 17
elements

in arrays, 452, 464

comments, 84-85

identifiers, 79-81

keywords, 77-79

literals, 81

overview, 76-77

punctuation, 82-84
else clauses, 211-212
end-of-line comments, 84-85
enhanced for loops, 462-468
Enjoying a Quieter Meal code listing, 283
Enlarging a Frame code listing, 494
enum type, 239-243
equals method, 324-325

522 Beginning Programming with Java For Dummies

error messages
in disk-oriented programs, 390-392
experimenting with, 68
in i f statements, 203-205
in Intelli) IDEA, 68
for runtime, 119-121
errors, 59-60
braces, 116-117
case sensitivity, 110-111
compile-time, 57, 124-125
curly quotation marks, 125
experimenting with error messages, 68
logic, 59-60
misspelled words, 118
in nested loops, 429-432
overview, 108-109
punctuation, 112-116
escape sequences, 245-249
example code
for classes
code for, 298-299
experimenting with, 296-297
String, 316-317
of conditions, 225-227
for disk-oriented programs, 380-382
of i f statements, 205-209
for i f statements, 225-227
for import declarations, 105
for loops, 443-444
for nested loops, 434-437
for objects of methods, 357-358
of OOP, 298-299
of for statements in loops, 278
of switch statement, 402-403
expressions
keyboard.nextLine(), 101, 484-485
regular, 182
switch, 409-416
values of, 186-187

Extending Java's JFrame Class code listing,
486-487

extends keyword, 489

eXtensible Markup Language (XML) code, 497
extensions, for filenames

changing computer system-wide settings to
uncover, 31

changing on different types of computers, 31
reading on disk-oriented programs, 393-394

F

fahrenheit variable, 188-190
fall-through, 418, 419
false value
of conditions, 186-187
of expressions, 186-187
of variables, 181-185
A Faulty Password Checker code listing, 321
A Few Lines in a Computer Program code listing, 8
fields
defined, 304-305
differences between variables and, 305
nonstatic
calling, 328-329
defined, 328
running code for, 343-345
static
calling, 328-329
defined, 328
running code for, 343-345
values of, 363
File class, 506
filename extensions

changing computer system-wide settings to
uncover, 31

changing on different types of computers, 31

reading on disk-oriented programs, 393-394
files

.msi, 36

.zip, 36,49

compressed archive, 48

deleting, 285-288

disk, 378-379

javac.exe, 13,16

MyData, 34

Index 523

files (continued)
MyFrame, 34
output, 389-390
Process. java, 298-299
ProcessPurchase. java, 298-299
ShowAFrame, 34
String. java, 316
uncompressing, 49

findWithinHorizon(."," @). charAt(Q), 102,

181-184
fixTheAlternator method, 86
float type, 171,474
Float wrapper class, 474
flow layout, 507
for loops, 438-442
for statements

example of, 278

initialization of, 279-282

overview, 276-278

quieting notification reports, 282-284

Form Workspace, in Intelli) IDEA, 462-468,
496-497

formatting code, 58
frame.add(label) method, 482

frame.setDefaultCloseOperation method, 482

From One File to Another code listing, 425-426
From Statements Come Values code listing, 415
frustration, 109

fully qualified name, 105, 336

G

George Boole Would Be Proud code listing, 228
Giroux, Phillip, 341
glyphs, 195
goto keyword, 79
grid layout, 507
grouping separators, 189
GUI (graphical user interface) programming
characteristics of
code for text fields and buttons, 494-502
GUI Designer, 490-494
overview, 490

classes to create applications for, 478
overview, 477
Swing classes for
calling, 483-486
code variations for, 486-497
JFrame, 481-483, 487-490
overview, 478-479
window of, 479-481

H

hard-coding, 131

HashMap class, 475

HashSet class, 475

headers, of methods, 86, 350

Hey! Is This a For-by-For? code listing, 439

Hide button, in Intelli] IDEA, 66-67

highlighting, syntax, 58

Horace Fletcher's Revenge code listing, 276-277
horizon, 182

How to Keep Four Kids from Throwing Tantrums
code listing, 150

How to Prime a Loop code listing, 271

| Know Everything code listing, 205
IDE (integrated development environment), 18
identifiers, 79
changing names of, 121-122
main, 120
types of, 79-81
identifiers, valid, 93-94
if (columnNumber> 6@), 9-10
IF COLUMN-NUMBER IS GREATER THAN 60, 9
if statements
conditions for
adding boolean variables, 227-229
combining, 222-224

combining logical operators together,
229-231

example codes of, 225-227
initializing, 224

52/ Beginning Programming with Java For Dummies

overview, 219-221
parentheses, 231-232

enumerating possibilities with enum type,
239-243

error messages, 204
escape sequences for, 245-249
including blocks in, 256
making decisions with
error messages in, 203-205
example codes of, 205-209
indentation for, 209-210
overview, 199-202
substitutions in, 202-203
methods of creating
blocks, 215
import declarations, 215-218
overview, 210
without else clauses, 211-212
nested, creating, 233-239
putting inside another i f statement, 234-235
putting several statements inside, 218
text blocks for, 243-244

I'm Repeating Myself Again (Again) code
listing, 316

import declarations
example of, 105
static, 215-218, 338-339
types of, 336-337
import java.util.Scanner line, 102
In Case of a Tie code listing, 226-227
indentation, 83
changing, 125
for i f statements, 209-210
in programs, 122-123
purpose of, 93
infinite loops, 262-265
inheritance, 489
initializations
of amount variable, 129, 139
for arrays, 458, 464
for conditions, 224
defined, 139
for i f statements, 224

of price variable, 224-225
putting into parentheses, 278
for for statements, 279-282
input files, 388-389
instances
creating for JFrame class, 481-483
differences between objects and, 303-304
int type, 171, 474
int value, 154, 506
int variable, 158-159
Int wrapper class, 474
Integer class, 506
integrated development environment (IDE), 18
Intelli) IDEA
adding code to, 48-52
changing names in editor, 68-69
downloading Java without, 35-36
editor area, 65, 105-108
error messages, 68
Form Workspace in, 496-497
Hide button, 66-67
installing, 23-30
Mac's security features for, 32
main window, 27, 61-63
editor area, 65
lower area, 65-66
Project tool window, 64-65
status bar, 66
top of, 64
navigation bar, 63-64
open and closed projects in, 62
Project Tool window, 27, 28, 64-65
status bar, 27, 28, 66
tasks to try, 67
tool window, 65-66
toolbar, 64
using, 32-35
displaying several projects at same time, 34
running code, 34-35
stopping and starting work, 33
Welcome screen, 62
working on projects with, 33-35

Index 525

Intellij IDEA Community Edition, 22
Internet resources
APl documentation, 17, 342, 505
author’'s email, 21, 516
author's Facebook account, 21, 516
author’s Twitter account, 21, 516
Cheat Sheet, 4
downloading Java, 35
GUI program examples, 50
information on printf method, 265
Java documentation page, 44
JavaFX information, 478
TIOBE Programming Community Index, 513
website for this book, 22, 54

Investigating the Behavior of toUpperCase code
listing, 176

is equal to (==)operator, 187

is greater than (>) operator, 187

is greater than or equal to (>=) operator, 187
is less than (<) operator, 187

is less than or equal to (<=) operator, 187

is not equal to (!=) operator, 187

isHidden method, 506

iterations, 254

It's Warm and Cozy in Here code listing, 188

J

Java
documentation for, 42-45
looking up information, 44-45
obtaining, 42
setting up, 42-44
downloading without Intelli) IDEA, 35-36
installing, 28-30
kinds of, 38-42
for developers vs. consumers, 38-39
different versions on same computer, 41-42
Oracle JDK and Oracle Open)DK, 40
version numbers, 39-40
Java development kit (JDK), 38-39

Java EE (Java Enterprise Edition), 38
Java For Dummies (Burd), 512

Java ME (Java Micro Edition), 38

A Java Program code listing, 97

Java Programming for Android Developers For
Dummies (Burd), 512

Java programs. See also classes
accessing Intelli] IDEA features in, 105-108
codein

creating programs from, 74-75
Listing 4-1 text, 75-76
overview, 73-74
creating code for, 54-61
errors, 59-60
formatting, 58
replacing existing line of code, 55
using Intelli) IDEA, 54
Echoline
code for, 97-98
how works, 100-101
scanner methods for, 102-105
typing and running, 98-100
elements in
comments, 84-85
identifiers, 79-81
keywords, 77-79
literals, 81
overview, 76-77
punctuation, 82-84
errors in
avoiding curly quotation marks, 125
braces, 116-117
case sensitivity, 110-111
compile-time errors, 124-125
misspelled words, 118
overview, 108-109
punctuation, 112-116
runtime error messages, 119-121
formatting for, 58
keywords for, 78-79
main method in, 88-89

526 Beginning Programming with Java For Dummies

methods in, 85-88, 91-92
body of, 86
calling, 86
declaration, 86
header of, 86
roles of in ThingslLike program, 91-92
overview, 73
personal style within, 124
process of writing
32- versus 64-bit processor, 36-38

differences between Oracle JDK and Oracle
OpenJDK, 40

downloading Java without Intelli] IDEA, 35-36
filename extensions, 31
installing, 28-30
Mac's security features for, 32
progression of, 39-40
terminology for, 38
working on projects with Intelli] IDEA, 33-35
running
adding code to Intelli] IDEA, 48-52
copies of code for, 48
example, 52-54
instructions for, 52-54
overview, 47
spaces and indentation in, 122-123, 125
Java runtime environment (JRE), 38-39
Java SE (Java Standard Edition), 38
Java Shell tool (JShell) editor, 144-147
Java Swing, 478
Java Virtual Machine (JVM), 13-16, 119
javac.exe file, 13,16
Javadocs, 15,17
JavaFX, 478
java.lang.System class, 336
java.util.Scanner class, 336
JDK (Java development kit), 38-39
JFrame class
creating an instance for, 481-483
layouts of, 506-507
methods of, 487-490
parameters within, 482-483

JFrame() constructor, 485-487
JFrame.DISPOSE_ON_CLOSE parameter, 482

JFrame.DO_NOTHING_ON_CLOSE parameter,
482-483

JFrame.HIDE_ON_CLOSE parameter, 482
JOptionPane class, 507-508

JPanel component, 491-492

JRE (Java runtime environment), 38-39
JShell (Java Shell tool) editor, 144-147
JVM (Java Virtual Machine), 13-16, 119

K

keyboard, 104
keyboard.nextDouble method, 137
keyboard.nextLine() method, 101, 484-485
keyboard.nextSomething method, 137, 138
keywords, 77-80

changing, 93

class, 58, 79, 80

extends, 489

goto, 79

public, 58, 80

restricted, 78, 79

static, 80, 142

void, 58, 80

L

labels, copying text to, 501

Landscaping For Dummies (Giroux, Beckstrom,
Walheim), 341

languages for programming
defined, 9
tools for creating
compiling code with compilers, 10-13
overview, 9-10
lastModified method, 506
layouts, of JFrame class, 506-507
length method, 506
lengths, converting, 218
LinkedList class, 475
Linux, filename extensions in, 31

Index 527

listings, code
An Account Class, 349
Adding Interest, 359

Adding Interest for a Certain Number of Years,
364-365

Are You Paying Too Much? 222
Aren't You Lucky? 211

An Attempt to Debug the Code in Listing
14-3, 322

The Bold and the Beautiful, 500-501
Calling a Method, 87

Calling an Object's Method, 323-324
Calling the addInterest Method, 359-360

Calling the Beefed-Up addinterest Method,
365-366

Calling the Method in Listing 15-10, 367-368

In Case of aTie. .., 226-227

A Class with Two Methods, 357

Creating a Window with an Image in It, 479-480

Declaring a Variable Inside the main
Method, 339

Do You Have a Coupon? 226

Doing It the Old-Fashioned Way, 296
Enjoying a Quieter Meal, 283

Enlarging a Frame, 494
Extending Java's JFrame Class, 486-487
A Faulty Password Checker, 321

A Few Lines in a Computer Program, 8
George Boole Would Be Proud, 228
Hey! Is This a For-by-For? 439

Horace Fletcher's Revenge, 276-277

How to Keep Four Kids from Throwing
Tantrums, 150

How to Prime a Loop, 271

| Know Everything, 205

An if Statement, 201

I'm Repeating Myself Again (Again), 316
Investigating the Behavior of toUpperCase, 176
It's Warm and Cozy in Here, 188

AJava Program, 97

A la recherche du temps perdu, 416-417

A Little Experiment, 397

Making a MyFrame Object, 487

Making a Word Go Backward, 179

Making Change, 155-156

Making Use of the Code in Listing 15-1, 352
May the Best Team Be Displayed First, 213

The Mechanical Combining of Two Loops,
428-429

A Method Declaration, 86
A Method That Returns a Value, 367
More Chips, Please, 330

A More Refined Version of the One-Room Code,
448-449

A More Versatile Program for Kids and
Gumballs, 151

Nested if Statements, 223-224

Nice Try, But. . ., 270

No Extra Break for Kids or Seniors, 229-230
From One File to Another, 425-426

One Good Ternary Deserves Another, 420-421
Out with the Old out.printin! 410

A Program to Display the Things | Like, 56

A Program to Generate an Occupancy Report,
444-445

Proud Winners and Sore Losers, 240-241

Pulling a Variable Outside the main Method, 339
Putting a Name in a String Variable, 317-318
Repeat Before You Delete, 286

Report on One Room Only, Please, 446

The Right Way to Display a Dollar Amount,
332-333

Roll 7 or 11, 252-253
A Rude Answer for Every Occasion, 402-403
A Simple Java Program, 74

A Simplified Version of the Game Twenty-
One, 263

SnitSoft's Grand Scam, 128
From Statements Come Values, 415
Storing Occupancy Data in an Array, 461-462

A Template to Read Data from a Disk File,
382-383

A Template to Write Data to a Disk File, 385
That's Much Better! 432-433

Thirty Days Hath September, 413-414

This Is So Cool! 358

528 Beginning Programming with Java For Dummies

Traveling through Data Both Forward and
Backward, 456

Trying to Get a Username from an Email
Address, 266

Using a Java Locale, 334-335

Using a Variable Declared Outside of a for
Loop, 280

Using the boolean Type, 185
Using the char Type, 174
Using the Keyboard and the Screen, 380-381
Using Your Purchase Class, 298
What It Means to Be a Purchase, 297
Working with a Java Collection, 470
literals, 81, 319
boolean, 79
null, 79
A Little Experiment code listing, 397
Locale class, 82
logic errors, 59
logical operators, 220, 229-231
long type, 171, 474
Long wrapper class, 474
long-term support (LTS) release, 39
loops
arrays for
Arraylist, 469-474
collection classes for, 474-476
creating reports, 455-457
limitations of, 468-469
overview, 450-454
storing data in, 459-462
storing values in, 454-455
values of, 457-458
code for, 424-426
conditions in, 448-450
creating enhanced for loops, 462-468
do statements in
deleting files, 285-288
do loops, 288-291
overview, 284-285
example code for, 443-444

infinite, 263-265
nested, strategies for
errors in, 429-432
example codes of, 434-437
for loops, 438-442
overview, 427
testing condition of, 428-429
overview, 251-252, 275-276, 423-424
priming, 265-273
running, 445-448
running while statements for
executing single statements in, 256-257
overview, 252-253
tracing action of, 253-255
for statements in
example of, 278
initialization of, 279-282
overview, 276-278
quieting notification reports, 282-284
strategies for composing code for
assembling, 259
gathering necessary parts of, 258-259
getting values for variables, 261-262
infinite loops, 263-265
overview, 257

lower area, Intelli) IDEA, 65-66
LowerCase method, 184
LTS (long-term support) release, 39

M

Mac OS X

changing filename extensions in, 31
filename extensions in, 31

security features, 32
uncompressing files, 49

Main branch, 68
main identifier, 80, 120
main method, 88-89, 106

declaration and call of, 91

pulling variables inside and outside of, 339-342

Index

529

main window, Intelli] IDEA, 61-63

editor area, 65

lower area, 65-66

Project tool window, 64-65

status bar, 66

top of, 64
Main. java program, 68
MakeChange class, 156
Making a MyFrame Object code listing, 487
Making a Word Go Backward code listing, 179
Making Change code listing, 155-156

Making Use of the Code in Listing 15-1 code
listing, 352

Managing Your Money Online For Dummies
(Sindell), 341

Map characteristic, 505
Math class, 508

May the Best Team Be Displayed First code
listing, 213

The Mechanical Combining of Two Loops code
listing, 428-429

method declaration, 87-88
A Method Declaration code listing, 86
method header, 87-88
A Method That Returns a Value code listing, 367
methods
abstract, 115
add, 481
body of, 86
calling, 86, 88
addInterest header, 362
field values, 363
main, 88, 89-90
overview, 358-361
parameters, 364-366
values, 361-362
canRead, 506
canWrite, 506
for character-reading, 181-184
Character.toUpper Case, 175-177, 184
count, 325

creating
body of, 350-351
calling, 351-353
within classes, 347-348
combining characters in, 354-356
flow of action between, 353
generating randomly as practice for, 348-349
headers for, 350
overview, 347
punction for, 354
declaration, 86
deleteOnExit, 506
equals, 324-325
fixTheAlternator, 86
frame.add(label), 482
frame.setDefaultCloseOperation, 482
getting values from
headers for, 370-373
overview, 364-366
return types and values, 366-369
header of, 86
isHidden, 506
in Java programs, 85-88, 91-92
of JFrame class, 487-490
keyboard.nextDouble, 137
keyboard.nextSomething, 138
lastModified, 506
length, 506
LowerCase, 184
main
declaration and call of, 91
in Java programs, 88-89
pulling variables inside and outside of, 339-342
objects of
calling, 326
combining, 326-327
comparing, 323-324
equals, 324-325
example codes of, 357-358
overview, 320-323

530 Beginning Programming with Java For Dummies

pack, 481, 487
roles of in ThingslLike program, 91-92
setDefaultCloseOperation, 481, 487
setText, 502
setVisible, 481, 487
static, 342
static parselnt, 338-339
types of, 136-137
misspelled words, 118
modulus operator, 155
More Chips, Please code listing, 330

A More Refined Version of the One-Room Code
code listing, 448-449

A More Versatile Program for Kids and Gumballs
code listing, 151

Mueller, John Paul, 341

MyData file, 34

MyFrame constructor, 488

MyFrame file, 34

myRandom.nextInt(10) + 1,208-209, 211

N

names, changing, 68-69
naming projects, 55
navigation bar, in Intelli] IDEA, 63-64
Nested if Statements code listing, 233-234
nested loops

errors in, 429-432

example codes of, 434-437

for loops, 438-442

overview, 427

testing condition of, 428-429
nesting code, 83
new File statement, 287-289
new Purchase() constructor call, 485
next () method, 102
nextDouble method, 102, 136-137, 189
nextInt() method, 102
nextLine method, 100, 101, 102, 484-485
nextSomething methods, 138
Nice Try, But . .. code listing, 270

No Extra Break for Kids or Seniors code listing,
229-230

nonstatic fields

calling, 328-329

defined, 328

running code for, 343-345
notification reports, quieting, 282-284
null literal, 79
NumberFormat class, 82, 508

NumberFormat.getCurrencyInstance
method, 508

numbers

comparing, 187-193
pseudorandom, 209
randomly generated, 208-209
turning into strings, 332-333
whole

comparing, 187-193

length of, 170-172

o)

object code, 11

object-oriented programming (OOP), 92
differences of classes and, 309-310
FAQs about, 310-311
fields of, 304-305
overview, 301-303
purchase, creating, 305-307
summarizing code, 311-314
terminology for, 303-304
with var, 307-308

objects
calling, 326
combining, 326-327
comparing, 323-324
differences between instances and, 303-304
equals, 324-325
example codes of, 357-358
overview, 320-323

One Good Ternary Deserves Another code listing,
420-421

Index 531

online resources overview, 154

APl documentation, 17, 342, 505 remainder, 154-157

author's email, 21 logical, 220, 229-231

author’'s email address, 516 modulus operator, 155

author's Facebook account, 21, 516 preincrement and postdecrement, 165-168
author's Twitter account, 21, 516 remainder operator, 283-284

Cheat Sheet, 4 Oracle JDK and Oracle Open]DK, 40
downloading Java, 35 OtherStatements, 202-203

GUI program examples, 50 out identifier, 81

information on printf method, 265 Out with the Old out.printIn! code listing, 410
Java documentation page, 44 output files, 389-390

JavaFX information, 478

TIOBE Programming Community Index, 513 P

website for this book, 22, 54

OOP (object-oriented programming)
differences of classes and, 309-310
FAQs about, 310-311
fields of, 304-305
overview, 301-303
purchase, creating, 305-307
summarizing code, 311-314
terminology for, 303-304

pack method, 481, 483, 487
packages, 27, 336-337
packages view, Intelli] IDEA, 64
parameters
in findWithinHorizon method, 364-366
within JFrame, 482-483

putting between open and closed
parentheses, 484

' parentheses. See also curly braces
with var, 307-308 conditions of, 231-232
open parentheses, putting parameters putting initializations and updates into, 278

between, 484 Int thod 506
open projects, in Intelli] IDEA, 62 par.se e methos.
patience, 109

operators
F!) 220 personal style, 124
- (is not equal to) operator, 187 portability, 15
&z; 220 d P ' postdecrement operator, 165-168
| |: 220, 221 postincrement operator, 163-168

precision, 95-96

preincrement operator (++), 162-168
price variable, initializing, 224-225
priming loops, 265-273

primitive non-numeric types, 194-195
primitive types, 171-172

print method, 394-396

printf method, 264-265

println identifier, 81

println method, 394-396
Priority—Queue class, 475

< (is less than) operator, 187

<= (is less than or equal to) operator, 187

== (is equal to)operator, 187

> (is greater than) operator, 187

>= (is greater than or equal to) operator, 187

comparison operators, 187

conditional operator, 420-425

creating new values by applying
assignment, 168-170
concatenating strings, 157-162
increment and decrement, 162

532 Beginning Programming with Java For Dummies

Process. java file, 298-299
processors, 32- versus 64-bit, 36-38
ProcessPurchase code, 299
ProcessPurchase. java file, 298-299
program loops
arrays for
Arraylist, 469-474
collection classes for, 474-476
creating reports, 455-457
limitations of, 468-469
overview, 450-454
storing data in, 459-462
storing values in, 454-455
values of, 457-458
code for, 424-426
conditions in, 448-450
creating enhanced for loops, 462-468
example code for, 443-444
Java
do statements in, 284-291
for statements in, 276-284
nested, strategies for
errors in, 429-432
example codes of, 434-437
for loops, 438-442
overview, 427
testing condition of, 428-429
overview, 251-252, 423-424
priming, 265-273
running, 445-448
running while statements for
executing single statements in, 256-257
overview, 252-253
tracing action of, 253-255
strategies for composing code for
assembling, 259
gathering necessary parts of, 258-259
getting values for variables, 261-262
infinite loops, 263-265
overview, 257

A Program to Display the Things | Like code
listing, 56

A Program to Generate an Occupancy Report

code listing, 444-445

programmer, defined, 8
programming

with classes
converting code to use, 299-300
example codes of, 296-297, 298-299
overview, 295-296
reference types in, 297
coding in programming languages, 8-9
defined, 8
object-oriented
differences of classes and, 309-310
FAQs about, 310-311
fields of, 304-305
overview, 301-303
purchase, creating, 305-307
summarizing code, 311-314
terminology for, 303-304
with var, 307-308
overview, 7-8

programming languages, defined, 9
programs

32- versus 64-bit processor for, 36-38
classes of, 92-94
command line, 477
creating code for, 54-61
disk-oriented
code for, 387-392
filename extensions, 393-394
overview, 378-380, 392-393
with print and print1n methods, 394-396
reading and writing, 380-382
rewriting, 397-399
templates for reading, 382-387
downloading without Intelli] IDEA, 35-36
examples of
of i f statements, 225-227
for nested loops, 434-437
of OOP, 296-297, 298-299
filename extensions, 31
giving instruction with lines of code to, 89-90

Index

programs (continued)
GUI
characteristics of, 490-502
overview, 477
Swing classes for, 478-486
installing, 28-30
javadoc, 85
Mac's security features for, 32
main method in, 88-89
methods in, 85-88, 91-92
preciseness of, 95-96
progression of, 39-40
running, 47-54
terminology for, 38
working on projects with Intelli] IDEA, 33-35
Project Structure dialog box, 41, 43
project templates, 26, 55
Project Tool window, Intelli] IDEA, 27, 28, 64-65
projects
in Intelli] IDEA, 33-35, 62
naming, 55
prompt, 138
property sheet, 491
Proud Winners and Sore Losers, 240-241
pseudorandom numbers, 209
public keyword, 58, 80

Pulling a Variable Outside the main Method code
listing, 339

punctuation
creating errors in programs, 112-116
importance of, 82-84
for methods, 354
purchase, creating, 305-307
Purchase class, creating an instance for, 484
Purchase values, combining values to make, 301
PurchaseWithDefault declaration, 305-306

Putting a Name in a String Variable code listing,
317-318

Q

quantity field, 304
quantity value, 297
Queue class, 475

quick fixes, 111
quotation marks, curly, 125

R

randomly generated number, 208-209
Read Evaluate Print Loop (REPL), 144
reading
characters, 181-185
disk-oriented programs, 380-382
String class, 318-320
record classes, 313
reference types, 297, 323
Reformat Code command, 84
regular expressions, 182
remainder operator, 283-284
Reopen Project on Startup checkbox, 63

Repeat Before You Delete code listing, 286

REPL (Read Evaluate Print Loop), 144

Report on One Room Only, Please code
listing, 446

reports, creating, 455-457
resources
APl documentation, 17, 342, 505
author’'s email, 21
author's email address, 516
author’s Facebook account, 21, 516
author’s Twitter account, 21, 516
Cheat Sheet, 4
downloading Java, 35
GUI program examples, 50
information on printf method, 265
Java documentation page, 44
JavaFX information, 478

TIOBE Programming Community
Index, 513

website for this book, 22, 54
restricted identifiers, 79
restricted keywords, 79
reusing characters, 178-181

rewriting disk-oriented programs, 397-399
The Right Way to Display a Dollar Amount code

listing, 332-333
Roll 7 or 11 code listing, 252-253

534 Beginning Programming with Java For Dummies

A Rude Answer for Every Occasion code listing,
402-403

Run button, Intelli) window, 66
Run tool button, Intelli] window, 66
running programs
disk-oriented
code for, 387-392
overview, 378-380
reading and writing, 380-382
templates for reading, 382-387
EcholLine, 98-100
Java programs
adding code to Intelli] IDEA, 48-52
copies of code for, 48
instructions for, 52-54
runtime error messages, 119-121
runtime exceptions, unchecked, 59

S

Scanner, 104, 509
scanner methods, for Echoline program, 102-105
SDK (software development kit), 25, 39
semicolon (;), 90, 113
separators, grouping, 189, 381
Set characteristic, 505
setDefault CloseOperation method
calling with parameters, 482
declarations for, 487
for JFrame, 481
setReadOnly method, 506
setText method, 502
setting up computer to code, 38-40
bits, 36-38
filename extensions, 31
Intelli) IDEA
downloading Java without, 35-36
installing, 23-28
using, 32-35
Java
installing, 28-30
kinds of, 38-42

Mac security features, 32

overview, 21-22

software, obtaining, 22-23
setVisible method, 481, 487
short type, 171, 474
Short wrapper class, 474
ShowAFrame file, 34
A Simple Java Program code listing, 74
simple name, 336-337
simple types. See primitive types

A Simplified Version of the Game Twenty-One
code listing, 263

Simula programming language, 92
Sindell, Kathleen, 341
single statements
blocks in, 215
executing, 256-257
slowness in coding, 109
smallletter variable, 178-179
Smalltalk programming language, 92
SnitSoft's Grand Scam code listing, 128
software, obtaining, 22-23
software developers, advice for, 511-516
software development kit (SDK), 25, 39
software engineering, 513
SomeStatements, 202-203, 234
source code, 11
sout, 107
spaces in programs, 122-123, 125
src branch, 51, 105
Stack class, 475
statements
blocks of, 215, 256
compound, 203
defined, 89
ending, 90
for
example of, 278
initialization of, 279-282
overview, 276-278
quieting notification reports, 282-284

Index

535

statements (continued) overview, 252-253

if tracing action of, 253-255
adding boolean variables to, 227-229 static fields
blocks in, 215, 256 calling, 328-329
cascading, 238-239 defined, 328
cascading nested, 236-239 running code for, 343-345
combining conditions for, 222-224 static import, 215-218, 338-339
combining logical operators together, 229-231 static keyword, 80, 142
creating without else clauses, 211-212 static methods, 342
enumerating possibilities with enum type, static parseInt method, 338-339
239-243 static System. out variable, 336-338
error messages in, 203-205 static variable, 338-339
escape sequences for, 245-249 status bar, Intelli) IDEA, 27, 28, 66
example codes of, 205-209, 225-227 storing characters, 177
import declarations in, 215-218 Storing Occupancy Data in an Array code listing,
indentation for, 209-210 461-462
initializing, 224 String class
nested, creating, 233-239 example codes of, 316-317
overview, 199-202, 210, 219-221 methods of, 509
parentheses in, 231-232 overview, 316
putting inside another i f statement, 234-235 reading and writing, 318-320
putting several statements inside, 218 variables of, 317-318
substitutions in, 202-203 String identifier, 80
text blocks for, 243-244 String literal, 319
importance of order of assignment for, 152-153 String. java file, 316
new File, 287-289 strings
putting several inside i f statements, 218 concatenating, 157-158
single turning into numbers, 329-332, 334
blocks in, 215 user Input, 325
executing, 256-257 summarizing code, 311-314
switch Swing class
expression feature for, 409-416 calling, 483-486
overview, 401-403 code variations for, 486-497
running, 403-409 JFrame, 481-483, 487-490
switch expression feature for, 409-416 overview, 478-479
versions of, 416-420 window of, 479-481
System.out.print, 132 switch expression, 409-416
System.out.println, 132 switch statement
while, running for program loops example code of, 402-403
blocks in, 215 expression feature for, 409-416
executing single statements in, 256-257 overview, 401-403

536 Beginning Programming with Java For Dummies

running, 403-409
versions of, 416-420
syntax coloring, 58
syntax highlighting, 17, 58
Systenm class, 509
System identifier, 80
system type, 36

System.out.println method, 90-92, 101, 107,
132, 215-216

T

A Template to Read Data from a Disk File code
listing, 382-383

A Template to Write Data to a Disk File code
listing, 385

templates, project, 26, 55
terminology, 38

for methods, 87-88

of OOP, 303-304
text blocks, for i f statements, 243-244
text fields, code for, 494-502
That's Much Better! code listing, 432-433
Thirty Days Hath September code listing, 413-414
This Is So Cool! code listing, 358
timidness, 109
tool window, in Intelli) IDEA, 65-66
toolbar, in Intelli) IDEA, 64
traditional comments, 84

Traveling through Data Both Forward and
Backward code listing, 456

true value
of conditions, 186-187
of expressions, 186-187
of variables, 181-185

Trying to Get a Username from an Email Address
code listing, 266

types
boolean, 194
char, 194-195
defined, 133
description of, 129-130
primitive non-numeric, 194-195
reference, 297
typing programs, EchoLine, 98-100

U

unchecked runtime exceptions, 59
uncompressing files, 49

underscores, 135

understanding, slowness in, 109
Unicode, 195

unzipping files, 49

user Input string, 325

Using a Java Locale code listing, 334-335

Using a Variable Declared Outside of a for Loop
code listing, 280

Using the boolean Type code listing, 185
Using the char Type code listing, 174

Using the Keyboard and the Screen code listing,
380-381

Using Your Purchase Class code listing, 298

\'

value method, 325

values
defined, 129
getting for variables, 261-262
storing in arrays, 454-455

var, 140, 307-308

variables
amount, initializing, 129, 139
bigLetter, 178-179
boolean, 185, 227-229
count, 280-281
differences between fields and, 305
double, 135-136, 139-140
fahrenheit, 188-190
getting values for, 261-262
int, 158-159
from Listing 6-1, 127-132
moving, 141-142
names of, 130
price, initializing, 224-225
smalllLetter, 178-179
static, 338-339
static System.out, 336-338
of String class, 317-318
true or false value of, 181-185

Index

537

versions of Java
for developers vs. consumers, 38-39
different versions on same computer, 41-42
version numbers, 39-40

virtual machine, defined, 10

Visual Basic programming language, 9

void keyword, 58, 80

von Neumann, John, 127

W

Walheim, Lance, 341
Welcome screen, in Intelli] IDEA, 62
What It Means to Be a Purchase code listing, 297
while loop, 281-282
while statements
including blocks in, 256
running for program loops
executing single statements in, 256-257
overview, 252-253
tracing action of, 253-255
whole numbers
comparing, 187-193
length of, 170-172

overview, 149-150
reading from keyboards, 151-152
windows, of Swing classes, 479-481
Windows 10
changing filename extensions in, 31
filename extensions in, 31
uncompressing files on, 49
unzipping files on, 49
words in programs, changing, 93
Working with a Java Collection code listing, 470
Write Once, Run Anywhere computing model, 15
writing
disk-oriented programs
example code for, 380-382
filename extensions, 393-394
overview, 392-393

with print and print1ln methods,
394-396

String class, 318-320

X

x86 label, 36
XML (eXtensible Markup Language) code, 497

538 Beginning Programming with Java For Dummies

About the Author

Barry Burd received an MS degree in Computer Science at Rutgers University and
a PhD in Mathematics at the University of Illinois. As a teaching assistant in
Champaign—-Urbana, Illinois, he was elected five times to the university-wide List
of Teachers Ranked as Excellent by Their Students.

Since 1980, Barry has been a professor in the Department of Mathematics and
Computer Science at Drew University in Madison, New Jersey. He has spoken at
conferences in the United States, Europe, Australia, and Asia. In 2020, he was
named a Java Champion as part of a project sponsored by Oracle. He is the author
of several articles and books, including Java For Dummies, Flutter For Dummies, and
Java Programming For Android Developers For Dummies, all from Wiley Publishing.

Barry lives in Madison, New Jersey, with his wife of n years, where n > 40. As an
avid indoors enthusiast, Barry enjoys sleeping, talking, and eating. You can reach
him at BeginProg@al lmycode.com.

Dedication

For

a3,

\Q@‘Q ’70:/
N)
[2.
= s
[

%, &

2, Q'&
®. N

mailto:BeginProg@allmycode.com

Author's Acknowledgments

I heartily and sincerely thank Paul Levesque, for his work on so many of my books
in this series. Thanks also to Kelsey Baird, for her patience and support. Thanks to
Becky Whitney, for keeping my grammar and punctuation in check. Thanks to the
staff at Wiley Publishing, for helping to bring this book to bookshelves.

Thanks to Frank Greco and the leaders of the New York JavaSIG — Jeanne Boyar-
sky, Rodrigo Graciano, Chandra Guntur, Justin Lee, Sai Sharan Donthi, Lily Luo,
and Vinay Karle. Thanks to Michael Redlich and the directors of the Garden State
Java User Group — Paul Syers and Chandra G. (again). Thanks to my colleagues,
the faculty members in the Mathematics and Computer Science Department at
Drew University — Sarah Abramowitz, Chris Apelian, Seth Harris, Emily Hill,
Steve Kass, Diane Liporace, Yi Lu, Ziyuan Meng, Ellie Small, and Steve Surace.
Finally, a special thanks to Richard Bonacci, Peter Lubbers, Cameron McKenzie,
Scott Stoll, and Gaisi Takeuti, for their long-term help and support.

Publisher’s Acknowledgments

Acquisitions Editor: Kelsey Baird Project Coordinator: Ram Prabakaran
Senior Project Editor: Paul Levesque Cover Image: © Anees Alangadan/Shutterstock;
Copy Editor: Becky Whitney kowalskichal/Shutterstock

Tech Editor: Chad Darby

Take dummies with you
everywhere you go!

Whether you are excited about e-books, want more
from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

ST =

facebook

RS OF
LEARNING MADE EASY

celatrate by Using $IAMAD TR on Twiter a0

Find us online!

fivio]slinko, -

1’60

dummies.com dummies

https://dummies.com

Leverage the power

Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we'll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Advertising & Sponsorships

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information

and know-how curated by a team of experts.

* Targeted ads * Microsites
* Video * Sweepstakes
¢ Email Marketing sponsorship

2 MILLION
PAGE VIEWS 15
EVERY SINGLE MONTH MILLION
; UNIQUE

e REECTEEEE T TR VISITORS PER MONTH ----3

43% 700,000 icitnon
OFALLVISITORS = 7777 TO THE INBOXES OF

ACCESS THE SITE 300,000 UNIQUE Wawmvass AMid

VIATHEIR MOBILE DEVICES

Custom Publishing

Reach a global audience in any language by creating a solution that will differentiate
you from competitors, amplify your message, and encourage customers to make a

buying decision.

* Apps * eBooks * Audio
* Books * Video * Webinars

i ierl” .
e SpecialEdition

Talent Analytics

[iglassdoor

Brian Underdahl
Wayne Slater

Kathleen A. Dobie

Carel Burke, MO, Tochnlcal Editor Alicia A. Garibaldi

Brand Licensing & Content

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

dummies

A Wiley Brand

https://dummies.com/biz

Staying Sharp

dummies

Facebook

dummies

|Il——u

Guitar

dummies

Investing

diimmies

9781119187790
USA $26.00
CAN $31.99

UK £19.99

Meditation

dimmies

9781119251163
USA $24.99
CAN $29.99

UK £17.99

9781119179030
USA $21.99
CAN $25.99

UK £16.99

9781119293354
USA $24.99
CAN $29.99

UK £17.99

.

Samsung Galaxy S7

dummies
®,
u
\o
)
)
)
i - Se
e

Bil Hughes.

9781119293347
USA $22.99
CAN $27.99

UK £16.99

- :
|Phone

dummies

9781119235491
USA $26.99
CAN $31.99

UK £19.99

9781119279952
USA $24.99
CAN $29.99

UK £17.99

9781119283133
USA $24.99
CAN $29.99

UK £17.99

PROFESSIONAL DEVELOPMENT

Beekeeplng

9781119310068
USA $22.99
CAN $27.99

UK £16.99

Crochetlng

dummies

9781119287117
USA $24.99
CAN $29.99

UK £16.99

Digital Photography

dummies

9781119235606
USA $24.99
CAN $29.99

UK £17.99

Nutrition

dummies

9781119130246
USA $22.99
CAN $27.99

UK £16.99

Windows 10

dummies

AutoCAD

dummies

dummies

GragHarvey, D

Excel 2016

9781119311041 9781119255796
USA $24.99 USA $39.99
CAN $29.99 CAN $47.99
UK £17.99 UK £27.99

. Fundamental
ePOIn:uiglf Analysis

. ' dummies

9781119181705 9781119263593
USA $29.99 USA $26.99
CAN $35.99 CAN $31.99
UK £21.99 UK £19.99

(]
dummies.com

9781119293439
USA $26.99
CAN $31.99
UK £19.99

Networking

9781119257769
USA $29.99
CAN $35.99
UK £21.99

@

QuickBooks 2017

dummies

9781119281467
USA $26.99
CAN $31.99

UK £19.99

Microseft

Office 2016

dummies

9781119293477
USA $26.99
CAN $31.99

UK £19.99

G

macOS Sierra

dimmies

9781119280651
USA $29.99
CAN $35.99

UK £21.99

Micrasoft

dummies

Joneter et

9781119265313
USA $24.99
CAN $29.99

UK £17.99

(5)
Office 365

Linkedin

dummies

9781119251132
USA $24.99
CAN $29.99
UK £17.99

Salesforce.com

dummies

9781119239314
USA $29.99
CAN $35.99
UK £21.99

Windows 10

ALL-IN-ONE

dummies

9781119310563
USA $34.00
CAN $41.99

UK £24.99

dummies

9781119293323
USA $29.99
CAN $35.99

UK £21.99

dummies

A Wiley Brand

https://dummies.com

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting Started with Java Programming
	Chapter 1 The Big Picture
	What’s It All About?
	Telling a computer what to do
	Pick your poison

	From Your Mind to the Computer’s Processor
	Translating your code
	Running code
	Code you can use

	Your Java Programming Toolset
	A tool for creating code
	What’s already on your hard drive?

	Chapter 2 Setting Up Your Computer
	Let’s Get Started
	Firing up IntelliJ IDEA
	Installing Java

	If You Need More Details . . .
	Shining light on filename extensions
	Dealing with a Mac’s security features
	Using IntelliJ IDEA with finesse
	Help! My course instructor doesn’t want me to use IntelliJ IDEA!
	Downloading Java without IntelliJ IDEA
	A bit of news about bits
	The Java smorgasbord
	Getting the documentation

	What’s Next?

	Chapter 3 Running Programs
	Running a Canned Java Program
	Getting the code
	Adding the code to IntelliJ IDEA
	Running the code

	Some Programs Don’t Come in Cans
	What’s All That Stuff in the IntelliJ IDEA Window?
	Starting up
	The main window

	Part 2 Writing Your Own Java Programs
	Chapter 4 Exploring the Parts of a Program
	Checking Out Java Code for the First Time
	Behold! A program!
	What the program’s lines say

	The Elements in a Java Program
	Keywords and their close cousins
	Identifiers that you or I can define
	Identifiers with agreed-upon meanings
	Literals
	Punctuation
	Comments

	Understanding a Simple Java Program
	What is a method?
	The main method in a program
	At last! Tell the computer to do something!
	Methods, methods everywhere
	The Java class

	Chapter 5 Composing a Program
	Computers Are Stupid
	Building an Echo Chamber
	Typing and running a program
	How the EchoLine program works
	Getting numbers, words, and other things

	Make IntelliJ Do All the Work
	Expecting the Unexpected
	Diagnosing a problem
	Misspelling words (and other missteps)
	Runtime error messages
	What problem? I don’t see a problem

	Chapter 6 Using the Building Blocks: Variables, Values, and Types
	Various Variables and Ways in Which They Vary
	Using a variable
	Understanding assignment statements
	To wrap or not to wrap?

	What Do All Those Zeros and Ones Mean?
	Types and declarations
	What’s the point?

	Reading Decimal Numbers from the Keyboard
	Though these be methods, yet there is madness in’t
	Methods and assignments

	Variations on a Theme
	If it looks like a double and smells like a double . . .
	Moving variables from place to place
	Combining variable declarations

	Experimenting with JShell

	Chapter 7 Numbers and Types
	Using Whole Numbers
	Reading whole numbers from the keyboard
	What you read is what you get

	Creating New Values by Applying Operators
	Finding a remainder
	Take control of your program’s output
	The increment and decrement operators
	Assignment operators

	Size Matters

	Chapter 8 Numbers? Who Needs Numbers?
	A Brief Character Study
	I digress . . .
	One character only, please
	Variables and recycling
	When not to reuse a variable
	Reading characters

	The Moment of Truth (and Falsehood)
	Expressions and conditions
	Comparing numbers; comparing characters

	The Remaining Primitive Types

	Part 3 Controlling the Flow
	Chapter 9 Forks in the Road
	Decisions, Decisions!
	Making Decisions (Java if Statements)
	A careful look at if statements
	A complete program
	A treatise on the importance of helpful indentation

	Variations on the Theme
	. . . or else what?
	Packing more stuff into an if statement
	Some handy import declarations

	Chapter 10 Which Way Did He Go?
	Forming Bigger and Better Conditions
	Combining conditions: An example
	When to initialize?
	More and more conditions
	A condition always reveals its secrets
	Mixing different logical operators together
	The mating calls of left and right parentheses

	Building a Nest
	The best of the nest
	Cascading if statements

	Enumerating the Possibilities
	Creating an enum type
	Using an enum type

	When One Line Isn’t Enough
	Escape to the \next li\ne o\n the scree\n
	More escapism

	Chapter 11 Around and Around It Goes
	Repeating Instructions Again and Again and Again and Again
	Following the action in a loop
	No early bailout

	Where Does Each Statement Belong?
	Finding some pieces
	Assembling the pieces
	Getting values for variables
	From infinity to affinity

	Priming the Pump
	Working on the problem
	Fixing the problem

	Chapter 12 Circling Back to Java Loops
	Repeating Statements a Certain Number of Times (Java for Statements)
	Esprit de for
	Initializing a for loop
	Shut up and chew!

	Repeating Until You Get What You Need (Java do Statements)
	Holding out for a trustworthy response
	Deleting a file
	Taming of the do
	Repeat performance

	Part 4 The Inside ScOOP
	Chapter 13 Programming with Objects and Classes
	The Class Is Always Cleaner
	Reference types and Java classes
	How to use a newly defined class
	What’s going on here?
	Why bother?

	From Classes Come Objects
	Understanding (or ignoring) the subtleties
	Making reference to an object’s parts
	Creating several objects
	If it looks like a Purchase and smells like a Purchase . . .

	Another Way to Think about Classes
	Classes, objects, and tables
	Some questions and answers

	What’s Next?

	Chapter 14 Using Methods and Fields from a Java Class
	Long Live the String!
	A simple example
	Putting String variables to good use
	Reading and writing strings

	Using an Object’s Methods
	Comparing strings
	The truth about classes and methods
	Calling an object’s methods
	Combining and using data

	How to Achieve Static Equilibrium
	Calling static and nonstatic methods
	Turning strings into numbers
	Turning numbers into strings
	Turning numbers into nice looking strings
	Your country; your currency

	The View from On High
	Unravelling Java’s import declarations
	Shedding light on the static darkness
	Barry makes good on an age-old promise

	Chapter 15 Creating New Java Methods
	Defining a Method within a Class
	Making a method
	Examining the method’s header
	Examining the method’s body
	Calling the method
	Following the flow
	Using punctuation
	Combining characters

	Let the Objects Do the Work
	Passing the Buck
	Handing off a value
	Working with a method header
	Using each object’s field values
	Passing more than one parameter

	Getting a Value from a Method
	Return on an investment
	How return types and return values work
	Working with the method header (again)

	What Next?

	Part 5 Smart Java Techniques
	Chapter 16 Piles of Files: Dealing with Information Overload
	Running a Disk-Oriented Program
	Reading and writing
	Messing with files on your hard drive
	Running disk-oriented code
	File and error

	Writing a Disk-Oriented Program
	Reading from a file
	Writing to a file

	Writing, Rewriting, and Re-Rewriting
	Write and then read
	Random numbers in a file

	Chapter 17 How to Flick a Virtual Switch
	Meet the switch Statement
	Anatomy of a switch statement
	Picky details about the switch statement

	A Switch in Time
	Dissecting the switch expression
	Can you switch between two kinds of switch?

	Your Grandparents’ switch Statement
	Using a Conditional Operator

	Chapter 18 Creating Loops within Loops
	Paying Your Old Code a Little Visit
	Reworking some existing code
	Running your code

	Nested Development
	Checking for the end of a file
	How it feels to be a computer
	Why the computer accidentally pushes past the end of the file
	Loop therapy

	Using Nested for Loops

	Chapter 19 Out of Many, One
	Some Loops in Action
	Deciding on a loop’s limit at runtime
	Using all kinds of conditions in a for loop

	Reader, Meet Arrays; Arrays, Meet the Reader
	Storing values in an array
	Creating a report
	Stuffing values into an array

	Working with Arrays
	Looping in Style
	When Good Arrays Go Bad
	What to Do When Arrays Go Awry
	Using an ArrayList
	Java’s many collection classes

	Chapter 20 Oooey-GUI Was a Worm
	Put Some Swing in Your Step
	The merry window
	A class act
	Constructor calls
	A division of labor
	Frame changer

	Drag-and-Drop for GUI Greatness
	Hello, GUI Designer
	Window dressing
	Taking action

	Part 6 The Part of Tens
	Chapter 21 Ten Useful Classes in the Java API
	ArrayList
	File
	Integer
	JFrame
	JOptionPane
	Math
	NumberFormat
	Scanner
	String
	System

	Chapter 22 Ten Bits of Advice for New Software Developers
	How Long Does It Take to Learn Java?
	Which of Barry’s Books Should I Read?
	Are Books Other than Barry’s Good for Learning Java and Android Development?
	Which Computer Programming Language(s) Should I Learn?
	What Skills Other than Computer Coding Should I Learn?
	How Should I Continue My Learning as a Software Developer?
	How Else Should I Continue My Learning as a Developer?
	How Can I Get a Job Developing Software?
	I Still Don’t Know What to Do with My Life
	If I Have Other Questions, How Can I Contact Barry Burd?

	Index
	EULA

©

Segning rogammiog
with Java

