

.5”

AA Brain-Friendly GuideBrain-Friendly Guide

Second
Edition

Design
Patterns
Building Extensible
& Maintainable
Object-Oriented
Software

Eric Freeman &
Elisabeth Robson
with Kathy Sierra & Bert Bates

Praise for Head First Design Patterns

“I received the book yesterday and started to read it on the way home…and I couldn’t stop. I took it to
the gym and I expect people saw me smiling a lot while I was exercising and reading. This is très ‘cool’.
It is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

	 — Erich Gamma, IBM Distinguished Engineer
	 and coauthor of Design Patterns with the rest of the
	 Gang of Four—Richard Helm, Ralph Johnson, and John Vlissides

“Head First Design Patterns manages to mix fun, belly-laughs, insight, technical depth, and great practical
advice in one entertaining and thought-provoking read. Whether you are new to Design Patterns or have
been using them for years, you are sure to get something from visiting Objectville.”

	 — Richard Helm, coauthor of Design Patterns with the rest of the
 Gang of Four—Erich Gamma, Ralph Johnson, and John Vlissides

 “I feel like a thousand pounds of books have just been lifted off of my head.”

	 — Ward Cunningham, inventor of the Wiki
	 and founder of the Hillside Group

“This book is close to perfect, because of the way it combines expertise and readability. It speaks with
authority and it reads beautifully. It’s one of the very few software books I’ve ever read that strikes me as
indispensable. (I’d put maybe 10 books in this category, at the outside.)”

	 — David Gelernter, Professor of Computer Science, Yale University,
	 and author of Mirror Worlds and Machine Beauty

“A Nose Dive into the realm of patterns, a land where complex things become simple, but where simple
things can also become complex. I can think of no better tour guides than Eric and Elisabeth.”

	 — Miko Matsumura, Industry Analyst, The Middleware Company
	 Former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”

	 — Daniel Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is the
book technically accurate, it is the easiest-to-understand introduction to Design Patterns that I have seen.”

	 — Dr. Timothy A. Budd, Associate Professor of Computer Science at
	 Oregon State University and author of more than a dozen books,
	 including C++ for Java Programmers

“Jerry Rice runs patterns better than any receiver in the NFL, but Eric and Elisabeth have outrun him.
Seriously…this is one of the funniest and smartest books on software design I’ve ever read.”

	 — Aaron LaBerge, SVP Technology & Product Development, ESPN

“Great code design is, first and foremost, great information design. A code designer is teaching a
computer how to do something, and it is no surprise that a great teacher of computers should turn out
to be a great teacher of programmers. This book’s admirable clarity, humor, and substantial doses of
clever make it the sort of book that helps even non-programmers think well about problem-solving.”

	 — Cory Doctorow, coeditor of Boing Boing
	 and author of Down and Out in the Magic Kingdom
	 and Someone Comes to Town, Someone Leaves Town

“There’s an old saying in the computer and videogame business—well, it can’t be that old because the
discipline is not all that old—and it goes something like this: Design is Life. What’s particularly curious
about this phrase is that even today almost no one who works at the craft of creating electronic games
can agree on what it means to ‘design’ a game. Is the designer a software engineer? An art director? A
storyteller? An architect or a builder? A pitch person or a visionary? Can an individual indeed be in
part all of these? And most importantly, who the %$!#&* cares?

 It has been said that the ‘designed by’ credit in interactive entertainment is akin to the ‘directed by’
credit in filmmaking, which in fact allows it to share DNA with perhaps the single most controversial,
overstated, and too often entirely lacking in humility credit grab ever propagated on commercial art.
Good company, eh? Yet if Design is Life, then perhaps it is time we spent some quality cycles thinking
about what it is.

 Eric Freeman and Elisabeth Robson have intrepidly volunteered to look behind the code curtain for
us in Head First Design Patterns. I’m not sure either of them cares all that much about the PlayStation
or Xbox, nor should they. Yet they do address the notion of design at a significantly honest level such
that anyone looking for ego reinforcement of his or her own brilliant auteurship is best advised not to
go digging here where truth is stunningly revealed. Sophists and circus barkers need not apply. Next-
generation literati, please come equipped with a pencil.”

	 — Ken Goldstein, Executive Vice President & Managing Director,
 Disney Online

“This is a difficult blurb for me to write since Eric and Elisabeth were my students a long time ago, so
I don’t want to be seen to be too drooling, but this is the best book on Design Patterns available for
students. As proof: I have used it ever since it was published, in both in my grad and undergrad courses,
both for software engineering and advanced programming. As soon as it came out I abandoned the
Gang of Four as well as all competitors!”

	 — Gregory Rawlins, Indiana University

“This book combines good humor, great examples, and in-depth knowledge of Design Patterns in
such a way that makes learning fun. Being in the entertainment technology industry, I am intrigued
by the Hollywood Principle and the home theater Facade Pattern, to name a few. The understanding
of Design Patterns not only helps us create reusable and maintainable quality software, but also
helps sharpen our problem-solving skills across all problem domains. This book is a must-read for all
computer professionals and students.”

	 — Newton Lee, Founder and Editor-in-Chief, Association for Computing
	 Machinery’s (ACM) Computers in Entertainment (acmcie.org)

More Praise for Head First Design Patterns

Praise for other books by Eric Freeman and Elisabeth Robson

“I literally love this book. In fact, I kissed this book in front of my wife.”

	 — Satish Kumar

“Head First HTML and CSS is a thoroughly modern introduction to forward-looking practices in web
page markup and presentation. It correctly anticipates readers’ puzzlements and handles them just in
time. The highly graphic and incremental approach precisely mimics the best way to learn this stuff:
make a small change and see it in the browser to understand what each new item means.”

	 — Danny Goodman, author of Dynamic HTML: The Definitive Guide

“The Web would be a much better place if every HTML author started off by reading this book.”

	 — L. David Baron, Technical Lead, Layout & CSS, Mozilla Corporation
 http://dbaron.org

“My wife stole the book. She’s never done any web design, so she needed a book like Head First HTML
and CSS to take her from beginning to end. She now has a list of websites she wants to build—for our
son’s class, our family…If I’m lucky, I’ll get the book back when she’s done.”

	 — David Kaminsky, Master Inventor, IBM

“This book takes you behind the scenes of JavaScript and leaves you with a deep understanding of
how this remarkable programming language works. I wish I’d had Head First JavaScript Programming
when I was starting out!”

	 — Chris Fuselier, engineering consultant

“The Head First series utilizes elements of modern learning theory, including constructivism, to bring
readers up to speed quickly. The authors have proven with this book that expert-level content can be
taught quickly and efficiently. Make no mistake here, this is a serious JavaScript book, and yet, fun
reading!”

	 — Frank Moore, web designer and developer

“Looking for a book that will keep you interested (and laughing) but teach you some serious programming
skills? Head First JavaScript Programming is it!”

	 — Tim Williams, software entrepreneur

Other related books from O’Reilly
Head First Java

Learning Java

Java in a Nutshell

Java Enterprise in a Nutshell

Java Examples in a Nutshell

Java Cookbook

J2EE Design Patterns

Other O’Reilly books by Eric Freeman and Elisabeth Robson

Head First Learn to Code

Head First JavaScript Programming

Head First HTML and CSS

Head First HTML5 Programming

Beijing • Boston • Farnham • Sebastopol • Tokyo

Eric Freeman
Elisabeth Robson

Head First
Design Patterns

Wouldn’t it be dreamy
if there was a Design Patterns
book that was more fun than

going to the dentist, and more
revealing than an IRS form? It’s

probably just a fantasy…

Head First Design Patterns, 2nd Edition
by Eric Freeman, Elisabeth Robson, Kathy Sierra, and Bert Bates

Copyright © 2021 Eric Freeman and Elisabeth Robson. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors 1st Edition: Mike Hendrickson, Mike Loukides

Editors 2nd Edition: Michele Cronin, Melissa Duffield

Cover Designer: 	 Ellie Volckhausen

Pattern Wranglers: 	 Eric Freeman, Elisabeth Robson

Printing History:

October 2004: First edition

December 2020: Second edition

Release History:

2020-11-10 First release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First Design Patterns to, say, run a nuclear power plant, you’re on your
own. We do, however, encourage you to use the DJ View app.

No ducks were harmed in the making of this book.

The original GoF agreed to have their photos in this book. Yes, they really are that good-looking.

ISBN: 978-1-492-07800-5

[MBP]										

To the Gang of Four, whose insight and expertise in
capturing and communicating Design Patterns has
changed the face of software design forever, and
bettered the lives of developers throughout the world.

But seriously, when are we going to see a second edition?
After all, it’s been only ten years.

twenty-five

viii

the authors

Authors of Head First Design Patterns

Elisabeth is a software engineer, writer,
and trainer. She has been passionate
about technology since her days as a
student at Yale University, where she
earned a Masters of Science in Computer
Science.

She’s currently cofounder of
WickedlySmart, where she creates books,
articles, videos, and more. Previously, as
Director of Special Projects at O’Reilly
Media, Elisabeth produced in-person
workshops and online courses on a variety
of technical topics and developed her
passion for creating learning experiences
to help people understand technology.

When not in front of her computer, you’ll
find Elisabeth hiking, cycling, kayaking,
and gardening in the great outdoors,
often with her camera nearby.

Eric Freeman

Eric is described by Head First series co-
creator Kathy Sierra as “one of those rare
individuals fluent in the language, practice,
and culture of multiple domains from
hipster hacker, corporate VP, engineer,
think tank.”

By training, Eric is a computer scientist,
having earned his PhD at Yale University.
Professionally, Eric was formerly CTO of
Disney Online & Disney.com at the Walt
Disney Company.

Eric now co-directs the Head First series
and devotes his time to creating print and
video content at WickedlySmart, which is
distributed across the leading educational
channels.

Eric’s Head First titles include Head First
Design Patterns, Head First HTML & CSS,
Head First JavaScript Programming, Head First
HTML5 Programming, and Head First Learn
to Code.

Eric lives in Austin, Texas.

Elisabeth Robson

ix

Creators of the Head First Series

Kathy Sierra

Kathy has been interested in learning theory
since her days as a game designer for Virgin,
MGM, and Amblin’, and a teacher of New
Media Authoring at UCLA. She was a master
Java trainer for Sun Microsystems, and she
founded JavaRanch.com (now CodeRanch.com),
which won Jolt Cola Productivity awards in
2003 and 2004.

In 2015, she won the Electronic Frontier
Foundation’s Pioneer Award for her work
creating skillful users and building sustainable
communities.

Kathy’s recent focus has been on cutting-edge,
movement science and skill acquisition coaching,
known as ecological dynamics or “Eco-D.”
Her work using Eco-D for training horses is
ushering in a far, far more humane approach
to horsemanship, causing delight for some (and
sadly, consternation for others). Those fortunate
(autonomous!) horses whose owners are using
Kathy’s approach are happier, healthier, and
more athletic than their fellows who are
traditionally trained.

You can follow Kathy on Instagram:
@pantherflows.

Bert Bates

Before Bert was an author, he was a developer,
specializing in old-school AI (mostly expert
systems), real-time OSes, and complex
scheduling systems.

In 2003, Bert and Kathy wrote Head First Java
and launched the Head First series. Since then,
he’s written more Java books, and consulted
with Sun Microsystems and Oracle on many
of their Java certifications. He’s also trained
hundreds of authors and editors to create books
that teach well.

Bert’s a Go player, and in 2016 he watched in
horror and fascination as AlphaGo trounced
Lee Sedol. Recently he’s been using Eco-D
(ecological dynamics) to improve his golf game
and to train his parrotlet Bokeh.

Bert and Kathy have been privileged to know
Beth and Eric for 16 years now, and the Head
First series is extremely fortunate to count them
as key contributors.

You can send Bert a message at CodeRanch.com.

Intro
Your brain on Design Patterns. Here you are trying to learn something,

while here your brain is doing you a favor by making sure the learning doesn’t stick. Your

brain’s thinking, “Better leave room for more important things, like which wild animals to

avoid and whether naked snowboarding is a bad idea.” So how do you trick your brain into

thinking that your life depends on knowing Design Patterns?

Who is this book for?					 xxvi

We know what you’re thinking.				 xxvii

And we know what your brain is thinking.			 xxvii

We think of a “Head First” reader as a learner.			 xxviii

Metacognition: thinking about thinking				 xxix

Here’s what WE did					 xxx

Here’s what YOU can do to bend your brain into submission	 xxxi

Read Me							 xxxii

Tech Reviewers						 xxxiv

Acknowledgments						 xxxv

Table of Contents (summary)
 Intro	 xxv
1 	 Welcome to Design Patterns: intro to Design Patterns	 1
2	 Keeping your Objects in the Know: the Observer Pattern	 37
3	 Decorating Objects: the Decorator Pattern	 79
4	 Baking with OO Goodness: the Factory Pattern	 109
5	 One-of-a-Kind Objects: the Singleton Pattern	 169
6	 Encapsulating Invocation: the Command Pattern	 191
7	 Being Adaptive: the Adapter and Facade Patterns	 237
8	 Encapsulating Algorithms: theTemplate Method Pattern	 277
9	 Well-Managed Collections: the Iterator and Composite Patterns	 317
10	 The State of Things: the State Pattern	 381
11	 Controlling Object Access: the Proxy Pattern	 425
12	 Patterns of Patterns: compound patterns	 493
13	 Patterns in the Real World: better living with patterns	 563
14	 Appendix: Leftover Patterns	 597
	

Table of Contents (the real thing)

table of contents

1 Welcome to Design Patterns
Someone has already solved your problems. In this

chapter, you’ll learn why (and how) you can exploit the wisdom and lessons

learned by other developers who’ve been down the same design problem road

and survived the trip. Before we’re done, we’ll look at the use and benefits

of design patterns, look at some key object-oriented (OO) design principles,

and walk through an example of how one pattern works. The best way to use

patterns is to load your brain with them and then recognize places in your

designs and existing applications where you can apply them. Instead of code

reuse, with patterns you get experience reuse.

intro to Design Patterns

Your BRAIN

Your Code, now new
and improved with
design patterns!

A
Bu

nch
 of

 Pa
tt

ern
s

swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods…

Duck

FlyBehavior flyBehavior;

QuackBehavior quackBehavior;

<<interface>>

FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings
fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>

QuackBehavior

quack()

quack) {

 // implements duck quack-

ing
}

Quack
quack() {

 // rubber duckie squeak

}

Squeak
quack() {

 // do nothing - can’t quack!

}

MuteQuack

display() {

// looks like a decoy duck }

Decoy Duck

display() {

// looks like a mal-

lard }

Mallard Duck
display() {

// looks like a redhead

}

Redhead Duck
display() {

// looks like a rubberduck }

Rubber Duck

Encapsulated fly behavior

Encapsulated quack behavior
Client

View

Controller

Model

Request

MVC

Subject Object

8

int
 Dog Objec

t

Mouse Object

 Cat Object Duck Object

Observers

8
8
8

8

Automatic update/notification

Object that
holds state

De
pen

de
nt

 O
bje

cts

OBSERVER

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you a good object oriented

designer. A design guru thinks
about how to create flexible
designs that are maintainable

and that can cope with
change.

It started with a simple SimUDuck app			 2

But now we need the ducks to FLY			 3

But something went horribly wrong…			 4

Joe thinks about inheritance…			 5

How about an interface?				 6

What would you do if you were Joe?			 7

The one constant in software development		 8

Zeroing in on the problem…				 9

Separating what changes from what stays the same	 10

Designing the Duck Behaviors			 11

Implementing the Duck Behaviors			 13

Integrating the Duck Behavior			 15

Testing the Duck code				 18

Setting behavior dynamically				 20

The Big Picture on encapsulated behaviors		 22

HAS-A can be better than IS-A			 23

Speaking of Design Patterns…			 24

Overheard at the local diner…			 26

Overheard in the next cubicle…			 27

The power of a shared pattern vocabulary		 28

How do I use Design Patterns?			 29

Tools for your Design Toolbox			 32

The Weather Monitoring application overview			 39

Meet the Observer Pattern					 44

Publishers + Subscribers = Observer Pattern			 45

The Observer Pattern defined				 51

The Power of Loose Coupling				 54

Designing the Weather Station				 57

Implementing the Weather Station				 58

Power up the Weather Station				 61

Looking for the Observer Pattern in the Wild			 65

Coding the life-changing application				 66

Meanwhile, back at Weather-O-Rama				 69

Test Drive the new code					 71

Tools for your Design Toolbox				 72

Design Principle Challenge					 73

2 Keeping your Objects in the Know
You don’t want to miss out when something
interesting happens, do you? We’ve got a pattern that keeps your

objects in the know when something they care about happens. It’s the Observer

Pattern. It is one of the most commonly used design patterns, and it’s incredibly

useful. We’re going to look at all kinds of interesting aspects of Observer, like its

one-to-many relationships and loose coupling. And, with those concepts in mind,

how can you help but be the life of the Patterns Party?

the Observer Pattern

Subject Object

8

int
 Dog Objec

t

Mouse Object

 Cat Object Duck Object

Observers

8
8
8

8

ONE TO MANY RELATIONSHIP

Automatic update/notification

Object that
holds state

De
pen

de
nt

 O
bje

cts

Abstraction

Encapsulation

Polymorphism

Inheritence

OO Basics

Encapsulate what varies.

Favor Composition over

inheritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled

designs between objects tha
t

interact.

OO Principles

table of contents

3 Decorating Objects
Just call this chapter “Design Eye for the Inheritance
Guy.” We’ll re-examine the typical overuse of inheritance and you’ll learn how

to decorate your classes at runtime using a form of object composition. Why?

Once you know the techniques of decorating, you’ll be able to give your (or

someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

the Decorator Pattern

I used to think real men
subclassed everything. That was until
I learned the power of extension
at runtime, rather than at compile

time. Now look at me!

Welcome to Starbuzz Coffee				 80

The Open-Closed Principle				 86

Meet the Decorator Pattern				 88

Constructing a drink order with Decorators		 89

The Decorator Pattern defined			 91

Decorating our Beverages				 92

Writing the Starbuzz code				 95

Coding beverages					 96

Coding condiments					 97

Serving some coffees				 98

Real-World Decorators: Java I/O			 100

Decorating the java.io classes				 101

Writing your own Java I/O Decorator			 102

Test out your new Java I/O Decorator			 103

Tools for your Design Toolbox			 105

4 Baking with OO Goodness
Get ready to bake some loosely coupled OO designs.
There is more to making objects than just using the new operator. You’ll

learn that instantiation is an activity that shouldn’t always be done in public

and can often lead to coupling problems. And we don’t want that, do we?

Find out how Factory Patterns can help save you from embarrassing

dependencies.

the Factory Pattern

<<interface>>
Clams

<<interface>>
Cheese

<<interface>>
Sauce

<<interface>>
Dough

createPizza()

NYPizzaStore

ThinCrustDough

MarinaraSauce

ReggianoCheese

FrozenClams

ThickCrustDough

PlumTomatoSauce

Mozzarella Cheese

FreshClams

Each factory produces a different
implementation for the family of products.

The abstract PizzaIngredientFactory
is the interface that defines how to
make a family of related products-
everything we need to make a pizza.

The clients of the Abstract
Factory are the two
instances of our PizzaStore,
NYPizzaStore and
ChicagoStylePizzaSore.

The job of the concrete
pizza factories is to
make pizza ingredients.
Each factory knows
how to create the right
objects for their region.

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

<<interface>>
PizzaIngredientFactory

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

NYPizzaIngredientFactory

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

ChicagoPizzaIngredientFactory

Identifying the aspects that vary				 112

Encapsulating object creation					 114

Building a simple pizza factory				 115

The Simple Factory defined					 117

A framework for the pizza store				 120

Allowing the subclasses to decide				 121

Declaring a factory method					 125

It’s finally time to meet the Factory Method Pattern		 131

View Creators and Products in Parallel				 132

Factory Method Pattern defined				 134

Looking at object dependencies				 138

The Dependency Inversion Principle				 139

Applying the Principle					 140

Families of ingredients…					 145

Building the ingredient factories				 146

Reworking the pizzas…					 149

Revisiting our pizza stores					 152

What have we done?					 153

Abstract Factory Pattern defined				 156

Factory Method and Abstract Factory compared			 160

Tools for your Design Toolbox				 162

table of contents

5 One-of-a-Kind Objects
Our next stop is the Singleton Pattern, our ticket to
creating one-of-a-kind objects for which there is only
one instance, ever. You might be happy to know that of all patterns,

the Singleton is the simplest in terms of its class diagram; in fact, the diagram

holds just a single class! But don’t get too comfortable; despite its simplicity

from a class design perspective, it’s going to require some deep object-oriented

thinking in its implementation. So put on that thinking cap, and let’s get going.

the Singleton Pattern

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has

one instance an
d provide a glo

bal point

of access to it.

Dissecting the classic Singleton Pattern implementation		 173

The Chocolate Factory					 175

Singleton Pattern defined					 177

Houston, we have a problem					 178

Dealing with multithreading					 180

Can we improve multithreading?				 181

Meanwhile, back at the Chocolate Factory…			 183

Tools for your Design Toolbox				 186

Hershey, PA

6 Encapsulating Invocation

In this chapter, we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That’s right—by encapsulating method invocation, we can crystallize pieces

of computation so that the object invoking the computation doesn’t need to

worry about how to do things, it just uses our crystallized method to get it

done. We can also do some wickedly smart things with these encapsulated

method invocations, like save them away for logging or reuse them to

implement undo functionality in our code.

the Command Pattern

I’ll have a Burger
with Cheese and a Malt
Shake

Burger with Cheese

 Malt Shake
createOrder()

takeOrder()

Burger with Cheese

 Malt Shake

orderU
p()

makeBurger(), makeShake()

outp
ut

The Order consists of an
order

slip and the customer’s menu

items that are written on it.

The customer knows
what he wants and
creates an order.

The Waitress takes the Order, and when she gets around to it, she calls its orderUp() method to begin the Order’s preparation.

The Order has
 all

the instr
uctions

needed t
o prepare

the meal. The

Order dire
cts the

Short Order Cook

with methods li
ke

makeBurger().

The Short Order Cook follows the instructions of the Order and produces the meal.

Start H
ere

Home Automation or Bust				 	 192

Taking a look at the vendor classes				 194

A brief introduction to the Command Pattern			 197

From the Diner to the Command Pattern			 201

Our first command object					 203

Using the command object					 204

Assigning Commands to slots					 209

Implementing the Remote Control				 210

Implementing the Commands				 211

Putting the Remote Control through its paces			 212

Time to write that documentation…				 215

What are we doing?					 217

Time to QA that Undo button!				 220

Using state to implement Undo				 221

Adding Undo to the Ceiling Fan commands			 222

Every remote needs a Party Mode!				 225

Using a macro command					 226

More uses of the Command Pattern: queuing requests		 229

More uses of the Command Pattern: logging requests		 230

Command Pattern in the Real World				 231

Tools for your Design Toolbox				 233

table of contents

7 Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. Sound
impossible? Not when we have Design Patterns. Remember the Decorator
Pattern? We wrapped objects to give them new responsibilities. Now we’re
going to wrap some objects with a different purpose: to make their interfaces look
like something they’re not. Why would we do that? So we can adapt a design
expecting one interface to a class that implements a different interface. That’s not
all; while we’re at it, we’re going to look at another pattern that wraps objects to
simplify their interface.

the Adapter and Facade Patterns

Adaptee

Client

Adapter

request() translatedRequest()

The Client is implemented

against the target interface

The Adapter implements the

target interface and holds an

instance of the Adaptee

target interface

adaptee
interface

Turkey was the
adaptee interface

British Wall Outlet

AC Power Adapter

Standard AC Plug

Adapters all around us					 238

Object-oriented adapters					 239

If it walks like a duck and quacks like a duck, then it must
 might be a duck turkey wrapped with a duck adapter…		 240

Test drive the adapter					 242

The Adapter Pattern explained				 243

Adapter Pattern defined					 245

Object and class adapters					 246

Real-world adapters					 250

Adapting an Enumeration to an Iterator			 251

Home Sweet Home Theater					 257

Watching a movie (the hard way)				 258

Lights, Camera, Facade! 					 260

Constructing your home theater facade				 263

Implementing the simplified interface				 264

Time to watch a movie (the easy way)				 265

Facade Pattern defined					 266

The Principle of Least Knowledge				 267

How NOT to Win Friends and Influence Objects			 268

The Facade Pattern and the Principle of Least Knowledge		 271

Tools for your Design Toolbox				 272

8 Encapsulating Algorithms
We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas…what could be next?
We’re going to get down to encapsulating pieces of algorithms so that subclasses

can hook themselves right into a computation anytime they want. We’re even

going to learn about a design principle inspired by Hollywood. Let’s get started…

the Template Method Pattern

1 Boil some water

2

3

4

Steep the tea bag in the water

Pour tea in a cup

Add lemon

1 Boil some water
2

3

4

Brew the coffee grindsPour coffee in a cup
Add sugar and milk

2

4

Steep the teabag in the water
Add lemon

Tea subclass Coffee subclass

2

4

Brew the coffee grinds

Add sugar and milk

1 Boil some water

2

3

4

Brew

Pour beverage in a cup

Add condiments

Caffeine Beverage

Tea Coffee

Caffeine Beverage knows

and controls the steps
of

the recipe, and perform
s

steps 1 and 3 itself, bu
t

relies on Tea or Coffee

to do steps 2 and 4.

We’ve recognized that
the two recipes are
essentially the same,

although some of the
steps require different
implementations. So

we’ve generalized the
recipe and placed it in

the base class.

generalize

relies on
subclass for
some steps

generalize

relies on
subclass for
some steps

It’s time for some more caffeine				 278

Whipping up some coffee and tea classes (in Java)			 279

Let’s abstract that Coffee and Tea				 282

Taking the design further…					 283

Abstracting prepareRecipe()					 284

What have we done?					 287

Meet the Template Method 					 288

What did the Template Method get us?				 290

Template Method Pattern defined				 291

Hooked on Template Method…				 294

Using the hook						 295

The Hollywood Principle and Template Method			 299

Template Methods in the Wild				 301

Sorting with Template Method				 302

We’ve got some ducks to sort…				 303

What is compareTo()?					 303

Comparing Ducks and Ducks					 304

Let’s sort some Ducks					 305

The making of the sorting duck machine			 306

Swingin’ with Frames					 308

Custom Lists with AbstractList				 309

Tools for your Design Toolbox				 313

table of contents

http://seriouspony.com
http://elisabethrobson.com

9 Well-Managed Collections

There are lots of ways to stuff objects into a collection.
Put them into an Array, a Stack, a List, a hash map—take your pick. Each has its

own advantages and tradeoffs. But at some point your clients are going to want

to iterate over those objects, and when they do, are you going to show them your

implementation? We certainly hope not! That just wouldn’t be professional. Well, you

don’t have to risk your career; in this chapter you’re going to see how you can allow

your clients to iterate through your objects without ever getting a peek at how you

store your objects. You’re also going to learn how to create some super collections of

objects that can leap over some impressive data structures in a single bound. And if

that’s not enough, you’re also going to learn a thing or two about object responsibility.

the Iterator and Composite Patterns

PancakeHouse
M

en
u

 DinerMenu
 CafeMenu

1 2 3

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

Pancake Menu

 MenuItem

 MenuItem

 MenuItem

 MenuItem

Café Menu

 key

 key

 key

 key

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Diner Menu

All Menus

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Dessert Menu

Array

ArrayList

Breaking News: Objectville Diner and Objectville Pancake House Merge	 318

Check out the Menu Items						 319

Implementing the spec: our first attempt				 323

Can we encapsulate the iteration?					 325

Meet the Iterator Pattern						 327

Adding an Iterator to DinerMenu					 328

Reworking the DinerMenu with Iterator				 329

Fixing up the Waitress code						 330

Testing our code							 331

Reviewing our current design…					 333

Cleaning things up with java.util.Iterator				 335

Iterator Pattern defined						 338

The Iterator Pattern Structure					 339

The Single Responsibility Principle					 340

Meet Java’s Iterable interface						 343

Java’s enhanced for loop						 344

Taking a look at the Café Menu					 347

Iterators and Collections						 353

Is the Waitress ready for prime time?					 355

The Composite Pattern defined					 360

Designing Menus with Composite					 363

Implementing MenuComponent					 364

Implementing the MenuItem						 365

Implementing the Composite Menu					 366

Now for the test drive…						 369

Tools for your Design Toolbox					 376

10 The State of Things

A little-known fact: the Strategy and State Patterns were
twins separated at birth. You’d think they’d live similar lives, but the Strategy

Pattern went on to create a wildly successful business around interchangeable algorithms,

while State took the perhaps more noble path of helping objects to control their behavior

by changing their internal state. As different as their paths became, however, underneath

you’ll find almost precisely the same design. How can that be? As you’ll see, Strategy

and State have very different intents. First, let’s dig in and see what the State Pattern is all

about, and then we’ll return to explore their relationship at the end of the chapter.

the State Pattern

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Here’s the way we think the gumball machine controller needs to

work. We’re hoping you can implement this in Java for us! We may

be adding more behavior in the future, so you need t
o keep the

design as flexible and maintainable as possible!

 - Mighty Gumball Engineers

Out of
Gumballs

 Has
Quarter

 No

Quarter

Gumball

 Sold

ins
ert

s q
uar

ter

eje
cts

 qu
art

er

turns crank

dispense
gumball

gumballs = 0

gumballs > 0

Java Breakers					 382

State machines 101 				 384

Writing the code					 386

In-house testing					 388

You knew it was coming…a change request!		 390

The messy STATE of things…			 392

The new design					 394

Defining the State interfaces and classes			 395

Reworking the Gumball Machine			 398

Now, let’s look at the complete GumballMachine class…	 399

Implementing more states				 400

The State Pattern defined				 406

We still need to finish the Gumball 1 in 10 game		 409

Finishing the game					 410

Demo for the CEO of Mighty Gumball, Inc.		 411

Sanity check…					 413

We almost forgot!					 416

Tools for your Design Toolbox			 419

table of contents

11 Controlling Object Access

Ever play good cop, bad cop? You’re the good cop and you provide

all your services in a nice and friendly manner, but you don’t want everyone asking

you for services, so you have the bad cop control access to you. That’s what proxies

do: control and manage access. As you’re going to see, there are lots of ways in

which proxies stand in for the objects they proxy. Proxies have been known to haul

entire method calls over the internet for their proxied objects; they’ve also been

known to patiently stand in for some pretty lazy objects.

the Proxy Pattern

<<interface>>
Subject

request()

RealSubject

request()

Proxy

request()

<<interface>>
InvocationHandler

invoke()

InvocationHandler

The proxy now consists of two

classes.

invoke()

Coding the Monitor				 427

Testing the Monitor				 428

Remote methods 101				 433

Getting the GumballMachine ready to be a remote service	 446

Registering with the RMI registry…			 448

The Proxy Pattern defined				 455

Get ready for the Virtual Proxy			 457

Designing the Album Cover Virtual Proxy		 459

Writing the Image Proxy				 460

Using the Java API’s Proxy to create a protection proxy	 469

Geeky Matchmaking in Objectville			 470

The Person implementation				 471

Five-minute drama: protecting subjects			 473

Big Picture: creating a Dynamic Proxy for the Person	 474

The Proxy Zoo					 482

Tools for your Design Toolbox			 485

The code for the Album Cover Viewer			 489

12 Patterns of Patterns

Who would have ever guessed that Patterns could work
together? You’ve already witnessed the acrimonious Fireside Chats (and
you haven’t even seen the Pattern Death Match pages that the editor forced us to
remove from the book), so who would have thought patterns can actually get along
well together? Well, believe it or not, some of the most powerful OO designs use
several patterns together. Get ready to take your pattern skills to the next level; it’s
time for compound patterns.

compound patterns

Working together					 494

Duck reunion					 495

What did we do?					 517

A bird’s duck’s-eye view: the class diagram		 518

The King of Compound Patterns			 520

Meet Model-View-Controller				 523

A closer look…					 524

Understanding MVC as a set of Patterns		 526

Using MVC to control the beat…			 528

Building the pieces					 531

Now let’s have a look at the concrete BeatModel class	 532

The View						 533

Implementing the View				 534

Now for the Controller				 536

Putting it all together…				 538

Exploring Strategy					 539

Adapting the Model				 540

And now for a test run…				 542

Tools for your Design Toolbox			 545

BeatModel

Controller

setBPM()

getBPM()

on()

off()

Click on the
increase beat
button…

The controller asks
the model to update
its BPM by one.

View is notified that the
BPM changed. It calls
getBPM() on the model state.

Because the BPM is 120, the view gets a beat notification every 1/2 second.

The beat is set at 119 BPM and you
would like to increase it to 120.

…which results in the
controller being invoked.

The view is updated
to 120 BPM.

You see the beatbar
pulse every 1/2 second.

View

View

table of contents

13 Patterns in the Real World
Ahhhh, now you’re ready for a bright new world filled
with Design Patterns. But, before you go opening all those new doors
of opportunity, we need to cover a few details that you’ll encounter out in the
real world—that’s right, things get a little more complex than they are here
in Objectville. Come along, we’ve got a nice guide to help you through the
transition…

better living with patterns

Design Pattern defined				 565

Looking more closely at the Design Pattern definition	 567

May the force be with you				 568

So you wanna be a Design Patterns writer		 573

Organizing Design Patterns				 575

Thinking in Patterns				 580

Your Mind on Patterns				 583

Don’t forget the power of the shared vocabulary		 585

Cruisin’ Objectville with the Gang of Four		 587

Your journey has just begun…			 588

The Patterns Zoo					 590

Annihilating evil with Anti-Patterns			 592

Tools for your Design Toolbox			 594

Leaving Objectville					 595

Erich Gamma

John Vlissides

Richard
Helm

Ralph
Johnson

Gang of Four

The Objectville Guide to

 Better Living with Design Patterns

Please accept our handy guide of tips & tricks for living with patterns in the real

world. In this guide you will:

b Learn the all too common misconceptions about the definition of a “Design

Pattern.”

b Discover those nifty Design Pattern Catalogs and why you just have to get

one.

b Avoid the embarrassment of using a Design Pattern at the wrong time.

b Learn how to keep patterns in classifications where they belong.

b See that discovering patterns isn’t just for the gurus; read our quick How To

and become a patterns writer too.

b Be there when the true identify of the mysterious Gang of Four is revealed.

b Keep up with the neighbors – the coffee table books any patterns user must

own.

b Learn to train your Design Patterns mind like a Zen master.

b Win friends and influence developers by improving your patterns vocabulary.

14 Appendix: Leftover Patterns

Not everyone can be the most popular. A lot has changed in the

last 25+ years. Since Design Patterns: Elements of Reusable Object-Oriented

Software first came out, developers have applied these patterns thousands of

times. The patterns we summarize in this appendix are full-fledged, card-carrying,

official GoF patterns, but aren’t used as often as the patterns we’ve explored so

far. But these patterns are awesome in their own right, and if your situation calls for

them, you should apply them with your head held high. Our goal in this appendix is

to give you a high-level idea of what these patterns are all about.

i Index 	 617	

Bridge					 598

Builder					 600

Chain of Responsibility			 602

Flyweight					 604

Interpreter				 606

Mediator					 608

Memento					 610

Prototype					 612

Visitor					 614

Visitor

 Client /
Traverser

getState()getState()

getState()

getState()

getStat
e()

ge
tH
ea
lt
hR
at
in
g(
)

ge
tC
al
or
ie
s(
)

ge
tP
ro
te
in
()

ge
tC
ar
bs
()

All these composite
classes have to do is add
a getState() method
(and not worry about
exposing themselves).

The Client asks
the Visitor to get
information from the
Composite structure…
New methods can be
added to the Visitor
without affecting the
Composite.

The Visitor needs to be able to call
getState() across classes, and this is
where you can add new methods for
the client to use.

The Traverser knows how to
guide the Visitor through
the Composite structure.

MenuItem

Menu

Ingredient

MenuItem

Ingredient

table of contents

xxv

Intro
how to use this book

I can’t believe they
put that in a Design

Patterns book!

In this section, we answer the burning questi
on:

“So, why DID they put that in a d
esign patterns book?”

how to use this book

xxvi intro

Who is this book for?

1 Do you know Java (you don’t need to be a guru) or
another object-oriented language?

2 Do you want to learn, understand, remember, and
apply design patterns, including the OO design
principles upon which design patterns are based?

this book is for you.

Who should probably back away from this book?

1 Are you completely new to object-oriented
programming?

4

this book is not for you.

Are you afraid to try something different? Would
you rather have a root canal than mix stripes
with plaid? Do you believe that a technical book
can’t be serious if object-oriented concepts are
anthropomorphized?

If you can answer “yes” to all of these:

If you can answer “yes” to any one of these:

2 Are you a kick-butt object-oriented designer/
developer looking for a reference book?

[Note from marketing: this book is for anyone with a credit card.]

3 Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

3 Are you an architect looking for enterprise design
patterns?

All our examples are in
Java, but you should be
able to understand the
main concepts of the
book if you know another
object-oriented language.

the intro

you are here� xxvii

“How can this be a serious programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what you’re thinking.

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking.
You just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-
free zone. You’re studying. Getting ready for an exam. Or trying to
learn some tough technical topic your boss thinks will take a week,
ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s
trying to make sure that this obviously non-important content doesn’t
clutter up scarce resources. Resources that are better spent storing
the really big things. Like tigers. Like the danger of fire. Like how
you should never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank
you very much, but no matter how dull this book is, and how little
I’m registering on the emotional Richter scale right now, I really do
want you to keep this stuff around.”

And we know what your brain is thinking.

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only
642 more dull,
dry, boring pages.

how to use this book

xxviii intro

So what does it take to learn something? First, you have to get it, then make

sure you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely

to solve problems related to the content.

Use a conversational and personalized style. In studies, students

performed up to 40% better on post-learning tests if the content spoke directly to

the reader, using a first-person, conversational style rather than taking a formal

tone. Tell stories instead of lecturing. Use casual language. Don’t take yourself

too seriously. Which would you pay more attention to: a stimulating dinner party

companion, or a lecture?

Get the learner to think more deeply. In other words, unless

you actively flex your neurons, nothing much happens in your head. A

reader has to be motivated, engaged, curious, and inspired to solve

problems, draw conclusions, and generate new knowledge. And for

that, you need challenges, exercises, thought-provoking questions,

activities that involve both sides of the brain, and multiple

senses.

Get—and keep—the reader’s attention. We’ve

all had the “I really want to learn this but I can’t stay awake past

page one” experience. Your brain pays attention to things that

are out of the ordinary, interesting, strange, eye-catching, unexpected.

Learning a new, tough, technical topic doesn’t have to be boring. Your brain will

learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re

talking emotions like surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!” that comes

when you solve a puzzle, learn something everybody else thinks is hard, or realize you know

something that “I’m more technical than thou” Bob from engineering doesn’t.

We think of a “Head First” reader as a learner.

doCalc()

return value

Needs to call a method on the server
Server executes
remote method

 abstract void roam();

No method b
ody !

End it with a

semicolon.

Does it make sense to
say Tub IS-A Bathroom?

Bathroom IS-A Tub? Or is it
a HAS-A relationship?

It really sucks to be
an abstract method.

You don’t have a
body.

the intro

you are here� xxix

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn
design patterns. And you probably don’t want to spend a lot of time. And
you want to remember what you read, and be able to apply it. And for that,
you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on this
content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best
to keep the new content from sticking.

Metacognition: thinking about thinking

So how DO you get your brain to think Design
Patterns are as important as a tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are
able to learn and remember even the dullest of topics, if you keep
pounding on the same thing. With enough repetition, your brain says, “This doesn’t
feel important to him, but he keeps looking at the same thing over and over and over, so I
suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

I wonder how I
can trick my brain
into remembering
this stuff...

xxx intro

how to use this book

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth 1,024 words. And when text and pictures work together,
we embedded the text in the pictures because your brain works more effectively when the text
is within the thing it refers to, as opposed to in a caption or buried somewhere else.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening to
a presentation. Your brain does this even when you’re reading.

We included more than 90 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, while someone else just wants to see
a code example. But regardless of your own learning preference, everyone benefits from seeing
the same content represented in multiple ways.

We included content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgments.

We included challenges, both with exercises and by asking questions that don’t always
have a straight answer, because your brain is tuned to learn and remember when it has to work
at something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

We used an 80/20 approach. We assume that if you’re going for a PhD in software design,
this won’t be your only book. So we don’t talk about everything. Just the stuff you’ll actually need.

Here’s what WE did:

The Patterns Guru

 BULLET POINTS

Subject Object

8

int
 Dog Objec

t

Mouse Object

 Cat Object Duck Object

Observers

8
8
8

8

ONE TO MANY RELATIONSHIP

Automatic update/notification

Object that
holds state

De
pen

de
nt

 O
bje

cts

Puzzles

the intro

you are here� xxxi

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Here’s what YOU can do to bend
your brain into submission

1 Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

3 Read the “There Are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

4 Make this the last thing you read before
bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

6 Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

9 Design something!
Apply this to something new you’re designing, or
refactor an older project. Just do something to get
some experience beyond the exercises and activities
in this book. All you need is a pencil and a problem
to solve…a problem that might benefit from one or
more design patterns.

Cut this out and stick it on your refrigerator.

8 Feel something!
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

xxxii intro

Read Me

Director

getMovies
getOscars()
getKevinBaconDegrees()

We use a simpler,
modified version
of UML.

This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at that
point in the book. And the first time through, you need to begin at the beginning, because
the book makes assumptions about what you’ve already seen and learned.

We use simple UML-like diagrams.

Although there’s a good chance you’ve run across UML, it’s not covered in the book, and
it’s not a prerequisite for the book. If you’ve never seen UML before, don’t worry, we’ll
give you a few pointers along the way. So in other words, you won’t have to worry about
Design Patterns and UML at the same time. Our diagrams are “UML-like”—while we
try to be true to UML there are times we bend the rules a bit, usually for our own selfish
artistic reasons.

We don’t cover every single Design Pattern ever created.

There are a lot of Design Patterns: the original foundational patterns (known as the GoF
patterns), enterprise Java patterns, architectural patterns, game design patterns, and a lot
more. But our goal was to make sure the book weighed less than the person reading it, so
we don’t cover them all here. Our focus is on the core patterns that matter from the original
GoF object-oriented patterns, and making sure that you really, truly, deeply understand
how and when to use them. You will find a brief look at some of the other patterns (the
ones you’re far less likely to use) in the appendix. In any case, once you’re done with Head
First Design Patterns, you’ll be able to pick up any patterns catalog and get up to speed
quickly.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some for understanding, and some to help you
apply what you’ve learned. Don’t skip the exercises. The crossword puzzles are the
only things you don’t have to do, but they’re good for giving your brain a chance to think
about the words from a different context.

We use the word “composition” in the general OO sense, which is
more flexible than the strict UML use of “composition.”

When we say “one object is composed with another object” we mean that they are related
by a HAS-A relationship. Our use reflects the traditional use of the term and is the one
used in the GoF text (you’ll learn what that is later). More recently, UML has refined this
term into several types of composition. If you are an UML expert, you’ll still be able
to read the book and you should be able to easily map the use of composition to more
refined terms as you read.

how to use this book

the intro

you are here� xxxiii

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want
you to finish the book remembering what you’ve learned. Most reference books don’t have
retention and recall as a goal, but this book is about learning, so you’ll see some of the same
concepts come up more than once.

The code examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of code looking for the two
lines they need to understand. Most examples in this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. Don’t expect
all of the code to be robust, or even complete—the examples are written specifically for
learning, and aren’t always fully functional.

In some cases, we haven’t included all of the import statements needed, but we assume that
if you’re a Java programmer, you know that ArrayList is in java.util, for example. If the
imports were not part of the normal core JSE API, we mention it. We’ve also placed all the
source code on the web so you can download it. You’ll find it at
http://wickedlysmart.com/head-first-design-patterns.

Also, for the sake of focusing on the learning side of the code, we did not put our classes
into packages (in other words, they’re all in the Java default package). We don’t recommend
this in the real world, and when you download the code examples from this book, you’ll find
that all classes are in packages.

The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of the Brain Power exercises, you will find hints to point you in the right direction.

http://wickedlysmart.com/head-first-design-patterns/

xxxiv intro

Tech Reviewers
Jef Cumps

Jason Menard

Dirk Schreckmann

Barney Marispini

Valentin Crettaz

Ike Van Atta

Mark Spritzler

Johannes deJong

Fearless leader of
the HFDP Extreme
Review Team

the first edition review team

Philippe Maquet

In memory of Philippe Maquet, 1960 -
2004. Your amazing technical expertise,
relentless enthusiasm, and deep concern for
the learner will inspire us always.

the intro

you are here� xxxv

the second edition review team

Julian Setiawan George Heineman

David Powers
Trisha Gee

Tech Reviewers, 2nd Edition

2nd Edition Reviewer MVP!

At O’Reilly:

Our biggest thanks to Mike Loukides at O’Reilly, for starting it all and helping to shape the Head First concept into
a series. And a big thanks to the driving force behind Head First, Tim O’Reilly. Thanks to the clever Head First

“series mom” Kyle Hart, “In Design King” Ron Bilodeau, rock-and-roll star Ellie Volkhausen for her inspired
cover design, Melanie Yarbrough for shepherding production, Colleen Gorman and Rachel Monaghan for
their hardcore copyedits, and Bob Pfahler for a much improved index. Finally, thanks to Mike Hendrickson and
Meghan Blanchette for championing this book and building the team.

Our intrepid reviewers:

We are extremely grateful for our technical review director Johannes deJong. You are our hero, Johannes. And we
deeply appreciate the contributions of the co-manager of the Javaranch review team, the late Philippe Maquet.
You have single-handedly brightened the lives of thousands of developers, and the impact you’ve had on their (and
our) lives is forever. Jef Cumps is scarily good at finding problems in our draft chapters, and once again made a huge
difference for the book. Thanks Jef ! Valentin Cretazz (AOP guy), who has been with us from the very first Head First
book, proved (as always) just how much we really need his technical expertise and insight. You rock Valentin (but lose
the tie).

Two newcomers to the HF review team, Barney Marispini and Ike Van Atta, did a kick-butt job on the book—you
guys gave us some really crucial feedback. Thanks for joining the team.

We also got some excellent technical help from Javaranch moderators/gurus Mark Spritzler, Jason Menard, Dirk
Schreckmann, Thomas Paul, and Margarita Isaeva. And as always, thanks especially to the javaranch.com
Trail Boss, Paul Wheaton.

Thanks to the finalists of the Javaranch “Pick the Head First Design Patterns Cover” contest. The winner, Si Brewster,
submitted the winning essay that persuaded us to pick the woman you see on our cover. Other finalists include Andrew
Esse, Gian Franco Casula, Helen Crosbie, Pho Tek, Helen Thomas, Sateesh Kommineni, and Jeff Fisher.

For the 2014 update to the book, we are so grateful to the following technical reviewers: George Hoffer, Ted Hill, Todd
Bartoszkiewicz, Sylvain Tenier, Scott Davidson, Kevin Ryan, Rich Ward, Mark Francis Jaeger, Mark Masse, Glenn Ray,
Bayard Fetler, Paul Higgins, Matt Carpenter, Julia Williams, Matt McCullough, and Mary Ann Belarmino.

From the first edition

Acknowledgments

how to use this book

xxxvi intro

Very Special Thanks
A very special thanks to Erich Gamma, who went far beyond the call of duty in reviewing this book (he even
took a draft with him on vacation). Erich, your interest in this book inspired us, and your thorough technical review
improved it immeasurably. Thanks as well to the entire Gang of Four for their support and interest, and for
making a special appearance in Objectville. We are also indebted to Ward Cunningham and the patterns
community who created the Portland Pattern Repository—an indispensable resource for us in writing this book.

A big thank you to Mike Loukides, Mike Hendrickson, and Meghan Blanchette. Mike L. was with
us every step of the way. Mike, your insightful feedback helped shape the book, and your encouragement kept us
moving ahead. Mike H., thanks for your persistence over five years in trying to get us to write a patterns book; we
finally did it and we’re glad we waited for Head First.

It takes a village to write a technical book: Bill Pugh and Ken Arnold gave us expert advice on Singleton.
Joshua Marinacci provided rockin’ Swing tips and advice. John Brewer’s “Why a Duck?” paper inspired
SimUDuck (and we’re glad he likes ducks too). Dan Friedman inspired the Little Singleton example. Daniel
Steinberg acted as our “technical liason” and our emotional support network. Thanks to Apple’s James
Dempsey for allowing us to use his MVC song. And thank you to Richard Warburton, who made sure our
Java 8 code updates were up to snuff for this updated edition of the book.

Last, a personal thank you to the Javaranch review team for their top-notch reviews and warm support.
There’s more of you in this book than you know.

Writing a Head First book is a wild ride with two amazing tour guides: Kathy Sierra and Bert Bates. With
Kathy and Bert you throw out all book writing convention and enter a world full of storytelling, learning theory,
cognitive science, and pop culture, where the reader always rules.

At O’Reilly:

First and foremost, Mary Treseler is the superpower who makes everything happen and we are eternally grateful
to her for all she does for O’Reilly, Head First, and the authors. Melissa Duffield and Michele Cronin
cleared many paths that made this second edition happen. Rachel Monaghan did an amazing copy edit, giving a
new sparkle to our text. Kristen Brown made the book look beautiful online and in print. Ellie Volckhausen
worked her magic and designed a brilliant new cover for the second edition. Thank you all!

Our 2nd edition reviewers:

We’re grateful to our 2nd edition technical reviewers for picking up the task 15 years later. David Powers is our go-
to reviewer (he’s ours, don’t even think about asking him to review your book) because he doesn’t miss a thing. George
Heineman went above and beyond with his detailed comments, suggestions, and feedback, and he received this
edition’s technical MVP award. Trisha Gee and Julian Setiawan provided the invaluable Java savvy we needed
to help us avoid those embarrassing and cringe-worthy Java mistakes. Thank you all!

From the second edition

Acknowledgments

our thanks

this is a new chapter   1

Someone has already solved your problems. In this chapter,

you’ll learn why (and how) you can exploit the wisdom and lessons learned by other

developers who’ve been down the same design problem road and survived the trip.

Before we’re done, we’ll look at the use and benefits of design patterns, look at some

key object-oriented (OO) design principles, and walk through an example of how one

pattern works. The best way to use patterns is to load your brain with them and then

recognize places in your designs and existing applications where you can apply them.

Instead of code reuse, with patterns you get experience reuse.

Welcome to
 Design Patterns

1 intro to Design Patterns

Now that we’re living
in Objectville, we’ve just got to

get into Design Patterns...everyone
is doing them. Soon we’ll be the hit
of Jim and Betty’s Wednesday night

patterns group!

2   Chapter 1

SimUDuck

It started with a simple SimUDuck app
Joe works for a company that makes a highly successful duck pond
simulation game, SimUDuck. The game can show a large variety of
duck species swimming and making quacking sounds. The initial
designers of the system used standard OO techniques and created
one Duck superclass from which all other duck types inherit.

Duck

quack()
swim()
display()
// OTHER duck-like methods...

display() {
// looks like a mallard }

MallardDuck

display() {
// looks like a redhead }

RedheadDuck Lots of other t
ypes of ducks

inherit from the Duck class.
Each duck subtyp

e

is responsible
for implementing
its own display()
behavior for how

 it

looks on the scr
een.

All ducks quack and swim. The
superclass takes care of the
implementation code.

In the last year, the company has been under increasing pressure
from competitors. After a week-long off-site brainstorming
session over golf, the company executives think it’s time for a big
innovation. They need something really impressive to show at the
upcoming shareholders meeting in Maui next week.

The display() method is
abstract, since all duck
subtypes look different.

you are here 4   3

intro to design patterns

Joe

All subcl
asses

inherit
 fly().

What Joe added.

The executives decided that flying ducks is just what the
simulator needs to blow away the competitors. And of course
Joe’s manager told them it’ll be no problem for Joe to just
whip something up in a week. “After all,” said Joe’s boss,

“he’s an OO programmer…how hard can it be?”

But now we need the ducks to FLY

Other Duck types...

Duck

quack()
swim()
display()
fly()
// OTHER duck-like methods...

display() {
// looks like a mallard }

MallardDuck

display() {
// looks like a redhead }

RedheadDuck

What we want.

I just need to add a
fly() method in the Duck class

and then all the ducks will inherit
it. Now’s my time to really show my
true OO genius.

4   Chapter 1

something went wrong

What Joe thought
was a great use
of inheritance
for the purpose
of reuse hasn’t
turned out so well
when it comes to
maintenance.

Okay, so there’s a slight
flaw in my design. I don’t
see why they can’t just call
it a “feature.” It’s kind

of cute...

Joe failed to notice that not all
subclasses of Duck should fly. When
Joe added new behavior to the
Duck superclass, he was also adding
behavior that was not appropriate
for some Duck subclasses. He now
has flying inanimate objects in the
SimUDuck program.

A localized update to the code caused a non-
local side effect (flying rubber ducks)!

What happened?

quack()
swim()
display()
fly()
// OTHER duck-like methods...

display() {
// looks like a mallard
}

MallardDuck

display() {
// looks like a redhead
}

RedheadDuck

quack() {
 // overridden to Squeak
}
display() {
// looks like a rubberduck
}

RubberDuck

Duck

Notice too, that r
ubber

ducks don’t quack
, so quack()

is overridden to “
Squeak”.

By putt
ing fly

() in t
he

supercl
ass, he

 gave t
he

flying
ability

 to ALL

ducks,
includi

ng tho
se

that s
houldn

’t fly.

But something went horribly wrong...

Joe, I’m at the shareholders meeting.
They just gave a demo and there were
rubber duckies flying around the screen.
Was this your idea of a joke?

you are here 4   5

intro to design patterns

Joe thinks about inheritance...

quack() { // squeak}
display() { // rubber duck }
fly() {
 // override to do nothing
}

RubberDuck

❏ A.	 Code is duplicated across subclasses.

❏ B.	 Runtime behavior changes are difficult.

❏ C.	 We can’t make ducks dance.

❏ D.	 It’s hard to gain knowledge of all duck behaviors.

❏ E.	 Ducks can’t fly and quack at the same time.

❏ F.	 Changes can unintentionally affect other ducks.

quack() {
 // override to do nothing
}

display() { // decoy duck}

fly() {
 // override to do nothing
}

DecoyDuck

Here’s another class in the
hierarchy; notice that like
RubberDuck, it doesn’t fly,
but it also doesn’t quack.

But then what happens
when we add wooden
decoy ducks to the
program? They aren’t
supposed to fly or quack...

Which of the following are disadvantages of using inheritance to
provide Duck behavior? (Choose all that apply.)

I could always just
override the fly() method
in rubber duck, like I have
with the quack() method...

6   Chapter 1

inheritance is not the answer

display()
fly()
quack()

MallardDuck

display()
fly()
quack()

RedheadDuck

display()
quack()

RubberDuck

swim()
display()
// OTHER duck-like methods...

Duck

display()

DecoyDuck

fly()
Flyable quack()

Quackable

How about an interface?
Joe realized that inheritance probably wasn’t the
answer, because he just got a memo that says that
the executives now want to update the product every
six months (in ways they haven’t yet decided on). Joe
knows the spec will keep changing and he’ll be forced
to look at and possibly override fly() and quack() for
every new Duck subclass that’s ever added to the
program... forever.

So, he needs a cleaner way to have only some (but not
all) of the duck types fly or quack.

What do YOU think about this design?

I could take the fly() out of the Duck
superclass, and make a Flyable() interface
with a fly() method. That way, only the ducks
that are supposed to fly will implement that
interface and have a fly() method...and I might
as well make a Quackable, too, since not all

ducks can quack.

you are here 4   7

intro to design patterns

What would you do if you were Joe?

We know that not all of the subclasses should have flying or quacking
behavior, so inheritance isn’t the right answer. But while having the
subclasses implement Flyable and/or Quackable solves part of the
problem (no inappropriately flying rubber ducks), it completely
destroys code reuse for those behaviors, so it just creates a different
maintenance nightmare. And of course there might be more than one
kind of flying behavior even among the ducks that do fly...

At this point you might be waiting for a Design Pattern to come riding
in on a white horse and save the day. But what fun would that be? No,
we’re going to figure out a solution the old-fashioned way—by applying
good OO software design principles.

That is, like, the dumbest idea
you’ve come up with. Can you say,

“duplicate code”? If you thought having
to override a few methods was bad, how
are you gonna feel when you need to make a
little change to the flying behavior...in all 48

of the flying Duck subclasses?!

Wouldn’t it be dreamy
if there were a way to build software

so that when we need to change it, we
could do so with the least possible
impact on the existing code? We could
spend less time reworking code and
more making the program do cooler

things...

8   Chapter 1

change is constant

Okay, what’s the one thing you can always count on in software development?
No matter where you work, what you’re building, or what language you are programming in, what’s
the one true constant that will be with you always?

The one constant in software development

CHANGE
(use a mirror to see the answer)

No matter how well you design an application, over time an
application must grow and change or it will die.

My customers or users decide they want something else, or they want new functionality.

My company decided it is going with another database vendor and it is also purchasing
its data from another supplier that uses a different data format. Argh!

Lots of things can drive change. List some reasons you’ve had to change code
in your applications (we put in a couple of our own to get you started). Check
your answers with the solution at the end of the chapter before you go on.

you are here 4   9

intro to design patterns

So we know using inheritance hasn’t worked out very well, since
the duck behavior keeps changing across the subclasses, and it’s not
appropriate for all subclasses to have those behaviors. The Flyable
and Quackable interface sounded promising at first—only ducks that
really do fly will be Flyable, etc.—except Java interfaces typically have
no implementation code, so no code reuse. In either case, whenever
you need to modify a behavior, you’re often forced to track down and
change it in all the different subclasses where that behavior is defined,
probably introducing new bugs along the way!

Luckily, there’s a design principle for just this situation.

Zeroing in on the problem...

In other words, if you’ve got some aspect of your code that is
changing, say with every new requirement, then you know you’ve
got a behavior that needs to be pulled out and separated from all
the stuff that doesn’t change.

Here’s another way to think about this principle: take the parts
that vary and encapsulate them, so that later you can
alter or extend the parts that vary without affecting
those that don’t.

As simple as this concept is, it forms the basis for almost every
design pattern. All patterns provide a way to let some part of a
system vary independently of all other parts.

Okay, time to pull the duck behavior out of the Duck classes!

Take what varies and
“encapsulate” it so it
won’t affect the rest of
your code.

The result? Fewer
unintended consequences
from code changes and
more f lexibility in your
systems!

Design Principle
Identify the aspects of your
application that vary and separate
them from what stays the same.

The first of many design
principles. We’ll spend more time
on these throughout the book.

10   Chapter 1

pull out what varies

Separating what changes from what stays the same

Duck class

The Duck class is still the
superclass of all ducks, but w

e
are pulling out the fly and q

uack

behaviors and putting them into

another class structure.

Various behavior
implementations are
going to live here.Now flying and quacking each

get their own set of classes.

Duck Behaviors

Quacking Behaviors

Flying Behaviors

Pull out what varies

Where do we start? As far as we can tell, other than the problems with fly() and quack(), the Duck
class is working well and there are no other parts of it that appear to vary or change frequently. So,
other than a few slight changes, we’re going to pretty much leave the Duck class alone.

Now, to separate the “parts that change from those that stay the same,” we are going to create
two sets of classes (totally apart from Duck), one for fly and one for quack. Each set of classes will
hold all the implementations of the respective behavior. For instance, we might have one class that
implements quacking, another that implements squeaking, and another that implements silence.

We know that fly() and quack() are the parts of the
Duck class that vary across ducks.

To separate these behaviors from the Duck class, we’ll pull both methods
out of the Duck class and create a new set of classes
to represent each behavior.

you are here 4   11

intro to design patterns

So how are we going to design the set of classes that
implement the fly and quack behaviors?

We’d like to keep things flexible; after all, it was the inflexibility in
the duck behaviors that got us into trouble in the first place. And we
know that we want to assign behaviors to the instances of Duck. For
example, we might want to instantiate a new MallardDuck instance
and initialize it with a specific type of flying behavior. And while
we’re there, why not make sure that we can change the behavior of a
duck dynamically? In other words, we should include behavior setter
methods in the Duck classes so that we can change the MallardDuck’s
flying behavior at runtime.

Given these goals, let’s look at our second design principle:

Designing the Duck Behaviors

Design Principle
Program to an interface, not an
implementation.

We’ll use an interface to represent each behavior—for instance,
FlyBehavior and QuackBehavior—and each implementation of a
behavior will implement one of those interfaces.

So this time it won’t be the Duck classes that will implement the
flying and quacking interfaces. Instead, we’ll make a set of classes
whose entire reason for living is to represent a behavior (for example,
“squeaking”), and it’s the behavior class, rather than the Duck class,
that will implement the behavior interface.

This is in contrast to the way we were doing things before, where
a behavior came either from a concrete implementation in the
superclass Duck, or by providing a specialized implementation in the
subclass itself. In both cases we were relying on an implementation. We
were locked into using that specific implementation and there was no
room for changing the behavior (other than writing more code).

With our new design, the Duck subclasses will use a behavior
represented by an interface (FlyBehavior and QuackBehavior), so that
the actual implementation of the behavior (in other words, the specific
concrete behavior coded in the class that implements the FlyBehavior
or QuackBehavior) won’t be locked into the Duck subclass.

From now on, the Duck
behaviors will live in
a separate class—a
class that implements
a particular behavior
interface.

That way, the Duck
classes won’t need
to know any of the
implementation details
for their own behaviors.

<<interface>>
FlyBehavior

fly()

fly() {
 // implements duck flying
}

FlyWithWings
fly() {
 // do nothing - can’t fly!
}

FlyNoWay

12   Chapter 1

program to an interface

The word interface is overloaded here. There’s the concept of an
interface, but there’s also the Java construct of an interface. You
can program to an interface without having to actually use a Java
interface. The point is to exploit polymorphism by programming
to a supertype so that the actual runtime object isn’t locked into
the code. And we could rephrase “program to a supertype” as
“the declared type of the variables should be a supertype, usually
an abstract class or interface, so that the objects assigned to
those variables can be of any concrete implementation of the
supertype, which means the class declaring them doesn’t have to
know about the actual object types!”

This is probably old news to you, but just to make sure we’re
all saying the same thing, here’s a simple example of using a
polymorphic type—imagine an abstract class Animal, with two
concrete implementations, Dog and Cat.

Programming to an implementation would be:

But programming to an interface/supertype would be:

Even better, rather than hardcoding the instantiation of the
subtype (like new Dog()) into the code, assign the concrete
implementation object at runtime:

“Program to an interface” really means
“Program to a supertype.”

makeSound()

Animal

makeSound() {
 bark();
}
bark() { // bark sound }

Dog
makeSound() {
 meow();
}
meow() { // meow sound }

Cat

Abstract supertype (could
be an abstract class OR interface).

Concrete
implementations.

Declaring the variable “d” as type Dog (a concrete implementation of Animal) forces us to code to a concrete implementation.

We know it’s a Dog, but we can now use the animal reference polymorphically.

We don’t know WHAT the actual animal subtype is...all we care about is that it knows how to respond to makeSound().

Dog d = new Dog();

d.bark();

Animal animal = new Dog();

animal.makeSound();

a = getAnimal();

a.makeSound();

I don’t see why you
have to use an interface for
FlyBehavior. You can do the
same thing with an abstract
superclass. Isn’t the whole point
to use polymorphism?

you are here 4   13

intro to design patterns

FlyBehavior is an interface
that all flying classes implement.
All new flying classes just need
to implement the fly() method.

Here’s the implementation
of flying for all ducks
that have wings.

And here’s the implementation
for all ducks that can’t fly.

Quacks that really quack. Quacks that squeak. Quacks that make
no sound at all.

Same thing here for the quack
behavior; we have an interface
that just includes a quack()
method that needs to be
implemented.

<<interface>>
FlyBehavior

fly()

fly() {
 // implements duck flying
}

FlyWithWings
fly() {
 // do nothing - can’t fly!
}

FlyNoWay

<<interface>>
QuackBehavior

quack()

quack() {
 // implements duck quacking
}

Quack
quack() {
 // rubber duckie squeak
}

Squeak

quack() {
 // do nothing - can’t quack!
}

MuteQuack

Implementing the Duck Behaviors
Here we have the two interfaces, FlyBehavior and QuackBehavior, along with
the corresponding classes that implement each concrete behavior:

So we get the benefit of
REUSE without all the
baggage that comes along
with inheritance.

With this design, other types of objects can
reuse our fly and quack behaviors because
these behaviors are no longer hidden away
in our Duck classes!

And we can add new behaviors without
modifying any of our existing behavior
classes or touching any of the Duck classes
that use flying behaviors.

14   Chapter 1

behavior in a class

Answers:
1) Create a FlyRocketPowered
class that implements the
FlyBehavior interface.
2) One example, a duck call (a
device that makes duck sounds).

Using our new design, what would you do if you needed
to add rocket-powered flying to the SimUDuck app?

1

Can you think of a class that might want to use the Quack
behavior that isn’t a duck?

2

Q: Do I always have to implement my
application first, see where things are
changing, and then go back to separate
and encapsulate those things?

A: Not always; often when you are
designing an application, you anticipate
those areas that are going to vary and then
go ahead and build the flexibility to deal
with it into your code. You’ll find that the
principles and patterns can be applied at any
stage of the development lifecycle.

Q: Should we make Duck an interface
too?

A: Not in this case. As you’ll see once
we’ve got everything hooked together, we do
benefit by having Duck not be an interface,
and having specific ducks, like MallardDuck,
inherit common properties and methods.
Now that we’ve removed what varies from
the Duck inheritance, we get the benefits of
this structure without the problems.

Q: It feels a little weird to have a class
that’s just a behavior. Aren’t classes
supposed to represent things? Aren’t
classes supposed to have both state AND
behavior?

A: In an OO system, yes, classes
represent things that generally have both
state (instance variables) and methods.
And in this case, the thing happens to be
a behavior. But even a behavior can still
have state and methods; a flying behavior
might have instance variables representing
the attributes for the flying (wing beats per
minute, max altitude, speed, etc.) behavior.

you are here 4   15

intro to design patterns

Here’s the key: A Duck will now delegate its flying and
quacking behaviors, instead of using quacking and
flying methods defined in the Duck class (or subclass).

Here’s how:

public abstract class Duck {
 QuackBehavior quackBehavior;
 // more

 public void performQuack() {
 quackBehavior.quack();
 }
}

Integrating the Duck Behaviors

First we’ll add two instance variables of type FlyBehavior and
QuackBehavior—let’s call them flyBehavior and quackBehavior. Each concrete duck
object will assign to those variables a specific behavior at runtime, like FlyWithWings for
flying and Squeak for quacking.

We’ll also remove the fly() and quack() methods from the Duck class (and any subclasses)
because we’ve moved this behavior out into the FlyBehavior and QuackBehavior classes.

We’ll replace fly() and quack() in the Duck class with two similar methods, called
performFly() and performQuack(); you’ll see how they work next.

1

2

These methods replace
fly() and quack().

Instance variables hold a reference
to a specific behavior at runtime.

Now we implement performQuack():

performQuack()
swim()
display()
performFly()
// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior
QuackBehavior quackBehavior

Duck Behaviors

Quacking Behaviors

Flying Behaviors

Rather than handling
 the quack

behavior itself, the
Duck object

delegates that beha
vior to the object

referenced by quack
Behavior.

Pretty simple, huh? To perform the quack, a Duck just asks the object that
is referenced by quackBehavior to quack for it. In this part of the code we
don’t care what kind of object the concrete Duck is, all we care about is
that it knows how to quack()!

Each Duck has a reference
to something that

implements the QuackBehavior interface.

The behavior variables are
declared as the behavior
INTERFACE type.

16   Chapter 1

integrating duck behavior

More integration...

3 Okay, time to worry about how the flyBehavior and quackBehavior
instance variables are set. Let’s take a look at the MallardDuck
class:

public class MallardDuck extends Duck {

 public MallardDuck() {

 quackBehavior = new Quack();

 flyBehavior = new FlyWithWings();

 }

 public void display() {

	 System.out.println("I'm a real Mallard duck");

 }

}

MallardDuck’s quack is a real live duck quack, not a squeak and not
a mute quack. When a MallardDuck is instantiated, its constructor
initializes the MallardDuck’s inherited quackBehavior instance
variable to a new instance of type Quack (a QuackBehavior concrete
implementation class).

And the same is true for the duck’s flying behavior—the MallardDuck’s
constructor initializes the inherited flyBehavior instance variable
with an instance of type FlyWithWings (a FlyBehavior concrete
implementation class).

A MallardDuck uses the Quack
class to handle its quack, so when
performQuack() is called, the
responsibility for the quack is delegated
to the Quack object and we get a real
quack.
And it uses FlyWithWings as its
FlyBehavior type.Remember, MallardDuck inherits the

quackBehavior and flyBehavior instance
variables from class Duck.

you are here 4   17

intro to design patterns

Good catch, that’s exactly what we’re doing...
for now.

Later in the book we’ll have more patterns in
our toolbox that can help us fix it.

Still, notice that while we are setting the
behaviors to concrete classes (by instantiating
a behavior class like Quack or FlyWithWings
and assigning it to our behavior reference
variable), we could easily change that at
runtime.

So, we still have a lot of flexibility here. That
said, we’re doing a poor job of initializing
the instance variables in a flexible way. But
think about it: since the quackBehavior
instance variable is an interface type, we
could (through the magic of polymorphism)
dynamically assign a different QuackBehavior
implementation class at runtime.

Take a moment and think about how you
would implement a duck so that its behavior
could change at runtime. (You’ll see the code
that does this a few pages from now.)

Wait a second, didn’t you
say we should NOT program to an

implementation? But what are we doing in that
constructor? We’re making a new instance of a

concrete Quack implementation class!

18   Chapter 1

testing duck behaviors

Testing the Duck code

Type and compile the Duck class below (Duck.java), and the
MallardDuck class from two pages back (MallardDuck.java).

1

public abstract class Duck {

 FlyBehavior flyBehavior;
 QuackBehavior quackBehavior;
 public Duck() { }	
	
 public abstract void display();

 public void performFly() {
 flyBehavior.fly();
 }

 public void performQuack() {
 quackBehavior.quack();
 }

 public void swim() {
 System.out.println("All ducks float, even decoys!");
 }
}

Declare two reference
variables for the behavior
interface types. All duck
subclasses (in the same
package) inherit these.

Delegate to the behavior class.

Type and compile the FlyBehavior interface (FlyBehavior.java)
and the two behavior implementation classes (FlyWithWings.java
and FlyNoWay.java).

2

public interface FlyBehavior {
 public void fly();
}

public class FlyWithWings implements FlyBehavior {

 public void fly() {

	 System.out.println("I'm flying!!");

 }

}

public class FlyNoWay implements FlyBehavior {
 public void fly() {
 System.out.println("I can't fly");
 }
}

The interface that all flying
behavior classes implement.

Flying behavior implementation
for ducks that DO fly...

Flying behavior implementation
for ducks that do NOT fly (like
rubber ducks and decoy ducks).

you are here 4   19

intro to design patterns

File Edit Window Help Yadayadayada

%java MiniDuckSimulator

Quack

I’m flying!!

public class MiniDuckSimulator {

 public static void main(String[] args) {

 Duck mallard = new MallardDuck();

 mallard.performQuack();

 mallard.performFly();
 }
}

5 Run the code!

This calls the MallardDuck’s inherited

performQuack() method, which then delegates to

the object’s QuackBehavior (i.e., calls quack() on

the duck’s inherited quackBehavior reference).

Then we do the same thing with MallardDuck’s

inherited performFly() method.

Type and compile the test class
(MiniDuckSimulator.java).

4

Testing the Duck code, continued...
Type and compile the QuackBehavior interface
(QuackBehavior.java) and the three behavior implementation
classes (Quack.java, MuteQuack.java, and Squeak.java).

3

public interface QuackBehavior {
 public void quack();
}

public class Quack implements QuackBehavior {
 public void quack() {
 System.out.println("Quack");
 }
}

public class MuteQuack implements QuackBehavior {
 public void quack() {
	 System.out.println("<< Silence >>");
 }
}

public class Squeak implements QuackBehavior {
 public void quack() {
	 System.out.println("Squeak");
 }
}

20   Chapter 1

ducks with dynamic behavior

Setting behavior dynamically
What a shame to have all this dynamic talent built into our ducks and not be using
it! Imagine you want to set the duck’s behavior type through a setter method on the
Duck class, rather than by instantiating it in the duck’s constructor.

1 Add two new methods to the Duck class:

We can call these methods anytime we want to change the
behavior of a duck on the fly.

public void setFlyBehavior(FlyBehavior fb) {
 flyBehavior = fb;
}

public void setQuackBehavior(QuackBehavior qb) {
 quackBehavior = qb;
}

Editor note: gratuitous pun - fix

public class ModelDuck extends Duck {
 public ModelDuck() {
 flyBehavior = new FlyNoWay();
	 quackBehavior = new Quack();
 }

 public void display() {
 System.out.println("I'm a model duck");
 }
}

public class FlyRocketPowered implements FlyBehavior {

 public void fly() {

 System.out.println("I'm flying with a rocket!");

 }

}

2

Our model duck begins li
fe grounded...

without a way to fly.

That’s okay, we’re creating a
rocket-powered flying behavior.

Make a new Duck type (ModelDuck.java).

3 Make a new FlyBehavior type
(FlyRocketPowered.java).

swim()
display()
performQuack()
performFly()
setFlyBehavior()
setQuackBehavior()
// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior
QuackBehavior quackBehavior

you are here 4   21

intro to design patterns

public class MiniDuckSimulator {

 public static void main(String[] args) {

 Duck mallard = new MallardDuck();

 mallard.performQuack();

 mallard.performFly();

 Duck model = new ModelDuck();

 model.performFly();

 model.setFlyBehavior(new FlyRocketPowered());

 model.performFly();

 }

}

The first call to perfo
rmFly()

delegates to the fly
Behavior object

set in the ModelDuck’s constructor,

which is a FlyNoWay instance.

File Edit Window Help Yabbadabbadoo

%java MiniDuckSimulator

Quack

I'm flying!!

I can't fly

I’m flying with a rocket!

4

Run it!5

Change the test class (MiniDuckSimulator.java), add the
ModelDuck, and make the ModelDuck rocket-enabled.

This invokes the model’s inherited behavior setter method, and...voilà! The model suddenly has rocket-powered flying capability!If it worked, the model duck dynamically changed its flying behavior! You can’t do THAT if the implementation lives inside the Duck class.

To change a duck’s
behavior at runtime, just
call the duck’s setter
method for that behavior.

Before

After

22   Chapter 1

the big picture

Below is the entire reworked class structure. We have everything you’d expect:
ducks extending Duck, fly behaviors implementing FlyBehavior, and quack
behaviors implementing QuackBehavior.

Notice also that we’ve started to describe things a little differently. Instead
of thinking of the duck behaviors as a set of behaviors, we’ll start thinking of
them as a family of algorithms. Think about it: in the SimUDuck design, the
algorithms represent things a duck would do (different ways of quacking or
flying), but we could just as easily use the same techniques for a set of classes
that implement the ways to compute state sales tax by different states.

Pay careful attention to the relationships between the classes. In fact, grab
your pen and write the appropriate relationship (IS-A, HAS-A, and
IMPLEMENTS) on each arrow in the class diagram.

The Big Picture on encapsulated behaviors

Okay, now that we’ve done the deep dive on the
duck simulator design, it’s time to come back up
for air and take a look at the big picture.

swim()
display()
performQuack()
performFly()
setFlyBehavior()
setQuackBehavior()
// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior
QuackBehavior quackBehavior

<<interface>>
FlyBehavior

fly()

fly() {
 // implements duck flying
}

FlyWithWings
fly() {
 // do nothing - can’t fly!
}

FlyNoWay

<<interface>>
QuackBehavior

quack()

quack() {
 // implements duck quacking
}

Quack
quack() {
 // rubber duckie squeak
}

Squeak

quack() {
 // do nothing - can’t quack!
}

MuteQuack
display() {
// looks like a decoy duck }

DecoyDuck

display() {
// looks like a mallard }

MallardDuck

display() {
// looks like a redhead }

RedheadDuck

display() {
// looks like a rubberduck }

RubberDuck

Encapsulated fly behavior

Encapsulated quack behavior

Think of each
set of behaviors
as a family of
algorithms.

Client

These b
ehavio

rs

“algor
ithms” are

interc
hangea

ble.

Client makes use of an
encapsulated family of algorithms
for both flying and quacking.

Make sure you do this.

you are here 4   23

intro to design patterns

The HAS-A relationship is an interesting one: each duck
has a FlyBehavior and a QuackBehavior to which it
delegates flying and quacking.

When you put two classes together like this you’re using
composition. Instead of inheriting their behavior, the
ducks get their behavior by being composed with the right
behavior object.

This is an important technique; in fact, it is the basis of our
third design principle:

Design Principle
Favor composition over inheritance.

As you’ve seen, creating systems using composition gives you
a lot more flexibility. Not only does it let you encapsulate
a family of algorithms into their own set of classes, but it
also lets you change behavior at runtime as long as
the object you’re composing with implements the correct
behavior interface.

Composition is used in many design patterns and you’ll see a
lot more about its advantages and disadvantages throughout
the book.

Guru and Student...
Guru: Tell me what you
have learned of the

Object-Oriented ways.

Student: Guru, I have
learned that the promise of the object-
oriented way is reuse.

Guru: Continue...

Student: Guru, through inheritance all
good things may be reused and so we
come to drastically cut development
time like we swiftly cut bamboo in the
woods.

Guru: Is more time spent on code
before or after development is
complete?

Student: The answer is after,
Guru. We always spend more time
maintaining and changing software
than on initial development.

Guru: So, should effort go into reuse
above maintainability and extensibility?

Student: Guru, I believe that there is
truth in this.

Guru: I can see that you still have
much to learn. I would like for you to
go and meditate on inheritance further.
As you’ve seen, inheritance has its
problems, and there are other ways of
achieving reuse.

HAS-A can be better than IS-A

A duck call is a device that hunters use to
mimic the calls (quacks) of ducks. How
would you implement your own duck call
that does not inherit from the Duck class?

24   Chapter 1

the strategy pattern

Congratulations on
your first pattern!

You just applied your first design pattern—the STRATEGY
Pattern. That’s right, you used the Strategy Pattern to
rework the SimUDuck app.
Thanks to this pattern, the simulator is ready for any
changes those execs might cook up on their next
business trip to Maui.
Now that we’ve made you take the long road to learn it,
here’s the formal definition of this pattern:

The Strategy Pattern defines a family of algorithms,
encapsulates each one, and makes them interchangeable.
Strategy lets the algorithm vary independently from
clients that use it.

Speaking of Design Patterns...

Use THIS definition when you

need to impress friends and

influence key execu
tives.

you are here 4   25

intro to design patterns

Below you’ll find a mess of classes and interfaces for an action adventure game. You’ll
find classes for game characters along with classes for weapon behaviors the characters
can use in the game. Each character can make use of one weapon at a time, but can
change weapons at any time during the game. Your job is to sort it all out...

(Answers are at the end of the chapter.)

Character
WeaponBehavior weapon

setWeapon(WeaponBehavior w) {
 this.weapon = w;
}

fight() KnifeBehavior
useWeapon() { // implements
cutting with a knife }

Queen
fight() { ... }

King
fight() { ... } Troll

fight() { ... }

BowAndArrowBehavior
useWeapon() { // implements
shooting an arrow with a bow }

Knight
fight() { ... }

<<interface>>
WeaponBehavior

useWeapon();

AxeBehavior
useWeapon() { // implements
chopping with an axe }

SwordBehavior
useWeapon() { // implements
swinging a sword }

1. Arrange the classes.

2. Identify one abstract class, one interface, and eight classes.

3. Draw arrows between classes.

	 a. Draw this kind of arrow for inheritance (“extends”).

	 b. Draw this kind of arrow for interface (“implements”).

	 c. Draw this kind of arrow for HAS-A.

4. Put the method setWeapon() into the right class.

1

2

3

4

Your task:

 Design Puzzle

26   Chapter 1

diner talk

Overheard at the local diner...

What’s the difference between these two orders? Not a thing! They’re both the
same order, except Alice is using twice the number of words and trying the
patience of a grumpy short-order cook.

What’s Flo got that Alice doesn’t? A shared vocabulary with the short-order
cook. Not only does that make it easier to communicate with the cook, but it gives
the cook less to remember because he’s got all the diner patterns in his head.

Design Patterns give you a shared vocabulary with other developers. Once you’ve
got the vocabulary, you can more easily communicate with other developers and
inspire those who don’t know patterns to start learning them. It also elevates your
thinking about architectures by letting you think at the pattern level, not the
nitty-gritty object level.

Flo

Alice

I need a cream cheese with jelly on white
bread, a chocolate soda with vanilla ice cream, a

grilled cheese sandwich with bacon, a tuna fish
salad on toast, a banana split with ice cream & sliced

bananas, and a coffee with a cream and two sugars ...
oh, and put a hamburger on the grill!

Give me a C.J. White,
a black & white, a Jack

Benny, a radio, a house boat, a
coffee regular, and burn one!

you are here 4   27

intro to design patterns

Overheard in the next cubicle...

Rick

Can you think of other shared
vocabularies that are used
beyond OO design and diner
talk? (Hint: how about auto
mechanics, carpenters, gourmet
chefs, and air traffic controllers?)
What qualities are communicated
along with the lingo?

Can you think of aspects of OO
design that get communicated
along with pattern names? What
qualities get communicated along
with the name “Strategy Pattern”?

So I created this broadcast class. It keeps
track of all the objects listening to it, and
anytime a new piece of data comes along it sends

a message to each listener. What’s cool is that the
listeners can join the broadcast at any time or
they can even remove themselves. It is really

dynamic and loosely coupled!

Exactly. If you communicate
in patterns, then other developers
know immediately and precisely the
design you’re describing. Just don’t
get Pattern Fever...you’ll know you
have it when you start using patterns
for Hello World...

Rick, why didn’t you
just say you are using
the Observer Pattern?

28   Chapter 1

shared vocabulary

Shared pattern vocabularies are POWERFUL.
When you communicate with another developer or your
team using patterns, you are communicating not just a
pattern name but a whole set of qualities, characteristics,
and constraints that the pattern represents.

Patterns allow you to say more with less. When you
use a pattern in a description, other developers quickly
know precisely the design you have in mind.

Talking at the pattern level allows you to stay “in
the design” longer. Talking about software systems using
patterns allows you to keep the discussion at the design
level, without having to dive down to the nitty-gritty details
of implementing objects and classes.

Shared vocabularies can turbo-charge your
development team. A team well versed in design
patterns can move more quickly with less room for
misunderstanding.

Shared vocabularies encourage more junior
developers to get up to speed. Junior developers look
up to experienced developers. When senior developers
make use of design patterns, junior developers also become
motivated to learn them. Build a community of pattern
users at your organization.

The power of a shared pattern vocabulary

When you communicate using patterns, you
are doing more than just sharing LINGO.

“We’re using the Strategy Patt
ern to

implement the various behaviors of
our

ducks.” This tells you the duck behavio
r

has been encapsulated into it
s own set

of classes that can be easily
expanded

and changed, even at runtime if needed.

How many design meetings have you

been in that quickly
 degrade into

implementation details?

Think about starting a patterns
study group at your organization.
Maybe you can even get paid while
you’re learning...

As your team begins to share
design ideas and experience in
terms of patterns, you will build
a community of pattern users.

you are here 4   29

intro to design patterns

We’ve all used off-the-shelf libraries and frameworks. We take them, write some code against their APIs,
compile them into our programs, and benefit from a lot of code someone else has written. Think about
the Java APIs and all the functionality they give you: network, GUI, IO, etc. Libraries and frameworks go
a long way toward a development model where we can just pick and choose components and plug them
right in. But...they don’t help us structure our own applications in ways that are easier to understand, more
maintainable, and more flexible. That’s where design patterns come in.

Design patterns don’t go directly into your code, they first go into your BRAIN. Once you’ve loaded your
brain with a good working knowledge of patterns, you can then start to apply them to your new designs,
and rework your old code when you find it’s degrading into an inflexible mess.

How do I use Design Patterns?

Your BRAIN

Your Code, now new
and improved with
design patterns!

A
Bu

nch
 of

 Pa
tt

ern
s

swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior;

QuackBehavior quackBehavior;

<<interface>>

FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings
fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>

QuackBehavior

quack()

quack) {

 // implements duck quacking

}

Quack
quack() {

 // rubber duckie squeak

}

Squeak
quack() {

 // do nothing - can’t quack!

}

MuteQuack

display() {

// looks like a decoy duck }

Decoy Duck

display() {

// looks like a mallard }

Mallard Duck
display() {

// looks like a redhead }

Redhead Duck
display() {

// looks like a rubberduck }

Rubber Duck

Encapsulated fly behavior

Encapsulated quack behavior
Client

View

Controller

Model

Request

MVC

Subject Object

8

int
 Dog Objec

t

Mouse Object

 Cat Object Duck Object

Observers

8
8
8

8

Automatic update/notification

Object that
holds state

De
pen

de
nt

 O
bje

cts

Q: If design patterns are so great, why
can’t someone build a library of them so I
don’t have to?

A: Design patterns are higher level than
libraries. Design patterns tell us how to
structure classes and objects to solve certain
problems, and it is our job to adapt those
designs to fit our particular application.

Q: Aren’t libraries and frameworks
also design patterns?

A: Frameworks and libraries are not
design patterns; they provide specific
implementations that we link into our
code. Sometimes, however, libraries and
frameworks make use of design patterns in
their implementations. That’s great, because
once you understand design patterns, you’ll
more quickly understand APIs that are
structured around design patterns.

Q: So, there are no libraries of design
patterns?

A: No, but you will learn later about
patterns catalogs with lists of patterns that
you can apply to your applications.

30   Chapter 1

why design patterns?

Skeptical Developer Friendly Patterns Guru

Developer: Okay, hmm, but isn’t this all just good object-oriented design; I
mean as long as I follow encapsulation and I know about abstraction, inheritance,
and polymorphism, do I really need to think about Design Patterns? Isn’t it pretty
straightforward? Isn’t this why I took all those OO courses? I think Design Patterns
are useful for people who don’t know good OO design.

Guru: Ah, this is one of the true misunderstandings of object-oriented
development: that by knowing the OO basics we are automatically going to be good at
building flexible, reusable, and maintainable systems.

Developer: No?

Guru: No. As it turns out, constructing OO systems that have these properties is
not always obvious and has been discovered only through hard work.

Developer: I think I’m starting to get it. These, sometimes non-obvious, ways of
constructing object-oriented systems have been collected...

Guru: ...yes, into a set of patterns called Design Patterns.

Developer: So, by knowing patterns, I can skip the hard work and jump straight to
designs that always work?

Guru: Yes, to an extent, but remember, design is an art. There will always be
tradeoffs. But, if you follow well-thought-out and time-tested design patterns, you’ll
be way ahead.

Developer: What do I do if I can’t find a pattern?

Patterns are nothing
more than using OO
design principles...

A common misconception,
but it’s more subtle than that.
You have much to learn...

you are here 4   31

intro to design patterns

Guru: There are some object-oriented principles that
underlie the patterns, and knowing these will help you
to cope when you can’t find a pattern that matches your
problem.

Developer: Principles? You mean beyond abstraction,
encapsulation, and...

Guru: Yes, one of the secrets to creating maintainable
OO systems is thinking about how they might change in the
future, and these principles address those issues.

Remember, knowing concepts
like abstraction, inheritance, and
polymorphism does not make you a good
object-oriented designer. A design guru
thinks about how to create flexible
designs that are maintainable and can
cope with change.

32   Chapter 1

your design toolbox

Tools for your Design Toolbox

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over

inheritance.

Program to interfaces,
not

implementations.

OO Principles

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy lets

 the algorithm

vary independen
tly from clients that us

e it.

OO Patterns

We assume you know the

OO basics like
abstraction,

encapsulatio
n, polymorphism,

and inherita
nce. If you

are a

little rusty
on these, pu

ll out

your favorit
e object-oriented

book and re
view, then skim

this chapter
 again.

We’ll be taking a clo
ser look at

these down the road and al
so

adding a few more to the list.

One down, many to go !

Throughout the
book, think about
how patterns rely
on OO basics and
principles.

You’ve nearly made it through the first chapter! You’ve
already put a few tools in your OO toolbox; let’s make a
list of them before we move on to Chapter 2. 	� Knowing the OO basics

does not make you a good
OO designer.

	� Good OO designs are
reusable, extensible, and
maintainable.

	� Patterns show you how to
build systems with good
OO design qualities.

	� Patterns are proven
object-oriented
experience.

	� Patterns don’t give you
code, they give you
general solutions to
design problems. You
apply them to your specific
application.

	� Patterns aren’t invented,
they are discovered.

	� Most patterns and
principles address issues
of change in software.

	� Most patterns allow some
part of a system to vary
independently of all other
parts.

	� We often try to take what
varies in a system and
encapsulate it.

	� Patterns provide a
shared language that can
maximize the value of
your communication with
other developers.

you are here 4   33

intro to design patterns

Design Patterns Crossword
Let’s give your right brain something to do.

It’s your standard crossword; all of the solution words
are from this chapter.

ACROSS
1. Paatterns can help us build ________ applications.
4. Strategies can be __________.
7. Favor this over inheritance.
8. Development constant.
9. Java IO, Networking, Sound.
10. Most patterns follow from OO _________.
12. Design patterns are a shared __________.
14. High-level libraries.
15. Learn from the other guy's ___________.
17. Pattern that fixed the simulator.
18. Program to this, not an implementation.

DOWN
2. Patterns go into your _______.
3. Duck that can't quack.
5. Rubber ducks make a _______.
6. ________ what varies.
11. Grilled cheese with bacon.
13. Rick was thrilled with this pattern.
16. Duck demo was located here.

1 2

3 4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

Across
1. Patterns can help us build ____ applications
4. Strategies can be _______
7. Favor over inheritance
8. Development constant
9. Java IO, Networking, Sound

10. Most patterns follow from OO _______
12. Design patterns are a shared _____
14. High level libraries
15. Learn from the other guy's _______
17. Pattern that fixed the simulator
18. Program to this, not an implementation

Down
2. Patterns go into your _______
3. Duck that can't quack
5. Rubberducks make a ________
6. _______ what varies
11. Grilled cheese with bacon
13. Rick was thrilled with this pattern
16. Duck demo was located where

34   Chapter 1

design puzzle solution

<<interface>>
WeaponBehavior

Character is the abstract class for all the other characters (King, Queen,
Knight, and Troll), while WeaponBehavior is an interface that all weapon
behaviors implement. So all actual characters and weapons are concrete
classes.

To switch weapons, each character calls the setWeapon() method, which
is defined in the Character superclass. During a fight the useWeapon()
method is called on the current weapon set for a given character to inflict
great bodily damage on another character.

Character
WeaponBehavior weapon
fight()
setWeapon(WeaponBehavior w) {
 this.weapon = w;
}

King
fight() { ... }

Queen
fight() { ... }

Knight
fight() { ... }

Troll
fight() { ... }

useWeapon()

BowAndArrowBehavior
useWeapon() { // implements
shooting an arrow with a bow }AxeBehavior

useWeapon() { // implements
chopping with an axe }

SwordBehavior
useWeapon() { // implements
swinging a sword } KnifeBehavior

useWeapon() { // implements
cutting with a knife }

 Design Puzzle Solution

Note that ANY object could

implement the WeaponBehavior

interface—say, a paper c
lip, a tube of

toothpaste, o
r a mutated sea ba

ss.

Abstract

A Character HAS-A
WeaponBehavior.

you are here 4   35

intro to design patterns

❏ A.	 Code is duplicated across subclasses.

❏ B.	 Runtime behavior changes are difficult.

❏ C.	 We can’t make ducks dance.

❏ D.	 It’s hard to gain knowledge of all duck behaviors.

❏ E.	 Ducks can’t fly and quack at the same time.

❏ F.	 Changes can unintentionally affect other ducks.

My customers or users decide they want something else, or they want new functionality.
My company decided it is going with another database vendor and it is also purchasing its data
from another supplier that uses a different data format. Argh!
Well, technology changes and we’ve got to update our code to make use of protocols.
We’ve learned enough building our system that we’d like to go back and do things a little better.

Which of the following are disadvantages of using subclassing to provide
specific Duck behavior? (Choose all that apply.) Here’s our solution.

What are some factors that drive change in your applications?
You might have a very different list, but here’s a few of ours. Look
familiar? Here’s our solution.

36   Chapter 1

Design Patterns Crossword Solution

F
1

L E X I B
2

L E
D
3

R R
4

E U S
5

E D
E A E

6
Q

C
7

O M P O S I T I O N U
O N C

8
H A N G E

Y A A
9

P I S
D P

10
R I N C I P L E S K

U S J
11

C V
12

O C A B U L A R Y A
K O

13
L C

B F
14

R A M E W O R K S
S T B
E
15

X P E R I E N C E E
M
16

R N
A V N
U E S

17
T R A T E G Y

I
18

N T E R F A C E

Across
1. Patterns can help us build ____ applications

[FLEXIBLE]
4. Strategies can be _______ [REUSED]
7. Favor over inheritance [COMPOSITION]
8. Development constant [CHANGE]
9. Java IO, Networking, Sound [APIS]

10. Most patterns follow from OO _______
[PRINCIPLES]

12. Design patterns are a shared _____
[VOCABULARY]

14. High level libraries [FRAMEWORKS]

Down
2. Patterns go into your _______ [BRAIN]
3. Duck that can't quack [DECOYDUCK]
5. Rubberducks make a ________ [SQUEAK]
6. _______ what varies [ENCAPSULATE]
11. Grilled cheese with bacon [JACKBENNY]
13. Rick was thrilled with this pattern [OBSERVER]
16. Duck demo was located where [MAUI]

crossword solution

this is a new chapter   37

You don’t want to miss out when something interesting
happens, do you? We’ve got a pattern that keeps your objects in the

know when something they care about happens. It’s the Observer Pattern. It is

one of the most commonly used design patterns, and it’s incredibly useful. We’re

going to look at all kinds of interesting aspects of Observer, like its one-to-many

relationships and loose coupling. And, with those concepts in mind, how can you

help but be the life of the Patterns Party?

Keeping your
 Objects in the Know

2 the Observer Pattern

Hey Jerry, I’m notifying
everyone that the Patterns Group
meeting moved to Saturday night.
We’re going to be talking about the
Observer Pattern. That pattern is
the best! It’s the BEST, Jerry!

38   Chapter 2

weather monitoring station

Weather-O-Rama, Inc.

100 Main Street

Tornado Alley, OK 45021

Statement of Work

Your team has just won the contract to build
Weather-O-Rama, Inc.’s next-generation,
internet-based Weather Monitoring Station.

Congratulations!

Congratulations on being selected to build our next-generation,

internet-based Weather Monitoring Station!

The weather station will be based on our patent pending

WeatherData object, which tracks current weather conditions

(temperature, humidity, and barometric pressure). We’d like

you to create an application that initially provides three display

elements: current conditions, weather statistics, and a simple

forecast, all updated in real time as the WeatherData object

acquires the most recent measurements.

Further, this is an expandable weather station. Weather-O-

Rama wants to allow other developers to write their own

weather displays and plug them right in. So it’s important that

new displays will be easy to add in the future.

Weather-O-Rama thinks we have a great business model: once

the customers are hooked, we intend to charge them for each

display they use. Now for the best part: we are going to pay you

in stock options.

We look forward to seeing your design and alpha application.

Sincerely,

Johnny Hurricane, CEO

P.S. See the attached WeatherData source files!

you are here 4   39

the observer pattern

The Weather Monitoring application overview
Let’s take a look at the Weather Monitoring application we need to deliver—both
what Weather-O-Rama is giving us, and what we’re going to need to build or
extend. The system has three components: the weather station (the physical device
that acquires the actual weather data), the WeatherData object (that tracks the data
coming from the Weather Station and updates the displays), and the display that
shows users the current weather conditions:

WeatherData
object

Weather Station
Display device

Temperature
sensor device

Humidity
sensor device

Pressure
sensor device

pulls data
displays Current

Conditions
Temp: 72°
Humidity: 60
Pressure:

The WeatherData object was written by Weather-O-Rama and knows how to talk
to the physical Weather Station to get updated weather data. We’ll need to adapt
the WeatherData object so that it knows how to update the display. Hopefully
Weather-O-Rama has given us hints for how to do this in the source code.
Remember, we’re responsible for implementing three different display elements:
Current Conditions (shows temperature, humidity, and pressure), Weather
Statistics, and a simple Forecast.

So, our job, if we choose to accept it, is to create an app
that uses the WeatherData object to update three displays
for current conditions, weather stats, and a forecast.

The user can view one of three diffe
rent

displays: the current
 conditions, weather

stats, or a forecast
.

What Weather-O-Rama
is providing

What we need to implement.
We’ll also need to integrate
the WeatherData object with
the display.

40   Chapter 2

weather data class

Unpacking the WeatherData class

WeatherData

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

// other methods

Let’s check out the source code attachments that Johnny Hurricane,
the CEO, sent over. We’ll start with the WeatherData class:

These three methods return the most recent weather measurements

for temperature, humidity, and barometric pressure, respectively
.

We don’t care right now HOW it gets this data, we just know that the

WeatherData object gets updated in
fo from the Weather Station.

Note that whenever WeatherData has updated values, th
e

measurementsChanged() method is called.

Let’s looks at the measurementsChanged()

method, which, again, gets cal
led anytime

the WeatherData obtains new values for

temp, humidity, and pressure.

/*

 * This method gets called
 * whenever the weather measurements
 * have been updated

 *

 */

public void measurementsChanged() {
 // Your code goes here

}

WeatherData.java

Display device

Current
Conditions
Temp: 72°
Humidity: 60
Pressure:

So, our job is to alter the measurementsChanged()
method so that it updates the three displays for
current conditions, weather stats, and forecast.

Our soon-to-be-
implemented display.

Here is our WeatherData class.

It looks like Weather-O-Rama left a note in the comments to
add our code here. So perhaps this is where we need to update
the display (once we’ve implemented it)

you are here 4   41

the observer pattern

	● We know the WeatherData class has getter methods for
three measurement values: temperature, humidity, and
barometric pressure.

	● We know the measurementsChanged() method is called
anytime new weather measurement data is available. (Again,
we don’t know or care how this method is called; we just
know that it is called.)

	● We’ll need to implement three display elements that use the
weather data: a current conditions display, a statistics display,
and a forecast display. These displays must be updated as
often as the WeatherData has new measurements.

	● To update the displays, we’ll add code to the
measurementsChanged() method.

Our Goal
We know we need to implement a display and then have the WeatherData
update that display each time it has new values, or, in other words, each time
the measurementsChanged() method is called. But how? Let’s think through
what we’re trying to acheive:

Display One

Current
Conditions
Temp: 72°
Humidity: 60
Pressure: Display Two

Weather
Stats
Avg. temp: 62°
Min. temp: 50°
Max. temp: 78°

Display Three

Forecast

TT
T

Future displays

?

Stretch Goal

	● Expandability—other developers may want to create new
custom displays. Why not allow users to add (or remove)
as many display elements as they want to the application?
Currently, we know about the initial three display types
(current conditions, statistics, and forecast), but we expect a
vibrant marketplace for new displays in the future.

But let’s also think about the future—remember the constant in software
development? Change. We expect, if the Weather Station is successful, there
will be more than three displays in the future, so why not create a marketplace
for additional displays? So, how about we build in:

42   Chapter 2

first try with the weather station

public class WeatherData {

 // instance variable declarations

 public void measurementsChanged() {

 float temp = getTemperature();

 float humidity = getHumidity();

 float pressure = getPressure();

 currentConditionsDisplay.update(temp, humidity, pressure);

 statisticsDisplay.update(temp, humidity, pressure);

 forecastDisplay.update(temp, humidity, pressure);

 }

 // other WeatherData methods here

}

...by calling its update method
and passing it the most recent
measurements.

First, we grab the most recent measurements by
calling the WeatherData’s getter methods. We assign
each value to an appropriately named variable.

Taking a first, misguided implementation
of the Weather Station

Here’s a first implementation possibility—as we’ve discussed, we’re going to add our code to
the measurementsChanged() method in the WeatherData class:

❏ A.	 We are coding to concrete
implementations, not interfaces.

❏ B.	 For every new display we’ll need to
alter this code.

❏ C.	 We have no way to add (or remove)
display elements at runtime.

❏ D.	 The display elements don’t implement a
common interface.

❏ E.	 We haven’t encapsulated the part that
changes.

❏ F.	 We are violating encapsulation of the
WeatherData class.

Next we’re going to
update each display...

Based on our first implementation, which of the following apply?
(Choose all that apply.)

Here’s the measurementsChanged() method.

And here are our code additions...

you are here 4   43

the observer pattern

Think back to all those Chapter 1 concepts and principles—which are we violating, and
which are we not? Think in particular about the effects of change on this code. Let’s work
through our thinking as we look at the code:

What’s wrong with our implementation anyway?

public void measurementsChanged() {

 float temp = getTemperature();

 float humidity = getHumidity();

 float pressure = getPressure();

 currentConditionsDisplay.update(temp, humidity, pressure);

 statisticsDisplay.update(temp, humidity, pressure);

 forecastDisplay.update(temp, humidity, pressure);

}

By coding to concrete
implementations, we have no way
to add or remove other display
elements without making changes to
the code.

Looks like an area of
change. We need to
encapsulate this.

At least we seem to be using a
common interface to talk to the
display elements...they all have an
update() method that takes the
temp, humidity, and pressure values.

Good idea. Let’s take a look at
Observer, then come back and figure
out how to apply it to the Weather
Monitoring app.

Umm, I know I’m
new here, but given that we
are in the Observer Pattern
chapter, maybe we should
start using it?

Let’s take another look...

What if we want to add or remove
displays at runtime? This looks
hardcoded.

44   Chapter 2

meet the observer pattern

Meet the Observer Pattern
You know how newspaper or magazine
subscriptions work:

A newspaper publisher goes into business and begins
publishing newspapers.

You subscribe to a particular publisher, and every time
there’s a new edition it gets delivered to you. As long as
you remain a subscriber, you get new newspapers.

You unsubscribe when you don’t want papers anymore,
and they stop being delivered.

While the publisher remains in business, people, hotels,
airlines, and other businesses constantly subscribe and
unsubscribe to the newspaper.

1

2

3

4

No way we want to
miss what’s going on in

Objectville. Of course we
subscribe.

you are here 4   45

the observer pattern

Observer Objects

The observers have subscribed to
(registered with) the Subject
to receive updates when the
Subject’s data changes.

The Subject object

manages some
important data.

Subject Object

2

int

 Dog Objec
t

Mouse Object

 Cat Object

If you understand newspaper subscriptions, you pretty much
understand the Observer Pattern, only we call the publisher the
SUBJECT and the subscribers the OBSERVERS.

Let’s take a closer look:

2

2

2

When data in the Subject chan
ges,

the observers are notified.

New data values are
communicated to the
observers in some form
when they change.

 Duck Object

This object isn’t an
observer, so it doesn’t
get notified when the
Subject’s data changes.

Publishers + Subscribers = Observer Pattern

46   Chapter 2

a day in the life of the observer pattern

A day in the life of the Observer Pattern

A Duck object comes along
and tells the Subject that
he wants to become an
observer.

Duck really wants in on the
action; those ints Subject is
sending out whenever its state
changes look pretty interesting...

Observers

Subject Object

2

int

 Dog Objec
t

Mouse Objec
t

 Cat Object

 Duck Object

Subject Object

2

int

Observers

 Dog Objec
t

Mouse Objec
t

 Cat Object Duck Objec
t

The Duck object is now an
official observer.

Duck is psyched...he’s on the
list and is waiting with great
anticipation for the next
notification so he can get an int.

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

The Subject gets a new
data value!

Now Duck and all the rest of the
observers get a notification that
the Subject has changed.

Observers

8
8
8

8

“re
gis

ter
/su

bscr
ibe m

e”

you are here 4   47

the observer pattern

The Mouse object asks to be
removed as an observer.

The Mouse object has been
getting ints for ages and is tired
of it, so he decides it’s time to
stop being an observer.

Mouse is outta here!

The Subject acknowledges the
Mouse’s request and removes him
from the set of observers.

Subject Object

14

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

The Subject has another
new int.

All the observers get another
notification, except for the
Mouse who is no longer included.
Don’t tell anyone, but the Mouse
secretly misses those ints...
maybe he’ll ask to be an observer
again some day.

Observers

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

14
14
14

“remove/unsubscribe me”

48   Chapter 2

five-minute drama

3

Software
Developer #2

Headhunter/Subject
2

1

Software
Developer #1

4

Subject

Five-minute drama: a subject for observation
In today’s skit, two enterprising software developers encounter a real
live head hunter...

This is Lori. I’m looking
for a Java development
position. I’ve got five years
of experience and...

Uh, yeah, you and
everybody else, baby.

I’m putting you on my list of
Java developers. Don’t call

me, I’ll call you!

Hi, I’m Jill. I’ve written
a lot of enterprise systems.

I’m interested in any job you’ve
got with Java development.

I’ll add you to the list—
you’ll know along with
everyone else.

you are here 4   49

the observer pattern

8

6
Subject

Subject9

7 Observer

Observer

Observer

5 Meanwhile, for Lori and Jill life goes
on; if a Java job comes along, they’ll get
notified. After all, they are observers.

Jill lands her own job!

Hey observers, there’s
a Java opening down at
JavaBeans-R-Us. Jump on
it! Don’t blow it!

Bwahaha, money in
the bank, baby!

Arghhh!!! Mark my
words, Jill, you’ll never

work in this town again if I
have anything to do with it.
You’re off my call list!!!

You can take me
off your call list. I
found my own job!

Thanks, I’ll send my
resume right over.

This guy is a real jerk.
Who needs him. I’m
looking for my own job.

50   Chapter 2

more five-minute drama

Jill’s loving life, and no longer an observer.
She’s also enjoying the nice fat signing
bonus that she got because the company
didn’t have to pay a headhunter.

Two weeks later...

But what has become of our dear Lori? We
hear she’s beating the headhunter at his own
game. She’s not only still an observer, she’s
got her own call list now, and she is notifying
her own observers. Lori’s a subject and an
observer all in one.

you are here 4   51

the observer pattern

The Observer Pattern defines a one-to-many
dependency between objects so that when one
object changes state, all of its dependents are
notified and updated automatically.

The Observer Pattern defined
A newspaper subscription, with its publisher and subscribers, is a
good way to visualize the pattern.

In the real world, however, you’ll typically see the Observer
Pattern defined like this:

The subject and observers define the one-to-many relationship. We
have one subject, who notifies many observers when something in the subject
changes. The observers are dependent on the subject—when the subject’s
state changes, the observers are notified.

As you’ll discover, there are a few different ways to implement the
Observer Pattern, but most revolve around a class design that includes
Subject and Observer interfaces.

The Observer Pattern
defines a one-to-many
relationship between a
set of objects.

When the state of one
object changes, all of its
dependents are notified.

Let’s relate this definition to how we’ve been thinking about the
pattern:

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

8
8
8

8

ONE-TO-MANY RELATIONSHIP

Automatic update/notification

Object that
holds state

De
pen

de
nt

 O
bje

cts

52   Chapter 2

the observer pattern

<<interface>>
Subject

registerObserver()
removeObserver()
notifyObservers()

<<interface>>
Observer

update()

registerObserver() {...}
removeObserver() {...}
notifyObservers() {...}

getState()
setState()

ConcreteSubject

Here’s th
e Subject

 interface
. Objects

use this in
terface t

o register
 as

observers
and also t

o remove themselves

from being obs
ervers.

All potential observers need
to implement the Observer
interface. This interface has
just one method, update(),
that is called when the
Subject’s state changes.

Concrete observers can be
any class that implements the
Observer interface. Each observer
registers with a concrete subject
to receive updates.

A concrete subject always
implements the Subject
interface. In addition to
the register and remove
methods, the concrete subjec

t

implements a notifyObservers()

method that is used to updat
e

all the current observers
whenever state changes.

update()
// other Observer specific
methods

ConcreteObserver

The Observer Pattern: the Class Diagram

The concrete subject may also

have methods for setting and

getting its state (more about

this later).

observers

subject

Each subject
can have many
observers.

Q: What does this have to do with
one-to-many relationships?

A: With the Observer Pattern, the Subject
is the object that contains the state and
controls it. So, there is ONE subject with
state. The observers, on the other hand, use
the state, even if they don’t own it. There
are many observers, and they rely on the
Subject to tell them when its state changes.
So there is a relationship between the ONE
Subject to the MANY Observers.

Q: How does dependence come into
this?

A: Because the subject is the sole owner
of that data, the observers are dependent on
the subject to update them when the data
changes. This leads to a cleaner OO design
than allowing many objects to control the
same data.

Q: I’ve also heard of a Publish-
Subscribe Pattern. Is that just another
name for the Observer Pattern?

A: No, although they are related. The
Publish-Subscribe pattern is a more complex
pattern that allows subscribers to express
interest in different types of messages
and further separates publishers from
subscribers. It is often used in middleware
systems.

Let’s take a look at the structure of the Observer Pattern, complete with
its Subject and Observer classes. Here’s the class diagram:

you are here 4   53

the observer pattern

Guru and Student...
Guru: Have we talked about loose coupling?

Student: Guru, I do not recall such a discussion.

Guru: Is a tightly woven basket stiff or flexible?

Student: Stiff, Guru.

Guru: And do stiff or flexible baskets tear or break less easily?

Student: A flexible basket tends to break less easily.

Guru: And in our software, might our designs break less easily if
our objects are less tightly bound together?

Student: Guru, I see the truth of it. But what does it mean for
objects to be less tightly bound?

Guru: We like to call it, loosely coupled.

Student: Ah!

Guru: We say a object is tightly coupled to another object when it is
too dependent on that object.

Student: So a loosely coupled object can’t depend on another
object?

Guru: Think of nature; all living things depend on each other.
Likewise, all objects depend on other objects. But a loosely coupled
object doesn’t know or care too much about the details of another
object.

Student: But Guru, that doesn’t sound like a good quality. Surely
not knowing is worse than knowing.

Guru: You are doing well in your studies, but you have much to
learn. By not knowing too much about other objects, we can create
designs that can handle change better. Designs that have more
flexibility, like the less tightly woven basket.

Student: Of course, I am sure you are right. Could you give me an
example?

Guru: That is enough for today.

54   Chapter 2

The Power of Loose Coupling

Design Principle
Strive for loosely coupled designs
between objects that interact.

When two objects are loosely coupled, they can interact, but they typically have very little knowledge
of each other. As we’re going to see, loosely coupled designs often give us a lot of flexibility (more
on that in a bit). And, as it turns out, the Observer Pattern is a great example of loose coupling.
Let’s walk through all the ways the pattern achieves loose coupling:

Loosely coupled designs allow us to build flexible OO
systems that can handle change because they minimize
the interdependency between objects.

How many
different kinds
of change can you
identify here?

First, the only thing the subject knows about an observer is that it
implements a certain interface (the Observer interface). It doesn’t need to
know the concrete class of the observer, what it does, or anything else about it.

We can add new observers at any time. Because the only thing the subject depends
on is a list of objects that implement the Observer interface, we can add new observers
whenever we want. In fact, we can replace any observer at runtime with another observer
and the subject will keep purring along. Likewise, we can remove observers at any time.

We never need to modify the subject to add new types of observers. Let’s say
we have a new concrete class come along that needs to be an observer. We don’t need
to make any changes to the subject to accommodate the new class type; all we have
to do is implement the Observer interface in the new class and register as an observer.
The subject doesn’t care; it will deliver notifications to any object that implements the
Observer interface.

We can reuse subjects or observers independently of each other. If we have
another use for a subject or an observer, we can easily reuse them because the two aren’t
tightly coupled.

Changes to either the subject or an observer will not affect the other.
Because the two are loosely coupled, we are free to make changes to either, as long as the
objects still meet their obligations to implement the Subject or Observer interfaces.

Look! We have a new
Design Principle!

loose coupling

you are here 4   55

the observer pattern

Before moving on, try sketching out the classes you’ll need to
implement the Weather Station, including the WeatherData class
and its display elements. Make sure your diagram shows how all
the pieces fit together and also how another developer might
implement her own display element.

If you need a little help, read the next page; your teammates are
already talking about how to design the Weather Station.

56   Chapter 2

Cubicle conversation

The Observer Pattern defines a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and updated automatically.

Back to the Weather Station project. Your teammates have already begun thinking
through the problem...

Sue

So, how are we going
to build this thing?

Mary: Well, it helps to know we’re using the Observer Pattern.

Sue: Right...but how do we apply it?

Mary: Hmm. Let’s look at the definition again:

Mary: That actually makes some sense when you think about it. Our WeatherData class is the
“one,” and our “many” is the various display elements that use the weather measurements.

Sue: That’s right. The WeatherData class certainly has state...that’s the temperature,
humidity, and barometric pressure, and those definitely change.

Mary: Yup, and when those measurements change, we have to notify all the display elements
so they can do whatever it is they are going to do with the measurements.

Sue: Cool, now I think I see how the Observer Pattern can be applied to our Weather
Station problem.

Mary: There are still a few things to consider that I’m not sure I understand yet.

Sue: Like what?

Mary: For one thing, how do we get the weather measurements to the display elements?

Sue: Well, looking back at the picture of the Observer Pattern, if we make the WeatherData
object the subject, and the display elements the observers, then the displays will register
themselves with the WeatherData object in order to get the information they want, right?

Mary: Yes...and once the Weather Station knows about a display element, then it can just
call a method to tell it about the measurements.

Sue: We gotta remember that every display element can be different...so I think that’s where
having a common interface comes in. Even though every component has a different type,
they should all implement the same interface so that the WeatherData object will know how
to send them the measurements.

Mary: I see what you mean. So every display will have, say, an update() method that
WeatherData will call.

Sue: And update() is defined in a common interface that all the elements implement…

conversation about the weather station

you are here 4   57

the observer pattern

Designing the Weather Station

<<interface>>
Subject

registerObserver()
removeObserver()
notifyObservers()

<<interface>>
Observer

update()

registerObserver()
removeObserver()
notifyObservers()

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

WeatherData

update()
display() { // display current
measurements }

CurrentConditionsDisplay

update()
display() { // display the aver-
age, min and max measure-
ments }

StatisticsDisplay

update()
display() { // display the
forecast }

ForecastDisplay

Here’s our Subject interf
ace.

This should look familiar.

All our weather components
implement the Observer
interface. This gives the
Subject a common interface to
talk to when it comes time to
update the observers.

This display element shows the current measurements from the WeatherData object.

This one keeps track
of the min/avg/max
measurements and
displays them.

This display shows the weather
forecast based on the barometer.

WeatherData now
implements the Subject
interface.

observers

update()
display() { // display
something else based on
measurements }

ThirdPartyDisplay

Developers can
implement the
Observer and
DisplayElement
interfaces to
create their own
display element.

<<interface>>
DisplayElement

display()

Let’s also create an interface for all display elements
to implement. The display
elements just need to
implement a display() method.

These three display elements should have a pointer to
WeatherData labeled “subject” too, but boy would
this diagram start to look like spaghetti if they did.

How does this diagram compare with yours?

subject

58   Chapter 2

Implementing the Weather Station
All right, we’ve had some great thinking from Mary and Sue (from a few pages back)
and we’ve got a diagram that details the overall structure of our classes. So, let’s get
our implemention of the weather station underway. Let’s start with the interfaces:

Both of these methods take an
Observer as an argument—that is, the
Observer to be registered or removed.

This method is called to notify all observers when the Subject’s state has changed.

The Observer interface
is implemented by all
observers, so they all
have to implement the
update() method. Here
we’re following Mary and
Sue’s lead and passing
the measurements to the
observers.

These are the state values the Observers get from
the Subject when a weather measurement changes.

The DisplayElement interface
just includes one method, display(),
that we will call when the display
element needs to be displayed.

Mary and Sue thought that passing the measurements directly to the observers was the
most straightforward method of updating state. Do you think this is wise? Hint: is this an area
of the application that might change in the future? If it did change, would the change be well
encapsulated, or would it require changes in many parts of the code?

Can you think of other ways to approach the problem of passing the updated state to the
observers?

Don’t worry; we’ll come back to this design decision after we finish the initial implementation.

public interface Subject {

 public void registerObserver(Observer o);

 public void removeObserver(Observer o);

 public void notifyObservers();

}

public interface Observer {

 public void update(float temp, float humidity, float pressure);

}

public interface DisplayElement {

 public void display();

}

implementing the weather station

you are here 4   59

the observer pattern

public class WeatherData implements Subject {
 private List<Observer> observers;
 private float temperature;
 private float humidity;
 private float pressure;

 public WeatherData() {
 observers = new ArrayList<Observer>();
 }

 public void registerObserver(Observer o) {
 observers.add(o);
 }

 public void removeObserver(Observer o) {
 observers.remove(o);
 }

 public void notifyObservers() {
 for (Observer observer : observers) {
 observer.update(temperature, humidity, pressure);
 }
 }

 public void measurementsChanged() {
 notifyObservers();
 }

 public void setMeasurements(float temperature, float humidity, float pressure) {
 this.temperature = temperature;
 this.humidity = humidity;
 this.pressure = pressure;
 measurementsChanged();
 }

 // other WeatherData methods here
}

Implementing the Subject interface
in WeatherData

We notify the Observers when we

get updated measurements from

the Weather Station.

Remember our first attempt at implementing the WeatherData class at the
beginning of the chapter? You might want to refresh your memory. Now it’s
time to go back and do things with the Observer Pattern in mind:

WeatherData now implements
the Subject interface.

When an observer registers, we
just add it to the end of the list.

Likewise, when an observer wants to
un-register, we just take it off the list.

Here’s the fun part; this is where we
tell all the observers about the state.
Because they are all Observers, we
know they all implement update(), so we
know how to notify them.

Okay, while we wanted to ship a nice little weather station with each book, the publisher wouldn’t go for it. So, rather than reading actual weather data off a device, we’re going to use this method to test our display elements. Or, for fun, you could write code to grab measurements off the web.

We’ve added an ArrayList to
hold the Observers, and we
create it in the constructor.

He
re

we
 im

ple
me

nt
 th

e S
ubj

ect
 in

te
rfa

ce.
REMEMBER: we don’t provide
import and package statements
in the code listings. Get the
complete source code from
https://wickedlysmart.com/
head-first-design-patterns

https://wickedlysmart.com/head-first-design-patterns/
https://wickedlysmart.com/head-first-design-patterns/

60   Chapter 2

public class CurrentConditionsDisplay implements Observer, DisplayElement {
 private float temperature;
 private float humidity;
 private WeatherData weatherData;

 public CurrentConditionsDisplay(WeatherData weatherData) {
 this.weatherData = weatherData;
 weatherData.registerObserver(this);
 }

 public void update(float temperature, float humidity, float pressure) {
 this.temperature = temperature;
 this.humidity = humidity;
 display();
 }

 public void display() {
 System.out.println("Current conditions: " + temperature
 + "F degrees and " + humidity + "% humidity");
 }
}

Now, let’s build those display elements

This display implements the Observer
interface so it can get changes from
the WeatherData object.

When update() is called, we
save the temp and humidity
and call display().

The display() method
just prints out the most
recent temp and humidity.

Now that we’ve got our WeatherData class straightened out, it’s time to build the
display elements. Weather-O-Rama ordered three: the current conditions display, the
statistics display, and the forecast display. Let’s take a look at the current conditions
display; once you have a good feel for this display element, check out the statistics and
forecast displays in the code directory. You’ll see they are very similar.

It also implements DisplayElement, because our API is going to
require all display elements to implement this interface.

The constructor is passed the
weatherData object (the Subject)
and we use it to register the
display as an observer.

Q: Is update() the best place to call display()?

A: In this simple example it made sense to call display() when the
values changed. However, you’re right; there are much better ways to
design the way the data gets displayed. We’ll see this when we get to
the Model-View-Controller pattern.

Q: Why did you store a reference to the WeatherData
Subject? It doesn’t look like you use it again after the
constructor.

A: True, but in the future we may want to un-register ourselves as
an observer and it would be handy to already have a reference to the
subject.

build the display elements

you are here 4   61

the observer pattern

public class WeatherStation {

 public static void main(String[] args) {

 WeatherData weatherData = new WeatherData();

 CurrentConditionsDisplay currentDisplay =

 new CurrentConditionsDisplay(weatherData);

 StatisticsDisplay statisticsDisplay = new StatisticsDisplay(weatherData);

 ForecastDisplay forecastDisplay = new ForecastDisplay(weatherData);

 weatherData.setMeasurements(80, 65, 30.4f);

 weatherData.setMeasurements(82, 70, 29.2f);

 weatherData.setMeasurements(78, 90, 29.2f);

 }

}

Power up the Weather Station

File Edit Window Help StormyWeather

%java WeatherStation
Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0
Forecast: Improving weather on the way!
Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0
Forecast: Watch out for cooler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0
Forecast: More of the same
%

The Weather Station is ready to go. All we need is some code to
glue everything together. We’ll be adding some more displays and
generalizing things in a bit. For now, here’s our first attempt:

First, let’s create a test harness.1

Run the code and let the Observer Pattern do its magic.2

First, create the
WeatherData object.

Create the three
displays and
pass them the
WeatherData object.

Simulate new weather
measurements.

If you don’t
want to
download the
code, you can
comment out
these two lines
and run it.

62   Chapter 2

Johnny Hurricane, Weather-O-Rama’s CEO, just called and they can’t possibly ship without a Heat
Index display element. Here are the details.

The heat index is an index that combines temperature and humidity to determine the apparent
temperature (how hot it actually feels). To compute the heat index, you take the temperature, T,
and the relative humidity, RH, and use this formula:

So get typing!

Just kidding. Don’t worry, you won’t have to type that formula in; just create your own
HeatIndexDisplay.java file and copy the formula from heatindex.txt into it.

How does it work? You’d have to refer to Head First Meteorology, or try asking someone at the
National Weather Service (or try a web search).

When you finish, your output should look like this:

You can get heatindex.txt from wickedlysmart.com.

16.923 + 1.85212 * 10-1 * T + 5.37941 * RH - 1.00254 * 10-1 *
T * RH + 9.41695 * 10-3 * T2 + 7.28898 * 10-3 * RH2 + 3.45372 *
10-4 * T2 * RH - 8.14971 * 10-4 * T * RH2 + 1.02102 * 10-5 * T2 *
RH2 - 3.8646 * 10-5 * T3 + 2.91583 * 10-5 * RH3 + 1.42721 * 10-6
* T3 * RH + 1.97483 * 10-7 * T * RH3 - 2.18429 * 10-8 * T3 * RH2
+ 8.43296 * 10-10 * T2 * RH3 - 4.81975 * 10-11 * T3 * RH3

heatindex =

File Edit Window Help OverDaRainbow

%java WeatherStation
Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0
Forecast: Improving weather on the way!
Heat index is 82.95535
Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0
Forecast: Watch out for cooler, rainy weather
Heat index is 86.90124
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0
Forecast: More of the same
Heat index is 83.64967
%

Here’s what
changed in
this output.

exercise: code the heat index display

you are here 4   63

the observer pattern

Tonight’s talk: Subject and Observer spar over the right way
to get state information to the Observer.

Subject:
I’m glad we’re finally getting a chance to chat in
person.

Well, I do my job, don’t I? I always tell you what’s
going on... Just because I don’t really know who
you are doesn’t mean I don’t care. And besides, I
do know the most important thing about you—you
implement the Observer interface.

Oh yeah, like what?

Well, excuuuse me. I have to send my state with my
notifications so all you lazy Observers will know
what happened!

Well...I guess that might work. I’d have to open
myself up even more, though, to let all you
Observers come in and get the state that you
need. That might be kind of dangerous. I can’t
let you come in and just snoop around looking at
everything I’ve got.

Observer:

Really? I thought you didn’t care much about us
Observers.

Yeah, but that’s just a small part of who I am.
Anyway, I know a lot more about you...

Well, you’re always passing your state around to us
Observers so we can see what’s going on inside you.
Which gets a little annoying at times...

Okay, wait just a minute here; first, we’re not lazy,
we just have other stuff to do in between your oh-
so-important notifications, Mr. Subject, and second,
why don’t you let us come to you for the state we
want rather than pushing it out to just everyone?

64   Chapter 2

Subject:

Yes, I could let you pull my state. But won’t
that be less convenient for you? If you have to
come to me every time you want something, you
might have to make multiple method calls to get
all the state you want. That’s why I like push
better...then you have everything you need in one
notification.

Well, as I like to say, don’t call us, we’ll call you!
But I’ll give it some thought.

You never know, hell could freeze over.

Indeed.

Observer:
Why don’t you just write some public getter
methods that will let us pull out the state we need?

Don’t be so pushy! There are so many different
kinds of us Observers, there’s no way you can
anticipate everything we need. Just let us come to
you to get the state we need. That way, if some of
us only need a little bit of state, we aren’t forced to
get it all. It also makes things easier to modify later.
Say, for example, you expand yourself and add
some more state. If you use pull, you don’t have to
go around and change the update calls on every
observer; you just need to change yourself to allow
more getter methods to access our additional state.

I won’t hold my breath.

I see, always the wise guy...

fireside chat: subject and observer

you are here 4   65

the observer pattern

Looking for the Observer Pattern in the Wild
The Observer Pattern is one of the most common patterns in use, and you’ll find plenty
of examples of the pattern being used in many libraries and frameworks. If we look at the
Java Development Kit (JDK), for instance, both the JavaBeans and Swing libraries make use
of the Observer Pattern. The pattern’s not limited to Java either; it’s used in JavaScript’s
events and in Cocoa and Swift’s Key-Value Observing protocol, to name a couple of other
examples. One of the advantages of knowing design patterns is recognizing and quickly
understanding the design motivation in your favorite libraries. Let’s take a quick diversion
into the Swing library to see how Observer is used.

Okay, our application is pretty simple. You’ve got a button that says, “Should I do
it?” and when you click on that button the listeners (observers) get to answer the
question in any way they want. We’re implementing two such listeners, called the
AngelListener and the DevilListener. Here’s how the application behaves:

If you’re curious about
the Observer Pattern in
JavaBeans, check out the
PropertyChangeListener
interface.

You probably already know that Swing is Java’s GUI toolkit for user interfaces. One
of the most basic components of that toolkit is the JButton class. If you look up
JButton’s superclass, AbstractButton, you’ll find that it has a lot of add/remove
listener methods. These methods allow you to add and remove observers—or, as
they are called in Swing, listeners—to listen for various types of events that occur
on the Swing component. For instance, an ActionListener lets you “listen in” on
any types of actions that might occur on a button, like a button press. You’ll find
various types of listeners all over the Swing API.

The Swing library

%java SwingObserverExample

Come on, do it!

Don’t do it, you might regret it!

%

A little life-changing application

And here’s the output when
we click on the button.

Here’s our fancy interface.

Angel answer
Devil answer

File Edit Window Help HeMadeMeDoIt

66   Chapter 2

public class SwingObserverExample {

 JFrame frame;

 public static void main(String[] args) {

 SwingObserverExample example = new SwingObserverExample();

 example.go();

 }

 public void go() {

 frame = new JFrame();

 JButton button = new JButton("Should I do it?");

 button.addActionListener(new AngelListener());

 button.addActionListener(new DevilListener());

 // Set frame properties here

 }

 class AngelListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 System.out.println("Don't do it, you might regret it!");

 }

 }

 class DevilListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 System.out.println("Come on, do it!");

 }

 }

}

Simple Swing application that

just creates a frame and

throws a button in it.

Makes the devil and
angel objects listeners
(observers) of the button.

Here are the class definitions for
the observers, defined as inner
classes (but they don’t have to be).

Rather than update(), the actionPerformed()
method gets called when the state in the
subject (in this case the button) changes.

This life-changing application requires very little code. All we need to do is
create a JButton object, add it to a JFrame, and set up our listeners. We’re
going to use inner classes for the listeners, which is a common technique in
Swing programming. If you aren’t up on inner classes or Swing, you might
want to review the Swing chapter in your favorite Java reference guide.

Coding the life-changing application

Code to set up the frame goes here.

use action listener observers

you are here 4   67

the observer pattern

public class SwingObserverExa
mple {

 JFrame frame;

 public static void main(S
tring[] args) {

 SwingObserverExample
example = new SwingObserverEx

ample();

 example.go();

 }
 public void go() {

 frame = new JFrame();

 JButton button = new
JButton("Should I do it?");

 button.addActionListe
ner(event ->

 System.out.print
ln("Don't do it, you might re

gret it!"));

 button.addActionListe
ner(event ->

 System.out.print
ln("Come on, do it!"));

 // Set frame properti
es here

 }
}

The updated code, using lambda expressions:

We’ve replaced the AngelListener
and DevilListener objects with
lambda expressions that implement
the same functionality that we
had before.

We’ve removed the two ActionListener classes
(DevilListener and AngelListener) completely.

When you click the button, the
function objects created by the
lambda expressions are notified
and the method they implement
is run.
Using lambda expressions makes
this code a lot more concise.

Lambda expressions
 were added in Java

8. If you aren’t
 familiar with them, don’t

worry about it;
you can continu

e using inner

classes for your
 Swing observers.

For more on lambda expressions, check out the Java docs.

How about taking your use of the Observer Pattern even further? By using a lambda expression

rather than an inner class, you can skip the step of creating an ActionListener object. With a lambda

expression, we create a function object instead, and the function object is the observer. And, when you pass

that function object to addActionListener(), Java ensures its signature matches actionPerformed(), the

one method in the ActionListener interface.

Later, when the button is clicked, the button object notifies its observers—including the function

objects created by the lambda expressions—that it’s been clicked, and calls each listener’s

actionPerformed() method.

Let’s take a look at how you’d use lambda expressions as observers to simplify our previous code:

68   Chapter 2

I was thinking about the push/pull discussion
we had earlier. Would it generalize the code a
bit more if we allowed the displays to pull their
data from the WeatherData object as needed?
That might make it easier to add new displays in
the future.

Q: I thought Java had Observer and Observable classes?

A: Good catch. Java used to provide an Observable class (the
Subject) and an Observer interface, which you could use to help
integrate the Observer Pattern in your code. The Observable class
provided methods to add, delete, and notify observers, so that you
didn’t have to write that code. And the Observer interface provided
an interface just like ours, with one update() method. These classes
were deprecated in Java 9. Folks find it easier to support the basic
Observer Pattern in their own code, or want something more robust,
so the Observer/Observable classes are being phased out.

Q: Does Java offer other built-in support for Observer to
replace those classes?

A: JavaBeans offers built-in support through
PropertyChangeEvents that are generated when a Bean
changes a particular kind of property, and sends notifications
to PropertyChangeListeners. There are also related publisher/
subscriber components in the Flow API for handling asynchronous
streams.

Q: Should I expect notifications from a Subject to its
Observers to arrive in a specific order?

A: With Java’s implementations of Observer, the JDK developers
specifically advise you to not depend on any specific notification
order.

That’s a good idea.

In our current Weather Station design, we are pushing all three pieces of data
to the update() method in the displays, even if the displays don’t need all these
values. That’s okay, but what if Weather-O-Rama adds another data value later,
like wind speed? Then we’ll have to change all the update() methods in all the
displays, even if most of them don’t need or want the wind speed data.

Now, whether we pull or push the data to the Observer is an implementation
detail, but in a lot of cases it makes sense to let Observers retrieve the data they
need rather than passing more and more data to them through the update()
method. After all, over time, this is an area that may change and grow unwieldy.
And, we know CEO Johnny Hurricane is going to want to expand the Weather
Station and sell more displays, so let’s take another pass at the design and see if
we can make it even easier to expand in the future.

Updating the Weather Station code to allow Observers to pull the data they
need is a pretty straightforward exercise. All we need to do is make sure the
Subject has getter methods for its data, and then change our Observers to use
them to pull the data that’s appropriate for their needs. Let’s do that.

revisiting push and pull

you are here 4   69

the observer pattern

For an Observer to receive notifications...

For the Subject to send notifications...

We’ll modify the notifyObservers() method in WeatherData to call the method
update() in the Observers with no arguments:

public void notifyObservers() {

	 for (Observer observer : observers) {

		 observer.update();

	 }

}

Then we’ll modify the Observer interface, changing the signature of the
update() method so that it has no parameters:

public interface Observer {

	 public void update();

}

1

And finally, we modify each concrete Observer to change the signature of its respective
update() methds and get the weather data from the Subject using the WeatherData’s
getter methods. Here’s the new code for the CurrentConditionsDisplay class:

2

public void update() {

	 this.temperature = weatherData.getTemperature();

	 this.humidity = weatherData.getHumidity();

	 display();

}

1

Meanwhile, back at Weather-O-Rama

There’s another way of handling the data in the Subject: we can rely on the
Observers to pull it from the Subject as needed. Right now, when the Subject’s data
changes, we push the new values for temperature, humidity, and pressure to the
Observers, by passing that data in the call to update().

Let’s set things up so that when an Observer is notified of a change, it calls getter
methods on the Subject to pull the values it needs.

To switch to using pull, we need to make a few small changes to our existing code.

Here we’re using the
Subject’s getter methods
that were supplied with
the code in WeatherData
from Weather-O-Rama.

70   Chapter 2

Code Magnets
The ForecastDisplay class is all scrambled up on the fridge. Can you
reconstruct the code snippets to make it work? Some of the curly
braces fell on the floor and they were too small to pick up, so feel
free to add as many of those as you need!

public void display() {
 // display code here
}

weatherData.registerObserver(this);

public ForecastDisp
lay(WeatherData

weatherData) {

display();

public class Foreca
stDisplay implement

s

Observer, DisplayEl
ement {

lastPressure = curr
entPressure;

currentPressure = w
eatherData.getPress

ure();

private float currentPressure = 29.92f; private float lastPressure;

this.weatherData = weatherData;

public void update(
) {

private WeatherData weatherData;

}

code magnet exercise

you are here 4   71

the observer pattern

Test Drive the new code

File Edit Window Help TryThisAtHome

%java WeatherStation
Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0
Forecast: Improving weather on the way!
Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0
Forecast: Watch out for cooler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0
Forecast: More of the same
%

Okay, you’ve got one more display to update, the Avg/Min/Max display. Go ahead and
do that now!

Just to be sure, let’s run the new code...

Weather-O-Rama, Inc.
100 Main Street
Tornado Alley, OK 45021

Wow!
Your design is fantastic. Not only did you quickly create all three displays that we asked for, you’ve created a general design that allows anyone to create new display, and even allows users to add and remove displays at runtime!
Ingenious!
Until our next engagement,

Here’s what we got.

Look! This just arrived!

72   Chapter 2

Tools for your Design Toolbox

Abstraction

Encapsulation

Polymorphism

Inheritence

OO Basics

Encapsulate what varies.

Favor composition over

inheritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled

designs between objects tha
t

interact.

OO Principles

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns

Welcome to the end of Chapter 2. You’ve added a
few new things to your OO toolbox...

Observer - defines a one-
to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Here’s your newest
principle. Remember,
loosely coupled desig

ns are

much more flexible and

resilient to change.

A new pattern for communicating state to a
set of objects in a loosely coupled manner. We
haven’t seen the last of the Observer Pattern—
just wait until we talk about MVC!

	� The Observer Pattern defines
a one-to-many relationship
between objects.

	� Subjects update Observers
using a common interface.

	� Observers of any concrete type
can participate in the pattern
as long as they implement the
Observer interface.

	� Observers are loosely coupled
in that the Subject knows
nothing about them, other
than that they implement the
Observer interface.

	� You can push or pull data from
the Subject when using the
pattern (pull is considered more
“correct”).

	� Swing makes heavy use of the
Observer Pattern, as do many
GUI frameworks.

	� You’ll also find the pattern in
many other places, including
RxJava, JavaBeans, and RMI,
as well as in other language
frameworks, like Cocoa, Swift,
and JavaScript events.

	� The Observer Pattern is related
to the Publish/Subscribe Pattern,
which is for more complex
situations with multiple Subjects
and/or multiple message types.

	� The Observer Pattern is a
commonly used pattern, and
we’ll see it again when we learn
about Model-View-Controller.

design toolbox

you are here 4   73

the observer pattern

Design Principle
Identify the aspects of your application that vary
and separate them from what stays the same.

Design Principle
Program to an interface, not an implementation.

Design Principle
Favor composition over inheritance.

Design Principle Challenge
For each design principle, describe how the Observer
Pattern makes use of the principle.

This is a hard one. Hint: think about how observers
and subjects work together.

74   Chapter 2

Design Patterns Crossword
Time to give your right brain something to do again!
All of the solution words are from Chapters 1 & 2.

ACROSS
1. One Subject likes to talk to _______ observers.
3. Subject initially wanted to _________ all the data to
Observer.
6. CEO almost forgot the ________ index display.
8. CurrentConditionsDisplay implements this interface.
9. Java framework with lots of Observers.
11. A Subject is similar to a __________.
12. Observers like to be ___________ when something
new happens.
15. How to get yourself off the Observer list.
16. Lori was both an Observer and a _________.
18. Subject is an ______.
20. You want to keep your coupling ________.
21. Program to an __________ not an implementation.
22. Devil and Angel are _________ to the button.

DOWN
1. He didn’t want any more ints, so he removed himself.
2. Temperature, humidity, and __________.
4. Weather-O-Rama’s CEO is named after this kind of
storm.
5. He says you should go for it.
7. The Subject doesn’t have to know much about the
_____.
10. The WeatherData class __________ the Subject
interface.
13. Don’t count on this for notification.
14. Observers are______ on the Subject.
17. Implement this method to get notified.
19. Jill got one of her own.

cross word

Untitled Puzzle
Header Info 1
Header Info 2

etc...
1

2 3 4

5

6 7

8

9 10

11

12 13 14

15

16 17

18

19

20 21

22

Across
1. One Subject likes to talk to _____

Observers
3. Subject initially wanted to ____ all the data

to Observer
6. CEO almost forgot the ____ index display
8. CurrentConditionsDisplay implements this

interface
9. Java framework with lots of Observers

11. A Subject is similar to a _____
12. Observers like to be _____ when something

new happens
15. How to get yourself off the Observer list
16. Ron was both an Observer and a ______

Down
1. He didn't want any more ints so he removed

himself
2. Temperature, humidity, and _____
4. Weather-O-Rama's CEO is named after this

kind of storm
5. He says you should go for it
7. The Subject doesn't have to know much

about the _____
10. The WeatherData class ______ the Subject

interface
13. Don't count on this for notification
14. Observers are _____ on the Subject
17. Implement this method to get notified

you are here 4   75

the observer pattern

Design Principle
Identify the aspects of your application that
vary and separate them from what stays the
same.

Design Principle
Program to an interface, not an implementation.

Design Principle
Favor composition over inheritance.

The thing that varies in the Observer Pattern
is the state of the Subject and the number and
types of Observers. With this pattern, you can
vary the objects that are dependent on the state
of the Subject, without having to change that
Subject. That’s called planning ahead!

Both the Subject and Observers use interfaces.
The Subject keeps track of objects implementing
the Observer interface, while the Observers
register with, and get notified by, the Subject
interface. As we’ve seen, this keeps things nice and
loosely coupled.

The Observer Pattern uses composition to compose
any number of Observers with their Subject.
These relationships aren’t set up by some kind
of inheritance hierarchy. No, they are set up at
runtime by composition!

Design
Principle
Challenge
Solution

❏ A.	We are coding to concrete
implementations, not interfaces.

❏ B.	For every new display element,
we need to alter code.

❏ C.	We have no way to add display
elements at runtime.

❏ D.	The display elements don’t implement
a common interface.

❏ E.	We haven’t encapsulated what changes.
❏ F.	 We are violating encapsulation of the

WeatherData class.

Based on our first implementation, which of the
following apply? (Choose all that apply.)

76   Chapter 2

exercise solution

Code Magnets Solution
The ForecastDisplay class is all scrambled up on the fridge. Can you
reconstruct the code snippets to make it work? Some of the curly
braces fell on the floor and they were too small to pick up, so feel
free to add as many of those as you need! Here’s our solution.

public void display() {
 // display code here
}

weatherData.registerObserver(this);

display();

public class Foreca
stDisplay implement

s

Observer, DisplayEl
ement {

lastPressure = curr
entPressure;

currentPressure = w
eatherData.getPress

ure();

private float currentPressure = 29.92f; private float lastPressure;

public void update(
) {

private WeatherData weatherData;

}

}

}

public ForecastDisp
lay(WeatherData

weatherData) {

this.weatherData = weatherData;

you are here 4   77

the observer pattern

Untitled Puzzle
Header Info 1
Header Info 2

etc...

M
1

A N Y
P
2

P
3

U S H
4

O
R U U D

5

H
6

E A T O
7

R S E
S O

8
B S E R V E R V

S
9

W I
10

N G S I I
U M E C L
R P

11
U B L I S H E R A L

E L V N
12

O
13

T I F I E D
14

R
15

E M O V E O B S E R V E R S E
M R D T P
E S

16
U
17

B J E C T E E
I
18

N T E R F A C E P R N N
J
19

T D E D
L
20

O O S E I
21

N T E R F A C E R E
B T N

L
22

I S T E N I N G T

Across
1. One Subject likes to talk to _____

Observers [MANY]
3. Subject initially wanted to ____ all the data

to Observer [PUSH]
6. CEO almost forgot the ____ index display

[HEAT]
8. CurrentConditionsDisplay implements this

interface [OBSERVER]
9. Java framework with lots of Observers

[SWING]
11. A Subject is similar to a _____

[PUBLISHER]

Down
1. He didn't want any more ints so he removed

himself [MOUSE]
2. Temperature, humidity, and _____

[PRESSURE]
4. Weather-O-Rama's CEO is named after this

kind of storm [HURRICANE]
5. He says you should go for it

[DEVILLISTENER]
7. The Subject doesn't have to know much

about the _____ [OBSERVERS]
10. The WeatherData class ______ the Subject

interface [IMPLEMENTS]
13. Don't count on this for notification [ORDER]

Design Patterns
Crossword Solution

this is a new chapter   79

Just call this chapter “Design Eye for the Inheritance Guy.”
We’ll re-examine the typical overuse of inheritance and you’ll learn how to decorate

your classes at runtime using a form of object composition. Why? Once you know the

techniques of decorating, you’ll be able to give your (or someone else’s) objects new

responsibilities without making any code changes to the underlying classes.

Decorating Objects

3 the Decorator Pattern

I used to think real men
subclassed everything. That was
until I learned the power of
extension at runtime, rather than
at compile time. Now look at me!

80   Chapter 3

the starbuzz story

Welcome to Starbuzz Coffee

Beverage is an abstract class
,

subclassed by all beverages
offered in the coffee shop

.

Each subclass implements cost() to return the cost of the beverage.

cost()

Espresso

cost()

Decaf

cost()

DarkRoast

cost()

HouseBlend

Beverage

description

getDescription()
cost()

// Other useful methods...

The description instance variable
is set in each subclass and holds a
description of the beverage, like
“Most Excellent Dark Roast”.

The getDescription() method
returns the description.

The cost() method is
abstract; subclassses
need to define their
own implementation.

Starbuzz Coffee has made a name for itself as the fastest-
growing coffee shop around. If you’ve seen one on your local
corner, look across the street; you’ll see another one.

Because they’ve grown so quickly, they’re scrambling to update
their ordering systems to match their beverage offerings.

When they first went into business they designed their classes
like this...

you are here 4   81

the decorator pattern

Beverage

description

getDescription()
cost()

// Other useful methods...

cost()

HouseBlendWithSteamedMilk
andCaramel

cost()

HouseBlendWithMocha
cost()

HouseBlendWithWhipandMocha

cost()

HouseBlendWithSteamedMilk
andSoy

cost()

HouseBlendWithSteamedMilk

cost()

HouseBlendWithSteamedMilk
andMocha

cost()

HouseBlendWithSoy

cost()

HouseBlendWithWhip

cost()

HouseBlendWithSteamedMilk
andWhip

cost()

HouseBlendWithSoyandMocha

cost()

HouseBlendWithWhipandSoy

cost()

DarkRoastWithSteamedMilk
andCaramel

cost()

DarkRoastWithMochacost()

DarkRoastWithWhipandMocha

cost()

DarkRoastWithSteamedMilk
andSoy

cost()

DarkRoastWithSteamedMilk

cost()

DarkRoastWithSteamedMilk
andMocha

cost()

DarkRoastWithSoy

cost()

DarkRoastWithWhip

cost()

DarkRoastWithSteamedMilk
andWhip

cost()

DarkRoastWithSoyandMocha

cost()

DarkRoastWithWhipandSoy

cost()

DecafWithSteamedMilk
andCaramel

cost()

DecafWithMochacost()

DecafWithWhipandMocha

cost()

DecafWithSteamedMilk
andSoy

cost()

DecafWithSteamedMilk

cost()

DecafWithSteamedMilk
andMocha

cost()

DecafWithSoy

cost()

DecafWithWhip

cost()

DecafWithSteamedMilk
andWhip

cost()

DecafWithSoyandMocha

cost()

DecafWithWhipandSoy

cost()

DarkRoastWithSoy

cost()

EspressoWithSteamedMilk
andCaramel

cost()

EspressoWithMochacost()

EspressoWithWhipandMocha

cost()

EspressoWithSteamedMilk
andSoy

cost()

EspressoWithSteamedMilk

cost()

EspressoWithSteamedMilk
andMocha

cost()

DecafWithSoy

cost()

EspressoWhip

cost()

EspressoWithSteamedMilk
andWhip

cost()

DecafWithSoyandMocha

cost()

EspressoWithWhipandSoy

Each cost method computes the
cost of the coffee along with the

other condiments in the order.
Whoa!

Can you say
“class explosion”?

In addition to your coffee, you can also ask for several
condiments like steamed milk, soy, and mocha (otherwise
known as chocolate), and have it all topped off with whipped
milk. Starbuzz charges a bit for each condiment, so they really
need to get them built into their order system.

 Here’s their first attempt...

82   Chapter 3

violating design principles

Well, let’s give it a try. Let’s start with the Beverage base class
and add instance variables to represent whether or not each
beverage has milk, soy, mocha, and whip...

Beverage

description
milk
soy
mocha
whip

getDescription()
cost()

hasMilk()
setMilk()
hasSoy()
setSoy()
hasMocha()
setMocha()
hasWhip()
setWhip()

// Other useful methods..

These get and set the boole
an

values for the condiments.

New boolean values for
each condiment.

Now we’ll implement cost() in Beverage (instead of
keeping it abstract), so that it can calculate the
costs associated with the condiments for a particular
beverage instance. Subclasses will still override
cost(), but they will also invoke the super version so
that they can calculate the total cost of the basic
beverage plus the costs of the added condiments.

This is stupid; why
do we need all these classes?

Can’t we just use instance variables
and inheritance in the superclass to
keep track of the condiments?

It’s pretty obvious that Starbuzz has created a maintenance
nightmare for themselves. What happens when the price of milk
goes up? What do they do when they add a new caramel topping?

Thinking beyond the maintenance problem, which of the design
principles that we’ve covered so far are they violating?

Hint: they’re violating two of them in a big way!

you are here 4   83

the decorator pattern

cost()

Espresso

cost()

Decaf

cost()

DarkRoast

cost()

HouseBlend

Now let’s add in the subclasses, one for
each beverage on the menu:

Each cost() method needs to compute

the cost of the beverage a
nd then

add in the condiments by calling the

superclass implementation of cost().

Beverage

description
milk
soy
mocha
whip

getDescription()
cost()

hasMilk()
setMilk()
hasSoy()
setSoy()
hasMocha()
setMocha()
hasWhip()
setWhip()

// Other useful methods..

The superclass cost() will calculate the

costs for all of the condim
ents, while

the overridden cost() in th
e subclasses

will extend that functionalit
y to include

costs for that specific bev
erage type.

Write the cost() methods for the following classes (pseudo-Java is okay):

public class Beverage {
 public double cost() {

 }
}

public class DarkRoast extends Beverage {

 public DarkRoast() {
 description = "Most Excellent Dark Roast";
 }
 public double cost() {

 }
}

84   Chapter 3

impact of change

What requirements or other factors might change that will impact this design?

Price changes for condiments will force us to alter existing code.

New condiments will force us to add new methods and alter the cost method in the superclass.

We may have new beverages. For some of these beverages (iced tea?), the condiments may
not be appropriate, yet the Tea subclass will still inherit methods like hasWhip().

What if a customer wants a double mocha?

Your turn
:

As we saw in
Chapter 1, this i

s

a very bad idea
!

See, five classes
total. This is definitely
the way to go.

I’m not so sure; I can see some
potential problems with this approach
by thinking about how the design might
need to change in the future.

you are here 4   85

the decorator pattern

Guru and Student...
Guru: It has been some time since our last meeting. Have you
been deep in meditation on inheritance?

Student: Yes, Guru. While inheritance is powerful, I have
learned that it doesn’t always lead to the most flexible or

maintainable designs.

Guru: Ah yes, you have made some progress. So, tell me, my student, how
then will you achieve reuse if not through inheritance?

Student: Guru, I have learned there are ways of “inheriting” behavior at
runtime through composition and delegation.

Guru: Please, go on...

Student: When I inherit behavior by subclassing, that behavior is set statically
at compile time. In addition, all subclasses must inherit the same behavior. If,
however, I can extend an object’s behavior through composition, then I can
do this dynamically at runtime.

Guru: Very good; you are beginning to see the power of composition.

Student: Yes, it is possible for me to add multiple new responsibilities to
objects through this technique, including responsibilities that were not even
thought of by the designer of the superclass. And I don’t have to touch their
code!

Guru: What have you learned about the effect of composition on maintaining
your code?

Student: Well, that is what I was getting at. By dynamically composing
objects, I can add new functionality by writing new code rather than altering
existing code. Because I’m not changing existing code, the chances of
introducing bugs or causing unintended side effects in pre-existing code are
much reduced.

Guru: Very good. Enough for today. I would like for you to go and meditate
further on this topic... Remember, code should be closed (to change) like the
lotus flower in the evening, yet open (to extension) like the lotus flower in the
morning.

86   Chapter 3

the open-closed principle

The Open-Closed Principle

Design Principle
Classes should be open
for extension, but closed for
modification.

Come on in; we’re
open. Feel free to extend our

classes with any new behavior you like. If your
needs or requirements change (and we know they
will), just go ahead and make your own extensions.

Sorry, we’re closed.
That’s right, we
spent a lot of time getting this
code correct and bug free, so we can’t let you
alter the existing code. It must remain closed to
modification. If you don’t like it, you can speak to
the manager.

We're on to one of the most important design principles:

Our goal is to allow classes to be easily extended to
incorporate new behavior without modifying existing code.
What do we get if we accomplish this? Designs that are
resilient to change and flexible enough to take on new
functionality to meet changing requirements.

you are here 4   87

the decorator pattern

While it may seem like a contradiction,
there are techniques for allowing code to be
extended without direct modification.

Be careful when choosing the areas of code
that need to be extended; applying the
Open-Closed Principle EVERYWHERE is
wasteful and unnecessary, and can lead to
complex, hard-to-understand code.

Q: Open for extension and closed
for modification? That sounds very
contradictory. How can a design be both?

A: That’s a very good question. It certainly
sounds contradictory at first. After all, the less
modifiable something is, the harder it is to
extend, right?

As it turns out, though, there are some
clever OO techniques for allowing systems
to be extended, even if we can’t change the
underlying code. Think about the Observer
Pattern (in Chapter 2)...by adding new
Observers, we can extend the Subject at
any time, without adding code to the Subject.
You’ll see quite a few more ways of extending
behavior with other OO design techniques.

Q: Okay, I understand Observer, but
how do I generally design something to be
extensible yet closed for modification?

A: Many of the patterns give us time-tested
designs that protect your code from being
modified by supplying a means of extension.
In this chapter you’ll see a good example of
using the Decorator Pattern to follow the Open-
Closed Principle.

Q: How can I make every part of my
design follow the Open-Closed Principle?

A: Usually, you can’t. Making OO design
flexible and open to extension without
modifying existing code takes time and effort. In
general, we don’t have the luxury of tying down
every part of our designs (and it would probably
be wasteful). Following the Open-Closed
Principle usually introduces new levels of
abstraction, which adds complexity to our code.
You want to concentrate on those areas that are
most likely to change in your designs and apply
the principles there.

Q: How do I know which areas of change
are more important?

A: That is partly a matter of experience
in designing OO systems and also a matter
of knowing the domain you are working in.
Looking at other examples will help you learn to
identify areas of change in your own designs.

88   Chapter 3

meet the decorator pattern

Meet the Decorator Pattern

Okay, we’ve seen that representing our beverage and condiments with
inheritance has not worked out very well—we get class explosions and rigid
designs, or we add functionality to the base class that isn’t appropriate for
some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate”
it with the condiments at runtime. For example, if the customer wants a
Dark Roast with Mocha and Whip, then we’ll:

1

2

Start with a DarkRoast object.

Decorate it with a Mocha object.

3 Decorate it with a Whip object.

4 Call the cost() method and rely on delegation to
add up the condiment costs.

Okay, but how do you “decorate” an object, and how does delegation
come into this? A hint: think of decorator objects as “wrappers.” Let’s see
how this works...

Okay, enough of the
“Object-Oriented Design Club.” We

have real problems here! Remember us?
Starbuzz Coffee? Do you think you could use
some of those design principles to actually

help us?

you are here 4   89

the decorator pattern

Remember that DarkRoast

inherits from
 Beverage and

has

a cost() method that c
omputes

the cost of
the drink.

 DarkRoast
cost()

 Mocha

cost()

 Whip

cost()

 Mocha

cost()

1

2

We start with our DarkRoast object.

The customer wants Mocha, so we create a Mocha
object and wrap it around the DarkRoast.

3 The customer also wants Whip, so we create a Whip
decorator and wrap Mocha with it.

The Mocha object is a decor
ator. Its

type mirrors the object it is
 decorating—

in this case, a Beverage. (By “mirror,”

we mean it is the same type.)

So, Mocha has a cost() m
ethod too,

and through polymorphism we can treat

any Beverage wrapped in Mocha as

a Beverage, too (becau
se Mocha is a

subtype of Beverage).

Whip is a decorator, so it also
mirrors DarkRoast’s type and
includes a cost() method.

Constructing a drink order with Decorators

So, a DarkRoast wrapped in Mocha and Whip is still
a Beverage and we can do anything with it we can do
with a DarkRoast, including call its cost() method.

 DarkRoast
cost()

 DarkRoast
cost()

90   Chapter 3

decorator characteristics

First, we call cost() on the
outermost decorator, Whip.

 Whip
 Mocha

 DarkRoast

Now it’s time to compute the cost for the customer. We do this by
calling cost() on the outermost decorator, Whip, and Whip is going to
delegate computing the cost to the objects it decorates. And so on.
Let’s see how this works:

Whip calls cost() on Mocha.

Mocha adds its cost, 20 cents,
to the result from DarkRoast,
and returns the new total, $1.19.

4

.99.20.10$1.29

Whip adds its total, 10 cents,
to the result from Mocha, and
returns the final result—$1.29.

1

2

5

6

Okay, here’s what we know about Decorators, so far...
	� Decorators have the same supertype as the objects they decorate.

	� You can use one or more decorators to wrap an object.

	� Given that the decorator has the same supertype as the object it decorates, we can
pass around a decorated object in place of the original (wrapped) object.

	� The decorator adds its own behavior before and/or after delegating to the object it
decorates to do the rest of the job.

	� Objects can be decorated at any time, so we can decorate objects dynamically at
runtime with as many decorators as we like.

Now le t’s see how this al l really works by looking at the
Decorator Pattern def init ion and writ ing some code .

3 Mocha calls cost() on
DarkRoast.

DarkRoast returns
its cost, 99 cents.

4

(You’ll see how in
a few pages.)

Key point!

cost() cost()cost()

you are here 4   91

the decorator pattern

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

The Decorator Pattern defined

Decorators implement the

same interface or abstract

class as the component they

are going to decorate.

methodA()
methodB()
// other methods

ConcreteComponent

component
methodA()
methodB()
// other methods

Component

The ConcreteDecorator
inherits (from the
Decorator class) an instance
variable for the thing it
decorates (the Component
the Decorator wraps). Decorators can add new methods; however, new

behavior is typically added by doing computation
before or after an existing method in the component.

Each decorator HAS-A
(wraps) a component, which
means the decorator has an
instance variable that holds a
reference to a component.

The ConcreteComponent
is the object we’re going
to dynamically add new
behavior to. It extends
Component.

Let’s first take a look at the Decorator Pattern description:

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Each component can be used on its
own or wrapped by a decorator.

Decorators can extend the
state of the component.

ConcreteDecoratorB

methodA()
methodB()
// other methods

Object newState

ConcreteDecoratorA

methodA()
methodB()
newBehavior()
// other methods

methodA()
methodB()
// other methods

Decorator

Component wrappedObj

92   Chapter 3

decorating beverages

Decorating our Beverages
Let’s rework our Starbuzz beverages using the Decorator Pattern...

Beverage beverage

CondimentDecorator

getDescription()
cost()
// other useful methods

Beverage

description

cost()
getDescription()

Milk

cost()

HouseBlend

component

cost()

DarkRoast

cost()

Decaf

cost()

Espresso

MochaThe four concrete
components, one per
coffee type.

And here are our condiment decorators; notice
they need to implement not only cost() but also
getDescription(). We’ll see why in a moment...

Beverage acts as our
abstract component class.

Before going further, think about how you’d implement the cost()
method of the coffees and the condiments. Also think about how
you’d implement the getDescription() method of the condiments.

getDescription()

Soy Whip

cost()
getDescription()

cost()
getDescription()

cost()
getDescription()

Here's the reference to
the Beverage that the
Decorators will be wrapping.

you are here 4   93

the decorator pattern

Cubicle Conversation
Some confusion over Inheritance versus Composition

Mary

Sue: What do you mean?

Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
That’s inheritance, right?

Sue: True. I think the point is that it’s vital that the decorators have the same type as the objects
they are going to decorate. So here we’re using inheritance to achieve the type matching, but we
aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new behavior. We are
acquiring new behavior not by inheriting it from a superclass, but by composing objects together.

Mary: Okay, so we’re subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the composition of decorators with the
base components as well as other decorators.

Sue: That’s right.

Mary: Oh, I get it! And because we are using object composition, we get a whole lot more
flexibility about how to mix and match condiments and beverages. Very slick.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at
compile time. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we like...at runtime.

Mary: I get it—we can implement new decorators at any time to add new behavior. If we relied
on inheritance, we’d have to go in and change existing code anytime we wanted new behavior.

Sue: Exactly.

Mary: I just have one more question: if all we need to inherit is the type of the component, how
come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already had an abstract Beverage class.
Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if the
abstract class will work just fine.

Okay, I’m a little confused...I
thought we weren’t going to use

inheritance in this pattern? I thought
we were going to rely on composition

instead?

94   Chapter 3

decorator training

New barista training

First, we call cost() on the
outermost decorator, Whip.

 Whip

cost()

 Mocha

 DarkRoast
cost()cost()

Whip calls cost() on Mocha.

Mocha adds its cost, 20
cents, to the result from
DarkRoast, and returns
the new total, $1.19.

.99.20.10$1.29

Whip adds its total, 10 cents,
to the result from Mocha, and
returns the final result—$1.29.

1

2

5

6

3

DarkRoast returns
its cost, 99 cents.

4

Mocha calls cost() on
DarkRoast.

Make a picture for what happens when the order is for a
“double mocha soy latte with whip” beverage. Use the menu to
get the correct prices, and draw your picture using the same
format we used earlier (from a few pages back):

Starbuzz Coffee
Coffees
House Blend
Dark Roast
Decaf
Espresso

Condiments
Steamed Milk
Mocha
Soy
Whip

 .89
 .99
1.05
1.99

 .10
 .20
 .15
 .10

Draw your picture here.

This picture was for

a “dark roast m
ocha

whip” beverage.

Starbuzz Coffee St
ar

bu
zz

 Coffee

HINT: you c
an make a

“double
 mocha so

y latte

with whip” by
 combining

HouseB
lend, S

oy, two
 shots

of Mocha, a
nd Whip!

Okay, I need for you to
make me a double mocha
soy latte with whip.

you are here 4   95

the decorator pattern

public abstract class CondimentDecorator extends Beverage {

 Beverage beverage;

 public abstract String getDescription();

}

public abstract class Beverage {

 String description = "Unknown Beverage";

 public String getDescription() {

 return description;

 }

 public abstract double cost();

}

Writing the Starbuzz code
It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t
need to change from Starbuzz’s original design.
Let’s take a look:

Beverage is simple enough. Let’s implement the abstract
class for the Condiments (the Decorator) as well:

Beverage is an abstrac
t

class with the two methods

getDescription() and cost
().

getDescription is already
implemented for us, but we
need to implement cost()
in the subclasses.

First, we need to be
interchangeable with a Beverage,

so we extend the Beverage class.

We’re also going to require
that the condiment
decorators all reimplement the
getDescription() method. Again,
we’ll see why in a sec...

Here's the Beverage that each
Decorator will be wrapping.
Notice we are using the
Beverage supertype to refer to
the Beverage so the Decorator
can wrap any beverage.

96   Chapter 3

implementing the beverages

public class HouseBlend extends Beverage {

 public HouseBlend() {

 description = "House Blend Coffee";

 }

 public double cost() {

 return .89;

 }

}

public class Espresso extends Beverage {

 public Espresso() {

 description = "Espresso";

 }

 public double cost() {

 return 1.99;

 }

}

Coding beverages

Starbuzz Coffee

Coffees

House B
lend

Dark Ro
ast

Decaf

Espress
o

Condime
nts

Steamed
 Milk

Mocha

Soy
Whip

 .89
 .99
1.05
1.99

 .10
 .20
 .15
 .10

Now that we’ve got our base classes out of the way, let’s implement
some beverages. We’ll start with Espresso. Remember, we need to
set a description for the specific beverage and also implement the
cost() method.

First we extend the Beverage

class, since this is a
beverage.

To take care of the description, we set
this in the constructor for the class.
Remember, the description instance
variable is inherited from Beverage.

Finally, we need to compute the cost of an E
spresso. We don’t

need to worry about adding in
condiments in this class, we just

need to return the pr
ice of an Espresso: $1.99.

Okay, here’s another Beverage. All we
do is set the appropriate description,
“House Blend Coffee,” and then return
the correct cost: 89¢.

You can create the other two Beverage classses
(DarkRoast and Decaf) in exactly the same way.

you are here 4   97

the decorator pattern

public class Mocha extends CondimentDecorator {

 public Mocha(Beverage beverage) {

 this.beverage = beverage;

 }

 public String getDescription() {

 return beverage.getDescription() + ", Mocha";

 }

 public double cost() {

 return beverage.cost() + .20;

 }

}

Coding condiments

If you look back at the Decorator Pattern class diagram, you’ll see
we’ve now written our abstract component (Beverage), we have
our concrete components (HouseBlend), and we have our abstract
decorator (CondimentDecorator). Now it’s time to implement the
concrete decorators. Here’s Mocha:

Mocha is a decorator, so we
extend CondimentDecorator.

We’re going to instantiat
e Mocha with a

reference to a Beverage.

Remember, this class inherits
the

Beverage instance variab
le to hold the

beverage we are wrapping.

We set this instance vari
able to the

object we are wrapping. Here, we’re

passing the beverage w
e’re wrapping to

the decorator’s constr
uctor.

Now we need to compute the cost of our bevera
ge

with Mocha. First, we delegate the call to the

object we’re decorating so that it ca
n compute the

cost; then, we add the cost of Mocha to the result.

We want our description to include not
only the beverage-say “Dark Roast”-
but also each item decorating the
beverage (for instance, “Dark Roast,
Mocha”). So we first delegate to the
object we are decorating to get its
description, then append “, Mocha” to
that description.

On the next page we’ll actually instantiate the beverage and
wrap it with all its condiments (decorators), but first...

Remember, CondimentDecorator

extends B
everage.

Write and compile the code for the other Soy and Whip
condiments. You’ll need them to finish and test the application.

98   Chapter 3

testing the beverages

public class StarbuzzCoffee {

 public static void main(String args[]) {

 Beverage beverage = new Espresso();

 System.out.println(beverage.getDescription()

 + " $" + beverage.cost());

 Beverage beverage2 = new DarkRoast();

 beverage2 = new Mocha(beverage2);

 beverage2 = new Mocha(beverage2);

 beverage2 = new Whip(beverage2);

 System.out.println(beverage2.getDescription()

 + " $" + beverage2.cost());

 Beverage beverage3 = new HouseBlend();

 beverage3 = new Soy(beverage3);

 beverage3 = new Mocha(beverage3);

 beverage3 = new Whip(beverage3);

 System.out.println(beverage3.getDescription()

 + " $" + beverage3.cost());

 }

}

Serving some coffees

File Edit Window Help CloudsInMyCoffee

% java StarbuzzCoffee
Espresso $1.99
Dark Roast Coffee, Mocha, Mocha, Whip $1.49
House Blend Coffee, Soy, Mocha, Whip $1.34
%

Congratulations. It’s time to sit back, order a few coffees, and marvel
at the flexible design you created with the Decorator Pattern.

Here’s some test code to make orders:

Order up an espresso, no co
ndiments,

and print its description a
nd cost.

Make a DarkRoast object.

Finally, give us a HouseBlend
with Soy, Mocha, and Whip.

Now, let’s get those orders in:

We’re going to see a much better way of creating
decorated objects when we cover the Factory and
Builder Design Patterns. Please note that the
Builder Pattern is covered in the Appendix.

File Edit Window Help CloudsInMyCoffee

Wrap it with a Mocha.

Wrap it in a second Mocha.
Wrap it in a Whip.

you are here 4   99

the decorator pattern

Our friends at Starbuzz have introduced sizes to their menu. You can now order a
coffee in tall, grande, and venti sizes (translation: small, medium, and large). Starbuzz
saw this as an intrinsic part of the coffee class, so they’ve added two methods to
the Beverage class: setSize() and getSize(). They’d also like for the condiments to be
charged according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for
tall, grande, and venti coffees. The updated Beverage class is shown below.

How would you alter the decorator classes to handle this change in requirements?

Q: I’m a little worried about code
that might test for a specific concrete
component—say, HouseBlend—and do
something, like issue a discount. Once
I’ve wrapped the HouseBlend with
decorators, this isn’t going to work
anymore.

A: That is exactly right. If you have code
that relies on the concrete component’s
type, decorators will break that code. As
long as you only write code against the
abstract component type, the use of
decorators will remain transparent to your
code. However, once you start writing code
against concrete components, you’ll want to
rethink your application design and your use
of decorators.

Q: Wouldn’t it be easy for some client
of a beverage to end up with a decorator
that isn’t the outermost decorator? Like
if I had a DarkRoast with Mocha, Soy,
and Whip, it would be easy to write code
that somehow ended up with a reference
to Soy instead of Whip, which means it
would not include Whip in the order.

A: You could certainly argue that you
have to manage more objects with the
Decorator Pattern and so there is an
increased chance that coding errors will
introduce the kinds of problems you suggest.
However, we typically create decorators
by using other patterns like Factory and
Builder. Once we’ve covered these patterns,
you’ll see that the creation of the concrete
component with its decorator is “well
encapsulated” and doesn’t lead to these
kinds of problems.

Q: Can decorators know about the
other decorations in the chain? Say I
wanted my getDescription() method to
print “Whip, Double Mocha” instead of

“Mocha, Whip, Mocha.” That would require
that my outermost decorator know all the
decorators it is wrapping.

A: Decorators are meant to add behavior
to the object they wrap. When you need to
peek at multiple layers into the decorator
chain, you are starting to push the decorator
beyond its true intent. Nevertheless,
such things are possible. Imagine a
CondimentPrettyPrint decorator that parses
the final decription and can print “Mocha,
Whip, Mocha” as “Whip, Double Mocha.”
Note that getDescription() could return an
ArrayList of descriptions to make this easier.

public abstract class Beverage {
	 public enum Size { TALL, GRANDE, VENTI };
	 Size size = Size.TALL;
	 String description = "Unknown Beverage";
 	 public String getDescription() {
		 return description;
	 }
	 public void setSize(Size size) {
		 this.size = size;
	 }
	 public Size getSize() {
		 return this.size;
	 }
	 public abstract double cost();
}

100   Chapter 3

decorators in java i/o

FileInputStream is the component

that’s being de
corated. The

Java I/O library supplies
 several

components, includi
ng FileInputStream,

StringBufferInputStre
am,

ByteArrayInputStrea
m, and a few

others. All of these give
 us a base

component from which to read by
tes.

Real-World Decorators: Java I/O
The large number of classes in the java.io package is...overwhelming. Don’t feel alone
if you said “whoa” the first (and second and third) time you looked at this API.
But now that you know the Decorator Pattern, the I/O classes should make more
sense since the java.io package is largely based on Decorator. Here’s a typical set of
objects that use decorators to add functionality to reading data from a file:

ZipInputStream

BufferedInputStre
am

FileInputStream

BufferedInputStream is
a concrete decorator.
BufferedInputStream adds
buffering behavior to a
FileInputStream: it buffers
input to improve performance.

ZipInputStream is also a
concrete decorator. It
adds the ability to read
zip file entries as it reads
data from a zip file.

A text file for reading.

you are here 4   101

the decorator pattern

BufferedInputStream and ZipInputStream both extend FilterInputStream, which
extends InputStream. InputStream acts as the abstract decorator class:

FileInputStream ByteArrayInputStream FilterInputStreamStringBufferInputStream

InputStream

InflatorInputStreamDataInputStreamBufferedInputStreamPushbackInputStream

Here’s our abstra
ct component.

FilterInputStream
is an abstract
decorator.

And finally, here are all our concrete decorators.

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various input streams.

You’ll see that the output streams have the same design. And you’ve probably
already found that the Reader/Writer streams (for character-based data)
closely mirror the design of the streams classes (with a few differences and
inconsistencies, but close enough to figure out what’s going on).

Java I/O also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes
that can be overwhelming to a developer trying to use the Decorator-based
API. But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

Decorating the java.io classes

These InputStreams act as the concrete
components that we will wrap with
decorators. There are a few more we
didn’t show, like ObjectInputStream.

ZipInputStream

102   Chapter 3

write your own i/o decorator

public class LowerCaseInputStream extends FilterInputStream {

 public LowerCaseInputStream(InputStream in) {

 super(in);

 }

 public int read() throws IOException {

 int c = in.read();

 return (c == -1 ? c : Character.toLowerCase((char)c));

 }

 public int read(byte[] b, int offset, int len) throws IOException {

 int result = in.read(b, offset, len);

 for (int i = offset; i < offset+result; i++) {

 b[i] = (byte)Character.toLowerCase((char)b[i]);

 }

 return result;

 }

}

Writing your own Java I/O Decorator

Okay, you know the Decorator Pattern, and you’ve seen the
I/O class diagram. You should be ready to write your own input
decorator.

How about this: write a decorator that converts all uppercase
characters to lowercase in the input stream. In other words, if
we read in “I know the Decorator Pattern therefore I RULE!”
then your decorator converts this to “i know the decorator
pattern therefore i rule!”

First, extend the FilterInputStream, the
abstract decorator for all InputStreams.

Now we need to implement two
read methods. They take a
byte (or an array of bytes)
and convert each byte (that
represents a character) to
lowercase if it’s an uppercase
character.

Don’t forget to
import

java.io... (not sh
own).

REMEMBER: we don’t provide import and package statements
in the code listings. Get the complete source code from
https://wickedlysmart.com/head-first-design-patterns.

No problem. I
just have to extend the
FilterInputStream class and
override the read() methods.

https://wickedlysmart.com/head-first-design-patterns/

you are here 4   103

the decorator pattern

public class InputTest {

 public static void main(String[] args) throws IOException {

 int c;

 try {

 InputStream in =

 new LowerCaseInputStream(

 new BufferedInputStream(

 new FileInputStream("test.txt")));

 while((c = in.read()) >= 0) {

 System.out.print((char)c);

 }

 in.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Write some quick code to test the I/O decorator:

% java InputTest
i know the decorator pattern therefore i rule!
%

File Edit Window Help DecoratorsRule

Give it a spin:

Set up the FileInputStream and decorate
it, first with a BufferedInputStream
and then our brand new
LowerCaseInputStream filter.

Just use the stream to read
characters until the end of
file and print as we go.

I know the Decorator Pattern therefore I RULE!

test.txt file

Test out your new Java I/O Decorator

You need to
make this file.

104   Chapter 3

decorator interview

Head First: Welcome, Decorator Pattern. We’ve heard that you’ve been a bit down on
yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but you know, I’ve
got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I’ve got the power to add flexibility to designs, that much is
for sure, but I also have a dark side. You see, I can sometimes add a lot of small classes to a design,
and this occasionally results in a design that’s less than straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/O libraries. These are notoriously difficult for people to
understand at first. But if they just saw the classes as a set of wrappers around an InputStream,
life would be much easier.

HeadFirst: That doesn’t sound so bad. You’re still a great pattern, and improving this is just a
matter of public education, right?

Decorator: There’s more, I’m afraid. I’ve got typing problems: you see, people sometimes
take a piece of client code that relies on specific types and introduce decorators without
thinking through everything. Now, one great thing about me is that you can usually insert decorators
transparently and the client never has to know it’s dealing with a decorator. But like I said, some code is
dependent on specific types and when you start introducing decorators, boom! Bad things
happen.

HeadFirst: Well, I think everyone understands that you have to be careful when inserting
decorators. I don’t think this is a reason to be too down on yourself.

Decorator: I know, I try not to be. I also have the problem that introducing decorators can
increase the complexity of the code needed to instantiate the component. Once you’ve got
decorators, you’ve got to not only instantiate the component, but also wrap it with who knows
how many decorators.

HeadFirst: I’ll be interviewing the Factory and Builder patterns next week—I hear they can
be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs and staying
true to the Open-Closed Principle, so keep your chin up and think positively!

Decorator: I’ll do my best, thank you.

Patterns Exposed
This week’s interview:
Confessions of a Decorator

you are here 4   105

the decorator pattern

Tools for your Design Toolbox

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for

extension but c
losed for

modification.

OO Principles

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns

You’ve got another chapter under your belt and a new
principle and pattern in the toolbox.

Observer - defines a one-
to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

We now have the Open-
Closed Principle to guide
us. We’re going to strive
to design our system so
that the closed parts
are isolated from our
new extensions.

And here’s our first p
attern for creating

designs

that satisfy the Open-Closed Principle. Or was it

really the first? Is t
here another patter

n we’ve

used that follows this principle as well?

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

	� Inheritance is one form of
extension, but not necessarily the
best way to achieve flexibility in
our designs.

	� In our designs we should allow
behavior to be extended without
the need to modify existing code.

	� Composition and delegation
can often be used to add new
behaviors at runtime.

	� The Decorator Pattern provides
an alternative to subclassing for
extending behavior.

	� The Decorator Pattern involves
a set of decorator classes that
are used to wrap concrete
components.

	� Decorator classes mirror the type
of the components they decorate.
(In fact, they are the same type
as the components they decorate,
either through inheritance or
interface implementation.)

	� Decorators change the behavior of
their components by adding new
functionality before and/or after (or
even in place of) method calls to
the component.

	� You can wrap a component with
any number of decorators.

	� Decorators are typically
transparent to the client of the
component—that is, unless
the client is relying on the
component’s concrete type.

	� Decorators can result in many
small objects in our design, and
overuse can be complex.

106   Chapter 3

exercise solutions

Write the cost() methods for the following classes
(pseudo-Java is okay). Here’s our solution:

public class Beverage {

// declare instance variables for milkCost,
// soyCost, mochaCost, and whipCost, and
// getters and setters for milk, soy, mocha
// and whip.

public double cost() {

 double condimentCost = 0.0;
 if (hasMilk()) {
 condimentCost += milkCost;
 }
 if (hasSoy()) {
 condimentCost += soyCost;
 }
 if (hasMocha()) {
 condimentCost += mochaCost;
 }
 if (hasWhip()) {
 condimentCost += whipCost;
 }
 return condimentCost;
 }
}

public class DarkRoast extends Beverage {

 public DarkRoast() {
 description = "Most Excellent Dark Roast";
 }

 public double cost() {
 return 1.99 + super.cost();
 }
}

you are here 4   107

the decorator pattern

Sta
rb

uzz Coffee

 Mocha

 HouseBlen
d

 Mocha

 Soy
 Whip

cost()cost()cost()cost()cost()
.89.15.20.20.10$1.54

First, we call cost() on the
outermost decorator, Whip.

Whip calls cost() on Mocha.

Last topping! Soy calls
cost() on HouseBlend.

Finally, the result returns to Whip’s
cost(), which adds .10, giving us a
final cost of $1.54.

1

2

5

10

3 Mocha calls cost() on another Mocha.
4 Next, Mocha calls cost() on Soy.

New barista training

“double mocha soy latte with whip”

HouseBlend’s cost() method
returns .89 and pops off
the stack.

6

Soy’s cost() method adds .15
and returns the result, then
pops off the stack.

7

The second Mocha’s cost() method
adds .20 and returns the result,
then pops off the stack.

8

The first Mocha’s cost() method adds
.20 and returns the result, then pops
off the stack.

9

108   Chapter 3

exercise solutions

public class Soy extends CondimentDecorator {

 public Soy(Beverage beverage) {

 this.beverage = beverage;

 }

 public String getDescription() {

 return beverage.getDescription() + ", Soy";

 }

 public double cost() {

 double cost = beverage.cost();

 if (beverage.getSize() == Size.TALL) {

 cost += .10;

 } else if (beverage.getSize() == Size.GRANDE) {

 cost += .15;

 } else if (beverage.getSize() == Size.VENTI) {

 cost += .20;

 }

 return cost;

 }

}

Our friends at Starbuzz have introduced sizes to their menu. You can now order
a coffee in tall, grande, and venti sizes (translation: small, medium, and large).
Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two
methods to the Beverage class: setSize() and getSize(). They’d also like for the
condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢,
and 20¢, respectively, for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in
requirements? Here’s our solution.

Here we get the size (which
propagates all the way to the
concrete beverage) and then
add the appropriate cost.

public abstract class CondimentDecorator extends Beverage {

 public Beverage beverage;

 public abstract String getDescription();

	

 public Size getSize() {

 return beverage.getSize();

 }

}

We added a method, getSize(), fo
r

the decorators that
 simply returns

the size of the beve
rage.

this is a new chapter   109

4 the Factory Pattern

Get ready to bake some loosely coupled OO designs. There is more

to making objects than just using the new operator. You’ll learn that instantiation is an

activity that shouldn’t always be done in public and can often lead to coupling problems.

And we don’t want that, do we? Find out how Factory Patterns can help save you from

embarrassing dependencies.

Baking with OO Goodness

110   Chapter 4

thinking about new

Yes, when you use the new operator you are certainly instantiating
a concrete class, so that’s definitely an implementation and not an
interface. And you make a good observation: that tying your code to
a concrete class can make it more fragile and less flexible.

Duck duck;

if (picnic) {
 duck = new MallardDuck();
} else if (hunting) {
 duck = new DecoyDuck();
} else if (inBathTub) {
 duck = new RubberDuck();
}

Here we’ve got several concrete classes being instantiated, and the
decision of which to instantiate is made at runtime depending on
some set of conditions.

When you see code like this, you know that when it comes time for
changes or extensions, you’ll have to reopen this code and examine
what needs to be added (or deleted). Often this kind of code ends
up in several parts of the application, making maintenance and
updates more difficult and error-prone.

Duck duck = new MallardDuck();

We want to use abstact types to keep code flexible.
But we have to create an
instance of a concrete class

!

When we have a whole set of related concrete classes, often we end up
writing code like this:

We have a bunch of different

duck classes, and we don’t
know until runtime which one
we need to instantiate.

When you see “new,” think “concrete.”

Okay, it’s been three chapters and you
still haven’t answered my question about
new. We aren’t supposed to program to an
implementation, but every time I use new,
that’s exactly what I’m doing, right?

you are here 4   111

the factory pattern

Technically there’s nothing wrong with the new operator.
After all, it’s a fundamental part of most modern object-
oriented languages. The real culprit is our old friend
CHANGE and how change impacts our use of new.

By coding to an interface, you know you can insulate yourself
from many of the changes that might happen to a system
down the road. Why? If your code is written to an interface,
then it will work with any new classes implementing that
interface through polymorphism. However, when you have
code that makes use of lots of concrete classes, you’re looking
for trouble because that code may have to be changed as new
concrete classes are added. So, in other words, your code will
not be “closed for modification.” To extend your code with
new concrete types, you’ll have to reopen it.

So what can you do? It’s times like these that you can fall back
on OO design principles to look for clues. Remember, our first
principle deals with change and guides us to identify the aspects
that vary and separate them from what stays the same.

Remember that designs should be “open for extension but closed for modification.” See Chapter 3 for a review.

What’s wrong with “new”?

But you have to create an
object at some point, and Java

only gives us one way to create an
object, right? So what gives?

How might you take all the parts of your application that instantiate
concrete classes and separate or encapsulate them from the rest of
your application?

112   Chapter 4

identify what varies

Identifying the aspects that vary

Let’s say you have a pizza shop, and as a cutting-edge pizza store owner in
Objectville you might end up writing some code like this:

Pizza orderPizza() {

	 Pizza pizza = new Pizza();

	 pizza.prepare();

	 pizza.bake();	

	 pizza.cut();

	 pizza.box();

	 return pizza;

}

For flexibility, we really want this to be an abstract class or interface, but unfortunately we can’t directly instantiate either of those.

So then you’d add some code that determines the appropriate type of pizza and
then goes about making the pizza:

We’re now passing in
the type of pizza to
orderPizza.

Based on the type of pizza, we instantiate the correct concrete class and assign it to the pizza instance variable. Note that each pizza here has to implement the Pizza interface.

Once we have a Pizza, we prepare it
(you know, roll the dough, put on the
sauce, and add the toppings), then we
bake it, cut it, and box it!
Each Pizza subtype (CheesePizza,
GreekPizza, etc.) knows how to prepare
itself.

Pizza orderPizza(String type) {

	 Pizza pizza;

 if (type.equals("cheese")) {

 pizza = new CheesePizza();

 } else if (type.equals("greek") {

 pizza = new GreekPizza();

	 } else if (type.equals("pepperoni") {

 pizza = new PepperoniPizza();

 }

	 pizza.prepare();

	 pizza.bake();	

	 pizza.cut();

	 pizza.box();

	 return pizza;

}

But you need more than one type of pizza...

you are here 4   113

the factory pattern

Pizza orderPizza(String type) {

	 Pizza pizza;

 if (type.equals("cheese")) {

 pizza = new CheesePizza();

 } else if (type.equals("greek") {

 pizza = new GreekPizza();

	 } else if (type.equals("pepperoni") {

 pizza = new PepperoniPizza();

	 } else if (type.equals("clam") {

 pizza = new ClamPizza();

	 } else if (type.equals("veggie") {

 pizza = new VeggiePizza();

 }

	 pizza.prepare();

	 pizza.bake();	

	 pizza.cut();

	 pizza.box();

	 return pizza;

}

You realize that all of your competitors have added a couple of trendy pizzas to their
menus: the Clam Pizza and the Veggie Pizza. Obviously you need to keep up with the
competition, so you’ll add these items to your menu. And you haven’t been selling many
Greek pizzas lately, so you decide to take that off the menu:

This is what varies.
As the pizza
selection changes
over time, you’ll have
to modify this code
over and over.

This is what we expect to
stay the same. For the most
part, preparing, cooking, and
packaging a pizza has remained
the same for years and years.
So, we don’t expect this code
to change, just the pizzas it
operates on.

This code is

NOT closed for

modification
. If the

Pizza Store
 changes

its pizza o
fferings, w

e

have to op
en this cod

e

and modify it.

Clearly, dealing with which concrete class is instantiated is really messing up our
orderPizza() method and preventing it from being closed for modification. But now that we
know what is varying and what isn’t, it’s probably time to encapsulate it.

But the pressure is on to add more pizza types

114   Chapter 4

encapsulate object creation

 if (type.equals("cheese")) {

 pizza = new CheesePizza();

	 } else if (type.equals("pepperoni") {

 pizza = new PepperoniPizza();

	 } else if (type.equals("clam") {

 pizza = new ClamPizza();

	 } else if (type.equals("veggie") {

 pizza = new VeggiePizza();

 }

So now we know we’d be better off moving the object
creation out of the orderPizza() method. But how? Well, what
we’re going to do is take the creation code and move it out
into another object that is only going to be concerned with
creating pizzas.

Pizza orderPizza(String type) {

	 Pizza pizza;

	 pizza.prepare();

	 pizza.bake();	

	 pizza.cut();

	 pizza.box();

	 return pizza;

}

First we pull the object
creation code out of the
orderPizza() method.

Then we place that code in an object
 that

is only going to worry about how to create

pizzas. If any other object ne
eds a pizza

created, this is the object to
 come to.

We’ve got a name for this new object: we
call it a Factory.

Factories handle the details of object creation. Once we have
a SimplePizzaFactory, our orderPizza() method becomes a
client of that object. Anytime it needs a pizza, it asks the pizza
factory to make one. Gone are the days when the orderPizza()
method needs to know about Greek versus Clam pizzas. Now
the orderPizza() method just cares that it gets a pizza that
implements the Pizza interface so that it can call prepare(),
bake(), cut(), and box().

We’ve still got a few details to fill in here; for instance, what does
the orderPizza() method replace its creation code with? Let’s
implement a simple factory for the pizza store and find out...

What’s going to go here?

SimplePizzaFact
or

y

Encapsulating object creation

you are here 4   115

the factory pattern

public class SimplePizzaFactory {

 public Pizza createPizza(String type) {
 Pizza pizza = null;

 if (type.equals("cheese")) {
 pizza = new CheesePizza();
 } else if (type.equals("pepperoni")) {
 pizza = new PepperoniPizza();
 } else if (type.equals("clam")) {
 pizza = new ClamPizza();
 } else if (type.equals("veggie")) {
 pizza = new VeggiePizza();
 }
 return pizza;
 }
}

Building a simple pizza factory

We’ll start with the factory itself. What we’re going to do is define a class that
encapsulates the object creation for all pizzas. Here it is...

Here’s the code we
plucked out of the
orderPizza() method.

First we define a
createPizza() method in

the factory. This is the

method all clients
 will use

to instantiate ne
w objects.

Here’s our new class, the SimplePizzaFactory. It

has one job in life: creating pizzas for
 its clients.

This code is still parameterized by the type of the
pizza, just like our original orderPizza() method was.

Q: What’s the advantage of this? It looks like we’re just
pushing the problem off to another object.

A: One thing to remember is that the SimplePizzaFactory may
have many clients. We’ve only seen the orderPizza() method;
however, there may be a PizzaShopMenu class that uses the factory
to get pizzas for their current description and price. We might also
have a HomeDelivery class that handles pizzas in a different way
than our PizzaShop class but is also a client of the factory.

So, by encapsulating the pizza creating in one class, we now have
only one place to make modifications when the implementation
changes.

And, don’t forget, we’re also just about to remove the concrete
instantiations from our client code.

Q: I’ve seen a similar design where a factory like this is
defined as a static method. What’s the difference?

A: Defining a simple factory as a static method is a common
technique and is often called a static factory. Why use a static
method? Because you don’t need to instantiate an object to make
use of the create method. But it also has the disadvantage that you
can’t subclass and change the behavior of the create method.

116   Chapter 4

simple factory

public class PizzaStore {

 SimplePizzaFactory factory;

 public PizzaStore(SimplePizzaFactory factory) {

 this.factory = factory;

 }

 public Pizza orderPizza(String type) {

 Pizza pizza;

 pizza = factory.createPizza(type);

 pizza.prepare();

 pizza.bake();

 pizza.cut();

 pizza.box();

 return pizza;

 }

 // other methods here

}

Reworking the PizzaStore class

PizzaStore gets the factory passed to it in the constructor.

And the orderPizza() method uses the
factory to create its pizzas by simply
passing on the type of the order.

Notice that we’ve replaced the new
operator with a createPizza method
in the factory object. No more
concrete instantiations here!

Now it’s time to fix up our client code. What we want to do is rely on the
factory to create the pizzas for us. Here are the changes:

First we give PizzaStore a
reference to a SimplePizzaFactory.

We don’t know about you, but we’re thinking New York, Chicago, and California style pizza factories (let’s
not forget New Haven, too).

We know that object composition allows us to change behavior dynamically at runtime (among
other things) because we can swap in and out implementations. How might we be able to use
that in the PizzaStore? What factory implementations might we be able to swap in and out?

you are here 4   117

the factory pattern

The Simple Factory defined

The Simple Factory isn’t actually a Design Pattern; it’s more of a programming idiom.
But it is commonly used, so we’ll give it a Head First Pattern Honorable Mention.
Some developers do mistake this idiom for the Factory Pattern, but the next time that
happens you can subtly show you know your stuff; just don’t strut as you educate them
on the distinction.

Just because Simple Factory isn’t a REAL pattern doesn’t mean we shouldn’t check out
how it’s put together. Let’s take a look at the class diagram of our new Pizza Store:

Think of Simple Factory as a warm-up. Next, we’ll explore two heavy-duty patterns
that are both factories. But don’t worry, there’s more pizza to come!

This is the factory where we create
pizzas; it should be the only part
of our application that refers to
concrete Pizza classes.

This is the client of
 the

factory. PizzaStore
now goes through the

SimplePizzaFactory to get

instances of pizza
.

SimplePizzaFactory

createPizza()

PizzaPizzaStore

orderPizza()

ClamPizzaVeggiePizza

CheesePizza PepperoniPizza

prepare()
bake()
cut()
box()

These are our concrete products. Each product needs to implement the Pizza interface* (which in this case means “extend the abstract Pizza class”) and be concrete. As long as that’s the case, it can be created by the factory and handed back to the client.

This is the product of
the factory: pizza!

We’ve defined Pizza
as an abstract class
with some helpful
implementations that
can be overridden.

The create method is
often declared statically

.

*Just another reminder: in design patterns, the phrase “implement an interface” does NOT always mean
“write a class that implements a Java interface, by using the ‘implements' keyword in the class declaration.”
In the general use of the phrase, a concrete class implementing a method from a supertype (which could be a
abstract class OR interface) is still considered to be “implementing the interface” of that supertype.

Head First

Honorable

Mention

Pattern
Honorable
Mention

118   Chapter 4

pizza franchise

Franchising the pizza store

Your Objectville Pizza Store has done so well that you’ve trounced
the competition and now everyone wants a Pizza Store in their
own neighborhood. As the franchiser, you want to ensure the
quality of the franchise operations and so you want them to use
your time-tested code.

But what about regional differences? Each franchise might want to
offer different styles of pizzas (New York, Chicago, and California,
to name a few), depending on where the franchise store is located
and the tastes of the local pizza connoisseurs.

 PizzaStore

You want all the franchise pizza stores
to leverage your PizzaStore code, so the
pizzas are prepared in the same way.

One franchise wants a
factory that makes NY-style
pizzas: thin crust, tasty sauce,
and just a little cheese.

Another franchise
wants a factory that
makes Chicago-style
pizzas; their customers
like pizzas with thick
crust, rich sauce, and
tons of cheese.

We’ve seen one approach...
If we take out SimplePizzaFactory and create three different
factories—NYPizzaFactory, ChicagoPizzaFactory, and
CaliforniaPizzaFactory—then we can just compose the PizzaStore
with the appropriate factory and a franchise is good to go. That’s
one approach.

Let’s see what that would look like...

 NYPizzaFactor
y

ChicagoPizzaFac
to

ry

Yes, different areas of the US serve
very different styles of pizza—from
the deep-dish pizzas of Chicago, to the
thin crust of New York, to the cracker-
like pizza of California (some would say
topped with fruits and nuts).

you are here 4   119

the factory pattern

NYPizzaFactory nyFactory = new NYPizzaFactory();

PizzaStore nyStore = new PizzaStore(nyFactory);

nyStore.orderPizza("Veggie");

ChicagoPizzaFactory chicagoFactory = new ChicagoPizzaFactory();

PizzaStore chicagoStore = new PizzaStore(chicagoFactory);

chicagoStore.orderPizza("Veggie");

Here we create a factory for
making NY-style pizzas.

Then we create a PizzaStore and pass
it a reference to the NY factory.

...and when we make pizzas, we
get NY-style pizzas.

Likewise for the Chicago pizza stores: we
create a factory for Chicago pizzas and
create a store that is composed with a
Chicago factory. When we make pizzas, we
get the Chicago-style ones.

But you’d like a li t t le more qualit y control ...
So you test-marketed the SimpleFactory idea, and what you
found was that the franchises were using your factory to
create pizzas, but starting to employ their own home-grown
procedures for the rest of the process: they’d bake things
a little differently, they’d forget to cut the pizza, and they’d
use third-party boxes.

Rethinking the problem a bit, you see that what you’d really
like to do is create a framework that ties the store and the
pizza creation together, yet still allows things to remain
flexible.

In our early code, before the SimplePizzaFactory, we had
the pizza-making code tied to the PizzaStore, but it wasn’t
flexible. So, how can we have our pizza and eat it too?

Not what you want in a good
franchise. You do NOT want to
know what he puts on his pizzas.

I’ve been making pizza
for years so I thought I’d add
my own “improvements” to the
PizzaStore procedures...

120   Chapter 4

let the subclasses decide

There is a way to localize all the pizza-making activities to the PizzaStore
class, and to give the franchises freedom to have their own regional style.

What we’re going to do is put the createPizza() method back into PizzaStore,
but this time as an abstract method, and then create a PizzaStore subclass
for each regional style.

First, let’s look at the changes to the PizzaStore:

A framework for the pizza store

public abstract class PizzaStore {

	 public Pizza orderPizza(String type) {

		 Pizza pizza;

		 pizza = createPizza(type);

		 pizza.prepare();

		 pizza.bake();	

		 pizza.cut();

		 pizza.box();

		 return pizza;

	 }

	 abstract Pizza createPizza(String type);

}

Now createPizza is back to being a
call to a method in the PizzaStore
rather than on a factory object.

All this looks just the same...

Now we’ve moved our factory object to this method.

Our “factory method” is now abstract in PizzaStore.

PizzaStore is now abstract (see why below).

Now we’ve got a store waiting for subclasses; we’re going to have a
subclass for each regional type (NYPizzaStore, ChicagoPizzaStore,
CaliforniaPizzaStore) and each subclass is going to make the decision about
what makes up a pizza. Let’s take a look at how this is going to work.

you are here 4   121

the factory pattern

public Pizza createPizza(type) {

 if (type.equals("cheese")) {

 pizza = new NYStyleCheesePizza();

 } else if (type.equals("pepperoni") {

 pizza = new NYStylePepperoniPizza();

 } else if (type.equals("clam") {

 pizza = new NYStyleClamPizza();

 } else if (type.equals("veggie") {

 pizza = new NYStyleVeggiePizza();

 }

}

createPizza()

ChicagoStylePizzaStore

createPizza()

NYStylePizzaStore

public Pizza createPizza(type) {

 if (type.equals("cheese")) {

 pizza = new ChicagoStyleCheesePizza();

 } else if (type.equals("pepperoni") {

 pizza = new ChicagoStylePepperoniPizza();

 } else if (type.equals("clam") {

 pizza = new ChicagoStyleClamPizza();

 } else if (type.equals("veggie") {

 pizza = new ChicagoStyleVeggiePizza();

 }

}

Similarly, by using the
Chicago subclass, we get an
implementation of createPizza()
with Chicago ingredients.

If a franchise wants NY-style
pizzas for its customers, it
uses the NY subclass, which has
its own createPizza() method,
creating NY-style pizzas.

Each subclass provides an implementation
of the createPizza() method, overriding
the abstract createPizza() method in
Pizza Store, while all subclasses make use
of the orderPizza() method defined
in Pizza Store. We could make the
orderPizza() method final if we really
wanted to enforce this.

createPizza()
orderPizza()

PizzaStore

Allowing the subclasses to decide

Remember, the Pizza Store already has a well-honed order system in the orderPizza()
method and you want to ensure that it’s consistent across all franchises.

What varies among the regional Pizza Stores is the style of pizzas they make—New York
pizza has thin crust, Chicago pizza has thick, and so on—and we are going to push all
these variations into the createPizza() method and make it responsible for creating the
right kind of pizza. The way we do this is by letting each subclass of Pizza Store define
what the createPizza() method looks like. So, we’ll have a number of concrete subclasses
of Pizza Store, each with its own pizza variations, all fitting within the Pizza Store
framework and still making use of the well-tuned orderPizza() method.

Remember: createPizza() is
abstract in Pizza Store, so
all pizza store subtypes MUST
implement the method.

122   Chapter 4

how do subclasses decide?

Well, think about it from the point of view of the PizzaStore’s orderPizza() method: it is
defined in the abstract PizzaStore, but concrete types are only created in the subclasses.

createPizza()
orderPizza()

PizzaStore

createPizza()

ChicagoStylePizzaStore

createPizza()
orderPizza()

pizza = createPizza();
pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();

PizzaStore

createPizza()

NYStylePizzaStore

orderPizza() is defined in the abstract

PizzaStore, not the subclasses. So
, the

method has no idea which subclass is actually

running the code and making the pizzas.

Now, to take this a little further, the orderPizza() method does a lot of things with a
Pizza object (like prepare, bake, cut, box), but because Pizza is abstract, orderPizza() has
no idea what real concrete classes are involved. In other words, it’s decoupled!

When orderPizza() calls createPizza(), one of your subclasses will be called into action to
create a pizza. Which kind of pizza will be made? Well, that’s decided by the choice of
pizza store you order from, NYStylePizzaStore or ChicagoStylePizzaStore.

So, is there a real-time decision that subclasses make? No, but from the perspective of
orderPizza(), if you chose a NYStylePizzaStore, that subclass gets to determine which
pizza is made. So the subclasses aren’t really “deciding”—it was you who decided by
choosing which store you wanted—but they do determine which kind of pizza gets made.

orderPizza() calls createPizza() to actually get a

pizza object. But which kind of pizza will it get?

The orderPizza() method can’t decide; it doesn’t

know how. So who does decide?

I don’t get it. The PizzaStore
subclasses are just subclasses. How
are they deciding anything? I don’t
see any logical decision-making code in
NYStylePizzaStore....

you are here 4   123

the factory pattern

public class NYPizzaStore extends PizzaStore {

 Pizza createPizza(String item) {

 if (item.equals("cheese")) {

 return new NYStyleCheesePizza();

 } else if (item.equals("veggie")) {

 return new NYStyleVeggiePizza();

 } else if (item.equals("clam")) {

 return new NYStyleClamPizza();

 } else if (item.equals("pepperoni")) {

 return new NYStylePepperoniPizza();

 } else return null;

 }

}

Let’s make a Pizza Store

The NYPizzaStore extends PizzaStore, so it inherits the orderPizza() method (among others).

We’ve got to implement
createPizza(), since it is
abstract in PizzaStore.

Being a franchise has its benefits. You get all the PizzaStore
functionality for free. All the regional stores need to do is subclass
PizzaStore and supply a createPizza() method that implements
their style of pizza. We’ll take care of the big three pizza styles for
the franchisees.

Here’s the New York regional style:

Once we’ve got our PizzaStore subclasses built, it will be time
to see about ordering up a pizza or two. But before we do that,
why don’t you take a crack at building the Chicago-style and
California-style pizza stores on the next page?

Here’s where we create our
concrete classes. For each type of
Pizza we create the NY style.

* Note that the orderPizza() method in the
superclass has no clue which Pizza we are creating;
it just knows it can prepare, bake, cut, and box it!

createPizza() returns a Pizza, and
the subclass is fully responsible f

or
which concrete Pizza it instantiates.

124   Chapter 4

factory method

We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to franchise! Write
the Chicago-style and California-style PizzaStore implementations here:

you are here 4   125

the factory pattern

With just a couple of transformations to the PizzaStore class, we’ve gone from
having an object handle the instantiation of our concrete classes to a set of
subclasses that are now taking on that responsibility. Let’s take a closer look:

The subclasses of
PizzaStore handle obje

ct

instantiation for us in
 the

createPizza() method.

createPizza()

NYStylePizzaStore

createPizza()

ChicagoStylePizzaStore

Declaring a factory method

public abstract class PizzaStore {

 public Pizza orderPizza(String type) {
 Pizza pizza;

 pizza = createPizza(type);

 pizza.prepare();
 pizza.bake();	
 pizza.cut();
 pizza.box();

 return pizza;
 }

 protected abstract Pizza createPizza(String type);

 // other methods here
}

All the responsibility for
instantiating Pizzas has
been moved into a method
that acts as a factory.

Code Up Close
A factory method handles object creation and encapsulates it in a
subclass. This decouples the client code in the superclass from the
object creation code in the subclass.

abstract Product factoryMethod(String type)

A factory method is abstract so the subclasses are counted on to handle object creation.

A factory method may

be parameterized (or
not) to select among
several variations of

 a
product.

A factory method isolates the client (the

code in the superclass, like or
derPizza())

from knowing what kind of concrete

Product is actually created.

A factory method returns
a Product that is typically
used within methods
defined in the superclass.

126   Chapter 4

ordering a pizza

I like NY-style pizza...you
know, thin, crispy crust with

a little cheese and really
good sauce.

I like Chicago-style deep dish
pizza with thick crust and

tons of cheese.

Ethan needs to order his pizza from a NY pizza store.
Joel needs to order his
pizza from a Chicago
pizza store. Same pizza
ordering method, but
different kind of pizza!

JoelEthan

Let’s see how it works: ordering pizzas with
the pizza factory method

1

2

First, Joel and Ethan need an instance of a PizzaStore. Joel needs to instantiate a
ChicagoPizzaStore and Ethan needs a NYPizzaStore.

With a PizzaStore in hand, both Ethan and Joel call the orderPizza() method and pass
in the type of pizza they want (cheese, veggie, and so on).

4 The orderPizza() method has no idea what kind of pizza was created, but it knows it is
a pizza and it prepares, bakes, cuts, and boxes it for Ethan and Joel.

3 To create the pizzas, the createPizza() method is called, which is defined in the
two subclasses NYPizzaStore and ChicagoPizzaStore. As we defined them, the
NYPizzaStore instantiates a NY-style pizza, and the ChicagoPizzaStore instantiates a
Chicago-style pizza. In either case, the Pizza is returned to the orderPizza() method.

So how do they order?

you are here 4   127

the factory pattern

Let’s check out how these pizzas are
really made to order... Behind

the Scenes

1

2

PizzaStore nyPizzaStore = new NYPizzaStore();

Let’s follow Ethan’s order: first we need a NYPizzaStore:

nyPizzaStore.orderPizza("cheese");

Now that we have a store, we can take an order:

3 The orderPizza() method then calls the createPizza()
method:

4 Finally, we have the unprepared pizza in hand and the
orderPizza() method finishes preparing it:

Pizza pizza = createPizza("cheese");

 nyPizzaStore

Creates a instance of NYPizzaStore.

The orderPizza() method is called on

the nyPizzaStore instance (the method

defined inside PizzaStore runs).

 Pizza

c
r
e
a
t
e
P
i
z
z
a
(
"
c
h
e
e
s
e
"
)

Remember, createPizza(), the factory
method, is implemented in the subclass. In this
case it returns a NY-style cheese Pizza.

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

All of these methods are
defined in the specific pizza
returned from the factory
method createPizza(), defined
in the NYPizzaStore.The orderPizza() method gets

back a Pizza, without knowing
exactly what concrete class it is.

128   Chapter 4

the pizza classes

public abstract class Pizza {
 String name;
 String dough;
 String sauce;
 List<String> toppings = new ArrayList<String>();

 void prepare() {
 System.out.println("Preparing " + name);
 System.out.println("Tossing dough...");
 System.out.println("Adding sauce...");
 System.out.println("Adding toppings: ");
 for (String topping : toppings) {
 System.out.println(" " + topping);
 }
 }

 void bake() {
 System.out.println("Bake for 25 minutes at 350");
 }

 void cut() {
 System.out.println("Cutting the pizza into diagonal slices");
 }

 void box() {
 System.out.println("Place pizza in official PizzaStore box");
 }

 public String getName() {
 return name;
 }
}

We’re just missing one thing: Pizzas!
Our Pizza Store isn’t going to be very popular
without some pizzas, so le t’s implement them

We’ll start with an abstract

Pizza class, and
all the concret

e

pizzas will derive from this.

Each Pizza has a name, a type of dough,
a type of sauce, and a set of toppings.

The abstract class provides
some basic defaults for
baking, cutting, and boxing.

Preparation follows a
number of steps in a
particular sequence.

REMEMBER: we don’t provide import and package statements in the
code listings. Get the complete source code from the wickedlysmart
website at https://wickedlysmart.com/head-first-design-patterns

If you lose this URL, you can always quickly find it in the Intro section.

https://wickedlysmart.com/head-first-design-patterns/

you are here 4   129

the factory pattern

public class ChicagoStyleCheesePizza extends Pizza {

 public ChicagoStyleCheesePizza() {

 name = "Chicago Style Deep Dish Cheese Pizza";

 dough = "Extra Thick Crust Dough";

 sauce = "Plum Tomato Sauce";

 toppings.add("Shredded Mozzarella Cheese");

 }

 void cut() {

 System.out.println("Cutting the pizza into square slices");

 }

}

public class NYStyleCheesePizza extends Pizza {

 public NYStyleCheesePizza() {

 name = "NY Style Sauce and Cheese Pizza";

 dough = "Thin Crust Dough";

 sauce = "Marinara Sauce";

 toppings.add("Grated Reggiano Cheese");

 }

}

Now we just need some concrete subclasses...how about defining
New York and Chicago-style cheese pizzas?

The NY Pizza has its own
marinara-style sauce and thin crust.

And one topping, Reggiano cheese!

The Chicago-style deep dish pizza has lots of mozzarella cheese!

The Chicago-style pizza also overrides the cut()
method so that the pieces are cut into squares.

The Chicago Pizza uses plum
tomatoes as a sauce along
with extra-thick crust.

130   Chapter 4

make some pizzas

public class PizzaTestDrive {

 public static void main(String[] args) {

 PizzaStore nyStore = new NYPizzaStore();

 PizzaStore chicagoStore = new ChicagoPizzaStore();

 Pizza pizza = nyStore.orderPizza("cheese");

 System.out.println("Ethan ordered a " + pizza.getName() + "\n");

 pizza = chicagoStore.orderPizza("cheese");

 System.out.println("Joel ordered a " + pizza.getName() + "\n");

 }

}

You’ve waited long enough. Time for some pizzas!

File Edit Window Help YouWantMootzOnThatPizza?

%java PizzaTestDrive

Preparing NY Style Sauce and Cheese Pizza
Tossing dough...
Adding sauce...
Adding toppings:
 Grated Reggiano cheese
Bake for 25 minutes at 350
Cutting the pizza into diagonal slices
Place pizza in official PizzaStore box
Ethan ordered a NY Style Sauce and Cheese Pizza

Preparing Chicago Style Deep Dish Cheese Pizza
Tossing dough...
Adding sauce...
Adding toppings:
 Shredded Mozzarella Cheese
Bake for 25 minutes at 350
Cutting the pizza into square slices
Place pizza in official PizzaStore box
Joel ordered a Chicago Style Deep Dish Cheese Pizza

First we create two

different store
s.

We use one store to
make Ethan’s order...

...and the other for Joel’s.

Both pizzas get prepared,
the toppings get added, and
the pizzas are baked, cut,
and boxed. Our superclass
never had to know the
details; the subclass handled
all that just by instantiating
the right pizza.

you are here 4   131

the factory pattern

createPizza()

ChicagoPizzaStore

createPizza()

NYPizzaStore

Pizza

NYStyleCheesePizza

NYStyleVeggiePizza

NYStyleClamPizza

NYStylePepperoniPizza

ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

createPizza()
orderPizza()

PizzaStore

It’s finally time to meet the Factory Method Pattern

All factory patterns encapsulate object creation. The Factory Method Pattern encapsulates object
creation by letting subclasses decide what objects to create. Let’s check out these class diagrams to see
who the players are in this pattern:

Often the creator contains code
that depends on an abstract product,
which is produced by a subclass. The
creator never really knows which
concrete product was produced.

Since each franchise gets its
own subclass of PizzaStore,
it’s free to create its own
style of pizza by implementing
createPizza().The createPizza() method

is our factory method. It
produces products.

This is our abstract creator class. It defines an abstract factory method that the subclasses implement to produce products.

These are the concrete
products — all the pizzas that
are produced by our stores.

Factories produce products,
and in the PizzaStore, our
product is a Pizza.

The Creator classes

The Product classes

Classes that produce
products are called
concrete creators.

132   Chapter 4

creators and products

View Creators and Products in Parallel

For every concrete Creator, there’s typically a whole set of products that
it creates. Chicago pizza creators create different types of Chicago-style
pizza, New York pizza creators create different types of New York–style
pizza, and so on. In fact, we can view our sets of Creator classes and their
corresponding Product classes as parallel hierarchies.

Let’s look at the two parallel class hierarchies and see how they relate:

Pizza

The NYPizza
Store

encap
sulate

s all t
he

knowledge
about

 how to

make N
Y-style

pizzas
. The Chicago

Pizza
Store

encaps
ulates

 all th
e

knowledge
about

 how to

make C
hicago

-style
pizzas

.

Notice how these
class hierarchies are
parallel: both have
abstract classes that
are extended by
concrete classes, which
know about specific
implementations for
NY and Chicago pizza.

The factory method is the key to
 encapsulating this

knowledge.

createPizza()

ChicagoPizzaStore

createPizza()

NYPizzaStore

createPizza()
orderPizza()

PizzaStore

NYStyleClamPizza
ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

NYStylePepperoniPizza

NYStyleCheesePizza

NYStyleVeggiePizza

The Creator classesThe Product classes

you are here 4   133

the factory pattern

We need another kind of pizza for those crazy Californians (crazy in a good way,
of course). Draw another parallel set of classes that you’d need to add a new
California region to our PizzaStore.

createPizza()
orderPizza()

PizzaStore

Okay, now write the five most bizarre things you can think of to put on a pizza.
Then, you’ll be ready to go into business making pizza in California!

NYStyleCheesePizza

NYStyleVeggiePizza

NYStyleClamPizza

NYStylePepperoniPizza

ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

createPizza()

ChicagoPizzaStore

createPizza()

NYPizzaStore

Your dra
wing here..

.

 Design Puzzle

134   Chapter 4

factory method defined

Factory Method Pattern defined

The Factory Method Pattern defines an interface
for creating an object, but lets subclasses decide which
class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

It’s time to roll out the official definition of the Factory Method Pattern:

As with every factory, the Factory Method Pattern gives us a way to encapsulate the
instantiations of concrete types. Looking at the class diagram below, you can see that the
abstract Creator class gives you an interface with a method for creating objects, also known
as the “factory method.” Any other methods implemented in the abstract Creator are
written to operate on products produced by the factory method. Only subclasses actually
implement the factory method and create products.

As in the official definition, you’ll often hear developers say, “the Factory Method pattern
lets subclasses decide which class to instantiate.” Because the Creator class is written without
knowledge of the actual products that will be created, we say “decide” not because the
pattern allows subclasses themselves to decide, but rather, because the decision actually comes
down to which subclass is used to create the product.

Product

ConcreteProduct

factoryMethod()
anOperation()

Creator

factoryMethod()

ConcreteCreator

Creator is a class tha
t contains

the implementations for all of
the

methods to manipulate products,

except for the fact
ory method.

ConcreteCreator
implements the
factoryMethod(), which is
the method that actually
produces products.

All products must implement

the same interface so that
the

classes that use the
products

can refer to the int
erface,

not the concrete cla
ss.

ConcreteCreator is responsible for creating
one or more concrete products. It is the
only class that has the knowledge of how
to create these products.

The abstract factoryMethod()
is what all Creator subclasses
must implement.

You could
 ask them

 what

“decides”
 means, but

 we

bet you
now underst

and

this bett
er than

they do!

you are here 4   135

the factory pattern

Q: What’s the advantage of the Factory Method
Pattern when you only have one ConcreteCreator?

A: The Factory Method Pattern is useful if you’ve only
got one concrete creator because you are decoupling the
implementation of the product from its use. If you add
additional products or change a product’s implementation,
it will not affect your Creator (because the Creator is not
tightly coupled to any ConcreteProduct).

Q: Would it be correct to say that our NY and
Chicago stores are implemented using Simple
Factory? They look just like it.

A: They’re similar, but used in different ways. Even
though the implementation of each concrete store looks
a lot like the SimplePizzaFactory, remember that the
concrete stores are extending a class that has defined
createPizza() as an abstract method. It is up to each
store to define the behavior of the createPizza() method.
In Simple Factory, the factory is another object that is
composed with the PizzaStore.

Q: Are the factory method and the Creator class
always abstract?

A: No, you can define a default factory method to
produce some concrete product. Then you always
have a means of creating products even if there are no
subclasses of the Creator class.

Q: Each store can make four different kinds of
pizzas based on the type passed in. Do all concrete
creators make multiple products, or do they
sometimes just make one?

A: We implemented what is known as the
parameterized factory method. It can make more than one
object based on a parameter passed in, as you noticed.
Often, however, a factory just produces one object and is
not parameterized. Both are valid forms of the pattern.

Q: Your parameterized types don’t seem “type-
safe.” I’m just passing in a String! What if I asked for a

“CalmPizza”?

A: You are certainly correct, and that would cause what
we call in the business a “runtime error.” There are several
other more sophisticated techniques that can be used to
make parameters more “type safe”—in other words, to
ensure errors in parameters can be caught at compile time.
For instance, you can create objects that represent the
parameter types, use static constants, or use enums.

Q: I’m still a bit confused about the difference
between Simple Factory and Factory Method. They
look very similar, except that in Factory Method, the
class that returns the pizza is a subclass. Can you
explain?

A: You’re right that the subclasses do look a lot like
Simple Factory; however, think of Simple Factory as a
one-shot deal, while with Factory Method you are creating
a framework that lets the subclasses decide which
implementation will be used. For example, the orderPizza()
method in the Factory Method Pattern provides a general
framework for creating pizzas that relies on a factory
method to actually create the concrete classes that go
into making a pizza. By subclassing the PizzaStore class,
you decide what concrete products go into making the
pizza that orderPizza() returns. Compare that with Simple
Factory, which gives you a way to encapsulate object
creation, but doesn’t give you the flexibility of Factory
Method because there is no way to vary the products
you’re creating.

136   Chapter 4

master and student

Guru and Student...
Guru: Tell me about your training.

Student: Guru, I have taken my study of “encapsulate what
varies” further.

Guru: Go on...

Student: I have learned that one can encapsulate the code
that creates objects. When you have code that instantiates
concrete classes, this is an area of frequent change. I’ve learned
a technique called “factories” that allows you to encapsulate this
behavior of instantiation.

Guru: And these “factories,” of what benefit are they?

Student: There are many. By placing all my creation code in one
object or method, I avoid duplication in my code and provide one
place to perform maintenance. That also means clients depend
only upon interfaces rather than the concrete classes required to
instantiate objects. As I have learned in my studies, this allows me
to program to an interface, not an implementation, and that makes
my code more flexible and extensible in the future.

Guru: Yes, your OO instincts are growing. Do you have any
questions for your guru today?

Student: Guru, I know that by encapsulating object creation I am
coding to abstractions and decoupling my client code from actual
implementations. But my factory code must still use concrete
classes to instantiate real objects. Am I not pulling the wool over
my own eyes?

Guru: Object creation is a reality of life; we must create objects or
we will never create a single Java application. But, with knowledge
of this reality, we can design our code so that we have corralled
this creation code like the sheep whose wool you would pull
over your eyes. Once corralled, we can protect and care for the
creation code. If we let our creation code run wild, then we will
never collect its “wool.”

Student: Guru, I see the truth in this.

Guru: As I knew you would. Now, please go and meditate on
object dependencies.

you are here 4   137

the factory pattern

public class DependentPizzaStore {

 public Pizza createPizza(String style, String type) {
 Pizza pizza = null;
 if (style.equals("NY")) {
 if (type.equals("cheese")) {
 pizza = new NYStyleCheesePizza();
 } else if (type.equals("veggie")) {
 pizza = new NYStyleVeggiePizza();
 } else if (type.equals("clam")) {
 pizza = new NYStyleClamPizza();
 } else if (type.equals("pepperoni")) {
 pizza = new NYStylePepperoniPizza();
 }
 } else if (style.equals("Chicago")) {
 if (type.equals("cheese")) {
 pizza = new ChicagoStyleCheesePizza();
 } else if (type.equals("veggie")) {
 pizza = new ChicagoStyleVeggiePizza();
 } else if (type.equals("clam")) {
 pizza = new ChicagoStyleClamPizza();
 } else if (type.equals("pepperoni")) {
 pizza = new ChicagoStylePepperoniPizza();
 }
 } else {
 System.out.println("Error: invalid type of pizza");
 return null;
 }
 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();
 return pizza;
 }
}

Let’s pretend you’ve never heard of an OO factory. Here’s a “very dependent”
version of PizzaStore that doesn’t use a factory. We need you to make a count
of the number of concrete pizza classes this class is dependent on. If you
added California-style pizzas to this PizzaStore, how many classes would it be
dependent on then?

You can write your
answers here: number

number with
California, too

Handles all the
NY-style pizzas

Handles all the
Chicago-style pizzas

138   Chapter 4

object dependencies

Looking at object dependencies
When you directly instantiate an object, you are depending on its
concrete class. Take a look at our very dependent PizzaStore one
page back. It creates all the pizza objects right in the PizzaStore class
instead of delegating to a factory.

If we draw a diagram representing that version of the PizzaStore
and all the objects it depends on, here’s what it looks like:

 PizzaStor
e

If the implementation of these classes changes, then we may have to modify in PizzaStore.

NYStyleVeggieP
iz

za

NYStyleClamPiz
za

N
YStylePepperon

iP
i z

za

ChicagoStylePepper
on

i P
iz

za

ChicagoStyleChe
es

eP
iz

za

ChicagoStyleVeg
gi

eP
iz

za

ChicagoStyleClam
Pi

zz
a

NYStyleCheese
Piz

za

Because any change to the concrete
implementations of pizzas affects the
PizzaStore, we say that the PizzaStore
“depends on” the pizza implementations.

Every new kind of pizza
we add creates another
dependency for PizzaStore.

This version of the
PizzaStore depends on all
those pizza objects, because
it’s creating them directly.

you are here 4   139

the factory pattern

Design Principle
Depend upon abstractions. Do
not depend upon concrete classes.

At first, this principle sounds a lot like “Program to an
interface, not an implementation,” right? It is similar;
however, the Dependency Inversion Principle makes an even
stronger statement about abstraction. It suggests that our
high-level components should not depend on our low-level
components; rather, they should both depend on abstractions.

But what the heck does that mean?

Well, let’s start by looking again at the pizza store diagram
on the previous page. PizzaStore is our “high-level
component” and the pizza implementations are our “low-
level components,” and clearly PizzaStore is dependent on
the concrete pizza classes.

Now, this principle tells us we should instead write our code
so that we are depending on abstractions, not concrete
classes. That goes for both our high-level modules and our
low-level modules.

But how do we do this? Let’s think about how we’d apply this
principle to our very dependent PizzaStore implementation...

It should be pretty clear that reducing dependencies to
concrete classes in our code is a “good thing.” In fact, we’ve
got an OO design principle that formalizes this notion; it even
has a big, formal name: Dependency Inversion Principle.

Here’s the general principle:

The Dependency Inversion Principle

Yet another phra
se you can

use to impress the execs
in

the room! Your raise will

more than offset
 the cost

of this book, an
d you’ll

gain the admiration of

your fellow developers.

A “high-level” component is a class
with behavior defined in terms of
other, “low-level” components.
For example, PizzaStore is a
high-level component because
its behavior is defined in terms
of pizzas — it creates all the
different pizza objects, and
prepares, bakes, cuts, and boxes
them, while the pizzas it uses are
low-level components.

140   Chapter 4

dependency inversion principle

Applying the Principle

Now, the main problem with the very dependent PizzaStore is that it depends
on every type of pizza because it actually instantiates concrete types in its
orderPizza() method.

While we’ve created an abstraction, Pizza, we’re nevertheless creating concrete
Pizzas in this code, so we don’t get a lot of leverage out of this abstraction.

How can we get those instantiations out of the orderPizza() method? Well, as we
know, the Factory Method Pattern allows us to do just that.

So, after we’ve applied the Factory Method Pattern, our diagram looks like this:

 PizzaStore

 Pizza

NYStyleVeggieP
iz

za

NYStyleClamPiz
za

N
YStylePeppero

ni
Pi

zz
a

NYStyleCheese
Piz

za

ChicagoStylePepper
on

iP
iz

za

ChicagoStyleChe
es

eP
iz

za

ChicagoStyleVeg
gi

eP
iz

za

ChicagoStyleClam
Pi

zz
a

The concrete pizza classes de
pend on

the Pizza abstraction too, becau
se

they implement the Pizza interface

(remember, we’re using “interface”

in the general sense) in the
Pizza

abstract class.

Pizza is an abstract class...an abstraction.

PizzaStore now depends only
on Pizza, the abstract class.

After applying Factory Method, you’ll notice that our high-level component, the
PizzaStore, and our low-level components, the pizzas, both depend on Pizza, the
abstraction. Factory Method is not the only technique for adhering to the Dependency
Inversion Principle, but it is one of the more powerful ones.

you are here 4   141

the factory pattern

The “inversion” in the name Dependency Inversion
Principle is there because it inverts the way you typically
might think about your OO design. Look at the diagram
on the previous page. Notice that the low-level components
now depend on a higher-level abstraction. Likewise, the
high-level component is also tied to the same abstraction.
So, the top-to-bottom dependency chart we drew a couple
of pages back has inverted itself, with both high-level and
low-level modules now depending on the abstraction.

Let’s also walk through the thinking behind the typical
design process and see how introducing the principle can
invert the way we think about the design...

Where’s the “inversion” in Dependency
Inversion Principle?

Okay, I get
the dependency part,
but why is it called
dependency inversion?

142   Chapter 4

invert your thinking

Right, you start at the top and follow things
down to the concrete classes. But, as you’ve seen,
you don’t want your pizza store to know about
the concrete pizza types, because then it’ll be
dependent on all those concrete classes!

Now, let’s “invert” your thinking...instead of
starting at the top, start at the Pizzas and think
about what you can abstract.

Right! You are thinking about the abstraction Pizza.
So now, go back and think about the design of the
Pizza Store again.

Close. But to do that you’ll have to rely on a
factory to get those concrete classes out of
your Pizza Store. Once you’ve done that, your
different concrete pizza types depend only on an
abstraction, and so does your store. We’ve taken
a design where the store depended on concrete
classes and inverted those dependencies (along
with your thinking).

Okay, so you need to implement a Pizza Store.
What’s the first thought that pops into your head?

Inverting your thinking...

Well, a CheesePizza and a
VeggiePizza and a ClamPizza are
all just Pizzas, so they should
share a Pizza interface.

Hmmm, Pizza Stores
prepare, bake, and box pizzas.

So, my store needs to be able to
make a bunch of different pizzas:
CheesePizza, VeggiePizza, ClamPizza,

and so on...

Since I now have a Pizza
abstraction, I can design my

Pizza Store and not worry about
the concrete pizza classes.

you are here 4   143

the factory pattern

A few guidelines to help you follow
the Principle...

You’re exactly right! Like many of our principles, this is a guideline
you should strive for, rather than a rule you should follow all the time.
Clearly, every single Java program ever written violates these guidelines!

But, if you internalize these guidelines and have them in the back of
your mind when you design, you’ll know when you are violating the
principle and you’ll have a good reason for doing so. For instance, if you
have a class that isn’t likely to change, and you know it, then it’s not the
end of the world if you instantiate a concrete class in your code. Think
about it; we instantiate String objects all the time without thinking twice.
Does that violate the principle? Yes. Is that okay? Yes. Why? Because
String is very unlikely to change.

If, on the other hand, a class you write is likely to change, you have some
good techniques like Factory Method to encapsulate that change.

The following guidelines can help you avoid OO designs that violate
the Dependency Inversion Principle:

	� No variable should hold a reference to a concrete class.

	� No class should derive from a concrete class.

	� No method should override an implemented method of any
of its base classes.

If you use new, you’ll be holding a

reference to a concrete cla
ss. Use

a factory to get around th
at!

If you derive from a concrete class, you’re
depending on a concrete class. Derive from an
abstraction, like an interface or an abstract class.

If you override an implemented method, then your base class wasn’t really an abstraction to start with. Those methods implemented in the base class are meant to be shared by all your subclasses.

But wait, aren’t these
guidelines impossible to
follow? If I follow these,
I’ll never be able to write
a single program!

144   Chapter 4

families of ingredients

The design for the Pizza Store is really shaping up: it’s got a
flexible framework and it does a good job of adhering to design
principles.

Now, the key to Objectville Pizza’s success has always been fresh,
quality ingredients, and what you’ve discovered is that with the
new framework your franchises have been following your procedures,
but a few franchises have been substituting inferior ingredients in
their pizzas to lower costs and increase their margins. You know
you’ve got to do something, because in the long term this is going
to hurt the Objectville brand!

So how are you going to ensure each franchise is using quality ingredients?
You’re going to build a factory that produces them and ships them to your
franchises!

Now there’s only one problem with this plan: the franchises are located in
different regions and what is red sauce in New York is not red sauce in Chicago.
So, you have one set of ingredients that needs to be shipped to New York and a
different set that needs to be shipped to Chicago. Let’s take a closer look:

Ensuring consistency in your ingredients

Cheese Pizza
 Marinara Sauce, Reggiano, Garlic

Veggie Pizza
 Marinara Sauce, Reggiano, Mushrooms,
 Onions, Red Peppers

Clam Pizza
 Marinara Sauce, Reggiano, Fresh Clams

Pepperoni Pizza
 Marinara Sauce, Reggiano, Mushrooms, Onions, Red Peppers, Pepperoni

New York
PizzaMenu

Cheese Pizza
 Plum Tomato Sauce, Mozzarella, Parmesan,

 Oregano

Veggie Pizza
 Plum Tomato Sauce, Mozzarella, Parmesan,

 Eggplant, Spinach, Black Olives

Clam Pizza
 Plum Tomato Sauce, Mozzarella, Parmesan, Clams

Pepperoni Pizza
 Plum Tomato Sauce, Mozzarella, Parmesan,
 Eggplant, Spinach, Black Olives, Pepperoni

Chicago
PizzaMenu

We’ve got the
same product
families (dough,
sauce, cheese,
veggies, meats)
but different
implementations
based on region.

Meanwhile, back at the Pizza Store... Dough

Sauce
Cheese

Veggies

Pepperoni

That is, the bakin
g,

the cutting, the

boxing, and so o
n...

you are here 4   145

the factory pattern

Families of ingredients...

New York uses one set of ingredients and
Chicago another. Given the popularity of
Objectville Pizza, it won’t be long before
you also need to ship another set of regional
ingredients to California, and what’s next?
Austin?

For this to work, you’re going to have to figure
out how to handle families of ingredients.

ReggianoCheese

ThinCrustDough

FreshClams

FreshClams

MarinaraSauce

BruschettaSauce

GoatCheese

VeryThinCrustDough

California

FrozenClams

PlumTomatoSauce

MozzarellaCheese

ThickCrustDough

New York

Chicago

All Objectville’s Pizzas are made from the same

components, but each re
gion has a different

implementation of those co
mponents.

In total, these three region
s make up ingredient families, with

each region implementing a complete family of ingredients.

Each family consists of a type of dough,
a type of sauce, a type of cheese, and a
seafood topping (along with a few more we
haven’t shown, like veggies and spices).

146   Chapter 4

ingredient factories

public interface PizzaIngredientFactory {

 public Dough createDough();

 public Sauce createSauce();

 public Cheese createCheese();

 public Veggies[] createVeggies();

 public Pepperoni createPepperoni();

 public Clams createClam();

}

Building the ingredient factories
Now we’re going to build a factory to create our ingredients; the
factory will be responsible for creating each ingredient in the
ingredient family. In other words, the factory will need to create
dough, sauce, cheese, and so on... You’ll see how we are going to
handle the regional differences shortly.

Let’s start by defining an interface for the factory that is going to
create all our ingredients:

For each ingredien
t we define a

create method in our inter
face.

With that interface, here’s what we’re going to do:

Lots of new classes here,
one per ingredient.

1

2

3

Build a factory for each region. To do this, you’ll create a subclass of
PizzaIngredientFactory that implements each create method.

Implement a set of ingredient classes to be used with the factory, like
ReggianoCheese, RedPeppers, and ThickCrustDough. These classes can be
shared among regions where appropriate.

Then we still need to hook all this up by working our new ingredient
factories into our old PizzaStore code.

you are here 4   147

the factory pattern

public class NYPizzaIngredientFactory implements PizzaIngredientFactory {

 public Dough createDough() {

 return new ThinCrustDough();

 }

 public Sauce createSauce() {

 return new MarinaraSauce();

 }

 public Cheese createCheese() {

 return new ReggianoCheese();

 }

 public Veggies[] createVeggies() {

 Veggies veggies[] = { new Garlic(), new Onion(), new Mushroom(), new RedPepper() };

 return veggies;

 }

 public Pepperoni createPepperoni() {

 return new SlicedPepperoni();

 }

 public Clams createClam() {

 return new FreshClams();

 }

}

Building the New York ingredient factory

Okay, here’s the implementation for the New York ingredient factory. This
factory specializes in Marinara Sauce, Reggiano Cheese, Fresh Clams, etc.

The NY ingredient factory
implements the interface for all
ingredient factories.

For each ingredient
in the

ingredient family, we create

the New York version.

For veggies, we return an array of
Veggies. Here we’ve hardcoded the
veggies. We could make this more
sophisticated, but that doesn’t really
add anything to learning the factory
pattern, so we’ll keep it simple.

The best sliced pepperoni.
This is shared between New
York and Chicago. Make sure
you use it on the next page
when you get to implement
the Chicago factory yourself.

New York is on the coast; it
gets fresh clams. Chicago has
to settle for frozen.

148   Chapter 4

build a factory

Write the ChicagoPizzaIngredientFactory. You can reference
the classes below in your implementation:

SlicedPepperoni

EggPlant
Spinach

BlackOlives

FrozenClams

PlumTomatoSauce

MozzarellaCheese

ThickCrustDough

you are here 4   149

the factory pattern

public abstract class Pizza {
 String name;

 Dough dough;
 Sauce sauce;
 Veggies veggies[];
 Cheese cheese;
 Pepperoni pepperoni;
 Clams clam;

 abstract void prepare();

 void bake() {
 System.out.println("Bake for 25 minutes at 350");
 }

 void cut() {
 System.out.println("Cutting the pizza into diagonal slices");
 }

 void box() {
 System.out.println("Place pizza in official PizzaStore box");
 }

 void setName(String name) {
 this.name = name;
 }

 String getName() {
 return name;
 }

 public String toString() {
 // code to print pizza here
 }
}

Reworking the pizzas...

We’ve got our factories all fired up and ready to produce quality ingredients; now we
just need to rework our Pizzas so they only use factory-produced ingredients. We’ll
start with our abstract Pizza class:

Each pizza holds a set of ingredients
that are used in its preparation.

Our other methods remain the same, with

the exception of the prepa
re method.

We’ve now made the prepare method abstract. This is where we are going to collect the ingredients needed for the pizza, which of course will come from the ingredient factory.

150   Chapter 4

decoupling ingredients

public class CheesePizza extends Pizza {

 PizzaIngredientFactory ingredientFactory;

 public CheesePizza(PizzaIngredientFactory ingredientFactory) {

 this.ingredientFactory = ingredientFactory;

 }

 void prepare() {

 System.out.println("Preparing " + name);

 dough = ingredientFactory.createDough();

 sauce = ingredientFactory.createSauce();

 cheese = ingredientFactory.createCheese();

 }

}

Reworking the pizzas, continued...

Now that you’ve got an abstract Pizza class to work from, it’s time to
create the New York– and Chicago-style Pizzas—only this time around,
they’ll get their ingredients straight from the factory. The franchisees’ days
of skimping on ingredients are over!

When we wrote the Factory Method code, we had a NYCheesePizza and
a ChicagoCheesePizza class. If you look at the two classes, the only thing
that differs is the use of regional ingredients. The pizzas are made just
the same (dough + sauce + cheese). The same goes for the other pizzas:
Veggie, Clam, and so on. They all follow the same preparation steps; they
just have different ingredients.

So, what you’ll see is that we really don’t need two classes for each pizza;
the ingredient factory is going to handle the regional differences for us.

Here’s the CheesePizza:

To make a pizza now, we
need a factory to provide
the ingredients. So each
Pizza class gets a factory
passed into its constructor

,
and it’s stored in an
instance variable.

Here’s where the magic happens!

The prepare() method steps through creating
a cheese pizza, and each time it needs an
ingredient, it asks the factory to produce it.

you are here 4   151

the factory pattern

public class ClamPizza extends Pizza {

 PizzaIngredientFactory ingredientFactory;

 public ClamPizza(PizzaIngredientFactory ingredientFactory) {

 this.ingredientFactory = ingredientFactory;

 }

 void prepare() {

 System.out.println("Preparing " + name);

 dough = ingredientFactory.createDough();

 sauce = ingredientFactory.createSauce();

 cheese = ingredientFactory.createCheese();

 clam = ingredientFactory.createClam();

 }

}

Code Up Close
The Pizza code uses the factory it has been composed with to produce the ingredients used in the
pizza. The ingredients produced depend on which factory we’re using. The Pizza class doesn’t care;
it knows how to make pizzas. Now, it’s decoupled from the differences in regional ingredients and can
be easily reused when there are factories for the Austin, the Nashville, and beyond.

sauce = ingredientFactory.createSauce();

We’re setting the Pizza instance variable to refer to the specific sauce used in this pizza.

The createSauce() method returns the sauce

that is used in its region. If
this is a NY

ingredient factory, then we get marinara sauce.
This is our ingredient factory.
The Pizza class doesn’t care
which factory is used, as long
as it’s an ingredient factory.

Let’s check out the ClamPizza as well:

ClamPizza also stashes
an ingredient factory.

To make a clam pizza, the prepare()
method collects the right
ingredients from its local factory.

If it’s a New York factory,
the clams will be fresh; if it’s
Chicago, they’ll be frozen.

152   Chapter 4

use the right ingredient factory

public class NYPizzaStore extends PizzaStore {

 protected Pizza createPizza(String item) {
 Pizza pizza = null;
 PizzaIngredientFactory ingredientFactory =
 new NYPizzaIngredientFactory();

 if (item.equals("cheese")) {

 pizza = new CheesePizza(ingredientFactory);
 pizza.setName("New York Style Cheese Pizza");

 } else if (item.equals("veggie")) {

 pizza = new VeggiePizza(ingredientFactory);
 pizza.setName("New York Style Veggie Pizza");

 } else if (item.equals("clam")) {

 pizza = new ClamPizza(ingredientFactory);
 pizza.setName("New York Style Clam Pizza");

 } else if (item.equals("pepperoni")) {

 pizza = new PepperoniPizza(ingredientFactory);
 pizza.setName("New York Style Pepperoni Pizza");

 }
 return pizza;
 }
}

Revisiting our pizza stores

We’re almost there; we just need to make a quick trip to our franchise stores to make
sure they are using the correct Pizzas. We also need to give them a reference to their
local ingredient factories:

The NY Store is composed with

a NY pizza ingredien
t factory.

This will be used to pr
oduce the

ingredients for
all NY-style

pizzas.

We now pass each pizza the
factory that should be used to
produce its ingredients.

Look back one page and make
sure you understand how the
pizza and the factory work
together!

For each type of Pizza, we instantiate a new Pizza and give it the factory it needs to get its ingredients.

Compare this version of the createPizza()
method to the one in the Factory Method
implementation earlier in the chapter.

you are here 4   153

the factory pattern

What have we done?

That was quite a series of code changes;
what exactly did we do?

We provided a means of creating a family
of ingredients for pizzas by introducing
a new type of factory called an Abstract
Factory.

An Abstract Factory gives us an interface
for creating a family of products. By
writing code that uses this interface, we
decouple our code from the actual factory
that creates the products. That allows us
to implement a variety of factories that
produce products meant for different
contexts—such as different regions,
different operating systems, or different
look and feels.

Because our code is decoupled from the
actual products, we can substitute different
factories to get different behaviors
(like getting marinara instead of plum
tomatoes).

An Abstract Factory provides an interface for
a family of products. What’s a family? In our
case, it’s all the things we need to make a pizza:
dough, sauce, cheese, meats, and veggies.

From the abstract factory, we
derive one or more concrete
factories that produce the same
products, but with different
implementations.

ObjectvilleAbstract IngredientFactory

New York Chicago

Defines the
interface.

We then write our code so that it uses the
factory to create products. By passing in
a variety of factories, we get a variety of
implementations of those products. But our
client code stays the same.

 PizzaStore

Provides implementations

for products.

Pizza made with
ingredients prod

uced

by concrete fac
tory.

154   Chapter 4

order some more pizza

More pizza for Ethan and Joel...

Ethan and Joel can’t get enough Object v il le Pizza! What
they don’t know is that now their orders are making use of
the new ingredient factories. So now when they order...

The first part of the order process hasn’t changed at all.
Let’s follow Ethan’s order again:

1

2

3

 nyPizzaStore

createPizz
a("cheese"

)

PizzaStore nyPizzaStore = new NYPizzaStore();

First we need a NYPizzaStore:

nyPizzaStore.orderPizza("cheese");

Now that we have a store, we can take an order:

The orderPizza() method first calls the
createPizza() method:

Pizza pizza = createPizza("cheese");

Creates an instance of NYPizzaStore.

The orderPizza() method is called
on the nyPizzaStore instance.

Behind
the Scenes

I’m stickin’ with
Chicago.I’m still lovin’ NY style.

(See on the next page.)

you are here 4   155

the factory pattern

From here things change, because we
are using an ingredient factory

Pizza pizza = new CheesePizza(nyIngredientFactory);

When the createPizza() method is called, that’s
when our ingredient factory gets involved:

Next we need to prepare the pizza. Once the
prepare() method is called, the factory is asked to
prepare ingredients:

Finally, we have the prepared pizza in hand and the
orderPizza() method bakes, cuts, and boxes the pizza.

Creates a instance of Pizza that is composed with the New York ingredient factory. Pizza

pr
ep
ar
e(
)

nyIngredientFac
to

ry

holds

For Ethan’s pizza the New York
ingredient factory is used, and

so
we get the NY ingredients.

 void prepare() {

 dough = factory.createDough();

 sauce = factory.createSauce();

 cheese = factory.createCheese();

 }

Thin crust

Marinara

Reggiano

The ingredient factory is ch
osen and

instantiated in the PizzaStore and then

passed into the constructo
r of each pizza.

4

5

6

Behind
the Scenes

156   Chapter 4

abstract factory defined

Abstract Factory Pattern defined

The Abstract Factory Pattern provides an interface
for creating families of related or dependent objects
without specifying their concrete classes.

We’re adding yet another factory pattern to our pattern family, one that lets us create families
of products. Let’s check out the official definition for this pattern:

We’ve certainly seen that Abstract Factory allows a client to use an abstract interface to
create a set of related products without knowing (or caring) about the concrete products that
are actually produced. In this way, the client is decoupled from any of the specifics of the
concrete products. Let’s look at the class diagram to see how this all holds together:

CreateProductA()
CreateProductB()

<<interface>>
AbstractFactory

Client

ProductB1

<<interface>>
AbstractProductB

ProductA1

ProductB2

<<interface>>
AbstractProductA

ProductA2

CreateProductA()
CreateProductB()

ConcreteFactory2

CreateProductA()
CreateProductB()

ConcreteFactory1

The Client is written against the
abstract factory and then composed
at runtime with an actual factory.

The concrete factories implement
the different product families. To
create a product, the client uses
one of these factories, so it never
has to instantiate a product object.

The Abstract Factory defines the
interface that all Concrete factories
must implement, which consists of a set
of methods for producing products. This is the product

family. Each concrete
factory can produce an
entire set of products.

you are here 4   157

the factory pattern

<<interface>>
Clams

<<interface>>
Cheese

<<interface>>
Sauce

<<interface>>
Dough

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

ChicagoPizzaIngredientFactory

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

NYPizzaIngredientFactory

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

<<interface>>
PizzaIngredientFactory

createPizza()

NYPizzaStore

Each factory produces a different implementation for the family of products.

The abstract
PizzaIngredientFactory is the
interface that defines how to
make a family of related products—
everything we need to make a pizza.

The clients of the Abstract
Factory are the two
instances of our PizzaStore,
NYPizzaStore and
ChicagoStylePizzaStore.

The job of the
concrete pizza
factories is to make
pizza ingredients. Each
factory knows how
to create the right
objects for its region.

That’s a fairly complicated class
diagram; let’s look at it all in terms
of our PizzaStore:

ThickCrustDough ThinCrustDough

PlumTomatoSauce MarinaraSauce

Mozzarella Cheese ReggianoCheese

FreshClamsFrozenClams

158   Chapter 4

interview with factory patterns

HeadFirst: Wow, an interview with two patterns at once! This is a first for us.

Factory Method: Yeah, I’m not so sure I like being lumped in with Abstract Factory,
you know. Just because we’re both factory patterns doesn’t mean we shouldn’t get our own
interviews.

HeadFirst: Don’t be miffed, we wanted to interview you together so we could help clear up
any confusion about who’s who for the readers. You do have similarities, and I’ve heard that
people sometimes get you confused.

Abstract Factory: It’s true, there have been times I’ve been mistaken for Factory Method,
and I know you’ve had similar issues, Factory Method. We’re both really good at decoupling
applications from specific implementations; we just do it in different ways. So I can see why
people might sometimes get us confused.

Factory Method: Well, it still ticks me off. After all, I use classes to create and you use objects;
that’s totally different!

This week’s interview:
Factory Method and Abstract Factory, on each other

Patterns Exposed

Good catch! Yes, often the methods of an Abstract Factory are
implemented as factory methods. It makes sense, right? The job of an
Abstract Factory is to define an interface for creating a set of products.
Each method in that interface is responsible for creating a concrete
product, and we implement a subclass of the Abstract Factory to
supply those implementations. So, factory methods are a natural way to
implement your product methods in your abstract factories.

Is that a factory method lurking inside the
Abstract Factory?

I noticed that each method in the
Abstract Factory actually looks like
a factory method (createDough(),
createSauce(), etc.). Each method is
declared abstract and the subclasses
override it to create some object. Isn’t
that a factory method?

you are here 4   159

the factory pattern

HeadFirst: Can you explain more about that, Factory
Method?

Factory Method: Sure. Both Abstract Factory and
I create objects—that’s our job. But I do it through
inheritance...

Abstract Factory: ...and I do it through object
composition.

Factory Method: Right. So that means, to create
objects using Factory Method, you need to extend a class
and provide an implementation for a factory method.

HeadFirst: And that factory method does what?

Factory Method: It creates objects, of course! I mean,
the whole point of the Factory Method Pattern is that
you’re using a subclass to do your creation for you. In that
way, clients only need to know the abstract type they are
using; the subclass worries about the concrete type. So, in
other words, I keep clients decoupled from the concrete
types.

Abstract Factory: And I do too, only I do it in a
different way.

HeadFirst: Go on, Abstract Factory...you said
something about object composition?

Abstract Factory: I provide an abstract type for
creating a family of products. Subclasses of this type
define how those products are produced. To use the
factory, you instantiate one and pass it into some code
that is written against the abstract type. So, like Factory
Method, my clients are decoupled from the actual
concrete products they use.

HeadFirst: Oh, I see, so another advantage is that you
group together a set of related products.

Abstract Factory: That’s right.

HeadFirst: What happens if you need to extend that set
of related products to, say, add another one? Doesn’t that
require changing your interface?

Abstract Factory: That’s true; my interface has to
change if new products are added, which I know people
don’t like to do....

Factory Method: <snicker>

Abstract Factory: What are you snickering at, Factory
Method?

Factory Method: Oh, come on, that’s a big deal!
Changing your interface means you have to go in and
change the interface of every subclass! That sounds like a
lot of work.

Abstract Factory: Yeah, but I need a big interface
because I am used to creating entire families of products.
You’re only creating one product, so you don’t really need
a big interface, you just need one method.

HeadFirst: Abstract Factory, I heard that you often use
factory methods to implement your concrete factories?

Abstract Factory: Yes, I’ll admit it, my concrete
factories often implement a factory method to create
their products. In my case, they are used purely to create
products...

Factory Method: ...while in my case I usually
implement code in the abstract creator that makes use of
the concrete types the subclasses create.

HeadFirst: It sounds like you both are good at what you
do. I’m sure people like having a choice; after all, factories
are so useful, they’ll want to use them in all kinds of
different situations. You both encapsulate object creation
to keep applications loosely coupled and less dependent
on implementations, which is really great, whether you’re
using Factory Method or Abstract Factory. May I allow
you each a parting word?

Abstract Factory: Thanks. Remember me, Abstract
Factory, and use me whenever you have families of
products you need to create and you want to make sure
your clients create products that belong together.

Factory Method: And I’m Factory Method; use me to
decouple your client code from the concrete classes you
need to instantiate, or if you don’t know ahead of time all
the concrete classes you are going to need. To use me, just
subclass me and implement my factory method!

160   Chapter 4

patterns compared

createPizza()

ChicagoPizzaStore

createPizza()

NYPizzaStore

createPizza()

PizzaStore

NYStyleVeggiePizza

NYStyleClamPizza

NYStylePepperoniPizza

NYStyleCheesePizza

Pizza

ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

Factory Method and Abstract Factory compared

New York Store

PizzaStore is implemented as a Factory
Method because we want to be able to
create a product that varies by region.
With the Factory Method, each region
gets its own concrete factory that
knows how to make pizzas that are
appropriate for the area.

Each subclass decides which
concrete class to instantiat

e.

The Factory Method

This is the product of the
PizzaStore. Clients only
rely on this abstract type.

Subclasses are
instantiated by the
Factory Methods.

New York Chicago

The Factory Method

The NYPizzaStore subclass
instantiates only NY-style pizzas.

The ChicagoPizzaStore
subclass instantiates only
Chicago-style pizzas.

Chicago Store

The createPizza() method is parameterized by pizza
type, so we can return many types of pizza products.

Provides an abstract
interface for
creating one product.

you are here 4   161

the factory pattern

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

<<interface>>
PizzaIngredientFactory

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

NYPizzaIngredientFactory

createDough()
createSauce()
createCheese()
createVeggies()
createPepperoni()
createClam()

ChicagoPizzaIngredientFactory

PizzaIngredientFactory is implemented as an

Abstract Factory because we need to create

families of products (the ingred
ients). Each

subclass implements the ingredients using it
s

own regional suppliers.

FrozenClamsFreshClams

<<interface>>
Clams

<<interface>>
Sauce

<<interface>>
Dough

ReggianoCheese MozzarellaCheese

<<interface>>
Cheese

Each concrete subclass creates
a family of products.

ThinCrustDough ThickCrustDough

MarinaraSauce PlumTomatoSauce

Chicago

Provides an abstract
interface for creating a
family of products.

Methods to create
products in an Abstract
Factory are often
implemented with a
Factory Method...

... or the type of clams.

New York

Each ingredient
represents a
product that is
produced by a
Factory Method
in the Abstract
Factory.

...for instance, the subclass
decides the type of dough...

The product subclasses create parallel sets of product families.
Here we have a New York ingredient family and a Chicago family.

162   Chapter 4

your design toolbox

Tools for your Design Toolbox
In this chapter, we added two more tools to your toolbox:
Factory Method and Abstract Factory. Both patterns
encapsulate object creation and allow you to decouple your
code from concrete types.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion

but closed for
modification.

Depend on abstra
ctions. Do not

depend on conc
rete classes.

OO Principles

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provides

an interface fo
r creating families of

related or depe
ndent objects w

ithout

specifying their
 concrete classe

s.

Factory Method - Defines an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

We have a new principle that
guides us to keep things
abstract whenever possible.

Both of these new
patterns encapsulate
object creation
and lead to more
decoupled, flexible
designs.

	� All factories encapsulate object
creation.

	� Simple Factory, while not a
bona fide design pattern, is a
simple way to decouple your
clients from concrete classes.

	� Factory Method relies on
inheritance: object creation is
delegated to subclasses, which
implement the factory method
to create objects.

	� Abstract Factory relies on
object composition: object
creation is implemented in
methods exposed in the factory
interface.

	� All factory patterns promote
loose coupling by reducing the
dependency of your application
on concrete classes.

	� The intent of Factory Method
is to allow a class to defer
instantiation to its subclasses.

	� The intent of Abstract Factory
is to create families of related
objects without having to
depend on their concrete
classes.

	� The Dependency Inversion
Principle guides us to avoid
dependencies on concrete
types and to strive for
abstractions.

	� Factories are a powerful
technique for coding to
abstractions, not concrete
classes.

you are here 4   163

the factory pattern

1 2

3

4

5 6 7

8

9 10

11

12

13 14

15

Across
1. In Factory Method, each franchise is a

4. In Factory Method, who decides which class to

instantiate?
6. Role of PizzaStore in Factory Method Pattern
7. All New York Style Pizzas use this kind of

cheese
8. In Abstract Factory, each ingredient factory is a

9. When you use new, you are programming to an

11. createPizza() is a ______________ (two words)
12. Joel likes this kind of pizza
13. In Factory Method, the PizzaStore and the

concrete Pizzas all depend on this abstraction
14. When a class instantiates an object from a

concrete class, it's __________ on that object
15. All factory patterns allow us to __________

object creation

Down
2. We used ______________ in Simple Factory

and Abstract Factory and inheritance in Factory
Method

3. Abstract Factory creates a ___________ of
products

5. Not a REAL factory pattern, but handy
nonetheless

10. Ethan likes this kind of pizza

Design Patterns Crossword
It’s been a long chapter. Grab a slice of Pizza and relax while doing
this crossword; all of the solution words are from this chapter.

ACROSS
1. In Factory Method, each franchise is a ________.
4. In Factory Method, who decides which class to
instantiate?
6. Role of PizzaStore in the Factory Method Pattern.
7. All New York–style pizzas use this kind of cheese.
8. In Abstract Factory, each ingredient factory is a

_______.
9. When you use new, you are programming to an

___________.
11. createPizza() is a ____________.
12. Joel likes this kind of pizza.
13. In Factory Method, the PizzaStore and the concrete
Pizzas all depend on this abstraction.
14. When a class instantiates an object from a concrete
class, it's ___________ on that object.
15. All factory patterns allow us to __________ object
creation.

DOWN
2.We used ___________ in Simple Factory and Abstract
Factory, and inheritance in Factory Method.
3. Abstract Factory creates a ___________ of products.
5. Not a REAL factory pattern, but handy nonetheless.
10. Ethan likes this kind of pizza.

164   Chapter 4

exercise solutions

We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to franchise! Write
the Chicago-style and California-style PizzaStore implementations here:

public class ChicagoPizzaStore extends PizzaStore {
 protected Pizza createPizza(String item) {
 if (item.equals("cheese")) {
 return new ChicagoStyleCheesePizza();
 } else if (item.equals("veggie")) {
 return new ChicagoStyleVeggiePizza();
 } else if (item.equals("clam")) {
 return new ChicagoStyleClamPizza();
 } else if (item.equals("pepperoni")) {
 return new ChicagoStylePepperoniPizza();
 } else return null;
 }
}

public class CaliforniaPizzaStore extends PizzaStore {
 protected Pizza createPizza(String item) {
 if (item.equals("cheese")) {
 return new CaliforniaStyleCheesePizza();
 } else if (item.equals("veggie")) {
 return new CaliforniaStyleVeggiePizza();
 } else if (item.equals("clam")) {
 return new CaliforniaStyleClamPizza();
 } else if (item.equals("pepperoni")) {
 return new CaliforniaStylePepperoniPizza();
 } else return null;
 }
}

For the Chicago pizza
store, we just have to
make sure we create
Chicago-style pizzas...

... and for the California
pizza store, we create
California-style pizzas.

Both of these stores are almost exactly like the New

York store...they just create different kinds
of pizzas.

you are here 4   165

the factory pattern

We need another kind of pizza for those crazy Californians (crazy in a good way,
of course). Draw another parallel set of classes that you’d need to add a new
California region to our PizzaStore.

createPizza()
orderPizza()

PizzaStore

Okay, now write the five silliest things you can think of to put on a pizza.
Then, you’ll be ready to go into business making pizza in California!

createPizza()

NYPizzaStore

createPizza()

ChicagoPizzaStore

NYStyleVeggiePizza

NYStyleClamPizza

NYStylePepperoniPizza

NYStyleCheesePizza

ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

createPizza()

CaliforniaPizzaStore

CaliforniaStyleVeggiePizza

CaliforniaStyleClamPizza

CaliforniaStylePepperoniPizza

CaliforniaStyleCheesePizza

Here’s everything you
need to

add a California pizza store
,

the concrete pizza s
tore class,

and the California-style pizzas.

Mashed potatoes with roasted garlic
BBQ sauce
Artichoke hearts
M&M’s
Peanuts

Here
are our
suggestions...

 Design Puzzle Solution

166   Chapter 4

exercise solutions

public class DependentPizzaStore {

 public Pizza createPizza(String style, String type) {
 Pizza pizza = null;
 if (style.equals("NY")) {
 if (type.equals("cheese")) {
 pizza = new NYStyleCheesePizza();
 } else if (type.equals("veggie")) {
 pizza = new NYStyleVeggiePizza();
 } else if (type.equals("clam")) {
 pizza = new NYStyleClamPizza();
 } else if (type.equals("pepperoni")) {
 pizza = new NYStylePepperoniPizza();
 }
 } else if (style.equals("Chicago")) {
 if (type.equals("cheese")) {
 pizza = new ChicagoStyleCheesePizza();
 } else if (type.equals("veggie")) {
 pizza = new ChicagoStyleVeggiePizza();
 } else if (type.equals("clam")) {
 pizza = new ChicagoStyleClamPizza();
 } else if (type.equals("pepperoni")) {
 pizza = new ChicagoStylePepperoniPizza();
 }
 } else {
 System.out.println("Error: invalid type of pizza");
 return null;
 }
 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();
 return pizza;
 }
}

8 12You can write your
answers here: number number with

California too

Handles all the
NY-style pizzas

Handles all the
Chicago-style pizzas

Let’s pretend you’ve never heard of an OO factory. Here’s a “very dependent”
version of PizzaStore that doesn’t use a factory. We need for you to make a
count of the number of concrete pizza classes this class is dependent on. If
you added California-style pizzas to PizzaStore, how many classes would it be
dependent on then? Here’s our solution.

you are here 4   167

the factory pattern

public class ChicagoPizzaIngredientFactory
 implements PizzaIngredientFactory
{

 public Dough createDough() {
 return new ThickCrustDough();
 }

 public Sauce createSauce() {
 return new PlumTomatoSauce();
 }

 public Cheese createCheese() {
 return new MozzarellaCheese();
 }

 public Veggies[] createVeggies() {
 Veggies veggies[] = { new BlackOlives(),
 new Spinach(),
 new Eggplant() };
 return veggies;
 }

 public Pepperoni createPepperoni() {
 return new SlicedPepperoni();
 }

 public Clams createClam() {
 return new FrozenClams();
 }
}

Go ahead and write the ChicagoPizzaIngredientFactory; you can reference the
classes below in your implementation:

SlicedPepperoni

EggPlant
Spinach

BlackOlives

FrozenClams

PlumTomatoSauce

MozzarellaCheese

ThickCrustDough

168   Chapter 4

crossword puzzle solution

C
1

O
2

N C R E T E C R E A T O R

B F
3

J S
4

U B C L A S S

E M

S
5

C
6

R E A T O R R
7

E G G I A N O

I T L

M C
8

O N C R E T E F A C T O R Y

P O

L I
9

M P L E M E N T A T I O N
10

E P Y

F
11

A C T O R Y M E T H O D S

A S T

C C
12

H I C A G O S T Y L E Y

T T L

O P
13

I Z Z A D
14

E P E N D E N T

R O

Y E
15

N C A P S U L A T E

Across
1. In Factory Method, each franchise is a

______________ [CONCRETECREATOR]
4. In Factory Method, who decides which class to

instantiate? [SUBCLASS]
6. Role of PizzaStore in Factory Method Pattern

[CREATOR]
7. All New York Style Pizzas use this kind of

cheese [REGGIANO]
8. In Abstract Factory, each ingredient factory is a

_____________ [CONCRETEFACTORY]
9. When you use new, you are programming to an

___________ [IMPLEMENTATION]
11. createPizza() is a ______________ (two words)

[FACTORYMETHOD]
12. Joel likes this kind of pizza [CHICAGOSTYLE]
13. In Factory Method, the PizzaStore and the

concrete Pizzas all depend on this abstraction
[PIZZA]

14. When a class instantiates an object from a
concrete class, it's __________ on that object
[DEPENDENT]

15. All factory patterns allow us to __________
object creation [ENCAPSULATE]

Down
2. We used ______________ in Simple Factory

and Abstract Factory and inheritance in Factory
Method [OBJECTCOMPOSITION]

3. Abstract Factory creates a ___________ of
products [FAMILY]

5. Not a REAL factory pattern, but handy
nonetheless [SIMPLEFACTORY]

10. Ethan likes this kind of pizza [NYSTYLE]

Design Patterns Crossword Solution
It’s been a long chapter. Grab a slice of Pizza and relax while doing this
crossword; all of the solution words are from this chapter. Here’s the solution.

this is a new chapter   169

Our next stop is the Singleton Pattern, our ticket to creating one-
of-a-kind objects for which there is only one instance, ever. You might

be happy to know that of all patterns, the Singleton is the simplest in terms of its class diagram;

in fact, the diagram holds just a single class! But don’t get too comfortable; despite its simplicity

from a class design perspective, it’s going to require some deep object-oriented thinking in its

implementation. So put on that thinking cap, and let’s get going.

5 the Singleton Pattern

One-of-a-Kind Objects

I tell ya she’s ONE
OF A KIND. Look at the
lines, the curves, the body,

the headlights!

You talkin’ to me or the car?
Oh, and when can I get my oven
mitt back?

170   Chapter 5

one and only one

Developer: What use is that?

Guru: There are many objects we only need one of: thread pools, caches, dialog boxes, objects
that handle preferences and registry settings, objects used for logging, and objects that act as
device drivers to devices like printers and graphics cards. In fact, for many of these types of
objects, if we were to instantiate more than one we’d run into all sorts of problems like incorrect
program behavior, overuse of resources, or inconsistent results.

Developer: Okay, so maybe there are classes that should only be instantiated once, but do I
need a whole chapter for this? Can’t I just do this by convention or by global variables? You know,
like in Java, I could do it with a static variable.

Guru: In many ways, the Singleton Pattern is a convention for ensuring one and only one object
is instantiated for a given class. If you’ve got a better one, the world would like to hear about it;
but remember, like all patterns, the Singleton Pattern is a time-tested method for ensuring only
one object gets created. The Singleton Pattern also gives us a global point of access, just like a
global variable, but without the downsides.

Developer: What downsides?

Guru: Well, here’s one example: if you assign an object to a global variable, then that object
might be created when your application begins. Right? What if this object is resource intensive
and your application never ends up using it? As you will see, with the Singleton Pattern, we can
create our objects only when they are needed.

Developer: This still doesn’t seem like it should be so difficult.

Guru: If you’ve got a good handle on static class variables and methods as well as access
modifiers, it’s not. But, in either case, it is interesting to see how a Singleton works, and, as
simple as it sounds, Singleton code is hard to get right. Just ask yourself: how do I prevent more
than one object from being instantiated? It’s not so obvious, is it?

That’s one and ONLY
ONE object.

What is this? An
entire chapter about
how to instantiate just
ONE object?

you are here 4   171

the singleton pattern

How would you create a single object? new MyObject();

And, what if another object wanted to create a
MyObject? Could it call new on MyObject again?

Yes, of course.

So as long as we have a class, can we always
instantiate it one or more times?

Yes. Well, only if it’s a public class.

And if not? Well, if it’s not a public class, only classes in the
same package can instantiate it. But they can still
instantiate it more than once.

Hmm, interesting.

Did you know you could do this?

No, I’d never thought of it, but I guess it makes
sense because it is a legal definition.

public MyClass {

 private MyClass() {}

}

What does it mean? I suppose it is a class that can’t be instantiated
because it has a private constructor.

Well, is there ANY object that could use
the private constructor?

Hmm, I think the code in MyClass is the only
code that could call it. But that doesn’t make
much sense.

The Little Singleton
A small Socrat ic exercise in the style of The Lit t le Lisper

172   Chapter 5

creating a singleton

Why not ? Because I’d have to have an instance of the
class to call it, but I can’t have an instance
because no other class can instantiate it. It’s
a chicken-and-egg problem: I can use the
constructor from an object of type MyClass,
but I can never instantiate that object because
no other object can use “new MyClass()”.

Okay. It was just a thought.

What does this mean?

MyClass is a class with a static method. We can call
the static method like this:

MyClass.getInstance();

public MyClass {

 public static MyClass getInstance() {

 }

}

Why did you use MyClass instead of
some object name?

Well, getInstance() is a static method; in other
words, it is a CLASS method. You need to use the
class name to reference a static method.

Very interesting. What if we put things together?

public MyClass {

 private MyClass() {}

 public static MyClass getInstance() {
 return new MyClass();
 }
}

Wow, you sure can.
Now can I instantiate a MyClass?

So, now can you think of a second way to instantiate
an object?

MyClass.getInstance();

Can you finish the code so that only ONE instance
of MyClass is ever created?

Yes, I think so...

(You’ll find the code on the next page.)

you are here 4   173

the singleton pattern

public class Singleton {
 private static Singleton uniqueInstance;

 // other useful instance variables here

 private Singleton() {}

 public static Singleton getInstance() {
 if (uniqueInstance == null) {
 uniqueInstance = new Singleton();
 }
 return uniqueInstance;
 }

 // other useful methods here
}

Dissecting the classic Singleton
Pattern implementation

We have a s
tatic

variable t
o hold ou

r

one instan
ce of the

class Sing
leton.

Our constructor is
declared private; only
Singleton can instantiate
this class!

The getInstance() method
gives us a way to instantiate
the class and also to return
an instance of it.

Of course, Singleton is a normal class; it has other useful instance variables and methods.

if (uniqueInstance == null) {

 uniqueInstance = new Singleton();

}

return uniqueInstance;

If uniqueInstance is null, then w
e

haven’t created the instance y
et...

...and, if it doesn’t exist, we
instantiate Singleton through
its private constructor and
assign it to uniqueInstance. Note
that if we never need the
instance, it never gets created;
this is lazy instantiation.

By the time we hit this code, we
have an instance and we return it.

If uniqueInstance wasn’t null,
then it was previously created.
We just fall through to the
return statement.

Code Up Close

uniqueInstance holds our ONE
instance; remember, it is a
static variable.

Let’s rename
MyClass to Singleton.

	

If you’re just
flipping through
the book, don’t
blindly type in this
code; you’ll see it
has a few issues
later in the chapter.

174   Chapter 5

interview with singleton

HeadFirst: Today we are pleased to bring you an
interview with a Singleton object. Why don’t you
begin by telling us a bit about yourself ?

Singleton: Well, I’m totally unique; there is just one
of me!

HeadFirst: One?

Singleton: Yes, one. I’m based on the Singleton
Pattern, which ensures that at any time there is only
one instance of me.

HeadFirst: Isn’t that sort of a waste? Someone took
the time to develop a full-blown class and now all we
can get is one object out of it?

Singleton: Not at all! There is power in ONE. Let’s
say you have an object that contains registry settings.
You don’t want multiple copies of that object and its
values running around—that would lead to chaos.
By using an object like me you can ensure that every
object in your application is making use of the same
global resource.

HeadFirst: Tell us more…

Singleton: Oh, I’m good for all kinds of things.
Being single sometimes has its advantages, you know. 
I’m often used to manage pools of resources, like
connection or thread pools.

HeadFirst: Still, only one of your kind? That sounds
lonely.

Singleton: Because there’s only one of me, I do keep
busy, but it would be nice if more developers knew
me—many developers run into bugs because they have
multiple copies of objects floating around they’re not
even aware of.

HeadFirst: So, if we may ask, how do you know
there is only one of you? Can’t anyone with a new
operator create a “new you”?

Singleton: Nope! I’m truly unique.

HeadFirst: Well, do developers swear an oath not to
instantiate you more than once?

Singleton: Of course not. The truth be told…well,
this is getting kind of personal but…I have no public
constructor.

HeadFirst: NO PUBLIC CONSTRUCTOR! Oh,
sorry, no public constructor?

Singleton: That’s right. My constructor is declared
private.

HeadFirst: How does that work? How do you EVER
get instantiated?

Singleton: You see, to get a hold of a Singleton
object, you don’t instantiate one, you just ask for
an instance. So my class has a static method called
getInstance(). Call that, and I’ll show up at once, ready
to work. In fact, I may already be helping other objects
when you request me.

HeadFirst: Well, Mr. Singleton, there seems to be a
lot under your covers to make all this work. Thanks
for revealing yourself and we hope to speak with you
again soon!

Patterns Exposed
This week’s interview:
Confessions of a Singleton

you are here 4   175

the singleton pattern

public class ChocolateBoiler {
 private boolean empty;
 private boolean boiled;

 private ChocolateBoiler() {
 empty = true;
 boiled = false;
 }

 public void fill() {
 if (isEmpty()) {
 empty = false;
 boiled = false;
 // fill the boiler with a milk/chocolate mixture
 }
 }

 public void drain() {
 if (!isEmpty() && isBoiled()) {
 // drain the boiled milk and chocolate
 empty = true;
 }
 }

 public void boil() {
 if (!isEmpty() && !isBoiled()) {
 // bring the contents to a boil
 boiled = true;
 }
 }

 public boolean isEmpty() {
 return empty;
 }

 public boolean isBoiled() {
 return boiled;
 }
}

The Chocolate Factory

Everyone knows that all modern chocolate factories have computer-controlled
chocolate boilers. The job of the boiler is to take in chocolate and milk, bring them
to a boil, and then pass them on to the next phase of making chocolate bars.

Here’s the controller class for Choc-O-Holic, Inc.’s industrial strength Chocolate
Boiler. Check out the code; you’ll notice they’ve tried to be very careful to ensure
that bad things don’t happen, like draining 500 gallons of unboiled mixture, or
filling the boiler when it’s already full, or boiling an empty boiler!

This code is only started
when the boiler is empty!

To fill the boiler it must be
empty, and, once it’s full, we
set the empty and boiled flags.

To drain the boiler, it must be full
(non-empty) and also boiled. Once it is
drained, we set empty back to true.

To boil the mixture, the boiler has to be full and not already boiled. Once it’s boiled, we set the boiled flag to true.

public

176   Chapter 5

chocolate boiler singleton

public class ChocolateBoiler {

 private boolean empty;

 private boolean boiled;

 ChocolateBoiler() {

 empty = true;

 boiled = false;

 }

 public void fill() {

 if (isEmpty()) {

 empty = false;

 boiled = false;

 // fill the boiler with a milk/chocolate mixture

 }

 }

 // rest of ChocolateBoiler code...

}

Choc-O-Holic has done a decent job of ensuring bad things don’t happen,
don’t you think? Then again, you probably suspect that if two ChocolateBoiler
instances get loose, some very bad things can happen.

How might things go wrong if more than one instance of ChocolateBoiler is
created in an application?

Can you help Choc-O-Holic improve their ChocolateBoiler class
by turning it into a Singleton?

you are here 4   177

the singleton pattern

Singleton
static uniqueInstance

// Other useful Singleton data...

static getInstance()

// Other useful Singleton methods...

The Singleton Pattern ensures a class has only one
instance, and provides a global point of access to it.

Singleton Pattern defined
Now that you’ve got the classic implementation of Singleton
in your head, it’s time to sit back, enjoy a bar of chocolate,
and check out the finer points of the Singleton Pattern.

Let’s start with the concise definition of the pattern:

No big surprises there. But let’s break it down a bit more:

�	 What’s really going on here? We’re taking a class and letting it manage a single
instance of itself. We’re also preventing any other class from creating a new
instance on its own. To get an instance, you’ve got to go through the class itself.

�	 We’re also providing a global access point to the instance: whenever you need
an instance, just query the class and it will hand you back the single instance.
As you’ve seen, we can implement this so that the Singleton is created in a lazy
manner, which is especially important for resource-intensive objects.

Okay, let’s check out the class diagram:

The getInstanc
e() method is stat

ic,

which means it’s a cla
ss method, so you

can convenien
tly access th

is method

from anywhere in your
code using

Singleton.get
Instance(). T

hat’s just as

easy as acces
sing a global

variable, but

we get benefit
s like lazy ins

tantiation

from the Singleto
n.

The uniqueInstance
class variable holds our
one and only instance
of Singleton.

A class implementing the Singleton
Pattern is more than a Singleton; it
is a general-purpose class with its
own set of data and methods.

178   Chapter 5

threads are a problem

Houston, we have a problem...
Hershey, PA

It looks like the Chocolate Boiler has let us down; despite
the fact we improved the code using the classic Singleton
Pattern, somehow the Chocolate Boiler’s fill() method was
able to start filling the boiler even though a batch of milk
and chocolate was already boiling! That’s 500 gallons of
spilled milk (and chocolate)! What happened!?

Could the addition of threads have caused
this? Isn’t it the case that once we’ve set the
uniqueInstance variable to the sole instance
of ChocolateBoiler, all calls to getInstance()
should return the same instance? Right?

We don’t know what happened! The new Singleton
code was running fine. The only thing we can think
of is that we just added some optimizations to
the Chocolate Boiler Controller that makes use of

multiple threads.

you are here 4   179

the singleton pattern

We have two threads, each executing this code. Your job is to play the JVM
and determine whether there is a case in which two threads might get a hold
of different boiler objects. Hint:
you really just need to look at the

sequence of operations in the
getInstance() method and
the value of uniqueInstance
to see how they might
overlap. Use the code

magnets to help you study how the
code might interleave to create two boiler objects.

BE the JVM

if (uniqueInstance == null) {

}

Thread
One

Thread
Two

uniqueInstance =

 new ChocolateBoiler();

return uniqueInstance;

public static ChocolateBoiler

	 getInstance() {

}

ChocolateBoiler boiler =

 ChocolateBoiler.getInstance();

boiler.fill();

boiler.boil();

boiler.drain();

Value of
uniqueInstance

Make sure you check your answer on
page 188 before continuing!

180   Chapter 5

multithreading and singleton

public class Singleton {

 private static Singleton uniqueInstance;

 // other useful instance variables here

 private Singleton() {}

 public static synchronized Singleton getInstance() {

 if (uniqueInstance == null) {

 uniqueInstance = new Singleton();

 }

 return uniqueInstance;

 }

 // other useful methods here

}

Dealing with multithreading

Our multithreading woes are almost trivially fixed by making
getInstance() a synchronized method:

By adding the synchronized k
eyword to

getInstance(), we force every thread to

wait its turn before it can en
ter the

method. That is, no two threads may

enter the method at the same time.

Good point, and it’s actually a little worse than you make
out: the only time synchronization is relevant is the first time
through this method. In other words, once we’ve set the
uniqueInstance variable to an instance of Singleton, we have
no further need to synchronize this method. After the first time
through, synchronization is totally unneeded overhead!

I agree this fixes the
problem. But synchronization
is expensive; is this an issue?

you are here 4   181

the singleton pattern

public class Singleton {

 private static Singleton uniqueInstance = new Singleton();

 private Singleton() {}

 public static Singleton getInstance() {

 return uniqueInstance;

 }

}

Using this approach, we rely on the JVM to create the unique instance of the Singleton
when the class is loaded. The JVM guarantees that the instance will be created before
any thread accesses the static uniqueInstance variable.

Can we improve multithreading?

For most Java applications, we obviously need to ensure that the Singleton works in the
presence of multiple threads. But it’s expensive to synchronize the getInstance() method,
so what do we do?

Well, we have a few options...

1. Do nothing if the performance of getInstance() isn’t critical
to your application.
That’s right; if calling the getInstance() method isn’t causing substantial overhead for your
application, forget about it. Synchronizing getInstance() is straightforward and effective.
Just keep in mind that synchronizing a method can decrease performance by a factor
of 100, so if a high-traffic part of your code begins using getInstance(), you may have to
reconsider.

2. Move to an eagerly created instance rather than a lazily
created one.
If your application always creates and uses an instance of the Singleton, or the overhead
of creation and runtime aspects of the Singleton isn’t onerous, you may want to create
your Singleton eagerly, like this:

Go ahead and create an instance of Singleton in a static initializer. This code is guaranteed to be thread safe!

We’ve already got an
instance, so just return

 it.

182   Chapter 5

double-checked locking

public class Singleton {

 private volatile static Singleton uniqueInstance;

 private Singleton() {}

 public static Singleton getInstance() {

 if (uniqueInstance == null) {

 synchronized (Singleton.class) {

 if (uniqueInstance == null) {

 uniqueInstance = new Singleton();

 }

 }

 }

 return uniqueInstance;

 }

}

Check for an instance and
if there isn’t one, enter a
synchronized block.

Once in the block, check again and if it’s still null, create an instance.

Note we only synchronize
the first time through!

The volatile keyword ensures that multiple threads
handle the uniqueInstance variable correctly when it
is being initialized to the Singleton instance.

If performance is an issue in your use of the getInstance() method, then this method of
implementing the Singleton can drastically reduce the overhead.

3. Use “double-checked locking” to reduce the use of
synchronization in getInstance().
With double-checked locking, we first check to see if an instance is created, and if not, THEN
we synchronize. This way, we only synchronize the first time through, just what we want.

Let’s check out the code:

	 Double-checked locking doesn’t work in

Java 1.4 or earlier!

If for some reason you’re using an old version

of Java, unfortunately, in Java version 1.4 and

earlier, many JVMs contain implementations of

the volatile keyword that allow improper synchronization for

double-checked locking. If you must use a JVM earlier than Java

5, consider other methods of implementing your Singleton.

you are here 4   183

the singleton pattern

Meanwhile, back at the Chocolate Factory...

While we’ve been off diagnosing the multithreading problems, the chocolate boiler
has been cleaned up and is ready to go. But first, we have to fix the multithreading
problems. We have a few solutions at hand, each with different tradeoffs, so which
solution are we going to employ?

At this point, the Chocolate Factory is a happy customer and Choc-O-Holic was glad to
have some expertise applied to their boiler code. No matter which multithreading solution
you applied, the boiler should be in good shape with no more mishaps. Congratulations—
not only have you managed to escape 500 lbs of hot chocolate in this chapter, but you’ve
also been through all the potential problems of the Singleton Pattern.

Congratulat ions!

For each solution, describe its applicability to the
problem of fixing the Chocolate Boiler code:

Synchronize the getInstance() method:

Use eager instantiation:

Double-checked locking:

184   Chapter 5

q&a about singleton

Q: For such a simple pattern
consisting of only one class, Singleton
sure seems to have some problems.

A: Well, we warned you up front! But
don’t let the problems discourage you; while
implementing Singletons correctly can be
tricky, after reading this chapter you’re now
well informed on the techniques for creating
Singletons and should use them wherever
you need to control the number of instances
you’re creating.

Q: Can’t I just create a class in which
all methods and variables are defined as
static? Wouldn’t that be the same as a
Singleton?

A: Yes, if your class is self-contained and
doesn’t depend on complex initialization.
However, because of the way static
initializations are handled in Java, this can
get very messy, especially if multiple classes
are involved. Often this scenario can result
in subtle, hard-to-find bugs involving order
of initialization. Unless there is a compelling
need to implement your “singleton” this way,
it’s far better to stay in the object world.

Q: What about class loaders? I
heard there’s a chance that two class
loaders could each end up with their own
instance of Singleton.

A: Yes, that is true as each class loader
defines a namespace. If you have two or
more class loaders, you can load the same
class multiple times (once in each class
loader). Now, if that class happens to be a
Singleton, then since we have more than
one version of the class, we also have more
than one instance of Singleton. So, if you are
using multiple class loaders and Singletons,
be careful. One way around this problem is
to specify the class loader yourself.

 Q: And reflection, and serialization/
deserialization?

A: Yes, reflection and serialization/
deserialization can also present problems
with Singletons. If you’re an advanced Java
user using reflection, serialization, and
deserialization, you’ll need to keep that in mind.

Q: Earlier we talked about the loose
coupling principle. Isn’t a Singleton
violating this? After all, every object in
our code that depends on the Singleton
is going to be tightly coupled to that very
specific object.

A: Yes, and in fact this is a common
criticism of the Singleton Pattern. The
loose coupling principle says to “strive for
loosely coupled designs between objects
that interact.” It’s easy for Singletons to
violate this principle: if you make a change
to the Singleton, you’ll likely have to make a
change to every object connected to it.
 Q: I’ve always been taught that a class
should do one thing and one thing only.
For a class to do two things is considered
bad OO design. Isn’t a Singleton violating
this too?
 A: You would be referring to the Single
Responsibility Principle, and yes, you are
correct: the Singleton is responsible not only
for managing its one instance (and providing
global access), but also for whatever
its main role is in your application. So,
certainly you could argue it is taking on two
responsibilities. Nevertheless, it isn’t hard to
see that there is utility in a class managing
its own instance; it certainly makes the
overall design simpler. In addition, many
developers are familiar with the Singleton
Pattern as it is in wide use. That said, some
developers do feel the need to abstract out
the Singleton functionality.

Q: I wanted to subclass my Singleton
code, but I ran into problems. Is it okay to
subclass a Singleton?

A: One problem with subclassing a
Singleton is that the constructor is private.
You can’t extend a class with a private
constructor. So, the first thing you’ll have
to do is change your constructor so that it’s
public or protected. But then, it’s not really a
Singleton anymore, because other classes
can instantiate it.

If you do change your constructor, there’s
another issue. The implementation of
Singleton is based on a static variable, so
if you do a straightforward subclass, all of
your derived classes will share the same
instance variable. This is probably not what
you had in mind. So, for subclassing to work,
implementing a registry of sorts is required
in the base class.

But what are you really gaining from
subclassing a Singleton? Like most patterns,
Singleton is not necessarily meant to be a
solution that can fit into a library. In addition,
the Singleton code is trivial to add to any
existing class. Last, if you are using a large
number of Singletons in your application,
you should take a hard look at your design.
Singletons are meant to be used sparingly.

Q: I still don’t totally understand
why global variables are worse than a
Singleton.

A: In Java, global variables are basically
static references to objects. There are a
couple of disadvantages to using global
variables in this manner. We’ve already
mentioned one: the issue of lazy versus
eager instantiation. But we need to keep
in mind the intent of the pattern: to ensure
only one instance of a class exists and to
provide global access. A global variable can
provide the latter, but not the former. Global
variables also tend to encourage developers
to pollute the namespace with lots of global
references to small objects. Singletons don’t
encourage this in the same way, but can be
abused nonetheless.

you are here 4   185

the singleton pattern

I just realized...I think we can
solve a lot of the problems with
Singleton by using an enum. Is
that right?

Ah, good idea!

Many of the problems we’ve discussed—worrying about
synchronization, class loading issues, reflection, and serialization/
deserialization issues—can all be solved by using an enum to create
your Singleton. Here’s how you’d do that:

public enum Singleton {

 UNIQUE_INSTANCE;

 // more useful fields here

}

public class SingletonClient {

	 public static void main(String[] args) {

		 Singleton singleton = Singleton.UNIQUE_INSTANCE;

		 // use the singleton here

	 }

}

Yep, that’s all there is to it. Simplest Singleton ever, right? Now, you
might be asking, why did we go through all that earlier with creating
a Singleton class with a getInstance() method and then synchronizing,
and so on? We did that so you really, truly understand how Singleton
works. Now that you know, you can go off and use enum whenever
you need a Singleton, and still be able to ace that Java interview if
the question pops up: “How do you implement a Singleton without
using enum?”

Can you rework Choc-O-Holic to use an enum? Give it a try.

And back in the old days,
when we had to walk to
school, uphill, in the snow, in
both directions, Java didn’t
have enums.

186   Chapter 5

your design toolbox

Tools for your Design Toolbox
You’ve now added another pattern to your toolbox.
Singleton gives you another method of creating
objects—in this case, unique objects.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion

but closed for
modification.

Depend on abstra
ctions. Do not

depend on conc
rete classes.

OO Principles

As you’ve seen, despite its apparent simplicity, there are a lot of details
involved in Singleton’s implementation. After reading this chapter,
though, you’re ready to go out and use Singleton in the wild.

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has one

instance and pr
ovide a global p

oint of

access to it.

When you need to ensu
re you

only have one instanc
e of a class

running around your
application,

turn to the Singleto
n.

	� The Singleton Pattern
ensures you have at most
one instance of a class in
your application.

	� The Singleton Pattern also
provides a global access
point to that instance.

	� Java’s implementation
of the Singleton Pattern
makes use of a private
constructor, a static
method combined with a
static variable.

	� Examine your performance
and resource constraints
and carefully choose an
appropriate Singleton
implementation for
multithreaded applications
(and we should
consider all applications
multithreaded!).

	� Beware of the double-
checked locking
implementation; it isn’t
thread safe in versions
before Java 5.

	� Be careful if you are using
multiple class loaders; this
could defeat the Singleton
implementation and result
in multiple instances.

	� You can use Java’s enums
to simplify your Singleton
implementation.

you are here 4   187

the singleton pattern

Design Patterns Crossword
Sit back, open that case of chocolate that you were sent for solving the
multithreading problem, and have some downtime working on this
little crossword puzzle; all of the solution words are from this chapter.

ACROSS
3. Company that produces boilers.
6. An incorrect implementation caused this to overflow.
7. The Singleton Pattern has one.
10. To totally defeat the new constructor, we have to
declare the constructor __________.
12. The classic implementation doesn’t handle this.
13. Singleton provides a single instance and __________
(three words).
14. An easy way to create Singletons in Java.
15. The Singleton was embarrassed it had no public
__________.
16. A Singleton is a class that manages an instance of
________.

DOWN
1. Added to chocolate in the boiler.
2. Flawed multithreading approach if not using Java 5 or
later (two words).
3. It was “one of a kind.”
4. Multiple __________ can cause problems (two words).
5. If you don’t need to worry about lazy instantiation, you
can create your instance __________.
8. One advantage over global variables: ________
creation.
9. Chocolate capital of the USA.
11. Singleton ensures only one of these exists.

1 2

3 4

5 6

7

8 9

10 11 12

13

14

15

16

Across
3. Company that produces boilers
6. An incorrect implementation caused this to

overflow
7. The Singleton Pattern has one

10. To totally defeat the new constructor, we
have to declare the constructor ________

12. The classic implementation doesn't handle
this

13. Singleton provides a single instance and
(three words)

14. An easy way to create Singletons in Java
15. The Singleton was embarassed it had no

public ____________
16. A Singleton is a class that manages an

instance of ________

Down
1. Added to chocolate in the boiler
2. Flawed multithreading approach if not using

Java 5 or later (two words)
3. It was "one of a kind"
4. Multiple __________ can cause problems

(two words)
5. If you don't need to worry about lazy

instantiation, you can create your instance

8. One advantage over global variables:
_______ creation

9. Chocolate capital of the US
11. Singleton ensures only one of these exist

188   Chapter 5

exercise solutions

Thead
One

Thead
Two

Value of
uniqueInstance

if (uniqueInstance == null) {

uniqueInstance =

 new ChocolateBoiler();

public static ChocolateBoiler

	 getInstance() {

public static ChocolateBoiler

	 getInstance() {

if (uniqueInstance == null) {

uniqueInstance =

 new ChocolateBoiler();

return uniqueInstance;

return uniqueInstance;

null

null

null

<object1>

<object2>

<object2>

<object1>

Two different
objects are
returned!
We have two
ChocolateBoiler
instances!!!

Uh oh, this
doesn’t look
good!

BE the JVM Solution

you are here 4   189

the singleton pattern

public class ChocolateBoiler {

 private boolean empty;

 private boolean boiled;

 private static ChocolateBoiler uniqueInstance;

 private ChocolateBoiler() {

 empty = true;

 boiled = false;

 }

 public static ChocolateBoiler getInstance() {

 if (uniqueInstance == null) {

 uniqueInstance = new ChocolateBoiler();

 }

 return uniqueInstance;

 }

 public void fill() {

 if (isEmpty()) {

 empty = false;

 boiled = false;

 // fill the boiler with a milk/chocolate mixture

 }

 }

 // rest of ChocolateBoiler code...

}

Can you help Choc-O-Holic improve their ChocolateBoiler class
by turning it into a Singleton?

190   Chapter 5

exercise solutions

Design
Patterns
Crossword
Solution

For each solution, describe its applicability to the
problem of fixing the Chocolate Boiler code:

Synchronize the getInstance() method:

Use eager instantiation:

Double-checked locking:

A straightforward technique that is guaranteed to work. We don’t seem to have

any performance concerns with the chocolate boiler, so this would be a good choice.

We are always going to instantiate the chocolate boiler in our code, so statically initializing

the instance would cause no concerns. This solution would work as well as the synchronized

method, although perhaps be less obvious to a developer familar with the standard pattern.

Given we have no performance concerns, double-checked locking seems like overkill. In

addition, we’d have to ensure that we are running at least Java 5.

M
1

D
2

I O

C
3

H O C - O - H O L I C
4

U

A K L S
5

B
6

O I L E R

R A T L

C
7

L A S S A E

L
8

S T C H
9

P
10

R I
11

V A T E M
12

U L T I T H R E A D I N G

N Z O C E R

S Y G
13

L O B A L A C C E S S P O I N T

T D L K H

A E L E E
14

N U M

C
15

O N S T R U C T O R Y D Y

C S

I
16

T S E L F

Across
3. Company that produces boilers [CHOC-O-

HOLIC]
6. An incorrect implementation caused this to

overflow [BOILER]
7. The Singleton Pattern has one [CLASS]

10. To totally defeat the new constructor, we
have to declare the constructor ________
[PRIVATE]

12. The classic implementation doesn't handle
this [MULTITHREADING]

13. Singleton provides a single instance and
(three words) [GLOBALACCESSPOINT]

14. An easy way to create Singletons in Java
[ENUM]

15. The Singleton was embarassed it had no
public ____________ [CONSTRUCTOR]

16. A Singleton is a class that manages an
instance of ________ [ITSELF]

Down
1. Added to chocolate in the boiler [MILK]
2. Flawed multithreading approach if not using

Java 5 or later (two words)
[DOUBLECHECKED]

3. It was "one of a kind" [CAR]
4. Multiple __________ can cause problems

(two words) [CLASSLOADERS]
5. If you don't need to worry about lazy

instantiation, you can create your instance
________ [STATICALLY]

8. One advantage over global variables:
_______ creation [LAZY]

9. Chocolate capital of the US [HERSHEY]
11. Singleton ensures only one of these exist

[INSTANCE]

this is a new chapter   191

In this chapter, we take encapsulation to a whole new level:
we’re going to encapsulate method invocation. That’s right—by

encapsulating method invocation, we can crystallize pieces of computation so that

the object invoking the computation doesn’t need to worry about how to do things, it

just uses our crystallized method to get it done. We can also do some wickedly smart

things with these encapsulated method invocations, like save them away for logging

or reuse them to implement undo functionality in our code.

Encapsulating Invocation
6 the Command Pattern

These top secret drop
boxes have revolutionized the spy
industry. I just drop in my request and
people disappear, governments change
overnight, and my dry cleaning gets done. I
don’t have to worry about when, where, or

how; it just happens!

192   Chapter 6

home automation or bust

Home Automation or Bust, Inc.

1221 Industrial Avenue, Suite 2000

Future City, IL 62914

Greetings!

I recently received a demo and briefing from Johnny

Hurricane, CEO of Weather-O-Rama, on their new

expandable weather station. I have to say, I was so

impressed with the software architecture that I’d like to

ask you to design the API for our new Home Automation

Remote Control. In return for your services we’d be happy

to handsomely reward you with stock options in Home

Automation or Bust, Inc.

You should have already received a prototype of our

ground-breaking remote control for your perusal. The

remote control features seven programmable slots (each

can be assigned to a different household device) along with

corresponding on/off buttons for each. The remote also has

a global undo button.

I’m also attaching to this email a set of Java classes

that were created by various vendors to control home

automation devices such as lights, fans, hot tubs, audio

equipment, and other similar controllable appliances.

We’d like you to create an API for programming the remote

so that each slot can be assigned to control a device or set of

devices. Note that it is important that we be able to control

all the current devices, and also any future devices that the

vendors may supply.

Given the work you did on the Weather-O-Rama weather

station, we know you’ll do a great job on our remote control!

We look forward to seeing your design.

Sincerely,

Bill Thompson, CEO

you are here 4   193

the command pattern

There are on and off
buttons for each of
the seven slots.

 We’ve got seven slots t
o program. We

can put a different d
evice in each

slot and control it vi
a the buttons.

Here’s the global undo button that
undoes the operation of the last
button pressed.

These two buttons are used to control the household device stored in slot one...
...and these two control the household device stored in slot two...

...and so on.

Free hardware! Let’s check out the Remote Control...

Get your Sharpie out and
write your device names here.

194   Chapter 6

vendor classes from home automation

Taking a look at the vendor classes

Let’s check out the vendor classes the CEO attached to his email.
These should give you some idea of the interfaces of the objects
we need to control from the remote.

CeilingLight

on()
off()
dim()

Hottub

circulate()
jetsOn()
jetsOff()
setTemperature()

on()
off()
setInputChannel()
setVolume()

TV
OutdoorLight

on()
off()

GarageDoor

up()
down()
stop()
lightOn()
lightOff()

Stereo

on()
off()
setCd()
setDvd()
setRadio()
setVolume() FaucetControl

openValve()
closeValve()

Thermostat

setTemperature()
()

GardenLight

setDuskTime()
setDawnTime()
manualOn()

manualOff()

CeilingFan

high()
medium()
low()
off()
getSpeed()

ApplianceControl

on()
off()

SecurityControl

arm()
disarm()

Sprinkler

waterOn()
waterOff()

Light

on()
off()

It looks like we have quite a set of classes here, and not a lot of
industry effort to come up with a set of common interfaces. Not
only that, it sounds like we can expect more of these classes in the
future. Designing a remote control API is going to be interesting.
Let’s get on to the design.

Wow, lots of different kinds
of devices that we’re going
to need to be able to control.

And some very different
kinds of interfaces across
these devices.

you are here 4   195

the command pattern

Mary: Yes, I thought we’d see a bunch of classes with on() and off()
methods, but here we’ve got methods like dim(), setTemperature(),
setVolume(), and setInputChannel(), and waterOn().

Sue: Not only that, it sounds like we can expect more vendor classes in
the future with methods just as diverse.

Mary: I think it’s important we view this as a separation of concerns.

Sue: Meaning?

Mary: What I mean is that the remote should know how to interpret
button presses and make requests, but it shouldn’t know a lot about
home automation or how to turn on a hot tub.

Sue: But if the remote is dumb and just knows how to make generic
requests, how do we design the remote so that it can invoke an action
that, say, turns on a light or opens a garage door?

Mary: I’m not sure, but we don’t want the remote to have to know the
specifics of the vendor classes.

Sue: What do you mean?

Mary: We don’t want the remote to consist of a set of if statements,
like “if slot1 == Light, then light.on(), else if slot1 == Hottub then
hottub.jetsOn()”. We know that is a bad design.

Sue: I agree. Whenever a new vendor class comes out, we’d have to go
in and modify the code, potentially creating bugs and more work for
ourselves!

Cubicle Conversation

Sue

Your teammates are already discussing how to design the remote control API...

Well, we’ve got another design to
do. My first observation is that we’ve
got a simple remote with on and off
buttons but a set of vendor classes
that are quite diverse.

196   Chapter 6

command pattern might work

Mary: Yeah? Tell us more.

Joe: The Command Pattern allows you to decouple the requester of an action from
the object that actually performs the action. So, here the requester would be the remote
control and the object that performs the action would be an instance of one of your
vendor classes.

Sue: How is that possible? How can we decouple them? After all, when I press a button,
the remote has to turn on a light.

Joe: You can do that by introducing command objects into your design. A command object
encapsulates a request to do something (like turn on a light) on a specific object (say, the
living room light object). So, if we store a command object for each button, when the
button is pressed we ask the command object to do some work. The remote doesn’t have
any idea what the work is, it just has a command object that knows how to talk to the right
object to get the work done. So, you see, the remote is decoupled from the light object!

Sue: This certainly sounds like it’s going in the right direction.

Mary: Still, I’m having a hard time wrapping my head around the pattern.

Joe: Given that the objects are so decoupled, it’s a little difficult to picture how the pattern
actually works.

Mary: Let me see if I at least have the right idea: using this pattern, we could create
an API in which these command objects can be loaded into button slots, allowing the
remote code to stay very simple. And the command objects encapsulate how to do a home
automation task along with the object that needs to do it.

Joe: Yes, I think so. I also think this pattern can help you with that undo button, but I
haven’t studied that part yet.

Mary: This sounds really encouraging, but I think I have a bit of work to do to really
“get” the pattern.

Sue: Me too.

Hey, I couldn’t help
overhearing. Since Chapter 1
I’ve been boning up on Design

Patterns. There’s a pattern
called “Command Pattern” I think

might help.

Joe

you are here 4   197

the command pattern

Meanwhile, back at the Diner...,
or,

A brief introduction to the Command Pattern

Okay, we all know how the Diner operates:

You, the Customer,
give the Waitress
your Order.

1

The Waitress
takes the Order,
places it on the
order counter,
and says “Order
up!”

The Short-Order Cook prepares your meal
from the Order.

As Joe said, it is a little hard to understand the Command Pattern by just hearing its
description. But don’t fear, we have some friends ready to help: remember
our friendly diner from Chapter 1? It’s been a while since we visited Alice,
Flo, and the short-order cook, but we’ve got good reason for returning
(beyond the food and great conversation): the diner is going to help us
understand the Command Pattern.

So, let’s take a short detour back to the diner and study the interactions
between the customers, the waitress, the orders, and the short-order
cook. Through these interactions, you’re going to understand the
objects involved in the Command Pattern and also get a feel for how the
decoupling works. After that, we’re going to knock out that remote control
API.

Checking in at the Objectville Diner...

2

3

Objectville Diner

Wish you were here...

Burger with Cheese

 Malt Shake

198   Chapter 6

the diner

Burger with Cheese

 Malt Shake
createOrder()

takeOrder()

Burger with Cheese

 Malt Shake

orderU
p()

makeBurger(), makeShake()

outp
ut

The Order consists of an
rder

Slip and the Customer’s menu

items that are written on it.

The Customer knows
what he wants and
creates an Order.

The Waitress takes the Order, and when she gets around to it, she calls its orderUp() method to begin the Order’s preparation.

The Order has
 all

the instr
uctions

needed t
o

prepare t
he

meal. The Order

directs t
he

Short-Order

Cook with

methods li
ke

makeBurger().

The Short-Order Cook follows the instructions of the Order and produces the meal.

Let’s study the interaction in a little more detail...
...and given this Diner is in Objectville, let’s think about
the object and method calls involved, too!

Start H
ere

I’ll have a Burger
with Cheese and a
Malt Shake.

you are here 4   199

the command pattern

The Objectville Diner roles and responsibilities

An Order Slip encapsulates a request to prepare a meal.

Think of the Order Slip as an object that acts as a
request to prepare a meal. Like any object, it can be passed
around—from the Waitress to the order counter, or to the next
Waitress taking over her shift. It has an interface that consists
of only one method, orderUp(), that encapsulates the actions
needed to prepare the meal. It also has a reference to the object
that needs to prepare it (in our case, the Short-Order Cook). It’s
encapsulated in that the Waitress doesn’t have to know what’s in
the Order or even who prepares the meal; she only needs to pass
the slip through the order window and call “Order up!” Okay, in real life a waitress would probably

care what is on the order slip and who cooks
it, but this is Objectville...work with us here!

public void
 orderUp() {

 cook.m
akeBurger();

 cook.m
akeShake(

);

}

The Waitress’s job is to take Order Slips and
invoke the orderUp() method on them.

The Waitress has it easy: take an Order from the Customer,
continue helping customers until she makes it back to the
order counter, and then invoke the orderUp() method to have
the meal prepared. As we’ve already discussed, in Objectville, the
Waitress really isn’t worried about what’s on the Order or who is going
to prepare it; she just knows Order Slips have an orderUp() method she
can call to get the job done.

Now, throughout the day, the Waitress’s takeOrder() method gets
parameterized with different Order Slips from different customers, but
that doesn’t faze her; she knows all Order Slips support the orderUp()
method and she can call orderUp() any time she needs a meal prepared.

The Short-Order Cook has the knowledge
required to prepare the meal.

The Short-Order Cook is the object that really knows
how to prepare meals. Once the Waitress has invoked
the orderUp() method; the Short-Order Cook takes over and
implements all the methods that are needed to create meals.
Notice the Waitress and the Cook are totally decoupled: the
Waitress has Order Slips that encapsulate the details of the
meal; she just calls a method on each Order to get it prepared.
Likewise, the Cook gets his instructions from the Order Slip; he
never needs to directly communicate with the Waitress.

Don’t ask me to cook,
I just take orders and
yell “Order up!”

You can definitely
say the Waitress and I
are decoupled. She’s not
even my type!

200   Chapter 6

the diner is a model for command pattern

Patience, we’re getting there...

Think of the Diner as a model for an OO design pattern that allows
us to separate an object making a request from the objects that receive
and execute those requests. For instance, in our remote control API,
we need to separate the code that gets invoked when we press a button
from the objects of the vendor-specific classes that carry out those
requests. What if each slot of the remote held an object like the Diner’s
Order Slip object? Then, when a button is pressed, we could just call
the equivalent of the orderUp() method on this object and have the
lights turn on without the remote knowing the details of how to make
those things happen or what objects are making them happen.

Now, let’s switch gears a bit and map all this Diner talk to the
Command Pattern...

Okay, we have a Diner with
a Waitress who is decoupled
from the Short-Order Cook
by an Order Slip, so what?
Get to the point!

Before we move on, spend some time studying
the diagram two pages back along with Diner
roles and responsibilities until you think you’ve
got a handle on the Objectville Diner objects and
relationships. Once you’ve done that, get ready
to nail the Command Pattern!

you are here 4   201

the command pattern

createCommandObject()

setCommand()

execute()

action1(), action2()

The Client is responsible for
creating the Command object.
The command object consists of
a set of actions on a Receiver.

The Client calls setCommand() on an Invoker object and passes it the Command object, where it gets stored until it is needed.

At some point in
 the fut

ure

the Invok
er calls t

he Command

object’s
execute(

) method...

...which results
in the actions
being invoked
on the Receiver. Receiver

 Command

execute()

 Invoker

setCommand()

action1()

action2()

 ...

 Client

create

Command

Object()

 Command

execute()

 Receiver

action1()

action2()

 ...

public void
execute {

 receiver
.action1();

 receiver
.action2();

}

The Command object provides

one method, execute(), that

encapsulates the actions
 and

can be called to invoke
the

actions on the Receiver.

The actions and the Receiver are bound together in the command object.

From the Diner to the Command Pattern
Okay, we’ve spent enough time in the Objectville Diner that we know all the
personalities and their responsibilities quite well. Now we’re going to rework
the Diner diagram to reflect the Command Pattern. You’ll see that all the
players are the same; only the names have changed.

Start H
ere

1

2

3

The client creates a
command object.

The client does a
setCommand() to store
the command object in
the invoker.

Later...the client asks
the invoker to execute
the command. Note:
as you’ll see later in
the chapter, once the
command is loaded into
the invoker, it may be
used and discarded, or it
may remain and be used
many times.

1

2

3

Loading the Invoker

202   Chapter 6

who does what

Match the diner objects and methods with the corresponding names from the
Command Pattern.

Diner Command Pattern

Waitress

Short-Order Cook

orderUp()

Order

Customer

takeOrder()

Command

execute()

Client

Invoker

Receiver

setCommand()

you are here 4   203

the command pattern

public class LightOnCommand implements Command {

 Light light;

 public LightOnCommand(Light light) {

 this.light = light;

 }

 public void execute() {

 light.on();

 }

}

public interface Command {

 public void execute();

}

Our first command object
Isn’t it about time we built our first command object? Let’s go ahead and write some
code for the remote control. While we haven’t figured out how to design the remote
control API yet, building a few things from the bottom up may help us...

Implementing the Command interface

First things first: all command objects implement the same interface, which
consists of one method. In the Diner we called this method orderUp(); however,
we typically just use the name execute().

Here’s the Command interface:

Now, let’s say you want to implement a command for turning a light on.
Referring to our set of vendor classes, the Light class has two methods: on()
and off(). Here’s how you can implement this as a command:

Simple. All we need is one method called execute().

The execute() method calls

the on() method on the
receiving object, which is
the light we are controlling.

The constructor is passed the specific
light that this command is going to
control—say the living room light—
and stashes it in the light instance
variable. When execute gets called,
this is the light object that is going
to be the receiver of the request.

Now that you’ve got a LightOnCommand class, let’s see if we can put it to use...

Implementing a command to turn a light on

This is a command, so we need to
implement the Command interface.

Light

on()
off()

204   Chapter 6

using the command object

public class SimpleRemoteControl {

 Command slot;

 public SimpleRemoteControl() {}

 public void setCommand(Command command) {

 slot = command;

 }

 public void buttonWasPressed() {

 slot.execute();

 }

}

public class RemoteControlTest {

 public static void main(String[] args) {

 SimpleRemoteControl remote = new SimpleRemoteControl();

 Light light = new Light();

 LightOnCommand lightOn = new LightOnCommand(light);

 remote.setCommand(lightOn);

 remote.buttonWasPressed();

 }

}

Using the command object
Okay, let’s make things simple: say we’ve got a remote control with only one
button and corresponding slot to hold a device to control:

Here’s just a bit of code to test out the simple remote control. Let’s take a look and
we’ll point out how the pieces match the Command Pattern diagram:

File Edit Window Help DinerFoodYum

%java RemoteControlTest

Light is On

%

We have one slot to hold o
ur command,

which will control one device.

Creating a simple test to use the Remote Control

We have a method for setting the
command the slot is going to control.
This could be called multiple times if the
client of this code wanted to change
the behavior of the remote button.

This method is called when the button is pressed. All we do is take the current command bound to the slot and call its execute() method.

This is our Client in Command Pattern-speak.
The remote is our Invoker;
it will be passed a command

object that can be used
to

make requests.

Now we create a Light
object. This will be the
Receiver of the request.

Here, create a command and
pass the Receiver to it.

Here, pass the command to the Invoker.

And then we simulate the
button being pressed. Here’s the output of

running this test code.

you are here 4   205

the command pattern

public class RemoteControlTest {

 public static void main(String[] args) {

 SimpleRemoteControl remote = new SimpleRemoteControl();

 Light light = new Light();

 GarageDoor garageDoor = new GarageDoor();

 LightOnCommand lightOn = new LightOnCommand(light);

 GarageDoorOpenCommand garageOpen =

 new GarageDoorOpenCommand(garageDoor);

 remote.setCommand(lightOn);

 remote.buttonWasPressed();

 remote.setCommand(garageOpen);

 remote.buttonWasPressed();

 }

}

GarageDoor

up()
down()
stop()
lightOn()
lightOff()public class GarageDoorOpenCommand

 implements Command {

}

Your output here.

Your code here

Okay, it’s time for you to implement the
GarageDoorOpenCommand class. First, supply the code for the
class below. You’ll need the GarageDoor class diagram.

Now that you’ve got your class, what is the output of the
following code? (Hint: the GarageDoor up() method prints out
“Garage Door is Open” when it is complete.)

File Edit Window Help GreenEggs&Ham

%java RemoteControlTest

206   Chapter 6

command pattern defined

The Command Pattern defined
You’ve done your time in the Objectville Diner, you’ve partly
implemented the remote control API, and in the process you’ve
got a fairly good picture of how the classes and objects interact in
the Command Pattern. Now we’re going to define the Command
Pattern and nail down all the details.

Let’s start with its official definition:

Let’s step through this. We know that a command object
encapsulates a request by binding together a set of actions on a
specific receiver. To achieve this, it packages the actions and the
receiver into an object that exposes just one method, execute().
When called, execute() causes the actions to be invoked on the
receiver. From the outside, no other objects really know what
actions get performed on what receiver; they just know that if they
call the execute() method, their request will be serviced.

We’ve also seen a couple examples of parameterizing an object with a
command. Back at the diner, the Waitress was parameterized with
multiple orders throughout the day. In the simple remote control,
we first loaded the button slot with a “light on” command and
then later replaced it with a “garage door open” command. Like
the Waitress, your remote slot didn’t care what command object it
had, as long as it implemented the Command interface.

What we haven’t encountered yet is using commands to
implement queues and logs and support undo operations. Don’t worry,
those are pretty straightforward extensions of the basic Command
Pattern, and we’ll get to them soon. We can also easily support
what’s known as the Meta Command Pattern once we have the
basics in place. The Meta Command Pattern allows you to create
macros of commands so that you can execute multiple commands
at once.

 Command

execute() {

 receiver.action();

}

 Receiver

action()

An encapsulated request.

 LightOnComman
dexecute()

 Remote Slo t

 GarageDoor
Ope

nexecute()

 CeilingFan
H

ig
hexecute()

 StereoOff

execute()

An invoker — for instance,
one slot of the remote —
can be parameterized with
different requests.

The Command Pattern encapsulates a request as an
object, thereby letting you parameterize other objects
with different requests, queue or log requests, and
support undoable operations.

you are here 4   207

the command pattern

The ConcreteCommand defines a binding between an

action and a Receiver. The Invoker makes a request by

calling execute() and the ConcreteCommand carries it

out by calling one or more actions on the Receiver.

The Receiver knows how to
perform the work needed to
carry out the request. Any class
can act as a Receiver.

Command declares an interface for all commands. As
you already know, a command is invoked through its
execute() method, which asks a receiver to perform an
action. You’ll also notice this interface has an undo(

)
method, which we’ll cover a bit later in the chapter.

The Client is responsible for
creating a ConcreteCommand and

setting its Receiver.

The Command Pattern defined:
the class diagram

The Invoker holds
a command and at
some point asks the
command to carry
out a request by
calling its execute()
method.

Invoker <<interface>>
Command

execute()
undo()

action()

Receiver

Client

ConcreteCommand

execute()
undo()

public void execute() {

 receiver.action()

}

The execute()
method invokes
the action(s)
on the receiver
needed to fulfill
the request.

setCommand()

How does the design of the Command Pattern support the decoupling
of the invoker of a request and the receiver of the request?

208   Chapter 6

where do we begin?

Mary: Me too. So where do we begin?

Sue: Like we did in the SimpleRemote, we need to provide a
way to assign commands to slots. In our case we have seven slots,
each with an on and off button. So we might assign commands to
the remote something like this: 

onCommands[0] = onCommand;
offCommands[0] = offCommand;

and so on for each of the seven command slots.

Mary: That makes sense, except for the Light objects. How does
the remote know the living room from the kitchen light?

Sue: Ah, that’s just it—it doesn’t! The remote doesn’t know
anything but how to call execute() on the corresponding
command object when a button is pressed.

Mary: Yeah, I sorta got that, but in the implementation, how do
we make sure the right objects are turning on and off the right
devices?

Sue: When we create the commands to be loaded into the
remote, we create one LightCommand that is bound to the living
room light object and another that is bound to the kitchen light
object. Remember, the receiver of the request gets bound to
the command it’s encapsulated in. So, by the time the button is
pressed, no one cares which light is which; the right thing just
happens when the execute() method is called.

Mary: I think I’ve got it. Let’s implement the remote and I think
this will get clearer!

Sue: Sounds good. Let’s give it a shot...

Okay, I think I’ve got a good
feel for the Command Pattern now.

Great tip, Joe, I think we’re going to
look like superstars after finishing off
the Remote Control API.

you are here 4   209

the command pattern

 CeilingFan
O

ff

execute()

 LightOnComman
d

execute()

 GarageDoor
Ope

nexecute()

 CeilingFan
Hi

gh

execute()

 StereoOff

execute()

 GarageDoor
Clo

se

execute()

 LightOffComman
dexecute()

 LightOnComman
d

execute()

 LightOffComman
dexecute()

 StereoOnF
or

CDexecute()

Assigning Commands to slots
So we have a plan: we’re going to assign a command to each slot in the
remote control. This makes the remote control our invoker. When a button
is pressed, the execute() method will be called on the corresponding
command, which results in actions being invoked on the receiver (like
lights, ceiling fans, and stereos).

 Stereo

 off()

 on()

(1) Each slot gets a command.
(2) When the button is pressed, the
execute() method is called on the
corresponding command.

(3) In the execute() method,
actions are invoked on the receiver.

The Invoker

We’ll worry about the remaining slots in a bit.

In our code you’ll find that each
command name has “Command”
appended to it, but in print,
we’ve unfortunately run out of
space for a few of them.

210   Chapter 6

implementing the remote control

public class RemoteControl {

 Command[] onCommands;

 Command[] offCommands;

 public RemoteControl() {

 onCommands = new Command[7];

 offCommands = new Command[7];

 Command noCommand = new NoCommand();

 for (int i = 0; i < 7; i++) {

 onCommands[i] = noCommand;

 offCommands[i] = noCommand;

 }

 }

 public void setCommand(int slot, Command onCommand, Command offCommand) {

 onCommands[slot] = onCommand;

 offCommands[slot] = offCommand;

 }

 public void onButtonWasPushed(int slot) {

 onCommands[slot].execute();

 }

 public void offButtonWasPushed(int slot) {

 offCommands[slot].execute();

 }

 public String toString() {

 StringBuffer stringBuff = new StringBuffer();

 stringBuff.append("\n------ Remote Control -------\n");

 for (int i = 0; i < onCommands.length; i++) {

 stringBuff.append("[slot " + i + "] " + onCommands[i].getClass().getName()

 + " " + offCommands[i].getClass().getName() + "\n");

 }

 return stringBuff.toString();

 }

}

In the constructor, all we need to
do is instantiate and initialize the
On and Off arrays.

This time around, the remote is going
to handle seven On and Off commands,
which we’ll hold in corresponding arrays.

The setCommand() method takes a slot
position and an On and Off command to
be stored in that slot.

When an On or Off button is
pressed, the hardware takes
care of calling the corresponding
methods onButtonWasPushed() or
offButtonWasPushed().

We override toString() to print out each slot and
its corresponding command. You’ll see us use this
when we test the remote control.

Implementing the Remote Control

It puts these commands in the
On and Off arrays for later use.

you are here 4   211

the command pattern

public class StereoOnWithCDCommand implements Command {

 Stereo stereo;

 public StereoOnWithCDCommand(Stereo stereo) {

 this.stereo = stereo;

 }

 public void execute() {

 stereo.on();

 stereo.setCD();

 stereo.setVolume(11);

 }

}

public class LightOffCommand implements Command {

 Light light;

 public LightOffCommand(Light light) {

 this.light = light;

 }

 public void execute() {

 light.off();

 }

}

Implementing the Commands
Well, we’ve already gotten our feet wet implementing the LightOnCommand for the
SimpleRemoteControl. We can plug that same code in here and everything works
beautifully. Off commands are no different; in fact, the LightOffCommand looks like this:

The LightOffCommand works exactly
the same way as the LightOnCommand,
except that we’re binding the receiver to
a different action: the off() method.

Let’s try something a little more challenging; how about writing on and off
commands for the Stereo? Okay, off is easy, we just bind the Stereo to the off()
method in the StereoOffCommand. On is a little more complicated; let’s say we
want to write a StereoOnWithCDCommand...

Stereo

on()
off()
setCd()
setDvd()
setRadio()
setVolume()

Just like the LightOnCommand, we
get passed the instance of the stereo
we’re going to be controlling and we
store it in an instance variable.

To carry out this request, we need to call three methods on the stereo: first, turn it on, then set it to play the CD, and finally set the volume to 11. Why 11? Well, it’s better than 10, right?

Not too bad. Take a look at the rest of the vendor classes; by now, you can definitely
knock out the rest of the Command classes we need for those.

212   Chapter 6

testing the remote control

public class RemoteLoader {

 public static void main(String[] args) {
 RemoteControl remoteControl = new RemoteControl();

 Light livingRoomLight = new Light("Living Room");
 Light kitchenLight = new Light("Kitchen");
 CeilingFan ceilingFan = new CeilingFan("Living Room");
 GarageDoor garageDoor = new GarageDoor("Garage");
 Stereo stereo = new Stereo("Living Room");

 LightOnCommand livingRoomLightOn =
 new LightOnCommand(livingRoomLight);
 LightOffCommand livingRoomLightOff =
 new LightOffCommand(livingRoomLight);
 LightOnCommand kitchenLightOn =
 new LightOnCommand(kitchenLight);
 LightOffCommand kitchenLightOff =
 new LightOffCommand(kitchenLight);

 CeilingFanOnCommand ceilingFanOn =
 new CeilingFanOnCommand(ceilingFan);
 CeilingFanOffCommand ceilingFanOff =
 new CeilingFanOffCommand(ceilingFan);

 GarageDoorUpCommand garageDoorUp =
 new GarageDoorUpCommand(garageDoor);
 GarageDoorDownCommand garageDoorDown =
 new GarageDoorDownCommand(garageDoor);

 StereoOnWithCDCommand stereoOnWithCD =
 new StereoOnWithCDCommand(stereo);
 StereoOffCommand stereoOff =
 new StereoOffCommand(stereo);

Putting the Remote Control through its paces
Our job with the remote is pretty much done; all we need to do is run some tests and get
some documentation together to describe the API. Home Automation or Bust, Inc., sure
is going to be impressed, don’t ya think? We’ve managed to come up with a design
that will allow them to produce a remote that is easy to maintain, and they’re going
to have no trouble convincing the vendors to write some simple command classes in
the future since those are so easy to write.

Let’s get to testing this code!

Create all the devices in
their proper locations.

Create all the Light
Command objects.

Create the On and Off
for the ceiling fan.

Create the Up and Down
commands for the Garage.

Create the stereo On
and Off commands.

you are here 4   213

the command pattern

 remoteControl.setCommand(0, livingRoomLightOn, livingRoomLightOff);
 remoteControl.setCommand(1, kitchenLightOn, kitchenLightOff);
 remoteControl.setCommand(2, ceilingFanOn, ceilingFanOff);
 remoteControl.setCommand(3, stereoOnWithCD, stereoOff);

 System.out.println(remoteControl);

 remoteControl.onButtonWasPushed(0);
 remoteControl.offButtonWasPushed(0);
 remoteControl.onButtonWasPushed(1);
 remoteControl.offButtonWasPushed(1);
 remoteControl.onButtonWasPushed(2);
 remoteControl.offButtonWasPushed(2);
 remoteControl.onButtonWasPushed(3);
 remoteControl.offButtonWasPushed(3);
 }
}

File Edit Window Help CommandsGetThingsDone

% java RemoteLoader
------ Remote Control -------
[slot 0] LightOnCommand LightOffCommand
[slot 1] LightOnCommand LightOffCommand
[slot 2] CeilingFanOnCommand CeilingFanOffCommand
[slot 3] StereoOnWithCDCommand StereoOffCommand
[slot 4] NoCommand NoCommand
[slot 5] NoCommand NoCommand
[slot 6] NoCommand NoCommand

Living Room light is on
Living Room light is off
Kitchen light is on
Kitchen light is off
Living Room ceiling fan is on high
Living Room ceiling fan is off
Living Room stereo is on
Living Room stereo is set for CD input
Living Room stereo volume set to 11
Living Room stereo is off
%

Now that we’ve got
all our commands, we
can load them into
the remote slots.

Here’s where we use our toString() method to print each remote slot and the command assigned to it. (Note that toString() gets called automatically here, so we don’t have to call toString() explicitly.)

All right, we are ready to roll! Now, we step through each slot and push its On and Off buttons.

Now, let’s check out the execution of our remote control test...

On slots Off slots

Our commands in action! Remember, the output from each device comes from the vendor classes. For instance, when a light object is turned on, it prints “Living Room light is on.”

214   Chapter 6

null object

Command noCommand = new NoCommand();
for (int i = 0; i < 7; i++) {
 onCommands[i] = noCommand;
 offCommands[i] = noCommand;
}

public class NoCommand implements Command {
 public void execute() { }
}

Good catch. We did sneak a little something in there. In the remote
control, we didn’t want to check to see if a command was loaded every
time we referenced a slot. For instance, in the onButtonWasPushed()
method, we would need code like this:

public void onButtonWasPushed(int slot) {
 if (onCommands[slot] != null) {
 onCommands[slot].execute();
 }
}

So, how do we get around that? Implement a command that does nothing!

Then, in our RemoteControl constructor, we assign every slot a
NoCommand object by default and we know we’ll always have some
command to call in each slot.

So, in the output of our test run, you’re seeing only slots that have been
assigned to a command other than the default NoCommand object,
which we assigned when we created the RemoteControl constructor.

Pattern
Honorable
Mention

Head F
irst

Honorable

Mention

The NoCommand object is an example of a null object. A null object is useful when
you don’t have a meaningful object to return, and yet you want to remove the
responsibility for handling null from the client. For instance, in our remote control we
didn’t have a meaningful object to assign to each slot out of the box, so we provided
a NoCommand object that acts as a surrogate and does nothing when its execute()
method is called.
You’ll find uses for Null Objects in conjunction with many Design Patterns, and
sometimes you’ll even see “Null Object” listed as a Design Pattern.

 Wait a second, what’s
with that NoCommand
that’s loaded in slots 4
through 6? Trying to pull a
fast one?

you are here 4   215

the command pattern

Time to write that documentation...

Remote Control API Design for Home Automation or Bust, Inc.

We are pleased to present you with the following design and application programming interface for your Home

Automation Remote Control. Our primary design goal was to keep the remote control code as simple as possible so that

it doesn’t require changes as new vendor classes are produced. To this end we have employed the Command Pattern to

logically decouple the RemoteControl class from the Vendor Classes. We believe this will reduce the cost of producing

the remote as well as drastically reduce your ongoing maintenance costs.

The following class diagram provides an overview of our design:

Using the Command Interface, we implement each action

that can be invoked by pressing a button on the remote

with a simple Command object. The Command object holds

a reference to an object that is an instance of a Vendor Class

and implements an execute() method that calls one or more

methods on that object. Here we show two such classes

that turn a light on and off, respectively.

The Vendor Classes are used to perform

the actual home automation work of

controlling devices. Here, we’re using the

Light class as an example.

All RemoteControl commands

implement the Command

interface, which consists of one

method: execute(). Commands

encapsulate a set of actions on a

specific vendor class. The remote

invokes these actions by calling

the execute() method.

The RemoteLoader creates a

number of Command objects

that are loaded into the slots

of the Remote Control. Each

command object encapsulates

a request of a home
automation device.

RemoteControl

setCommand()

onButtonWasPushed()

offButtonWasPushed()

<<interface>>
Command

execute()

on()
off()

Light

RemoteLoader

LightOnCommand

execute() LightOffCommand

execute()

public void execute() {

 light.on()

} public void execute() {

 light.off()

}

onCommands

offCommands

The RemoteControl class manages a set of

Command objects, one per button. When a button

is pressed, the corresponding ButtonWasPushed()

method is called, which invokes the execute()

method on the command. That is the full extent of

the remote’s knowledge of the classes it’s invoking

as the Command object decouples the remote from

the classes doing the actual home automation work.

216   Chapter 6

public class RemoteLoader {

 public static void main(String[] args) {

 RemoteControl remoteControl = new RemoteC
ontrol();

 Light livingRoomLight = new Light("Living
 Room");

 ...
 LightOnCommand livingRoomLightOn =

				 new LightOnCommand(livingRoomLight);

 LightOffCommand livingRoomLightOff =

				 new LightOffCommand(livingRoomLight);

 ...
 remoteControl.setCommand(0,() -> livingRo

omLight.on(),

 () -> livingRo
omLight.off());

 ...
 }
}

The updated code, using lambda expressions:

We create the Light
object like normal...

Want to take your Command Pattern coding to the next level? You can use Java’s lambda expressions

to skip the step of creating all those concrete command objects. With lambda expressions, instead of

instantiating the concrete command objects, you can use function objects in their place. In other words,

we can use a function object as a command. And, while we’re at it, we can delete all those concrete

Command classes, too.

Let’s take a look at how you’d use lambda expressions as commands to simplify our previous code:

Once we’ve replaced the concrete commands with lambda expressions, we can delete all those

concrete command classes (LightOnCommand, LightOffCommand, HottubOnCommand,

HottubOffCommand, etc.). If you do this for every concrete command, you’ll reduce the total number

of classes in the remote control application from 22 to 9.

Note that you can only do this if your Command interface has one abstract method. As soon as we add a

second abstract method, the lambda shorthand no longer works.

If you like this technique, check out your favorite Java reference for more information on the lambda

expression.

But we can remove
the concrete
LightOnCommand and
LightOffCommand
objects.

Instead we'll write the concrete commands as lambda
expressions that do the same work as the concrete
command’s execute() method was doing: that is, turning
the light on or turning the light off.

represent commands with lambdas

Later, when you click one of the remote’s
buttons, the remote calls the execute()
method of the command object in the
slot for that button, which is represented
by this lambda expression.

you are here 4   217

the command pattern

public interface Command {

 public void execute();

 public void undo();

}

Whoops! We almost forgot...luckily, once
we have our basic Command classes,
undo is easy to add. Let’s step through
adding undo to our commands and to the
remote control...

Here’s the new undo() method.

What are we doing?
Okay, we need to add functionality to support the undo button on the remote. It works like
this: say the Living Room Light is off and you press the on button on the remote. Obviously
the light turns on. Now if you press the undo button, then the last action will be reversed—in
this case, the light will turn off. Before we get into more complex examples, let’s get the light
working with the undo button:

1 When commands support undo, they have an undo() method that mirrors the execute()
method. Whatever execute() last did, undo() reverses. So, before we can add undo to our
commands, we need to add an undo() method to the Command interface:

That was simple enough.

Now, let’s dive into the Light commands and implement the undo() method.

Great job; it looks like
you’ve come up with a terrific
design, but aren’t you forgetting one
little thing the customer asked for?

LIKE THE UNDO BUTTON?!

218   Chapter 6

public class LightOffCommand implements Command {
 Light light;

 public LightOffCommand(Light light) {
 this.light = light;
 }

 public void execute() {
 light.off();
 }

 public void undo() {
 light.on();
 }
}

public class LightOnCommand implements Command {
 Light light;

 public LightOnCommand(Light light) {
 this.light = light;
 }

 public void execute() {
 light.on();
 }

 public void undo() {
 light.off();
 }
}

Could this be any easier? Okay, we aren’t done yet; we need to work a little
support into the Remote Control to handle tracking the last button pressed
and the undo button press.

Piece of cake! Now for the LightOffCommand. Here the undo() method just
needs to call the Light’s on() method.

2 Let’s start with the LightOnCommand: if the LightOnCommand’s execute() method
was called, then the on() method was last called. We know that undo() needs to do the
opposite of this by calling the off() method.

And here, undo() turns

the light back on.

execute() turns the light
on, so undo() simply turns
the light back off.

implementing undo

you are here 4   219

the command pattern

public class RemoteControlWithUndo {
 Command[] onCommands;
 Command[] offCommands;
 Command undoCommand;

 public RemoteControlWithUndo() {
 onCommands = new Command[7];
 offCommands = new Command[7];

 Command noCommand = new NoCommand();
 for(int i=0;i<7;i++) {
 onCommands[i] = noCommand;
 offCommands[i] = noCommand;
 }
 undoCommand = noCommand;
 }

 public void setCommand(int slot, Command onCommand, Command offCommand) {
 onCommands[slot] = onCommand;
 offCommands[slot] = offCommand;
 }

 public void onButtonWasPushed(int slot) {
 onCommands[slot].execute();
 undoCommand = onCommands[slot];
 }

 public void offButtonWasPushed(int slot) {
 offCommands[slot].execute();
 undoCommand = offCommands[slot];
 }

 public void undoButtonWasPushed() {
 undoCommand.undo();
 }

 public String toString() {
 // toString code here...
 }
}

3 To add support for the undo button, we only have to make a few small changes to the Remote
Control class. Here’s how we’re going to do it: we’ll add a new instance variable to track the last
command invoked; then, whenever the undo button is pressed, we retrieve that command and
invoke its undo() method.

This is where we’ll stash the last
command executed for the undo button.

Just like the other slots, undo starts off with a noCommand, so pressing undo before any other button won’t do anything at all.

When a button is pressed, we take
the command and first execute
it; then we save a reference to
it in the undoCommand instance
variable. We do this for both on
commands and off commands.

When the undo button is pressed, we
invoke the undo() method of the
command stored in undoCommand.
This undoes the operation of the last
command executed.

Update to add undoCommands.

220   Chapter 6

public class RemoteLoader {

 public static void main(String[] args) {
 RemoteControlWithUndo remoteControl = new RemoteControlWithUndo();

 Light livingRoomLight = new Light("Living Room");

 LightOnCommand livingRoomLightOn =
 new LightOnCommand(livingRoomLight);
 LightOffCommand livingRoomLightOff =
 new LightOffCommand(livingRoomLight);

 remoteControl.setCommand(0, livingRoomLightOn, livingRoomLightOff);

 remoteControl.onButtonWasPushed(0);
 remoteControl.offButtonWasPushed(0);
 System.out.println(remoteControl);
 remoteControl.undoButtonWasPushed();
 remoteControl.offButtonWasPushed(0);
 remoteControl.onButtonWasPushed(0);
 System.out.println(remoteControl);
 remoteControl.undoButtonWasPushed();
 }
}

Time to QA that Undo button!

Create a Light, and our new undo()
enabled Light On and Off Commands.

Add the light Commands
to the remote in slot 0.

And here are the test results...

Okay, let’s rework the test harness a bit to test the undo button:

Turn the light on, then
off, and then undo.

Then, turn the light off, back on, and undo.

File Edit Window Help UndoCommandsDefyEntropy

% java RemoteLoader
Light is on
Light is off

------ Remote Control -------
[slot 0] LightOnCommand LightOffCommand
[slot 1] NoCommand NoCommand
[slot 2] NoCommand NoCommand
[slot 3] NoCommand NoCommand
[slot 4] NoCommand NoCommand
[slot 5] NoCommand NoCommand
[slot 6] NoCommand NoCommand
[undo] LightOffCommand

Light is on

Light is off
Light is on

------ Remote Control -------
[slot 0] LightOnCommand LightOffCommand
[slot 1] NoCommand NoCommand
[slot 2] NoCommand NoCommand
[slot 3] NoCommand NoCommand
[slot 4] NoCommand NoCommand
[slot 5] NoCommand NoCommand
[slot 6] NoCommand NoCommand
[undo] LightOnCommand

Light is off

Undo was pressed... the LightOffCommand undo() turns the light back on.

Here are the Light commands.

Turn the light on, then off.

Now undo holds the
LightOffCommand, the
last command invoked.Then we turn the light off and back on.

Undo was pressed, so the light is back off. Now undo holds the LightOnCommand, the last command invoked.

test drive undo

you are here 4   221

the command pattern

public class CeilingFan {
 public static final int HIGH = 3;
 public static final int MEDIUM = 2;
 public static final int LOW = 1;
 public static final int OFF = 0;
 String location;
 int speed;

 public CeilingFan(String location) {
 this.location = location;
 speed = OFF;
 }

 public void high() {
 speed = HIGH;
 // code to set fan to high
 }

 public void medium() {
 speed = MEDIUM;
 // code to set fan to medium
 }

 public void low() {
 speed = LOW;
 // code to set fan to low
 }

 public void off() {
 speed = OFF;
 // code to turn fan off
 }

 public int getSpeed() {
 return speed;
 }
}

Using state to implement Undo
Okay, implementing undo on the Light was instructive but a little too easy. Typically,
we need to manage a bit of state to implement undo. Let’s try something a little more
interesting, like the CeilingFan from the vendor classes. The CeilingFan class allows a
number of speeds to be set along with an off method.

Here’s the source code for the CeilingFan class:

CeilingFan

high()
medium()
low()
off()
getSpeed()

Notice that the CeilingFan class
holds local state representing the
speed of the ceiling fan.

These methods set the
speed of the ceiling fan.

We can get the cur
rent

speed of the ceilin
g fan

using getSpeed().

Hmm, so to properly
implement undo, I’d have

to take the previous speed of
the ceiling fan into account...

222   Chapter 6

public class CeilingFanHighCommand implements Command {
 CeilingFan ceilingFan;
 int prevSpeed;

 public CeilingFanHighCommand(CeilingFan ceilingFan) {
 this.ceilingFan = ceilingFan;
 }

 public void execute() {
 prevSpeed = ceilingFan.getSpeed();
 ceilingFan.high();
 }

 public void undo() {
 if (prevSpeed == CeilingFan.HIGH) {
 ceilingFan.high();
 } else if (prevSpeed == CeilingFan.MEDIUM) {
 ceilingFan.medium();
 } else if (prevSpeed == CeilingFan.LOW) {
 ceilingFan.low();
 } else if (prevSpeed == CeilingFan.OFF) {
 ceilingFan.off();
 }
 }
}

Now let’s tackle adding undo to the various Ceiling Fan commands. To
do so, we need to track the last speed setting of the fan and, if the undo()
method is called, restore the fan to its previous setting. Here’s the code for
the CeilingFanHighCommand:

We’ve added local sta
te to

keep track of the
previous

speed of the fan.

In execute(), before we
change the speed of the
fan, we need to first
record its previous state,
just in case we need to
undo our actions.

To undo, we set the speed of the fan back to its previous speed.

Adding Undo to the Ceiling Fan commands

We’ve got three more ceiling fan commands to write: low,
medium, and off. Can you see how these are implemented?

add undo to the ceiling fan

you are here 4   223

the command pattern

public class RemoteLoader {

 public static void main(String[] args) {

 RemoteControlWithUndo remoteControl = new RemoteControlWithUndo();

 CeilingFan ceilingFan = new CeilingFan("Living Room");

 CeilingFanMediumCommand ceilingFanMedium =

 new CeilingFanMediumCommand(ceilingFan);

 CeilingFanHighCommand ceilingFanHigh =

 new CeilingFanHighCommand(ceilingFan);

 CeilingFanOffCommand ceilingFanOff =

 new CeilingFanOffCommand(ceilingFan);

 remoteControl.setCommand(0, ceilingFanMedium, ceilingFanOff);

 remoteControl.setCommand(1, ceilingFanHigh, ceilingFanOff);

 remoteControl.onButtonWasPushed(0);

 remoteControl.offButtonWasPushed(0);

 System.out.println(remoteControl);

 remoteControl.undoButtonWasPushed();

 remoteControl.onButtonWasPushed(1);

 System.out.println(remoteControl);

 remoteControl.undoButtonWasPushed();

 }

}

Get ready to test the ceiling fan

Time to load up our remote control with the ceiling fan
commands. We’re going to load slot 0’s on button with the
medium setting for the fan and slot 1 with the high setting.
Both corresponding off buttons will hold the ceiling fan off
command.

Here’s our test script:

Here we instantiate three
commands: medium, high, and off.

Here we put medium in
slot 0, and high in slot
1. We also load up the
off command.

First, turn the fan on medium.

Then turn it off.

Undo! It should go back to medium...

Turn it on to high this time.

And, one more undo; it should go back
to medium.

224   Chapter 6

v

% java RemoteLoader

Living Room ceiling fan is on medium

Living Room ceiling fan is off

------ Remote Control -------

[slot 0] CeilingFanMediumCommand CeilingFanOffCommand

[slot 1] CeilingFanHighCommand CeilingFanOffCommand

[slot 2] NoCommand NoCommand

[slot 3] NoCommand NoCommand

[slot 4] NoCommand NoCommand

[slot 5] NoCommand NoCommand

[slot 6] NoCommand NoCommand

[undo] CeilingFanOffCommand

Living Room ceiling fan is on medium

Living Room ceiling fan is on high

------ Remote Control -------

[slot 0] CeilingFanMediumCommand CeilingFanOffCommand

[slot 1] CeilingFanHighCommand CeilingFanOffCommand

[slot 2] NoCommand NoCommand

[slot 3] NoCommand NoCommand

[slot 4] NoCommand NoCommand

[slot 5] NoCommand NoCommand

[slot 6] NoCommand NoCommand

[undo] CeilingFanHighCommand

Living Room ceiling fan is on medium

%

File Edit Window Help UndoThis!

One more undo, and the ceiling fan goes back to medium speed.

Turn the ceiling fan on
medium, then turn it off.

...and undo has the last command executed, the CeilingFanOffCommand, with the previous speed of medium.

Here are the commands
in the remote control...

Undo the last command, and it goes back to medium.
Now, turn it on high.

Now, high is the last
command executed.

Testing the ceiling fan...

Okay, let’s fire up the remote, load it with commands, and push some buttons!

test drive the ceiling fan

you are here 4   225

the command pattern

public class MacroCommand implements Command {
 Command[] commands;

 public MacroCommand(Command[] commands) {
 this.commands = commands;
 }

 public void execute() {
 for (int i = 0; i < commands.length; i++) {
 commands[i].execute();
 }
 }
}

Every remote needs a Party Mode!

Hottub

on()
off()
circulate()
jetsOn()
jetsOff()
setTemperature()

Stereo

on()
off()
setCd()
setDvd()
setRadio()
setVolume()

Light

on()
off()
dim()

on()
off()
setInputChannel()
setVolume()

TV

Mary’s idea is to make a new kind of Command that can
execute other Commands...
and more than one of them! Pretty good idea, huh?

Take an array of Commands and store them in the MacroCommand.

When the macro gets executed by the remote, execute those commands one at a time.

What’s the point of having a remote if you
can’t push one button and have the lights
dimmed, the stereo and TV turned on, and
the hot tub fired up?

Hmm, our remote
control would need a
button for each device, so
I don’t think we can do this.

Hold on, Sue, don’t be
so sure. I think we can do
this without changing the
remote at all!

226   Chapter 6

remoteControl.setCommand(0, partyOnMacro, partyOffMacro);

Command[] partyOn = { lightOn, stereoOn, tvOn, hottubOn};

Command[] partyOff = { lightOff, stereoOff, tvOff, hottubOff};

MacroCommand partyOnMacro = new MacroCommand(partyOn);

MacroCommand partyOffMacro = new MacroCommand(partyOff);

Light light = new Light("Living Room");
TV tv = new TV("Living Room");
Stereo stereo = new Stereo("Living Room");
Hottub hottub = new Hottub();

LightOnCommand lightOn = new LightOnCommand(light);
StereoOnCommand stereoOn = new StereoOnCommand(stereo);
TVOnCommand tvOn = new TVOnCommand(tv);
HottubOnCommand hottubOn = new HottubOnCommand(hottub);

Using a macro command
Let’s step through how we use a macro command:

1 First we create the set of commands we want to go into the macro:

Next we create two arrays, one for the On commands and one for the Off
commands, and load them with the corresponding commands:

3 Then we assign MacroCommand to a button like we always do:

Create all the devices: a light, tv, stereo, and hot tub.

Now create all the On
commands to control them.

Create an array for
On commands and
an array for Off
commands...

...and create two
corresponding macros
to hold them.

Assign the macro
command to a button as
you would any command.

We’ll also need commands for the off buttons.
Write the code to create those here:

2

create a macro command

you are here 4   227

the command pattern

System.out.println(remoteControl);

System.out.println("--- Pushing Macro On---");

remoteControl.onButtonWasPushed(0);

System.out.println("--- Pushing Macro Off---");

remoteControl.offButtonWasPushed(0);

File Edit Window Help You Can’tBeatABabka

% java RemoteLoader
------ Remote Control -------

[slot 0] MacroCommand MacroCommand

[slot 1] NoCommand NoCommand

[slot 2] NoCommand NoCommand

[slot 3] NoCommand NoCommand

[slot 4] NoCommand NoCommand

[slot 5] NoCommand NoCommand

[slot 6] NoCommand NoCommand

[undo] NoCommand

--- Pushing Macro On---

Light is on

Living Room stereo is on

Living Room TV is on

Living Room TV channel is set for DVD

Hottub is heating to a steaming 104 degrees

Hottub is bubbling!

--- Pushing Macro Off---

Light is off

Living Room stereo is off

Living Room TV is off

Hottub is cooling to 98 degrees

Here are the two macro commands.

All the Commands in the
macro are executed when we
invoke the on macro...

...and when we invoke the off macro. Looks like it works.

4 Finally, we just need to push some buttons and see if this works.

Here’s the output.

228   Chapter 6

exercise with macro commands

The only thing our MacroCommand is missing is its undo functionality. When the undo
button is pressed after a macro command, all the commands that were invoked in the
macro must undo their previous actions. Here’s the code for MacroCommand; go ahead
and implement the undo() method:

public class MacroCommand implements Command {
 Command[] commands;

 public MacroCommand(Command[] commands) {
 this.commands = commands;
 }

 public void execute() {
 for (int i = 0; i < commands.length; i++) {
 commands[i].execute();
 }
 }

 public void undo() {

 }
}

Q: Do I always need a receiver? Why
can’t the command object implement the
details of the execute() method?

A: In general, we strive for “dumb”
command objects that just invoke an action
on a receiver; however, there are many
examples of “smart” command objects
that implement most, if not all, of the logic
needed to carry out a request. Certainly you
can do this; just keep in mind you’ll no longer
have the same level of decoupling between
the invoker and receiver, nor will you be
able to parameterize your commands with
receivers.

Q: How can I implement a history
of undo operations? In other words, I
want to be able to press the undo button
multiple times.

A: Great question. It’s pretty easy
actually; instead of keeping just a reference
to the last Command executed, you keep
a stack of previous commands. Then,
whenever undo is pressed, your invoker
pops the first item off the stack and calls its
undo() method.

Q: Could I have just implemented
party mode as a Command by creating
a PartyCommand and putting the calls
to execute the other Commands in
PartyCommand’s execute() method?

A: You could; however, you’d essentially
be “hardcoding” the party mode into
PartyCommand. Why go to the trouble?
With MacroCommand, you can decide
dynamically which Commands you want to
go into PartyCommand, so you have more
flexibility using MacroCommands. In general,
MacroCommand is a more elegant solution
and requires less new code.

you are here 4   229

the command pattern

More uses of the Command Pattern: queuing requests

Note that the job queue classes are totally decoupled from
the objects that are doing the computation. One minute a
thread may be computing a financial computation, and the
next it may be retrieving something from the network. The
job queue objects don’t care; they just retrieve commands
and call execute(). Likewise, as long as you put objects into
the queue that implement the Command Pattern, your
execute() method will be invoked when a thread is available.

 Thread

 RayTrace

execute()

 Compiler
Ta

sk

 Thread

Threads computing
jobs

Objects implementing the
command interface are
added to the queue.

Threads remove commands
from the queue one by one
and call their execute()
method. Once complete,
they go back for a new
command object.

This gives us an effective way
to limit computation to a
fixed number of threads.

FinancialCompu
ta

tio
n

 CompilerTa
sk

execute()

 DownloadR
eq

ue
st

execute()

 CompilerTa
sk

execute()

 NetworkFe
tc

hexecute()

Financial Compu
ta

ti
onexecute()

 RayTrace

execute()

 DistributedCompu
ta

ti
on

execute()

execute()

 DownloadR
eq

ue
st

 Compiler
Ta

skexecute()

 NetworkFe
tc

hexecute()

FinancialCompu
ta

tio
nexecute()

 RayTrace

execute()

execute()

Job queue

Commands

execute()

 DownloadR
eq

ue
st

 Thread

execute()

 NetworkFe
tc

h Thread

execute()

Commands give us a way to package a piece of
computation (a receiver and a set of actions) and pass
it around as a first-class object. Now, the computation
itself may be invoked long after some client application
creates the command object. In fact, it may even be
invoked by a different thread. We can take this scenario
and apply it to many useful applications, such as
schedulers, thread pools, and job queues, to name a few.

Imagine a job queue: you add commands to the
queue on one end, and on the other end sits a group
of threads. Threads run the following script: they
remove a command from the queue, call its execute()
method, wait for the call to finish, and then discard the
command object and retrieve a new one.

How might a web server make
use of such a queue? What other
applications can you think of?

230   Chapter 6

using the command pattern for logging requests

The semantics of some applications require that we log all actions and be able to
recover after a crash by reinvoking those actions. The Command Pattern can support
these semantics with the addition of two methods: store() and load(). In Java we could
use object serialization to implement these methods, but the normal caveats for using
serialization for persistence apply.

How does this work? As we execute commands, we store a history of them on disk.
When a crash occurs, we reload the command objects and invoke their execute()
methods in batch and in order.

Now, this kind of logging wouldn’t make sense for a remote control; however, there
are many applications that invoke actions on large data structures that can’t be
quickly saved each time a change is made. By using logging, we can save all the
operations since the last checkpoint, and if there is a system failure, apply those
operations to our checkpoint. Take, for example, a spreadsheet application: we might
want to implement our failure recovery by logging the actions on the spreadsheet rather
than writing a copy of the spreadsheet to disk every time a change occurs. In more
advanced applications, these techniques can be extended to apply to sets of operations
in a transactional manner so that all of the operations complete, or none of them do.

<<interface>>
Command

execute()
undo()
store()
load()

As each command
is executed, it is
stored on disk.

More uses of the Command Pattern: logging requests

CommandOne

execute()

store()

load()

 CommandTw o

execute()

store()

load()

 CommandThr
ee

execute()

store()

load()

store

sto
re

store1. execute()

 Invoker

2. execute()

3. execute()

 CommandOne

execute()

store()

load()

 CommandTw o

execute()

store()

load()

 CommandThr
ee

execute()

store()

load()

load

load

load

 Invoker3. execute()

2. execute()

1. execute()

Crash!

Restore

After a system
failure, the objects are
reloaded and executed
in the correct order.

We add two methods
for logging.

you are here 4   231

the command pattern

Command Pattern in the Real World
Remember the little life-changing application from Chapter 2?

%java SwingObserverExample

Come on, do it!

Don’t do it, you might regret it!

%

And here’s the output when
we click on the button.

Here’s our fancy interface.

Angel answer
Devil answer

public class SwingObserverExample {

	 // Set up ...

 JButton button = new JButton("Should I do it?");

 button.addActionListener(new AngelListener());

 button.addActionListener(new DevilListener());

 // Set frame properties here

 }

 class AngelListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 System.out.println("Don't do it, you might regret it!");

 }

 }

 class DevilListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 System.out.println("Come on, do it!");

 }

 }

}

In that chapter we saw how Java’s Swing
library is chock full of Observers in the
form of ActionListeners that listen in (or
observe) events on user interface components.

Well, it turns out that ActionListener is
not just an Observer interface, it’s also a
Command interface, and our AngelListener
and DevilListener classes are not just
Observers, but also concrete Commands.
That’s right, we have two patterns in one
example!

Here’s the code (the important bits anyway) for the little life-changing
application from Chapter 2. See if you can identify who is the Client, who are
the Commands, who is the Invoker, and who is the Receiver.

File Edit Window Help HeMadeMeDoIt

232   Chapter 6

exercise solution

public class SwingObserverExample {

	 // Set up ...

 JButton button = new JButton("Should I do it?");

 button.addActionListener(new AngelListener());

 button.addActionListener(new DevilListener());

 // Set frame properties here

 }

 class AngelListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 System.out.println("Don't do it, you might regret it!");

 }

 }

 class DevilListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 System.out.println("Come on, do it!");

 }

 }

}

Here’s the code (the important bits anyway) for the little life-changing
application from Chapter 2. See if you can identify who is the Client, who are
the Commands, who is the Invoker, and who is the Receiver?

Here’s our solution.

The Client is the class that sets up the Swing components and sets the commands (AngelListener and DevilListener) in the Invoker (the Button).

The button is our Invoker. The button

calls the actionPerformed() (like
execute()) methods in the commands (the

ActionListeners) when you click the button.

ActionListener is the Command
Interface: it has one method,
actionPerformed() that, like
execute(), is executed when the
command is invoked.

AngelListener and DevilListener
are our concrete Commands. They
implement the command interface (in
this case, ActionListener).

The Receiver in this example is the System object. Remember, invoking a command results in actions on the Receiver. In a typical Swing application this would result in calling actions on other components in the UI.

you are here 4   233

the command pattern

Tools for your Design Toolbox
Your toolbox is starting to get heavy! In this chapter
we’ve added a pattern that allows us to encapsulate
methods into Command objects: store them, pass them
around, and invoke them when you need them.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
 not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion

but closed for
modification.

Depend on abstra
ctions. Do not

depend on conc
rete classes.

OO Principles

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide

an interface fo
r creating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has

one instance an
d provide a glo

bal point

of access to it.
Command - Encapsulates a re

quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

When you need to decouple
 an

object making requests from

the objects that know how to

perform the requests, use the

Command Pattern.

	� The Command Pattern
decouples an object making
a request from the one that
knows how to perform it.

	� A Command object is at the
center of this decoupling and
encapsulates a receiver with
an action (or set of actions).

	� An invoker makes a request
of a Command object by
calling its execute() method,
which invokes those actions
on the receiver.

	� Invokers can be
parameterized with
Commands, even
dynamically at runtime.

	� Commands may support
undo by implementing an
undo() method that restores
the object to its previous
state before the execute()
method was last called.

	� MacroCommands are a
simple extension of the
Command Pattern that
allow multiple commands
to be invoked. Likewise,
MacroCommands can easily
support undo().

	� In practice, it’s not
uncommon for “smart”
Command objects to
implement the request
themselves rather than
delegating to a receiver.

	� Commands may also be
used to implement logging
and transactional systems.

234   Chapter 6

design patterns crossword

Design Patterns Crossword
Time to take a breather and let it all sink in.

It’s another crossword; all of the solution words are from
this chapter.

ACROSS
5. Our favorite city.
6. Company that got us word-of-mouth business.
7. Role of customer in the Command Pattern.
9. Object that knows the actions and the receiver.
12. Invoker and receiver are _________.
15. The Waitress was one.
16. Dr. Seuss diner food (four words).
17. Another thing Command can do.

DOWN
1. The Cook and this person were definitely decoupled.
2. The Waitress didn’t do this.
3. A command encapsulates this.
4. Act as the receivers in the remote control (two words).
8. Object that knows how to get things done.
10. Carries out a request.
11. All commands provide this.
13. Our first command object controlled this.
14. A command __________ a set of actions and a
receiver.

1

2 3 4

5

6

7 8 9

10 11

12 13

14 15

16 17

Across
5. Our favorite city
6. Company that got us word of mouth business
7. Role of customer in the command pattern
9. Object that knows the actions and the receiver

12. Invoker and receiver are ______________
15. The Waitress was one
16. Dr. Seuss diner food
17. Another thing Command can do

Down
1. The cook and this person were definitely

decoupled
2. Waitress didn't do this
3. A command encapsulates this
4. Act as the receivers in the remote control (two

words)
8. Object that knows how to get things done

10. Carries out a request
11. All commands provide this
13. Our first command object controlled this
14. A command ____ a set of actions and a receiver

you are here 4   235

the command pattern

SOlUTion

Match the diner objects and methods with the corresponding
names from the Command Pattern.

Diner Command Pattern

Waitress

Short-Order Cook

orderUp()

Order

Customer

takeOrder()

Command

execute()

Client

Invoker

Receiver

setCommand()

File Edit Window Help GreenEggs&Ham

%java RemoteControlTest

Light is on
Garage Door is Open
%

Here’s the code for the GarageDoorOpenCommand class.

Here’s the output:

public class GarageDoorOpenCommand implements Command {
 GarageDoor garageDoor;

 public GarageDoorOpenCommand(GarageDoor garageDoor) {
 this.garageDoor = garageDoor;
 }
 public void execute() {
 garageDoor.up();
 }
}

236   Chapter 6

exercise solutions

Here’s the code to create commands for the off button.

LightOffCommand lightOff = new LightOffCommand(light);
StereoOffCommand stereoOff = new StereoOffCommand(stereo);
TVOffCommand tvOff = new TVOffCommand(tv);
HottubOffCommand hottubOff = new HottubOffCommand(hottub);

Here is the undo()
method for the
MacroCommand.

public class MacroCommand implements Command {
 Command[] commands;
 public MacroCommand(Command[] commands) {
 this.commands = commands;
 }
 public void execute() {
 for (int i = 0; i < commands.length; i++) {
 commands[i].execute();
 }
 }
 public void undo() {
 for (int i = commands.length - 1; i >= 0; i--) {
 commands[i].undo();
 }
 }
}

W
1

C
2

R
3

A V
4

O
5

B J E C T V I L L E

O Q T N

K U R D

W
6

E A T H E R - O - R A M A

S S R

C
7

L I E N T R
8

S C
9

O M M A N D

E L

R
10

C A E
11

D
12

E C O U P L E D S L
13

X

C I S B
14

I
15

N V O K E R

E V E I G C

I G
16

R E E N E G G S A N D H A M U
17

N D O

V R D T T

E S E

R

Across
5. Our favorite city [OBJECTVILLE]
6. Company that got us word of mouth business

[WEATHER-O-RAMA]
7. Role of customer in the command pattern

[CLIENT]
9. Object that knows the actions and the receiver

[COMMAND]
12. Invoker and receiver are ______________

[DECOUPLED]
15. The Waitress was one [INVOKER]
16. Dr. Seuss diner food [GREENEGGSANDHAM]
17. Another thing Command can do [UNDO]

Down
1. The cook and this person were definitely

decoupled [WAITRESS]
2. Waitress didn't do this [COOK]
3. A command encapsulates this [REQUEST]
4. Act as the receivers in the remote control (two

words) [VENDORCLASSES]
8. Object that knows how to get things done

[RECEIVER]
10. Carries out a request [RECEIVER]
11. All commands provide this [EXECUTE]
13. Our first command object controlled this [LIGHT]
14. A command ____ a set of actions and a receiver

[BINDS]

this is a new chapter   237

In this chapter we’re going to attempt such impossible feats
as putting a square peg in a round hole. Sound impossible? Not when
we have Design Patterns. Remember the Decorator Pattern? We wrapped objects to
give them new responsibilities. Now we’re going to wrap some objects with a different
purpose: to make their interfaces look like something they’re not. Why would we do that?
So we can adapt a design expecting one interface to a class that implements a different
interface. That’s not all; while we’re at it, we’re going to look at another pattern that wraps
objects to simplify their interface.

Being Adaptive
7 the Adapter and Facade Patterns

You mean it’s not
supposed to be a
football match?

Do you think the
readers are really getting the
impression we’re watching a
horse race rather than sitting
in a photo studio?

That’s the beauty of
our profession: we can
make things look like
something they’re not!

Wrapped in this coat,
I’m a different man!

238   Chapter 7

adapters everywhere

You know what the adapter does: it sits in between the plug of your laptop and the
British AC outlet; its job is to adapt the British outlet so that you can plug your laptop
into it and receive power. Or look at it this way: the adapter changes the interface of the
outlet into one that your laptop expects.

Some AC adapters are simple—they only change the shape of the outlet so that it
matches your plug, and they pass the AC current straight through—but other adapters
are more complex internally and may need to step the power up or down to match your
devices’ needs.

Okay, that’s the real world; what about object-oriented adapters? Well, our OO adapters
play the same role as their real-world counterparts: they take an interface and adapt it
to one that a client is expecting.

Adapters all around us
You’ll have no trouble understanding what an OO adapter is
because the real world is full of them. How’s this for an example:
Have you ever needed to use a US-made laptop in Great Britain?
Then you’ve probably needed an AC power adapter...

British Wall Outlet

US Standard AC Plug
AC Power Adapter

The British wall outlet e
xposes

one interfa
ce for gett

ing power.

The US laptop expects
another interface.

The adapter converts one
interface into another.

How many other real-world

adapters can you thi
nk of?

you are here 4   239

the adapter and facade patterns

Say you’ve got an existing software system that you need to work a new vendor class library
into, but the new vendor designed their interfaces differently than the last vendor:

Object-oriented adapters

Okay, you don’t want to solve the problem by changing your existing code (and you can’t
change the vendor’s code). So what do you do? Well, you can write a class that adapts the
new vendor interface into the one you’re expecting.

The adapter acts as the middleman by receiving requests from the client and converting
them into requests that make sense on the vendor classes.

Adapter Vendor
Class

Your
Existing
System

Vendor
Class

Your
Existing
System

Their interface doesn’t match the one you’ve written

your code against. This isn’t going to work!

The adapter implements the
interface your classes expect... ...and talks to the vendor interface

to service your requests.

No code changes. No code changes.New code.

Can you think of a solution
that doesn’t require YOU to
write ANY additional code
to integrate the new vendor
classes? How about making the
vendor supply the adapter class?

Vendor
Class

AdapterYour
Existing
System

240   Chapter 7

turkey adapter

public interface Turkey {

 public void gobble();

 public void fly();

}

public class MallardDuck implements Duck {

 public void quack() {

 System.out.println("Quack");

 }

 public void fly() {

 System.out.println("I'm flying");

 }

}

public interface Duck {

 public void quack();

 public void fly();

}

If it walks like a duck and quacks like a duck,
then it must might be a duck turkey wrapped
with a duck adapter...

It’s time to see an adapter in action. Remember our ducks from Chapter 1?
Let’s review a slightly simplified version of the Duck interfaces and classes:

This time around, our

ducks implement a Duck

interface that a
llows

Ducks to quack an
d fly.

Here’s a subclass of Duck, the MallardDuck:

Simple implementations: MallardDuck

just prints out w
hat it is doing.

Now it’s time to meet the newest fowl on the block:

Turkeys don’t qua
ck, they gobble.

Turkeys can fly, although they
can only fly short distances.

you are here 4   241

the adapter and facade patterns

public class WildTurkey implements Turkey {

 public void gobble() {

 System.out.println("Gobble gobble");

 }

 public void fly() {

 System.out.println("I'm flying a short distance");

 }

}

public class TurkeyAdapter implements Duck {

 Turkey turkey;

 public TurkeyAdapter(Turkey turkey) {

 this.turkey = turkey;

 }

 public void quack() {

 turkey.gobble();

 }

 public void fly() {

 for(int i=0; i < 5; i++) {

 turkey.fly();

 }

 }

}

Here’s a concrete implementation

of Turkey; like MallardDuck, it

just prints out its action
s.

Now, let’s say you’re short on Duck objects and you’d like to use some Turkey objects in their
place. Obviously we can’t use the turkeys outright because they have a different interface.

So, let’s write an Adapter:

Code Up Close
First, you need to implement the interface
of the type you’re adapting to. This is the
interface your client expects to see.

Next, we need to get a reference to the
object that we are adapting; here we do
that through the constructor.

Now we need to implement all the methods in
the interface; the quack() translation between
classes is easy: just call the gobble() method.

Even though both interfaces have a fly()
method, Turkeys fly in short spurts—
they can’t do long-distance flying like
ducks. To map between a Duck’s fly()
method and a Turkey’s, we need to call
the Turkey’s fly() method five times to
make up for it.

242   Chapter 7

test the adapter

public class DuckTestDrive {
 public static void main(String[] args) {
 Duck duck = new MallardDuck();

 Turkey turkey = new WildTurkey();
 Duck turkeyAdapter = new TurkeyAdapter(turkey);

 System.out.println("The Turkey says...");
 turkey.gobble();
 turkey.fly();

 System.out.println("\nThe Duck says...");
 testDuck(duck);

 System.out.println("\nThe TurkeyAdapter says...");
 testDuck(turkeyAdapter);
 }

 static void testDuck(Duck duck) {
 duck.quack();
 duck.fly();
 }
}

Test drive the adapter

File Edit Window Help Don’tForgetToDuck

%java DuckTestDrive
The Turkey says...
Gobble gobble
I'm flying a short distance

The Duck says...
Quack
I'm flying

The TurkeyAdapter says...
Gobble gobble
I'm flying a short distance
I'm flying a short distance
I'm flying a short distance
I'm flying a short distance
I'm flying a short distance

Let’s create
a Duck...

Now we just need some code to test drive our adapter:

...and a Turkey.

And then wrap the turkey
in a TurkeyAdapter, which
makes it look like a Duck.

Now let’s test the duck
by calling the testDuck()
method, which expects a
Duck object.

Then, let’s test the Turkey:
make it gobble, make it fly.

Now the big test: we try to pass

off the turkey as a duck...

The Duck quacks and flies
just like you’d expect.

The Turkey gobbles and
flies a short distance.

And the adapter gobbles when
quack() is called and flies a few times
when fly() is called. The testDuck()
method never knows it has a turkey
disguised as a duck!

Here’s our testDuck() method; it gets a duck and calls its quack() and fly() methods.

Test run

you are here 4   243

the adapter and facade patterns

Adaptee

Client

Adapter

request() translatedRequest()

The Adapter Pattern explained

The Client is implemented
against the target interface.

The Adapter implements the
target interface and holds an
instance of the Adaptee.

target interface
adaptee interface

Now that we have an idea of what an Adapter is, let’s step back and look
at all the pieces again.

The client makes a request to the adapter by
calling a method on it using the target interface.

The adapter translates the request into one or
more calls on the adaptee using the adaptee
interface.

The client receives the results of the call and never
knows there is an adapter doing the translation.

Here’s how the Client uses the Adapter

1

2

3

Note that the Client and Adaptee

are decoupled—neither knows about

the other.

TurkeyAdapter implemented

the target
interface, D

uck.

Turkey was the
adaptee interface.

244   Chapter 7

adapter pattern defined

Let’s say we also need an Adapter that converts a Duck to a
Turkey. Let’s call it DuckAdapter. Write that class:

How did you handle the fly() method (after all, we know ducks fly longer than turkeys)?
Check the answers at the end of the chapter for our solution. Did you think of a better way?

Q: How much “adapting” does an
adapter need to do? It seems like if I need
to implement a large target interface, I
could have a LOT of work on my hands.

A: You certainly could. The job of
implementing an adapter really is
proportional to the size of the interface you
need to support as your target interface.
Think about your options, however. You
could rework all your client-side calls to
the interface, which would result in a lot
of investigative work and code changes.
Or, you can cleanly provide one class that
encapsulates all the changes in that class.

Q: Does an adapter always wrap one
and only one class?

A: The Adapter Pattern’s role is to convert
one interface into another. While most
examples of the Adapter Pattern show an
adapter wrapping one adaptee, we both
know the world is often a bit more messy.
So, you may well have situations where an
adapter holds two or more adaptees that are
needed to implement the target interface.

This relates to another pattern called the
Facade Pattern; people often confuse the
two. Remind us to revisit this point when we
talk about facades later in this chapter.

Q: What if I have old and new parts
of my system, and the old parts expect
the old vendor interface, but we’ve
already written the new parts to use the
new vendor interface? It's going to get
confusing using an adapter here and the
unwrapped interface there. Wouldn’t I be
better off just writing my older code and
forgetting the adapter?

A: Not necessarily. One thing you can do
is create a Two Way Adapter that supports
both interfaces. To create a Two Way
Adapter, just implement both interfaces
involved, so the adapter can act as an old
interface or a new interface.

you are here 4   245

the adapter and facade patterns

Adapter Pattern defined

The Adapter Pattern converts the interface of a class
into another interface the clients expect. Adapter lets
classes work together that couldn’t otherwise because of
incompatible interfaces.

Enough ducks, turkeys, and AC power adapters; let’s get real and look at the official
definition of the Adapter Pattern:

Now, we know this pattern allows us to use a client with an incompatible interface by
creating an Adapter that does the conversion. This acts to decouple the client from
the implemented interface, and if we expect the interface to change over time, the
adapter encapsulates that change so that the client doesn’t have to be modified each
time it needs to operate against a different interface.

We’ve taken a look at the runtime behavior of the pattern; let’s take a look at its class
diagram as well:

specificRequest()

Client

Adaptee

request()

<<interface>>
Target

request()

Adapter

The Adapter Pattern is full of good object-oriented design principles: check out the use of
object composition to wrap the adaptee with an altered interface. This approach has the
added advantage that we can use an adapter with any subclass of the adaptee.

Also check out how the pattern binds the client to an interface, not an implementation; we
could use several adapters, each converting a different backend set of classes. Or, we could
add new implementations after the fact, as long as they adhere to the Target interface.

The Adapter implements
the Target interface.

Adapter is composed with the Adaptee.

All requests get
delegated to the
Adaptee.

The client sees only the
Target interface.

246   Chapter 7

object and class adapters

Object and class adapters
Now despite having defined the pattern, we haven’t told you the whole story yet.
There are actually two kinds of adapters: object adapters and class adapters. This
chapter has covered object adapters, and the class diagram on the previous page is
a diagram of an object adapter.

So what’s a class adapter and why haven’t we told you about it? Because you need
multiple inheritance to implement it, which isn’t possible in Java. But that doesn’t
mean you might not encounter a need for class adapters down the road when using
your favorite multiple inheritance language! Let’s look at the class diagram for
multiple inheritance.

specificRequest()

request()

Adapter

Client Adaptee

request()

Target

Instead of using composition
to adapt the Adaptee, the
Adapter now subclasses the
Adaptee and the Target classes.

Look familiar? That’s right—the only difference is that with a class adapter
we subclass the Target and the Adaptee, while with an object adapter we use
composition to pass requests to an Adaptee.

Object adapters and class adapters use two different
means of adapting the adaptee (composition
versus inheritance). How do these implementation
differences affect the flexibility of the adapter?

you are here 4   247

the adapter and facade patterns

Your job is to take the duck and turkey magnets and drag
them over the part of the diagram that describes the role
played by that bird, in our earlier example. (Try not to flip
back through the pages.) Then add your own annotations
to describe how it works.

Duck Magnets

specificRequest()

Client

Adaptee

request()

<<interface>>
Target

request()

Adapter

specificRequest()

request()

Adapter

Client Adaptee

request()

Target

Class Adapter

Object Adapter

Drag these onto the class diagram to show which part of the diagram represents the Duck class and which represents the Turkey class.

248   Chapter 7

exercise answer

Duck Magnets
Answer

specificRequest()

request()

Adapter

Client Adaptee

request()

Target

specificRequest()

Client

Adaptee

request()

<<interface>>
Target

request()

Adapter

Class Adapter

Object Adapter

Client thinks he’s talking to a Duck. The Target is t
he

Duck class. This

is what the client

invokes methods on.

The Adapter lets the Turkey respond to requests on a Duck, by extending BOTH classes (Duck and Turkey).

The Turkey class does not
have the same methods as
Duck, but the Adapter can
take Duck method calls
and turn around and invok

e
methods on the Turkey class.

Note: the class adapter uses multiple inheritance, so you can’t do it in Java...

Client thinks he’s talking to a Duck.
Just as with the Class

Adapter, the T
arget is the

Duck class. This is what the

client invokes
methods on.

The Turkey class doesn’t have the same interface as the Duck. In other words, Turkeys don’t have quack() methods, etc.

The Adapter implements the Duck interface, but when it gets a method call it turns around and delegates the calls to Turkey.

Thanks to the Adapter, the Turkey

(Adaptee) will get calls that
 the

client makes on the Duck interface.

Duck interface

Turkey
object

Duck class
Turkey class

you are here 4   249

the adapter and facade patterns

Tonight’s talk: Object Adapter and Class
Adapter meet face to face.

Object Adapter:
Because I use composition I’ve got a leg up. I can
adapt not only an adaptee class, but any of its
subclasses.

In my part of the world, we like to use composition
over inheritance; you may be saving a few lines
of code, but all I’m doing is writing a little code
to delegate to the adaptee. We like to keep things
flexible.

You’re worried about one little object? You might be
able to quickly override a method, but any behavior
I add to my adapter code works with my adaptee
class and all its subclasses.

Hey, come on, cut me some slack, I just need to
compose with the subclass to make that work.

You wanna see messy? Look in the mirror!

Class Adapter:

That’s true, I do have trouble with that because I
am committed to one specific adaptee class, but
I have a huge advantage because I don’t have to
reimplement my entire adaptee. I can also override
the behavior of my adaptee if I need to because I’m
just subclassing.

Flexible maybe, but efficient? No. There is just one
of me, not an adapter and an adaptee.

Yeah, but what if a subclass of Adaptee adds some
new behavior—then what?

Sounds messy...

250   Chapter 7

real world adapters

Real-world adapters

If you’ve been around Java for a while, you
probably remember that the early collection
types (Vector, Stack, Hashtable, and a few
others) implement a method, elements(), which
returns an Enumeration. The Enumeration
interface allows you to step through the
elements of a collection without knowing
the specifics of how they are managed in the
collection.

<<interface>>
Enumeration

hasMoreElements()
nextElement()

Tells you if there are any more
elements in the collection.

Gives you the next element in the collection.

The more recent Collection classes use an
Iterator interface that, like the Enumeration
interface, allows you to iterate through a set of
items in a collection, and adds the ability to
remove items.

<<interface>
Iterator

Analogous to hasMoreElements()
in the Enumeration interface.
This method just tells you if
you’ve looked at all the items in
the collection.

Gives you the next element in the collection.

Removes an item from the collection.

We are sometimes faced with legacy code that exposes the
Enumeration interface, yet we’d like for our new code to use only
Iterators. It looks like we need to build an adapter.

Enumerators

Iterators

Using Enumerators with code that expects Iterators

Let’s take a look at the use of a simple Adapter in the real world
(something more serious than Ducks at least)...

Enumeration has
a simple interfac

e.

hasNext()
next()
remove()

you are here 4   251

the adapter and facade patterns

Adapting an Enumeration to an Iterator

<<interface>>
Enumeration

hasMoreElements()
nextElement()

<<interface>>
Iterator

hasNext()
next()
remove()

These two methods look easy.
They map straight to hasNext()
and next() in Iterator.

But what about this method
remove() in Iterator? There’s
nothing like that in Enumeration.

Here’s what the classes should look like: we need an adapter that implements the Target
interface and is composed with an adaptee. The hasNext() and next() methods are going
to be straightforward to map from target to adaptee: we just pass them right through.
But what do you do about remove()? Think about it for a moment (and we’ll deal with it
on the next page). For now, here’s the class diagram:

<<interface>>
Enumeration

hasMoreElements()
nextElement()

<<interface>>
Iterator

hasNext()
next()
remove()

Your new code still gets
to use Iterators, even
if there’s really an
Enumeration underneath.

EnumerationIterator

hasNext()
next()
remove()

EnumerationIterator
is the adapter.

A class
implementing
the Enumeration
interface is the
adaptee.

We’re making the Enumerations
in your old code look like
Iterators for your new code.

Target interface

Adaptee interface

Designing the Adapter

First we’ll look at the two interfaces to figure out how the methods map from one to
the other. In other words, we’ll figure out what to call on the adaptee when the client
invokes a method on the target.

252   Chapter 7

enumeration iterator adapter

public class EnumerationIterator implements Iterator<Object> {

 Enumeration<?> enumeration;

 public EnumerationIterator(Enumeration<?> enumeration) {

 this.enumeration = enumeration;

 }

 public boolean hasNext() {

 return enumeration.hasMoreElements();

 }

 public Object next() {

 return enumeration.nextElement();

 }

 public void remove() {

 throw new UnsupportedOperationException();

 }

}

Since we’re adapting
Enumeration to Iterator,
our Adapter implements the
Iterator interface...it has to
look like an Iterator.

The Enumeration we’re
adapting. We’re using
composition, so we stash it
in an instance variable.

The Iterator’s hasNext() method
is delegated to the Enumeration’s
hasMoreElements() method...
...and the Iterator’s next() method
is delegated to the Enumeration’s
nextElement() method.

Unfortunately, we can’t support
Iterator’s remove() method, so
we have to punt (in other words,
we give up!). Here we just throw
an exception.

Well, we know Enumeration doesn’t support remove(). It’s a “read only” interface. There’s no
way to implement a fully functioning remove() method on the adapter. The best we can do is
throw a runtime exception. Luckily, the designers of the Iterator interface foresaw this need and
defined the remove() method so that it supports an UnsupportedOperationException.

This is a case where the adapter isn’t perfect; clients will have to watch out for potential
exceptions, but as long as the client is careful and the adapter is well documented, this is a
perfectly reasonable solution.

Dealing with the remove() method

Writing the EnumerationIterator adapter

Here’s simple but effective code for all those legacy classes still producing Enumerations:

you are here 4   253

the adapter and facade patterns

While Java has gone in the direction of the Iterator interface, there is nevertheless still legacy
client code that depends on the Enumeration interface, so an Adapter that converts an Iterator to
an Enumeration could potentially be useful.
Write an Adapter that adapts an Iterator to an Enumeration. You can test your code by
adapting an ArrayList. The ArrayList class supports the Iterator interface but doesn’t support
Enumerations.

Some AC adapters do more than just change the interface—they add other features
like surge protection, indicator lights, and other bells and whistles.

If you were going to implement these kinds of features, what pattern would you use?

254   Chapter 7

fireside chats: decorator and adapter

Tonight’s talk: The Decorator Pattern and the Adapter
Pattern discuss their differences.

Decorator:
I’m important. My job is all about responsibility—you
know that when a Decorator is involved, there’s
going to be some new responsibilities or behaviors
added to your design.

That may be true, but don’t think we don’t work
hard. When we have to decorate a big interface,
whoa, that can take a lot of code.

Cute. Don’t think we get all the glory; sometimes
I’m just one decorator that is being wrapped by who
knows how many other decorators. When a method
call gets delegated to you, you have no idea how
many other decorators have already dealt with it
and you don’t know that you’ll ever get noticed for
your efforts servicing the request.

Adapter:

You decorators want all the glory while us adapters
are down in the trenches doing the dirty work:
converting interfaces. Our jobs may not be
glamorous, but our clients sure do appreciate us
making their lives simpler.

Try being an adapter when you’ve got to bring
several classes together to provide the interface your
client is expecting. Now that’s tough. But we have a
saying: “A decoupled client is a happy client.”

Hey, if adapters are doing their job, our clients
never even know we’re there. It can be a thankless
job.

you are here 4   255

the adapter and facade patterns

Decorator:

Well, us decorators do that as well, only we allow
new behavior to be added to classes without altering
existing code. I still say that adapters are just fancy
decorators—I mean, just like us, you wrap an object.

Uh, no. Our job in life is to extend the behaviors or
responsibilities of the objects we wrap; we aren’t a
simple pass through.

Maybe we should agree to disagree. We seem to
look somewhat similar on paper, but clearly we are
miles apart in our intent.

Adapter:
But the great thing about us adapters is that we
allow clients to make use of new libraries and
subsets without changing any code; they just rely on
us to do the conversion for them. Hey, it’s a niche,
but we’re good at it.

No, no, no, not at all. We always convert the
interface of what we wrap; you never do. I’d say a
decorator is like an adapter; it's just that you don’t
change the interface!

Hey, who are you calling a simple pass through?
Come on down and we’ll see how long you last
converting a few interfaces!

Oh yeah, I’m with you there.

256   Chapter 7

who does what?

And now for something different...

There’s another pattern in this chapter.

You’ve seen how the Adapter Pattern converts the interface of a class into one
that a client is expecting. You also know we achieve this in Java by wrapping
the object that has an incompatible interface with an object that implements
the correct one.

We’re going to look at a pattern now that alters an interface, but for a different
reason: to simplify the interface. It’s aptly named the Facade Pattern because
this pattern hides all the complexity of one or more classes behind a clean,
well-lit facade.

Match each pattern with its intent:

Pattern Intent

Decorator

Adapter

Facade

Converts one interface to
another

Doesn’t alter the interface,
but adds responsibility

Makes an interface simpler

you are here 4   257

the adapter and facade patterns

Amplifier

tuner
player
on()
off()
setStreamingPlayer()
setStereoSound()
setSurroundSoud()
setTuner()
setVolume()
toString()

StreamingPlayer

amplifier

on()
off()
pause()
play()
setSurroundAudio()
setTwoChannelAudio()
stop()
toString()

Tuner

on()
off()
setAm()
setFm()
setFrequency()
toString()

amplifier

Screen
up()
down()
toString()

Projector

on()
off()
tvMode()
wideScreenMode()
toString()

player

PopcornPopper

on()
off()
pop()
toString()

TheaterLights

on()
off()
dim()
toString()

Before we dive into the details of the Facade Pattern, let’s take a look at a
growing national obsession: building a nice theater to binge-watch all those
movies and TV series.

You’ve done your research and you’ve assembled a killer system complete
with a streaming player, a projection video system, an automated screen,
surround sound, and even a popcorn popper.

Check out all the components you’ve put together:

Home Sweet Home Theater

You’ve spent weeks running wire, mounting the projector, making all the
connections, and fine tuning. Now it’s time to put it all in motion and enjoy a
movie...

That’s a lot of
classes, a lot
of interactions,
and a big set
of interfaces to
learn and use.

258   Chapter 7

tasks to watch a movie

Pick out a movie, relax, and get ready for movie magic.
Oh, there’s just one thing—to watch the movie, you need
to perform a few tasks:

Watching a movie (the hard way)

Turn on the popcorn popper

Start the popper popping

Dim the lights

Put the screen down

Turn the projector on

Put the projector on widescreen mode

Turn the sound amplifier on

Set the amplifier to streaming player input

Set the amplifier to surround sound

Set the amplifier volume to medium (5)

Turn the streaming player on12

11

10

9

8

7

6

5

4

3

2

1

13

Set the projector input to streaming player

I’m already exhausted
and all I’ve done is turn
everything on!

Start playing the movie

you are here 4   259

the adapter and facade patterns

popper.on();

popper.pop();

lights.dim(10);

screen.down();

projector.on();

projector.setInput(player);

projector.wideScreenMode();

amp.on();

amp.setStreamingPlayer(player);

amp.setSurroundSound();

amp.setVolume(5);

player.on();

player.play(movie);

Turn on the popcorn popper and start
popping...

Dim the lights to 10%...

Put the screen down...

Turn on the projector and put it in
widescreen mode for the movie...

Turn on the amp, set it to Streaming
player, put it in surround-sound mode,
and set the volume to 5...

Turn on the Streaming player...
and FINALLY, play the movie!

Let’s check out those same tasks in terms of the classes and the
method calls needed to perform them:

Six different classes

involved!

But there’s more...

	� When the movie is over, how do you turn everything off? Wouldn’t you have to do all
of this over again, in reverse?

	� Wouldn’t it be as complex to listen to the radio?

	� If you decide to upgrade your system, you’re probably going to have to learn a slightly
different procedure.

So what to do? The complexity of using your home theater is becoming apparent!

Let’s see how the Facade Pattern can get us out of this mess so we can enjoy the movie...

260   Chapter 7

lights, camera, facade

A Facade is just what you need: with the Facade Pattern you can take a complex
subsystem and make it easier to use by implementing a Facade class that provides
one, more reasonable interface. Don’t worry; if you need the power of the complex
subsystem, it’s still there for you to use, but if all you need is a straightforward
interface, the Facade is there for you.

 Let’s take a look at how the Facade operates:

Lights, Camera, Facade!

watchMovie()
endMovie()
listenToRadio()
endRadio()

HomeTheaterFacade

TheaterLights

on()
off()
dim()
toString()

PopcornPopper

on()
off()
pop()
toString()

Screen
up()
down()
toString()

Tuner

on()
off()
setAm()
setFm()
setFrequency()
toString()

amplifier

Amplifier
tuner
player
on()
off()
setStreamingPlayer()
setStereoSound()
setSurroundSoud()
setTuner()
setVolume()
toString()

Projector

on()
off()
tvMode()
wideScreenMode()
toString()

player

StreamingPlayer
amplifier

on()
off()
pause()
play()
setSurroundAudio()
setTwoChannelAudio()
stop()
toString()

Okay, time to create a

Facade for the home

theater system. To do this

we create a new class

HomeTheaterFacade,

which exposes a few

simple methods such as

watchMovie().

1

The Facade

The subsystem the
Facade is simplifying.

on()

play()

The Facade class treats
the home theater
components as a
subsystem, and calls
on the subsystem
to implement its
watchMovie() method.

2

you are here 4   261

the adapter and facade patterns

watchMovie()

Your client code now calls

methods on the home theater

Facade, not on the subsystem.

So now to watch a movie we just

call one method, watchMovie(),

and it communicates with

the lights, streaming player,

projector, amplifier, screen, and

popcorn maker for us.

3

A client of the
subsystem facade.

Former president of the
Rushmore High School
A/V Science Club.

The Facade still leaves the subsystem
accessible so it can be used directly. If
you need the advanced functionality
of the subsystem classes, they are
available for your use.

4

I’ve got to have
my low-level access!

262   Chapter 7

facade versus adapter

A facade not
only simplifies
an interface, it
decouples a client
from a subsystem
of components.

Facades and
adapters may
wrap multiple
classes, but a
facade’s intent is
to simplify, while
an adapter’s
is to convert
the interface
to something
different.

Q: If the facade encapsulates the
subsystem classes, how does a client
that needs lower-level functionality gain
access to them?

A: Facades don’t “encapsulate” the
subsystem classes; they merely provide a
simplified interface to their functionality. The
subsystem classes still remain available
for direct use by clients that need to use
more specific interfaces. This is a nice
property of the Facade Pattern: it provides
a simplified interface while still exposing the
full functionality of the system to those who
may need it.

Q: Does the facade add any
functionality or does it just pass through
each request to the subsystem?

A: A facade is free to add its own “smarts”
in addition to making use of the subsystem.
For instance, while our home theater facade
doesn’t implement any new behavior, it is
smart enough to know that the popcorn
popper has to be turned on before it can pop
(as well as the details of how to turn on and
stage a movie showing).

Q: Does each subsystem have only
one facade?

A: Not necessarily. The pattern certainly
allows for any number of facades to be
created for a given subsystem.

Q: What is the benefit of the facade
other than the fact that I now have a
simpler interface?

A: The Facade Pattern also allows you
to decouple your client implementation
from any one subsystem. Let’s say that you
get a big raise and decide to upgrade your
home theater to all new components that
have different interfaces. Well, if you coded
your client to the facade rather than the
subsystem, your client code doesn’t need to
change, just the facade (and hopefully the
manufacturer is supplying that!).

Q: So the way to tell the difference
between the Adapter Pattern and the
Facade Pattern is that the adapter wraps
one class and the facade may represent
many classes?

A: No! Remember, the Adapter Pattern
changes the interface of one or more classes
into one interface that a client is expecting.
While most textbook examples show the
adapter adapting one class, you may need to
adapt many classes to provide the interface
a client is coded to. Likewise, a Facade may
provide a simplified interface to a single
class with a very complex interface.

The difference between the two is not in
terms of how many classes they “wrap,” it
is in their intent. The intent of the Adapter
Pattern is to alter an interface so that it
matches one a client is expecting. The
intent of the Facade Pattern is to provide a
simplified interface to a subsystem.

you are here 4   263

the adapter and facade patterns

public class HomeTheaterFacade {

 Amplifier amp;

 Tuner tuner;

 StreamingPlayer player;

 Projector projector;

 TheaterLights lights;

 Screen screen;

 PopcornPopper popper;

 public HomeTheaterFacade(Amplifier amp,

 Tuner tuner,

 StreamingPlayer player;

 Projector projector,

 Screen screen,

 TheaterLights lights,

 PopcornPopper popper) {

 this.amp = amp;

 this.tuner = tuner;

 this.player = player;

 this.projector = projector;

 this.screen = screen;

 this.lights = lights;

 this.popper = popper;

 }

 // other methods here

}

Constructing your home theater facade
Let’s step through the construction of the HomeTheaterFacade class.
The first step is to use composition so that the facade has access to all the
components of the subsystem:

The facade is passed a
reference to each component
of the subsystem in its
constructor. The facade
then assigns each to the
corresponding instance variable.

Here’s the composition; these
are all the components of the
subsystem we are going to use.

We’re just about to fill these in...

264   Chapter 7

implementing facade

public void watchMovie(String movie) {

 System.out.println("Get ready to watch a movie...");

 popper.on();

 popper.pop();

 lights.dim(10);

 screen.down();

 projector.on();

 projector.wideScreenMode();

 amp.on();

 amp.setStreamingPlayer(player);

 amp.setSurroundSound();

 amp.setVolume(5);

 player.on();

 player.play(movie);

}

public void endMovie() {

 System.out.println("Shutting movie theater down...");

 popper.off();

 lights.on();

 screen.up();

 projector.off();

 amp.off();

 player.stop();

 player.off();

}

Implementing the simplified interface
Now it’s time to bring the components of the subsystem together into a unified interface.
Let’s implement the watchMovie() and endMovie() methods:

watchMovie() follows the same sequence
we had to do by hand before, but wraps
it up in a handy method that does all
the work. Notice that for each task we
are delegating the responsibility to the
corresponding component in the subsystem.

And endMovie() takes care of shutting everything down for us. Again, each task is delegated to the appropriate component in the subsystem.

Think about the facades you’ve encountered in the Java
API. Where would you like to have a few new ones?

you are here 4   265

the adapter and facade patterns

Here’s the output.
Calling the Facade’s
watchMovie() does all
this work for us...

...and here, we’re done
watching the movie, so
calling endMovie() turns
everything off.

public class HomeTheaterTestDrive {

 public static void main(String[] args) {

 // instantiate components here

 HomeTheaterFacade homeTheater =

 new HomeTheaterFacade(amp, tuner, player,

 projector, screen, lights, popper);

 homeTheater.watchMovie("Raiders of the Lost Ark");

 homeTheater.endMovie();

 }

}

It’s showtime!

Time to watch a movie (the easy way)

%java HomeTheaterTestDrive
Get ready to watch a movie...
Popcorn Popper on
Popcorn Popper popping popcorn!
Theater Ceiling Lights dimming to 10%
Theater Screen going down
Projector on
Projector in widescreen mode (16x9 aspect ratio)
Amplifier on
Amplifier setting Streaming player to Streaming Player
Amplifier surround sound on (5 speakers, 1 subwoofer)
Amplifier setting volume to 5
Streaming Player on
Streaming Player playing "Raiders of the Lost Ark"
Shutting movie theater down...
Popcorn Popper off
Theater Ceiling Lights on
Theater Screen going up
Projector off
Amplifier off
Streaming Player stopped "Raiders of the Lost Ark"
Streaming Player off
%

File Edit Window Help SnakesWhy’dItHaveToBeSnakes?

First you instantiate
the Facade with all the
components in the subsystem.

Use the simplified interface to first start the movie up, and then shut it down.

Here we’re creating the components
right in the test drive. Normally the
client is given a facade; it doesn’t have
to construct one itself.

266   Chapter 7

facade pattern defined

Facade Pattern defined

The Facade Pattern provides a unified interface to a
set of interfaces in a subsystem. Facade defines a higher-
level interface that makes the subsystem easier to use.

To use the Facade Pattern, we create a class that simplifies and unifies a set of more complex
classes that belong to some subsystem. Unlike a lot of patterns, Facade is fairly straightforward;
there are no mind-bending abstractions to get your head around. But that doesn’t make it
any less powerful: the Facade Pattern allows us to avoid tight coupling between clients and
subsystems, and, as you will see shortly, also helps us adhere to a new object-oriented principle.

Before we introduce that new principle, let’s take a look at the official definition of the pattern:

There isn’t a lot here that you don’t already know, but one of the most important things to
remember about a pattern is its intent. This definition tells us loud and clear that the purpose
of the facade is to make a subsystem easier to use through a simplified interface. You can see
this in the pattern’s class diagram:

Client Facade

subsystem classes

Unified interface
that is easier to use.

That’s it; you’ve got another pattern under your belt! Now, it’s time for that new OO principle.
Watch out, this one can challenge some assumptions!

More complex subsystem.

Happy client whose
job just became
easier because of
the facade.

you are here 4   267

the adapter and facade patterns

The Principle of Least Knowledge

Design Principle
Principle of Least Knowledge: talk
only to your immediate friends.

The Principle of Least Knowledge guides us to reduce the
interactions between objects to just a few close “friends.”
The principle is usually stated as:

But what does this mean in real terms? It means when you
are designing a system, for any object, be careful of the
number of classes it interacts with and also how it comes to
interact with those classes.

This principle prevents us from creating designs that have
a large number of classes coupled together so that changes
in one part of the system cascade to other parts. When you
build a lot of dependencies between many classes, you are
building a fragile system that will be costly to maintain and
complex for others to understand.

How many classes is this code coupled to?

public float getTemp() {

 return station.getThermometer().getTemperature();

}

268   Chapter 7

principle of least knowledge

Notice that th
ese guidelines

tell us not

to call methods on obj
ects that were

returned from
 calling other

 methods!!

Think of a “component” as any object t
hat is

referenced by an instan
ce variable. In other

words, think of this as a
 HAS-A relationship.

Okay, but how do you keep from doing this? The principle
provides some guidelines: take any object, and from any
method in that object, invoke only methods that belong to:

	� The object itself

	� Objects passed in as a parameter to the method

	� Any object the method creates or instantiates

	� Any components of the object

This sounds kind of stringent, doesn’t it? What’s the harm
in calling the method of an object we get back from another
call? Well, if we were to do that, then we’d be making a
request of another object’s subpart (and increasing the
number of objects we directly know). In such cases, the
principle forces us to ask the object to make the request for us;
that way, we don’t have to know about its component objects
(and we keep our circle of friends small). For example:

How NOT to Win Friends and Influence Objects

public float getTemp() {

 Thermometer thermometer = station.getThermometer();

 return thermometer.getTemperature();

}

Without the
Principle

public float getTemp() {

 return station.getTemperature();

}

With the
Principle

Here we get the thermometer object
from the station and then call the
getTemperature() method ourselves.

When we apply the principle, we add a method
to the Station class that makes the request
to the thermometer for us. This reduces the
number of classes we’re dependent on.

you are here 4   269

the adapter and facade patterns

public class Car {

	 Engine engine;

	 // other instance variables

	 public Car() {

		 // initialize engine, etc.

	 }

	 public void start(Key key) {

		 Doors doors = new Doors();

		 boolean authorized = key.turns();

		 if (authorized) {

			 engine.start();

			 updateDashboardDisplay();

			 doors.lock();

		 }

	 }

	 public void updateDashboardDisplay() {

		 // update display

	 }

}

Keeping your method calls in bounds...

Here’s a Car class that demonstrates all the ways you can call methods and still
adhere to the Principle of Least Knowledge:

You can call a local method
within the object.

You can call a method on an
object passed as a parameter.

You can call a method on a

component of the object.

You can call a method on an object you create or instantiate.

Here’s a component of this

class. We can call its methods.

Here we’re creating a new
object; its methods are legal.

Q: There is another principle called the
Law of Demeter; how are they related?

A: The two are one and the same, and
you’ll encounter these terms being used
interchangeably. We prefer to use the
Principle of Least Knowledge for a couple
of reasons: (1) the name is more intuitive,
and (2) the use of the word “Law” implies we
always have to apply this principle. In fact,
no principle is a law; all principles should

be used when and where they are helpful.
All design involves tradeoffs (abstractions
versus speed, space versus time, and so on)
and while principles provide guidance, you
should take all factors into account before
applying them.

Q: Are there any disadvantages
to applying the Principle of Least
Knowledge?

A: Yes; while the principle reduces
the dependencies between objects and
studies have shown this reduces software
maintenance, it is also the case that applying
this principle results in more “wrapper”
classes being written to handle method
calls to other components. This can result in
increased complexity and development time
as well as decreased runtime performance.

270   Chapter 7

violating the principle of least knowledge

Hard hat area.
watch out for
falling assumptions

Do either of these classes violate the Principle of Least
Knowledge? Why or why not?

public House {

 WeatherStation station;

 // other methods and constructor

 public float getTemp() {

 return station.getThermometer().getTemperature();

 }

}

public House {

 WeatherStation station;

 // other methods and constructor

 public float getTemp() {

 Thermometer thermometer = station.getThermometer();

 return getTempHelper(thermometer);

 }

 public float getTempHelper(Thermometer thermometer) {

 return thermometer.getTemperature();

 }

}

Can you think of a common use of Java that
violates the Principle of Least Knowledge?

Should you care?

Answer: How about System.out.println()?

you are here 4   271

the adapter and facade patterns

The Facade Pattern and the Principle of Least Knowledge

Client

This client only has
one friend:

the HomeTheaterFacade. In OO

programming, having only one

friend is a GOOD thing!

HomeTheaterFacade
manages all those subsystem
components for the client.
It keeps the client simple
and flexible.

We try to keep subsystem
s

adhering to the Principl
e of Least

Knowledge as well. If this gets too

complex and too many friends are

intermingling, we can introduce

additional facades to f
orm layers

of subsystems.

We can upgrade t
he home

theater components without

affecting the c
lient.

watchMovie()
endMovie()
listenToRadio()
endRadio()

HomeTheaterFacade

TheaterLights

on()
off()
dim()
toString()

PopcornPopper

on()
off()
pop()
toString()

Screen
up()
down()
toString()

Tuner

on()
off()
setAm()
setFm()
setFrequency()
toString()

amplifier

Amplifier
tuner
player
on()
off()
setStreamingPlayer()
setStereoSound()
setSurroundSoud()
setTuner()
setVolume()
toString()

Projector

on()
off()
tvMode()
wideScreenMode()
toString()

player

StreamingPlayer
amplifier

on()
off()
pause()
play()
setSurroundAudio()
setTwoChannelAudio()
stop()
toString()

272   Chapter 7

your design toolbox

Tools for your Design Toolbox
Your toolbox is starting to get heavy! In this chapter we’ve
added a couple of patterns that allow us to alter interfaces and
reduce coupling between clients and the systems they use.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion

but closed for
modification.

Depend on abstra
ctions. Do not

depend on conc
rete classes.

Talk only to you
r friends.

OO Principles

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has one

instance and pr
ovide a global p

oint of

access to it.
Command - Encapsulates a re

quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Adapter - Converts the int
erface of

a class into ano
ther interface

clients

expect. Lets classes work together

that couldn’t o
therwise because of

incompatible interfac
es.

We have a new technique

for maintaining a lo
w level

of coupling in
 our designs

(remember, talk only
 to your

friends)...

Facade - Provides a unif
ied interface

to a set of int
erfaces in a sub

system.

Facade defines a
 higher-level interface

that makes the subsyst
em easier to use.

...and TWO new patterns.
Each changes an interface,
the adapter to convert,
and the facade to unify
and simplify.

	� When you need to use
an existing class and its
interface is not the one you
need, use an adapter.

	� When you need to simplify
and unify a large interface or
complex set of interfaces, use
a facade.

	� An adapter changes an
interface into one a client
expects.

	� A facade decouples a client
from a complex subsystem.

	� Implementing an adapter may
require little work or a great
deal of work depending on
the size and complexity of the
target interface.

	� Implementing a facade
requires that we compose
the facade with its subsystem
and use delegation to
perform the work of the
facade.

	� There are two forms of the
Adapter Pattern: object
and class adapters. Class
adapters require multiple
inheritance.

	� You can implement more than
one facade for a subsystem.

	� An adapter wraps an object
to change its interface, a
decorator wraps an object
to add new behaviors and
responsibilities, and a facade
“wraps” a set of objects to
simplify.

you are here 4   273

the adapter and facade patterns

1 2

3

4 5

6 7 8

9

10

11

12 13

14 15

16

17 18

19

Across
1. True or false, Adapters can only wrap one object
5. An Adapter _____ an interface
6. Movie we watched (5 words)

10. If in Europe you might need one of these (two
words)

11. Adapter with two roles (two words)
14. Facade still _____ low level access
15. Ducks do it better than Turkeys
16. Disadvantage of the Principle of Least

Knowledge: too many __________
17. A _________ simplifies an interface
19. New American dream (two words)

Down
2. Decorator called Adapter this (3 words)
3. One advantage of Facade
4. Principle that wasn't as easy as it sounded (two

words)
7. A ______ adds new behavior
8. Masquerading as a Duck
9. Example that violates the Principle of Least

Knowledge: System.out.______
12. No movie is complete without this
13. Adapter client uses the _________ interface
18. An Adapter and a Decorator can be said to

_____ an object

Design Patterns Crossword
Yes, it’s another crossword. All of the solution words are
from this chapter.

ACROSS
1. True or false? Adapters can wrap only one object.
5. An Adapter __________ an interface.
6. Movie we watched (five words).
10. If in Britain, you might need one of these (two words).
11. Adapter with two roles (two words).
14. Facade still ________ low-level access.
15. Ducks do it better than Turkeys.
16. Disadvantage of the Principle of Least Knowledge:
too many __________.
17. A __________ simplifies an interface.
19. New American dream (two words).

DOWN
2. Decorator called Adapter this (three words).
3. One advantage of Facade.
4. Principle that wasn't as easy as it sounded (two words).
7. A __________ adds new behavior.
8. Masquerading as a Duck.
9. Example that violates the Principle of Least
Knowledge: System.out.__________.
12. No movie is complete without this.
13. Adapter client uses the __________ interface.
18. An Adapter and a Decorator can be said to ________
an object.

274   Chapter 7

exercise solutions

Let’s say we also need an Adapter that converts a Duck to a
Turkey. Let’s call it DuckAdapter. Here’s our solution:

public class DuckAdapter implements Turkey {
 Duck duck;
 Random rand;
 public DuckAdapter(Duck duck) {
 this.duck = duck;
 rand = new Random();
 }
 public void gobble() {
 duck.quack();
 }
 public void fly() {
 if (rand.nextInt(5) == 0) {
 duck.fly();
 }
 }
}

Now we are adapting Turkeys to Ducks, so
we implement the Turkey interface.

We stash a reference to the Duck we are adapting.

We also create a random object; take a look at the fly() method to see how it is used.

A gobble just becomes a quack.

Since Ducks fly a lot longer than Turkeys,
we decided to only fly the Duck on average
one of five times.

Do either of these classes violate the Principle of Least
Knowledge? Why or why not?

public House {
 WeatherStation station;
 // other methods and constructor
 public float getTemp() {
 return station.getThermometer().getTemperature();
 }
}
public House {
 WeatherStation station;
 // other methods and constructor
 public float getTemp() {
 Thermometer thermometer = station.getThermometer();
 return getTempHelper(thermometer);
 }

 public float getTempHelper(Thermometer thermometer) {
 return thermometer.getTemperature();
 }
}

Violates the Principle of Least Knowledge!
You are calling the method of an object
returned from another call.

Doesn’t violate Principle of
Least Knowledge! This seems
like hacking our way around
the principle. Has anything
really changed since we
just moved out the call to
another method?

you are here 4   275

the adapter and facade patterns

Match each pattern with its intent:
SOlUTion

Pattern Intent

Decorator

Adapter

Facade

Converts one interface to
another

Doesn’t alter the interface,
but adds responsibility

Makes an interface simpler

You’ve seen how to implement an adapter that adapts an Enumeration to an Iterator; now write
an adapter that adapts an Iterator to an Enumeration.

public class IteratorEnumeration implements Enumeration<Object> {
 Iterator<?> iterator;

 public IteratorEnumeration(Iterator<?> iterator) {
 this.iterator = iterator;
 }

 public boolean hasMoreElements() {
 return iterator.hasNext();
 }

 public Object nextElement() {
 return iterator.next();
 }
}

Notice we keep the
type parameter
generic so this will
work for any type
of object.

276   Chapter 7

crossword puzzle solution

F
1

A L S
2

E

D
3

I

L
4

C
5

O N V E R T S M

E C P

R
6

A I D
7

E R S O F T
8

H E L O S T A R K

S E U U E

T C P R P P
9

K O L K A
10

C A D A P T E R

N R I E S I

T
11

W O W A Y N Y S N

W T G T P
12

T
13

T

A
14

L L O W S H O A F
15

L Y

E R W
16

R A P P E R S N

F
17

A C A D E W
18

O C G

G R U O E

H
19

O M E T H E A T E R G R T

P H N

Across
1. True or false, Adapters can only wrap one object

[FALSE]
5. An Adapter _____ an interface [CONVERTS]
6. Movie we watched (5 words)

[RAIDERSOFTHELOSTARK]
10. If in Europe you might need one of these (two

words) [ACADAPTER]
11. Adapter with two roles (two words) [TWOWAY]
14. Facade still _____ low level access [ALLOWS]
15. Ducks do it better than Turkeys [FLY]
16. Disadvantage of the Principle of Least

Knowledge: too many __________
[WRAPPERS]

17. A _________ simplifies an interface [FACADE]
19. New American dream (two words)

[HOMETHEATER]

Down
2. Decorator called Adapter this (3 words)

[SIMPLEPASSTHROUGH]
3. One advantage of Facade [DECOUPLING]
4. Principle that wasn't as easy as it sounded (two

words) [LEASTKNOWLEDGE]
7. A ______ adds new behavior [DECORATOR]
8. Masquerading as a Duck [TURKEY]
9. Example that violates the Principle of Least

Knowledge: System.out.______ [PRINTLN]
12. No movie is complete without this [POPCORN]
13. Adapter client uses the _________ interface

[TARGET]
18. An Adapter and a Decorator can be said to

_____ an object [WRAP]

Design Patterns Crossword Solution

this is a new chapter   277

We’re on an encapsulation roll; we’ve encapsulated object
creation, method invocation, complex interfaces, ducks,
pizzas...what could be next? We’re going to get down to encapsulating

pieces of algorithms so that subclasses can hook themselves right into a

computation anytime they want. We’re even going to learn about a design principle

inspired by Hollywood. Let’s get started...

8 the Template Method Pattern

Encapsulating
 Algorithms

Yeah, he’s a great
boss until it comes to getting
down in this hole, then it ALL
becomes MY job. See what I
mean? He’s nowhere in sight!

278   Chapter 8

coffee and tea recipes are similar

It’s time for some more caffeine
Some people can’t live without their coffee; some
people can’t live without their tea. The common
ingredient? Caffeine, of course!

But there’s more; tea and coffee are made in very
similar ways. Let’s check it out:

The recipe for
coffee looks a lot
like the recipe for
tea, doesn’t it?

Starbuzz Coffee Barista Training Manual

(1) Boil
 some wa

ter

(2) Brew
 coffee

in boili
ng water

(3) Pour
 coffee

in cup

(4) Add
sugar an

d milk

Starbuzz Tea Recipe

Starbuzz Coffee Recipe

Baristas
! Please

 follow
these re

cipes pr
ecisely

when pre
paring S

tarbuzz
beverage

s.

(1) Boil
 some wa

ter

(2) Stee
p tea in

 boiling
 water

(3) Pour
 tea in

cup

(4) Add
lemon

All reci
pes are

Starbuzz
 Coffee

trade se
crets an

d should
 be kept

strictly
 confide

ntial.

you are here 4   279

the template method pattern

public class Coffee {

 void prepareRecipe() {

 boilWater();

 brewCoffeeGrinds();

 pourInCup();

 addSugarAndMilk();

 }

 public void boilWater() {

 System.out.println("Boiling water");

 }

 public void brewCoffeeGrinds() {

 System.out.println("Dripping Coffee through filter");

 }

 public void pourInCup() {

 System.out.println("Pouring into cup");

 }

 public void addSugarAndMilk() {

 System.out.println("Adding Sugar and Milk");

 }

}

Let’s play “coding barista” and write some code for
creating coffee and tea.

Here’s the coffee:

Whipping up some coffee and tea classes
(in Java)

Here’s our Coffee class for making coffee.

Here’s our recipe fo
r coffee,

straight out of t
he training manual.

Each of the steps
is implemented as

a separate method.

Each of these methods
implements one step of
the algorithm. There’s
a method to boil water,
brew the coffee, pour
the coffee in a cup,
and add sugar and milk.

280   Chapter 8

tea implementation

public class Tea {

 void prepareRecipe() {
 boilWater();
 steepTeaBag();
 pourInCup();
 addLemon();
 }

 public void boilWater() {
 System.out.println("Boiling water");
 }

 public void steepTeaBag() {
 System.out.println("Steeping the tea");
 }

 public void addLemon() {
 System.out.println("Adding Lemon");
 }

 public void pourInCup() {
 System.out.println("Pouring into cup");
 }
}

This looks very similar to the one
we just implemented in Coffee;
the second and fourth steps are
different, but it’s basically the
same recipe.

Notice that these
two methods
are exactly the
same as they
are in Coffee!
So we definitely
have some code
duplication going
on here.

And now the Tea...

These two
methods are
specialized to Tea.

When we’ve got code
duplication, that’s a good sign we need to
clean up the design. It seems like here we

should abstract the commonality into a base
class since coffee and tea are so similar.

you are here 4   281

the template method pattern

 Design Puzzle
You’ve seen that the Coffee and Tea classes have a fair bit of code duplication. Take another
look at the Coffee and Tea classes and draw a class diagram showing how you’d redesign the
classes to remove redundancy:

282   Chapter 8

first cut at abstraction

Let’s abstract that Coffee and Tea

Each subclass
implements its
own recipe.

It looks like we’ve got a pretty straightforward design
exercise on our hands with the Coffee and Tea classes.
Your first cut might have looked something like this:

prepareRecipe()
boilWater()
pourInCup()

CaffeineBeverage

prepareRecipe()
steepTeaBag()
addLemon()

Tea

prepareRecipe()
brewCoffeeGrinds()
addSugarAndMilk()

Coffee

The boilWater() and pourInCup()
methods are shared by both sub

classes,

so they are defined in the sup
erclass.

The prepareRecipe() method differs in each subclass, so it is defined as abstract.

The methods specific to
Coffee and Tea stay in
the subclasses.

Each subclass
overrides the
prepareRecipe()
method and
implements its own
recipe.

Did we do a good job on the redesign? Hmmmm, take another
look. Are we overlooking some other commonality? What are
other ways that Coffee and Tea are similar?

you are here 4   283

the template method pattern

(1) Boil
 some wa

ter

(2) Brew
 coffee

in boili
ng water

(3) Pour
 coffee

in cup

(4) Add
sugar an

d milk

Starbuzz Coffee Recipe

Starbuzz Tea Recipe
(1) Boil some water
(2) Steep tea in boiling water
(3) Pour tea in cup
(4) Add lemon

Taking the design further...

So what else do Coffee and Tea have in common? Let’s start with the recipes.

Notice that both recipes follow the same algorithm:

1 Boil some water.

2

3

4

Use the hot water to extract the coffee
or tea.

Pour the resulting beverage into a cup.

Add the appropriate condiments to the
beverage.

These two are
already abstracted
into the base class.

These aren’t
abstracted but
are the same;
they just apply
to different
beverages.

So, can we find a way to abstract prepareRecipe() too? Yes, let’s find out...

284   Chapter 8

abstract the algorithm

Abstracting prepareRecipe()

The first problem we have is that Coffee uses brewCoffeeGrinds()
and addSugarAndMilk() methods, while Tea uses steepTeaBag() and
addLemon() methods.

Let’s step through abstracting prepareRecipe() from each subclass (that is,
the Coffee and Tea classes)...

1

Let’s think through this: steeping and brewing aren’t so different; they’re pretty analogous.
So let’s make a new method name, say, brew(), and we’ll use the same name whether
we’re brewing coffee or steeping tea.

Likewise, adding sugar and milk is pretty much the same as adding a lemon: both
are adding condiments to the beverage. Let’s also make up a new method name,
addCondiments(), to handle this. So, our new prepareRecipe() method will look like this:

 void prepareRecipe() {

 boilWater();

 brew();

 pourInCup();

 addCondiments();

 }

 void prepareRecipe() {

 boilWater();

 steepTeaBag();

 pourInCup();

 addLemon();

 }

Tea

 void prepareRecipe() {

 boilWater();

 brewCoffeeGrinds();

 pourInCup();

 addSugarAndMilk();

 }

Coffee

Now we have a new prepareRecipe() method, but we need to fit it into the code.
To do this we’ll start with the CaffeineBeverage superclass:

2
(Code on

 the

next p
age.)

you are here 4   285

the template method pattern

public class Coffee extends CaffeineBeverage {
 public void brew() {
 System.out.println("Dripping Coffee through filter");
 }
 public void addCondiments() {
 System.out.println("Adding Sugar and Milk");
 }
}

public class Tea extends CaffeineBeverage {
 public void brew() {
 System.out.println("Steeping the tea");
 }
 public void addCondiments() {
 System.out.println("Adding Lemon");
 }
}

public abstract class CaffeineBeverage {

 final void prepareRecipe() {
 boilWater();
 brew();
 pourInCup();
 addCondiments();
 }

 abstract void brew();

 abstract void addCondiments();

 void boilWater() {
 System.out.println("Boiling water");
 }

 void pourInCup() {
 System.out.println("Pouring into cup");
 }
}

Now, the same prepareRecipe() method
will be used to make both Tea and Coffee.

prepareRecipe() is declared final because

we don’t want our subclasses to be able to

override this method and change the recipe!

We’ve generalized steps 2 and 4 to brew() the

beverage and addCondiments().

CaffeineBeverage is abstract,
just like in the class design.

Because Coffee and Tea handle these
methods in different ways, they’re going to
have to be declared as abstract. Let the
subclasses worry about that stuff!

Remember, we moved these into
the CaffeineBeverage class
(back in our class diagram).

Finally, we need to deal with the Coffee and Tea classes. They now rely on CaffeineBeverage
to handle the recipe, so they just need to handle brewing and condiments:

3

As in our design, Tea and Coffee
now extend CaffeineBeverage.

Tea needs to define brew() and
addCondiments()—the two abstract
methods from CaffeineBeverage.

Same for Coffee, except Coffee
deals with coffee, and sugar and milk
instead of tea bags and lemon.

286   Chapter 8

class diagram for caffeine beverages

Draw the new class diagram now that we’ve moved the
implementation of prepareRecipe() into the CaffeineBeverage class:

you are here 4   287

the template method pattern

What have we done?

1 Boil some water

2

3

4

Steep the tea bag in the water

Pour tea in a cup

Add lemon

1 Boil some water
2

3

4

Brew the coffee grindsPour coffee in a cup
Add sugar and milk

2

4

Steep the tea bag in the water
Add lemon

Tea subclass Coffee subclass

2

4

Brew the coffee grinds

Add sugar and milk

1 Boil some water

2

3

4

Brew

Pour beverage in a cup

Add condiments

Caffeine Beverage

Tea Coffee

Caffeine Beverage
knows and controls the
steps of the recipe, and

performs steps 1 and 3
itself, but relies on Tea

or Coffee to do steps
2 and 4.

We’ve recognized
that the two recipes
are essentially the
same, although
some of the steps
require different
implementations. So
we’ve generalized the
recipe and placed it
in the base class.

generalize

relies on
subclass
for some
steps

generalize

relies on
subclass
for some
steps

288   Chapter 8

meet the template method pattern

Meet the Template Method
We’ve basically just implemented the Template Method Pattern. What’s that? Let’s look at
the structure of the CaffeineBeverage class; it contains the actual “template method”:

final void prepareRecipe() {

}

brew();

pourInCup();

addCondiments();

boilWater();

 abstract void brew();

 abstract void addCondiments();

 void boilWater() {

 // implementation

 }

 void pourInCup() {

 // implementation

 }

}

public abstract class CaffeineBeverage {

In the template, each step of the algorithm is represented by a method.

prepareRecipe() is our
template method. Why?

Because:
 (1) It is a method, after all.
 (2) It serves as a template for an
algorithm—in this case, an algorithm
for making caffeinated beverages.

Some methods are
handled by this class...

...and some are handled
by the subclass.

The methods that need to
be supplied by a subclass are
declared abstract.

The Template Method defines the steps of an algorithm and allows
subclasses to provide the implementation for one or more steps.

you are here 4   289

the template method pattern

Let’s make some tea...
Let’s step through making a tea and trace through how the
template method works. You’ll see that the template method
controls the algorithm; at certain points in the algorithm, it lets
the subclass supply the implementation of the steps...

1
Tea myTea = new Tea();

Okay, first we need a Tea object...

2

myTea.prepareRecipe();

Then we call the template method:

which follows the algorithm for making caffeine
beverages...

boilWater();

brew();

pourInCup();

addCondiments();

3

boilWater();

First we boil water:

which happens in CaffeineBeverage.

prepareRecipe()
boilWater()
pourInCup()

CaffeineBeverage

brew()
addCondiments();

Tea

4

brew();

Next we need to brew the tea, which only the subclass knows
how to do:

5

pourInCup();

Now we pour the tea in the cup; this is the same for all beverages,
so it happens in CaffeineBeverage:

6

addCondiments();

Finally, we add the condiments, which are specific to each beverage,
so the subclass implements this:

The prepareRecipe() method
controls the algorithm. No
one can change this, and
it counts on subclasses to
provide some or all of the
implementation.

Behind
the Scenes

290   Chapter 8

what did template method get us?

Underpowered Tea & Coffee
implementation

What did the Template Method get us?

Coffee and Tea are running the show;
they control the algorithm.

Code changes to the algorithm
require opening the subclasses and
making multiple changes.

The algorithm lives in one place and
code changes only need to be made
there.

Code is duplicated across Coffee and
Tea.

The CaffeineBeverage class
maximizes reuse among the
subclasses.

The CaffeineBeverage class runs
the show; it has the algorithm, and
protects it.

Classes are organized in a structure
that requires a lot of work to add a
new caffeine beverage.

The Template Method Pattern provides
a framework that other caffeine
beverages can be plugged into. New
caffeine beverages only need to
implement a couple of methods.

The CaffeineBeverage class
concentrates knowledge about the
algorithm and relies on subclasses to
provide complete implementations.

Knowledge of the algorithm and how
to implement it is distributed over
many classes.

New, hip CaffeineBeverage
powered by Template Method

you are here 4   291

the template method pattern

Template Method Pattern defined

The Template Method Pattern defines the skeleton
of an algorithm in a method, deferring some steps to
subclasses. Template Method lets subclasses redefine
certain steps of an algorithm without changing the
algorithm’s structure.

You’ve seen how the Template Method Pattern works in our Tea and Coffee example;
now, check out the official definition and nail down all the details:

This pattern is all about creating a template for an algorithm. What’s a template?
As you’ve seen it’s just a method; more specifically, it’s a method that defines an
algorithm as a set of steps. One or more of these steps is defined to be abstract and
implemented by a subclass. This ensures the algorithm’s structure stays unchanged,
while subclasses provide some part of the implementation.

Let’s check out the class diagram:

templateMethod()
primitiveOperation1()
primitiveOperation2()

AbstractClass

primitiveOperation1()
primitiveOperation2()

ConcreteClass

primitiveOperation1();
primitiveOperation2();

The AbstractClass
contains the template
method...
...and abstract versions
of the operations
used in the template
method.

The ConcreteClass implements
the abstract operations,
which are called when the
templateMethod() needs them.

There may be many

ConcreteClasses, each

implementing the
full set of

operations r
equired by

the

template method.

The template method makes use of the
primitive operations to implement an
algorithm. It is decoupled from the actual
implementation of these operations.

292   Chapter 8

template method pattern up close

Code Up Close

Here we have our abstract class; it
is declared abstract and meant to
be subclassed by classes that provide
implementations of the operations.

Let’s take a closer look at how the AbstractClass is defined, including the template method
and primitive operations.

abstract class AbstractClass {

 final void templateMethod() {

 primitiveOperation1();

 primitiveOperation2();

 concreteOperation();

 }

 abstract void primitiveOperation1();

 abstract void primitiveOperation2();

 void concreteOperation() {

 // implementation here

 }

}

Here’s the template method. It’s
declared final to prevent subclasses
from reworking the sequence of
steps in the algorithm.

The template method defines the sequence of steps, each represented by a method.

In this example, two of the primitive operations must be implemented by concrete subclasses.

We also have a concrete operation
defined in the abstract class. This
could be overridden by subclasses, or we
could prevent overriding by declaring
concreteOperation() as final. More about
this in a bit...

you are here 4   293

the template method pattern

Now we’re going to look even closer at the types of method that can go in the abstract class:

abstract class AbstractClass {

 final void templateMethod() {

 primitiveOperation1();

 primitiveOperation2();

 concreteOperation();

 hook();

 }

 abstract void primitiveOperation1();

 abstract void primitiveOperation2();

 final void concreteOperation() {

 // implementation here

 }

 void hook() {}

}

We still have our primitive
operation methods;
these are abstract and
implemented by concrete
subclasses.

A concrete operation is defined in th
e

abstract class. This one is declared final

so that subclasses can’t override it.
 It

may be used in the template method
directly, or used by subclasses.

We can also have concrete methods that do nothing
by default; we call these “hooks.” Subclasses are free
to override these but don’t have to. We’re going to
see how these are useful on the next page.

A concrete method, but
it does nothing!

We’ve changed the
templateMethod() to
include a new method call.

Code Way Up Close

294   Chapter 8

implement a hook

public abstract class CaffeineBeverageWithHook {

 final void prepareRecipe() {

 boilWater();

 brew();

 pourInCup();

 if (customerWantsCondiments()) {

 addCondiments();

 }

 }

 abstract void brew();

 abstract void addCondiments();

 void boilWater() {

 System.out.println("Boiling water");

 }

 void pourInCup() {

 System.out.println("Pouring into cup");

 }

 boolean customerWantsCondiments() {

 return true;

 }

}

Hooked on
Template Method...
A hook is a method that is declared in the
abstract class, but only given an empty or default
implementation. This gives subclasses the ability to

“hook into” the algorithm at various points, if they
wish; a subclass is also free to ignore the hook.

There are several uses of hooks; let’s take a look at
one now. We’ll talk about a few other uses later:

We’ve added a little conditional statement that bases its success on a concrete method, customerWantsCondiments(). If the customer WANTS condiments, only then do we call addCondiments().

Here we’ve defined a method

with a (mostly) empty default

implementation. This method just

returns true and does not
hing else.

This is a hook because the
subclass can override this
method, but doesn’t have to.

With a hook, I can
override the method or not.

It’s my choice. If I don’t, the
abstract class provides a default
implementation.

you are here 4   295

the template method pattern

public class CoffeeWithHook extends CaffeineBeverageWithHook {

 public void brew() {
 System.out.println("Dripping Coffee through filter");
 }

 public void addCondiments() {
 System.out.println("Adding Sugar and Milk");
 }

 public boolean customerWantsCondiments() {

 String answer = getUserInput();

 if (answer.toLowerCase().startsWith("y")) {
 return true;
 } else {
 return false;
 }
 }

 private String getUserInput() {
 String answer = null;

 System.out.print("Would you like milk and sugar with your coffee (y/n)? ");

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
 try {
 answer = in.readLine();
 } catch (IOException ioe) {
 System.err.println("IO error trying to read your answer");
 }
 if (answer == null) {
 return "no";
 }
 return answer;
 }
}

Using the hook
To use the hook, we override it in our subclass. Here, the hook controls whether
the CaffeineBeverage class evaluates a certain part of the algorithm—that is,
whether it adds a condiment to the beverage.

How do we know whether the customer wants the condiment? Just ask!

Here’s where you override
the hook and provide your

own functionality.

Get the user’s input on
the condiment decision
and return true or false,
depending on the input.

This code asks if the user would like milk and
sugar and gets the input from the command line.

296   Chapter 8

test drive

public class BeverageTestDrive {

 public static void main(String[] args) {

 TeaWithHook teaHook = new TeaWithHook();

 CoffeeWithHook coffeeHook = new CoffeeWithHook();

 System.out.println("\nMaking tea...");

 teaHook.prepareRecipe();

 System.out.println("\nMaking coffee...");

 coffeeHook.prepareRecipe();

 }

}

Let’s run the Test Drive
Okay, the water’s boiling... Here’s the test code where we create a
hot tea and a hot coffee.

%java BeverageTestDrive

Making tea...

Boiling water

Steeping the tea

Pouring into cup

Would you like lemon with your tea (y/n)? y

Adding Lemon

Making coffee...

Boiling water

Dripping Coffee through filter

Pouring into cup

Would you like milk and sugar with your coffee (y/n)? n

%

File Edit Window Help send-more-honesttea

And let’s give it a run...

A steaming cup of tea, and yes,
of course we want that lemon!

And a nice hot cup of coff
ee,

but we’ll pass on the waistline-

expanding condiments.

Create a tea.
Create a coffee.

And call prepareRecipe()
on both!

you are here 4   297

the template method pattern

You know what? We agree with you. But you
have to admit before you thought of that, it was
a pretty cool example of how a hook can be used
to conditionally control the flow of the algorithm
in the abstract class. Right?

We’re sure you can think of many other more
realistic scenarios where you could use the
template method and hooks in your own code.

Now, I would have thought
that functionality like

asking the customer could
have been used by all

subclasses?

Q: When I’m creating a template method, how do I know when
to use abstract methods and when to use hooks?

A: Use abstract methods when your subclass MUST provide an
implementation of the method or step in the algorithm. Use hooks
when that part of the algorithm is optional. With hooks, a subclass
may choose to implement that hook, but it doesn’t have to.

Q: What are hooks really supposed to be used for?

A: There are a few uses of hooks. As we just said, a hook may
provide a way for a subclass to implement an optional part of an
algorithm, or if it isn’t important to the subclass’s implementation, it
can skip it. Another use is to give the subclass a chance to react to
some step in the template method that is about to happen or just
happened. For instance, a hook method like justReorderedList()
allows the subclass to perform some activity (such as redisplaying an
onscreen representation) after an internal list is reordered. As you’ve
seen, a hook can also provide a subclass with the ability to make a
decision for the abstract class.

Q: Does a subclass have to implement all the abstract
methods in the AbstractClass?

A: Yes, each concrete subclass defines the entire set of abstract
methods and provides a complete implementation of the undefined
steps of the template method’s algorithm.

Q: It seems like I should keep my abstract methods small in
number; otherwise, it will be a big job to implement them in the
subclass.

A: That’s a good thing to keep in mind when you write template
methods. Sometimes you can do this by not making the steps of
your algorithm too granular. But it’s obviously a tradeoff: the less
granularity, the less flexibility.

Remember, too, that some steps will be optional, so you can
implement these as hooks rather than abstract methods, easing the
burden on the subclasses of your abstract class.

298   Chapter 8

the hollywood principle

The Hollywood Principle

The Hollywood Principle
Don’t call us, we’ll call you.

We’ve got another design principle for you; it’s called the
Hollywood Principle:

Easy to remember, right? But what has it got to do with OO
design?

The Hollywood Principle gives us a way to prevent
“dependency rot.” Dependency rot happens when you have
high-level components depending on low-level components
depending on high-level components depending on sideways
components depending on low-level components, and so
on. When rot sets in, no one can easily understand the way a
system is designed.

With the Hollywood Principle, we allow low-level components
to hook themselves into a system, but the high-level
components determine when they are needed, and how. In
other words, the high-level components give the low-level
components the “don’t call us, we’ll call you” treatment.

High-Level Component

Low-Level
Component

Another
Low-Level
Component

Low-level components

can participa
te in the

computation...

...but the high-level
components control
when and how.

A low-level component never calls a high-level component directly.

You’ve heard me say it
before, and I’ll say it again:
don’t call me, I’ll call you!

you are here 4   299

the template method pattern

The Factory Method and Observer; any others?
The Hollywood Principle and Template Method
The connection between the Hollywood Principle and the Template Method
Pattern is probably somewhat apparent: when we design with the Template
Method Pattern, we’re telling subclasses, “don’t call us, we’ll call you.” How?
Let’s take another look at our CaffeineBeverage design:

prepareRecipe()
boilWater()
pourInCup()
brew()
addCondiments()

CaffeineBeverage

brew()
addCondiments()

Tea

brew()
addCondiments()

Coffee

CaffeineBeverage is our high-level
component. It has control over the
algorithm for the recipe, and calls on
the subclasses only when they’re needed

for an implementation of a method.

Tea and Coffee never
call the abstract class
directly without being
“called” first.

The subclasses are used simply to provide implementation details.

Clients of beverages will depend on the CaffeineBeverage abstraction rather than a concrete Tea or Coffee, which reduces dependencies in the overall system.

What other patterns make use of the Hollywood Principle?

300   Chapter 8

who does what

Match each pattern with its description:

Pattern Description

Template Method

Strategy

Factory Method

Encapsulate interchangeable
behaviors and use delegation to
decide which behavior to use.

Subclasses decide how
to implement steps in an
algorithm.

Subclasses decide which
concrete classes to instantiate.

Q: How does the Hollywood Principle relate to the
Dependency Inversion Principle that we learned a few chapters
back?

A: The Dependency Inversion Principle teaches us to avoid the
use of concrete classes and instead work as much as possible with
abstractions. The Hollywood Principle is a technique for building
frameworks or components so that lower-level components can be
hooked into the computation, but without creating dependencies
between the lower-level components and the higher-level layers. So,
they both have the goal of decoupling, but the Dependency Inversion
Principle makes a much stronger and more general statement about
how to avoid dependencies in design.

The Hollywood Principle gives us a technique for creating designs
that allow low-level structures to interoperate while preventing other
classes from becoming too dependent on them.

Q: Is a low-level component disallowed from calling a
method in a higher-level component?

A: Not really. In fact, a low-level component will often end up
calling a method defined above it in the inheritance hierarchy purely
through inheritance. But we want to avoid creating explicit circular
dependencies between the low-level component and the high-level
ones.

you are here 4   301

the template method pattern

Template Methods in the Wild
The Template Method Pattern is a very common pattern and
you’re going to find lots of it in the wild. You’ve got to have
a keen eye, though, because there are many implementations
of the template methods that don’t quite look like the
textbook design of the pattern.

This pattern shows up so often because it’s a great design tool
for creating frameworks, where the framework controls how
something gets done, but leaves you (the person using the
framework) to specify your own details about what is actually
happening at each step of the framework’s algorithm.

Let’s take a little safari through a few uses in the wild (well,
okay, in the Java API)...

In training, we study the classic
patterns. However, when we are out in

the real world, we must learn to recognize
the patterns out of context. We must also
learn to recognize variations of patterns,
because in the real world a square hole is

not always truly square.

302   Chapter 8

sorting with template method

public static void sort(Object[] a) {

 Object aux[] = (Object[])a.clone();

 mergeSort(aux, a, 0, a.length, 0);

}

private static void mergeSort(Object src[], Object dest[],

		 int low, int high, int off)

{

 // a lot of other code here

 for (int i=low; i<high; i++){

 for (int j=i; j>low &&

 ((Comparable)dest[j-1]).compareTo((Comparable)dest[j])>0; j--)

 {

 swap(dest, j, j-1);

 }

 }

 // and a lot of other code here

}

What’s something we often need to do with arrays?
Sort them!

Recognizing that, the designers of the Java Arrays class
have provided us with a handy template method for
sorting. Let’s take a look at how this method operates:

Sorting with Template Method

We actually have two methods here and they act
together to provide the sort functionality.

compareTo() is the method we
need to implement to “fill out”
the template method.This is a concrete method, already defined in the Arrays class.

We’ve pared down this
code a little to make
it easier to explain. If
you’d like to see it all,
grab the Java source
code and check it out...

Think of this as the template method.

The first method, sort(), is just
 a helper method that creates a

copy of the array an
d passes it along as t

he destination array
to

the mergeSort() method. It also passes
along the length of t

he

array and tells the s
ort to start at the

first element.

The mergeSort() method contains the sort algorithm, and
relies on an implementation of the compareTo() method to
complete the algorithm. If you’re interested in the nitty-
gritty of how the sorting happens, you’ll want to check out
the Java source code.

you are here 4   303

the template method pattern

We’ve got an array of ducks we need to sort.

We’ve got some ducks to sort...

The compareTo() method compares two objects and returns whether one is less than, greater than,
or equal to the other. sort() uses this as the basis of its comparison of objects in the array.

Let’s say you have an array of ducks that you’d like to sort. How do
you do it? Well, the sort() template method in Arrays gives us the
algorithm, but you need to tell it how to compare ducks, which you do by
implementing the compareTo() method... Make sense?

Good point. Here’s the deal: the designers of sort() wanted
it to be useful across all arrays, so they had to make sort() a
static method that could be used from anywhere. But that’s
okay, since it works almost the same as if it were in a superclass.
Now, here is one more detail: because sort() really isn’t defined
in our superclass, the sort() method needs to know that you’ve
implemented the compareTo() method, or else you don’t have
the piece needed to complete the sort algorithm.

To handle this, the designers made use of the Comparable
interface. All you have to do is implement this interface, which
has one method (surprise): compareTo().

What is compareTo()?

No, it doesn’t.
Aren’t we supposed to be
subclassing something? I thought

that was the point of Template
Method. An array doesn’t subclass
anything, so I don’t get how we’d

use sort().

Am I greater
than you?

I don’t
know. That’s what

compareTo() tells us.

304   Chapter 8

public class Duck implements Comparable<Duck> {

 String name;

 int weight;

 public Duck(String name, int weight) {

 this.name = name;

 this.weight = weight;

 }

 public String toString() {

 return name + " weighs " + weight;

 }

 public int compareTo(Duck otherDuck) {

 if (this.weight < otherDuck.weight) {

 return -1;

 } else if (this.weight == otherDuck.weight) {

 return 0;

 } else { // this.weight > otherDuck.weight

 return 1;

 }

 }

}

implementing comparable

Comparing Ducks and Ducks
Okay, so you know that if you want to sort Ducks,
you’re going to have to implement this compareTo()
method; by doing that, you’ll give the Arrays class
what it needs to complete the algorithm and sort
your ducks.

Here’s the duck implementation:
Remember, we need to implement the Comparable
interface since we aren’t really subclassing.

Our Ducks have a name and a weight.

We’re keepin’ it simple; all Ducks do is
print their name and weight!

Okay, here’s what sort() needs...

compareTo() takes another Duck to compare THIS Duck to.

Here’s where we specify how Ducks
compare. If THIS Duck weighs less
than otherDuck, we return -1; if
they are equal, we return 0; and
if THIS Duck weighs more, we
return 1.

you are here 4   305

the template method pattern

public class DuckSortTestDrive {

 public static void main(String[] args) {
 Duck[] ducks = {
 new Duck("Daffy", 8),
 new Duck("Dewey", 2),
 new Duck("Howard", 7),
 new Duck("Louie", 2),
 new Duck("Donald", 10),
 new Duck("Huey", 2)
 };

 System.out.println("Before sorting:");
 display(ducks);

 Arrays.sort(ducks);

 System.out.println("\nAfter sorting:");
 display(ducks);
 }

 public static void display(Duck[] ducks) {
 for (Duck d : ducks) {
 System.out.println(d);
 }
 }
}

Let’s sort some Ducks

%java DuckSortTestDrive
Before sorting:
Daffy weighs 8
Dewey weighs 2
Howard weighs 7
Louie weighs 2
Donald weighs 10
Huey weighs 2

After sorting:
Dewey weighs 2
Louie weighs 2
Huey weighs 2
Howard weighs 7
Daffy weighs 8
Donald weighs 10
%

File Edit Window Help DonaldNeedsToGoOnADiet

The unsorted Ducks

The sorted Ducks

Let the sorting commence!

Here’s the test drive for sorting Ducks...

We need an array o
f

Ducks; these look g
ood.

Let’s print them to see
their names and weights.

It’s sort time!

Let’s print them (again) to see
their names and weights.

Notice that we
call Arrays’ static
method sort(), and
pass it our Ducks.

306   Chapter 8

behind the scenes: sorting ducks

The making of the sorting duck machine
Let’s trace through how the Arrays sort() template method works.
We’ll check out how the template method controls the algorithm,
and at certain points in the algorithm, how it asks our Ducks to
supply the implementation of a step...

1

Duck[] ducks = {new Duck("Daffy", 8), ... };

First, we need an array of Ducks:

2

Arrays.sort(ducks);

Then we call the sort() template method in the Arrays
class and pass it our ducks:

The sort() method (and its helper, mergeSort()) control
the sort procedure.

for (int i=low; i<high; i++){

 ... compareTo() ...

 ... swap() ...

}

3

ducks[0].compareTo(ducks[1]);

To sort an array, you need to compare two items one
by one until the entire list is in sorted order.

When it comes to comparing two ducks, the sort()
method relies on the Duck’s compareTo() method
to know how to do this. The compareTo() method
is called on the first duck and passed the duck to be
compared to:

sort()
swap()

Arrays

compareTo()
toString()

Duck

4

swap()

If the Ducks are not in sorted order, they’re swapped with
the concrete swap() method in Arrays:

The sort() method controls
the algorithm; no class can
change this. sort() counts
on a Comparable class to
provide the implementation
of compareTo().

5 The sort() method continues comparing and swapping Ducks
until the array is in the correct order!

First Duck Duck to compare it to No inheritance,
unlike a typical
template method.

Behind
the Scenes

you are here 4   307

the template method pattern

Q: Is this really the Template Method Pattern, or are you
trying too hard?

A: The pattern calls for implementing an algorithm and letting
subclasses supply the implementation of the steps—and the Arrays
sort() is clearly not doing that! But, as we know, patterns in the
wild aren’t always just like the textbook patterns. They have to be
modified to fit the context and implementation constraints.

The designers of the Arrays sort() method had a few constraints. In
general, you can’t subclass a Java array and they wanted the sort to
be used on all arrays (and each array is a different class). So they
defined a static method and deferred the comparison part of the
algorithm to the items being sorted.

So, while it’s not a textbook template method, this implementation is
still in the spirit of the Template Method Pattern. Also, by eliminating
the requirement that you have to subclass Arrays to use this
algorithm, they’ve made sorting in some ways more flexible and
useful.

Q: This implementation of sorting actually seems more like
the Strategy Pattern than the Template Method Pattern. Why do
we consider it Template Method?

A: You’re probably thinking that because the Strategy Pattern uses
object composition. You’re right in a way—we’re using the Arrays
object to sort our array, so that’s similar to Strategy. But remember,
in Strategy, the class that you compose with implements the
entire algorithm. The algorithm that Arrays implements for sort() is
incomplete; it needs a class to fill in the missing compareTo() method.
So, in that way, it’s more like Template Method.

Q: Are there other examples of template methods in the Java
API?

A: Yes, you’ll find them in a few places. For example, java.io has a
read() method in InputStream that subclasses must implement and is
used by the template method read(byte b[], int off, int len).

We know that we should favor composition over inheritance, right? Well, the
implementers of the sort() template method decided not to use inheritance and
instead to implement sort() as a static method that is composed with a Comparable
at runtime. How is this better? How is it worse? How would you approach this
problem? Do Java arrays make this particularly tricky?

Think of another pattern that is a specialization of the template method. In
this specialization, primitive operations are used to create and return objects.
What pattern is this?

2

308   Chapter 8

the paint hook

public class MyFrame extends JFrame {

 public MyFrame(String title) {
 super(title);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 this.setSize(300,300);
 this.setVisible(true);
 }

 public void paint(Graphics graphics) {
 super.paint(graphics);
 String msg = "I rule!!";
 graphics.drawString(msg, 100, 100);
 }

 public static void main(String[] args) {
 MyFrame myFrame = new MyFrame("Head First Design Patterns");
 }
}

Swingin’ with Frames
Up next on our Template Method safari...keep your eye out for swinging JFrames!

If you haven’t encountered JFrame, it’s the most basic Swing container and inherits a
paint() method. By default, paint() does nothing because it’s a hook! By overriding paint(),
you can insert yourself into JFrame’s algorithm for displaying its area of the screen and
have your own graphic output incorporated into the JFrame. Here’s an embarrassingly
simple example of using a JFrame to override the paint() hook method:

We’re extending JFrame, which contains a
method update() that controls the algorithm
for updating the screen. We can hook into that
algorithm by overriding the paint() hook method.

JFrame’s update algorithm calls paint(). By
default, paint() draws nothing...it’s a hook.
We’re overriding paint() and telling the
JFrame to draw a message in the window.

Here’s the message that gets
painted in the frame because we’ve
hooked into the paint() method.

Don’t look behind the
curtain! Just some
initialization here...

you are here 4   309

the template method pattern

Custom Lists with AbstractList
Our final stop on the safari: AbstractList.

The list collections in Java, like ArrayList and LinkedList,
extend the AbstractList class, which provides some of the
basic implementations for list behavior. If you want to
create your own custom list—say, a list that contains only
Strings—you can do that by extending AbstractList so
you get that basic list behavior for free.

AbstractList has a template method, subList(), that relies
on two abstract methods, get() and size(). So when you
extend AbstractList to create your own custom list, you’ll
provide implementations for these methods.

Here’s an implementation of a custom list that contains
only String objects, and uses arrays for the underlying
implementation:

Create a sublist of one item starting at
index 2...the Rubber Duck, of course.

We create a custom list by
extending AbstractList.

subList()
get(int)
size()
iterator()
hashCode()
// other methods

AbstractList

get(int)
size()

MyList

get(3);
size();

public class MyStringList extends AbstractList<String> {
	 private String[] myList;
	 MyStringList(String[] strings) {
		 myList = strings;
	 }
	 public String get(int index) {
		 return myList[index];
	 }
	 public int size() {
		 return myList.length;
	 }
	 public String set(int index, String item) {
		 String oldString = myList[index];
		 myList[index] = item;
		 return oldString;
	 }
}

String[] ducks = { "Mallard Duck", "Redhead Duck", "Rubber Duck", "Decoy Duck"};

MyStringList ducksList = new MyStringList(ducks);

List ducksSubList = ducksList.subList(2, 3);

Test the subList() template method in your MyStringList implementation like this:

We must implement the methods get()
and size(), which are both used by
the template method subList().

We also implement a method set()
so we can modify the list.

310   Chapter 8

fireside chats: template method and strategy

Tonight’s talk: Template Method and Strategy
compare methods.

Template Method:
Hey Strategy, what are you doing in my chapter?
I figured I’d get stuck with someone boring like
Factory Method.

I was just kidding! But seriously, what are you doing
here? We haven’t heard from you in seven chapters!

You might want to remind the reader what you’re
all about, since it’s been so long.

Hey, that does sound a lot like what I do. But my
intent’s a little different from yours; my job is to
define the outline of an algorithm, but let my
subclasses do some of the work. That way, I can
have different implementations of an algorithm’s
individual steps, but keep control over the
algorithm’s structure. Seems like you have to give up
control of your algorithms.

Strategy:

Nope, it’s me, although be careful—you and Factory
Method are related, aren’t you?

I’d heard you were on the final draft of your chapter
and I thought I’d swing by to see how it was going.
We have a lot in common, so I thought I might be
able to help...

I don’t know, since Chapter 1, people have been
stopping me in the street saying, “Aren’t you that
pattern...?” So I think they know who I am. But
for your sake: I define a family of algorithms and
make them interchangeable. Since each algorithm is
encapsulated, the client can use different algorithms
easily.

I’m not sure I’d put it quite like that...and anyway,
I’m not stuck using inheritance for algorithm
implementations. I offer clients a choice of
algorithm implementation through object
composition.

Hey, I heard that!

Factory Method

you are here 4   311

the template method pattern

Template Method:
I remember that. But I have more control over
my algorithm and I don’t duplicate code. In fact,
if every part of my algorithm is the same except
for, say, one line, then my classes are much more
efficient than yours. All my duplicated code gets put
into the superclass, so all the subclasses can share it.

Yeah, well, I’m real happy for ya, but don’t forget
I’m the most used pattern around. Why? Because I
provide a fundamental method for code reuse that
allows subclasses to specify behavior. I’m sure you
can see that this is perfect for creating frameworks.

How’s that? My superclass is abstract.

Like I said, Strategy, I’m real happy for you. Thanks
for stopping by, but I’ve got to get the rest of this
chapter done.

Got it. Don’t call us, we’ll call you...

Strategy:

You might be a little more efficient (just a little) and
require fewer objects. And you might also be a little
less complicated in comparison to my delegation
model, but I’m more flexible because I use object
composition. With me, clients can change their
algorithms at runtime simply by using a different
strategy object. Come on, they didn’t choose me for
Chapter 1 for nothing!

Yeah, I guess...but what about dependency? You’re
way more dependent than me.

But you have to depend on methods implemented
in your subclasses, which are part of your algorithm.
I don’t depend on anyone; I can do the entire
algorithm myself !

Okay, okay, don’t get touchy. I’ll let you work, but let
me know if you need my special techniques anyway;
I’m always glad to help.

312   Chapter 8

crossword puzzle

1 2 3

4 5

6

7

8

9 10 11

12

13

14

15

16

Across
1. Huey, Louie and Dewey all weigh ________

pounds
2. The template method is usually defined in an

___________ class
4. In this chapter we gave you more

7. The steps in the algorithm that must be

supplied by the subclasses are usually
declared ___________

11. The JFrame hook method that we overrode
to print "I Rule"

12. _____List has a subList template method
13. Type of sort used in Arrays
14. The Template Method Pattern uses

____________ to defer implementation to
other classes

15. Don't call us, we'll call you is known as the
_________________ Principle

16. Strategy uses _________ rather than
inheritance

Down
1. Coffee and _____
3. Factory Method is a _______________ of

Template Method
5. A template method defines the steps of an

6. Big headed pattern
8. _________ algorithm steps are implemented

by hook methods
9. Our favorite coffee shop in Objectville

10. The Arrays class implements its template
method as a _________ method

15. A method in the abstract superclass that
does nothing or provides default behavior is
called a _________ method

Design Patterns Crossword
It’s that time again...

ACROSS
1. Huey, Louie, and Dewey all weigh __________ pounds.
2. The template method is usually defined in an _______
class.
4. In this chapter we gave you more _________.
7. The steps in the algorithm that must be supplied by the
subclasses are usually declared ___________.
11. The JFrame hook method that we overrode to print “I
rule!!”
12. ___________ has a subList() template method.
13. Type of sort used in Arrays.
14. The Template Method Pattern uses _____________
to defer implementation to other classes.
15. “Don’t call us, we’ll call you” is known as the
_________ Principle.

DOWN
1. Coffee and ______.
3. Factory Method is a __________ of Template Method.
5. A template method defines the steps of an ________.
6. Big-headed pattern.
8. _______ algorithm steps are implemented by hook
methods.
9. Our favorite coffee shop in Objectville.
10. The Arrays class implements its template method as
a ______ method.
15. A method in the abstract superclass that does nothing
or provides default behavior is called a ____________
method.

you are here 4   313

the template method pattern

Tools for your Design Toolbox
We’ve added Template Method to your toolbox.
With Template Method, you can reuse code like a
pro while keeping control of your algorithms.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion

but closed for
modification.

Depend on abstra
ctions. Do not

depend on conc
rete classes.

Talk only to you
r friends.

Don’t call us, we’ll call you.

OO Principles

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has one

instance and pr
ovide a global p

oint of

access to it.
Command - Encapsulates a re

quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Adapter - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Our newest principle

reminds you that
 your

superclasses a
re running

the show, so let them call

your subclass
methods when

they’re neede
d, just like

they do in Hollywood.

Facade - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

And our newest
pattern lets classes
implementing an
algorithm defer some
steps to subclasses.

Template Method - Define the

skeleton of an
algorithm in an operation

,

deferring some steps to subcl
asses.

Template Method lets subc
lasses redefine

certain steps of
 an algorithm without

changing the al
gorithm’s structure.

	� A template method defines the
steps of an algorithm, deferring to
subclasses for the implementation
of those steps.

	� The Template Method Pattern
gives us an important technique
for code reuse.

	� The template method’s abstract
class may define concrete
methods, abstract methods, and
hooks.

	� Abstract methods are
implemented by subclasses.

	� Hooks are methods that do
nothing or default behavior in
the abstract class, but may be
overridden in the subclass.

	� To prevent subclasses from
changing the algorithm in the
template method, declare the
template method as final.

	� The Hollywood Principle guides us
to put decision making in high-
level modules that can decide
how and when to call low-level
modules.

	� You’ll see lots of uses of the
Template Method Pattern in
real-world code, but (as with any
pattern) don’t expect it all to be
designed “by the book.”

	� The Strategy and Template
Method Patterns both encapsulate
algorithms, the first by composition
and the other by inheritance.

	� Factory Method is a specialization
of Template Method.

314   Chapter 8

exercise solutions

Draw the new class diagram now that we’ve moved
prepareRecipe() into the CaffeineBeverage class:

Match each pattern with its description:

SOlUTion

Pattern Description

Template Method

Strategy

Factory Method

Encapsulate interchangable
behaviors and use delegation to
decide which behavior to use.

Subclasses decide how to
implement steps in an algorithm.

Subclasses decide which
concrete classes to create.

prepareRecipe()
boilWater()
pourInCup()
brew()
addCondiments()

CaffeineBeverage

brew()
addCondiments()

Coffee
brew()
addCondiments()

Tea

you are here 4   315

the template method pattern

Design Patterns Crossword Solution
It’s that time again...

T
1

W O A
2

B S
3

T R A C T

C
4

A
5

F F E I N E P

L A E S
6

G A
7

B S T R A C T T

O I R

R A O
8

A

I S
9

S
10

L P
11

A I N T

T T A
12

B S T R A C T L I S T E

H A A Z I G

M
13

E R G E S O R T A O Y

B I
14

N H E R I T A N C E

U C I A

Z H
15

O L L Y W O O D

Z C
16

O M P O S I T I O N

O

K

Across
1. Huey, Louie and Dewey all weigh ________

pounds [TWO]
2. The template method is usually defined in an

___________ class [ABSTRACT]
4. In this chapter we gave you more

_____________ [CAFFEINE]
7. The steps in the algorithm that must be

supplied by the subclasses are usually
declared ___________ [ABSTRACT]

11. The JFrame hook method that we overrode
to print "I Rule" [PAINT]

12. _____List has a subList template method
[ABSTRACTLIST]

13. Type of sort used in Arrays [MERGESORT]
14. The Template Method Pattern uses

____________ to defer implementation to
other classes [INHERITANCE]

15. Don't call us, we'll call you is known as the
_________________ Principle
[HOLLYWOOD]

Down
1. Coffee and _____ [TEA]
3. Factory Method is a _______________ of

Template Method [SPECIALIZATION]
5. A template method defines the steps of an

____________ [ALGORITHM]
6. Big headed pattern [STRATEGY]
8. _________ algorithm steps are implemented

by hook methods [OPTIONAL]
9. Our favorite coffee shop in Objectville

[STARBUZZ]
10. The Arrays class implements its template

method as a _________ method [STATIC]
15. A method in the abstract superclass that

does nothing or provides default behavior is
called a _________ method [HOOK]

this is a new chapter   317

There are lots of ways to stuff objects into a collection.
Put them into an Array, a Stack, a List, a hash map—take your pick. Each has its

own advantages and tradeoffs. But at some point your clients are going to want

to iterate over those objects, and when they do, are you going to show them your

implementation? We certainly hope not! That just wouldn’t be professional. Well, you

don’t have to risk your career; in this chapter you’re going to see how you can allow

your clients to iterate through your objects without ever getting a peek at how you store

your objects. You’re also going to learn how to create some super collections of objects

that can leap over some impressive data structures in a single bound. And if that’s not

enough, you’re also going to learn a thing or two about object responsibility.

9 the Iterator and Composite Patterns

Well-Managed
 Collections

You bet I keep
my collections well
encapsulated!

318   Chapter 9

a business merger

Mel
Lou

That’s great news! Now we can get those delicious pancake breakfasts at the
Pancake House and those yummy lunches at the Diner all in one place. But there
seems to be a slight problem...

Breaking News: Objectville Diner and
Objectville Pancake House Merge

They want to use my Pancake House
menu as the breakfast menu and
the Diner’s menu as the lunch menu.
We’ve agreed on an implementation
for the menu items...

...but we can’t agree on how to implement
our menus. That joker over there used an
ArrayList to hold his menu items, and I
used an Array. Neither one of us is willing to
change our implementations...we just have
too much code written that depends on

them.

you are here 4   319

the iterator and composite patterns

public class MenuItem {
 String name;
 String description;
 boolean vegetarian;
 double price;

 public MenuItem(String name,
 String description,
 boolean vegetarian,
 double price)
 {
 this.name = name;
 this.description = description;
 this.vegetarian = vegetarian;
 this.price = price;
 }

 public String getName() {
 return name;
 }

 public String getDescription() {
 return description;
 }

 public double getPrice() {
 return price;
 }

 public boolean isVegetarian() {
 return vegetarian;
 }
}

Check out the Menu Items Objectville Diner
Vegetarian BLT 2.99 (Fakin’) Bacon with lettuce & tomato on whole wheat

BLT 2.99 Bacon with lettuce & tomato on whole wheatSoup of the day 3.29 A bowl of the soup of the day, with a side of potato saladHot Dog 3.05 A hot dog, with sauerkraut, relish, onions, topped with cheeseSteamed Veggies and Brown Rice 3.99 A medley of steamed vegetables over brown rice

K&B’s Pancake Breakfast 2.99
 Pancakes with scrambled eggs and toast
Regular Pancake Breakfast 2.99
 Pancakes with fried eggs, sausage
Blueberry Pancakes 3.49
 Pancakes made with fresh blueberries, and blueberry syrup

Waffles 3.59
 Waffles with your choice of blueberries or strawberries

Objectville Pancake House

A MenuItem consists of a name, a description, a flag to indicate if the item is vegetarian, and a price. You pass all these values into the constructor to initialize the MenuItem.

These getter methods let you access
the fields of the menu item.

At least Lou and Mel agree on the
implementation of the MenuItems. Let’s
check out the items on each menu, and
also take a look at the implementation.

The Diner menu has lots of lunch
items, while the Pancake House
consists of breakfast items.
Every menu item has a name, a
description, and a price.

320   Chapter 9

two menu implementations

public class PancakeHouseMenu {
 List<MenuItem> menuItems;

 public PancakeHouseMenu() {
 menuItems = new ArrayList<MenuItem>();

 addItem("K&B's Pancake Breakfast",
 "Pancakes with scrambled eggs and toast",
 true,
 2.99);

 addItem("Regular Pancake Breakfast",
 "Pancakes with fried eggs, sausage",
 false,
 2.99);

 addItem("Blueberry Pancakes",
 "Pancakes made with fresh blueberries",
 true,
 3.49);

 addItem("Waffles",
 "Waffles with your choice of blueberries or strawberries",
 true,
 3.59);
 }

 public void addItem(String name, String description,
 boolean vegetarian, double price)
 {
 MenuItem menuItem = new MenuItem(name, description, vegetarian, price);
 menuItems.add(menuItem);
 }

 public ArrayList<MenuItem> getMenuItems() {
 return menuItems;
 }

 // other menu methods here
}

I used an ArrayList
so I can easily expand

my menu.

Lou and Mel’s Menu implementations
Now let’s take a look at what Lou and Mel are
arguing about. They both have lots of time and
code invested in the way they store their menu
items in a menu, and lots of other code that
depends on it.

Lou’s using an ArrayList
class to store his menu items.

Each menu item is added to the
ArrayList here, in the constructor.

To add a menu item, Lou creates a new
MenuItem object, passing in each argument,

and then adds it to the ArrayList.

Lou has a bunch of other menu code that
depends on the ArrayList implementation. He
doesn’t want to have to rewrite all that code!

The getMenuItems() method returns the
list of menu items.

Here’s Lou’s implementation of
the Pancake House menu.

Each MenuItem has a name, a
description, whether or not it’s a
vegetarian item, and the price.

you are here 4   321

the iterator and composite patterns

public class DinerMenu {
 static final int MAX_ITEMS = 6;
 int numberOfItems = 0;
 MenuItem[] menuItems;

 public DinerMenu() {
 menuItems = new MenuItem[MAX_ITEMS];

 addItem("Vegetarian BLT",
 "(Fakin') Bacon with lettuce & tomato on whole wheat", true, 2.99);
 addItem("BLT",
 "Bacon with lettuce & tomato on whole wheat", false, 2.99);
 addItem("Soup of the day",
 "Soup of the day, with a side of potato salad", false, 3.29);
 addItem("Hotdog",
 "A hot dog, with sauerkraut, relish, onions, topped with cheese",
 false, 3.05);
 // a couple of other Diner Menu items added here
 }

 public void addItem(String name, String description,
 boolean vegetarian, double price)
 {
 MenuItem menuItem = new MenuItem(name, description, vegetarian, price);
 if (numberOfItems >= MAX_ITEMS) {
 System.err.println("Sorry, menu is full! Can't add item to menu");
 } else {
 menuItems[numberOfItems] = menuItem;
 numberOfItems = numberOfItems + 1;
 }
 }

 public MenuItem[] getMenuItems() {
 return menuItems;
 }

 // other menu methods here
}

And here’s Mel’s implementation of the Diner menu.

Mel takes a different approach; he’s using an Array
class so he can control the max size of the menu.

Like Lou, Mel creates his menu items in the
constructor, using the addItem() helper method.

addItem() takes all the parameters
necessary to create a MenuItem and
instantiates one. It also checks to make
sure we haven’t hit the menu size limit.

Like Lou, Mel has a bunch of code that depends on the implementation
of his menu being an Array. He’s too busy cooking to rewrite all of this.

Mel specifically wants to keep his menu
under a certain size (presumably so he
doesn’t have to remember too many recipes).

getMenuItems() returns the array of menu items.

Haah! An ArrayList...I used a
REAL Array so I can control the

maximum size of my menu.

322   Chapter 9

java-enabled waitress

To see why having two different menu representations complicates
things, let’s try implementing a client that uses the two menus.
Imagine you have been hired by the new company formed by the
merger of the Diner and the Pancake House to create a Java-enabled
waitress (this is Objectville, after all). The spec for the Java-enabled
waitress specifies that she can print a custom menu for customers on
demand, and even tell you if a menu item is vegetarian without having
to ask the cook—now that’s an innovation!

Let’s check out the spec for the waitress, and then step through what it
might take to implement her...

What’s the problem with having two different
menu representations?

The Waitress is ge
tting

Java-enabled.

The Java-Enabled Waitress Specification

Java-Enabled W
aitress: code-

name "Alice"

printMenu()

 - prints ev
ery item on th

e breakfast an
d

 lunch men
us

printBreakfast
Menu()

 - prints ju
st breakfast i

tems

printLunchMenu
()

 - prints ju
st lunch items

printVegetaria
nMenu()

 - prints al
l vegetarian m

enu items

isItemVegetari
an(name)

 - given the
 name of an it

em, returns tr
ue

 if the it
ems is vegetar

ian, otherwise
,

 returns f
alse

The spec for
the Waitress

you are here 4   323

the iterator and composite patterns

1

3

2

To print all the items on each menu, you’ll need to call the getMenuItems()
method on the PancakeHouseMenu and the DinerMenu to retrieve their
respective menu items. Note that each returns a different type:

PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu();

ArrayList<MenuItem> breakfastItems = pancakeHouseMenu.getMenuItems();

DinerMenu dinerMenu = new DinerMenu();

MenuItem[] lunchItems = dinerMenu.getMenuItems();

Now, to print out the items from the PancakeHouseMenu, we’ll loop through the
items on the breakfastItems ArrayList. And to print out the Diner items, we’ll loop
through the Array.

Implementing every other method in the Waitress is going to be a variation of
this theme. We’re always going to need to get both menus and use two loops to
iterate through their items. If another restaurant with a different implementation
is acquired, then we’ll have three loops.

for (int i = 0; i < breakfastItems.size(); i++) {

 MenuItem menuItem = breakfastItems.get(i);

 System.out.print(menuItem.getName() + " ");

 System.out.println(menuItem.getPrice() + " ");

 System.out.println(menuItem.getDescription());

}

for (int i = 0; i < lunchItems.length; i++) {

 MenuItem menuItem = lunchItems[i];

 System.out.print(menuItem.getName() + " ");

 System.out.println(menuItem.getPrice() + " ");

 System.out.println(menuItem.getDescription());

}

The method looks
the same, but the
calls are returning
different types.

Now, we have to
implement two
different loops to
step through the two
implementations of the
menu items...

...one loop for the
ArrayList...
...and another for
the Array.

The implementation is showing through: breakfast items are in an ArrayList, and lunch items are in an Array.

Let’s start by stepping through how we’d implement the printMenu() method:

Implementing the spec: our first attempt

324   Chapter 9

what’s the goal

❏ A.	 We are coding to the
PancakeHouseMenu and DinerMenu
concrete implementations, not to an
interface.

❏ B.	 The Waitress doesn’t implement the
Java Waitress API and so she isn’t
adhering to a standard.

❏ C.	 If we decided to switch from using
DinerMenu to another type of menu
that implemented its list of menu items
with a hash table, we’d have to modify
a lot of code in the Waitress.

❏ D.	 The Waitress needs to know how each
menu represents its internal collection of
menu items; this violates encapsulation.

❏ E.	 We have duplicate code: the printMenu()
method needs two separate loops to
iterate over the two different kinds of
menus. And if we added a third menu,
we’d have yet another loop.

❏ F.	 The implementation isn’t based on
MXML (Menu XML) and so isn’t as
interoperable as it should be.

Mel and Lou are putting us in a difficult position. They don’t want to change their
implementations because it would mean rewriting a lot of code that is in each respective
menu class. But if one of them doesn’t give in, then we’re going to have the job of
implementing a Waitress that will be hard to maintain and extend.

It would really be nice if we could find a way to allow them to implement the same
interface for their menus (they’re already close, except for the return type of the
getMenuItems() method). That way we can minimize the concrete references in the
Waitress code and also hopefully get rid of the multiple loops required to iterate over
both menus.

Sound good? Well, how are we going to do that?

What now?

Based on our implementation of printMenu(), which of the following apply?

you are here 4   325

the iterator and composite patterns

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

ArrayList

An ArrayList
of MenuItems

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Array

An Array of
MenuItems.

for (int i = 0; i < breakfastItems.size(); i++) {

 MenuItem menuItem = breakfastItems.get(i);

}

for (int i = 0; i < lunchItems.length; i++) {

 MenuItem menuItem = lunchItems[i];

}

Can we encapsulate the iteration?
If we’ve learned one thing in this book, it’s to encapsulate what varies. It’s
obvious what is changing here: the iteration caused by different collections of
objects being returned from the menus. But can we encapsulate this? Let’s work
through the idea...

1 To iterate through the breakfast items, we use the size() and get()
methods on the ArrayList:

2 And to iterate through the lunch items we use the Array length field and
the array subscript notation on the MenuItem Array.

lunchItems[0]

lunchItems[1]
lunchItems[2]

lunchItems[3]

get(0)
get(1) get(2) get(3) get() helps us step

through each item.

We use the array
subscripts to step
through items.

326   Chapter 9

3 Now what if we create an object, let’s call it an Iterator,
that encapsulates the way we iterate through a
collection of objects? Let’s try this on the ArrayList:

Iterator iterator = breakfastMenu.createIterator();

while (iterator.hasNext()) {
 MenuItem menuItem = iterator.next();
}

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

ArrayList

 Iterator

We ask the breakfastMenu
for an iterator of its
MenuItems.

And while there are more items left...

...we get the next item.

4 Let’s try that on the Array too:

Iterator iterator = lunchMenu.createIterator();

while (iterator.hasNext()) {
 MenuItem menuItem = iterator.next();
}

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Array

lunchItems[0]

lunchItems[1]
lunchItems[2]

lunchItems[3]

 Iterator

The client just calls hasNext()
and next(); behind the scenes the
iterator calls get() on the ArrayList.

Same situation here: the client just calls
hasNext() and next(); behind the scenes,
the iterator indexes into the Array.

Wow, this code
is exactly the
same as the
breakfastMenu
code.

get(0)
get(1)

get(2)
get(3)

next()

next()

encapsulating iteration

you are here 4   327

the iterator and composite patterns

Meet the Iterator Pattern
Well, it looks like our plan of encapsulating iteration just might
actually work; and as you’ve probably already guessed, it is a
Design Pattern called the Iterator Pattern.

The first thing you need to know about the Iterator Pattern is that
it relies on an interface called Iterator. Here’s one possible Iterator
interface:

hasNext()
next()

<<interface>>
Iterator

The hasNext() method
tells us if there are
more elements in the
aggregate to iterate
through.

The next() method
returns the next
object in the
aggregate.

Now, once we have this interface, we can implement Iterators for
any kind of collection of objects: arrays, lists, hash maps ... pick your
favorite collection of objects. Let’s say we wanted to implement the
Iterator for the Array used in the DinerMenu. It would look like this:

DinerMenuIterator is an
implementation of Iterator
that knows how to iterate
over an array of MenuItems.

hasNext()
next()

<<interface>>
Iterator

hasNext()
next()

DinerMenuIterator

Let’s go ahead and implement this Iterator and incorporate it into
DinerMenu to see how this works...

When we say
COLLECTION we just mean a group
of objects. They might be stored in

very different data structures like lists,
arrays, or hash maps, but they’re still
collections. We also sometimes call

these AGGREGATES.

328   Chapter 9

public interface Iterator {

 boolean hasNext();

 MenuItem next();

}

public class DinerMenuIterator implements Iterator {

 MenuItem[] items;

 int position = 0;

 public DinerMenuIterator(MenuItem[] items) {

 this.items = items;

 }

 public MenuItem next() {

 MenuItem menuItem = items[position];

 position = position + 1;

 return menuItem;

 }

 public boolean hasNext() {

 if (position >= items.length || items[position] == null) {

 return false;

 } else {

 return true;

 }

 }

}

Adding an Iterator to DinerMenu

Here are our two methods:

The hasNext() method returns a boolean
indicating whether or not there are
more elements to iterate over...

To add an iterator to the DinerMenu, we first need to define the Iterator interface:

...and the next() method returns the next element.

And now we need to implement a concrete Iterator that works for the Diner menu:

We implement the
Iterator interface.

The constructor takes the
array of menu items we are
going to iterate over.

position maintains the
current position of t

he

iteration over the ar
ray.

The next() method returns the
next item in the array and
increments the position.

The hasNext() method checks to see if we’ve seen all the elements of the array and returns true if there are more to iterate through.

Because the diner chef went ahead and
allocated a max sized array, we need to
check not only if we are at the end of
the array, but also if the next item is null,
which indicates there are no more items.

using iterator

you are here 4   329

the iterator and composite patterns

public class DinerMenu {

 static final int MAX_ITEMS = 6;

 int numberOfItems = 0;

 MenuItem[] menuItems;

 // constructor here

 // addItem here

 public MenuItem[] getMenuItems() {

 return menuItems;

 }

 public Iterator createIterator() {

 return new DinerMenuIterator(menuItems);

 }

 // other menu methods here

}

Reworking the DinerMenu with Iterator
Okay, we’ve got the iterator. Time to work it into the DinerMenu; all we need to do is
add one method to create a DinerMenuIterator and return it to the client:

We’re not going to need the getMenuItems()
method anymore; in fact, we don’t want it
because it exposes our internal implementation!

Here’s the createIterator() method.
It creates a DinerMenuIterator
from the menuItems array and
returns it to the client.

We’re returning the Iterator interface. The client
doesn’t need to know how the MenuItems are maintained
in the DinerMenu, nor does it need to know how the
DinerMenuIterator is implemented. It just needs to use
the iterators to step through the items in the menu.

Go ahead and implement the PancakeHouseIterator yourself and make the changes
needed to incorporate it into the PancakeHouseMenu.

330   Chapter 9

public class Waitress {
 PancakeHouseMenu pancakeHouseMenu;
 DinerMenu dinerMenu;

 public Waitress(PancakeHouseMenu pancakeHouseMenu, DinerMenu dinerMenu) {
 this.pancakeHouseMenu = pancakeHouseMenu;
 this.dinerMenu = dinerMenu;
 }

 public void printMenu() {
 Iterator pancakeIterator = pancakeHouseMenu.createIterator();
 Iterator dinerIterator = dinerMenu.createIterator();

 System.out.println("MENU\n----\nBREAKFAST");
 printMenu(pancakeIterator);
 System.out.println("\nLUNCH");
 printMenu(dinerIterator);
 }

 private void printMenu(Iterator iterator) {
 while (iterator.hasNext()) {
 MenuItem menuItem = iterator.next();
 System.out.print(menuItem.getName() + ", ");
 System.out.print(menuItem.getPrice() + " -- ");
 System.out.println(menuItem.getDescription());
 }
 }

 // other methods here
}

Fixing up the Waitress code

In the constructor the Waitress
class takes the two menus.

The printMenu()
method now creates
two iterators, one for
each menu...

...and then calls the
overloaded printMenu()
with each iterator.

The overloaded
printMenu()
method uses
the Iterator to
step through
the menu items
and print them.

Note that we’re down
to one loop.

Test if there are
any more items.

Get the
next item.

Use the item to
get name, price,
and description
and print them.

Now we need to integrate the iterator code into the
Waitress class. We should be able to get rid of some
of the redundancy in the process. Integration is pretty
straightforward: first we create a printMenu() method
that takes an Iterator; then we use the createIterator()
method on each menu to retrieve the Iterator and
pass it to the new method.

New and
improved with
Iterator.

fixing the waitress

you are here 4   331

the iterator and composite patterns

public class MenuTestDrive {

 public static void main(String args[]) {

 PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu();

 DinerMenu dinerMenu = new DinerMenu();

 Waitress waitress = new Waitress(pancakeHouseMenu, dinerMenu);

 waitress.printMenu();

 }

}

Testing our code

File Edit Window Help

% java DinerMenuTestDrive

MENU

BREAKFAST
K&B’s Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs and toast
Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage
Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries
Waffles, 3.59 -- Waffles with your choice of blueberries or strawberries

LUNCH
Vegetarian BLT, 2.99 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29 -- Soup of the day, with a side of potato salad
Hot Dog, 3.05 -- A hot dog, with sauerkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with marinara sauce, and a slice of sourdough bread

%

First we create the new menus.

Then we create a
Waitress and pass
her the menus.

Then we print them.

Here’s the test run...

It’s time to put everything to a test. Let’s write some
test drive code and see how the Waitress works...

First we iterate
through the
pancake menu...

...and then
the lunch
menu, all
with the
same
iteration
code.

332   Chapter 9

What have we done so far? Woohoo! No code
changes other

than adding the
createIterator() method.

Veggie burger

For starters, we’ve made our Objectville cooks
very happy. They settled their differences and
kept their own implementations. Once we gave
them a PancakeHouseMenuIterator and a
DinerMenuIterator, all they had to do was add a
createIterator() method and they were finished.

We’ve also helped ourselves in the process. The
Waitress will be much easier to maintain and
extend down the road. Let’s go through exactly
what we did and think about the consequences:

Hard-to-Maintain
Waitress Implementation

New, Hip
Waitress Powered by Iterator

The Menus are not well
encapsulated; we can see the
Diner is using an ArrayList and the
Pancake House an Array.

The Waitress is bound to concrete
classes (MenuItem[] and ArrayList).

The Waitress now uses an interface
(Iterator).

We need two loops to iterate through
the MenuItems.

All we need is a loop that
polymorphically handles any
collection of items as long as it
implements Iterator.

The Menu implementations are now
encapsulated. The Waitress has
no idea how the Menus hold their
collection of menu items.

The Waitress is bound to two different
concrete Menu classes, despite their
interfaces being almost identical.

The Menu interfaces are now exactly
the same and, uh oh, we still don’t
have a common interface, which
means the Waitress is still bound to
two concrete Menu classes. We’d
better fix that.

comparing our implementations

you are here 4   333

the iterator and composite patterns

hasNext()
next()

<<interface>>
Iterator

Before we clean things up, let’s get a bird’s-eye view of our current design.

Note that the iterator gives us a way to step through the elements of an aggregate without forcing the aggregate to clutter its own interface with a bunch of methods to support traversal of its elements. It also allows the implementation of the iterator to live outside of the aggregate; in other words, we’ve encapsulated the iteration.

PancakeHouseMenu and DinerMenu

implement the new createIterator()

method; they are responsib
le for creating

the iterator for their re
spective menu

items’ implementations.

printMenu()

Waitress

createIterator()

PancakeHouseMenu

menuItems

createIterator()

DinerMenu

menuItems

hasNext()
next()

DinerMenuIterator

hasNext()
next()

PancakeHouseMenuIterator

Reviewing our current design...

These two menus implement the
same exact set of methods, but
they aren’t implementing the same

interface. We’re going to fix this

and free the Waitress from any
dependencies on concrete Menus.

We’re now using a common Iterator interface
and we’ve
implemented two concrete classes.

The Iterator allows the Waitress to be decoupled
from the actual implementation of the concrete
classes. She doesn’t need to know if a Menu is
implemented with an Array, an ArrayList, or with
Post-it notes. All she cares about is that she can
get an Iterator to do her iterating.

®

334   Chapter 9

Making some improvements...
Okay, we know the interfaces of PancakeHouseMenu and DinerMenu are exactly the same
and yet we haven’t defined a common interface for them. So, we’re going to do that and clean
up the Waitress a little more.

You may be wondering why we’re not using the Java Iterator interface—we did that so you
could see how to build an iterator from scratch. Now that we’ve done that, we’re going to
switch to using the Java Iterator interface, because we’ll get a lot of leverage by implementing
that instead of our home-grown Iterator interface. What kind of leverage? You’ll soon see.

First, let’s check out the java.util.Iterator interface:

hasNext()
next()
remove()

<<interface>>
Iterator

This looks just like our previous definition...

...except we have an additional method that allows us to remove the last item returned by the next() method from the aggregate.

This is going to be a piece of cake: we just need to change the interface that both
PancakeHouseMenuIterator and DinerMenuIterator extend, right? Almost...actually, it’s even
easier than that. Not only does java.util have its own Iterator interface, but ArrayList has an
iterator() method that returns an iterator. In other words, we never needed to implement our
own iterator for ArrayList. However, we’ll still need our implementation for the DinerMenu
because it relies on an Array, which doesn’t support the iterator() method.

Q: What if I don’t want to provide the ability to remove
something from the underlying collection of objects?

A: The remove() method is considered optional. You don’t have
to provide remove functionality. But you should provide the method
because it’s part of the Iterator interface. If you’re not going to
allow remove() in your iterator, you’ll want to throw the runtime
exception java.lang.UnsupportedOperationException. The Iterator
API documentation specifies that this exception may be thrown
from remove() and any client that is a good citizen will check for this
exception when calling the remove() method.

Q: How does remove() behave under multiple threads that
may be using different iterators over the same collection of
objects?

A: The behavior of the remove() method is unspecified if the
collection changes while you are iterating over it. So you should be
careful in designing your own multithreaded code when accessing a
collection concurrently.

using java’s iterator

you are here 4   335

the iterator and composite patterns

import java.util.Iterator;

public class DinerMenuIterator implements Iterator<MenuItem> {
 MenuItem[] items;
 int position = 0;

 public DinerMenuIterator(MenuItem[] items) {
 this.items = items;
 }

 public MenuItem next() {
 //implementation here
 }

 public boolean hasNext() {
 //implementation here
 }

 public void remove() {
 throw new UnsupportedOperationException
 ("You shouldn't be trying to remove menu items.");

 }
}

Cleaning things up with java.util.Iterator

public Iterator<MenuItem> createIterator() {

 return menuItems.iterator();

}

Let’s start with the PancakeHouseMenu. Changing it over to
java.util.Iterator is going to be easy. We just delete the
PancakeHouseMenuIterator class, add an import java.util.Iterator
to the top of PancakeHouseMenu, and change one line of the
PancakeHouseMenu:

Instead of creating our own iterator now, we just call the iterator() method on the menuItems ArrayList (more on this in a bit).
And that’s it, PancakeHouseMenu is done.

Now we need to make the changes to allow DinerMenu to work with java.util.Iterator.

First we import java.util.Iterator, the interface we’re going to implement.

None of our current
implementation changes...

Remember, the remove() method is optional
in the Iterator interface. Having our waitress
remove menu items really doesn’t make sense,
so we’ll just throw an exception if she tries.

336   Chapter 9

import java.util.Iterator;

public class Waitress {
 Menu pancakeHouseMenu;
 Menu dinerMenu;

 public Waitress(Menu pancakeHouseMenu, Menu dinerMenu) {
 this.pancakeHouseMenu = pancakeHouseMenu;
 this.dinerMenu = dinerMenu;
 }

 public void printMenu() {
 Iterator<MenuItem> pancakeIterator = pancakeHouseMenu.createIterator();
 Iterator<MenuItem> dinerIterator = dinerMenu.createIterator();
 System.out.println("MENU\n----\nBREAKFAST");
 printMenu(pancakeIterator);
 System.out.println("\nLUNCH");
 printMenu(dinerIterator);
 }

 private void printMenu(Iterator iterator) {
 while (iterator.hasNext()) {
 MenuItem menuItem = iterator.next();
 System.out.print(menuItem.getName() + ", ");
 System.out.print(menuItem.getPrice() + " -- ");
 System.out.println(menuItem.getDescription());
 }
 }

 // other methods here
}

We are almost there...
Now we just need to give the Menus a common interface and rework the
Waitress a little. The Menu interface is quite simple: we might want to add a
few more methods to it eventually, like addItem(), but for now we’ll let the chefs
control their menus by keeping that method out of the public interface:

public interface Menu {

 public Iterator<MenuItem> createIterator();

}

This is a simple interface that just lets clients get an iterator for the items in the menu.

Now we need to add an implements Menu to both the PancakeHouseMenu
and the DinerMenu class definitions and update the Waitress class:

Now the Waitress uses the java.util.Iterator as well.

We need to replace the
concrete Menu classes with
the Menu interface.

Nothing changes
here.

reworking the waitress

you are here 4   337

the iterator and composite patterns

The PancakeHouseMenu and DinerMenu classes implement an interface,
Menu. This allows the Waitress to refer to each menu object using the interface
rather than the concrete class. So, we’re reducing the dependency between
the Waitress and the concrete classes by “programming to an interface, not an
implementation.”

Also, the new Menu interface has one method, createIterator(), that is
implemented by PancakeHouseMenu and DinerMenu. Each menu class
assumes the responsibility of creating a concrete Iterator that is appropriate for
its internal implementation of the menu items.

printMenu()

Waitress

createIterator()

PancakeHouseMenu

menuItems

createIterator()

DinerMenu

menuItems

hasNext()
next()
remove()

<<interface>>
Iterator

Here’s our new Menu interface. It specifies the new method, createIterator().

Now, Waitress
only needs to
be concerned
with Menus and
Iterators.

We’ve decoupled Waitress from the

implementation of the menus, so now

we can use an Iterator t
o iterate

over any list of menu items without

having to know about how the list of

items is implemented.

PancakeHouseMenu and DinerMenu now implement the Menu interface, which means they need to implement the new createIterator() method.

DinerMenu returns
a DinerMenuIterator
from its
createIterator()
method because
that’s the kind of
iterator required
to iterate over its
Array of menu items. Each concrete Menu is responsible

for creating the appropriate
concrete Iterator class.

What does this get us?

This solves the problem
of the Waitress
depending on the
concrete Menus.

createIterator()

<<interface>>
Menu

createIterator()

hasNext()
next()
remove()

PancakeHouseMenuIterator

hasNext()
next()
remove()

DinerMenuIterator

We’re now using the
ArrayList iterator
supplied by java.util. We
don’t need this anymore.

338   Chapter 9

Iterator Pattern defined

The Iterator Pattern provides a way to
access the elements of an aggregate object
sequentially without exposing its underlying
representation.

You’ve already seen how to implement the Iterator
Pattern with your very own iterator. You’ve also seen
how Java supports iterators in some of its collection-
oriented classes (ArrayList). Now it’s time to check out
the official definition of the pattern:

This makes a lot of sense: the pattern gives you a way
to step through the elements of an aggregate without
having to know how things are represented under the
covers. You’ve seen that with the two implementations
of Menus. But the effect of using iterators in your design
is just as important: once you have a uniform way of
accessing the elements of all your aggregate objects, you
can write polymorphic code that works with any of these
aggregates—just like the printMenu() method, which
doesn’t care if the menu items are held in an Array or
ArrayList (or anything else that can create an Iterator), as
long as it can get hold of an Iterator.

The other important impact on your design is that the
Iterator Pattern takes the responsibility of traversing
elements and gives that responsibility to the iterator
object, not the aggregate object. This not only keeps
the aggregate interface and implementation simpler,
it removes the responsibility for iteration from the
aggregate and keeps the aggregate focused on the
things it should be focused on (managing a collection of
objects), not on iteration.

The Iterator Pattern
allows traversal of the
elements of an aggregate
without exposing the
underlying implementation.

It also places the task
of traversal on the
iterator object, not
on the aggregate,
which simplifies the
aggregate interface and
implementation, and
places the responsibility
where it should be.

iterator pattern defined

you are here 4   339

the iterator and composite patterns

hasNext()
next()
remove()

<<interface>>
Iterator

hasNext()
next()
remove()

ConcreteIterator

createIterator()

<<interface>>
Aggregate

createIterator()

ConcreteAggregate

Client

The ConcreteAggregate
has a collection of
objects and implements
the method that
returns an Iterator for
its collection.

Each
ConcreteAggregate
is responsible for
instantiating a
ConcreteIterator that
can iterate over its
collection of objects.

The Iterator interface
provides the interface
that all iterators
must implement, and
a set of methods
for traversing over
elements of a collection.
Here we’re using the
java.util.Iterator. If
you don’t want to
use Java’s Iterator
interface, you can
always create your own.

Having a common interface for your
aggregates is handy for your client;
it decouples your client from the
implementation of your collection of objects.

The ConcreteIterator is
responsible for managing
the current position of
the iteration.

The class diagram for the Iterator Pattern looks very similar to another
pattern you’ve studied; can you think of what it is? Hint: a subclass
decides which object to create.

Let’s check out the class diagram to put all the pieces in context...

The Iterator Pattern Structure

340   Chapter 9

the single responsibility principle

OO Glue
Head First

The Single Responsibility Principle

Design Principle
A class should have only one
reason to change.

What if we allowed our aggregates to implement their internal
collections and related operations AND the iteration methods?
Well, we already know that would expand the number of
methods in the aggregate, but so what? Why is that so bad?

Well, to see why, you first need to recognize that when we allow
a class to not only take care of its own business (managing
some kind of aggregate) but also take on more responsibilities
(like iteration) then we’ve given the class two reasons to change.
Two? Yup, two: it can change if the collection changes in some
way, and it can change if the way we iterate changes. So once
again our friend CHANGE is at the center of another design
principle:

We know we want to avoid change in our classes because
modifying code provides all sorts of opportunities for
problems to creep in. Having two ways to change increases
the probability the class will change in the future, and when
it does, it’s going to affect two aspects of your design.

The solution? The principle guides us to assign each
responsibility to one class, and only one class.

That’s right, it’s as easy as that, and then again it’s not:
separating responsibility in design is one of the most
difficult things to do. Our brains are just too good at seeing
a set of behaviors and grouping them together even when
there are actually two or more responsibilities. The only
way to succeed is to be diligent in examining your designs
and to watch out for signals that a class is changing in more
than one way as your system grows.

Every responsibility of
a class is an area of
potential change. More
than one responsibility
means more than one area
of change.

This principle guides us to
keep each class to a single
responsibility.

Cohesion is a term you’ll
hear used as a measure of
how closely a class or a
module supports a single
purpose or responsibility.

We say that a module or
class has high cohesion when it

is designed around a set of related
functions, and we say it has low
cohesion when it is designed around a
set of unrelated functions.

Cohesion is a more general concept
than the Single Responsibility Principle,
but the two are closely related.
Classes that adhere to the principle
tend to have high cohesion and are
more maintainable than classes that
take on multiple responsibilities and
have low cohesion.

you are here 4   341

the iterator and composite patterns

hasNext()
next()
remove()

Iterator

hasNext()
next()
remove()
addCard()
removeCard()
shuffle()

DeckOfCards

setName()
setAddress()
setPhoneNumber()
save()
load()

Person

dial()
hangUp()
talk()
sendData()
flash()

Phone
getCount()
getState()
getLocation()

GumballMachine

add()
remove()
checkOut()
saveForLater()

ShoppingCart

login()
signup()
move()
fire()
rest()

Game

Hard hat area. watch out
for falling assumptions

getHighScore()
getName()

Playerlogin()
signup()
move()
fire()
rest()
getHighScore()
getName()

Game
move()
fire()
rest()

PlayerActions

login()
signup()

GameSession

Examine these classes and determine which ones
have multiple responsibilities.

Determine if these classes have low or high cohesion.

2

342   Chapter 9

no dumb questions

Q: I’ve seen other books show the
Iterator class diagram with the methods
first(), next(), isDone(), and currentItem().
Why are these methods different?

A: Those are the “classic” method names
that have been used. These names have
changed over time and we now have next(),
hasNext(), and even remove() in
java.util.Iterator.

Let’s look at the classic methods. The
next() and currentItem() have been merged
into one method in java.util. The isDone()
method has become hasNext(), but we
have no method corresponding to first().
That’s because in Java we tend to just get
a new iterator whenever we need to start
the traversal over. Nevertheless, you can
see there is very little difference in these
interfaces. In fact, there is a whole range
of behaviors you can give your iterators.
The remove() method is an example of an
extension in java.util.Iterator.

Q: I’ve heard about “internal” iterators
and “external” iterators. What are they?
Which kind did we implement in the
example?

A: We implemented an external iterator,
which means that the client controls the
iteration by calling next() to get the next
element. An internal iterator is controlled
by the iterator itself. In that case, because
it’s the iterator that’s stepping through the
elements, you have to tell the iterator what
to do with those elements as it goes through
them. That means you need a way to pass
an operation to an iterator. Internal iterators
are less flexible than external iterators
because the client doesn’t have control of
the iteration. However, some might argue
that they are easier to use because you just

 hand them an operation and tell them to
iterate, and they do all the work for you.

Q: Could I implement an Iterator that
can go backward as well as forward?

A: Definitely. In that case, you’d probably
want to add two methods, one to get to the
previous element, and one to tell you when
you’re at the beginning of the collection
of elements. Java’s Collection Framework
provides another type of iterator interface
called ListIterator. This iterator adds
previous() and a few other methods to the
standard Iterator interface. It is supported
by any Collection that implements the List
interface.

Q: Who defines the ordering of the
iteration in a collection like Hashtable,
which is inherently unordered?

A: Iterators imply no ordering. The
underlying collections may be unordered as
in a hash table or in a bag; they may even
contain duplicates. So ordering is related
to both the properties of the underlying
collection and to the implementation. In
general, you should make no assumptions
about ordering unless the Collection
documentation indicates otherwise.

Q: You said we can write
“polymorphic code” using an iterator; can
you explain that more?

A: When we write methods that take
Iterators as parameters, we are using
polymorphic iteration. That means we are
creating code that can iterate over any
collection as long as it supports Iterator.
We don’t care about how the collection
is implemented, we can still write code to
iterate over it.

Q: If I’m using Java, won’t I always
want to use the java.util.Iterator
interface so I can use my own iterator
implementations with classes that are
already using the Java iterators?

A: Probably. If you have a common
Iterator interface, it will certainly make it
easier for you to mix and match your own
aggregates with Java aggregates like
ArrayList and Vector. But remember, if you
need to add functionality to your Iterator
interface for your aggregates, you can
always extend the Iterator interface.

Q: I’ve seen an Enumeration interface
in Java; does that implement the Iterator
Pattern?

A: We talked about this in the
Adapter Pattern chapter (Chapter 7).
Remember? The java.util.Enumeration
is an older implementation of Iterator
that has since been replaced by java.util.
Iterator. Enumeration has two methods,
hasMoreElements(), corresponding to
hasNext(), and nextElement(), corresponding
to next(). However, you’ll probably want to
use Iterator over Enumeration as more Java
classes support it. If you need to convert
from one to another, review Chapter 7 again
where you implemented the adapter for
Enumeration and Iterator.

Q: Is using Java’s enhanced for loop
related to iterators?

A: Good question! It is, and to tackle that
question we need to understand another
interface—that is, Java’s Iterable interface.
This is a good time to do just that...

you are here 4   343

the iterator and composite patterns

Meet Java’s Iterable interface
You’re already up to speed on Java’s Iterator interface, but there’s
another interface you need to meet: Iterable. The Iterable interface
is implemented by every Collection type in Java. Guess what? In your
code using the ArrayList, you’ve already been using this interface.
Let’s take a look at the Iterable interface:

iterator()
+ forEach()
+ spliterator()

<<interface>>
Iterable

add()
addAll()
clear()
contains()
containsAll()
equals()
hashCode()
isEmpty()
iterator()
remove()
removeAll()
retainAll()
size()
toArray()

<<interface>>
Collection

next()
hasNext()
+ remove()

<<interface>>
IteratorThe Iterable interface includes an iterator() method that returns

an iterator that
implements the
Iterator interface.

All Collection classes, like
ArrayList, implement the
Collection interface, which
inherits from the Iterable
interface, so all Collection
classes are Iterables.

You already know about the
Iterator interface; that's the
same interface we’ve been using
with our Diner and Pancake
house iterators.

Here’s the Iterable
interface.

If a class implements Iterable, we know that the class implements an
iterator() method. That method returns an iterator that implements
the Iterator interface. This interface also includes a default forEach()
method that can be used as another way to iterate through the
collection. In addition to all that, Java even provides some nice
syntactic sugar for iteration, with its enhanced for loop. Let’s see how
that works.

The Iterable interface also
includes the spliterator()
method, which provides even
more advanced ways to iterate
through a collection.

344   Chapter 9

the enhanced for loop

Java’s enhanced for loop
Let’s take an object whose class implements the Iterable interface...why not
the ArrayList collection we used for the Pancake House menu items:

List<MenuItem> menuItems = new ArrayList<MenuItem>();

We can iterate over ArrayList the way we have been:

Iterator iterator = menu.iterator();
while (iterator.hasNext()) {
	 MenuItem menuItem = iterator.next();
	 System.out.print(menuItem.getName() + ", ");
	 System.out.print(menuItem.getPrice() + " -- ");
	 System.out.println(menuItem.getDescription());
}

Or, given we know ArrayList is an Iterable, we could use Java’s enhanced
for shorthand:

for (MenuItem item: menu) {
	 System.out.print(menuItem.getName() + ", ");
	 System.out.print(menuItem.getPrice() + " -- ");
	 System.out.println(menuItem.getDescription());
}

Here we can dispense with the explicit iterator as the hasNext() and next() methods.

This is the way we've been
doing iteration over our
collections, using an iterator
along with the hasNext() and
next() methods.

Looks like a great way to use Iterators
that really results in simple code—no more

hasNext() or next() method calls. So, can we
rework our Waitress code to use Iterable and

the enhanced for loop for both menus?

you are here 4   345

the iterator and composite patterns

We have some bad news: the Diner may not have made the best decision using an
Array as the basis for its menus. As it turns out, Arrays are not Java Collections
and so they don’t implement the Iterable interface. Given that, we can’t as easily
consolidate our Waitress code into one method that takes an Iterable and use it
with both the Pancake House’s breakfastItems and the Diner’s lunchItems. If you
try to change the Waitress’s printMenu() method to take an Iterable instead of an
Iterator, and use the for-each loop instead of the Iterator API, like this:

Not so fast; Arrays are not Iterables

public void printMenu(Iterable<MenuItem> iterable) {

	 for (MenuItem menuItem : iterable) {

		 // print menuItem

	 }

}

you’ll get a compiler error when you try to pass the lunchItems array to printMenu():

printMenu(lunchItems);

because, again, Arrays don’t implement the Iterable interface.

If you keep both loops in the Waitress code, we’re back to square one: the Waitress is
once again dependent on the aggregate types we’re using to store the menus, and she
has duplicate code: one loop for the ArrayList, and one loop for the Array.

So what do we do? Well, there are many ways to solve this issue, but they are a bit of a
sideshow, as would be refactoring our code. After all, this chapter is about the Iterator
Pattern, not Java’s Iterable interface. But the good news is you know about Iterable, you
know its relationship to Java’s Iterator interface and to the Iterator Pattern. So, let’s keep
moving, as we’ve got a great implementation even if we aren’t taking advantage of a
little syntactic sugar from Java’s for loop.

This will only work for the ArrayList we’re using for the Pancake House menu.

Compile error! Arrays are not Iterables.

breakfastItems.forEach(item -> System.out.println(item));

You probably noticed the forEach() method in the Iterable menu. It’s used as the basis for
Java’s enhanced for loop, but you can also use it directly with Iterables. Here’s how it works:

Here’s an Iterable, in
this case

our Pancake House ArrayList

of menu items.
We’re calling forEach()...

...and passing a lambda that takes a menuItem, and just prints it.

So this code will print every
item in the collection.

346   Chapter 9

a new acquisition

Wow, and we thought things
were already complicated.

Now what are we going to do?

Good thing you’re
learning about the Iterator

Pattern because I just heard that
Objectville Mergers and Acquisitions
has done another deal...we’re merging
with Objectville Café and adopting their

dinner menu.

Come on, think positively.
I’m sure we can find a way to
work them into the Iterator
Pattern.

you are here 4   347

the iterator and composite patterns

public class CafeMenu {
 Map<String, MenuItem> menuItems = new HashMap<String, MenuItem>();

 public CafeMenu() {
 addItem("Veggie Burger and Air Fries",
 "Veggie burger on a whole wheat bun, lettuce, tomato, and fries",
 true, 3.99);
 addItem("Soup of the day",
 "A cup of the soup of the day, with a side salad",
 false, 3.69);
 addItem("Burrito",
 "A large burrito, with whole pinto beans, salsa, guacamole",
 true, 4.29);
 }

 public void addItem(String name, String description,
 boolean vegetarian, double price)
 {
 MenuItem menuItem = new MenuItem(name, description, vegetarian, price);
 menuItems.put(name, menuItem);
 }

 public Map<String, MenuItem> getMenuItems() {
 return menuItems;
 }
}

Here’s the café menu. It doesn’t look like too much trouble to integrate the
CafeMenu class into our framework...let’s check it out.

CafeMenu doesn’t implement our new Menu

interface, but this is e
asily fixed. The café is storing their menu items in a HashMap.

Does that support Iterator? We’ll see shortly...

Like the other Menus, the menu items
are initialized in the constructor.

Here’s where we create a new MenuItem
and add it to the menuItems HashMap.

We’re not going to need this anymore.

1.

2.

3.

The key is the item name.
The value is the menuItem object.

Before looking at the next page, quickly jot down the three
things we have to do to this code to fit it into our framework:

Taking a look at the Café Menu

348   Chapter 9

Are we violating

the Principle of

Least Knowledge

here? What can

we do about it?

reworking the menu code

public class CafeMenu implements Menu {
 Map<String, MenuItem> menuItems = new HashMap<String, MenuItem>();

 public CafeMenu() {
 // constructor code here
 }

 public void addItem(String name, String description,
 boolean vegetarian, double price)
 {
 MenuItem menuItem = new MenuItem(name, description, vegetarian, price);
 menuItems.put(name, menuItem);
 }

 public Map<String, MenuItem> getMenuItems() {
 return menuItems;
 }

 public Iterator<MenuItem> createIterator() {
 return menuItems.values().iterator();
 }
}

Code Up Close

Let’s rework the CafeMenu code. We’re going to take care of implementing the
Menu interface, and we also need to deal with creating an Iterator for the values
stored in the HashMap. Things are a little different than when we did the same
for the ArrayList; check it out...

CafeMenu implements the Menu interface, so the
Waitress can use it just like the other two Menus.

Just like before, we can get rid of getItems()
so we don’t expose the implementation of
menuItems to the Waitress.

And here’s where we implement the
createIterator() method. Notice that
we’re not getting an Iterator for the
whole HashMap, just for the values.

 public Iterator<MenuItem> createIterator() {

 return menuItems.values().iterator();

 }

First we get the values of the
HashMap, which is just a collection of
all the objects in the HashMap.

Luckily that collection supports the iterator() method, which returns a object of type java.util.Iterator.

HashMap is a little more complex than ArrayList because it supports both
keys and values, but we can still get an Iterator for the values (which are
the MenuItems).

We’re using HashMap because it’s a common
data structure for storing values.

Reworking the Café Menu code

you are here 4   349

the iterator and composite patterns

public class Waitress {

 Menu pancakeHouseMenu;

 Menu dinerMenu;

 Menu cafeMenu;

 public Waitress(Menu pancakeHouseMenu, Menu dinerMenu, Menu cafeMenu) {

 this.pancakeHouseMenu = pancakeHouseMenu;

 this.dinerMenu = dinerMenu;

 this.cafeMenu = cafeMenu;

 }

 public void printMenu() {

 Iterator<MenuItem> pancakeIterator = pancakeHouseMenu.createIterator();

 Iterator<MenuItem> dinerIterator = dinerMenu.createIterator();

 Iterator<MenuItem> cafeIterator = cafeMenu.createIterator();

 System.out.println("MENU\n----\nBREAKFAST");

 printMenu(pancakeIterator);

 System.out.println("\nLUNCH");

 printMenu(dinerIterator);

 System.out.println("\nDINNER");

 printMenu(cafeIterator);

 }

 private void printMenu(Iterator iterator) {

 while (iterator.hasNext()) {

 MenuItem menuItem = iterator.next();

 System.out.print(menuItem.getName() + ", ");

 System.out.print(menuItem.getPrice() + " -- ");

 System.out.println(menuItem.getDescription());

 }

 }

}

Now it’s time to modify the Waitress to support our new Menu. Now that the
Waitress expects Iterators, it should be straightforward:

The café menu is passed into the Waitress
in the constructor with the other menus,
and we stash it in an instance variable.

We’re using the café’s
menu for our dinner
menu. All we have to do
to print it is create the
iterator, and pass it to
printMenu(). That’s it!

Nothing changes here.

Adding the Cafe Menu to the Waitress‘

350   Chapter 9

testing the new menu

public class MenuTestDrive {

 public static void main(String args[]) {

 PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu();

 DinerMenu dinerMenu = new DinerMenu();

 CafeMenu cafeMenu = new CafeMenu();

 Waitress waitress = new Waitress(pancakeHouseMenu, dinerMenu, cafeMenu);

 waitress.printMenu();

}

File Edit Window Help

% java DinerMenuTestDrive

MENU

BREAKFAST
K&B's Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs and toast
Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage
Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries
Waffles, 3.59 -- Waffles with your choice of blueberries or strawberries

LUNCH
Vegetarian BLT, 2.99 -- (Fakin') Bacon with lettuce & tomato on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29 -- Soup of the day, with a side of potato salad
Hot Dog, 3.05 -- A hot dog, with sauerkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with marinara sauce, and a slice of sourdough bread

DINNER
Soup of the day, 3.69 -- A cup of the soup of the day, with a side salad
Burrito, 4.29 -- A large burrito, with whole pinto beans, salsa, guacamole
Veggie Burger and Air Fries, 3.99 -- Veggie burger on a whole wheat bun,
 lettuce, tomato, and fries
%

First we iterate
through the
pancake menu...

...and then
the diner
menu...

...and finally
the new café
menu, all with
the same
iteration code.

Breakfast, lunch, AND dinner
Let’s update our test drive to make sure this all works.

Create a CafeMenu...

...and pass it to the waitress.

Now, when we print we should see all three menus.

Here’s the test run; check out the new dinner menu from the Café!

you are here 4   351

the iterator and composite patterns

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

ArrayList

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Array

...and we didn’t want her to
know about how the menu
items are implemented.

ArrayList has a
built-in iterator...

...Array
doesn’t have
a built-in
Iterator so
we built our
own.

 Iterator

We wanted to give the
Waitress an easy way to
iterate over menu items...

Our menu items had two
different implementations

and two different
interfaces for iteratin

g.

 Iterator

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

ArrayList

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Array

So we gave the Waitress an
Iterator for each kind of
group of objects she needed
to iterate over... ...one for

ArrayList...

...and one for Array.
next()

next()

Now she doesn’t have to worry about which
implementation we used; she always uses the same
interface — Iterator — to iterate over menu items.
She’s been decoupled from the implementation.

What did we do?

We decoupled the Waitress....

352   Chapter 9

a more extensible waitress

 Iterator

next()

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

Vector

 MenuItem

 MenuItem

 MenuItem

 MenuItem

HashMap

 key

 key

 key

 key

Most have different
interfaces.

By giving her an Iterator,
we have decoupled her
from the implementation
of the menu items, so we
can easily add new Menus
if we want.

We easily added another
implementation of menu
items, and since we
provided an Iterator,
the Waitress knew what
to do.

Which is better for her, because now she can use the same code to iterate over any group of objects. And it’s better for us because the implementation details aren’t exposed.

...and more!

Making an Iterator for the HashMap values was easy; when you call values.iterator() you get an Iterator.

LinkedList

 MenuItem
 MenuItem

 MenuItem
 MenuItem

But almost all of
them support a
way to obtain an
Iterator.

And if they don’t support
Iterator, that’s okay, because now
you know how to build your own.

...and we made the Waitress more extensible

But there’s more!

Java gives you a lot of “Collection” classes that allow you to store and retrieve groups of objects; for example, Vector and LinkedList.

you are here 4   353

the iterator and composite patterns

Iterators and Collections
We’ve been using a couple of classes that are part of the Java Collections Framework.
This “framework” is just a set of classes and interfaces, including ArrayList, which
we’ve been using, and many others like Vector, LinkedList, Stack, and PriorityQueue.
Each of these classes implements the java.util.Collection interface, which contains a
bunch of useful methods for manipulating groups of objects.

Let’s take a quick look at the interface:

add()
addAll()
clear()
contains()
containsAll()
equals()
hashCode()
isEmpty()
iterator()
remove()
removeAll()
retainAll()
size()
toArray()

<<interface>>
Collection

As you can see, there’s all kinds
of good stuff here. You can ad

d
and remove elements from your
collection without even knowing
how it’s implemented.

Here’s our old friend, the
iterator() method. With this
method, you can get an Iterator
for any class that implements
the Collection interface.

Other handy methods include size(), to get the number of elements, and toArray() to turn your collection into an array.

	 HashMap is one of
a few classes that
indirectly
supports Iterator.

As you saw when we
implemented the CafeMenu, you
could get an Iterator from it, but
only by first retrieving its Collection
called values. If you think about it,
this makes sense: the HashMap
holds two sets of objects: keys and
values. If we want to iterate over
its values, we first need to retrieve
them from the HashMap, and then
obtain the iterator.

The nice thing about Collections and
Iterators is that each Collection object
knows how to create its own Iterator. Calling
iterator() on an ArrayList returns a concrete

Iterator made for ArrayLists, but you never need
to see or worry about the concrete class it uses;

you just use the Iterator interface.

iterator()
+ forEach()
+ spliterator()

<<interface>>
Iterable

Don’t forget the
Collection interface
implements the
Iterable interface.

354   Chapter 9

code magnets

The Chefs have decided that they want to be able to alternate their lunch menu items; in other words,
they will offer some items on Monday, Wednesday, Friday, and Sunday, and other items on Tuesday,
Thursday, and Saturday. Someone already wrote the code for a new “Alternating” DinerMenu Iterator so
that it alternates the menu items, but she scrambled it up and put it on the fridge in the Diner as a joke.
Can you put it back together? Some of the curly braces fell on the floor and they were too small to pick
up, so feel free to add as many of those as you need.

Code Magnets

}

}

}

MenuItem menuItem = items[position];

position = position + 2;

return menuItem;

import java.util.Iterator;

import java.util.Calendar;

public Object next() {

public AlternatingDinerMenuIterator(MenuItem[] items)

this.items = items;
position = Calendar.DAY_OF_WEEK % 2;

public void remove() {implements Iterator<MenuItem>

MenuItem[] items;

int position; public class AlternatingDinerMenuIterator

public boolean hasNext() {

throw new UnsupportedOperationException(
 "Alternating Diner Menu Iterator does not support remove()");

if (position >= items.length || items[position] == null) {

 return false;

} else {

 return true;

}

you are here 4   355

the iterator and composite patterns

 public void printMenu() {

 Iterator<MenuItem> pancakeIterator = pancakeHouseMenu.createIterator();

 Iterator<MenuItem> dinerIterator = dinerMenu.createIterator();

 Iterator<MenuItem> cafeIterator = cafeMenu.createIterator();

 System.out.println("MENU\n----\nBREAKFAST");

 printMenu(pancakeIterator);

 System.out.println("\nLUNCH");

 printMenu(dinerIterator);

 System.out.println("\nDINNER");

 printMenu(cafeIterator);

 }

Is the Waitress ready for prime time?

The Waitress has come a long way, but you’ve gotta admit
those three calls to printMenu() are looking kind of ugly.

Let’s be real—every time we add a new menu we’re going to
have to open up the Waitress implementation and add more
code. Can you say “violating the Open Closed Principle”?

It’s not the Waitress’s fault. We’ve done a great job of decoupling the menu implementation
and extracting the iteration into an iterator. But we still are handling the menus with
separate, independent objects—we need a way to manage them together.

Three calls to
printMenu.

Three createIterator() calls.

Every time we add or remove a menu , we’re going
to have to open this code up for changes.

The Waitress still needs to make three calls to printMenu(), one for each menu. Can you
think of a way to combine the menus so that only one call needs to be made? Or perhaps
so that one Iterator is passed to the Waitress to iterate over all the menus?

356   Chapter 9

public class Waitress {
 List<Menu> menus;

 public Waitress(List<Menu> menus) {
	 this.menus = menus;
 }

 public void printMenu() {
	 Iterator<Menu> menuIterator = menus.iterator();
	 while(menuIterator.hasNext()) {
		 Menu menu = menuIterator.next();
		 printMenu(menu.createIterator());
	 }
 }

 void printMenu(Iterator<MenuItem> iterator) {
	 while (iterator.hasNext()) {
		 MenuItem menuItem = iterator.next();
		 System.out.print(menuItem.getName() + ", ");
		 System.out.print(menuItem.getPrice() + " -- ");
		 System.out.println(menuItem.getDescription());
	 }
 }
}

a new design

Sounds like the chef is on to something. Let’s give it a try:

Now we just take a list
of menus, instead of
each menu separately.

And we iterate through the
menus, passing each menu’s
iterator to the overloaded
printMenu() method.

No code
changes here.

This looks pretty good, although we’ve lost the names of the menus,
but we could add the names to each menu.

This isn’t so bad. All
we need to do is package the

menus up into an ArrayList and then
iterate through each Menu. The code in
the Waitress is going to be simple and it
will handle any number of menus.

you are here 4   357

the iterator and composite patterns

PancakeHouse
M

en
u

 DinerMenu
 CafeMenu

1 2 3

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

Pancake Menu

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Diner Menu

All Menus

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Dessert Menu

Here’s our ArrayList
that holds the menus
of each restaurant.

We need for Diner Menu to hold a submenu,
but we can’t actually assign a menu to a
MenuItem array because the types are
different, so this isn’t going to work.

Array

ArrayList

HashMap

Just when we thought it was safe...
Now they want to add a dessert submenu.

Okay, now what? Now we have to support not only multiple
menus, but menus within menus.

It would be nice if we could just make the dessert menu an
element of the DinerMenu collection, but that won’t work as it is
now implemented.

What we want (something like this):

But this won’t

work!
We can’t assign a dessert menu to a
MenuItem array.

Time for a change!

I just heard the Diner is
going to be creating a dessert

menu that is going to be an insert
into their regular menu.

 MenuItem

 MenuItem

 MenuItem

 MenuItem

Café Menu

 key

 key

 key

 key

358   Chapter 9

time to refactor

What do we need?
The time has come to make an executive decision to
rework the chef ’s implementation into something that
is general enough to work over all the menus (and now
submenus). That’s right, we’re going to tell the chefs that
the time has come for us to reimplement their menus.

The reality is that we’ve reached a level of complexity
such that if we don’t rework the design now, we’re never
going to have a design that can accommodate further
acquisitions or submenus.

So, what is it we really need out of our new design?

•  We need some kind of a tree-shaped structure that
will accommodate menus, submenus, and menu
items.

•  We need to make sure we maintain a way to traverse
the items in each menu that is at least as convenient
as what we’re doing now with iterators.

•  We may need to traverse the items in a more flexible
manner. For instance, we might need to iterate over
only the Diner’s dessert menu, or we might need to
iterate over the Diner’s entire menu, including the
dessert submenu.

There comes a time when we
must refactor our code in order
for it to grow. To not do so would
leave us with rigid, inflexible code
that has no hope of ever sprouting

new life.

you are here 4   359

the iterator and composite patterns

 All Menus

 Dessert Men
u

Pancake House

 M
e n

u

 Diner Menu Café Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

We need to
accommodate
Menus...

...and menu items.

...and submenus...

Because we need to represent
menus, nested submenus, and menu

items, we can naturally fit them

in a tree-like structure.

 All Menus

 Dessert Men
u

Pancake House

 M
e n

u

 Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 Dessert Men
u

 MenuItem

 MenuItem
 MenuItem

 MenuItem

We still need to be able
to traverse all the items
in the tree.

We also need to be able to traverse more flexibly, for instance over one menu.

How would you handle this new wrinkle to our design
requirements? Think about it before turning the page.

360   Chapter 9

composite pattern defined

The Composite Pattern defined
That’s right; we’re going to introduce another pattern
to solve this problem. We didn’t give up on Iterator—it
will still be part of our solution—however, the problem
of managing menus has taken on a new dimension that
Iterator doesn’t solve. So, we’re going to step back and
solve it with the Composite Pattern.

We’re not going to beat around the bush on this
pattern; we’re going to go ahead and roll out the official
definition now:

The Composite Pattern allows you to
compose objects into tree structures to
represent part-whole hierarchies. Composite
lets clients treat individual objects and
compositions of objects uniformly.

Let’s think about this in terms of our menus: this pattern
gives us a way to create a tree structure that can handle
a nested group of menus and menu items in the same
structure. By putting menus and items in the same
structure we create a part-whole hierarchy—that is, a
tree of objects that is made of parts (menus and menu
items) but that can be treated as a whole, like one big
über menu.

Once we have our über menu, we can use this
pattern to treat “individual objects and compositions
uniformly.” What does that mean? It means if we have
a tree structure of menus, submenus, and perhaps
subsubmenus along with menu items, then any menu
is a “composition” because it can contain both other
menus and menu items. The individual objects are just
the menu items—they don’t hold other objects. As you’ll
see, using a design that follows the Composite Pattern
is going to allow us to write some simple code that can
apply the same operation (like printing!) over the entire
menu structure.

Here’s a tree structure.

 Node

 Leaf
 Leaf

 Leaf

Elements without children
are called leaves.

Elements with
child elements
are called nodes.

 Menu

 MenuIte

m

 MenuItem

 MenuItem

Menus are nodes and
MenuItems are leaves.

We can represent
our Menu and
MenuItems in a
tree structure.

you are here 4   361

the iterator and composite patterns

The Composite Pattern
allows us to build
structures of objects in
the form of trees that
contain both compositions
of objects and individual
objects as nodes.

Using a composite
structure, we can apply
the same operations over
both composites and
individual objects. In
other words, in most
cases we can ignore the
differences between
compositions of objects
and individual objects.

 All Menus

 Dessert Men
u

Pancake House

 M
e n

u

 Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

Menus

Submenu

MenuItems

We can create arbitrarily
complex trees.

 All Menus

 Dessert Men
u

Pancake House

 M
e n

u

 Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

Menus

Submenu

MenuItems

And treat them as a whole...

....or as parts.

 All Menus

 Dessert Men
u

Pancake House

 M
e n

u

 Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

Menus

Submenu

MenuItems

Operations can be

applied to the w
hole...

...or the par
ts.

print()

print()

362   Chapter 9

composite pattern class diagram

operation()
add(Component)
remove(Component)
getChild(int)

Component

add(Component)
remove(Component)
getChild(int)
operation()

Composite

Client

operation()

Leaf

The Component defines an
interface for all objects

in the

composition: both the composite

and leaves.

The Component may implement a default behavior for add(), remove(), getChild() and its operations.

A leaf has no children.

A leaf defines the behavior for
the elements in the composition.
It does this by implementing the
operations the Composite supports.

The Composite’s role is to
define behavior of the
components having children and
to store child components.

The Composite also

implements the Leaf-

related operat
ions.

Note that some of

these may not make

sense on a Composite,

so in that case
 an

exception might be

generated.

The Client uses the
Component interface to
manipulate the objects in
the composition.

Note that the leaf also inherits methods like add(), remove(), and getChild(), which don’t necessarily make a lot of sense for a leaf node. We’re going to come back to this issue.

Q: Component, Composite, Trees? I’m confused.

A: A composite contains components. Components come in
two flavors: composites and leaf elements. Sound recursive? It is.
A composite holds a set of children; those children may be other
composites or leaf elements.

When you organize data in this way you end up with a tree structure
(actually an upside-down tree structure) with a composite at the root
and branches of composites growing up to leaves.

Q: How does this relate to iterators?

A: Remember, we’re taking a new approach. We’re going to
re-implement the menus with a new solution: the Composite Pattern.
So don’t look for some magical transformation from an iterator to a
composite. That said, the two work very nicely together. You’ll soon
see that we can use iterators in a couple of ways in the composite
implementation.

you are here 4   363

the iterator and composite patterns

getName()
getDescription()
getPrice()
isVegetarian()
print()
add(MenuComponent)
remove(MenuComponent)
getChild(int)

MenuComponent

getName()
getDescription()
getPrice()
isVegetarian()
print()

MenuItem

Waitress

getName()
getDescription()
print()
add(MenuComponent)
remove(MenuComponent)
getChild(int)

Menu

menuComponents

Designing Menus with Composite
So, how do we apply the Composite Pattern to our menus? To start with, we need to create a
component interface; this acts as the common interface for both menus and menu items and allows
us to treat them uniformly. In other words, we can call the same method on menus or menu items.

Now, it may not make sense to call some of the methods on a menu item or a menu, but we can deal
with that, and we will in just a moment. But for now, let’s take a look at a sketch of how the menus
are going to fit into a Composite Pattern structure:

MenuComponent represents the interface
for both MenuItem and Menu. We’ve used an
abstract class here because we want to provide
default implementations for these methods.

We have some of the same
methods you’ll remember
from our previous versions
of MenuItem and Menu,
and we’ve added print(),
add(), remove() and
getChild(). We’ll describe
these soon, when we
implement our new Menu
and MenuItem classes.

MenuItem overrides the methods that make sense, and uses the default implementations in MenuComponent for those that don’t make sense (like add() — it doesn’t make sense to add a component to a MenuItem... we can only add components to a Menu).

Menu also overrides the methods that
make sense, like a way to add and remove
menu items (or other menus!) from its
menuComponents. In addition, we’ll use the
getName() and getDescription() methods to

return the name and description of the menu.

Both MenuItem and Menu override print().

The Waitress is going t
o use the

MenuComponent interface
 to access

both Menus and MenuItems.

Here are the methods for
manipulating the components.
The components are
MenuItem and Menu.

364   Chapter 9

implementing composite menus

public abstract class MenuComponent {

 public void add(MenuComponent menuComponent) {
 throw new UnsupportedOperationException();
 }
 public void remove(MenuComponent menuComponent) {
 throw new UnsupportedOperationException();
 }
 public MenuComponent getChild(int i) {
 throw new UnsupportedOperationException();
 }

 public String getName() {
 throw new UnsupportedOperationException();
 }
 public String getDescription() {
 throw new UnsupportedOperationException();
 }
 public double getPrice() {
 throw new UnsupportedOperationException();
 }
 public boolean isVegetarian() {
 throw new UnsupportedOperationException();
 }

 public void print() {
 throw new UnsupportedOperationException();
 }
}

Implementing MenuComponent
Okay, we’re going to start with the MenuComponent abstract
class; remember, the role of the menu component is to provide an
interface for the leaves and the composite nodes. Now you might
be asking, “Isn’t MenuComponent playing two roles?” It might
well be and we’ll come back to that point. However, for now we’re
going to provide a default implementation of the methods so that
if the MenuItem (the leaf) or the Menu (the composite) doesn’t
want to implement some of the methods (like getChild() for a leaf
node), it can fall back on some basic behavior:

MenuComponent
provides default
implementations for
every method.

We’ve grouped together the “composite” methods — that is, methods to add, remove, and get MenuComponents.

Here are the “operation” methods;
these are used by the MenuItems.
It turns out we can also use a
couple of them in Menu too, as
you’ll see in a couple of pages when
we show the Menu code.

print() is an “operation” method that both our Menus and
MenuItems will implement, but we provide a default operation here.

Because some of these methods
only make sense for MenuItems, and
some only make sense for Menus,
the default implementation is
UnsupportedOperationException. That
way, if MenuItem or Menu doesn’t
support an operation, it doesn’t have
to do anything; it can just inherit the
default implementation.

All components must implement
the MenuComponent interface;
however, because leaves and
nodes have different roles we
can’t always define a default
implementation for each
method that makes sense.
Sometimes the best you can do
is throw a runtime exception.

you are here 4   365

the iterator and composite patterns

public class MenuItem extends MenuComponent {
 String name;
 String description;
 boolean vegetarian;
 double price;

 public MenuItem(String name,
 String description,
 boolean vegetarian,
 double price)
 {
 this.name = name;
 this.description = description;
 this.vegetarian = vegetarian;
 this.price = price;
 }

 public String getName() {
 return name;
 }

 public String getDescription() {
 return description;
 }

 public double getPrice() {
 return price;
 }

 public boolean isVegetarian() {
 return vegetarian;
 }

 public void print() {
 System.out.print(" " + getName());
 if (isVegetarian()) {
 System.out.print("(v)");
 }
 System.out.println(", " + getPrice());
 System.out.println(" -- " + getDescription());
 }
}

Implementing the MenuItem

Okay, let’s give the MenuItem class a shot. Remember,
this is the leaf class in the Composite diagram, and it
implements the behavior of the elements of the composite.

First we need to extend
the MenuComponent
interface.

The constructor just takes the
name, description, etc., and
keeps a reference to them all.
This is pretty much like our
old MenuItem implementation.

Here’s our getter
methods — just like our
previous implementation.

This is different from the previous implementation.
Here we’re overriding the print() method in the
MenuComponent class. For MenuItem this method
prints the complete menu entry: name, description,
price, and whether or not it’s veggie.

I’m glad we’re going in this
direction. I’m thinking this

is going to give me the flexibility
I need to implement that crêpe
menu I’ve always wanted.

366   Chapter 9

implementing the new menu class

public class Menu extends MenuComponent {
 List<MenuComponent> menuComponents = new ArrayList<MenuComponent>();
 String name;
 String description;

 public Menu(String name, String description) {
 this.name = name;
 this.description = description;
 }

 public void add(MenuComponent menuComponent) {
 menuComponents.add(menuComponent);
 }

 public void remove(MenuComponent menuComponent) {
 menuComponents.remove(menuComponent);
 }

 public MenuComponent getChild(int i) {
 return menuComponents.get(i);
 }

 public String getName() {
 return name;
 }

 public String getDescription() {
 return description;
 }

 public void print() {
 System.out.print("\n" + getName());
 System.out.println(", " + getDescription());
 System.out.println("---------------------");
 }
}

Implementing the Composite Menu
Now that we have the MenuItem, we just need the composite class, which we’re
calling Menu. Remember, the composite class can hold MenuItems or other Menus.
There’s a couple of methods from MenuComponent this class doesn’t implement,
getPrice() and isVegetarian(), because those don’t make a lot of sense for a Menu.

Menu can have any number of children
of type MenuComponent. We’ll use an
internal ArrayList to hold these.

This is different than our old
implementation: we’re going to give each
Menu a name and a description. Before,
we just relied on having different classes for each menu.

Here’s how you add MenuItems or
other Menus to a Menu. Because
both MenuItems and Menus are
MenuComponents, we just need one
method to do both.
You can also remove a MenuComponent
or get a MenuComponent.

Here are the getter methods for getting the name and description.
Notice, we aren’t overriding getPrice() or isVegetarian() because those methods don’t make sense for a Menu (although you could argue that isVegetarian() might make sense). If someone tries to call those methods on a Menu, they’ll get an UnsupportedOperationException.

To print the Menu, we print its
name and description.

Menu is also a MenuComponent,
just like MenuItem.

you are here 4   367

the iterator and composite patterns

public class Menu extends MenuComponent {
 List<MenuComponent> menuComponents = new ArrayList<MenuComponent>();
 String name;
 String description;

 // constructor code here

 // other methods here

 public void print() {
	 System.out.print("\n" + getName());
	 System.out.println(", " + getDescription());
	 System.out.println("---------------------");

	 for (MenuComponent menuComponent : menuComponents) {
 menuComponent.print();
	 }
 }
}

Look! We get to use an Iterator behind
the scenes of the enhanced for loop. We
use it to iterate through all the Menu’s
components...those could be other Menus,
or they could be MenuItems.

Good catch. Because Menu is a composite and contains
both MenuItems and other Menus, its print() method should
print everything it contains. If it doesn’t, we’ll have to iterate
through the entire composite and print each item ourselves.
That kind of defeats the purpose of having a composite
structure.

As you’re going to see, implementing print() correctly is easy
because we can rely on each component to be able to print
itself. It’s all wonderfully recursive and groovy. Check it out:

All we need to do is change the pri
nt() method

to make it print not only the infor
mation about

this Menu, but all of this Menu’s components:

other Menus and MenuItems.

NOTE: If, during this iteration, we encounter another Menu object,
its print() method will start another iteration, and so on.

Fixing the print() method

Wait a sec, I don’t
understand the implementation of print().

I thought I was supposed to be able to apply the
same operations to a composite that I could to a leaf. If
I apply print() to a composite with this implementation,
all I get is a simple menu name and description. I don’t

get a printout of the COMPOSITE.

Since both Menus and MenuItems
implement print(), we just call
print() and the rest is up to them.

368   Chapter 9

test drive the menu composite

public class Waitress {

 MenuComponent allMenus;

 public Waitress(MenuComponent allMenus) {

 this.allMenus = allMenus;

 }

 public void printMenu() {

 allMenus.print();

 }

}

Getting ready for a test drive...
It’s about time we took this code for a test drive, but we need to update the Waitress code before
we do—after all, she’s the main client of this code:

 All Menus

 Dessert Men
u

Pancake House

 M
e n

u

 Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

Composite

Yup! The Waitress code really is this simple.
Now we just hand her the top-level menu
component, the one that contains all the
other menus. We’ve called that allMenus.

All she has to do to print the entire menu
hierarchy — all the menus and all the menu
items — is call print() on the top-level menu.

We’re gonna have one happy Waitress.

Okay, one last thing before we write our test drive. Let’s get an idea of what the menu
composite is going to look like at runtime:

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

The top-level menu holds all menus and items.

Each Menu
holds items...

...or items and
other menus.

Composite

Composite

Leaf

Every Menu and
MenuItem implements the
MenuComponent interface.

Leaf

Leaf

Leaf

you are here 4   369

the iterator and composite patterns

public class MenuTestDrive {
 public static void main(String args[]) {
 MenuComponent pancakeHouseMenu =
 new Menu("PANCAKE HOUSE MENU", "Breakfast");
 MenuComponent dinerMenu =
 new Menu("DINER MENU", "Lunch");
 MenuComponent cafeMenu =
 new Menu("CAFE MENU", "Dinner");
 MenuComponent dessertMenu =
 new Menu("DESSERT MENU", "Dessert of course!");

 MenuComponent allMenus = new Menu("ALL MENUS", "All menus combined");

 allMenus.add(pancakeHouseMenu);
 allMenus.add(dinerMenu);
 allMenus.add(cafeMenu);

 // add menu items here

 dinerMenu.add(new MenuItem(
 "Pasta",
 "Spaghetti with Marinara Sauce, and a slice of sourdough bread",
 true,
 3.89));

 dinerMenu.add(dessertMenu);

 dessertMenu.add(new MenuItem(
 "Apple Pie",
 "Apple pie with a flakey crust, topped with vanilla ice cream",
 true,
 1.59));

 // add more menu items here

 Waitress waitress = new Waitress(allMenus);

 waitress.printMenu();
 }
}

Now for the test drive...
Okay, now we just need a test drive. Unlike our previous version, we’re going to
handle all the menu creation in the test drive. We could ask each chef to give us
his new menu, but let’s get it all tested first. Here’s the code:

Let’s first create
all the menu objects.

We also need a top-
level menu that we’ll
name allMenus.

We’re using the Composite add() method to add
each menu to the top-level menu, allMenus.

And we’re also adding a menu to a
menu. All dinerMenu cares about is that
everything it holds, whether it’s a menu
item or a menu, is a MenuComponent.

Add some apple pie to the
dessert menu...

Once we’ve constructed our
entire menu hierarchy, we hand the whole thing to the Waitress, and as you’ve seen, it’s as easy as apple pie for her to print it out.

Now we need to add all the menu
items. Here’s one example; for
the rest, look at the complete
source code.

370   Chapter 9

another test drive

File Edit Window Help

% java MenuTestDrive

ALL MENUS, All menus combined

PANCAKE HOUSE MENU, Breakfast

 K&B’s Pancake Breakfast(v), 2.99
 -- Pancakes with scrambled eggs and toast
 Regular Pancake Breakfast, 2.99
 -- Pancakes with fried eggs, sausage
 Blueberry Pancakes(v), 3.49
 -- Pancakes made with fresh blueberries, and blueberry syrup
 Waffles(v), 3.59
 -- Waffles with your choice of blueberries or strawberries

DINER MENU, Lunch

 Vegetarian BLT(v), 2.99
 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
 BLT, 2.99
 -- Bacon with lettuce & tomato on whole wheat
 Soup of the day, 3.29
 -- A bowl of the soup of the day, with a side of potato salad
 Hot Dog, 3.05
 -- A hot dog, with sauerkraut, relish, onions, topped with cheese
 Steamed Veggies and Brown Rice(v), 3.99
 -- Steamed vegetables over brown rice
 Pasta(v), 3.89
 -- Spaghetti with marinara sauce, and a slice of sourdough bread

DESSERT MENU, Dessert of course!

 Apple Pie(v), 1.59
 -- Apple pie with a flakey crust, topped with vanilla ice cream
 Cheesecake(v), 1.99
 -- Creamy New York cheesecake, with a chocolate graham crust
 Sorbet(v), 1.89
 -- A scoop of raspberry and a scoop of lime

CAFE MENU, Dinner

 Veggie Burger and Air Fries(v), 3.99
 -- Veggie burger on a whole wheat bun, lettuce, tomato, and fries
 Soup of the day, 3.69
 -- A cup of the soup of the day, with a side salad
 Burrito(v), 4.29
 -- A large burrito, with whole pinto beans, salsa, guacamole
%

Here’s all our menus...we printed all
this just by calling print() on the
top-level menu.

The new
dessert menu
is printed
when we are
printing all the
Diner menu
components.

Getting ready for a test drive...
NOTE: this output is based on the complete source.

you are here 4   371

the iterator and composite patterns

There is some truth to that observation. We could
say that the Composite Pattern takes the Single Responsibility
Principle and trades it for transparency. What’s transparency? Well, by
allowing the Component interface to contain the child management
operations and the leaf operations, a client can treat both composites
and leaves uniformly; so whether an element is a composite or leaf
node becomes transparent to the client.

Now, given we have both types of operations in the Component
class, we lose a bit of safety because a client might try to do something
inappropriate or meaningless on an element (like try to add a menu
to a menu item). This is a design decision; we could take the design
in the other direction and separate out the responsibilities into
interfaces. This would make our design safe, in the sense that any
inappropriate calls on elements would be caught at compile time or
runtime, but we’d lose transparency and our code would have to use
conditionals and the instanceof operator.

So, to return to your question, this is a classic case of tradeoff. We
are guided by design principles, but we always need to observe the
effect they have on our designs. Sometimes we purposely do things
in a way that seems to violate the principle. In some cases, however,
this is a matter of perspective; for instance, it might seem incorrect to
have child management operations in the leaves (like add(), remove(),
and getChild()), but then again you can always shift your perspective
and see a leaf as a node with zero children.

What’s the story?
First you tell us One Class, One

Responsibility, and now you’re giving us a
pattern with two responsibilities in one class.
The Composite Pattern manages a hierarchy
AND it performs operations related to Menus.

372   Chapter 9

interview with composite

HeadFirst: We’re here tonight speaking with the
Composite Pattern. Why don’t you tell us a little about
yourself, Composite?

Composite: Sure...I’m the pattern to use when you have
collections of objects with whole-part relationships and
you want to be able to treat those objects uniformly.

HeadFirst: Okay, let’s dive right in here...what do you
mean by whole-part relationships?

Composite: Imagine a graphical user interface (GUI);
there you’ll often find a top-level component like a Frame
or a Panel, containing other components, like menus,
text panes, scrollbars, and buttons. So your GUI consists
of several parts, but when you display it, you generally
think of it as a whole. You tell the top-level component
to display, and count on that component to display all
its parts. We call the components that contain other
components, composite objects, and components that don’t
contain other components leaf objects.

HeadFirst: Is that what you mean by treating the objects
uniformly? Having common methods you can call on
composites and leaves?

Composite: Right. I can tell a composite object to
display or a leaf object to display and it will do the right
thing. The composite object will display by telling all its
components to display.

HeadFirst: That implies that every object has the same
interface. What if you have objects in your composite that
do different things?

Composite: In order for the composite to work
transparently to the client, you must implement the same
interface for all objects in the composite; otherwise, the
client has to worry about which interface each object
is implementing, which kind of defeats the purpose.
Obviously that means that at times you’ll have objects for
which some of the method calls don’t make sense.

HeadFirst: So how do you handle that?

Composite: Well, there are a couple of ways to handle
it; sometimes you can just do nothing, or return null or
false—whatever makes sense in your application. Other
times you’ll want to be more proactive and throw an
exception. Of course, then the client has to be willing to
do a little work and make sure that the method call didn’t
do something unexpected.

HeadFirst: But if the client doesn’t know which kind of
object they’re dealing with, how would they ever know
which calls to make without checking the type?

Composite: If you’re a little creative you can structure
your methods so that the default implementations do
something that does make sense. For instance, if the client
is calling getChild() on the composite, this makes sense.
And it makes sense on a leaf too, if you think of the leaf
as an object with no children.

HeadFirst: Ah...smart. But I’ve heard some clients are
so worried about this issue that they require separate
interfaces for different objects so they aren’t allowed to
make nonsensical method calls. Is that still the Composite
Pattern?

Composite: Yes. It’s a much safer version of the
Composite Pattern, but it requires the client to check the
type of every object before making a call so the object can
be cast correctly.

HeadFirst: Tell us a little more about how these
composite and leaf objects are structured.

Composite: Usually it’s a tree structure, some kind of
hierarchy. The root is the top-level composite, and all its
children are either composites or leaves.

HeadFirst: Do children ever point back up to their
parents?

Composite: Yes, a component can have a pointer to a
parent to make traversal of the structure easier. And, if

This week’s interview:
The Composite Pattern, on implementation issues

Patterns Exposed

you are here 4   373

the iterator and composite patterns

you have a reference to a child and you need to delete it,
you’ll need to get the parent to remove the child. Having
the parent reference makes that easier too.

HeadFirst: There’s really quite a lot to consider in your
implementation. Are there other issues we should think
about when implementing the Composite Pattern?

Composite: Actually, there are. One is the ordering
of children. What if you have a composite that needs to
keep its children in a particular order? Then you’ll need a
more sophisticated management scheme for adding and
removing children, and you’ll have to be careful about
how you traverse the hierarchy.

HeadFirst: A good point I hadn’t thought of.

Composite: And did you think about caching?

HeadFirst: Caching?

Composite: Yeah, caching. Sometimes, if the
composite structure is complex or expensive to traverse,
it’s helpful to implement caching of the composite nodes.
For instance, if you are constantly traversing a composite
and all its children to compute some result, you could
implement a cache that stores the result temporarily to
save traversals.

HeadFirst: Well, there’s a lot more to the Composite
Patterns than I ever would have guessed. Before we wrap
this up, one more question: what do you consider your
greatest strength?

Composite: I think I’d definitely have to say simplifying
life for my clients. My clients don’t have to worry about
whether they’re dealing with a composite object or a
leaf object, so they don’t have to write if statements
everywhere to make sure they’re calling the right methods
on the right objects. Often, they can make one method
call and execute an operation over an entire structure.

HeadFirst: That does sound like an important benefit.
There’s no doubt you’re a useful pattern to have around
for collecting and managing objects. And, with that, we’re
out of time. Thanks so much for joining us and come
back soon for another Patterns Exposed.

374   Chapter 9

crossword puzzle

Design Patterns Crossword
Wrap your brain around this composite crossword.

ACROSS
1. Collection and Iterator are in this package.
3. This class indirectly supports Iterator.
8. Iterators are usually created using this pattern (two
words).
12. A class should have only one reason to do this.
13. We encapsulated this.
15. User interface packages often use this pattern for
their components.
16. Name of the principle that states only one
responsibility per class (two words).
17. This menu caused us to change our entire
implementation.

DOWN
2. Has no children.
4. Merged with the Diner (two words).
5. The Iterator Pattern decouples the client from the
aggregate’s ________.
6. A separate object that can traverse a collection.
7. HashMap values and ArrayList both implement this
interface.
9. We Java-enabled her.
10. A component can be a composite or this.
11. A composite holds these.
12. Third company acquired.
14. We deleted the PancakeHouseMenuIterator because
this class already provides an iterator.

1 2

3 4 5 6

7 8

9 10

11 12

13 14

15

16

17

Across
1. Collection and Iterator are in this package
3. This class indirectly supports Iterator.
8. Iterators are usually created using this

pattern.
12. A class should have only one reason to do

this.
13. We encapsulated this.
15. User interface packages often use this

pattern for their components.
16. Name of principle that states only one

responsibility per class.
17. This menu caused us to change our entire

implementation.

Down
2. Has no children.
4. Merged with the Diner.
5. The Iterator Pattern decouples the client

from the aggregates _________.
6. A separate object that can traverse a

collection.
7. HashMap values and ArrayList both

implement this interface.
9. We java-enabled her.

10. A component can be a composite or this.
11. A composite holds these.
12. Third company acquired.
14. We deleted PancakeHouseMenuIterator

because this class already provides an
iterator.

you are here 4   375

the iterator and composite patterns

Match each pattern with its description:

Pattern Description

Strategy

Adapter

Iterator

Facade

Composite

Observer

Clients treat collections
of objects and individual
objects uniformly

Provides a way to traverse
a collection of objects
without exposing the
collection’s implementation

Simplifies the interface of
a group of classes

Changes the interface of
one or more classes

Allows a group of objects to
be notified when some state
changes

Encapsulates interchangeable
behaviors and uses delegation to
decide which one to use

376   Chapter 9

your design toolbox

Tools for your Design Toolbox
Two new patterns for your toolbox—two great ways to
deal with collections of objects.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has one

instance and pr
ovide a global p

oint of

access to it.
Command - Encapsulates a re

quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Adapter - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Yet another im
portant

principle base
d on change

in a design.

Facade - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Another two-for-one
chapter.

Template Method - Define the

skeleton of an
algorithm in an operation

,

deferring some steps to subcl
asses.

Template Method lets subc
lasses

redefine certai
n steps of an a

lgorithm

without changing
 the algorithm’s

structure

Iterator - Provide a way to access

the elements of an aggr
egate object

sequentially without exposing
 its

underlying repre
sentation Composite - Compose objects int

o

tree structures
 to represent p

art-whole

hierarchies. Composite lets clien
ts treat

individual object
s and compositions of

objects uniform
ly

Encapsulate what varies

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion

but closed for
modification.

Depend on abstra
ctions. Do not

depend on conc
rete classes.

Only talk to your
 friends.

Don’t call us, we’ll call you.

A class should ha
ve only one reas

on

to change.

OO Principles

	� An Iterator allows access to an
aggregate’s elements without
exposing its internal structure.

	� An Iterator takes the job of
iterating over an aggregate
and encapsulates it in another
object.

	� When using an Iterator, we
relieve the aggregate of the
responsibility of supporting
operations for traversing its
data.

	� An Iterator provides a
common interface for
traversing the items of an
aggregate, allowing you to use
polymorphism when writing
code that makes use of the
items of the aggregate.

	� The Iterable interface provides
a means of getting an
iterator and enables Java’s
enchanced for loop.

	� We should strive to assign
only one responsibility to each
class.

	� The Composite Pattern allows
clients to treat composites and
individual objects uniformly.

	� A Component is any object
in a Composite structure.
Components may be other
composites or leaves.

	� There are many design
tradeoffs in implementing
Composite. You need to
balance transparency and
safety with your needs.

you are here 4   377

the iterator and composite patterns

❏ A.	 We are coding to the
PancakeHouseMenu and DinerMenu
concrete implementations, not to an
interface.

❏ B.	 The Waitress doesn’t implement the
Java Waitress API and so she isn’t
adhering to a standard.

❏ C.	 If we decided to switch from using
DinerMenu to another type of menu
that implemented its list of menu items
with a hash table, we’d have to modify
a lot of code in the Waitress.

❏ D.	 The Waitress needs to know how each
menu represents its internal collection of
menu items; this violates encapsulation.

❏ E.	 We have duplicate code: the printMenu()
method needs two separate loops to
iterate over the two different kinds of
menus. And if we added a third menu,
we’d have yet another loop.

❏ F.	 The implementation isn’t based on
MXML (Menu XML) and so isn’t as
interoperable as it should be.

Based on our implementation of printMenu(), which of the following apply?

1.

2.

3.

Before looking at the next page, quickly jot down the three
things we have to do to this code to fit it into our framework:

implement the Menu interface

get rid of getItems()

add createIterator() and return an Iterator that can step through the HashMap values

378   Chapter 9

exercise solutions

Notice that this Iterator
implementation does not
support remove().

The unscrambled “Alternating” DinerMenu Iterator.

Code Magnets Solution

}

}

}

import java.util.Iterator;

import java.util.Calendar;

public MenuItem next() {

public AlternatingDinerMenuIterator(MenuItem[] items)

this.items = items;
position = Calendar.DAY_OF_WEEK % 2;

public void remove() {

implements Iterator<MenuItem>public class AlternatingDinerMenuIterator

public boolean hasNext() {

throw new UnsupportedOperationException(
 "Alternating Diner Menu Iterator does not support remove()");

if (position >= items.length || items[position] == null) {

 return false;

} else {

 return true;

}
}

MenuItem menuItem = items[position];

position = position + 2;

return menuItem;
}

MenuItem[] items;

int position;

}
}

you are here 4   379

the iterator and composite patterns

Match each pattern with its description:

Pattern Description

Strategy

Adapter

Iterator

Facade

Composite

Observer

Clients treat collections
of objects and individual
objects uniformly

Provides a way to traverse
a collection of objects
without exposing the
collection’s implementation

Simplifies the interface of
a group of classes

Changes the interface of
one or more classes

Allows a group of objects to
be notified when some state
changes

Encapsulates interchangeable
behaviors and uses delegation to
decide which one to use

SOlUTion

380   Chapter 9

crossword puzzle solution

Design Patterns Crossword Solution
Wrap your brain around this composite crossword. Here’s our solution.

J
1

A V A . U T I L
2

E

H
3

A S H M A P
4

I
5

I
6

C
7

F
8

A C T O R Y M E T H O D

O N P E

W
9

L C L
10

L R

A L C
11

C
12

H A N G E E A

I
13

T E R A
14

T I O N A K A M T

T C R M F E F E O

R T R P E H N R

E I A O C
15

O M P O S I T E

S O Y N U A

S
16

I N G L E R E S P O N S I B I L I T Y

I N E I

D
17

E S S E R T O

T S N

Across
1. Collection and Iterator are in this package

[JAVA.UTIL]
3. This class indirectly supports Iterator.

[HASHMAP]
8. Iterators are usually created using this

pattern. [FACTORYMETHOD]
12. A class should have only one reason to do

this. [CHANGE]
13. We encapsulated this. [ITERATION]
15. User interface packages often use this

pattern for their components. [COMPOSITE]
16. Name of principle that states only one

responsibility per class.
[SINGLERESPONSIBILITY]

17. This menu caused us to change our entire
implementation. [DESSERT]

Down
2. Has no children. [LEAF]
4. Merged with the Diner. [PANCAKEHOUSE]
5. The Iterator Pattern decouples the client

from the aggregates _________.
[IMPLEMENTATION]

6. A separate object that can traverse a
collection. [ITERATOR]

7. HashMap values and ArrayList both
implement this interface. [COLLECTION]

9. We java-enabled her. [WAITRESS]
10. A component can be a composite or this.

[LEAF]
11. A composite holds these. [COMPONENTS]
12. Third company acquired. [CAFE]
14. We deleted PancakeHouseMenuIterator

because this class already provides an
iterator. [ARRAYLIST]

this is a new chapter   381

A little-known fact: the Strategy and State Patterns
are twins separated at birth. You’d think they’d live similar lives,

but the Strategy Pattern went on to create a wildly successful business around

interchangeable algorithms, while State took the perhaps more noble path of helping

objects to control their behavior by changing their internal state. As different as their

paths became, however, underneath you’ll find almost precisely the same design. How

can that be? As you’ll see, Strategy and State have very different intents. First, let’s

dig in and see what the State Pattern is all about, and then we’ll return to explore their

relationship at the end of the chapter.

10 the State Pattern

The State of Things
I thought things in Objectville were

going to be so easy, but now every time I
turn around there’s another change request
coming in. I’m at the breaking point! Oh,
maybe I should have been going to Betty’s
Wednesday night patterns group all along.
I’m in such a state!

382   Chapter 10

meet mighty gumball

Gumball machines have gone high tech. That’s right, the
major manufacturers have found that by putting CPUs
into their candy machines, they can increase sales, monitor
inventory over the network, and measure customer satisfaction
more accurately.

But these manufacturers are gumball machine experts, not
software developers, and they’ve asked for your help:

Jaw Breakers

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Here’s the way we think the gumball machine controller needs to

work. We’re hoping you can implement this in Java for us! We may

be adding more behavior in the future, so you need t
o keep the

design as flexible and maintainable as possible!

 - Mighty Gumball Engineers

Out of
Gumballs

 Has
Quarter

 No

Quarter

Gumball

 Sold

ins
ert

 qu
art

er

eje
ct

qua
rt

er

turn crank

va

At least that’s th
eir story—

we think they just
 got

bored with the circa 1800s

technology and n
eeded to

find a way to make their

jobs more exciting.

dispense
gumball

gumballs = 0

gumballs > 0

you are here 4   383

the state pattern

Cubicle Conversation

Judy: This diagram looks like a state diagram.

Joe: Right, each of those circles is a state...

Judy: ...and each of the arrows is a state transition.

Frank: Slow down, you two, it’s been too long since I studied state diagrams.
Can you remind me what they’re all about?

Judy: Sure, Frank. Look at the circles; those are states. “No Quarter” is
probably the starting state for the gumball machine because it’s just sitting there
waiting for you to put your quarter in. All states are just different configurations

of the machine that behave in a certain way and need some action to take them to
another state.

Joe: Right. See, to go to another state, you need to do something like put a quarter in the machine. See the arrow
from “No Quarter” to “Has Quarter”?

Frank: Yes...

Joe: That just means that if the gumball machine is in the “No Quarter” state and you put a quarter in, it will
change to the “Has Quarter” state. That’s the state transition.

Frank: Oh, I see! And if I’m in the “Has Quarter” state, I can turn the crank and change to the “Gumball Sold”
state, or eject the quarter and change back to the “No Quarter” state.

Judy: You got it!

Frank: This doesn’t look too bad then. We’ve obviously got four states, and I think we also have four actions: “insert
quarter,” “eject quarter,” “turn crank,” and “dispense.” But...when we dispense, we test for zero or more gumballs
in the “Gumball Sold” state, and then either go to the “Out of Gumballs” state or the “No Quarter” state. So we
actually have five transitions from one state to another.

Judy: That test for zero or more gumballs also implies we’ve got to keep track of the number of gumballs too. Any
time the machine gives you a gumball, it might be the last one, and if it is, we need to transition to the “Out of
Gumballs” state.

Joe: Also, don’t forget that you could do nonsensical things, like try to eject the quarter when the gumball machine is
in the “No Quarter” state, or insert two quarters.

Frank: Oh, I didn’t think of that; we’ll have to take care of those too.

Joe: For every possible action we’ll just have to check to see which state we’re in and act appropriately. We can do
this! Let’s start mapping the state diagram to code...

JoeJudy
Frank

Let’s take a look at this
diagram and see what the
Mighty Gumball guys want...

384   Chapter 10

review of state machines

State machines 101

insert quarter
eject quarter

turn crank
These actions are
the gumball machine’s
interface — the things
you can do with it.

How are we going to get from that state diagram to actual code? Here’s a quick
introduction to implementing state machines:

First, gather up your states:1

Gumball

 Sold No

Quarter

 Has
Quarter

Out of
Gumballs

Here are the states — four in total.

Next, create an instance variable to hold the current state, and define values for each of the states:2

final static int SOLD_OUT = 0;

final static int NO_QUARTER = 1;

final static int HAS_QUARTER = 2;

final static int SOLD = 3;

int state = SOLD_OUT;

Here’s each state represented
as a unique integer...

...and here’s an instance variable that holds the
current state. We’ll go ahead and set it to “Sold
Out” since the machine will be unfilled when it’s
first taken out of its box and turned on.

Now we gather up all the actions that can happen in the system:3

Looking at the diagram, invoking any of
these actions causes a state transition.

dispense

Dispense is more of an internal
action the machine invokes on itself.

Let’s just call “Out of Gumballs”
“Sold Out” for short.

you are here 4   385

the state pattern

public void insertQuarter() {

 if (state == HAS_QUARTER) {

 System.out.println("You can't insert another quarter");

 } else if (state == NO_QUARTER) {

 state = HAS_QUARTER;

 System.out.println("You inserted a quarter");

 } else if (state == SOLD_OUT) {

 System.out.println("You can't insert a quarter, the machine is sold out");

 } else if (state == SOLD) {

 System.out.println("Please wait, we're already giving you a gumball");

 }

}

Now we create a class that acts as the state machine. For each action,
we create a method that uses conditional statements to determine
what behavior is appropriate in each state. For instance, for the

“insert quarter” action, we might write a method like this:

4

Here we’re talking
about a common technique:
modeling state within an object

by creating an instance variable to hold
the state values and writing conditional
code within our methods to handle

the various states.

Each possible
state is checked
with a conditional
statement...

...but can also transition to other states,
just as depicted in the diagram.

With that quick review, let’s go implement the Gumball Machine!

...and exhibits the ap
propriate

behavior for each pos
sible state...

386   Chapter 10

implement the gumball machine

public class GumballMachine {

 final static int SOLD_OUT = 0;
 final static int NO_QUARTER = 1;
 final static int HAS_QUARTER = 2;
 final static int SOLD = 3;

 int state = SOLD_OUT;
 int count = 0;

 public GumballMachine(int count) {
 this.count = count;
 if (count > 0) {
 state = NO_QUARTER;
 }
 }

 public void insertQuarter() {
 if (state == HAS_QUARTER) {
 System.out.println("You can't insert another quarter");
 } else if (state == NO_QUARTER) {
 state = HAS_QUARTER;
 System.out.println("You inserted a quarter");
 } else if (state == SOLD_OUT) {
 System.out.println("You can't insert a quarter, the machine is sold out");
 } else if (state == SOLD) {
 System.out.println("Please wait, we're already giving you a gumball");
 }
 }

Writing the code

Here are the four states
; they match the

states in Mighty Gumball’s state diagram.

Here’s the instance variable that is going
to keep track of the current state we’re
in. We start in the SOLD_OUT state.

We have a second instance variable that keeps track of the number of gumballs in the machine.

The constructor takes an initial inventory of gumballs. If the inventory isn’t zero, the machine enters state NO_QUARTER, meaning it is waiting for someone to insert a quarter; otherwise, it stays in the SOLD_OUT state.

Now we start implementing
the actions as methods....

When a quarter is inserted...
...if a quarter is already
inserted, we tell the
customer...
...otherwise, we accept the
quarter and transition to
the HAS_QUARTER state.

And if the machine is sold
out, we reject the quarter.

It’s time to implement the Gumball Machine. We know we’re going to have an instance
variable that holds the current state. From there, we just need to handle all the actions,
behaviors, and state transitions that can happen. For actions, we need to implement
inserting a quarter, removing a quarter, turning the crank, and dispensing a gumball; we
also have the empty Gumball Machine condition to implement.

If the customer just bought a
gumball, he needs to wait until the
transaction is complete before
inserting another quarter.

you are here 4   387

the state pattern

 public void ejectQuarter() {
 if (state == HAS_QUARTER) {
 System.out.println("Quarter returned");
 state = NO_QUARTER;
 } else if (state == NO_QUARTER) {
 System.out.println("You haven't inserted a quarter");
 } else if (state == SOLD) {
 System.out.println("Sorry, you already turned the crank");
 } else if (state == SOLD_OUT) {
 System.out.println("You can't eject, you haven't inserted a quarter yet");
 }
 }

 public void turnCrank() {
 if (state == SOLD) {
 System.out.println("Turning twice doesn't get you another gumball!");
 } else if (state == NO_QUARTER) {
 System.out.println("You turned but there's no quarter");
 } else if (state == SOLD_OUT) {
 System.out.println("You turned, but there are no gumballs");
 } else if (state == HAS_QUARTER) {
 System.out.println("You turned...");
 state = SOLD;
 dispense();
 }
 }

 public void dispense() {
 if (state == SOLD) {
 System.out.println("A gumball comes rolling out the slot");
 count = count - 1;
 if (count == 0) {
 System.out.println("Oops, out of gumballs!");
 state = SOLD_OUT;
 } else {
 state = NO_QUARTER;
 }
 } else if (state == NO_QUARTER) {
 System.out.println("You need to pay first");
 } else if (state == SOLD_OUT) {
 System.out.println("No gumball dispensed");
 } else if (state == HAS_QUARTER) {
 System.out.println("You need to turn the crank");
 }
 }

 // other methods here like toString() and refill()
}

Now, if the customer tries to remove the quarter...
...if there is a quarter, we
return it and go back to the
NO_QUARTER state...

If the customer just
turned the crank, we
can’t give a refund; he
already has the gumball!

...otherwise, if there isn’t
one we can’t give it back.

The customer tries to turn the crank...

We can’t deliver
gumballs; there
are none.

We need a
quarter first.

Success! They get a gumball. Change
the state to SOLD and call the
machine’s dispense() method.

Someone’s trying to cheat the machine.

You can’t eject if the machine is sold
out, it doesn’t accept quarters!

Called to dispense a gumball.

Here’s where we handle the
“out of gumballs” condition:
If this was the last one, we
set the machine’s state to
SOLD_OUT; otherwise, we’re
back to not having a quarter.

We’re in the
SOLD state; give
’em a gumball!

None of these should ever
happen, but if they do,
we give ’em an error, not
a gumball.

388   Chapter 10

test the gumball machine

public class GumballMachineTestDrive {

 public static void main(String[] args) {
 GumballMachine gumballMachine = new GumballMachine(5);

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.ejectQuarter();
 gumballMachine.turnCrank();

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();
 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();
 gumballMachine.ejectQuarter();

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();
 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();
 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();

 System.out.println(gumballMachine);
 }
}

In-house testing
That feels like a nice solid design using a well-thought-out methodology, doesn’t
it? Let’s do a little in-house testing before we hand it off to Mighty Gumball to
be loaded into their actual gumball machines. Here’s our test harness:

Load it up with five
gumballs total.

Print out the state of the machine.

Throw a quarter in...
Turn the crank; we should get our gumball.

Print out the state of the machine again.

Throw a quarter in...
Ask for it back.
Turn the crank; we shouldn’t get our gumball.

Print out the state of the machine again.

Throw a quarter in...
Turn the crank; we should get our gumball.
Throw a quarter in...
Turn the crank; we should get our gumball.
Ask for a quarter back we didn’t put in.
Print out the state of the machine again.

Throw TWO quarters in...
Turn the crank; we should get our gumball.

Now for the stress testing...

Print that machine state one more time.

you are here 4   389

the state pattern

File Edit Window Help mightygumball.com
%java GumballMachineTestDrive
Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs
Machine is waiting for quarter

You inserted a quarter
Quarter returned
You turned but there's no quarter

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot
You inserted a quarter
You turned...
A gumball comes rolling out the slot
You haven't inserted a quarter

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 2 gumballs
Machine is waiting for quarter

You inserted a quarter
You can't insert another quarter
You turned...
A gumball comes rolling out the slot
You inserted a quarter
You turned...
A gumball comes rolling out the slot
Oops, out of gumballs!
You can't insert a quarter, the machine is sold out
You turned, but there are no gumballs

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs
Machine is sold out

390   Chapter 10

gumball buying game

You knew it was coming...a change request!
Mighty Gumball, Inc., has loaded your code into their
newest machine and their quality assurance experts are
putting it through its paces. So far, everything’s looking
great from their perspective.

In fact, things have gone so smoothly they’d like to take
things to the next level...

We think that by turning
“gumball buying” into a game we

can significantly increase our
sales. We’re going to put one of
these stickers on every machine.

We’re so glad we’ve got Java
in the machines because this is

going to be easy, right?

CEO, Mighty
Gumball, Inc.

JawBreaker or
Gumdrop?

10% of the time,
when the crank
is turned, the
customer gets
two gumballs
instead of one.Gumballs

you are here 4   391

the state pattern

Draw a state diagram for a Gumball Machine that handles the 1 in 10
contest. In this contest, 10% of the time the Sold state leads to two
balls being released, not one. Check your answer with ours (at the
end of the chapter) to make sure we agree before you go further...

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Use Mighty Gumball’s stationery to draw your state diagram.

 Design Puzzle

392   Chapter 10

things get messy

The messy STATE of things...
Just because you’ve written your gumball machine using a well-thought-out
methodology doesn’t mean it’s going to be easy to extend. In fact, when you go back
and look at your code and think about what you’ll have to do to modify it, well...

final static int SOLD_OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS_QUARTER = 2;
final static int SOLD = 3;

public void insertQuarter() {
 // insert quarter code here
}

public void ejectQuarter() {
 // eject quarter code here
}

public void turnCrank() {
 // turn crank code here
}

public void dispense() {
 // dispense code here
}

First, you’d have to add a new WINNER state
here. That isn’t too bad...

...but then, you’d have to add a new conditional
in every single method to handle the WINNER
state; that’s a lot of code to modify.

turnCrank() will get especially messy, because you’d
have to add code to check to see whether you’ve
got a WINNER and then switch to either the
WINNER state or the SOLD state.

❏ A.	 This code certainly isn’t adhering to the
Open Closed Principle.

❏ B.	 This code would make a FORTRAN
programmer proud.

❏ C.	 This design isn’t even very object-
oriented.

❏ D.	 State transitions aren’t explicit; they
are buried in the middle of a bunch of
conditional statements.

❏ E.	 We haven’t encapsulated anything that
varies here.

❏ F.	 Further additions are likely to cause bugs
in working code.

Which of the following describe the state of our implementation?
(Choose all that apply.)

you are here 4   393

the state pattern

Frank: You’re right about that! We need to refactor this code so that it’s easy
to maintain and modify.

Judy: We really should try to localize the behavior for each state so that if we
make changes to one state, we don’t run the risk of messing up the other code.

Frank: Right; in other words, follow that ol’ “encapsulate what varies”
principle.

Judy: Exactly.

Frank:: If we put each state’s behavior in its own class, then every state just
implements its own actions.

Judy: Right. And maybe the Gumball Machine can just delegate to the state
object that represents the current state.

Frank: Ah, you’re good: favor composition...more principles at work.

Judy: Cute. Well, I’m not 100% sure how this is going to work, but I think
we’re on to something.

Frank: I wonder if this will make it easier to add new states?

Judy: I think so... We’ll still have to change code, but the changes will be
much more limited in scope because adding a new state will mean we just
have to add a new class and maybe change a few transitions here and there.

Frank: I like the sound of that. Let’s start hashing out this new design!

Okay, this isn’t good. I think
our first version was great, but it isn’t

going to hold up over time as Mighty Gumball
keeps asking for new behavior. The rate of bugs
is just going to make us look bad, not to mention

the CEO will drive us crazy.

394   Chapter 10

a new state design

The new design

1

2

3

First, we’re going to define a State interface that
contains a method for every action in the Gumball
Machine.

Then we’re going to implement a State class for
every state of the machine. These classes will be
responsible for the behavior of the machine when it
is in the corresponding state.

Finally, we’re going to get rid of all of our conditional
code and instead delegate the work to the State class.

It looks like we’ve got a new plan: instead of maintaining our existing code, we’re going to
rework it to encapsulate state objects in their own classes and then delegate to the current
state when an action occurs.

We’re following our design principles here, so we should end up with a design that is easier to
maintain down the road. Here’s how we’re going to do it:

Not only are we following design principles, as you’ll see, we’re actually implementing the
State Pattern. But we’ll get to all the official State Pattern stuff after we rework our code...

Now we’re going
to put all the behavior of a

state into one class. That way,
we’re localizing the behavior and
making things a lot easier to
change and understand.

you are here 4   395

the state pattern

Defining the State interfaces and classes

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

<<interface>>
State

HasQuarterState
insertQuarter()
ejectQuarter()
turnCrank()
dispense()

NoQuarterState
insertQuarter()
ejectQuarter()
turnCrank()
dispense()

SoldOutState
insertQuarter()
ejectQuarter()
turnCrank()
dispense()

public class GumballMachine {

 final static int SOLD_OUT = 0;

 final static int NO_QUARTER = 1;

 final static int HAS_QUARTER = 2;

 final static int SOLD = 3;

 int state = SOLD_OUT;

 int count = 0;

...and we map each state
directly to a class.

Here’s the interface for all states. The methods map directly
to actions that could happen to the Gumball Machine (these
are the same methods as in the previous code).

First let’s create an interface for State, which all our states implement:

To figure out what
states we need, we look
at our previous code...

Then take each state in our design and
encapsulate it in a class that implements
the State interface.

SoldState
insertQuarter()
ejectQuarter()
turnCrank()
dispense()

WinnerState
insertQuarter()
ejectQuarter()
turnCrank()
dispense()

Don’t forget, we need a new “winner” state
too that implements the State interface. We’ll
come back to this after we reimplement the
first version of the Gumball Machine.

396   Chapter 10

what are all the states

To implement our states, we first need to specify the behavior of the
classes when each action is called. Annotate the diagram below with the
behavior of each action in each class; we’ve already filled in a few for you.

Go to HasQuarterState.
Tell the customer, “You haven’t inserted a quarter.”

Tell the customer, “Please wait, we’re already giving you a gumball.”

Tell the customer, “There are no gumballs.”

Go to SoldState.

Dispense one gumball. Check number of gumballs; if > 0, go to NoQuarterState; otherwise, go to SoldOutState.

Go ahead and fill this out even though we’re implementing it later.

NoQuarterState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

SoldOutState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

SoldState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

HasQuarterState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

WinnerState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

you are here 4   397

the state pattern

public class NoQuarterState implements State {
 GumballMachine gumballMachine;

 public NoQuarterState(GumballMachine gumballMachine) {
 this.gumballMachine = gumballMachine;
 }

 public void insertQuarter() {
 System.out.println("You inserted a quarter");
 gumballMachine.setState(gumballMachine.getHasQuarterState());
 }

 public void ejectQuarter() {
 System.out.println("You haven't inserted a quarter");
 }

 public void turnCrank() {
 System.out.println("You turned, but there's no quarter");
 }

 public void dispense() {
 System.out.println("You need to pay first");
 }
}

Implementing our State classes
Time to implement a state: we know what behaviors we want; we just need to get it down in code. We’re going to
closely follow the state machine code we wrote, but this time everything is broken out into different classes.

Let’s start with the NoQuarterState:

First we need to implement the State interface. We get passed a reference to
the Gumball Machine through the
constructor. We’re just going to
stash this in an instance variable.

If someone inserts a quarter,
we print a message saying the
quarter was accepted and then
change the machine’s state to
the HasQuarterState.

You can’t get money
back if you never gave
it to us!

And you can’t get a gumball if you don’t pay us.

What we’re doing is
implementing the behaviors that
are appropriate for the state

we’re in. In some cases, this behavior
includes moving the Gumball
Machine to a new state.

We can’t be dispensing
gumballs without payment.

You’ll see how these
work in just a sec...

398   Chapter 10

state objects in the gumball machine

In the GumballMachine, we update the

code to use the new classes rather than

the static integers. The code is quite

similar, except that in one clas
s we have

integers and in the other o
bjects...

Before we finish the State classes, we’re going to rework the Gumball
Machine—that way, you can see how it all fits together. We’ll start
with the state-related instance variables and switch the code from
using integers to using state objects:

Reworking the Gumball Machine

Old code

New code

All the State objects are created
and assigned in the constructor. This now holds a

State object, not
an integer.

public class GumballMachine {

 final static int SOLD_OUT = 0;

 final static int NO_QUARTER = 1;

 final static int HAS_QUARTER = 2;

 final static int SOLD = 3;

 int state = SOLD_OUT;

 int count = 0;

public class GumballMachine {

 State soldOutState;

 State noQuarterState;

 State hasQuarterState;

 State soldState;

 State state = soldOutState;

 int count = 0;

you are here 4   399

the state pattern

public class GumballMachine {

 State soldOutState;
 State noQuarterState;
 State hasQuarterState;
 State soldState;

 State state;
 int count = 0;

 public GumballMachine(int numberGumballs) {
 soldOutState = new SoldOutState(this);
 noQuarterState = new NoQuarterState(this);
 hasQuarterState = new HasQuarterState(this);
 soldState = new SoldState(this);

 this.count = numberGumballs;
 if (numberGumballs > 0) {
 state = noQuarterState;
 } else {
 state = soldOutState;
 }
 }

 public void insertQuarter() {
 state.insertQuarter();
 }
 public void ejectQuarter() {
 state.ejectQuarter();
 }
 public void turnCrank() {
 state.turnCrank();
 state.dispense();
 }

 void setState(State state) {
 this.state = state;
 }

 void releaseBall() {
 System.out.println("A gumball comes rolling out the slot...");
 if (count > 0) {
 count = count - 1;
 }
 }
 // More methods here including getters for each State...
}

Now, let’s look at the complete GumballMachine class...

Here are all the States again...

...and the State instance variable.

The count instance variable holds the count
of gumballs — initially the machine is empty.

Our constructor takes the initial
number of gumballs and stores it
in an instance variable.
It also creates the State
instances, one of each.

If there are more than 0 gumballs we
set the state to the NoQuarterState;
otherwise, we start in the SoldOutState.

Now for the actions. These are
VERY EASY to implement now. We
just delegate to the current state.

Note that we don’t need an
action method for dispense() in
GumballMachine because it’s just an
internal action; a user can’t ask the
machine to dispense directly. But we
do call dispense() on the State object
from the turnCrank() method.

The machine supports a releaseBall()
helper method that releases the ball and
decrements the count instance variable.

This method allows other objects (like
our State objects) to transition the
machine to a different state.

This includes methods like getNoQuarterState() for getting each
state object, and getCount() for getting the gumball count.

400   Chapter 10

more states for the gumball machine

public class HasQuarterState implements State {

 GumballMachine gumballMachine;

 public HasQuarterState(GumballMachine gumballMachine) {

 this.gumballMachine = gumballMachine;

 }

 public void insertQuarter() {

 System.out.println("You can't insert another quarter");

 }

 public void ejectQuarter() {

 System.out.println("Quarter returned");

 gumballMachine.setState(gumballMachine.getNoQuarterState());

 }

 public void turnCrank() {

 System.out.println("You turned...");

 gumballMachine.setState(gumballMachine.getSoldState());

 }

 public void dispense() {

 System.out.println("No gumball dispensed");

 }

}

Implementing more states
Now that you’re starting to get a feel for how the Gumball Machine and the states
fit together, let’s implement the HasQuarterState and the SoldState classes...

An inappropriate
action for this
state.

Another
inappropriate
action for this
state.

Return the customer’s
quarter and
transition back to the
NoQuarterState.

When the crank is
turned we transition
the machine to the
SoldState state by
calling its setState()
method and passing it
the SoldState object.
The SoldState object
is retrieved by the
getSoldState()
getter method
(there is one of these
getter methods for
each state).

When the state is in
stantiated

we pass it a referen
ce to the

GumballMachine. This is used

to transition the
machine to a

different state.

you are here 4   401

the state pattern

public class SoldState implements State {

 //constructor and instance variables here

 public void insertQuarter() {

 System.out.println("Please wait, we're already giving you a gumball");

 }

 public void ejectQuarter() {

 System.out.println("Sorry, you already turned the crank");

 }

 public void turnCrank() {

 System.out.println("Turning twice doesn't get you another gumball!");

 }

 public void dispense() {

 gumballMachine.releaseBall();

 if (gumballMachine.getCount() > 0) {

 gumballMachine.setState(gumballMachine.getNoQuarterState());

 } else {

 System.out.println("Oops, out of gumballs!");

 gumballMachine.setState(gumballMachine.getSoldOutState());

 }

 }

}

Now, let’s check out the SoldState class... Here are all the
inappropriate
actions for this
state.

And here’s where the
real work begins... We’re in the SoldState, which means the

customer paid. So, we first need to ask
the machine to release a gumball.

Then we ask the machine what the gumball
count is, and either transition to the
NoQuarterState or the SoldOutState.

Look back at the GumballMachine implementation. If the crank is turned and
not successful (say the customer didn’t insert a quarter first), we call dispense()
anyway, even though it’s unnecessary. How might you fix this?

402   Chapter 10

your turn to implement a state

public class SoldOutState implements _______________ {

 GumballMachine gumballMachine;

 public SoldOutState(GumballMachine gumballMachine) {

 }

 public void insertQuarter() {

 }

 public void ejectQuarter() {

 }

 public void turnCrank() {

 }

 public void dispense() {

 }

}

We have one remaining class we haven’t implemented: SoldOutState.
Why don’t you implement it? To do this, carefully think through how the
Gumball Machine should behave in each situation. Check your answer
before moving on...

you are here 4   403

the state pattern

For starters, you now have a Gumball Machine implementation that is structurally quite
different from your first version, and yet functionally it is exactly the same. By structurally
changing the implemention, you’ve:

 � Localized the behavior of each state into its own class.

 � Removed all the troublesome if statements that would have been difficult to maintain.

 � Closed each state for modification, and yet left the Gumball Machine open to extension
by adding new state classes (and we’ll do this in a second).

 � Created a code base and class structure that maps much more closely to the Mighty
Gumball diagram and is easier to read and understand.

Now let’s look a little more at the functional aspect of what we did:

Let’s take a look at what we’ve done so far...

Gumball Machine States

 SoldOut

 NoQuarter

 HasQuarter

 Sold

GumballMachine

current state

The Gumball Machine now holds an

instance of each S
tate class.

The current state of the
machine is always one of
these class instances.

404   Chapter 10

state transitions

 SoldOut

 NoQuarter

 HasQuarter

 Sold

Gumball Machine States

 SoldOut

 NoQuarter

 HasQuarter

 Sold

Gumball Machine States

GumballMachine

current state

turnCrank()

GumballMachine

current state

When an action is called, it is
delegated to the current state.

In this case, the turnCrank()
method is being called when the
machine is in the HasQuarter
state, so as a result the machine
transitions to the Sold state.

....and then the
machine will
either go to
the SoldOut
or NoQuarter
state depending
on the number of
gumballs remaining
in the machine.

The machine enters
the Sold state an

d a

gumball is dispensed...

turnCrank()

More gumballs

Sold out

TRANSITION TO SOLD STATE

dispense()

you are here 4   405

the state pattern

 SoldOut

 SoldOut

 NoQuarter

 HasQuarter

 Sold

GumballMachine

Gumball Machine States

 NoQuarter

 HasQuarter

 Sold

GumballMachine

Gumball Machine States

 SoldOut

 NoQuarter

 HasQuarter

 Sold

GumballMachine

GumballMachine

Gumball Machine States

 SoldOut

 NoQuarter

 HasQuarter

 Sold

Gumball Machine States

11 22

4433

Behind the Scenes:
Self-Guided Tour

Trace the steps of the Gumball Machine starting with the NoQuarter state. Also annotate the diagram with actions
and output of the machine. For this exercise you can assume there are plenty of gumballs in the machine.

406   Chapter 10

state pattern defined

The State Pattern defined

The State Pattern allows an object to alter its behavior
when its internal state changes. The object will appear to
change its class.

request()

Context

Yes, it’s true, we just implemented the State Pattern! So now, let’s take a look at what it’s all about:

The first part of this description makes a lot of sense, right? Because the pattern encapsulates
state into separate classes and delegates to the object representing the current state, we know
that behavior changes along with the internal state. The Gumball Machine provides a good
example: when the gumball machine is in the NoQuarterState and you insert a quarter, you get
different behavior (the machine accepts the quarter) than if you insert a quarter when it’s in the
HasQuarterState (the machine rejects the quarter).

What about the second part of the definition? What does it mean for an object to “appear to
change its class”? Think about it from the perspective of a client: if an object you’re using can
completely change its behavior, then it appears to you that the object is actually instantiated from
another class. In reality, however, you know that we are using composition to give the appearance
of a class change by simply referencing different state objects.

Okay, now it’s time to check out the State Pattern class diagram:

state.handle()

handle()

State

handle()
ConcreteStateA

handle()
ConcreteStateB Many concrete states are possible.

The Context is the class that
can have a number of internal
states. In our example, the
GumballMachine is the Context.

Whenever the request() is made on the Context , it is delegated to the state to handle.

The State interface defines a common interface for all concrete states; the states all implement the same interface, so they are interchangeable.

ConcreteStates handle requests from the
Context. Each ConcreteState provides its
own implementation for a request. In this
way, when the Context changes state, its
behavior will change as well.

you are here 4   407

the state pattern

You’ve got a good eye (or you read the beginning of the chapter)!
Yes, the class diagrams are essentially the same, but the two patterns
differ in their intent.

With the State Pattern, we have a set of behaviors encapsulated in
state objects; at any time the context is delegating to one of those
states. Over time, the current state changes across the set of state
objects to reflect the internal state of the context, so the context’s
behavior changes over time as well. The client usually knows very
little, if anything, about the state objects.

With Strategy, the client usually specifies the strategy object that
the context is composed with. Now, while the pattern provides the
flexibility to change the strategy object at runtime, often there is
a strategy object that is most appropriate for a context object. For
instance, in Chapter 1, some of our ducks were configured to fly
with typical flying behavior (like mallard ducks), while others were
configured with a fly behavior that kept them grounded (like rubber
ducks and decoy ducks).

In general, think of the Strategy Pattern as a flexible alternative to
subclassing; if you use inheritance to define the behavior of a class,
then you’re stuck with that behavior even if you need to change it.
With Strategy you can change the behavior by composing with a
different object.

Think of the State Pattern as an alternative to putting lots of
conditionals in your context; by encapsulating the behaviors within
state objects, you can simply change the state object in context to
change its behavior.

Wait a sec; from what
I remember of the Strategy
Pattern, this class diagram is
EXACTLY the same.

408   Chapter 10

q&a about the state pattern

Q: In GumballMachine, the states decide what the
next state should be. Do the ConcreteStates always
decide what state to go to next?

A: No, not always. The alternative is to let the Context
decide on the flow of state transitions.

As a general guideline, when the state transitions are fixed
they are appropriate for putting in the Context; however,
when the transitions are more dynamic, they are typically
placed in the state classes themselves (for instance, in
GumballMachine the choice of the transition to NoQuarter or
SoldOut depended on the runtime count of gumballs).

The disadvantage of having state transitions in the state
classes is that we create dependencies between the state
classes. In our implementation of GumballMachine we tried
to minimize this by using getter methods on the Context,
rather than hardcoding explicit concrete state classes.

Notice that by making this decision, you are making a
decision as to which classes are closed for modification—
the Context or the state classes—as the system evolves.

Q: Do clients ever interact directly with the states?

A: No. The states are used by the Context to represent
its internal state and behavior, so all requests to the states
come from the Context. Clients don’t directly change the
state of the Context. It is the Context’s job to oversee its
state, and you don’t usually want a client changing the state
of a Context without that Context’s knowledge.

Q: If I have lots of instances of the Context in my
application, is it possible to share the state objects
across them?

A: Yes, absolutely, and in fact this is a very common
scenario. The only requirement is that your state objects do
not keep their own internal context; otherwise, you’d need a
unique instance per context.

To share your states, you’ll typically assign each state to a
static instance variable. If your state needs to make use of
methods or instance variables in your Context, you’ll also
have to give it a reference to the Context in each handler()
method.

Q: It seems like using the State Pattern always
increases the number of classes in our designs. Look
how many more classes our GumballMachine had than
the original design!

A: You’re right; by encapsulating state behavior
into separate state classes, you’ll always end up with
more classes in your design. That’s often the price you
pay for flexibility. Unless your code is some “one-off”
implementation you’re going to throw away (yeah, right),
consider building it with the additional classes and you’ll
probably thank yourself down the road. Note that often what
is important is the number of classes that you expose to
your clients, and there are ways to hide these extra classes
from your clients (say, by declaring them package private).

Also, consider the alternative: if you have an application
that has a lot of state and you decide not to use separate
objects, you’ll instead end up with very large, monolithic
conditional statements. This makes your code hard to
maintain and understand. By using objects, you make states
explicit and reduce the effort needed to understand and
maintain your code.

Q: The State Pattern class diagram shows that State
is an abstract class. But didn’t you use an interface in
the implementation of the gumball machine’s state?

A: Yes. Given we had no common functionality to put
into an abstract class, we went with an interface. In your
own implementation, you might want to consider an abstract
class. Doing so has the benefit of allowing you to add
methods to the abstract class later, without breaking the
concrete state implementations.

you are here 4   409

the state pattern

public class WinnerState implements State {

 // instance variables and constructor
 // insertQuarter error message
 // ejectQuarter error message
 // turnCrank error message

 public void dispense() {
 gumballMachine.releaseBall();
 if (gumballMachine.getCount() == 0) {
 gumballMachine.setState(gumballMachine.getSoldOutState());
 } else {
 gumballMachine.releaseBall();
 System.out.println("YOU'RE A WINNER! You got two gumballs for your quarter");
 if (gumballMachine.getCount() > 0) {
 gumballMachine.setState(gumballMachine.getNoQuarterState());
 } else {
 System.out.println("Oops, out of gumballs!");
 gumballMachine.setState(gumballMachine.getSoldOutState());
 }
 }
 }
}

public class GumballMachine {

 State soldOutState;
 State noQuarterState;
 State hasQuarterState;
 State soldState;
 State winnerState;

 State state = soldOutState;
 int count = 0;
 // methods here
}

We still need to finish the Gumball 1 in 10 game
Remember, we’re not done yet. We’ve got a game to implement, but now that we’ve got the State
Pattern implemented, it should be a breeze. First, we need to add a state to the GumballMachine class:

All you need to add here is
the new WinnerState and
initialize it in the constructor.

Now let’s implement the WinnerState class; it’s remarkably similar to the SoldState class:

Here we release two gumballs and then
either go to the NoQuarterState or
the SoldOutState.

Just like SoldState.

If we have a second gumball, we release it.

Don’t forget you also have
to add a getter method for
WinnerState too.

If we were able
to release two
gumballs, we let
the user know
he was a winner.

410   Chapter 10

implementing the 1 in 10 game

public class HasQuarterState implements State {

 Random randomWinner = new Random(System.currentTimeMillis());

 GumballMachine gumballMachine;

 public HasQuarterState(GumballMachine gumballMachine) {

 this.gumballMachine = gumballMachine;

 }

 public void insertQuarter() {

 System.out.println("You can't insert another quarter");

 }

 public void ejectQuarter() {

 System.out.println("Quarter returned");

 gumballMachine.setState(gumballMachine.getNoQuarterState());

 }

 public void turnCrank() {

 System.out.println("You turned...");

 int winner = randomWinner.nextInt(10);

 if ((winner == 0) && (gumballMachine.getCount() > 1)) {

 gumballMachine.setState(gumballMachine.getWinnerState());

 } else {

 gumballMachine.setState(gumballMachine.getSoldState());

 }

 }

 public void dispense() {

 System.out.println("No gumball dispensed");

 }

}

First we add a
random number
generator to
generate the 10%
chance of winning...

Finishing the game
We’ve got just one more change to make: we need to implement the random
chance game and add a transition to the WinnerState. We’re going to add both to
the HasQuarterState since that’s where the customer turns the crank:

...then we determine
if this customer won.

Wow, that was pretty simple to implement! We just added a new state to the GumballMachine
and then implemented it. All we had to do from there was to implement our chance game and
transition to the correct state. It looks like our new code strategy is paying off...

If they won, and there’s enough gumballs
left for them to get two, we go to
WinnerState; otherwise, we go to
SoldState (just like we always did).

you are here 4   411

the state pattern

public class GumballMachineTestDrive {

 public static void main(String[] args) {

 GumballMachine gumballMachine = new GumballMachine(5);

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();

 gumballMachine.turnCrank();

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();

 gumballMachine.turnCrank();

 gumballMachine.insertQuarter();

 gumballMachine.turnCrank();

 System.out.println(gumballMachine);

 }

}

Demo for the CEO of Mighty Gumball, Inc.
The CEO of Mighty Gumball has dropped by for a demo of your new gumball game code. Let’s
hope those states are all in order! We’ll keep the demo short and sweet (the short attention span of
CEOs is well documented), but hopefully long enough so that we’ll win at least once.

This code really hasn’t change
d at all;

we just shortened it a bit.

Once, again, start with a gumball
machine with 5 gumballs.

We want to get a winning state,
so we just keep pumping in those
quarters and turning the crank. We
print out the state of the gumball
machine every so often...

The whole engineering team is waiting

outside the conference room to see

if the new State Pattern-based

design is going to work!!

412   Chapter 10

testing the gumball machine

File Edit Window Help Whenisagumballajawbreaker?

%java GumballMachineTestDrive
Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot...
A gumball comes rolling out the slot...
YOU'RE A WINNER! You got two gumballs for your quarter

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 3 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot...
You inserted a quarter
You turned...
A gumball comes rolling out the slot...
A gumball comes rolling out the slot...
YOU'RE A WINNER! You got two gumballs for your quarter
Oops, out of gumballs!

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs
Machine is sold out
%

Gee, did we get lucky
or what? In our demo
to the CEO, we won
not once, but twice!

Yes! That rocks!

Q: Why do we need the WinnerState? Couldn’t we just have the SoldState dispense two gumballs?

A: That’s a great question. SoldState and WinnerState are almost identical, except that WinnerState dispenses two
gumballs instead of one. You certainly could put the code to dispense two gumballs into SoldState. The downside is, of
course, that now you’ve got TWO states represented in one State class: the state in which you’re a winner, and the state
in which you’re not. So you are sacrificing clarity in your State class to reduce code duplication. Another thing to consider
is the principle you learned in the previous chapter: the Single Responsibility Principle. By putting the WinnerState
responsibility into the SoldState, you’ve just given the SoldState TWO responsibilities. What happens when the
promotion ends? Or the stakes of the contest change? So, it’s a tradeoff and comes down to a design decision.

you are here 4   413

the state pattern

Bravo! Great job,
gang. Our sales are already

going through the roof with the new
game. You know, we also make soda

machines, and I was thinking we could put
one of those slot-machine arms on the

side and make that a game too. We’ve got
four-year-olds gambling with the

gumball machines; why stop there?

Sanity check...

Yes, the CEO of Mighty Gumball probably needs a sanity check, but that’s not what
we’re talking about here. Let’s think through some aspects of the GumballMachine
that we might want to shore up before we ship the gold version:

 � We’ve got a lot of duplicate code in the Sold and Winning
states and we might want to clean those up. How would we
do it? We could make State into an abstract class and build
in some default behavior for the methods; after all, error
messages like, “You already inserted a quarter,” aren’t going
to be seen by the customer. So all “error response” behavior
could be generic and inherited from the abstract State class.

 � The dispense() method always gets called, even if the crank is
turned when there is no quarter. While the machine operates
correctly and doesn’t dispense unless it’s in the right state, we
could easily fix this by having turnCrank() return a boolean
or by introducing exceptions. Which do you think is a better
solution?

 � All of the intelligence for the state transitions is in the State
classes. What problems might this cause? Would we want to
move that logic into the GumballMachine? What would be
the advantages and disadvantages of that?

 � Will you be instantiating a lot of GumballMachine objects?
If so, you may want to move the state instances into static
instance variables and share them. What changes would this
require to the GumballMachine and the States?

Dammit Jim,
I’m a gumball
machine, not a
computer!

414   Chapter 10

fireside chats: state and strategy

Tonight’s talk: A Strategy and State Pattern Reunion.

Strategy:
Hey, bro. Did you hear I was in Chapter 1?

I was just over giving the Template Method guys a
hand—they needed me to help them finish off their
chapter. So, anyway, what is my noble brother up to?

I don’t know, you always sound like you’ve just
copied what I do and you’re using different words
to describe it. Think about it: I allow objects to
incorporate different behaviors or algorithms
through composition and delegation. You’re just
copying me.

Oh yeah? How so? I don’t get it.

Yeah, that was some fine work...and I’m sure you can
see how that’s more powerful than inheriting your
behavior, right?

Sorry, you’re going to have to explain that.

State:

Yeah, word is definitely getting around.

Same as always—helping classes to exhibit different
behaviors in different states.

I admit that what we do is definitely related, but my
intent is totally different than yours. And the way I
teach my clients to use composition and delegation
is totally different.

Well, if you spent a little more time thinking about
something other than yourself, you might. Anyway,
think about how you work: you have a class you’re
instantiating and you usually give it a strategy object
that implements some behavior. Like, in Chapter 1
you were handing out quack behaviors, right? Real
ducks got a real quack; rubber ducks got a quack
that squeaked.

Yes, of course. Now, think about how I work; it’s
totally different.

you are here 4   415

the state pattern

Strategy:

Hey, come on, I can change behavior at runtime
too; that’s what composition is all about!

Well, I admit, I don’t encourage my objects to have
a well-defined set of transitions between states. In
fact, I typically like to control what strategy my
objects are using.

Yeah, yeah, keep living your pipe dreams, brother.
You act like you’re a big pattern like me, but check
it out: I’m in Chapter 1; they stuck you way out in
Chapter 10. I mean, how many people are actually
going to read this far?

That’s my brother, always the dreamer.

State:
Okay, when my Context objects get created, I may
tell them the state to start in, but then they change
their own state over time.

Sure you can, but the way I work is built around
discrete states; my Context objects change state
over time according to some well-defined state
transitions. In other words, changing behavior is
built in to my scheme—it’s how I work!

Look, we’ve already said we’re alike in structure, but
what we do is quite different in intent. Face it, the
world has uses for both of us.

Are you kidding? This is a Head First book and
Head First readers rock. Of course they’re going to
get to Chapter 10!

416   Chapter 10

refill exercise

We almost forgot!

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Gumball

 Sold

 No
Quarter

 Has
Quarter

Out of
Gumballs

There’s one transition we forgot to put in the original spec...we

need a way to refill the gumball machine when it’s out of gumballs!

Here’s the new diagram — can you implement it for us? You did such

a good job on the rest of the gumball machine we have no doubt

you can add this in a jiffy!

 - The Mighty Gumball Engineers
ins

ert
 qu

art
er

eje
ct

qua
rt

er

turn crank

dispense
gumball

gumballs = 0

gumballs > 0

refill

you are here 4   417

the state pattern

You’ve done some amazing work!
I’ve got some more ideas that
are going to change the gumball
industry and I need you to implement
them. Shhhhh! I’ll let you in on these
ideas in the next chapter.

We need you to write the refill() method for the Gumball machine. It has one
argument—the number of gumballs you’re adding to the machine—and
should update the gumball machine count and reset the machine’s state.

418   Chapter 10

who does what?

Pattern Description

State

Strategy

Template Method

Encapsulate interchangeable
behaviors and use delegation to
decide which behavior to use.

Subclasses decide how
to implement steps in an
algorithm.

Encapsulate state-based
behavior and delegate
behavior to the current state.

Match each pattern with its description:

you are here 4   419

the state pattern

Tools for your Design Toolbox
It’s the end of another chapter; you’ve got enough
patterns here to breeze through any job interview!

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has one

instance and pr
ovide a global p

oint of

access to it.
Command - Encapsulates a re

quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Adapter - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

No new principles thi
s

chapter. That gives you

time to sleep on
them.

Facade - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Here’s our new
pattern. If you’re
managing state in
a class, the State
Pattern gives you
a technique for
encapsulating that
state.

State - Allow an object to a
lter its

behavior when its internal
 state changes.

The object will appear to ch
ange its

class.

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion

but closed for
modification.

Depend on abstra
ctions. Do not

depend on conc
rete classes.

Only talk to your
 friends.

Don’t call us, we’ll call you.

A class should ha
ve only one reas

on

to change.

OO Principles

	� The State Pattern allows an
object to have many different
behaviors that are based on
its internal state.

	� Unlike a procedural state
machine, the State Pattern
represents each state as a
full-blown class.

	� The Context gets its behavior
by delegating to the current
state object it is composed
with.

	� By encapsulating each state
into a class, we localize any
changes that will need to be
made.

	� The State and Strategy
Patterns have the same class
diagram, but they differ in
intent.

	� The Strategy Pattern typically
configures Context classes
with a behavior or algorithm.

	� The State Pattern allows
a Context to change its
behavior as the state of the
Context changes.

	� State transitions can be
controlled by the State
classes or by the Context
classes.

	� Using the State Pattern will
typically result in a greater
number of classes in your
design.

	� State classes may be shared
among Context instances.

420   Chapter 10

exercise solutions

Out of
Gumballs

 Has
Quarter

 No
Quarter

ins
ert

 qu
art

er

eje
ct

qua
rt

er

turn crank, no winner

Winner

turn crank, we
have a winner!

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Gumball

 Sold
dispense
gumball

gumballs = 0

gumballs > 0

gumballs = 0
gum

bal
ls >

 0

disp
ens

e 2

gum
ball

s

Draw a state diagram for a Gumball Machine that handles the 1-in-10
contest. In this contest, 10% of the time the Sold state leads to two
balls being released, not one. Here’s our solution.

Design Puzzle Solution

you are here 4   421

the state pattern

Which of the following describe the state of our implementation?
(Choose all that apply.) Here’s our solution.

We have one remaining class we haven’t implemented: SoldOutState. Why
don’t you implement it? To do this, carefully think through how the Gumball
Machine should behave in each situation. Here’s our solution.

public class SoldOutState implements State {
 GumballMachine gumballMachine;

 public SoldOutState(GumballMachine gumballMachine) {
 this.gumballMachine = gumballMachine;
 }

 public void insertQuarter() {
 System.out.println("You can't insert a quarter, the machine is sold out");
 }

 public void ejectQuarter() {
 System.out.println("You can't eject, you haven't inserted a quarter yet");
 }

 public void turnCrank() {
 System.out.println("You turned, but there are no gumballs");
 }

 public void dispense() {
 System.out.println("No gumball dispensed");
 }
}

In the Sold Out state, we really

can’t do anything u
ntil someone

refills the Gumball Machine.

❏ A.	 This code certainly isn’t adhering to the
Open Closed Principle.

❏ B.	 This code would make a FORTRAN
programmer proud.

❏ C.	 This design isn’t even very object-
oriented.

❏ D.	 State transitions aren’t explicit; they
are buried in the middle of a bunch of
conditional statements.

❏ E.	 We haven’t encapsulated anything that
varies here.

❏ F.	 Further additions are likely to cause bugs
in working code.

422   Chapter 10

exercise solutions

Go to HasQuarterState.
Tell the customer, “You haven’t inserted a quarter.”

Tell the customer, “Please wait, we’re already giving you a gumball.”
Tell the customer, “Sorry, you already turned the crank.”
Tell the customer, “Turning twice doesn’t get you another gumball.”

Tell the customer, “The machine is sold out.”
Tell the customer, “You haven’t inserted a quarter yet.”

Tell the customer, “You can’t insert another quarter.”

Tell the customer, “There are no gumballs.”

Go to SoldState.

Give back quarter, go to NoQuarter state.

Tell the customer, “You turned, but there’s no quarter.”

NoQuarterState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

SoldOutState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

SoldState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

HasQuarterState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

Tell the customer, “You need to pay first.”

Tell the customer, “No gumball dispensed.”

Dispense one gumball. Check number of gumballs; if > 0, go to NoQuarter state; otherwise, go to SoldOut state.

Tell the customer, “No gumball dispensed.”

Tell the customer, “Please wait, we’re already giving you a gumball.”
Tell the customer, “Sorry, you already turned the crank.”
Tell the customer, “Turning twice doesn’t get you another gumball.”

WinnerState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()Dispense two gumballs. Check number of gumballs; if > 0, go to NoQuarter state; otherwise, go to SoldOutState.

To implement the states, we first need to define what the behavior will
be when the corresponding action is called. Annotate the diagram below
with the behavior of each action in each class; here’s our solution.

you are here 4   423

the state pattern

 SoldOut

GumballMachine

GumballMachine

 Sold

GumballMachine

 Sold

 HasQuarter

 NoQuarter

 SoldOut

 HasQuarter

 NoQuarter

 SoldOut

 Sold

 HasQuarter

 NoQuarter

GumballMachine

 Sold

 HasQuarter

 NoQuarter

 SoldOut

Gumball Machine States

Gumball Machine StatesGumball Machine States

Gumball Machine States

11 22

4433

current state

current state
current state

current state

Behind the Scenes:
Self-Guided Tour
Solution

insertQuarter()

insertQuarter()

delegates to current state

turnCrank()

turnCrank()

delegates

transitions to
HasQuarter state

machine action
machine action

transitions to
Sold state

dispense()

Here the machine
gives out a gumball
by calling the internal
dispense() action... ...and then transitions

to NoQuarter.

424   Chapter 10

exercise solutions

public void refill() {

 gumballMachine.setState(gumballMachine.getNoQuarterState());

}

Pattern Description

State

Strategy

Template Method

Encapsulate interchangeable
behaviors and use delegation to
decide which behavior to use.

Subclasses decide how
to implement steps in an
algorithm.

Encapsulate state-based
behavior and delegate
behavior to the current state.

Match each pattern with its description:

SOlUTion

To refill the Gumball Machine, we add a refill() method to the State interface,
which each State must implement. In every state except SoldOutState, the
method does nothing. In SoldOutState, refill() transitions to NoQuarterState.
We also add a refill() method to GumballMachine that adds to the count of
gumballs, and then calls the current state’s refill() method.

void refill(int count) {

 this.count += count;

 System.out.println("The gumball machine was just refilled; its new count is: " + this.count);

 state.refill();

}

We add this method to
the SoldOutState...

...and add this method to
the GumballMachine class.

this is a new chapter   425

Ever play good cop, bad cop? You’re the good cop and you provide all

your services in a nice and friendly manner, but you don’t want everyone asking you

for services, so you have the bad cop control access to you. That’s what proxies do:

control and manage access. As you’re going to see, there are lots of ways in which

proxies stand in for the objects they proxy. Proxies have been known to haul entire

method calls over the internet for their proxied objects; they’ve also been known to

patiently stand in for some pretty lazy objects.

Controlling
 Object Access

11 the Proxy Pattern

With you as my proxy,
I’ll be able to triple the

amount of lunch money I can
extract from friends!

426   Chapter 11

what’s the goal

Sounds easy enough. If you remember, we’ve already
got methods in the gumball machine code for getting the
count of gumballs, getCount(), and getting the current
state of the machine, getState().

All we need to do is create a report that can be printed out
and sent back to the CEO. Hmmm, we should probably
add a location field to each gumball machine as well; that
way the CEO can keep the machines straight.

Let’s just jump in and code this. We’ll impress the CEO
with a very fast turnaround.Remember the CEO of Mighty Gumball, Inc.?

Hey team, I’d really like to
get some better monitoring for

my gumball machines. Can you find a
way to get me a report of inventory
and machine state?

you are here 4   427

the proxy pattern

public class GumballMonitor {

 GumballMachine machine;

 public GumballMonitor(GumballMachine machine) {

 this.machine = machine;

 }

 public void report() {

 System.out.println("Gumball Machine: " + machine.getLocation());

 System.out.println("Current inventory: " + machine.getCount() + " gumballs");

 System.out.println("Current state: " + machine.getState());

 }

}

public class GumballMachine {

 // other instance variables

 String location;

 public GumballMachine(String location, int count) {

 // other constructor code here

 this.location = location;

 }

 public String getLocation() {

 return location;

 }

 // other methods here

}

Coding the Monitor

Now let’s create another class, GumballMonitor, that retrieves the machine’s
location, inventory of gumballs, and current machine state and prints them in a
nice little report:

The monitor takes the machine in its constructor and assigns it to the machine instance variable.

Our report() method just prints a report with location, inventory, and the machine’s state.

Let’s start by adding support to the GumballMachine class so that it
can handle locations:

A location is just a String.

The location is passed into the constructor and stored in the instance variable.

Let’s also add a getter method to
grab the location when we need it.

428   Chapter 11

local gumball monitor

public class GumballMachineTestDrive {

 public static void main(String[] args) {
 int count = 0;

 if (args.length < 2) {
 System.out.println("GumballMachine <name> <inventory>");
 System.exit(1);
 }

 count = Integer.parseInt(args[1]);
 GumballMachine gumballMachine = new GumballMachine(args[0], count);

 GumballMonitor monitor = new GumballMonitor(gumballMachine);

 // rest of test code here

 monitor.report();
 }
}

Testing the Monitor
We implemented that in no time. The CEO is going to be thrilled and amazed by our
development skills.

Now we just need to instantiate a GumballMonitor and give it a machine to monitor:

Don’t forget to give the constructor a location and count...

...and instantiate a monitor and pass it a
machine to provide a report on.

And here’s the output!

When we need a report on
the machine, we call the
report() method.

Pass in a location and initial # of
gumballs on the command line.

File Edit Window Help FlyingFish

%java GumballMachineTestDrive Austin 112
Gumball Machine: Austin
Current Inventory: 112 gumballs
Current State: waiting for quarter

The monitor output looks
great, but I guess I wasn’t clear. I need

to monitor gumball machines REMOTELY!
In fact, we already have the networks in
place for monitoring. Come on guys, you’re
supposed to be the internet generation!

you are here 4   429

the proxy pattern

Frank: A remote what?

Joe: Remote proxy. Think about it: we’ve already got the monitor code written, right? We give the
GumballMonitor class a reference to a machine and it gives us a report. The problem is that the monitor runs
in the same JVM as the gumball machine and the CEO wants to sit at his desk and remotely monitor the
machines! So what if we left our GumballMonitor class as is, but handed it a proxy to a remote object?

Frank: I’m not sure I get it.

Jim: Me neither.

Joe: Let’s start at the beginning...a proxy is a stand in for a real object. In this case, the proxy acts just like it
is a Gumball Machine object, but behind the scenes it is communicating over the network to talk to the real,
remote GumballMachine.

Jim: So you’re saying we keep our code as it is, and we give the monitor a reference to a proxy version of the
GumballMachine...

Frank: And this proxy pretends it’s the real object, but it’s really just communicating over the net to the real
object.

Joe: Yeah, that’s pretty much the story.

Frank: It sounds like something that’s easier said than done.

Joe: Perhaps, but I don’t think it’ll be that bad. We have to make sure that the gumball machine can act as
a service and accept requests over the network; we also need to give our monitor a way to get a reference to
a proxy object, but we’ve got some great tools already built into Java to help us. Let’s talk a little more about
remote proxies first...

JoeJimFrank

Don’t worry, guys, I’ve
been brushing up on my design

patterns. All we need is a remote
proxy and we’ll be ready to go.

Well, that will teach us to
gather some requirements

before we jump in and code. I hope
we don’t have to start over...

430   Chapter 11

remote proxy

A remote proxy acts as a local representative to a remote object. What’s a “remote
object”? It’s an object that lives in the heap of a different Java Virtual Machine
(or more generally, a remote object that is running in a different address space).
What’s a “local representative”? It’s an object that you can call local methods on
and have them forwarded on to the remote object.

The role of the ‘remote proxy’

Your client object acts like it’s making remote method calls.
But what it’s really doing is calling methods on a heap-
local “proxy” object that handles all the low-level details of
network communication.

 Gumball Mac
hi

ne

Remote Heap

Gumball Monito
r

Local Heap

 ProxyHere the Gumball
Monitor is the client
object; it thinks it’s
talking to the Real
gumball machine, but
it’s really just talking

to the proxy, which
then talks to the
Real gumball machine
over the network.

The proxy pretends to
be the remote object,
but it’s just a stand i

n
for the Real Thing.

The Remote object I
S

the Real Thing. It’s th
e

object with the method

that actuall
y does the

real work.

CEO’s desktop Remote Gumball Machine with a JVM.

Same as your old
code, only it’s
talking to a proxy.

The client object is the object
making use of the proxy-in our
case, the GumballMonitor class.

you are here 4   431

the proxy pattern

This is a pretty slick idea.
We’re going to write some code that

takes a method invocation, somehow transfers it
over the network, and invokes the same method

on a remote object. Then I presume when the call is
complete, the result gets sent back over the network

to our client. But it seems to me this code is going
to be very tricky to write.

Hold on now, we aren’t going
to write that code ourselves; it’s

pretty much built into Java’s remote
invocation functionality. All we have to
do is retrofit our code so that it takes

advantage of RMI.

Before going further, think about how you’d design a system to enable Remote Method
Invocation (RMI). How would you make it easy on the developer so that she has to write as
little code as possible? How would you make the remote invocation look seamless?

Should making remote calls be totally transparent? Is that a good idea? What might be a
problem with that approach?

2

432   Chapter 11

rmi detour

Adding a remote proxy to the Gumball
Machine monitoring code
On paper our plan looks good, but how do we create a proxy that knows how to invoke a
method on an object that lives in another JVM?

Hmmm. Well, you can’t get a reference to something on another heap, right? In other words,
you can’t say:

 Duck d = <object in another heap>

Whatever the variable d is referencing must be in the same heap space as the code running
the statement. So how do we approach this? Well, that’s where Java’s Remote Method
Invocation (RMI) comes in...RMI gives us a way to find objects in a remote JVM and allows
us to invoke their methods.

Now might be a good time to brush up on RMI with your favorite Java reference, or you can
take the RMI Detour ahead, and we’ll walk you though the high points of RMI before adding
the proxy support to the Gumball Machine code.

In either case, here’s our plan:

An RMI Detour

If you’re new to RMI,
take the detour that runs
over the next few pages;
otherwise, you might want to
just quickly thumb through
the detour as a review. If
you’d like to continue on,
just getting the gist of the
remote proxy, that is fine
too—you can skip the detour.

1

2

3

First, we’re going to take the RMI
Detour and explore RMI. Even if you are
familiar with RMI, you might want to
follow along and check out the scenery.

Then we’re going to take our Gumball
Machine and make it a remote service
that provides a set of methods calls
that can be invoked remotely.

Finally, we going to create a proxy that
can talk to a remote Gumball Machine,
again using RMI, and put the monitoring
system back together so that the CEO can
monitor any number of remote machines.

you are here 4   433

the proxy pattern

Let’s say we want to design a system that allows us to call a local object that forwards each request
to a remote object. How would we design it? We’d need a couple of helper objects that do the
communicating for us. The helpers make it possible for the client to act as though it’s calling a method
on a local object (which it is). The client calls a method on the client helper, as if the client helper were
the actual service. The client helper then takes care of forwarding that request for us.

In other words, the client object thinks it’s calling a method on the remote service, because the client
helper is pretending to be the service object—that is, pretending to be the thing with the method the
client wants to call.

But the client helper isn’t really the remote service. Although the client helper acts like it (because it has
the same method that the service is advertising), the client helper doesn’t have any of the method logic
the client is expecting. Instead, the client helper contacts the server, transfers information about the
method call (e.g., name of the method, arguments, etc.), and waits for a return from the server.

On the server side, the service helper receives the request from the client helper (through a Socket
connection), unpacks the information about the call, and then invokes the real method on the real service
object. So, to the service object, the call is local. It’s coming from the service helper, not a remote client.

The service helper gets the return value from the service, packs it up, and ships it back (over a Socket’s
output stream) to the client helper. The client helper unpacks the information and returns the value to
the client object.

Let’s walk through this to make it clearer...

Remote methods 101

Service object

Server heap

Client object

Client heap

Client helper Service helperClient object thinks
it’s talking to the
Real Service. It
thinks the client
helper is the thing
that can actually do
the real work.

Client helper pretends
to be the service, but

it’s just a proxy for t

he

Real Thing.

Service helper gets the request from the client helper, unpacks it, and calls the method on the Real Service.

The Service o
bject IS

the Real Service.
It’s the

object with the method

that actuall
y does the

real work.

Consider this design...

This is going
to be our
proxy.

An RMI Detour

Walking through the design

434   Chapter 11

remote method invocation

Service object

Server heap

Client object

Client heap

Client helper Service helper

How the method call happens

1 The Client object calls doBigThing() on the client helper object.

Service object

Server heap

Client object

Client heap

Client helper Service helper

2 The Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

doBigThing()

doBigThing()

“client wants to call a method”

Service object

Server heap

Client object

Client heap

Client helper Service helper

3 The Service helper unpacks the information from the client
helper, finds out which method to call (and on which object),
and invokes the real method on the real service object.

doBigThing()

“client wants to call a method”
doBigThing()

Remember, this is the
object with the REAL
method logic. The one
that does the real work!

you are here 4   435

the proxy pattern

Service object

Server heap

Client object

Client heap

Client helper Service helper

4 The method is invoked on the service object, which returns
some result to the service helper.

Service object

Server heap

Client object

Client heap

Client helper Service helper

5 The Service helper packages up information returned from the
call and ships it back over the network to the client helper.

packaged up result

Service object

Server heap

Client object

Client heap

Client helper Service helper

6 The Client helper unpackages the returned values and returns
them to the client object. To the client object, this was all
transparent.

result

result

An RMI Detour

436   Chapter 11

rmi: the big picture

Okay, you’ve got the gist of how remote methods work;
now you just need to understand how to use RMI.

What RMI does for you is build the client and service
helper objects, right down to creating a client helper
object with the same methods as the remote service. The
nice thing about RMI is that you don’t have to write
any of the networking or I/O code yourself. With your
client, you call remote methods (i.e., the ones the Real
Service has) just like normal method calls on objects
running in the client’s own local JVM.

RMI also provides all the runtime infrastructure to make
it all work, including a lookup service that the client can
use to find and access the remote objects.

There is one difference between RMI calls and local
(normal) method calls. Remember that even though to
the client it looks like the method call is local, the client
helper sends the method call across the network. So
there is networking and I/O. And what do we know
about networking and I/O methods?

They’re risky! They can fail! And so they throw
exceptions all over the place. As a result, the client does
have to acknowledge the risk. We’ll see how in a few
pages.

Java RMI, the Big Picture

Service object

Client object

Client helper Service helper

Server heapClient heap

RMI STUB RMI SKELETON

RMI nomenclature: in RMI, the client helper is a “stub” and the
service helper is a “skeleton.”

This is going
to act as our
proxy!

Now let’s go through all the steps needed to make an object
into a service that can accept remote calls and also the steps
needed to allow a client to make remote calls.

You might want to make sure your seat belt is fastened; there
are a lot of steps—but nothing to be too worried about.

An RMI Detour

you are here 4   437

the proxy pattern

An RMI Detour
Making the Remote service

Make a Remote Interface

Make a Remote Implementation

Start the RMI registry (rmiregistry)

Start the remote service

MyService.java

public interface
MyRemote extends
Remote { }

MyServiceImpl.java

public interface
MyRemote extends
Remote { }

This is an overview of the five steps for making the remote service—in other
words, the steps needed to take an ordinary object and supercharge it so it can
be called by a remote client. We’ll be doing this later to our Gumball Machine.
For now, let’s get the steps down and then we’ll explain each one in detail.

The remote interface defines the methods that
a client can call remotely. It’s what the client
will use as the class type for your service. Both
the Stub and actual service will implement
this.

This interfac
e defines th

e

remote methods that
 you

want clients
to call.

This is the class that does the Real Work. It
has the real implementation of the remote
methods defined in the remote interface.
It’s the object that the client wants to call
methods on (e.g., GumballMachine).

The Real Service: the class
with the methods that do
the real work. It implements
the remote interface.

The Stub and Skeleton are generated dynamically for you behind the scenes.

File Edit Window Help Drink

%rmiregistry

File Edit Window Help BeMerry

%java MyServiceImpl

The rmiregistry is like the white pages of a phone
book. It’s where the client goes to get the proxy
(the client stub/helper object).

You have to get the service object up and running. Your
service implementation class instantiates an instance
of the service and registers it with the RMI registry.
Registering it makes the service available for clients.

Run this in a separate
terminal window.

Step one:

Step two:

Step three:

Step four:

Stub

101101
10 110 1
0 11 0
001 10
001 01

Skeleton

101101
10 110 1
0 11 0
001 10
001 01

438   Chapter 11

make a remote interface

Step one: make a Remote interface

1 Extend java.rmi.Remote
Remote is a “marker” interface, which means it has no methods. It has
special meaning for RMI, though, so you must follow this rule. Notice that
we say “extends” here. One interface is allowed to extend another interface.

public interface MyRemote extends Remote {

2 Declare that all methods throw RemoteException
The remote interface is the one the client uses as the type for the service. In
other words, the client invokes methods on something that implements the
remote interface. That something is the stub, of course, and since the stub is
doing networking and I/O, all kinds of bad things can happen. The client has
to acknowledge the risks by handling or declaring the remote exceptions. If
the methods in an interface declare exceptions, any code calling methods on a
reference of that type (the interface type) must handle or declare the exceptions.

import java.rmi.*;

public interface MyRemote extends Remote {

 public String sayHello() throws RemoteException;

}

3 Be sure arguments and return values are primitives or Serializable
Arguments and return values of a remote method must be either primitive
or Serializable. Think about it. Any argument to a remote method has to
be packaged up and shipped across the network, and that’s done through
Serialization. The same thing applies with return values. If you use primitives,
Strings, and the majority of types in the API (including arrays and collections),
you’ll be fine. If you are passing around your own types, just be sure that you
make your classes implement Serializable.

public String sayHello() throws RemoteException;

This tells us that the
interface is going to b

e used

to support remote calls.

Every remote method call is considered “risky.” Declaring
RemoteException on every method forces the client to pay attention and acknowledge that things might not work.

This return value is gonna be shipped over the wire from the server back to the client, so it must be Serializable. That’s how args and return values get packaged up and sent.

Remote interface is in java.rmi.

Check out your
favorite Java
reference if you
need to refresh your
memory on Serializable.

An RMI Detour

you are here 4   439

the proxy pattern

Step two: make a Remote implementation
1 Implement the Remote interface

Your service has to implement the remote interface—the one with
the methods your client is going to call.
public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {
 public String sayHello() {
 return "Server says, 'Hey'";
 }
 // more code in class
}

2 Extend UnicastRemoteObject
In order to work as a remote service object, your object needs some functionality
related to “being remote.” The simplest way is to extend UnicastRemoteObject
(from the java.rmi.server package) and let that class (your superclass) do the
work for you.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

 private static final long serialVersionUID = 1L;

3 Write a no-arg constructor that declares RemoteException

Your new superclass, UnicastRemoteObject, has one little problem—its
constructor throws RemoteException. The only way to deal with this is to declare
a constructor for your remote implementation, just so that you have a place to
declare RemoteException. Remember, when a class is instantiated, its superclass
constructor is always called. If your superclass constructor throws an exception,
you have no choice but to declare that your constructor also throws an exception.

public MyRemoteImpl() throws RemoteException { }

4 Register the service with the RMI registry
Now that you’ve got a remote service, you have to make it available to remote
clients. You do this by instantiating it and putting it into the RMI registry (which
must be running or this line of code fails). When you register the implementation
object, the RMI system actually puts the stub in the registry, since that’s what the
client really needs. Register your service using the static rebind() method of the
java.rmi.Naming class.
try {

 MyRemote service = new MyRemoteImpl();

 Naming.rebind("RemoteHello", service);

} catch(Exception ex) {...}

The compiler will make sure that you’ve implemented all the methods from the interface you implement. In this case, there’s only one.

You don’t have to put anyt
hing in

the constructor. You just n
eed a

way to declare that your sup
erclass

constructor throws an exception.

Give your service a name (that clients can use

to look it up in the registr
y) and register it

with the RMI registry. When you bind the

service object, RMI swaps the service for the

stub and puts the stub in t
he registry.

An RMI Detour

UnicastRemoteObject implements Serializable, so we need the serialVersionUID field.

440   Chapter 11

start the service

Step three: run rmiregistry

1 Bring up a terminal and start the rmiregistry.
Be sure you start it from a directory that has access to
your classes. The simplest way is to start it from your
classes directory.

File Edit Window Help Huh?

%rmiregistry

Step four: start the service

1 Bring up another terminal and start your service
This might be from a main() method in your remote
implementation class or from a separate launcher class.
In this simple example, we put the starter code in the
implementation class, in a main method that instantiates
the object and registers it with RMI registry.

Q: Why are you showing stubs and skeletons in the diagrams for the RMI code? I thought we got
rid of those way back.

A: You’re right; for the skeleton, the RMI runtime can dispatch the client calls directly to the remote
service using reflection, and stubs are generated dynamically using Dynamic Proxy (which you’ll learn
more about a bit later in the chapter). The remote object’s stub is a java.lang.reflect.Proxy instance (with an
invocation handler) that is automatically generated to handle all the details of getting the local method calls
by the client to the remote object. But we like to show both the stub and skeleton, because conceptually
it helps you to understand that there is something under the covers that’s making that communication
between the client stub and the remote service happen.

An RMI Detour

File Edit Window Help Huh?

%java MyRemoteImpl

you are here 4   441

the proxy pattern

Complete code for the server side

import java.rmi.*;

import java.rmi.server.*;

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

 private static final long serialVersionUID = 1L;

 public String sayHello() {

 return "Server says, 'Hey'";

 }

 public MyRemoteImpl() throws RemoteException { }

 public static void main (String[] args) {

 try {

 MyRemote service = new MyRemoteImpl();

 Naming.rebind("RemoteHello", service);

 } catch(Exception ex) {

 ex.printStackTrace();

 }

 }

}

import java.rmi.*;

public interface MyRemote extends Remote {

 public String sayHello() throws RemoteException;
}

RemoteException and the Remote
interface are in the java.rmi package.

Your interface MUST extend java.rmi.Remote.

All of your remote methods must
declare RemoteException.

UnicastRemoteObject is in
the java.rmi.server package.

The Remote interface:

The Remote service (the implementation):

Extending UnicastRemoteObject is the

easiest way to make a remote object.

You MUST implement your remote interface!!
You have to implement all the interface methods, of course. But notice that you do NOT have to declare the RemoteException.

Your superclass constructor (for
UnicastRemoteObject) declares an exception,
so YOU must write a constructor, because it
means that your constructor is calling risky
code (its super constructor).

Make the remote object, then “bind” it to the rmiregistry using the static Naming.rebind(). The name you register it under is the name clients will use to look it up in the RMI registry.

An RMI Detour
Let’s take a look at all the code for the server side:

442   Chapter 11

how to get the stub object

And that’s where the RMI registry comes in.

And, you’re right; the client has to get the stub object
(our proxy), because that’s the thing the client will call
methods on. To do that, the client does a “lookup,”
like going to the white pages of a phone book, and
essentially says, “Here’s a name, and I’d like the stub
that goes with that name.”

Let’s take a look at the code we need to look up and
retrieve a stub object.

Code Up Close

MyRemote service =

 (MyRemote) Naming.lookup("rmi://127.0.0.1/RemoteHello");

The client always uses the remote interface as the type of the service. In fact, the client never needs to know the actual class name of your remote service.

You have to cast it to the
interface, since the lookup
method returns type Object.

lookup() is a static method
of the Naming class.

The host name or IP
address where the
service is running.
(127.0.0.1 is localhost.)

This must be the name that the service was registered under.

Here’s how it works

on the next
page.

An RMI Detour

How does the client actually get
the stub object?

you are here 4   443

the proxy pattern

Service object

Client object Stub
Skeleton

ServerClient

Remote Hello

Stub

RMI registry (on server)

1 Client does a lookup on the RMI registry

2 RMI registry returns the stub object
(as the return value of the lookup method) and RMI
deserializes the stub automatically.

3 Client invokes a method on the stub, as if the
stub IS the real service

1

2

3

Naming.lookup("rmi://127.0.0.1/RemoteHello");

lookup()

stub returned

sayHello()

How it works...

An RMI Detour

444   Chapter 11

the remote client

import java.rmi.*;

public class MyRemoteClient {

 public static void main (String[] args) {

 new MyRemoteClient().go();

 }

 public void go() {

 try {

 MyRemote service = (MyRemote) Naming.lookup("rmi://127.0.0.1/RemoteHello");

 String s = service.sayHello();

 System.out.println(s);

 } catch(Exception ex) {

 ex.printStackTrace();

 }

 }

}

The Naming class (for doing the rmiregistry lookup) is in the java.rmi package.

It comes out of the
registry as typ

e

Object, so don’t
 forget the ca

st.

You need the IP address or hostname... ...and the name used to
bind/rebind the service.

It looks just like a regular old method call! (Except it must acknowledge the RemoteException.)

1. 	
The things programmers do wrong
with RMI are:

1. Forget to start rmiregistry before starting the remote
service (when the service is registered using Naming.
rebind(), the rmiregistry must be running!)

2. Forget to make arguments and return types serializable
(you won’t know until runtime; this is not something the
compiler will detect).

An RMI Detour

Complete code for the client side

Let’s take a look at all the code for the client side:

you are here 4   445

the proxy pattern

GumballMachine

Server heap

GumballMonitor

Client heap

GumballStub GumballSkeleto
n

This is our
Monitor code. It
uses a proxy to
talk to remote
gumball machines.

The stub is a proxy
to the remote
GumballMachine.

The skeleton accepts the remote calls and makes everything work on the service side.

The
GumballMachine is
our remote service;
it’s going to expose
a remote interface
for the client to
use.

Back to our GumballMachine remote proxy
Okay, now that you have the RMI basics down, you’ve got the tools you need
to implement the gumball machine remote proxy. Let’s take a look at how the
GumballMachine fits into this framework:

CEO’s desktop Remote GumballMachine with a JVM.

Stop and think through how we’re going to adapt the gumball machine code to work with
a remote proxy. Feel free to make some notes here about what needs to change and
what’s going to be different than the previous version.

446   Chapter 11

remote interface for the gumball machine

import java.io.*;

public interface State extends Serializable {

 public void insertQuarter();

 public void ejectQuarter();

 public void turnCrank();

 public void dispense();

}

import java.rmi.*;

public interface GumballMachineRemote extends Remote {

 public int getCount() throws RemoteException;

 public String getLocation() throws RemoteException;

 public State getState() throws RemoteException;

}

Getting the GumballMachine ready to
be a remote service
The first step in converting our code to use the remote proxy is to enable the
GumballMachine to service remote requests from clients. In other words,
we’re going to make it into a service. To do that, we need to:

1. Create a remote interface for the GumballMachine. This will provide a set
of methods that can be called remotely.

2. Make sure all the return types in the interface are serializable.

3. Implement the interface in a concrete class.

We’ll start with the remote interface:

This is the remote interface.
Don’t forget to import java.rmi.*

Here are the methods we’re going to support.
Each one throws RemoteException.All return types need

to be primitive or
Serializable...

We have one return type that isn’t Serializable: the State class. Let’s fix it up...

Serializable is in the java.io package.

Then we just extend the Serializable
interface (which has no methods in it).
And now State in all the subclasses can
be transferred over the network.

you are here 4   447

the proxy pattern

public class NoQuarterState implements State {

 private static final long serialVersionUID = 2L;

 transient GumballMachine gumballMachine;

 // all other methods here

}

import java.rmi.*;
import java.rmi.server.*;

public class GumballMachine
 extends UnicastRemoteObject implements GumballMachineRemote
{
 private static final long serialVersionUID = 2L;
 // other instance variables here

 public GumballMachine(String location, int numberGumballs) throws RemoteException {
 // code here
 }

 public int getCount() {
 return count;
 }

 public State getState() {
 return state;
 }

 public String getLocation() {
 return location;
 }
 // other methods here
}

Actually, we’re not done with Serializable yet; we have one problem with State. As you may
remember, each State object maintains a reference to a gumball machine so that it can call the
gumball machine’s methods and change its state. We don’t want the entire gumball machine
serialized and transferred with the State object. There is an easy way to fix this:

In each implementation of State, we add
the serialVersionUID and the transient
keyword to the GumballMachine instance
variable. The transient keyword tells the
JVM not to serialize this field. Note
that this can be slightly dangerous if you
try to access this field once the object’s
been serialized and transferred.

We’ve already implemented our GumballMachine, but we need to make sure it can act as a service and
handle requests coming from over the network. To do that, we have to make sure the GumballMachine is
doing everything it needs to implement the GumballMachineRemote interface.

As you’ve already seen in the RMI detour, this is quite simple; all we need to do is add a couple of things...

First, we need to import the
RMI packages. GumballMachine is

going to subclass the
UnicastRemoteObject;
this gives it the ability to
act as a remote service.

GumballMachine also needs to implement the remote interface...

...and the constructor needs to throw a remote exception, because the superclass does.
That’s it! Nothing
changes here at all!

448   Chapter 11

register the gumball service

public class GumballMachineTestDrive {

 public static void main(String[] args) {
 GumballMachineRemote gumballMachine = null;
 int count;

 if (args.length < 2) {
 System.out.println("GumballMachine <name> <inventory>");
 System.exit(1);
 }

 try {
 count = Integer.parseInt(args[1]);

 gumballMachine = new GumballMachine(args[0], count);
 Naming.rebind("//" + args[0] + "/gumballmachine", gumballMachine);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

File Edit Window Help Huh?

% rmiregistry

Registering with the RMI registry...
That completes the gumball machine service. Now we just need to fire it up so
it can receive requests. First, we need to make sure we register it with the RMI
registry so that clients can locate it.

We’re going to add a little code to the test drive that will take care of this for us:

First we need to add a try/catch block around the gumball instantiation because our constructor can now throw exceptions.

We also add the call to Naming.rebind,
which publishes the GumballMachine stub
under the name gumballmachine.

Let’s go ahead and get this running...

File Edit Window Help Huh?

% java GumballMachineTestDrive austin.mightygumball.com 100

Run this first.

Run this second.

This gets the RMI
registry service up
and running.

This gets the GumballMachine up and running
and registers it with the RMI registry.

We’re using the “official” Mighty

Gumball machines; you should
substitute your own machine name

here, or “localhost”.

you are here 4   449

the proxy pattern

import java.rmi.*;

public class GumballMonitor {

 GumballMachineRemote machine;

 public GumballMonitor(GumballMachineRemote machine) {

 this.machine = machine;

 }

 public void report() {

 try {

 System.out.println("Gumball Machine: " + machine.getLocation());

 System.out.println("Current inventory: " + machine.getCount() + " gumballs");

 System.out.println("Current state: " + machine.getState());

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

}

Now for the GumballMonitor client...
Remember the GumballMonitor? We wanted to reuse it without
having to rewrite it to work over a network. Well, we’re pretty much
going to do that, but we do need to make a few changes.

We also need to catch any remote exceptions that might happen as we try to invoke methods that are ultimately happening over the network.

Now we’re going to rely on the remote
interface rather than the concrete
GumballMachine class.

We need to import the RMI package because we
are using the RemoteException class below...

Joe was right;
this is working out
quite nicely!

450   Chapter 11

test drive the monitor

import java.rmi.*;

public class GumballMonitorTestDrive {

 public static void main(String[] args) {

 String[] location = {"rmi://santafe.mightygumball.com/gumballmachine",

 "rmi://boulder.mightygumball.com/gumballmachine",

 "rmi://austin.mightygumball.com/gumballmachine"};

 GumballMonitor[] monitor = new GumballMonitor[location.length];

 for (int i=0; i < location.length; i++) {

 try {

 GumballMachineRemote machine =

 (GumballMachineRemote) Naming.lookup(location[i]);

 monitor[i] = new GumballMonitor(machine);

 System.out.println(monitor[i]);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 for (int i=0; i < monitor.length; i++) {

 monitor[i].report();

 }

 }

}

Writing the Monitor test drive
Now we’ve got all the pieces we need. We just need to write some
code so the CEO can monitor a bunch of gumball machines:

Here’s all the locations
we’re going to monitor.

Here’s the monitor test drive. The
CEO is going to run this!

We create an array
of locations, one for
each machine.

Then we iterate through each
machine and print out its report.

Now we need to get a proxy
to each remote machine.

We also create an
array of monitors.

you are here 4   451

the proxy pattern

Code Up Close

On each machine, run rmiregistry in
the background or from a separate
terminal window...

try {

 GumballMachineRemote machine =

	 (GumballMachineRemote) Naming.lookup(location[i]);

 monitor[i] = new GumballMonitor(machine);

} catch (Exception e) {

 e.printStackTrace();

}

Remember, Naming.lookup() is a
static method in the RMI package
that takes a location and service
name and looks it up in the
rmiregistry at that location.

This returns a proxy to the remote
Gumball Machine (or throws an exception
if one can’t be located).

Once we get a proxy to the rem
ote

machine, we create a new GumballMonitor

and pass it the machine to monitor.

Another demo for the CEO of Mighty Gumball...

...and then run the GumballMachine, giving it
a location and an initial gumball count.

% rmiregistry &

% java GumballMachineTestDrive santafe.mightygumball.com 100

File Edit Window Help Huh?

File Edit Window Help Huh?

% rmiregistry &

% java GumballMachineTestDrive boulder.mightygumball.com 100

File Edit Window Help Huh?

% rmiregistry &

% java GumballMachineTestDrive austin.mightygumball.com 250

Popular machine!

Okay, it’s time to put all this work together and give another demo. First let’s make
sure a few gumball machines are running the new code:

452   Chapter 11

demoing the monitor

And now let’s put the monitor in the hands of the CEO.
Hopefully, this time he’ll love it:

File Edit Window Help GumballsAndBeyond

% java GumballMonitorTestDrive

Gumball Machine: santafe.mightygumball.com

Current inventory: 99 gumballs

Current state: waiting for quarter

Gumball Machine: boulder.mightygumball.com

Current inventory: 44 gumballs

Current state: waiting for turn of crank

Gumball Machine: austin.mightygumball.com

Current inventory: 187 gumballs

Current state: waiting for quarter

%

The monitor iterates
over each remote
machine and calls
its getLocation(),
getCount(), and
getState() methods.

By invoking methods on the proxy, we make
a remote call across the wire, and get back
a String, an integer, and a State object.
Because we are using a proxy, the Gumball
Monitor doesn’t know, or care, that calls
are remote (other than having to worry
about remote exceptions).

This is amazing; it’s going to
revolutionize my business and
blow away the competition!

you are here 4   453

the proxy pattern

This worked great! But
I want to make sure I

understand exactly what’s
going on...

CEO’s desktop
Remote GumballMachine with a JVM

GumballMachine
GumballMonito

r Proxy/Stu
b

Skeleton

austin

Proxy/Stub

RMI registry (on gumball machine)1

3

lookup(“austin”)

proxy returned

getState()

2

Type is GumballMachineRemote

1 The CEO runs the monitor, which first grabs the proxies to the remote
gumball machines and then calls getState() on each one (along with
getCount() and getLocation()).

Behind
the Scenes

454   Chapter 11

proxy behind the scenes

GumballMachine

GumballMonito
r Proxy/Stu

b

Skeleton

getState()

2 getState() is called on the proxy, which forwards the call to the remote
service. The skeleton receives the request and then forwards it to the
GumballMachine.

getState()

3 GumballMachine returns the state to the skeleton, which serializes it and
transfers it back over the wire to the proxy. The proxy deserializes it and
returns it as an object to the monitor.

GumballMachine
GumballMonito

r Proxy/Stu
b

Skeleton

State
object

State
object

Serialized
State

The monitor hasn’t changed at all,
except it knows it may encounter
remote exceptions. It also uses the
GumballMachineRemote interface rather
than a concrete implementation.

Likewise, the GumballMachine
implements another interface and
may throw a remote exception in its
constructor, but other than that, the
code hasn’t changed.

We also have a small bit of code to register and locate stubs using the
RMI registry. But no matter what, if we were writing something to
work over the internet, we’d need some kind of locator service.

you are here 4   455

the proxy pattern

Well, we’ve seen how the Proxy Pattern provides a surrogate or
placeholder for another object. We’ve also described the proxy as
a “representative” for another object.

But what about a proxy controlling access? That sounds a little
strange. No worries. In the case of the gumball machine, just think
of the proxy controlling access to the remote object. The proxy
needed to control access because our client, the monitor, didn’t
know how to talk to a remote object. So in some sense the remote
proxy controlled access so that it could handle the network details
for us. As we just discussed, there are many variations of the Proxy
Pattern, and the variations typically revolve around the way the
proxy “controls access.” We’re going to talk more about this later,
but for now here are a few ways proxies control access:

 � As we know, a remote proxy controls access to a remote
object.

 � A virtual proxy controls access to a resource that is expensive
to create.

 � A protection proxy controls access to a resource based on
access rights.

Now that you’ve got the gist of the general pattern, check out the
class diagram...

The Proxy Pattern defined

The Proxy Pattern provides a surrogate or
placeholder for another object to control access to it.

We’ve already put a lot of pages behind us in this chapter; as you
can see, explaining the Remote Proxy is quite involved. Despite that,
you’ll see that the definition and class diagram for the Proxy Pattern
is actually fairly straightforward. Note that the Remote Proxy is one
implementation of the general Proxy Pattern; there are actually
quite a few variations of the pattern, and we’ll talk about them later.
For now, let’s get the details of the general pattern down.

Here’s the Proxy Pattern definition:

Use the Proxy
Pattern to create a
representative object
that controls access
to another object,
which may be remote,
expensive to create, or
in need of securing.

456   Chapter 11

the proxy pattern defined

Both the Proxy and the

RealSubject implement the

Subject interface. This
allows any client to treat

the proxy just like the

RealSubject.

The RealSubject is usually the object that does most
of the real work; the Proxy controls access to it.

The Proxy keeps a
reference to the
Subject, so it can
forward requests
to the Subject
when necessary.

<<interface>>
Subject

request()

RealSubject

request()

Proxy
subject

request()

The Proxy often instantiates
or handles the creation of
the RealSubject.

Let’s step through the diagram...

First we have a Subject, which provides an interface for the RealSubject and the
Proxy. Because it implements the same interface as the RealSubject, the Proxy can
be substituted for the RealSubject anywhere it occurs.

The RealSubject is the object that does the real work. It’s the object that the Proxy
represents and controls access to.

The Proxy holds a reference to the RealSubject. In some cases, the Proxy may be
responsible for creating and destroying the RealSubject. Clients interact with the
RealSubject through the Proxy. Because the Proxy and RealSubject implement the
same interface (Subject), the Proxy can be substituted anywhere the Subject can be
used. The Proxy also controls access to the RealSubject; this control may be needed
if the Subject is running on a remote machine, if the Subject is expensive to create
in some way, or if access to the subject needs to be protected in some way.

Now that you understand the general pattern, let’s look at some other ways of using
proxy beyond the Remote Proxy...

you are here 4   457

the proxy pattern

Get ready for the Virtual Proxy
Okay, so far you’ve seen the definition of the Proxy Pattern and you’ve taken a look
at one specific example: the Remote Proxy. Now we’re going to take a look at a different
type of proxy, the Virtual Proxy. As you’ll discover, the Proxy Pattern can manifest
itself in many forms, yet all the forms follow roughly the general proxy design. Why
so many forms? Because the Proxy Pattern can be applied to a lot of different use
cases. Let’s check out the Virtual Proxy and compare it to the Remote Proxy:

 RealSubject

 Client
Proxy

Remote Proxy request()
request()

With the Remote Proxy, the proxy
acts as a local representative
for an object that lives in a
different JVM. A method call on
the proxy results in the call being
transferred over the wire and
invoked remotely, and the result
being returned back to the proxy
and then to the Client.

 RealSubject Client
Proxy

Virtual Proxy
The Virtual Proxy acts as a
representative for an object that
may be expensive to create. The
Virtual Proxy often defers the
creation of the object until it
is needed; the Virtual Proxy
also acts as a surrogate for
the object before and while it is
being created. After that, the proxy
delegates requests directly to the
RealSubject.

We know this diagram
pretty well by now...

Big “expensive to create” obj
ect.

The proxy creates
the RealSubject
when it’s needed.

request()

request()

The proxy may handle the request, or if
the RealSubject has been created, delegate
the calls to the RealSubject.

458   Chapter 11

image proxy controls access

While the album cover is loading, the proxy displays a message.

When the album
 cover is

fully loaded,
the proxy

displays the i
mage.

Choose the album cover of your liking here.

Displaying Album covers
Let’s say you want to write an application that displays your favorite album covers.
You might create a menu of the album titles and then retrieve the images from an
online service like Amazon.com. If you’re using Swing, you might create an Icon
and ask it to load the image from the network. The only problem is, depending
on the network load and the bandwidth of your connection, retrieving an album
cover might take a little time, so your application should display something while
you’re waiting for the image to load. We also don’t want to hang up the entire
application while it’s waiting on the image. Once the image is loaded, the message
should go away and you should see the image.

An easy way to achieve this is through a virtual proxy. The virtual proxy can stand
in place of the icon, manage the background loading, and before the image is
fully retrieved from the network, display “Loading album cover, please wait...”.
Once the image is loaded, the proxy delegates the display to the Icon.

you are here 4   459

the proxy pattern

Designing the Album Cover Virtual Proxy

<<interface>>
Icon

getIconWidth()
getIconHeight()
paintIcon()

ImageProxy
subject

getIconWidth()
getIconHeight()
paintIcon()

getIconWidth()
getIconHeight()
paintIcon()

ImageIcon

This is javax.swing.ImageIcon, a class that displays an Image. This is our proxy, which first
displays a message and then, when
the image is loaded, delegates to
ImageIcon to display the image.

This is the Swing
Icon interface used
to display images in a
user interface.

Before writing the code for the Album Cover Viewer, let’s look at the class diagram.
You’ll see this looks just like our Remote Proxy class diagram, but here the proxy is
used to hide an object that is expensive to create (because we need to retrieve the data
for the Icon over the network) as opposed to an object that actually lives somewhere
else on the network.

ImageProxy first creates an ImageIcon and starts
loading it from a network URL.

While the bytes of the image are being retrieved,
ImageProxy displays “Loading album cover, please
wait...”.

When the image is fully loaded, ImageProxy delegates
all method calls to the image icon, including
paintIcon(), getIconWidth(), and getIconHeight().

If the user requests a new image, we’ll create a new
proxy and start the process over.

How ImageProxy is going to work:

1

2

3

4

460   Chapter 11

the image proxy

class ImageProxy implements Icon {
 volatile ImageIcon imageIcon;
 final URL imageURL;
 Thread retrievalThread;
 boolean retrieving = false;

 public ImageProxy(URL url) { imageURL = url; }
 public int getIconWidth() {
 if (imageIcon != null) {
 return imageIcon.getIconWidth();
 } else {
 return 800;
 }
 }
 public int getIconHeight() {
 if (imageIcon != null) {
 return imageIcon.getIconHeight();
 } else {
 return 600;
 }
 }

 synchronized void setImageIcon(ImageIcon imageIcon) {
 this.imageIcon = imageIcon;
 }

 public void paintIcon(final Component c, Graphics g, int x, int y) {
 if (imageIcon != null) {
 imageIcon.paintIcon(c, g, x, y);
 } else {
 g.drawString("Loading album cover, please wait...", x+300, y+190);
 if (!retrieving) {
 retrieving = true;

 retrievalThread = new Thread(new Runnable() {
 public void run() {
 try {
 setImageIcon(new ImageIcon(imageURL, "Album Cover"));
 c.repaint();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 retrievalThread.start();
 }
 }
 }
}

Writing the Image Proxy

We pass the URL of the image into
the constructor. This is the image we
need to display once it’s loaded!

The imageIcon is the REAL icon that we
eventually want to display when it’s loaded.

We return a default width and height
until the imageIcon is loaded; then we
turn it over to the imageIcon.

Here’s where things get interesting.
This code paints the icon on the
screen (by delegating to imageIcon).
However, if we don’t have a fully
created imageIcon, then we create
one. Let’s look at this up close on the
next page...

<<interface>>
Icon

getIconWidth()
getIconHeight()
paintIcon()

The ImageProxy
implements the Icon
interface.

imageIcon is used by two different
threads, so along with making the variable
volatile (to protect reads), we use a
synchronized setter (to protect writes).

you are here 4   461

the proxy pattern

. Code Up Close

 public void paintIcon(final Component c, Graphics g, int x, int y) {

 if (imageIcon != null) {

 imageIcon.paintIcon(c, g, x, y);

 } else {

 g.drawString("Loading album cover, please wait...", x+300, y+190);

 if (!retrieving) {

 retrieving = true;

 retrievalThread = new Thread(new Runnable() {

 public void run() {

 try {

 setImageIcon(new ImageIcon(imageURL, "Album Cover"));

 c.repaint();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 });

 retrievalThread.start();

 }

 }

 }

This method is called when it’s time to paint the icon on the screen.

If we’ve got an icon already, we go
ahead and tell it to paint itself.

Otherwise we display the
“loading” message.

Here’s where we load the REAL icon image. Note that

the image loading with IconImage is synchronou
s: the

ImageIcon construct
or doesn’t retur

n until the image

is loaded. That doesn’t give
us much of a chance

to do

screen updates a
nd have our message displayed,

so we’re

going to do this
asynchronously. S

ee the “Code Way Up

Close” on the next
 page for more...

462   Chapter 11

image proxy up close

 if (!retrieving) {

 retrieving = true;

 retrievalThread = new Thread(new Runnable() {

 public void run() {

 try {

 setImageIcon(new ImageIcon(imageURL, "Album Cover"));

 c.repaint();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 });

 retrievalThread.start();

 }

In our thread we instantiate the Icon object. Its constructor will not return until the image is loaded.

If we aren’t already trying to retrieve the image...

We don’t want to hang up the
entire user interface, so we’re
going to use another thread to
retrieve the image.

When we have the image,
we tell Swing that we
need to be repainted.

So, the next time the display is painted after the ImageIcon is instantiated,
the paintIcon() method will paint the image, not the loading message.

...then it’s time to start retrieving it (in case you
were wondering, only one thread calls paint, so we
should be okay here in terms of thread safety).

Code Way Up Close

you are here 4   463

the proxy pattern

class ImageProxy implements Icon {

 // instance variables & constructor here

 public int getIconWidth() {

 if (imageIcon != null) {

 return imageIcon.getIconWidth();

 } else {

 return 800;

 }

 }

 public int getIconHeight() {

 if (imageIcon != null) {

 return imageIcon.getIconHeight();

 } else {

 return 600;

 }

 }

 public void paintIcon(final Component c, Graphics g, int x, int y) {

 if (imageIcon != null) {

 imageIcon.paintIcon(c, g, x, y);

 } else {

 g.drawString("Loading album cover, please wait...", x+300, y+190);

	 // more code here

 }

 }

}

The ImageProxy class appears to have two states that are controlled
by conditional statements. Can you think of another pattern that might
clean up this code? How would you redesign ImageProxy?

Two states

Two states

Two states

 Design Puzzle

464   Chapter 11

test drive the image proxy

public class ImageProxyTestDrive {
 ImageComponent imageComponent;
 public static void main (String[] args) throws Exception {
 ImageProxyTestDrive testDrive = new ImageProxyTestDrive();
 }

 public ImageProxyTestDrive() throws Exception {

 // set up frame and menus

 Icon icon = new ImageProxy(initialURL);
 imageComponent = new ImageComponent(icon);
 frame.getContentPane().add(imageComponent);
 }
}

Testing the Album Cover Viewer

Here we create an image proxy and set it to an initial URL. Whenever you choose a selection from the Album menu, you’ll get a new image proxy.

Okay, it’s time to test out this fancy new virtual proxy. Behind the scenes
we’ve been baking up a new ImageProxyTestDrive that sets up the window,
creates a frame, installs the menus, and creates our proxy. We don’t go
through all that code in gory detail here, but you can always grab the
source code and have a look, or check it out at the end of the chapter
where we list all the source code for the Virtual Proxy.

Here’s a partial view of the test drive code:

Next we wrap our proxy in a
component so it can be added to
the frame. The component will
take care of the proxy's width,
height, and similar details.

Finally we add the proxy to the
frame so it can be displayed.

Now let’s run the test drive:

Running ImageProxyTestDrive
should give you a window like this.

Use the menu to load different album covers; watch the
proxy display “loading” until the image has arrived.

Resize the window as the “loading” message is displayed.
Notice that the proxy is handling the loading without
hanging up the Swing window.

Add your own favorite albums to ImageProxyTestDrive.

Things to try...

1

2

3

File Edit Window Help JustSomeOfTheAlbumsThatGotUsThroughThisBook

% java ImageProxyTestDrive

Ready Bake
Code

aphex twin

you are here 4   465

the proxy pattern

ImageIcon

get imageget image

What did we do?

ImageIcon

 ImageProx
y

image retrievedimage retrieved

We created an ImageProxy class for the display. The
paintIcon() method is called and ImageProxy fires off a
thread to retrieve the image and create the ImageIcon.

paintIcon()paintIcon()

ImageProxy creates a
thread to instantiate

 the

ImageIcon, which starts
retrieving the image.

displays loading displays loading
messagemessage

At some point the image is returned and
the ImageIcon fully instantiated.

After the ImageIcon is created, the next time paintIcon()
is called, the proxy delegates to the ImageIcon.

ImageIcon
 ImageProx

y

paintIcon()paintIcon()

displays the real imagedisplays the real image

paintIcon()paintIcon()

1

2

3

Some image Some image
server on server on
the internetthe internet

Behind
the Scenes

466   Chapter 11

q&a about the image proxy

Q: The Remote Proxy and Virtual
Proxy seem so different to me; are
they really ONE pattern?

A: You’ll find a lot of variants of the
Proxy Pattern in the real world; what
they all have in common is that they
intercept a method invocation that the
client is making on the subject. This
level of indirection allows us to do
many things, including dispatching
requests to a remote subject, providing
a representative for an expensive
object as it is created, or, as you’ll see,
providing some level of protection that
can determine which clients should be
calling which methods. That’s just the
beginning; the general Proxy Pattern
can be applied in many different ways,
and we’ll cover some of the other ways
at the end of the chapter.

Q: ImageProxy seems just like
a Decorator to me. I mean, we are
basically wrapping one object with
another and then delegating the calls
to the ImageIcon. What am I missing?

A: Sometimes Proxy and Decorator
look very similar, but their purposes are
different: a decorator adds behavior to
a class, while a proxy controls access
to it. You might ask, “Isn’t the loading
message adding behavior?” In some
ways it is; however, more importantly,
the ImageProxy is controlling access
to an ImageIcon. How does it control
access? Well, think about it this way:
the proxy is decoupling the client from
the ImageIcon. If they were coupled

the client would have to wait until each
image is retrieved before it could paint
its entire interface. The proxy controls
access to the ImageIcon so that before
it is fully created, the proxy provides
another onscreen representation. Once
the ImageIcon is created, the proxy
allows access.

Q: How do I make clients use the
Proxy rather than the Real Subject?

A: Good question. One common
technique is to provide a factory that
instantiates and returns the subject.
Because this happens in a factory
method, we can then wrap the subject
with a proxy before returning it. The
client never knows or cares that it’s
using a proxy instead of the real thing.

Q: I noticed in the ImageProxy
example, you always create a new
ImageIcon to get the image, even if
the image has already been retrieved.
Could you implement something
similar to the ImageProxy that
caches past retrievals?

A: You are talking about a
specialized form of a Virtual Proxy
called a Caching Proxy. A caching proxy
maintains a cache of previously created
objects and when a request is made it
returns a cached object, if possible.

We’re going to look at this and at
several other variants of the Proxy
Pattern at the end of the chapter.

Q: I see how Decorator and Proxy
relate, but what about Adapter? An
adapter seems very similar as well.

A: Both Proxy and Adapter sit in front
of other objects and forward requests to
them. Remember that Adapter changes
the interface of the objects it adapts,
while Proxy implements the same
interface.

There is one additional similarity that
relates to the Protection Proxy. A
Protection Proxy may allow or disallow
a client access to particular methods
in an object based on the role of the
client. In this way a Protection Proxy
may only provide a partial interface to
a client, which is quite similar to some
Adapters. We are going to take a look at
Protection Proxy in a few pages.

you are here 4   467

the proxy pattern

Tonight’s talk: Proxy and Decorator get intentional.

Proxy:
Hello, Decorator. I presume you’re here because
people sometimes get us confused?

Me copying your ideas? Please. I control access to
objects. You just decorate them. My job is so much
more important than yours it’s just not even funny.

Fine, so maybe you’re not entirely frivolous...but I
still don’t get why you think I’m copying all your
ideas. I’m all about representing my subjects, not
decorating them.

I don’t think you get it, Decorator. I stand in for
my Subjects; I don’t just add behavior. Clients use
me as a surrogate of a Real Subject, because I can
protect them from unwanted access, or keep their
GUIs from hanging up while they’re waiting for big
objects to load, or hide the fact that their Subjects
are running on remote machines. I’d say that’s a
very different intent from yours!

Decorator:

Well, I think the reason people get us confused is
that you go around pretending to be an entirely
different pattern, when in fact, you’re just Decorator
in disguise. I really don’t think you should be
copying all my ideas.

“Just” decorate? You think decorating is some
frivolous, unimportant pattern? Let me tell you
buddy, I add behavior. That’s the most important
thing about objects—what they do!

You can call it “representation” but if it looks like
a duck and walks like a duck... I mean, just look at
your Virtual Proxy; it’s just another way of adding
behavior to do something while some big expensive
object is loading, and your Remote Proxy is a way
of talking to remote objects so your clients don’t
have to bother with that themselves. It’s all about
behavior, just like I said.

Call it what you want. I implement the same
interface as the objects I wrap; so do you.

468   Chapter 11

fireside chats: proxy and decorator

Proxy:
Okay, let’s review that statement. You wrap an
object. While sometimes we informally say a proxy
wraps its Subject, that’s not really an accurate term.

Think about a remote proxy...what object am
I wrapping? The object I’m representing and
controlling access to lives on another machine!
Let’s see you do that.

Sure, okay, take a virtual proxy...think about the
album viewer example. When the client first uses
me as a proxy the subject doesn’t even exist! So
what am I wrapping there?

I never knew decorators were so dumb! Of course
I sometimes create objects. How do you think a
virtual proxy gets its subject?! Okay, you just pointed
out a big difference between us: we both know
decorators only add window dressing; they never get
to instantiate anything.

Hey, after this conversation I’m convinced you’re
just a dumb proxy!

Very seldom will you ever see a proxy get into
wrapping a subject multiple times; in fact, if you’re
wrapping something 10 times, you better go back
reexamine your design.

Decorator:

Oh yeah? Why not?

Okay, but we all know remote proxies are kinda
weird. Got a second example? I doubt it.

Uh huh, and the next thing you’ll be saying is that
you actually get to create objects.

Oh yeah? Instantiate this!

Dumb proxy? I’d like to see you recursively wrap
an object with 10 decorators and keep your head
straight at the same time.

Just like a proxy, acting all real when in fact you just
stand in for the objects doing the real work. You
know, I actually feel sorry for you.

you are here 4   469

the proxy pattern

Using the Java API’s Proxy to create a
protection proxy

Java’s got its own proxy support right in the java.lang.reflect package. With this package,
Java lets you create a proxy class on the fly that implements one or more interfaces and
forwards method invocations to a class that you specify. Because the actual proxy class is
created at runtime, we refer to this Java technology as a dynamic proxy.

We’re going to use Java’s dynamic proxy to create our next proxy implementation (a
protection proxy), but before we do that, let’s quickly look at a class diagram that shows
how dynamic proxies are put together. Like most things in the real world, it differs
slightly from the classic definition of the pattern:

<<interface>>
Subject

request()
RealSubject

request()
Proxy

request()

<<interface>>
InvocationHandler

invoke()

InvocationHandler

The Proxy now consists
of two classes.

The Proxy is generated
by Java and implements
the entire Subject
interface.

You supply the InvocationHandler, which gets passed
all method calls that are invoked on the Proxy.
The InvocationHandler controls access to the
methods of the RealSubject.

Because Java creates the Proxy class for you, you need a way to tell the Proxy class what
to do. You can’t put that code into the Proxy class like we did before, because you’re not
implementing one directly. So, if you can’t put this code in the Proxy class, where do
you put it? In an InvocationHandler. The job of the InvocationHandler is to respond to
any method calls on the proxy. Think of the InvocationHandler as the object the Proxy
asks to do all the real work after it has received the method calls.

Okay, let’s step through how to use the dynamic proxy...

invoke()

470   Chapter 11

protection proxy

public interface Person {

 String getName();

 String getGender();

 String getInterests();

 int getGeekRating();

 void setName(String name);

 void setGender(String gender);

 void setInterests(String interests);

 void setGeekRating(int rating);

}

Geeky Matchmaking in Objectville
Every town needs a matchmaking service, right? You’ve risen to the task and
implemented a dating service for Objectville. You’ve also tried to be innovative
by including a “Geek rating” feature where participants can rate each other’s
geekiness (a good thing)—you figure this keeps your customers engaged and
looking through possible matches; it also makes things a lot more fun.

Your service revolves around a Person interface that allows you to set and get
information about a person:

Here we can get information about the person’s name, gender, interests, and Geek rating (1-10).

We can also set the same
information through the
respective method calls.

setGeekRating() takes an int
eger

and adds it to the
running

average for this per
son.

This is the inter
face; we’ll

get to the implementation

in just a sec...

Now let’s check out the implementation...

you are here 4   471

the proxy pattern

public class PersonImpl implements Person {
 String name;
 String gender;
 String interests;
 int rating;
 int ratingCount = 0;

 public String getName() {
 return name;
 }

 public String getGender() {
 return gender;
 }

 public String getInterests() {
 return interests;
 }

 public int getGeekRating() {
 if (ratingCount == 0) return 0;
 return (rating/ratingCount);
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setGender(String gender) {
 this.gender = gender;
 }

 public void setInterests(String interests) {
 this.interests = interests;
 }

 public void setGeekRating(int rating) {
 this.rating += rating;
 ratingCount++;
 }
}

The instance variables.

The PersonImpl implements the Person interface.

All the getter methods; they each return
the appropriate instance variable...

...except for getGeekRating(),
which computes the average
of the ratings by dividing the
ratings by the ratingCount.

And here’s all the setter
methods, which set the
corresponding instance variable.

Finally, the setGeekRating() method increments the total ratingCount and adds the rating to the running total.

The Person implementation

472   Chapter 11

person needs protecting

While we suspect other factors may be keeping Elroy from getting
dates, he’s right: you shouldn’t be able to vote for yourself or to
change another customer’s data. The way Person is defined, any client
can call any of the methods.

This is a perfect example of where we might be able to use a
Protection Proxy. What’s a Protection Proxy? It’s a proxy that controls
access to an object based on access rights. For instance, if we had an
employee object, a Protection Proxy might allow the employee to call
certain methods on the object, a manager to call additional methods
(like setSalary()), and a human resources employee to call any method
on the object.

In our dating service we want to make sure that a customer can set
his own information while preventing others from altering it. We also
want to allow just the opposite with the Geek ratings: we want the
other customers to be able to set the rating, but not that particular
customer. We also have a number of getter methods in Person, and
because none of these return private information, any customer
should be able to call them.

Elroy

I wasn’t very successful finding dates.
Then I noticed someone had changed my
interests. I also noticed that a lot of
people are bumping up their Geek scores
by giving themselves high ratings. You
shouldn’t be able to change someone else’s
interests or give yourself a rating!

you are here 4   473

the proxy pattern

Five-minute drama: protecting subjects
The internet bubble seems a distant memory; those were the days
when all you needed to do to find a better, higher-paying job was
to walk across the street. Even agents for software developers
were in vogue...

Like a protectio
n

proxy, the agen
t

protects access
 to his

subject, letting
 only

certain calls th
rough...Agent

Jane DotCom

I’d like to make an
offer, can we get her on
the phone?

Come on.
You’re wasting our time
here! Not a chance! Come
back later with a better
offer.

She’s tied up...uh...
in a meeting right now,
what did you have in
mind?

We think we can
meet her current
salary plus 15%.

Subject

474   Chapter 11

big picture of proxy

Big Picture: creating a Dynamic Proxy
for the Person
We have a couple of problems to fix: customers shouldn’t be changing their
own Geek rating and customers shouldn’t be able to change other customers’
personal information. To fix these problems we’re going to create two proxies:
one for accessing your own Person object and one for accessing another
customer’s Person object. That way, the proxies can control what requests can
be made in each circumstance.

<<interface>>
Subject

request()

RealSubject

request()
Proxy

request()

<<interface>>
InvocationHandler

invoke()

InvocationHandler

Create two InvocationHandlers.

Write the code that creates the
dynamic proxies.

Wrap any Person object with the
appropriate proxy.

InvocationHandlers implement the behavior
of the proxy. As you’ll see, Java will take care
of creating the actual proxy class and object;
we just need to supply a handler that knows
what to do when a method is called on it.

We need to write a little bit of code to
generate the proxy class and instantiate it.
We’ll step through this code in just a bit.

When we need to use a Person object, either it’s
the object of the customer himself (in that case,
we’ll call him the “owner”), or it’s another user
of the service that the customer is checking out
(in that case we’ll call him “non-owner”).

In either case, we create the appropriate proxy
for the Person.

Step one:

Step two:

Step three:

We need two
of these.

We create the
proxy itself at
runtime.

request()
Proxy

invoke()

OwnerInvocationHandler

request()
Proxy

invoke()

NonOwnerInvocationHandler

When a customer is viewing his own bean

When a customer is viewing someone else’s bean

invoke()

To create these proxies we’re going to use the Java
API’s dynamic proxy that you saw a few pages
back. Java will create two proxies for us; all we
need to do is supply the handlers that know what
to do when a method is invoked on the proxy.

Remember this diagram
from a few pages back...

you are here 4   475

the proxy pattern

Step one: creating Invocation Handlers
We know we need to write two invocation handlers, one for the owner and one for
the non-owner. But what are invocation handlers? Here’s the way to think about
them: when a method call is made on the proxy, the proxy forwards that call to
your invocation handler, but not by calling the invocation handler’s corresponding
method. So, what does it call? Have a look at the InvocationHandler interface:

There’s only one method, invoke(), and no matter what methods get called
on the proxy, the invoke() method is what gets called on the handler. Let’s see
how this works:

proxy.setGeekRating(9);

invoke(Object proxy, Method method, Object[] args)

Let’s say the setGeekRating()
method is called on the proxy.

The proxy then
turns around and
calls invoke() on the
InvocationHandler.

1

2

The handler decides
what it should do
with the request
and possibly
forwards it on to
the RealSubject.
How does the
handler decide?
We’ll find out next.

3

return method.invoke(person, args);

Here we invoke the
original method that was
called on the proxy. This
object was passed to us in
the invoke call.

Only now we
invoke it on the
RealSubject...

...with the original
arguments.

Here’s how
we invoke the
method on the
RealSubject.

The Method class, part of the
reflection API, tells us what
method was called on the proxy
via its getName() method.

<<interface>>
InvocationHandler

invoke()

476   Chapter 11

creating an invocation handler

import java.lang.reflect.*;

public class OwnerInvocationHandler implements InvocationHandler {

 Person person;

 public OwnerInvocationHandler(Person person) {

 this.person = person;

 }

 public Object invoke(Object proxy, Method method, Object[] args)

 throws IllegalAccessException {

 try {

 if (method.getName().startsWith("get")) {

 return method.invoke(person, args);

 } else if (method.getName().equals("setGeekRating")) {

 throw new IllegalAccessException();

 } else if (method.getName().startsWith("set")) {

 return method.invoke(person, args);

 }

 } catch (InvocationTargetException e) {

 e.printStackTrace();

 }

 return null;

 }

}

Creating Invocation Handlers, continued...
When invoke() is called by the proxy, how do you know what to do with the call?
Typically, you’ll examine the method that was called on the proxy and make
decisions based on the method’s name and possibly its arguments. Let’s implement
OwnerInvocationHandler to see how this works:

InvocationHandler is part of the java.lang.reflect
package, so we need to import it. All invocation handlers implement the

InvocationHandler interface.

We're passed the RealSubject in the constructor and we keep a reference to it.

Here’s the invoke()
method that gets
called every time a
method is invoked
on the proxy.

If the method is a getter,
we go ahead and invoke it
on the real subject.

Otherwise, if it is
the setGeekRating()
method we disallow
it by throwing
IllegalAccessException.

Because we are the
owner, any other set
method is fine and we
go ahead and invoke it
on the real subject.If any other method is called,

we’re just going to return null
rather than take a chance.

This will happen if the real subject throws an exception.

you are here 4   477

the proxy pattern

The NonOwnerInvocationHandler works just like the OwnerInvocationHandler except
that it allows calls to setGeekRating() and it disallows calls to any other set method.
Go ahead and write this handler yourself:

478   Chapter 11

create the proxy

Person getOwnerProxy(Person person) {

 return (Person) Proxy.newProxyInstance(

 person.getClass().getClassLoader(),

 person.getClass().getInterfaces(),

 new OwnerInvocationHandler(person));

}

Now, all we have left is to dynamically create the Proxy class and instantiate the proxy
object. Let’s start by writing a method that takes a Person object and knows how to create
an owner proxy for it. That is, we’re going to create the kind of proxy that forwards its
method calls to OwnerInvocationHandler. Here’s the code:

Step two: creating the Proxy class and
instantiating the Proxy object

This method takes a Person object (the real
subject) and returns a proxy for it. Because the
proxy has the same interface as the subject, we
return a Person.

This code creates the
proxy. Now this is some
mighty ugly code, so let’s
step through it carefully.

To create a proxy we use the
static newProxyInstance()
method on the Proxy class.

We pass it the class loader for our subject...

...and the set of interfaces the
proxy needs to implement...

...and an invocation handler, in this
case our OwnerInvocationHandler.

We pass the real subject into the constructor of
the invocation handler. If you look back two pages,
you’ll see this is how the handler gets access to
the real subject.

While it is a little complicated, there isn’t much to creating
a dynamic proxy. Why don’t you write getNonOwnerProxy(),
which returns a proxy for NonOwnerInvocationHandler:

Take it further: can you write a method called getProxy() that takes
a handler and a person and returns a proxy that uses that handler?

you are here 4   479

the proxy pattern

public class MatchMakingTestDrive {
 // instance variables here

 public static void main(String[] args) {
 MatchMakingTestDrive test = new MatchMakingTestDrive();
 test.drive();
 }

 public MatchMakingTestDrive() {
 initializeDatabase();
 }

 public void drive() {
 Person joe = getPersonFromDatabase("Joe Javabean");
 Person ownerProxy = getOwnerProxy(joe);
 System.out.println("Name is " + ownerProxy.getName());
 ownerProxy.setInterests("bowling, Go");
 System.out.println("Interests set from owner proxy");
 try {
 ownerProxy.setGeekRating(10);
 } catch (Exception e) {
 System.out.println("Can't set rating from owner proxy");
 }
 System.out.println("Rating is " + ownerProxy.getGeekRating());

 Person nonOwnerProxy = getNonOwnerProxy(joe);
 System.out.println("Name is " + nonOwnerProxy.getName());
 try {
 nonOwnerProxy.setInterests("bowling, Go");
 } catch (Exception e) {
 System.out.println("Can't set interests from non owner proxy");
 }
 nonOwnerProxy.setGeekRating(3);
 System.out.println("Rating set from non owner proxy");
 System.out.println("Rating is " + nonOwnerProxy.getGeekRating());
 }

 // other methods like getOwnerProxy and getNonOwnerProxy here
}

Testing the matchmaking service
Let’s give the matchmaking service a test run and see how it controls access to
the setter methods based on the proxy that is used.

The main() method just creates
the test drive and calls its drive()
method to get things going.

The constructor initializes our database
of people in the matchmaking service.

Let’s retrieve a person
from the database...

...and create an owner proxy.

Call a getter...

...and then a setter.

And then try to
change the rating.

This shouldn’t work!

Now create a non-
owner proxy...
...and call a getter...

...followed by a
setter.

This shouldn’t work!

Then try to set
the rating.

This should work!

480   Chapter 11

test drive the protection proxy

File Edit Window Help Born2BDynamic

% java MatchMakingTestDrive

Name is Joe Javabean

Interests set from owner proxy

Can't set rating from owner proxy

Rating is 7

Name is Joe Javabean

Can't set interests from non owner proxy

Rating set from non owner proxy

Rating is 5

%

Running the code...

Our Owner proxy allows
getting and setting,
except for the Geek
rating.

Our NonOwner proxy allows
getting only, but also
allows calls to set the Geek
rating.

The new rating is the average of the previous rating, 7,
and the value set by the NonOwner proxy, 3.

Q: So what exactly is the “dynamic”
aspect of dynamic proxies? Is it that I’m
instantiating the proxy and setting it to a
handler at runtime?

A: No, the proxy is dynamic because
its class is created at runtime. Think about
it: before your code runs there is no proxy
class; it is created on demand from the set of
interfaces you pass it.

Q: My InvocationHandler seems like a
very strange proxy; it doesn’t implement
any of the methods of the class it’s
proxying.

A: That’s because the InvocationHandler
isn’t a proxy—it’s a class that the proxy
dispatches to for handling method calls. The
proxy itself is created dynamically at runtime
by the static Proxy.newProxyInstance()
method.

Q: Is there any way to tell if a class is
a Proxy class?

A: Yes. The Proxy class has a static
method called isProxyClass(). Calling this
method with a class will return true if the
class is a dynamic proxy class. Other than
that, the proxy class will act like any other
class that implements a particular set of
interfaces.

Q: Are there any restrictions on
the types of interfaces I can pass into
newProxyInstance()?

A: Yes, there are a few. First, it
is worth pointing out that we always
pass newProxyInstance() an array of
interfaces—only interfaces are allowed, no
classes. The major restrictions are that
all non-public interfaces need to be from
the same package. You also can’t have
interfaces with clashing method names
(that is, two interfaces with a method with
the same signature). There are a few other
minor nuances as well, so at some point
you should take a look at the fine print on
dynamic proxies in the javadoc.

you are here 4   481

the proxy pattern

Match each pattern with its description:

Pattern Description

Decorator

Facade

Proxy

Adapter

Wraps another object
and provides a different
interface to it.

Wraps another object
and provides additional
behavior for it.

Wraps another object
to control access to it.

Wraps a bunch of
objects to simplify
their interface.

482   Chapter 11

the proxy zoo

The Proxy Zoo
Welcome to the Objectville Zoo!

You now know about the remote, virtual, and protection proxies, but
out in the wild you’re going to see lots of mutations of this pattern.
Over here in the Proxy corner of the zoo we’ve got a nice collection
of wild proxy patterns that we’ve captured for your study.

Our job isn’t done; we’re sure you’re going to see more variations of
this pattern in the real world, so give us a hand in cataloging more
proxies. Let’s take a look at the existing collection:

Caching Proxy provides
temporary storage for
results of operations

that are expensive. It
can also allow multiple clients to share
the results to reduce computation or
network latency.

Firewall Proxy
controls access to a

set of network
resources, protecting

the subject from “bad” clients.

Smart Reference Proxy
provides additional actions

whenever a subject is
referenced, such as counting
the number of references to

an object.

Habitat: often seen in the location
of corporate firewall systems.

Habitat: often seen in web server proxies as well
as content management and publishing systems.

Help find a habitat

you are here 4   483

the proxy pattern

Synchronization Proxy
provides safe access to a

subject from multiple threads.

Complexity Hiding Proxy
hides the complexity of

and controls access to a
complex set of classes.

This is sometimes called
the Facade Proxy for obvious reasons.

The Complexity Hiding Proxy differs from
the Facade Pattern in that the proxy

controls access, while the Facade Pattern
just provides an alternative interface.

Copy-On-Write Proxy
controls the copying of
an object by deferring
the copying of an

object until it is required by
a client. This is a variant of
the Virtual Proxy.

Seen hanging around Collections, where it controls synchronized access to an underlying set of objects in a multithreaded environment.

Field Notes: please add your observations of other proxies in the wild here:

Habitat: seen in the vicinity of the
Java’s CopyOnWriteArrayList.

Help find a habitat

484   Chapter 11

crossword puzzle

Design Patterns Crossword
It’s been a LONG chapter. Why not unwind by doing a
crossword puzzle before it ends?

ACROSS
5. Group of first album cover displayed (two words).
7. Commonly used proxy for web services (two words).
8. In RMI, the object that takes the network requests on
the service side.
11. Proxy that protects method calls from unauthorized
callers.
13. Group that did the album MCMXC a.D.
14. A ________ proxy class is created at runtime.
15. Place to learn about the many proxy variants.
16. The Album viewer used this kind of proxy.
17. In RMI, the proxy is called this.
18. We took one of these to learn RMI.
19. Why Elroy couldn’t get dates.

DOWN
1. Objectville Matchmaking is for ________.
2. Java’s dynamic proxy forwards all requests to this (two
words).
3. This utility acts as a lookup service for RMI.
4. Proxy that stands in for expensive objects.
6. Remote ______ was used to implement the gumball
machine monitor (two words).
9. Software developer agent was being this kind of proxy.
10. Our first mistake: the gumball machine reporting was
not _____.
12. Similar to proxy, but with a different purpose.

1 2 3 4

5 6

7

8

9

10

11 12

13

14 15

16 17

18 19

Across
5. Group of first Album cover displayed (two

words)
7. Commonly used proxy for web services (two

words)
8. In RMI, the object that takes the network

requests on the service side
11. Proxy that protects method calls from

unauthorized callers
13. Group that did the album MCMXC A.D.
14. A _______ proxy class is created at runtime
15. Place to learn about the many proxy variants
16. The Album viewer used this kind of proxy
17. In RMI, the proxy is called this
18. We took one of these to learn RMI
19. Why Elroy couldn't get dates

Down
1. Objectville Matchmaking is for _____
2. Java's dynamic proxy forwards all requests

to this (two words)
3. This utility acts as a lookup service for RMI
4. Proxy that stands in for expensive objects
6. Remote ________ was used to implement

the gumball machine monitor (two words)
9. Software developer agent was being this kind

of proxy
10. Our first mistake: the gumball machine

reporting was not _______
12. Similar to proxy, but with a different

purpose

you are here 4   485

the proxy pattern

Tools for your Design Toolbox
Your design toolbox is almost full; you’re prepared for
almost any design problem that comes your way.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has one

instance and pr
ovide a global p

oint of

access to it.
Command - Encapsulates a re

quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Adapter - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

No new principles thi
s

chapter; can
you close the

book and rem
ember them all?

Facade - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Our new pattern.
A Proxy acts as a
representative for
another object.

State - Allow an object to a
lter its

behavior when its internal
 state changes.

The object will appear to ch
ange its

class.

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion

but closed for
modification.

Depend on abstra
ctions. Do not

depend on conc
rete classes.

Only talk to your
 friends.

Don’t call us, we’ll call you.

A class should ha
ve only one reas

on

to change.

OO Principles

Proxy - Provide a surr
ogate or

placeholder for
 another object

 to

control access t
o it.

	� The Proxy Pattern provides
a representative for another
object in order to control the
client’s access to it. There
are a number of ways it can
manage that access.

	� A Remote Proxy manages
interaction between a client
and a remote object.

	� A Virtual Proxy controls
access to an object that is
expensive to instantiate.

	� A Protection Proxy controls
access to the methods of an
object based on the caller.

	� Many other variants of
the Proxy Pattern exist
including caching proxies,
synchronization proxies,
firewall proxies, copy-on-write
proxies, and so on.

	� Proxy is structurally similar
to Decorator, but the two
patterns differ in their purpose.

	� The Decorator Pattern adds
behavior to an object, while
Proxy controls access.

	� Java’s built-in support for
Proxy can build a dynamic
proxy class on demand and
dispatch all calls on it to a
handler of your choosing.

	� Like any wrapper, proxies
will increase the number of
classes and objects in your
designs.

486   Chapter 11

exercise solutions

import java.lang.reflect.*;

public class NonOwnerInvocationHandler implements InvocationHandler {
 Person person;

 public NonOwnerInvocationHandler(Person person) {
 this.person = person;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws IllegalAccessException {

 try {
 if (method.getName().startsWith("get")) {
 return method.invoke(person, args);
 } else if (method.getName().equals("setGeekRating")) {
 return method.invoke(person, args);
 } else if (method.getName().startsWith("set")) {
 throw new IllegalAccessException();
 }
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }
 return null;
 }
}

The NonOwnerInvocationHandler works just like the OwnerInvocationHandler except
that it allows calls to setGeekRating() and it disallows calls to any other set method.
Here’s our solution:

The ImageProxy class appears to have two states that are controlled
by conditional statements. Can you think of another pattern that might
clean up this code? How would you redesign ImageProxy?

 Design Puzzle Solution

Use the State Pattern: implement two states, ImageLoaded and ImageNotLoaded. Then put
the code from the if statements into their respective states. Start in the ImageNotLoaded state
and then transition to the ImageLoaded state once the ImageIcon had been retrieved.

you are here 4   487

the proxy pattern

G
1

I
2

R
3

V
4

A
5

P H E X T W I N M M
6

I

E V I W
7

E B P R O X Y

S
8

K E L E T O N R T T

S C P
9

E H U

A R G O A

T O I D L

I T S I R
10

P
11

R O T E C T I O N D
12

E

N C R V E
13

N I G M A

H T Y O C O

D
14

Y N A M I C C Z
15

O O T

N O A R E

D N T A

V
16

I R T U A L I S
17

T U B

E O O

D
18

E T O U R S
19

U S P E N D E R S

Across
5. Group of first Album cover displayed (two

words) [APHEXTWIN]
7. Commonly used proxy for web services (two

words) [WEBPROXY]
8. In RMI, the object that takes the network

requests on the service side [SKELETON]
11. Proxy that protects method calls from

unauthorized callers [PROTECTION]
13. Group that did the album MCMXC A.D.

[ENIGMA]
14. A _______ proxy class is created at runtime

[DYNAMIC]
15. Place to learn about the many proxy variants

[ZOO]
16. The Album viewer used this kind of proxy

[VIRTUAL]
17. In RMI, the proxy is called this [STUB]
18. We took one of these to learn RMI

[DETOUR]

Down
1. Objectville Matchmaking is for _____

[GEEKS]
2. Java's dynamic proxy forwards all requests

to this (two words)
[INVOCATIONHANDLER]

3. This utility acts as a lookup service for RMI
[RMIREGISTRY]

4. Proxy that stands in for expensive objects
[VIRTUAL]

6. Remote ________ was used to implement
the gumball machine monitor (two words)
[METHODINVOCATION]

9. Software developer agent was being this kind
of proxy [PROTECTION]

10. Our first mistake: the gumball machine
reporting was not _______ [REMOTE]

12. Similar to proxy, but with a different
purpose [DECORATOR]

Person getNonOwnerProxy(Person person) {

 return (Person) Proxy.newProxyInstance(

 person.getClass().getClassLoader(),

 person.getClass().getInterfaces(),

 new NonOwnerInvocationHandler(person));

}

While it is a little complicated, there isn’t much to creating a dynamic
proxy. Why don’t you write getNonOwnerProxy(), which returns a
proxy for the NonOwnerInvocationHandler? Here’s our solution:

Design Patterns Crossword Solution

488   Chapter 11

exercise solutions

Match each pattern with its description:

Pattern Description

Decorator

Facade

Proxy

Adapter

Wraps another object
and provides a different
interface to it.

Wraps another object
and provides additional
behavior for it.

Wraps another object
to control access to it.

Wraps a bunch of
objects to simplify
their interface.

SOlUTion

you are here 4   489

the proxy pattern

The code for the Album Cover ViewerReady Bake
Code

package headfirst.designpatterns.proxy.virtualproxy;

import java.net.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.*;

public class ImageProxyTestDrive {

 ImageComponent imageComponent;

 JFrame frame = new JFrame("Album Cover Viewer");

 JMenuBar menuBar;

 JMenu menu;

 Hashtable<String, String> albums = new Hashtable<String, String>();

 public static void main (String[] args) throws Exception {

 ImageProxyTestDrive testDrive = new ImageProxyTestDrive();

 }

 public ImageProxyTestDrive() throws Exception{

 albums.put("Buddha Bar","http://images.amazon.com/images/P/B00009XBYK.01.LZZZZZZZ.
jpg");

 albums.put("Ima","http://images.amazon.com/images/P/B000005IRM.01.LZZZZZZZ.jpg");

 albums.put("Karma","http://images.amazon.com/images/P/B000005DCB.01.LZZZZZZZ.
gif");

 albums.put("MCMXC a.D.","http://images.amazon.com/images/P/B000002URV.01.LZZZZZZZ.
jpg");

 albums.put("Northern Exposure","http://images.amazon.com/images/P/B000003SFN.01.
LZZZZZZZ.jpg");

 albums.put("Selected Ambient Works, Vol. 2","http://images.amazon.com/images/P/
B000002MNZ.01.LZZZZZZZ.jpg");

 URL initialURL = new URL((String)albums.get("Selected Ambient Works, Vol. 2"));

 menuBar = new JMenuBar();

 menu = new JMenu("Favorite Albums");

 menuBar.add(menu);

490   Chapter 11

ready-bake code: album cover viewer

The code for the Album Cover
Viewer, continued...

Ready Bake
Code

 frame.setJMenuBar(menuBar);

 for(Enumeration e = albums.keys(); e.hasMoreElements();) {

 String name = (String)e.nextElement();

 JMenuItem menuItem = new JMenuItem(name);

 menu.add(menuItem);

 menuItem.addActionListener(event -> {

 imageComponent.setIcon(
 new ImageProxy(getAlbumUrl(event.getActionCommand())));

 frame.repaint();

 });

 }

 // set up frame and menus

 Icon icon = new ImageProxy(initialURL);

 imageComponent = new ImageComponent(icon);

 frame.getContentPane().add(imageComponent);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(800,600);

 frame.setVisible(true);

 }

 URL getAlbumUrl(String name) {

 try {

 return new URL((String)albums.get(name));

 } catch (MalformedURLException e) {

 e.printStackTrace();

 return null;

 }

 }

}

you are here 4   491

the proxy pattern

The code for the Album Cover
Viewer, continued...

Ready Bake
Code

package headfirst.designpatterns.proxy.virtualproxy;

import java.net.*;
import java.awt.*;
import javax.swing.*;

class ImageProxy implements Icon {
 volatile ImageIcon imageIcon;
 final URL imageURL;
 Thread retrievalThread;
 boolean retrieving = false;

 public ImageProxy(URL url) { imageURL = url; }

 public int getIconWidth() {
 if (imageIcon != null) {
 return imageIcon.getIconWidth();
 } else {
 return 800;
 }
 }

 public int getIconHeight() {
 if (imageIcon != null) {
 return imageIcon.getIconHeight();
 } else {
 return 600;
 }
 }
	
 synchronized void setImageIcon(ImageIcon imageIcon) {
 this.imageIcon = imageIcon;
 }

 public void paintIcon(final Component c, Graphics g, int x, int y) {
 if (imageIcon != null) {
 imageIcon.paintIcon(c, g, x, y);
 } else {
 g.drawString("Loading album cover, please wait...", x+300, y+190);
 if (!retrieving) {
 retrieving = true;

492   Chapter 11

ready-bake code: album cover viewer

The code for the Album Cover Viewer,
continued...

Ready Bake
Code

 retrievalThread = new Thread(new Runnable() {
 public void run() {
 try {
 setImageIcon(new ImageIcon(imageURL, "Album Cover"));
 c.repaint();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 retrievalThread.start();
 }
 }
 }
}

package headfirst.designpatterns.proxy.virtualproxy;

import java.awt.*;
import javax.swing.*;

class ImageComponent extends JComponent {
 private Icon icon;

 public ImageComponent(Icon icon) {
 this.icon = icon;
 }

 public void setIcon(Icon icon) {
 this.icon = icon;
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 int w = icon.getIconWidth();
 int h = icon.getIconHeight();
 int x = (800 - w)/2;
 int y = (600 - h)/2;
 icon.paintIcon(this, g, x, y);
 }
}

this is a new chapter   493

Who would have ever guessed that Patterns could work together?
You’ve already witnessed the acrimonious Fireside Chats (and you haven’t even seen the Pattern
Death Match pages that the editor forced us to remove from the book), so who would have
thought patterns can actually get along well together? Well, believe it or not, some of the most
powerful OO designs use several patterns together. Get ready to take your pattern skills to the
next level; it’s time for compound patterns.

Patterns
12 compound patterns

of Patterns

494   Chapter 12

patterns can work together

Working together
One of the best ways to use patterns is to get them out of the house so
they can interact with other patterns. The more you use patterns the
more you’re going to see them showing up together in your designs. We
have a special name for a set of patterns that work together in a design
that can be applied over many problems: a compound pattern. That’s right,
we are now talking about patterns made of patterns!

You’ll find a lot of compound patterns in use in the real world. Now
that you’ve got patterns in your brain, you’ll see that they are really just
patterns working together, and that makes them easier to understand.

We’re going to start this chapter by revisiting our friendly ducks in the
SimUDuck duck simulator. It’s only fitting that the ducks should be here
when we combine patterns; after all, they’ve been with us throughout
the entire book and they’ve been good sports about taking part in lots
of patterns. The ducks are going to help you understand how patterns
can work together in the same solution. But just because we’ve combined
some patterns doesn’t mean we have a solution that qualifies as a
compound pattern. For that, it has to be a general-purpose solution that
can be applied to many problems. So, in the second half of the chapter
we’ll visit a real compound pattern: the Model-View-Controller, otherwise
known as MVC. If you haven’t heard of MVC, you will, and you’ll find
MVC is one of the most powerful compound patterns in your design
toolbox.

Patterns are often used together and
combined within the same design solution.

A compound pattern combines two or
more patterns into a solution that solves a
recurring or general problem.

you are here 4   495

compound patterns

public interface Quackable {

 public void quack();

}

public class MallardDuck implements Quackable {

 public void quack() {

 System.out.println("Quack");

 }

}

public class RedheadDuck implements Quackable {

 public void quack() {

 System.out.println("Quack");

 }

}

Quackables only ne
ed to do

one thing well: Quack!

Your standard
Mallard duck.

We’ve got to have some variation
of species if we want this to be
an interesting simulator.

Duck reunion
As you’ve already heard, we’re going to get to work with the ducks again. This
time the ducks are going to show you how patterns can coexist and even
cooperate within the same solution.

We’re going to rebuild our duck simulator from scratch and give it some
interesting capabilities by using a bunch of patterns. Okay, let’s get started...

Like we said, we’re starting from scratch. This time around, the Ducks are
going to implement a Quackable interface. That way we’ll know what things
in the simulator can quack()—like Mallard Ducks, Redhead Ducks, Duck
Calls, and we might even see the Rubber Duck sneak back in.

1 First, we’ll create a Quackable interface.

What good is an interface without some classes to implement it? Time to
create some concrete ducks (but not the “lawn art” kind, if you know what
we mean).

2 Now, some Ducks that implement Quackable

496   Chapter 12

adding more ducks

public class DuckSimulator {
 public static void main(String[] args) {
 DuckSimulator simulator = new DuckSimulator();
 simulator.simulate();
 }

 void simulate() {
 Quackable mallardDuck = new MallardDuck();
 Quackable redheadDuck = new RedheadDuck();
 Quackable duckCall = new DuckCall();
 Quackable rubberDuck = new RubberDuck();

 System.out.println("\nDuck Simulator");

 simulate(mallardDuck);
 simulate(redheadDuck);
 simulate(duckCall);
 simulate(rubberDuck);
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

public class DuckCall implements Quackable {

 public void quack() {

 System.out.println("Kwak");

 }

}

public class RubberDuck implements Quackable {

 public void quack() {

 System.out.println("Squeak");

 }

}

We need some ducks, so
here we create one of
each Quackable...

...then we simulate
each one.

Here we let polymorphism do its magic: no
matter what kind of Quackable gets passed in,
the simulate() method asks it to quack.

A DuckCall that quacks but
doesn’t sound quite like the real
thing.

A RubberDuck that makes a
squeak when it quacks.

Remember last time? We had duck calls (those things hunters use—they
are definitely quackable) and rubber ducks.

This wouldn’t be much fun if we didn’t add other kinds of Ducks too.

Let’s cook up a simulator that creates a few ducks and makes sure their
quackers are working...

3 Okay, we’ve got our ducks; now all we need is a simulator.

Here’s our main() method
to get everything going.

We create a simulator
and then call its
simulate() method.

Here we overload the simulate()
method to simulate just one duck.

you are here 4   497

compound patterns

public class Goose {

 public void honk() {

 System.out.println("Honk");

 }

}

% java DuckSimulator

Duck Simulator

Quack

Quack

Kwak

Squeak

File Edit Window Help ItBetterGetBetterThanThisNot too exciting yet, but we haven’t added patterns!

A Goose is a honker,
not a quacker.

Where there is one waterfowl, there are probably two. Here’s a Goose
class that has been hanging around the simulator.

4 When ducks are around, geese can’t be far.

It looks like everything is working; so far, so good.

They all implement the same Quackable
interface, but their implementations allow
them to quack in their own way.

Let’s say we wanted to be able to use a Goose anywhere we’d want to use a
Duck. After all, geese make noise; geese fly; geese swim. Why can’t we have
Geese in the simulator?

What pattern would allow Geese to easily intermingle with Ducks?

498   Chapter 12

goose adapter

public class GooseAdapter implements Quackable {
 Goose goose;

 public GooseAdapter(Goose goose) {
 this.goose = goose;
 }

 public void quack() {
 goose.honk();
 }
}

public class DuckSimulator {
 public static void main(String[] args) {
 DuckSimulator simulator = new DuckSimulator();
 simulator.simulate();
 }

 void simulate() {
 Quackable mallardDuck = new MallardDuck();
 Quackable redheadDuck = new RedheadDuck();
 Quackable duckCall = new DuckCall();
 Quackable rubberDuck = new RubberDuck();
 Quackable gooseDuck = new GooseAdapter(new Goose());

 System.out.println("\nDuck Simulator: With Goose Adapter");

 simulate(mallardDuck);
 simulate(redheadDuck);
 simulate(duckCall);
 simulate(rubberDuck);
 simulate(gooseDuck);
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

The constructor takes the
goose we are going to adapt.

Remember, an Adapter
implements the target interface,
which in this case is Quackable.

When quack is called, the call is delegated
to the goose’s honk() method.

We make a Goose that acts
like a Duck by wrapping the
Goose in the GooseAdapter.

Once the Goose is wrapped, we can treat
it just like other duck Quackable objects.

Our simulator expects to see Quackable interfaces. Since geese
aren’t quackers (they’re honkers), we can use an adapter to adapt
a goose to a duck.

5 We need a goose adapter.

All we need to do is create a Goose and wrap it in an adapter
that implements Quackable, and we should be good to go.

6 Now geese should be able to play in the simulator, too.

you are here 4   499

compound patterns

% java DuckSimulator

Duck Simulator: With Goose Adapter

Quack

Quack

Kwak

Squeak

Honk

File Edit Window Help GoldenEggs

There’s the goose! Now the
Goose can quack with the
rest of the Ducks.

7 Now let’s give this a quick run...

Quackology

This time when we run the simulator, the list of objects passed
to the simulate() method includes a Goose wrapped in a duck
adapter. The result? We should see some honking!

J. Brewer,
Park Ranger and
Quackologist

Quackologists are fascinated by all aspects of Quackable behavior. One
thing Quackologists have always wanted to study is the total number of
quacks made by a flock of ducks.

How can we add the ability to count duck quacks without having to
change the duck classes?

Can you think of a pattern that would help?

500   Chapter 12

duck decorator

public class QuackCounter implements Quackable {

 Quackable duck;

 static int numberOfQuacks;

 public QuackCounter (Quackable duck) {

 this.duck = duck;

 }

 public void quack() {

 duck.quack();

 numberOfQuacks++;

 }

 public static int getQuacks() {

 return numberOfQuacks;

 }

}

8 We’re going to make those Quackologists happy and give
them some quack counts.
How? Let’s create a decorator that gives the ducks some new
behavior (the behavior of counting) by wrapping them with a
decorator object. We won’t have to change the Duck code at all.

As with Adapter, we need to
implement the target interface.

We’ve got an instance variable
to hold on to the quacker
we’re decorating.

And we’re counting ALL quacks, so we’ll use a static variable to keep track.

We get the reference to the Quackable we’re decorating in the constructor.

When quack() is called, we delegate the call to the Quackable we’re decorating...

...then we increase the number of quacks.

We’re adding one other method to the
decorator. This static method just
returns the number of quacks that
have occurred in all Quackables.

QuackCounter is a decorator.

you are here 4   501

compound patterns

public class DuckSimulator {
 public static void main(String[] args) {
 DuckSimulator simulator = new DuckSimulator();
 simulator.simulate();
 }

 void simulate() {
 Quackable mallardDuck = new QuackCounter(new MallardDuck());
 Quackable redheadDuck = new QuackCounter(new RedheadDuck());
 Quackable duckCall = new QuackCounter(new DuckCall());
 Quackable rubberDuck = new QuackCounter(new RubberDuck());
 Quackable gooseDuck = new GooseAdapter(new Goose());

 System.out.println("\nDuck Simulator: With Decorator");

 simulate(mallardDuck);
 simulate(redheadDuck);
 simulate(duckCall);
 simulate(rubberDuck);
 simulate(gooseDuck);

 System.out.println("The ducks quacked " +
 QuackCounter.getQuacks() + " times");
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

9 We need to update the simulator to create decorated ducks.

Now, we must wrap each Quackable object we instantiate in a
QuackCounter decorator. If we don’t, we’ll have ducks running
around making uncounted quacks.

Here’s where we
gather the quacking
behavior for the
Quackologists.

Each time we create a Quackable, we wrap it with a new decorator.

Here’s the
output!

% java DuckSimulator

Duck Simulator: With Decorator

Quack

Quack

Kwak

Squeak

Honk

The ducks quacked 4 times

%

File Edit Window Help DecoratedEggs

Nothing changes here; the decorate
d

objects are still Quackables.

The park ranger told us he didn’t want to count geese honks, so we don’t decorate it.

Remember,
we’re not
counting geese.

502   Chapter 12

duck factory

public abstract class AbstractDuckFactory {

 public abstract Quackable createMallardDuck();

 public abstract Quackable createRedheadDuck();

 public abstract Quackable createDuckCall();

 public abstract Quackable createRubberDuck();

}

10 We need a factory to produce ducks!
Okay, we need some quality control to make sure our ducks get wrapped.
We’re going to build an entire factory just to produce them. The factory
should produce a family of products that consists of different types of
ducks, so we’re going to use the Abstract Factory Pattern.
Let’s start with the definition of the AbstractDuckFactory class:

He’s right, that’s the problem with wrapping objects:
you have to make sure they get wrapped or they don’t
get the decorated behavior.

Why don’t we take the creation of ducks and localize
it in one place; in other words, let’s take the duck
creation and decorating and encapsulate it.

What pattern does that sound like?

We’re defining an abstract factory

that subclasses will implement to
create different families.

Each method creates one kind of duck.

You have to decorate objects to
get decorated behavior.

This quack counting is great. We’re learning
things we never knew about the little quackers.
But we’re finding that too many quacks aren’t
being counted. Can you help?

you are here 4   503

compound patterns

public class CountingDuckFactory extends AbstractDuckFactory {

 public Quackable createMallardDuck() {
 return new QuackCounter(new MallardDuck());
 }

 public Quackable createRedheadDuck() {
 return new QuackCounter(new RedheadDuck());
 }

 public Quackable createDuckCall() {
 return new QuackCounter(new DuckCall());
 }

 public Quackable createRubberDuck() {
 return new QuackCounter(new RubberDuck());
 }
}

public class DuckFactory extends AbstractDuckFactory {

 public Quackable createMallardDuck() {
 return new MallardDuck();
 }

 public Quackable createRedheadDuck() {
 return new RedheadDuck();
 }

 public Quackable createDuckCall() {
 return new DuckCall();
 }

 public Quackable createRubberDuck() {
 return new RubberDuck();
 }
}

Next we’ll create a factory that creates ducks without decorators, just to
get the hang of the factory:

Now let’s create the factory we really want, the CountingDuckFactory:

DuckFactory extends
the abstract factory.

Each method creates a product:
a particular kind of Quackable.
The actual product is unknown to
the simulator — it just knows it’s
getting a Quackable.

CountingDuckFactory
also extends the
abstract factory.

Each method wraps the
Quackable with the quack
counting decorator. The
simulator will never know
the difference; it just
gets back a Quackable.
But now our rangers can
be sure that all quacks
are being counted.

504   Chapter 12

families of ducks

public class DuckSimulator {

 public static void main(String[] args) {

 DuckSimulator simulator = new DuckSimulator();

 AbstractDuckFactory duckFactory = new CountingDuckFactory();

 simulator.simulate(duckFactory);

 }

 void simulate(AbstractDuckFactory duckFactory) {

 Quackable mallardDuck = duckFactory.createMallardDuck();

 Quackable redheadDuck = duckFactory.createRedheadDuck();

 Quackable duckCall = duckFactory.createDuckCall();

 Quackable rubberDuck = duckFactory.createRubberDuck();

 Quackable gooseDuck = new GooseAdapter(new Goose());

 System.out.println("\nDuck Simulator: With Abstract Factory");

 simulate(mallardDuck);

 simulate(redheadDuck);

 simulate(duckCall);

 simulate(rubberDuck);

 simulate(gooseDuck);

 System.out.println("The ducks quacked " +

 QuackCounter.getQuacks() +

 " times");

 }

 void simulate(Quackable duck) {

 duck.quack();

 }

}

11 Let’s set up the simulator to use the factory.
Remember how Abstract Factory works? We create a polymorphic method
that takes a factory and uses it to create objects. By passing in different
factories, we get to use different product families in the method.
We’re going to alter the simulate() method so that it takes a factory and
uses it to create ducks.

First we create
the factory
that we’re going
to pass into
the simulate()
method.

The simulate()
method takes an
AbstractDuckFactory
and uses it to create
ducks rather than
instantiating them
directly.

Nothing changes
here! Same ol’ code.

you are here 4   505

compound patterns

Same as last time,
but this time
we’re ensuring that

the ducks are all
decorated becaus

e
we are using the
CountingDuckFactory.

% java DuckSimulator

Duck Simulator: With Abstract Factory

Quack

Quack

Kwak

Squeak

Honk

4 quacks were counted

%

File Edit Window Help EggFactory

Here’s the output using the factory...

We’re still directly instantiating Geese by relying on concrete
classes. Can you write an Abstract Factory for Geese? How should
it handle creating “goose ducks”?

506   Chapter 12

flock of ducks

 Quackable mallardDuck = duckFactory.createMallardDuck();

 Quackable redheadDuck = duckFactory.createRedheadDuck();

 Quackable duckCall = duckFactory.createDuckCall();

 Quackable rubberDuck = duckFactory.createRubberDuck();

 Quackable gooseDuck = new GooseAdapter(new Goose());

 simulate(mallardDuck);

 simulate(redheadDuck);

 simulate(duckCall);

 simulate(rubberDuck);

 simulate(gooseDuck);

Here’s another good question from Ranger Brewer:
Why are we managing ducks individually?

This isn’t very
manageable!

What we need is a way to talk about collections of
ducks and even subcollections of ducks (to deal with
the family request from Ranger Brewer). It would
also be nice if we could apply operations across the
whole set of ducks.

What pattern can help us?

Ah, he wants to manage a flock
of ducks.

It’s getting a little difficult to manage
all these different ducks separately.
Is there any way you can help us
manage ducks as a whole, and perhaps even
allow us to manage a few duck “families”
that we’d like to keep track of?

you are here 4   507

compound patterns

public class Flock implements Quackable {

 List<Quackable> quackers = new ArrayList<Quackable>();

 public void add(Quackable quacker) {

 quackers.add(quacker);

 }

 public void quack() {

 Iterator<Quackable> iterator = quackers.iterator();

 while (iterator.hasNext()) {

 Quackable quacker = iterator.next();

 quacker.quack();

 }

 }

}

12 Let’s create a flock of ducks (well, actually a flock of Quackables).
Remember the Composite Pattern that allows us to treat a collection of
objects in the same way as individual objects? What better composite than
a flock of Quackables!
Let’s step through how this is going to work:

Remember, the composite needs to implement

the same interface as the leaf elements. Our

leaf elements are Quackables.

We’re using an ArrayList inside each Flock to
hold the Quackables that belong to the Flock.

The add() method adds a
Quackable to the Flock.

Now for the quack() method — after all, the Flock is a Quackable too.

The quack() method in Flock needs to work over the entire Flock. Here

we iterate through the ArrayList and call quack() on each element.

Did you notice that we tried to sneak a Design Pattern
by you without mentioning it?

 public void quack() {
 Iterator<Quackable> iterator = quackers.iterator();
 while (iterator.hasNext()) {
 Quackable quacker = iterator.next();
 quacker.quack();
 }
 }

There it is! The Iterator
Pattern at work!

Code Up Close

508   Chapter 12

duck composite

public class DuckSimulator {
 // main method here

 void simulate(AbstractDuckFactory duckFactory) {
 Quackable redheadDuck = duckFactory.createRedheadDuck();
 Quackable duckCall = duckFactory.createDuckCall();
 Quackable rubberDuck = duckFactory.createRubberDuck();
 Quackable gooseDuck = new GooseAdapter(new Goose());

 System.out.println("\nDuck Simulator: With Composite - Flocks");

 Flock flockOfDucks = new Flock();

 flockOfDucks.add(redheadDuck);
 flockOfDucks.add(duckCall);
 flockOfDucks.add(rubberDuck);
 flockOfDucks.add(gooseDuck);

 Flock flockOfMallards = new Flock();

 Quackable mallardOne = duckFactory.createMallardDuck();
 Quackable mallardTwo = duckFactory.createMallardDuck();
 Quackable mallardThree = duckFactory.createMallardDuck();
 Quackable mallardFour = duckFactory.createMallardDuck();

 flockOfMallards.add(mallardOne);
 flockOfMallards.add(mallardTwo);
 flockOfMallards.add(mallardThree);
 flockOfMallards.add(mallardFour);

 flockOfDucks.add(flockOfMallards);

 System.out.println("\nDuck Simulator: Whole Flock Simulation");
 simulate(flockOfDucks);

 System.out.println("\nDuck Simulator: Mallard Flock Simulation");
 simulate(flockOfMallards);

 System.out.println("\nThe ducks quacked " +
 QuackCounter.getQuacks() +
 " times");
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

13 Now we need to alter the simulator.
Our composite is ready; we just need some code to round up the
ducks into the composite structure.

Create all the
Quackables,
just like before.

First we create a Flock and
load it up with Quackables.

Here we’re
creating a
little family of
mallards...

Then we create a new
Flock of mallards.

...and adding them to the
Flock of mallards.

Then we add the Flock of
mallards to the main flock.

Let’s test out the entire Flock!

Then let’s just test out the mallard Flock.

Finally, let’s give the
Quackologist the data.

Nothing needs to change here; a Flock is a Quackable!

you are here 4   509

compound patterns

Let’s give it a spin...

% java DuckSimulator

Duck Simulator: With Composite - Flocks

Duck Simulator: Whole Flock Simulation

Quack

Kwak

Squeak

Honk

Quack

Quack

Quack

Quack

Duck Simulator: Mallard Flock Simulation

Quack

Quack

Quack

Quack

The ducks quacked 11 times

File Edit Window Help FlockADuck

Here’s the first flock.

And now the mallards.

The data looks
good (remember the
goose doesn’t get
counted).

Safety versus transparency

You might remember that in the Composite Pattern chapter the composites (the Menus) and the
leaves (the MenuItems) had the same exact set of methods, including the add() method. Because
they had the same set of methods, we could call methods on MenuItems that didn’t really make
sense (like trying to add something to a MenuItem by calling add()). The benefit of this was that the
distinction between leaves and composites was transparent: the client didn’t have to know whether
it was dealing with a leaf or a composite; it just called the same methods on both.

Here, we’ve decided to keep the composite’s child maintenance methods separate from the leaf
nodes: that is, only Flocks have the add() method. We know it doesn’t make sense to try to add
something to a Duck, and in this implementation, you can’t. You can only add() to a Flock. So
this design is safer—you can’t call methods that don’t make sense on components—but it’s less
transparent. Now the client has to know that a Quackable is a Flock in order to add Quackables to it.

As always, there are tradeoffs when you do OO design and you need to consider them as you create
your own composites.

510   Chapter 12

duck observer

public interface QuackObservable {

 public void registerObserver(Observer observer);

 public void notifyObservers();

}

public interface Quackable extends QuackObservable {

 public void quack();

}

14 First we need an interface for our Subject.
Remember that the Subject is the object being observed. Let’s call it
something more memorable—how about Observable? An Observable needs
methods for registering and notifying observers. We could also have a
method for removing observers, but we’ll keep the implementation simple
here and leave that out.

It sounds like the Quackologist would like to observe individual
duck behavior. That leads us right to a pattern made for observing
the behavior of objects: the Observer Pattern.

QuackObservable is the interface
that Quackables should implement
if they want to be observed.

It also has a method for
notifying the observers.

It has a method for registering
Observers. Any object implementing
the Observer interface can listen
to quacks. We’ll define the Observer
interface in a sec.

Now we need to make sure all Quackables implement this interface...

So, we extend the Quackable
interface with QuackObserver.

Can you say “observer”?

The Composite is working great! Thanks!
Now we have the opposite request: we also
need to track individual ducks. Can you give
us a way to keep track of individual duck
quacking in real time?

you are here 4   511

compound patterns

public class Observable implements QuackObservable {

 List<Observer> observers = new ArrayList<Observer>();

 QuackObservable duck;

 public Observable(QuackObservable duck) {

 this.duck = duck;

 }

 public void registerObserver(Observer observer) {

 observers.add(observer);

 }

 public void notifyObservers() {

 Iterator iterator = observers.iterator();

 while (iterator.hasNext()) {

 Observer observer = iterator.next();

 observer.update(duck);

 }

 }

}

Now, we need to make sure all the concrete
classes that implement Quackable can handle
being a QuackObservable.
We could approach this by implementing registration and
notification in each and every class (like we did in Chapter
2). But we’re going to do it a little differently this time:
we’re going to encapsulate the registration and notification
code in another class, call it Observable, and compose it
with QuackObservable. That way, we only write the real
code once and QuackObservable just needs enough code to
delegate to the helper class Observable.
Let’s begin with the Observable helper class.

Observable implements all the functionality

a Quackable needs to be an observable.
We

just need to plug it into a class and
 have

that class delegate to Observable.

QuackObserverable

In the constructor we get
passed the QuackObservable
that is using this object
to manage its observable
behavior. Check out the
notifyObservers() method
below; you’ll see that when
a notify occurs, Observable
passes this object along so
that the observer knows
which object is quacking.

Here’s the code for
registering an observer.

And the code for doing
the notifications.

Now let’s see how a Quackable class uses this helper...

Observable must implement QuackObservable
because these are the same method calls
that are going to be delegated to it.

Stop looking at me.
You’re making me

nervous!
15

512   Chapter 12

quack decorators are observables too

public class MallardDuck implements Quackable {
 Observable observable;

 public MallardDuck() {
 observable = new Observable(this);
 }

 public void quack() {
 System.out.println("Quack");
 notifyObservers();
 }

 public void registerObserver(Observer observer) {
 observable.registerObserver(observer);
 }

 public void notifyObservers() {
 observable.notifyObservers();
 }
}

16 Integrate the helper Observable with the Quackable classes.
This shouldn’t be too bad. All we need to do is make sure the Quackable classes
are composed with an Observable and that they know how to delegate to it. After
that, they’re ready to be Observables. Here’s the implementation of MallardDuck;
the other ducks are the same.

Each Quackable has an
Observable instance variable.

In the constructor, we create an
Observable and pass it a reference
to the MallardDuck object.

When we quack, we need
to let the observers know
about it.

Here are our two QuackObservable
methods. Notice that we just
delegate to the helper.

We haven’t changed the implementation of one Quackable, the
QuackCounter decorator. We need to make it an Observable too.
Why don’t you write that one:

you are here 4   513

compound patterns

public interface Observer {

 public void update(QuackObservable duck);

}

public class Quackologist implements Observer {

 public void update(QuackObservable duck) {

 System.out.println("Quackologist: " + duck + " just quacked.");

 }

}

17 We’re almost there! We just need to work on the Observer side
of the pattern.

We’ve implemented everything we need for the Observables; now we
need some Observers. We’ll start with the Observer interface:

The Observer interface just has one method, update(), which is passed the QuackObservable that is quacking.

Now we need an Observer: where are
those Quackologists?!

The Quackologist is simple; it just has one method, update(), which prints out the Quackable that just quacked.

We need to implement the Observer interface or else
we won’t be able to register with a QuackObservable.

514   Chapter 12

flock composites are observables too

What if a Quackologist wants to observe an entire flock? What does that
mean anyway? Think about it like this: if we observe a composite, then
we’re observing everything in the composite. So, when you register with
a flock, the flock composite makes sure you get registered with all its
children (sorry, all its little quackers), which may include other flocks.

Go ahead and write the Flock observer code before we go any further.

you are here 4   515

compound patterns

public class DuckSimulator {

 public static void main(String[] args) {

 DuckSimulator simulator = new DuckSimulator();

 AbstractDuckFactory duckFactory = new CountingDuckFactory();

 simulator.simulate(duckFactory);

 }

 void simulate(AbstractDuckFactory duckFactory) {

 // create duck factories and ducks here

 // create flocks here

 System.out.println("\nDuck Simulator: With Observer");

 Quackologist quackologist = new Quackologist();

 flockOfDucks.registerObserver(quackologist);

 simulate(flockOfDucks);

 System.out.println("\nThe ducks quacked " +

 QuackCounter.getQuacks() +

 " times");

 }

 void simulate(Quackable duck) {

 duck.quack();

 }

}

18 We’re ready to observe. Let’s update the
simulator and give it a try:

All we do here is create
a Quackologist and set
him as an observer of
the flock.

Let’s give it a try
and see how it works!

This time we’ll
we just simulate
the entire flock.

516   Chapter 12

the duck finale

This is the big finale. Five—no, six—patterns have come together to
create this amazing Duck Simulator. Without further ado, we present
DuckSimulator!

File Edit Window Help DucksAreEverywhere

% java DuckSimulator

Duck Simulator: With Observer
Quack
Quackologist: Redhead Duck just quacked.
Kwak
Quackologist: Duck Call just quacked.
Squeak
Quackologist: Rubber Duck just quacked.
Honk
Quackologist: Goose pretending to be a Duck just quacked.
Quack
Quackologist: Mallard Duck just quacked.
Quack
Quackologist: Mallard Duck just quacked.
Quack
Quackologist: Mallard Duck just quacked.
Quack
Quackologist: Mallard Duck just quacked.
The Ducks quacked 7 times.

After each
quack, no
matter what
kind of quack
it was, the
observer gets a
notification.

And the
quackologist still
gets his counts.

Q: So this was a compound pattern?

A: No, this was just a set of patterns
working together. A compound pattern is a
set of a few patterns that are combined to
solve a general problem. We’re just about
to take a look at the Model-View-Controller
compound pattern; it’s a collection of a few
patterns that has been used over and over in
many design solutions.

Q: So the real beauty of Design
Patterns is that I can take a problem and
start applying patterns to it until I have a
solution. Right?

A: Wrong. We went through this exercise
with Ducks to show you how patterns can
work together. You’d never actually want to
approach a design like we just did. In fact,
there may be solutions to parts of the Duck
Simulator for which some of these patterns
were big-time overkill. Sometimes just using
good OO design principles can solve a
problem well enough on its own.

We’re going to talk more about this in the
next chapter, but you only want to apply
patterns when and where they make sense.
You never want to start out with the intention
of using patterns just for the sake of it. You
should consider the design of the Duck
Simulator to be forced and artificial. But hey,
it was fun and gave us a good idea of how
several patterns can fit into a solution.

you are here 4   517

compound patterns

What did we do?

We started with a bunch of Quackables...

A goose came along and wanted to act like a Quackable too. So we
used the Adapter Pattern to adapt the goose to a Quackable. Now, you can call quack() on a
goose wrapped in the adapter and it will honk!

Then, the Quackologists decided they wanted to count quacks. So we
used the Decorator Pattern to add a QuackCounter decorator that keeps track of the number
of times quack() is called, and then delegates the quack to the Quackable it’s wrapping.

But the Quackologists were worried they’d forget to add the
QuackCounter decorator. So we used the Abstract Factory Pattern to create ducks
for them. Now, whenever they want a duck, they ask the factory for one, and it hands back
a decorated duck. (And don’t forget, they can also use another duck factory if they want an
undecorated duck!)

We had management problems keeping track of all those ducks and
geese and quackables. So we used the Composite Pattern to group Quackables
into Flocks. The pattern also allows the Quackologist to create subFlocks to manage duck
families. We used the Iterator Pattern in our implementation by using java.util’s iterator in
ArrayList.

The Quackologists also wanted to be notified when any Quackable
quacked. So we used the Observer Pattern to let the Quackologists register as Quackable
Observers. Now they’re notified every time any Quackable quacks. We used iterator again
in this implementation. The Quackologists can even use the Observer Pattern with their
composites.

That was quite a Design Pattern
workout. You should study the class
diagram on the next page and then
take a relaxing break before continuing

on with Model-View-Controller.

518   Chapter 12

duck's-eye view

DuckSimulator

createMallardDuck()
createRedheadDuck()
createDuckCall()
createRubberDuck()

AbstractDuckFactory

createMallardDuck()
createRedheadDuck()
createDuckCall()
createRubberDuck()

DuckFactory

createMallardDuck()
createRedheadDuck()
createDuckCall()
createRubberDuck()

CountingDuckFactory

update(QuackObservable)

<<interface>>
Observer

update(QuackObservable)

Quackologist

A bird’s duck’s-eye view: the class diagram

DuckSimulator uses a factory to create Ducks.

Here are two different
factories that produce
the same family of
products. The DuckFactory
creates ducks, and the
CountingDuckFactory
creates Ducks wrapped in
QuackCounter decorators.

We only implemented one kind of Observer for the Quackables — the Quackologist. But any class that implements the Observer interface can observe ducks...how about implementing a BirdWatcher observer?

If a class
implements Observer, that means it can observe Quackables, and will be notified whenever a Quackable quacks.

We’ve packed a lot of patterns into one small duck simulator! Here’s the big picture of what we did:

you are here 4   519

compound patterns

registerObserver(Observer)
notifyObservers()

<<interface>>
QuackObservable

quack()

<<interface>>
Quackable

quack()
registerObserver(Observer)
notifyObservers()

MallardDuck

quack()
registerObserver(Observer)
notifyObservers()

RedheadDuck

quack()
registerObserver(Observer)
notifyObservers()

DuckCall

registerObserver(Observer)
notifyObservers()

Observable

List observers
QuackObservable duck

quack()
registerObserver(Observer)
notifyObservers()

GooseAdapter

Goose goose

add(Quackable)
quack()
registerObserver(Observer)
notifyObservers()

Flock

List ducks

getQuacks()
quack()
registerObserver(Observer)
notifyObservers()

QuackCounter

Quackable duck

quack()
registerObserver(Observer)
notifyObservers()

RubberDuck

The QuackObservable interface
gives us a set of methods that
any Observable must implement.

We have two kinds of
Quackables: ducks and
other things that want
Quackable behavior: like
the GooseAdapter, which
wraps a Goose and makes
it look like a Quackable;
Flock, which is a
Quackable Composite, and
QuackCounter, which adds
behavior to Quackables.

Quackable is the interface that all classes that have quacking behavior implement.

Each Quackable has an
instance of Observable
to keep track of their
observers and notify them
when the Quackable quacks.

This Adapter...

...and this
Composite...

...and this
Decorator
all act like
Quackables!

520   Chapter 12

the model view controller song

Model, View, Controller
Lyrics and music by James Dempsey.

MVC’s a paradigm for factoring your code
into functional segments, so your brain does not explode.
To achieve reusability, you gotta keep those boundaries
clean
Model on the one side, View on the other, the Controller’s
in between.

Model View, it’s got three layers like Oreos do
Model View Controller
Model View, Model View, Model View Controller

Model objects represent your application’s raison d’être
Custom objects that contain data, logic, and et cetera
You create custom classes, in your app’s problem domain
you can choose to reuse them with all the views
but the model objects stay the same.

You can model a throttle and a manifold
Model the toddle of a two year old

Model a bottle of fine Chardonnay
Model all the glottal stops people say
Model the coddling of boiling eggs
You can model the waddle in Hexley’s legs

Model View, you can model all the models that pose for GQ
Model View Controller

View objects tend to be controls used to display and edit
Cocoa’s got a lot of those, well written to its credit.
Take an NSTextView, hand it any old Unicode string
The user can interact with it, it can hold most anything
But the view don’t know about the Model
That string could be a phone number or the works of
Aristotle
Keep the coupling loose
and so achieve a massive level of reuse

Model View, all rendered very nicely in aqua blue
Model View Controller

You’re probably wondering now
You’re probably wondering how
Data flows between Model and View
The Controller has to mediate
Between each layer’s changing state
To synchronize the data of the two
It pulls and pushes every changed value

Model View, mad props to the smalltalk crew!
Model View Controller

The King of Compound Patterns
If Elvis were a compound pattern, his name would be Model-View-Controller,
and he’d be singing a little song like this...

Model

View

Creamy
Controller

So does Jav
a!

you are here 4   521

compound patterns

Model View, it’s pronounced Oh Oh not Ooo Ooo
Model View Controller

There’s a little left to this story
A few more miles upon this road
Nobody seems to get much glory
From writing the controller code

Well, the model’s mission critical
And gorgeous is the view
I might be lazy, but sometimes it’s just crazy
How much code I write is just glue
And it wouldn’t be so tragic
But the code ain’t doing magic
It’s just moving values through

And I don’t mean to be vicious
But it gets repetitious
Doing all the things controllers do

And I wish I had a dime
For every single time
I sent a TextField StringValue.

Model View

How we gonna deep six all that glue
Model View Controller

Controllers know the Model and View very intimately
They often use hardcoding which can be foreboding for
reusability
But now you can connect each model key that you select
to any view property

And once you start binding
I think you’ll be finding less code in your source tree

Yeah, I know I was elated by the stuff they’ve automated
and the things you get for free

And I think it bears repeating
all the code you won’t be needing
when you hook it up in IB.

Model View even handles multiple selections too
Model View Controller

Model View, bet I ship my application before you
Model View Controller

Ear
power

Don’t just read! After all, this is a Head First book...check out this URL:

https://www.youtube.com/watch?v=YYvOGPMLVDo

Sit back and give it a listen.

Using Swing.

https://www.youtube.com/watch?v=YYvOGPMLVDo

522   Chapter 12

mvc is patterns put together

We were just trying to whet your appetite
with the song. Tell you what, after you finish
reading this chapter, go back and listen to the
song again—you’ll have more fun.

It sounds like you’ve had a bad run-in with
MVC before? Most of us have. You’ve
probably had other developers tell you it’s
changed their lives and could possibly create
world peace. It’s a powerful compound
pattern, for sure, and while we can’t claim it
will create world peace, it will save you hours
of writing code once you know it.

But first you have to learn it, right? Well,
there’s going to be a big difference this time
around because now you know patterns!

That’s right, patterns are the key to MVC.
Learning MVC from the top down is difficult;
not many developers succeed. Here’s the
secret to learning MVC: it’s just a few patterns
put together. When you approach learning
MVC by looking at the patterns, all of a
sudden it starts to make sense.

Let’s get started. This time around, you’re
going to nail MVC!

Design Patterns are your key
to understanding MVC.

Cute song, but is that really supposed
to teach me what Model-View-
Controller is? I’ve tried learning MVC
before and it made my brain hurt.

you are here 4   523

compound patterns

Meet Model-View-Controller

View Controller

you use the
you use the

interface and
interface and

your actions
your actions

go to the
go to the

controller
controller

class Player {

 play(){}

 rip(){}

 burn(){}

}

Model

Imagine you’re using your favorite music player, like iTunes. You can use its interface to add
new songs, manage playlists, and rename tracks. The player takes care of maintaining a little
database of all your songs along with their associated names and data. It also takes care of
playing the songs and, as it does, the user interface is constantly updated with the current song
title, the running time, and so on.

Well, underneath it all sits Model-View-Controller...

the controller

manipulates

the model

the model notifies
the view of a change

in state

the view display is
updated for you

“Play new song”

Controller asks

Player model to

begin playing

song

Model tells the

view the state has

changed

You see the song

display update and

hear the new song

playing

The model contains all the state,
data, and application logic needed
to maintain and play mp3s.

524   Chapter 12

mvc up close

Model

Controller

CONTROLLER
Takes user input and figures out
what it means to the model.

MODEL
The model holds all
the data, state, and
application logic. The
model is oblivious to
the view and controller,
although it provides an
interface to manipulate
and retrieve its
state and it can send
notifications of state
changes to observers.

VIEW

Gives you a presentation
of the model. The view
usually gets the state
and data it needs to
display directly from
the model.

View

A closer look...

2

I’ve changed!

I need your state

information

The user did
something

Change your
display

Change your
state

3

1

4

5

This is the user
interface.

Here’s the
model; it
handles all
application data
and logic.

Here’s the creamy
controller; it lives in
the middle.

The music player description gives us a high-level view of MVC, but it really
doesn’t help you understand the nitty-gritty of how the compound pattern
works, how you’d build one yourself, or why it’s such a good thing. Let’s start by
stepping through the relationships among the model, view, and controller, and
then we’ll take second look from the perspective of Design Patterns.

class Player {

 play(){}

 rip(){}
 burn(){}
}

you are here 4   525

compound patterns

The view is your window to the model. When you do something to the view (like click
the Play button), then the view tells the controller what you did. It’s the controller’s
job to handle that.

1 You’re the user—you interact with the view.

The controller takes your actions and interprets them. If you click a button,
it’s the controller’s job to figure out what that means and how the model
should be manipulated based on that action.

2 The controller asks the model to change its state.

When the controller receives an action from the view, it may need to tell the view
to change as a result. For example, the controller could enable or disable certain
buttons or menu items in the interface.

3 The controller may also ask the view to change.

When something changes in the model, based either on some action you took (like
clicking a button) or some other internal change (like the next song in the playlist
has started), the model notifies the view that its state has changed.

4 The model notifies the view when its state has changed.

The view gets the state it displays directly from the model. For instance, when the
model notifies the view that a new song has started playing, the view requests the
song name from the model and displays it. The view might also ask the model for
state as the result of the controller requesting some change in the view.

5 The view asks the model for state.

Q: Does the controller ever become an
observer of the model?

A: Sure. In some designs the controller
registers with the model and is notified
of changes. This can be the case when
something in the model directly affects the
user interface controls. For instance, certain
states in the model may dictate that some
interface items be enabled or disabled. If so,
it’s really the controller’s job to ask the view
to update its display accordingly.

Q: All the controller does is take user
input from the view and send it to the
model, correct? Why have it at all if that
is all it does? Why not just have the code
in the view itself? In most cases isn’t the
controller just calling a method on the
model?

A: The controller does more than just
“send it to the model”; it is responsible for
interpreting the input and manipulating the
model based on that input. But your real
question is probably, “Why can’t I just do that
in the view code?”

You could; however, you don’t want to for two
reasons. First, you’ll complicate your view
code because it now has two responsibilities:
managing the user interface and dealing
with the logic of how to control the model.
Second, you’re tightly coupling your view
to the model. If you want to reuse the view
with another model, forget it. The controller
separates the logic of control from the view
and decouples the view from the model.
By keeping the view and controller loosely
coupled, you are building a more flexible and
extensible design, one that can more easily
accommodate change down the road.

526   Chapter 12

the patterns in mvc

Understanding MVC as a set of Patterns
We’ve already suggested that the best path to learning MVC is to see it for what it is: a
set of patterns working together in the same design.

Let’s start with the model: the model uses Observer to keep the views and controllers
updated on the latest state changes. The view and the controller, on the other hand,
implement the Strategy Pattern. The controller is the strategy of the view, and it
can be easily exchanged with another controller if you want different behavior. The
view itself also uses a pattern internally to manage the windows, buttons, and other
components of the display: the Composite Pattern.

Let’s take a closer look:

The display consists of a nested set of
windows, panels, buttons, text labels, and so
on. Each display component is a composite
(like a window) or a leaf (like a button). When
the controller tells the view to update, it
only has to tell the top view component, and
Composite takes care of the rest.

The model implements the Observer Pattern
to keep interested objects updated when
state changes occur. Using the Observer
Pattern keeps the model completely
independent of the views and controllers. It
allows us to use different views with the same
model, or even use multiple views at once.

Model

Controller

View

I’ve changed!

I need your state

information

The user did
something

Change your
display

Change your
state

Strategy

Observer

Composite

The view and controller implement the classic Strategy Pattern: the
view is an object that is configured with a strategy. The controller
provides the strategy. The view is concerned only with the visual
aspects of the application, and delegates to the controller any
decisions about the interface behavior. Using the Strategy Pattern also
keeps the view decoupled from the model because it is the controller
that is responsible for interacting with the model to carry out user
requests. The view knows nothing about how this gets done.

class Player {
 play(){}
 rip(){}
 burn(){}
}

you are here 4   527

compound patterns

View

Model

class Foo {
 void bar()
{
 doBar();
 }
}

View

Controller

View

View

Observers

Observable

I’d like to register
as an observer

My state has
changed!

Observer

Controller

View

Strategy

Controller

The user did
something

Composite

All these observers will be
notified whenever state
changes in the model.

Any object that’s
interested in state
changes in the model
registers with the
model as an observer.

The controller is the
strategy for the
view — it’s the object
that knows how to
handle the user action

s.

We can swap in another behavior for the view by changing the controller.

The view
delegates to the controller to handle the user actions.

The view is a composite
of GUI components (labels,
buttons, text entry, etc.).
The top-level component
contains other components,
which contain other
components, and so on until
you get to the leaf nodes.

paint()

The model has no dependencies on
viewers or controllers!

The view only worries about presentation. The controller
worries about translating user input to actions on the model.

528   Chapter 12

mvc and the dj view

Using MVC to control the beat...
It’s your time to be the DJ. When you’re a DJ it’s all about the beat. You might start
your mix with a slowed, down-tempo groove at 95 beats per minute (BPM) and
then bring the crowd up to a frenzied 140 BPM of trance techno. You’ll finish off
your set with a mellow 80 BPM ambient mix.

How are you going to do that? You have to control the beat, and you’re going to
build the tool to get you there.

The view has two
parts, the part
for viewing the
state of the model
and the part for
controlling things.

Increases
the BPM by
one beat per
minute.

Decreases
the BPM by
one beat per
minute.

You can enter a specific BPM and click
the Set button to set a specific beats
per minute, or you can use the increase
and decrease buttons for fine tuning.

A pulsing bar shows the beat in real time.

A display shows the current BPMs and is
automatically set whenever the BPM changes.

Let’s start with the view of the tool. The view allows you to create
a driving drumbeat and tune its beats per minute...

Meet the Java DJ View

120

you are here 4   529

compound patterns

Let’s not forget about the model underneath it all...
You can’t see the model, but you can hear it. The
model sits underneath everything else, managing the
beat and driving the speakers.

Beat
Model

setBPM()

getBPM()

on()

off()

You can start the
beat kicking by
choosing the Start
menu item in the “DJ
Control” menu.

Notice Stop is
disabled until you
start the beat.

You use the Stop
button to shut
down the beat
generation.

Notice Start is
disabled after
the beat has
started.

The controller is in the middle...

Controller

All user actions are
sent to the controller.

The controller sits between the view and
model. It takes your input, like selecting
Start from the DJ Control menu, and turns
it into an action on the model to start the
beat generation. The controller takes input

from the user and figures
out how to translate that
into requests on the model.

The BeatModel is the heart of the application. It implements
the logic to start and stop
the beat, set the BPM, and
generate the sound.

Here are a few more ways to control the DJ View...

The model also allows us to
obtain its current state through the getBPM() method.

530   Chapter 12

the dj model, view, and controller

Beat
Model

Controller

setBPM()

getBPM()

on()

off()

Click the
increase beat
button...

The controller asks
the model to update
its BPM by one.

View is notified that the
BPM changed. It calls
getBPM() on the model state.

Because the BPM is 120, the view gets a beat notification every 1/2 second.

The beat is set at 119 BPM and you
would like to increase it to 120.

...which results in the
controller being invoked.

The view is updated
to 120 BPM.

You see the beat bar
pulse every 1/2 second.

View

View

Putting the pieces together

you are here 4   531

compound patterns

public interface BeatModelInterface {

 void initialize();

 void on();

 void off();

 void setBPM(int bpm);

 int getBPM();

 void registerObserver(BeatObserver o);

 void removeObserver(BeatObserver o);

 void registerObserver(BPMObserver o);

 void removeObserver(BPMObserver o);

}

Building the pieces

These are the methods
the controller will
use to direct the
model based on user
interaction.

These methods allow
the view and the
controller to get
state and to become
observers.

This should look familiar.
These methods allow objects
to register as observers for
state changes.

We’ve split this into two kinds of observers:
observers that want to be notified on every
beat, and observers that just want to be
notified when the beats per minute change.

Okay, you know the model is responsible for maintaining all the data, state, and any
application logic. So what’s the BeatModel got in it? Its main job is managing the beat,
so it has state that maintains the current beats per minute and code to play an audio
clip to create the beat that we hear. It also exposes an interface that lets the controller
manipulate the beat and lets the view and controller obtain the model’s state. Also,
don’t forget that the model uses the Observer Pattern, so we also need some methods to
let objects register as observers and send out notifications.

This gets called
 after

BeatModel is instant
iated.

These methods turn the
beat generator on and off.

This method sets the beats per
minute. After it is called, the beat
frequency changes immediately.

The getBPM() method
returns the current BPMs,
or 0 if the generator is off.

Let’s check out the BeatModelInterface before
looking at the implementation:

532   Chapter 12

public class BeatModel implements BeatModelInterface, Runnable {
 List<BeatObserver> beatObservers = new ArrayList<BeatObserver>();
 List<BPMObserver> bpmObservers = new ArrayList<BPMObserver>();
 int bpm = 90;
 Thread thread;
 boolean stop = false;
 Clip clip;

 public void initialize() {
 try {
 File resource = new File("clap.wav");
 clip = (Clip) AudioSystem.getLine(new Line.Info(Clip.class));
 clip.open(AudioSystem.getAudioInputStream(resource));
 }
 catch(Exception ex) { /* ... */}
 }
 public void on() {
 bpm = 90;
 notifyBPMObservers();
 thread = new Thread(this);
 stop = false;
 thread.start();
 }
 public void off() {
 stopBeat();
 stop = true;
 }
 public void run() {
 while (!stop) {
 playBeat();
 notifyBeatObservers();
 try {
 Thread.sleep(60000/getBPM());
 } catch (Exception e) {}
 }
 }
 public void setBPM(int bpm) {
 this.bpm = bpm;
 notifyBPMObservers();
 }
 public int getBPM() {
 return bpm;
 }

 // Code to register and notify observers
 // Audio code to handle the beat
}

the beat model

Now let’s have a look at the concrete BeatModel class
We implement the
BeatModeIInterface and Runnable.

This is the audio clip we play for the beat.

These Lists hold the two kinds of
observers (Beat and BPM observers).

The bpm variable holds the frequency
of beats — by default, 90 BPM.

This method does setup
for the beat track.

The on() method sets the BPMs to the default,
and starts the thread to play the beat.

And off() shuts it down by setting BPMs to
0 and stopping the thread playing the beat.

The setBPM() method is the way
the controller manipulates the
beat. It sets the bpm variable, and
notifies all BPM Observers that
the BPM has changed.

This model uses an
audio clip to generate
beats. You can check
out the complete
implementation of all
the DJ classes in the Java
source files, available on
the wickedlysmart.com
site, or look at the code
at the end of the chapter.

Ready Bake Code

We use these to start and
stop the beat thread.

The getBPM() method just returns the current beats per minute.

The run() method runs the beat thread, playing
a beat determined by the BPM, and notifies the
beat observers that a beat’s been played. The loop
terminates when we select Stop from the menu.

you are here 4   533

compound patterns

The View
Now the fun starts; we get to hook up a view and visualize the BeatModel!

The first thing to notice about the view is that we’ve implemented it so that it is displayed in two
separate windows. One window contains the current BPM and the pulse; the other contains
the interface controls. Why? We wanted to emphasize the difference between the interface that
contains the view of the model and the rest of the interface that contains the set of user controls.
Let’s take a closer look at the two parts of the view:

We’ve separated
the view of the
model from the
view with the
controls.

The DJ view
displays two
aspects of the
BeatModel...

...the current
beats per
minute, from the
BPMObserver
notifications...

...and a “beat bar”
that pulses in sync
with the beat, driven
by the BeatObserver
notifications.

A textual view that displays a music genre based on the BPM (ambient, downbeat, techno, etc.).
A light show that is based on the real-time beat.

This is the part of the view that you use to change the beat. This view passes everything you do on to the controller.

Our BeatModel makes no assumptions about the view. The model is implemented using the
Observer Pattern, so it just notifies any view registered as an observer when its state changes.
The view uses the model’s API to get access to the state. We’ve implemented one type of view;
can you think of other views that could make use of the notifications and state in the BeatModel?

534   Chapter 12

the dj view

public class DJView implements ActionListener, BeatObserver, BPMObserver {
 BeatModelInterface model;
 ControllerInterface controller;
 JFrame viewFrame;
 JPanel viewPanel;
 BeatBar beatBar;
 JLabel bpmOutputLabel;

 public DJView(ControllerInterface controller, BeatModelInterface model) {
 this.controller = controller;
 this.model = model;
 model.registerObserver((BeatObserver)this);
 model.registerObserver((BPMObserver)this);
 }

 public void createView() {
 // Create all Swing components here
 }

 public void updateBPM() {
 int bpm = model.getBPM();
 if (bpm == 0) {
 bpmOutputLabel.setText("offline");
 } else {
 bpmOutputLabel.setText("Current BPM: " + model.getBPM());
 }
 }

 public void updateBeat() {
 beatBar.setValue(100);
 }
}

Implementing the View
The two parts of the view—the view of the model, and
the view with the user interface controls—are displayed
in two windows, but live together in one Java class. We’ll
first show you just the code that creates the view of the
model, which displays the current BPM and the beat bar.
Then we’ll come back on the next page and show you just
the code that creates the user interface controls, which
displays the BPM text entry field, and the buttons.

DJView is an observer for both real-time beats and BPM changes.

Here, we create a few components for the display.

The view holds a reference to both the model and
the controller. The controller is only used by the
control interface, which we’ll go over in a sec...

The constructor gets a reference
to the controller and the model,
and we store references to those
in the instance variables.

We also register as a BeatObserver and a BPMObserver of the model.

The updateBPM() method is called when a state change occurs in the model. When that happens, we update the display with the current BPM. We can get this value by requesting it directly from the model.

Likewise, the updateBeat() method is called when the model starts a new beat. When that happens, we need to pulse our beat bar. We do this by setting it to its maximum value (100) and letting it handle the animation of the pulse.

	 The code on these two
pages is just an outline!

What we’ve done here is
split ONE class into TWO,
showing you one part of

the view on this page, and the other
part on the next page. All this code is
really in ONE class—DJView.java. It’s
all listed at the end of the chapter.

you are here 4   535

compound patterns

public class DJView implements ActionListener, BeatObserver, BPMObserver {
 BeatModelInterface model;
 ControllerInterface controller;
 JLabel bpmLabel;
 JTextField bpmTextField;
 JButton setBPMButton;
 JButton increaseBPMButton;
 JButton decreaseBPMButton;
 JMenuBar menuBar;
 JMenu menu;
 JMenuItem startMenuItem;
 JMenuItem stopMenuItem;

 public void createControls() {
 // Create all Swing components here
 }

 public void enableStopMenuItem() {
 stopMenuItem.setEnabled(true);
 }

 public void disableStopMenuItem() {
 stopMenuItem.setEnabled(false);
 }

 public void enableStartMenuItem() {
 startMenuItem.setEnabled(true);
 }

 public void disableStartMenuItem() {
 startMenuItem.setEnabled(false);
 }

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == setBPMButton) {
 int bpm = Integer.parseInt(bpmTextField.getText());
 controller.setBPM(bpm);
 } else if (event.getSource() == increaseBPMButton) {
 controller.increaseBPM();
 } else if (event.getSource() == decreaseBPMButton) {
 controller.decreaseBPM();
 }
 }
}

Implementing the View, continued...
Now, we’ll look at the code for the user interface controls part of the view. This view lets you control
the model by telling the controller what to do, which in turn, tells the model what to do. Remember,
this code is in the same class file as the other view code.

All these methods allow the start and stop items in the menu to be enabled and disabled. We’ll see that the controller uses these to change the interface.

This method creates all the controls and places them in the interface. It also takes care of the menu. When the stop or start items are chosen, the corresponding methods are called on the controller.

This method is called when a button is clicked.

If the Set button is
clicked, then it is passed
on to the controller
along with the new bpm.

Likewise, if the increase or
decrease button is clicked,
this information is passed
on to the controller.

536   Chapter 12

the dj controller

public interface ControllerInterface {

 void start();

 void stop();

 void increaseBPM();

 void decreaseBPM();

 void setBPM(int bpm);

}

Now for the Controller
It’s time to write the missing piece: the controller. Remember the controller
is the strategy that we plug into the view to give it some smarts.

Because we are implementing the Strategy Pattern, we need to start with
an interface for any Strategy that might be plugged into the DJ View. We’re
going to call it ControllerInterface.

Here are all the
methods the view can call on the controller.

These should look familiar to you after seeing
the model’s interface. You can stop and start
the beat generation and change the BPM.
This interface is “richer” than the BeatModel
interface because you can adjust the BPMs
with increase and decrease.

You’ve seen that the view and controller together make use of the Strategy
Pattern. Can you draw a class diagram of the two that represents this pattern?

Design Puzzle

you are here 4   537

compound patterns

public class BeatController implements ControllerInterface {
 BeatModelInterface model;
 DJView view;

 public BeatController(BeatModelInterface model) {
 this.model = model;
 view = new DJView(this, model);
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 model.initialize();
 }

 public void start() {
 model.on();
 view.disableStartMenuItem();
 view.enableStopMenuItem();
 }

 public void stop() {
 model.off();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 }

 public void increaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm + 1);
 }

 public void decreaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm - 1);
 }

 public void setBPM(int bpm) {
 model.setBPM(bpm);
 }
}

And here’s the implementation of the controller: The controller implements
the ControllerInterface.

The controller is the creamy stuff
in the middle of the MVC Oreo
cookie, so it is the object that
gets to hold on to the view and the
model and glues it all together.

The controller is passed the
model in the constructor and
then creates the view.

Likewise, when you choose Stop from
the menu, the controller turns the
model off and alters the user interface so that the Stop menu item is disabled and the Start menu item is enabled.

When you choose Start from the user
interface menu, the controller turns
the model on and then alters the user
interface so that the Start menu
item is disabled and the Stop menu
item is enabled.

NOTE: the controller is
making the intelligent
decisions for the view.
The view just knows how
to turn menu items on
and off; it doesn’t know
the situations in which
it should disable them.

If the increase button is clicked,
the controller gets the current
BPM from the model, adds one,
and then sets a new BPM.

Same thing here, only we subtract
one from the current BPM.

Finally, if the user interface is used to
set an arbitrary BPM, the controller
instructs the model to set its BPM.

538   Chapter 12

putting it all together

public class DJTestDrive {

 public static void main (String[] args) {

 BeatModelInterface model = new BeatModel();

 ControllerInterface controller = new BeatController(model);

 }

}

Putting it all together...
We’ve got everything we need: a model, a view, and a controller.
Now it’s time to put them all together! We’re going to see and
hear how well they work together.

All we need is a little code to get things started; it won’t take much:

First create a model...

...then create a controller and
pass it the model. Remember,
the controller creates the view,
so we don’t have to do that.And now for a test run...

% java DJTestDrive

%

File Edit Window Help LetTheBassKick

Run this...

...and you’ll see this.

Start the beat generation with the Start menu item;
notice the controller disables the item afterward.

Use the text entry along with the increase and
decrease buttons to change the BPM. Notice how the
view display reflects the changes despite the fact that
it has no logical link to the controls.

Notice how the beat bar always keeps up with the beat
since it’s an observer of the model.

Put on your favorite song and see if you can match the
beat by using the increase and decrease controls.

Stop the generator. Notice how the controller disables
the Stop menu item and enables the Start menu item.

Things to try

5

4

3

2

1

Make sure you have
the file clip.wav at
the top level of the
code folder!

you are here 4   539

compound patterns

Exploring Strategy
Let’s take the Strategy Pattern just a little further to get a
better feel for how it is used in MVC. We’re going to see
another friendly pattern pop up too—a pattern you’ll often
see hanging around the MVC trio: the Adapter Pattern.

Think for a second about what the DJ View does: it displays
a beat rate and a pulse. Does that sound like something else?
How about a heartbeat? It just so happens that we have a
heart monitor class; here’s the class diagram:

getHeartRate()
registerBeatObserver()
registerBPMObserver()
// other heart methods

HeartModel We’ve got a method for getting
the current heart rate.

And luckily, its developers knew about the
Beat and BPM Observer interfaces!

It certainly would be nice to reuse our current view with the HeartModel, but we need a
controller that works with this model. Also, the interface of the HeartModel doesn’t match what
the view expects because it has a getHeartRate() method rather than a getBPM(). How would
you design a set of classes to allow the view to be reused with the new model? Jot down your
class design ideas below.

540   Chapter 12

mvc and adapter

public class HeartAdapter implements BeatModelInterface {
 HeartModelInterface heart;

 public HeartAdapter(HeartModelInterface heart) {
 this.heart = heart;
 }

 public void initialize() {}

 public void on() {}

 public void off() {}

 public int getBPM() {
 return heart.getHeartRate();
 }

 public void setBPM(int bpm) {}

 public void registerObserver(BeatObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BeatObserver o) {
 heart.removeObserver(o);
 }

 public void registerObserver(BPMObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BPMObserver o) {
 heart.removeObserver(o);
 }
}

Adapting the Model
For starters, we’re going to need to adapt the HeartModel to a BeatModel. If we don’t, the
view won’t be able to work with the model, because the view only knows how to getBPM(),
and the equivalent heart model method is getHeartRate(). How are we going to do this?
We’re going to use the Adapter Pattern, of course! It turns out that this is a common
technique when working with MVC: use an adapter to adapt a model to work with existing
controllers and views.

Here’s the code to adapt a HeartModel to a BeatModel: We need to implement the
target interface — in this
case, BeatModelInterface.

Here, we store a reference
to the heart model.

We don’t know what these would
do to a heart, but it sounds scary.
So we’ll just leave them as “no ops.”

When getBPM() is called, we’ll just
translate it to a getHeartRate()
call on the heart model.

We don’t want to do this on a heart!
Again, let’s leave it as a “no op.”

Here are our observer methods.
We just delegate them to the
wrapped heart model.

you are here 4   541

compound patterns

public class HeartTestDrive {

 public static void main (String[] args) {

 HeartModel heartModel = new HeartModel();

 ControllerInterface model = new HeartController(heartModel);

 }

}

public class HeartController implements ControllerInterface {
 HeartModelInterface model;
 DJView view;

 public HeartController(HeartModelInterface model) {
 this.model = model;
 view = new DJView(this, new HeartAdapter(model));
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.disableStartMenuItem();
 }

 public void start() {}

 public void stop() {}

 public void increaseBPM() {}

 public void decreaseBPM() {}

 public void setBPM(int bpm) {}
}

Now we’re ready for a HeartController
With our HeartAdapter in hand, we should be ready to create a controller and get
the view running with the HeartModel. Talk about reuse! The HeartController implements

the ControllerInterface, just
like the BeatController did.

Like before, the
controller creates the
view and gets everything
glued together.

There is one change: we are passed
a HeartModel, not a BeatModel...

...and we need to wrap that
model with an adapter before
we hand it to the view.

There’s not a lot to do here; after all,
we can’t really control hearts like we
can beat machines.

And that’s it! Now it’s time for some test code...

All we need to do is create the
controller and pass it a heart monitor.

Finally, the HeartController disables the
menu items because they aren’t needed.

542   Chapter 12

test the heart model

% java HeartTestDrive

%

File Edit Window Help CheckMyPulse

Run this...

...and you’ll see this.

Notice that the display works great with a heart!
The beat bar looks just like a pulse. Because the
HeartModel also supports BPM and Beat Observers,
we can get beat updates just like with the DJ beats.

As the heartbeat has natural variation, notice the
display is updated with the new beats per minute.

Each time we get a BPM update, the adapter is doing
its job of translating getBPM() calls to getHeartRate()
calls.

The Start and Stop menu items are not enabled
because the controller disabled them.

The other buttons still work but have no effect
because the controller implements no ops for them.
The view could be changed to support the disabling
of these items.

Things to try

And now for a test run...

5

4

3

2

1

Nice healthy
heart rate.

you are here 4   543

compound patterns

Q: It seems like you are really hand-
waving the fact that the Composite
Pattern is really in MVC. Is it really there?

A: Yes, Virginia, there really is a
Composite Pattern in MVC. But, actually,
this is a very good question. Today GUI
packages, like Swing, have become so
sophisticated that we hardly notice the
internal structure and the use of Composite
in the building and update of the display.
It’s even harder to see when we have web
browsers that can take markup language
and convert it into a user interface.

Back when MVC was first discovered,
creating GUIs required a lot more manual
intervention and the pattern was more
obviously part of the MVC.

Q: Does the controller ever implement
any application logic?

A: No, the controller implements behavior
for the view. It is the smarts that translates
the actions from the view to actions on the
model. The model takes those actions and
implements the application logic to decide
what to do in response to those actions. The
controller might have to do a little work to
determine what method calls to make on
the model, but that’s not considered the

“application logic.” The application logic is the
code that manages and manipulates your
data and it lives in your model.

Q: I’ve always found the word “model”
hard to wrap my head around. I now
get that it’s the guts of the application,
but why was such a vague, hard-to-
understand word used to describe this
aspect of MVC?

A: When MVC was named they needed a
word that began with a “M” or otherwise they
couldn’t have called it MVC.

But seriously, we agree with you. Everyone
scratches their head and wonders what a
model is. But then everyone comes to the
realization that they can’t think of a better
word either.

Q: You’ve talked a lot about the state
of the model. Does this mean it has the
State Pattern in it?

A: No, we mean the general idea of state.
But certainly some models do use the State
Pattern to manage their internal states.

Q: I’ve seen descriptions of MVC
where the controller is described as
a “mediator” between the view and the
model. Is the controller implementing the
Mediator Pattern?

A: We haven’t covered the Mediator
Pattern (although you’ll find a summary of
the pattern in the appendix), so we won’t go
into too much detail here, but the intent of
the mediator is to encapsulate how objects
interact and promote loose coupling by
keeping two objects from referring to each
other explicitly. So, to some degree, the
controller can be seen as a mediator, since
the view never sets state directly on the
model, but rather always goes through the
controller. Remember, however, that the
view does have a reference to the model to
access its state. If the controller were truly a
mediator, the view would have to go through
the controller to get the state of the model
as well.

Q: Does the view always have to ask
the model for its state? Couldn’t we use
the push model and send the model’s
state with the update notification?

A: Yes, the model could certainly send
its state with the notification, and we could
do something similar with the BeatModel
by sending just the state that the view
is interested in. If you remember the
Observer Pattern chapter, however, you’ll
also remember that there are a couple of
disadvantages to this. If you don’t, go back
to Chapter 2 and have a second look. The
MVC model has been adapted to a number
of similar models—in particular, for the web’s
browser/server environment—so you’ll find a
lot of exceptions to the rule out there.

Q: If I have more than one view, do I
always need more than one controller?

A: Typically, you need one controller
per view at runtime; however, the same
controller class can easily manage many
views.

Q: The view is not supposed to
manipulate the model; however, I noticed
in your implementation that the view has
full access to the methods that change
the model’s state. Is this dangerous?

A: You are correct; we gave the view full
access to the model’s set of methods. We
did this to keep things simple, but there may
be circumstances where you want to give the
view access to only part of your model’s API.
There’s a great design pattern that allows
you to adapt an interface to provide only a
subset. Can you think of it?

544   Chapter 12

your design toolbox

Yes!

MVC is so useful that it has been adapted to many web
frameworks. Of course, the web works differently than your
standard application, so there are several different approaches
to applying the MVC Pattern to the web.

Web applications have a client side (the browser) and a server
side. Given that, we can make different design tradeoffs based
on where the model, the view, and the controller reside. In
thin client approaches, the model, most of the view, and the
controller all reside in the server, with the browser providing
a way to display the view, and to get input from the browser
to the controller. Another approach is the single page application,
where almost all of the model, view, and controller reside on
the client side. Those are the two ends of the spectrum, and
you’ll find frameworks that vary the extent to which each
component—that is the model, the view, and the controller—
reside on the client or the server, along with hybrid models
where some components are shared across the client and server.

There are many popular web MVC frameworks, like Spring
Web MVC, Django, ASP.NET MVC, AngularJS, EmberJS,
JavaScriptMVC, Backbone, and no doubt more on the way.
For the most part each framework has its own unique way it
maps the model, the view, and the controller across the client
and the server. Now that you know the MVC Pattern, you
will have no problem adapting your knowledge to whatever
framework you choose to use.

Most of my user
interfaces are
actually browser-based.
Is any of this going to
help me?

you are here 4   545

compound patterns

Tools for your Design Toolbox
You could impress anyone with your design toolbox. Wow, look
at all those principles, patterns, and now, compound patterns!

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a family

of algorithms, encapsulates

each one, and makes them

interchangeable. Strategy

lets the algorithm vary

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
Factory Method - Define an

interface for c
reating an obje

ct, but

let subclasses d
ecide which class to

instantiate. Factory Method lets

a class defer in
stantiation to t

he

subclasses.

Singleton - Ensure a class on
ly has one

instance and pr
ovide a global p

oint of

access to it.
Command - Encapsulates a re

quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Adapter - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Facade - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

We have a new
category! MVC
is a compound
pattern.

State - Allow an object to a
lter its

behavior when its internal
 state changes.

The object will appear to ch
ange its

class.

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion

but closed for
modification.

Depend on abstra
ctions. Do not

depend on conc
rete classes.

Only talk to your
 friends.

Don’t call us, we’ll call you.

A class should ha
ve only one reas

on

to change.

OO Principles

Proxy - Provide a surr
ogate or

placeholder for
 another object

 to

control access t
o it.

A Compound Pattern c
ombines two or

more patterns int
o a solution tha

t

solves a recurrin
g or general pro

blem.

Compound Patterns

	� The Model View Controller
(MVC) Pattern is a compound
pattern consisting of the
Observer, Strategy, and
Composite Patterns.

	� The model makes use of the
Observer Pattern so that it
can keep observers updated
yet stay decoupled from them.

	� The controller is the Strategy
for the view. The view can use
different implementations of
the controller to get different
behavior.

	� The view uses the Composite
Pattern to implement
the user interface, which
usually consists of nested
components like panels,
frames, and buttons.

	� These patterns work together
to decouple the three players
in the MVC model, which
keeps designs clear and
flexible.

	� The Adapter Pattern can be
used to adapt a new model
to an existing view and
controller.

	� MVC has been adapted to
the web.

	� There are many web MVC
frameworks with various
adaptations of the MVC
pattern to fit the client/server
application structure.

546   Chapter 12

public class QuackCounter implements Quackable {

 Quackable duck;

 static int numberOfQuacks;

 public QuackCounter(Quackable duck) {

 this.duck = duck;

 }

 public void quack() {

 duck.quack();

 numberOfQuacks++;

 }

 public static int getQuacks() {

 return numberOfQuacks;

 }

 public void registerObserver(Observer observer) {

 duck.registerObserver(observer);

 }

 public void notifyObservers() {

 duck.notifyObservers();

 }

}

QuackCounter is a Quackable, so
now it’s a QuackObservable too.

All of this code is the
same as the previous
version of QuackCounter.

Here’s the duck that QuackCounter
is decorating. It’s this duck that
really needs to handle the observable
methods.

Here are the two QuackObservable
methods. Notice that we just delegate both calls to the duck
that we’re decorating.

Exercise Solutions

The QuackCounter is a Quackable too. When we change
Quackable to extend QuackObservable, we have to change every
class that implements Quackable, including QuackCounter:

exercise solutions

you are here 4   547

compound patterns

public class Flock implements Quackable {

 List<Quackable> quackers = new ArrayList<Quackable>();

 public void add(Quackable duck) {

 ducks.add(duck);

 }

 public void quack() {

 Iterator<Quackable> iterator = quackers.iterator();

 while (iterator.hasNext()) {

 Quackable duck = iterator.next();

 duck.quack();

 }

 }

 public void registerObserver(Observer observer) {

 Iterator<Quackable> iterator = ducks.iterator();

 while (iterator.hasNext()) {

 Quackable duck = iterator.next();

 duck.registerObserver(observer);

 }

 }

 public void notifyObservers() { }

}

What if our Quackologist wants to observe an entire flock? What does that
mean anyway? Think about it like this: if we observe a composite, then we’re
observing everything in the composite. So, when you register with a flock, the
flock composite makes sure you get registered with all its children, which may
include other flocks.

Flock is a Quackable, so now
it’s a QuackObservable too.

Here are the Quackables
that are in the Flock.

When you register as an Observer

with the Flock, you actually
get registered with everything
that’s IN the flock, which is
every Quackable, whether it’s a
duck or another Flock.

We iterate through all the
Quackables in the Flock
and delegate the call to
each Quackable. If the
Quackable is another Flock,
it will do the same.

Each Quackable does its own notification, so Flock doesn’t have to worry about it. This happens when Flock delegates quack() to each Quackable in the Flock.

548   Chapter 12

You’ve seen that the view and controller together make use of the Strategy
Pattern. Can you draw a class diagram of the two that represents this pattern?

Design Puzzle Solution

setBPM()
increaseBPM()
decreaseBPM()

<<interface>>
ControllerInterface

createView()
updateBPM()
updateBeat()
createControls()
enableStopMenuItem()
disableStopMenuItem()
enableStartMenuItem()
disableStartMenuItem()
actionPerformed()

DJView

controller

setBPM()
increaseBPM()
decreaseBPM()

Controller

The
ControllerInterface
is the interface
that all concrete
controllers
implement. This
is the strategy
interface.

We can plug
in different
controllers
to provide
different
behaviors for
the view.

The view delegates behavior to the
controller. The
behavior it
delegates is how to control the model based on user
input.

We’re still directly instantiating Geese by relying on concrete classes.
Can you write an Abstract Factory for Geese? How should it handle
creating “goose ducks”?

You could add a createGooseDuck() method to the existing Duck Factories. Or,
you could create a completely separate Factory for creating families of Geese.

exercise solutions

you are here 4   549

compound patterns

package headfirst.designpatterns.combined.djview;

public class DJTestDrive {

 public static void main (String[] args) {

 BeatModelInterface model = new BeatModel();

 ControllerInterface controller = new BeatController(model);

 }

}

package headfirst.designpatterns.combined.djview;

public interface BeatModelInterface {

 void initialize();

 void on();

 void off();

 void setBPM(int bpm);

 int getBPM();

 void registerObserver(BeatObserver o);

 void removeObserver(BeatObserver o);

 void registerObserver(BPMObserver o);

 void removeObserver(BPMObserver o);

}

Here’s the complete implementation of the DJView. It shows all the
MIDI code to generate the sound, and all the Swing components to
create the view. You can also download this code at
https://www.wickedlysmart.com. Have fun!

The Beat Model

Ready Bake
Code

http://www.wickedlysmart.com

550   Chapter 12

package headfirst.designpatterns.combined.djview;

import java.util.*;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.Clip;
import java.io.*;
import javax.sound.sampled.Line;

public class BeatModel implements BeatModelInterface, Runnable {
	 List<BeatObserver> beatObservers = new ArrayList<BeatObserver>();
	 List<BPMObserver> bpmObservers = new ArrayList<BPMObserver>();
	 int bpm = 90;
	 Thread thread;
	 boolean stop = false;
	 Clip clip;

	 public void initialize() {
		 try {
			 File resource = new File("clap.wav");
			 clip = (Clip) AudioSystem.getLine(new Line.Info(Clip.class));
			 clip.open(AudioSystem.getAudioInputStream(resource));
		 }
		 catch(Exception ex) {
			 System.out.println("Error: Can’t load clip");
			 System.out.println(ex);
		 }
	 }

	 public void on() {
		 bpm = 90;
		 notifyBPMObservers();
		 thread = new Thread(this);
		 stop = false;
		 thread.start();
	 }

	 public void off() {
		 stopBeat();
		 stop = true;
	 }

ready-bake code: model

you are here 4   551

compound patterns

Ready Bake
Code

	 public void run() {
		 while (!stop) {
			 playBeat();
			 notifyBeatObservers();
			 try {
				 Thread.sleep(60000/getBPM());
			 } catch (Exception e) {}
		 }
	 }

	 public void setBPM(int bpm) {
		 this.bpm = bpm;
		 notifyBPMObservers();
	 }

	 public int getBPM() {
		 return bpm;
	 }

	 public void registerObserver(BeatObserver o) {
		 beatObservers.add(o);
	 }

	 public void notifyBeatObservers() {
		 for (int i = 0; i < beatObservers.size(); i++) {
			 BeatObserver observer = (BeatObserver)beatObservers.get(i);
			 observer.updateBeat();
		 }
	 }

	 public void registerObserver(BPMObserver o) {
		 bpmObservers.add(o);
	 }

	 public void notifyBPMObservers() {
		 for (int i = 0; i < bpmObservers.size(); i++) {
			 BPMObserver observer = (BPMObserver)bpmObservers.get(i);
			 observer.updateBPM();
		 }
	 }

552   Chapter 12

	 public void removeObserver(BeatObserver o) {
		 int i = beatObservers.indexOf(o);
		 if (i >= 0) {
			 beatObservers.remove(i);
		 }
	 }

	 public void removeObserver(BPMObserver o) {
		 int i = bpmObservers.indexOf(o);
		 if (i >= 0) {
			 bpmObservers.remove(i);
		 }
	 }

	 public void playBeat() {
		 clip.setFramePosition(0);
		 clip.start();
	 }
	 public void stopBeat() {
		 clip.setFramePosition(0);
		 clip.stop();
	 }

}

ready-bake code: model

you are here 4   553

compound patterns

package headfirst.designpatterns.combined.djview;

public interface BPMObserver {

 void updateBPM();

}

package headfirst.designpatterns.combined.djview;

public interface BeatObserver {

 void updateBeat();

}

The View Ready Bake
Code

package headfirst.designpatterns.combined.djview;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DJView implements ActionListener, BeatObserver, BPMObserver {
 BeatModelInterface model;
 ControllerInterface controller;
 JFrame viewFrame;
 JPanel viewPanel;
 BeatBar beatBar;
 JLabel bpmOutputLabel;
 JFrame controlFrame;
 JPanel controlPanel;
 JLabel bpmLabel;
 JTextField bpmTextField;
 JButton setBPMButton;
 JButton increaseBPMButton;
 JButton decreaseBPMButton;
 JMenuBar menuBar;
 JMenu menu;
 JMenuItem startMenuItem;
 JMenuItem stopMenuItem;

 public DJView(ControllerInterface controller, BeatModelInterface model) {
 this.controller = controller;
 this.model = model;
 model.registerObserver((BeatObserver)this);
 model.registerObserver((BPMObserver)this);
 }

554   Chapter 12

 public void createView() {
 // Create all Swing components here
 viewPanel = new JPanel(new GridLayout(1, 2));
 viewFrame = new JFrame("View");
 viewFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 viewFrame.setSize(new Dimension(100, 80));
 bpmOutputLabel = new JLabel("offline", SwingConstants.CENTER);
 beatBar = new BeatBar();
 beatBar.setValue(0);
 JPanel bpmPanel = new JPanel(new GridLayout(2, 1));
 bpmPanel.add(beatBar);
 bpmPanel.add(bpmOutputLabel);
 viewPanel.add(bpmPanel);
 viewFrame.getContentPane().add(viewPanel, BorderLayout.CENTER);
 viewFrame.pack();
 viewFrame.setVisible(true);
 }

 public void createControls() {
 // Create all Swing components here
 JFrame.setDefaultLookAndFeelDecorated(true);
 controlFrame = new JFrame("Control");
 controlFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 controlFrame.setSize(new Dimension(100, 80));

 controlPanel = new JPanel(new GridLayout(1, 2));

 menuBar = new JMenuBar();
 menu = new JMenu("DJ Control");
 startMenuItem = new JMenuItem("Start");
 menu.add(startMenuItem);
 startMenuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 controller.start();
 }
 });
 stopMenuItem = new JMenuItem("Stop");
 menu.add(stopMenuItem);
 stopMenuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 controller.stop();
 }
 });
 JMenuItem exit = new JMenuItem("Quit");
 exit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
 }
 });

ready-bake code: view

you are here 4   555

compound patterns

Ready Bake
Code

 menu.add(exit);
 menuBar.add(menu);
 controlFrame.setJMenuBar(menuBar);

 bpmTextField = new JTextField(2);
 bpmLabel = new JLabel("Enter BPM:", SwingConstants.RIGHT);
 setBPMButton = new JButton("Set");
 setBPMButton.setSize(new Dimension(10,40));
 increaseBPMButton = new JButton(">>");
 decreaseBPMButton = new JButton("<<");
 setBPMButton.addActionListener(this);
 increaseBPMButton.addActionListener(this);
 decreaseBPMButton.addActionListener(this);

 JPanel buttonPanel = new JPanel(new GridLayout(1, 2));
 buttonPanel.add(decreaseBPMButton);
 buttonPanel.add(increaseBPMButton);

 JPanel enterPanel = new JPanel(new GridLayout(1, 2));
 enterPanel.add(bpmLabel);
 enterPanel.add(bpmTextField);
 JPanel insideControlPanel = new JPanel(new GridLayout(3, 1));
 insideControlPanel.add(enterPanel);
 insideControlPanel.add(setBPMButton);
 insideControlPanel.add(buttonPanel);
 controlPanel.add(insideControlPanel);

 bpmLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));
 bpmOutputLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

 controlFrame.getRootPane().setDefaultButton(setBPMButton);
 controlFrame.getContentPane().add(controlPanel, BorderLayout.CENTER);

 controlFrame.pack();
 controlFrame.setVisible(true);
 }

 public void enableStopMenuItem() {
 stopMenuItem.setEnabled(true);
 }

 public void disableStopMenuItem() {
 stopMenuItem.setEnabled(false);
 }

556   Chapter 12

 public void enableStartMenuItem() {
 startMenuItem.setEnabled(true);
 }

 public void disableStartMenuItem() {
 startMenuItem.setEnabled(false);
 }

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == setBPMButton) {
 int bpm = 90;
 String bpmText = bpmTextField.getText();
 if (bpmText == null || bpmText.contentEquals("")) {
 bpm = 90;
 } else {
 bpm = Integer.parseInt(bpmTextField.getText());
 }
 controller.setBPM(bpm);
 } else if (event.getSource() == increaseBPMButton) {
 controller.increaseBPM();
 } else if (event.getSource() == decreaseBPMButton) {
 controller.decreaseBPM();
 }
 }

 public void updateBPM() {
 int bpm = model.getBPM();
 if (bpm == 0) {
 bpmOutputLabel.setText("offline");
 } else {
 bpmOutputLabel.setText("Current BPM: " + model.getBPM());
 }
 }

 public void updateBeat() {
 beatBar.setValue(100);
 }
}

package headfirst.designpatterns.combined.djview;

public interface ControllerInterface {
 void start();
 void stop();
 void increaseBPM();
 void decreaseBPM();
 void setBPM(int bpm);
}

The Controller

ready-bake code: controller

you are here 4   557

compound patterns

package headfirst.designpatterns.combined.djview;

public class BeatController implements ControllerInterface {
 BeatModelInterface model;
 DJView view;

 public BeatController(BeatModelInterface model) {
 this.model = model;
 view = new DJView(this, model);
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 model.initialize();
 }

 public void start() {
 model.on();
 view.disableStartMenuItem();
 view.enableStopMenuItem();
 }

 public void stop() {
 model.off();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 }

 public void increaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm + 1);
 }

 public void decreaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm - 1);
 }

 public void setBPM(int bpm) {
 model.setBPM(bpm);
 }
}

Ready Bake
Code

558   Chapter 12

package headfirst.designpatterns.combined.djview;

public interface HeartModelInterface {
 int getHeartRate();
 void registerObserver(BeatObserver o);
 void removeObserver(BeatObserver o);
 void registerObserver(BPMObserver o);
 void removeObserver(BPMObserver o);
}

package headfirst.designpatterns.combined.djview;

public class HeartTestDrive {

 public static void main (String[] args) {
 HeartModel heartModel = new HeartModel();
 ControllerInterface model = new HeartController(heartModel);
 }
}

The Heart Model

package headfirst.designpatterns.combined.djview;

import java.util.*;

public class HeartModel implements HeartModelInterface, Runnable {
 List<BeatObserver> beatObservers = new ArrayList<BeatObserver>();
 List<BPMObserver> bpmObservers = new ArrayList<BPMObserver>();
 int time = 1000;
 int bpm = 90;
 Random random = new Random(System.currentTimeMillis());
 Thread thread;

 public HeartModel() {
 thread = new Thread(this);
 thread.start();
 }

 public void run() {
 int lastrate = -1;

 for(;;) {
 int change = random.nextInt(10);
 if (random.nextInt(2) == 0) {
 change = 0 - change;
 }
 int rate = 60000/(time + change);

ready-bake code: heart model

you are here 4   559

compound patterns

Ready Bake
Code

 if (rate < 120 && rate > 50) {
 time += change;
 notifyBeatObservers();
 if (rate != lastrate) {
 lastrate = rate;
 notifyBPMObservers();
 }
 }
 try {
 Thread.sleep(time);
 } catch (Exception e) {}
 }
 }
 public int getHeartRate() {
 return 60000/time;
 }

 public void registerObserver(BeatObserver o) {
 beatObservers.add(o);
 }

 public void removeObserver(BeatObserver o) {
 int i = beatObservers.indexOf(o);
 if (i >= 0) {
 beatObservers.remove(i);
 }
 }

 public void notifyBeatObservers() {
 for(int i = 0; i < beatObservers.size(); i++) {
 BeatObserver observer = (BeatObserver)beatObservers.get(i);
 observer.updateBeat();
 }
 }

 public void registerObserver(BPMObserver o) {
 bpmObservers.add(o);
 }

 public void removeObserver(BPMObserver o) {
 int i = bpmObservers.indexOf(o);
 if (i >= 0) {
 bpmObservers.remove(i);
 }
 }

 public void notifyBPMObservers() {
 for(int i = 0; i < bpmObservers.size(); i++) {
 BPMObserver observer = (BPMObserver)bpmObservers.get(i);
 observer.updateBPM();
 }
 }
}

560   Chapter 12

package headfirst.designpatterns.combined.djview;

public class HeartAdapter implements BeatModelInterface {
 HeartModelInterface heart;

 public HeartAdapter(HeartModelInterface heart) {
 this.heart = heart;
 }

 public void initialize() {}

 public void on() {}

 public void off() {}

 public int getBPM() {
 return heart.getHeartRate();
 }

 public void setBPM(int bpm) {}

 public void registerObserver(BeatObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BeatObserver o) {
 heart.removeObserver(o);
 }

 public void registerObserver(BPMObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BPMObserver o) {
 heart.removeObserver(o);
 }
}

The Heart Adapter

ready-bake code: heart adapter

you are here 4   561

compound patterns

package headfirst.designpatterns.combined.djview;

public class HeartController implements ControllerInterface {

 HeartModelInterface model;

 DJView view;

 public HeartController(HeartModelInterface model) {

 this.model = model;

 view = new DJView(this, new HeartAdapter(model));

 view.createView();

 view.createControls();

 view.disableStopMenuItem();

 view.disableStartMenuItem();

 }

 public void start() {}

 public void stop() {}

 public void increaseBPM() {}

 public void decreaseBPM() {}

 public void setBPM(int bpm) {}

}

The Controller Ready Bake
Code

this is a new chapter   563

Ahhhh, now you’re ready for a bright new world filled with
Design Patterns. But, before you go opening all those new doors of opportunity, we
need to cover a few details that you’ll encounter out in the real world—that’s right, things
get a little more complex than they are here in Objectville. Come along, we’ve got a nice
guide to help you through the transition on the next page...

Patterns in the

13 better living with patterns

Real World

564   Chapter 13

what you’ll learn from the guide

The Objectville Guide to

 Better Living with Design Patterns

Please accept our handy guide with tips & tricks for living with patterns in the real

world. In this guide you will:

) Learn the all too common misconceptions about the definition of a

“Design Pattern.”

) Discover those nifty Design Patterns catalogs and why you just have to

get one.

) Avoid the embarrassment of using a Design Pattern at the wrong time.

) Learn how to keep patterns in classifications where they belong.

) See that discovering patterns isn’t just for the gurus; read our quick

How To and become a patterns writer too.

) Be there when the true identity of the mysterious Gang of Four is revealed.

) Keep up with the neighbors—the coffee table books any patterns user

must own.

) Learn to train your mind like a Zen master.

) Win friends and influence developers by improving your patterns

vocabulary.

you are here 4   565

better living with patterns

A Pattern is a solution to a problem in a context.

Design Pattern defined
We bet you’ve got a pretty good idea of what a pattern is after reading this book. But
we’ve never really given a definition for a Design Pattern. Well, you might be a bit
surprised by the definition that is in common use:

That’s not the most revealing definition, is it? But don’t worry, we’re going to
step through each of these parts: context, problem, and solution:

The context is the situation in which the pattern applies. This should be
a recurring situation.

The problem refers to the goal you are trying to achieve in this context,
but it also refers to any constraints that occur in the context.

The solution is what you’re after: a general design that anyone can
apply that resolves the goal and set of constraints.

This is one of those definitions that takes a while to sink in, but take it one step
at a time. Try thinking of it like this:

“If you find yourself in a context with a problem that has a goal that
is affected by a set of constraints, then you can apply a design that
resolves the goal and constraints and leads to a solution.”

Now, this seems like a lot of work just to figure out what a Design Pattern
is. After all, you already know that a Design Pattern gives you a solution to a
common recurring design problem. What is all this formality getting you? Well,
you’re going to see that by having a formal way of describing patterns we can
create a catalog of patterns, which has all kinds of benefits.

Example: You have a
collection of objects.

You need to step
through the objects
without exposing
the collection’s
implementation.

Encapsulate the iteration into a separate class.

566   Chapter 13

design pattern defined

You might be right; let’s think about this a bit... We need a problem, a
solution, and a context:

Problem: How do I get to work on time?

Context: I’ve locked my keys in the car.

Solution: Break the window, get in the car, start the
engine, and drive to work.

We have all the components of the definition: we have a problem,
which includes the goal of getting to work, and the constraints of time,
distance, and probably some other factors. We also have a context in
which the keys to the car are inaccessible. And we have a solution that
gets us to the keys and resolves both the time and distance constraints.
We must have a pattern now! Right?

I’ve been thinking about
the three-part definition,
and I don’t think it defines a

pattern at all.

We followed the Design Pattern definition and defined a problem, a context, and
a solution (which works!). Is this a pattern? If not, how did it fail? Could we fail the
same way when defining an OO Design Pattern?

you are here 4   567

better living with patterns

PatternsA-I

PatternsJ-R

PatternsS-Z

Looking more closely at the
Design Pattern definition
Our example does seem to match the Design Pattern
definition, but it isn’t a true pattern. Why? For starters,
we know that a pattern needs to apply to a recurring
problem. While an absent-minded person might lock
his keys in the car often, breaking the car window
doesn’t qualify as a solution that can be applied over
and over (or at least isn’t likely to if we balance the
goal with another constraint: cost).

It also fails in a couple of other ways: first, it isn’t easy
to take this description, hand it to someone, and have
him apply it to his own unique problem. Second, we’ve
violated an important but simple aspect of a pattern:
we haven’t even given it a name! Without a name, the
pattern doesn’t become part of a vocabulary that can
be shared with other developers.

Luckily, patterns are not described and documented as
a simple problem, context, and solution; we have much
better ways of describing patterns and collecting them
together into patterns catalogs.

Q: Am I going to see pattern
descriptions that are stated as a problem,
a context, and a solution?

A: Pattern descriptions, which you’ll
typically find in patterns catalogs, are usually
a bit more revealing than that. We’re going
to look at patterns catalogs in detail in just
a minute; they describe a lot more about a
pattern’s intent and motivation and where it
might apply, along with the solution design
and the consequences (good and bad) of
using it.

Q: Is it okay to slightly alter a pattern’s
structure to fit my design? Or am I going
to have to go by the strict definition?

A: Of course you can alter it. Like design
principles, patterns are not meant to be laws
or rules; they are guidelines that you can
alter to fit your needs. As you’ve seen, a lot
of real-world examples don’t fit the classic
pattern designs.

However, when you adapt patterns, it
never hurts to document how your pattern
differs from the classic design—that way,
other developers can quickly recognize the
patterns you’re using and any differences
between your pattern and the classic pattern.

Q: Where can I get a patterns catalog?

A: The first and most definitive patterns
catalog is Design Patterns: Elements of
Reusable Object-Oriented Software, by
Gamma, Helm, Johnson, and Vlissides
(Addison Wesley). This catalog lays out 23
fundamental patterns. We’ll talk a little more
about this book in a few pages.

Many other patterns catalogs are starting to
be published in various domain areas such
as enterprise software, concurrent systems,
and business systems.

Next time someone
tells you a pattern is a

solution to a problem in a context, just
nod and smile. You know what they mean,
even if it isn’t a definition sufficient to
describe what a Design Pattern really is.

568   Chapter 13

forces goals constraints

Geek Bits
May the force be with you

The Design Pattern
definition tells us that

the problem consists of a
goal and a set of constraints.

Pattern gurus have a term for
these: they call them forces.

Why? Well, we’re sure they
have their own reasons, but if

you remember the movie, the force
“shapes and controls the Universe.”

Likewise, the forces in the pattern
definition shape and control the solution.

Only when a solution balances both sides of
the force (the light side: your goal, and the dark

side: the constraints) do we have a useful pattern.
This “force” terminology can be quite confusing

when you first see it in pattern discussions, but
just remember that there are two sides of the force

(goals and constraints) and that they need to be
balanced or resolved to create a pattern solution. Don’t

let the lingo get in your way and may the force be with you!

you are here 4   569

better living with patterns

Frank: Fill us in, Jim. I’ve just been learning patterns by reading a few
articles here and there.

Jim: Sure, each patterns catalog takes a set of patterns and describes
each in detail along with its relationship to the other patterns.

Joe: Are you saying there is more than one patterns catalog?

Jim: Of course; there are catalogs for fundamental Design Patterns
and there are also catalogs on domain-specific patterns, like enterprise
or distributed computing patterns.

Frank: Which catalog are you looking at?

Jim: This is the classic GoF catalog; it contains 23 fundamental
Design Patterns.

Frank: GoF?

Jim: Right, that stands for the Gang of Four. The Gang of Four are
the guys that put together the first patterns catalog.

Joe: What’s in the catalog?

Jim: There is a set of related patterns. For each pattern there is a
description that follows a template and spells out a lot of details of the
pattern. For instance, each pattern has a name.

Joe Jim
Frank

I wish I’d known
about patterns catalogs
a long time ago...

570   Chapter 13

using a patterns catalog

Frank: Wow, that’s earth-shattering, a name! Imagine that.

Jim: Hold on, Frank; actually, the name is really important. When we have a name
for a pattern, it gives us a way to talk about the pattern; you know, that whole shared
vocabulary thing.

Frank: Okay, okay. I was just kidding. Go on, what else is there?

Jim: Well, like I was saying, every pattern follows a template. For each pattern we have
a name and a few sections that tell us more about the pattern. For instance, there is an
Intent section that describes what the pattern is, kind of like a definition. Then there are
Motivation and Applicability sections that describe when and where the pattern might be
used.

Joe: What about the design itself ?

Jim: There are several sections that describe the class design along with all the classes
that make it up and what their roles are. There is also a section that describes how to
implement the pattern and often sample code to show you how.

Frank: It sounds like they’ve thought of everything.

Jim: There’s more. There are also examples of where the pattern has been used in real
systems, as well as what I think is one of the most useful sections: how the pattern relates
to other patterns.

Frank: Oh, you mean they tell you things like how the State and Strategy Patterns differ?

Jim: Exactly!

Joe: So Jim, how are you actually using the catalog? When you have a problem, do you
go fishing in the catalog for a solution?

Jim: I try to get familiar with all the patterns and their relationships first. Then, when I
need a pattern, I have some idea of what it is. I go back and look at the Motivation and
Applicability sections to make sure I’ve got it right. There is also another really important
section: Consequences. I review that to make sure there won’t be some unintended effect
on my design.

Frank: That makes sense. So once you know the pattern is right, how do you approach
working it into your design and implementing it?

Jim: That’s where the class diagram comes in. I first read over the Structure section to
review the diagram and then over the Participants section to make sure I understand each
class’s role. From there, I work it into my design, making any alterations I need to make
it fit. Then I review the Implementation and Sample Code sections to make sure I know
about any good implementation techniques or gotchas I might encounter.

Joe: I can see how a catalog is really going to accelerate my use of patterns!

Frank: Totally. Jim, can you walk us through a pattern description?

you are here 4   571

better living with patterns

SINGLETON Object Creational

Intent
Et aliquat, velesto ent lore feuis acillao rperci tat, quat nonsequam il ea at nim nos do enim qui eratio ex ea faci tet, sequis dion utat, volore magnisi.

Motivation
Et aliquat, velesto ent lore feuis acillao rperci tat, quat nonsequam il ea at nim nos do enim qui eratio ex ea faci tet, sequis dion utat, volore magnisi.Rud modolore dit laoreet augiam iril el dipis dionsequis dignibh eummy nibh esequat. Duis nulputem ipisim esecte conullut wissi.Os nisissenim et lumsandre do con el utpatuero corercipis augue doloreet luptat amet vel iuscidunt digna feugue dunt num etummy nim dui blaor sequat num vel etue magna augiat.Aliquis nonse vel exer se minissequis do dolortis ad magnit, sim zzrillut ipsummo dolorem dignibh euguer sequam ea am quate magnim illam zzrit ad magna feu facinit delit ut

Applicability
Duis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

Structure

Singleton

static uniqueInstance

// Other useful Singleton data...

static getInstance()

// Other useful Singleton methods...

Participants
Duis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er
�	 A dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er
			 – A feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea 			 feuipit ing enit laore magnibh eniat wisissec
			 – Ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit

Collaborations
�	 Feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore.

Consequences
Duis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre:		 1. Dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem 		 diam nonullu tpatiss ismodignibh er.
	 2. Modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh 		 eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore 		 et, verci enis enit ip elesequisl ut ad esectem.
	 3. Dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem 		 diam nonullu tpatiss ismodignibh er.
	 4. Modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh 		 eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore 		 et, verci enis enit ip elesequisl ut ad esectem.

Implementation/Sample Code
DuDuis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

Nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

public class Singleton {
 private static Singleton uniqueInstance;
 // other useful instance variables here
 private Singleton() {}

 public static synchronized Singleton getInstance() {
 if (uniqueInstance == null) { uniqueInstance = new Singleton(); }
 return uniqueInstance; }

 // other useful methods here}

Known Uses
DuDuis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.
DuDuis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er. alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

Related Patterns
Elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er. alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

The structure provides a
diagram illustrating the
relationships among the
classes that participate
in the pattern.

The participants are the classes and
objects in the design. This section
describes their responsibilities and roles
in the pattern.

Collaborations tells us
how the participants work
together in the pattern.

The consequences describe the effects that using this pattern may have: good and bad.

All patterns in a catalog start with
a name. The name is a vital part of
a pattern — without a good name,
a pattern can’t become part of
the vocabulary that you share with
other developers.

This is the pattern’s classification or
category. We’ll talk about these in a few pages.

The intent describes what
the pattern does in a short
statement. You can also think
of this as the pattern’s
definition (just like we’ve been
using in this book).

The motivation gives you a concrete
scenario that describes the problem and
how the solution solves the problem.

The applicability describes situations
in which the pattern can be applied.

Implementation provides
techniques you need to use when
implementing this pattern, and
issues you should watch out for.

Sample Code provides code fragments that might help with your implementation.

Known Uses describes
examples of this pattern
found in real systems.

Related Patterns
describes the
relationship between
this pattern and others.

572   Chapter 13

discovering your own patterns

So you wanna be a design
patterns star?

Well, listen now to what I tell.

Get yourself a patterns catalog,

Then take some time and learn
it well.

And when you’ve got your
description right,

And three developers agree
without a fight,

Then you’ll know it’s a pattern
alright.

To the tune of “So you wanna
be a Rock’n’Roll Star.”

Q: Is it possible to create your own Design
Patterns? Or is that something you have to be a

“patterns guru” to do?

A: First, remember that patterns are discovered, not
created. So, anyone can discover a Design Pattern and
then author its description; however, it’s not easy and
doesn’t happen quickly, nor often. Being a “patterns
writer” takes commitment.

You should first think about why you’d want to—the
majority of people don’t author patterns; they just use
them. However, you might work in a specialized domain
for which you think new patterns would be helpful, or you
might have come across a solution to what you think is a
recurring problem, or you may just want to get involved
in the patterns community and contribute to the growing
body of work.

Q: I’m game; how do I get started?

A: As with any discipline, the more you know, the
better. Studying existing patterns, what they do, and how
they relate to other patterns is crucial. Not only does it
make you familiar with how patterns are crafted, it also
prevents you from reinventing the wheel. From there
you’ll want to start writing your patterns on paper, so you
can communicate them to other developers; we’re going
to talk more about how to communicate your patterns in
a bit. If you’re really interested, you’ll want to read the
section that follows these Q&As.

Q: How do I know when I really have a pattern?

A: That’s a very good question: you don’t have a
pattern until others have used it and found it to work. In
general, you don’t have a pattern until it passes the “Rule
of Three.” This rule states that a pattern can be called a
pattern only if it has been applied in a real-world solution
at least three times.

you are here 4   573

better living with patterns

Name
IntentMotivationApplicabilityStructureParticipantsCollaborations

 ...

Use one of the existing
pattern templates to
define your pattern. A lot
of thought has gone into
these templates and other
pattern users will recognize
the format.

So you wanna be a Design Patterns writer
Do your homework. You need to be well versed in the
existing patterns before you can create a new one. Most patterns
that appear to be new, are, in fact, just variants of existing
patterns. By studying patterns, you become better at recognizing
them, and you learn to relate them to other patterns.

Take time to reflect, evaluate. Your experience—the
problems you’ve encountered, and the solutions you’ve used—
are where ideas for patterns are born. So take some time to
reflect on your experiences and comb them for novel designs
that recur. Remember that most designs are variations on
existing patterns and not new patterns. And when you do find
what looks like a new pattern, its applicability may be too
narrow to qualify as a real pattern.

Get your ideas down on paper in a way others can
understand. Locating new patterns isn’t of much use if
others can’t make use of your find; you need to document your
pattern candidates so that others can read, understand, and
apply them to their own solution and then supply you with
feedback. Luckily, you don’t need to invent your own method of
documenting your patterns. As you’ve already seen with the GoF
template, a lot of thought has already gone into how to describe
patterns and their characteristics.

Have others try your patterns; then refine and refine
some more. Don’t expect to get your pattern right the first
time. Think of your pattern as a work in progress that will
improve over time. Have other developers review your candidate
pattern, try it out, and give you feedback. Incorporate that
feedback into your description and try again. Your description
will never be perfect, but at some point it should be solid enough
that other developers can read and understand it.

Don’t forget the Rule of Three. Remember, unless your
pattern has been successfully applied in three real-world
solutions, it can’t qualify as a pattern. That’s another good
reason to get your pattern into the hands of others so they can
try it, give feedback, and allow you to converge on a working
pattern.

574   Chapter 13

who does what?

Match each pattern with its description:

Pattern Description

Wraps an object and provides a different
interface to it.

Subclasses decide how to implement steps in an
algorithm.

Subclasses decide which concrete classes to
create.

Ensures one and only one object is created.

Encapsulates interchangeable behaviors and uses
delegation to decide which one to use.

Clients treat collections of objects and individual
objects uniformly.

Encapsulates state-based behaviors and uses
delegation to switch between behaviors.

Provides a way to traverse a collection of objects
without exposing its implementation.

Simplifies the interface of a set of classes.

Wraps an object to provide new behavior.

Allows a client to create families of objects
without specifying their concrete classes.

Allows objects to be notified when state changes.

Wraps an object to control access to it.

Encapsulates a request as an object.

Decorator

State

Iterator

Facade

Strategy

Proxy

Factory Method

Adapter

Observer

Template Method

Composite

Singleton

Abstract Factory

Command

you are here 4   575

better living with patterns

Organizing Design Patterns
As the number of discovered Design Patterns grows, it makes sense to partition them into
classifications so that we can organize them, narrow our searches to a subset of all Design Patterns,
and make comparisons within a group of patterns.

In most catalogs, you’ll find patterns grouped into one of a few classification schemes. The most
well-known scheme was used by the first patterns catalog and partitions patterns into three distinct
categories based on their purposes: Creational, Behavioral, and Structural.

Any pattern that is a Behavioral
Pattern is concerned with how
classes and objects interact and
distribute responsibility.

Structural Patterns let you
compose classes or objects
into larger structures.

Abstract Factory

Factory Method
Singleton

Adapter

Composite
Decorator

Facade
ProxyCommand

Iterator

Observer

State

Strategy

Template Method

BehavioralCreational

Structural

Creational Patterns involve object
instantiation and all provide a
way to decouple a client from the
objects it needs to instantiate.

Each of these patterns
belongs

in one of those categor
ies.

Read each category description and
see if you can corral these patterns
into their correct categories. This is a
toughy! But give it your best shot and
then check out the answers on the
next page.

576   Chapter 13

pattern categories

Any pattern that is a Behavioral
Pattern is concerned with how
classes and objects interact and
distribute responsibility.

Structural Patterns let you
compose classes or objects
into larger structures.

Abstract Factory
Factory Method

Singleton

Adapter

Composite
Decorator

Facade
Proxy

Command
Iterator

Observer

State
Strategy

Template Method

BehavioralCreational

Structural

Prototype
Builder

Interpreter
Chain of Responsibility

Mediator

Memento

Visitor

BridgeFlyweight

We’ve got a few patterns
(in grey) that you haven’t
seen yet. You’ll find an
overview of these patterns
in the Appendix.

Creational Patterns involve object
instantiation and all provide a
way to decouple a client from the
objects it needs to instantiate.

Pattern Categories
Here’s the grouping of patterns into categories. You probably found the exercise difficult, because
many of the patterns seem like they could fit into more than one category. Don’t worry, everyone
has trouble figuring out the right categories for the patterns.

you are here 4   577

better living with patterns

Class Patterns describe how relationships between
classes are defined via inheritance. Relationships in
class patterns are established at compile time.

Abstract Factory

Factory Method

Singleton

Adapter
Composite

Decorator
FacadeProxy

Command
Iterator

Observer

State

Strategy

Template Method
ObjectClass

Prototype

Builder

Interpreter

Chain of Responsibility
Mediator

Memento

Visitor

Bridge

Flyweight

Patterns are often classified by a second attribute: whether or not
the pattern deals with classes or objects:

Object Patterns describe
relationships between objects
and are primarily defined by
composition. Relationships in
object patterns are typically
created at runtime and are
more dynamic and flexible.

Notice there are
a lot more object
patterns than
class patterns!

Q: Are these the only classification
schemes?

A: No, other schemes have been
proposed. Some other schemes start
with the three categories and then add
subcategories, like “Decoupling Patterns.”
You’ll want to be familiar with the most
common schemes for organizing patterns,
but also feel free to create your own, if it
helps you to understand the patterns better.

Q: Does organizing patterns into
categories really help you remember
them?

A: It certainly gives you a framework for
the sake of comparison. But many people
are confused by the creational, structural,
and behavioral categories; often a pattern
seems to fit into more than one category.
The most important thing is to know the
patterns and the relationships among them.
When categories help, use them!

Q: Why is the Decorator Pattern in the
structural category? I would have thought
of that as a behavioral pattern; after all, it
adds behavior!

A: Yes, lots of developers say that!
Here’s the thinking behind the Gang of Four
classification: structural patterns describe
how classes and objects are composed to
create new structures or new functionality.
The Decorator Pattern allows you to
compose objects by wrapping one object
with another to provide new functionality. So
the focus is on how you compose the objects
dynamically to gain functionality, rather than
on the communication and interconnection
between objects, which is the purpose of
behavioral patterns. But remember, the
intent of these patterns is different, and
that’s often the key to understanding which
category a pattern belongs to.

578   Chapter 13

pattern categories

Guru and Student...
Guru: Student, you look troubled.

Student: Yes, I’ve just learned about
pattern classification and I’m confused.

Guru: Continue...

Student: After learning much about patterns, I’ve
just been told that each pattern fits into one of three
classifications: structural, behavioral, or creational. Why
do we need these classifications?

Guru: Whenever we have a large collection of anything,
we naturally find categories to fit those things into. It
helps us to think of the items at a more abstract level.

Student: Guru; can you give me an example?

Guru: Of course. Take automobiles; there are many
different models of automobiles and we naturally put
them into categories like economy cars, sports cars,
SUVs, trucks, and luxury cars.

Guru: You look shocked; does this not make sense?

Student: Guru, it makes a lot of sense, but I am
shocked you know so much about cars!

Guru: I can’t relate everything to lotus flowers or rice
bowls. Now, may I continue?

Student: Yes, yes, I’m sorry, please continue.

Guru: Once you have classifications or categories, you
can easily talk about the different groupings: “If you’re
doing the mountain drive from Silicon Valley to Santa
Cruz, a sports car with good handling is the best
option.” Or, “With the worsening oil situation, you really
want to buy a economy car; they’re more fuel-efficient.”

Student: So by having categories, we can talk about a
set of patterns as a group. We might know we need a
creational pattern, without knowing exactly which one,
but we can still talk about creational patterns.

Guru: Yes, and it also gives us a way to compare a
member to the rest of the category. For example, “The
Mini really is the most stylish compact car around,” or
to narrow our search, “I need a fuel-efficient car.”

you are here 4   579

better living with patterns

Student: I see. So I might say that the Adapter Pattern
is the best structural pattern for changing an object’s
interface.

Guru: Yes. We also can use categories for one more
purpose: to launch into new territory. For instance,

“We really want to deliver a sports car with Ferrari
performance at Honda prices.”

Student: That sounds like a death trap.

Guru: I’m sorry, I did not hear you, student.

Student: Uh, I said “I see that.”

Student: So categories give us a way to think about the
way groups of patterns relate and how patterns within
a group relate to one another. They also give us a way
to extrapolate to new patterns. But why are there three
categories and not four or five?

Guru: Ah, like stars in the night sky, there are as many
categories as you want to see. Three is a convenient
number and a number that many people have decided
makes for a nice grouping of patterns. But others have
suggested four, five, or more.

580   Chapter 13

thinking in patterns

Thinking in Patterns

Your Brain on Patterns

Contexts, constraints, forces, catalogs, classifications...boy, this
is starting to sound mighty academic. Okay, all that stuff is
important and knowledge is power. But, let’s face it, if you
understand the academic stuff and don’t have the experience and
practice using patterns, then it’s not going to make much difference
in your life.

Here’s a quick guide to help you start to think in patterns. What do
we mean by that? We mean being able to look at a design and see
where patterns naturally fit and where they don’t.

Keep it simple (KISS)
First of all, when you design, solve things in the simplest way possible. Your goal should be simplicity,
not “how can I apply a pattern to this problem?” Don’t feel like you aren’t a sophisticated developer if
you don’t use a pattern to solve a problem. Other developers will appreciate and admire the simplicity
of your design. That said, sometimes the best way to keep your design simple and flexible is to use a
pattern.

Design Patterns aren’t a magic bullet; in fact, they’re not even a bullet!
Patterns, as you know, are general solutions to recurring problems. Patterns also have the benefit of
being well tested by lots of developers. So, when you see a need for one, you can sleep well knowing
many developers have been there before and solved the problem using similar techniques.

However, patterns aren’t a magic bullet. You can’t plug one in, compile, and then take an early lunch.
To use patterns, you also need to think through the consequences for the rest of your design.

You know you need a pattern when...
Ah...the most important question: when do you use a pattern? As you approach your design, introduce
a pattern when you’re sure it addresses a problem in your design. If a simpler solution might work, give
that consideration before you commit to using a pattern.

Knowing when a pattern applies is where your experience and knowledge come in. Once you’re sure
a simple solution will not meet your needs, you should consider the problem along with the set of
constraints under which the solution will need to operate—these will help you match your problem to
a pattern. If you’ve got a good knowledge of patterns, you may know of a pattern that is a good match.
Otherwise, survey patterns that look like they might solve the problem. The intent and applicability
sections of the patterns catalogs are particularly useful for this. Once you’ve found a pattern that
appears to be a good match, make sure it has a set of consequences you can live with and study its effect
on the rest of your design. If everything looks good, go for it!

you are here 4   581

better living with patterns

There is one situation in which you’ll want to use a pattern even if a
simpler solution would work: when you expect aspects of your system to
vary. As we’ve seen, identifying areas of change in your design is usually a
good sign that a pattern is needed. Just make sure you are adding patterns
to deal with practical change that is likely to happen, not hypothetical change
that may happen.

Design time isn’t the only time you want to consider introducing patterns;
you’ll also want to do so at refactoring time.

Refactoring time is Patterns time!
Refactoring is the process of making changes to your code to improve
the way it is organized. The goal is to improve its structure, not change
its behavior. This is a great time to reexamine your design to see if it
might be better structured with patterns. For instance, code that is full of
conditional statements might signal the need for the State Pattern. Or, it
may be time to clean up concrete dependencies with Factory. Entire books
have been written on the topic of refactoring with patterns, and as your
skills grow, you’ll want to study this area more.

Take out what you don’t really need. Don’t be afraid
to remove a Design Pattern from your design.
No one ever talks about when to remove a pattern. You’d think it was
blasphemy! Nah, we’re all adults here; we can take it.

So when do you remove a pattern? When your system has become
complex and the flexibility you planned for isn’t needed. In other words,
when a simpler solution without the pattern would be better.

If you don’t need it now, don’t do it now.
Design Patterns are powerful, and it’s easy to see all kinds of ways they
can be used in your current designs. Developers naturally love to create
beautiful architectures that are ready to take on change from any direction.

Resist the temptation. If you have a practical need to support change in
a design today, go ahead and employ a pattern to handle that change.
However, if the reason is only hypothetical, don’t add the pattern; it will
only add complexity to your system, and you might never need it!

Center your thinking on
design, not on patterns. Use
patterns when there is a natural
need for them. If something
simpler will work, then use it.

582   Chapter 13

patterns emerge naturally

Guru and Student...
Guru: Student, your initial training is almost complete.

What are your plans?

Student: I’m going to Disneyland! And then I’m
going to start creating lots of code with patterns!

Guru: Whoa, hold on. Never use your big guns

unless you have to.

Student: What do you mean, Guru? Now that I’ve learned design
patterns, shouldn’t I be using them in all my designs to achieve maximum
power, flexibility, and manageability?

Guru: No; patterns are a tool, and a tool that should only be used
when needed. You’ve also spent a lot of time learning design principles.
Always start from your principles and create the simplest code you can
that does the job. However, if you see the need for a pattern emerge,
then use it.

Student: So I shouldn’t build my designs from patterns?

Guru: That should not be your goal when beginning a design. Let
patterns emerge naturally as your design progresses.

Student: If patterns are so great, why should I be so careful about using
them?

Guru: Patterns can introduce complexity, and we never want complexity
where it is not needed. But patterns are powerful when used where they
are needed. As you already know, patterns are proven design experience
that can be used to avoid common mistakes. They’re also a shared
vocabulary for communicating our design to others.

Student: Well, when do we know it’s okay to introduce design patterns?

Guru: Introduce a pattern when you are sure it’s necessary to solve a
problem in your design, or when you are quite sure that it is needed to
deal with a future change in the requirements of your application.

Student: I guess my learning is going to continue even though I already
understand a lot of patterns.

Guru: Yes; learning to manage the complexity and change in software is
a lifelong pursuit. But now that you know a good set of patterns, the time
has come to apply them where needed in your design and to continue
learning more patterns.

Student: Wait a minute, you mean I don’t know them ALL?

Guru: Student, you’ve learned the fundamental patterns; you’re going to
find there are many more, including patterns that just apply to particular
domains such as concurrent systems and enterprise systems. But now
that you know the basics, you’re in good shape to learn them.

you are here 4   583

better living with patterns

Zen Mind

Beginner Mind

Intermediate
Mind

Your Mind on Patterns

The Beginner uses patterns everywhere. This is good:
the beginner gets lots of experience with and practice
using patterns. The beginner also thinks, “The more
patterns I use, the better the design.” The beginner will
learn this is not so, that all designs should be as simple as
possible. Complexity and patterns should only be used
where they are needed for practical extensibility.

As learning progresses, the Intermediate
mind starts to see where patterns are needed
and where they aren’t. The intermediate
mind still tries to fit too many square patterns
into round holes, but also begins to see that
patterns can be adapted to fit situations where
the canonical pattern doesn’t fit.

The Zen mind is able to see patterns where they fit naturally.
The Zen mind is not obsessed with using patterns; rather, it
looks for simple solutions that best solve the problem. The Zen
mind thinks in terms of the object principles and their tradeoffs.
When a need for a pattern naturally arises, the Zen mind applies
it knowing well that it may require adaptation. The Zen mind
also sees relationships to similar patterns and understands the
subtleties of differences in the intent of related patterns. The
Zen mind is also a Beginner mind—it doesn’t let all that pattern
knowledge overly influence design decisions.

“I need a pattern for Hello World.”

“Maybe I need a Singleton here.”

“This is a natural place for Decorator.”

584   Chapter 13

when not to use patterns

WARNING: Overuse of design patterns can lead to code that is downright overengineered. Always go with the simplest solution that does the job and introduce patterns where the need emerges.

Of course we want you to use
Design Patterns!

But we want you to be a good OO designer even
more.

When a design solution calls for a pattern, you
get the benefits of using a solution that has been
time-tested by lots of developers. You’re also
using a solution that is well documented and that
other developers are going to recognize (you know,
that whole shared vocabulary thing).

However, when you use Design Patterns, there
can also be a downside. Design Patterns often
introduce additional classes and objects, and so
they can increase the complexity of your designs.
Design Patterns can also add more layers to your
design, which adds not only complexity, but also
inefficiency.

Also, using a Design Pattern can sometimes be
outright overkill. Many times you can fall back on
your design principles and find a much simpler
solution to solve the same problem. If that
happens, don’t fight it. Use the simpler solution.

Don’t let us discourage you, though. When a
Design Pattern is the right tool for the job, the
advantages are many.

Wait a minute; I’ve
read this entire book and
now you’re telling me NOT to
use patterns?

you are here 4   585

better living with patterns

Don’t forget the power of the
shared vocabulary

So I created this broadcast class. It
keeps track of all the objects listening to it
and any time a new piece of data comes along

it sends a message to each listener. What’s cool
is that the listeners can join the broadcast at any
time or they can even remove themselves. And the
broadcast class itself doesn’t know anything about

the listeners; any object that implements the
right interface can register.

Time-consumingIncomplete
Confusing

We’ve spent so much time in this book discussing OO nuts and bolts that it’s
easy to forget the human side of Design Patterns—they don’t just help load
your brain with solutions, they also give you a shared vocabulary with other
developers. Don’t underestimate the power of a shared vocabulary, it’s one of
the biggest benefits of Design Patterns.

Just think, something has changed since the last time we talked about shared
vocabularies; you’ve now started to build up quite a vocabulary of your own!
Not to mention, you have also learned a full set of OO design principles from
which you can easily understand the motivation and workings of any new
patterns you encounter.

Now that you’ve got the Design Pattern basics down, it’s time for you to
go out and spread the word to others. Why? Because when your fellow
developers know patterns and use a shared vocabulary as well, it leads to
better designs and better communication, and, best of all, it’ll save you a lot
of time that you can spend on cooler things.

586   Chapter 13

five ways to share your vocabulary

Precise

Succinct

Complete

Top five ways to share your vocabulary
1. In design meetings: When you meet with your team to discuss

a software design, use design patterns to help stay “in the design”
longer. Discussing designs from the perspective of Design Patterns
and OO principles keeps your team from getting bogged down in
implementation details and prevents many misunderstandings.

2. With other developers: Use patterns in your discussions
with other developers. This helps other developers learn about new
patterns and builds a community. The best part about sharing what
you’ve learned is that great feeling when someone else “gets it”!

3. In architecture documentation: When you write
architectural documentation, using patterns will reduce the amount
of documentation you need to write and gives the reader a clearer
picture of the design.

4. In code comments and naming conventions: When
you’re writing code, clearly identify the patterns you’re using in
comments. Also, choose class and method names that reveal any
patterns underneath. Other developers who have to read your
code will thank you for allowing them to quickly understand your
implementation.

5. To groups of interested developers: Share your knowledge.
Many developers have heard about patterns but don’t have a good
understanding of what they are. Volunteer to give a brown-bag lunch
on patterns or a talk at your local user group.

Observer

you are here 4   587

better living with patterns

Erich Gamma

Cruisin’ Objectville with the
Gang of Four
You won’t find the Jets or Sharks hanging around Objectville, but
you will find the Gang of Four. As you’ve probably noticed, you
can’t get far in the World of Patterns without running into them.
So, who is this mysterious gang?

Put simply, “the GoF,” which includes Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides, is the group of guys who
put together the first patterns catalog and in the process, started an
entire movement in the software field!

How did they get that name? No one knows for sure; it’s just a
name that stuck. But think about it: if you’re going to have a “gang
element” running around Objectville, could you think of a nicer
bunch of guys? In fact, they’ve even agreed to pay us a visit...

Objectville Patterns Tour

The GoF launched the software
patterns movement, but many others
have made significant contributions,
including Ward Cunningham, Kent
Beck, Jim Coplien, Grady Booch, Bruce
Anderson, Richard Gabriel, Doug Lea,
Peter Coad, and Doug Schmidt, to
name just a few.

Go for simplicity
and don’t become overexcited.
If you can come up with a

simpler solution without using a
pattern, then go for it.

John Vlissides*

Richard
Helm

Ralph
Johnson

Today
there are more

patterns than in the
GoF book; learn about

them as well.

Shoot for practical
extensibility. Don’t
provide hypothetical
generality; be extensible
in ways that matter.

Patterns are tools, not
rules—they need to be
tweaked and adapted to
your problem.

*John Vlissides passed away in 2005. A great loss to the Design Patterns community.

588   Chapter 13

patterns resources

Your journey has just begun...

The authors of Design Patterns are

affectionately known as the “Gang of Four,”

or GoF for short.

Now that you’re on top of Design Patterns and ready to dig deeper, we’ve got three definitive
texts that you need to add to your bookshelf...

This is the book that kicked off the entire field of Design
Patterns when it was released in 1995. You’ll find all the
fundamental patterns here. In fact, this book is the basis for
the set of patterns we used in Head First Design Patterns.

You won’t find this book to be the last word on Design
Patterns—the field has grown substantially since its
publication—but it is the first and most definitive.

Picking up a copy of Design Patterns is a great way to start
exploring patterns after Head First.

Patterns didn’t start with the GoF; they started
with Christopher Alexander, a professor of
architecture at Berkeley—that’s right, Alexander
is an architect, not a computer scientist. Alexander
invented patterns for building living architectures
(like houses, towns, and cities).

The next time you’re in the mood for some deep,
engaging reading, pick up The Timeless Way of
Building and A Pattern Language. You’ll see the true
beginnings of Design Patterns and recognize
the direct analogies between creating “living
architecture” and flexible, extensible software.

So grab a cup of Starbuzz coffee, sit back, and
enjoy...

The definitive Design Patterns text

The definitive Patterns texts

Christopher Alexander invented
patterns, which inspired applying similar
solutions to software.

you are here 4   589

better living with patterns

Other Design Patterns resources

Websites

The Portland Patterns Repository, run by Ward
Cunningham, is a wiki devoted to all things related to
patterns. You’ll find threads of discussion on every topic
you can think of related to patterns and OO systems.

c2.com/cgi/wiki?WelcomeVisitors

The Hillside Group fosters common programming
and design practices and provides a central resource for
patterns work. The site includes information on many
patterns-related resources such as articles, books, mailing
lists, and tools.

hillside.net

O’Reilly Online Learning provides online design
patterns books, courses, and live teaching. You’ll also find
a design patterns bootcamp course based on this book.

oreilly.com

You’re going to find there is a vibrant, friendly community of patterns
users and writers out there and they’re glad to have you join them.
Here are a few resources to get you started...

Conferences and Workshops

If you’d like to interact with the patterns
community, be sure to check out the many
patterns-related conferences and workshops. The
Hillside site maintains a complete list. Check out
Pattern Languages of Programs (PLoP) and the
ACM Conference on Object-Oriented Systems,
Languages and Applications (OOPSLA), which is
now part of the SPLASH conference.

Other Resources

We’d be remiss if we didn’t mention Google, Stack Overflow, Quora, and many other sites
and services as good places to ask questions, find answers, and discuss design patterns. As
with anything on the web, always double-check the information you receive.

https://c2.com/cgi/wiki?WelcomeVisitors
https://hillside.net/
https://learning.oreilly.com/

590   Chapter 13

patterns zoo

The Patterns Zoo

Architectural Patterns are
used to create the living,
vibrant architecture of
buildings, towns, and cities.
This is where patterns got
their start.

Application Patterns are
patterns for creating

system-level architecture.
Many multitier

architectures fall into this
category.

Habitat: found in buildings you
like to live in, look at and visit.

As you’ve just seen, patterns didn’t start with software; they started
with the architecture of buildings and towns. In fact, the patterns
concept can be applied in many different domains. Take a walk
around the Patterns Zoo to see a few...

Habitat: seen hanging around
three-tier architectures, client-
server systems and the web.

Field note: MVC has been
known to pass for an
application pattern.

Domain-Specific Patterns
are patterns that concern
problems in specific domains,
like concurrent systems or
real-time systems.

Help find a habitat
Enterprise Computing

you are here 4   591

better living with patterns

Business Process Patterns
describe the interaction

between businesses, customers,
and data, and can be applied

to problems such as how
to effectively make and
communicate decisions.

Organizational Patterns
describe the structures
and practices of human

organizations. Most
efforts to date have

focused on organizations
that produce and/or

support software.

User Interface
Design Patterns

address the
problems of how to
design interactive

software programs.

Seen hanging around corporate boardrooms and project management meetings.

Field notes: please add your observations of pattern domains here:

Habitat: seen in the vicinity
of video game designers, GUI
builders, and producers.

Help find a habitat
Development team
Customer support team

592   Chapter 13

anti-patterns

Annihilating evil with Anti-Patterns
The Universe just wouldn’t be complete if we had patterns and no
anti-patterns, now would it?

If a Design Pattern gives you a general solution to a recurring
problem in a particular context, then what does an anti-pattern
give you? An anti-pattern always

looks like a good solution,
but then turns out to be
a bad solution when it
is applied.

By documenting anti-
patterns we help
others to recognize bad
solutions before they
implement them.

Like patterns, there
are many types
of anti-patterns
including development,
OO, organizational,
and domain-specific
anti-patterns.

An Anti-Pattern tells you how to go from a problem
to a BAD solution.

You’re probably asking yourself, “Why on earth would anyone
waste their time documenting bad solutions?”

Think about it like this: if there is a recurring bad solution to a
common problem, then by documenting it we can prevent other
developers from making the same mistake. After all, avoiding bad
solutions can be just as valuable as finding good ones!

Let’s look at the elements of an anti-pattern:

An anti-pattern tells you why a bad solution is
attractive. Let’s face it, no one would choose a bad solution if
there wasn’t something about it that seemed attractive up front.
One of the biggest jobs of the anti-pattern is to alert you to the
seductive aspect of the solution.

An anti-pattern tells you why that solution in the long
term is bad. In order to understand why it’s an anti-pattern,
you’ve got to understand how it’s going to have a negative effect
down the road. The anti-pattern describes where you’ll get into
trouble using the solution.

An anti-pattern suggests other applicable patterns that
may provide good solutions. To be truly helpful, an anti-
pattern needs to point you in the right direction; it should suggest
other possibilities that may lead to good solutions.

Let’s have a look at an anti-pattern.

you are here 4   593

better living with patterns

Anti-Pattern
Name: Golden Hammer

Problem: You need to choose technologies
for your development and you believe that
exactly one technology must dominate the
architecture.

Context: You need to develop some new
system or piece of software that doesn’t
fit well with the technology that the
development team is familiar with.

Forces:

• The development team is committed
to the technology they know.

• The development team is not familiar
with other technologies.

• Unfamiliar technologies are seen as
risky.

• It is easy to plan and estimate for
development using the familiar
technology.

Supposed solution: Use the familiar
technology anyway. The technology is applied
obsessively to many problems, including
places where it is clearly inappropriate.

Refactored solution: Expand the knowledge
of developers through education, training, and
book study groups that expose developers to
new solutions.

Examples:

Web companies keep using and maintaining
their internal homegrown caching systems
when open source alternatives are in use.

Adapted from the Portland Pattern Repository’s wiki

at https://wiki.c2.com/?WelcomeVisitors where you’ll

find many anti-patterns and discussions.

The bad, yet attractive, solution.

Tells you why
the solution is
attractive.

How to get to a
good solution.

The problem and context,
just like a Design Pattern
description.

Just like a Design Pattern,
an anti-pattern has a name so we can create a shared
vocabulary.

Here’s an example of a software development anti-pattern.

Example of where this anti-pattern
has been observed.

https://wiki.c2.com/?WelcomeVisitors

594   Chapter 13

your design toolbox

Tools for your Design Toolbox
You’ve reached that point where you’ve outgrown us. Now’s the
time to go out in the world and explore patterns on your own...

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a family of algorithm
s,

encapsulates eac
h one, and makes them

interchangeable
. Strategy let

s the algorithm

vary independen
tly from clients that us

e it.

OO Patterns
Observer - defines a one-

to-many

dependency bet
ween objects so t

hat

when one object
changes state, a

ll its

dependents are
 notified and u

pdated

automatically

Decorator - Attach additiona
l

responsibilities t
o an object dyn

amically.

Decorators provi
de a flexible

alternative to s
ubclassing for e

xtending

functionality.

Abstract Factory - Provide an

interface for c
reating families of

related or depe
dent objects w

ithout

specifying their
 concrete classe

s.
skipSingleton - Ensure a class on

ly has one

instance and pr
ovide a global p

oint of

access to it.
Command - Encapsulates a re

quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Adapter - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

Facade - Encapsulates a re
quest

as an object, th
ereby letting y

ou

parameterize clients
with different

requests, queue
or log requests,

 and

support undoab
le operations.

The time has come
for you to go out and
discover more patterns
on your own. There are
many domain-specific
patterns we haven’t even
mentioned and there are
also some foundational
ones we didn’t cover.
You’ve also got patterns
of your own to create.

State - Allow an object to a
lter its

behavior when its internal
 state changes.

The object will appear to ch
ange its

class.

Proxy - Provide a surr
ogate or

placeholder for
 another object

 to

control access t
o it.

A Compound Pattern c
ombines two or

more patterns int
o a solution tha

t

solves a recurrin
g or general pro

blem.

Compound Patterns____________________

Your Patterns Here! Check out the
Appendix; we’ll
give you a heads
up on some more
foundational
patterns you’ll
probably want to
have a look at.

Encapsulate what varies.

Favor composition over in
heritance.

Program to interfaces,
not

implementations.

Strive for loose
ly coupled desig

ns

between objects tha
t interact.

Classes should be
 open for exten

sion but

closed for modification.

Depend on abstra
ctions. Do not depend

on concrete cla
sses.

Only talk to your
 friends.

Don’t call us, we’ll call you.

A class should have
 only one reason

to change.

OO Principles

	� Let Design Patterns emerge
in your designs; don’t force
them in just for the sake of
using a pattern.

	� Design Patterns aren’t set in
stone; adapt and tweak them
to meet your needs.

	� Always use the simplest
solution that meets your
needs, even if it doesn’t
include a pattern.

	� Study Design Patterns
catalogs to familiarize
yourself with patterns and the
relationships among them.

	� Pattern classifications (or
categories) provide groupings
for patterns. When they help,
use them.

	� You need to be committed to
be a patterns writer: it takes
time and patience, and you
have to be willing to do lots of
refinement.

	� Remember, most patterns you
encounter will be adaptations
of existing patterns, not new
patterns.

	� Build your team’s shared
vocabulary. This is one of
the most powerful benefits of
using patterns.

	� Like any community, the
patterns community has its
own lingo. Don’t let that hold
you back. Having read this
book, you now know most
of it.

you are here 4   595

better living with patterns

We’re going to miss you, for sure. But don’t worry—before you know it, the
next Head First book will be out and you can visit again. What’s the next
book, you ask? Hmmm, good question! Why don’t you help us decide?
Send email to booksuggestions@wickedlysmart.com.

Boy, it’s been great having you in Objectville.

Leaving Objectville...

596   Chapter 13

exercise solutions

Match each pattern with its description:

Pattern Description

Wraps an object and provides a different
interface to it.

Subclasses decide how to implement steps in an
algorithm.

Subclasses decide which concrete classes to
create.

Ensures one and only one object is created.

Encapsulates interchangeable behaviors and uses
delegation to decide which one to use.

Clients treat collections of objects and individual
objects uniformly.

Encapsulates state-based behaviors and uses
delegation to switch between behaviors.

Provides a way to traverse a collection of objects
without exposing its implementation.

Simplifies the interface of a set of classes.

Wraps an object to provide new behavior.

Allows a client to create families of objects
without specifying their concrete classes.

Allows objects to be notified when state changes.

Wraps an object to control access to it.

Encapsulates a request as an object.

Decorator

State

Iterator

Facade

Strategy

Proxy

Factory Method

Adapter

Observer

Template Method

Composite

Singleton

Abstract Factory

Command

SOlUTion

this is a new chapter   597

Not everyone can be the most popular. A lot has changed

in the last 25+ years. Since Design Patterns: Elements of Reusable Object-

Oriented Software first came out, developers have applied these patterns

thousands of times. The patterns we summarize in this appendix are full-

fledged, card-carrying, official GoF patterns, but aren’t used as often as the

patterns we’ve explored so far. But these patterns are awesome in their own

right, and if your situation calls for them, you should apply them with your

head held high. Our goal in this appendix is to give you a high-level idea of

what these patterns are all about.

14 Appendix

Leftover Patterns

598   Appendix

bridge pattern

Bridge

Use the Bridge Pattern to vary not only your
implementations, but also your abstractions.

Imagine you’re writing the code for a new
ergonomic and user-friendly remote control for
TVs. You already know that you’ve got to use
good object-oriented techniques because while
the remote is based on the same abstraction, there
will be lots of implementations—one for each model
of TV.

A scenario

Your dilemma
You know that the remote’s user interface won’t be right the
first time. In fact, you expect that the product will be refined
many times as usability data is collected on the remote
control.

So your dilemma is that the remotes are going to change and
the TVs are going to change. You’ve already abstracted the user
interface so that you can vary the implementation over the many
TVs your customers will own. But you are also going to need
to vary the abstraction because it is going to change over time as
the remote is improved based on the user feedback.

So how are you going to create an object-oriented design that
allows you to vary the implementation and the abstraction?

Every remote has the
same abstraction.

RemoteControl

on()
off()
setChannel()
// more methods

Lots of
implementations,
one for each TV.

SonyControl

on()
off()
setChannel()
// more methods

RCAControl

on()
off()
setChannel()
// more methods

This is an abstraction. It could be
an interface or an abstract class.

{
 tuneChannel(channel);
}

Using this design we can vary
only the TV implementation, not
the user interface.

you are here 4   599

leftover patterns

Bridge Benefits

�	 Decouples an implementation so that it is not bound
permanently to an interface.

�	 Abstraction and implementation can be extended
independently.

�	 Changes to the concrete abstraction classes don’t
affect the client.

�	 Useful in graphics and windowing systems that need
to run over multiple platforms.

�	 Useful any time you need to vary an interface and an
implementation in different ways.

�	 Increases complexity.

Bridge Uses and Drawbacks

Why use the Bridge Pattern?
The Bridge Pattern allows you to vary the implementation and
the abstraction by placing the two in separate class hierarchies.

TV

on()
off()
tuneChannel()
// more methods

Sony

on()
off()
tuneChannel()
// more methods

RCA

on()
off()
tuneChannel()
// more methods

ConcreteRemote

on()
off()
setChannel()
nextChannel()
previousChannel()
// more methods

RemoteControl

implementor
on()
off()
setChannel()
// more methods

Has-A

implementor.tuneChannel(channel);

Abstraction
class hierarchy.

Implementation class hierarchy.The relationship between
the two is referred to as
the “bridge.”

All methods in the abstraction
are implemented in terms of
the implementation.

setChannel(currentStation + 1);

currentStation

Concrete subclasses are implemented in terms of the
abstraction, not the implementation.

Now you have two hierarchies, one for the remotes and a separate one for platform-
specific TV implementations. The bridge allows you to vary either side of the two
hierarchies independently.

600   Appendix

builder pattern

Builder

Use the Builder Pattern to encapsulate the construction of
a product and allow it to be constructed in steps.

You’ve just been asked to build a vacation planner for Patternsland, a new theme
park just outside of Objectville. Park guests can choose a hotel and various types of
admission tickets, make restaurant reservations, and even book special events. To create
a vacation planner, you need to be able to create structures like this:

A scenario

You need a flexible design
Each guest’s planner can vary in the number of days and types of activities it includes.
For instance, a local resident might not need a hotel, but wants to make dinner and
special event reservations. Another guest might be flying into Objectville and needs a
hotel, dinner reservations, and admission tickets.

So, you need a flexible data structure that can represent guest planners and all their
variations; you also need to follow a sequence of potentially complex steps to create the
planner. How can you provide a way to create the complex structure without mixing it
with the steps for creating it?

Each day can have any combination
of hotel reservations, tickets,
meals, and special events.

Each vacation is planned
over some number of days.

 Vacation

 DayOne

 DayTwo DayThree

 Dining
 Special Eve

nt Park Tickets Park Tickets

 Park Tickets

 Hotel

 Hotel

 Dinner

Patterns on Ic
e

 Hotel

 Dining

 Dinner

 Special Eve
nt

Cirque Du Patt
e r

ns

you are here 4   601

leftover patterns

Builder Benefits

�	 Encapsulates the way a complex object is
constructed.

�	 Allows objects to be constructed in a multistep and
varying process (as opposed to one-step factories).

�	 Hides the internal representation of the product from
the client.

�	 Product implementations can be swapped in and out
because the client only sees an abstract interface.

Builder Uses and Drawbacks

Why use the Builder Pattern?
Remember Iterator? We encapsulated the iteration into a separate
object and hid the internal representation of the collection from the
client. It’s the same idea here: we encapsulate the creation of the
trip planner in an object (let’s call it a builder), and have our client
ask the builder to construct the trip planner structure for it.

The Client directs
the builder to
construct the
planner.

AbstractBuilder

buildDay()
addHotel()
addReservation()
addSpecialEvent()
addTickets()
getVacationPlanner()

Client

builder.buildDay(date);
builder.addHotel(date, "Grand Facadian");
builder.addTickets("Patterns on Ice");

 // plan rest of vacation

Planner yourPlanner =
 builder.getVacationPlanner();

The client uses an
abstract interface to
build the planner.

The concrete builder
creates real products
and stores them in
the vacation composite
structure.

The Client directs the builder to
create

the planner in a number of steps and

then calls the getVacationP
lanner()

method to retrieve the complete object.

VacationBuilder

vacation

buildDay()
addHotel()
addReservation()
addSpecialEvent()
addTickets()
getVacationPlanner()

builder

constructPlanner()

�	 Often used for building composite structures.
�	 Constructing objects requires more domain

knowledge of the client than when using a Factory.

602   Appendix

chain of responsibility pattern

Chain of Responsibility

Use the Chain of Responsibility Pattern when you want to
give more than one object a chance to handle a request.

Mighty Gumball has been getting more email
than they can handle since the release of the
Java-powered Gumball Machine. From their
own analysis they get four kinds of email: fan
mail from customers that love the new 1-in-10
game, complaints from parents whose kids are
addicted to the game, requests to put machines
in new locations, and a fair amount of spam.

All fan mail should go straight to the CEO, all
complaints should go to the legal department,
and all requests for new machines should go to
business development. Spam should be deleted.

A scenario

Your task
Mighty Gumball has already written some AI
detectors that can tell if an email is spam, fan
mail, a complaint, or a request, but they need
you to create a design that can use the detectors
to handle incoming email.

You’ve got to help us
deal with the flood of email we’re

getting since the release of the
Java Gumball Machine.

you are here 4   603

leftover patterns

 Chain of Responsibility Benefits

�	 Decouples the sender of the request and its
receivers.

�	 Simplifies your object because it doesn’t have
to know the chain’s structure and keep direct
references to its members.

�	 Allows you to add or remove responsibilities
dynamically by changing the members or order of
the chain.

�	 Commonly used in Windows systems to handle
events like mouse clicks and keyboard events.

�	 Execution of the request isn’t guaranteed; it may
fall off the end of the chain if no object handles it
(this can be an advantage or a disadvantage).

�	 Can be hard to observe and debug at runtime.

Chain of Responsibility Uses and Drawbacks

How to use the Chain of Responsibility Pattern
With the Chain of Responsibility Pattern, you create a chain of objects
to examine requests. Each object in turn examines a request and either
handles it or passes it on to the next object in the chain.

Handler

SpamHandler FanHandler ComplaintHandler NewLocHandler

Spam
Handler

Fan
Handler

Complaint
Handler

NewLoc
Handler

Each object in the chain
acts as a handler and has
a successor object. If it
can handle the request,
it does; otherwise, it
forwards the request to
its successor.

As email is received, it is passed to the first handler:
SpamHandler. If the SpamHandler can’t handle the request, it
is passed on to the FanHandler. And so on...

Each email is passed to
the first handler.

Email is not handled if it
falls off the end of the
chain — although you can always
implement a catch-all handler.

successor

handleRequest()

handleRequest() handleRequest() handleRequest() handleRequest()

604   Appendix

flyweight pattern

Flyweight

Use the Flyweight Pattern when one instance of a class
can be used to provide many virtual instances.

You want to add trees as objects in your new landscape design application. In your
application, trees don’t really do very much; they have an X-Y location, and they can
draw themselves dynamically, depending on how old they are. The thing is, a user
might want to have lots and lots of trees in one of their home landscape designs. It
might look something like this:

A scenario

Your big client’s dilemma
You have a key client you’ve been pitching for months.
They’re going to buy 1,000 seats of your application, and
they’re using your software to do the landscape design for
huge planned communities. After using your software for a
week, your client is complaining that when they create large
groves of trees, the app starts getting sluggish...

Tree

Tree Tree
Tree

Tree

Tree

Tree

House

Each Tree instance maintains its own state.

Tree

xCoord

yCoord

age

display() {

 // use X-Y coords

 // & complex age

 // related calcs

}

you are here 4   605

leftover patterns

 Flyweight Benefits

�	 Reduces the number of object instances at runtime,
saving memory.

�	 Centralizes state for many “virtual” objects into a
single location.

�	 The Flyweight is used when a class has many
instances, and they can all be controlled identically.

�	 A drawback of the Flyweight Pattern is that once
you’ve implemented it, single, logical instances of the
class will not be able to behave independently from
the other instances.

 Flyweight Uses and Drawbacks

Why use the Flyweight Pattern?
What if, instead of having thousands of Tree objects, you
could redesign your system so that you’ve got only one
instance of Tree, and a client object that maintains the state
of ALL your trees? That’s the Flyweight!

One, single, state-free Tree object.
All the state, for ALL
of your virtual Tree
objects, is stored in this
2D array.

TreeManager

treeArray

displayTrees() {

 // for all trees {

 // get array row

 display(x, y, age);

 }

}

Tree

display(x, y, age) {

 // use X-Y coords

 // & complex age

 // related calcs

}

606   Appendix

interpreter pattern

expression ::= <command> | <sequence> | <repetition>

sequence ::= <expression> ';' <expression>

command ::= right | quack | fly

repetition ::= while '(' <variable> ')'<expression>

variable ::= [A-Z,a-z]+

Interpreter

Use the Interpreter Pattern to build an
interpreter for a language.

Remember the Duck Simulator? You have a hunch it would also
make a great educational tool for children to learn programming.
Using the simulator, each child gets to control one duck with a
simple language. Here’s an example of the language:

A scenario

Now what?
You’ve got a grammar; now all you need is a way to represent and
interpret sentences in the grammar so that the students can see the
effects of their programming on the simulated ducks.

Now, remembering how to create grammars from one of your old
introductory programming classes, you write out the grammar:

Turn the duck righ
t.

Fly all day...

...and then quack.

A program is an expression c
onsisting

of sequences of c
ommands and

repetitions (“while” statements).

A while statement is just a conditional variable and an expression.

right;

while (daylight) fly;

quack;

A sequence is a set of
expressions separated
by semicolons.

We have three
commands: right,
quack, and fly.

		 The Interpreter
Pattern requires
some knowledge of

formal grammars.

If you’ve never studied formal grammars,

go ahead and read through the pattern;

you’ll still get the gist of it.

you are here 4   607

leftover patterns

 Interpreter Benefits

�	 Representing each grammar rule in a class makes
the language easy to implement.

�	 Because the grammar is represented by classes, you
can easily change or extend the language.

�	 By adding methods to the class structure, you can
add new behaviors beyond interpretation, like pretty
printing and more sophisticated program validation.

�	 Use Interpreter when you need to implement a
simple language.

�	 Appropriate when you have a simple grammar and
simplicity is more important than efficiency.

�	 Used for scripting and programming languages.
�	 This pattern can become cumbersome when

the number of grammar rules is large. In these
cases a parser/compiler generator may be more
appropriate.

 Interpreter Uses and Drawbacks

How to implement an interpreter
When you need to implement a simple language, the
Interpreter Pattern defines a class-based representation for its
grammar along with an interpreter to interpret its sentences.
To represent the language, you use a class to represent each
rule in the language. Here’s the duck language translated into
classes. Notice the direct mapping to the grammar.

To interpret the language, call the interpret() method on each
expression type. This method is passed a context—which
contains the input stream of the program we’re parsing—and
matches the input and evaluates it.

Expression

interpret(context)

SequenceRepetition

FlyCommand
interpret(context)

Variable RightCommandQuackCommand
interpret(context)interpret(context)interpret(context)

interpret(context)

expression1
expression2

variable
expression

interpret(context)

608   Appendix

mediator pattern

Mediator

Use the Mediator Pattern to centralize complex
communications and control between related objects.

Calendar

Bob has an automated home, thanks to the good folks at HouseOfTheFuture. All of
his appliances are designed to make his life easier. When Bob stops hitting the snooze
button, his alarm clock tells the coffee maker to start brewing. Even though life is good
for Bob, he and other customers are always asking for lots of new features: No coffee
on the weekends... Turn off the sprinkler 15 minutes before a shower is scheduled...
Set the alarm early on trash days...

A scenario

Sprinkler

CoffeePot

Alarm

HouseOfTheFuture’s dilemma
It’s getting really hard to keep track of which rules reside in which objects, and how
the various objects should relate to each other.

Alarm

onEvent() {

 checkCalendar()

 checkSprinkler()

 startCoffee()

 // do more stuff

}

Calendar

onEvent() {

 checkDayOfWeek()

 doSprinkler()

 doCoffee()

 doAlarm()

 // do more stuff

}

CoffeePot

onEvent() {

 checkCalendar()

 checkAlarm()

 // do more stuff

}

Sprinkler

onEvent() {

 checkCalendar()

 checkShower()

 checkTemp()

 checkWeather()

 // do more stuff

}

you are here 4   609

leftover patterns

 Mediator Benefits

�	 Increases the reusability of the objects supported by
the Mediator by decoupling them from the system.

�	 Simplifies maintenance of the system by centralizing
control logic.

�	 Simplifies and reduces the variety of messages sent
between objects in the system.

�	 The Mediator is commonly used to coordinate
related GUI components.

�	 A drawback of the Mediator Pattern is that without
proper design, the Mediator object itself can become
overly complex.

 Mediator Uses and Drawbacks

Mediator

Calendar
Sprinkler

CoffeePotAlarm

Mediator in action...
With a Mediator added to the system, all
of the appliance objects can be greatly
simplified:

 � They tell the Mediator when their state
changes.

 � They respond to requests from the
Mediator.

Before we added the Mediator, all of the
appliance objects needed to know about each
other; that is, they were all tightly coupled.
With the Mediator in place, the appliance
objects are all completely decoupled from
each other.

The Mediator contains all of the control
logic for the entire system. When an existing
appliance needs a new rule, or a new
appliance is added to the system, you’ll know
that all of the necessary logic will be added to
the Mediator.

Mediator

if(alarmEvent){

 checkCalendar()

 checkShower()

 checkTemp()

}

if(weekend) {

 checkWeather()

 // do more stuff

}

if(trashDay) {

 resetAlarm()

 // do more stuff

}

It’s such a relief,
not having to figure

out that Alarm clock’s
picky rules!

610   Appendix

memento pattern

Memento

Use the Memento Pattern when you need
to be able to return an object to one of its
previous states; for instance, if your user
requests an “undo.”

Your interactive role-playing game is hugely successful,
and has created a legion of addicts, all trying to get
to the fabled “level 13.” As users progress to more
challenging game levels, the odds of encountering
a game-ending situation increase. Fans who have
spent days progressing to an advanced level are
understandably miffed when their character gets snuffed,
and they have to start all over. The cry goes out for a

“save progress” command, so that players can store their
game progress and at least recover most of their efforts
when their character is unfairly extinguished. The

“save progress” function needs to be designed to return
a resurrected player to the last level she completed
successfully.

A scenario

Just be careful how you go about
saving the game state. It’s pretty

complicated, and I don’t want anyone
else with access to it mucking it up and
breaking my code.

you are here 4   611

leftover patterns

The Memento at work
The Memento has two goals:

 � Saving the important state of a system’s key object

 � Maintaining the key object’s encapsulation

Keeping the Single Responsibility Principle in mind, it’s also
a good idea to keep the state that you’re saving separate from
the key object. This separate object that holds the state is
known as the Memento object.

 Memento Benefits

�	 Keeping the saved state external from the key
object helps to maintain cohesion.

�	 Keeps the key object’s data encapsulated.
�	 Provides easy-to-implement recovery capability.

�	 The Memento is used to save state.
�	 A drawback to using Memento is that saving and

restoring state can be time-consuming.
�	 In Java systems, consider using Serialization to

save a system’s state.

 Memento Uses and Drawbacks

While this isn’t
a terribly fancy
implementation, notice
that the Client has
no access to the
Memento’s data.

Client

// when new level is reached

Object saved =

 (Object) mgo.getCurrentState();

// when a restore is required

mgo.restoreState(saved);

GameMemento

savedGameState

MasterGameObject

Object getCurrentState() {

 // gather state

 return(gameState);

}

restoreState(Object savedState) {

 // restore state

}

// do other game stuff

gameState

612   Appendix

prototype pattern

Your interactive role-playing game has an insatiable appetite for monsters. As your
heroes make their journey through a dynamically created landscape, they encounter
an endless chain of foes that must be subdued. You’d like the monster’s characteristics
to evolve with the changing landscape. It doesn’t make a lot of sense for bird-like
monsters to follow your characters into underseas realms. Finally, you’d like to allow
advanced players to create their own custom monsters.

Prototype

Use the Prototype Pattern when creating an instance
of a given class is either expensive or complicated.

A scenario

It would be a lot cleaner if
we could decouple the code that
handles the details of creating the

monsters from the code that actually
needs to create the instances on
the fly.

Yikes! Just the act
of creating all of these different

kinds of monster instances is getting
tricky... Putting all sorts of state detail in the
constructors doesn’t seem to be very cohesive. It
would be great if there was a single place where
all of the instantiation details could be

encapsulated...

you are here 4   613

leftover patterns

<<interface>>
Monster

Prototype to the rescue
The Prototype Pattern allows you to make new instances by
copying existing instances. (In Java this typically means using
the clone() method, or deserialization when you need deep
copies.) A key aspect of this pattern is that the client code can
make new instances without knowing which specific class is
being instantiated.

 Prototype Benefits

�	 Hides the complexities of making new instances
from the client.

�	 Provides the option for the client to generate
objects whose type is not known.

�	 In some circumstances, copying an object can be
more efficient than creating a new object.

�	 Prototype should be considered when a system
must create new objects of many types in a
complex class hierarchy.

�	 A drawback to using Prototype is that making a
copy of an object can sometimes be complicated.

 Prototype Uses and Drawbacks

The registry finds the appropriate monster, makes a clone of it, and returns the clone.

The client needs a new monster
appropriate to the current
situation. (The client won’t know
what kind of monster he gets.)

WellKnownMonster DynamicPlayerGeneratedMonster

MonsterMaker

makeRandomMonster() {

 Monster m =

 MonsterRegistry.getMonster();

}

MonsterRegistry

Monster getMonster() {

 // find the correct monster

 return correctMonster.clone();

}

614   Appendix

visitor pattern

Visitor

Use the Visitor Pattern when you want to
add capabilities to a composite of objects
and encapsulation is not important.

Customers who frequent the Objectville Diner and Objectville
Pancake House have recently become more health conscious. They
are asking for nutritional information before ordering their meals.
Because both establishments are so willing to create special orders,
some customers are even asking for nutritional information on a
per-ingredient basis.

A scenario

Lou’s proposed solution:

MenuItem

Menu

Ingredient

MenuItem

Ingredient

// new methods

getHealthRating()

getCalories()

getProtein()

getCarbs()

// new methods

getHealthRating()

getCalories()

getProtein()

getCarbs()

Mel’s concerns...
“Boy, it seems like we’re opening Pandora’s box. Who knows what
new method we’re going to have to add next, and every time we
add a new method we have to do it in two places. Plus, what if
we want to enhance the base application with, say, a recipes class?
Then we’ll have to make these changes in three different places...”

you are here 4   615

leftover patterns

The Visitor drops by
The Visitor works hand in hand with a Traverser. The Traverser
knows how to navigate to all of the objects in a Composite. The
Traverser guides the Visitor through the Composite so that the Visitor
can collect state as it goes. Once state has been gathered, the Client
can have the Visitor perform various operations on the state. When
new functionality is required, only the Visitor must be enhanced.

 Visitor Benefits

�	 Allows you to add operations to a Composite
structure without changing the structure itself.

� 	 Adding new operations is relatively easy.
�	 The code for operations performed by the Visitor is

centralized.

�	 The Composite classes’ encapsulation is broken
when the Visitor is used.

�	 Because the traversal function is involved,
changes to the Composite structure are more
difficult.

 Visitor Drawbacks

Visitor

 Client /
Traverser

getState()getState()

getState()

getState()

getStat
e()

ge
tH
ea
lt
hR
at
in
g(
)

ge
tC
al
or
ie
s(
)

ge
tP
ro
te
in
()

ge
tC
ar
bs
()

All these composite
classes have to do is add
a getState() method
(and not worry about
exposing themselves).

The Client asks
the Visitor to get
information from the
Composite structure...
New methods can be
added to the Visitor
without affecting the
Composite.

The Visitor needs to be able to call
getState() across classes, and this is
where you can add new methods for
the client to use.

The Traverser knows how to
guide the Visitor through
the Composite structure.

MenuItem

Menu

Ingredient

MenuItem

Ingredient

this is the index   617

Index

A
AbstractButton class 65

abstract class 128, 292, 293

Abstract Factory Pattern
about 153
building ingredient factories 146–148, 167
combining patterns 502–505, 548
defined 156–157
exercise matching description of 574, 596
Factory Method Pattern and 158–161
implementing 158
interview with 158–159

AbstractList 309

abstract superclasses 12

Adapter Pattern
about 243–244
adapting to Iterator Enumeration interface 251
combining patterns 498–499
dealing with remove() method 252
Decorator Pattern vs. 254–255
defined 245
designing Adapter 251
exercises for 256, 275, 375, 379, 481, 574, 596
Facade Pattern vs. 262
in Model-View-Controller 540
object and class adapters 246–249
Proxy Pattern vs. 466
simple real world adapters 250
writing Enumeration Iterator Adapter 252–253

adapters, OO (Object-Oriented)
about 238–239
creating Two Way Adapters 244
in action 240–241
object, class object and class 246–249
test driving 242

aggregates 327, 338

album covers, displaying using Proxy Pattern
about 458
code for 489–492
designing Virtual Proxy 459
reviewing process 465
testing viewer 464
writing Image Proxy 460–463

Alexander, Christopher
A Pattern Language 588
The Timeless Way of Building 588

algorithms, encapsulating
about 277
abstracting prepareRecipe() 284–287
Strategy Pattern and 24
Template Method Pattern and

about 288–290
applets in 309
code up close 292–293
defined 291
The Hollywood Principle and 298–300
hooks in 293–295
in real world 301
sorting with 302–307
Swing and 308
testing code 296

algorithms, family of 22

Anti-Patterns 592–593

Applicability section, in pattern catalog 571

Application Patterns 590

Architectural Patterns 590

ArrayList, arrays and 320–325, 351

arrays
iteration and 325–326, 345
iterator and hasNext() method with 328
iterator and next() method with 328

618   Index

the index

B
behavioral patterns categories, Design Patterns 576,

578–579

behaviors
classes as 14
classes extended to incorporate new 86
declaring variables 15
delegating to decorated objects while adding 90
designing 11–12
encapsulating 11, 22
implementing 11, 13
separating 10
setting dynamically 20–21

Be the JVM solution exercises, dealing with multithreading
179–180, 188

Bridge Pattern 598–599

Builder Pattern 600–601

Business Process Patterns 591

C
Caching Proxy, as form of Virtual Proxy 466, 482

Café Menu, integrating into framework (Iterator Pattern)
347

Chain of Responsibility Pattern 602–603

change
as the one constant in software development 8
identifying 54
iteration and 340

chocolate factory example, using Singleton Pattern
175–176, 183

class adapters, object vs. 246–249

class design, of Observer Pattern 51–52

classes. See also subclasses
abstract 128, 292, 293
adapter 244, 274
Adapter Pattern 245
altering decorator 108
as behaviors 14
collection 352
creating 10
extended to incorporate new behaviors 86

Factory Method Pattern creator and product 131–132
having single responsibility 340–341
high-level component 139
identifying as Proxy class 480
relationships between 22
state

defining 395
implementing 397, 400–405, 409
increasing number in design of 408
reworking 398–399
state transitions in 408

using composition with 23
using instance variables instead of 82–83
using instead of Singletons static 184
using new operator for instantiating concrete 110–113

Classification section, in pattern catalog 571

classloaders, using with Singletons 184

class patterns, Design Patterns 577

client heap 433–436

client helper (stubs), in RMI 436–437, 440, 442–444,
453–454

Code Magnets exercise
for DinerMenu Iterator 354, 378
for Observer Pattern 70, 76

cohesion 340

Collaborations section, in pattern catalog 571

collection classes 352

collection of objects
abstracting with Iterator Pattern

about 317
adding Iterators 328–334
cleaning up code using java.util.Iterator 335–337
remove() method in 334

implementing Iterators for 327
integrating into framework 347
meaning of 327
using Composite Pattern

about 363
implementing components 364–366
testing code 368–370
tree structure 360–362, 368

using whole-part relationships 372
Collections, Iterators and 353

you are here 4   619

the index

Combining Patterns
Abstract Factory Pattern 502–505
Adapter Pattern 498–499
class diagram for 518–519
Composite Pattern 507–509
Decorator Pattern 500–501
Iterator Pattern 507
Observer Pattern 510–516

command objects
encapsulating requests to do something 196
mapping 201
using 204

Command Pattern
command objects

building 203
encapsulating requests to do something 196
mapping 201
using 204

defined 206–207
dumb and smart command objects 228
exercise matching description of 574, 596
home automation remote control

about 193
building 203–205, 235
class diagram 207
creating commands to be loaded 208–209
defining 206
designing 195–196
implementing 210–212
macro commands 225, 226–228, 236
mapping 201–202, 235
Null Object in 214
testing 204, 212–213, 227
undo commands 217–221, 223–224, 228, 236
vendor classes for 194
writing documentation 215

logging requests using 230
mapping 201–202, 235
Null Object 214
queuing requests using 229
understanding 197–200

compareTo() method 303

Complexity Hiding Proxy 483

components of object 267–271

Composite Pattern
combining patterns 507–509
defined 360
dessert submenu using

about 357
designing 363, 371
implementing 364–367
testing 368–370

exercise matching description of 375, 379, 574, 596
in Model-View-Controller 526–527, 543
interview with 372–373
on implementation issues 372–373
safety vs. transparency 509
transparency in 371
tree structure of 360–362, 368

composition
adding behavior at runtime 85
favoring over inheritance 23, 85
inheritance vs. 93
object adapters and 249

compound patterns, using
about 493–494
Model-View-Controller

about 520–521, 523–525
Adapter Pattern 539
Beat model 529, 549–552
Composite Pattern 526–527, 543
controllers per view 543
Heart controller 541, 561
Heart model 539, 558–560
implementing controller 536–537, 556–557
implementing DJ View 528–535, 553–556
Mediator Pattern 543
model in 543
Observer Pattern 526–527, 531–533
song 520–521
state of model 543
Strategy Pattern 526–527, 536–537, 539, 558–560
testing 538
views accessing model state methods 543

multiple patterns vs. 516
concrete classes

deriving from 143
Factory Pattern and 134
getting rid of 116

620   Index

the index

instantiating objects and 138
using new operator for instantiating 110–113
variables holding reference to 143

concrete creators 135

concrete implementation object, assigning, 12

concrete methods, as hooks 293–295

concrete subclasses 121–122, 297

Consequences section, in pattern catalog 571

controlling object access, using Proxy Pattern
about 426–428
Caching Proxy 466, 482
Complexity Hiding Proxy 483
Copy-On-Write Proxy 483
Firewall Proxy 482
Protection Proxy

about 469
creating dynamic proxy 474–478
implementing matchmaking service 471–472
protecting subjects 473
testing matchmaking service 479–480
using dynamic proxy 469–470

Remote Proxy
about 429
adding to monitoring code 432
preparing for remote service 446–447
registering with RMI registry 448
reusing client for 449
reviewing process 453–455
role of 430–431
testing 450–452
wrapping objects and 468

Smart Reference Proxy 482
Synchronization Proxy 483
Virtual Proxy

about 457
designing Virtual Proxy 459
reviewing process 465
testing 464
writing Image Proxy 460–463

Copy-On-Write Proxy 483

create method
replacing new operator with 116
static method vs. 115
using subclasses with 121–122

creating static classes instead of Singleton 179–180

creational patterns category, Design Patterns 576,
578–579

creator classes, in Factory Method Pattern 131–132,
134–135

crossword puzzle 33, 74, 163, 187, 234, 273, 311, 374,
484

Cunningham, Ward 589

D
Decorator Pattern

about 88–90, 104
Adapter Pattern vs. 254–255
combining patterns 500–501
defined 91
disadvantages of 101
exercises for 256, 275, 481, 574, 596
in Java I/O 100–101
in Structural patterns category 577
interview with 104
Proxy Pattern vs. 466–468
Starbuzz Coffee project

about 80–81
adding sizes to code 99
constructing drink orders 89–90
drawing beverage order process 94, 107
testing order code 98–99
writing code 95–97

decoupling, Iterator allowing 333, 337, 339, 351–352

delegation, adding behavior at runtime 85

dependence, in Observer Pattern 52

Dependency Inversion Principle (DIP) 139–143, 300

dependency rot 298

depend upon abstractions design principle 139

Design Patterns
becoming writer of 573
behavioral patterns category 576, 578–579
categories of 576–579
class patterns 577
creational patterns category 576, 578–579
defined 565–567
discovering own 572
exercise matching description of 596

you are here 4   621

the index

frameworks vs. 29
guide to better living with 564
implement on interface in 117
libraries vs. 29
object patterns 577
organizing 575
overusing 584
resources for 588–589
rule of three applied to 573
structural patterns category 576, 578–579
thinking in patterns 580–581
using 29, 582, 584
your mind on patterns 583

Design Patterns- Reusable Object-Oriented Software
(Gamma et al.) 588

design principles
Dependency Inversion Principle 139–143
depend upon abstractions 139
Encapsulate what varies 9, 73, 75, 136, 393
Favor composition over inheritance 23, 73, 75, 393
The Hollywood Principle 298–300
One Class, One Responsibility Principle 184, 340,

371
one instance. See Singleton Pattern
Open-Closed Principle 355, 392
Principle of Least Knowledge 267–271
Program to an interface, not an implementation

11–12, 73, 75–76, 337
Single Responsibility Principle (SRP) 340–341
using Observer Pattern 73, 75

Design Puzzles
drawing class diagram making use of view and con-

troller 536, 548
drawing parallel set of classes 133, 165
drawing state diagram 391, 420
of classes and interfaces 25, 34
redesigning classes to remove redundancy 281,

278–283
redesigning Image Proxy 463, 486

dessert submenu, using Composite Pattern
about 357
designing 363, 371
implementing 364–367
testing 368–370

diner menus, merging (Iterator Pattern)
about 318–319
adding Iterators 328–334

cleaning up code using java.util.Iterator 335–337
encapsulating Iterator 325–326
implementing Iterators for 327
implementing of 320–325

DIP (Dependency Inversion Principle) 139–143, 300

DJ View 528–535, 549–561

Domain-Specific Patterns 590

double-checked locking, reducing use of synchronization
using 182

Duck Magnets exercises, object and class object and class
adapters 247–248

duck simulator, rebuilding
about 495–497
adding Abstract Factory Pattern 502–505, 548
adding Adapter Pattern 498–499
adding Composite Pattern 507–509
adding Decorator Pattern 500–501
adding Iterator Pattern 507
adding Observer Pattern 510–516
class diagram 518–519

dumb command objects 228

dynamic aspect of dynamic proxies 480

dynamic proxy 469–470, 474–478

E
Encapsulate what varies design principle 9, 73, 75, 136,

393

encapsulating
behavior 11
code 22–23, 114–115, 136
iteration 325–326
method invocation 191, 206
object construction 600
requests 206

encapsulating algorithms
about 277
abstracting prepareRecipe() 284–287
Template Method Pattern and

about 288–290
AbstractList and 309
code up close 292–293
defined 291
The Hollywood Principle and 298–300

622   Index

the index

hooks in 293–295
in real world 301
sorting with 302–307
Swing and 308
testing code 296

encapsulating subsystem, Facades 262

Enumeration
about 250
adapting to Iterator 251
java.util.Enumeration as older implementation of

Iterator 250, 342
remove() method and 252
writing Adapter that adapts Iterator to 253, 275

exercises
Be the JVM solution, dealing with multithreading

179–180, 188
Code Magnets

for DinerMenu Iterator 354, 378
for Observer Pattern 70, 76

dealing with multithreading 247–248
Design Puzzles

drawing class diagram making use of view and
controller 536, 548

drawing parallel set of classes 133, 165
drawing state diagram 391, 420
of classes and interfaces 25, 34
redesigning classes to remove redundancy 281–

282
redesigning Image Proxy 463, 486

Duck Magnets exercises, object and class object and
class adapters 247

implementing Iterator 329
implementing undo button for macro command 228,

236
Sharpen Your Pencil

altering decorator classes 99, 108
annotating Gumball Machine states 405, 423
annotating state diagram 396, 422
building ingredient factory 148, 167
changing classes for Decorator Pattern 512, 546
changing code to fit framework in Iterator Pattern

347, 377
choosing descriptions of state of implementation

392, 421

class diagram for implementation of prepareR-
ecipe() 286, 314

code not using factories 137, 166
creating commands for off buttons 226, 236
creating heat index 62
determining classes violating Principle of Least

Knowledge 270, 274
drawing beverage order process 107
fixing Chocolate Boiler code 183, 190
identifying factors influencing design 84
implementing garage door command 205, 235
implementing state classes 402, 421
making pizza store 124, 164
matching patterns with categories 575–577
method for refilling gumball machine 417, 424
on adding behaviors 14
on implementation of printmenu() 324, 377
on inheritance 5, 35
sketching out classes 55
things driving change 8, 35
turning class into Singleton 176, 189
weather station SWAG 42, 75
writing Abstract Factory Pattern 505, 548
writing classes for adapters 244, 274
writing dynamic proxy 478, 487
writing Flock observer code 514, 547
writing methods for classes 83, 106

Who Does What
matching objects and methods to Command Pat-

tern 202, 235
matching patterns with its intent 256, 275
matching pattern with description 300, 314, 375,

379, 418, 424, 481, 488, 574, 596
writing Adapter that adapts Iterator to Enumeration

253, 275
writing handler for matchmaking service 477, 486

external iterators 342

F
Facade Pattern

about 256
Adapter Pattern vs. 262
advantages 262

you are here 4   623

the index

benefits of 262
building home theater system

about 257–259
constructing Facade in 263
implementing Facade class 260–262
implementing interface 264

class diagram 266
Complexity Hiding Proxy vs. 483
defined 266
exercises for 256, 275, 375, 379, 481, 574, 596
Principle of Least Knowledge and 271

factory method
about 125, 134
as abstract 135
declaring 125–127

Factory Method Pattern
about 131–132
about factory objects 114
Abstract Factory Pattern and 158–161
code up close 151
concrete classes and 134
creator classes 131–132
declaring factory method 125–127
defined 134
Dependency Inversion Principle 139–143
drawing parallel set of classes 133, 165
exercise matching description of 574, 596
interview with 158–159
looking at object dependencies 138
product classes 131–132
Simple Factory and 135

Factory Pattern
Abstract Factory

about 153
building ingredient factories 146–148, 167
combining patterns 502–505, 548
defined 156–157
exercise matching description of 574, 596
Factory Method Pattern and 158–160
implementing 158

exercise matching description of 300, 314
Factory Method

about 131–132
advantages of 135
code up close 151
creator classes 131–132

declaring factory method 125–127
defined 134
Dependency Inversion Principle 139–143
drawing parallel set of classes 133, 165
exercise matching description of 574, 596
looking at object dependencies 138
product classes 131–132
Simple Factory and 135

Simple Factory
about factory objects 114
building factory 115
defined 117
Factory Method Pattern and 135
pattern honorable mention 117
using new operator for instantiating concrete

classes 110–113
Favor composition over inheritance design principle 23,

73, 75, 393

Fireside Chat
Decorator Pattern vs. Adapter Pattern 254–255
Strategy Pattern vs. State Pattern 414–415

Firewall Proxy 482

Flyweight Pattern 604–605

forces 568

for loop 344

frameworks vs. libraries 29

G
Gamma, Erich 587–588

Gang of Four (GoF) 569, 587–588

global access point 177

global variables, Singleton vs. 184

guide to better living with Design Patterns 564

gumball machine controller implementation, using State
Pattern

cleaning up code 413
demonstration of 411–412
diagram to code 384–385
finishing 410
one in ten contest

about 390–391
annotating state diagram 396, 422
changing code 392–393

624   Index

the index

drawing state diagram 391, 420
implementing state classes 397, 400–405, 409
new design 394–396
reworking state classes 398–399

refilling gumball machine 416–417
SoldState and WinnerState in 412
testing code 388–389
writing code 386–387

gumball machine monitoring, using Proxy Patterns
about 426–428
Remote Proxy

about 429
adding to monitoring code 432
preparing for remote service 446–447
registering with RMI registry 448
reusing client for 449
reviewing process 453–454
role of 430–431
testing 450–452
wrapping objects and 468

H
HAS-A relationships 23, 91

HashMap 348, 352, 353

hasNext() method 328, 342, 344

Head First learning principles xxviii

Helm, Richard 587–588

high-level component classes 139

The Hollywood Principle 298–300

home automation remote control, using Command Pattern
about 193
building 203–205, 235
class diagram 207
creating commands to be loaded 208–209
defining 206
designing 195–196
implementing 210–212
macro commands

about 225
hard coding vs. 228
undo button 228, 236
using 226–227

mapping 201–202, 235

Null Object 214
testing 204, 212–213, 227
undo commands

creating 217–219, 228
implementing for macro command 236
testing 220, 223–224
using state to implement 221

vendor classes for 194
writing documentation 215

home theater system, building
about 257–259
constructing Facade in 263
implementing interface 264
Sharpen Your Pencil 270
using Facade Pattern 260–262

hooks, in Template Method Pattern 293–295

I
Image Proxy, writing 460–463

implementations 13, 17, 43

Implementation section, in pattern catalog 571

implement on interface, in design patterns 117

import and package statements 128

inheritance
composition vs. 93
disadvantages of 5, 85
favoring composition over 23
for maintenance 4
for reuse 4, 13
implementing multiple 246

instance variables 82–83, 97–98

instantiating 110–113, 138, 170–172

integrating Café Menu, using Iterator Pattern 347

Intent section, in pattern catalog 571

interface 11–12, 110–113

interface type 15, 18

internal iterators 342

Interpreter Pattern 606–607

Interview With
Composite Pattern 372–373
Decorator Pattern 104

you are here 4   625

the index

Factory Method Pattern and Abstract Factory Pattern
158–159

Singleton Pattern 174
inversion, in Dependency Inversion Principle 141

invoker 201, 206–207, 209, 233

IS-A relationships 23

Iterable interface 343

Iterator Pattern
about 327
class diagram 339
code up close using HashMap 348
code violating Open-Closed Principle 355–356
Collections and 353
combining patterns 507
defined 338–339
exercise matching description of 375, 379, 574, 596
integrating Café Menu 347
java.util.Iterator 334
merging diner menus

about 318–319
adding Iterators 328–334
cleaning up code using java.util.Iterator 335–337
encapsulating Iterator 325–326
implementing Iterators for 327
implementing of 320–325

removing objects 334
Single Responsibility Principle (SRP) 340–341

Iterators
adding 328–334
allowing decoupling 333, 337, 339, 351–352
cleaning up code using java.util.Iterator 335–337
Collections and 353
encapsulating 325–326
Enumeration adapting to 251, 342
external 342
HashMap and 353
implementing 327
internal 342
ordering of 342
polymorphic code using 338, 342
using ListItterator 342
writing Adapter for Enumeration 252–253
writing Adapter that adapts to Enumeration 253, 275

J
JavaBeans library 65

Java Collections Framework 353

Java decorators (java.io packages) 100–103

Java Development Kit (JDK) 65

Java Iterable interface 343

java.lang.reflect package, proxy support in 440, 469, 476

java.util.Collection 353

java.util.Enumeration, as older implementation of Iterator
250, 342

java.util.Iterator
cleaning up code using 335–337
interface of 334
using 342

Java Virtual Machines (JVMs) 182, 432

JButton class 65

JFrames, Swing 308

Johnson, Ralph 587–588

K
Keep It Simple (KISS), in designing patterns 580

Known Uses section, in pattern catalog 571

L
lambda expressions 67

Law of Demeter. See Principle of Least Knowledge

lazy instantiation 177

leaves, in Composite Pattern tree structure 360–362, 368

libraries 29

LinkedList 352

ListItterator 342

logging requests, using Command Pattern 230

looping through array items 323

Loose Coupling Principle 54

626   Index

the index

M
macro commands

about 225
macro commands 228, 236
using 226–227

maintenance, inheritance for, 4

matchmaking service, using Proxy Pattern
about 470
creating dynamic proxy 474–478
implementing 471–472
protecting subjects 473
testing 479–480

Mediator Pattern 543, 608–609

Memento Pattern 610–611

merging diner menus (Iterator Pattern)
about 318–319
adding Iterators 328–334
cleaning up code using java.util.Iterator 335–337
encapsulating Iterator 325–326
implementing Iterators for 327
implementing of 320–325

method of objects, components of object vs. 267–271

methods 143, 293–295

modeling state 384–385

Model-View-Controller (MVC)
about 520–521, 523–525
Adapter Pattern 540
Beat model 529, 549–552
Composite Pattern 526–527, 543
controllers per view 543
Heart controller 541, 561
Heart model 539
implementing controller 536–537, 556–557
implementing DJ View 528–535, 553–556
Mediator Pattern 543
model in 543
Observer Pattern 526–527, 531–533
song 520–521
state of model 543
Strategy Pattern 526–527, 536–537, 539, 558–560
testing 538
views accessing model state methods 543

Motivation section, in pattern catalog 571

multiple patterns, using
about 493–494
in duck simulator

about rebuilding 495–497
adding Abstract Factory Pattern 502–505, 548
adding Adapter Pattern 498–499
adding Composite Pattern 507–509
adding Decorator Pattern 500–501
adding Iterator Pattern 507
adding Observer Pattern 510–516
class diagram 518–519

multithreading 181–182, 188

N
Name section, in pattern catalog 571

new operator
related to Singleton Pattern 171–172
replacing with concrete method 116

next() method 328, 342, 344

NoCommand, in remote control code 214

nodes, in Composite Pattern tree structure 360–362, 368

Null Objects 214

O
object access, using Proxy Pattern for controlling

about 426–428
Caching Proxy 466, 482
Complexity Hiding Proxy 483
Copy-On-Write Proxy 483
Firewall Proxy 482
Protection Proxy

about 469
creating dynamic proxy 474–478
implementing matchmaking service 471–472
protecting subjects 473
testing matchmaking service 479–480
using dynamic proxy 469–470

Remote Proxy
about 429
adding to monitoring code 432
preparing for remote service 446–447
registering with RMI registry 448

you are here 4   627

the index

reusing client for 449
reviewing process 453–454
role of 430–431
testing 450–452
wrapping objects and 468

Smart Reference Proxy 482
Synchronization Proxy 483
Virtual Proxy

about 457
designing Virtual Proxy 459
reviewing process 465
testing 464
writing Image Proxy 460–463

object adapters vs. class adapters 246–249

object construction, encapsulating 600

object creation, encapsulating 114–115, 136

Object-Oriented (OO) design. See also design principles
adapters

about 238–239
creating Two Way Adapters 244
in action 240–241, 242
object and class object and class 246–249

design patterns vs. 30–31
extensibility and modification os code in 87
guidelines for avoiding violation of Dependency Inver-

sion Principle 143
loosely coupled designs and 54

object patterns, Design Patterns 577

objects
components of 267–271
creating 134
loosely coupled designs between 54
sharing state 408
Singleton 171, 174
wrapping 88, 244, 254, 262, 502

Observer Pattern
about 37, 44
class patterns category 574
combining patterns 510–516
comparison to Publish-Subscribe 45
dependence in 52
examples of 65
exercise matching description of 375, 379, 596
in Five-minute drama 48–50

in Model-View-Controller 526–527, 531–533
loose coupling in 54
Observer object in 45
one-to-many relationships 51–52
process 46–47
Subject object in 45
weather station using

building display elements 60
designing 57
implementing 58
powering up 61
SWAG 42

observers
in class diagram 52
in Five-minute drama 48–50
in Observer Pattern 45

OCP (Open-Closed Principle) 355, 392

One Class, One Responsibility Principle. See Single Re-
sponsibility Principle (SRP)

one in ten contest in gumball machine, using State Pattern
about 390–391
annotating state diagram 396, 422
changing code 392–393
drawing state diagram 391, 420
implementing state classes 397, 400–405, 409
new design 394–396
reworking state classes 398–399

OO (Object-Oriented) design. See Object-Oriented (OO)
design

Open-Closed Principle (OCP) 355, 392

Organizational Patterns 591

overusing Design Patterns 584

P
package and import statements 128

Participants section, in pattern catalog 571

part-whole hierarchy 360

pattern catalogs 567, 569–572

Pattern Death Match pages 493

A Pattern Language (Alexander) 588

patterns, using compound 493–494

628   Index

the index

patterns, using multiple
about 493
in duck simulator

about rebuilding 495–497
adding Abstract Factory Pattern 502–505, 548
adding Adapter Pattern 498–499
adding Composite Pattern 507–509
adding Decorator Pattern 500–501
adding Iterator Pattern 507
adding Observer Pattern 510–516
class diagram 518–519

pattern templates, uses of 573

Pizza Store project, using Factory Pattern
Abstract Factory in 153, 156–157
behind the scenes 154–155
building factory 115
concrete subclasses in 121–122
drawing parallel set of classes 133, 165
encapsulating object creation 114–115
ensuring consistency in ingredients 144–148, 167
framework for 120
franchising store 118–119
identifying aspects in 112–113
implementing 142
making pizza store in 123–124
ordering pizza 128–132
referencing local ingredient factories 152
reworking pizzas 149–151

polymorphic code, using on iterator 338, 342

polymorphism 12

prepareRecipe(), abstracting 284–287

Principle of Least Knowledge 267–271. See also Single
Responsibility Principle (SRP)

print() method, in dessert submenu using Composite Pat-
tern 364–367

programming 12

Program to an interface, not an implementation design
principle 11–12, 73, 75–76, 337

program to interface vs. program to supertype 12

Protection Proxy
about 469
creating dynamic proxy 474–478
implementing matchmaking service 471–472

protecting subjects 473
Proxy Pattern and 466
testing matchmaking service 479–480
using dynamic proxy 469–470

Prototype Pattern 612–613

proxies 425

Proxy class, identifying class as 480

Proxy Pattern
Adapter Pattern vs. 466
Complexity Hiding Proxy 483
Copy-On-Write Proxy 483
Decorator Pattern vs. 466–468
defined 455–456
dynamic aspect of dynamic proxies 480
exercise matching description of 481, 574, 596
Firewall Proxy 482
implementation of Remote Proxy

about 429
adding to monitoring code 432
preparing for remote service 446–447
registering with RMI registry 448
reusing client for 449
reviewing process 453–454
role of 430–431
testing 450–452
wrapping objects and 468

java.lang.reflect package 440, 469, 476
Protection Proxy and

about 469
Adapters and 466
creating dynamic proxy 474–478
implementing matchmaking service 471–472
protecting subjects 473
testing matchmaking service 479–480
using dynamic proxy 469–470

Real Subject
as surrogate of 466
invoking method on 475
making client use Proxy instead of 466
passing in constructor 476
returning proxy for 478

restrictions on passing types of interfaces 480
Smart Reference Proxy 482
Synchronization Proxy 483
variations 466, 482–483

you are here 4   629

the index

Virtual Proxy
about 457
Caching Proxy as form of 466, 482
designing 459
reviewing process 465
testing 464
writing Image Proxy 460–463

Publish-Subscribe, as Observer Pattern 45

Q
queuing requests, using Command Pattern 229

R
Real Subject

as surrogate of Proxy Pattern 466
invoking method on 475
making client use proxy instead of 466
passing in constructor 476
returning proxy for 478

refactoring 358, 581

Related patterns section, in pattern catalog 571

relationships, between classes 22

Remote Method Invocation (RMI)
about 432–433, 436
code up close 442
completing code for server side 441–444
importing java.rmi 446
importing packages 447, 449
making remote service 437–441
method call in 434–435
registering with RMI registry 448
things to watch out for in 444

Remote Proxy
about 429
adding to monitoring code 432
preparing for remote service 446–447
registering with RMI registry 448
reusing client for 449
reviewing process 453–454
role of 430–431
testing 450–452
wrapping objects and 468

remove() method
Enumeration and 252
in collection of objects 334
in java.util.Iterator 342

requests, encapsulating 206

resources, Design Patterns 588–589

reuse 4, 85

rule of three, applied to inventing Design Patterns 573

runtime errors, causes of 135

S
Sample code section, in pattern catalog 571

server heap 433–436

service helper (skeletons), in RMI 436–437, 440, 442–
444, 453–454

shared vocabulary 26–27, 28, 585–586

Sharpen Your Pencil
altering decorator classes 99, 108
annotating Gumball Machine States 405, 423
annotating state diagram 396, 422
building ingredient factory 148, 167
changing classes for Decorator Pattern 512, 546
changing code to fit framework in Iterator Pattern

347, 377
choosing descriptions of state of implementation 392,

421
class diagram for implementation of prepareRecipe()

286, 314
code not using factories 137, 166
creating commands for off buttons 226, 236
creating heat index 62
determining classes violating Principle of Least

Knowledge 270, 274
drawing beverage order process 107
fixing Chocolate Boiler code 183, 190
identifying factors influencing design 84
implementing garage door command 205, 235
implementing state classes 402, 421
making pizza store 124, 164
matching patterns with categories 575–577
method for refilling gumball machine 417, 424
on adding behaviors 14
on implementation of printmenu() 324, 377

630   Index

the index

on inheritance 5, 35
sketching out classes 55
things driving change 8, 35
turning class into Singleton 176, 189
weather station SWAG 42, 75
writing Abstract Factory Pattern 505, 548
writing classes for adapters 244, 274
writing dynamic proxy 478, 487
writing Flock observer code 514, 547
writing methods for classes 83, 106

Simple Factory Pattern
about factory objects 114
building factory 115
definition of 117
Factory Method Pattern and 135
pattern honorable mention 117
using new operator for instantiating concrete classes

110–113
Single Responsibility Principle (SRP) 184, 340–341, 371

Singleton objects 171, 174

Singleton Pattern
about 169–172
advantages of 170
Chocolate Factory 175–176, 183
class diagram 177
code up close 173
dealing with multithreading 179–182, 188
defined 177
disadvantages of 184
double-checked locking 182
exercise matching description of 574
global variables vs. 184
implementing 173
interview with 174
One Class, One Responsibility Principle and 184
subclasses in 184
using 184

skeletons (service helper), in RMI 436–437, 440, 442–
444, 453–454

smart command objects 228

Smart Reference Proxy 482

software development, change as a constant in 8

sorting methods, in Template Method Pattern 302–307

sort() method 306–311

spliterator method 343

SRP (Single Responsibility Principle) 184, 340–341, 371

Starbuzz Coffee Barista training manual project
about 278–283
abstracting prepareRecipe() 284–287
using Template Method Pattern

about 288–290
code up close 292–293
defined 291
The Hollywood Principle and 298–300
hooks in 293–295
testing code 296

Starbuzz Coffee project, using Decorator Pattern
about 80–81
adding sizes to code 99
constructing drink orders 89–90
drawing beverage order process 94, 107
testing order code 98–99
writing code 95–97

state machines 384–385

State Pattern
defined 406
exercise matching description of 418, 424, 574, 596
gumball machine controller implementation

cleaning up code 413
demonstration of 411–412
diagram to code 384–385
finishing 410
refilling gumball machine 416–417
SoldState and WinnerState in 412
testing code 388–389
writing code 386–387

increasing number of classes in design 408
modeling state 384–385
one in ten contest in gumball machine

about 390–391
annotating state diagram 396, 422
changing code 392–393
drawing state diagram 391, 420
implementing state classes 397, 400–405, 409
new design 394–396
reworking state classes 398–399

sharing state objects 408
state transitions in state classes 408
Strategy Pattern vs. 381, 407, 414–415

state transitions, in state classes 408

you are here 4   631

the index

state, using to implement undo commands 221

static classes, using instead of Singletons 184

static method vs. create method 115

Strategy Pattern
algorithms and 24
defined 24
exercise matching description of 300, 314, 375, 379,

418, 424, 574, 596
in Model-View-Controller 526–527, 536–537, 539
State Pattern vs. 381, 407, 414–415
Template Method Pattern and 307

strive for loosely coupled designs between objects that in-
teract design principle 54. See also Loose Coupling
Principle

structural patterns category, Design Patterns 576,
578–579

Structure section, in pattern catalog 571

stubs (client helper), in RMI 436–437, 440, 442–444,
453–454

subclasses
concrete commands and 207
concrete states and 406
explosion of classes 81
Factory Method and, letting subclasses decide which

class to instantiate 134
in Singletons 184
Pizza Store concrete 121–122
Template Method 288
troubleshooting 4

Subject
in class diagram 52
in Five-minute drama 48–50
in Observer Pattern 45–47

subsystems, Facades and 262

superclasses 4, 12

supertype (programming to interface), vs. programming to
interface 12

Swing library 65, 308, 543

synchronization, as overhead 180

Synchronization Proxy 483

T
Template Method Pattern

about 288–290
abstract class in 292, 293, 297
applets in 309
class diagram 291
code up close 292–293
defined 291
exercise matching description of 300, 314, 418, 424,

574, 596
The Hollywood Principle and 298–300
hooks in 293–295, 297
in real world 301
sorting with 302–307
Strategy Pattern and 307
Swing and 308
testing code 296

thinking in patterns 580–581

tightly coupled 54

The Timeless Way of Building (Alexander) 588

transparency, in Composite Pattern 371

tree structure, Composite Pattern 360–362, 368

Two Way Adapters, creating 244

type safe parameters 135

U
undo commands

creating 217–219, 228
implementing for macro command 228
support of 217
testing 220, 223–224
using state to implement 221

User Interface Design Patterns 591

V
variables

declaring behavior 15
holding reference to concrete class 143
instance 82–83, 97–98

632   Index

the index

Vector 352

Virtual Proxy
about 457
Caching Proxy as form of 466, 482
designing 459
reviewing process 465
testing 464
writing Image Proxy 460–463

Visitor Pattern 614–615

Vlissides, John 587–588

volatile keyword 182

W
weather station

building display elements 60
designing 57
implementing 58
powering up 61

Who Does What exercises
matching objects and methods to Command Pattern

202, 235
matching patterns with its intent 256, 275
matching pattern with description 300, 314, 375, 379,

418, 424, 481, 488, 574, 596
whole-part relationships, collection of objects using 372

Wickedlysmart website xxxiii

wrapping objects 88, 244, 254, 262, 468, 502

Y
your mind on patterns design pattern 583

Don’t know about the website?
We’ve got updates, video,

projects, author blogs, and more!

Bring your brain over to
wickedlysmart.com

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Authors of Head First Design Patterns
	Creators of the Head First Series
	Table of Contents (summary)
	Table of Contents (the real thing)
	Intro
	Who is this book for?
	We know what you’re thinking.
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission
	Read Me
	Tech Reviewers
	Tech Reviewers, 2nd Edition
	Acknowledgments
	Very Special Thanks

	1: intro to Design Patterns: Welcome to Design Patterns
	It started with a simple SimUDuck app
	But now we need the ducks to FLY
	But something went horribly wrong...
	Joe thinks about inheritance...
	How about an interface?
	What would you do if you were Joe?
	The one constant in software development
	Zeroing in on the problem...
	Separating what changes from what stays
	Designing the Duck Behaviors
	Implementing the Duck Behaviors
	Integrating the Duck Behaviors
	More integration...
	Testing the Duck code
	Setting behavior dynamically
	The Big Picture on encapsulated behavior
	HAS-A can be better than IS-A
	Speaking of Design Patterns...
	Overheard at the local diner...
	Overheard in the next cubicle...
	The power of a shared pattern vocabulary
	How do I use Design Patterns?
	Skeptical Developer
	Friendly Patterns Guru
	Tools for your Design Toolbox

	2: the Observer Pattern: Keeping your Objects in the Know
	The Weather Monitoring application overview
	Unpacking the WeatherData class
	Our Goal
	Taking a first, misguided implementation of the Weather Station
	What’s wrong with our implementation anyway?
	Meet the Observer Pattern
	Publishers + Subscribers = Observer Pattern
	A day in the life of the Observer Pattern
	Five-minute drama: a subject for observation
	Two weeks later...
	The Observer Pattern defined
	The Observer Pattern: the Class Diagram
	The Power of Loose Coupling
	Cubicle conversation
	Designing the Weather Station
	Implementing the Weather Station
	Implementing the Subject interface in WeatherData
	Now, let’s build those display elements
	Power up the Weather Station
	Looking for the Observer Pattern in the Wild
	Coding the life-changing application
	Meanwhile, back at Weather-O-Rama
	Test Drive the new code
	Tools for your Design Toolbox
	Design Principle Challenge

	3: the Decorator Pattern: Decorating Objects
	Welcome to Starbuzz Coffee
	The Open-Closed Principle
	Meet the Decorator Pattern
	Constructing a drink order with Decorators
	Now let’s see how this all really works
	The Decorator Pattern defined
	Decorating our Beverages
	Cubicle Conversation
	New barista training
	Writing the Starbuzz code
	Coding beverages
	Coding condiments
	Serving some coffees
	Real-World Decorators: Java I/O
	Decorating the java.io classes
	Writing your own Java I/O Decorator
	Test out your new Java I/O Decorator
	Tools for your Design Toolbox

	4: the Factory Pattern: Baking with OO Goodness
	Identifying the aspects that vary
	But the pressure is on to add more pizza
	Encapsulating object creation
	Building a simple pizza factory
	Reworking the PizzaStore class
	The Simple Factory defined
	Franchising the pizza store
	We’ve seen one approach...
	But you’d like a little more quality control
	A framework for the pizza store
	Allowing the subclasses to decide
	Let’s make a Pizza Store
	Declaring a factory method
	Let’s see how it works: ordering pizzas
	So how do they order?
	Let’s check out how these pizzas are really made to order
	We're just missing one thing: Pizzas!
	You’ve waited long enough. Time for some pizzas!
	It’s finally time to meet the Factory Method Pattern
	View Creators and Products in Parallel
	Factory Method Pattern defined
	Looking at object dependencies
	The Dependency Inversion Principle
	Applying the Principle
	Inverting your thinking...
	A few guidelines to help you follow the Principle
	Meanwhile, back at the Pizza Store...
	Ensuring consistency in your ingredients
	Families of ingredients...
	Building the ingredient factories
	Building the New York ingredient factory
	Reworking the pizzas...
	Revisiting our pizza stores
	What have we done?
	More pizza for Ethan and Joel...
	Abstract Factory Pattern defined
	Factory Method and Abstract Factory compared
	Tools for your Design Toolbox

	5 the Singleton Pattern: One-of-a-Kind Objects
	The Little Singleton
	Dissecting the classic Singleton Pattern
	The Chocolate Factory
	Singleton Pattern defined
	Hershey, PA, we have a problem...
	Dealing with multithreading
	Can we improve multithreading?
	Meanwhile, back at the Chocolate Factory
	Congratulations!
	Tools for your Design Toolbox

	6: the Command Pattern: Encapsulating Invocation
	Free hardware! Let’s check out the Remote Control
	Taking a look at the vendor classes
	Cubicle Conversation
	Meanwhile, back at the Diner..., or, A brief introduction to the Command Pattern
	Let’s study the interaction in a little more detail
	The Objectville Diner roles and responsibilities
	From the Diner to the Command Pattern
	Our first command object
	Using the command object
	Creating a simple test to use the Remote Control
	The Command Pattern defined
	Assigning Commands to slots
	Implementing the Remote Control
	Implementing the Commands
	Putting the Remote Control through its paces
	Time to write that documentation...
	The updated code, using lambda expressiobs
	What are we doing?
	Time to QA that Undo button!
	Using state to implement Undo
	Adding Undo to the Ceiling Fan commands
	Get ready to test the ceiling fan
	Testing the ceiling fan...
	Every remote needs a Party Mode!
	Using a macro command
	More uses of the Command Pattern: queuing requests
	More uses of the Command Pattern: logging requests
	Command Pattern in the Real World
	Tools for your Design Toolbox

	7: the Adapter and Facade Patterns: Being Adaptive
	Adapters all around us
	Object-oriented adapters
	If it walks like a duck and quacks like a duck...
	Test drive the adapter
	The Adapter Pattern explained
	Here’s how the Client uses the Adapter
	Adapter Pattern defined
	Object and class adapters
	Real-world adapters
	Adapting an Enumeration to an Iterator
	Designing the Adapter
	Dealing with the remove() method
	Writing the EnumerationIterator adapter
	And now for something different...
	Home Sweet Home Theater
	Watching a movie (the hard way)
	Lights, Camera, Facade!
	Constructing your home theater facade
	Implementing the simplified interface
	Time to watch a movie (the easy way)
	Facade Pattern defined
	The Principle of Least Knowledge
	How NOT to Win Friends and Influence Objects
	Keeping your method calls in bounds...
	The Facade Pattern and the Principle of
	Tools for your Design Toolbox

	8: the Template Method Pattern: Encapsulating Algorithms
	It’s time for some more caffeine
	Whipping up some coffee and tea classes (in Java)
	And now the Tea...
	Let’s abstract that Coffee and Tea
	Taking the design further...
	Abstracting prepareRecipe()
	What have we done?
	Meet the Template Method
	Let’s make some tea...
	What did the Template Method get us?
	Template Method Pattern defined
	Hooked on Template Method...
	Using the hook
	Let’s run the Test Drive
	The Hollywood Principle
	The Hollywood Principle and Template Method
	Template Methods in the Wild
	Sorting with Template Method
	We’ve got some ducks to sort...
	What is compareTo()?
	Comparing Ducks and Ducks
	Let’s sort some Ducks
	Let the sorting commence!
	The making of the sorting duck machine
	Swingin’ with Frames
	Custom Lists with AbstractList
	Tools for your Design Toolbox

	9: the Iterator and Composite Patterns: Well-Managed Collections
	Breaking News: Objectville Diner and Objectville Pancake House Merge
	Check out the Menu Items
	Lou and Mel’s Menu implementations
	What’s the problem with having two different menu representations?
	Implementing the spec: our first attempt
	What now?
	Can we encapsulate the iteration?
	Meet the Iterator Pattern
	Adding an Iterator to DinerMenu
	Reworking the DinerMenu with Iterator
	Fixing up the Waitress code
	Testing our code
	Here’s the test run...
	What have we done so far?
	Reviewing our current design...
	Making some improvements...
	Cleaning things up with java.util.Iterator
	We are almost there...
	What does this get us?
	Iterator Pattern defined
	The Iterator Pattern Structure
	The Single Responsibility Principle
	Meet Java’s Iterable interface
	Java’s enhanced for loop
	Not so fast; Arrays are not Iterables
	Taking a look at the Café Menu
	Reworking the Café Menu code
	Adding the Cafe Menu to the Waitress
	Breakfast, lunch, AND dinner
	What did we do?
	Code Magnets
	Is the Waitress ready for prime time?
	Just when we thought it was safe...
	What do we need?
	The Composite Pattern defined
	Designing Menus with Composite
	Implementing MenuComponent
	Implementing the MenuItem
	Implementing the Composite Menu
	Fixing the print() method
	Getting ready for a test drive...
	Now for the test drive...
	Getting ready for a test drive...
	Tools for your Design Toolbox
	Code Magnets Solution

	10: the State Pattern: The State of Things
	Java Breakers
	Cubicle Conversation
	State machines 101
	Writing the code
	In-house testing
	You knew it was coming...a change request
	The messy STATE of things...
	The new design
	Defining the State interfaces and classes
	Implementing our State classes
	Reworking the Gumball Machine
	Now, let’s look at the complete GumballMachine class
	Implementing more states
	Let’s take a look at what we’ve done so far
	The State Pattern defined
	We still need to finish the Gumball 1 in 10 game
	Finishing the game
	Demo for the CEO of Mighty Gumball, Inc.
	Sanity check...
	We almost forgot!
	Tools for your Design Toolbox

	11: the Proxy Pattern: Controlling Object Access
	Coding the Monitor
	Testing the Monitor
	The role of the ‘remote proxy’
	Adding a remote proxy to the Gumball Mac
	Remote methods 101
	Walking through the design
	How the method call happens
	Java RMI, the Big Picture
	Making the Remote service
	Step one: make a Remote interface
	Step two: make a Remote implementation
	Step three: run rmiregistry
	Step four: start the service
	Complete code for the server side
	Complete code for the client side
	Back to our GumballMachine remote proxy
	Getting the GumballMachine ready to be a remote service
	Registering with the RMI registry...
	Now for the GumballMonitor client...
	Writing the Monitor test drive
	Another demo for the CEO of Mighty Gumball
	The Proxy Pattern defined
	Get ready for the Virtual Proxy
	Displaying Album covers
	Designing the Album Cover Virtual Proxy
	Writing the Image Proxy
	Testing the Album Cover Viewer
	What did we do?
	Using the Java API’s Proxy to create a protection proxy
	Geeky Matchmaking in Objectville
	The Person implementation
	Five-minute drama: protecting subjects
	Big Picture: creating a Dynamic Proxy for the Person
	Step one: creating Invocation Handlers
	Step two: creating the Proxy class and instantiating the Proxy object
	Testing the matchmaking service
	Running the code...
	The Proxy Zoo
	Tools for your Design Toolbox
	The code for the Album Cover Viewer

	12: compound patterns: Patterns of Patterns
	Working together
	Duck reunion
	Safety versus transparency
	What did we do?
	A duck’s-eye view: the class diagram
	The King of Compound Patterns
	Meet Model-View-Controller
	A closer look...
	Understanding MVC as a set of Patterns
	Using MVC to control the beat...
	Putting the pieces together
	Building the pieces
	Now let’s have a look at the concrete BeatModel class
	The View
	Implementing the View
	Now for the Controller
	And here’s the implementation of the controller
	Putting it all together...
	Exploring Strategy
	Adapting the Model
	And now for a test run...
	Tools for your Design Toolbox

	13: better living with patterns: Patterns in the Real World
	Design Pattern defined
	Looking more closely at the Design Pattern definition
	May the force be with you
	So you wanna be a Design Patterns writer
	Organizing Design Patterns
	Thinking in Patterns
	Your Mind on Patterns
	Don’t forget the power of the shared vocabulary
	Cruisin’ Objectville with the Gang of Four
	Your journey has just begun...
	The Patterns Zoo
	Annihilating evil with Anti-Patterns
	Tools for your Design Toolbox
	Leaving Objectville...

	14: appendix: Leftover Patterns
	Bridge
	Builder
	Chain of Responsibility
	Flyweight
	Interpreter
	Mediator
	Memento
	Prototype
	Visitor

	Index

