O'REILLY"

Head First %
Design
Patterns 4

Building Extensible
& Maintainable
Object-Oriented S
Software

Eric Freeman &
Elisabeth Robson

with Kathy Sierra & Bert Bates

A Brain-Friendly Guide

Head First
Design Patterns

What will you learn from this book?

You know you don't want to reinvent the wheel, so you look to
Design Patterns—the lessons learned by those who've faced the
same software design problems. With Design Patterns, you get to
take advantage of the best practices and experience of others so
you can spend your time on something more challenging. Something
more fun. This book shows you the patterns that matter, when to

use them and why, how to apply them to your own designs, and

the object-oriented design principles on which they're based. Join
hundreds of thousands of developers who've improved their object-
oriented design skills through Head First Design Patterns.

A Bunth of Patterns

Adtomstic update/notification \

o it
- J
: ! . i
s > § __

/ = 2p) 48 |

« Code, now nev
Yai‘:i improved vith

Jesiop pakberrs!

What's so special about this book?

If you've read a Head First book, you know what to expect—a
visually rich format designed for the way your brain works. With
Head First Design Patterns, 2E you'll learn design principles and
patterns in a way that won't put you to sleep, so you can get out
there to solve software design problems and speak the language
of patterns with others on your team.

COMPUTER PROGRAMMING

US $6999 CAN $92.99
ISBN: 978-1-492-07800-5

JNVRTIOEIVLTN o

7814921078005

"I received the book
yesterday and started
toread it...and | couldn’t
stop. This is trés ‘cool.” It
is fun, but they cover a
lot of ground and they
are right to the point. I'm

really impressed.”
—Erich Gamma
IBM Distinguished Engineer, and
coauthor of Design Patterns

“| feel like a thousand
pounds of books have just
been lifted off of my head.”

—Ward Cunningham
inventor of the Wiki and founder
of the Hillside Group

"Head First Design
Patterns manages to mix
fun, belly laughs, insight,
technical depth, and
great practical advice
in one entertaining and
thought-provoking read.”

—Richard Helm
coauthor of Design Patterns

O'REILLY"

Praise for Head First Design Patterns

“I received the book yesterday and started to read it on the way home...and I couldn’t stop. I took it to
the gym and I expect people saw me smiling a lot while I was exercising and reading. This is tres ‘cool’.
It 1s fun, but they cover a lot of ground and they are right to the point. I'm really impressed.”

— Erich Gamma, IBM Distinguished Engineer
and coauthor of Design Patterns with the rest of the
Gang of Four—Richard Helm, Ralph Johnson, and John Vlissides

“Head Furst Design Patterns manages to mix fun, belly-laughs, insight, technical depth, and great practical
advice in one entertaining and thought-provoking read. Whether you are new to Design Patterns or have
been using them for years, you are sure to get something from visiting Objectville.”

— Richard Helm, coauthor of Design Patterns with the rest of the
Gang of Four—Erich Gamma, Ralph Johnson, and John Vlissides

“I feel like a thousand pounds of books have just been lifted off of my head.”

— Ward Cunningham, inventor of the Wiki
and founder of the Hillside Group

“This book 1s close to perfect, because of the way it combines expertise and readability. It speaks with
authority and it reads beautifully. It’s one of the very few software books I've ever read that strikes me as

indispensable. (I'd put maybe 10 books in this category, at the outside.)”

— David Gelernter, Professor of Computer Science, Yale University,
and author of Mirror Worlds and Machine Beauty

‘A Nose Dive into the realm of patterns, a land where complex things become simple, but where simple
things can also become complex. I can think of no better tour guides than Eric and Elisabeth.”

— Miko Matsumura, Industry Analyst, The Middleware Company
Former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”

— Daniel Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is the
book technically accurate, it is the easiest-to-understand introduction to Design Patterns that I have seen.’

3

— Dr. Timothy A. Budd, Associate Professor of Computer Science at
Oregon State University and author of more than a dozen books,
including C++ for Java Programmers

“Jerry Rice runs patterns better than any receiver in the NFL, but Eric and Elisabeth have outrun him.
Seriously...this is one of the funniest and smartest books on software design I've ever read.”

— Aaron LaBerge, SVP Technology & Product Development, ESPN

More Praise for Head First Design Patterns

“Great code design is, first and foremost, great information design. A code designer is teaching a
computer how to do something, and it is no surprise that a great teacher of computers should turn out
to be a great teacher of programmers. This book’s admirable clarity, humor, and substantial doses of
clever make it the sort of book that helps even non-programmers think well about problem-solving.”

— Cory Doctorow, coeditor of Boing Boing
and author of Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

“There’s an old saying in the computer and videogame business—well, it can’t be that old because the
discipline is not all that old—and it goes something like this: Design is Life. What’s particularly curious
about this phrase is that even today almost no one who works at the craft of creating electronic games
can agree on what it means to ‘design’ a game. Is the designer a software engineer? An art director? A
storyteller? An architect or a builder? A pitch person or a visionary? Can an individual indeed be in
part all of these? And most importantly, who the %$!/#&* cares?

It has been said that the ‘designed by’ credit in interactive entertainment is akin to the ‘directed by’
credit in filmmaking, which in fact allows it to share DNA with perhaps the single most controversial,
overstated, and too often entirely lacking in humility credit grab ever propagated on commercial art.
Good company, eh? Yet if Design is Life, then perhaps it is time we spent some quality cycles thinking
about what it is.

Eric Freeman and Elisabeth Robson have intrepidly volunteered to look behind the code curtain for
us in Head First Design Patterns. I'm not sure either of them cares all that much about the PlayStation
or Xbox, nor should they. Yet they do address the notion of design at a significantly honest level such
that anyone looking for ego reinforcement of his or her own brilliant auteurship is best advised not to
go digging here where truth is stunningly revealed. Sophists and circus barkers need not apply. Next-
generation literati, please come equipped with a pencil.”

— Ken Goldstein, Executive Vice President & Managing Director,
Disney Online

“This 1s a difficult blurb for me to write since Eric and Elisabeth were my students a long time ago, so

I don’t want to be seen to be too drooling, but this is the best book on Design Patterns available for
students. As proof: I have used it ever since it was published, in both in my grad and undergrad courses,
both for software engineering and advanced programming. As soon as it came out I abandoned the
Gang of Four as well as all competitors!”

— Gregory Rawlins, Indiana University

“This book combines good humor, great examples, and in-depth knowledge of Design Patterns in
such a way that makes learning fun. Being in the entertainment technology industry, I am intrigued
by the Hollywood Principle and the home theater Facade Pattern, to name a few. The understanding
of Design Patterns not only helps us create reusable and maintainable quality software, but also
helps sharpen our problem-solving skills across all problem domains. This book is a must-read for all
computer professionals and students.”

— Newton Lee, Founder and Editor-in-Chief, Association for Computing
Machinery’s (ACM) Computers in Entertainment (acmcie.org)

Praise for other books by Eric Freeman and Elisabeth Robson

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

“Head First HTML and CSS is a thoroughly modern introduction to forward-looking practices in web
page markup and presentation. It correctly anticipates readers’ puzzlements and handles them just in
time. The highly graphic and incremental approach precisely mimics the best way to learn this stuff:
make a small change and see it in the browser to understand what each new item means.”

— Danny Goodman, author of Dynamic HTML: The Definitive Guide

“The Web would be a much better place if every HIML author started off by reading this book.”

— L. David Baron, Technical Lead, Layout & CSS, Mozilla Corporation
http://dbaron.org

“My wife stole the book. She’s never done any web design, so she needed a book like Head First HTML
and GSS to take her from beginning to end. She now has a list of websites she wants to build—for our
son’s class, our family...If I'm lucky, I'll get the book back when she’s done.”

— David Kaminsky, Master Inventor, IBM

“This book takes you behind the scenes of JavaScript and leaves you with a deep understanding of
how this remarkable programming language works. I wish I'd had Head First JavaScript Programming
when I was starting out!”

— Chris Fuselier, engineering consultant

“The Head First series utilizes elements of modern learning theory, including constructivism, to bring
readers up to speed quickly. The authors have proven with this book that expert-level content can be
taught quickly and efliciently. Make no mistake here, this is a serious JavaScript book, and yet, fun
reading!”

— Frank Moore, web designer and developer

“Looking for a book that will keep you interested (and laughing) but teach you some serious programming
skills? Head Furst favaScript Programmang 1s it!”

— Tim Williams, software entrepreneur

Other O’Reilly books by Eric Freeman and Elisabeth Robson
Head First Learn to Code
Head First JavaScript Programming
Head First HTML and CSS
Head First HTML) Programming

Other related books from O’Reilly
Head First Java
Learning Java
Java in a Nutshell
Java Enterprise in a Nutshell
Java Examples in a Nutshell
Java Cookbook
J2EE Design Patterns

Head First
Design Patterns

Wouldn't it be dreamy
if there was a Design Patterns
book that was more fun than
going o the dentist, and more
revealing than an IRS form? It's
probably just a fantasy...

Eric Freeman
Elisabeth Robson

O'REILLY"

Beijing * Boston * Farnham <« Sebastopol * Tokyo

Head First Design Patterns, 2nd Edition

by Eric Freeman, Elisabeth Robson, Kathy Sierra, and Bert Bates

Copyright © 2021 Eric Freeman and Elisabeth Robson. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (orezlly.com). For more information, contact our corporate/
nstitutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors 1st Edition: Mike Hendrickson, Mike Loukides
Editors 2nd Edition: Michele Cronin, Melissa Duffield
Cover Designer: Ellie Volckhausen

Pattern Wranglers: Fric Freeman, Elisabeth Robson

Printing History:

October 2004: First edition
December 2020: Second edition
Release History:

2020-11-10 First release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the

designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First Design Patterns to, say, run a nuclear power plant, you’re on your
own. We do, however, encourage you to use the DJ View app.

No ducks were harmed in the making of this book.

The original GoF agreed to have their photos in this book. Yes, they really are that good-looking.

ISBN: 978-1-492-07800-5
[MBP]

To the Gang of Four, whose insight and expertise in
capturing and communicating Design Patterns has
changed the face of software design forever, and
bettered the lives of developers throughout the world.

But seriously, when are we going to see a second edition?
After all, it’s been only “ew years.

chh {:Y“F i ve

the authors

Authors of Head First Design Patterns

viii

Eric is described by Head First series co-
creator Kathy Sierra as “one of those rare
individuals fluent in the language, practice,
and culture of multiple domains from
hipster hacker, corporate VP, engineer,
think tank.”

By training, Eric is a computer scientist,
having earned his PhD at Yale University.
Professionally, Eric was formerly CTO of
Disney Online & Disney.com at the Walt
Disney Company.

Eric now co-directs the Head First series
and devotes his time to creating print and
video content at WickedlySmart, which is
distributed across the leading educational
channels.

Eric’s Head First titles include Head First
Design Patterns, Head First HTML & CSS,
Head First JavaScript Programming, Head First
HTML5 Programming, and Head First Learn
to Code.

Eric lives in Austin, Texas.

\&-‘ Elisabeth Robson

Elisabeth is a software engineer, writer,
and trainer. She has been passionate
about technology since her days as a
student at Yale University, where she
earned a Masters of Science in Computer
Science.

She’s currently cofounder of
WickedlySmart, where she creates books,
articles, videos, and more. Previously, as
Director of Special Projects at O’Reilly
Media, Elisabeth produced in-person
workshops and online courses on a variety
of technical topics and developed her
passion for creating learning experiences
to help people understand technology.

When not in front of her computer, you’ll
find Elisabeth hiking, cycling, kayaking,
and gardening in the great outdoors,
often with her camera nearby.

K a{-‘h\, Cierra

Creators of the Head First Series

Kathy has been interested in learning theory
since her days as a game designer for Virgin,
MGM, and Amblin’, and a teacher of New
Media Authoring at UCLA. She was a master
Java trainer for Sun Microsystems, and she
founded JavaRanch.com (now CodeRanch.com),
which won Jolt Cola Productivity awards in

2003 and 2004.

In 2015, she won the Electronic Frontier
Foundation’s Pioneer Award for her work
creating skillful users and building sustainable
communities.

Kathy’s recent focus has been on cutting-edge,
movement science and skill acquisition coaching,
known as ecological dynamics or “Eco-D.”

Her work using Eco-D for training horses is
ushering in a far, far more humane approach

to horsemanship, causing delight for some (and
sadly, consternation for others). Those fortunate
(autonomous!) horses whose owners are using
Kathy’s approach are happier, healthier, and
more athletic than their fellows who are
traditionally trained.

You can follow Kathy on Instagram:
@pantherflows.

Before Bert was an author, he was a developer,
specializing in old-school Al (mostly expert
systems), real-time OSes, and complex
scheduling systems.

In 2003, Bert and Kathy wrote Head First Java
and launched the Head First series. Since then,
he’s written more Java books, and consulted
with Sun Microsystems and Oracle on many

of their Java certifications. He’s also trained
hundreds of authors and editors to create books
that teach well.

Bert’s a Go player, and in 2016 he watched in
horror and fascination as AlphaGo trounced
Lee Sedol. Recently he’s been using Eco-D
(ecological dynamics) to improve his golf game
and to train his parrotlet Bokeh.

Bert and Kathy have been privileged to know
Beth and Eric for 16 years now, and the Head
First series is extremely fortunate to count them
as key contributors.

You can send Bert a message at CodeRanch.com.

table of contents

Table of Contents (summary)

Intro

Welcome to Design Patterns: intro lo Design Patterns
Keeping your Objects in the Know: the Observer Pattern
Decorating Objects: the Decorator Pattern

Baking with OO Goodness: the Factory Pattern
One-of-a-Kind Objects: the Singleton Pattern
Encapsulating Invocation: the Command Patlern

Being Adaptive: the Adapter and Facade Patterns
Encapsulating Algorithms: the Template Method Pattern

© 0 N Oy O e LN~

Well-Managed Collections: the Iterator and Composite Patterns

o

The State of Things: the State Pattern

—_
J—

Controlling Object Access: the Proxy Pattern

—
No

Patterns of Patterns: compound patterns

J—
(&%)

Patterns in the Real World: better living with patterns

,_.
S

Appendix: Leflover Patterns

Table of Contents (the rea] thing)

Intro

Your brain on Design Patterns. Here you are trying to learn something,

XXV

37

79
109
169
191
237
277
317
381
425
493
563
597

while here your brain is doing you a favor by making sure the learning doesn't stick. Your

brain’s thinking, “Better leave room for more important things, like which wild animals to

avoid and whether naked snowboarding is a bad idea.” So how do you trick your brain into

thinking that your life depends on knowing Design Patterns?

Who is this book for?

We know what you’re thinking.

And we know what your brain is thinking.

We think of a “Head First” reader as a learner.
Metacognition: thinking about thinking

Heres what WE did

Here’s what YOU can do to bend your brain into submission
Read Me

Tech Reviewers

Acknowledgments

XXVi
XXVil
XXVil
xxviil

XXIX

xxxi
XXXI1
XXXIV

XXXV

intro to Design Patterns

Welcome to Design Patterns

Someone has already solved your problems. In this
chapter, you'll learn why (and how) you can exploit the wisdom and lessons
learned by other developers who’ve been down the same design problem road
and survived the trip. Before we’re done, we’'ll look at the use and benefits

of design patterns, look at some key object-oriented (OO) design principles,
and walk through an example of how one pattern works. The best way to use
patterns is to load your brain with them and then recognize places in your

designs and existing applications where you can apply them. Instead of code

A Bunth of Patterns

not make you a good object oriented

reuse, with patterns you get experience reuse.

Remember, knowing
concepts like abstraction,
inheritance, and polymorphism do

desigher. A design guru thinks
about how to create flexible
designs that are maintainable
and that can cope with
change.

. |t Pl
e 1 e
N b

and

It started with a simple SimUDuck app
But now we need the ducks to FLY

But something went horribly wrong...

Joe thinks about inheritance...

How about an interface?

What would you do if you were Joe?

The one constant in software development

Zeroing in on the problem...

Separating what changes from what stays the same

Designing the Duck Behaviors
Implementing the Duck Behaviors
Integrating the Duck Behavior

Testing the Duck code

Setting behavior dynamically

The Big Picture on encapsulated behaviors
HAS-A can be better than IS-A

Speaking of Design Patterns...

Overheard at the local diner...

Opverheard in the next cubicle...

The power of a shared pattern vocabulary
How do I use Design Patterns?

Tools for your Design Toolbox

Code, now new
\{ou\‘ '\m‘\:" oved with
design YB‘HZC““S!

© 0 N Y O s W N

O N N N N N NN N — o — o~ =
N © 0 ~ O B W N O o O w — O

table of contents

the Observer Pattern

Keeping your Objects in the Know

You don’t want to miss out when something
interesting happens, do you? We've got a pattern that keeps your
objects in the know when something they care about happens. It's the Observer
Pattern. It is one of the most commonly used design patterns, and it’s incredibly
useful. We're going to look at all kinds of interesting aspects of Observer, like its
one-to-many relationships and loose coupling. And, with those concepts in mind,

how can you help but be the life of the Patterns Party?

The Weather Monitoring application overview

Meet the Observer Pattern

00 Pasies

A\JS{:\‘“ on

Publishers + Subscribers = Observer Pattern

The Observer Pattern defined

The Power of Loose Coupling

00 Peintiples

at vavies:

Designing the Weather Station

E“w\asu\a’ce wh Implementing the Weather Station

Favor Com\gos'\{iw" =t Power up the Weather Station

inhevitante: by ot Looking for the Observer Pattern in the Wild
Program :};‘::r : Coding the life-changing application
implemen y coutle d Meanwhile, back at Weather-O-Rama

-ve for \oosey -
Sdt:‘;:\s etween ©)CL’(,S tha
\nhrafh

Test Drive the new code

Tools for your Design Toolbox

Design Principle Challenge

ONE TO MANY RELATIONSHIP
Ob\)ec{ that

holds state ,N

x
Cat 00"

DeFendcwl: Ob jects

&
Mouse 09

Automatic u?da{c/ hO{i‘F ieation

39
44
45
51
54
57
58
61
65
66
69
71
72
73

the Decorator Pattern

Decorating Objects

Just call this chapter “Design Eye for the Inheritance
Guy.” We’ll re-examine the typical overuse of inheritance and you’ll learn how
to decorate your classes at runtime using a form of object composition. Why?
Once you know the techniques of decorating, you'll be able to give your (or
someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

Welcome to Starbuzz Coffee 80
The Open-Closed Principle 86
o N et Decorso Paer "
I learned the power of extension Constructing a drink order with Decorators 89
at runtime, rather than at compile
time. Now look at me! The Decorator Pattern defined 91
Decorating our Beverages 92
Writing the Starbuzz code 95
Coding beverages 96
Coding condiments 97
Serving some coffees 98
Real-World Decorators: Java I/O 100
Decorating the java.io classes 101
Writing your own Java I/O Decorator 102
Test out your new Java I/O Decorator 103

Tools for your Design Toolbox 105

table of contents

the Factory Pattern
Baking with OO Goodness

Get ready to bake some loosely coupled OO designs.
There is more to making objects than just using the new operator. You'll
learn that instantiation is an activity that shouldn’t always be done in public
and can often lead to coupling problems. And we don’t want that, do we?
Find out how Factory Patterns can help save you from embarrassing

dependencies.

Identifying the aspects that vary 112
Encapsulating object creation 114
Building a simple pizza factory 115
The Simple Factory defined 117
A framework for the pizza store 120
Allowing the subclasses to decide 121
Declaring a factory method 125
It finally time to meet the Factory Method Pattern 131
View Creators and Products in Parallel 132
Factory Method Pattern defined 134
Looking at object dependencies 138
The Dependency Inversion Principle 139
Applying the Principle 140
Families of ingredients... 145
Building the ingredient factories 146
Reworking the pizzas... 149
Revisiting our pizza stores 152
What have we done? 153
Abstract Factory Pattern defined 156
Factory Method and Abstract Factory compared 160

Tools for your Design Toolbox 162

the Singleton Pattern
One-of-a-Kind Objects

Our next stop is the Singleton Pattern, our ticket to
creating one-of-a-kind objects for which there is only
one instance, ever. You might be happy to know that of all patterns,
the Singleton is the simplest in terms of its class diagram; in fact, the diagram
holds just a single class! But don’t get too comfortable; despite its simplicity
from a class design perspective, it's going to require some deep object-oriented

thinking in its implementation. So put on that thinking cap, and let’s get going.

Dissecting the classic Singleton Pattern implementation
The Chocolate Factory
Smgleton Pattern defined
Hcvshc\/,
, we have a problem
Dealing with multithreading
Can we improve multithreading?

Meanwhile, back at the Chocolate Factory...

Tools for your Design Toolbox

00 Pa{;-\;cv'hs — .
S(‘b-.- L' e "‘;'\hc

173
175
177
178
180
181
183
186

table of contents

the Command Pattern

Encapsulating Invocation

In this chapter, we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That's right—by encapsulating method invocation, we can crystallize pieces
of computation so that the object invoking the computation doesn’t need to
worry about how to do things, it just uses our crystallized method to get it
done. We can also do some wickedly smart things with these encapsulated
method invocations, like save them away for logging or reuse them to

implement undo functionality in our code.

T have a Burger Home Automation or Bust 192

with Cheese and a Malt

g and the
ikems that &

o - Taking a look at the vendor classes 194
A brief introduction to the Command Pattern 197

From the Diner to the Command Pattern 201

Our first command object 203

Using the command object 204

Assigning Commands to slots 209

‘;;,, ?;f:;‘b‘;k‘ﬁ:l i Implementing the Remote Control 210
Implementing the Commands 211

Putting the Remote Control through its paces 212

Time to write that documentation... 215

What are we doing? 217

Time to QA that Undo button! 220

Using state to implement Undo 221

Adding Undo to the Ceiling Fan commands 222

Every remote needs a Party Mode! 225

Using a macro command 226

More uses of the Command Pattern: queuing requests 229

More uses of the Command Pattern: logging requests 230

Command Pattern in the Real World 231

Tools for your Design Toolbox 233

the Adapter and Facade Patterns
Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. sound
impossible? Not when we have Design Patterns. Remember the Decorator
Pattern? We wrapped objects to give them new responsibilities. Now we’re
going to wrap some objects with a different purpose: to make their interfaces look
like something they’re not. Why would we do that? So we can adapt a design
expecting one interface to a class that implements a different interface. That’s not
all; while we’re at it, we're going to look at another pattern that wraps objects to
simplify their interface.

Adapters all around us 238

British Wall Qutlet Object-oriented adapters 239

It it walks like a duck and quacks like a duck, then it must

might be a duck turkey wrapped with a duck adapter... 240

Test drive the adapter 242

The Adapter Pattern explained 243

Adapter Pattern defined 245

Object and class adapters 246

; Real-world adapters 250
Standard AC Plug 7 Adapting an Enumeration to an Iterator 251
Home Sweet Home Theater 257

Watching a movie (the hard way) 258

" Lights, Camera, Facade! 260
Constructing your home theater facade 263

Implementing the simplified interface 264

Time to watch a movie (the easy way) 265

Facade Pattern defined 266

The Principle of Least Knowledge 267

How NOT to Win Friends and Influence Objects 268

The Facade Pattern and the Principle of Least Knowledge 271

Tools for your Design Toolbox 272

table of contents

the Template Method Pattern

Encapsulating Algorithms

We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas...what could be next?
We're going to get down to encapsulating pieces of algorithms so that subclasses
can hook themselves right into a computation anytime they want. We’re even

going to learn about a design principle inspired by Hollywood. Let’s get started...

It’s time for some more caffeine
Whipping up some coffee and tea classes (in Java)
Let’s abstract that Coffee and Tea

1ea - Coffey Taking the design further...

© Poll somewater (] T—

Abstracting prepareRecipe()

inthewater (=
© Steeptheteabad®® "W theCfaegrings

. o
@ Pourteainacip y M’“’“‘“"ﬂcuy What have we done?

Add
© Adilewon SUar and i

Meet the Template Method

Caffeine Beverage
generaize @ Follsomewater J_J What did the Template Method get us?

© Brew

. Template Method Pattern defined
Telies on © Pour beverageina cup relies on

subclass for subclass for

e some steps. @ Add condiments some steps. HOOde on 'l‘emplate NICthOd .

Tea st Coblee by,

- \C\Dp @9 Using the hook

The Hollywood Principle and Template Method
© Steep the teabag in the water fteo arinds
© Add lemon © prowthee?

e / - Template Methods in the Wild
o sugar and Wi

Sorting with Template Method

We’ve got some ducks to sort...

What is compare'To()?

Comparing Ducks and Ducks

Let’s sort some Ducks

The making of the sorting duck machine
Swingin’ with Frames

Custom Lists with AbstractList

Tools for your Design Toolbox

278
279
282
283
284
287
288
290
291
294
295
299
301
302
303
303
304
305
306
308
309
313

http://seriouspony.com
http://elisabethrobson.com

the Iterator and Composite Patterns
Well-Managed Collections

There are lots of ways to stuff objects into a collection.
Put them into an Array, a Stack, a List, a hash map—take your pick. Each has its
own advantages and tradeoffs. But at some point your clients are going to want

to iterate over those objects, and when they do, are you going to show them your
implementation? We certainly hope not! That just wouldn’t be professional. Well, you
don’t have to risk your career; in this chapter you're going to see how you can allow
your clients to iterate through your objects without ever getting a peek at how you
store your objects. You're also going to learn how to create some super collections of
objects that can leap over some impressive data structures in a single bound. And if

that’s not enough, you’re also going to learn a thing or two about object responsibility.

Breaking News: Objectville Diner and Objectville Pancake House Merge 318
Check out the Menu Items 319
Implementing the spec: our first attempt 323
Can we encapsulate the iteration? 325
Meet the Iterator Pattern 327
Adding an Iterator to DinerMenu 328
Reworking the DinerMenu with Iterator 329
Fixing up the Waitress code 330
Testing our code 331
Reviewing our current design... 333
Cleaning things up with java.util.Iterator 335
Iterator Pattern defined 338
The Iterator Pattern Structure 339
The Single Responsibility Principle 340
Meet Java’s Iterable interface 343
Java’s enhanced for loop 344
Taking a look at the Café Menu 347
Iterators and Collections 353
Is the Waitress ready for prime time? 355
The Composite Pattern defined 360
Designing Menus with Composite 363
Implementing MenuComponent 364
Implementing the Menultem 365
Implementing the Composite Menu 366
Now for the test drive... 369

Tools for your Design Toolbox 376

table of contents

the State Pattern
The State of Things

A little-known fact: the Strategy and State Patterns were
twins separated at birth. You'd think they'd live similar lives, but the Strategy
Pattern went on to create a wildly successful business around interchangeable algorithms,
while State took the perhaps more noble path of helping objects to control their behavior
by changing their internal state. As different as their paths became, however, underneath
you'll find almost precisely the same design. How can that be? As you'll see, Strategy

and State have very different intents. First, let’s dig in and see what the State Pattern is all

about, and then we’'ll return to explore their relationship at the end of the chapter.

Java Breakers 382

@ B e vy e bk b bl e akrhana State machines 101 384
Nighty Gunball . EZ;;‘:‘VE;;;T;}:&Z:V:}:;.:é?;ffﬁi‘;,::m A Writing the code 386
i 2iuidusaEauast In-house testing 388
You knew it was coming...a change request! 390

The messy STATE of things... 392

The new design 394

Defining the State interfaces and classes 395

Reworking the Gumball Machine 398

Now, let’s look at the complete GumballMachine class... 399

Implementing more states 400

The State Pattern defined 406

We still need to finish the Gumball 1 in 10 game 409

Finishing the game 410

Demo for the CEO of Mighty Gumball, Inc. 411

Sanity check... 413

We almost forgot! 416

Tools for your Design Toolbox 419

the Proxy Pattern

Controlling Object Access

Ever play good cop, bad cop? You're the good cop and you provide

all your services in a nice and friendly manner, but you don’t want everyone asking

you for services, so you have the bad cop control access to you. That's what proxies

do: control and manage access. As you're going to see, there are lots of ways in

which proxies stand in for the objects they proxy. Proxies have been known to haul

entire method calls over the internet for their proxied objects; they’ve also been

known to patiently stand in for some pretty lazy objects.

<<interface>>
Subject

request()

Coding the Monitor

Testing the Monitor

Remote methods 101

Getting the GumballMachine ready to be a remote service
Registering with the RMI registry...

The Proxy Pattern defined

Get ready for the Virtual Proxy

Designing the Album Cover Virtual Proxy

Writing the Image Proxy

Using the Java API’s Proxy to create a protection proxy
Geeky Matchmaking in Objectville

The Person implementation

Five-minute drama: protecting subjects

Big Picture: creating a Dynamic Proxy for the Person
The Proxy Zoo

Tools for your Design Toolbox

The code for the Album Cover Viewer

<<interface>>
InvocationHandler

invoke()

The prory no¥ tonsists of two

tlasses:

é\

RealSubject

request()

Pro);y

i—p InvocationHandler

request() l invoke()

427
428
433
446
448
455
457
459
460
469
470
471
473
474
482
485
489

table of contents

compound patterns

Patterns of Patterns

Who would have ever guessed that Patterns could work
together? You've already witnessed the acrimonious Fireside Chats (and

you haven’t even seen the Pattern Death Match pages that the editor forced us to
remove from the book), so who would have thought patterns can actually get along
well together? Well, believe it or not, some of the most powerful OO designs use
several patterns together. Get ready to take your pattern skills to the next level; it's
time for compound patterns.

Working together 494
Duck reunion 495
What did we do? 517
T beok i sch st 19 BPH ond you A bird’s duck’s-eye view: the class diagram 518
would ke 4o inresse it 4o 120 .
1 The King of Compound Patterns 520
© O O cunuul
D) Control Meet Model-View-Controller 523
Enter BPM: | /Cttk:" t“‘t
Intrease bea
s) button A closer look... 524
R <l Understanding MVC as a set of Patterns 526
which vesuts in the
ontroller being mioked .
‘ ’ Using MVC to control the beat... 528
Building the pieces 531
The tontroller aski
e ;;p"}‘ﬂd\,:po:‘:da ‘ Now let’s have a look at the concrete BeatModel class 532
Controller .
The View 533
ou s the beathar
e I ek M Implementing the View 534
S Z Betause the BPA is 120, the @ed!ode,
view gebs 3 beat notifization on Now for the Controller 536
006 viw every 1/2 setond
D ¢ etBPM0) off .
e Putting it all together... 538
Exploring Strategy 539
The view is updated View is notified that the)
t0 120 BPM ;ﬁm?ﬁf e ke Adapting the Model 540
And now for a test run... 542

Tools for your Design Toolbox 545

John Vlissides =7

P et o hndy 1
e Gtk e gl

o Loathe all too common
Pattemn.

o Discover those nifty Design 12

one-
o vid the embavassment ¢

o Leanhowto

The Objectviuc guit{e to
[Better Liing witLt Design Pattens

of tps & ks for lving with pattens i the veal
isconceptions about the defiito
D temn Catelogs and why

of using @ Design

keap patteus lassfeations

o+ See that dicoverd patterns sn tjust

and become @ patte”™ wiitet

too-

o Be thewe when the twe dentify of the

o Keep up with the neighbots =

own.

o Loaunto train Yo Desi

the coffe table hooks any patteuns 1€t st

gn Pattens nind like @ Zen mastet:

o W fends and nflence developers by improd your P

]3 o (o)
etter [iving With patterns
P .
atterns in the Real World

Ahhhh, no
’ wW yan
re ready for a bright new
world filled

with Desi
sign Patt
erns. B
ut, before you go opening all th
ose new door:
]

of opportuni
ity, we need
’ to co
real world—that's right, thi ver a few details that you'll
, things get a little more compl encounter out in the
ex than the
y are here

in Objectville
. Come alo ,
transition... ng, we've got a nice guide to hel
elp you throu
gh the

Design Pattern defined

LOOklIlg more ClOSCl} at thC DC 1gNn IattCI n dCflIllthIl
May the force be w S
y you

e

SO yo
wa])C (& 1 tt
u a a D s1gn Pa erns writ
er

Organizi
ganizing Design Patterns

Thinking in Patterns

nofa “Design

Yo i
ur Mind on Patterns

you just have to get

Don't for,
get the power of the shared vocab
ocabulary

Pattern at the wiord fime.

Cruisin’ Obj
uisin’ Objectville with the Gang of
ng of Four

where they belong-

Your i
our journey has just begun

e g el o0 ik HowTo

The Patterns Zoo

s Geng 4 T .

Anntihilati
llatmg evi .
il with Anti
nti-Pattern:
S

T
ools for your Design Toolbox

Leaving Objectville

paltewns vocabulay-

« Ralph
Johnson

b /\éa“ﬁ of Four

Erith’Gamma

565
567
568
573

575
580
583
585

587
588
590
592
594
595

table of contents

Appendix: Leftover Patterns

Not everyone can be the most popular. Alot has changed in the
last 25+ years. Since Design Patterns: Elements of Reusable Object-Oriented
Software first came out, developers have applied these patterns thousands of
times. The patterns we summarize in this appendix are full-fledged, card-carrying,
official GoF patterns, but aren’t used as often as the patterns we’ve explored so
far. But these patterns are awesome in their own right, and if your situation calls for
them, you should apply them with your head held high. Our goal in this appendix is

to give you a high-level idea of what these patterns are all about.

Bridge 598
All these composite Builder 600
¢lasses have to do is add .
a;f;ﬁ:g:o ethod Chain of Responsibility 602
csitor needs to be able £0 €3l (and not worry about .
‘g:’:g\{{;&(; a:ross ¢lasses, and this is exposing Lhemselves). FlyWClght 604
The Client asks where you tan add new methods for
the Visitor to get QO the client o use L/ Interpreter 606
information from the /\\ ‘,‘»“Q e chen i
Composite struttuve... a\j(x@:’b o AN Mediator 608
New methods ean be e,(;&a Xp‘s« a g >
added 4o 3“ Visitar I ; Memento 610
without affecting the
Composite. 2 Prototype 612
Visitor 614

\‘\ 4)
‘\\g
N
The Traverser knows how to o] g
ouide the Visitor through
the Composite strueture

Index 617

how to use this bool
Intro

I can't believe they
put that in a Design
Patterns book!

Is this hook for you?

This book is for anyone

With the mone:

h ey to pa
for it. And it mnhez.pa i
great gift for that
Special somegne

. {-' n »
e burnind qu\:;hl;ms book?

we answev th

| this set on) \m{ that n 3 desion

\\S w\\\l D‘D ‘H\C\I

XXV

how to use this book

Who is this book for?

If you can answer “yes” to all of these: /—

@ Do you know Java (you don’t need to be a guru) or
another object-oriented language?

@ Do you want to learn, understand, remember, and

apply design patterns, including the OO design
principles upon which design patterns are based?

@ Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

this book is for you.

Who should probably back away from this book?

If you can answer “yes” to any one of these:

@ Are you completely new to object-oriented
programming?

@ Are you a kick-butt object-oriented designer/
developer looking for a reference book?

@ Are you an architect looking for enterprise design
patterns?

@ Are you afraid to try something different? Would
you rather have a root canal than mix stripes
with plaid? Do you believe that a technical book
can’t be serious if object-oriented concepts are
anthropomorphized? m

this book is not for you.

CNote from markcﬁng: this book is
for anyone with a evedit tard.J

XXVi

v examples ave
ﬁgv:‘ but yoi should be
able to undevstand the
main tontey of the
book i you know another

ob)ct{—oricn’ccd language-

the

We know what you're thinking.

“How can this be a serious programming book?”
“What’s with all the graphics?”

“Can I actually learn it this way?”
7)\/;;uv- kra,‘,, Hhinks

S is im ortant.
And we know what your brain is thinking. [T

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking;
You just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s 7eal job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain now what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and

body?

Great. Only
642 more dull,
dry, boring pages.

Neurons fire. Emotions crank up. Chemicals surge.
And that’s how your brain knows...
This must be important! Don’t forget it!

But imagine you're at home, or in a library. It’s a safe, warm, tiger-
free zone. You're studying. Getting ready for an exam. Or trying to
learn some tough technical topic your boss thinks will take a week,
ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s
trying to make sure that this obviously non-important content doesn’t
clutter up scarce resources. Resources that are better spent storing
the really big things. Like tigers. Like the danger of fire. Like how
you should never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank
you very much, but no matter how dull this book is, and how little
I’'m registering on the emotional Richter scale right now, I really do
want you to keep this stuff’ around.”

XXVii

how to use this book

We think of a “Head First’ reader as a learner.

So what does it take to learn something? First, you have to getit, then make
sure you don’t forgetit. It’s not about pushing facts into your head. Based on the
|atest research in cognitive science, neurobiology, and educational psychology,
learning takes a lot more than texton a page. We know what turns your brain on.

Some of the Head First learning principles:

Needs 4o eall 3

- - m
Make it visual.|magesare far more memorable than words alone, and . ethod on the
erveyr

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the doCalc()

words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely

return value
to solve problems related to the content.

Use a conversational and personalized style. In studies, students

performed up to 40% better on post-learning tests if the content spoke directly to

the reader, using a first-person, conversational style rather than taking a formal

It really sucks to be
an abstract method.

You don't have a
body.

tone. Tell stories instead of lecturing. Use casual language. Don't take yourself

too seriously. Which would you pay more attention to: a stimulating dinner party

companion, ora lecture?

Get the learner to think more deeply. In other words, unless

Does it make sense to
say Tub IS-A Bathroom?
Bathroom IS-A Tub? Oris it
a HAS-A relationship?

0O
Q
—a you actively flex your neurons, nothing much happens in your head. A

reader has to be motivated, engaged, curious, and inspired to solve

problems, draw conclusions, and generate new knowledge. And for

that, you need challenges, exercises, thought-provoking questions,

activities that involve both sides of the brain, and multiple

roam() ; senses.

|

R

o w&\‘o'&\\ N Get—and keep—the reader’s attention. We've

{,/“(\ DA all had the“I really want to learn this but | can’t stay awake past
S,_w;\co\”' page one” experience. Your brain pays attention to things that

are out of the ordinary, interesting, strange, eye-catching, unexpected.]
= &

Learning a new, tough, technical topic doesn't have to be poring. Your brain will

learn much more quickly if it's not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No, we're not talking heart-wrenching stories about a boy and his dog. We're

talking emotions like surprise, curiosity, fun, “what the...2", and the feeling of “1 Rule!” that comes

when you solve 2 puzzle, learn something everybody else thinks is hard, or realize you know

something that“I'm more technical than thou” Bob from engineering doesn'’t.

xxviii

the

Metacognition: thinking about thinking

T wonder how I
can trick my brain
into remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn
design patterns. And you probably don’t want to spend a lot of time. And
you want to remember what you read, and be able to apply it. And for that,
you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on this
content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being, As important as a tiger.
Otherwise, you're in for a constant battle, with your brain doing its best
to keep the new content from sticking.

So how DO you get your brain to think Design
Patterns are as important as a tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way 1s about sheer repetition. You obviously know that you are
able to learn and remember even the dullest of topics, if you keep
pounding on the same thing. With enough repetition, your brain says, “This doesn’t
Jeel important to him, but he keeps looking at the same thing over and over and over, so 1
suppose it must be.”

The faster way is to do anything that increases brain activity, cspecially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

XXix

how to use this book

Here’s what WE did:

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s

ONE TO MANY RELATIONSHIP

: : : O
concerned, a picture really is worth 1,024 words. And when text and pictures work together, « o
we embedded the text in the pictures because your brain works more effectively when the text @ i ’Qf SF
1s within the thing it refers to, as opposed to in a caption or buried somewhere else. [To $
Avtomatic uram/ngumﬁ\f: <

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
1s tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little

humor, surprise, or interest. and P
. . o > v
We used a personalized, conversational style, because your brain is tuned to pay more ; ('/4
attention when it believes you’re in a conversation than if it thinks you’re passively listening to
The Patterns Guru

a presentation. Your brain does this even when you’re reading.

We included more than 90 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while %
BULLET POINTS

someone else wants to understand the big picture first, while someone else just wants to see
a code example. But regardless of your own learning preference, everyone benefits from seeing
the same content represented in multiple ways.

We included content for both sides of your brain, because the more of your brain you

engage, the more likely you are to learn and remember, and the longer you can stay focused.

Since working one side of the brain often means giving the other side a chance to rest, you Puzz]_es
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgments.

We included challenges, both with exercises and by asking questions that don’t always
have a straight answer, because your brain is tuned to learn and remember when it has to work
at something, Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

We used an 80/20 approach. We assume that if you’re going for a PhD in software design,
this won’t be your only book. So we don’t talk about everything. Just the stuff you’ll actually need.

XXX

Cut +this out and stiek it

on YOur rc'FHSCV‘é{:or.

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

@ Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

@ Read the “There Are No Dumb Questions”

That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

@ Make this the last thing you read before

bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens afier you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

@ Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

®

the

Here’s what YOU can do to bend
your brain into submission

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

Feel something!

Your brain needs to know that this matters. Get
mvolved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

Design something!

Apply this to something new you’re designing, or
refactor an older project. Just do something to get
some experience beyond the exercises and activities
in this book. All you need is a pencil and a problem
to solve...a problem that might benefit from one or
more design patterns.

XXXi

how to use this book

Read Me

This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at that
point in the book. And the first time through, you need to begin at the beginning, because
the book makes assumptions about what you've already seen and learned.

We use simple UML-like diagrams.

Although there’s a good chance you’ve run across UML, it’s not covered in the book, and
it’s not a prerequisite for the book. If you’ve never seen UML before, don’t worry, we’ll
give you a few pointers along the way. So in other words, you won’t have to worry about
Design Patterns and UML at the same time. Our diagrams are “UML-/ke”—while we
try to be true to UML there are times we bend the rules a bit, usually for our own selfish
artistic reasons.

We don’t cover every single Design Pattern ever created.

There are a lot of Design Patterns: the original foundational patterns (known as the GoF
patterns), enterprise Java patterns, architectural patterns, game design patterns, and a lot
more. But our goal was to make sure the book weighed less than the person reading it, so
we don’t cover them all here. Our focus is on the core patterns that matter from the original
Gol' object-oriented patterns, and making sure that you really, truly, deeply understand
how and when to use them. You will find a brief look at some of the other patterns (the
ones you're far less likely to use) in the appendix. In any case, once you’re done with Head
First Design Patterns, you’ll be able to pick up any patterns catalog and get up to speed
quickly.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some for understanding, and some to help you
apply what you've learned. Don’t skip the exercises. The crossword puzzles are the
only things you don’t 4ave to do, but they’re good for giving your brain a chance to think
about the words from a different context.

We use the word “composition” in the general OO sense, which is
more flexible than the strict UML use of “composition.”

When we say “one object is composed with another object” we mean that they are related
by a HAS-A relationship. Our use reflects the traditional use of the term and is the one
used in the GoT text (you’ll learn what that is later). More recently, UML has refined this
term into several types of composition. If you are an UML expert, you’ll still be able

to read the book and you should be able to easily map the use of composition to more
refined terms as you read.

XXXii

We use 3 sim\?lch
modified version

of UML. 2

Director

getMovies
getOscars()
getKevinBaconDegrees()

the

The redundancy is intentional and important.

One distinct difference in a Head First book 1s that we want you to really get it. And we want
you to finish the book remembering what you’ve learned. Most reference books don’t have
retention and recall as a goal, but this book is about learning, so you’ll see some of the same
concepts come up more than once.

The code examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of code looking for the two
lines they need to understand. Most examples in this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. Don’t expect

all of the code to be robust, or even complete—the examples are written specifically for
learning, and aren’t always fully functional.

In some cases, we haven’t included all of the import statements needed, but we assume that
if you’re a Java programmer, you know that ArrayList is in java.util, for example. If the
imports were not part of the normal core JSE API, we mention it. We've also placed all the
source code on the web so you can download it. You’ll find it at
http://wickedlysmart.com/head-first-design-patterns.

Also, for the sake of focusing on the learning side of the code, we did not put our classes
into packages (in other words, they’re all in the Java default package). We don’t recommend
this in the real world, and when you download the code examples from this book, you’ll find
that all classes are in packages.

The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of the Brain Power exercises, you will find hints to point you in the right direction.

XXXiii

http://wickedlysmart.com/head-first-design-patterns/

the first edition review team

Valentin Crettas

Ba"'"c)' Marispihi

Tech Reviewers
Jef Cumps

Feavless leader of
the HFDP Extreme

Review Team

[n memovy of Philippe Maquc{:, 1960 -
1004 Your amazing tethnical expertise,
velentless enthusiasm, and deep contern for
the learner will inspive us always.

=

Divk Sehretkmann

Mark g‘w\’cﬂ “

Philippe Maquet

XXXV intro

the second edition review team the

Tech Reviewers, Znd Edition

David Powers

Julian Setiawan 6“”'38 Heineman

&—an Edition Reviewer MVP!
Acknowledgments

From the first edition
At O°Reilly:

Our biggest thanks to Mike Loukides at O’Reilly, for starting it all and helping to shape the Head First concept into
a series. And a big thanks to the driving force behind Head First, Tim O’Reilly. Thanks to the clever Head First

“series mom” Kyle Hart, “In Design King” Ron Bilodeau, rock-and-roll star Ellie Volkhausen for her inspired
cover design, Melanie Yarbrough for shepherding production, Colleen Gorman and Rachel Monaghan for
their hardcore copyedits, and Bob Pfahler for a much improved index. Finally, thanks to Mike Hendrickson and
Meghan Blanchette for championing this book and building the team.

Our intrepid reviewers:

We are extremely grateful for our technical review director Johannes deJong. You are our hero, Johannes. And we
deeply appreciate the contributions of the co-manager of the Javaranch review team, the late Philippe Maquet.
You have single-handedly brightened the lives of thousands of developers, and the impact you’ve had on their (and

our) lives is forever. Jef CGumps is scarily good at finding problems in our draft chapters, and once again made a huge
difference for the book. Thanks Jef! Valentin Cretazz (AOP guy), who has been with us from the very first Head First
book, proved (as always) just how much we really need his technical expertise and insight. You rock Valentin (but lose
the tie).

Two newcomers to the HF review team, Barney Marispini and Ike Van Atta, did a kick-butt job on the book—you
guys gave us some really crucial feedback. Thanks for joining the team.

We also got some excellent technical help from Javaranch moderators/gurus Mark Spritzler, Jason Menard, Dirk
Schreckmann, Thomas Paul, and Margarita Isaeva. And as always, thanks especially to the javaranch.com
Trail Boss, Paul Wheaton.

Thanks to the finalists of the Javaranch “Pick the Head First Design Patterns Cover” contest. The winner, Si Brewster,
submitted the winning essay that persuaded us to pick the woman you see on our cover. Other finalists include Andrew
Esse, Gian Franco Casula, Helen Crosbie, Pho Tek, Helen Thomas, Sateesh Kommineni, and Jeff' Fisher.

For the 2014 update to the book, we are so grateful to the following technical reviewers: George Hoffer, Ted Hill, Todd
Bartoszkiewicz, Sylvain Tenier, Scott Davidson, Kevin Ryan, Rich Ward, Mark Francis Jaeger, Mark Masse, Glenn Ray;,
Bayard Fetler, Paul Higgins, Matt Carpenter, Julia Williams, Matt McCullough, and Mary Ann Belarmino.

XXXV

our thanks

Acknowledgments

From the second edition
At O’Reilly:

First and foremost, Mary Treseler is the superpower who makes everything happen and we are eternally grateful
to her for all she does for O’Reilly, Head First, and the authors. Melissa Duffield and Michele Cronin
cleared many paths that made this second edition happen. Rachel Monaghan did an amazing copy edit, giving a
new sparkle to our text. Kristen Brown made the book look beautiful online and in print. Ellie Volckhausen
worked her magic and designed a brilliant new cover for the second edition. Thank you all!

Our 2nd edition reviewers:

We’re grateful to our 2nd edition technical reviewers for picking up the task 15 years later. David Powers is our go-
to reviewer (he’s ours, don’t even think about asking him to review your book) because he doesn’t miss a thing. George
Heineman went above and beyond with his detailed comments, suggestions, and feedback, and he received this
edition’s technical MVP award. Trisha Gee and Julian Setiawan provided the invaluable Java savvy we needed
to help us avoid those embarrassing and cringe-worthy Java mistakes. Thank you all!

Very Special Thanks

A very special thanks to Erich Gamma, who went far beyond the call of duty in reviewing this book (he even
took a draft with him on vacation). Erich, your interest in this book inspired us, and your thorough technical review
improved it immeasurably. Thanks as well to the entire Gang of Four for their support and interest, and for
making a special appearance in Objectville. We are also indebted to Ward Cunningham and the patterns
community who created the Portland Pattern Repository—an indispensable resource for us in writing this book.

A big thank you to Mike Loukides, Mike Hendrickson, and Meghan Blanchette. Mike L. was with
us every step of the way. Mike, your insightful feedback helped shape the book, and your encouragement kept us
moving ahead. Mike H., thanks for your persistence over five years in trying to get us to write a patterns book; we
finally did it and we’re glad we waited for Head First.

It takes a village to write a technical book: Bill Pugh and Ken Arnold gave us expert advice on Singleton.
Joshua Marinacci provided rockin’ Swing tips and advice. John Brewer’s “Why a Duck?” paper inspired
SimUDuck (and we're glad he likes ducks too). Dan Friedman inspired the Little Singleton example. Daniel
Steinberg acted as our “technical liason” and our emotional support network. Thanks to Apple’s James
Dempsey for allowing us to use his MVC song. And thank you to Richard Warburton, who made sure our
Java 8 code updates were up to snuff for this updated edition of the book.

Last, a personal thank you to the Javaranch review team for their top-notch reviews and warm support.
There’s more of you in this book than you know.

Writing a Head First book is a wild ride with two amazing tour guides: Kathy Sierra and Bert Bates. With
Kathy and Bert you throw out all book writing convention and enter a world full of storytelling, learning theory,
cognitive science, and pop culture, where the reader always rules.

XXXVi

1 intro to Design Patterns

Welcome to*
+ Design Patterns*

Now that we're living
in Objectville, we've just got to
get into Design Patterns...everyone
is doing them. Soon we'll be the hit
of Jim and Betty's Wednesday night
patterns group!

Someone has already solved your problems. In this chapter,

you'll learn why (and how) you can exploit the wisdom and lessons learned by other
developers who've been down the same design problem road and survived the trip.
Before we're done, we’ll look at the use and benefits of design patterns, look at some
key object-oriented (OO) design principles, and walk through an example of how one
pattern works. The best way to use patterns is to load your brain with them and then
recognize places in your designs and existing applications where you can apply them.

Instead of code reuse, with patterns you get experience reuse.

this is a new chapter 1

SimUDuck

It started with a simple SimUPuck app \

Joe works for a company that makes a highly successful duck pond
simulation game, SimUDuck. The game can show a large variety of
duck species swimming and making quacking sounds. The initial
designers of the system used standard OO techniques and created
one Duck superclass from which all other duck types inherit.

Duck

All ducks quack and swim. The)
supevclass takes eave of the s |Guec ()

swim()

The d\sv\ay() method is

display() < sbstract, sinte all duek
I OTHER duck-like methods... bbypes look di (Levent.
Eath dutk subype / |

imylcmcn{:a{:ion tode.

k:
4 es of dut
is Y‘CSYOV\S\\)\C Ling MallardDuck RedheadDuck Lots of o{:\nc; \t\’\{) o s
" """“'f“"\a\lo display() { display() { et from
iks own d\Sz,. how it I'looks like a mallard } Il looks like a redhead }
havior
\\):o\is on the stveer

In the last year, the company has been under increasing pressure
from competitors. After a week-long off-site brainstorming
session over golf, the company executives think it’s time for a big
innovation. They need something 7eally impressive to show at the
upcoming sharcholders meeting in Maui next week.

2 Chapter 1

intro fo design patterns

But now we need the ducks to FLY

The executives decided that flying ducks is just what the
simulator needs to blow away the competitors. And of course
Joe’s manager told them it’ll be no problem for Joe to just
whip something up in a week. “After all,” said Joe’s boss,
“he’s an OO programmer...how hard can it be?”

f"'ﬂ'{_____}f

£\

/é} »e

e —

-~
w».afwl want. /k = % Q’I)

T just need to add a
fly() method in the Duck class
and then all the ducks will inherit

it. Now's my time to really show my
true OO genius.

__—

el
Duck
quack()
swim()
st :;splay() L What Joe added-
e /I OTHER duck-like methods...
W
MallardDuck RedheadDuck O'ther Dutk tyees
display() { display() {

Il'looks like a mallard }

Il'looks like a redhead }

something wrong

But something went horribly wrong...

Joe, I'm at the shareholders meeting.
They just gave a demo and there were
rubber duckies flying around the screen.
Was this your idea of a joke?

What happened?

Joe failed to notice that not all
subclasses of Duck should fly. When
Joe added new behavior to the
Duck superclass, he was also adding
behavior that was not appropriate
for some Duck subclasses. He now
has flying inanimate objects in the
SimUDuck program.

Okay, so there's a slight
flaw in my design. T don't
see why they can't just call
it a “feature." It's kind
of cute...

What Joe thought

was a great use

A localized update to the code caused a non-
local side effect (flying rubber ducks)!

of inheritance

Duck
o :;’:‘;‘60 for the purpose
\
)
oyt .y ‘53“?\)3\\6/ dsplay) of reuse hasn't
N s T e > | fly()
SREC WL v I/ OTHER duck-like methods... turned out so well

g _\“b\\,(‘im‘b 0

M\L: Sw,“\dﬂ’“ when it comes to
xnd .
maintenance.
MallardDuck RedheadDuck RubberDuck Notite toor Lhat vvbber 0
display() { display() { quack() { dutks don){—’ a\ual‘,\i,gm :}: ’
I/'looks like a mallard Il'ooks like a redhead Il overridden to Squeak .‘S om,('\ddcv\ fo S
} } }
display() {
I/'looks like a rubberduck
1

Joe thinks about inheritance...

Q
(o)

_ G harpen your pencil
X

T could always just
override the fly() method
in rubber duck, like I have
with the quack() method...

RubberDuck

quack() {// squeak}
display() { // rubber duck }
fly() {

Il override to do nothing

}

Heve's another ¢lass in the

RubbchuCk, it docsn’{: ‘(:\\/,
bk it also doesnt quack.

intro fo design patterns

But then what h

O
0

"

/

when we add wooden
decoy ducks to the
program? They aren't
supposed to fly or quack...

appens

=0

DecoyDuck

n |

ho‘{flCC 'H'\a‘{; like

quack() {

Il override to do nothing
}
display() { // decoy duck}
fiy() {

/I override to do nothing
}

Which of the following are disadvantages of using inheritance to

provide Duck behavior? (Choose all that apply.)

(A A. Code is duplicated across subclasses.

(A B. Runtime behavior changes are difficult.

(d C. We can’t make ducks dance.

(A D. Its hard to gain knowledge of all duck behaviors.
(1 E. Ducks can’t fly and quack at the same time.

(A F Changes can unintentionally affect other ducks.

inheritance is not the answer

How about an interface?

Joe realized that inheritance probably wasn’t the
answer, because he just got a memo that says that

the executives now want to update the product every
six months (in ways they haven’t yet decided on). Joe
knows the spec will keep changing and he’ll be forced
to look at and possibly override fly() and quack() for
every new Duck subclass that’s ever added to the
program... forever.

So, he needs a cleaner way to have only some (but not
all) of the duck types fly or quack.

T could take the fly() out of the Duck
superclass, and make a Flyable() interface
with a fly() method. That way, only the ducks
that are supposed to fly will implement that
interface and have a fly() method...and I might
as well make a Quackable, too, since not all
ducks can quack.

s,

Duck
Quackable swim()
Flyable quack() display()
fly() /I OTHER duck-like methods...

MallardDuck RedheadDuck

RubberDuck DecoyDuck

display() display() display() display()
fiy() fly() quack()
quack() quack()

What do YOU think about this design?

6 Chapter 1

intro fo design patterns

That is, like, the dumbest idea
you've come up with. Can you say,
“duplicate code”? If you thought having
to override a few methods was bad, how

are you gonna feel when you need to make a
little change to the flying behavior...in all 48
of the flying Duck subclasses?!

What would you do if you were Joe?

We know that not all of the subclasses should have flying or quacking
behavior, so inheritance isn’t the right answer. But while having the
subclasses implement Flyable and/or Quackable solves part of the
problem (no inappropriately flying rubber ducks), it completely
destroys code reuse for those behaviors, so it just creates a different
maintenance nightmare. And of course there might be more than one
kind of flying behavior even among the ducks that do fly...

At this point you might be waiting for a Design Pattern to come riding
in on a white horse and save the day. But what fun would that be? No,
we’re going to figure out a solution the old-fashioned way—¥ay applying
good OO sofitware design principles.

Wouldn't it be dreamy
if there were a way to build software
so that when we need to change it, we
could do so with the least possible
impact on the existing code? We could
spend less time reworking code and
more making the program do cooler
things...

you are here » 7

change is constant

The one constant in software development

Okay, what’s the one thing you can always count on in software development?

No matter where you work, what you’re building, or what language you are programming in, what’s
the one true constant that will be with you always?

JOVAHD

use a mirror to see the answer

No matter how well you design an application, over time an
application must grow and change or it will dze.

Lots of things can drive change. List some reasons you've had to change code
in your applications (we put in a couple of our own to get you started). Check
your answers with the solution at the end of the chapter before you go on.

G harpen your pencil
X

My tustomers or users decide they want something else, or they want new funttionality.

My tompany detided it is going with another database vendor and it is also purehasing
its data from another supplier that uses a different data format. Avgh!

intro fo design patterns

Zeroing in on the problewm...

So we know using inheritance hasn’t worked out very well, since

the duck behavior keeps changing across the subclasses, and it’s not
appropriate for all subclasses to have those behaviors. The Flyable
and Quackable interface sounded promising at first—only ducks that
really do fly will be Flyable, etc.—except Java interfaces typically have
no implementation code, so no code reuse. In either case, whenever
you need to modify a behavior, you’re often forced to track down and
change it in all the different subclasses where that behavior is defined,
probably introducing new bugs along the way!

Take what varies and
"encapsulate” it so it

Luckily, there’s a design principle for just this situation.

i incl '
Design Principle won't affect the rest of
Identify the aspects of your
application that vary and separate your COC[e.
them from what stays the same.
C The frstof may &9 & The result? Fewer
printiples. We'll spend move Lime
on these throughout the book unintended consequences
In other words, if you’ve got some aspect of your code that is ‘fl‘ om COC[e Changes aﬂC[

changing, say with every new requirement, then you know you’ve
got a behavior that needs to be pulled out and separated from all
the stuff that doesn’t change.

more flexil)ility n your

systems!
Here’s another way to think about this principle: take the parts

that vary and encapsulate them, so that later you can

alter or extend the parts that vary without affecting

those that don’t.

As simple as this concept 1s, it forms the basis for almost every
design pattern. All patterns provide a way to let some part of a
system vary independently of all other parts.

Okay, time to pull the duck behavior out of the Duck classes!

pull out what varies

Separating what changes from what stays the same

Where do we start? As far as we can tell, other than the problems with fly() and quack(), the Duck
class 1s working well and there are no other parts of it that appear to vary or change frequently. So,
other than a few slight changes, we’re going to pretty much leave the Duck class alone.

Now, to separate the “parts that change from those that stay the same,” we are going to create
two sets of classes (totally apart from Duck), one for fly and one for quack. Each set of classes will
hold all the implementations of the respective behavior. For instance, we might have one class that
implements quacking, another that implements squeaking, and another that implements sience.

We know that fly() and quack() are the parts of the
Duck class that vary across ducks.

To separate these behaviors from the Duck class, we’ll pull both methods
out of the Duck class and create a new set of classes
to represent each behavior.

is still the

The Duck ¢lass is sti
su\:crcrass of all dutks, but we & B
are pulling out the fty and 22 Vawou Lations ave

: d putting them into ; cking eath implementation
behaviors and P Now (1\\,"\5 and quatking T lie heve.
another class sbeueture. oet Lo own sek of classes. going

Pull st s
. (062
Ouck c\e® Fying Bevo

5
. o(
QUQCking pae®

Duck Behaviors

10 Chapter 1

Pesigning the Puck Behaviors

So how are we going to design the set of classes that
implement the fly and quack behaviors?

We’d like to keep things flexible; after all, it was the inflexibility in
the duck behaviors that got us into trouble in the first place. And we
know that we want to assign behaviors to the instances of Duck. For
example, we might want to instantiate a new MallardDuck instance
and initialize it with a specific fype of flying behavior. And while
we’re there, why not make sure that we can change the behavior of a
duck dynamically? In other words, we should include behavior setter
methods in the Duck classes so that we can change the MallardDuck’s
flying behavior at runtime.

Given these goals, let’s look at our second design principle:

Design Principle

Program to an interface, not an
implementation.

We’ll use an interface to represent each behavior—for instance,
FlyBehavior and QuackBehavior—and each implementation of a
behavior will implement one of those interfaces.

So this time it won’t be the Duck classes that will implement the
flying and quacking interfaces. Instead, we’ll make a set of classes
whose entire reason for living is to represent a behavior (for example,
“squeaking”), and it’s the behavior class, rather than the Duck class,
that will implement the behavior interface.

This 1s in contrast to the way we were doing things before, where

a behavior came either from a concrete implementation in the
superclass Duck, or by providing a specialized implementation in the
subclass itself. In both cases we were relying on an umplementation. We
were locked into using that specific implementation and there was no
room for changing the behavior (other than writing more code).

With our new design, the Duck subclasses will use a behavior
represented by an mterface (FlyBehavior and QuackBehavior), so that
the actual implementation of the behavior (in other words, the specific
concrete behavior coded in the class that implements the FlyBehavior
or QuackBehavior) won’t be locked into the Duck subclass.

intro fo design patterns

From now on, the Duck
hehaviors will live in
a separate class—a
class that implements
a particular hehavior
interface.

That way, the Duck

classes won't need

to know any of the
im]olementation details
for their own hehaviors.

<<interface>>
FlyBehavior

fy()

N

FlyWithWings FlyNoWay
fiy() { fiy() {
Il implements duck flying /I do nothing - can't fly!
} }

11

program to an interface

A’bS‘éy-ac

be ah ab

et ype
in‘éek‘['ate) "a(:'é CIaSS OR

N

(COuId

I don't see why you
have to use an interface for
FlyBehavior. You can do the
same thing with an abstract
superclass. Isn't the whole point
to use polymorphism?

Animal
makeSound()
Concrc{zc ‘
'\MY\Cmcn‘ba'bo“S'
Dog Cat
makeSound() { makeSound() {
bark(); meow();
1 1
bark() { // bark sound } meow() { // meow sound }

12 Chapter 1

“Program to an interface” really means
“Program to a supertype.”

The word wnterface is overloaded here. There’s the concept of an
interface, but there’s also the Java construct of an interface. You
can program to an interface without having to actually use a Java
interface. The point is to exploit polymorphism by programming
to a supertype so that the actual runtime object isn’t locked into
the code. And we could rephrase “program to a supertype” as
“the declared type of the variables should be a supertype, usually
an abstract class or interface, so that the objects assigned to
those variables can be of any concrete implementation of the
supertype, which means the class declaring them doesn’t have to
know about the actual object types!”

This is probably old news to you, but just to make sure we’re
all saying the same thing, here’s a simple example of using a
polymorphic type—imagine an abstract class Animal, with two
concrete implementations, Dog and Cat.

Programming to an implementation would be:

Declaring the vaviable “4” a
09 (a conerete implcmcn{:ajcifr? Pc

Animal orées us {o
. tode ‘f:o a
tontvrete implementation.

Dog d = new Dog() ;
d.bark() ;

But programming to an interface/supertype would be:

Animal animal = new Dog(); We know it’s 3 D°3: but

we ¢ i
animal .makeSound() ; v an now use the _a"'"‘al
eterente Folymo\rphncally.
Even better, rather than hardcoding the instantiation of the
subtype (like new Dog()) into the code, assign the concrete
implementation object at runtime:

We don't know WHAT +he actual
animal sub{:\/?c is...all we tare aubou‘f;

Eattgl;;fdlz;ows how +o vespond to

a = getAnimal() ;

a.makeSound() ;

intro fo design patterns

Implementing the Puck Behaviors

Here we have the two interfaces, FlyBehavior and QuackBehavior, along with
the corresponding classes that implement each concrete behavior:

Same ﬂ\ing heve for the quack

Fl Bcha\lio\r s an .m{"(jau bchaV!orj v.vc have an m‘{:t\r‘FaR
‘E I “ ina tlasses im lcmcwt- H\a{‘, Jus*{; intludes a ‘\uatko
that 2 \["\5 . ¥ method that needs to be
Al new (:lymg classes ())us‘l', need emenbed
f to im?lc»\cn{: the ‘Fl\/ method. Imp cmczc/
<<interface>> <<interface>>
FlyBehavior QuackBehavior
fly() quack()
N7 N
FlyWithWings FlyNoWay Quack Squeak T MuteQuack
ot . M4 quack() { quack() { quack() {
Il implements duck flying /I do nothing - can't fly! 1 implements duck quacking 1/ rubber duckie squeak J1 do nothing - can't quack!
:))))

J
And e, /K Ruacks 4, . T

: h k.
Here:,) or al g kfhe '”‘PICMC%%_ really Quack. Quatks that squea Quatks that make
of fl}’in ‘:c[‘ imP/e”'Cnfaf CKs ﬁhaf ceh% fl lon o sound at 3ll.
that | avi W:’: all duep, " Y
S.
With this design, other types of objects can k\
reuse our fly and quack behaviors because So we get the benefit of
these behaviors are no longer hidden away REUSE without all the
in our Duck classes! baggage that comes along

with inhevitance.

And we can add new behaviors without
modifying any of our existing behavior
classes or touching any of the Duck classes
that use flying behaviors.

13

behavior in a

Q: Do | always have to implement my
application first, see where things are
changing, and then go back to separate
and encapsulate those things?

A: Not always; often when you are
designing an application, you anticipate
those areas that are going to vary and then
go ahead and build the flexibility to deal

with it into your code. You'll find that the
principles and patterns can be applied at any
stage of the development lifecycle.

therejare no
Dumb Questions

Q: Should we make Duck an interface
too?

A: Not in this case. As you'll see once
we've got everything hooked together, we do
benefit by having Duck not be an interface,
and having specific ducks, like MallardDuck,
inherit common properties and methods.
Now that we've removed what varies from
the Duck inheritance, we get the benefits of
this structure without the problems.

_ G harpen your pencil
X
(1]

©

behavior that isn’'t a duck?

Using our new design, what would you do if you needed
to add rocket-powered flying to the SimUDuck app?

Can you think of a class that might want to use the Quack

14

Q: It feels a little weird to have a class
that’s just a behavior. Aren’t classes
supposed to represent things? Aren’t
classes supposed to have both state AND
behavior?

A: In an OO system, yes, classes
represent things that generally have both
state (instance variables) and methods.
And in this case, the thing happens to be

a behavior. But even a behavior can still
have state and methods; a flying behavior
might have instance variables representing
the attributes for the flying (wing beats per
minute, max altitude, speed, etc.) behavior.

"(spunos »onp saxew ey} 8dIAsp
B) [|e2 yonp e ‘aidwexs auQ (g
"90eLd)UI JoineyagA|4

ay) syuswa|dwi 1ey) Ssejo
paIaMod1an00yA|4 e a1eal) (|

‘SIamsuy

intro fo design patterns

Integrating the Duck Behaviors

Here’s the key: A Duck will now delegate its flying and
quacking behaviors, instead of using quacking and
flying methods defined in the Duck class (or subclass).
Here’s how:

0 First we’ll add two instance variables of type FlyBehavior and

QuackBehavior—let’s call them flyBehavior and quackBehavior. Each concrete duck
object will assign to those variables a specific behavior at runtime, like FlyWithWings for
flying and Squeak for quacking,

We’ll also remove the fly() and quack() methods from the Duck class (and any subclasses)
because we’ve moved this behavior out into the FlyBehavior and QuackBehavior classes.

We’ll replace fly() and quack() in the Duck class with two similar methods, called
performFly() and performQuack(); you’ll see how they work next.

[nstance vaviables hold a veferente

The behavior vaviables are bo 2 speci Lt behavior at vuntime.

detlared as the behavior
INTERFACE type. Duck
\) FlyBehavior flyBehavior /

QuackBehavior quackBehavior |

lace
These methods vep performQuack()

fiy0) and o\ua\ck()-/ swim()
display()
\ performFly()

/I OTHER duck-like methods...

L oto
F/Ying Bena!®

Duck Behaviors

e Now we implement performQuack():

efevente 4o somethin

9 that

sav¥ . .
public abstract class Duck { Eath D“(’k :;\C QuaCkBC“aV\o‘- nterrace
QuackBehavior quackBehavior; {/ '\mY\C"‘C“{"S
// more

Ra‘t\\cr than hand\\ng the O\uaC\i

bc\‘c , the Dutk ob\')cd’,

public void performQuack() { bc\na“"it L that behavior 4o the ob\')cd:
; . es .
} quackBehavior.quack () ; {,_/ ‘%%f’::;: ed by :\uaL\LBc\\aVW"'

}

Pretty simple, huh? To perform the quack, a Duck just asks the object that
is referenced by quackBehavior to quack for it. In this part of the code we
don’t care what kind of object the concrete Duck 1s, all we care about is
that it knows how to quack()!

you are here » 15

integrating duck behavior

More integration...

e Okay, time to worry about how the flyBehavior and quackBehavior
instance variables are set. Let’s take a look at the MallardDuck
class:

public class MallardDuck extends Duck ({

A MallardDuck uses the Quack
ublic MallardDuck() { e class 4o handle its quack, so when
’ chgonQuack() is ¢alled, the
vesponsibility for the quack is delegated

quackBehavior = new Quack() ;

flyBehavior = new FlyWithWings(); to the Quack ob\')cC‘{: and we 5¢{; a veal
} V\ o\uatk-
Remember, MallardDuck inherits the And it uses FlyWithWings as its
o\uacchhavior and ﬂ\chhaVior instance Fl\/Bchan\r {:‘/\76-

vaviables from class Duek.

public void display() {

System.out.println("I'm a real Mallard duck");

MallardDuck’s quack is a real live duck quack, not a squeak and not
a mute quack. When a MallardDuck is instantiated, its constructor
itializes the MallardDuck’s inherited quackBehavior instance

variable to a new instance of type Quack (a QuackBehavior concrete
implementation class).

And the same is true for the duck’s flying behavior—the MallardDuck’s
constructor initializes the inherited flyBehavior instance variable

with an instance of type FlyWithWings (a FlyBehavior concrete
implementation class).

16 Chapter 1

Wiait a second, didn't you
say we should NOT program to an
implementation? But what are we doing in that
constructor? We're making a new instance of a
concrete Quack implementation class!

Good catch, that’s exactly what we’re doing...
Jor now.

Later in the book we’ll have more patterns in
our toolbox that can help us fix it.

Still, notice that while we are setting the
behaviors to concrete classes (by instantiating
a behavior class like Quack or FlyWithWings
and assigning it to our behavior reference
variable), we could easily change that at
runtime.

So, we still have a lot of flexibility here. That
said, we’re doing a poor job of initializing

the instance variables in a flexible way. But
think about it: since the quackBehavior
instance variable is an interface type, we
could (through the magic of polymorphism)
dynamically assign a different QuackBehavior
implementation class at runtime.

Take a moment and think about how you
would implement a duck so that its behavior
could change at runtime. (You’ll see the code
that does this a few pages from now.)

intro fo design patterns

17

testing duck behaviors

Testing the Duck code

18

Q Type and compile the Duck class below (Duck.java), and the
MallardDuck class from two pages back (MallardDuck.java).

public abstract class Duck {
Detlave two veferente

FlyBehavior flyBehavior; — vaviables for the bchavu;{r
QuackBehavior quackBehavior; intcvﬁaét {:y\?cs- A“ du!
public Duck() { } subtlasses (in the same

?ackagc) inhevit these.
public abstract void display();

public void performFly () {

flyBehavior. £fly () ;%\ Dclcga{:c to the behavior ¢lass.
}

public void performQuack () /
quackBehavior.quack() ;
}

public void swim() {
System.out.println("All ducks float, even decoys!");
}

6 Type and compile the FlyBehavior interface (FlyBehavior.java)
and the two behavior implementation classes (FlyWithWings.java
and FlyNoWay.java).

public interface FlyBehavior { .
public void f£ly(); The interface that all flying
} behavior ¢lasses imylcmcﬂ:.

public class FlyWithWings implements FlyBehavior {

public void fly() { behavior -.,,\Y\mcn{a‘dov\

System.out.println("I'm flying!!"); E\img.,cks that DO (:\\/...
}
}
public class FlyNoWay implements FlyBehavior {
public void fly() { Flying behavior implementation
System.out.println("I can't fly"); for ducks that do NOT ﬂ‘/ (like
} vubber dutks and dcdo\/ ducks).

Chapter 1

intro fo design patterns

Testing the Duck code, continved...

e Type and compile the QuackBehavior interface
(QuackBehavior.java) and the three behavior implementation
classes (Quack.java, MuteQuack.java, and Squeak.java).

public interface QuackBehavior ({
public void quack() ;
}

public class Quack implements QuackBehavior {
public void quack() {
System.out.println ("Quack") ;

public class MuteQuack implements QuackBehavior {
public void quack() {
System.out.println("<< Silence >>");

}

public class Squeak implements QuackBehavior {
public void quack() {
System.out.println ("Squeak") ;

}

Q Type and compile the test class
(MiniDuckSimulator.java).

public class MiniDuckSimulator {
public static void main(String[] args) {

Duck mallard = new MallardDuck() ; ’s inhevited

This call the MallardDuckt IR ostes 4o

Vcr(:orw\&ua(,k() method, W

mallard.performQuack() ;

' wor (e, calls o\uack() on
r e cetk's QuackBehavior (e) ¢a
| 3‘; ;‘\)A:k’s inhevited o\uacchhaWor vefevente).
| Then we do the same thing with Ma\\avdDuck s
e e inhevited ?cr(:ormF\y() method.

File Edit Window Help Yadayadayada
%$java MiniDuckSimulator

Quack

I'm flying!!

you are here » 19

ducks with behavior

Setting behavior dynawmically

What a shame to have all this dynamic talent built into our ducks and not be using
it! Imagine you want to set the duck’s behavior type through a setter method on the
Duck class, rather than by instantiating it in the duck’s constructor.

Q Add two new methods to the Duck class:

public void setFlyBehavior (FlyBehavior fb) {
flyBehavior = fb;

Duck
}

FlyBehavior flyBehavior

public void setQuackBehavior (QuackBehavior gb) {

QuackBehavior quackBehavior

quackBehavior = gb; swim()

} display()
performQuack()
performFly()

We can call these met time we want to change the setFlyBehavior()

. setQuackBehavior
behavior of a duck®n the fly. 0

/I OTHER duck-like methods...

Editor note: gratuitous pun — fix

Q Make a new Duck type (ModelDuck.java).

public class ModelDuck extends Duck { ins \‘\QC Srow\dCd"'

be!
public ModelDuck() { Our model duck B .
flyBehavior = new FlyNoWay(); €— without 3 way
quackBehavior = new Quack() ;

public void display() {
System.out.println("I'm a model duck");

Make a new FlyBehavior type

(FlyRocketPowered java) /‘ Y‘OCkC‘{',‘POWCY‘Cd ‘Cl\/lhg behavior.

public class FlyRocketPowered implements FlyBehavior {
public void fly() {
System.out.println("I'm flying with a rocket!");

20

That's okay, we've eveating a

intro fo design patterns

e Change the test class (MiniDuckSimulator.java), add the
ModelDuck, and make the ModelDuck rocket-enabled.

B C‘c ore

public class MiniDuckSimulator {
public static void main(String[] args) {
Duck mallard = new MallardDuck() ;

mallard.performQuack() ;

mallard.performFly () ; £ F\\I()
orm
The fist 62, B TG ior it

) ttov)
Duck model = new ModelDuck () ; <ok in the ModelDuek's sﬁ:":fw
. 3y Instante:
model .performFly () ; é’_’h/ whith is 8 F\\INC’W

model .setFlyBehavior (new FlyRocketPowered()) ; — This if‘Vokcs the model’s inherited
ehavior setter method, and...voil3/
model .performFly () ; The model suddenly has vocket

Poweved ﬂying capability/

H: it worked, the mo
thanged its fiying b
THAT if the s:/..hs :
the Duck ¢lass.

del duck dynamically

havior/ You ¢an't do
Plementation lives inside

File Edit Window Help Yabbadabbadoo

© \Run it
%java MiniDuckSimulator

Quack

I'm flying!!

I can't fly

I'm flying with a rocket!

To change a dudk’s

hehavior at runtime, just
call the duck’s setter
method for that hehavior.

you are here » 21

the big picture

The Big Picture on encapsulated behaviors

Okay, now that we’ve done the deep dive on the
duck simulator design, it’s time to come back up
for air and take a look at the big picture.

Below is the entire reworked class structure. We have everything you'd expect:
ducks extending Duck, fly behaviors implementing FlyBehavior, and quack
behaviors implementing QuackBehavior.

Notice also that we’ve started to describe things a little differently. Instead

of thinking of the duck behaviors as a set of behaviors, we’ll start thinking of
them as a family of algorithms. Think about it: in the SimUDuck design, the
algorithms represent things a duck would do (different ways of quacking or
flying), but we could just as easily use the same techniques for a set of classes
that implement the ways to compute state sales tax by different states.

Pay careful attention to the relationships between the classes. In fact, grab
your pen and write the appropriate relationship (IS-A, HAS-A, and s Make sure Jo4
IMPLEMENTS) on each arrow in the class diagram.

do ‘{‘,\'\\S

Client makes use of an

ana?Sula‘th (:avni\\/ of aloori Lhms Encapsulated fly behavior

. <<interface>>
for both ‘(:l\/'mg and quacking, > FlyBehavior
fiy)
Client
FlyBehavior flyBehavior FlyWithWings FlyNoWay
QuackBehavior quackBehavior fiy() { fiy(){

Ilimplements duck flying
} }

- ' !
swim() Il do nothing - can't fly!

display()
performQuack()

Think of eath
set of behaviors
as a Qam\\‘f 0‘(:
algorithms-

d

performFly()

setFlyBehavior()
setQuackBehavior()
I/ OTHER duck-like methods...

quack()

Encapsulated quack behavior
<<interface>>
QuackBehavior

MallardDuck RedheadDuck RubberDuck DecoyDuck

Squeak

Quack

MuteQuack

display() {
Iooks like a decoy duck }

display() {
I'looks like a rubberduck }

display() {
Il'ooks like a redhead }

display() {
Ilooks like a mallard }

quack() {
Ilimplements duck quacking

quack() {
I/ rubber duckie squeak

quack() {

} } }

11 do nothing - can’t quack!

L

22 Chapter 1

T~ N
)

X\
X\ Oed*
.\“)(,c

A AN O

HAS-A can be better than 1S-A

The HAS-A relationship is an interesting one: each duck
has a FlyBehavior and a QuackBehavior to which it
delegates flying and quacking.

When you put two classes together like this you’re using
composition. Instead of nkeriting their behavior, the
ducks get their behavior by being composed with the right
behavior object.

This is an important technique; in fact, it is the basis of our
third design principle:

Design Principle

Favor composition over inheritance.

As you've seen, creating systems using composition gives you
a lot more flexibility. Not only does it let you encapsulate

a family of algorithms into their own set of classes, but it
also lets you change behavior at runtime as long as

the object you’re composing with implements the correct
behavior interface.

Composition is used in many design patterns and you’ll see a
lot more about its advantages and disadvantages throughout
the book.

_ @y RANN
‘PQWEWR
A duck call is a device that hunters use to
mimic the calls (quacks) of ducks. How

would you implement your own duck call
that does not inherit from the Duck class?

intro fo design patterns

Guru and Student...

Guru: Tell me what you
have learned of the
Object-Oriented ways.

Student: Guru, | have
learned that the promise of the object-
oriented way is reuse.

Guru: Continue...

Student: Guru, through inheritance all
good things may be reused and so we
come to drastically cut development
time like we swiftly cut bamboo in the
woods.

Guru: Is more time spent on code
before or after development is
complete?

Student: The answer is after,
Guru. We always spend more time
maintaining and changing software
than on initial development.

Guru: So, should effort go into reuse
above maintainability and extensibility?

Student: Guru, | believe that there is
truth in this.

Guru: | can see that you still have
much to learn. | would like for you to
go and meditate on inheritance further.
As you've seen, inheritance has its
problems, and there are other ways of
achieving reuse.

23

the strategy pattern

24

Speaking of Pesign Patterns...

Congratu]ations on
your first pattern!

You just applied your first design pattern—the STRATEGY
Pattern. That’s right, you used the Strategy Pattern to

rework the SimUDuck app.

Thanks to this pattern, the simulator is ready for any

changes those execs might cook up on their next
business trip to Maui.

Now that we’ve made you take the long road to learn it,

here’s the formal definition of this pattern:

The Strategy Pattern defines a family of algorithms,
encapsulates each one, and makes them interchangeable.

Strategy lets the algorithm vary independently from
clients that use it.

Chapter 1

d Linikion when Yyou
M::dT Ez‘s\m\:rcss r\cr.\ds and
:\w(:\ucvxtc \(c\l c*cc\;{:wcs.

intro fo design patterns

% Design Puzzle

Below you’ll find a mess of classes and interfaces for an action adventure game. You’ll
find classes for game characters along with classes for weapon behaviors the characters
can use in the game. Each character can make use of one weapon at a time, but can
change weapons at any time during the game. Your job is to sort it all out...

(Answers are at the end of the chapter.)

Your task:

o Arrange the classes.

e Identify one abstract class, one interface, and eight classes.

e Draw arrows between classes.
a. Draw this kind of arrow for inheritance (“extends”). —
b. Draw this kind of arrow for interface (“implements™). ===+ >
c. Draw this kind of arrow for HAS-A, ——>

e Put the method setWeapon() into the right class.

Character
\WeaponBehavior weapon
fight() ‘ KnifeBehavior BowAndArrowBehavior
useWeapon() { // implements useWeapon() { // imp!ements
Queen cutting with " e< ;irgzrgl:’e,;;ior an arrow with a bow }
‘ fight() { ..} P i
" We ;
‘ King useWeapon() I
fight() { ... } Troll — AxeBehavior
fight() { ... } ::zWe_apon_()(ll implements
pping with an axe }

‘ . Knight SwordBehavior E
‘ fight(){ ... } useWeapon() { // implements
swinging a sword }

setWeapon (WeaponBehavior w) {
this.weapon = w;

}

you are here » 25

diner

Overheard at the local diner...

Alice

T need a cream cheese with jelly on white
bread, a chocolate soda with vanilla ice cream, a
grilled cheese sandwich with bacon, a tuna fish
salad on toast, a banana split with ice cream & sliced
bananas, and a coffee with a cream and two sugars ...
oh, and put a hamburger on the grilll

Flo

Give me a C.J. White,
a black & white, a Jack

Benny, a radio, a house boat, a
coffee regular, and burn onel!

What’s the difference between these two orders? Not a thing! They’re both the
same order, except Alice is using twice the number of words and trying the
patience of a grumpy short-order cook.

What'’s Flo got that Alice doesn’t” A shared vocabulary with the short-order
cook. Not only does that make it easier to communicate with the cook, but it gives
the cook less to remember because he’s got all the diner patterns in his head.

Design Patterns give you a shared vocabulary with other developers. Once you've
got the vocabulary, you can more easily communicate with other developers and
inspire those who don’t know patterns to start learning them. It also elevates your
thinking about architectures by letting you think at the pattern level, not the
nitty-gritty object level.

26

intro fo design patterns

Overheard in the next cubicle...

So I created this broadcast class. It keeps
track of all the objects listening to it, and
anytime a new piece of data comes along it sends
a message to each listener. What's cool is that the
listeners can join the broadcast at any time or
they can even remove themselves. It is really
dynamic and loosely coupled!

_ @PA\N —
PAWE®R

Can you think of other shared

vocabularies that are used

beyond OO design and diner

talk? (Hint: how about auto

mechanics, carpenters, gourmet

chefs, and air traffic controllers?)

What qualities are communicated
along with the lingo?

Can you think of aspects of OO
design that get communicated
along with pattern names? What
qualities get communicated along
with the name “Strategy Pattern”?

Exactly. If you communicate
in patterns, then other developers

know immediately and precisely the
design you're describing. Just don't
get Pattern Fever...you'll know you

have it when you start using patterns
for Hello World...

Rick, why didn't you
Just say you are using
the Observer Pattern?

you are here » 27

shared vocabulary

The power of a shared pattern vocabulary

When you communicate using patterns, you
are doing more than just sharing LINGO.

“We've using the Strategy Pattern to

[v
implem t the vavrious behaviors ou.
:i:c\\:s."a:rhis Lells you the d.ut,k bc\r\av:r
has been cncaysu\a{cd 'm{o. ks own ;cd
of classes that ean be easily expande

Shared pattern vocabularies are POWERFUL.
When you communicate with another developer or your
team using patterns, you are communicating not just a
pattern name but a whole set of qualities, characteristics,

£ needed.

28

and constraints that the pattern represents.

Patterns allow you to say more with less. When you
use a pattern in a description, other developers quickly
know precisely the design you have in mind.

Talking at the pattern level allows you to stay “in

and L\'\angcd, even at vuntime 1

Bow many dJ:S:\?:':L\(\‘f degrade nto

the design” longer. Talking about software systems using been in tha s
patterns allows you to keep the discussion at the design ! mY\CMCWba{jO“ dekailst

level, without having to dive down to the nitty-gritty details
of implementing objects and classes.

Shared vocabularies can turbo-charge your
development team. A team well versed in design
patterns can move more quickly with less room for
misunderstanding;

Shared vocabularies encourage more junior
developers to get up to speed. Junior developers look
up to experienced developers. When senior developers
make use of design patterns, junior developers also become
motivated to learn them. Build a community of pattern
users at your organization.

Chapter 1

As your Leam begins to share
design ideas and experience in
Lerms of patterns, you will build
a commun’u{:\/ of yaH:cvn usevs.

Think about starting a patterns
S‘l:ud\/ group at Your organization.
Maybe you ean even get paid while

\/ou'\rc learning...

How do | use Pesign Patterns?

We've all used off-the-shelf libraries and frameworks. We take them, write some code against their APIs,
compile them into our programs, and benefit from a lot of code someone else has written. Think about
the Java APIs and all the functionality they give you: network, GUI, IO, etc. Libraries and frameworks go
a long way toward a development model where we can just pick and choose components and plug them
right in. But...they don’t help us structure our own applications in ways that are easier to understand, more
maintainable, and more flexible. That’s where design patterns come in.

intro fo design patterns

Design patterns don’t go directly into your code, they first go into your BRAIN. Once you’ve loaded your
brain with a good working knowledge of patterns, you can then start to apply them to your new designs,
and rework your old code when you find it’s degrading into an inflexible mess.

A Bunth of Patterns

COdCJ now new
\f:g \vaoVCd W\l{:\‘
dCS\‘j“ Ya-H;cY‘hS.

Qj If design patterns are so great, why
can’t someone build a library of them so |
don’t have to?

A: Design patterns are higher level than
libraries. Design patterns tell us how to
structure classes and objects to solve certain
problems, and it is our job to adapt those
designs to fit our particular application.

therejare no .
b Questions

Q; Aren’t libraries and frameworks
also design patterns?

AI Frameworks and libraries are not
design patterns; they provide specific
implementations that we link into our

code. Sometimes, however, libraries and
frameworks make use of design patterns in
their implementations. That’s great, because
once you understand design patterns, you'll
more quickly understand APIs that are
structured around design patterns.

Q: So, there are no libraries of design
patterns?

A: No, but you will learn later about
patterns catalogs with lists of patterns that
you can apply to your applications.

you are here » 29

why patterns?
Patterns are nothing

more than using OO

design principles...))
A common misconception,
but it's more subtle than that.
You have much to learn...

Skeptical Peveloper Friendly Patterns Guru

30

Developer: Okay, hmm, but isn't this all just good object-oriented design; T

mean as long as I follow encapsulation and I know about abstraction, inheritance,

and polymorphism, do I really need to think about Design Patterns? Isn't it pretty
straightforward? Isn't this why I took all those OO courses? T think Design Patterns
are useful for people who don't know good OO design.

Guru: Ah, this is one of the true misunderstandings of object-oriented
development: that by knowing the OO basics we are automatically going to be good at
building flexible, reusable, and maintainable systems.

Developer: No?

Guru: No. As it turns out, constructing OO systems that have these properties is
not always obvious and has been discovered only through hard work.

Developer: I think I'm starting to get it. These, sometimes non-obvious, ways of
constructing object-oriented systems have been collected...

Guru: ...yes, into a set of patterns called Design Patterns.

Developer: So, by knowing patterns, I can skip the hard work and jump straight to
designs that always work?

Guru: Yes, to an extent, but remember, design is an art. There will always be
tradeoffs. But, if you follow well-thought-out and time-tested design patterns, you'll
be way ahead.

Developer: What do I do if I can't find a pattern?

intro fo design patterns

Remember, knowing concepts
like abstraction, inheritance, and
polymorphism does not make you a good
object-oriented designer. A design guru
thinks about how to create flexible
designs that are maintainable and can
cope with change.

Guru: There are some object-oriented principles that
underlie the patterns, and knowing these will help you
to cope when you can't find a pattern that matches your
problem.

Developer: Principles? You mean beyond abstraction,
encapsulation, and...

Guru: Yes, one of the secrets to creating maintainable
OO systems is thinking about how they might change in the
future, and these principles address those issues.

you are here » 31

your design toolbox

Tools for your Pesign Toolbox

You've nearly made it through the first chapter! You've
already put a few tools in your OO toolbox; let’s make a
list of them before we move on to Chapter 2.

thne
\now Tn¢
B&S\LS We 3;:::; ;'\\c: a\)s’(xa(;*%?‘:,m
'\ Xt .
P\bs’wac’c\o“ “— el 4 CY\‘haV\CC ok Y“\\
. a“‘h‘\—‘\c Y\AS‘\?\' on ‘\—I’Oﬂu\‘hc
EV\CSYSu\a{\ov\ " i Qavow\: : 3 x
™ hism e |
Po\\' o: ce \)‘&:\: ::a\,u\, a%a‘
\n\\cr'\ n
00 Peintiples g
look at
ate what vaies: S dozc:h;oa\so
Ehba\?w\ o e . roab : :
e Lomvos.‘ﬁo“ a adding 3 Lew move
'\n\\cv'\{',anu-
P ogravn to '\w\'x\"caus, m‘\',
Y‘ .
‘\mY\CanWta‘h\ons.

Throughou{: the
[\ book, think about

how Y&H’.CY'V\S VC‘Y
on 00 basits and
Vrinciylcs.

One down, many to go!

Chapter 1

Q BULLET POINTS

= Knowing the OO basics
does not make you a good
00 designer.

= Good OO designs are
reusable, extensible, and
maintainable.

m Patterns show you how to
build systems with good
00 design qualities.

m Patterns are proven
object-oriented
experience.

m Patterns don't give you
code, they give you
general solutions to
design problems. You
apply them to your specific
application.

m Patterns aren’t invented,
they are discovered.

= Most patterns and
principles address issues
of change in software.

m Most patterns allow some
part of a system to vary
independently of all other
parts.

= We often try to take what
varies in a system and
encapsulate it.

m Patterns provide a
shared language that can
maximize the value of
your communication with
other developers.

intro fo design patterns

Design Patterns Crossword

Let’s give your right brain something to do.

It’s your standard crossword; all of the solution words
are from this chapter.

AN

- -
lEEEEEEEE B
- "
iEEEEEEEEE B

c]

AEEEEEEEEE B

ANEEEEEE

ACROSS

1. Paatterns can help us build applications. DOWN

4. Strategies can be . 2. Patterns go into your

7. Favor this over inheritance. 3. Duck that can't quack.

8. Development constant. 5. Rubber ducks make a

9. Java 10, Networking, Sound. 6. what varies.

10. Most patterns follow from OO . 11. Grilled cheese with bacon.

12. Design patterns are a shared . 13. Rick was thrilled with this pattern.
14. High-level libraries. 16. Duck demo was located here.

15. Learn from the other guy's
17. Pattern that fixed the simulator.
18. Program to this, not an implementation.

you are here » 33

design puzzle solution

% Design Puzzle Solution

Character is the abstract class for all the other characters (King, Queen,
Knight, and Troll), while WeaponBehavior is an interface that all weapon
behaviors implement. So all actual characters and weapons are concrete
classes.

To switch weapons, each character calls the setWeapon() method, which
1s defined in the Character superclass. During a fight the useWeapon()
method is called on the current weapon set for a given character to inflict
great bodily damage on another character.

Abstract

Ry

Character

WeaponBehavior weapon

fight()

setWeapon(WeaponBehavior w) {
this.weapon = w;

A Chavacter HAS-A
WeaponBehavior-.

<<interface>>
WeaponBehavior

useWeapon() I

L v

SwordBehavior BowAndArrowBehavior

useWeapon() { // implements *. |useWeapon() { // implements :
swinging asword} KnifeBehavior i AxeBehavior
useWeapon() { // implements useWeapon() { // implements
cutting with a knife } chopping with an axe }
. (,ou\
nat ANY havior
NOJC\C JCcm’c he Wcavov‘%cc Joc of
Y em 3 YaYcY \) s
—saY» sed a3
keckate . ;’Y mukated
&p o,\,’\\YaS)

34 Chapter 1

intro fo design patterns

_ % harpen your pencil

P SOIUtwn Which of the following are disadvantages of using subclassing to provide
specific Duck behavior? (Choose all that apply.) Here's our solution.

[j A. Code is duplicated across subclasses. B/D. It’s hard to gain knowledge of all duck behaviors.
B. Runtime behavior changes are difficult. [E. Ducks can’t fly and quack at the same time.

[d C. We can’t make ducks dance. E/F Changes can unintentionally affect other ducks.

_ % harpen your pencil

A 80|utlon What are some factors that drive change in your applications?
You might have a very different list, but here’s a few of ours. Look
familiar? Here's our solution.

My ctustomers or users detide they want something else, or they want new cuncﬁonah{:y.

My tompany detided it is going with another database vendor and it is also purchasing its data
from another suppliev that uses a different data format. Avgh!

Wc", ‘{:cchholog\/ changcs and wc'vc 30‘(: ‘[:o u?da‘l:c our tode Joo make use o-c ?\ro‘[‘péok.
We've learned enough building our system that we'd like to 90 back and do things a little better.

you are here » 35

crossword solution

% Design Patterns Crossword Solution

36 Chapter 1

2 the Observer Pattern

Keeping your *
+0Objects in the Know *

Hey Jerry, I'm notifying
everyone that the Patterns Group
meeting moved to Saturday night.
We're going to be talking about the
Observer Pattern. That pattern is
the best! It's the BEST, Jerry!

You don’t want to miss out when something interesting
happens, do you? We've got a pattern that keeps your objects in the
know when something they care about happens. It's the Observer Pattern. It is
one of the most commonly used design patterns, and it's incredibly useful. We're
going to look at all kinds of interesting aspects of Observer, like its one-to-many
relationships and loose coupling. And, with those concepts in mind, how can you
help but be the life of the Patterns Party?

this is a new chapter

37

weather monitoring station

Congratulations!

Your team has just won the contract to build
Weather-O-Rama, Inc.’s next-generation,

internet-based Weather Monitoring Station.

€ ‘()()k E()[\Na((t to SE€ e y‘()tn d(:Slg n aIKl a‘pha appllcatloll.
g
W

Sincerelys

Johnny Hurricant, CEO

files!
h ttached WeatherData source
PS. See t ea

38

Chapter 2

the observer pattern

The Weather Monitoring application overview

Let’s take a look at the Weather Monitoring application we need to deliver—both
what Weather-O-Rama is giving us, and what we’re going to need to build or
extend. The system has three components: the weather station (the physical device
that acquires the actual weather data), the WeatherData object (that tracks the data 4l event
coming from the Weather Station and updates the displays), and the display that ne of Lhree &
shows users the current weather conditions: t conditions, W

Humidi‘ry\ displays
sensor device

A\ Current
i pu”s data /‘\> Conditiozn%):i
Temp: 72°
O Humidity: 60
—| Pressure:
Temperature ‘
sensor device d WeatherData

object

The user tan view on ather
d\SY\a\IS the turven

skats, or 3 forecast

Weather Station

\4\ ’]\ Display device

PI"eSSUI"e‘ What Wca{-’hcv—O—Rama What we need to IMPICmCh‘{;.
sensor device s providing We'll also need to integrate
! the WeatherData objeet with
the dls?la\/

The WeatherData object was written by Weather-O-Rama and knows how to talk
to the physical Weather Station to get updated weather data. We’ll need to adapt
the WeatherData object so that it knows how to update the display. Hopefully
Weather-O-Rama has given us hints for how to do this in the source code.
Remember, we’re responsible for implementing three different display elements:
Current Conditions (shows temperature, humidity, and pressure), Weather
Statistics, and a simple Forecast.

So, our job, if we choose to accept it, is to create an app
that uses the WeatherData object to update three displays
for current conditions, weather stats, and a forecast.

you are here » 39

weather data class

Unpacking the WeatherData class

Let’s check out the source code attachments that Johnny Hurricane,
the CEO, sent over. We’ll start with the WeatherData class:

Heve is our WeatherData ¢lass.

ts
n the most vetent weather measuremen

and barometyit pressure

\l ThCSC {;}ch W\C'{')\Ods VC{:\AV' chvct{jvc\\l.

for {',CM\’CVQ{"WC’ hum'\d'l{',\l: . L3, we wust know that the
% cave vight now HOW it SC.B JCh(‘:S ” Jd,\cwWé)a{:hcr Gation

getTemperalre() - V\;*//Ccai,:\:rDaﬁa ob:)cdi gets updated info krom

idi t
getrumidity() z(‘/ Note £hat whenever WcaJc,hevDa’c.,a ha\S\ ‘;\’da ¢
getPressure() ° tsChanged() method is talled-

measurementsChanged() measuremen

WeatherData

d values, the

/I other methods

* This method gets called
whenever the weather measurements

wcmc,\{;C\nanngo * have been updated

) 8{'4 the meads Lime
Lebs looks B X i oks ealled an7e .

o
z\:ﬁ\:zé&:‘:pau dokains new value */
(4

Lemp) humi d\‘t‘[x and YY‘CSS\AVC'\/ public void measurementsChanged() {

// Your code goes here

Our soon—to-be—
implemented display. WeatherData java

[£ looks like Weather—0—Rama left a note in the comments to
add our ode here. So perhaps this is where we need to update
P the display (onte we've implemented it)

Current%/?tﬁ

Conditions™ |
Temp: 72° So, our job is to alter the measurementsChanged()

method so that it updates the three displays for
current conditions, weather stats, and forecast.

Display device

40 Chapter 2

observer

Qur Goal

We know we need to implement a display and then have the WeatherData
update that display each time it has new values, or, in other words, each time
the measurementsChanged() method is called. But how? Let’s think through
what we’re trying to acheive:

e We know the WeatherData class has getter methods for
three measurement values: temperature, humidity, and
barometric pressure.

e We know the measurementsChanged() method is called
anytime new weather measurement data is available. (Again,
we don’t know or care how this method is called; we just !\.I;Ieather
know that it is called.) Stats

Avg. temp: 62°

e We’ll need to implement three display elements that use the

Y Current

weather data: a current conditions display, a statistics display, Copdy
and a forecast display. These displays must be updated as uun:;my:ao
often as the WeatherData has new measurements. ezt

e To update the displays, we’'ll add code to the
measurementsChanged() method. Display One

Streteh Goal

But let’s also think about the future—remember the constant in software
development? Change. We expect, if the Weather Station is successful, there Display Three
will be more than three displays in the future, so why not create a marketplace

for additional displays? So, how about we build in:

e Expandability—other developers may want to create new
custom displays. Why not allow users to add (or remove)
as many display elements as they want to the application?
Currently, we know about the initial three display types ae
(current conditions, statistics, and forecast), but we expect a
vibrant marketplace for new displays in the future.

Future displays

41

first try with the weather station

Taking a first, misquided implementation
of the Weather Station

Here’s a first implementation possibility—as we’ve discussed, we’re going to add our code to
the measurementsChanged() method in the WeatherData class:

42

public class WeatherData {

Heve's the measurementsChanged() method.

// instance variable declarations
And heve are our tode additions...
public void measurementsChanged() { (2

float temp = getTemperature(); Fivst, we grab the most vecent measurements by
float humidity = getHumidity() ;

eath value to an appropriately named variable.
float pressure = getPressure() ;

currentConditionsDisplay.update (temp, humidity, pressure) ;
statisticsDisplay.update (temp, humidity, pressure);

forecastDisplay.update (temp, humidity, pressure);

.‘.b\/ ealling its update method
// other WeatherData methods here and passing it the most vecent
mcasu\rcvncvf[‘,&

ealling the WeatherData's getter methods. We assign

Next we've going to
update each display.-

— harpen our pencil
S

Based on our first implementation, which of the following apply?
(Choose all that apply.)

[d A. We are coding to concrete [d D. The display elements don’t implement a
implementations, not interfaces. common interface.

(A B. For every new display we’ll need to [d E. We haven’t encapsulated the part that
alter this code. changes.

[d C. We have no way to add (or remove) [d F We are violating encapsulation of the
display elements at runtime. WeatherData class.

Chapter 2

What’s wrong with our implementation anyway?

Think back to all those Chapter 1 concepts and principles—which are we violating, and
which are we not? Think in particular about the effects of change on this code. Let’s work
through our thinking as we look at the code:

public void measurementsChanged() {

Let's take another look...

float temp = getTemperature() ;

float humidity

float pressure

the observer pattern

getHumidity () ; Looks like an avea of
getPressure () ; thange. We need to

encapsulate this.

urrentConditionsDisplay.update (temp, humidity, pressure);
statisticsDisplay.update {temp, humidity, pressure);

emp, humidity, pressure);

At least we seem to be using a
tommon in‘[:cr\cacc 4o talk o the

By ¢toding to contrete display elements...they all have an

im?ltmcn{‘,a{‘,ions, we have no wa\/ uyda{:() mcfhod _that ‘{:akcs {:hc
4o add or vemove other display
elements without making thanges to /Q

the code.

temp, humidity, and pressure values.

What if we want to add or vemove
disyla\/s at vuntime? This looks
hardeoded.

Umm, I know I'm
new here, but given that we
are in the Observer Pattern
chapter, maybe we should
start using it?

Good idea. Let’s take a look at
Observer, then come back and figure

out how to apply it to the Weather
Monitoring app.

you are here » 43

meet the observer pattern

Meet the Observer Pattern

You know how newspaper or magazine
subscriptions work:

44

o

(2]

A newspaper publisher goes into business and begins
publishing newspapers.

You subscribe to a particular publisher, and every time
there’s a new edition it gets delivered to you. As long as
you remain a subscriber, you get new newspapers.

You unsubscribe when you don’t want papers anymore,
and they stop being delivered.

While the publisher remains in business, people, hotels,
airlines, and other businesses constantly subscribe and
unsubscribe to the newspaper.

No way we want fo
miss what's going on in
Objectville. Of course we
subscribe.

Chapter 2

the observer pattern

Publishers + Subscribers = Observer Pattern

If you understand newspaper subscriptions, you pretty much
understand the Observer Pattern, only we call the publisher the
SUBJECT and the subscribers the OBSERVERS.

Let’s take a closer look:

The cbservers have substribed to
(vegjsteved with) the Sub")cc{:
4o veceive updates when the
Subjctt's data thanges.

When data in the Sub“)cc‘c cthanges)
fhe dbservers are no ikied-

The Sibjeet RS
mahaﬁcs som€
'",\Yoﬂ:an{: da'ha'\l 2
e B >
6\ . n . g’\ 2
Bject 00V S

New data values are
tommunitated to the
obsevvers in some form

when they thange.

<&
MOUSe ood
[Observer Objects |

£\ This obiett isnt an ,
& ob‘scvvé)r, so it doesn t
Buck 0\0\01 gc{', no{jg\cd when the
Sub\')cd:'s data thanges:

you are here » 45

a day in the life of the observer pattern

A day in the life of the Observer Pattern

46

A Duck object comes along
and tells the Subject that
he wants to become an
observer.

Duck really wants in on the
action; those ints Subject is
sending out whenever its state
changes look pretty interesting...

_Observers

The Duck object is now an
official observer.

Duck is psyched...he's on the
list and is waiting with great
anticipation for the next
notification so he can get an int.

Observers

The Subject gets a new
data value!

Now Duck and all the rest of the
observers get a notification that
the Subject has changed.

Chapter 2

A
’%use 0050

the observer pattern

The Mouse object asks to be
removed as an observer.

The Mouse object has been
getting ints for ages and is tired
of it, so he decides it's time to
stop being an observer.

e>

) S .
Mouse is outta here! Bject 00N

The Subject acknowledges the
Mouse's request and removes him

from the set of observers. O

'%use OOSQ)

Cx
I||

Observers

The Subject has another
new int.

All the observers get another
notification, except for the
Mouse who is no longer included.
Don't tell anyone, but the Mouse
secretly misses those ints...
maybe he'll ask to be an observer
again some day.

you are here » 47

five-minute

Five-minute drama: a subject for observation

In today's skit, two enterprising software developers encounter a real
live head hunter...

Uh, yeah, you and
everybody else, baby.
I'm putting you on my list of
Java developers. Don't call
me, L'll call you!

This is Lori. I'm looking
for a Java development
position. I've got five years
of experience and...

7

© Vv

Headhunter/Subject

Software
Developer #1

T'll add you to the list—
you'll know along with

Hi, I'm Jill. I've written everyone else.

a lot of enterprise systems.
I'm interested in any job you've
got with Java development.

Software Subject
Developer #2

48

observer

Meanwhile, for Lori and Jill life goes
on; if a Java job comes along, they'll get
notified. After dll, they are observers.

Thanks, T'll send my
resume right over.

This guy is a real jerk.
Who needs him. I'm
looking for my own job.

Hey observers, there's
a Java opening down at
JavaBeans-R-Us. Jump on
it! Don't blow it!

Bwahaha, money in
the bank, baby!

0 Observer \

Observer

Subject

Arghhhlll Mark my
words, Jill, you'll never
work in this town again if T
have anything to do with it.
You're off my call list!ll

Jill lands her own job!

You can take me
off your call list. T
found my own job!

Observer e Subject

49

more five-minute drama

Two weeks later...

Jill's loving life, and no longer an observer.
She's also enjoying the nice fat signing
bonus that she got because the company
didn't have to pay a headhunter.

But what has become of our dear Lori? We
hear she's beating the headhunter at his own
game. She's not only still an observer, she's
got her own call list now, and she is notifying
her own observers. Lori's a subject and an
observer all in one.

50 Chapter 2

The Observer Pattern defined

A newspaper subscription, with its publisher and subscribers, is a
good way to visualize the pattern.

In the real world, however, you'll typically see the Observer
Pattern defined like this:

The Observer Pattern defines a one-to-many
dependency between objects so that when one
object changes state, all of its dependents are
notified and updated automatically.

Let’s relate this definition to how we’ve been thinking about the

pattern:
ONE-TO-MANY RELATIONSHIP
053ct:[: that >
holds state

Observers

The subject and observers define the one-to-many relationship. We
have one subject, who notifies many observers when something in the subject
changes. The observers are dependent on the subject—when the subject’s

state changes, the observers are notified.

As you’ll discover, there are a few different ways to implement the

Observer Pattern, but most revolve around a class design that includes

Subject and Observer interfaces.

observer

The Observer Pattern
defines a one-to-many
relationship hetween a
set of ohjects.

When the state of one
ol:ject claanges, all of its
Jepemlents are notified.

the observer pattern

The Observer Pattern: the Class Piagram

Let’s take a look at the structure of the Observer Pattern, complete with

its Subject and Observer classes. He

re’s the class diagram:

All potential observers need
to imEICmcnf the Observer
interkate. This interface has

te Objct’fﬁ Eath subject Jjust one method, update(),
etk ox -a&,cv i . ¢an have many that is talled when the
¢ ke S re ko vey® ’c\r\msc\“‘ obsevvers. Sub\)cd{:’s state thanges.
\XC‘(C&“‘S ke 3\ Yo cemoNe
use a\s0 \£
<.
o\)scv\lcv o\osc‘(\lﬂ\' . ' ‘
from N R v
ubjec server

registerObserver() update()

removeObserver()

notifyObservers() A

—
ConcreteSubject subject cOncretebbsewer
/§ registerObserver() {...} update()
removeObserver() {...} Il other Observer specific
sub'e(,{', a\wa\[s notifyObservers() {...} methods

A tontrete sub) +
. he Sub\')cﬂ T —
m\v\cmc'*ls t

inkecfate. In addition to

getState()
setState()

fhe vegjister and remove

R

he tontrete sub\')cc{:
:":;’t:‘t:; a no’c'\(:\/Obscwcrs()
mekhod that is used 4o update
all the turrent observers
whenever state changes:

Q: What does this have to do with
one-to-many relationships?

- With the Observer Pattern, the Subject
is the object that contains the state and
controls it. So, there is ONE subject with
state. The observers, on the other hand, use
the state, even if they don’t own it. There
are many observers, and they rely on the
Subject to tell them when its state changes.
So there is a relationship between the ONE
Subject to the MANY Observers.

52 Chapter 2

The tontrete sub\')

etk may also
sekting and

v
have methods 2 (move abow

5:‘0{5\“‘5 ks state
s later)-

therejareno
Dumb Questions

Q: How does dependence come into
this?

- Because the subject is the sole owner
of that data, the observers are dependent on
the subject to update them when the data
changes. This leads to a cleaner OO design
than allowing many objects to control the
same data.

|

Contrete observers tan be
any_class that implements the
Observer interface. Each observer
vegisters with a contrete subject
1o veteive updates.

Q: I've also heard of a Publish-
Subscribe Pattern. Is that just another
name for the Observer Pattern?

A: No, although they are related. The
Publish-Subscribe pattern is a more complex
pattern that allows subscribers to express
interest in different types of messages

and further separates publishers from
subscribers. It is often used in middleware
systems.

observer

Student: Guru, | do not recall such a discussion.
Guru: Is a tightly woven basket stiff or flexible?
Student: Stiff, Guru.
Guru: And do stiff or flexible baskets tear or break less easily?
Student: A flexible basket tends to break less easily.

Guru: And in our software, might our designs break less easily if
our objects are less tightly bound together?

Student: Guru, | see the truth of it. But what does it mean for
objects to be less tightly bound?

Guru: We like to call it, loosely coupled.
Student: Ah!

Guru: We say a object is tightly coupled to another object when it is
too dependent on that object.

Student: So a loosely coupled object can’t depend on another
object?

Guru: Think of nature; all living things depend on each other.
Likewise, all objects depend on other objects. But a loosely coupled
object doesn’t know or care too much about the details of another
object.

Student: But Guru, that doesn’t sound like a good quality. Surely
not knowing is worse than knowing.

Guru: You are doing well in your studies, but you have much to
learn. By not knowing too much about other objects, we can create
designs that can handle change better. Designs that have more
flexibility, like the less tightly woven basket.

Student: Of course, | am sure you are right. Could you give me an
example?

Guru: That is enough for today.

53

loose

The Power of Loose Coupling

When two objects are loosely coupled, they can interact, but they typically have very little knowledge
of each other. As we’re going to see, loosely coupled designs often give us a lot of flexibility (more
on that in a bit). And, as it turns out, the Observer Pattern is a great example of loose coupling.
Let’s walk through all the ways the pattern achieves loose coupling:

54

First, the only thing the subject knows about an observer is that it
implements a certain interface (the Observer interface). It doesn’t need to
know the concrete class of the observer, what it does, or anything else about it.

We can add new observers at any time. Because the only thing the subject depends
on is a list of objects that implement the Observer interface, we can add new observers
whenever we want. In fact, we can replace any observer at runtime with another observer
and the subject will keep purring along. Likewise, we can remove observers at any time.

We never need to modify the subject to add new types of observers. Let’s say

we have a new concrete class come along that needs to be an observer. We don’t need \ W
to make any changes to the subject to accommodate the new class type; all we have

to do is implement the Observer interface in the new class and register as an observer.

The subject doesn’t care; it will deliver notifications to any object that implements the 2 [
Observer interface.

We can reuse subjects or observers independently of each other. If we have
another use for a subject or an observer, we can easily reuse them because the two aren’t
tightly coupled.

Changes to either the subject or an observer will not affect the other.
Because the two are loosely coupled, we are free to make changes to either, as long as the
objects still meet their obligations to implement the Subject or Observer interfaces.

Look] We have 2
Desion Pvmuv\c

Design Principle

Strive for loosely coupled designs
between objects that interact.

Loosely coupleJ Jesigns allow us to build flexible 00

systems that can handle cltange hecause they minimize
the interc[epenJency hetween ol)jects.

oW mah\l
&chm‘c kinds

of thange tan You
dcv\b(:‘l hevel

new

_ % harpen your pencil
2N

observer

Before moving on, try sketching out the classes you'll need to
implement the Weather Station, including the WeatherData class
and its display elements. Make sure your diagram shows how all
the pieces fit together and also how another developer might
implement her own display element.

If you need a little help, read the next page; your teammates are
already talking about how to design the Weather Station.

55

conversation

weather station

Cubicle conversation

Back to the Weather Station project. Your teammates have already begun thinking

through the problem...

((Suc

56

So, how are we going
to build this thing?

Mary: Well, it helps to know we’re using the Observer Pattern.

Sue: Right...but how do we apply it?

Mary: Hmm. Let’s look at the definition again:

The Observer Pattern defines a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and updated automatically.
Mary: That actually makes some sense when you think about it. Our WeatherData class is the
“one,” and our “many” is the various display elements that use the weather measurements.

Sue: That’s right. The WeatherData class certainly has state...that’s the temperature,
humidity, and barometric pressure, and those definitely change.

Mary: Yup, and when those measurements change, we have to notify all the display elements
so they can do whatever it is they are going to do with the measurements.

Sue: Cool, now I think I see how the Observer Pattern can be applied to our Weather
Station problem.

Mary: There are still a few things to consider that I'm not sure I understand yet.
Sue: Like what?
Mary: For one thing, how do we get the weather measurements to the display elements?

Sue: Well, looking back at the picture of the Observer Pattern, if we make the WeatherData
object the subject, and the display elements the observers, then the displays will register
themselves with the WeatherData object in order to get the information they want, right?

Mary: Yes...and once the Weather Station knows about a display element, then it can just
call a method to tell it about the measurements.

Sue: We gotta remember that every display element can be different...so I think that’s where
having a common interface comes in. Even though every component has a different type,
they should all implement the same interface so that the WeatherData object will know how
to send them the measurements.

Mary: I see what you mean. So every display will have, say, an update() method that
WeatherData will call.

Sue: And update() is defined in a common interface that all the elements implement...

Pesigning the Weather Station

How does this diagram compare with yours?

All our weather tomponents
implement the Obsevrver

Heve's owr Sub)cd‘, inkecface.

This should look Lamiliav-

intevface. This gives the
Subiett a tommon intertate to

4alk to when it comes Lime to

the observer pattern

Let’s also eveate an interface
for all display elements

) im?|6mcn‘(:~ The dis?la\/
elements just need to
im?|crncer)a dis?la\/() method.

\/ update the observers: 2
<<interface>> observers <<interface>> . <<interface>>
Subject 1 Observer DisplayElement
registerObserver() update() display()
removeObserver()
notifyObservers() Lo

WeatherData now
iv:v\cmen{:s the Subjcd:

inkecfate.

: update()
Weatl;erData display() { / display current
measurements }
registerObserver()
removeObserver()
notifyObservers()
T.\IS d|s ,
ad
getTemperature() shows -[-)':e Z elemin{;
idi rren
getHumidity() wl
m
getPressure() €asurements ‘cko»\ 'l:hc
measurementsChanged() Wca’aherDa{;a ObJ et £

StatisticsDisplay

update()
display() { // display the aver-
age, min and max measure-

ThirdPartyDisplay

update()

display() { // display
something else based on
measurements }

A

Developers tan

ments } im?‘tmth £ ‘U'\C
Observer and
5 Dis\vlayﬁlmcn{:
This one kee\?s +rack ForecastDisplay in{:ﬂ‘("a“s {'9
of the min/ avg/ max update() eveate their own
measurements and display) { display the display element.
diSPla\/s {_)\ em. forecast }

i hev
This display shows the weat
(:o;ccas{ b:!iscd on the bavometer.

N~

These three display elements should have a pointer to
Wca‘[:he\rDa‘(:a |abc|cd “wb)cd:" '{:oo, bu‘{: bo would
this diagram start to look like spaghetti it they did.

you are here » 57

implementing the weather station

Implementing the Weather Station

All right, we’ve had some great thinking from Mary and Sue (from a few pages back)
and we’ve got a diagram that details the overall structure of our classes. So, let’s get
our implemention of the weather station underway. Let’s start with the interfaces:

Both of these methods take an
Obsevver as an argumen£—£h3£ is, the
Obsevver to be registered or vemoved.

public interface Subject {
public void registerObserver (Observer o) ; }
public void removeObserver (Observer o) ;

public void notifyObservers(); This method is ¢alled to noJc'ncy all observers

} S when the Subjeet’s state has ehanged.
public interface Observer {
public void update(float temp, float humidity, float pressure);
} 2 T U The Obsevver interface
These are the state values the Observers get from is implemented by all
the Subjeet when a weather measurement hanges. obsevvers, so they all

have to implement the
u?da{:c() method. Heve

public interface DisplayElement { 6\ we've (:ollowing Ma\r\/ and

public void display(); The DisplayElement interface Sue’s lead and passing
} Jjust includes one method, display(), the measurements to the
that we will ¢all when the disyla\/ obsevvers.

element needs to be displayed.

.@SRA\N

PaweEw
Mary and Sue thought that passing the measurements directly to the observers was the
most straightforward method of updating state. Do you think this is wise? Hint: is this an area

of the application that might change in the future? If it did change, would the change be well
encapsulated, or would it require changes in many parts of the code?

Can you think of other ways to approach the problem of passing the updated state to the
observers?

Don’t worry; we’ll come back to this design decision after we finish the initial implementation.

58 Chapter 2

the observer pattern

REMEMBER: we don't provide

Implementing the Subject interface import and package statements
i" W ea ‘l.h erva‘l.a in the tode listings. Get the

complete sourte code from

Remember our first attempt at implementing the WeatherData class at the hH:\":/ / Witk‘dl‘ls"‘a""b“'“/
beginning of the chapter? You might want to refresh your memory. Now it’s hcad—-‘cirs{:—-dcsign—-yaf{;ev-ns
time to go back and do things with the Observer Pattern in mind:

Heve we implement the Subject intevface.

public class WeatherData implements Subject { & WeatherData now implements

private List<Observer> observers; the S“bjCC{i interface.
private float temperature;)
private float humidity; We've added an Avvaylist to
private float pressure; hold the Obsevrvers, and we
eveate it in the construttor:

public WeatherData() ({
observers = new ArrayList<Observer>() ;

}

When an observer vegisters, we

public void registerObserver (Observer o) { ¢ \')“5{" add it to the end of the lst
observers.add (o) ;

) Likewise, when an observer wants to

& un—vegister, we just take it off the list.

public void removeObserver (Observer o) {

observers.remove (o) ; Heve's the fun part; £his is where we
} £ell all he obsevvers about the state.
/_ Because they are all Obsevvers, (v)uc
public void notifyObservers() { know 'Ehcy all |m?|¢mcn+, u?da{:c) SO wWe

for (Observer observer : observers) { know how to |"°+"(:\/ them.
observer.update (temperature, humidity, pressure);

} hen we
: We notiky the Obsi:lme::«‘r: vom
a{cd mcaSV
public void measurementsChanged() { K\ 5&' “Yd her Sha{:'\on-
notifyObservers () ; he Wes

}

public void setMeasurements (float temperature, float humidity, float pressure) ({
this.temperature = temperature;
this.humidity = humidity;

this.pressure = pressure: Okay, while we wanted to ship a nice little
measurementsChanged () ; ﬁ—/ wca'Ehc)\r station with eath book, the publisher
} wouldn't 90 for it. So, rather than veading
actual weather data off a device, we've going
// other WeatherData methods here to use this method 1o test our display elements.

Or, for 1cuh, You tould write tode {o 5vab
measurements off the web.

you are here » 59

https://wickedlysmart.com/head-first-design-patterns/
https://wickedlysmart.com/head-first-design-patterns/

build the display elements

Now, let’s build those display elements

Now that we’ve got our WeatherData class straightened out, it’s time to build the
display elements. Weather-O-Rama ordered three: the current conditions display, the
statistics display, and the forecast display. Let’s take a look at the current conditions
display; once you have a good feel for this display element, check out the statistics and
forecast displays in the code directory. You’ll see they are very similar.

This display implements the Observer
interface so it tan get changes from

[t also implements DisplayElement,
bccausc our AP’ is So'mg +o

vequive all display elements 1o

the WeatherData object. 1 implement this intev-face.

public class CurrentConditionsDisplay implements Observer, DisplayElement {

private float temperature;
private float humidity;
private WeatherData weatherData;

The tonstruetor is passed the
K~ weatherData ob)ct{: (the Sub‘)cti)

public CurrentConditionsDisplay (WeatherData weatherData) ({ and we use it to "5'5{“" the

this.weatherData = weatherData;
weatherData.registerObserver (this) ;

display as an observer-

public void update(float temperature, float humidity, float pressure) {

this. temperature = temperature;

this.humidity = humidity; & When update() is called, we

display() ;

public void display() {

cave the temp and humidity
and ceall display(-

System.out.println("Current conditions: " + temperature

+ "F degrees and " + humidity + "% humidity");

Dum

Q: Is update() the best place to call display()?

A: In this simple example it made sense to call display() when the
values changed. However, you're right; there are much better ways to
design the way the data gets displayed. We'll see this when we get to
the Model-View-Controller pattern.

60 Chapter 2

therelgre no

Questions

The disvlay() method
& jus{ prints out the mos.{:
vetent temp and humidu’c\,.

Q: Why did you store a reference to the WeatherData
Subject? It doesn’t look like you use it again after the
constructor.

A: True, but in the future we may want to un-register ourselves as
an observer and it would be handy to already have a reference to the
subject.

the observer pattern

Power up the Weather Station

o First, let’s create a test harness.

The Weather Station is ready to go. All we need is some code to
glue everything together. We’ll be adding some more displays and
generalizing things in a bit. For now, here’s our first attempt:

public class WeatherStation {

Fivst, eveate the
WeatherData ob\)cc{;
public static void main(String[] args) {

WeatherData weatherData = new WeatherData() ;

| Iy don't CurrentConditionsDisplay currentDisplay =
ou
wav\\/{: +o new CurrentConditionsDisplay (weatherData) ;

download the % StatisticsDisplay statisticsDisplay = new StatisticsDisplay (weatherData) ;
tode, You ean

ForecastDisplay forecastDisplay = new ForecastDisplay (weatherData) ;
(,ommcn‘{', OVJC

these two lines F\ Create the three

and vun it weatherData.setMeasurements (80, 65, 30.4f); dis\?la\/s and
weatherData.setMeasurements (82, 70, 29.2f); pass them the
weatherData.setMeasurements (78, 90, 29.2f); WeatherData obje(:b

Cimulate new weather
: mcasu\r‘crncvx{:s-

e Run the code and let the Observer Pattern do its magic.

File Edit Window Help StormyWeather

%$java WeatherStation

Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0

Forecast: Improving weather on the way!

Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for cooler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0

Forecast: More of the same

%

you are here » 61

exercise: code the heat index display

_ % harpen your pencil

2N

Johnny Hurricane, Weather-O-Rama’s CEO, just called and they can’t possibly ship without a Heat
Index display element. Here are the details.

The heat index is an index that combines temperature and humidity to determine the apparent
temperature (how hot it actually feels). To compute the heat index, you take the temperature, T,
and the relative humidity, RH, and use this formula:

heatindex =

16.923 + 1.85212 * 10" * T + 5.37941 * RH - 1.00254 * 107 *
T * RH + 9.41695 * 103 * T2 + 7.28898 * 103 * RH? + 3.45372 *
10" * T2 * RH - 8.14971 * 10* * T * RH? + 1.02102 * 10° * T? *
RH? - 3.8646 * 10° * T®* 4 2.91583 * 10 * RH® + 1.42721 * 10°¢
* T3 *x RH + 1.97483 * 107 * T * RH® - 2.18429 * 10°® * T® * RH?
+ 8.43296 * 107* * T2 * RH® - 4.81975 * 107 * T3 * RH®

So get typing!

Just kidding. Don’t worry, you won't have to type that formula in; just create your own
HeatIndexDisplay.java file and copy the formula from heatindex.txt into it.

You tan get heatindex.txt from wickedlysmart.com.

How does it work? You'd have to refer to Head First Meteorology, or try asking someone at the
National Weather Service (or try a web search).

When you finish, your output should look like this:

File Edit Window Help OverDaRainbow

%$java WeatherStation
Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0

. 1 (]
Heve's what /\ Forecast: Improving weather on the way!

changed in

Heat index is 82.95535

this ou{:\?u{;- Current conditions: 82.0F degrees and 70.0% humidity

Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for cooler, rainy weather
Heat index is 86.90124

Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0

Forecast: More of the same

Heat index is 83.64967

%

62

Chapter 2

Fireside Chats

Subject:

I'm glad we’re finally getting a chance to chat in
person.

Well, I do my job, don’t I? I always tell you what’s
going on... Just because I don’t really know who
you are doesn’t mean I don’t care. And besides, I
do know the most important thing about you—you
implement the Observer interface.

Oh yeah, like what?

Well, excuuuse me. I have to send my state with my
notifications so all you lazy Observers will know
what happened!

Well...I guess that might work. I'd have to open
myself up even more, though, to let all you
Observers come in and get the state that you
need. That might be kind of dangerous. I can’t
let you come in and just snoop around looking at
everything I've got.

the observer pattern

Tonight’s talk: Subject and Observer spar over the right way
to get state information to the Observer.

Observer:

Really? I thought you didn’t care much about us
Observers.

Yeah, but that’s just a small part of who I am.
Anyway, I know a lot more about you...

Well, you’re always passing your state around to us
Observers so we can see what’s going on inside you.
Which gets a little annoying at times...

Okay, wait just a minute here; first, we’re not lazy,
we just have other stuff to do in between your oh-
so-important notifications, Mr. Subject, and second,
why don’t you let us come to you for the state we
want rather than pushing it out to just everyone?

you are here » 63

fireside chat: subject and observer

Subject:

Yes, I could let you pull my state. But won’t

that be less convenient for you? If you have to
come to me every time you want something, you
might have to make multiple method calls to get
all the state you want. That’s why I like push
better...then you have everything you need in one
notification.

Well, as I like to say, don’t call us, we’ll call you!
But I'll give it some thought.

You never know, hell could freeze over.

Indeed.

64 Chapter 2

Observer:

Why don’t you just write some public getter
methods that will let us pull out the state we need?

Don’t be so pushy! There are so many different
kinds of us Observers, there’s no way you can
anticipate everything we need. Just let us come to
you to get the state we need. That way, if some of
us only need a little bit of state, we aren’t forced to
get it all. It also makes things easier to modify later.
Say, for example, you expand yourself and add
some more state. If you use pull, you don’t have to
go around and change the update calls on every
observer; you just need to change yourself to allow
more getter methods to access our additional state.

I won’t hold my breath.

I see, always the wise guy...

the observer pattern

Looking for the Observer Pattern in the Wild

The Observer Pattern is one of the most common patterns in use, and you’ll find plenty

of examples of the pattern being used in many libraries and frameworks. If we look at the
Java Development Kit (JDK), for instance, both the JavaBeans and Swing libraries make use
of the Observer Pattern. The pattern’s not limited to Java either; it’s used in _JavaScript’s
events and in Cocoa and Swift’s Key-Value Observing protocol, to name a couple of other

examples. One of the advantages of knowing design patterns is recognizing and quickly
understanding the design motivation in your favorite libraries. Let’s take a quick diversion AR
into the Swing library to see how Observer is used. ¢ \/ou’vc turious abou{:‘
the Observer Pattern in
JavaBeans, thetk out the
You probably already know that Swing is Java’s GUI toolkit for user interfaces. One on\?cr‘blcha"‘bd"shncr
of the most basic components of that toolkit is the JButton class. If you look up interyate:

JButton’s superclass, AbstractButton, you’ll find that it has a lot of add/remove

listener methods. These methods allow you to add and remove observers—or, as

The Swing library

they are called in Swing, listeners—to listen for various types of events that occur
on the Swing component. For instance, an ActionListener lets you “listen in” on
any types of actions that might occur on a button, like a button press. You’ll find
various types of listeners all over the Swing APIL.

A little life-changing application

OkXkay, our application is pretty simple. You've got a button that says, “Should I do
1t?”” and when you click on that button the listeners (observers) get to answer the
question in any way they want. We’re implementing two such listeners, called the
AngelListener and the DevilListener. Here’s how the application behaves:

[sBals)

Heve's our faney ntecfate.

Should | do it?

' t when
And heve's the outpw
ﬁ\ w: elick on the button

File Edit Window Help HeMadeMeDolt

%java SwingObserverExample
Devil answer

Come on, do it!

Angc\ answev A Don’t do it, you might regret it!

%

you are here » 65

use action listener observers

Coding the life-changing application

This life-changing application requires very little code. All we need to do is

create a JButton object, add it to a JFrame, and set up our listeners. We’re

going to use mnner classes for the listeners, which is a common technique in

Swing programming. If you aren’t up on inner classes or Swing, you might

want to review the Swing chapter in your favorite Java reference guide.

66

public class SwingObserverExample { g\m\;\c Swing 3\7\7\\(‘3{—"0'\

that
JFrame frame; ust eveates 3 Yémc.{_‘and
public static void main(String[] args) { throws 3 bukion in T
SwingObserverExample example = new SwingObserverExample () ;
example.go () ;
}
public void go() {
frame = new JFrame() ;
Makes the devil and
JButton button = new JButton("Should I do it?"); an5c| obietts listeners
button.addActionListener (new Angellistener()) ; (observers) of the button.

button.addActionlListener (new DevilListener()) ;

// Set frame properties here <——— (ode to set up the frame goes heve.

}
_ _ o e Here ave the ctlass definitions for
class Angellistener implements ActionListener { the observers, dccincd as innev
public void actionPerformed (ActionEvent event) { tlasses (but {‘.hc\/ don’t have to be).
System.out.println("Don't do it, you might regret it!");
}
}

class Devillistener implements ActionListener {

public void actionPerformed (ActionEvent event) {

System.out.println("Come on, do it!");
})

} Rather than update(), the attionPerkormed()
method gets called when the state in the
sub)cd{: (in this case the button) thanges.

Chapter 2

the observer pattern

. added in 922,

. v L
1 1 Lawbda €€} e ?\ ki them dor
‘ seflous Codlng 4 \2 \[0“ 3“"{" ‘Qa"\ :',:: :ow\’,'\hvc \AS'\V\Q) ey

bouk W you .
:?;:l:ﬁ:: your Qwing Josevvers /

How about taking your use of the Observer Pattern even further? By using a lambda expression

rather than an inner class, you can skip the step of creating an ActionListener object. With a lambda

expression, we create a function object instead, and the function object is the observer. And, when you pass

that function object to addActionListener(), Java ensures its signature matches actionPerformedy(), the

one method in the ActionListener interface.

Later, when the button is clicked, the button object notifies its observers—including the function

objects created by the lambda expressions—that it’s been clicked, and calls each listener’s
actionPerformed() method.

Let's take a look at how you'd use Jambda expressions as observers to simplify our previous code:

The updated code, using lambda expressions:

public class SwingObserverExample {
JFrame frame;
public static void main (Stringl[] args) {
SwingObserverExample example = new SwingObserverExample();

example.go () ; We've veplaced the Angc\Lis{xv\cr
} and DevilListener ob)cc{:s with
P et e lambda expressions that implement
grame = new Jreane ()’ {he same Euhcﬁona\i{:\[that we
had before.

JButton button = new JButton ("Should I do it?");
button.addActionListener (event ->

System.out.println("Don‘t do it, you might regret it!"));
button.addActionListener (event ->

System.out.println("Come on, do it!")); N When you ¢lick the button, the

- &_/ Lunction ob\)cc{‘,s ereated b\/ the

// Set frame properties here lambda expressions are notified

} }) and the method thcy imYICmcw{:
We've vemoved the two AetionListener tlasses is run.

(DevilListener and AngclLis{xncr) C°"‘FICJ“I\/' Using lambda expressions makes

+his code a lot more tontise.

For move on lambda expressions, theck out the Java dots.

you are here » 67

revisiting and

therejare no
b Questions

Dum

Q} I thought Java had Observer and Observable classes?

A: Good catch. Java used to provide an Observable class (the
Subject) and an Observer interface, which you could use to help
integrate the Observer Pattern in your code. The Observable class
provided methods to add, delete, and notify observers, so that you
didn’t have to write that code. And the Observer interface provided
an interface just like ours, with one update() method. These classes
were deprecated in Java 9. Folks find it easier to support the basic
Observer Pattern in their own code, or want something more robust,
so the Observer/Observable classes are being phased out.

Q,: Does Java offer other built-in support for Observer to
replace those classes?

the future.

T was thinking about the push/pull discussion
we had earlier. Would it generalize the code a

bit more if we allowed the displays to pull their
data from the WeatherData object as needed?
That might make it easier to add new displays in

That’s a good idea.

A: JavaBeans offers built-in support through
PropertyChangeEvents that are generated when a Bean

changes a particular kind of property, and sends notifications

to PropertyChangeListeners. There are also related publisher/
subscriber components in the Flow AP for handling asynchronous
streams.

Q: Should I expect notifications from a Subject to its
Observers to arrive in a specific order?

- With Java's implementations of Observer, the JDK developers
specifically advise you to not depend on any specific notification
order.

In our current Weather Station design, we are pushing all three pieces of data

to the update() method in the displays, even if the displays don’t need all these
values. That’s okay, but what if Weather-O-Rama adds another data value later,
like wind speed? Then we’ll have to change all the update() methods in all the
displays, even if most of them don’t need or want the wind speed data.

Now, whether we pull or push the data to the Observer is an implementation
detail, but in a lot of cases it makes sense to let Observers retrieve the data they
need rather than passing more and more data to them through the update()
method. After all, over time, this is an area that may change and grow unwieldy.
And, we know CEO Johnny Hurricane is going to want to expand the Weather
Station and sell more displays, so let’s take another pass at the design and see if

we can make it even easier to expand in the future.

Updating the Weather Station code to allow Observers to pull the data they
need is a pretty straightforward exercise. All we need to do is make sure the
Subject has getter methods for its data, and then change our Observers to use
them to pull the data that’s appropriate for their needs. Let’s do that.

68

observer

Meanwhile, back at Weather-0-Rama

There’s another way of handling the data in the Subject: we can rely on the
Observers to pull it from the Subject as needed. Right now, when the Subject’s data
changes, we push the new values for temperature, humidity, and pressure to the
Observers, by passing that data in the call to update().

Let’s set things up so that when an Observer is notified of a change, it calls getter
methods on the Subject to pull the values it needs.

To switch to using pull, we need to make a few small changes to our existing code.

For the Subject to send notifications...

0 We’ll modify the notifyObservers() method in WeatherData to call the method
update() in the Observers with no arguments:
public void notifyObservers () {
for (Observer observer : observers) ({

observer.update () ;

}
For an Observer to receive notifications...

Then we’ll modify the Observer interface, changing the signature of the
update() method so that it has no parameters:

public interface Observer ({

public void update() ;

e And finally, we modify each concrete Observer to change the signature of its respective
update() methds and get the weather data from the Subject using the WeatherData’s
getter methods. Here’s the new code for the CurrentConditionsDisplay class:

public void update() {

this. temperature = weatherData.getTemperature() ; ,
this.humidity = weatherData.getHumidity(); <& Heve wc}rc using the
i Subjett’s getter methods
Septar 0y that weve supplied with
: %he tode in WeatherData

Lrom Weather—0—-Rama.

69

code magnet exercise

Code Magnets

The ForecastDisplay class is all scrambled up on the fridge. Can you
reconstruct the code snippets to make it work? Some of the curly
braces fell on the floor and they were too small to pick up, so feel
free to add as many of those as you need!

70

Chapter 2

public ForecastDisplay (WeatherData

weatherData) {

weatherDatsa, registerObserver (this) ;

. . ts
public class ForecastDisplay implemen
Observer, DisplayElement {

public void display() {
// display code here

lastPressure = currentPressure;

urrentPressure = weatherData.getPressure() ;
c

Private float currentPressure = 29, 92f-
Private float lastPressure:

this.weatherData = weatherData;

public void update() {

pPrivate WeatherData weatherData;

the observer pattern

Test Drive the new code ss=ts9

Okay, you've got one more display to update, the Avg/Min/Max display. Go ahead and

do that now!

Just to be sure, let’s run the new code...

Heve's what we got

Look! This jus{ avvived!

File Edit Window Help TryThisAtHome

%java WeatherStation
Current conditions: 80.0F degrees and 65.0% humidity

Avg/Max/Min temperature = 80.0/80.0/80.0

Forecast: Improving weather on the way!

Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0

Forecast: Watch out for cooler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0

Forecast: More of the same

%

Weather-O-Rama, Inc.
100 Main Street
Tornado Alley, OK 45021

displays that we asked for, you've created a general design that

allows anyone to create new

display, and even allows users to add

and remove displays at runtime!

Ingenious!

Until our next engagement,

Johrmg Hitrisy, s

you are here » 71

design toolbox

Tools for your Design Toolbox

Welcome to the end of Chapter 2. You've added a
few new things to your OO toolbox...

00 Pasits

P\\)S‘\'x a(;h'\on

00 Pv\nc\\’\cs

Enca\vsu\a{:e what vavies:

Favor Lompesit
-‘“\\c‘r\‘\)a“u'
m ‘\')O \V\J(,CV"Qat’cs’

on over

Bere's your revest

| bev,
intivle: Remem .
[\\7:;::;3 toupled desidns are
muth more Q\cf\b\c and
vcs\\'\c“{: 4o thanoe:

S3 psevver

ent a3y

'\:‘cc“ d chdc“""l e

hen one ©9)

L d \’CnanJcs are not

—
A new Y&‘H:crn ‘Fo\r Communica{jng state to a
set of ob\)c(:{:s ina looscl\/ CO\AFlCd mannev. We
haven't seen the last of the Observer Pattern—
‘)us{: wait until we talk about MVC!

72 Chapter 2

% BULLET POINTS ——

The Observer Pattern defines
a one-to-many relationship
between objects.

Subjects update Observers
using a common interface.

Observers of any concrete type
can participate in the pattern
as long as they implement the
Observer interface.

Observers are loosely coupled
in that the Subject knows
nothing about them, other
than that they implement the
Observer interface.

You can push or pull data from
the Subject when using the
pattern (pull is considered more
“correct’).

Swing makes heavy use of the
Observer Pattern, as do many
GUI frameworks.

You'll also find the pattern in
many other places, including
RxJava, JavaBeans, and RMI,
as well as in other language
frameworks, like Cocoa, Swift,
and JavaScript events.

The Observer Pattern is related
to the Publish/Subscribe Pattern,
which is for more complex
situations with multiple Subjects
and/or multiple message types.

The Observer Pattern is a
commonly used pattern, and
we'll see it again when we learn
about Model-View-Controller.

observer

Design Principle Challenge

For each design principle, describe how the Observer
Pattern makes use of the principle.

Design Principle

Identify the aspects of your application that vary
and separate them from what stays the same.

Design Principle

Program to an interface, not an implementation.

This is a hard one. Hint: think about how obsevvers

and subjcé‘cs work together.

Design Principle

Favor composition over inheritance.

cross word

% Design Patterns Crossword

Time to give your right brain something to do again!

All of the solution words are from Chapters 1 & 2.

-

= =
- (=)

al

AEEEEEEEN

19

NN dEEEEEEEE

SN
AEEE B
a H Bn

i

12 (13

|
SN

ACROSS
1. One Subject likes to talk to

3. Subject initially wanted to
Observer.

6. CEO almost forgot the index display.

8. CurrentConditionsDisplay implements this interface.
9. Java framework with lots of Observers.

11. A Subject is similar to a

12. Observers like to be
new happens.

15. How to get yourself off the Observer list.

16. Lori was both an Observer and a

18. Subject is an

20. You want to keep your coupling

21. Program to an not an implementation.
22. Devil and Angel are to the button.

observers.
all the data to

when something

74 Chapter 2

DOWN
1. He didn’t want any more ints, so he removed himself.
2. Temperature, humidity, and

4. Weather-O-Rama’s CEO is named after this kind of
storm.

5. He says you should go for it.
7. The Subject doesn’t have to know much about the

10. The WeatherData class
interface.

13. Don’t count on this for notification.

14. Observers are on the Subject.
17. Implement this method to get notified.
19. Jill got one of her own.

the Subject

_ G harpen 0
o Y

ur pencil
Solution

& A. We are coding to concrete

the observer pattern

Based on our first implementation, which of the
following apply? (Choose all that apply.)

(4 D. The display elements don’t implement

implementations, not interfaces.
™ B. For every new display element,
we need to alter code.
™ C. We have no way to add display

elements at runtime.

a common interface.

WeatherData class.

4 E. We haven’t encapsulated what changes.

[I We are violating encapsulation of the

Design
principle
Challenge
Solution

The thing that vavies in the Observer Pattern

is the state of the Subjeet and the number and

Design Principle

Identify the aspects of your application that
vary and separate them from what stays the
same.

types of Observers. With this pattern, you tan

vary the objects that are dependent on the state

of the Sub\)cc{:, without havmg to change that

Subjcd{: That's called ?lam\ing ahcad_’

Both the Subjeet and Observers use interfaces.

The Subjeet keeps frack of objects implementing

Design Principle

Program to an interface, not an implementation.

Design Principle

Favor composition over inheritance.

the Observer interfate, while the Observers

vegister with, and get notified by, the Subject

intevface. As we've seen, this keeps {:h'mgs nice and

loosely coupled.

The Observer Pattern uses tomposition to tompose

any number of Obsevvers with their Subjeet.

These velationships arent set up by some kind

of inheritante hierarchy. No, they ave set up at

vuntime b\/ LomFosi{ion_’

you are here »

75

exercise solution

{ e Code Magnets Solution

ﬁ-—- The ForecastDisplay class is all scrambled up on the fridge. Can you
ﬁ reconstruct the code snippets to make it work? Some of the curly
braces fell on the floor and they were too small to pick up, so feel
free to add as many of those as you need! Here’s our solution.

ss ForecastDisplay implements

ublic cla
P pisplayElement {

Observer,

Private float currentPressure = 29 92fF;

Private float lastPressure:

pPrivate WeatherData weatherData;

eatherData

public ForecastDisplay (W
weatherData) {

this.weatherData = weatherData;

weatherData, registerObserver (this) ;

public void update() {

— currentPressure;

lastPressure = s
currentPressure = weatherData.getPressu ;

public void display() {
// display code here

76 Chapter 2

the observer pattern

Design Patterns
Crossword Solution

M AN Y

P luls Wil o
M M

(o]
N
m[» [c oo [m|»]
=

M= |m x|

‘o IR s
‘08 s E|R | VIE|R
6| H H

3 B
vlelLiz]s HEREEEA

v NG T]1 F
MEMEEBEEEMEE

510le g lE c|T
‘N TIE[RIFlAlC E] E 13

z

el
EEEEE EMHEEHEEE
T

&l
ol 0 B Y

you are here » 77

3 the Decorator Pattern

*
+ Decorating Objects +

T used to think real men
subclassed everything. That was
until I learned the power of
extension at runtime, rather than
at compile time. Now look at mel!

4

Just call this chapter “Design Eye for the Inheritance Guy.”
We’'ll re-examine the typical overuse of inheritance and you'll learn how to decorate

your classes at runtime using a form of object composition. Why? Once you know the
techniques of decorating, you'll be able to give your (or someone else’s) objects new

responsibilities without making any code changes to the underlying classes.

this is a new chapter

79

the starbuzz story

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the fastest-
growing coffee shop around. If you’ve seen one on your local
corner, look across the street; you’ll see another one.

Because they’ve grown so quickly, they’re scrambling to update
their ordering systems to match their beverage offerings.

When they first went into business they designed their classes \—/

like this...

i elass
Beverage is an abstract class,

belassed by all beverades
?ﬁ(\ccr:; n ;,/\r\c cokkee shop-

The destription instance variable

is set in eath subclass and holds a
deseription of the beverage, like

“Most Extellent Dark Roast™-

The getDestription() method
veturns the deseviption.

Beverage

description

() method is —
:C:E::i subccla;scs getIZtJescnptlon()
need 4o define their T T cost)

own implementation. I Other useful methods...
HouseBlend DarkRoast Decaf Espresso
cost() cost() cost() cost()

~)

Eath subelass implements cost() to vetuen the eost of the beverage.

80 Chapter 3

In addition to your coffee, you can also ask for several
condiments like steamed milk, soy, and mocha (otherwise
known as chocolate), and have it all topped off with whipped
milk. Starbuzz charges a bit for each condiment, so they really
need to get them built into their order system.

Here’s their first attempt...

Beverage

description

getDescription()
cost()

11 Other useful methods...

the decorator pattern

1 Pl Witk iMilk
HouseBlendWithSteamedMilk DarkRoastWithSteamedM . . andMocha
andMocha andMocha DecafWi hetean iMilk
HouseBlel andilocha cost()
cost() cost() cost)
DarkRoastWithSteamedMilk DecafWithsteamedilk | - andcaramel
easl) andCaramel andCaramel cost()| EspressoWithWhipandMocha
Hod i DecafWithV
HouseBle cost() DarkRoastWith! o)
| d! DarkRoastWif cost()
cost) | mousemmemay cos() g - cost DecafWithSoy
. . DecafWithSteamedMilk | |
HouseBlendWith DarkRoastWithSteamedMilk cost()
] andSoy g Espi Nith
HouseBlendWithWhip—_1 : DecafWithSteamedNik —
| L
T costl) > i M barkRoss d ool DecafWithSoyandMocha
HouseB] cost() Dec:
cost()

L VithWhi

DarkRoastWithSteamedMilk
ALk

DecafWithSteamey

EspressoWithSteamedMilk
andWhip

DarkRoastWithWhipandSoy

DecafWithWhi

With

Whoa!
Can you say
“class explosion"?

cost()

he
t method Lomvu{',c? £
E:i" :E SJchc cobfee along with the
other condiments in the order-

you are here »

81

violating design principles

.@&RA\N
‘PQWEWR
It's pretty obvious that Starbuzz has created a maintenance

nightmare for themselves. What happens when the price of milk
goes up? What do they do when they add a new caramel topping?

Thinking beyond the maintenance problem, which of the design
principles that we’ve covered so far are they violating?

iAem BIqg e ul wayj Jo omj bunejoin ai,fey; JuiH

This is stupid; why
do we need all these classes?
Can't we just use instance variables
and inheritance in the superclass to

keep track of the condiments?

Well, let’s give it a try. Let’s start with the Beverage base class
and add instance variables to represent whether or not each
beverage has milk, soy, mocha, and whip...

Beverage
- Ncw boolean values ‘(:or
descrpton ath tondiment
milk ¢ .
oy k/% /
mocha
whip Now we'll implement cost() in Beverage (instead of
- kccying it abstraet), so that it can caleulate the
getDescription() —

cos) | tosts assotiated with the tondiments for a particular

beverage instante. Subtlasses will still overvide

hasMilk) eost(), but they will also invoke the super version so
oo that they tan calculate the total cost of the basic
setSoySE) beverage plus the tosts of the added ondiments.
hasMocha() \ |

setMocha() { the boolean

e

setWhip() values for

/I Other useful methods..

82 Chapter 3

Now let’s add in the subclasses, one for
each beverage on the menu:

The superelass cost() will calevlate the

Il of th
i::\sf’sovco:r\;d:n tost() in the subtlasses

to intlude
d H\a{: (:unt,hona\\bl
::L’::E:: Lhat spetifie beverade type-

method needs to COmYu{c
the beverage and then
nd\mcwhs by La\\mg the

lementation of eost():

Eath tost()
the tost of
add n the to
su\?crc\ass imp

e cond\mﬂ\b) while T cost()

Beverage

description
milk

soy
mocha
whip

getDescription()

hasMilk()
setMilk()
hasSoy()
setSoy()
hasMocha()
setMocha()
hasWhip()
setWhip()

/I Other useful methods..

the decorator pattern

&x\/f K/\

HouseBlend

DarkRoast Decaf

Espresso

cost() cost()

cost() l

!
cost() l

— @gharpen your pencil
Sl

public class Beverage {
public double cost() {

public DarkRoast() {

description = "Most Excellent Dark Roast";

}
public double cost() {

Write the cost() methods for the following classes (pseudo-Java is okay):

public class DarkRoast extends Beverage {

you are here »

83

impact of change

See, five classes
total. This is definitely
the way to go.

I'm not so sure; I can see some
potential problems with this approach

by thinking about how the design might
need fo change in the future.

% harpen our pencil
s S

What requirements or other factors might change that will impact this design?

Price thanges for tondiments will foree us o alter existing tode.

New eondiments will force us o add new methods and alter the cost method in the superelass.

Ps we saw in

ec |, Enis S

We may have new beverages. For some of these beverages (iced tea?), the tondiments may K C\\av-\:

Aeal
not be appropriate, yet the Tea subtlass will still inhevit methods like hasWhip(). 3 very bad ded.

What if a customer wants a double motha?

\(OW‘ e

84 Chapter 3

the pattern

Guru and Student...

&~ Guru: It has been some time since our last meeting. Have you
been deep in meditation on inheritance?

~ Student: Yes, Guru. While inheritance is powerful, | have
learned that it doesn’t always lead to the most flexible or
maintainable designs.

Guru: Ah yes, you have made some progress. So, tell me, my student, how
then will you achieve reuse if not through inheritance?

Student: Guru, | have learned there are ways of “inheriting” behavior at
runtime through composition and delegation.

Guru: Please, go on...

Student: When | inherit behavior by subclassing, that behavior is set statically
at compile time. In addition, all subclasses must inherit the same behavior. If,
however, | can extend an object’s behavior through composition, then | can
do this dynamically at runtime.

Guru: Very good; you are beginning to see the power of composition.

Student: Yes, it is possible for me to add multiple new responsibilities to
objects through this technique, including responsibilities that were not even
thought of by the designer of the superclass. And | don’t have to touch their
code!

Guru: What have you learned about the effect of composition on maintaining
your code?

Student: Well, that is what | was getting at. By dynamically composing
objects, | can add new functionality by writing new code rather than altering
existing code. Because I'm not changing existing code, the chances of
introducing bugs or causing unintended side effects in pre-existing code are
much reduced.

Guru: Very good. Enough for today. | would like for you to go and meditate
further on this topic... Remember, code should be closed (to change) like the
lotus flower in the evening, yet open (to extension) like the lotus flower in the
morning.

85

the open-closed principle

The Open-Closed Principle

We're on to one of the most important design principles:

Design Principle

Classes should be open
for extension, but closed for
modification.

Come on in; we’re CLOS 3 D

open. Feel free to extend our BUSINESS HouRs.
classes with any new behavior you like. If your vor Y oo .

needs or requirements change (and we know they

will), just go ahead and make your own extensions.

Sorry, we’re closed.
That’s right, we
spent a lot of time getting this

code correct and bug free, so we can’t let you
alter the existing code. It must remain closed to
modification. If you don’t like it, you can speak to
the manager.

Our goal is to allow classes to be easily extended to
incorporate new behavior without modifying existing code.
What do we get if we accomplish this? Designs that are
resilient to change and flexible enough to take on new
functionality to meet changing requirements.

86 Chapter 3

therelgre no

Dum

Qj Open for extension and closed
for modification? That sounds very
contradictory. How can a design be both?

A: That's a very good question. It certainly
sounds contradictory at first. After all, the less
modifiable something is, the harder it is to
extend, right?

As it turns out, though, there are some

clever OO techniques for allowing systems

to be extended, even if we can’t change the
underlying code. Think about the Observer
Pattern (in Chapter 2)...by adding new
Observers, we can extend the Subject at

any time, without adding code to the Subject.
You'll see quite a few more ways of extending
behavior with other OO design techniques.

Q,: Okay, | understand Observer, but
how do | generally design something to be
extensible yet closed for modification?

A: Many of the patterns give us time-tested
designs that protect your code from being
modified by supplying a means of extension.
In this chapter you'll see a good example of

using the Decorator Pattern to follow the Open-

Closed Principle.

Q; How can | make every part of my
design follow the Open-Closed Principle?

the pattern

Questions

A: Usually, you can't. Making OO design
flexible and open to extension without
modifying existing code takes time and effort. In
general, we don’t have the luxury of tying down
every part of our designs (and it would probably
be wasteful). Following the Open-Closed
Principle usually introduces new levels of
abstraction, which adds complexity to our code.
You want to concentrate on those areas that are
most likely to change in your designs and apply
the principles there.

Q: How do | know which areas of change
are more important?

A: That is partly a matter of experience

in designing OO systems and also a matter

of knowing the domain you are working in.
Looking at other examples will help you learn to
identify areas of change in your own designs.

While it may seem like a contrae[iction,
there are technic[ues for allowing code to he
extended without direct modification.

Be careful when clwosing the areas of code
that need to he extended: applying the
Open-Closec[Principle EVERYWHERE is
wasteful and unnecessary, and can lead to
com])lex, hard-to-understand code.

87

meet the decorator pattern

Okay, enough of the

"Object-Oriented Design Club." We
have real problems here! Remember us?
Starbuzz Coffee? Do you think you could use
some of those design principles to actually
help us?

Meet the Decorator Pattern

Okay, we’ve seen that representing our beverage and condiments with
inheritance has not worked out very well—we get class explosions and rigid
designs, or we add functionality to the base class that isn’t appropriate for
some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate”

it with the condiments at runtime. For example, if the customer wants a
Dark Roast with Mocha and Whip, then we’ll:

@ Start with a DarkRoast object.
Q Decorate it with a Mocha object.
© Decorate it with a Whip object.

Q Call the cost() method and rely on delegation to
add up the condiment costs.

Okay, but how do you “decorate” an object, and how does delegation
come into this? A hint: think of decorator objects as “wrappers.” Let’s see
how this works...

88 Chapter 3

the decorator pattern

Constructing a drink order with Decorators

o We start with our DarkRoast object. wat Da\,kp\oas’c

e The customer wants Mocha, so we create a Mocha

object and wrap it around the DarkRoast.
l p '|S a dccora{;ov. H‘,S

biect : -
_[J;\"C Aic'::::v: {\'),\wc doject it is f‘icf,o::ic:r\g
[—\ 'W{:\\is tase, a Beverdde: (B\I) mivror)
‘:c mean it is the same yre:

45t method oo

[
So, Mothd has @ iem we tan freat

o PN
and {;\\‘roug\\ YO\\I OV'Yd - Motha as
K Peverage wrappe ha is d
a'% . o (because Mot
a CVCYaSC’

subotype ¢ Beveraoe)-

Q The customer also wants Whip, so we create a Whip
decorator and wrap Mocha with it.

Whip is a detorator, so it also
mirrors DarkRoast’s type and
intludes a cost() method.

So, a DarkRoast wrapped in Motha and Whip is still
a Beverage and we ¢an do anything with it we ¢an do
with a DarkRoast, int|udin5 call its cost() method.

you are here » 89

decorator characteristics

e Now it’s time to compute the cost for the customer. We do this by
calling cost() on the outermost decorator, Whip, and Whip is going to
delegate computing the cost to the objects it decorates. And so on.
Let’s see how this works:)
(You'l see “°)W "
a kew pages:
0 Whip calls tost() on Motha. é//[-

0 Fivst, we call eost() on the 6 Motha ealls tost() on
oukermost detorator, Whip- DavkRoast.

@ DavkRoast veturns
its cost, 99 cents.

@ Whip adds its total, 10 cents,
to the vesult from Mocha, and © Motha adds its eost, 20 tents,
veturns the final vesult—7l.29. 4o the vesult from DarkRoafﬁ,

and veturns the new boJCaL f”q'

Okay, here’s what we know about Pecorators, so far...

= Decorators have the same supertype as the objects they decorate.
= You can use one or more decorators to wrap an object.

= Given that the decorator has the same supertype as the object it decorates, we can

pass around a decorated object in place of the original (wrapped) object. -
KC‘I gownt.

m The decorator adds its own behavior before and/or after delegating to the object it
decorates to do the rest of the job.

= Objects can be decorated at any time, so we can decorate objects dynamically at
runtime with as many decorators as we like.

Now let’s see how this all really works by looking at the
Decorator Pattern definition and writing some code.

90 Chapter 3

the decorator pattern

The Decorator Pattern defined

Let’s first take a look at the Decorator Pattern description:

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Eath COvn?oncn‘E ¢tan be used on its
own or wrapped by a detorator.

Component i

methodA()
methodB()
The ContreteComponent Il other methods

is the ob")eck we've 90ing
to dynamically add new

behavior to. [t extends \
COMPOV\CV\{'

component

Eath detorator HAS-A
(wv-a?s) a tomponent, which
means the detorator has an
instance vaviable that holds a

ConcreteComponent h Decorator veferente 4o a Covnyonen{:.
methodA() Component wrappedObj
methodB() he
I/ other methods methodA() D corabors m\Y\CmCWh t
methodB() eeor $ace or abstratt
Il other methods same mJ(:CY e ov\CV\JC {‘,\'\C\I
¢lass as the com? b
. oY' .
ave 90Ny to det
ConcreteDecoratorA ConcreteDecoratorB
ﬂ methodA() Object newState
methodB()
methodA
The ContreteDetorator newBehavior() . ng Detorators an c*tcnd;chc
‘m\r\cri{;s (‘(:‘rom the Il other methods 1 other methods state 0‘(: {he tomponent
Decorator tlass) an instante
L. ——
vaviable for the U\"‘S it
detorates (the Component

the Deeorator wraps)- Detorators tan add new methods; however, new

behavior is ‘{')/?!Ca"\/ added b\/ doihg Comfuﬁa‘{jon
before or after an existing method in the component.

you are here » 91

decorating beverages

Pecorating our Beverages

Let’s rework our Starbuzz beverages using the Decorator Pattern...

Beverage atks as our \
abs{:vat:\: Lom?ontn{: tlass-

Beverage

description

getDescription()
cost()
I/ other useful methods

cost()

HouseBlend DarkRoast
cost()

2 1
Espresso Decaf
cost() cost()

component

CondimentDecorator

Beverage beverage < H.crc's ‘th e ve ‘(j evente {_p

the Beverage that the
Decorators will be wrapping.

getDescription()

The four tontrete

Milk Mocha i Soy N Whip
tom OnCV\‘{"S; one yper cost() cost() cost() cost()
LO‘(: ee {;\,\76 getDescription() getDescription() getDescription() getDescription()
And heve are our tondiment detorators; notice
{:hc% need to im?lc"\cn{: not onl\/ tost() but also
getDestription(). We'll see why in @ moment...
_ @RAIN
PQAWERWR
Before going further, think about how you’d implement the cost()
method of the coffees and the condiments. Also think about how
you’d implement the getDescription() method of the condiments.
92 Chapter 3

the pattern

Cubicle Conversation

Some confusion over Inheritance versus Composition

Okay, I'm a little confused...I
thought we weren't going to use
inheritance in this pattern? I thought
we were going to rely on composition
instead?

Sue: What do you mean?

Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
4 That’s inheritance, right?

12 Sue: True. I think the point is that it’s vital that the decorators have the same type as the objects
. l they are going to decorate. So here we’re using inheritance to achieve the type matching, but we

aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new behavior. We are
acquiring new behavior not by inheriting it from a superclass, but by composing objects together.

Mary: Okay, so we’re subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the composition of decorators with the
‘ base components as well as other decorators.

Sue: That’s right.

Mary: Oh, I get it! And because we are using object composition, we get a whole lot more
flexibility about how to mix and match condiments and beverages. Very slick.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at
compile time. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we like...at runtime.

Mary: I get it—we can implement new decorators at any time to add new behavior. If we relied
on inheritance, we’d have to go in and change existing code anytime we wanted new behavior.

Sue: Exactly.

Mary: I just have one more question: if all we need to inherit is the type of the component, how
come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember; when we got this code, Starbuzz already /ad an abstract Beverage class.
Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if the
abstract class will work just fine.

93

decorator training

Okay, I need for you to
make me a double mocha
soy latte with whip.

New barista training

Make a picture for what happens when the order is for a
“double mocha soy latte with whip” beverage. Use the menu to

get the correct prices, and draw your picture using the same
format we used earlier (from a few pages back):

© Whip calls costO) on Motha

Motha calls eost() on

DavrkRoast. . was QOY'

s '\C‘b“(
_1; ‘\‘d.’\:v\i voast, mothd

whip beverdd®

© Fiest, we eall tost() on the
oubermost decorator, Whip.

4] DavrkRoast veturns
its cost, 19 cents.

@ Whip adds its total, 10 eents,
to the vesult from Motha, and © Motha adds its tost, 20
veturns the final vesult—7).29. tents, 1o the vesult from
DavkRoast, amd’vc{wns
fhe new botal, 1119
) Starbuzz Coffer
— Ggharpen your pencil o
Draw your picture here. House Bleng 8
.89
Dark Roast .99
Decaf 1.05
Espresso 1.99
Condimentsg
Steamed Milk .10
Mocha 20
Siegy .15
Whip .10

94 Chapter 3

the decorator pattern

Writing the Starbuzz code

It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t
need to change from Starbuzz’s original design.
Let’s take a look:

public abstract class Beverage { m Bc“c“a‘ﬁc s an abs{'xac{: A
the two methods

String description = "Unknown Beverage"; tlass with 0O and Los{()

oetD estviption

public String getDescription() { SC{ZDCSH-‘P{:“O“ ; alvcad\/

implemented for us, but we

} need to im?lc»\cn‘t cost()
in the subelasses.

return description;

public abstract double cost() ;

Beverage is simple enough. Let’s implement the abstract

class for the Condiments (the Decorator) as well:
Fiest, we need 0 .bc —

nkevchangeable with 3 2%

. we extend fhne Beveraoe ¢

SO

public abstract class CondimentDecorator extends Beverage {

Beverage beverage;

public abstract String getDescription() ; (’\
}

We've also 9oing to vequire

that the tondiment

detorators all veimplement the
5:£Dcsériy£ion() method. Again,

we'll see why in a sec...

Heve's the Beverage that eath
Decorator will be wrapping.
Notice we are using the
Beverage supertype to vefer to
the Beverage so the Decorator
¢an wrap any beverage.

you are here » 95

implementing the beverages

Coding beverages

Now that we’ve got our base classes out of the way, let’s implement
some beverages. We’ll start with Espresso. Remember, we need to

set a description for the specific beverage and also implement the
cost() method.

cbend the Beverdde

F'\rsjc we ¢ Dhis s 3 beverade:

tlass, sinte
public class Espresso extends Beverage {

public Espresso() {

. . {:
To Lake tave of the deseription, we se
description = Mmaprassel; < s in the consbrutkor for the class

} Remember, the destription instance
vaviable is inhevited from Beverage:
public double cost() {

return 1.99;

. We dont
} 3 0‘(: an ES\’VC“" sk
{:o " {; {:\r\c tos) . we us
} L i ‘“a\\\/' we “CCdabO:J:ag‘;\c n cond’\mm{',s' in this elass) we)

14)
“CC: t \::I,:‘:In the price o% an Espresso £1.99-
nee

public class HouseBlend extends Beverage {

public HouseBlend() {

description = "House Blend Coffee";
} StarbuzZ Coffee ‘
coffees 89
public double cost() { House 99
return .89; park Roas® 1.05
pecaf 1.99
} Okay, here’s another Beverage. All we gspress®
} do is set the appropriate deseription,
“House Blend Coffee,” and then veturn condimen:f_l 10
the corveet tost: 89¢. greamed 20
Moch2 15
soy 10
Whip
You tan tveate the other two Beverage elassses

(DavkRoast and Decaf) in exactly the same way.

96 Chapter 3

the decorator pattern

Coding condiments

If you look back at the Decorator Pattern class diagram, you’ll see
we’ve now written our abstract component (Beverage), we have
our concrete components (HouseBlend), and we have our abstract
decorator (CondimentDecorator). Now it’s time to implement the
concrete decorators. Here’s Mocha:

.
cofa‘\—p
g CY\‘EDC
Motha is a detorator, so we Condir

" m\JCT))
extend CondimentDetorator. ‘ti;c’:“ds Peverddt o 1o inskarkia Le

l L cefevente 10 3 Deveraoe:

: inhevits the
this elass m\\cﬂt hold the

Motha with 3

Rcmcmbe\')
Beverage instante vanie
beveraoe we ave wra\?\vmg.

public class Mocha extends CondimentDecorator { aviable

public Mocha (Beverage beverage) { P o - " . %;hc
this.beverage = beverage; S W;. ::{_‘ we ave w‘ra\7\7\h5~,HC‘fCr we :3 "
| V:;)ss\ng Lhe beveraoe we rfp wrapyp
the detorator's tonstruttor:

public String getDescription() {

return beverage.getDescription() + ", Mocha";

/&/ We want our dcscri?{;ion to intlude not

public double cost() { only the beverage—say “Dark Roast’-

but also eath item detorating the

) bcvcva(?c (for instante, “Dark Roast,
Motha”). So we first delegate to the

} object we are decorating to get its
dcséri?{ion, then append “ Motha” to

of our beveraoe » U
Now we need o Lom\’ﬂ’:e\t;:éotc La‘\’\“ Lo the that deseription.

wikh Motha. First, we that it tan compute the

3 ' (X ating so |
ijﬁjclc::n“w(:ca:; {-,hcs tost of Motha +o the vesult
osT))

return beverage.cost() + .20;

On the next page we'll actually instantiate the beverage and
wrap it with all its condiments (decorators), but Fivst...

Write and compile the code for the other Soy and Whip
condiments. You'll need them to finish and test the application.

you are here » 97

testing the beverages

Serving some coffees

Congratulations. It’s time to sit back, order a few coffees, and marvel
at the flexible design you created with the Decorator Pattern.

Here’s some test code*to make orders:

public class StarbuzzCoffee {

OY‘dCY' wp an CSYY‘CSSO)

public static void main(String args[]) { ad \w'\v\Jc s dcsfx'\\’{'fb" and tost.

Beverage beverage = new Espresso();
System.out.println (beverage.getDescription()
+ " $" + beverage.cost());
etk
Make 3 DavkRoast ob)

Beverage beverage2 = new DarkRoast() ; WVGY & i th a Motha.
beverage2 = new Mocha (beverage2) ; V
beverage2 = new Mocha (beverage2) ; &/—" Wrap itina setond Motha.
beverage2 = new Whip (beverage2); <—— WV‘SF it ina Whip.
System.out.println (beverage2.getDescription ()

+ " $" + beverage2.cost());

Beverage beverage3 = new HouseBlend() ; Bl d
- 5 s 5 € Finally, give us 3 Houseblen
everage3 = new Soy (beverage3) ; with 3°‘I' Motha, and Whip.
beverage3 = new Mocha (beverage3) ;

beverage3 = new Whip (beverage3) ;

System.out.println (beverage3.getDescription ()

+ " $" + beverage3.cost());

no (,oy\d.\mcv\'tsi

} * We've aoing to see a much better way of ereating

Now, let’s get those orders in:

detorated ob\)cc{:s when we ¢tover the Factory and
Builder Design Patterns. Please note that the
Builder Pattern is covered in the Appendix.

% java StarbuzzCoffee
Espresso $1.99
Dark Roast Coffee, Mocha, Mocha, Whip $1.49

House Blend Coffee, Soy, Mocha, Whip $1.34

%

Chapter 3

Q: I'm a little worried about code
that might test for a specific concrete
component—say, HouseBlend—and do
something, like issue a discount. Once
I've wrapped the HouseBlend with
decorators, this isn’t going to work
anymore.

A: That is exactly right. If you have code
that relies on the concrete component’s
type, decorators will break that code. As
long as you only write code against the
abstract component type, the use of
decorators will remain transparent to your
code. However, once you start writing code
against concrete components, you'll want to
rethink your application design and your use
of decorators.

therejare no
Dumb Questions

Q,: Wouldn't it be easy for some client
of a beverage to end up with a decorator
that isn’t the outermost decorator? Like
if I had a DarkRoast with Mocha, Soy,
and Whip, it would be easy to write code
that somehow ended up with a reference
to Soy instead of Whip, which means it
would not include Whip in the order.

A: You could certainly argue that you
have to manage more objects with the
Decorator Pattern and so there is an
increased chance that coding errors will

introduce the kinds of problems you suggest.

However, we typically create decorators

by using other patterns like Factory and
Builder. Once we've covered these patterns,
you'll see that the creation of the concrete
component with its decorator is “well
encapsulated” and doesn’t lead to these
kinds of problems.

the pattern

Q,: Can decorators know about the
other decorations in the chain? Say |
wanted my getDescription() method to
print “Whip, Double Mocha” instead of
“Mocha, Whip, Mocha.” That would require
that my outermost decorator know all the
decorators it is wrapping.

A: Decorators are meant to add behavior
to the object they wrap. When you need to
peek at multiple layers into the decorator
chain, you are starting to push the decorator
beyond its true intent. Nevertheless,

such things are possible. Imagine a
CondimentPrettyPrint decorator that parses
the final decription and can print “Mocha,
Whip, Mocha” as “Whip, Double Mocha.”
Note that getDescription() could return an
ArrayList of descriptions to make this easier.

G harpen your pencil
X

public abstract class Beverage {

Our friends at Starbuzz have introduced sizes to their menu. You can now order a
coffee in tall, grande, and venti sizes (translation: small, medium, and large). Starbuzz
saw this as an intrinsic part of the coffee class, so they’'ve added two methods to

the Beverage class: setSize() and getSize(). They'd also like for the condiments to be
charged according to size, so for instance, Soy costs 10¢, 15¢, and 20¢, respectively, for
tall, grande, and venti coffees. The updated Beverage class is shown below.

How would you alter the decorator classes to handle this change in requirements?

public enum Size { TALL, GRANDE, VENTI };
Size size = Size.TALL;
String description = "Unknown Beverage";
public String getDescription() {
return description;
}
public void setSize(Size size) {
this.size = size;
}
public Size getSize() {
return this.size;
}
public abstract double cost();

929

decorators in java i/o

Real-World Pecorators: Java 170

The large number of classes in the java.io package is...overwhelming. Don’t feel alone
if you said “whoa” the first (and second and third) time you looked at this API.

But now that you know the Decorator Pattern, the I/O classes should make more
sense since the java.io package is largely based on Decorator. Here’s a typical set of
objects that use decorators to add functionality to reading data from a file:

100

ZiplnputStream is also a
tontrete detorator. [+
adds the abili:Ey to vead
2ip file entries as it veads
data from a zip file.

Chapter 3

A text file for veading.

. ! 3“
ButferedInputStream is Shiing)
auconcrc{:c decorator. g\t{x}\w;&(n! hese 4V - ° b\ljcw
ButfevedInputStream adds obhevrs: Beom which 1o ved
buffering behavior to w,.\‘;oncn{’, vo
FilelnputStream: it bukfers
input to improve performance.

Pecorating the java.io classes

BufferedInputStream and ZipInputStream both extend FilterInputStream, which
extends InputStream. InputStream acts as the abstract decorator class:

\f\c‘rc s our

abs{—xa()h ¢

the decorator pattern

ovn\’o“c“‘b

FilterlnputStream

InputStream s an abs’cvaclc
/ /—\ dCCora{)OY'

F|IelnputStream StringBufferinputStream N ByteArrayInputStream FilterInputStream

e

‘ PushbackinputStream H BufferedinputStream N DatalnputStream H InflatorinputStream i
These [nputStreams act as the conerete \] Z | ZipinputStream !

components that we will wrap with

detorators. There are a few more we And fmally, here are all our concrete decorators.

didn't show, like Ochctlnyu{;S*Ercam.

You can see that this isn’t so different from the Starbuzz design. You should

now be in a good position to look over the java.io API docs and compose
decorators on the various mput streams.

You’ll see that the output streams have the same design. And you’ve probably
already found that the Reader/Writer streams (for character-based data)
closely mirror the design of the streams classes (with a few differences and
inconsistencies, but close enough to figure out what’s going on).

Java I70 also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes

that can be overwhelming to a developer trying to use the Decorator-based
API. But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you're after.

you are here » 101

write your own i/o decorator

Writing your own Java 170 Decorator

Okay, you know the Decorator Pattern, and you've seen the
I/0 class diagram. You should be ready to write your own input
decorator.

No problem. T
Jjust have to extend the
FilterInputStream class and
override the read() methods.

How about this: write a decorator that converts all uppercase
characters to lowercase in the input stream. In other words, if
we read in “I know the Decorator Pattern therefore I RULE!”
then your decorator converts this to “i know the decorator
pattern therefore 1 rule!”

N~ Fivst, extend the FilterlnputStream, the
Dont foroet 1o mE7 abstract decorator for all [nputStreams.

(not showr) l

public class LowerCaseInputStream extends FilterInputStream {

\')ava..\OH

public LowerCaseInputStream(InputStream in) {

super (in) ;

public int read() throws IOException {
int ¢ = in.read();

return (¢ == -1 ? ¢ : Character.tolLowerCase ((char)c));

public int read(byte[] b, int offset, int len) throws IOException {

int result = in.read(b, offset, 1len);

for (int i = offset; i < offset+result; i++) { \ Now we need 4o im?lmxcvx{: fwo
b[i] = (byte)Character.toLowerCase ((char)b[i]) ; vead methods. Thc\/ Lake a

} b\/{‘,c (or an arvay of b\/{:cs)

and tonvert each byte (that
vepresents a thavacter) to

} lowevtase if it's an uppertase
} thavatter.

REMEMBER: we don't provide import and package statements
in the ¢ode listings. Get the complete souree tode from
https://wickedlysmart.com/head—first—design—patterns.

return result;

102 Chapter 3

https://wickedlysmart.com/head-first-design-patterns/

the decorator pattern

Test out your new Java 1/0 Decorator

Write some quick code to test the I/O decorator:

public class InputTest {
public static void main(String[] args) throws IOException {

int c;
| i decovate
Set up the Fl\dh‘?u{'ﬁ{rcam and
T ii, {:":fs{: with a BufferedlnputStream
-, and then our brand new
e LowerCaselnputStream ilter.

new LowerCaseInputStream (
new BufferedInputStream (

new FileInputStream("test.txt")));

while((c = in.read()) >= 0) { w

System.out.print((char)c); I know the Decorator Pattern therefore I RULE!

in.close();

} catch (IOException e) { test.txt file
e.printStackTrace() ;
} o
) Just use the stream to vead You need ile
charaeters until the end of make Ehis ©!
} file and print as we go.

Give it a spin:

File Edit Window Help DecoratorsRule

% java InputTest
i know the decorator pattern therefore i rule!

%

you are here » 103

decorator

Patkerns Exposed'
This week’s interview:
Confessions of a Decorator

Head First: Welcome, Decorator Pattern. We've heard that you’ve been a bit down on
yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but you know, I've
got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I've got the power to add flexibility to designs, that much is
for sure, but I also have a dark side. You see, I can sometimes add a lot of small classes to a design,
and this occasionally results in a design that’s less than straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/0 libraries. These are notoriously difficult for people to
understand at first. But if they just saw the classes as a set of wrappers around an InputStream,
life would be much easier.

HeadFirst: That doesn’t sound so bad. You're still a great pattern, and improving this is just a
matter of public education, right?

Decorator: There’s more, I'm afraid. I've got typing problems: you see, people sometimes
take a piece of client code that relies on specific types and introduce decorators without
thinking through everything. Now, one great thing about me is that you can usually insert decorators
transparently and the client never has to know it’s dealing with a decorator: But like I said, some code is
dependent on specific types and when you start introducing decorators, boom! Bad things
happen.

HeadFirst: Well, I think everyone understands that you have to be careful when inserting
decorators. I don’t think this is a reason to be too down on yourself.

Decorator: I know, I try not to be. I also have the problem that introducing decorators can
increase the complexity of the code needed to instantiate the component. Once you've got
decorators, you've got to not only instantiate the component, but also wrap it with who knows
how many decorators.

HeadFirst: Il be interviewing the Factory and Builder patterns next week—T hear they can
be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs and staying
true to the Open-Closed Principle, so keep your chin up and think positively!

Decorator: I'll do my best, thank you.

104

4 Tools for your Pesign Toolbox

You've got another chapter under your belt and a new
principle and pattern in the toolbox.

00 Pv\ntf\\"cs

at vavies

h
¢a\>su\aJC¢ \ .
o over '\V\\\c\'\{'/a“u'

v\O‘h

Favor LO'"\’°S‘£\°“

Program 12 wkeckates
v

'\V'\Y\Cmcv\'\;a{\o“s'

dled desiors

. \oosc\\f tov
Shyive for ? J(,cvat)c-
oeks that in
between obyet Cor K\WC e the Drone
Classes dhovld be OYC“Q O el to ide
Lension vk ¢\osed Xo¢ us. We've going to strive
. Gieation 4o design our system so
d‘,Q‘c,a{:\on 9
" fhat the closed parts

ave isolated Lrom our
\ new extensions.

' for cha{:\v\% dcs’:zv\.‘s
And heres our ; e S
1 satisky the U¥e
H‘i\\ s{',\\c E\vs{? s Jdncrc.a other e
“cd\lﬂ\a’c Lollows Ehis prinip
ws

the decorator pattern

Q BULLET POINTS —

= |nheritance is one form of
extension, but not necessarily the
best way to achieve flexibility in
our designs.

= |n our designs we should allow
behavior to be extended without
the need to modify existing code.

= Composition and delegation
can often be used to add new
behaviors at runtime.

= The Decorator Pattern provides
an alternative to subclassing for
extending behavior.

= The Decorator Pattern involves
a set of decorator classes that
are used to wrap concrete
components.

= Decorator classes mirror the type
of the components they decorate.
(In fact, they are the same type
as the components they decorate,
either through inheritance or
interface implementation.)

= Decorators change the behavior of
their components by adding new
functionality before and/or after (or
even in place of) method calls to
the component.

= You can wrap a component with
any number of decorators.

= Decorators are typically
transparent to the client of the
component—that is, unless
the client is relying on the
component’s concrete type.

= Decorators can result in many
small objects in our design, and
overuse can be complex.

you are here » 105

exercise

ur pencil
Solution

_ @uu0harpen yo
C(%\\py

public class Beverage {

public double cost() {

double condimentCost

if (hasMilk()) {
condimentCost +=

}

if (hasSoy()) {
condimentCost +=

}

if (hasMocha()) {
condimentCost +=

}

if (hasWhip()) {
condimentCost +=

}

return condimentCost;

public DarkRoast() {

Write the cost() methods for the following classes
(pseudo-Java is okay). Here’s our solution:

// declare instance variables for milkCost,
// soyCost, mochaCost, and whipCost, and

// getters and setters for milk, soy, mocha
// and whip.

= 0.0;

milkCost;

soyCost;

mochaCost;

whipCost;

public class DarkRoast extends Beverage ({

description = "Most Excellent Dark Roast";

public double cost() {

return 1.99 + super.cost();

106

the decorator pattern

— g harpen your pencl
2N 30|Uti.0n “double mocha soy latte with whip”

New barista training

© Whip calls st on Motha.
© Motha talls eost() on another Motha.
Firs,we call costf) o e © Next, Motha ealls castl) on Soy.
outermost decorator, Whip- o L e Sy
tost() on HouseBlend.

(6] HouseBlend’s tost() method
veturns 89 and pops off
the stack.

© Soy's tostO method adds .17
and veturns the vesult, then
pops off the stack.

© The second Motha's tost() method
adds .20 and veturns the vesult,
then pops off the stack.

Finally, th | Whip’ ,
¢ L;:z(;/' fh'i;:s;:s rr;w;‘s’"{‘:; "ShalP s © The fiest Moeha's eost() method adds
inal eost of 1154 , 20 and veturns the vesult, then pops
I off the stack.

you are here » 107

exercise solutions

_ % harpen your pencil

A solutwn Our friends at Starbuzz have introduced sizes to their menu. You can now order
a coffee in tall, grande, and venti sizes (translation: small, medium, and large).
Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two
methods to the Beverage class: setSize() and getSize(). They'd also like for the
condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢,
and 20¢, respectively, for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in
requirements? Here's our solution.

public abstract class CondimentDecorator extends Beverage {
public Beverage beverage;

public abstract String getDescription() ; :2e0) Lor
We added 3 "“H‘°dj’c E‘Cf;‘\l Y-c'(;u‘(ns
public Size getSize() { < _— 4{he Qctor:c €;¢£C:V6V3‘3“
return beverage.getSize(); he siz¢
}
}
public class Soy extends CondimentDecorator {
public Soy (Beverage beverage) ({
this.beverage = beverage;
}
public String getDescription() {
return beverage.getDescription() + ", Soy";
}
public double cost() { A/_\ Heve we 5‘{: the size (which
double cost = beverage.cost() ; on\?aga'l:cs all the way to the
contrete beverage) and then
if (beverage.getSize() == Size.TALL) ({ add the ay?ro?ria{:c tost.
cost += .10;
} else if (beverage.getSize() == Size.GRANDE) {
cost += .15;
} else if (beverage.getSize() == Size.VENTI) ({
cost += .20;
}
return cost;
}

Chapter 3

4 the Factory Pattern

X
* Baking with 00 Goodness
+

Get ready to bake some loosely coupled OO designs. There is more
to making objects than just using the new operator. You'll learn that instantiation is an
activity that shouldn’t always be done in public and can often lead to coupling problems.
And we don’t want that, do we? Find out how Factory Patterns can help save you from

embarrassing dependencies.

this is a new chapter 109

thinking about new

Okay, it's been three chapters and you
still haven't answered my question about

new. We aren't supposed to program to an
implementation, but every time T use new,
that's exactly what I'm doing, right?

When you see “new,” think “concrete.”

Yes, when you use the new operator you are certainly instantiating
a concrete class, so that’s definitely an implementation and not an
interface. And you make a good observation: that tying your code to
a concrete class can make it more fragile and less flexible.

Duck duck = new MallardDuck() ;

|

We want £o ,se absta £ we have o eveate an
keep ¢ode ﬂcxi;lc.d ppes \%\:‘ca\:\lcc of a tontrete tlass!

When we have a whole set of related concrete classes, often we end up
writing code like this:

Duck duck;

if (picnic) { m , L
duck = new MallardDuck () ; We have a bunth of dl“f{ﬂ

} else if (hunting) { duck tlasses) 3"‘_* we ‘::’:h one
duck = new DecoyDuck() ; know wndil Y‘mbmc{:{;

} else if (inBathTub) { we need o instantiate

duck = new RubberDuck() ;
}

Here we’ve got several concrete classes being instantiated, and the
decision of which to instantiate is made at runtime depending on
some set of conditions.

When you see code like this, you know that when it comes time for
changes or extensions, you’ll have to reopen this code and examine
what needs to be added (or deleted). Often this kind of code ends

up in several parts of the application, making maintenance and
updates more difficult and error-prone.

110 Chapter 4

the factory pattern

But you have to create an
object at some point, and Java

only gives us one way to create an
object, right? So what gives?

What’s wrong with “new”?

Technically there’s nothing wrong with the new operator.
After all, it’s a fundamental part of most modern object-
oriented languages. The real culprit is our old friend
CHANGE and how change impacts our use of new.

By coding to an interface, you know you can insulate yourself
from many of the changes that might happen to a system
down the road. Why? If your code is written to an interface,
then it will work with any new classes implementing that
interface through polymorphism. However, when you have

code that makes use of lots of concrete classes, you’re looking /\ i:':lzm::k(that 4 esigns

for trouble because that code may have to be changed as new ‘OPCn for
concrete classes are added. So, in other words, your code will extension but tlosed
not be “closed for modification.” To extend your code with or ”‘Odipica'(:ion." See
new concrete types, you’ll have to reopen it. hapter 3 for a review

So what can you do? It’s times like these that you can fall back
on OO design principles to look for clues. Remember, our first
principle deals with change and guides us to identify the aspects
that vary and separate them from what stays the same.

_ @RA\N
‘PQWEWR
How might you take all the parts of your application that instantiate

concrete classes and separate or encapsulate them from the rest of
your application?

you are here » 111

identify what varies

Identifying the aspects that vary

Let’s say you have a pizza shop, and as a cutting-edge pizza store owner in
Objectville you might end up writing some code like this:

Pizza orderPizza() {

Pizza pizza = new Pizza();

e prenare) I_/ For flexibility, we veally want 4hi

pizza.bake() ; Eﬁbin}h 3:5{2?:6'{ ¢lass or ihfcrﬁacg,
.) ortunately we ¢an't di
pizza.cut() ; instantizte Cifhc:-/of -[;h;j dlrccﬂy

pizza.box () ;

return pizza;

But you need more than one type of pizza...

So then you’d add some code that determines the appropriate type of pizza and
then goes about making the pizza:

Pizza orderPizza(String type) { We'vc nowozass'mg \Vi-p
22a
Pizza pizza; ,_,_/ the b/\?c P
orderPizza.

if (type.equals("cheese")) {

pizza = new CheesePizza();

} else if (type.equals('"greek") ({ A
pizza = new GreekPizza() ; B&scd on the "ZYPC of Pizza, we
instantiate the corveet toncrete ¢lass

} else if (type.equals("pepperoni'") { !
and assign it to the v .
Pizza instance

el = e B el e) variable. Note that each pizz3 here h
} to implement the Pizza interface. *
pizza.prepare(); Onte we have a Pizza, we prepare it
pizza.bake() ; (\/ou know, voll the dough, put on the
pizza.cut() ; saute, and add the toppings), then we
. bake i{:, eut it, and box 1‘{',’
pizza.box () ;
return pizza; Eath Pizza subtype (CheesePizza,
) QreekPizza, ete.) knows how to prepare
itself.

112 Chapter 4

the factory pattern

But the pressure is on to add more pizza types

You realize that all of your competitors have added a couple of trendy pizzas to their
menus: the Clam Pizza and the Veggie Pizza. Obviously you need to keep up with the
competition, so you’ll add these items to your menu. And you haven’t been selling many
Grecek pizzas lately, so you decide to take that off the menu:

Pizza orderPizza (String type) ({

s code '\; oc Pizza pizza;
NOT £ o 16 52
d;&‘cé&pvc f'\“a“‘bcswc if 1s ("ch "
\7\7}{; OQQC‘(.‘“?)S, if (type.equals("cheese")) {
s ¥ Yo OYV\ s Lo pizza = new CheesePizza() ;
wave bk .
d modY \ } i s - 2 This is what vavies:
pizza—=-new-6reekPizza() ; As the \7.‘7'7;\3 s
lection thand
} else if (type.equals ("pepperoni") { S:V:r time, \[ou\\ \\i‘c
. s tode
pizza = new PepperoniPizza(); {o modity this Lo

over and over:
} else if (type.equals("clam") {

pizza = new ClamPizza() ;
} else if (type.equals("veggie") {

pizza = new VeggiePizza() ;

This is what we expect to

stay the same. For the most
pizza.bake (), ?a\r{‘,, ?rcyaving, Cook'mg, an.d
packaging a pizza has vemained
the same for years and Yyeavs.
pizza.box() ; So, we don't c%\?cé{: this code
to thange, just the pizzas it

operates on-

pizza.prepare() ;

pizza.cut();

return pizza;

Clearly, dealing with which concrete class is instantiated is really messing up our
orderPizza() method and preventing it from being closed for modification. But now that we
know what is varying and what isn’t, it’s probably time to encapsulate it.

you are here » 113

encapsulate object creation

Encapsulating object creation

So now we know we’d be better off moving the object
creation out of the orderPizza() method. But how? Well, what
we’re going to do is take the creation code and move it out

if (type.equals("cheese")) {

pizza = new CheesePizza() ;
into another object that is only going to be concerned with } else if (type.equals("pepperoni") {
crealulg pi1zzas. pizza = new PepperoniPizza();
} else if (type.equals("clam") {
pizza = new ClamPizza();
} else if (type.equals("veggie") {
pizza = new VeggiePizza() ;
}
Pizza orderPizza (String type) ({
Pizza pizza; /
Fiest we pull the object
. treation tode out ok the

pizza.prepare() ;
pizza.bake() ;

pizza.cut();

What's 3oin3 4o 90 here?

pizza.box() ;

return pizza;

We’ve got a name for this new object: we
call it a Factory.

Factories handle the details of object creation. Once we have
a SimplePizzaFactory, our orderPizza() method becomes a
client of that object. Anytime it needs a pizza, it asks the pizza
factory to make one. Gone are the days when the orderPizza()
method needs to know about Greek versus Clam pizzas. Now
the orderPizza() method just cares that it gets a pizza that
implements the Pizza interface so that it can call prepare(),

bake(), cut(), and box().

We've still got a few details to fill in here; for instance, what does
the orderPizza() method replace its creation code with? Let’s
implement a simple factory for the pizza store and find out...

114 Chapter 4

ocderPizzal) method.

Then we place that tode in an object {;ha;t

is only going to worry about how 1o ere

‘\:::A\Is 3 thevr ob\)ct‘c needs a pizzd
\! .

H: any ©
tveated, Jd\'n;{ is the ob\')cd: 4o tome to-

Building a simple pizza factory

the factory pattern

We’ll start with the factory itself. What we’re going to do is define a class that

encapsulates the object creation for all pizzas. Here it is...

the SimplePizzaFactory: It

) w tlass .
Heve's our ne ' ‘712135 ‘('\or its L\ltn{s,

has one job in life: ereating

public class SimplePizzaFactory ({

' d Q\nc F) .
Pk e et

s is the
Lactory: This is
‘H\:‘H\od all (,\'\cvx{'} w\{\).uzcb |
";,o '\hS‘banJC\a{’,c new ©)c

—

public Pizza createPizza (String type) ({

Pizza pizza = null;

if (type.equals("cheese")) {

pizza = new CheesePizza();

} else if (type.equals ("pepperoni")) {
pizza = new PepperoniPizza() ;

} else if (type.equals("clam")) ({
pizza = new ClamPizza() ;

Here's the tode we
Plucked out of the
ocderPizzal) method-

} else if (type.equals("veggie")) {

pizza = new VeggiePizza();

}

return pizza;

tberelgre no

Questions

Dum

Q: What’s the advantage of this? It looks like we’re just
pushing the problem off to another object.

A: One thing to remember is that the SimplePizzaFactory may
have many clients. We've only seen the orderPizza() method;
however, there may be a PizzaShopMenu class that uses the factory
to get pizzas for their current description and price. We might also
have a HomeDelivery class that handles pizzas in a different way
than our PizzaShop class but is also a client of the factory.

So, by encapsulating the pizza creating in one class, we now have
only one place to make modifications when the implementation
changes.

)

This code is still pacametevized by the type of the
pizza, just like our original ordevPizza() method was.

And, don't forget, we're also just about to remove the concrete
instantiations from our client code.

Q,: I've seen a similar design where a factory like this is
defined as a static method. What'’s the difference?

AZ Defining a simple factory as a static method is a common
technique and is often called a static factory. Why use a static
method? Because you don't need to instantiate an object to make
use of the create method. But it also has the disadvantage that you
can't subclass and change the behavior of the create method.

you are here » 115

simple factory

Reworking the PizzaStore class

Now it’s time to fix up our client code. What we want to do is rely on the
factory to create the pizzas for us. Here are the changes:

First we give PizzaStore a
vefecente 1o a SimylcPizzaFachr\/.

public class PizzaStore ({

SimplePizzaFactory factory; f\

PizzaStore gets the £ae

to it tory passed
public PizzaStore (SimplePizzaFactory factory) { it in the tonstructor.

this.factory = factory;

public Pizza orderPizza (String type) {

Pizza pizza;

pirza = factory.createmizza(type)s And the orderPizza() me hod uses the
~— fattory to treate its pizzas by simply
pizza.prepare(); passing on the type of the order.

pizza.bake() ;

i .cut();
S Notice that we've veplated the new
opevator with a ereatePizza method
in the factory object. No more

return pizza; tontrete instantiations heve!

pizza.box() ;

// other methods here

@bvtxsu
‘PQWEWR
We know that object composition allows us to change behavior dynamically at runtime (among

other things) because we can swap in and out implementations. How might we be able to use
that in the PizzaStore? What factory implementations might we be able to swap in and out?

‘(00} ‘uaneH maN jabloy Jou
s,19|) seuojoe) ezzid 9|A1s elulojiieD pue ‘obedlyD WoA MaN Bupuiy) 81,9M Ing ‘NOA JNOge MOuy| J,Uop SN

116 Chapter 4

The Simple Factory defined

The Simple Factory isn’t actually a Design Pattern; it’s more of a programming idiom.
But it is commonly used, so we’ll give it a Head First Pattern Honorable Mention.
Some developers do mistake this idiom for the Factory Pattern, but the next time that
happens you can subtly show you know your stuff; just don’t strut as you educate them

on the distinction.

Just because Simple Factory 1sn’t a REAL pattern doesn’t mean we shouldn’t check out
how it’s put together. Let’s take a look at the class diagram of our new Pizza Store:

PizzaStore

orderPizza()

‘ms‘bahffcs Y\ﬂa

These are our tontrete

interface ¥ (which in
“extend the abstraet
be conevete. As long as
it ean be eveated b

voducts. E
Product needs o imPIcm‘:ni ‘T:hc Pizazéah

This is the factory wheve we ereate
pizzas; it should be the only part
of our application that vefevs to
tontvete Pizza tlasses.

‘—> SimplePizzaFactory

L

[

createPizza()

The treate method s

often detlaved statieally-

CheesePizza

‘H‘iis tase means
Pizza ¢lass”) and
Jcha{:'s the tase,

the £ "
handed back to {hcyclic:f. aetery and

T —

i

Y

4
l

Pizza

prepare()
bake()
cut()
box()

N\

the factory pattern

Pattern
Honorable
Mentjon

This is the vwd“"‘, of
Lhe factory: pizZ3:

We've defined Pizz3
as an abstract elass
with some \\C\Y‘Cu\
'\m\v\emm{:a‘dons that

tan be overvidden-

PepperoniPizza

VeggiePizza

ClamPizza

Think of Simple Factory as a warm-up. Next, we’ll explore two heavy-duty patterns

that are both factories. But don’t worry, there’s more pizza to come!

¥Just another veminder: in design patterns, the phrase “implement an interfate” does NOT always mean
“write a tlass that implements a Java intevfate, by using the ‘implements’ keyword in the ¢lass deelavation.”
In the general use of the phrase, a tonerete tlass implementing a method from a supevtype (which eould be a
abstract elass OR interfate) is still considered to be “implementing the interface” of that supertype.

you are here »

117

pizza franchise

Franchising the pizza store

Your Objectville Pizza Store has done so well that you've trounced
the competition and now everyone wants a Pizza Store in their
own neighborhood. As the franchiser, you want to ensure the
quality of the franchise operations and so you want them to use
your time-tested code.

Yes, diffevent aveas of the US serve
But what about regional differences? Each franchise might want to &=~ very diffevent s \llcs of Plzza-—‘(:rom

offer different styles of pizzas (New York, Chicago, and California, the dcc\?—dish pizzas of Chicago, +o :‘,hc
to name a few), depending on where the franchise store is located +hin erust of New \{o\.rk, to the Lrl;c evr—
and the tastes of the local pizza connoisseurs. like pizza of California (some would say

Jcchd with Lrevits and nuts).

You want all the franthise pizza stores
1o leverage your PizzaStove tode, so the
pizzas are prepaved in the same way:

-

One franthise wants a

fattory that makes NY-style
pizzas: thin evust, tasty saute,
and 3u5£ a little cheese.

Another franchise

o wants a factory that
makes Chicago-style
piz2as; theiv customers
like pizzas with thick
evusk, vich sauce, and
tons of theese.

We've seen one approach...

If we take out SimplePizzaFactory and create three different
factories—NYPizzaFactory, ChicagoPizzaFactory, and
CaliforniaPizzaFactory—then we can just compose the PizzaStore
with the appropriate factory and a franchise is good to go. That’s
one approach.

Let’s see what that would look like...

118 Chapter 4

NYPizzaFactory nyFactory = new NYPizzaFactory();

PizzaStore nyStore = new PizzaStore (nyFactory); € ———_ Then we treate 3 PizzaS

=

ChicagoPizzaFactory chicagoFactory = new ChicagoPizzaFactory() ;

nyStore.orderPizza ("Veggie") ;

o

the factory pattern

Here we treate 3 (:ac{:o\ry for

mak'mg N\/-—s{:\/lc pizzas.

~-and when we make pizzas, we

get NY-style pizzas.

PizzaStore chicagoStore = new PizzaStore (chicagoFactory) ;

chicagoStore.orderPizza ("Veggie") ;

Likewise for the Chicago pizza stores: we
eveate a facﬁor\/ for Chicago pizzas and
treate a store that is composed with a
Chicago Fac{:ovy. When we make pizzas, we
get the Chitago—s{:\/lc ones.

But you'd like a little more quality control...

So you test-marketed the SimpleFactory idea, and what you
found was that the franchises were using your factory to
create pizzas, but starting to employ their own home-grown
procedures for the rest of the process: they’d bake things

a little differently, they’d forget to cut the pizza, and they’d
use third-party boxes.

Rethinking the problem a bit, you see that what you’d really
like to do is create a framework that ties the store and the
pizza creation together, yet still allows things to remain
flexible.

In our early code, before the SimplePizzaFactory, we had
the pizza-making code tied to the PizzaStore, but it wasn’t
flexible. So, how can we have our pizza and eat it too?

Not what you want in 3 good

Lranthise.

know what he ?“JCS on

\/ou do NOT want to
his pizzas-

_

T've been making pizza
for years so I thought I'd add
my own “improvements” to the
PizzaStore procedures...

you are here »

tore and pass
it a vefevente to the NY facbor\/.

119

let the subclasses decide

A framework for the pizza store

There is a way to localize all the pizza-making activities to the PizzaStore
class, and to give the franchises freedom to have their own regional style.

What we’re going to do is put the createPizza() method back into PizzaStore,
but this time as an abstract method, and then create a PizzaStore subclass
for each regional style.

First, let’s look at the changes to the PizzaStore:

PizzaStovre is now abstract (see wh\/ below).

[

public abstract class PizzaStore {

public Pizza orderPizza (String type) {

T [_\ Now eveatePizza is back 1o being a
¢all 4o a method in the PizzaStore

pizza = createPizza (type) ; vather than on a ‘(:ac{-pr\/ ob)cd{:-

pizza.prepare() ;
pizza.bake() ;

pizza.cut();

pizza.box () ; \, All this looks \')us{: the same...

return pizza;

¢ ,
Now we've moved our ﬁac‘bor\/

abstract Pizza createPizza (String type) ; °ch5{ to this method.

(Our “ﬁac'bory method” is now
abstract in PizzaStove.

Now we’ve got a store waiting for subclasses; we’re going to have a

subclass for each regional type (NYPizzaStore, ChicagoPizzaStore,
CaliforniaPizzaStore) and each subclass is going to make the decision about
what makes up a pizza. Let’s take a look at how this is going to work.

120 Chapter 4

Allowing the subclasses to decide

Remember, the Pizza Store already has a well-honed order system in the orderPizza()
method and you want to ensure that it’s consistent across all franchises.

the factory pattern

What varies among the regional Pizza Stores is the style of pizzas they make—New York
pizza has thin crust, Chicago pizza has thick, and so on—and we are going to push all
these variations into the createPizza() method and make it responsible for creating the
right kind of pizza. The way we do this is by letting each subclass of Pizza Store define
what the createPizza() method looks like. So, we’ll have a number of concrete subclasses
of Pizza Store, each with its own pizza variations, all fitting within the Pizza Store
framework and still making use of the well-tuned orderPizza() method.

>

|£ a franchise wanks NY-style
pizzas for its tustomers, it

uses the NY subelass, which has

its own cha{:cP'lzzA() wethod,
ereating NY-style pizzas.

\

Eath subtlass provides an implementation
of the treatePizzal) method, overviding

PizzaStore

orderPizza()

createPizza() I

NYStylePizzaStore

\

createPizza()

i I £he abstract eveatePizza() method in
Pizza Store, while all subelasses make use

of the orderPizza() method defined

in Pizza Store. We could make the

orderPizza() method final if we veally

wanted 4o enforee this.

€N\

ChicagoStylePizzaStore h

createPizza()

Remember: eveatePizzal) is

abstract in P
all pizza stor

1zzd S&ﬂvcnso
e suH‘.\/YCS MUST

implement the method.

public Pizza createPizza(type) {

if (type.equals('"cheese")) {

pizza = new NYStyleCheesePizza() ;

} else if

(type.equals ("pepperoni") {

pizza = new NYStylePepperoniPizza() ;

} else if

(type.equals ("clam") {

pizza = new NYStyleClamPizza() ;

} else if

(type.equals ("veggie") {

pizza = new NYStyleVeggiePizza();

S‘umilarl\/, by using the

Chicago subtlass, we get an
implementation of ereatePizzal)
with Chicago ingrcdicn{:s.

public Pizza createPizza (type) {

if (type.equals
pizza = new
} else if (type
pizza = new
} else if (type
pizza = new
} else if (type

pizza = new

("cheese")) {
ChicagoStyleCheesePizza() ;
.equals ("pepperoni") {
ChicagoStylePepperoniPizza () ;
.equals("clam") {
ChicagoStyleClamPizza () ;
.equals ("veggie") {
ChicagoStyleVeggiePizza () ;

you are here » 121

how do subclasses decide?

I don't get it. The PizzaStore
subclasses are just subclasses. How
are they deciding anything? I don't

see any logical decision-making code in
NYStylePizzaStore....

Well, think about it from the point of view of the PizzaStore’s orderPizza() method: it is
defined in the abstract PizzaStore, but concrete types are only created in the subclasses.

is defined in the abstract

PizzaSt 12230
izzaStore o\r.'dcY‘;'{:mlC ok the subelasses. So, the
createPizza() Pizza L dea which subtlass is at&ua\\\/
orderPizza() method has no 1ae Kino, the pizzas
— running the tode and making 4

Now, to take this a little further, the orderPizza() method does a lot of things with a
Pizza object (like prepare, bake, cut, box), but because Pizza is abstract, orderPizza() has
no idea what real concrete classes are involved. In other words, it’s decoupled!

PizzaStore pizza = createPizza();
createPizzal) p?zza.prepare();
OFQEIPIZZA) ++ v+ vvvveefineeneenenennnns | pizza.bake()
pizza.cut();
pizza.box();
Pizzal) o achually get 2

i ate .
ord“ﬁuao %all‘é il:ch kind o(: Yizza will it 5:{,:?
method tan't detide; it doesn t

does detide?
-

223 ob\")cclo
";’hc ordchizzao

know how. So who

When orderPizza() calls createPizza(), one of your subclasses will be called into action to
create a pizza. Which kind of pizza will be made? Well, that’s decided by the choice of
pizza store you order from, NYStylePizzaStore or ChicagoStylePizzaStore.

[_/

NYStylePizzaStore ChicagoStylePizzaStore

createPizza() createPizza()

So, is there a real-time decision that subclasses make? No, but from the perspective of
orderPizza(), if you chose a NYStylePizzaStore, that subclass gets to determine which
pizza is made. So the subclasses aren’t really “deciding”—it was you who decided by
choosing which store you wanted—but they do determine which kind of pizza gets made.

122 Chapter 4

the factory pattern

Let’s make a Pizza Store

Being a franchise has its benefits. You get all the PizzaStore
functionality for free. All the regional stores need to do is subclass
PizzaStore and supply a createPizza() method that implements
their style of pizza. We’ll take care of the big three pizza styles for
the franchisees.

Here’s the New York regional style:

g d
2220 vetwens a Pizza, an :
i;\cca{s:\:&\ass is fully vesponsible for The NYPizzaStore extends

instantiates Piz2aStore, so it inherits the

whith contrete Pizza it ordevPiz23() method (a”‘°"3 others).

public class NYPizzaStore extends PizzaStore ({

Pizza createPizza (String item) { We've 50-[: to im\?lcvncn‘{:

if (item.equals("cheese")) { « eveatePizzal), sinte it is
abstract in PizzaStove.

return new NYStyleCheesePizza() ;
} else if (item.equals("veggie")) {
return new NYStyleVeggiePizza() ;

else if (item.equals("clam"
} (quals(Nt Heve's where we create our
tontrete tlasses. For each type of
} else if (item.equals ("pepperoni")) { Pizza we eveate the NY s{:ylc.

return new NYStylePepperoniPizza() ;

return new NYStyleClamPizza () ;

} else return null;

% Note that the orderPizzal) method in the
supertlass has no ¢lue whith Pizza we are eveating;
it \')us{: knows it tan prepare, bake, ¢ut, and box it!

Once we’ve got our PizzaStore subclasses built, it will be time
to see about ordering up a pizza or two. But before we do that,
why don’t you take a crack at building the Chicago-style and
California-style pizza stores on the next page?

you are here » 123

factory

% harpen Your pencil

We've knocked out the NYPizzaStore; just two more to go and we'll be ready to franchise! Write
the Chicago-style and California-style PizzaStore implementations here:

124

Peclaring a factory method

With just a couple of transformations to the PizzaStore class, we’ve gone from
having an object handle the instantiation of our concrete classes to a set of
subclasses that are now taking on that responsibility. Let’s take a closer look:

public abstract class PizzaStore ({

public Pizza orderPizza (String type) {

Pizza pizza;

pizza = createPizza (type) ;

pizza.prepare() ;
pizza.bake() ;
pizza.cut();
pizza.box() ;

return pizza;

}

protected abstract Pizza createPizza (String type) ;

// other methods here

Code Up Close

A factory method handles object creation and encapsulates it in a
subclass. This decouples the client code in the superclass from the
object creation code in the subclass.

A factory o, thod
is abslcra.:y{; 5: the

subdasscs are COuh‘(:
d
on {0 handle ochcfe

treation.

the factory pattern

The subtlasses o

PizzaStore

'\nS*:An{:'\a{:\on Lor us In
crca%,cPiua() me

handle 0\{.)“"‘h

e

thod-

NYStylePizzaStore

\

createPizza()

ChicagoStylePizzaStore

createPizza()

£\

Al the vesponsibility for
instantiating Pizzas has

been moved into a method
that atks as a Factory.

A «Cac’cory method vetuens
a Product that is typically
used within methods
defined in the supertlass.

abstract Product factoryMethod (String type)

N

A (:adoor\/ method isol
tode in the Su\vc\rc\ass.,
Lrom knowing what kind

Product is attually treated.

factory method maY
A\)c \’avan\\’c{cv‘ud for
Lob) ko selett amony

several vaviations

Yrodvd’f

]

ates the tlient (the
like ordchizza())
o(: Contxc{‘,c

you are here » 125

ordering a pizza

Let’s see how it works: ordering pizzas with
the pizza factory method

Ethan needs 4o order
his Pizza from 3 NY
Pizza store.

I like NY-style pizza...you
know, thin, crispy crust with
a little cheese and really
good sauce.

I like Chicago-style deep dish
pizza with thick crust and
tons of cheese.

/>

Joel needs to order his
pizza from a Chicago
pizza store. Same pizza
ordering method, but
different kind of pizzal

S0 how do they order?

126

o

First, Joel and Ethan need an instance of a PizzaStore. Joel needs to instantiate a
ChicagoPizzaStore and Ethan needs a NYPizzaStore.

6 With a PizzaStore in hand, both Ethan and Joel call the orderPizza() method and pass

(3]

in the type of pizza they want (cheese, veggie, and so on).

To create the pizzas, the createPizza() method is called, which is defined in the

two subclasses NYPizzaStore and ChicagoPizzaStore. As we defined them, the
NYPizzaStore instantiates a NY-style pizza, and the ChicagoPizzaStore instantiates a
Chicago-style pizza. In either case, the Pizza is returned to the orderPizza() method.

e The orderPizza() method has no idea what kind of pizza was created, but it knows it 1s

a pizza and it prepares, bakes, cuts, and boxes it for Ethan and Joel.

Chapter 4

the factory pattern

Let’s check out how these pizzas are Behind
really made to order... enim:
the Scenes

o Let’s follow Ethan’s order: first we need a NYPizzaStore:

= new NYPizzaStore();

PizzaStore nyPizzaStore =
\ 'Srycafcs a ihS‘{:am‘,c O‘F
PizzaStove.
'\>

e Now that we have a store, we can take an order: P &
VPiz7aSY

nyPizzaStore.orderPizza ("cheese") ; /

= - i« alled on
derPizzal) method is €3

I,:: :;P‘::zag{zorc instante ({hc) method
defined inside PizzaStore vuns/-

[
9]
[0}
(0]
s}
O
o]
N
N
-~
y
O
i)
o)
0]
S
o]

e The orderPizza() method then calls the createPizza()
method:

Pizza pizza = createPizza('"cheese");

\

Remember, eveatePizza(), the fattory
method, is implemented in the subelass. [n this

case it veturns a NY-style cheese Pizza. ~

e Finally, we have the unprepared pizza in hand and the
orderPizza() method finishes preparing it:

pizza.prepare() ;

pizza.bake() ; Al of these methods ave

pizza.cut(); defined in the svctl§\L pizza

pizza.box() ; k’_ vetuened from the ‘(:ad‘,OVZ. p
method LYC&‘tCPiua()J detine

The srderPizzal) method aets in the NYPizzaStore

k a Pizza, without knowiv‘\g .
‘:iicﬂ\l what contrete tlass it is-

you are here » 127

the pizza classes

We're just missing one thing: Pizzas!

Our Pizza Store isn’t going to be very popular
without some pizzas, so let’s implement them

1y an dostratt te

Eath Pizza has a name, a type of dough,
public abstract class Pizza { ; JC\,?C e e and 3 o wa.m%

String name;

String dough; </

String sauce;

List<String> toppings = new ArrayList<String>();

void prepare () {
System.out.println("Preparing " + name) ;

System.out.println("Tossing dough...");
eyt SN L
Yy . P g toppings: ; number of s{c?s na

for (String topping : toppings) {
A ente.
System.out.println(" " + topping); particular sequen
}

| k&~ The abstract tlass provides

some basie defaults for

void bake() { baking, tutting, and boxing,

System.out.println("Bake for 25 minutes at 350");
}

void cut() {
System.out.println("Cutting the pizza into diagonal slices");

}

void box () {
System.out.println("Place pizza in official PizzaStore box") ;

}

public String getName() { REMEMBER: we don't provide import and patkage statements in the
return name: tode listings. Get the complete sourte code from the wickedlysmart

} website at https://wickedlysmart com/head—first-design-patterns

"('\ you lose this URL, Yyou tan a|wa\/s oluick|y £ind it in the [ntro seetion.

128 Chapter 4

https://wickedlysmart.com/head-first-design-patterns/

the factory pattern

Now we just need some concrete subclasses...now about defining
New York and Chicago-style cheese pizzas?

wWn

. . . 1223 has its o
public class NYStyleCheesePizza extends Pizza { The N\{ Pi d thin tvust.

L-(‘ mavinara—style saute an

public NYStyleCheesePizza() {
name = "NY Style Sauce and Cheese Pizza";
dough = "Thin Crust Dough";

sauce = "Marinara Sauce";

toppings.add("Grated Reggiano Cheese") ; \‘\
And one topping,

chgiano theese!

The Chicago Pizza uses plum
tomatoes as a saute along
lf with extra—thick evust.

public class ChicagoStyleCheesePizza extends Pizza {
public ChicagoStyleCheesePizza() {
name = "Chicago Style Deep Dish Cheese Pizza";
dough = "Extra Thick Crust Dough";

sauce = "Plum Tomato Sauce";

toppings.add ("Shredded Mozzarella Cheese"); &—— Zt; th“‘aﬁl‘:"s'l':\/le cifccp
1sh Pizz3 has |ots
' mozzarella cheese!

void cut() {

System.out.println("Cutting the pizza into square slices");

The Chicago—style pizza also overvides the eut()
method so that the pietes ave eut into squares.

you are here » 129

make some pizzas

You've waited long enough. Time for some pizzas!

public class PizzaTestDrive {

130

public static void main(String[] args) {

PizzaStore nyStore = new NYPizzaStore();

Pizza pizza = nyStore.orderPizza("cheese");

/ d'\ﬁ:ﬂ

PizzaStore chicagoStore = new ChicagoPizzaStore() ;

wccvdﬁﬂkm°

F'\Y‘S'h c“{: stoves:

We use one store to

make Ethan's order...

System.out.println("Ethan ordered a " + pizza.getName() + "\n");

pizza = chicagoStore.orderPizza ("cheese") ;

System.out.println("Joel ordered a " + pizza.getName() + "\n");

.and the other for Joel'’s.

File Edit Window Help YouWantMootzOnThatPizza?

%java PizzaTestDrive

Preparing NY Style Sauce and Cheese Pizza
Tossing dough. ..
Adding sauce. ..
Adding toppings:
Grated Reggiano cheese
Bake for 25 minutes at 350
Cutting the pizza into diagonal slices
Place pizza in official PizzaStore box
Ethan ordered a NY Style Sauce and Cheese Pizza

Preparing Chicago Style Deep Dish Cheese Pizza
Tossing dough. ..
Adding sauce...
Adding toppings:
Shredded Mozzarella Cheese
Bake for 25 minutes at 350
Cutting the pizza into square slices
Place pizza in official PizzaStore box

Joel ordered a Chicago Style Deep Dish Cheese Pizza

Chapter 4

obh pizzas get prepared,
Ehc {3:\’\""‘35 gc’c added, and
4he pizzas ave baked, eut,
and boxed. Our supertlass
never had to know the
details; the subelass handled

all £hat just by instantiating
the righ pizza-

the factory pattern

lt’s finally time to meet the Factory Method Pattern

All factory patterns encapsulate object creation. The Factory Method Pattern encapsulates object
creation by letting subclasses decide what objects to create. Let’s check out these class diagrams to see
who the players are in this pattern:

The Creator classes

This is our abstraet /\ /_\ 0fLen the eveator tontains tode

ereator elass. |4 defines that depends on an abstract produet,

o ab . .

mcfh:j"z:jfzﬁo*‘/ PizzaStore ‘ whnc}{;s p\r:cd:t;cczltl\/ki ::Edl,a;:s(;hThc
treator ne

subtlasses implement 4o createPizzal) compnate produck ws produced.

Prodw:c PV‘Oduc{:s' orderPizza()

Since eath franthise gets its
own subelass of PizzaStove,

NYPizzaStore i ChicagoPizzaStore i i {:; < (:rcc {',o cna{:c i{:s own
createPizza() I createPizza() I Sb/l‘ of pizza by im‘?lCMcn{fmg
is e C:;afeP;zzaO 7 eveatePizzal).
Our m
Prody, a%wy meth,, “thod L produte
es pro, duct, d. [¢ Classes that ¥

rodurks ave caled
tontrete eeators

The Produet classes
Factories produte yroducts,
and in the PizzaStore, our

Pizza i y\rodué{: is a Pizza.
These are the contrete
yvoduc{:s-—a“ the pizzas that
are yroduccd b\/ our s{'p\rcs. NYStyleCheesePizza i ChicagoSterCheesePizzai
\)) NYStylePepperoniPizza i ChicagoSterPepperoniPizzai
— NYSterCIamPizz: i — ChicagoSterCIamPizz:
T— NYStyleVeggiePizza | T— ChicagoStyleVeggiePizza |
™] ™)

you are here » 131

creators and products

View Creators and Produets in Parallel

For every concrete Creator, there’s typically a whole set of products that
it creates. Chicago pizza creators create different types of Chicago-style
pizza, New York pizza creators create different types of New York—style
pizza, and so on. In fact, we can view our sets of Creator classes and their
corresponding Product classes as parallel hierarchies.

Let’s look at the two parallel class hierarchies and see how they relate:

Notice how these
¢lass hierarehies are

parallel: both have
abstract elasses that

ave extended by

The Product classes contrete classes, which The Creator classes

know about sycci‘c it

implementations for
NY and Chitago pizza.
Pizza i \/ P PizzaStore i
createPizza()
orderPizza()
NYStyleCheesePizza h ChicagoSterCheesePizzah NYPizzaStore ChicagoPizzaStore
NYStylePepperoniPizza h ChicagoSterPepperoniPizzah createPizza() createPizza()
B B
T— NYStyleClamPizza i T— ChicagoStyleClamPizza
- NYStyleVeggiePizza — ChicagoStyleVeggiePizza (7‘
¢
T— T— g)cO‘(
x¢

The fattor

132 Chapter 4

§ method is fhe key

<.

the factory pattern

We need another kind of pizza for those crazy Californians (crazy in a good way,

of course). Draw another parallel set of classes that you’d need to add a new
California region to our PizzaStore.

PizzaStore i

createPizza()
orderPizza()

. o nexe
our dv awind

NYPizzaStore ChicagoPizzaStore
createPizza() createPizza()
T
NYStyleCheesePizza h ChicagoSterCheesePizzah

NYSterPepperoniPi:za h ChicagoSterPeppero:iPizzai

- NYSterCIamPizz: h T ChicagoSterCIamPizz:
- NYSterVeggiePizzla h — ChicagoStyleVeggiePizza

— I —

Okay, now write the five most bizarre things you can think of to put on a pizza.
Then, you’ll be ready to go into business making pizza in CGalifornia!

you are here » 133

factory method defined

Factory Method Pattern defined

It’s time to roll out the official definition of the Factory Method Pattern:

The Factory Method Pattern defines an interface
for creating an object, but lets subclasses decide which

class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

As with every factory, the Factory Method Pattern gives us a way to encapsulate the
instantiations of concrete types. Looking at the class diagram below, you can see that the
abstract Creator class gives you an interface with a method for creating objects, also known
as the “factory method.” Any other methods implemented in the abstract Creator are

X
written to operate on products produced by the factory method. Only subclasses actually wh3
implement the factory method and create products.

. . . Ades
As in the official definition, you’ll often hear developers say, “the Factory Method pattern “dd;;
lets subclasses decide which class to instantiate.” Because the Creator class is written without ~ ©¢ - A
. . s
knowledge of the actual products that will be created, we say “decide” not because the '

pattern allows subclasses themselves to decide, but rather, because the decision actually comes
down to which subclass is used to create the product.

. hat contains
Creator 1s 3 i\:{ifs aﬁo\‘ all of the

Jd‘c{:;\"o“;\: "‘[:)“mah\ vate Yvodg\(;‘t;,
'::ch{: for the kactory me 0d-

/45 Product i Creator i

L Y\cmcv& l factoryMethod)
o anOperation()
Al Vrodu&{'} "\‘fc ‘E\\a{i the

ate so

same inter
H{\;sscs Lhat use the Yrodud:s
t;,An cefer 4o the inkevfate,

not the contvete ¢lass

The abstract (:acforyMcfhod()
is what all Creator subtlasses
must implement.

ConeveteCreator
ConcreteProduct ii—— ConcreteCreator h imylcmcn‘ts the
I factoryMethod() I ‘cac{-pv\/MchhodO, whieh is
the method that actually
N /‘ produtes products.

ConereteCreator is vesponsible for ereating
one or movre tontrete products. [£ is the

only ¢elass that has the knowledge of how
to treate these produets.

134 Chapter 4

therejare no
b Questions

Dum

Q: What's the advantage of the Factory Method
Pattern when you only have one ConcreteCreator?

A: The Factory Method Pattern is useful if you've only
got one concrete creator because you are decoupling the
implementation of the product from its use. If you add
additional products or change a product’s implementation,
it will not affect your Creator (because the Creator is not
tightly coupled to any ConcreteProduct).

Q: Would it be correct to say that our NY and
Chicago stores are implemented using Simple
Factory? They look just like it.

A: They're similar, but used in different ways. Even
though the implementation of each concrete store looks
a lot like the SimplePizzaFactory, remember that the
concrete stores are extending a class that has defined
createPizza() as an abstract method. It is up to each
store to define the behavior of the createPizza() method.
In Simple Factory, the factory is another object that is
composed with the PizzaStore.

Q: Are the factory method and the Creator class
always abstract?

A: No, you can define a default factory method to
produce some concrete product. Then you always
have a means of creating products even if there are no
subclasses of the Creator class.

Q: Each store can make four different kinds of
pizzas based on the type passed in. Do all concrete
creators make multiple products, or do they
sometimes just make one?

the pattern

A: We implemented what is known as the
parameterized factory method. It can make more than one
object based on a parameter passed in, as you noticed.
Often, however, a factory just produces one object and is
not parameterized. Both are valid forms of the pattern.

Q; Your parameterized types don’t seem “type-
safe.” I'm just passing in a String! What if | asked for a
“CalmPizza”?

A: You are certainly correct, and that would cause what
we call in the business a “runtime error.” There are several
other more sophisticated techniques that can be used to
make parameters more “type safe’—in other words, to
ensure errors in parameters can be caught at compile time.
For instance, you can create objects that represent the
parameter types, use static constants, or use enums.

Q,: I'm still a bit confused about the difference
between Simple Factory and Factory Method. They
look very similar, except that in Factory Method, the
class that returns the pizza is a subclass. Can you
explain?

A: You're right that the subclasses do look a lot like
Simple Factory; however, think of Simple Factory as a
one-shot deal, while with Factory Method you are creating
a framework that lets the subclasses decide which
implementation will be used. For example, the orderPizza()
method in the Factory Method Pattern provides a general
framework for creating pizzas that relies on a factory
method to actually create the concrete classes that go
into making a pizza. By subclassing the PizzaStore class,
you decide what concrete products go into making the
pizza that orderPizza() returns. Compare that with Simple
Factory, which gives you a way to encapsulate object
creation, but doesn’t give you the flexibility of Factory
Method because there is no way to vary the products
you're creating.

135

master

136

2

p [Guru and Student...

" Guru: Tell me about your training.

Student: Guru, | have taken my study of “encapsulate what
varies” further.

Guru: Go on...

Student: | have learned that one can encapsulate the code

that creates objects. When you have code that instantiates
concrete classes, this is an area of frequent change. I've learned
a technique called “factories” that allows you to encapsulate this
behavior of instantiation.

Guru: And these “factories,” of what benefit are they?

Student: There are many. By placing all my creation code in one
object or method, | avoid duplication in my code and provide one
place to perform maintenance. That also means clients depend
only upon interfaces rather than the concrete classes required to
instantiate objects. As | have learned in my studies, this allows me
to program to an interface, not an implementation, and that makes
my code more flexible and extensible in the future.

Guru: Yes, your OO instincts are growing. Do you have any
questions for your guru today?

Student: Guru, | know that by encapsulating object creation | am
coding to abstractions and decoupling my client code from actual
implementations. But my factory code must still use concrete
classes to instantiate real objects. Am | not pulling the wool over
my own eyes?

Guru: Object creation is a reality of life; we must create objects or
we will never create a single Java application. But, with knowledge
of this reality, we can design our code so that we have corralled
this creation code like the sheep whose wool you would pull

over your eyes. Once corralled, we can protect and care for the
creation code. If we let our creation code run wild, then we will
never collect its “wool.”

Student: Guru, | see the truth in this.

Guru: As | knew you would. Now, please go and meditate on
object dependencies.

8¢

harpen your pencil

2N

the factory pattern

Let's pretend you've never heard of an OO factory. Here’s a “very dependent”
version of PizzaStore that doesn’t use a factory. We need you to make a count
of the number of concrete pizza classes this class is dependent on. If you

added California-style pizzas to this PizzaStore, how many classes would it be

dependent on then?

public class DependentPizzaStore ({

public Pizza createPizza(String style, String type) {
Pizza pizza = null;
if (style.equals("NY")) {
if (type.equals("cheese")) ({

pizza = new NYStyleCheesePizza()
} else if (type.equals("veggie")) { HandksaH{hc
pizza = new NYStyleVeggiePizza() é//’“‘ NY_sbﬂthzAS
} else if (type.equals('"clam")) ({
pizza = new NYStyleClamPizza() ;
} else if (type.equals("pepperoni")) {
pizza = new NYStylePepperoniPizza() ;

}
} else if (style.equals("Chicago")) {
if (type.equals("cheese")) {

pizza = new ChicagoStyleCheesePizza() ; i

} else if (type.equals("veggie")) { Chwago‘ﬁﬂh‘wzzas
pizza = new ChicagoStyleVeggiePizza() ; é(//—

} else if (type.equals('"clam")) ({
pizza = new ChicagoStyleClamPizza() ;

} else if (type.equals("pepperoni")) {
pizza = new ChicagoStylePepperoniPizza() ;

}

} else {

System.out.println ("Error:
return null;

invalid type of pizza");

}
pizza.prepare() ;
pizza.bake() ;
pizza.cut();
pizza.box() ;
return pizza;

\/ou ¢an write Yyour

answevs here: number

Handles all the

number with

Califorria, o0

you are here » 137

object dependencies

Looking at object dependencies

When you directly instantiate an object, you are depending on its
concrete class. Take a look at our very dependent PizzaStore one
page back. It creates all the pizza objects right in the PizzaStore class
instead of delegating to a factory.

If we draw a diagram representing that version of the PizzaStore
and all the objects it depends on, here’s what it looks like:

This vevsion of the
PizzaStore depends on all
those pizza objeets, because

i it's eveating them divectly.

the im lem . hanae +o the tontrete
tlasses Chgn;“c, hﬁf:m of these) '.B:\fli‘::ni:{/jinj oSE pizzas aE«chcc{:s the
have 4, nwdhcy in P‘Z:;S'ZZC PizzaStore, we say that the PizzaStore

“dqm\ds on” the pizza im\?ltmcn‘l:a‘(:ions.

S &
VieQa® NN
Every new kind of pizza Sty\eC™
we add eveates another j
dependenty for PizzaStore.

138 Chapter 4

the factory pattern

The Pependency Inversion Principle

It should be pretty clear that reducing dependencies to
concrete classes in our code is a “good thing.” In fact, we’ve

got an OO design principle that formalizes this notion; it even oc phase you €an

has a big, formal name: Dependency Inversion Principle. Vet ::o::‘ cess the c*c(,.s n
Here’s the general principle: ‘:\fc coom Your Ya'\s{;\w‘ws
: e
move than ‘A:&:SC{:)

< ook and you
O‘Q h\l\;\c ‘; dm\‘(a{".\oh O‘Q

P T low developers

\IO\AY'

Design Principle

Depend upon abstractions. Do
not depend upon concrete classes.

At first, this principle sounds a lot like “Program to an
interface, not an implementation,” right? It 1s similar;
however, the Dependency Inversion Principle makes an even

stronger statement about abstraction. It suggests that our A “high—lcvcln Componen s a elass
high-level components should not depend on our low-level /— with behavior defined in tevms of

components; rather, they should both depend on abstractions. 4~ okher, “low—level” components.
)

But what the heck does that mean? For example, PizzaStove is a

Well, let’s start by looking again at the pizza store diagram high-—|cvc| tomponent betause
on the previous page. PizzaStore is our “high-level its behavior is defined in terms
component” and the pizza implementations are our “low- of vizzas —it eveates all the
level components,” and clearly PizzaStore is dependent on difkerent pizza objects, and
the concrete pizza classes. prepares, bakes, tuts, and boxes

them, while the pizzas it uses are

Now, this principle tells us we should instead write our code low-level eomp onents.

so that we are depending on abstractions, not concrete
classes. That goes for both our high-level modules and our
low-level modules.

But how do we do this? Let’s think about how we’d apply this
principle to our very dependent PizzaStore implementation...

you are here » 139

dependency inversion principle

Applying the Principle

Now, the main problem with the very dependent PizzaStore is that it depends

on every type of pizza because it actually instantiates concrete types in its
orderPizza() method.

While we’ve created an abstraction, Pizza, we’re nevertheless creating concrete
Pizzas in this code, so we don’t get a lot of leverage out of this abstraction.

How can we get those instantiations out of the orderPizza() method? Well, as we
know, the Factory Method Pattern allows us to do just that.

So, after we’ve applied the Factory Method Pattern, our diagram looks like this:

PizzaStore now depends only

g att elass.
220518 on Pizza, the abstr

Pizz3 is an abstract S/

tlass...an abstraetion.
\ N

The tontvete pizzd ¢\asses depend on

the Pizza sbstrattion {00, betause

they implement the P'nfa in{‘i:cvi?,cc
e (vemember, we've us'\v«; ch,ch 37—Za
in the gcmva\ sense) in the T

abstract elass:

After applying Factory Method, you’ll notice that our high-level component, the
PizzaStore, and our low-level components, the pizzas, both depend on Pizza, the
abstraction. Factory Method is not the only technique for adhering to the Dependency
Inversion Principle, but it is one of the more powerful ones.

140 Chapter 4

the

Okay, I get
the dependency part,
but why is it called

dependency inversion?

Where’s the “inversion” in Dependency
Inversion Principle?

The “inversion” in the name Dependency Inversion

/ i Principle is there because it inverts the way you typically

) o might think about your OO design. Look at the diagram
AE l on the previous page. Notice that the low-level components
L=

now depend on a higher-level abstraction. Likewise, the

high-level component is also tied to the same abstraction.

| So, the top-to-bottom dependency chart we drew a couple
of pages back has inverted itself, with both high-level and
low-level modules now depending on the abstraction.

Let’s also walk through the thinking behind the typical
\ design process and see how introducing the principle can
invert the way we think about the design...

pattern

141

invert

Inverting your thinking...

Okay, so you need to implement a Pizza Store.
What's the first thought that pops into your head?

Hmmm, Pizza Stores
prepare, bake, and box pizzas.
So, my store needs to be able to
make a bunch of different pizzas:
CheesePizza, VeggiePizza, ClamPizza,
and so on...
Right, you start at the top and follow things
down to the concrete classes. But, as you've seen,
you don’t want your pizza store to know about
the concrete pizza types, because then it’ll be

(dependent on all those concrete classes!

Now, let’s “invert” your thinking...instead of
starting at the top, start at the Pizzas and think
about what you can abstract.

Well, a CheesePizza and a
VeggiePizza and a ClamPizza are
all just Pizzas, so they should

share a Pizza interface.

Right! You are thinking about the abstraction Pizza.
So now, go back and think about the design of the
! Pizza Store again.
g

Since I now have a Pizza
abstraction, I can design my

Pizza Store and not worry about
the concrete pizza classes.

Close. But to do that you’ll have to rely on a

factory to get those concrete classes out of
your Pizza Store. Once you’ve done that, your

‘ different concrete pizza types depend only on an

abstraction, and so does your store. We’ve taken
a design where the store depended on concrete
classes and inverted those dependencies (along

y with your thinking).

142

the factory pattern

A few quidelines to help you follow
the Principle...

The following guidelines can help you avoid OO designs that violate) \ding 3
the Dependency Inversion Principle: H: e - mgu
rcgcvcncc toa contreke tlass- Use

A/_— a faetory to oet around that!

® No variable should hold a reference to a concrete class.

)
1€ You devive from a tontrete tlass, you're

depending on 3 tontrete tlass. Devive from an

Y ~ et class.
®m No class should derive from a concrete class. / abS‘{:Yaf-{IOV\; llkc an m{:cr‘('\a{,c or an abS‘{',Y‘a JC

of its base classes. implemented i

But wait, aren't these
guidelines impossible to

follow? If I follow these,
T'll never be able to write
a single program!

You’re exactly right! Like many of our principles, this is a guideline
you should strive for, rather than a rule you should follow all the time.
Clearly, every single Java program ever written violates these guidelines!

But, if you internalize these guidelines and have them in the back of
your mind when you design, you’ll know when you are violating the
principle and you’ll have a good reason for doing so. For instance, if you 1
have a class that isn’t likely to change, and you know it, then it’s not the {
end of the world if you instantiate a concrete class in your code. Think

about it; we instantiate String objects all the time without thinking twice.

Does that violate the principle? Yes. Is that okay? Yes. Why? Because

String is very unlikely to change.

If; on the other hand, a class you write is likely to change, you have some
good techniques like Factory Method to encapsulate that change.

y o

you are here »

143

families of ingredients

Meanwhile, back at the Pizza Store...

The design for the Pizza Store is really shaping up: it’s got a
flexible framework and it does a good job of adhering to design
principles.

Now, the key to Objectville Pizza’s success has always been fresh,
quality ingredients, and what you’ve discovered is that with the
new framework your franchises have been following your procedures,
but a few franchises have been substituting inferior ingredients in
their pizzas to lower costs and increase their margins. You know
you've got to do something, because in the long term this is going
to hurt the Objectville brand!

That is, the balird
the tutting the

d so on

Ensuring consistency in your ingredients

So how are you going to ensure each franchise is using quality ingredients?
You’re going to build a factory that produces them and ships them to your
franchises!

Now there’s only one problem with this plan: the franchises are located in
different regions and what is red sauce in New York is not red sauce in Chicago.
So, you have one set of ingredients that needs to be shipped to New York and a
different set that needs to be shipped to Chicago. Let’s take a closer look:

Peppevoni

Cheese

VcSS\CS

. /)/n Lamilies (doug\'\,
}9 (zza enu saute, theese,
Cheese Pizza veggjes, meats)
Oregano im?|€mcw{:a{:ions

Veggie Pizza on.
l!’algm Tomato Sauce, Mozzarella, Parmesan, bascd on rcg

Eggplant, Spinach, Black Olives

Clam Pizza
Plum Tomato Sauce, Mozzarella, Parmesan, Clams

Pepperoni Pizza
Plum Tomato Sauce, Mozzarella, Parmesan,
Eggplant, Spinach, Black Olives, Pepperoni

144 Chapter 4

CAiCaQO o ik Vew York
Prizza Wenu

Plum Tomato Sauce, Mozzarella, Parmesan, bu ‘E di ‘(: ‘('\crcn {: Ch eese Pizza
Marinara Sauce, Reggiano, Garlic

Veggie Pizza
Mqrinam Sauce, Reggiano, Mushrooms,
Onions, Red Peppers

2) Clam Pizza

Marinara Sauce, Reggiano, Fresh Clams

Pepperoni Pizza

Marinara Sauce, Reggiano, Mushrooms,
Onions, Red Peppers, Pepperoni

Fawilies of ingredients...

New York uses one set of ingredients and
Chicago another. Given the popularity of
Objectville Pizza, it won’t be long before
you also need to ship another set of regional
ingredients to California, and what’s next?
Austin?

For this to work, you’re going to have to figure
out how to handle families of ingredients.

New York

FreshClams l

the factory pattern

Chicago

FrozenClams l
PlumTomatoSauce ' ThickCrustDough '
MozzarellaCheese '

4

K\) 11, Pizzas ave made
Al ochL£V\\\; :{P;ac\n egjon has 3

ompor®” "\on of those tomponent>

from the same
d'\“:cvcn

ReggianoCheese l

Each family consists of a type of dough,
a type of sauce, a type of cheese, and a

',,,\Y\cmcvx{:a{l

MarinaraSauce l ThinCrustDough l
California

FreshClams l
BruschettaSauce ' VeryThinCrustDough '
GoatCheese '

searood ‘[:oﬂ?ing (a|on5 with a few more wcj

haven't shown, like veagies and spices).

ient Families, with

g inoved
In total, these hree veqions make up n3" of ingvcdicn{-,s.

eath vegion '\m?\emcwh'mg a Covn\ﬂc{',c (:am'\\\/

you are here » 145

ingredient

Building the ingredient factories

Now we’re going to build a factory to create our ingredients; the
factory will be responsible for creating each ingredient in the
ingredient family. In other words, the factory will need to create
dough, sauce, cheese, and so on... You'll see how we are going to
handle the regional differences shortly.

Let’s start by defining an interface for the factory that is going to
create all our ingredients:

public interface PizzaIngredientFactory {

public Dough createDough() ; L we dC‘c\"C a

L ovedien
public Sauce createSauce(); /\ For eath nd" nteckate:

c‘l’,‘\od n owr
public Cheese createCheese () ; ereate ™

public Veggies[] createVeggies() ;
public Pepperoni createPepperoni () ;

public Clams createClam() ;

Lots of new tlasses here,
one pev ingredient.

With that interface, here’s what we’re going to do:

e Build a factory for each region. To do this, you’ll create a subclass of
PizzalngredientFactory that implements each create method.

6 Implement a set of ingredient classes to be used with the factory, like
ReggianoCheese, RedPeppers, and ThickCrustDough. These classes can be
shared among regions where appropriate.

e Then we still need to hook all this up by working our new ingredient
factories into our old PizzaStore code.

146

the factory pattern

Building the New York ingredient factory

Okay, here’s the implementation for the New York ingredient factory. This
factory specializes in Marinara Sauce, Reggiano Cheese, Fresh Clams, etc.

The NY ingredient factor
imé\cm\in{sg{:hc inkerfate Ior all

ingredient fattories.
public class NYPizzalngredientFactory implements PizzalngredientFactory {

public Dough createDough() {

return new ThinCrustDough() ;

rcd'\C'\‘t in the

Ko For cath 'm(e ily, we ereate
i \
public Sauce createSauce() { "mg\’Cd‘C"JC amily) on.
the New \/o‘rk vers
return new MarinaraSauce() ;
}
public Cheese createCheese() {
return new ReggianoCheese() ;
}
public Veggies[] createVeggies() {
Veggies veggies[] = { new Garlic(), new Onion(), new Mushroom(), new RedPepper() };
return veggies;
For veagies, we veturn an avray of
' Veogies. Heve we've hardtoded the
veggjes. We eould make this mclz\rc
public Pepperoni createPepperoni () { so‘;his{ica{;sd, but that doesn é, Vrca"\/
return new SlicedPepperoni () ; add an\/ﬂ\ing {‘fo lcarm.ng Jf:hc actory
} pattern, so we Il keep it simple.

public Clams createClam() {

return new FreshClams() ;

The best sliced pepperoni-

: This is shaved between New

York and Chicago Make sure
it on the next page

Ncw \{o\r‘k oo H\c CoaS{;; H: \\/No:c:s;ou ;}c ‘{'p im\?lancwl:

56{:5 ‘(:I:CSh‘(,‘davES' Chicago has the Chicago ‘cac{:or\/ \/owscl(:.

{o settle for frozen.

you are here » 147

build a factory

148

iy harpen Your pencil

2N

Write the ChicagoPizzalngredientFactory. You can reference
the classes below in your implementation:

Spinach

BlackOlives

EggPlant

Sliced

Pepperoni

FrozenClams

ThickCrustDough

PlumTomatoSauce

MozzarellaCheese

Chapter 4

the factory pattern

Reworking the pizzas...

We’ve got our factories all fired up and ready to produce quality ingredients; now we
just need to rework our Pizzas so they only use factory-produced ingredients. We’ll
start with our abstract Pizza class:

public abstract class Pizza {
String name;

Eath pizza holds a set of ingredients

that ave used in its preparation.
Dough dough; L/_\

Sauce sauce;
Veggies veggies|[];
Cheese cheese;

Pepperoni pepperoni;

We've now made the prepare method abstract.
This is where we are going to collect the
ingredients needed for the Pizza, whith of
abstract void prepare () ; eourse will tome from the ingredient fad:ory.

Clams clam;

void bake () {
System.out.println("Bake for 25 minutes at 350");

void cut() {
System.out.println("Cutting the pizza into diagonal slices");

void box () {
System.out.println("Place pizza in official PizzaStore box") ;

void setName (String name) {

. ith
this.name = name; = 0 Eher methods vremain 4he same, wit
wr O

method:
N fhe exeeption of the prepave etho

String getName () {
return name;

public String toString() {
// code to print pizza here

you are here » 149

decoupling ingredients

Reworking the pizzas, continved...

Now that you’ve got an abstract Pizza class to work from, it’s time to
create the New York— and Chicago-style Pizzas—only this time around,
they’ll get their ingredients straight from the factory. The franchisees’ days
of skimping on ingredients are over!

When we wrote the Factory Method code, we had a NYCheesePizza and
a ChicagoCheesePizza class. If you look at the two classes, the only thing
that differs is the use of regional ingredients. The pizzas are made just
the same (dough + sauce + cheese). The same goes for the other pizzas:
Veggie, Clam, and so on. They all follow the same preparation steps; they
just have different ingredients.

So, what you’ll see is that we really don’t need two classes for each pizza;
the ingredient factory is going to handle the regional differences for us.

Here’s the CheesePizza:

public class CheesePizza extends Pizza {
PizzaIngredientFactory ingredientFactory;

public CheesePizza (PizzaIngredientFactory ingredientFactory) {

this.ingredientFactory = ingredientFactory;

void prepare() {

System.out.println("Preparing " + name) ;

To make 3 piz22 row V¢

ed 3 ‘cab‘hov\f to YroV\dc
:;\c ingrcdim’c,s. So eath
Piaza tlass gets 3 factory
passed into s tonstruttor,
and it's stoved in an
instante vaviable.

) i¢. happens/
dough = ingredientFactory.createDough () ; < Here's wheve the magic happens.

sauce = ingredientFactory.createSauce() ;

cheese = ingredientFactory.createCheese() ;

The prepare() method steps through eveating
a theese pizza, and each time it needs an
ingredient, it asks the factory to produce it.

150 Chapter 4

the factory pattern

/@ Code Up Close

The Pizza code uses the factory it has been composed with to produce the ingredients used in the
pizza. The ingredients produced depend on which factory we’re using. The Pizza class doesn’t care;
it knows how to make pizzas. Now, it’s decoupled from the differences in regional ingredients and can
be easily reused when there are factories for the Austin, the Nashville, and beyond.

sauce = ingredientFactory.createSauce() ;

We've scf{:ina the /(\ \

Piz23 instange This is our ingredient factory. The createSaucel) method veturrs ’cth saute
variable 4, ref to The Pizza class doesn't cave that is used in its vegion. |€ Ehis is a e
the specific sa:: which factory is used, as long - avedient fattory) Fhen we get mavinard

used in this Pizz.:. as it’s an ing\rcdicn{: fac’covy 9

Let’s check out the ClamPizza as well:

ClamPizza also stashes
public class ClamPizza extends Pizza ({ c— . ingrcdia\{: (:ac{'pv-\/.

PizzaIngredientFactory ingredientFactory;
public ClamPizza (PizzalngredientFactory ingredientFactory) {

this.ingredientFactory = ingredientFactory;

void prepare() {

System.out.println("Preparing " + name) ;

dough ingredientFactory.createDough () ;
<. To make a tlam pizz3, the prepare()
< method eollects the vight

ingrcdicn’cs Lreom its lotal (:ad:or\/.

sauce ingredientFactory.createSauce () ;
cheese = ingredientFactory.createCheese() ;

clam = ingredientFactory.createClam() ;

}
}]
[£ it's a New York (:ac{:o\ry,)
the elams will be Lresh; if it's

Chicago, they'll be frozen.

you are here » 151

use the right ingredient factory

Revisiting our pizza stores

We’re almost there; we just need to make a quick trip to our franchise stores to make
sure they are using the correct Pizzas. We also need to give them a reference to their
local ingredient factories:

. ed with
public class NYPizzaStore extends PizzaStore { The NY Stove ' :_)C“Y Latkory:
. "\SYC \ the
a NY pizz2 ! vodute
protected Pizza createPizza(String item) { / This will be Escdat’iol\y \(,s\:\[\c
Pizza pizza = null; \“wmdk“ks or

152

PizzaIngredientFactory ingredientFactory =

new NYPizzalngredientFactory() ;

if (item.equals("cheese")) {

pizza

pizza.

} else if

pizza

pizza.

} else if

pizza

pizza.

} else if

pizza

pizza.

}

return pizza; .%RA‘~
‘PQWEWR

Compare this version of the createPizza()
method to the one in the Factory Method
implementation earlier in the chapter.

Chapter 4

= new CheesePizza (ingredientFactory) ;
setName ("New York Style Cheese Pizza");

(item.equals ("veggie")) {

= new VeggiePizza (ingredientFactory) ;
setName ("New York Style Veggie Pizza");

(item.equals("clam")) {

= new ClamPizza (ingredientFactory) ;
setName ("New York Style Clam Pizza");

(item.equals ("pepperoni")) {

= new PepperoniPizza (ingredientFactory) ;
setName ("New York Style Pepperoni Pizza");

<\

[\ We now pass eath pizza the
factory that should be used to

produce its ingredients.

Look batk one page and make
sure You understand how the
pizza and the factory work

{;ogchhcr!

For eath 'l:\/yc of Pizza, we
instantiate a new Pizzy and
give it the ‘("ad‘l:o\r\/ it needs to
get its ingredients.

What have we done?

That was quite a series of code changes;
what exactly did we do?

We provided a means of creating a family
of ingredients for pizzas by introducing

a new type of factory called an Abstract
Factory.

An Abstract Factory gives us an interface
for creating a family of products. By
writing code that uses this interface, we
decouple our code from the actual factory
that creates the products. That allows us
to implement a variety of factories that
produce products meant for different
contexts—such as different regions,
different operating systems, or different
look and feels.

Because our code is decoupled from the
actual products, we can substitute different
factories to get different behaviors

(like getting marinara instead of plum
tomatoes).

P onides P
Q:r Yvodvd'fs'

\Cmc“ka‘t‘o“s

the factory pattern

An Abstract Factory provides an interface for

a family of products. What's a family? In our
case, it's all the things we need to make a pizza:
dough, sauce, cheese, meats, and veggies.

43
New yotk @/licago
From the abstract factory, we
derive one or more concrete
factories that produce the same
products, but with different
implementations.

1223 made W
?;gvcd'\m{’ﬁ Ymdﬁ“’
by pontcete Y
“2zaSto®

We then write our code so that it uses the
factory to create products. By passing in
a variety of factories, we get a variety of
implementations of those products. But our
client code stays the same.

you are here » 153

order some more pizza

More pizza for Ethan and Joel...

Ethan and Joel cant get enough Objectville Pizza! What Behind
they don’t know is that now their orders are making use of the Scenes
the new ingredient factories. So now when they order...

I'm stickin with
Chicago.

The first part of the order process hasn’t changed at all.
Let’s follow Ethan’s order again:

o First we need a NYPizzaStore:

PizzaStore nyPizzaStore = new NYPizzaStore() ;

\ Creates an instance

of NYPizzaStore. — N

/7}’/0[2205‘\0(0

e Now that we have a store, we can take an order:

nyPizzaStore.orderPizza ("cheese") ;

\ The orderPizzal) method is ealled
on the n\/PizLAS{'p\rc instante.

6 The orderPizza() method first calls the
createPizza() method:

Pizza pizza = createPizza('"cheese"); (See on the next \7355')

154 Chapter 4

the factory pattern

From here things change, becauvse we

are using an ingredient factory Behind
the Scenes

e When the createPizza() method is called, that’s
when our ingredient factory gets involved:

thosen and
SJ(',OYC ay\d ‘H\CV\
of eath pizzd:

ent fattory is
d in the Pizzd
the LonSJCWCJWV

The ingredi
instantiate
Vasscd into

/

= new CheesePizza (nyIngredientFactory) ;

Pizza pizza =
\ C\rca‘l:cs a ins{:am:c
of Pizza that is
tomposed with the

ew York inar di
attory. gredient

<‘I'ory

Dgredient®

e Next we need to prepare the pizza. Once the
prepare() method is called, the factory is asked to

prepare ingredients:

Prepare ()

Thn s
void prepare() {
dough = factory.createDough() ; Mavinara

sauce = factory.createSauce() ;

cheese = factory.createCheese() ; \B
Reagiano

7

For Ethan's pizza the New
ingrcdicn{‘, faetory is u'scd,
we et the NY ingvcdtcn%,s.

}

York

and so

Finally, we have the prepared pizza in hand and the
orderPizza() method bakes, cuts, and boxes the pizza.

you are here » 155

abstract factory defined

Abstract Factory Pattern defined

We’re adding yet another factory pattern to our pattern family, one that lets us create families
of products. Let’s check out the official definition for this pattern:

The Abstract Factory Pattern provides an interface
for creating families of related or dependent objects
without specifying their concrete classes.

We’ve certainly seen that Abstract FFactory allows a client to use an abstract interface to
create a set of related products without knowing (or caring) about the concrete products that
are actually produced. In this way, the client is decoupled from any of the specifics of the
concrete products. Let’s look at the class diagram to see how this all holds together:

The Abstraet Factory defines the
inkerface that all Conevete £actories

The Client is written aga'ms{: the
abstract factory and then composed
at vuntime with an actual -(:acjcor\/.

Client H
must implement, which tonsists of a set
of methods for produting products. This is the product L l
family. Each conerete
‘Z cat,{;or\/ tan produte an
<<interface>> r entive set o ?Yodué{i& <<interface>>
AbstractFactory AbstractProductA
CreateProductA() 7
CreateProductB()
] - |
ProductA2 h ProductA1 <
— ConcreteFactoryl |\ ConcreteFactory2 [S—
CreateProductA() CreateProductA()
CreateProductB() CreateProductB() .
<<interface>>
AbstractProductB
C The contvete factories implement X l
the different product families. To X =
ereate a produtt, the client uses — \ —
one of these fattories, so it never I i‘_l
has to instantiate a product object

156 Chapter 4

That’s a fairly complicated class
diagram; let’s look at it all in terms

of our PizzaStore:

The abstract
Piz.zalngrcdicnﬂ:ac{:or\/ is the
inkerface that defines how to

make a family of velated products—

the factory pattern

The tlients of the Abstract
Fattory ave the two
instances of ouwr PizzaStore,
NYPizzaStore and
ChicagoS’c\llcPiz.zaS{:o\rc.

NYPizzaStore i—

createPizza()

<<interface>>
Dough

everything we need to make a pizza- 2

—>» ThickCrustDough i

Th.inCrustDough i(—

<<interface>>
Sauce

PlumTomatoSauce i

MarinaraSauce i(—

<<interface>>
PizzalngredientFactory

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

W
NYPizzalngredientFactory — | | ChicagoPizzalngredientFactory
createDough() createDough()
createSauce() createSauce()
createCheese() createCheese()
createVeggies() createVeggies()
createPepperoni() createPepperoni()
createClam() createClam()
T

The job of the 7
tontrete pizza
Laetovies is to make
pizza ingredients. Eath

<<interface>>
Cheese

Mozzarella Cheese i

Re.ggianoCheese i(—

FrozenClams i

<<interface>>
Clams

FreshClams i(—

—

‘(:acfor\/ knows how
4o treate the vight
ob‘)cc{:s for its vegion.

Each factory produtes a different
implementation for the family of products.

v

you are here » 157

interview with factory patterns

I noticed that each method in the
Abstract Factory actually looks like

a factory method (createDough(),
createSauce(), etc.). Each method is
declared abstract and the subclasses
override it to create some object. Isn't
that a factory method?

Is that a factory method lurking inside the
Abstract Factory?

Good catch! Yes, often the methods of an Abstract Factory are
implemented as factory methods. It makes sense, right? The job of an
Abstract Factory 1s to define an interface for creating a set of products.
Each method in that interface is responsible for creating a concrete
product, and we implement a subclass of the Abstract Factory to
supply those implementations. So, factory methods are a natural way to
implement your product methods in your abstract factories.

158

Patterns Exposed
This week’s interview:

Factory Method and Abstract Factory, on each other

HeadFirst: Wow, an interview with two patterns at once! This is a first for us.

Factory Method: Yeah, I'm not so sure I like being lumped in with Abstract Factory,
you know. Just because we’re both factory patterns doesn’t mean we shouldn’t get our own
interviews.

HeadFirst: Don’t be miffed, we wanted to interview you together so we could help clear up
any confusion about who’s who for the readers. You do have similarities, and I've heard that
people sometimes get you confused.

Abstract Factory: It’s true, there have been times I've been mistaken for Factory Method,
and I know you’ve had similar issues, Factory Method. We’re both really good at decoupling
applications from specific implementations; we just do it in different ways. So I can see why
people might sometimes get us confused.

Factory Method: Well, it still ticks me off. After all, I use classes to create and you use objects;
that’s totally different!

Chapter 4

HeadFirst: Can you explain more about that, Factory
Method?

Factory Method: Sure. Both Abstract Factory and
I create objects—that’s our job. But I do it through
inheritance...

Abstract Factory: ...and I do it through object
composition.

Factory Method: Right. So that means, to create
objects using FFactory Method, you need to extend a class
and provide an implementation for a factory method.

HeadFirst: And that factory method does what?

Factory Method: It creates objects, of course! I mean,
the whole point of the Factory Method Pattern is that
you’re using a subclass to do your creation for you. In that
way, clients only need to know the abstract type they are
using; the subclass worries about the concrete type. So, in
other words, I keep clients decoupled from the concrete

types.

Abstract Factory: And I do too, only I doitin a
different way.

HeadFirst: Go on, Abstract Factory...you said
something about object composition?

Abstract Factory: I provide an abstract type for
creating a family of products. Subclasses of this type
define how those products are produced. To use the
factory, you instantiate one and pass it into some code
that is written against the abstract type. So, like Factory
Method, my clients are decoupled from the actual
concrete products they use.

HeadFirst: Oh, I see, so another advantage is that you
group together a set of related products.

Abstract Factory: That’s right.

HeadFirst: What happens if you need to extend that set
of related products to, say, add another one? Doesn’t that
require changing your interface?

Abstract Factory: That’s true; my interface has to
change if new products are added, which I know people
don’t like to do....

the pattern

Factory Method: <snicker>

Abstract Factory: What are you snickering at, Factory
Method?

Factory Method: Oh, come on, that’s a big deal!
Changing your interface means you have to go in and
change the interface of every subclass! That sounds like a
lot of work.

Abstract Factory: Yeah, but I need a big interface
because I am used to creating entire families of products.
You’re only creating one product, so you don’t really need
a big interface, you just need one method.

HeadFirst: Abstract Factory, I heard that you often use
factory methods to implement your concrete factories?

Abstract Factory: Yes, I'll admit it, my concrete
factories often implement a factory method to create
their products. In my case, they are used purely to create
products...

Factory Method: ...while in my case I usually
implement code in the abstract creator that makes use of
the concrete types the subclasses create.

HeadFirst: It sounds like you both are good at what you
do. I’'m sure people like having a choice; after all, factories
are so useful, they’ll want to use them in all kinds of
different situations. You both encapsulate object creation
to keep applications loosely coupled and less dependent
on implementations, which is really great, whether you’re
using Factory Method or Abstract Factory. May I allow
you each a parting word?

Abstract Factory: Thanks. Remember me, Abstract
Factory, and use me whenever you have families of
products you need to create and you want to make sure
your clients create products that belong together.

Factory Method: And I'm Factory Method; use me to
decouple your client code from the concrete classes you
need to instantiate, or if you don’t know ahead of time all
the concrete classes you are going to need. To use me, just
subclass me and implement my factory method!

159

patterns compared

Factory Method and Abstract Factory compared

PizzaStove is implemented as Factory

ble to

Method betause we want to be able
Provides an abstract \[\ eveate a product that varies by redion
inkevFace for sk With the Factory Nch‘chd{; caézh:?‘“
ereating one produtt . s its own tontrete tattory

___X——-—— '_L PizzaStore ‘ ?(:\ow; how to make ‘717_2_35 {;ha{: are
s d " Which createPizzal) awroyria&c for the avea.
Eath subelass leciaes

Lon(xc’cc tlass to '||r\s{',ziv\Jc'|a{:c.\‘S

New York Stove /3

NYPizzaStore h ChicagoPizzaStore h E_\
/ createPizza() I / createPizza() I Chicago Store
The Fattory Method The Fattory Method
This is the produet o(:IJchc
PizzaStove. Clients only .)
The NYPizzaStore subelass vely on this sbsbract type. The ChicagoPizzaStore
instantiates only NY-style pizzas.

subtlass instantiates onl\/
¢ Chicago—s{;\/lc pizzas.

Pizza ‘

NYStyleCheesePizza h Qubelasses ave ChicagoSterCheesePizzai
‘ NYStylePepperoniPizza h
|

instantiated b\/ the

[ChicagoStylePepperoniPizza |
| NYStyleClamPizza Fac‘oor\/ Methods. | ChicagoStyleClamPizza
NYStyleVeggiePizza | ChicagoStyleVeggiePi

((‘/'/., New York Chitago

The ¢treatePizza() method is parameterized by pizza
£ype, so we tan veturn many types of pizza products.

160 Chapter 4

the factory pattern

L. as an
Piualngrcd\m{:Fac{:ovy is m‘,\m;“tduca{:c
1 Fattory betause we nee
Nostrae ts (the ingredients): Eath
<<interface>> familes of YYOdu({:,s Lhe ingredients using its
PizzalngredientFactory p sub(,\ass imY\CmCV\ \ 9
H a\ su?? \evs.
. vact createDough() own vegion
Provides az abst a3 e crecteSaucel)
'mker(zace or tre 9 ~ createCheese()
Qw' \\53 createVeggies()
createPepperoni() Eath tontvete subtlass tveates
createClam() a ‘Fam‘ll\/ 0‘('\ ?\rodut‘l'}-
B 5
New York /7~ 2 : :
NYPizzalngredientFactory ChicagoPizzalngredientFactory Chicago
createDough() createDough()
createSauce() createSauce()
createCheese() createCheese() Mc‘U\OdS to eveate
createVeggies() createVeggies() pro dué‘{',s in an AbS‘{‘X‘aC{Z
createPepperoni() createPepperoni()
createClam() createClam() Fad"or\/ ave o(:-l:cn

.for instante, the subtlass
detides the type of dough...

\

<<interface>>
Dough

ThinCrustDoug.h ThickCrustDough i

<<interface>>
Sauce

implemented with a
Faetory Method.

..or the type of clams.

N

<<interface>>
Clams

FreshClams i FrozenClams

S

Each ingvcdien{;
K nvrcscn{:s e

K

MarinaraSauce i PlumTomatoSauce

S

a <<interface>>
\wodvc{: that is Cheese
\wodu{,cd by a) .
Fad:or‘/ Mc{;\\od ReggianoCheése i MozzarellaCheese
i the Abstract
Fattory:

The produtt subelasses eveate pavallel sets of produet families.
Here we have a New York ingredient famil\/ and a Chicago \camil\/.

you are here » 161

your design toolbox

Tools for your Design Toolbox

In this chapter, we added two more tools to your toolbox:
Factory Method and Abstract Factory. Both patterns
encapsulate object creation and allow you to decouple your
code from concrete types.

00 Hasits
00 Pintiples

Encapsiate what vavies:
2 \zosi{:'\on over inhecitante:
om!
am 'kp \V*AY‘QQCCS)
cv&,a‘t'\ons
\ed designs
e \\1{::\‘:6 nkevatt
C**,CV\S\OV\
s s\\ou\d £o‘€
e for modr‘:\ca on-

Favor
v\o'k

Progr
'm\Y\C'"

Ghyive

AR We have a new principle that

guides us to keep things
abstract whenever possible.

ok tlosed
4 on 30 pstrattions: Do vot
?;Ymd contrete tlasses:
epen

Bokh of these nev

\ patterns cnc.avsu\aicc
00 Patkeers gy
‘ an
: (“ detoupleds
1‘ Nas\‘xad: Fattory - o

AN
" an nkeckace for breBUm

va([a vc\&‘tﬂd"v

peovides ‘c\c{\b\c

Qam\\cs
cd‘ﬁ ‘N\{Z\\W‘h

Dc-cmcs an
- Fac an ob‘)cﬂ*n
m{:ﬂ‘c e £

\et subtlasses

‘ ’ mgbahba

subtlasses:

162 Chapter 4

% BULLET POINTS —

All factories encapsulate object
creation.

= Simple Factory, while not a
bona fide design pattern, is a
simple way to decouple your
clients from concrete classes.

m Factory Method relies on
inheritance: object creation is
delegated to subclasses, which
implement the factory method
to create objects.

= Abstract Factory relies on
object composition: object
creation is implemented in
methods exposed in the factory
interface.

= All factory patterns promote
loose coupling by reducing the
dependency of your application
on concrete classes.

= The intent of Factory Method
is to allow a class to defer
instantiation to its subclasses.

= The intent of Abstract Factory
is to create families of related
objects without having to
depend on their concrete
classes.

= The Dependency Inversion
Principle guides us to avoid
dependencies on concrete
types and to strive for
abstractions.

m Factories are a powerful
technique for coding to
abstractions, not concrete
classes.

&3

the factory pattern

Design Patterns Crossword

It’s been a long chapter. Grab a slice of Pizza and relax while doing
this crossword; all of the solution words are from this chapter.

| |
| ANEEEEEE
ANEEEEE ANEEEEEE

AN EEEE
NN EEEE

AlEEEEEEEEEE B

NN NN EEE

15

ACROSS DOWN

1. In Factory Method, each franchise is a . 2.We used in Simple Factory and Abstract
4. In Factory Method, who decides which class to Factory, and inheritance in Factory Method.

instantiate? 3. Abstract Factory creates a of products.
6. Role of PizzaStore in the Factory Method Pattern. 5. Not a REAL factory pattern, but handy nonetheless.
7. All New York—style pizzas use this kind of cheese. 10. Ethan likes this kind of pizza.

8. In Abstract Factory, each ingredient factory is a

9. When you use new, you are programming to an

11. createPizza() is a
12. Joel likes this kind of pizza.

13. In Factory Method, the PizzaStore and the concrete
Pizzas all depend on this abstraction.

14. When a class instantiates an object from a concrete

class, it's

creation.

on that object.
15. All factory patterns allow us to

object

you are here » 163

exercise solutions

_ @aoharpen your pencil
\\I ySoll[:’cion

We've knocked out the NYPizzaStore; just two more to go and we'll be ready to franchise! Write
the Chicago-style and California-style PizzaStore implementations here:

es ave almost exactly like the New

Both of these stor Gibfevent kinds of pizzas.

g‘ York store...they just treate

public class ChicagoPizzaStore extends PizzaStore {
protected Pizza createPizza(String item) ({

if (item.equals("cheese")) { For the Cwitage pizza
return new ChicagoStyleCheesePizza() ; stove, we bus{', have

} else if (item.equals("veggie")) { £ make sure we eveate
return new ChicagoStyleVeggiePizza() ; pd Ch\tago—SJC‘j\C pizzas-

} else if (item.equals("clam")) { /

return new ChicagoStyleClamPizza() ;
} else if (item.equals ("pepperoni")) {
return new ChicagoStylePepperoniPizza() ;
} else return null;

public class CaliforniaPizzaStore extends PizzaStore {
protected Pizza createPizza(String item) ({

\ {F:]

if (item.equals("cheese")) { .and for the Ca\\‘czi"c‘
return new CaliforniaStyleCheesePizza(); ™ pizzd store, wc\ LY_C .
. v v)

} else if (item.equals("veggie")) { re Ca\\‘co‘rma—sblcvua

return new CaliforniaStyleVeggiePizza();
} else if (item.equals("clam")) ({ /
return new CaliforniaStyleClamPizza() ;
} else if (item.equals ("pepperoni")) {
return new CaliforniaStylePepperoniPizza() ;
} else return null;

164 Chapter 4

Design Puzz]e Solution

We need another kind of pizza for those crazy Californians (crazy in a good way,
of course). Draw another parallel set of classes that you’d need to add a new
California region to our PizzaStore.

PizzaStore

createPizza()

orderPizza()

SN

the factory pattern

Heve's cvcrz{:\\mg you need to

3dd a Calikornia ¥
the tontvete Fiz=2

CaliforniaStylePepperoniPizza h

CaliforniaSterCIamPizzal h

NYPizzaStore ChicagoPizzaStore CaliforniaPizzaStore
createPizza() createPizza() createPizza()
T —
NYStyleCheesePizza h ChicagoSterCheesePizzah CaliforniaStyleCheesePizza h
NYSterPepperoniPi;za i ChicagoSterPeppero;iPizzah
— NYStyleClamPizza | ™ ChicagoStyleClamPizza -
- NYSterVeggiePizzla h — ChicagoStyleVeggiePizza
- I -

t CaliforniaSterVeggiePiz;a i

Okay, now write the five silliest things you can think of to put on a pizza.
Then, you’ll be ready to go into business making pizza in California!

Yeve

Mashed potatoes with voasted garlic
are our
s‘,%cs{:'whs--- BBQ saute

Avrtichoke hearts

MEM's

Peanuts

you are here » 165

exercise

G harpen our pencil

A solutmn Let's pretend you've never heard of an OO factory. Here’s a “very dependent”

version of PizzaStore that doesn’t use a factory. We need for you to make a
count of the number of concrete pizza classes this class is dependent on. If
you added California-style pizzas to PizzaStore, how many classes would it be
dependent on then? Here's our solution.

public class DependentPizzaStore {

public Pizza createPizza(String style, String type) {
Pizza pizza = null;
if (style.equals("NY")) {
if (type.equals("cheese")) {
pizza = new NYStyleCheesePizza() ;
} else if (type.equals("veggie")) { Han&csa“{hc
pizza = new NYStyleVeggiePizza() ; é///“]%V_skyk pizzas
} else if (type.equals("clam")) {
pizza = new NYStyleClamPizza() ;
} else if (type.equals("pepperoni")) {
pizza = new NYStylePepperoniPizza() ;
}
} else if (style.equals("Chicago")) {
if (type.equals("cheese")) {
pizza = new ChicagoStyleCheesePizza() ; Han&csa"{hcv
} else if (type.equals("veggie")) { CMmago—ﬁﬁk pizzas
pizza = new ChicagoStyleVeggiePizza() ; é///‘
} else if (type.equals("clam")) {
pizza = new ChicagoStyleClamPizza() ;
} else if (type.equals("pepperoni")) {
pizza = new ChicagoStylePepperoniPizza() ;
}
} else {
System.out.println("Error: invalid type of pizza");
return null;
}
pizza.prepare() ;
pizza.bake() ;
pizza.cut();
pizza.box() ;
return pizza;

You ¢an write Your umber with
answevs heve: @ number 12 hCa\\(:an\a o0

166

the factory pattern

_ @aoharpen your pencil
\\f ySoIEtion

Go ahead and write the ChicagoPizzalngredientFactory; you can reference the
classes below in your implementation:

public class ChicagoPizzalngredientFactory
implements PizzalIngredientFactory

{

public Dough createDough() {
return new ThickCrustDough() ;

}

public Sauce createSauce() {
return new PlumTomatoSauce() ;

}

public Cheese createCheese() {
return new MozzarellaCheese() ;

}

public Veggies|[] createVeggies() {

Veggies veggies[] = { new BlackOlives(),
new Spinach(),
new Eggplant() };

return veggies;

}

public Pepperoni createPepperoni () {
return new SlicedPepperoni () ;

}

public Clams createClam() {
return new FrozenClams () ;

}

EggPlant

Spinach

ThickCrustDough

BlackOlives SlicedPepperoni

PlumTomatoSauce .

FrozenClams

MozzarellaCheese

you are here » 167

crossword puzzle solution

* Design Patterns Crossword Solution

It’s been a long chapter. Grab a slice of Pizza and relax while doing this
crossword; all of the solution words are from this chapter. Here’s the solution.

F |
‘slulelcLials]s
'RIE|6 6|1 AN O

L

Eﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

TimlplLlElmEINIT]AlT]T 0K
EEHEEMMEHHHE E
EHEEEEEEHE!E v

WEEEE WEHEEEEEH

168 Chapter 4

5 the Singleton Pattern

* One-of-a-Kind Objects A

You talkin' to me or the car?
Oh, and when can I get my oven
mitt back?

T tell ya she's ONE
OF A KIND. Look at the
lines, the curves, the body,
the headlights!

Our next stop is the Singleton Pattern, our ticket to creating one-
of-a-kind objects for which there is only one instance, ever. You might
be happy to know that of all patterns, the Singleton is the simplest in terms of its class diagram;
in fact, the diagram holds just a single class! But don’t get too comfortable; despite its simplicity
from a class design perspective, it's going to require some deep object-oriented thinking in its

implementation. So put on that thinking cap, and let’s get going.

this is a new chapter 169

one

170

one

What is this? An
entire chapter about
how to instantiate just
ONE object?

That's one and ONLY
ONE object.

Developer: What use is that?

Guru: There are many objects we only need one of: thread pools, caches, dialog boxes, objects
that handle preferences and registry settings, objects used for logging, and objects that act as
device drivers to devices like printers and graphics cards. In fact, for many of these types of
objects, if we were to instantiate more than one we’d run into all sorts of problems like incorrect
program behavior, overuse of resources, or inconsistent results.

Developer: Okay, so maybe there are classes that should only be instantiated once, but do |
need a whole chapter for this? Can't | just do this by convention or by global variables? You know,
like in Java, | could do it with a static variable.

Guru: In many ways, the Singleton Pattern is a convention for ensuring one and only one object
is instantiated for a given class. If you've got a better one, the world would like to hear about it;
but remember, like all patterns, the Singleton Pattern is a time-tested method for ensuring only
one object gets created. The Singleton Pattern also gives us a global point of access, just like a
global variable, but without the downsides.

Developer: What downsides?

Guru: Well, here’s one example: if you assign an object to a global variable, then that object
might be created when your application begins. Right? What if this object is resource intensive
and your application never ends up using it? As you will see, with the Singleton Pattern, we can
create our objects only when they are needed.

Developer: This still doesn’t seem like it should be so difficult.

Guru: If you've got a good handle on static class variables and methods as well as access
modifiers, it’s not. But, in either case, it is interesting to see how a Singleton works, and, as
simple as it sounds, Singleton code is hard to get right. Just ask yourself: how do | prevent more
than one object from being instantiated? It's not so obvious, is it?

The Little Singleton

singleton

A swmall Socratic exercise in the style of The Little Lisper

How would you create a single object?

new MyObject() ;

And, what if another object wanted to create a
MyObject? Could it call new on MyObject again?

Yes, of course.

So as long as we have a class, can we always
instantiate it one or more times?

Yes. Well, only if it’s a public class.

And if not?

Well, if it’s not a public class, only classes in the
same package can instantiate it. But they can still
instantiate it more than once.

Hmm, interesting.

Did you know you could do this?

public MyClass {

private MyClass() {}

No, I'd never thought of it, but I guess it makes
sense because it 1s a legal definition.

What does it mean?

I suppose it is a class that can’t be instantiated
because it has a private constructor.

Well, is there ANY object that could use
the private constructor?

Hmm, I think the code in MyClass is the only
code that could call it. But that doesn’t make
much sense.

174

creating a singleton

Why not ?

Because I'd have to have an instance of the
class to call it, but I can’t have an instance
because no other class can instantiate it. It’s

a chicken-and-egg problem: I can use the
constructor from an object of type MyClass,
but I can never instantiate that object because
no other object can use “new MyClass()”.

Okay. It was just a thought.

What does this mean?

public MyClass {

}

public static MyClass getInstance() {

MyClass is a class with a static method. We can call
the static method like this:

MyClass.getInstance() ;

Why did you use MyClass instead of
some object name?

Well, getInstance() is a static method; in other
words, it is a CLASS method. You need to use the
class name to reference a static method.

Very interesting. What if we put things together?

Now can I instantiate a MyClass?

public MyClass {

private MyClass() {}

return new MyClass() ;

public static MyClass getInstance() {

Wow, you sure can.

So, now can you think of a second way to instantiate
an object?

MyClass.getInstance() ;

Can you finish the code so that only ONE instance
of MyClass is ever created?

172 Chapter 5

Yes, I think so...

(You’ll find the code on the next page.)

the singleton pattern

Dissecting the classic Singleton
Pattern implementation

Let's vename &atie t
M\[C\ass to S\ng\c{'ﬁw We \\a\‘:\c 3 v\ 3 1\;\(Wﬂt@h lt'
190\¢ ¢ :
\‘aﬂc nstante ok : Ifyou're just
public class Singleton { ';355 gm‘b\ckp“' ¢ flipping through
</ t the book, don't

rivate static Singleton uniqueInstance; . . .
P 9 u blindly type in this

code; you'll see it
// other useful instance variables here Oue (,ons{:wé{‘pr s has a few issues

e detlaved private; only . laterin the chapter.
Sing\chon tan 'ms{',ahfla‘kc :
this class!

private Singleton() {}

lic static Singleton getInstance
if (uniqueInstance == null) {

The getinstance() method
gives us a way to instantiate
the ¢elass and also +o veturn
an instance o«c it

other useful methods here b\
of Course, S
) Singleton is g
lass; 9 normal

it has other wsely] ;
Vaviables and mc{;hol:; ul ms‘l:ahCC

ﬁ Code Up Close
1§ uniqudnslcancc is null, then we

uniqueInstance = new Singleton() ;

}

return uniquelnstance;

unia\uclnsﬁancc holds owr ONE havent eveated the instante yc’c
instante; vemember, it is a and, if it doesn’t exist, we
static variable. instantiate Singleton through
its private tonstructor and
(/ assigv\ it to uniquclnsﬁahl_c. Note
that if we never need the

> if (uniquelnstance == null) { instante, it never gets treated;
this is lazy instantiation.

uniqueInstance = new Singleton() ;

} I‘C uni!\uclns{:ancc wasn't null,
return uniquelInstance; é///\ then it was previously treated.

We just £all through to the
L By the time we hit this tode, we veturn statement.

have an instance and we vetuen it.

you are here » 173

interview with

HeadFirst: Today we are pleased to bring you an
interview with a Singleton object. Why don’t you
begin by telling us a bit about yourself?

Singleton: Well, I'm totally unique; there is just one
of me!

HeadFirst: One?

Singleton: Yes, one. I'm based on the Singleton
Pattern, which ensures that at any time there is only
one instance of me.

HeadFirst: Isn’t that sort of a waste? Someone took
the time to develop a full-blown class and now all we
can get is one object out of it?

Singleton: Not at all! There is power in ONE. Let’s
say you have an object that contains registry settings.
You don’t want multiple copies of that object and its
values running around—that would lead to chaos.
By using an object like me you can ensure that every
object in your application is making use of the same
global resource.

HeadFirst: Tell us more...

Singleton: Oh, I'm good for all kinds of things.
Being single sometimes has its advantages, you know.
I'm often used to manage pools of resources, like
connection or thread pools.

HeadFirst: Sill, only one of your kind? That sounds
lonely.

Singleton: Because there’s only one of me, I do keep
busy, but it would be nice if more developers knew
me—many developers run into bugs because they have
multiple copies of objects floating around they’re not
even aware of.

174

9

Patterns Exposed
This week’s interview:
Confessions of a Singleton

HeadFirst: So, if we may ask, how do you know
there is only one of you? Can’t anyone with a new
operator create a “new you”?

Singleton: Nope! I'm truly unique.

HeadFirst: Well, do developers swear an oath not to
instantiate you more than once?

Singleton: Of course not. The truth be told...well,
this is getting kind of personal but...I have no public
constructor.

HeadFirst: NO PUBLIC CONSTRUCTOR! Oh,

sorry, no public constructor?

Singleton: That’s right. My constructor is declared
private.

HeadFirst: How does that work? How do you EVER
get instantiated?

Singleton: You see, to get a hold of a Singleton
object, you don’t instantiate one, you just ask for

an instance. So my class has a static method called
getInstance(). Call that, and I'll show up at once, ready
to work. In fact, I may already be helping other objects
when you request me.

HeadFirst: Well, Mr. Singleton, there seems to be a
lot under your covers to make all this work. Thanks
for revealing yourself and we hope to speak with you
again soon!

the singleton pattern

The Chocolate Factory

Everyone knows that all modern chocolate factories have computer-controlled
chocolate boilers. The job of the boiler is to take in chocolate and milk, bring them
to a boil, and then pass them on to the next phase of making chocolate bars.

Here’s the controller class for Choc-O-Holic, Inc.’s industrial strength Chocolate
Boiler. Check out the code; you’ll notice they’ve tried to be very careful to ensure
that bad things don’t happen, like draining 500 gallons of unboiled mixture, or
filling the boiler when it’s already full, or boiling an empty boiler!

public class ChocolateBoiler {
private boolean empty;
private boolean boiled;

. . This tode is onl\/ stavted
public ChocolateBoiler() { J when the bailer is em\’JC‘/.’

empty = true;
boiled = false;

} To §ill the boiler \{:'muslc be
public void £ill() { emphy, and, onte it &l ‘E\c s
if (isEmpty()) { <eb the empty and boiled ¥13%*
empty = false;

boiled = false;
// £ill the boiler with a milk/chocolate mixture

public void drain() { = /\ To drain the boiler, it must be full
£ (.1sEmpt.:y() && 1§B011e<51()) | (non—cw\\?‘[:\/) and also boiled. Onte it is
// drain the boiled milk and chocolate
drained, we set empty back to true.

empty = true;

public void boil() {
if ('isEmpty() && 'isBoiled()) {]
// bring the contents to a boil To boil the mixture, the boiler
boiled = true; J has to be full and not alrcady
} boiled. Onee it's boiled, we set
} the boiled Flag +o {rve.

public boolean isEmpty () {
return empty;
}

public boolean isBoiled() {
return boiled;

}

you are here » 175

chocolate singleton

_ @RA\N
‘PQWEWR
Choc-O-Holic has done a decent job of ensuring bad things don’t happen,

don’t you think? Then again, you probably suspect that if two ChocolateBoiler
instances get loose, some very bad things can happen.

How might things go wrong if more than one instance of ChocolateBoiler is
created in an application?

_ % harpen Your pencil

A Can you help Choc-O-Holic improve their ChocolateBoiler class
by turning it into a Singleton?
public class ChocolateBoiler ({
private boolean empty;

private boolean boiled;

[:::::::] ChocolateBoiler () {

empty = true;
boiled = false;

public void £ill() {

if (isEmpty()) {
empty = false;
boiled = false;

// £ill the boiler with a milk/chocolate mixture

}

// rest of ChocolateBoiler code...

176

the singleton pattern

Singleton Pattern defined

Now that you’ve got the classic implementation of Singleton
in your head, it’s time to sit back, enjoy a bar of chocolate,
and check out the finer points of the Singleton Pattern.

Let’s start with the concise definition of the pattern:

The Singleton Pattern ensures a class has only one
mstance, and provides a global point of access to it.

No big surprises there. But let’s break it down a bit more:

® What’s really going on here? We're taking a class and letting it manage a single
instance of itself. We’re also preventing any other class from creating a new
instance on its own. To get an instance, you've got to go through the class itself.

® We’re also providing a global access point to the instance: whenever you need
an instance, just query the class and it will hand you back the single instance.

As you've seen, we can implement this so that the Singleton is created in a lazy
manner, which is especially important for resource-intensive objects.

Okay, let’s check out the class diagram:

s skatits The unio\uclns{:amc
ekin ncel) mt so:\ ‘\S:\\Od’ so Yo* ¢lass vaviable holds our
th‘\b\ means s 3 C:;s Lhis mekhod one and only instance
- c,onVCV{‘C“‘\”\\f 2 tode using of Sihglc{',on-
?v‘ow\ any here W \!Z:O’ Thats :)Vs{"bal Singleton
Y. ‘\-pw?)c{—’\“s‘ha“ ol vav\a\’\" * static uniquelnstance
Smaje gessing 3 o2 ° santiztion
easy 3 C" i \azy ™ I/ Other useful Singleton data...
en

\
‘Ei?:i\\ . gm(b\c\’ﬁ"' M static getinstance()

/I Other useful Singleton methods...

R b class implementing the Srgleton
Pattern is move than 3 S'm?.)lc{’,t?n, i
is a gcncva\——yw\?osc class with its

own set of data and methods.

you are here »

177

threads are a

Bershey. A
—Housten-we have a problew...

It looks like the Chocolate Boiler has let us down; despite
the fact we improved the code using the classic Singleton
Pattern, somehow the Chocolate Boiler’s fill() method was
able to start filling the boiler even though a batch of milk
and chocolate was already boiling! That’s 500 gallons of
spilled milk (and chocolate)! What happened!?

We don't know what happened! The new Singleton
code was running fine. The only thing we can think
of is that we just added some optimizations to

the Chocolate Boiler Controller that makes use of
multiple threads.

Could the addition of threads have caused
this? Isn’t it the case that once we’ve set the
uniquelnstance variable to the sole instance
of ChocolateBoiler, all calls to getinstance()
should return the same instance? Right?

178

singleton

BE the JVM

We have two threads, each executing this code. Your job is to play the JVM
and determine whether there is a case in which two threads might get a hold
of different hoiler objects. Hint:
you really just need to Jook at the
Sequence 0¥ OP erations in the ChocolateBoiler.getInstance () ;
getInstance() method and boiler.fill () ;

the va]ue of uniqueInstance

to see how they might
overlap. Use the code
magnets to help you study how the
code might inter]eave to create two hoiler objects.

ChocolateBoiler boiler =

boiler.boil () ;

boiler.drain() ;

public static ChocolateBoiler Make sure you check your answer on

getInstance() { page 188 before continuing!

if (uniqueInstance == null) ({

e M o
Ch lateBoil ;
new ChocolateBoiler() One Two || uniqueInstance

| return uniqueInstance; '

179

multithreading and singleton

Pealing with multithreading

Our multithreading woes are almost trivially fixed by making
getinstance() a synchronized method:

public class Singleton {

private static Singleton uniquelnstance; d 4o
. hronized keywor
B\, adding the synthron thread to

// other useful instance variables here Schlns{ancc(), \;Nc(: Qorf,{i z\;:\rznjccv e
L its tuen betove !
:a;th‘od. That is, no two threads may

private Singleton() {} enter the m ethod at the same Lime.

public static synchronized Singleton getlInstance() {
if (uniqueInstance == null) {
uniqueInstance = new Singleton() ;
}

return uniqueInstance;

// other useful methods here

T agree this fixes the
problem. But synchronization
is expensive; is this an issue?

Good point, and it’s actually a little worse than you make

out: the only time synchronization is relevant is the first time
through this method. In other words, once we’ve set the
uniquelnstance variable to an instance of Singleton, we have
no further need to synchronize this method. After the first time
through, synchronization is totally unneeded overhead!

180 Chapter 5

singleton

Can we improve multithreading?

For most Java applications, we obviously need to ensure that the Singleton works in the
presence of multiple threads. But it’s expensive to synchronize the getInstance() method,
so what do we do?

Well, we have a few options...

1. Do nothing if the performance of getlnstancel() isn’t critical
to your application.

That’s right; if calling the getInstance() method isn’t causing substantial overhead for your
application, forget about it. Synchronizing getInstance() is straightforward and effective.
Just keep in mind that synchronizing a method can decrease performance by a factor

of 100, so if a high-traffic part of your code begins using getInstance(), you may have to
reconsider.

2. Move to an eagerly created instance rather than a lazily
created one.
If your application always creates and uses an instance of the Singleton, or the overhead

of creation and runtime aspects of the Singleton isn’t onerous, you may want to create
your Singleton eagerly, like this:

VRN Qo ahead and treate an

instance of Singfc‘bon
in 8 statie initializey.
This tode is 9uaranteed
tvate Singteton() 1) to be thread safe/

public class Singleton {

private static Singleton uniquelInstance = new Singleton();

public static Singleton getInstance() {

return uniqueInstance; - We've alvea d\f 50£ a%"‘ .
| instante, so :)us{', return

Using this approach, we rely on the JVM to create the unique instance of the Singleton
when the class is loaded. The JVM guarantees that the instance will be created before
any thread accesses the static uniquelnstance variable.

181

double-checked

3. Use ‘double-checked locking” to reduce the use of
synchronization in getlnstance().

With double-checked locking, we first check to see if an instance is created, and if not, THEN
we synchronize. This way, we only synchronize the first time through, just what we want.

Let’s check out the code:

public class Singleton {

private *static Singleton uniqueInstance;

private Singleton() {}

public static Singleton getInstance() { Chetk Lor an instante and
. . . isnt one, enter @
if (uniquelInstance == null) { — = £ Lhere isn
i i synthronized blotk.
synchronized (Singleton.class) { Y

if (uniqueInstance == null) { (\
uniqueInstance = new Singleton() ; Note we ov\|\/ S\/nchroniu
} the fivst time Hwaugh_’
) N

Once in the block, theek a9ain and

) it it’s still null, eveate an instance.

return uniquelnstance;

* The volatile keyword ensures that multiple threads
} handle the uniquelnstance variable eorveetly when it
is being initialized to the Singleton instance.

If performance is an issue in your use of the getInstance() method, then this method of
implementing the Singleton can drastically reduce the overhead.

Double-checked locking doesn’t work in

Java 1.4 or earlier!

' ing an old version
If for some reason you re using

1 in Java version 1.4 and
Watch ﬂ:! o r unforjt\J/rl:/TstecZ;\ltain implementations of
: lier, many tati
: o d that allow improper synchromzatlon for
i a JVM earlier than Java

ng. If you must use '
hgds of implementing your Singleton.

the volatile key :
double—checked locki

182

singleton

Meanwhile, back at the Chocolate Factory...

While we’ve been off diagnosing the multithreading problems, the chocolate boiler
has been cleaned up and is ready to go. But first, we have to fix the multithreading
problems. We have a few solutions at hand, each with different tradeoffs, so which

solution are we going to employ?

_ % harpen Your pencil
N

For each solution, describe its applicability to the
problem of fixing the Chocolate Boiler code:

Synchronize the getinstance() method:

Use eager instantiation:

Double-checked locking:

Congratulations!

At this point, the Chocolate Factory is a happy customer and Choc-O-Holic was glad to
have some expertise applied to their boiler code. No matter which multithreading solution
you applied, the boiler should be in good shape with no more mishaps. Congratulations—
not only have you managed to escape 500 Ibs of hot chocolate in this chapter, but you’ve
also been through all the potential problems of the Singleton Pattern.

183

q&a singleton

Q— For such a simple pattern
consisting of only one class, Singleton
sure seems to have some problems.

< Well, we warned you up front! But

don't let the problems discourage you; while
implementing Singletons correctly can be
tricky, after reading this chapter you're now
well informed on the techniques for creating
Singletons and should use them wherever
you need to control the number of instances
you're creating.

Q; Can’t | just create a class in which
all methods and variables are defined as
static? Wouldn’t that be the same as a
Singleton?

A: Yes, if your class is self-contained and
doesn’t depend on complex initialization.
However, because of the way static
initializations are handled in Java, this can
get very messy, especially if multiple classes
are involved. Often this scenario can result
in subtle, hard-to-find bugs involving order
of initialization. Unless there is a compelling
need to implement your “singleton” this way,
it's far better to stay in the object world.

Q; What about class loaders? |

heard there’s a chance that two class
loaders could each end up with their own
instance of Singleton.

A: Yes, that is true as each class loader
defines a namespace. If you have two or
more class loaders, you can load the same
class multiple times (once in each class
loader). Now, if that class happens to be a
Singleton, then since we have more than
one version of the class, we also have more
than one instance of Singleton. So, if you are
using multiple class loaders and Singletons,
be careful. One way around this problem is
to specify the class loader yourself.

184

t}]ere are no °
Dumb Questions

Q,: And reflection, and serialization/
deserialization?

A- Yes, reflection and serialization/
deserialization can also present problems

with Singletons. If you're an advanced Java
user using reflection, serialization, and
deserialization, you'll need to keep that in mind.

Q- Earlier we talked about the loose
coupling principle. Isn’t a Singleton
violating this? After all, every object in
our code that depends on the Singleton
is going to be tightly coupled to that very
specific object.

* Yes, and in fact this is a common
criticism of the Singleton Pattern. The
loose coupling principle says to “strive for
loosely coupled designs between objects
that interact.” It's easy for Singletons to
violate this principle: if you make a change
to the Singleton, you'll likely have to make a
change to every object connected to it.

. I've always been taught that a class
should do one thing and one thing only.
For a class to do two things is considered
bad OO design. Isn’t a Singleton violating
this too?

A: You would be referring to the Single
Responsibility Principle, and yes, you are
correct: the Singleton is responsible not only
for managing its one instance (and providing
global access), but also for whatever

its main role is in your application. So,
certainly you could argue it is taking on two
responsibilities. Nevertheless, it isn’t hard to
see that there is utility in a class managing
its own instance; it certainly makes the
overall design simpler. In addition, many
developers are familiar with the Singleton
Pattern as it is in wide use. That said, some
developers do feel the need to abstract out
the Singleton functionality.

Q: | wanted to subclass my Singleton
code, but I ran into problems. Is it okay to
subclass a Singleton?

- One problem with subclassing a
Singleton is that the constructor is private.
You can't extend a class with a private
constructor. So, the first thing you'll have
to do is change your constructor so that it's
public or protected. But then, it's not really a
Singleton anymore, because other classes
can instantiate it.

If you do change your constructor, there’s
another issue. The implementation of
Singleton is based on a static variable, so

if you do a straightforward subclass, all of
your derived classes will share the same
instance variable. This is probably not what
you had in mind. So, for subclassing to work,
implementing a registry of sorts is required
in the base class.

But what are you really gaining from
subclassing a Singleton? Like most patterns,
Singleton is not necessarily meant to be a
solution that can fit into a library. In addition,
the Singleton code is trivial to add to any
existing class. Last, if you are using a large
number of Singletons in your application,
you should take a hard look at your design.
Singletons are meant to be used sparingly.

- I still don’t totally understand
why global variables are worse than a
Singleton.

A: In Java, global variables are basically
static references to objects. There are a
couple of disadvantages to using global
variables in this manner. We've already
mentioned one: the issue of lazy versus
eager instantiation. But we need to keep

in mind the intent of the pattern: to ensure
only one instance of a class exists and to
provide global access. A global variable can
provide the latter, but not the former. Global
variables also tend to encourage developers
to pollute the namespace with lots of global
references to small objects. Singletons don’t
encourage this in the same way, but can be
abused nonetheless.

the singleton pattern

I just realized...I think we can
solve a lot of the problems with
Singleton by using an enum. Is
that right?

Ah, good idea!

Many of the problems we’ve discussed—worrying about
synchronization, class loading issues, reflection, and serialization/
deserialization issues—can all be solved by using an enum to create
your Singleton. Here’s how you’d do that:

public enum Singleton {
UNIQUE INSTANCE;
// more useful fields here
}
public class SingletonClient {
public static void main(String[] args) {
Singleton singleton = Singleton.UNIQUE INSTANCE;

// use the singleton here

}

Yep, that’s all there is to it. Simplest Singleton ever, right? Now, you

might be asking, why did we go through all that earlier with creating
ﬁ a Singleton class with a getInstance() method and then synchronizing,

and so on? We did that so you really, truly understand how Singleton

And batk in the old days works. Now that you know, you can go off and use enum whenever
when we had 4o walk o) you need a Singleton, and still be able to ace that Java interview if
sthool, u\?h\“; in the snow, " the question pops up: “How do you implement a Singleton without

both divections, Java didn't using enum?”’
have enums-

.@bvtxuu
PTOWER

Can you rework Choc-O-Holic to use an enum? Give it a try.

you are here » 185

your design toolbox

Tools for your Pesign Toolbox

You've now added another pattern to your toolbox.

Singleton gives you another method of creating
objects—in this case, unique objects.

00 Peintiples

Encapslate What vavies:
inhevitante:
Favor COm\Jos'rE\on over inhevitan

av
Program +o nkeckates not

‘ .

'\mY\CmChkahons.
oselY LO\AY\Cd desiops

cks that intevatt

en Kor exkension

Ghyive for \f’
\,c‘\-,wct'\ ob-)c

e oy

Classes 5“‘°“¥d \’mod‘\ﬁ'\ca \on-

bt tlosed xo¥

{_p CV\S\AYC \’O\A
skante of a ctlass
3\7?\\&8{';\0“)

When \Iou nccd
only have one %
running avound Your

Lyen £o the Singletor

00 Pakterrs .

S (\‘ 1 =0 : - [

I 'J—\n"’\ e

v Ensure 3 elass 0“\\.' ;
n il S‘hS\Cb“ - de 3 5\0\)3\ e

d Yy-o\l\

as ont

2 P Kigarto

Mp
“e 3 YA mstanee an

3 & Ky aceess ot

As you've seen, despite its appavent simplicity, theve ave lot of details
involved in Singlc{'pn’s implementation. After veading this .(,ha?{:cr,
hough, you've veady to go out and use Singleton in the wild.

186 Chapter 5

Q BULLET POINTS -

The Singleton Pattern
ensures you have at most
one instance of a class in
your application.

The Singleton Pattern also
provides a global access
point to that instance.

Java’s implementation
of the Singleton Pattern
makes use of a private
constructor, a static
method combined with a
static variable.

Examine your performance
and resource constraints
and carefully choose an
appropriate Singleton
implementation for
multithreaded applications
(and we should

consider all applications
multithreaded!).

Beware of the double-
checked locking
implementation; it isn’t
thread safe in versions
before Java 5.

Be careful if you are using
multiple class loaders; this
could defeat the Singleton
implementation and result
in multiple instances.

You can use Java's enums
to simplify your Singleton
implementation.

the singleton pattern

* Design Patterns Crossword

Sit back, open that case of chocolate that you were sent for solving the
multithreading problem, and have some downtime working on this
little crossword puzzle; all of the solution words are from this chapter.

13

AEEEEEEEEEE

ACROSS

3. Company that produces boilers.

6. An incorrect implementation caused this to overflow.
7. The Singleton Pattern has one.

10. To totally defeat the new constructor, we have to
declare the constructor

12. The classic implementation doesn’t handle this.

13. Singleton provides a single instance and
(three words).

14. An easy way to create Singletons in Java.
15. The Singleton was embarrassed it had no public

16. A Singleton is a class that manages an instance of

ANENE
AN EEEE JEEN

.‘

fun
.‘

DOWN
1. Added to chocolate in the boiler.

2. Flawed multithreading approach if not using Java 5 or
later (two words).

3. It was “one of a kind.”
4. Multiple can cause problems (two words).

5. If you don’t need to worry about lazy instantiation, you
can create your instance

8. One advantage over global variables:
creation.

9. Chocolate capital of the USA.
11. Singleton ensures only one of these exists.

you are here » 187

exercise solutions

BE the JVM Solution

Thead Thead Value of
One Two || uniqueInstance

public static ChocolateBoiler null

getInstance() {

public static ChocolateBoiler null
getInstance() {

his
if (uniqueInstance == null) ({ L Uh Oh,’ 4 K
/ doesn £ lodl

, : — null ood!

if (uniqueInstance == null) { 9ood.

uniqueInstance = .
<objectl>

new ChocolateBoiler() ; e—/‘

| return uniqueInstance;' <objectl> é\
)

<object2> Two different
ob%cc{:s are
!
<object2>| | :\::Zdjcwo
Chodola'(:cBoi'cr
ins{:Ahccs!/!

uniqueInstance =

new ChocolateBoiler() ;

return uniquelnstance;

188 Chapter 5

singleton

_ % harpen your pencil

A solutlon Can you help Choc-O-Holic improve their ChocolateBoiler class
by turning it into a Singleton?

public class ChocolateBoiler ({
private boolean empty;

private boolean boiled;

|private static ChocolateBoiler uniquelInstance;

ChocolateBoiler() {
empty = true;

boiled = false;

public static ChocolateBoiler getInstance() {
if (uniqueInstance == null) {

uniqueInstance = new ChocolateBoiler() ;

}

return uniqueInstance;

public void £ill() {
if (isEmpty()) {
empty = false;
boiled = false;

// £ill the boiler with a milk/chocolate mixture

}
// rest of ChocolateBoiler code...

189

exercise solutions

_ @& harpen your pencd

SOIUtlon For each solution, describe its applicability to the
problem of fixing the Chocolate Boiler code:

Synchronize the getinstance() method:

A S‘Eraighjcforward technique that is quaranteed to work. We don't seem to have

any performance conterns with the thotolate boiler, so this would be a good ¢hoite.

Use eager instantiation:

We are always 9oing to instantiate the thotolate boiler in our tode, so statically initializing

£he instante would tause no tonterns. This solution would work as well as the synthronized

method, although perhaps be less obvious to a developer familar with the standard pattern.

Double-checked locking:

Given we have no performante tonterns, double—thecked lotking seems like overkill. [n

addition, we'd have to ensure that we are vunning at least Java 5.

190

Chapter 5

6 the Command Pattern
+ Encapsulating Invocation*

e

These top secret drop
boxes have revolutionized the spy
industry. I just drop in my request and
people disappear, governments change
overnight, and my dry cleaning gets done. T
don't have to worry about when, where, or
how; it just happens! B

 You Lo e
[T

In this chapter, we take encapsulation to a whole new level:
we’re going to encapsulate method invocation. That's right—by
encapsulating method invocation, we can crystallize pieces of computation so that
the object invoking the computation doesn’t need to worry about how to do things, it
just uses our crystallized method to get it done. We can also do some wickedly smart
things with these encapsulated method invocations, like save them away for logging

or reuse them to implement undo functionality in our code.

this is a new chapter

191

home automation or bust

Home Automation or Bust, Inc.
1221 Industrial Avenue, Suite 2000

Future City, IL 62914

Greetings!

I recently received a demo and briefing from Johnny
Hurricane, CEO of Weather-O-Rama, on their new
expandable weather station. I have to say, I was so
impressed with the software architecture that I'd like to
ask you to design the API for our new Home Automation
Remote Control. In return for your services we’d be happy
to handsomely reward you with stock options in Home
Automation or Bust, Inc.

You should have already received a prototype of our
ground-breaking remote control for your perusal. The
remote control features seven programmable slots (each
can be assigned to a different household device) along with
corresponding on/off buttons for each. The remote also has
a global undo button.

T'm also attaching to this email a set of Java classes
that were created by various vendors to control home
automation devices such as lights, fans, hot tubs, audio
equipment, and other similar controllable appliances.

We’d like you to create an API for programming the remote
50 that each slot can be assigned to control a device or set of
devices. Note that it is important that we be able to control
all the current devices, and also any future devices that the
vendors may supply.

Given the work you did on the Weather-O-Rama weather
station, we know you’ll do a great job on our remote control!

We look forward to seeing your design.

Sincerely,

By [homrpan

Bill Thompson, CEO

192 Chapter 6

the command pattern

Free hardware! Let’s check out the Remote Control...

Theve are on and off
buttons for each of
the seven slots.

We
: Jots to program
e ?:o: ;:EE:rm{: devite in a;\\s
c\an{:\’:v\d conbrol it via the buktons:
So These two buttons are
used to Lontyof the
household device storeq

in slot ope...

~-and these two tontrol
he household device
ed in slot two...

...and S0 on.

Get your Shavpie out and
write your devite names heve.

Heve's the global undo button that
undoes the o\?cr&‘[:ion of the last
button pressed.

you are here » 193

vendor classes from home automation

Taking a look at the vendor classes

Let’s check out the vendor classes the CEO attached to his email.
These should give you some idea of the interfaces of the objects

we need to control from the remote.

Wow, loks of di Lferent kinds ApplianceControl '
) .
of devites that weve 9oy \ on()
4o need to be able to control off)
Stereo
on()
CeilingLight ' off()
setCd()
on) I setDvd)
o) v setRadio()
. dim() setVolume()
OutdoorLight 0 FaucetControl
on
on() off() openValve()
off() setinputChannel() closeValve()
setVolume()
S ——
CeilingFan Hottub
high() circulate()
GardenLight medium() GarageDoor JetsOn()
low()) jetsOff()
setDuskTime() off() down() setTemperature()
setDawnTime() getSpeed()
manualOn() stop() Thermostat '
T— lightOn()
manualOff() lightOff() setTemperature()
Sprinkler SecurityControl
waterOn() Light ' am()
waterOff() disarm()
S 000
off()

And some very different
kinds of interfaces atvoss

these devices.

194 Chapter 6

It looks like we have quite a set of classes here, and not a lot of
industry effort to come up with a set of common interfaces. Not
only that, it sounds like we can expect more of these classes in the
future. Designing a remote control API is going to be interesting.
Let’s get on to the design.

command

Cubicle Conversation

Your teammates are already discussing how to design the remote control APIL...

Well, we've got another design to
do. My first observation is that we've
got a simple remote with on and of f
buttons but a set of vendor classes
that are quite diverse.

Mary: Yes, I thought we’d see a bunch of classes with on() and off{)
methods, but here we’ve got methods like dim(), set Temperature(),
‘ setVolume(), and setInputChannel(), and waterOny().

Sue: Not only that, it sounds like we can expect more vendor classes in
the future with methods just as diverse.

Mary: I think it’s important we view this as a separation of concerns.
Sue: Meaning?

Mary: What I mean is that the remote should know how to interpret
button presses and make requests, but it shouldn’t know a lot about
home automation or how to turn on a hot tub.

Sue: But if the remote is dumb and just knows how to make generic
requests, how do we design the remote so that it can invoke an action
that, say, turns on a light or opens a garage door?

Mary: I’'m not sure, but we don’t want the remote to have to know the
specifics of the vendor classes.

Sue: What do you mean?

Mary: We don’t want the remote to consist of a set of if statements,
like “if slotl == Light, then light.on(), else if slot] == Hottub then
hottub.jetsOn()”. We know that is a bad design.

Sue: I agree. Whenever a new vendor class comes out, we’d have to go
in and modify the code, potentially creating bugs and more work for
ourselves!

195

command pattern

196

Jot

Hey, I couldn't help
overhearing. Since Chapter 1
T've been boning up on Design

Patterns. There's a pattern
called "Command Pattern” I think
might help.

Mary: Yeah? Tell us more.

Joe: The Command Pattern allows you to decouple the requester of an action from
the object that actually performs the action. So, here the requester would be the remote
control and the object that performs the action would be an instance of one of your
vendor classes.

Sue: How is that possible? How can we decouple them? After all, when I press a button,
the remote has to turn on a light.

Joe: You can do that by introducing command objects into your design. A command object
encapsulates a request to do something (like turn on a light) on a specific object (say, the
living room light object). So, if we store a command object for each button, when the
button is pressed we ask the command object to do some work. The remote doesn’t have
any idea what the work is, it just has a command object that knows how to talk to the right
object to get the work done. So, you see, the remote is decoupled from the light object!

Sue: This certainly sounds like it’s going in the right direction.
Mary: Still, I'm having a hard time wrapping my head around the pattern.

Joe: Given that the objects are so decoupled, it’s a little difficult to picture how the pattern
actually works.

Mary: Let me see if I at least have the right idea: using this pattern, we could create

an API in which these command objects can be loaded into button slots, allowing the
remote code to stay very simple. And the command objects encapsulate how to do a home
automation task along with the object that needs to do it.

Joe: Yes, I think so. I also think this pattern can help you with that undo button, but I
haven’t studied that part yet.

Mary: This sounds really encouraging, but I think I have a bit of work to do to really
“get” the pattern.

Sue: Me too.

command

Meanwhile, back at the Diner...,
or,A brief introduction to the Command Pattern

As Joe said, it 1s a little hard to understand the Command Pattern by just hearing its
description. But don’t fear, we have some friends ready to help: remember
our friendly diner from Chapter 1? It’s been a while since we visited Alice,
Flo, and the short-order cook, but we’ve got good reason for returning

O[)jectville Diner

(beyond the food and great conversation): the diner is going to help us e
L "= — =

n Mg Oy

understand the Command Pattern.

So, let’s take a short detour back to the diner and study the interactions
between the customers, the waitress, the orders, and the short-order "
cook. Through these interactions, you're going to understand the

objects involved in the Command Pattern and also get a feel for how the ’\\’i<’1 you wete hete.+-

decoupling works. After that, we’re going to knock out that remote control
APL

Checking in at the Objectville Diner...

Okay, we all know how the Diner operates:

e The Waitress
takes the Order,

o You, the Customer, places it on the
give the Waitress order counter,
your Order. and says “Order

up!”

6 The Short-Order Cook prepares your meal
from the Order.

197

the diner

Let’s study the interaction in a little more detail...

...and given this Diner is in Objectville, let’s think about
the object and method calls involved, too!

The Ovder tonsists of)an v;i\zv
Qlip and the Customer's ™ .
‘hf S ‘h\\a{: are wr'rH:cn on 't
\ m

T'll have a Burger
with Cheese and a
Malt Shake.

The Customer knows
what he wants and
etreates an Ovder.

The Waitress takes the Order, and when she
9ets avound 4o it, she ealls ids orderldp()
method o begin the Order’s preparation.

\ Th
 has @ € Short—Order
The QYAC“L‘E‘O“S Cook { ollows the
ms‘k" . .
e T ko instructions of the
need®® e Order and prog
ave de t frodutes
YWX\ The Ov he meal.
a .
“:\vf-")(})g;cdcv
k‘/
QnoV n
CQOV~ WY \\\LC
thod® ™
we ex
ma\“%"\'%

198 Chapter 6

command

The Objectville Piner roles and responsibilities

An Order Slip encapsulates a request to prepare a meal.

Think of the Order Slip as an object that acts as a
request to prepare a meal. Like any object, it can be passed
around—{rom the Waitress to the order counter, or to the next
Waitress taking over her shift. It has an interface that consists

of only one method, orderUp(), that encapsulates the actions
needed to prepare the meal. It also has a reference to the object
that needs to prepare it (in our case, the Short-Order Cook). It’s
encapsulated in that the Waitress doesn’t have to know what’s in
the Order or even who prepares the meal; she only needs to pass
the slip through the order window and call “Order up!”

The Waitress’s job is to take Order Slips and
invoke the orderUp() method on them.

Don't ask me to cook,
T just take orders and

yell "Order up!”

The Waitress has it easy: take an Order from the Customer,
continue helping customers until she makes it back to the
order counter, and then invoke the orderUp() method to have
the meal prepared. Aswe've already discussed, in Objectville, the
Waitress really isn’t worried about what’s on the Order or who is going
to prepare it; she just knows Order Slips have an orderUp() method she
can call to get the job done.

Now, throughout the day, the Waitress’s takeOrder() method gets
parameterized with different Order Slips from different customers, but
that doesn’t faze her; she knows all Order Slips support the orderUp()
method and she can call orderUp() any time she needs a meal prepared.

The Short-Order Cook has the knowledge
required to prepare the meal.

The Short-Order Cook is the object that really knows
how to prepare meals. Once the Waitress has invoked

the orderUp() method; the Short-Order Cook takes over and
implements all the methods that are needed to create meals.
Notice the Waitress and the Cook are totally decoupled: the
Waitress has Order Slips that encapsulate the details of the
meal; she just calls a method on each Order to get it prepared. [
Likewise, the Cook gets his instructions from the Order Slip; he

never needs to directly communicate with the Waitress. d

You can definitely
say the Waitress and I
are decoupled. She's not
even my typel

199

the diner command pattern

Okay, we have a Diner with
a Waitress who is decoupled
from the Short-Order Cook
by an Order Slip, so what?
Get to the point!

Patience, we’re getting there...

Think of the Diner as a model for an OO design pattern that allows

us to separate an object making a request from the objects that receive
and execute those requests. For instance, in our remote control API,

we need to separate the code that gets invoked when we press a button
from the objects of the vendor-specific classes that carry out those
requests. What if each slot of the remote held an object like the Diner’s
Order Slip object? Then, when a button is pressed, we could just call
the equivalent of the orderUp() method on this object and have the
lights turn on without the remote knowing the details of how to make
those things happen or what objects are making them happen.

Now, let’s switch gears a bit and map all this Diner talk to the
Command Pattern...

.@'jﬂ?tx\u
TAWER
—

Before we move on, spend some time studying
the diagram two pages back along with Diner
roles and responsibilities until you think you've
got a handle on the Obijectville Diner objects and
relationships. Once you've done that, get ready
to nail the Command Pattern!

200

the command pattern

From the Diner to the Command Pattern

Okay, we've spent enough time in the Objectville Diner that we know all the
personalities and their responsibilities quite well. Now we’re going to rework
the Diner diagram to reflect the Command Pattern. You'll see that all the
players are the same; only the names have changed.

The actions and the Receiver
are bound together in Lhe

. Commahd obA e
. < |
The Command obyd: provide et e
*ccu‘tC() ' ‘th at receiver . BCCJ..O '
- mc£h°d, c ‘t aV\d receiver.actxonZ() H
ons
cnca?su\a{:cs the action)

led to invoke the

be ¢al
tan the Receer-

atkions on The Client is vesponsible for

eveating the Command ob\')ct.{:-
The Cov?\mahd ob)cd{ consisks of

a set of attions on 3 Receiver.

Cmma®

The Client ealls sc{:Command() on
an [nvoker ob\)cc{: and passes it the
Command ochC‘l:, wheve it gets
stored until it is needed.

.whith vesults
in the attions
being invoked

ompma®

action1(), action2()

on the Reteiver.

Loading the lnvoker

The client creates a
command object.

e The client does a
setCommand() to store
the command object in
the invoker.

6 Later...the client asks
the invoker to execute
the command. Note:
as you'll see later in
the chapter, once the
command is loaded into
the invoker, it may be
used and discarded, or it
may remain and be used
many times.

you are here » 201

who what

*

W

Match the diner objects and methods with the corresponding names from the
Command Pattern.

Diner Command Pattern
Waitress Command
Short-Order Cook execute()

orderUp() Client

Order Invoker

Customer Receiver
takeOrder() setCommand()

202

the command pattern

Qur first command object

Isn’t it about time we built our first command object? Let’s go ahead and write some
code for the remote control. While we haven’t figured out how to design the remote
control API yet, building a few things from the bottom up may help us...

Implementing the Command interface

First things first: all command objects implement the same interface, which
consists of one method. In the Diner we called this method orderUp(); however,
we typically just use the name execute().

Here’s the Command interface:

public interface Command {

Simple. :
public void execute () ; f imple. Al we need is one method ealled execute().

Implementing a command to turn a light on

Light

Now, let’s say you want to implement a command for turning a light on. — on()
Referring to our set of vendor classes, the Light class has two methods: on() off()
and off{). Here’s how you can implement this as a command:

This is a tommand, so we need +o
implcmcn{: the Command interface.

public class LightOnCommand implements Command {
Light light; The construttor is passed the sycci-(:ic

f ligh{: that this ommand is going to
tontrol—say the living voom light—
and stashes it in the light instance
vaviable. When execute gets called,

: this is the light object that is going

4o be the veteiver of the vequest.

public LightOnCommand (Light light) {
this.light = light;

public void execute() { T, c*cﬂv{’-c() mc{:\\od‘\ca\\s
light.on(); he onl) method on the

Wi bieet, whith is
| 'Yh:\ff\:;\s{:owg ave controlling:

Now that you’ve got a LightOnCommand class, let’s see if we can put it to use...

you are here » 203

using the command object

Using the command object

Okay, let’s make things simple: say we’ve got a remote control with only one
button and corresponding slot to hold a device to control:

e slot o hold our tommand,

. . We have on devite.
public class SimpleRemoteControl { {_/ whith will (,on‘b'o\ one
Command slot; .
]] We have a method for setting the
public SimpleRemoteControl() {} /\ tommand the slot is going to tontrol.
This could be called multiple Limes if the
public void setCommand (Command command) { client of this tode wanted to thange
slot = command; the behavior of the vemote button.
}
public void buttonWasPressed() { =N This method is called when the button
slot.execute () ; 's pressed. All we do is £ake the
) z:u;rcn{: command bound to the slot
} and call its exeeute() method.

Creating a simple fest to use the Remote Control

Here’s just a bit of code to test out the simple remote control. Let’s take a look and
we’ll point out how the pieces match the Command Pattern diagram:

i sttern—speak-
is | ient In Command P | »
This is our Clien . - .
e remo
/ it will be \73$scd a Lomv;ahd
public class RemoteControlTest { ¢ A H‘a{: i o
public static void main(String[] args) ({ b Yca\“cs{:s.

SimpleRemoteControl remote = new SimpleRemoteControl () ;

. . _ ,) Now we eveate 3 Light
Light light new Light(); ob\')ct,{‘,- This will be the

LightOnCommand lightOn = new LightOnCommand (light) ; Reteiver of the rct\ucs{:-

"~

remote.setCommand (1ightOn) ; Heve, ereate a command and

remote.buttonWasPressed() ; D pass the Receiver it
} Her
‘{:O "l:c",\ Pass {:hc COMmahd File Edit Window Help DinerFoodYum
} e Ihvokc\r. .
%java RemoteControlTest
And then we simulate the Light is On
button bcing pressed. Heve's the ou{?u{, of ﬂ

vunning this Lest code. S

204 Chapter 6

the command pattern

G harpen your pencil
X

. . X GarageDoor
Okay, it's time for you to implement the
GarageDoorOpenCommand class. First, supply the code for the ~/7 up()
class below. You'll need the GarageDoor class diagram. down()
stop()

lightOn
public class GarageDoorOpenCommand |ight0ff8

implements Command {

ﬁ \{ouY' COdC hCVC

Now that you've got your class, what is the output of the
following code? (Hint: the GarageDoor up() method prints out
“Garage Door is Open”when it is complete.)

public class RemoteControlTest {
public static void main(String[] args) {
SimpleRemoteControl remote = new SimpleRemoteControl () ;
Light light = new Light();
GarageDoor garageDoor = new GarageDoor() ;
LightOnCommand l1lightOn = new LightOnCommand (light) ;
GarageDoorOpenCommand garageOpen =

new GarageDoorOpenCommand (garageDoor) ;

remote.setCommand (1ightOn) ;
remote.buttonWasPressed() ;
remote.setCommand (garageOpen) ;

remote.buttonWasPressed() ;

%java RemoteControlTest

\{ow ou{,\’u{: heve.

you are here » 205

command pattern defined

The Command Pattern defined

You've done your time in the Objectville Diner, you've partly
implemented the remote control API, and in the process you've
got a fairly good picture of how the classes and objects interact in
the Command Pattern. Now we’re going to define the Command
Pattern and nail down all the details.

Let’s start with its official definition:

The Command Pattern encapsulates a request as an
object, thereby letting you parameterize other objects
with different requests, queue or log requests, and
support undoable operations.

Let’s step through this. We know that a command object
encapsulates a request by binding together a set of actions on a
specific receiver. To achieve this, it packages the actions and the
receiver into an object that exposes just one method, execute().
When called, execute() causes the actions to be invoked on the
receiver. From the outside, no other objects really know what
actions get performed on what receiver; they just know that if they
call the execute() method, their request will be serviced.

We've also seen a couple examples of parameterizing an object with a
command. Back at the diner, the Waitress was parameterized with
multiple orders throughout the day. In the simple remote control,
we first loaded the button slot with a “light on” command and
then later replaced it with a “garage door open” command. Like
the Waitress, your remote slot didn’t care what command object it
had, as long as it implemented the Command interface.

What we haven’t encountered yet is using commands to
implement queues and logs and support undo operations. Don’t worry,
those are pretty straightforward extensions of the basic Command
Pattern, and we’ll get to them soon. We can also easily support
what’s known as the Meta Command Pattern once we have the
basics in place. The Meta Command Pattern allows you to create
macros of commands so that you can execute multiple commands
at once.

206 Chapter 6

An entapsulated rcqucs{:-

execute () {

receiver.action() ;

b
&

<,
9/IrOnCo®

\f(@

Pin invoker — for instante,
one slot of 4he vemote—
¢an be Varamc{:crlz.cd with
diffevent vequests.

the command pattern

The Command Pattern defined:

the class diagram

The [nvoker holds
a tommand and at

mm, | an i teckate Lor all commands. As
Command detlares an in e o o v .

Some P°i"£ asks the you alrcad\/ know, a Lo-mman . :
The Client is vcsvonsib\c for tommand +o earry exetute() method, which as.ks‘a rcti:cnvcvhfo ?cr(:o;ooan
. Conch{:cCommand and out a vequest b stkion. Youl also no Lice this intevface has an un
phish / it later in the chapter.

setting its Reteiver-

L

method.

/

callin3 its execute()

method, whith well eover a b

/

The Reteiver knows how to _j

?crgorm the work needed to
eavey out the Vct\ucs{z An\/ tlass
¢an act as a Receiver.

- @RA\N
VAWERWR

How does the design of the Command Pattern support the decoupling
of the invoker of a request and the receiver of the request?

Client Invoker i—, <interface>> ‘
Command
tC d execute()
setCommand() undo() The exetute()
VAN method invokes
: ‘H'\C actioy\(s)
on the veceiver
: needed to Lulfill
> Receiver [«—— ConcreteCommand ‘ the rco\ucs{:-
action() EXECULE() +rovrrrrerereee e s :
5| undo() :

public void execute() {

receiver.action()

}

defines a binding between an
g [nvoker makes a chucs{: b.\/
Command tavvies |
the Reteiver.

The Conc\re{:cg kS
Lion and a Reteiver. 1he
i‘;“‘.‘:‘; exetute() and he Contrete

[£tions on
ou{: b\[ca\lmg one or more d ‘(’,

you are here » 207

where do we

208

Okay, I think I've got a good
feel for the Command Pattern now.
Great tip, Joe, I think we're going to

look like superstars after finishing of f
the Remote Control APT.

Mary: Me too. So where do we begin?

Sue: Like we did in the SimpleRemote, we need to provide a
way to assign commands to slots. In our case we have seven slots,

cach with an on and off button. So we might assign commands to
the remote something like this:

onCommands [0] = onCommand;
offCommands[0] = offCommand;

and so on for each of the seven command slots.

Mary: That makes sense, except for the Light objects. How does
the remote know the living room from the kitchen light?

Sue: Ah, that’s just it—it doesn’t! The remote doesn’t know
anything but how to call execute() on the corresponding
command object when a button is pressed.

Mary: Yeah, I sorta got that, but in the implementation, how do
we make sure the right objects are turning on and off the right
devices?

Sue: When we create the commands to be loaded into the
remote, we create one LightCommand that is bound to the living
room light object and another that is bound to the kitchen light
object. Remember, the receiver of the request gets bound to

the command it’s encapsulated in. So, by the time the button is
pressed, no one cares which light is which; the right thing just
happens when the execute() method is called.

Mary: I think I've got it. Let’s implement the remote and I think
this will get clearer!

Sue: Sounds good. Let’s give it a shot...

the command pattern

Assigning Commands to slots

So we have a plan: we’re going to assign a command to each slot in the
remote control. This makes the remote control our inwoker. When a button
is pressed, the execute() method will be called on the corresponding
command, which results in actions being invoked on the receiver (like
lights, ceiling fans, and stereos).

(1) Eath slot 9,c{:s a tommand.

(2) When the button is pressed, the
exetute() method is called on the
torvesponding ommand.

% §
o
‘9"77‘OnCo6\“°

< §
Vo
Ft0nCoe
s g
&/ (f fcd“‘&
7/ingFe -
]
s <
(.o ‘e
d Gpyt
Q"Clg e Doo(gérof fCO‘Q
@ S
w
\ Q= QO
Stere® lingFS

we'll worry about the
rcmaihing slots in a bit.

)

(3) [n the exetute() method,
n our code \/W:" find that each 7L attions are invoked on the veteiver.
tommand name has “Command” The [nvoker \\/
appended to it, but in print,

wc'vc un‘(:ov"l:una‘{:cl run ou‘(: O‘F
spate for a few of them.

Stere9

you are here » 209

implementing the remote control

Implementing the Remote Control

public class RemoteControl { This time avound, the vemote is 50m3
Command[] onCommands; 4o handle seven On and off c.omman s,
: @/ whith we'll hold in tovresponding arvays:

Command[] offCommands;

In {hc COns{:ruL‘(:ov, all we need ‘[:o
do is instantiate and initialize the
On and 0FF arvays.

public RemoteControl() ({
_ . &
onCommands = new Command[7]; ﬂ_/

offCommands = new Command[7];

Command noCommand new NoCommand () ;

for (int i = 0; i < 7; i++) {
onCommands[i] = noCommand;
offCommands[i] = noCommand; The setCommand() method takes a slot
} position and an On and 0£f tommand to
} / be stored in that slot.
)
public void setCommand(int slot, Command onCommand, Command offCommand) {
onCommands [slot] = onCommand;
offCommands [slot] = offCommand; \ [£ puts these commands in the
} On and OFf avrays for later use.

public void onButtonWasPushed(int slot) {

onCommands [slot] .execute() ;

} When an On or OFF button is
R_ pressed, the hardware takes
—

. _ _ tare of ¢alling the eorresponding
1 f£f h 1
public void offButtonWasPushed(int slot) ({ methods onBuH;onWasPushch o

offCommands[slot] .execute () ; o«c‘FBu{:{:onWasPushch.

public String toString() {
StringBuffer stringBuff = new StringBuffer();
stringBuff.append ("\n------ Remote Control ------- \n") ;
for (int i = 0; i < onCommands.length; i++) {
stringBuff.append("[slot " + i + "] " + onCommands[i].getClass () .getName ()

+ " " + offCommands[i] .getClass () .getName() + "\n");
}
return stringBuff.toString(); /\ We overvide toString() to print out each slot and
} its torresponding tommand. You'll see us use this
} when we test the vemote tontrol.

210 Chapter 6

the command pattern

Implementing the Commands

Well, we’ve already gotten our feet wet implementing the LightOnCommand for the
SimpleRemoteControl. We can plug that same code in here and everything works
beautifully. Off commands are no different; in fact, the LightOffCommand looks like this:

public class LightOffCommand implements Command {
Light light;

public LightOffCommand (Light light) {
this.light = light;
} The LightOffCommand works exactly
the same way as the LightOnCommand,

; . extept that we've binding the veceiver to
public void execute() { _—~ a ditfevent action: the off0) method.
light.off () ;

}
}
Stereo

Let’s try something a little more challenging; how about writing on and off on()
commands for the Stereo? Okay, off is easy, we just bind the Stereo to the off() :Zt% 40
method in the StereoOffCommand. On is a little more complicated; let’s say we setDvd()

want to write a StereoOnWithCDCommand... setRadio()

setVolume()

public class StereoOnWithCDCommand implements Command {
Stereo stereo;

public StereoOnWithCDCommand (Stereo stereo) { Just like the L‘.Sh{:OhCommand, we

chis-steneo = stexee/ £ vassed the instante of the steveo
} F_/_\ acc’vg 9oing 4o be tontrolling and we
skove it in an instance vaviable.

public void execute() {

stereo.on() ; 4\

stereo.setCD () ; To zawy out this vequest, we need 4o call three
stereo. setVolume (11) ; methods on the stereo: fivst, furn it on, then set

it to play the CD, and Finally set the volum to Il
Why 112 Well, it’s better JchaZ lo, righ{:? o '

Not too bad. Take a look at the rest of the vendor classes; by now, you can definitely
knock out the rest of the Command classes we need for those.

you are here » 211

testing the

Putting the Remote Control through its paces

Our job with the remote is pretty much done; all we need to do is run some tests and get
some documentation together to describe the API. Home Automation or Bust, Inc., sure
is going to be impressed, don’t ya think? We’ve managed to come up with a design
that will allow them to produce a remote that is easy to maintain, and they’re going
to have no trouble convincing the vendors to write some simple command classes in
the future since those are so easy to write.

Let’s get to testing this code!

public class RemoteLoader {

public static void main(String[] args) {
RemoteControl remoteControl = new RemoteControl () ;

Light livingRoomLight = new Light("Living Room") ; Crca{’,c all the devites In
Light kitchenLight = new Light("Kitchen") ; Lheiv proper \otations:
CeilingFan ceilingFan = new CeilingFan ("Living Room") ;

GarageDoor garageDoor = new GarageDoor ("Garage") ;

Stereo stereo = new Stereo("Living Room") ;

LightOnCommand livingRoomLightOn =
new LightOnCommand (livingRoomLight) ;
LightOffCommand livingRoomLightOff = Create all the Ligh{:
new LightOffCommand (livingRoomLight) ; Command objcCﬁ-
LightOnCommand kitchenLightOn =
new LightOnCommand (kitchenLight) ;
LightOffCommand kitchenLightOff =
new LightOffCommand (kitchenLight) ;

CeilingFanOnComma!ld ceili ngFanOn ‘ H‘c OV\ and 0; ;
new CeilingFanOnCommand (ceili ngF an) ; C' ¢ 3
{: ' \ Lei 'me n.
ceilingFanOffCOﬂ'ﬂﬂalld ceili ngF anOff d‘

new CeilingFanOffCommand (ceilingFan) ;

GarageDoorUpCommand garageDoorUp =
new GarageDoorUpCommand (garageDoor) ; Crca{‘,c {:hc [,(? and Down
GarageDoorDownCommand garageDoorDown = tommands Lor the éaragc.
new GarageDoorDownCommand (garageDoor) ;

StereoOnWithCDCommand stereoOnWithCD =
new StereoOnWithCDCommand (stereo) ; Crca{c the steveo On
StereoOffCommand stereoOff = and 0-(:‘(: commands-
new StereoOffCommand (stereo) ;

212

the command pattern

remoteControl.setCommand (0, livingRoomLightOn, livingRoomLightOff) ;
remoteControl.setCommand (1, kitchenLightOn, kitchenLightOff) ;
remoteControl.setCommand (2, ceilingFanOn, ceilingFanOff) ; Now that we've So{
remoteControl.setCommand (3, stereoOnWithCD, stereoOff) ; all our tommands, we

¢an load them into

System.out.println (remoteControl) ; (_\ the vemote slots.

remoteControl.onButtonWasPushed (0) ; Here’s wheve We use our fog{:\ring() method
remoteControl.offButtonWasPushed (0) ; to PVih‘f: eath vemote slot and the tommand
remoteControl.onButtonWasPushed (1) ; assigned to it. (Note that toStrinal) ets
remoteControl.offButtonWasPushed (1) ; called achoma{:ically here, so we dog’{; ?\av
remoteControl.onButtonWasPushed (2) ; to eall ‘(‘pS'l:\ring() C%Flicifly.) ¢

remoteControl.offButtonWasPushed (2) ;
remoteControl.onButtonWasPushed (3) ;

remoteControl.offButtonWasPushed(3) ; \ Al \righ{:, we dve \rcady to "'°“!
} Now, we S‘ECF ‘Ehrough eath slot

} and push its On and OfF buttons.

Now, let’s check out the execution of our remote control test...

File Edit Window Help CommandsGetThingsDone

% java RemoteLoader
—————— Remote Control —-------
0] LightOnCommand LightOffCommand
1] LightOnCommand LightOffCommand
2] CeilingFanOnCommand CeilingFanOffCommand
3] StereoOnWithCDCommand StereocOffCommand
4] NoCommand NoCommand

5] NoCommand NoCommand
6] NoCommand K NoCommand
Onslots Off slots

Living Room light is on

Living Room light is off

Kitchen light is on

Kitchen light is off

Living Room ceiling fan is on high
Living Room ceiling fan is off

< Our tommands in aetion! Remember, the ou{?uf
from eath device comes from the vendor ¢lasses.

Living Room stereo is on For instance, when a liah{‘, ob\)ct{: is turned on, it

Living Room stereo is set for CD input PViV\{ZS “LiVihg Room ligh{: is on.”

Living Room stereo volume set to 11

Living Room stereo is off
%

you are here » 213

null

fast one?

Wait a second, what's
with that NoCommand
that's loaded in slots 4
through 62 Trying to pull a

Good catch. We did sneak a little something in there. In the remote
control, we didn’t want to check to see if a command was loaded every
time we referenced a slot. For instance, in the onButtonWasPushed)
method, we would need code like this:

public void onButtonWasPushed(int slot) {
if (onCommands[slot] != null) {
onCommands [slot] .execute() ;

}
}

So, how do we get around that? Implement a command that does nothing!

public class NoCommand implements Command {
public void execute() { }
}

Then, in our RemoteControl constructor, we assign every slot a
NoCommand object by default and we know we’ll always have some
command to call in each slot.

Command noCommand = new NoCommand () ;

for (int i = 0; i < 7; i++) {
onCommands[i] = noCommand;
offCommands[i] = noCommand;

So, in the output of our test run, you're seeing only slots that have been
assigned to a command other than the default NoCommand object,
which we assigned when we created the RemoteControl constructor.

Pattern
Honorab]e
Mention

The NoCommand object is an example of a null object. A null object is useful when
you don’t have a meaningful object to return, and yet you want to remove the
responsibility for handling null from the client. For instance, in our remote control we
didn’t have a meaningful object to assign to each slot out of the box, so we provided
a NoCommand object that acts as a surrogate and does nothing when its execute()
method is called.

You'll find uses for Null Objects in conjunction with many Design Patterns, and
sometimes you'll even see “Null Object” listed as a Design Pattern.

214

the command pattern

Time to write that documentation...

Remote Control APl Design for Home Automation or Bust, Inc.

We are pleased to present you with the following design and application programming interface for your Home
Automation Remote Control. Our primary design goal was to keep the remote control code as simple as possible so that
it doesn’t require changes as new vendor classes are produced. To this end we have employed the Command Pattern to
logically decouple the RemoteControl class from the Vendor Classes. We believe this will reduce the cost of producing
the remote as well as drastically reduce your ongoing maintenance costs.

The following class diagram provides an overview of our design:

The RemoteControl class manages a set of
Command objects, one per button. When a button
is pressed, the corresponding ButtonWasPushed()
method is called, which invokes the execute()
method on the command. That is the full extent of
the remote’s knowledge of the classes it's invoking
as the Command object decouples the remote from
the classes doing the actual home automation work.

The RemotelLoader creates a
number of Command objects
that are loaded into the slots
of the Remote Control. Each
command object encapsulates

All RemoteControl commands
implement the Command
interface, which consists of one
method: execute(). Commands
encapsulate a set of actionson a
specific vendor class. The remote
invokes these actions by calling
the execute() method.

a request of a home
automation device.

RemoteLoader RemoteControl

onCommands
offCommands
setCommand()

onButtonWasPushed()
offButtonWasPushed()

<<interface>>
Command

execute() <eeereeeeeneereofee , ceees

public void ex‘ecute() {
light.on():

public void execute () {
light.off ()
}

The Vendor Classes are used to perform
the actual home automation work of
controlling devices. Here, we're using the
Light class as an example.

Using the Command Interface, we implement each action
that can be invoked by pressing a button on the remote
with a simple Command object. The Command object holds
a reference to an object that is an instance of a Vendor Class
and implements an execute() method that calls one or more
methods on that object. Here we show two such classes
that turn a light on and off, respectively.

e

you are here » 215

represent commands with lambdas

P
‘ Serious Coding

Want to take your Command Pattern coding to the next level? You can use Java’s lambda expressions
to skip the step of creating all those concrete command objects. With lambda expressions, instead of
instantiating the concrete command objects, you can use function objects in their place. In other words,
we can use a function object as a command. And, while we’re at it, we can delete all those concrete

Command classes, too.

Let’s take a look at how youw’d use lambda expressions as commands to simplify our previous code:

The updated code, using lambda expressions:

public class RemoteLoader {

public static void main(Stringl[] args) {
RemoteControl remoteControl = new RemoteControl () ; We cvca’cc the u?)h{;

Light livingRoomLight = new Light("Living Room") ;\/ object like norme-
But we tan vemove
K the tontrete
LightOnCommand and
- ivingRoomEtght) Ligh‘[:O‘(:‘(:CommAhd
objcdfs.

remoteControl.setCommand (0, () -> livingRoomLight.on() ,
() -> livingRoomLight.off()) ;

Instead we'll write the tontrete commands as lambda
expressions that do the same work as the contrete
tommand’s exetute() method was doing: that is, turning
the ligh{: on or '{:wning the ligh‘{: off.

} Later, when you click one of the vemote’s
} buttons, the vemote talls the execute()
method of the tommand ob\)cc{ in the
slot for that button, which is represented
by this lambda expression.

Once we've replaced the concrete commands with lambda expressions, we can delete all those
concrete command classes (LightOnCommand, LightOffCommand, HottubOnCommand,
HottubOffCommand, etc.). If you do this for every concrete command, you’'ll reduce the total number
of classes in the remote control application from 22 t0 9.

Note that you can only do this if your Command interface has one abstract method. As soon as we add a
second abstract method, the lambda shorthand no longer works.

If you like this technique, check out your favorite Java reference for more information on the lambda

expression.

216

Chapter 6

command

Great job; it looks like
you've come up with a terrific
design, but aren't you forgetting one
little thing the customer asked for?
LIKE THE UNDO BUTTON?!

Whoops! We almost forgot...luckily, once
we have our basic Command classes,
undo is easy to add. Let’s step through
adding undo to our commands and to the
remote control...

What are we doing?

Okay, we need to add functionality to support the undo button on the remote. It works like
this: say the Living Room Light is off and you press the on button on the remote. Obviously
the light turns on. Now if you press the undo button, then the last action will be reversed—in
this case, the light will turn off. Before we get into more complex examples, let’s get the light
working with the undo button:

a When commands support undo, they have an undo() method that mirrors the execute()
method. Whatever execute() last did, undo() reverses. So, before we can add undo to our
commands, we need to add an undo() method to the Command interface:

public interface Command {
public void execute() ;

public void undo() ; N Here’s the new undo() method.

That was simple enough.

Now, let’s dive into the Light commands and implement the undo() method.

217

implementing undo

e Let’s start with the LightOnCommand: if the LightOnCommand’s execute() method
was called, then the on() method was last called. We know that undo() needs to do the
opposite of this by calling the off{) method.

public class LightOnCommand implements Command {
Light light;

public LightOnCommand (Light light) {
this.light = light;

public void execute() {

light.on() ;

}

public void undo() { c“w{c(z{g:} t;:; l'f’fi
light.off () ; on, SO undot/ Sim

} ight.off() &/ the \-‘5“{ batk o .

Piece of cake! Now for the LightOffCommand. Here the undo() method just
needs to call the Light’s on() method.

public class LightOffCommand implements Command {
Light light;

public LightOffCommand (Light light) ({

this.light = light;

public void execute() {
light.off () ;

pub1i<-: void undo () { And here, undo() fuens
light.on() ; é—— khe \-\3\‘{; batk on:

Could this be any easier? Okay, we aren’t done yet; we need to work a little

support into the Remote Control to handle tracking the last button pressed
and the undo button press.

218 Chapter 6

the command pattern

e To add support for the undo button, we only have to make a few small changes to the Remote
Control class. Here’s how we’re going to do it: we’ll add a new instance variable to track the last
command invoked; then, whenever the undo button is pressed, we retrieve that command and
nvoke its undo() method.

public class RemoteControlWithUndo {
Command[] onCommands; This is where we'll stash the last

Command[] of fCommands ; tommand executed for the undo button
Command undoCommand;

public RemoteControlWithUndo () {
onCommands = new Command[7];
offCommands = new Command[7];

Command noCommand = new NoCommand () ;
for (int i=0;i<7;i++) {

onCommands[i] = noCommand; Just like the other slots, undo

offCommands [i] = noCommand; starts off with a noCommand, so
} pressing undo before any other
undoCommand = noCommand ; button won't do anything at all.

public void setCommand(int slot, Command onCommand, Command offCommand) {
onCommands [slot] = onCommand;
offCommands[slot] = offCommand;

When a button is pressed, we take
the tommand and ‘Ci\rs{: exetute
it; then we save a vefevente to

it in the undoCommand instance
vaviable. We do this for both on
tommands and oﬂ: tommands.

public void onButtonWasPushed (int slot) {
onCommands [slot] .execute() ;
undoCommand = onCommands[slot];

public void offButtonWasPushed(int slot) ({
offCommands[slot] .execute() ;
undoCommand = offCommands[slot];

When the undo button is pressed, we

public void undoButtonWasPushed() { invoke the undo() method of the
undoCommand . undo () ; tommand stored in undoCommand.
} This undoes the opevation of the last

tommand exetuted.
public String toString() {

// toString code here. .. &~ M\vda{:c ‘bo add undoCommands.

you are here » 219

test drive undo

Time to QA that Undo button!

Okay, let’s rework the test harness a bit to test the undo button:

public class RemoteLoader ({

public static void main(String[] args) {
RemoteControlWithUndo remoteControl = new RemoteControlWithUndo () ;

Light livingRoomLight = new Light("Living Room"); __ Cvca‘cc a L‘,S\,{, and our new umdo()ds
. _ enabled Light On and 0£f Commands-
LightOnCommand livingRoomLightOn = /
new LightOnCommand (livingRoomLight) ;
LightOffCommand livingRoomLightOff =
new LightOffCommand (livingRoomLight) ;

remoteControl.setCommand (0, livingRoomLightOn, livingRoomLightOff) ;

dd the i
remoteControl.onButtonWasPushed (0) ; t fp {:h{: '5“: Comlmznds
remoteControl.offButtonWasPushed (0) ; € remote in slot O.
System.out.println (remoteControl) ; Turn the i

wrn the ligh
remoteControl . undoButtonWasPushed () ; \ o\f £ od {;}5‘ t on‘,i then
remoteControl.offButtonWasPushed (0) ;) an en undo.
remoteControl.onButtonWasPushed (0) ; ‘\
System.out.println (remoteControl) ; .
remoteControl .undoButtonWasPushed () ; Then, turn the ||5h{: °£‘c’ back on, and undo.

}

And here are the test results...

File Edit Window Help UndoCommandsDefyEntropy
% java RemoteLoader

Light is on ¢~ Turn the light on, then off.
Light is off

Heve are the Light commands.

------ Remote Control -------

0] LightOnCommand LightOffCommand

1] NoCommand NoCommand

2] NoCommand NoCommand

3] NoCommand NoCommand

4] NoCommand NoCommand

5] NoCommand NoCommand

6] NoCommand NoCommand
[undo] LightOffCommand

a q Undo was pressed... the LiahtO£LC mand N?w undo holds the
HEgs 20 e ‘/, undo() turns the ligh": bai on. e :—;?_’H:O‘F‘Fcomma"d' the
Light is off ast tommand invoked.
Light i: Zn &~ Then we turn the light off and batk on. o eRe

—————— Remote Control -------
0] LightOnCommand LightOffCommand
1] NoCommand NoCommand
2] NoCommand NoCommand
3] NoCommand NoCommand
4] NoCommand NoCommand
5] NoCommand NoCommand
6] NoCommand NoCommand
[undo] LightOnCommand

Now undo holds the LightOnCommand, the last
tommand invoked.

Light is off € Undo was pressed, so the light is back off.

220 Chapter 6

Using state to implement Undo

Okay, implementing undo on the Light was instructive but a little too easy. Typically,
we need to manage a bit of state to implement undo. Let’s try something a little more
interesting, like the CeilingFan from the vendor classes. The CeilingFan class allows a

number of speeds to be set along with an off method.

Here’s the source code for the CeilingFan class:

public class CeilingFan {

public static final
public static final

public static final int LOW = 1;
public static final int OFF = 0;
String location;

int speed;

int HIGH = 3;
int MEDIUM = 2;

the command pattern

CeilingFan

highi)
medium()
low()

off()
getSpeed()

Notice that the CeilingFan tlass
holds local state vepresenting the
speed of the ceiling fan.

public CeilingFan (String location) ({
this.location = location;

speed =

}

public void
speed =
// code

}

public void
speed =
// code

}

public void
speed =
// code

}

public void
speed =
// code

public int getSpeed() {
return speed;

OFF;

high() {
HIGH;
to set fan to high

medium() {
MEDIUM;
to set fan to medium

low() {
LOW;
to set fan to low

off () {
OFF;
to turn fan off

We tan

eed ©
R— S\fs'ml}) SC{'/SY“dO'

N These methods set the
speed of the eeiling fan.

ek the covert
the (,c'\\'mg an

Hmm, so to properly
implement undo, I'd have
to take the previous speed of
the ceiling fan into account...

ry 9

you are here » 221

add undo to the ceiling fan

Adding Undo to the Ceiling Fan commands

Now let’s tackle adding undo to the various Ceiling Fan commands. To
do so, we need to track the last speed setting of the fan and, if the undo()
method is called, restore the fan to its previous setting. Here’s the code for
the CeilingFanHighCommand:

\otal 5’08’0‘_J°°
Leatk of the previes

int prevSpeed; / \(CC\’d ot the fan.

public class CeilingFanHighCommand implements Command {
CeilingFan ceilingFan;

We've added

spee
public CeilingFanHighCommand (CeilingFan ceilingFan) {
this.ceilingFan = ceilingFan;
} In execute(), before we
f thange the speed of the
public void execute() { \Can, we need to Liest
prevSpeed = ceilingFan.getSpeed() ; vetord its previous state,
ceilingFan.high() ; ")us{: in case we need to
} undo our aetions.

public void undo() {

if (prevSpeed == CeilingFan.HIGH) { To undo, we set th
) (4 e

ceilingFan.high() ; = speed of the £3n back
} else if (prevSpeed == CeilingFan.MEDIUM) { +o its Previous chcd.
ceilingFan.medium() ;
} else if (prevSpeed == CeilingFan.LOW) {

ceilingFan.low() ;
} else if (prevSpeed == CeilingFan.OFF) ({
ceilingFan.off () ;

- @Bwtnn
PTAWER

We’ve got three more ceiling fan commands to write: low,
medium, and off. Can you see how these are implemented?

222 Chapter 6

the command pattern

Get ready to test the ceiling fan

Time to load up our remote control with the ceiling fan

commands. We’re going to load slot 0’s on button with the
medium setting for the fan and slot 1 with the high setting.
Both corresponding off buttons will hold the ceiling fan off
command.

Here’s our test script:

public class RemotelLoader ({

public static void main(String[] args) {

RemoteControlWithUndo remoteControl = new RemoteControlWithUndo () ;
CeilingFan ceilingFan = new CeilingFan ("Living Room") ;

CeilingFanMediumCommand ceilingFanMedium =
new CeilingFanMediumCommand (ceilingFan) ; Heve we instantiate three
CeilingFanHighCommand ceilingFanHigh = / tommands: medium, high, and ott.
new CeilingFanHighCommand (ceilingFan) ;
CeilingFanOffCommand ceilingFanOff =

new CeilingFanOffCommand(ceilingFan); Heve we put medium in
[slot O, and hig\w in slot
remoteControl.setCommand (0, ceilingFanMedium, ceilingFanOff); |- ‘2" also ‘O?id up the
Lommand.

remoteControl.setCommand (1, ceilingFanHigh, ceilingFanOff) ;

Fivst, turn the £an on medium.

remoteControl.onButtonWasPushed (0) ;
remoteControl.offButtonWasPushed (0) ;

<
<« Then tumn it off.

< Undo! [should 90 back to medium...

System.out.println (remoteControl) ;
remoteControl.undoButtonWasPushed () ;

remoteControl.onButtonWasPushed(1l); €~ Turn it on to high Ehis time.
System.out.println (remoteControl) ; AV\ d, one more wndo; it should 90 back
)

remoteControl .undoButtonWasPushed () ; b— +o medium.

you are here » 223

test drive the ceiling fan

Testing the ceiling fan...

Okay, let’s fire up the remote, load it with commands, and push some buttons!

File Edit Window Help UndoThis!

% java RemoteLoader

Twen the Cciling fan on
S medium, then turn it off.

Living Room ceiling fan is on medium

Living Room ceiling fan is off

Remote Control Heve ave the tommands
0] CeilingFanMediumCommand CeilingFanOffCommand T in the vemote tontrol-
1] CeilingFanHighCommand CeilingFanOffCommand
2] NoCommand NoCommand
3] NoCommand NoCommand
4] NoCommand NoCommand
5] NoCommand NoCommand
6] NoCommand NoCommand

[undo] CeilingFanOffCommand z=—

--and undo has the last tommand
executed, the CeilingFan0££Command,
with the previous speed of medium.

Living Room ceiling fan is on medium &— Undo the last command, and it goes back to medium.
Living Room ceiling fan is on high <
Now, turn it on hish.
Remote Control
0] CeilingFanMediumCommand CeilingFanOffCommand
1] CeilingFanHighCommand CeilingFanOffCommand
2] NoCommand NoCommand
3] NoCommand NoCommand
4] NoCommand NoCommand
5] NoCommand NoCommand
6] NoCommand NoCommand
[undo] CeilingFanHighCommand & Now, high is the last
tommand exetuted.
Living Room ceiling fan is on medium
One more undo, and the eeiling
‘Fa" 9oes back to medium spccd.

224 Chapter 6

Every remote needs a Party Mode!

What’s the point of having a remote if you
can’t push one button and have the lights

the command pattern

Stereo

on()
off()

setCd()

setDvd()
setRadio()
setVolume()

dimmed, the stereo and TV turned on, and
the hot tub fired up?

THMF---r-

on()

off()
circulate()
jetsOn()
jetsOff()

Hmm, our remote

setTemperature()

on()

off()
setinputChannel()
setVolume()

T

on()
off()
dim()

control would need a
button for each device, so
I don't think we can do this.

Mary's idea is to make a new
kind of Command that can
exetute other Commands...
and move than one of them!/
Pretty good idea, huh? '

public class MacroCommand implements Command {
Command[] commands;

public MacroCommand (Command[] commands) {
this.commands = commands;

Hold on, Sue, don't be
so sure. I think we can do
this without changing the
remote at alll

>

} N—— Take an arvay of Commands and store
them in the MaevroCommand.

public void execute() {
for (int i = 0; i < commands.length; i++) {
commands[i] .execute() ;

}

) k When the matro gets exetuted by the vemote,
) exetute those tommands one at a time.

you are here »

225

create a macro command

Using a macro command

Let’s step through how we use a macro command:

226

o First we create the set of commands we want to go into the macro:

Create all the devices: 3 light,

/‘ tv, stereo, and hot tub.

Now treate all the On
¢ tommands to tontrol them.

Light light = new Light("Living Room") ;
TV tv new TV ("Living Room") ;
Stereo stereo

new Stereo("Living Room") ;
Hottub hottub = new Hottub() ;

LightOnCommand lightOn

new LightOnCommand (light) ;
StereoOnCommand stereoOn = new StereoOnCommand (stereo) ;
TVOnCommand tvOn new TVOnCommand (tv) ;
HottubOnCommand hottubOn new HottubOnCommand (hottub) ;

_ G harpen your pencil
X7

We'll also need commands for the off buttons.
Write the code to create those here:

Create an avvay for
On tommands and
an arvay for OFF

Lommand$-~~

e Next we create two arrays, one for the On commands and one for the Off
commands, and load them with the corresponding commands:

o

{ 1lightOn, stereoOn, tvOn, hottubOn};
Command|[] partyOff = { lightOff, stereoOff, tvOff, hottubOff};

Command[] partyOn

~and treate two
€ ctorresponding macros
1o hold them.

MacroCommand partyOnMacro new MacroCommand (partyOn) ;

MacroCommand partyOffMacro new MacroCommand (partyOff) ;

e Then we assign MacroCommand to a button like we always do:

[\ Assign the matro
remoteControl.setCommand (0, partyOnMacro, partyOffMacro) ; pommand o 3 button o
You would any tommand.

Chapter 6

the command pattern

e Finally, we just need to push some buttons and see if this works.

System.out.println (remoteControl) ;

System.out.println("--- Pushing Macro On---");

)
remoteControl.onButtonWasPushed (0) ; Here’s the ou{:?u{:.
System.out.println("--- Pushing Macro Off---");

remoteControl.offButtonWasPushed (0) ;

File Edit Window Help You Can’'tBeatABabka

% java RemoteLoader l/-\ Here are the two matro tommands.
Remote Control f

[slot 0] MacroCommand MacroCommand

[slot 1] NoCommand NoCommand

[slot 2] NoCommand NoCommand

[slot 3] NoCommand NoCommand

[slot 4] NoCommand NoCommand

[slot 5] NoCommand NoCommand

[slot 6] NoCommand NoCommand

[undo] NoCommand

All the Commands in the
matro are exetuted when we
invoke the on matvo...

--- Pushing Macro On---

Light is on

Living Room stereo is on

Living Room TV is on

Living Room TV channel is set for DVD
Hottub is heating to a steaming 104 degrees
Hottub is bubbling!

~~and when we invoke the off
--- Pushing Macro Off--- & wmatro. Looks like it works.

Light is off

Living Room stereo is off
Living Room TV is off

Hottub is cooling to 98 degrees

you are here » 227

exercise

}

}
}

public MacroCommand (Command[] commands) {
this.commands = commands;

public void execute() {
for (int i = 0; i < commands.length; i++) {
commands[i] .execute () ;

public void undo() {

The only thing our MacroCommand is missing is its undo functionality. When the undo
button is pressed after a macro command, all the commands that were invoked in the
macro must undo their previous actions. Here’s the code for MacroCommand; go ahead
and implement the undo() method:

public class MacroCommand implements Command {
Command[] commands;

Q: Do | always need a receiver? Why
can’t the command object implement the
details of the execute() method?

A: In general, we strive for “dumb”
command objects that just invoke an action
on a receiver; however, there are many
examples of “smart” command objects

that implement most, if not all, of the logic
needed to carry out a request. Certainly you
can do this; just keep in mind you'll no longer
have the same level of decoupling between
the invoker and receiver, nor will you be
able to parameterize your commands with
receivers.

228

therejare no
Dumb Questions

Q: How can | implement a history

of undo operations? In other words, |
want to be able to press the undo button
multiple times.

A: Great question. It's pretty easy
actually; instead of keeping just a reference

to the last Command executed, you keep

a stack of previous commands. Then,
whenever undo is pressed, your invoker
pops the first item off the stack and calls its
undo() method.

Q: Could | have just implemented
party mode as a Command by creating
a PartyCommand and putting the calls
to execute the other Commands in
PartyCommand’s execute() method?

A: You could; however, you'd essentially
be “hardcoding” the party mode into
PartyCommand. Why go to the trouble?

With MacroCommand, you can decide
dynamically which Commands you want to
go into PartyCommand, so you have more
flexibility using MacroCommands. In general,
MacroCommand is a more elegant solution
and requires less new code.

the command pattern

More uses of the Command Pattern: queving requests

Commands give us a way to package a piece of
computation (a receiver and a set of actions) and pass
it around as a first-class object. Now, the computation
itself may be invoked long after some client application

creates the command object. In fact, it may even be Commands
invoked by a different thread. We can take this scenario l-/
and apply it to many useful applications, such as 9 () &
schedulers, thread pools, and job queues, to name a few. Oby etts .mv\emin{\ng the g’%mgdC&e
ate ave I -
Imagine a job queue: you add commands to the C°"‘"‘a“d ‘g’\? weue. 'E i .
queue on one end, and on the other end sits a group added to R ’ et
of threads. Threads run the following script: they pet
: 0 Tmc‘
remove a command from the queue, call its execute() :w o
method, wait for the call to finish, and then discard the Ehort ompic
command object and retrieve a new one. @‘g oca,ms 0}\9’\\%
Borted oo

This gives us an effective way
*bo lumu{: COm\?u‘{:a{:lon £o a
fixed number of threads.

Threads vemove tommands

from the queue one by()onc 5
and ¢all their execute e
method. Once tomplete, T

they 90 back for a new

€

Thread
command Ob‘)d’t Thread Q
|o&

Thread

Threads computing Threuc\
jobs
Note that the job queue classes are totally decoupled from
the objects that are doing the computation. One minute a
thread may be computing a financial computation, and the (@B RENN
next it may be retrieving something from the network. The PQWEWR
job queue objects don’t care; they just retrieve commands How might a web server make

and call executf:(). Likewise, as long as you put objects into use of such a queue? What other
the queue that 1mpl.emen-t the Command Patterr}, your applications can you think of?
execute() method will be invoked when a thread is available.

you are here » 229

using the command pattern for logging requests

More uses of the Command Pattern: logging requests

The semantics of some applications require that we log all actions and be able to
recover after a crash by reinvoking those actions. The Command Pattern can support
these semantics with the addition of two methods: store() and load(). In Java we could
use object serialization to implement these methods, but the normal caveats for using
serialization for persistence apply.

<<interfaces>

Commang
When a crash occurs, we reload the command objects and invoke their execute() W

methods in batch and in order. undo()

store
load()

How does this work? As we execute commands, we store a history of them on disk.

Now, this kind of logging wouldn’t make sense for a remote control; however, there
are many applications that invoke actions on large data structures that can’t be
quickly saved each time a change is made. By using logging, we can save all the
operations since the last checkpoint, and if there is a system failure, apply those
operations to our checkpoint. Take, for example, a spreadsheet application: we might
want to implement our failure recovery by logging the actions on the spreadsheet rather
than writing a copy of the spreadsheet to disk every time a change occurs. In more
advanced applications, these techniques can be extended to apply to sets of operations We add two methods
in a transactional manner so that all of the operations complete, or none of them do. for loaging,

veloaded and exetuted
in the torreet order-

mand s ' Restore
As eath tommand ’ﬂ/

is exetubed, it is :
stored on disk. oy

() v
= /’ N
Urs”
Ioad

2 execute()

/o

QA

v o’hmor\ a&\,xe_ ..t

2t am L Zhvoker

store ()
cad) @
Q &

Dmand

rash!

st"\’e‘ \E
s om0
AST L <©
X0
[vy ° Lem
eS| s cplen
...G'e,.,[?’/ o 0ad () G 59 ‘(:a‘\urc, ‘{')\C o) ‘)CC

230 Chapter 6

the command pattern

Comwmand Pattern in the Real World

Remember the little life-changing application from Chapter 2?

In that chapter we saw how Java’s Swing 000 - tevate.

library is chock full of Observers in the Here's our fancy nter

form of ActionListeners that listen in (or / find ‘_““,S {L‘:co\:f&jn.wm
observe) events on user interface components. e ek

Well, it turns out that ActionListener is o

not just an Observer interface, it’s also a
Command interface, and our AngelListener

and DevilListener classes are not just 4
File Edit Window Help HeMadeMeDolt
Observers, but also concrete Commands. 43ava SwingobserverExample
That’s right, we have two patterns in one Deuil answer :
gnt, P Bl Come on, do it!

CXample! Angel answer PpY Don’t do it, you might regret it!

_ % harpen your pencil

} Here's the code (the important bits anyway) for the little life-changing
application from Chapter 2. See if you can identify who is the Client, who are
the Commands, who is the Invoker, and who is the Receiver.

public class SwingObserverExample {
// Set up

JButton button = new JButton("Should I do it?");
button.addActionlListener (new AngelListener()) ;
button.addActionlListener (new DevillListener()) ;
// Set frame properties here

}

class Angellistener implements ActionListener {
public void actionPerformed(ActionEvent event) {

System.out.println("Don't do it, you might regret it!");

}
class Devillistener implements ActionListener {
public void actionPerformed (ActionEvent event) {

System.out.println("Come on, do it!");

you are here » 231

exercise solution

_ @ harpen your pencil

A solutlon Here's the code (the important bits anyway) for the little life-changing
application from Chapter 2. See if you can identify who is the Client, who are

the Commands, who is the Invoker, and who is the Receiver?
Here's our solution.

The button is our [nvokev- The button

. med() (like
wals Bhe achonﬁ:;fo'; the commands (the
the button.

public class SwingObserverExample { c,“,“,‘J(-‘c()) me ook
// Set up Acf.o,.],'.slccncrs) when You

JButton button = new JButton("Should I do it?");
button.addActionListener (new AngellListener()) ;
button.addActionListener (new DevillListener()) ;
The Client is the ¢lass that sets up the

// Set frame properties here Swin5 tomponents and sets Lhe tommands

} (AngelListener and DevilListener) in the
Invoker (the Button).

class Angellistener implements ActionListener {
public void actionPerformed (ActionEvent event) {
System.out.println("Don't do it, you might regret it!");

} AcetionListener is the Command
Interface: it has one method,
attionPerformed() that, like
exetute(), is exetuted when the

class Devillistener implements ActionListener { e nt

tommand is invoked.
public void actionPerformed (ActionEvent event) {

System.out.println("Come on, do it!");

} } ¢\

AngclLis{cncr and DevilListener

}
are our tontrete Commands. They
The Receiver in this example is the System object. implement the tommand interface (in
RCmCmbcr, ihvokin5 a tommand vesults in actions on £his tase, Ac{:iOhLiS{:cncv).

the Rc.c‘_civcr. In a typical Swing application this would
result in callin5 actions on other t‘,om\?ohcwf:s in the W.

232 Chapter 6

Tools for your Design Toolbox

Your toolbox is starting to get heavy! In this chapter

we've added a pattern that allows us to encapsulate
methods into Command objects: store them, pass them
around, and invoke them when you need them.

Favor &

Program to \n’(,crgaccs,

\mv\emcv\{:a’c'\ons.
\ed desions
e for \oosely tof! o

it:,::ecm o)c&’c} that inkteral

Lension
es should \be oper Qov' ex
(aa:,sc\oscd for mod’\‘:'\ca’c\on.
abs’cracﬁov\sv Do not
ereke tlasses

When \{ou nccd +o chOVE\c an

A J(',S vYom
etk making veques
1\'\\): o\)\')cc{',s Jd\a{: know how +o

Ycr(:orm the vcv\ucs{',s, use the
\ Command Pa‘bECW\-

Degend o
depend on £"

S S—————— ..)
. ¢ 3 thass o ha
a reﬂ“cs*'

the command pattern

% BULLET POINTS

= The Command Pattern
decouples an object making
a request from the one that
knows how to perform it.

= ACommand object is at the
center of this decoupling and
encapsulates a receiver with
an action (or set of actions).

= Aninvoker makes a request
of a Command object by
calling its execute() method,
which invokes those actions
on the receiver.

= |nvokers can be
parameterized with
Commands, even
dynamically at runtime.

= Commands may support
undo by implementing an
undo() method that restores
the object to its previous
state before the execute()
method was last called.

= MacroCommands are a
simple extension of the
Command Pattern that
allow multiple commands
to be invoked. Likewise,
MacroCommands can easily
support undo().

® |n practice, it's not
uncommon for “smart”
Command objects to
implement the request
themselves rather than
delegating to a receiver.

= Commands may also be
used to implement logging
and transactional systems.

you are here » 233

design patterns crossword

Q Design Patterns Crossword

Time to take a breather and let it all sink in.

It’s another crossword; all of the solution words are from
this chapter.

1
i i H &
ANEEEEEEEEN

AEEEEE @ B JSEEEEEE
"

NN EEEE | - |
u | H i JEEEEEN
lEEEEEEEEEEEEE JdEEE

ACROSS DOWN
5. Our favorite city. 1. The Cook and this person were definitely decoupled.
6. Company that got us word-of-mouth business. 2. The Waitress didn’t do this.
7. Role of customer in the Command Pattern. 3. Acommand encapsulates this.
9. Object that knows the actions and the receiver. 4. Act as the receivers in the remote control (two words).
12. Invoker and receiver are . 8. Object that knows how to get things done.
15. The Waitress was one. 10. Carries out a request.
16. Dr. Seuss diner food (four words). 11. All commands provide this.
17. Another thing Command can do. 13. Our first command object controlled this.
14. A command a set of actions and a
receiver.

234 Chapter 6

command

 WHQ DQES WHAT?
- SQ\LLT\QN
Match the diner objects and methods with the corresponding
names from the Command Pattern.

Diner Command Pattern
Waitress Command
Short-Order Cook execute()
orderUp() Client
Order Invoker
Customer Receiver
takeOrder() setCommand()

_ qaoharpen your pencil
§\\£ ySoIEtion

Here's the code for the GarageDoorOpenCommand class.

public class GarageDoorOpenCommand implements Command {
GarageDoor garageDoor;

public GarageDoorOpenCommand (GarageDoor garageDoor) {
this.garageDoor = garageDoor;
}
public void execute() {
garageDoor.up() ;
}
}

Here's the output:

File Edit Window Help GreenEﬁc-)s&Ham

%java RemoteControlTest

Light is on
Garage Door is Open
%

235

exercise solutions

_ @ harpen your pencll

Command|[] commands;

}
public void execute() {

method for the }

MacroCommand.)

public void undo() {

}

public MacroCommand (Command[] commands) {
this.commands = commands;

for (int i = 0; i < commands.length;
Here is the undo() commands [i] .execute () ;

public class MacroCommand implements Command {

it++) {

for (int i = commands.length - 1; i >= 0; i--) {
commands[i] .undo() ;

Solution

Here's the code to create commands for the off button.

LightOffCommand 1lightOff = new LightOffCommand (light) ;
StereoOffCommand stereoOff = new StereoOffCommand (stereo) ;
TVOffCommand tvOff = new TVOffCommand (tv) ;
HottubOffCommand hottubOff = new HottubOffCommand (hottub) ;

236

1

o IR A Y
ofslslelclrTivir|LLle
o M N
u| N
I=III=EHE-EIME
GEENE E s | =ﬂllllﬂ

R |
be|clolulplL e D]
| 1|

v H B
T G (R EENE|G]6|s]alN|DlH A M|
v R | N

E|

I3

Chapter 6

i3

A X
3 HomanHo
7

7 the Adapter and Facade Patterns
* Being Adaptlve

Do you think the
readers are really getting the
impression we're watching a

horse race rather than sitting
in a photo studio?

That's the beauty of
our profession: we can
make things look like

something they're not!

You mean it's not
supposed o be a
football match?

Wrapped in this coat,
I'm a different man!

In this chapter we’re going to attempt such impossible feats
as putting a square peg in a round hole. Sound impossible? Not when
we have Design Patterns. Remember the Decorator Pattern? We wrapped objects to

give them new responsibilities. Now we’re going to wrap some objects with a different
purpose: to make their interfaces look like something they’re not. Why would we do that?
So we can adapt a design expecting one interface to a class that implements a different

interface. That’s not all; while we’re at it, we’re going to look at another pattern that wraps
objects to simplify their interface.

this is a new chapter 237

adapters everywhere

Adapters all around us

You’ll have no trouble understanding what an OO adapter is
because the real world is full of them. How’s this for an example:
Have you ever needed to use a US-made laptop in Great Britain?
Then you’ve probably needed an AC power adapter...

British Wall Qutlet

AC Power Adapter
US Standard AC Plug

The US laptop expects
another interface.

The adapter converts one
intevface into another.

You know what the adapter does: it sits in between the plug of your laptop and the

British AC outlet; its job is to adapt the British outlet so that you can plug your laptop

into it and receive power. Or look at it this way: the adapter changes the interface of the

outlet into one that your laptop expects. How many
ada‘rl-,crs tan

other veal-world
You Lhink of?
Some AC adapters are simple—they only change the shape of the outlet so that it
matches your plug, and they pass the AC current straight through—but other adapters
are more complex internally and may need to step the power up or down to match your
devices’ needs.

Okay, that’s the real world; what about object-oriented adapters? Well, our OO adapters
play the same role as their real-world counterparts: they take an interface and adapt it
to one that a client is expecting

238 Chapter 7

the adapter and facade patterns
Object-oriented adapters

Say you’ve got an existing software system that you need to work a new vendor class library
into, but the new vendor designed their interfaces differently than the last vendor:

Your Vendor
Existing Class
System

Theiv interface doesn't mateh the one \/ou',vc written
your ¢ode against. This isn't going +o work!

Okay, you don’t want to solve the problem by changing your existing code (and you can’t

change the vendor’s code). So what do you do? Well, you can write a class that adapts the
new vendor interface into the one you’re expecting.

Your Adapter Vendor

Existing Class
Systewm > >

The adapter implements the ecbace
i .and talks fo the vendor inter
interface Your classes expect... {—,onscrvicc your vequests.

The adapter acts as the middleman by receiving requests from the client and converting
them into requests that make sense on the vendor classes.

Can You think of a solution
!:il;rl‘ing Lo Xleav;ior {:ha’c,\/docsﬂ: veauire YOU to
¢ weite ANY additional code
o to inﬁcgra{:c +he new vendor
tlasses? How about making the

vendor supply the adapter class?

No ¢ode ¢hanges. New ¢tode. No tode thanges.

you are here » 239

turkey adapter

If it walks like a duck and quacks like a duck,
then it muyst might be a-duek furkey wrapped
with a duck adapter...

It’s time to see an adapter in action. Remember our ducks from Chapter 1?
Let’s review a slightly simplified version of the Duck interfaces and classes:

£ N\

L around) O
public interface Duck { T\“S\L‘h‘f‘;\cmm{: a2 Dutk
L S \m
public void quack(); ?:Jwﬁacc fhat allows |
public void fly(); Dutks to a\uat\(an
}
Here’s a subclass of Duck, the MallardDuck:
public class MallardDuck implements Duck {
public void quack() { D o
System.out.println("Quack") ; e Y\Cmc“u{—,\ons‘- M;i\é"d “
- ole ! -1 ¢ dongy:
} N S‘:{'\,’ Yv\njc,s out what s ’
JU

public void fly() {
System.out.println("I'm flying");

Now it’s time to meet the newest fowl on the block:

ble:
Turkeys dor't quatk they 90b
public interface Turkey { we

public void gobble() ;

public void fly();
} __ Turkeys can £ly, although they
tan onl\/ ‘(:l\/ short distantes.

240 Chapter 7

the adapter and facade patterns

public class WildTurkey implements Turkey {

, Le implementation
public void gobble() { *:E*Srii:;"\f\:: /\C/la\\:rdDuck, it

System.out.println("Gobble gobble") ; & _)u st \w'mJCS out its attions.

public void £ly() {

System.out.println("I'm flying a short distance");

Now, let’s say you're short on Duck objects and you’d like to use some Turkey objects in their
place. Obviously we can’t use the turkeys outright because they have a different interface.

So, let’s write an Adapter:

Code Up Close
Fivst, you need to implement the interface

of the {:\/?c \/ou’\rc adapting to. This is the
intevface your client expects to see.
public class TurkeyAdapter implements Duck {
Turkey turkey;
Next, we need to get a veferente 1o the
public TurkeyAdapter (Turkey turkey) { s object that we are adapting; here we do
- that through the tonstruetor.
this.turkey = turkey;
}
Now we need to implement all the methods in
public void quack() { f the intecface; the quack() translation between
turkey.gobble () ; tlasses is easy: just eall the gobble() method.
}
public void fly() { € N Even though both interfaces have a fl\/()
for (int i=0; i < 5; i++) { method, Turkeys (—\l\/ in sho\r{:(:syw{:s——
. {:hcy tan't do |on3——dis{:am‘.c |\/in like
turkey. fl ;)
urkey- £y 0 dutks. To map between a Duck’s a\/()
} method and a Turkey's, we need to call
} the Turkey's (:l\/() method five times to
} make up for it.

you are here » 241

test the adapter

Test drive the adapter

Now we just need some code to test drive our adapter:

public class DuckTestDrive { \,c{z)s ‘.Xea%,c a Du

publ

stat

e

ic static void main(String[] args) { [“

Duck duck = new MallardDuck () ; e Tuvkel

Turkey turkey = new WildTurkey () ; C/\ And then wrap the {:w\fc\/
Duck turkeyAdapter = new TurkeyAdapter (turkey) ; [\ ina kacyAda?{:ch whith
makes it look like a Dutk.

System.out.println ("The Turkey says...");

turkey.gobble () ;

turkey.fly () ; G ———_ Then, let’s test the Turkey:
make it gobble, make it ﬂ\/.

System.out.println("\nThe Duck says...");

testDuck (duck) ; S Now let’s test the duck

by calling the testDuek()
System.out.println("\nThe TurkeyAdapter says..."); method, which expetts a
testDuck (turkeyAdapter) ; Duck objeet.

ic void testDuck (Duck duck) {

duck.quack() ;)
duck. fly () ; N Here's our testDuck()

9ets a duek ang . method; it
} } and fly() mc{::ods.a l it quack()
Test vun = File Edit Window Help Don'tForgetToDuck
%java DuckTestDrive
The Turkey says... The Turkc\/ gobbles and

Gobble gobble S
I'm flying a short distance

flies a short distance.

Zﬂiciu"k SEYS- - The Duck quatks and £lies

I'm flying ¢ \')us{: like \Iou'd c%\?td‘{;

The TurkeyAdapter says...

Gobble gobble

I'm flygng a short distance And the adayjccv souill?s WH? times
I'm flying a short distance (\ o\uack() is talled and *lies 3 Bw o0
I'm flying a short distance when ﬂ\/() is called. The testDue
I'm flying a short distance mekhod never knows it has Lurkey
I'm flying short distance disguiscd as a duck!

a
a
a
a

242 Chapter 7

The Adapter Pattern explained

Now that we have an idea of what an Adapter is, let’s step back and look

at all the pieces again.

Client

The Client is implemented
against the target interface.

The Adapter implements the
target interface and holds an

instance of the Adaptee.

adapter facade

Adaptee

.a daptee
Interf, ce

Turkey was the
adaptee interface.

Here’s how the Client uses the Adapter

Q The client makes a request to the adapter by

calling a method on it using the target interface.

e The adapter translates the request into one or
more calls on the adaptee using the adaptee

£

i daptee
the Client and A
I;‘::: cdf::;\cd——nc'\{\r\cr knows abow

‘hhc o&\\CY-

interface.

9 The client receives the results of the call and never
knows there is an adapter doing the translation.

243

adapter pattern

_ % harpen Your pencil
N

Let’s say we also need an Adapter that converts a Duck to a
Turkey. Let’s call it DuckAdapter. Write that class:

How did you handle the fly() method (after all, we know ducks fly longer than turkeys)?
Check the answers at the end of the chapter for our solution. Did you think of a better way?

Q: How much “adapting” does an
adapter need to do? It seems like if | need
to implement a large target interface, |
could have a LOT of work on my hands.

A: You certainly could. The job of
implementing an adapter really is
proportional to the size of the interface you
need to support as your target interface.
Think about your options, however. You
could rework all your client-side calls to
the interface, which would result in a lot

of investigative work and code changes.
Or, you can cleanly provide one class that
encapsulates all the changes in that class.

244

therejare no
Dumb Questions

Q,- Does an adapter always wrap one
and only one class?

A: The Adapter Pattern’s role is to convert
one interface into another. While most
examples of the Adapter Pattern show an
adapter wrapping one adaptee, we both
know the world is often a bit more messy.
So, you may well have situations where an
adapter holds two or more adaptees that are
needed to implement the target interface.

This relates to another pattern called the
Facade Pattern; people often confuse the
two. Remind us to revisit this point when we
talk about facades later in this chapter.

Q; What if | have old and new parts
of my system, and the old parts expect
the old vendor interface, but we’ve
already written the new parts to use the
new vendor interface? It's going to get
confusing using an adapter here and the
unwrapped interface there. Wouldn’t | be
better off just writing my older code and
forgetting the adapter?

A: Not necessarily. One thing you can do
is create a Two Way Adapter that supports
both interfaces. To create a Two Way
Adapter, just implement both interfaces
involved, so the adapter can act as an old
interface or a new interface.

the adapter and facade patterns

Adapter Pattern defined

Enough ducks, turkeys, and AC power adapters; let’s get real and look at the official
definition of the Adapter Pattern:

The Adapter Pattern converts the interface of a class
into another interface the clients expect. Adapter lets
classes work together that couldn’t otherwise because of
incompatible interfaces.

Now, we know this pattern allows us to use a client with an incompatible interface by
creating an Adapter that does the conversion. This acts to decouple the client from
the implemented interface, and if we expect the interface to change over time, the
adapter encapsulates that change so that the client doesn’t have to be modified each
time it needs to operate against a different interface.

We’ve taken a look at the runtime behavior of the pattern; let’s take a look at its class
diagram as well:

Client <<interface>> ~ The Adavkcv ""‘\7‘5'“‘“‘{-’5

Target the Targc{; intertate.

Y

request()

*
The client sees only the ; /
Target interface. :

Adapter

> Adaptee
request() specificRequest()
All \rco\ucs{‘ﬁ 55{3
AéaF{ZCV is tomposed /t/ dc\cga{:cd o the
with the Adaptee. Adaptee.

The Adapter Pattern is full of good object-oriented design principles: check out the use of
object composition to wrap the adaptee with an altered interface. This approach has the
added advantage that we can use an adapter with any subclass of the adaptee.

Also check out how the pattern binds the client to an interface, not an implementation; we
could use several adapters, each converting a different backend set of classes. Or, we could
add new implementations after the fact, as long as they adhere to the Target interface.

you are here » 245

object and class adapters

Object and class adapters

Now despite having defined the pattern, we haven’t told you the whole story yet.
There are actually fwo kinds of adapters: object adapters and class adapters. This
chapter has covered object adapters, and the class diagram on the previous page is
a diagram of an object adapter.

So what’s a ¢lass adapter and why haven’t we told you about it? Because you need
multiple inheritance to implement it, which isn’t possible in Java. But that doesn’t
mean you might not encounter a need for class adapters down the road when using
your favorite multiple inheritance language! Let’s look at the class diagram for
multiple inheritance.

Client Target Adaptee

request() specificRequest()

Adapter
request() k\

[nstead of using Com‘?osi{:ion
4o adapt the Adaptee, the
Adapter now subtlasses the
Adaptee and the Target classes.

Look familiar? That’s right—the only difference is that with a class adapter
we subclass the Target and the Adaptee, while with an object adapter we use
composition to pass requests to an Adaptee.

_ @RA\N
Pawew
Object adapters and class adapters use two different
means of adapting the adaptee (composition

versus inheritance). How do these implementation
differences affect the flexibility of the adapter?

246 Chapter 7

Duck Magnets

/,_iq Your job is to take the duck and turkey magnets and drag

them over the part of the diagram that describes the role

played by that bird, in our earlier example. (Try not to flip
back through the pages.) Then add your own annotations
to describe how it works.

Class Adapter

Client

Object Adapter

Client

\

Target

request()

the adapter and facade patterns

Adaptee

specificRequest()

N

Drag these onto the ¢lass diagram

to show which part of the diagram
vepresents the Duck elass and which
represents the Turkey elass.

Adapter
request()

- <<interface>>
o Target

request()

R
Adz{pter > Adaptee
request() specificRequest()

247

you are here »

exercise answer

g Duck Magnets

Answer

Note: the tlass adapter uses
multiple inhevitance,

| 50 You
tan't do it in Java...

Duck elass Turkey class
Class Adapter
Client > rge Adaptee
request() specificRequest() ‘t
Client thinks he’ s the he Turkey tlass does no
falki,,s to 3 SD.::Z The Tavgc’c j‘s_::s T\a:c 1:\\: lﬁmc methods as
' Dutk 6% ent Dutk, buk the Adapter can
1s what ’c,\\C\\ 4e o Adapter +ake Duek method ealls
nvokes metho request) and tuen avound and invoke
ethods on fhe Turkey elass.
The Adapter lets 41 "
e Turk
requests on a Duck, by cuxfccr:/d: SPghod iy
tlasses (Dyek and nv'kcy). 9 bOTH
Dutk interfate
Object Adapter
- p The Turke elass d)
— > <<mTtarget interface Zs Jchscs D:j(h fn h:{\:/:cthc sadmc
Client. thinks pe el Turkeys don't have quack() methogy 4,
) InKs he's A) .
fa"(ohﬂ to a Duck. Jusk 38 with £he C\B‘CS.‘S the :
;avw' e Eacw\\a‘c the Turkey
D“"k e\ass Tw Jc\\ods on : ob\’)cd:
ol ent nvokes ™ Adapter

248

Chapter 7

request()

h Tw\(c\[
Thc AdaP‘{:cr implements the Duek Tharks the Aday \‘\fs’ t“:{: the
Ih'lfg;"pac& bu'l', when rl: SC'ES a (Adav‘tcc) ‘N.\“ 51\,;\:31)“‘.’\(.‘“‘hcv‘cacc‘
m .
d:'fggzc:a” it turns around ang client, makes o

the calls 4o Turkey.

Fireside Chats

Object Adapter:

Because I use composition I've got a leg up. I can
adapt not only an adaptee class, but any of its
subclasses.

In my part of the world, we like to use composition
over inheritance; you may be saving a few lines

of code, but all I'm doing is writing a little code

to delegate to the adaptee. We like to keep things
flexible.

You’re worried about one little object? You might be
able to quickly override a method, but any behavior
I add to my adapter code works with my adaptee
class and all its subclasses.

Hey, come on, cut me some slack, I just need to
compose with the subclass to make that work.

You wanna see messy? Look in the mirror!

the adapter and facade patterns

Tonight’s talk: Object Adapter and Class
Adapter meet face to face.

Class Adapter:

That’s true, I do have trouble with that because 1
am committed to one specific adaptee class, but

I have a huge advantage because I don’t have to
reimplement my entire adaptee. I can also override
the behavior of my adaptee if I need to because I'm
just subclassing.

Flexible maybe, but efficient? No. There is just one
of me, not an adapter and an adaptee.

Yeah, but what if’ a subclass of Adaptee adds some
new behavior—then what?

Sounds messy...

you are here » 249

real world adapters

Real-world adapters

Let’s take a look at the use of a simple Adapter in the real world

(something more serious than Ducks at least)...

Enumerators

If you’ve been around Java for a while, you
probably remember that the early collection
types (Vector, Stack, Hashtable, and a few
others) implement a method, elements(), which
returns an Enumeration. The Enumeration
interface allows you to step through the
elements of a collection without knowing

the specifics of how they are managed in the
collection.

lterators

The more recent Collection classes use an
Iterator interface that, like the Enumeration
interface, allows you to iterate through a set of
items in a collection, and adds the ability to
remove items.

<<interface>>
Enumeration

hasMoreElements()
nextElement()

<<interface>
Iterator

hasNext()
next()
remove()

Using Enumerators with code that expects lterators

We are sometimes faced with legacy code that exposes the

Enumeration interface, yet we’d like for our new code to use only

Iterators. It looks like we need to build an adapter.

250 Chapter 7

Tells you if there are any more
(_/ chmC\n{',S in the eollection.

N

éivcs You the next element
in the eolleetion.

Analogous to hasMoveElements()

in the Enumeration intevfate.

This method ")us‘{: Lells You i§ .
ou've looked at all the ikems in

J \J,(,hc tolleetion.

: Gives You the next
element in the colleetion.

RCmovcs an item ‘FV‘om
{:hc Co”cC‘{‘,ion.

Adapting an Enumeration to an lterator

First we’ll look at the two interfaces to figure out how the methods map from one to
the other. In other words, we’ll figure out what to call on the adaptee when the client

invokes a method on the target.

Target interface

<<interface>>
Iterator

hasNext()

next() T~—

remove()

the adapter and facade patterns

These two methods look easy.

They map straight to hasNext()
and next() in [tevator.

<<interface>>
Enumeration

But what about this method
vemove() in [terator? There's
ho{')\ing like that in Enumeration.

Pesigning the Adapter

hasMoreElements()
nextElement()

U Adaptee intecface

Here’s what the classes should look like: we need an adapter that implements the Target
interface and is composed with an adaptee. The hasNext() and next() methods are going
to be straightforward to map from target to adaptee: we just pass them right through.

But what do you do about remove()? Think about it for a moment (and we’ll deal with it
on the next page). For now, here’s the class diagram:

‘/ow new tode still 5c+,s
+o use [terators, even

if there's veally an
Enumeration underneath.

Enumevation/tecator —
is the adapter.

<<interface>>
Iterator

hasNext()
next()
remove()

Enumerationlterator

We've making the Enumevations

in Your old eode look like
[£erators for your new tode.

~

hasNext()
next()

remove()

Y

<<interface>>
Enumeration

hasMoreElements()
nextElement()

A class
\m\a\cmm‘dng
the Enumeration

interface is the
adaptee:

you are here » 251

enumeration iterator adapter

Pealing with the remove() method

Well, we know Enumeration doesn’t support remove(). It’s a “read only” interface. There’s no
way to implement a fully functioning remove() method on the adapter. The best we can do 1s
throw a runtime exception. Luckily, the designers of the Iterator interface foresaw this need and
defined the remove() method so that it supports an UnsupportedOperationException.

This is a case where the adapter 1sn’t perfect; clients will have to watch out for potential
exceptions, but as long as the client is careful and the adapter is well documented, this is a
perfectly reasonable solution.

Writing the Enumerationlterator adapter

Here’s simple but effective code for all those legacy classes still producing Enumerations:

Sinte we've aday{ing
/ Enumevation to [terator,
our Adapter implements the

public class EnumerationIterator implements Iterator<Object> { [terator intecfate...it has to
look like an [tevator.

BN The Enumeration we've

. . . > . ;)
public EnumerationIterator (Enumeration<?> enumeration) { 3 da? {3"‘5' We've using
this.enumeration = enumeration; composi{:ion, so we stash it

} in an instante vaviable.

Enumeration<?> enumeration;

public boolean hasNext() { £e—— The [terator’s hasNext() method

return enumeration.hasMoreElements () ; is dclcga{:cd 4o the Enumeration’s
} hasMovreElements() method...
..and the [terator’s next() method
public Object next() { / is deleaated to the Enumeration’s
return enumeration.nextElement () ; nextElement() method.
}
public void remove() { —_ l/(n-Cor{una{:cl\/, we tan't suﬂ?o\r{:
throw new UnsupportedOperationException() ; H;cv-a{'pr's vemove() method, so
} we have to Yun{: (in other words,
} we give upl). Heve we just throw

an exception.

252 Chapter 7

adapter facade

While Java has gone in the direction of the Iterator interface, there is nevertheless still legacy
client code that depends on the Enumeration interface, so an Adapter that converts an lterator to
an Enumeration could potentially be useful.

Write an Adapter that adapts an Iterator to an Enumeration. You can test your code by
adapting an ArrayList. The ArrayList class supports the lterator interface but doesn’t support
Enumerations.

.@RA\N

PAWEWR
Some AC adapters do more than just change the interface—they add other features
like surge protection, indicator lights, and other bells and whistles.

If you were going to implement these kinds of features, what pattern would you use?

253

fireside chats: decorator and adapter

Fireside Chats

Decorator:

I'm important. My job is all about responsibility—you
know that when a Decorator is involved, there’s
going to be some new responsibilities or behaviors
added to your design.

That may be true, but don’t think we don’t work
hard. When we have to decorate a big interface,
whoa, that can take a lot of code.

Cute. Don’t think we get all the glory; sometimes
I'm just one decorator that is being wrapped by who
knows how many other decorators. When a method
call gets delegated to you, you have no idea how
many other decorators have already dealt with it
and you don’t know that you’ll ever get noticed for
your efforts servicing the request.

254 Chapter 7

Tonight’s talk: The Decorator Pattern and the Adapter
Pattern discuss their differences.

Adapter:

You decorators want all the glory while us adapters
are down 1in the trenches doing the dirty work:
converting interfaces. Our jobs may not be
glamorous, but our clients sure do appreciate us
making their lives simpler.

Try being an adapter when you’ve got to bring
several classes together to provide the interface your
client is expecting. Now that’s tough. But we have a
saying: “A decoupled client is a happy client.”

Hey, if adapters are doing their job, our clients
never even know we’re there. It can be a thankless
job.

Decorator:

Well, us decorators do that as well, only we allow
new behavior to be added to classes without altering
existing code. I still say that adapters are just fancy

decorators—I mean, just like us, you wrap an object.

Uh, no. Our job in life is to extend the behaviors or
responsibilities of the objects we wrap; we aren’t a
simple pass through.

Maybe we should agree to disagree. We seem to
look somewhat similar on paper, but clearly we are
miles apart in our mtent.

the adapter and facade patterns

Adapter:

But the great thing about us adapters is that we
allow clients to make use of new libraries and
subsets without changing any code; they just rely on
us to do the conversion for them. Hey, it’s a niche,
but we’re good at it.

No, no, no, not at all. We always convert the
interface of what we wrap; you never do. I'd say a
decorator is like an adapter; it's just that you don’t
change the interface!

Hey, who are you calling a simple pass through?
Come on down and we’ll see how long you last
converting a few interfaces!

Oh yeah, I'm with you there.

you are here » 255

who what?

And now for something different...

There’s another pattern in this chapter.

You’ve seen how the Adapter Pattern converts the interface of a class into one
that a client is expecting. You also know we achieve this in Java by wrapping
the object that has an incompatible interface with an object that implements
the correct one.

We’re going to look at a pattern now that alters an interface, but for a different
reason: to simplify the interface. It’s aptly named the Facade Pattern because
this pattern hides all the complexity of one or more classes behind a clean,

well-lit facade.
+*

Match each pattern with its intent:

Pattern Intent

Converts one interface to
Decerator another

Adapter Doesn’t alter the interface,
but adds responsibility

Facade
Makes an interface simpler

256

Home Sweet Home Theater

Before we dive into the details of the Facade Pattern, let’s take a look at a

growing national obsession: building a nice theater to binge-watch all those

movies and TV series.

You've done your research and you’ve assembled a killer system complete

with a streaming player, a projection video system, an automated screen,

surround sound, and even a popcorn popper.

Check out all the components you’ve put together:

the adapter and facade patterns

>

StreamingPlayer

> Amplifier
>
tuner
player
on)
off)
Y setStreamingPlayer()
Tuner setStereoSound()
amplifier setSurroundSoud()
on() setTuner()
off() setVolume()
setAm() toString()
setFm()
setFrequency()
toString()

Screen h

up()
down()
toString()

PopcornPopper i

on)

off() TheaterLights i
pop()

toString() on()
off()
dim()
toString()

You've spent weeks running wire, mounting the projector, making all the

amplifier

on()

off()

pause()

play()
setSurroundAudio()
setTwoChannelAudio()
stop()

toString()

Projector

player

on()

off()

tvMode()
wideScreenMode()
toString()

connections, and fine tuning. Now it’s time to put it all in motion and enjoy a

movie...

you are here »

That's a lot of
tlasses, a lot

of interattions,
and a big set
of in{:cr?:accs to

learn and use.

257

tasks to watch

Watching a movie (the hard way)

Pick out a movie, relax, and get ready for movie magic.
Oh, there’s just one thing—to watch the movie, you need
to perform a few tasks:

© Turn on the popcorn popper

© Start the popper popping

O Dim the lights

© Put the screen down

© Turn the projector on

O Set the projector input to streaming player
© Put the projector on widescreen mode

© Turn the sound amplifier on

© Set the amplifier to streaming player input
© Set the amplifier to surround sound

@ Set the amplifier volume to wmedium (5)

® Turn the streaming player on
® Start playing the movie

I'm already exhausted
and all T've done is turn
everything onl

258

the adapter and facade patterns

Let’s check out those same tasks in terms of the classes and the
method calls needed to perform them:

Turn on the poptorn popper and start
popping -
popper.on() ;

popper.pop () ; 9
Dim the lig\\{ls +o 10%...

lights.dim(10) ; —

Siv diffevent tlasses
e

Put the streen down...
\vNo\VCd!

screen.down () ;

COINT

projector.on() ; — Turn on the Yro")cc{'pr and \N{c it in
projector.setInput (player) ; widesereen mode for the moic-

projector.wideScreenMode () ;

’ ’ To the amp, set it 4o Streaming
oot - Y‘l‘;:/‘c:,h\?u{: it in surround—sound mode,

.setStreamingPlayer (player) ;
amp gPlayer (player) and sek the volume £0 5--

amp . setSurroundSound () ;
amp . setVolume (5) ;

he Streaming player--
player.on() ; AL— — Tumon t .
player.play (movie) ; and FINALL\{: ?‘a\/ the movie:

But there’s more...
= When the movie is over, how do you turn everything off? Wouldn't you have to do all
of this over again, in reverse?
= Wouldn'tit be as complex to listen to the radio?

= |fyou decide to upgrade your system, you're probably going to have to learn a slightly
different procedure.

So what to do? The complexity of using your home theater is becoming apparent!

Let’s see how the Facade Pattern can get us out of this mess so we can enjoy the movie...

you are here » 259

lights, camera, facade

Lights, Camera, Facade!

A TFacade 1s just what you need: with the Facade Pattern you can take a complex
subsystem and make it easier to use by implementing a Facade class that provides
one, more reasonable interface. Don’t worry; if you need the power of the complex
subsystem, 1t’s still there for you to use, but if all you need is a straightforward
interface, the Facade is there for you.

Let’s take a look at how the Facade operates:

Okay, time to create a

Facade for the home

theater system.To do this

we create a new class The Fatade
HomeTheaterFacade,

which exposes a few ’\,
simple methods such as
watchMovie(). UORUUITIITSRSTSTSTEO HomeTheaterFacade

watchMovie()

e The Facade class treats
the home theater

components as a
subsystem, and calls
on the subsystem

to implement jts
watchMovie() method.

endMovie()
listenToRadio()
endRadio()

Amplifier

setStreamingPlayer()
setStereoSound()
setSumoundSoud()
setTuner()
setVolume()
toString()

StreamingPlayer
amplifier

onl)
off)
pause()

play()
setSuroundAudio()
sefTwoChannelAudio()
stop()
toString()

amplifier

on()
off)
setAm()
setFm()
setFrequency()
toString()

upl)
down()
toSting()

The subsystem {')nc. 2
'Facade is s\mv\'\‘c\lmg.

Projector

on()
off)
WMode()
wideScreenhlode()
toSting()

PopcornPopper

onf)
off))
Pop()
toSting()

TheaterLights

onf)
off)
dim()
toSting()

260 Chapter 7

(3]

Your client code now calls
methods on the home theater
Facade, not on the subsystem.

So now to watch a movie we just
call one method, watchMovie(),

and it communicates with
the lights, streaming player,

projector, amplifier, screen, and

popcorn maker for us.

T've got to have
my low-level access!

M

Former Vrcsidcn{: of the
Rushmore ng\\ Sehool
A/V Stiente Club.

[— subsystem facade.

the adapter and facade patterns

A client of the

l’he Faf:ade still leaves the subsystem
g(l:Jesmble so it can be used directly. If
you need the advanced functionalit'y

of the subsyste
. m classes, th
available for your use. e

you are here » 261

facade adapter

tkerelgxe no

Questions

Dum

Q: If the facade encapsulates the
subsystem classes, how does a client
that needs lower-level functionality gain
access to them?

A: Facades don't “encapsulate” the
subsystem classes; they merely provide a
simplified interface to their functionality. The
subsystem classes still remain available

for direct use by clients that need to use
more specific interfaces. This is a nice
property of the Facade Pattern: it provides
a simplified interface while still exposing the
full functionality of the system to those who
may need it.

Q: Does the facade add any
functionality or does it just pass through
each request to the subsystem?

A: Afacade is free to add its own “smarts”
in addition to making use of the subsystem.
For instance, while our home theater facade
doesn’t implement any new behavior, it is
smart enough to know that the popcorn
popper has to be turned on before it can pop
(as well as the details of how to turn on and
stage a movie showing).

Q: Does each subsystem have only
one facade?

A: Not necessarily. The pattern certainly
allows for any number of facades to be
created for a given subsystem.

262

Q,: What is the benefit of the facade
other than the fact that | now have a
simpler interface?

A: The Facade Pattern also allows you
to decouple your client implementation

from any one subsystem. Let’s say that you
get a big raise and decide to upgrade your
home theater to all new components that
have different interfaces. Well, if you coded
your client to the facade rather than the
subsystem, your client code doesn’t need to
change, just the facade (and hopefully the
manufacturer is supplying that!).

Q,- So the way to tell the difference
between the Adapter Pattern and the
Facade Pattern is that the adapter wraps
one class and the facade may represent
many classes?

- No! Remember, the Adapter Pattern
changes the interface of one or more classes
into one interface that a client is expecting.
While most textbook examples show the
adapter adapting one class, you may need to
adapt many classes to provide the interface
a client is coded to. Likewise, a Facade may
provide a simplified interface to a single
class with a very complex interface.

The difference between the two is not in
terms of how many classes they “wrap,” it
is in their intent. The intent of the Adapter
Pattern is to alter an interface so that it
matches one a client is expecting. The
intent of the Facade Pattern is to provide a
simplified interface to a subsystem.

A facade not
only simplifies
an interface, it
Jecouples a client
from a suksystem
of c0mponents.

Facades and
aJapters may

wrap multiple
classes, but a
facade’s intent is
to simplify, while
an aJapter’s

1s to convert

the interface

to sOmet]ming
different.

the adapter and facade patterns

Construeting your home theater facade

Let’s step through the construction of the HomeTheaterFacade class.
The first step is to use composition so that the facade has access to all the
components of the subsystem:

public class HomeTheaterFacade { Hzr€s{hcdom?°9£w“;thc“

Amplifier amp; ave all the comyoncnjcs of the
Tuner tuner; J—\ subsystem we ave 9oing to use.
StreamingPlayer player;

Projector projector;

TheaterLights lights;

Screen screen;

PopcornPopper popper;

public HomeTheaterFacade (Amplifier amp,

Tuner tuner,

StreamingPlayer player;

Projector projector, The facade is passed a
vefevente to eath tomponent

of the subsystem in its
TheaterLights lights, tonstruttor. The facade

PopcornPopper popper) { then assigns eath 1o the
tovresponding instance vaviable.

Screen screen,

this.amp = amp;

this.tuner = tuner;
this.player = player;
this.projector = projector;
this.screen = screen;
this.lights = lights;
this.popper = popper;

// other methods here 42—~\\\

We've Just about 4o £l these i

n...

you are here » 263

implementing

Implementing the simplified interface

Now it’s time to bring the components of the subsystem together into a unified interface.
Let’s implement the watchMovie() and endMovie() methods:

public void watchMovie (String movie) {

System.out.println("Get ready to watch a movie...");

popper.on() ;

popper.pop () ; watehMovieQ) follows the same sequente

lights.dim(10) ; L/_\ we had o do by hand before, but wraps

screen.down () ; it wp ina hav\d\l method ‘H\a‘{', does all
ect ’ the work. Notice that for eath task we

projector.on() ; ave dc\cga{:'mﬁ the vcsyonsibi\i{:\/ {o the

projector.wideScreenMode () ; corrcsvohdi“ﬁ Com?onth‘{i in the subsys{xm.

amp.on() ;
amp.setStreamingPlayer (player) ;
amp . setSurroundSound () ;

amp . setVolume (5) ;

player.on() ;

player.play (movie) ;

h And endMovie() takes cave of

public void endMovie() { shutting everything down for
us. Again, each task is delegated

to the appropriate tom .
popper.off () ; the Subs;\"&i iate tomponent in

lights.on() ;

System.out.println("Shutting movie theater down...");

screen.up() ;
projector.off () ;
amp.off() ;
player.stop() ;
player.off () ;

_ @yvtxu«
‘PQWEWR
Think about the facades you’ve encountered in the Java

API. Where would you like to have a few new ones?

264

the adapter and facade patterns

Time fo watch a movie (the easy way)

It’s showtime!

Heve we've treating the ¢omponents

public class HomeTheaterTestDrive { v-igH: in the test drive. No\rma”\/ the
.)
public static void main(String[] args) { tlient is given a facade; it doesn't have
// instantiate components here {o tonstruct one 'r(:scld(:.
HomeTheaterFacade homeTheater = < Fiest You instantiate

the Facade with all the
COmyoncn‘[:s in the Subs\/S‘{;CM.

new HomeTheaterFacade (amp, tuner, player,

projector, screen, lights, popper);

homeTheater.watchMovie ("Raiders of the Lost Ark");

homeTheater.endMovie () ; Use the simplificd in{:cr(-‘ac: to
} &_/ ‘F.'VS{'- S‘{Za‘r“: the movie up, and
then shut it down.

} File Edit Window Help SnakesWhy'dltHaveToBeSnakes?
%$java HomeTheaterTestDrive
Here’s the ou.{:?u{. Get ready to watch a movie...
Popcorn Popper on
Ca“"‘ﬁ the Facade’s Popcorn Popper popping popcorn!
Wa#hMOViCO does all Theater Ceiling Lights dimming to 10%
this work for us.. Theater Screen going down
(./7 Projector on
Projector in widescreen mode (16x9 aspect ratio)
Amplifier on
Amplifier setting Streaming player to Streaming Player
Amplifier surround sound on (5 speakers, 1 subwoofer)
Amplifier setting volume to 5
Streaming Player on
Streaming Player playing "Raiders of the Lost Ark"
Shutting movie theater down...
--and heve, we've done Z/ Popcorn Popper off
wa‘l:thing the movie, so Theater Ceiling Lights on
callin5 endMovie() urns Theater Scr:cfan going up
everythi i Projector o
ehing off @l rplifier off
Streaming Player stopped "Raiders of the Lost Ark"
Streaming Player off

%

you are here » 265

facade pattern defined

Facade Pattern defined

To use the Facade Pattern, we create a class that simplifies and unifies a set of more complex
classes that belong to some subsystem. Unlike a lot of patterns, Facade is fairly straightforward;
there are no mind-bending abstractions to get your head around. But that doesn’t make it

any less powerful: the Facade Pattern allows us to avoid tight coupling between clients and
subsystems, and, as you will see shortly, also helps us adhere to a new object-oriented principle.

Before we introduce that new principle, let’s take a look at the official definition of the pattern:

The Facade Pattern provides a unified interface to a
set of interfaces in a subsystem. Facade defines a higher-
level interface that makes the subsystem easier to use.

There isn’t a lot here that you don’t already know, but one of the most important things to
remember about a pattern is its intent. This definition tells us loud and clear that the purpose
of the facade is to make a subsystem easier to use through a simplified interface. You can see

this in the pattern’s class diagram:

N

whosc Client

\ 4

Facade

Ha oY (,\\cnjc
.o\f :)“s{; betame

casier because

fne facade:
‘subsystem classes

/

Move complex Subs\ls{-,cm.

Unified interface
that is easier to use.

That’s it; you’ve got another pattern under your belt! Now, it’s time for that new OO principle.

Watch out, this one can challenge some assumptions!

266 Chapter 7

adapter

The Principle of Least Knowledge

The Principle of Least Knowledge guides us to reduce the
interactions between objects to just a few close “friends.”
The principle is usually stated as:

Design Principle

Principle of Least Knowledge: talk
only to your immediate friends.

But what does this mean in real terms? It means when you
are designing a system, for any object, be careful of the
number of classes it interacts with and also how it comes to
interact with those classes.

This principle prevents us from creating designs that have
a large number of classes coupled together so that changes
in one part of the system cascade to other parts. When you
build a lot of dependencies between many classes, you are
building a fragile system that will be costly to maintain and
complex for others to understand.

.@yv‘mu
‘PQWEWR
How many classes is this code coupled to?

public float getTemp() {

return station.getThermometer () .getTemperature() ;

facade

267

principle of least knowledge

How NOT to Win Friends and Influence Objects

Okay, but how do you keep from doing this? The principle

provides some guidelines: take any object, and from any

method in that object, invoke only methods that belong to:

ines el v rot

1delin

\a (4
® The object itself Nokiee {3\‘3&\ {—’::S:“lbobbct\',s \‘3&:35!!
etno . her ™ v
® Objects passed in as a parameter to the method L/ Yo ;:a\\ :d Geom £ ot
et
® Any object the method creates or instantiates

dbject that is

® Any components of the object Think of a ‘:omvo.:s&anu vaviable. [n o.{:\\CV.
This sounds kind of stringent, doesn’t it? What’s the harm

in calling the method of an object we get back from another

call? Well, if we were to do that, then we’d be making a

request of another object’s subpart (and increasing the

number of objects we directly know). In such cases, the

principle forces us to ask the object to make the request for us;

that way, we don’t have to know about its component objects

(and we keep our circle of friends small). For example:

thout £h public float getTemp() {
Withou J

m‘ Thermometer thermometer = station.getThermometer() ;
vinti

return thermometer.getTemperature () ;

}
Heve we get the theemometer object
fvom the station and then call the
aet Temperature() method ouvselves.
Vﬁl‘ _H\“C public float getTemp () {
Printiple return station.getTemperature () ; ﬁ
}

When we apply the principle, we add method
%o the Station tlass that makes the vequest
%o the thermometer for us. This veduces the
number of ¢lasses we've dependent on.

268 Chapter 7

the adapter and facade patterns

Keeping your method calls in bounds...

Here’s a Car class that demonstrates all the ways you can call methods and still
adhere to the Principle of Least Knowledge:

y\‘k', O‘(: {']\\\S

eve's a tompone

public class Car {

Engine engine;

/ C\aSS‘ WC tan Ca“

// other instance variables

public Car() {

// initialize engine, etc.

public void start(Key key) {
Doors doors
boolean authorized = key.turns() ;

if (authorized) {
engine.start() ;
updateDashboardDisplay () ; <;\\\\

doors.lock () ;

its methods:

Here we've treating a new

new Doors () ;

/

You ean call
LomYOV\CV\{ o

ob")ct{:; its methods are legal.

You ¢an ¢all a method on an
object passed as a parameter.

a mc{,\\od ond
{ the object-

You tan call a lotal method
within the objeet.

You ¢an ¢all a method on an
ob\)cc{: You treate or instantiate.

public void updateDashboardDisplay () {

// update display

Q: There is another principle called the
Law of Demeter; how are they related?

A: The two are one and the same, and
you'll encounter these terms being used
interchangeably. We prefer to use the
Principle of Least Knowledge for a couple

of reasons: (1) the name is more intuitive,
and (2) the use of the word “Law” implies we
always have to apply this principle. In fact,
no principle is a law; all principles should

therejare no o
Dumb Questions

be used when and where they are helpful.
All design involves tradeoffs (abstractions
versus speed, space versus time, and so on)
and while principles provide guidance, you
should take all factors into account before
applying them.

Q: Are there any disadvantages
to applying the Principle of Least
Knowledge?

A: Yes; while the principle reduces

the dependencies between objects and
studies have shown this reduces software
maintenance, it is also the case that applying
this principle results in more “wrapper”
classes being written to handle method

calls to other components. This can result in
increased complexity and development time
as well as decreased runtime performance.

you are here » 269

violating the principle of least knowledge

G harpen Your pencil
X7

Do either of these classes violate the Principle of Least
Knowledge? Why or why not?

public House {

WeatherStation station;
// other methods and constructor

public float getTemp() {

return station.getThermometer () .getTemperature() ;

}
public House {

WeatherStation station;
// other methods and constructor
public float getTemp () {

Thermometer thermometer = station.getThermometer () ;

return getTempHelper (thermometer) ;

public float getTempHelper (Thermometer thermometer) ({

return thermometer.getTemperature() ;

} HARD HAT AREA.

} WATCH OUT FOR
FALLING ASSUMPTIONS

- @juum«
PAWEWR

Can you think of a common use of Java that
violates the Principle of Least Knowledge?

Should you care?

¢(upuud-ino walsAg 1noge moH :Jamsuy

270 Chapter 7

the adapter and facade patterns

The Facade Pattern and the Principle of Least Knowledge

Client

HomeTheaterFacade
manages all those subsystem
Lom?oncn{',s Lor the tlient.
[£ keeps the client simple
and flexible.

heater compone

4o keep subsys{xms
\:/;\::1\5 {o the P\r\nu\?\c_ of {.lfi:t
¥nowledoe as well. 1§ this ¢

: avre
any friends
ex and oo many
compl we tan introduce

des to Lorm \a\fﬂs

n C\’"‘.“\S\.‘“)
add\{:\ona\ aca
of subSY$£Cm5'

/—>

. c\ c'\‘h OV\\\I h
—l;::‘: H;chhca{:cv
YroSY‘Q"‘"‘"“?)’
Q\'\Chd isd

L

HomeTheaterFacade

watchMovie()
endMovie()
listenToRadio()
endRadio()

Amplifier

V4 e

player

setStreamingPlayer()

amplifier

on()
off()

setam()
setFm()
sefFrequency()
toString()

Screen

upl)
downl)
oSting()

on()
off()
Pop()
toString()

PopcornPopper

setStereoSound()

setSuroundSoud()

setTuner()

as

having on\\[one
400D thind

StreamingPlayer

setVolume()
toString()

TheaterLights

onf)
off()
dim()
toSting()

amplifier

setSuroundAudiol)
setTwoChannelAudiol)
stop()

toString()

Projector

player

wideScreenModel)
toString()

you are here » 271

your design toolbox

Your toolbox is starting to get heavy! In this chapter we’ve
added a couple of patterns that allow us to alter interfaces and
reduce coupling between clients and the systems they use.

00 Printiples

Encapsulate what varies:

h e
WC ave o \O‘N eve!
for markamr® 2 5 s

o i OW
ok cotid

a new £

\on
\be open Sor extensi® F

J&\Ca‘*«-“’"‘
ns- Do v\o*,

Classes shold
bt tlosed for mo

Depend o" sbstrattio (YCmCm\)C‘(’
dCYChd on COV\CYC*,C L\ASSCS~ ‘Q"-\C“ds)...
friends-
Talk only 12 Y

..and TWO new patterns.
Eath thanges an interkace,
the adapter to tonvert,

S .
OO PB‘H‘,C‘(Y\ ‘ . and the ?Ecadc 4o uhl‘c\/
: D e . | and sim?h Y
S P~ - e 2 5
° (c\t P“Flarj-;v\' M""'\"”A ’P.\--- b2 1/
n Y i 1 S.__A\.l-l- j“":_ﬂ_, \ales 3 vco\ues\: l
Ve AP ow
4= ‘CQ'N he 'm‘\',C\'Qau :;?I;L\'Cn{:
P‘dav*ﬁcb}mﬂm wkevkate L‘:“v sts, an Cied nkeckace ‘
a tlass W \asses work M‘*’ ¢ _ onv'\dts 2 unixie e
cy.\acd; ’c’s c&d\‘ \ise beeavse of Fa(,ad: i m’ccvh“s n 3 su\\of‘f{CY tace
Lhat cov dn g Tates Lo ase e 5\‘ ec-\eve .m
mco,,\Ya{;\b\c nter i;idc a(tti \'{‘;‘c by skew €3si€

272 Chapter 7

% BULLET POINTS —

= When you need to use
an existing class and its
interface is not the one you
need, use an adapter.

= When you need to simplify
and unify a large interface or
complex set of interfaces, use
afacade.

= An adapter changes an
interface into one a client
expects.

= Afacade decouples a client
from a complex subsystem.

= |mplementing an adapter may
require little work or a great
deal of work depending on
the size and complexity of the
target interface.

= |mplementing a facade
requires that we compose
the facade with its subsystem
and use delegation to
perform the work of the
facade.

= There are two forms of the
Adapter Pattern: object
and class adapters. Class
adapters require multiple
inheritance.

= You can implement more than
one facade for a subsystem.

= An adapter wraps an object
to change its interface, a
decorator wraps an object
to add new behaviors and
responsibilities, and a facade
“‘wraps” a set of objects to
simplify.

&3

from this chapter.

AEEEEEEEENE

ACROSS

1. True or false? Adapters can wrap only one object.
5. An Adapter an interface.

6. Movie we watched (five words).

10. If in Britain, you might need one of these (two words).

11. Adapter with two roles (two words).
14. Facade still low-level access.
15. Ducks do it better than Turkeys.

16. Disadvantage of the Principle of Least Knowledge:
too many

17.A simplifies an interface.
19. New American dream (two words).

the adapter and facade patterns

Design Patterns Crossword

Yes, it’s another crossword. All of the solution words are

DOWN

2. Decorator called Adapter this (three words).

3. One advantage of Facade.

4. Principle that wasn't as easy as it sounded (two words).
7.A adds new behavior.

8. Masquerading as a Duck.

9. Example that violates the Principle of Least
Knowledge: System.out.

12. No movie is complete without this.
13. Adapter client uses the interface.

18. An Adapter and a Decorator can be said to
an object.

you are here » 273

exercise solutions

% harpen Your pencil

i s I t n Let’s say we also need an Adapter that converts a Duck to a
0 u 10 Turkey. Let’s call it DuckAdapter. Here's our solution:

ina Turkeys to Ducks, so
public class DuckAdapter implements Turkey { Now we are adapting Tu . \{I: ace
Duck duck; we imylcmcn{: the Turkey intertate.

Random rand;

public DuckAdapter (Duck duck) { We stash a veferente to the Duck we ave adapting
this.duck = duck;
rand = new Random() ; é We also ¢reate a vandom °b\)6¢+«3 take a look at the

} ﬂ\/() method 1o see how it is used.
public void gobble() {
duck . quack () ; S A gobble just becomes a quack
}
public void fly() {
if (rand.nextInt(5) == 0) {

Sinte Ducks fly alot longer than Turkeys,
duck. fly () ; / we detided +o onl\/ ‘Fly the Duck on average
}

one o‘F ‘(—‘ivc Limes.

G harpen your pencil

i Do either of these classes violate the Principle of Least
|
Knowledge? Why or why not?
|
public House { Violates the Printiple of Least Knoylcdgc.
WeatherStation station; Vou ave ca\lin5 the method ol: an ob\)ec{:

// other methods and constructor
public float getTemp () {

return station.getThermometer () .getTemperature() ; 4_2

veturned Lrom another eall.

}

}

public House ({
WeatherStation station;

// other methods and constructor Doesn't violate PV'"‘"'.‘\’“ of
public float getTemp() { Least Knowledge! This seems
Thermometer thermometer = station.getThermometer () ; like hatking owr way around
return getTempHelper (thermometer) ; the principle. Has an\/’ching
} veally thanged since we
\')us{: moved out the eall to
public float getTempHelper (Thermometer thermometer) { another method?
return thermometer.getTemperature () ;
}
}
274 Chapter 7

adapter facade

You've seen how to implement an adapter that adapts an Enumeration to an Iterator; now write
e an adapter that adapts an lterator to an Enumeration.
RciSe

oLution

public class IteratorEnumeration implements Enumeration<Object> {
Iterator<?> iterator;

Notice we keep the
t pe YavamC{ZCY
Schric so this will
work for any type
o£ d@ctb

public IteratorEnumeration (Iterator<?> iterator) ({
this.iterator = iterator;

public boolean hasMoreElements () {
return iterator.hasNext() ;

public Object nextElement() {
return iterator.next();

+ * +
W+Q DQ WHH AT ?
SQ\LLT\QN
Match each pattern with its intent:
Pattern Intent

Converts one interface to

Adapter Doesn't alter the interface,
but adds responsibility

Facade —

Makes an interface simpler

275

crossword puzzle solution

Q Design Patterns Crossword Solution

| i3
EEEEEEHEHEEHEEE
E

v}

<
REEEEE
< m [~

E
=
=0
=

|
-
=
&

o
E
a
o]
R
4
T
el
R

Flalclalo e BEEW
6 3

HiolmlE T HIE A TIE R
i3

© o |m

276 Chapter 7

8 the Template Method Pattern

* Encapsulatmg
Algorithms *

Yeah, he's a great
boss until it comes to getting
down in this hole, then it ALL
becomes MY job. See what I
mean? He's nowhere in sight!

We’re on an encapsulation roll; we’ve encapsulated object
creation, method invocation, complex interfaces, ducks,

pizzas...what could be next? we're going to get down to encapsulating
pieces of algorithms so that subclasses can hook themselves right into a
computation anytime they want. We're even going to learn about a design principle
inspired by Hollywood. Let’s get started...

this is a new chapter 277

coffee tea

It’s time for some more caffeine

Som i i

e people can’t live without their coffee;
people can’t live with i omimon
. . e without their tea. The comm
ingredient? Caffeine, of course! .

But ’ ;
. .there s more; tea and coffee are made in v
similar ways. Let’s check it out: v

% % ua’
SiorbuZZ Goffes. Boriste Training Man

please follow

jstas’
s paring grarbuz?

when Pre

StarbuZZ Coffex Recipt

;1 some water
(1) Boil o

(2) prew C°
r CcO

ffee in poilind wa

ffee in cup

3) Pou
" d milk

(4) add sugar an

StarbuZZ Teo Recipt

1 Boil gome water .
1113 er
(2) gteeP tea in bo:\.llng wa
in cupP

3) pour tea
(4) add 1emon

278

k\ The vetipe Lor
cotfee looks a lot
like the veeipe Yor
tea, doesnt it?

the template method pattern

Whipping up some coffee and tea classes
(in Java)

Let’s play “coding barista” and write some code for
creating coffee and tea.

Here’s the coffee:

ee tlass £or making cotfee.

Heve's our Co§§
‘QCC;
ve £ov LO‘Q
public class Coffee { Weve's oue YEL;YQ fhe kraining manva!
5{-,\'3\3\‘{" o
void prepareRecipe() { ted as
ic implemente

boilWater () ; Eath of the St?:d is imp
brewCoffeeGrinds () ; a scyava{’«c me

pourInCup () ;

addSugarAndMilk() ;

public void boilWater() ({

System.out.println("Boiling water") ;

Each of these methods
imylmcn{s one step ?(:
the algo\ri{:\\m. Thevre's

public void brewCoffeeGrinds() {
System.out.println("Dripping Coffee through filter"); a method 1o boil water,

brew the cokfee, pour
the coffee in 3 eup)

and add sugar and milk.
public void pourInCup() { /

System.out.println("Pouring into cup");

public void addSugarAndMilk () {
System.out.println("Adding Sugar and Milk");

you are here » 279

tea implementation

And now the Tea...

public class Tea {

This looks very similar o the one

void prepareRecipe() we \)us{: implemented in Coffee;
.] the setond and fourth steps ave
boilWater() ;) P
diffevent, but it's basically the
steepTeaBag() ;

same vetipe.
pourInCup() ;
addLemon () ;

public void boilWater() { K\
System.out.println("Boiling water") ;

public void steepTeaBag() {
System.out.println ("Steeping the tea");

public void addLemon () { é/

System.out.println("Adding Lemon") ;

public void pourInCup() {

System.out.println ("Pouring into cup");

When we've got code

clean up the design. It seems like here

280 Chapter 8

duplication, that's a good sign we need to

should abstract the commonality into a base
class since coffee and tea are so similar.

These two
mc{;hods are
spetialized to Tea.

Notice that these
two methods

ave exattly the
same as {',\'\C\[

ave in Coffee!

Co we dekinitely
have some tode
duplication going

on heve.

<

we

the template method pattern

% Design Puzzle

You've seen that the Coffee and Tea classes have a fair bit of code duplication. Take another
look at the Coffee and Tea classes and draw a class diagram showing how you’d redesign the
classes to remove redundancy:

you are here » 281

first cut at abstraction

Let’s abstract that Coffee and Tea

It looks like we’ve got a pretty straightforward design
exercise on our hands with the Coffee and Tea classes.
Your first cut might have looked something like this:

The prepareReci
iTters in each

is defined as abstraet.

Eath subelass
im?ltmth'{',s its

own vetipe.

B

Did we do a good job on the redesign? Hmmmm, take another
look. Are we overlooking some other commonality? What are
other ways that Coffee and Tea are similar?

N

subelass, so it

i Cup0

b \Wa{:cr() A\nd \70w|n

Tn\‘ci\r\:c‘is ave shaved by both Subt,\\asscs,
so they ave defined in the supert ass.

-~

addSugarAndMilk()

Tea

Eath subelass

CaffeineBeverage
Recipe()
eO method > |7
3 thod boilWater()
pourlnCup()
Coffee
prepareRecipe() prepareRecipe()
brewCoffeeGrinds()

steepTeaBag()
addLemon()

RANN
QWEWR

J overvides the

prepaveRecipe()
method and

The methods sycu(:\c ”oo
Coffee and Tea stay in
the subelasses.

implements its own
retipe.

282 Chapter 8

the template method pattern

Taking the design further...

So what else do Coffee and Tea have in common? Let’s start with the recipes.

Starbuzz Tea Recipe

((1) Boil some water
(2) Steep tea in boiling water
(3) Pour tea in cup
(4) Add lemon

Notice that both recipes follow the same algorithm:

€ Boil some water.

¢ O These aven't bwo ave
© Use the hot water to extract the coffee bacted e Theebedre
or fea. i:\cc\;c?;;a:\:‘;\\l into the base class-
to different

© Pour the resulting beverage into a cup.

beverages-

O Add the appropriate condiments to the
beverage.

So, can we find a way to abstract prepareRecipe() too? Yes, let’s find out...

you are here » 283

abstract algorithm

Abstracting prepareRecipe()

Let’s step through abstracting prepareRecipe() from each subclass (that 1s,
the Coffee and Tea classes)...

The first problem we have is that Coffee uses brewCoffeeGrinds()
and addSugarAndMilk() methods, while Tea uses steepTeaBag() and

addLemon() methods.
Coffee Tea

void prepareRecipe () { void prepareRecipe() {
boilWater() ; boilWater() ;
brewCoffeeGrinds () ; D> steepTeaBag() ;
pourInCup() ; pourInCup() ;
addSugarAndMilk () ; <—/ﬁ\——'\> addLemon () ;

} }

Let’s think through this: steeping and brewing aren’t so different; they’re pretty analogous.
So let’s make a new method name, say, brew(), and we’ll use the same name whether
we’re brewing coffee or steeping tea.

Likewise, adding sugar and milk is pretty much the same as adding a lemon: both
are adding condiments to the beverage. Let’s also make up a new method name,
addCondiments(), to handle this. So, our new prepareRecipe() method will look like this:

void prepareRecipe () {

boilWater() ;
brew() ;
pourInCup () ;
addCondiments () ;
} e
3¢ o D
Now we h Recipe() method, b d to fit it into the cod e
ow we have a new prepareRecipe() method, but we need to fit it into the co \e.—/ e

To do this we’ll start with the CaffeineBeverage superclass:

284

the template method pattern

CafbeineBeverage is abstract,

f 3v5‘t like in the ¢lass dCS\Sh- Now, Lhe same ch‘?a‘rCRCc.‘ch m;ﬂ'(‘:ooi‘ccc

. . will be used to make both T}:a 3’\‘ beeause

public abstract class CaffeineBeverage { . c?aYCRCC"\’C() is detlared tind e
Elc don't want our subtlasses 4o be able

ivel
final void prepareRecipe() { < ovevvide this method and Lh:n?\f t:cb::i,‘(?)c{hc

boilWater () ;) lized steps 2 an
We enevalize

brew(); b:vv:ra%e and addCondimentsO.

pourInCup () ;

addCondiments () ;
}

4y Betause Coffee and Tea handle these

e methods in diffevent ways, Jchc\/’rc going to
have 4o be deelared as abstract. Let the

abstract void addCondiments() ; V/ subelasses worry about H\a{: s{uﬂ:!

void boilWater () {
System.out.println("Boiling water") ;

} Remember, we moved these into

. the Caﬁ:cinchvcragc tlass
void pourInCup() { / (back in our elass diagram).

System.out.println("Pouring into cup");

}

Finally, we need to deal with the Coffee and Tea classes. They now rely on CaffeineBeverage
to handle the recipe, so they just need to handle brewing and condiments:

£ s in our design, Tea and Coffee
public class Tea extends CaffeineBeverage { row extend Ca‘c‘ccinchvcragc.
public void brew() {

System.out.println("Steeping the tea");

) Tea needs to define brew() and
public void addCondiments () { addCondimentsO—the +wo abstract
System.out.println("Adding Lemon"); &—— methods Lrom CaffeineBeverage.
} Game for Coffee, extept Cofkee
} deals with eoffee, and sugar and milk

instead of tea bags and lemon.

public class Coffee extends CaffeineBeverage {
public void brew() {
System.out.println ("Dripping Coffee through filter") ;
}
public void addCondiments () {
System.out.println ("Adding Sugar and Milk") ;

you are here » 285

class diagram for

_ ((g@rpen your penci
& Draw the new class diagram now that we’ve moved the
implementation of prepareRecipe() into the CaffeineBeverage class:

286

What have we done?

Tea

© Pboil some wafer
© Stecp theteab?
(3] Pour teainacup
(4] Add lemon

generalize

relies on
subclass
for some

Tea swbt\ass steps

o

© Steep the tea bag in the water

O Add lemon

gin the water

We've vetognized
that the two vecipes
ave essentially the
same, alﬂ\ough

some of the steps

e vequire diffevent -

implementations. So
we've genevalized the
vecipe and placed it
in the base ¢lass.

v

Caffeine Beverage
© Boil some water

© Brew

© Pour beverage in a cup
O Add condiments

.

Catfeine Deveraoe
knows and ton r?\s d
skeps of the veci¥e an
?cv‘(:ow'\s steps | and
ikself, but velies on Ted
or Coffee 4o do steps

2 and &

he

relies on
subclass
for some
steps

the template method pattern

(2] Brew the ¢offep Irindg
O oy Coffee jy , cup

© Adg SUgar apg ilk

generalize

Co#‘ec sube; s
<

© Prew the coffee grinds
@ Add svgar and wilk

you are here » 287

meet the template method pattern

Meet the Template Method

We’ve basically just implemented the Template Method Pattern. What'’s that? Let’s look at
the structure of the CaffeineBeverage class; it contains the actual “template method™:

?rc?areRccifc() is our
template method. Why?

public abstract class CaffeineBeverdge {
Betause:

final void prepareRecipe() { <— | ()|t is a method, after all.
- | (2) M sevves as a template for an
potfarerl; / alagrrthm—in Lhis case, an algorithm
for making catfeinated beverages.
brew() ;
d

o Ih {:hc ‘{ZCmPlafc) eath
\ F_ S{:CP of the algori{:hm is
pourInCup () ; é/ VCPVCSCh'&Cd by a mc{;hod,

| Some methods ave
- handled by this ¢lass...

addCondiments () ;

&

/

..and some ave handled
by {:hc subclass.

abstract void brew() ;

The methods that need to

abstract void addCondiments () ; K_\\\ be supplied by a subtlass ave
detlared abstract.

void boilWater () {

// implementation

void pourInCup () {

// implementation

The Template Method defines the steps of an algorithm and allows

subclasses to ProviJe the implementation for one or more steps.

288 Chapter 8

Let’s make some tea...

Let’s step through making a tea and trace through how the
template method works. You'll see that the template method —the Scenes

the template method pattern

Behind

controls the algorithm; at certain points in the algorithm, it lets
the subclass supply the implementation of the steps...

boilWater () ;

Okay, first we need a Tea object... brew();

pourInCup () ;
Tea myTea = new Teal(); .
addCondiments () ;

)

Hhenwe call the templace method: The prepareRetipe() method
tontrols the algorijchm. No
one tan thange this, and

it tounts on subtlasses to
provide some or all of the

myTea.prepareRecipe () ;

which follows the algorithm for making caffeine

beverages... implem entation.
First we boil water:
CaffeineBeverage
boilWater () ; > prepareRecipe()
boilWater()
which happens in CaffeineBeverage. pourinCup()
Next we need to brew the tea, which only the subclass knows
how to do:
brew () ; /\
Tea
brew()

Now we pour the tea in the cup; this is the same for all beverages,

. . . addCondiments();
so it happens in CaffeineBeverage:

pourInCup () ;

Finally, we add the condiments, which are specific to each beverage,
so the subclass implements this:

addCondiments () ;

you are here » 289

what did

What did the Template Method get us?

290

getus?

Underpowered Tea & Coffee
implementation

New, hip CaffeineBeverage
powered by Template Method

Coffee and Tea are running the show;
they control the algorithm.

Code is duplicated across Coffee and
Tea.

Code changes to the algorithm
require opening the subclasses and
making multiple changes.

Classes are organized in a structure
that requires a lot of work to add a
new caffeine beverage.

Knowledge of the algorithm and how
to implement it is distributed over
many classes.

The CaffeineBeverage class runs
the show; it has the algorithm, and
protects it.

The CaffeineBeverage class
maximizes reuse among the
subclasses.

The algorithm lives in one place and
code changes only need to be made
there.

The Template Method Pattern provides
a framework that other caffeine
beverages can be plugged into. New
caffeine beverages only need to
implement a couple of methods.

The CaffeineBeverage class
concentrates knowledge about the
algorithm and relies on subclasses to
provide complete implementations.

the template method pattern

Template Method Pattern defined

You've seen how the Template Method Pattern works in our Tea and Coffee example;
now, check out the official definition and nail down all the details:

The Template Method Pattern defines the skeleton
of an algorithm in a method, deferring some steps to
subclasses. Template Method lets subclasses redefine

certain steps of an algorithm without changing the
algorithm’s structure.

This pattern is all about creating a template for an algorithm. What'’s a template?
As you've seen it’s just a method; more specifically, it’s a method that defines an
algorithm as a set of steps. One or more of these steps is defined to be abstract and
implemented by a subclass. This ensures the algorithm’s structure stays unchanged,
while subclasses provide some part of the implementation.

Let’s check out the class diagram:

The template method makes use of the
primitive operations to implement an
algorithm. [t is decoupled Lrom the actual
implementation of these operations.

The AbstraetClass /\/

tontains the {:Cmvla‘{:c
method... AbstractClass

primitiveOperation1();
..and abstract vevsions tomplatelethod() ++-xceeeeees

primitiveOperation2();

. primitiveOperation1()
O(: :"\C o{:‘;‘cri{zlov‘? {2 /’_’9 é primitiveOperation2()
used in the template
mc{:hod.

ConcreteClass ‘
a“\, ﬂ primitiveOperation() m £C) implemen is
waY e ™ th primitiveOperation2() The ConevreteClass implem
Ther A (C\asse e + ok the abstract oycra{‘,iov\s,
Contet¥ " e fll <€ : lled when the
: enting O Ay e which are called when
Y\c:hon vean's LemplateMethod() needs them.
ofe’ ekhno
kemglate ™

you are here » 291

template method pattern up close

p Code Up Close

Let’s take a closer look at how the AbstractClass is defined, including the template method
and primitive operations.

Heve we have our abstract class; it

< detlaved abstract and meant Joo

be subtlassed by classes that \7.roV|dc |

im?\tmcnﬁa{jons of the o?cra{',lons. Here's the {xm‘,\alcc thod. s
detlared final to \chcn{ subtlasses
from veworking the sequente o
steps in the algorithm.

abstract class AbstractClass {

final void templateMethod() { I},E '&CMF'G{:C meﬂ\od
primitiveOperationl () ; etines the sequence of
primitiveOperation2 () ; 5 / ZfeP‘; ci«‘_h represented
Y @ method.

concreteOperation () ;

abstract void primitiveOperationl () ;

abstract void primitiveOperation2() ; } <E\In thi le, two of
Is example, two

he primitive operations

must be implemented by

// implementation here Contrete subelasses.

void concreteOperation() {

We also have a contrete operation
defined in the abstract class. This

eould be overridden by subtlasses, or we
eould prevent overriding by detlaring
Lonért‘[:tO?cra{:ion() as final. Move about
this in a bit...

292

Chapter 8

the template method pattern

Code Way Up Close

Now we’re going to look even closer at the types of method that can go in the abstract class:

We've thanged the
templateMethod() to
intlude a new method eall.

abstract class AbstractClass {

final void templateMethod() {
primitiveOperationl () ;
primitiveOperation2 () ;
concreteOperation() ;
hook () ;

) (\

abstract void primitiveOperationl () ;

abstract void primitiveOperation2 () ;

-

final void concreteOperation ()

// implementation here

void hook () {}

7

We still have our primitive
operation methods;

these ave abstraet and

implemented by contrete

subelasses.

crete oycva{:ion is defined in the

abstract elass. This one is dcl'flarc.d ﬁ;:a‘
so that subtlasses cant overvide rl:.d
may be used in Lhe template metho
divectly, or used by subelasses.

A eton

A contrete method,

it does ho{hinﬁ!

We ¢an also have tontrete methods that do nothing

buk K/ by default; we call these “hooks.” Subelasses ave free
to overvide these but don’t have to. We've 9oing to
see how these are useful on the next page.

you are here » 293

implement a hook

With a hook, I can
override the method or not.
It's my choice. If I don't, the
abstract class provides a default
implementation.

Hooked on
Template Method...

A hook 1s a method that is declared in the

abstract class, but only given an empty or default
implementation. This gives subclasses the ability to
“hook into” the algorithm at various points, if they
wish; a subclass is also free to ignore the hook.

There are several uses of hooks; let’s take a look at
one now. We’ll talk about a few other uses later:

public abstract class CaffeineBeverageWithHook ({

final void prepareRecipe() {
boilWater () ;

brew() ;

‘ We've added a lit4] iti
tncap () ; e tondit al
pourInCup & statement that bases its o

if (customerWantsCondiments()) { SuCcess on 3 tonevet thod
ontrete metho)

addCondiments () ; LusﬁomerWan'EsCondimcn'Es(). I£ the
, tustomer WANTS tondiments, only then
} do we call addCondiments().

abstract void brew() ;

abstract void addCondiments() ;

void boilWater() {

System.out.println("Boiling water") ;

}

void pourInCup() { Heve we've defined 1 m;t;:f\{:
System.out.println("Pouring into cup"); \f;\{-,h a ("gt\;lv)\. c‘]"“\\:]s\imc{\r\od :)uS{Z

} \m\’\cmcv\ d does “o{_’h-mg C\SC'

vetuens true an

boolean customerWantsCondiments () {

This is a hook betause the
subtlass ean overvide this

} method, but doesn't have to.

return true;

294 Chapter 8

template method

Using the hook

To use the hook, we override it in our subclass. Here, the hook controls whether
the CaffeineBeverage class evaluates a certain part of the algorithm—that is,
whether it adds a condiment to the beverage.

How do we know whether the customer wants the condiment? Just ask!

public class CoffeeWithHook extends CaffeineBeverageWithHook {

public void brew() {
System.out.println ("Dripping Coffee through filter");

public void addCOI}diments () . { - Hcvc's wheve You overvide
System.out.println("Adding Sugar and Milk"); the hook an d YroV\dC your

} K own Eunc{:'\ona\\b/-

public boolean customerWantsCondiments () {
String answer = getUserInput()

if (answer.tolLowerCase () .startsWith("y")) {

return true; Get the user’s input on
} else { the tondiment detision
return false; <<—— and veturn true or false,

dc?ending on the in?u{:.

private String getUserInput() {
String answer = null;

System.out.print ("Would you like milk and sugar with your coffee (y/n)? ");

BufferedReader in = new BufferedReader (new InputStreamReader (System.in)) ;
try {

answer = in.readLine() ;
} catch (IOException ioe) ({

System.err.println("IO error trying to read your answer") ;

}

if (answer == null) {
return "no";
} /K, : 1d like milk and
i asks if the user wou .
} retusn answer; -:‘;:Z?\; t;c{‘,s the invu{: Lrom the tommand line.

295

test drive

Let’s run the Test Prive

Okay, the water’s boiling... Here’s the test code where we create a
hot tea and a hot coffee.

public class BeverageTestDrive {

public static void main(String[] args) {

TeaWithHook teaHook = new TeaWithHook () ; £ N C\rca{c a tea.
CoffeeWithHook coffeeHook = new CoffeeWithHook() ; ¢ Create 3 Lo“cc.

System.out.println("\nMaking tea..."); é\ And eall \arc\va‘rcRCCi\’CO
N

teaHook .prepareRecipe () ; é/ on bo{:\'\!

System.out.println("\nMaking coffee...");

coffeeHook.prepareRecipe () ;

And let’s give it a run...

File Edit Window Help send-more-honesttea

%$java BeverageTestDrive

Making tea...

Boiling water A steaming cup of tea, and yes,
Steeping the tea of tourse we want that |crn°h.l

Pouring into cup)
Would you like lemon with your tea (y/n)? y

Adding Lemon

Making coffee. ..

£ eup of eofkee,

Boiling water Mnd a nice ho ortee
: but we'll pass on the waistline
DA ERE Gimnn Gl W condiments
c*vhdmg tondimen
Pouring into cup

Would you like milk and sugar with your coffee (y/n)? n

%

296 Chapter 8

Now, T would have thought
that functionality like
asking the customer could

have been used by all
subclasses?

template method

You know what? We agree with you. But you
have to admit before you thought of that, it was
a pretty cool example of how a hook can be used
to conditionally control the flow of the algorithm
in the abstract class. Right?

We’re sure you can think of many other more
realistic scenarios where you could use the

template method and hooks in your own code.

therejare no o
b Questions

Dum

Q: When I'm creating a template method, how do | know when
to use abstract methods and when to use hooks?

A: Use abstract methods when your subclass MUST provide an

implementation of the method or step in the algorithm. Use hooks
when that part of the algorithm is optional. With hooks, a subclass
may choose to implement that hook, but it doesn’t have to.

Q} What are hooks really supposed to be used for?

A: There are a few uses of hooks. As we just said, a hook may
provide a way for a subclass to implement an optional part of an
algorithm, or if it isn’'t important to the subclass’s implementation, it
can skip it. Another use is to give the subclass a chance to react to
some step in the template method that is about to happen or just
happened. For instance, a hook method like justReorderedList()
allows the subclass to perform some activity (such as redisplaying an
onscreen representation) after an internal list is reordered. As you've
seen, a hook can also provide a subclass with the ability to make a
decision for the abstract class.

Q: Does a subclass have to implement all the abstract
methods in the AbstractClass?

A: Yes, each concrete subclass defines the entire set of abstract
methods and provides a complete implementation of the undefined
steps of the template method’s algorithm.

Q: It seems like | should keep my abstract methods small in
number; otherwise, it will be a big job to implement them in the
subclass.

A: That's a good thing to keep in mind when you write template
methods. Sometimes you can do this by not making the steps of
your algorithm too granular. But it's obviously a tradeoff: the less
granularity, the less flexibility.

Remember, too, that some steps will be optional, so you can

implement these as hooks rather than abstract methods, easing the
burden on the subclasses of your abstract class.

297

the hollywood principle

The Hollywood Principle

We’ve got another design principle for you; it’s called the

You've heard me say it
before, and T'll say it again:

don't call me, T'll call you!
Hollywood Principle:

The Hollywood Principle

® Don’t call us, we'll call you.

Easy to remember, right? But what has it got to do with OO
design?

The Hollywood Principle gives us a way to prevent
“dependency rot.” Dependency rot happens when you have

high-level components depending on low-level components ’ u
depending on high-level components depending on sideways

components depending on low-level components, and so

on. When rot sets in, no one can easily understand the way a

system 1is designed.

With the Hollywood Principle, we allow low-level components
to hook themselves into a system, but the high-level
components determine when they are needed, and how. In
other words, the high-level components give the low-level
components the “don’t call us, we’ll call you™ treatment.

N

out the h\gh—\zvc\‘
m cn{',s tontyvo!
High-Level Component r:; cf‘o;“d -
ks
o nen
Low/\m-\ o Yo’m e AN N\
tan Y‘“J““"YaJCC

kation N, Another
comyW Low-Level
Component Low-Level k\ A low—leve] Component never
Component ealls 3 high—leve| Component
di\rcc'l:ly.

298 Chapter 8

the template method pattern

The Hollywood Principle and Template Method

The connection between the Hollywood Principle and the Template Method
Pattern is probably somewhat apparent: when we design with the Template
Method Pattern, we’re telling subclasses, “don’t call us, we’ll call you.” How?
Let’s take another look at our CaffeineBeverage design:

. : high—level
CaffeineBeverage ¥ o‘:crvo\ ?:)vcv the

onent. [t has eon Clien

oyt for the vecav"&“d,‘a"s cded \ o e c"fffﬁ”?“ will depend

Lhe subtlasses only when thef ¥ \::(; / abstraction r:J,cch e

for an implementation of a met! — tontrete Teg o 2‘;&’;& a

affeineBeverage veduces dependengrc. . ¢, which

prepareRecipe() overy| S)’S‘éem. €s in the
boilWater()
pourinCup()
brew()
addCondiments()

N

Coffee Tea ‘
brew() brew() éﬁ
addCondiments() addCondiments()

Tea and Cokfee never
lass

The sube| call the dbstraet ¢
Providuc i: SISCS e Ufed ‘i"‘P’Y to 7\/ — d\Y‘CC'H\I without being

Plementatiop details. “ealle 4" fiest.

- @wam«
PAWEWR

What other patterns make use of the Hollywood Principle?

¢,81ay10 Aue ‘1aniasqQ pue poyiain Aloyed ay |

you are here » 299

who

therejare no R
Dumb Questions

Q: How does the Hollywood Principle relate to the The Hollywood Principle gives us a technique for creating designs

Dependency Inversion Principle that we learned a few chapters

back?

A: The Dependency Inversion Principle teaches us to avoid the
use of concrete classes and instead work as much as possible with

that allow low-level structures to interoperate while preventing other
classes from becoming too dependent on them.

Q: Is a low-level component disallowed from calling a
method in a higher-level component?

abstractions. The Hollywood Principle is a technique for building A_ _
frameworks or components so that lower-level components can be - Not really. In fact, a low-level component wil often end up
hooked into the computation, but without creating dependencies calling a method defined above it in the inheritance hierarchy purely

between the lower-level components and the higher-level layers. So, ~ through inheritance. But we want to avoid creating explicit circular
they both have the goal of decoupling, but the Dependency Inversion ~ dependencies between the low-level component and the high-level
Principle makes a much stronger and more general statement about ones.

how to avoid dependencies in design.

300

WHOQ DQES wWHHAT™?

Match each pattern with its description:

Pattern Description

Encapsulate interchangeable
Template Method behaviors and use delegation to
decide which behavior to use.

Subclasses decide how
to implement steps n an
algorithm.

Strategy

Subelasses decide which

Factory Method concrete classes to instantiate.

the template method pattern

Tewmplate Methods in the Wild

The Template Method Pattern is a very common pattern and o
you’re going to find lots of it in the wild. You’ve got to have = :
a keen eye, though, because there are many implementations S AFARI]
of the template methods that don’t quite look like the
textbook design of the pattern.

This pattern shows up so often because it’s a great design tool
for creating frameworks, where the framework controls how
something gets done, but leaves you (the person using the
framework) to specify your own details about what is actually
happening at each step of the framework’s algorithm.

Let’s take a little safari through a few uses in the wild (well,
okay, in the Java API)...

In training, we study the classic
patterns. However, when we are out in
the real world, we must learn to recognize
the patterns out of context. We must also
learn to recognize variations of patterns,
because in the real world a square hole is
not always truly square.

you are here » 301

sorting with template method

Sorting with Template Method

What’s something we often need to do with arrays?

Sort them! We've pared down this
Recognizing that, the designers of the Java Arrays class f'°dc '_3 little {-plw.‘akT

have provided us with a handy template method for it fas'sr {—’;dv au{:\ all
sorting. Let’s take a look at how this method operates: oud like to see it 3L,

orab the Java sourte

heek it out..
We ac£uaHy have two methods here and {hcy att tode and thetk 1t ouw

together o provide the sort funttionality.

e mebhod that cveates 3

sovjco; s)ust a \nc\\’ the dcs{:'ma{’;“’“ array

d passes it alony asa\Oh‘:) Lhe \ength the

Lirst element:

T‘\C £\Y$+a mc‘h\\od;

copy of Ehe T 1. also passes

S ;
?ia':,c:?\; :,c\\s khe sort ko start at the
v

public static void sort(Object[] a) {
Object aux[] = (Object[])a.clone();

mergeSort (aux, a, 0, a.length, 0);

The meraeSort() method tontains the sort algorithm, and
velies on an implementation of the compareTo() method to
tomplete the algorithm. £ you've intevested in the nitty-
gv-i{:'[:\/ of how the sorting happens, \/ou'“ want to theek out
the Java sourte tode.
Think of this as the
private static void mergeSort (Object src[], Object dest][], ‘(‘.&nylal;c mc{:hod.

int low, int high, int off)

{
// a lot of other code here
for (int i=low; i<high; i++){
for (int j=i; j>low &&
((Comparable)dest[j-1]) .compareTo ((Comparable)dest[j])>0; j--)
{
svap (dest, 3, 3-1) N~ conare T ¢ e e ot
s need to implemen ill ow
ey R
// and a lot of other code here
}

302 Chapter 8

We've got some ducks to sort...

Let’s say you have an array of ducks that you'd like to sort. How do
you do it? Well, the sort() template method in Arrays gives us the

algorithm, but you need to tell it how to compare ducks, which you do by

implementing the compareTo() method... Make sense?

No, it doesn't.
Aren't we supposed to be
subclassing something? I thought
that was the point of Template

template method

b

S o7
s &
__'O/

—— e

L)
—

(st
We’vc 50‘{: an ay-y-ay O‘F

ducks we need 4o sort.

Method. An array doesn't subclass
anything, so I don't get how we'd
use sort().

Good point. Here’s the deal: the designers of sort() wanted

it to be useful across all arrays, so they had to make sort() a
static method that could be used from anywhere. But that’s
okay, since it works almost the same as if it were in a superclass.
Now, here is one more detail: because sort() really isn’t defined
in our superclass, the sort() method needs to know that you’ve
implemented the compareTo() method, or else you don’t have
the piece needed to complete the sort algorithm.

To handle this, the designers made use of the Comparable
interface. All you have to do is implement this interface, which
has one method (surprise): compareTo().

What is compareTo()?

The compareTo() method compares two objects and returns whether one is less than, greater than,
or equal to the other. sort() uses this as the basis of its comparison of objects in the array.

I don't
know. That's what

Am I greater compareTo() tells us.

than you? 00
OO e i
- -
L
N—" __/

303

implementing comparable

&

Comparing Ducks and Ducks -

Okay, so you know that if you want to sort Ducks, ‘)’ - e o
you’re going to have to implement this compareTo() — V’!
method; by doing that, you’ll give the Arrays class N =

what it needs to complete the algorithm and sort QU

-
your ducks. <l

Here’s the duck implementation:
Remember, we need to implement. the Comparable
\[intevface sinte we aven't veally subelassing:
public class Duck implements Comparable<Duck> {
String name;

int weight; Z\ Our Dutks have a name and a weight.

public Duck (String name, int weight) {
this.name = name;

this.weight = weight;

We've keepin it simple; all Dueks do is
puplic String toString() &~ ?r'm‘{', their name and wcigh‘u

return name + " weighs " + weight;

/_\ Okay, heve's what sort() needs..

public int compareTo (Duck otherDuck) {

\ compareTo() takes another Duck to compare THIS Dutk +o.

if (this.weight < otherDuck.weight) ({ — Heve's wheve we s\?céi«c\/ how Ducks

return -1; tompave. [§ THIS Duek weighs less
} else if (this.weight == otherDuck.weight) { £han otherDuck, we veturn —I; if
return 0; they are equal, we return O; and
i k weiahs move, we
} else { // this.weight > otherDuck.weight i THIS Due WeIQhs more,

vetuen [.
return 1;

304 Chapter 8

the template method pattern

Let’s sort some Pucks

Here’s the test drive for sorting Ducks...

public class DuckSortTestDrive {

public static void main(String[] args) {
Duck[] ducks = {
new Duck ("Daffy", 8), [_\WC need an arvay o£
new Duck ("Dewey", 2), \s; Ehese \ook 9ood-
new Duck ("Howard", 7), D“L !
new Duck ("Louie", 2),
new Duck ("Donald", 10),
new Duck ("Huey", 2)
}i

NO{':ICC Jchav’l: we System.out.println("Before sorting:"); “— chs Prin‘{: ‘H’\Cm *{;o see
eall Arra\/s statie display (ducks) ; their names and WC'SH"S'
method sort(), and

pass it our Ducks. Arrays.sort (ducks) ; s sort time!

N

System.out.println("\nAfter sorting:");

display (ducks) ; Let's \"'i“{: them (aga'm) to see

their names and weights

public static void display (Duck[] ducks) {
for (Duck d : ducks) {
System.out.println(d) ;

%java DuckSortTestDrive

Before sorting:

Daffy weighs 8

Dewey weighs 2 The unsorted Dutks
Howard weighs 7

Louie weighs 2

Donald weighs 10

Huey weighs 2

Let the sorting commence!

After sorting:

Dewey weighs 2 The sovted Dueks
Louie weighs 2

Huey weighs 2

Howard weighs 7

Daffy weighs 8

Donald weighs 10

%

you are here » 305

behind the scenes: sorting ducks

The making of the sorting duck machine

Let’s trace through how the Arrays sort() template method works.
We’ll check out how the template method controls the algorithm,
and at certain points in the algorithm, how it asks our Ducks to
supply the implementation of a step...

Behind
the Scenes

for (int i=low; i<high; i++){

. compareTo ()

. swap()
o First, we need an array of Ducks: }
Duck[] ducks = {new Duck("Daffy", 8), ... }; ’T
The sort() method eontrols
e Then we call the sort() template method in the Arrays the algori#:hm; no(;,lass c{in
class and pass it our ducks: thange +his. sort() toun
on a Comparable tlass to
Arrays. sort(ducks) ; provide the implementation

o‘c Com\?arcToO .

The sort() method (and its helper, mergeSort()) control
the sort procedure.

e To sort an array, you need to compare two items one
by one until the entire list is in sorted order.

When it comes to comparing two ducks, the sort()
method relies on the Duck’s compareTo() method
to know how to do this. The compareTo() method
is called on the first duck and passed the duck to be
compared to:

ducks[0] .compareTo (ducks[1]) ; H

First Duek Dutk to tompare it to

e If the Ducks are not in sorted order, they’re swapped with
the concrete swap() method in Arrays:

swap () /\

e The sort() method continues comparing and swapping Ducks
until the array is in the correct order!

306 Chapter 8

Duck

compareTo()
toString()

No inhevitance,
wnlike a typical
template method.

\'4

Arrays

sort()
swap()

therejare no
b Questions

Dum

Qj Is this really the Template Method Pattern, or are you
trying too hard?

A: The pattern calls for implementing an algorithm and letting
subclasses supply the implementation of the steps—and the Arrays
sort() is clearly not doing that! But, as we know, patterns in the

wild aren’t always just like the textbook patterns. They have to be
modified to fit the context and implementation constraints.

The designers of the Arrays sort() method had a few constraints. In
general, you can’t subclass a Java array and they wanted the sort to
be used on all arrays (and each array is a different class). So they
defined a static method and deferred the comparison part of the
algorithm to the items being sorted.

So, while it's not a textbook template method, this implementation is
still in the spirit of the Template Method Pattern. Also, by eliminating
the requirement that you have to subclass Arrays to use this
algorithm, they've made sorting in some ways more flexible and
useful.

template method

Q,: This implementation of sorting actually seems more like
the Strategy Pattern than the Template Method Pattern. Why do
we consider it Template Method?

A: You're probably thinking that because the Strategy Pattern uses
object composition. You're right in a way—we’re using the Arrays
object to sort our array, so that's similar to Strategy. But remember,

in Strategy, the class that you compose with implements the

entire algorithm. The algorithm that Arrays implements for sort() is
incomplete; it needs a class to fill in the missing compareTo() method.
So, in that way, it's more like Template Method.

Q,: Are there other examples of template methods in the Java
API?

AZ Yes, you'll find them in a few places. For example, java.io has a
read() method in InputStream that subclasses must implement and is
used by the template method read(byte b[], int off, int len).

- ‘@RA\N
vawew

We know that we should favor composition over inheritance, right? Well, the
implementers of the sort() template method decided not to use inheritance and
instead to implement sort() as a static method that is composed with a Comparable
at runtime. How is this better? How is it worse? How would you approach this
problem? Do Java arrays make this particularly tricky?

- @3?&&&4 2
TOWER

What pattern is this?

Think of another pattern that is a specialization of the template method. In
this specialization, primitive operations are used to create and return objects.

307

the paint hook

Swingin’ with Frames

Up next on our Template Method safari...keep your eye out for swinging JFrames!

AEARI

o7 [l

If you haven’t encountered JFrame, it’s the most basic Swing container and inherits a
paint() method. By default, paint() does nothing because it’s a hook! By overriding painty),
you can insert yourself into JFrame’s algorithm for displaying its area of the screen and
have your own graphic output incorporated into the JFrame. Here’s an embarrassingly
simple example of using a JFrame to override the paint() hook method:

We've extendin JFrame, whith tontains a
m:{::od u‘?da{c?é) that eontrols the a|go\r|{:hm
for u?da{:ihg the streen. We tan hook into that

algorithm by overriding the paint0) hook method.

public class MyFrame extends JFrame {

(///h Don't look behind the
public MyFrame (String title) {

turtain! Just some
super (title) ;

initialization heve...
this.setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;

this.setSize (300,300) ;
this.setVisible (true) ;

} .
£ TN Feame's update algorithm calls ‘Jalm‘{‘,(i. B\:I
public void paint(Graphics graphics) { dc‘("auH:, yain{:() dr-aws no{hm{?..l.{-{;s zh ook.
super.paint (graphics) ; We've overriding Valn{‘,() n d elling . d‘
String msg = "I rule!!"; \)Fvamc {:o draw @ message n H\c window.
graphics.drawString(msg, 100, 100);
}

public static void main(String[] args) {

MyFrame myFrame = new MyFrame ("Head First Design Patterns");

@ O © Head First Design Patterns

Here's the message that gets ,
painted in the Lrame betause we've
hooked into the Yaiv\{‘,() method.

308 Chapter 8

Custom Lists with Abstractlist

Our final stop on the safari: AbstractList.

The list collections in Java, like ArrayList and LinkedList,
extend the AbstractList class, which provides some of the
basic implementations for list behavior. If you want to
create your own custom list—say, a list that contains only
Strings—you can do that by extending AbstractList so
you get that basic list behavior for free.

AbstractList has a template method, subList(), that relies
on two abstract methods, get() and size(). So when you
extend AbstractList to create your own custom list, you’ll
provide implementations for these methods.

Here’s an implementation of a custom list that contains
only String objects, and uses arrays for the underlying
implementation:

the template method pattern

AbstractList
subList() get(3);
get(int) size();
size()
iterator()
hashCode()
I/ other methods

MyList

get(int)

size()

public class MyStringList extends AbstractList<String> {

private String[] myList;
MyStringList(String[] strings) {
myList = strings;

}

~__

We eveate a tustom list by
$‘{:Chdin5 Abs{rac{Lis{;

public String get(int index) { &—— We must implement the methods 9et()
and size(), whith are both used by

the ‘[:Cm?la{',c method subList().

return myList[index];

}
public int size() {
return myList.length;

}

public String set(int index, String item) { k\ We also imylcmm{: 3 method s¢ L0
so we tan modi‘(:\/ the list.

String oldString = myList[index];

myList[index] = item;

return oldString;

Test the subList() template method in your MyStringList implementation like this:

String[] ducks = { "Mallard Duck", "Redhead Duck",

MyStringList ducksList = new MyStringList (ducks) ;
List ducksSubList = ducksList.subList (2, 3); Crca{‘,c 3 sublist o‘(ﬁ one item s{ar{ing at N

N— index L...the Rubber Dutk, of tourse.

"Rubber Duck", "Decoy Duck"};

you are here » 309

fireside chats: template method and strategy

Fireside Chats

Template Method:

Hey Strategy, what are you doing in my chapter?
I figured I’d get stuck with someone boring like
Factory Method.

I was just kidding! But seriously, what are you doing
here? We haven’t heard from you in seven chapters!

You might want to remind the reader what you’re
all about, since it’s been so long:

Hey, that does sound a lot like what I do. But my
itent’s a little different from yours; my job is to
define the outline of an algorithm, but let my
subclasses do some of the work. That way, I can
have different implementations of an algorithm’s
individual steps, but keep control over the
algorithm’s structure. Seems like you have to give up
control of your algorithms.

310 Chapter 8

Tonight'’s talk: Template Method and Strategy
compare methods.

Strategy H Fac-bor\/ Method

-

Hey, I heard that!

Nope, it’s me, although be careful—you and Factory
Method are related, aren’t you?

I’d heard you were on the final draft of your chapter
and I thought I'd swing by to see how it was going.
We have a lot in common, so I thought I might be
able to help...

I don’t know, since Chapter 1, people have been
stopping me in the street saying, “Aren’t you that
pattern...?” So I think they know who I am. But

for your sake: I define a family of algorithms and
make them interchangeable. Since each algorithm is
encapsulated, the client can use different algorithms
casily.

I'm not sure I'd put it quite like #2at...and anyway,
I'm not stuck using inheritance for algorithm
implementations. I offer clients a choice of
algorithm implementation through object
composition.

Template Method:

I remember that. But I have more control over

my algorithm and I don’t duplicate code. In fact,

if every part of my algorithm is the same except
for, say, one line, then my classes are much more
efficient than yours. All my duplicated code gets put
into the superclass, so all the subclasses can share it.

Yeah, well, I'm real happy for ya, but don’t forget
I'm the most used pattern around. Why? Because I
provide a fundamental method for code reuse that
allows subclasses to specify behavior. I'm sure you
can see that this is perfect for creating frameworks.

How’s that? My superclass is abstract.

Like I said, Strategy, I'm real happy for you. Thanks
for stopping by, but I've got to get the rest of this
chapter done.

Got it. Don’t call us, we’ll call you...

template method

Strategy:

You might be a little more efficient (just a little) and
require fewer objects. And you might also be a little
less complicated in comparison to my delegation
model, but I'm more flexible because I use object
composition. With me, clients can change their
algorithms at runtime simply by using a different
strategy object. Come on, they didn’t choose me for
Chapter 1 for nothing!

Yeah, I guess...but what about dependency? You're
way more dependent than me.

But you have to depend on methods implemented
in your subclasses, which are part of your algorithm.
I don’t depend on anyone; I can do the entire
algorithm myself!

Okay, okay, don’t get touchy. I'll let you work, but let
me know if you need my special techniques anyway;
I'm always glad to help.

311

crossword puzzle

Q Design Patterns Crossword

It’s that time again...

ANEEEENE

Hlllllllllll

NN

MEEEEEEEEEN

MEEEEEENE

MEEEEEEEEEE

ACROSS
1. Huey, Louie, and Dewey all weigh

2. The template method is usually defined in an
class.

4. In this chapter we gave you more

7. The steps in the algorithm that must be supplled by the
subclasses are usually declared

11. The JFrame hook method that we overrode to print “1
rule!!”

12. has a subList() template method.
13. Type of sort used in Arrays.

14. The Template Method Pattern uses
to defer implementation to other classes.

15. “Don’t call us, we’ll call you” is known as the
Principle.

312 Chapter 8

pounds.

DOWN

1. Coffee and

3. Factory Method is a of Template Method.
5. A template method defines the steps of an

6. Big-headed pattern.

8. algorithm steps are implemented by hook
methods.

9. Our favorite coffee shop in Objectville.

10. The Arrays class implements its template method as
a___ method.

15. Amethod in the abstract superclass that does nothing
or provides default behavior is called a

method.

Tools for your Design Toolbox

We've added Template Method to your toolbox.
With Template Method, you can reuse code like a

pro while keeping control of your algorithms.

00 Dasits

00 Printiples

\es-
Encaysu\a&,c what vane
L Lace.
‘tion over inhexitant

Favor tomtes

\n‘\',cr;a“s' not

to
P o0ram -
\:Y?Cmcn-\'ﬁ‘\?\ons.
Jpled desians
\ Iéa‘r \oosc\\l to \7A .
it:c:ccn o\:)ct’c; hat interd
£ov C‘L‘\',CHS\OV\ ‘h Y.‘“C.‘Y\C
hould be oFer ¥ e
(\:J\a‘:,s:o;:“gor mod\‘c\ca{;\o‘n. O“:\\"\\ds \'o“ ‘H\a‘\: \fou‘:\%
u Y:Yc({,\asscs 3‘(6 Y‘u;\\:m 2
e : when
‘h\;i‘f sltlass m&j\\ s\-\\“
Yheyve neededs)usod
they do Hollywe
\ And our newest
classes
pattern ‘cb
00 Patterns — . Fplementing an
.v-u‘v-‘ o LJ_L: v :;Ji- A - algor.‘ﬂ‘m dc‘ccv B
o G.AC:CL:‘:L CM “:\\od - Define 2 >y S{:CYS " deker o
e Fa‘r-\' N VieT! R ‘
wm i - ch‘. - = > \
“' ", S'...A\p ~ | S : sjr
CE\ | ‘;‘ " (“w* m‘."!v Ehf.ﬁ\?&u\}\“"s A vea (3) \
- . auest-
a A4 e Enf.avsu\a‘hcs e

% BULLET POINTS ——

the template method pattern

A template method defines the
steps of an algorithm, deferring to
subclasses for the implementation
of those steps.

The Template Method Pattern
gives us an important technique
for code reuse.

The template method’s abstract
class may define concrete
methods, abstract methods, and
hooks.

Abstract methods are
implemented by subclasses.

Hooks are methods that do
nothing or default behavior in
the abstract class, but may be
overridden in the subclass.

To prevent subclasses from
changing the algorithm in the
template method, declare the
template method as final.

The Hollywood Principle guides us
to put decision making in high-
level modules that can decide
how and when to call low-level
modules.

You'll see lots of uses of the
Template Method Pattern in
real-world code, but (as with any
pattern) don't expect it all to be
designed “by the book.”

The Strategy and Template
Method Patterns both encapsulate
algorithms, the first by composition
and the other by inheritance.

Factory Method is a specialization
of Template Method.

you are here » 313

exercise

Gaharpen
X7

our pencil
Y SoIEtton

Draw the new class diagram now that we’ve moved
prepareRecipe() into the CaffeineBeverage class:

CaffeineBeverage
prepareRecipe()
boilWater()
pourlnCup()
brew()
addCondiments()

AN

Coffee Tea

brew()

addCondiments()

brew()
addCond|ments()

* J
+ 2O
W+ DQE‘ WH AT
QL LUT\QN
Match each pattern with its description:
Pattern Description
Encapsulate interchangable
Template Methed behaviors and use delegation to
decide Wwhich behavior to use.
Subclasses decide how to
Strategy implement steps in an algorithm.
Factory Method Subelasses decide which

concrete classes to create.

314

the template method pattern

* Design Patterns Crossword Solution

It’s that time again...

Tlwlo
‘clalFlFlElTIN|E
L] A E
‘a8 |s|TIR|Alc|T
1]
A

B Ll
H ANBENOBENENES
n a0

4

R|G|E|s|0R|T) A o]

3 TINHIE[RIT|T AN CE

U c | T A

z] HlolLiLlyiwlololb
] Iﬂlﬂﬂllﬂﬂgl

3

E

you are here » 315

9 the Iterator and Composite Patterns

Well-Managed +
Collections +

You bet T keep
my collections well
encapsulated!

There are lots of ways to stuff objects into a collection.

Put them into an Array, a Stack, a List, a hash map—take your pick. Each has its

own advantages and tradeoffs. But at some point your clients are going to want

to iterate over those objects, and when they do, are you going to show them your
implementation? We certainly hope not! That just wouldn’t be professional. Well, you
don’t have to risk your career; in this chapter you're going to see how you can allow
your clients to iterate through your objects without ever getting a peek at how you store
your objects. You're also going to learn how to create some super collections of objects
that can leap over some impressive data structures in a single bound. And if that's not

enough, you're also going to learn a thing or two about object responsibility.

this is a new chapter 317

merger

Breaking News: Objectville Diner and
Objectville Pancake House Merge

That’s great news! Now we can get those delicious pancake breakfasts at the
Pancake House and those yummy lunches at the Diner all in one place. But there
seems to be a slight problem...

318

...but we can't agree on how to implement
our menus. That joker over there used an
ArrayList to hold his menu items, and I

used an Array. Neither one of us is willing to
change our implementations...we just have

too much code written that depends on
them.

They want to use my Pancake House
menu as the breakfast menu and

the Diner's menu as the lunch menu.
We've agreed on an implementation
for the menu items...

Check out the Menu ltems

At least Lou and Mel agree on the
implementation of the Menultems. Let’s
check out the items on each menu, and
also take a look at the implementation.

-

The Diner menu has lots o(: lunth
ikems, while the Pantake House
consists of breakfast items.
Every menu item has 3 name, 3

destviption, and a price.

public class Menultem {

String name;

String description;

boolean vegetarian;

double price;

public MenuItem(String name,
String description,
boolean vegetarian,

double price)

{
this.name = name;
this.description
this.vegetarian

this.price = price;

= description;

= vegetarian;

public String getName () {
return name;

}

public String getDescription() {
return description;

}

public double getPrice() {
return price;

}

public boolean isVegetarian() {
return vegetarian;

}

Hot Dog

to i
o ,:, :::/ With cheese Blueberry Pancakes
; eggies and Brq Pancakes made with fresp, e
medley of Steamed veg and b/ueberry rup S bluebemes,
Waffles
W .
affles with your chojce of, blueberries ”

the iterator and composite patterns

Oéjectw'//e :th'ne’z

Vegetarian BLT
(Fakin’) Bacon wip letty
whole wheqt
BLT
Bacon witp lettuce & o,
Soup of the day
Abowl of the Soup of thq
aside of potgto salad

K&g’s Pancake Breakfqst
ancakes with scrambled €99s and togst %

Re%ular Pancake Breakfqst
ancakes with, fried eggs, Sausage >

A hot dog, with Sauerkrd

Or strawberrjeg

MY
f“mﬂ"ﬂo{?m .COV\SiS‘l:S of a name, 3 dcscrip{:io
: ag . indicate if {he item is vegetaria K
Price. You Pass all these values into {'Ic

Construetor 4o initialize {he Menultem.

Ler methods let you aceess

Th e
ese 6 oa(: {‘)\C menu i-{:cm.

the fields

you are here »

319

two menu implementations

Lou and Mel’s Menu implementations

Now let’s take a look at what Lou and Mel are so I can easily expand
arguing about. They both have lots of time and my menu.

code invested in the way they store their menu
items in a menu, and lots of other code that
depends on it.

I used an ArraylList

Heve's Lou's imylcmcn{a{jon of
g +he Pancake House menu.

public class PancakeHouseMenu {
List<Menultem> menultems;

Lou’s using an Awa\/Lis{:
tlass o store his menu items.

public PancakeHouseMenu() { A/
menultems = new ArrayList<MenuItem>() ;

addItem("K&B's Pancake Breakfast",

"Pancakes with scrambled eggs and toast", Eath menu ikem is added to the

true, . .
2.99); AveayList heve, in the eonstructor
name, d
addItem("Regular Pancake Breakfast", Eath Mf““'£¢"‘ r;s a . noJ:: Ws a
"Pancakes with fried eggs, sausage", dcs(,v\\?{:non, whether o .
false, Vcse{;ar'lah item, and ‘H\C price
2.99);

addItem("Blueberry Pancakes",
"Pancakes made with fresh blueberries",
true,
3.49);

addItem("Waffles",
"Waffles with your choice of blueberries or strawberries",
true,
3.59);

} Lou LY‘CS{’,CS a3 new

To add a menu item, sth avgumcn{'a

public void addItem(String name, String description, Menultem ob\')cé{i; passing in € List
boolean vegetarian, double price) and then adds it to the Areaylist
{
Menultem menultem = new Menultem(name, description, vegetarian, price);
menultems.add (menultem) ;

} / The 5c{',McmemS() method veturns the

list of menu items.

public ArrayList<Menultem> getMenuItems() {
return menultems;

} Lou has a bunth of other menu tode {‘)\a{‘, ’
depends on the AveayList implementation. ffe |
// orher meny methods here doesnt want 1o have 4o vewvite all that code!

320 Chapter 9

the iterator and composite patterns

Haah! An ArrayList..T used a
REAL Array so I can control the
maximum size of my menu.

of the Dinex menw

. on
Pnd heve's Mel's ""?\""c“{”a :

. . L

pml::a:iss:i::?e;rlf:n&){(ITEMS = 6; Mel takes a diffevent approath; " 5:;"“{3‘3" i\wa\l
= 2 1 nu.

int numberOfItems = 0; tlass so he tan tontrol the max size e m

MenuItem|[] menultems;

public DinerMenu() { Like Lou, Mel ereates his menu items in the

menultems = new MenuItem[MAX ITEMS]; / tonstruttor, using the add/tem(hcl?cr method.

addItem("Vegetarian BLT",

"(Fakin') Bacon with lettuce & tomato on whole wheat", true, 2.99);
addItem("BLT",

"Bacon with lettuce & tomato on whole wheat", false, 2.99);
addItem("Soup of the day",

"Soup of the day, with a side of potato salad", false, 3.29);
addItem("Hotdog",

"A hot dog, with sauerkraut, relish, onions, topped with cheese",
false, 3.05);

// a couple of other Diner Menu items added here ad d| {Cm() Lakes all the ?avamc{:crs

} l/\ netessary to eveate a Menultem {:hd)

i <ales one. |£ also thetks to make

public void addItem(String name, String description, instantiate 9)£ o chetke & ke
boolean vegetarian, double price) SU¢W¢ havent hi

{ J
Menultem menultem = new MenuItem(name, description, vegetarian, price);
if (numberOfItems >= MAX ITEMS) {

System.err.println("Sorry, menu is full! Can't add item to menu");

} else { s
menultems [numberOfItems] = menultem; Mel s\’c""‘c"'—a”Y wants to keep his menu
numberOfItems = numberOfItems + 1; under a certain size (Prcsumabl\/ so he

} doesn’t have to remember too many rcdiycs).

} /—\
public MenuItem[] getMenuItems() {
return menultems;

getMenultems) veturns the array of menu items.

}

Like Low, Mel has a bunth of code that depends on the implementation

// other menu methods here é/ o‘c his menu bcing an Awa\/. He's too bus\/ Cook'm5 £o vewrite all oF £his.

you are here » 321

java-enabled waitress

What’s the problem with having two different

wmenu representations?

To see why having two different menu representations complicates
things, let’s try implementing a client that uses the two menus.
Imagine you have been hired by the new company formed by the
merger of the Diner and the Pancake House to create a Java-enabled
waitress (this is Objectville, after all). The spec for the Java-enabled
waitress specifies that she can print a custom menu for customers on

demand, and even tell you if a menu item is vegetarian without having
to ask the cook—mnow that’s an innovation!

Let’s check out the spec for the waitress, and then step through what it
might take to implement her...

The Java-Enabled Waitress Specification

& 1 #7 - vplice"
—Enabled Waitress: code-name

Java
rintMenu() s
’ prints every item on the breakfa
lunch menus
printBreakfastMenu () .
prints just preakfast items
printLunchMenu ()

- prints just lunch items

printVegetarianMenu Q]

i items
prints all vegetarian menu 1

isItemVegetarian (name)

- qlve!l the name Of an item returns true
’

getarian , otherwise,

if the items is ve

returns false

322 Chapter9

Ko The spet for
the Waitress

the iterator and composite patterns

Implementing the spec: our first attempt
Let’s start by stepping through how we’d implement the printMenu() method:

a To print all the items on each menu, you’ll need to call the getMenultems()
method on the PancakeHouseMenu and the DinerMenu to retrieve their
respective menu items. Note that each returns a different type:

The method looks
the same, but ﬂ\c
calls ave vetuwening
. es.
PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu () ; d\(:‘(:crcn{: JOIY

ArrayList<MenuItem> breakfastItems = pancakeHouseMenu.getMenuItems () ;

DinerMenu dinerMenu = new DinerMenu() ;

MenuItem[] lunchItems = dinerMenu.getMenultems () ; The implementation is Showing

through: breakfast items ave
in an Arv-ayLis{:, and lunth
items ave in an Ar\ray.

e Now, to print out the items from the PancakeHouseMenu, we’ll loop through the

items on the breakfastltems ArrayList. And to print out the Diner items, we’ll loop

through the Array. Now, we have to

K— im lcvncnf two
dibfevent loops to

for (int i = 0; i < breakfastItems.size(); i++) {

MenuItem menultem = breakfastItems.get(i); step {-)woug\\ the two
System.out.print (menultem.getName() + " "); ~l"‘\’lC"'.‘"‘J‘-'a{-’-'cms of the
System.out.println (menultem.getPrice() + " "); menu items...
System.out.println (menultem.getDescription()) ; K ...one loo‘? for the

} AvvayList...

for (int i = 0; i < lunchItems.length; i++) { A(_\...and another 1cov
MenulItem menultem = lunchItems[i]; the Awa\/'
System.out.print (menuItem.getName() + " ");
System.out.println (menultem.getPrice() + " ");

System.out.println (menultem.getDescription()) ;

e Implementing every other method in the Waitress is going to be a variation of
this theme. We’re always going to need to get both menus and use two loops to

iterate through their items. If another restaurant with a different implementation
1s acquired, then we’ll have #ree loops.

you are here » 323

what’s the

T harpen your pencil

<

2N

Based on our implementation of printMenu(), which of the following apply?

(d A. We are coding to the

4

4

B.

C.

PancakeHouseMenu and DinerMenu
concrete implementations, not to an
interface.

The Waitress doesn’t implement the
Java Waitress API and so she isn’t
adhering to a standard.

If we decided to switch from using
DinerMenu to another type of menu
that implemented its list of menu items
with a hash table, we’d have to modify
alot of code in the Waitress.

a

D.

E.

E

The Waitress needs to know how each
menu represents its internal collection of
menu items; this violates encapsulation.

We have duplicate code: the printMenuy()
method needs two separate loops to
iterate over the two different kinds of
menus. And if we added a third menu,
we’d have yet another loop.

The implementation isn’t based on
MXML (Menu XML) and so isn’t as
interoperable as it should be.

What now?

Mel and Lou are putting us in a difficult position. They don’t want to change their
implementations because it would mean rewriting a lot of code that is in each respective
menu class. But if one of them doesn’t give in, then we’re going to have the job of

implementing a Waitress that will be hard to maintain and extend.

It would really be nice if we could find a way to allow them to implement the same
interface for their menus (they’re already close, except for the return type of the
getMenultems() method). That way we can minimize the concrete references in the
Waitress code and also hopefully get rid of the multiple loops required to iterate over

both menus.

Sound good? Well, how are we going to do that?

324

the iterator and composite patterns

Can we encapsulate the iteration?

If we’ve learned one thing in this book, it’s to encapsulate what varies. It’s
obvious what is changing here: the iteration caused by different collections of

objects being returned from the menus. But can we encapsulate this? Let’s work
through the idea...

Q To iterate through the breakfast items, we use the size() and get()
methods on the ArrayList:

for (int i = 0; i < breakfastItems.size(); i++) {

MenulItem menultem = breakfastItems.get (i) ;
e —

get(1) get(2) get(3) (‘\ aet() helps us step

get(0) * \ through eath item.
\A\A Arraylist

&N An Arra\/Lich
of Menultems

| Hengre® | Mengre® | Hemupre® | Menzxe® |
1 2 3 4

© And to iterate through the lunch items we use the Array length field and
the array subscript notation on the MenuItem Array.

lunchitems(0]

for (int i = 0; i < lunchlItems.length; W
_ . lunchitemsp;
Menultem menultem = lunchItems[i]; ’\i

Iuh

We use the avrvay
subsevipts to step "

through items.
An Avvay of _;’
Menultems.

you are here » 325

encapsulating iteration

Now what if we create an object, let's call it an Iterator,
that encapsulates the way we iterate through a

We ask the breakfastMenu
collection of objects? Let's try this on the ArrayList:

for an itevator of its
¥ Menultems.
Iterator iterator = breakfastMenu.createIterator() ;

while (iterator.hasNext()) ({

Menultem menultem = iterator.next();
}

And while theve are move items left...

S N
/next() ~-we get the next item.

—x
O get(2)

get(3)
ﬁ Srerars sgetm N

Arraylist v
The client \')us{: calls hasNext(get(0) \)\; Y
and next(); behind the stenes the

itecator ¢alls get() on the Arra\/Lis{,

| Hengre® | Mengre® | Henurse® | Mengxe® |
1 2 3

4

O Let's try that on the Array too:

Iterator iterator

lunchMenu.createlIterator() ;

while (iterator.hasNext()) {
MenuItem menultem

= iterator.next();
} /J
Wow, this tode
is exattly the /\ next()
%—"5&2 i};]"“' lunchitems[0]
readKtas
tode.

/
//—>
- Q==

Same situation heve: the elient just calls Tterd®
hasNext() and next(); behind the stenes,
the iterator indexes into the Avray.

326 Chapter 9

the iterator and composite patterns

Meet the lterator Pattern

Well, it looks like our plan of encapsulating iteration just might
actually work; and as you’ve probably already guessed, it is a
Design Pattern called the Iterator Pattern.

The first thing you need to know about the Iterator Pattern is that
it relies on an interface called Iterator. Here’s one possible Iterator
interface:

The hasNext() method

fells us if heve ave
move elements in the

<<interface>> I 355“53{3‘ to itecate
Iterator {:h\rough-
hasNext() l =~y
next()
\ The next() method

veturns the next
ochC‘t in the
aggregate.

Now, once we have this interface, we can implement Iterators for
any kind of collection of objects: arrays, lists, hash maps... pick your

favorite collection of objects. Let’s say we wanted to implement the
Iterator for the Array used in the DinerMenu. It would look like this:

When we say
COLLECTION we just mean a group
of objects. They might be stored in
very different data structures like lists,
arrays, or hash maps, but they're still
collections. We also sometimes call
these AGGREGATES.

<<interface>>
Iterator

hasNext()
next()

: m DinerMenulterator is an
DinerMenulerator | implementation of |terator

hasNext() +hat knows how to iJctYQéCC
next() over an avray Menultems.

Let’s go ahead and implement this Iterator and incorporate it into
DinerMenu to see how this works...

you are here » 327

using iterator

Adding an lterator to PinerMenu

To add an iterator to the DinerMenu, we first need to define the Iterator interface:

Heve ave our two methods:

The hasNext() method veturns a boolean
ic i indicating whether or not there ave
public interface Trexater J move elements to itevate over...

boolean hasNext() ;

MenuItem next(); TN and the next) methog

} vreturns the next element.

And now we need to implement a concrete Iterator that works for the Diner menu:

We implement the

[_\ H’,CY‘a‘{')O\” in{ﬂ“(:aéc-

public class DinerMenulterator implements Iterator { ‘nbains the
osition mantam W
Menultem[] items; i vent post Lion © the
&¥Xmm .
int position = 0; '\{-,cva{:'\o“ over the arvay

public DinerMenulterator (MenuItem|[] items) ({

this.items = items; K/ The tonstruetor takes the
} array of menu items we ave
going to iterate over.
public MenuItem next() { é\
MenuItem menultem = items[position]; The next() method veturns the
position = position + 1; V\C*{: |'ECM in ‘thc aY‘Y'ay and
intrements the position.
return menultem;
}

public boolean hasNext() {

if (position >= items.length || items[position] == null) {
return false;
} else { ?
return true; .
The h Betause the diner thef went ahead and
} £ ilc’j:,\ﬁ:l:(;llmtho? thetks to see allocated a max sized arvay, we need to
} e elements of the cheek not only if we are at the end of

array and veturns true if there ave

} more 4o iterate through. the array, but also if the next item is null,

whith indicates there are no move items.

328 Chapter 9

the iterator and composite patterns

Reworking the PinerMenv with lterator

Okay, we've got the iterator. Time to work it into the DinerMenu; all we need to do is
add one method to create a DinerMenulterator and return it to the client:

public class DinerMenu {
static final int MAX ITEMS = 6;
int numberOfItems = O;

MenuItem[] menultems;
// constructor here

// addItem here

/_\ We've not going to need the SCJCMChuI‘ECmSO

method anymore; in fact, we don't v;livi‘, i‘{:. |
because it exposes our internal im?lcmcn{‘,a{:lov\.

.}_

public Iterator createIterator() ({

return new DinerMenulterator (menultems) ;

Heve's the eveatelterator() method.

} [t eveates a DinerMenulterator
£rom the menultems array and
// other menu methods here veturns it to the client.

We've veturning the [tevator interface. The tlient
doesn't need o know how the Menultems are maintained
in the DinerMenu, nor does it need to know how the
DinerMenultevator is implemented. [t \')us{: needs to use
the iterators to step through the items in the menu.

Go ahead and implement the PancakeHouselterator yourself and make the changes
needed to incorporate it into the PancakeHouseMenu.

Exercise

you are here » 329

fixing the waitress

Fixing up the Waitress code

Now we need to integrate the iterator code into the
Waitress class. We should be able to get rid of some
of the redundancy in the process. Integration is pretty
straightforward: first we create a printMenu() method
that takes an Iterator; then we use the createlterator() 2
method on each menu to retrieve the Iterator and New and b.//f
pass it to the new method.

imyrovcd with)Jf\
[tevator. ﬂ
= &

public class Waitress {

330

PancakeHouseMenu pancakeHouseMenu; [n the tonsbructor the Waitress
DinerMenu dinerMenu; f\(‘,lass Lakes the two menus.

public Waitress (PancakeHouseMenu pancakeHouseMenu, DinerMenu dinerMenu) {
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;
} The Vv\nWC“V()
[- method now ereates

fwo iterators, one ¥O¥
Iterator pancakelterator = pancakeHouseMenu.createlterator(); eath menw.-
Iterator dinerIterator = dinerMenu.createIlterator(); &e—

public void printMenu() {

System.out.println ("MENU\n----\nBREAKFAST") ;
printMenu (pancakeIterator) ;
System.out.println ("\nLUNCH") ;

printMenu (dinerIterator) ;

...and then ealls Jchc
— ovevrloaded YYih{lMChu()

L~ with eath itevator.

Test if there ave
private void printMenu(Iterator iterator) { any movre items. Th.c E/‘\I;Ylo?;j ed
while (iterator.hasNext()) { Get the print/iens
Menultem menultem = iterator.next(); K_ next item. method vses
the [terator to
s{‘,c\? {')wough
the menu items

and ‘?\rin{: them.

System.out.print (menultem.getName() + ", ");
System.out.print (menultem.getPrice() + " -- ");
System.out.println (menultem.getDescription()) ;

Use Lhe item to

vite
// other methods here Note that we've down 5c{-' name, price,

. and deseviption
'{'.O g_t__lO_OP ahd YY'.IY\'{: ‘H‘\C"h

Chapter 9

the iterator and composite patterns

Testing our code

It’s time to put everything to a test. Let’s write some
test drive code and see how the Waitress works...

i eveate the new menus.
public class MenuTestDrive { First we

public static void main(String args[]) { \[
PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu () ;

DinerMenu dinerMenu = new DinerMenu() ;

< Then we eveate a
Waitress and pass

hev the menus.

Waitress waitress = new Waitress (pancakeHouseMenu, dinerMenu) ;

waitress.printMenu() ;

Then we print them.

Here’s the test run...

File Edit Window Help

o

% java DinerMenuTestDrive

MENU First we itevate

— {‘)\\rough the

BREAKFAST (\ pancake menu...

K&B’s Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs and toast

Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage ..and then

Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries the lunth
Waffles, 3.59 -- Waffles with your choice of blueberries or strawberries meny, all

with the

same
LUNCH
(itevation

Vegetarian BLT, 2.99 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29 -- Soup of the day, with a side of potato salad

tode.

Hot Dog, 3.05 -- A hot dog, with sauerkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with marinara sauce, and a slice of sourdough bread

you are here » 331

comparing implementations

What have we done so far?

For starters, we’ve made our Objectville cooks
very happy. They settled their differences and
kept their own implementations. Once we gave
them a PancakeHouseMenulterator and a
DinerMenulterator, all they had to do was add a
createlterator() method and they were finished.

We've also helped ourselves in the process. The
Waitress will be much easier to maintain and

extend down the road. Let’s go through exactly
what we did and think about the consequences:

Hard-to-Maintain
Waitress Implementation

Woohoo! No code
changes other
than adding the
createIterator() method.

chgic bwgcr

New, Hip
Waitress Powered by lterator

The Menus are not well
encapsulated; we can see the
Diner is using an ArrayList and the
Pancake House an Array.

We need two loops to iterate through
the Menultems.

The Waitress is bound to concrete
classes (Menultem[] and ArrayList).

The Waitress is bound to two different
concrete Menu classes, despite their
interfaces being almost identical.

332

The Menu implementations are now
encapsulated. The Waitress has

no idea how the Menus hold their
collection of menu items.

All we need is a loop that
polymorphically handles any
collection of items as long as it
implements Iterator.

The Waitress now uses an interface
(Iterator).

The Menu interfaces are now exactly
the same and, uh oh, we still don’t
have a common interface, which
means the Waitress is still bound to
two concrete Menu classes. We'd
better fix that.

the iterator and composite patterns

Reviewing our current design...

Before we clean things up, let’s get a bird’s-eye view of our current design.

se fwo menus implement the
Ts-:v:c evatt set of mc{‘:\\ods, but
they avent implementing ?\c Js;:.mc
inkevface. We've 9oing +o fix this
and free the Warbress from any
dcvcndcv\ﬁes on Contxc{‘,c Menus-

s

PancakeHouseMenu

The [4evator allows the Waitress to be decoupled
from the actual implementation of the conevete
tlasses. She doesn't need to know if a Menu is
implemented with an Avvay, an AvrayList, or with
Post—it® notes. All she taves about is that she ¢an
get an [terator to do her iterating.

/N[

Waitress

menultems

createlterator()

DinerMenu

menultems

]
|

createlterator()

Iterator

hasNext()
next()

<<interface>> I

printMenu()

We've now using a
tommon [tevator
interface
and we've
implemented two

tontrete Classcs.

PancakeHouseMenulterator ‘

DinerMenulterator

hasNext()
next()

hasNext()
next()

/
inevMenu
PancakcHouscMCV\V and I{'),c‘ E:ra‘bo"o

Note that the iterator 9ives us a way to

step through the elements of an aggregate

without \corcing the aggregate to clutter its

own interface with a bunch of methods 4o
supp?rf traversal of its elements. [t also allows
the implementation of the itevator to live

outside of the aggregate; in other words, we've
encapsulated the iteration.

implement the new trea
method; they ave vespor

he iterator Yor
{i‘l‘c:m‘s' implementations-

you are here »

sible ‘(:ov Crca{i\ng
their rcsvct’c’wc menu

333

using java’s iterator

Making some improvements...

Okay, we know the interfaces of PancakeHouseMenu and DinerMenu are exactly the same
and yet we haven’t defined a common interface for them. So, we’re going to do that and clean
up the Waitress a little more.

You may be wondering why we’re not using the Java Iterator interface—we did that so you
could see how to build an iterator from scratch. Now that we’ve done that, we’re going to
switch to using the Java Iterator interface, because we’ll get a lot of leverage by implementing
that instead of our home-grown Iterator interface. What kind of leverage? You’ll soon see.

First, let’s check out the java.util.Iterator interface:

evious definition...

e This locks just like our pr

<<interface>>
Iterator

hasNext()

next(~extept we have an additional method that

remove() <= allows us to remove the last item returned
by the next() method from the aggregate.

This is going to be a piece of cake: we just need to change the interface that both
PancakeHouseMenulterator and DinerMenulterator extend, right? Almost...actually, it’s even
ecasier than that. Not only does java.util have its own Iterator interface, but ArrayList has an
iterator() method that returns an iterator. In other words, we never needed to implement our
own iterator for ArrayList. However, we’ll still need our implementation for the DinerMenu
because it relies on an Array, which doesn’t support the iterator() method.

thereqare no o
Dumb Questions

Q: What if | don’t want to provide the ability to remove
something from the underlying collection of objects?

A: The remove() method is considered optional. You don't have
to provide remove functionality. But you should provide the method
because it's part of the lterator interface. If you're not going to

allow remove() in your iterator, you'll want to throw the runtime
exception java.lang.UnsupportedOperationException. The Iterator
API documentation specifies that this exception may be thrown
from remove() and any client that is a good citizen will check for this
exception when calling the remove() method.

334 Chapter 9

Q: How does remove() behave under multiple threads that
may be using different iterators over the same collection of
objects?

A: The behavior of the remove() method is unspecified if the
collection changes while you are iterating over it. So you should be
careful in designing your own multithreaded code when accessing a
collection concurrently.

the iterator and composite patterns

Cleaning things up with java.util.lterator

Let’s start with the PancakeHouseMenu. Changing it over to
java.util.Iterator is going to be easy. We just delete the
PancakeHouseMenulterator class, add an import java.util.Iterator
to the top of PancakeHouseMenu, and change one line of the
PancakeHouseMenu:

public Iterator<Menultem> createIterator() ({
return menultems.iterator(); £ Instead of ereating our own iterator

} now, we \)us{: eall the itevator()
method on the menultems AwayLis{:
(movre on this in 3 bit).

And that’s it, PancakeHouseMenu is done.

Now we need to make the changes to allow DinerMenu to work with java.util.Iterator.

k’—\ Fiest we import Jjava.util.[tevator, the
import java.util.Iterator;

interface we've 90ing to implement.

public class DinerMenulterator implements Iterator<MenuItem> {
MenuItem[] items;
int position = 0;

public DinerMenuIterator (MenuItem[] items) ({
this.items = items;

None of our turrent

. : es...
public MenuItem next() { ‘"‘ch"‘c"{”a{-"ov‘ thany
//implementation here

}

public boolean hasNext () { Remember, the remove() method is optional
//implementation here in the [terator interface. Having our waitress

} vemove menu items veally doesn't make sense,

so we'll just theow an exeeption if she tries.

public void remove () {
throw new UnsupportedOperationException
("You shouldn't be trying to remove menu items.") ;

you are here » 335

reworking the waitress

We are almost there...

Now we just need to give the Menus a common interface and rework the
Waitress a little. The Menu interface is quite simple: we might want to add a
few more methods to it eventually, like addItem(), but for now we’ll let the chefs
control their menus by keeping that method out of the public interface:

This is a simple interface that
Jjust lets ¢lients get an iterator

public Iterator<Menultem> createlterator(); Lor the items in the menu

public interface Menu ({

}

Now we need to add an implements Menu to both the PancakeHouseMenu
and the DinerMenu class definitions and update the Waitress class:

import java.util.Iterator; = Now the Waitress uses the Jjava.util-[terator as well.

public class Waitress { W d o
Menu pancakeHouseMenu; ¢ nee VCPlaCc the

Menu dinerMenu; Contrete MC"“ tlasses with
{:hc Mcnu m‘f:cr‘(:a{,c.

public Waitress (Menu pancakeHouseMenu, Menu dinerMenu) {
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;

public void printMenu() {
Iterator<MenuItem> pancakeIterator = pancakeHouseMenu.createlterator()
Iterator<MenuItem> dinerIterator = dinerMenu.createlterator();
System.out.println ("MENU\n----\nBREAKFAST") ;
printMenu (pancakeIterator) ;
System.out.println ("\nLUNCH") ;
printMenu (dinerIterator) ;

No{:hing Chahgcs

private void printMenu(Iterator iterator) { heve

while (iterator.hasNext()) {
MenuItem menultem = iterator.next();
System.out.print (menultem.getName() + ", ");
System.out.print (menultem.getPrice() + " -- ");
System.out.println (menultem.getDescription()) ;

// other methods here

336 Chapter 9

What does this get us?

The PancakeHouseMenu and DinerMenu classes implement an interface,

the iterator and composite patterns

This solves the problem

Menu. This allows the Waitress to refer to each menu object using the interface EXN of the Waitress

rather than the concrete class. So, we’re reducing the dependency between dc\?tnd\ng on the
the Waitress and the concrete classes by “programming to an interface, not an tontrete Menus.
implementation.”

Also, the new Menu interface has one method, createlterator(), that is
implemented by PancakeHouseMenu and DinerMenu. Each menu class

assumes the responsibility of creating a concrete Iterator that is appropriate for
its internal implementation of the menu items.

)
Heve's our new Menu intevface.

It specifies the new method,

eveateltecator().

J

_ : from the
onl\/ needs to ‘\m\:\cmc“{"abon to '&c\ra{ic
be tonterned we £an use an l‘cc\'a{';-{-, s without
with Menus and over any list of ';‘:“1 ‘\\:‘: fhe list
[£evators. o 3o¥

<<interface>>
Menu

having {0 kn

ikems is implemented:

PancakeHouseMenu i

DinerMenu

menultems menultems
createlterator() createlterator()

Q PancakcHouscMcnu and DinevMenu now
implement the Menu interface, which

means they need to imple t th
ereatelterator() mc'l:hz‘:d.m“ e

\

Eath tontrete Menu is vesponsible
for eveating the appropriate
tontrete [tevator ¢lass.

r—' Waitress <<interface>>
printMenu() Iterator
createlterator() l hasNext()

next()
remove()
PancakeHouseMenulterator DinerMenulterator
hasNext() hasNext()
next() next()
remove() remove()

DinerMenu veturns

a DinerMenulterator
From its
We've now using the eveateltevator)
AvcayList iterator method betause
supplied by java.util. We that's the kind of
don't need this anymore. itevator vequired

4o itevate over its
AW&‘/ of menu items.

you are here » 337

iterator pattern

lterator Pattern defined

You've already seen how to implement the Iterator
Pattern with your very own iterator. You’ve also seen
how Java supports iterators in some of its collection-
oriented classes (ArrayList). Now it’s time to check out
the official definition of the pattern:

The Iterator Pattern provides a way to
access the elements of an aggregate object
sequentially without exposing its underlying
representation.

This makes a lot of sense: the pattern gives you a way

to step through the elements of an aggregate without
having to know how things are represented under the
covers. You've seen that with the two implementations
of Menus. But the effect of using iterators in your design
is just as important: once you have a uniform way of
accessing the elements of all your aggregate objects, you
can write polymorphic code that works with any of these
aggregates—just like the printMenu() method, which
doesn’t care if the menu items are held in an Array or
ArrayList (or anything else that can create an Iterator), as
long as it can get hold of an Iterator.

The other important impact on your design is that the
Iterator Pattern takes the responsibility of traversing
elements and gives that responsibility to the iterator
object, not the aggregate object. This not only keeps
the aggregate interface and implementation simpler,

it removes the responsibility for iteration from the
aggregate and keeps the aggregate focused on the
things it should be focused on (managing a collection of
objects), not on iteration.

338

The [terator Pattern
allows traversal of the
elements of an aggregate
without exposing the
unc[erlying implementation.

It also places the task
of traversal on the
iterator oLject, not

on the aggregate,

which simplifies the
aggregate interface and
implementation, and

]olaces the res]oonsilaility
where it should be.

The lterator Pattern Structure

Let’s check out the class diagram to put all the pieces in context...

HSVing a tommon in{‘,cr('\au ("or \Your
agg\rega{:cs is hand\/ for zow thent;

it decouples your client

vom the

im?ltmcn{;a{:ion o{'\ Your collection of ob\')c(:[',s-

s,

<<interface>>
Aggregate

Client

ri.

createlterator()

ConcreteAggregate

the iterator and composite patterns

The [tevator intecface
provides the interface
that all iterators
must implement, and

a set of methods

for traversing over

/

createlterator()

4

The Coneretefggreqate

has a tollection of

ob\)cc{:s and imylcmm{:s

the method that

vetuens an [terator for

its collection.

- @‘?A\N
v

\ Each

Contretepggregate

is vesponsible for
ins{:ah{:ia{:ing a
Contvetelterator that
tan itevate over its
eolleetion of ob\)ct‘lz&

<cinterface>> elements of a collection.
Iterator) A
st Heve we've using the
o savadil [bevator. I¢
next() J ;
remove() You don t want to
use Java's [terator
T in{:cr'(:a(,c, You tan
: always ereate your own.
> Concretélterator
hasNext()
next()
remove()

|

The Contretelterator is
vesponsible for managing
the turrent Posi{:ion of
the itevation.

QWEWR

The class diagram for the Iterator Pattern looks very similar to another
pattern you’ve studied; can you think of what it is? Hint: a subclass
decides which object to create.

you are here » 339

the principle

The Single Responsibility Principle

What if’ we allowed our aggregates to implement their internal
collections and related operations AND the iteration methods?
Well, we already know that would expand the number of
methods in the aggregate, but so what? Why is that so bad?

Well, to see why, you first need to recognize that when we allow
a class to not only take care of its own business (managing
some kind of aggregate) but also take on more responsibilities
(like iteration) then we’ve given the class two reasons to change.
Two? Yup, two: it can change if the collection changes in some
way, and it can change if the way we iterate changes. So once
again our friend CHANGE is at the center of another design
principle:

Design Principle

A class should have only one
® reason to change.

We know we want to avoid change in our classes because
modifying code provides all sorts of opportunities for
problems to creep in. Having two ways to change increases
the probability the class will change in the future, and when
it does, it’s going to affect two aspects of your design.

The solution? The principle guides us to assign each
responsibility to one class, and only one class.

That’s right, it’s as easy as that, and then again it’s not:
separating responsibility in design is one of the most
difficult things to do. Our brains are just too good at seeing
a set of behaviors and grouping them together even when
there are actually two or more responsibilities. The only
way to succeed is to be diligent in examining your designs
and to watch out for signals that a class is changing in more
than one way as your system grows.

340

Every res]oonsi]oility of

a class is an area of
Potential cltange. More
than one responsilaility
means more than one area

of change.

This Principle guiJes us to
lcee]o each class to a single
responsil)ility.

Cohesion is a term you'll
hear used as a measure of
how closely a class or a

, module supports a single
| purpose or responsibility.

B

h
o -

We say that a module or
class has high cohesion when it
is designed around a set of related
functions, and we say it has low
cohesion when it is designed around a
set of unrelated functions.

Cohesion is a more general concept
than the Single Responsibility Principle,
but the two are closely related.

Classes that adhere to the principle
tend to have high cohesion and are
more maintainable than classes that
take on multiple responsibilities and
have low cohesion.

RANN

the iterator and composite patterns

‘PQWEWR

Game

Examine these classes and determine which ones
have multiple responsibilities.

login()
signup()
move()
fire()
rest()

DeckOfCards

hasNext()
next()
remove()
addCard()
removeCard()
shuffle()

GumballMachine
Person
tN getCount()
zim::r:(s)s() Phone getState()

i tLocati
setPhoneNumber() dial() getLocation()
save() hangUp()
load() talk()

sendData()
flash()
T
Iterator
ShoppingCart ::Z\(l)eﬂ()
2040 remove()
remove()
checkOut()
saveForLater()
T

HARD HAT AREA. WATCH OUT
FOR FALLING ASSUMPTIONS

P\ ki

‘PQWEWR

Game

login()

signup()
move()

fire()

rest()
getHighScore()
getName()

Determine if these classes have low or high cohesion.

GameSession

login()
signup()

PlayerActions i

move() Player h
fire() getHighScore()
rest() getName()

you are here »

341

no dumb

Q: I've seen other books show the
Iterator class diagram with the methods
first(), next(), isDone(), and currentltem().
Why are these methods different?

A: Those are the “classic” method names
that have been used. These names have
changed over time and we now have next(),
hasNext(), and even remove() in
java.util.lterator.

Let's look at the classic methods. The
next() and currentltem() have been merged
into one method in java.util. The isDone()
method has become hasNext(), but we
have no method corresponding to first().
That's because in Java we tend to just get
a new iterator whenever we need to start
the traversal over. Nevertheless, you can
see there is very little difference in these
interfaces. In fact, there is a whole range
of behaviors you can give your iterators.
The remove() method is an example of an
extension in java.util.lterator.

Q,: I've heard about “internal” iterators
and “external” iterators. What are they?
Which kind did we implement in the
example?

A: We implemented an external iterator,
which means that the client controls the
iteration by calling next() to get the next
element. An internal iterator is controlled

by the iterator itself. In that case, because
it's the iterator that's stepping through the
elements, you have to tell the iterator what
to do with those elements as it goes through
them. That means you need a way to pass
an operation to an iterator. Internal iterators
are less flexible than external iterators
because the client doesn’t have control of
the iteration. However, some might argue
that they are easier to use because you just

342

therejare no
Dumb Questions

hand them an operation and tell them to
iterate, and they do all the work for you.

Q: Could | implement an Iterator that
can go backward as well as forward?

A: Definitely. In that case, you'd probably
want to add two methods, one to get to the
previous element, and one to tell you when
you're at the beginning of the collection

of elements. Java’s Collection Framework
provides another type of iterator interface
called Listlterator. This iterator adds
previous() and a few other methods to the
standard Iterator interface. It is supported
by any Collection that implements the List
interface.

Q,: Who defines the ordering of the
iteration in a collection like Hashtable,
which is inherently unordered?

A: Iterators imply no ordering. The
underlying collections may be unordered as

in a hash table or in a bag; they may even
contain duplicates. So ordering is related
to both the properties of the underlying
collection and to the implementation. In
general, you should make no assumptions
about ordering unless the Collection
documentation indicates otherwise.

Q: You said we can write
“polymorphic code” using an iterator; can
you explain that more?

A: When we write methods that take
Iterators as parameters, we are using
polymorphic iteration. That means we are
creating code that can iterate over any
collection as long as it supports lterator.
We don'’t care about how the collection

is implemented, we can still write code to
iterate over it.

Qj If I'm using Java, won’t | always
want to use the java.util.lterator
interface so | can use my own iterator
implementations with classes that are
already using the Java iterators?

A: Probably. If you have a common
Iterator interface, it will certainly make it
easier for you to mix and match your own
aggregates with Java aggregates like
ArrayList and Vector. But remember, if you
need to add functionality to your Iterator
interface for your aggregates, you can
always extend the lterator interface.

Q: I've seen an Enumeration interface
in Java; does that implement the Iterator
Pattern?

A: We talked about this in the

Adapter Pattern chapter (Chapter 7).
Remember? The java.util.Enumeration

is an older implementation of Iterator

that has since been replaced by java.util.
[terator. Enumeration has two methods,
hasMoreElements(), corresponding to
hasNext(), and nextElement(), corresponding
to next(). However, you'll probably want to
use lterator over Enumeration as more Java
classes support it. If you need to convert
from one to another, review Chapter 7 again
where you implemented the adapter for
Enumeration and lterator.

Q: Is using Java’s enhanced for loop
related to iterators?

A: Good question! It is, and to tackle that
question we need to understand another
interface—that is, Java’s Iterable interface.
This is a good time to do just that...

Meet Java’s lerable interface

You're already up to speed on Java’s Iterator interface, but there’s
another interface you need to meet: Iterable. The Iterable interface

1s implemented by every Collection type in Java. Guess what? In your

code using the ArrayList, you've already been using this interface.
Let’s take a look at the Iterable interface:

Here's the [terable

intevface. 3{

<<interface>>

Iterable The [tevable interface
iterator() intludes an itﬂraﬁor()
+forEach() — method {-'ha-t veturns
+ spliterator() an iterator that

implements the
T [evator interface.
<<interface>>
Collection

add()
addAll()
clear()
s All Collection classes, like
oquals() AwayLis{:, implement the
hashCode() Colleetion interface, whith
isEmpty() L inhevits from the [terable

iterator() &/ iy\-{;cr‘cacc, so all CO"CL‘[‘,ion

remove() tlasses are Itcrablcs
removeAll()

retainAll()
size()
toArray()

If a class implements Iterable, we know that the class implements an
iterator() method. That method returns an iterator that implements
the Iterator interface. This interface also includes a default forEach()
method that can be used as another way to iterate through the
collection. In addition to all that, Java even provides some nice
syntactic sugar for iteration, with its enhanced for loop. Let’s see how
that works.

the iterator and composite patterns

<<interface>>
Iterator

next()

hasNext()
+remove()

‘/ou alrcad\/ know about the
[tevator interface; that's the
same interface we've been using
with our Diner and Pancake
house itevators.

The [tecable interface also
intludes the spliterator()
method, which provides even
more advanted ways to iterate
through a colleetion.

you are here » 343

the enhanced for loop

Java’s enhanced for loop

Let’s take an object whose class implements the Iterable interface...why not
the ArrayList collection we used for the Pancake House menu items:

List<Menultem> menultems = new ArrayList<Menultem>() ;

We can iterate over ArrayList the way we have been:

Iterator iterator = menu.iterator();

while (iterator.hasNext()) {
Menultem menultem = iterator.next();
System.out.print (menultem.getName() + ", "),
System.out.print (menultem.getPrice() + " -- ");
System.out.println (menultem.getDescription()) ;

This is the way we've been
doing iteration over our
eollections, using an iterator
along with the hasNext() and
next() methods.

Or, given we know ArrayList is an Iterable, we could use Java’s enhanced
for shorthand:

for (MenuItem item: menu) { é\ Hcrc we ¢an dispense with
System.out.print (menultem.getName() + ", "); the explieit ifcfa'l:or as| +h
System.out.print (menultem.getPrice() + " -- "); hasNext() and next() c{:he d
methods

System.out.println (menultem.getDescription()) ;

Looks like a great way to use Iterators
that really results in simple code—no more
hasNext() or next() method calls. So, can we
rework our Waitress code to use I'terable and
the enhanced for loop for both menus?

344 Chapter 9

the iterator and composite patterns

Not so fast: Arrays are not lterables @

. .. . 2y
We have some bad news: the Diner may not have made the best decision using an

Array as the basis for its menus. As it turns out, Arrays are not Java Collections
and so they don’t implement the Iterable interface. Given that, we can’t as easily
consolidate our Waitress code into one method that takes an Iterable and use it
with both the Pancake House’s breakfastItems and the Diner’s lunchltems. If you
try to change the Waitress’s printMenu() method to take an Iterable instead of an
Iterator, and use the for-each loop instead of the Iterator API, like this:

public void printMenu(Iterable<MenuIltem> iterable) {
for (MenuItem menultem : iterable) ({

// print menultem

This will onl\/ work for the
ArrayLis{: we've using for the
, Pancake House menu.

you’ll get a compiler error when you try to pass the lunchltems array to printMenu():

printMenu (lunchItems) ; &_ Comyilc crv-or’ Ar\ra\/s are not l‘{:crablcs.

because, again, Arrays don’t implement the Iterable interface.

If you keep both loops in the Waitress code, we’re back to square one: the Waitress is
once again dependent on the aggregate types we’re using to store the menus, and she
has duplicate code: one loop for the ArrayList, and one loop for the Array.

So what do we do? Well, there are many ways to solve this issue, but they are a bit of a
sideshow, as would be refactoring our code. After all, this chapter is about the Iterator
Pattern, not Java’s Iterable interface. But the good news is you know about Iterable, you
know its relationship to Java’s Iterator interface and to the Iterator Pattern. So, let’s keep
moving, as we’ve got a great implementation even if we aren’t taking advantage of a

little syntactic sugar from Java’s for loop.

’P’F_

Serijous Coding

You probably noticed the forEach() method in the Iterable menu. It’s used as the basis for
Java’s enhanced for loop, but you can also use it directly with Iterables. Here’s how it works:

- Lhis tase -and passi lamb

' an [Levable, in ¥ : Passing a lambda that takes 3
ii:c\:a:;,‘akc House P‘Wa‘ll"sjc We've calling forEaeh()... menu[tem, and Just prints it.
0‘(: menw tems-

breakfastItems.forEach(item -> System.out.println(item)) ;

/[So this tode will Prin{: every
item in the collection.

you are here » 345

a new

Good thing you're
learning about the Iterator
Pattern because I just heard that
Objectville Mergers and Acquisitions
has done another deal...we're merging
with Objectville Café and adopting their
dinner menu.

Wow, and we thought things
were already complicated.
Now what are we going to do?

Come on, think positively.
I'm sure we can find a way to
work them into the Iterator
Pattern.

346

the iterator and composite patterns

Taking a look at the Café Menu

Here’s the café menu. It doesn’t look like too much trouble to integrate the
CafeMenu class into our framework...let’s check it out.

't \m?\

CafeMenw doesn T T 70 7o 4.

(\ \na{:cr‘(:au: but Lhis s easly e The tafe is storing their
Does that support [tera

ement our new Menw
menu items in 3 HashMap-
tor? We'll see shortly.-

public class CafeMenu {
Map<String, MenulItem> menultems = new HashMap<String, MenuItem> () ;

Like the other Menus, the menu items

public CafeMenu() {
ARTIRT . vuttor
addItem("Veggie Burger and Air Fries", \5\ ave initialized in the tonstru

"Veggie burger on a whole wheat bun, lettuce, tomato, and fries",
true, 3.99);
addItem("Soup of the day",
"A cup of the soup of the day, with a side salad",
false, 3.69);
addItem("Burrito",
"A large burrito, with whole pinto beans, salsa, guacamole",

true, 4.29);
Heve's wheve we treate a new Menultem

}
- and add it to the menultems RashMap-

public void addItem(String name, String description,
boolean vegetarian, double price)

{
Menultem menultem = new Menultem(name, description, vegetarian, price);
menultems.put (name, menultem) ;
} N N :
The kcy is the ; fe;{_he value is the menu|tem ob\)cc{:.

name
public Map<String, Menultem> getMenultems () {
return menultems; '_
) .
} } We're not 9o0ing to need this anymore.

_ C@rpen your pencil
A Before looking at the next page, quickly jot down the three

things we have to do to this code to fit it into our framework:

you are here » 347

reworking the menu code

Reworking the Café Menu code

Let’s rework the CafeMenu code. We’re going to take care of implementing the
Menu interface, and we also need to deal with creating an Iterator for the values
stored in the HashMap. Things are a little different than when we did the same

for the ArrayList; check it out... . . N
Ca‘CCMcnu im?ltmtn{‘,s {the Menu interxate, so the
£ Waitress tan use it \')us{: like the other two Menus.

public class CafeMenu implements Menu {
Map<String, MenuItem> menultems = new HashMap<String, MenuItem>() ;

N
public CafeMenu() f{ ~_ We've using HashMap because it's @ common
// constructor code here data structure for storing values.

}

public void addItem(String name, String description,
boolean vegetarian, double price)

{
MenuIltem menultem = new Menultem(name, description, vegetarian, price);
menultems.put (name, menultem);
}
&— Just like before, we tan get vid of 5c£|t5ms()
ret e so we don't expose the implementation o
’ menultems o the Waitress.
T
) .
i heve we implement the
ublic Iterator<Menultem> createlterator And here's w :
’ O 0 eatelterator) method. Notice that

return menultems.values () .iterator() ;
0 . we've not aetting an [terator for the

. v whole HashMa?, \')uSJc for the values.

Code Up Close
HashMap is a little more complex than ArrayList because it supports both

keys and values, but we can still get an Iterator for the values (which are
the Menultems).

I T N\
public Iterator<Menultem> createlIterator() { < (g QwE?
return menultems.values () .iterator(); Are We yiolating
} the Principle of
Least Knowledge
First we get the values of the .L“Ck.’l‘/ that collection supports the nere? What c_an
HashMap, whith is just a tollection of iterator() method, which veturns 3 we do about it?

all the objects in the HashMap. object of type java.util [evator.

348 Chapter 9

iterator composite

Adding the Cafe Menu to the Waitress

Now it’s time to modify the Waitress to support our new Menu. Now that the
Waitress expects Iterators, it should be straightforward:

public class Waitress { The caﬁé menu 1S yasscd into the Waitress
in the tonstruttor with the other menus,

Menu pancakeHouseMenu; : .
and we stash it in an instance vaviable.

Menu dinerMenu;

Menu cafeMenu;

public Waitress (Menu pancakeHouseMenu, Menu dinerMenu, Menu cafeMenu) {
this.pancakeHouseMenu = pancakeHouseMenu;
this.dinerMenu = dinerMenu;

this.cafeMenu = cafeMenu;

public void printMenu() {
Iterator<Menultem> pancakeIterator = pancakeHouseMenu.createlterator()
Iterator<Menultem> dinerIterator = dinerMenu.createlterator();
Iterator<MenuItem> cafelterator = cafeMenu.createIterator();
S We've using the cafe's
System.out.println ("MENU\n----\nBREAKFAST") ; menu for our dinner
menu. All we have to do

to print it is eveate the

. . itevator, and pass it to
printMenu (dinerIterator) ; yrm{McmO. That's i{:!

System.out.println (" \nDINNER") ;

printMenu (pancakeIterator) ;

System.out.println ("\nLUNCH") ;

printMenu (cafelterator) ;

private void printMenu(Iterator iterator) {
while (iterator.hasNext()) {
Menultem menultem = iterator.next(); — NOH‘"'\S ")‘3“5“ here.
System.out.print (menultem.getName() + ", ");
System.out.print (menultem.getPrice() + " -- ");

System.out.println (menultem.getDescription()) ;

349

testing the new menu

Breakfast, lunch, AND dinner

Let’s update our test drive to make sure this all works.

public class MenuTestDrive {
public static void main(String args[]) {

PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu() ; Create a Ca‘(:cMcnu-n

DinerMenu dinerMenu = new DinerMenu() ; 4,_’—/—/
CafeMenu cafeMenu = new CafeMenu() ; .
0 ..and pass it to the waitvess.

Waitress waitress = new Waitress (pancakeHouseMenu, dinerMenu, cafeMenu) ; 4»—3

waitress.printMenu(); <— .
P () Now, when we print we should see all three menus.

Here’s the test run: check out the new dinner menu from the Café!

File Edit Window Help

[}

% java DinerMenuTestDrive First we itevate

MENU through the
—— \(\ pam:akc menu...
BREAKFAST

K&B's Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs and toast
Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage

Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries and then
Waffles, 3.59 -- Waffles with your choice of blueberries or strawberries .'.(;hc dinev

(menu...
LUNCH

Vegetarian BLT, 2.99 -- (Fakin') Bacon with lettuce & tomato on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat

Soup of the day, 3.29 -- Soup of the day, with a side of potato salad

Hot Dog, 3.05 -- A hot dog, with sauerkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with marinara sauce, and a slice of sourdough bread

DINNER L \-and finally

the new eafe
Soup of the day, 3.69 -- A cup of the soup of the day, with a side salad menw, all with

Burrito, 4.29 -- A large burrito, with whole pinto beans, salsa, guacamole the same
Veggie Burger and Air Fries, 3.99 -- Veggie burger on a whole wheat bun, iteration tode.
lettuce, tomato, and fries

350 Chapter 9

the iterator and composite patterns

What did we do?

Arraylist

l[\ We wanted to give the
@' Waitress an easy way to /7
g - itevate over menu items... A oms had i

different im lementations
and two difbecent

\ inkecfates for ikerating:
.and we didn't want her to \\»

know about how the menu
items ave implemented.

| Hengrre® | Henqzxe® | Henyzre® | Menge® |

2y,

We decoupled the Waitress....

AecayList has 3

So we gave the Waitress an built—in iterator .
I{c\r;tg' for eath kind of Al’l’aYLIST
group of ob")cc{:s she needed . N]
{o itevate over... ...one tor
\' Ar\ra\/Lis{:... @

| Menpse™ | Menuzxe™ |419'mIT¢‘“ | Menqre®
1 2 3 4

g ~Pecay
ITCY‘O*& doesn't have Array

a built—in <\
.and one for Avrvay. [terator so
we built our

% /—L
: next()

own.

/(Zterot®
$ Now she doesn't have to worry about which

implementation we used; she always uses the same
infc)vfacc— [terator — to iterate over menu items.
She's been decoupled from the implementation.

you are here » 351

a more extensible waitress

..and we made the Waitress more extensible

By giving her an [terator,

we have decoupled her

from the imFICan{:a{:ion
¥ of the menu items, so we

tan casil\/ add new Menus

Yy a£ we want.
l L

w} ____——next() \
‘
h Ttera®
er,

Whith is betiey £
an use the

€Cause now she ¢

3nY 9roup of obiests

{v:f s ?:eH:cr for L).s bccaﬁ:cd
he implementation details

aren't €xposed.

A

But there’s more!

Java 9ives You a lot of “Co”cc{:ion"
tlasses that allow You to store
and vetrieve groups of objects;

for example, Veetor and
LinkedList.

~

Vector

Most have different

interfaces.

But almost all of [4’%11*““‘ | "’e"uzl*"‘“ I%nu;*@‘“ | %‘“ |
Lhem su?\?or{: a

wa\[to objoa'"\ an

[tevator-

And if ‘l‘)\c\/ don't support
[tevator, that's okay, betause now
You know how to build Your own.

352 Chapter 9

We easily added another
im?\:mtn{;a{:ion (rc menu
ikems, and sinte we
‘wovidcd an |tevator,
the Waitress knew what

A

HashMap ¢ do

Making an [terator
for the HashMaF

va'ucs was casy,'

R Vhen you ¢ll

values.itevator()
You et an [terator.

LinkedList

Yepre® Mengue® Hemrre®

Mengxe®

.and wore!

lterators and Collections

We’ve been using a couple of classes that are part of the Java Collections Framework.
This “framework” is just a set of classes and interfaces, including ArrayList, which
we’ve been using, and many others like Vector, LinkedList, Stack, and PriorityQueue.
Each of these classes implements the java.util.Collection interface, which contains a

the iterator and composite patterns

bunch of useful methods for manipulating groups of objects.

Let’s take a quick look at the interface:

<<interface>>
Iterable

iterator()
+ forEach()
+ spliterator()

-

<<interface>>
Collection

add() o

addAll()
clear()
contains()
containsAll()
equals()
hashCode()
isEmpty()
iterator() /—
remove()
removeAll()
retainAll()

size() &\

—

toArray()

I

Don't forget the

Colleetion in{:cv‘(:aéc
implements the
Nl [terable intevface.

As You tan se¢, ther
of YSood s{',u(:‘c heve.

and v

Heve's our old friend, the
itevator() method. With this
method, You ¢an 5c{: an [tevator
for any ¢lass that imylcmcn‘[:s
the Colleetion intevfate.

thcr handy methods intlude
size(), 4o get the number of
elements, and foAr\ray() to turn

Your colleetion into an array.

¢'s all kinds
\(ou tan add
emoVve c\Can{',s ‘cvom \Ic?w
tollettion without even knowing
how it's implemented:

HashMap is one of
a few classes that
indirectly
supports Iterator.

Watch it!
: As you saw when we
implemented the CafeMenu, you
could get an lterator from it, but
only by first retrieving its Collection
called values. If you think about it,
this makes sense: the HashMap
holds two sets of objects: keys and
values. If we want to iterate over
its values, we first need to retrieve
them from the HashMap, and then
obtain the iterator.

The nice thing about Collections and
Iterators is that each Collection object
knows how to create its own Iterator. Calling
iterator() on an ArrayList returns a concrete

Tterator made for ArraylLists, but you never need

to see or worry about the concrete class it uses;

you just use the Iterator interface.

353

you are here »

code magnets

Code Magnets

The Chefs have decided that they want to be able to alternate their lunch menu items; in other words,
they will offer some items on Monday, Wednesday, Friday, and Sunday, and other items on Tuesday,
Thursday, and Saturday. Someone already wrote the code for a new “Alternating” DinerMenu Iterator so
that it alternates the menu items, but she scrambled it up and put it on the fridge in the Diner as a joke.
Can you put it back together? Some of the curly braces fell on the floor and they were too small to pick
up, so feel free to add as many of those as you need.

MenuItem menultem = items [position] ;
position = position + 2;

return menultem;

import java.util.Iterator;

import java.util.Calendar;

lpublic Object next() { !

public AlternatingDinerMenulterator (MenuItem[] items)

this.items = items;

position = Calendar.DAY OF WEEK $ 2;

implements Iterator<MenuItem> public void remove() {

I public class AlternatingDinerMenulterator '

public boolean hasNext () {

Menultem[] items;

int position;

throw new UnsupportedOperationException (

"Alternating Diner Menu Iterator does not support remove()") ;

if (position >= items.length || items[position] == null) {
return false;
} else {

return true;

354 Chapter 9

the iterator and composite patterns

Is the Waitress ready for prime time?

The Waitress has come a long way, but you’ve gotta admit
those three calls to printMenu() are looking kind of ugly.

Let’s be real—every time we add a new menu we’re going to
have to open up the Waitress implementation and add more
code. Can you say “violating the Open Closed Principle”?

Three eveateltevator() ealls.

public void printMenu() {

Iterator<Menultem> pancakelterator = pancakeHouseMenu.createIterator() ;

Iterator<Menultem> dinerIterator = dinerMenu.createlterator();

Iterator<Menultem> cafelterator = cafeMenu.createlterator()

System.out.println ("MENU\n----\nBREAKFAST") ;

printMenu (pancakelterator) ;

System.out.println ("\nLUNCH") ; Theee talls to
/ ?vin‘{:MCnu.

printMenu (dinerIterator) ;

System.out.println ("\nDINNER") ;

printMenu (cafelterator) ;

Evcr\/ Lime we add or vemove @ menu, we're going

£o have to open this tode up for changes.

It’s not the Waitress’s fault. We’ve done a great job of decoupling the menu implementation
and extracting the iteration into an iterator. But we still are handling the menus with
separate, independent objects—we need a way to manage them together.

— RANN
‘PQWEWR

The Waitress still needs to make three calls to printMenu(), one for each menu. Can you
think of a way to combine the menus so that only one call needs to be made? Or perhaps
so that one lterator is passed to the Waitress to iterate over all the menus?

you are here » 355

a new

This isn't so bad. All
we need to do is package the
menus up into an ArrayList and then
iterate through each Menu. The code in
the Waitress is going to be simple and it
will handle any number of menus.

Sounds like the chef is on to something. Let’s give it a try:

public class Waitress ({

List<Menu> menus; Now we \')ud: take a list
/_\ 0‘(: menus, instead 0‘(:

public Waitress (List<Menu> menus) { eath menu sc?ara{:cl\/‘
this.menus = menus;

And we iterate through the

menus, Passing eath menu’s
Iterator<Menu> menulterator = menus.iterator() ; itevator to the overloaded

while (menulterator.hasNext()) { printMenu() method.
Menu menu = menulterator.next();
printMenu (menu.createIterator()) ;

public void printMenu() {

}
}
void printMenu (Iterator<Menultem> iterator) {
while (iterator.hasNext()) { k\ No tode
Menultem menultem = iterator.next(); ¢thanges heve.
System.out.print (menultem.getName() + ", ");
System.out.print (menultem.getPrice() + " -- ");

System.out.println (menultem.getDescription()) ;

This looks pretty good, although we’ve lost the names of the menus,
but we could add the names to each menu.

356

the iterator and composite patterns

Just when we thought it was safe...

Now they want to add a dessert submenu.

T just heard the Diner is
going fo be creating a dessert
menu that is going to be an insert

) .
Okay, now what? Now we have to support not only multiple into their regular menu.

menus, but menus within menus.

It would be nice if we could just make the dessert menu an
element of the DinerMenu collection, but that won’t work as it is
now implemented.

What we want (something like this):

All Menus

o=
<
el
%

V)
| “o/(eHoué‘; | Drermens | “@femens |
1 2 3

Heve's our A\r\ra\/Lis{:
that holds the menus
of eath vestauwrant.

Café Menu

Pancake Menu
Piner Menu

| Yenzie® | Mempse® | Hemizre™ | Memisxe® |
1 2 3 4

HashMap
<—

AecayList Dessert Menu

We need for Diner Menu 1o hold a submeny,

/ but we can't ad‘,uall\/ assign 3 menu to a
Menultem arvay because the types are
diffevent, so this isn't going to work.

K
e wo? We can’t assign a dessert menu to a
vt o, Menultem array.
wo'™

Time for a change!

you are here » 357

time to refactor

What do we need?

The time has come to make an executive decision to
rework the chef’s implementation into something that

is general enough to work over all the menus (and now
submenus). That’s right, we’re going to tell the chefs that
the time has come for us to reimplement their menus.

The reality is that we’ve reached a level of complexity
such that if we don’t rework the design now, we’re never
going to have a design that can accommodate further
acquisitions or submenus.

So, what is it we really need out of our new design?

* We need some kind of a tree-shaped structure that
will accommodate menus, submenus, and menu
items.

* We need to make sure we maintain a way to traverse
the items in each menu that is at least as convenient
as what we’re doing now with iterators.

* We may need to traverse the items in a more flexible
manner. For instance, we might need to iterate over
only the Diner’s dessert menu, or we might need to
iterate over the Diner’s entire menu, including the
dessert submenu.

358 Chapter 9

There comes a time when we
must refactor our code in order
for it to grow. To not do so would
leave us with rigid, inflexible code
that has no hope of ever sprouting
new life.

the iterator and composite patterns

use we need to rcvvcscv&

menus, ncs{cd S\AbmcnuS, a.nd{;\\em

items, we tan na{:wa\\\/ (:\Jc em

in a tree-like sbrutture. -

© g mmodate
% N\ attommo :‘ o= 7 ()

ke Hous” Menus.-- /\ ...and submenus... Gt N\?’@

<IN oo AN
0 000 O

Heppre® Henprer® Henpre® Hepre™ Heppxe® Hepgre® o

<
eS’sg\n" NQ]

.and menu items.

Henpre® Henpro™ Henyrse® Menrer® éj//

Beta

e pre® Menrre® MHepzxe®

We still need 4o be able

= e We also need {6 b able 4o
. o raverse mo Flexi ‘
| e lcxnbly, for
hstante over one meénu.

Henrre® Hemzre™ Meppee® Hengre®

_ @ﬁzvtxu«
‘PQWEWR
How would you handle this new wrinkle to our design
requirements? Think about it before turning the page.

you are here » 359

composite pattern defined

The Composite Pattern defined

That’s right; we’re going to introduce another pattern
to solve this problem. We didn’t give up on Iterator—it
will still be part of our solution—however, the problem
of managing menus has taken on a new dimension that
Iterator doesn’t solve. So, we’re going to step back and
solve it with the Composite Pattern.

We’re not going to beat around the bush on this
pattern; we’re going to go ahead and roll out the official
definition now:

The Composite Pattern allows you to
compose objects into tree structures to
represent part-whole hierarchies. Composite
lets clients treat individual objects and
compositions of objects uniformly.

Let’s think about this in terms of our menus: this pattern
gives us a way to create a tree structure that can handle
a nested group of menus and menu items in the same
structure. By putting menus and items in the same
structure we create a part-whole hierarchy—that is, a
tree of objects that is made of parts (menus and menu
items) but that can be treated as a whole, like one big
iiber menu.

Once we have our tiber menu, we can use this

pattern to treat “individual objects and compositions
uniformly.” What does that mean? It means if we have
a tree structure of menus, submenus, and perhaps
subsubmenus along with menu items, then any menu
is a “composition” because it can contain both other
menus and menu items. The individual objects are just
the menu items—they don’t hold other objects. As you’ll
see, using a design that follows the Composite Pattern
is going to allow us to write some simple code that can
apply the same operation (like printing!) over the entire
menu structure.

360 Chapter 9

)
Here’s 3 tree strueture.

E\cmth{',s with
child elements ~

ave talled node

/T\
" o ©

Leok

=N ~7
Elements without ¢hildren
ave called leaves.

We tan rcyvcscn{: /jl

our Menu and
Menultems in 8
4ree strutture.

Menu
Q '
M enu‘f\d’s /Mel’\\-\'y‘
’Henuﬁ &

NT 72

Menus are nodes and
Menultems ave leaves.

We tan treate avbitrarily

comylcvt trees.
O Menus
—

/L\.O

Submenu
00 009 O © 09
McnuH,C"\S ‘//\\
@ 90909

And treat Lhem as a whole.- /2

O MChuS
/l /

O Submenu
n b"““) ‘) afmv"
o @ © 220 0O Q@9
? PN
Menultems Q «Q «Q« 9]
0¥ as ?awr{:s-r3
a be Yr'm‘h()
mSTEbe 7L
O Ma\us

00 000 O 09
/ -
McnuPCC"‘s O O O O T~
e Yr'm{',()

the iterator and composite patterns

The COmposite Pattern
allows us to build
structures of ol)jects in
the form of trees that
contain hoth c0mpositions
of olajects and individual
o]ojects as nodes.

Using a c0mposite
structure, we can apply
the same o]oerations over
hoth co:nposites and
individual o]ojects. In
other WOI‘(:[S, in most
cases we can ignore the
differences between
compositions of ol)jects
and individual oLjects.

oc the T

you are here » 361

composite pattern class diagram

The Comp

T\'\C C\\Cht uses ‘t\'\c \h‘{',CY‘(:aCC

ent defines an
OEOV' all Ob)ccb n H\c The C°"‘P°ncn'l: ma
both the ComPose 3 default behavior .

Y i"‘P'Cmcn{:

L Lace tomposition or add(),
Com\?onch{': |V\+,C‘f i . . V'CMOVC()I 5C£Ch|,d() i
man\?u\a{'fc the ob‘)cé{’,s mn and leaves operations. and its
Lhe composition
Client i—) Component
l operation()
add(Component)
remove(Component)
.N°£C. that the leaf also getChild(int)
inhevrits mc{;hods like add(),
*;'":ve(% and getChild(),
which don't necessaril mak /_\
a
L et e
(g 1
this icss?::.hg to tome back +o Leaf i Composite
operation() add(Component)
remove(Component) h . \So
A leaf has no getChild(int) The ComYosA:c a S
Chi,dkcn. operation() - olemen he Le
‘:\cv\ajccd opevation:
that some
A leaf defines the behavior for N:JC:C way ot "‘a\%c
the elements in the composition. © csc on d Composite
I£ does this by im\?lc»\cn{:ins the The Com‘?osi‘tcls vole is to s::-m {;\\3{3 tase 3"

operations the Composite supports. define behavior of the

therelgre no

Dum

Q} Component, Composite, Trees? I’'m confused.

A: A composite contains components. Components come in
two flavors: composites and leaf elements. Sound recursive? It is.
A composite holds a set of children; those children may be other
composites or leaf elements.

When you organize data in this way you end up with a tree structure

(actually an upside-down tree structure) with a composite at the root
and branches of composites growing up to leaves.

362 Chapter 9

5*, be

. *CCY‘E‘O“ i

Lom?OhCV\{ZS hav'm5 ¢hildren and ch\cva ed-

4o skore thild components.

Questions

Q,: How does this relate to iterators?

A: Remember, we're taking a new approach. We're going to
re-implement the menus with a new solution: the Composite Pattern.
So don't look for some magical transformation from an iterator to a
composite. That said, the two work very nicely together. You'll soon
see that we can use iterators in a couple of ways in the composite
implementation.

Pesigning Menus with Composite

So, how do we apply the Composite Pattern to our menus? To start with, we need to create a
component interface; this acts as the common interface for both menus and menu items and allows
us to treat them uniformly. In other words, we can call the same method on menus or menu items.

the iterator and composite patterns

Now, it may not make sense to call some of the methods on a menu item or a menu, but we can deal
with that, and we will in just a moment. But for now, let’s take a look at a sketch of how the menus
are going to fit into a Composite Pattern structure:

The Waitress 1 g,‘

MenuCompone®

use ‘t\\c

N

\w\:cv‘cacc o ateess
d Mcvm\{'.c"‘s'

McmComPoncr\Jc rcy\rcscn{:s the in{:cr«cacc

for both Menultem and Menu. We've used an
abstract class here because we want 4o provide
default implementations for these methods.

bo‘\:\\ Menvs an

M

Waitress

—

Heve are the methods for _—>
maniyula{:ing the com\?oncn‘[:sv

The com?oncn‘[:s are
Menultem and Menu.

Both Menultem and
Menu override print().

R

MenuComponent

getName()
getDescription()
getPrice()

isVegetarian()

print()
add(MenuComponent)
remove(MenuComponent)
getChild(int)

/_\
We have some of the same

methods \/ou’ll vemember
Lrom owr Pvcvious vevrsions
of Menultem and Menw,
and we've added print0),
add(), Y‘CmchO and
9etChild()- We'll desevibe
Lhese soon, when we
implement our new Menu
and Menultem classes.

/

Menultem

Menu

getName()
getDescription()

getPrice()
isVegetarian()
print()

Menultem overrides the methods
sense, and uses the defa

in McnuComPoncn{: for th
make sense (Jike add(3— e

sense to add 3 tomponen

we tan only add Compone

ult imP'cmcn'(:a'l:ions
at don't

it doesn’t make

t toa Menultem...
nts to 3 Menw).

that make

menuComponents

getName()
getDescription()

print()
add(MenuComponent)
remove(MenuComponent)
getChild(int)

Menu also overvides £he methods that
make sense, like 3 way 4o add and r.c;;ovc
menu items (or other menus!) from i

mcmCom\?oncn{:& |V\

addition, we'll use the

aetName() and 5c+,Dcscrichion() methods to

veturn the name and destription

the menuw

you are here » 363

implementing composite

|Wlp|emeVI‘l'iVIq MeVlUCOWIPOVleVl‘l' All components must implement

the MenuComponent interface;

Okay, we’re going to start with the MenuComponent abstract however, because leaves and
class; remember, the role of the menu component is to provide an nodes have different roles we
interface for the leaves and the composite nodes. Now you might can’t always define a default

be asking, “Isn’t MenuComponent playing two roles?” It might implementation for each

well be and we’ll come back to that point. However, for now we’re method that makes sense.

going to provide a default implementation of the methods so that Sometimes the best you can do
if the Menultem (the leaf) or the Menu (the composite) doesn’t is throw a runtime exception.

want to implement some of the methods (like getChild() for a leaf
node), it can fall back on some basic behavior:

M Com?oncn{:
Y;v:/‘:dcs default Because some of these methods
implementations for only make sense for Menultems, and

some on|\/ make sense fo\r Mcms,

the default implementation is
MnsumchPcra{:ionE;ZcP‘{:ion. That
way, i Menultem or Menu doesn’t
public abstract class MenuComponent { support an operation, it doesn't have
to do anything; it can Jus{’, inhevit the

dc&wl{: im\?lcmcn‘f:a{;ion.

every method.

public void add(MenuComponent menuComponent) {
throw new UnsupportedOperationException() ;
}

public void remove (MenuComponent menuComponent) {
throw new UnsupportedOperationException() ; (\ We've groupe d ‘bogc Lher th
er the

} « . »
public MenuComponent getChild(int i) { COIP“'& methods — that Is)
throw new UnsupportedOperationException () ; methods to add, vemove, and
} 56{: McnuComPoncn'[:s.
public String getName () {
} throw new UnsupportedOperationException() ; Heve ave the “oycra{‘jon" - ci{'{,:\ods;
he Menultems.
public String getDescription() { these are “rd bz:’ slso use 3
throw new UnsupportedOperationException () ; [t £urns ou we £an boo, 35
} couple of them in Menu o))
: e
public double getPrice() { you'll see in 3 couple of pages when
throw new UnsupportedOperationException() ; we show 4the Menu tode.
}

public boolean isVegetarian() {
throw new UnsupportedOperationException() ;

} Frin{:() IS an “och-a{:ion" method

Seblic void print() | that both our Menus and
throw new UnsupportedOperationException() ; Menultems will implcmcw{:, but we

} provide a default operation heve.

364

Implementing the Menultewm

Okay, let’s give the Menultem class a shot. Remember,
this is the leaf class in the Composite diagram, and it
implements the behavior of the elements of the composite.

public class Menultem extends MenuComponent {
String name;
String description;
boolean vegetarian;
double price;

public Menultem(String name,
String description,
boolean vegetarian,
double price)

o

{
this.name = name;
this.description = description;
this.vegetarian = vegetarian;
this.price = price;

}

public String getName () {
return name;

}

public String getDescription() {
return description;

}

public double getPrice() {
return price;

}

public boolean isVegetarian() {
return vegetarian;

}

public void print() {
System.out.print(" " + getName())
if (isVegetarian()) {
System.out.print (" (v)");
}
System.out.println(",
System.out.println ("

" + getPrice());

the iterator and composite patterns

I'm glad we're going in this
direction. I'm thinking this
is going to give me the flexibility
I need to implement that crépe
menu I've always wanted.

Firs{: we need to extend
fhe MenuComponent
intevfate.

The tonstruetor \’)us{; Lakes the
name, destription, ete., and
keeps a vefevente to them all
This is PYC‘H‘,\/ muth like our
old Menultem implementation.

Heve's our getter
methods —\)us{: like our
previous implementation.

This is different from the previous implementation.
Heve we've overviding the print() method in the
MenuComponent ¢lass. For Menultem this method
prints the complete menu entry: name, deseviption,
price, and whether or not it's veggie.

/

-- " + getDescription()) ;

you are here » 365

implementing the new menu class

Implementing the Composite Menu

Now that we have the Menultem, we just need the composite class, which we’re
calling Menu. Remember, the composite class can hold Menultems or other Menus.
There’s a couple of methods from MenuComponent this class doesn’t implement,
getPrice() and isVegetarian(), because those don’t make a lot of sense for a Menu.

Mer is also a MCnuComFoncn{:, Menu tan have any number o? thildven
J“S{" like Menultem. 1 [of type MenuComponent. We{: \: use an
i al Avva List o hold these.
public class Menu extends MenuComponent { ntern Y

List<MenuComponent> menuComponents = new ArrayList<MenuComponent>() ;
String name;

String description; m This is diffevent than our old

im lCmCh{a‘boh: WC’V'C 1 H
public Menu(String name, String description) { Mrnu 3 name and 3 dcgz::':gf{': Sléc Each
this.name = name; ption. Devore,

we just velied on having di
this.description = description; Fochach men n having dlﬁ"crcn{: tlasses
u.

}
public void add(MenuComponent menuComponent) {
menuComponents . add (menuComponent) ; Hcrc's how You add MCMHZC"‘S or
} 4 other Menus to a Menu. Betause
both Menultems and Menus ave
public void remove (MenuComponent menuComponent) { Mcmcomyoncn‘{'}, we \')V5{3 need one
menuComponents . remove (menuComponent) ; method to do both.

\{ou ¢an also remove 3 McuuCom\?oncn{:

onent.
public MenuComponent getChild(int i) { or 5&: a McnuComP

return menuComponents.get(i) ;

Here are the getter methods for getting the name
public String getName() { and deseviption.

return name; i
Notice, we aven't overriding getPrice() or

ichgcfarianO because those methods don’t make
. . o sense tor a Menu (al{:hough ou tould araue that
Publ;:ti::lZngxesii:zi::::Ptlon 0 isVegetarian() might make sc\/nsc). £ som?onc tries
} ; to eall those methods on a Menu, they'll get an
Mnsu??or{:chPcva{:ionEchP{:ion.

public void print() {
System.out.print("\n" + getName()) ;

System.out.println(", " + getDescription()); e
System.out.println("--------------------- " ; <_\ To Prin{; the Menu, we Yrm{; its
} name and dCSt,r'IYJc'lon.

366 Chapter 9

the iterator and composite patterns

Wait a sec, I don't
understand the implementation of print().
I thought I was supposed to be able to apply the
same operations to a composite that I could to a leaf. If
T apply print() to a composite with this implementation,

all T get is a simple menu name and description. T don't
get a printout of the COMPOSITE.

Good catch. Because Menu is a composite and contains
both Menultems and other Menus, its print() method should
print everything it contains. If it doesn’t, we’ll have to iterate
through the entire composite and print each item ourselves.
That kind of defeats the purpose of having a composite
structure.

As you’re going to see, implementing print() correctly 1s easy
because we can rely on each component to be able to print
itself. It’s all wonderfully recursive and groovy. Check it out:

Fixing the print() method

public class Menu extends MenuComponent {

List<MenuComponent> menuComponents = new ArrayList<MenuComponent>() ;
String name;

.]) | d
e Al we need 4o do is thange the EYMJC(L mc{;\;);}c
4o make it ?rin{: not on\\/ +he intormation

// constructor code here o(: this Mcnu's Com‘?oncn{',sﬁ

this Menw, but all
// other methods here / other Menus and Menultems.
public void print() { Look! We get to use an [terator behind
System.out.print ("\n" + getName()) ; the stenes of the enhanted for |oo\7. V‘{c
System.out.println(", " + getDescription()); ‘/ use it to iterate through all the Menu's

COmyoncn{:s.--{:hosc tould be other Menus,
or {')\c\/ tould be Menultems.
for (MenuComponent menuComponent : menuComponents) {

menuComponent.print () ;

} < Sinte both Menus and Menultems
} im?|6men{: ?\rin'{:(), we \)us{: eall
} ?rin'{:o and the vest is up to them.

NOTE: “:, during this iteration, we entounter another Menu ob\')cd{:,
its print() method will start another iteration, and so on.

System.out.println("------------------——-—- ")

you are here » 367

test drive the menu composite

Getting ready for a test drive...

It’s about time we took this code for a test drive, but we need to update the Waitress code before
we do—after all, she’s the main client of this code:

public class Waitress ({

Now we ")us{: hand her the Jco?—\cvcl menu
Lom\?oncvxjc, the one that Lon{:,tainls‘ A?]\l the
' all/Vlenus.
public Waitress (MenuComponent allMenus) { other menus. We've called tha

Yup! The Waitvess tode veally is this simple.

MenuComponent allMenus;

this.allMenus = allMenus;

All she has to do to print the entive menu

/—/ hievarehy —all the menus and all the menu

public void printMenu() { items —is eall print() on the top—level menu.

allMenus.print () ;

We've 90onna have one hapyy Waitress.

Okay, one last thing before we write our test drive. Let’s get an idea of what the menu
composite 1s going to look like at runtime:

Evcr\/ Menu and ;,;lh :&P—ICVC’}"CM holds
Menultem im?lcmth‘{:s the enus and items.
MenuComponent interface. Composite - A/

Al et

COmFosi'éc
O 5 Eath Menu O O
'30 & holds items... Oingr NW@ <~ Comyosi{zc -

he ot >

. @

...or items and J_ afe N
/l \ o{:hcr meénus. / \
Yemrre® Hengre® Menpre Yemrre® Henre® Menrre oog eniio® Henipie® Hengre™

1 es'ser‘"w
NV Leaz" 7 4// \\ N
Leaf Leaf
Mepgrre® MHenpre™ Hen o™ Hen pre®
<A
& Leaf

368 Chapter 9

the iterator and composite patterns

Now for the test drive...

Okay, now we just need a test drive. Unlike our previous version, we’re going to
handle all the menu creation in the test drive. We could ask each chef to give us
his new menu, but let’s get it all tested first. Here’s the code:

public class MenuTestDrive {
public static void main(String args[]) { Let's fivst eveate
MenuComponent pancakeHouseMenu = all the menu ob\')Cd'zs-
new Menu ("PANCAKE HOUSE MENU", "Breakfast");
MenuComponent dinerMenu =

new Menu ("DINER MENU", "Lunch");
MenuComponent cafeMenu = We also need 3 ‘bo\”
new Menu ("CAFE MENU", "Dinner"); lcvc\ menu H\a‘t WC'“
MenuComponent dessertMenu = name allMenus.

new Menu ("DESSERT MENU", "Dessert of course!");

MenuComponent allMenus = new Menu ("ALL MENUS", "All menus combined") ;

We've using the Composite add() method to add
eath menu to the top—level meny, allMenus.

allMenus.add (pancakeHouseMenu) ;
allMenus.add (dinerMenu) ;
allMenus.add (cafeMenu) ;

Now we need 4o add all the menu

items. Heve's one example; tor

the vest, look at the complete

sourte tode.

// add menu items here

dinerMenu.add (new MenulItem (
"Pasta",
"Spaghetti with Marinara Sauce, and a slice of sourdough bread",

true,
3.89)); Ahd wc’YC also add'lhg a menu to a

/ menu. All dinerMenu taves abou){‘, is that
dinerMenu.add (dessertMenu) ; everything it holds, whether it's 3 menu
item or @ meny, is 3 McmCom\?onCn‘{:-

dessertMenu. add (new MenuItem (
"Apple Pie",
"Apple pie with a flakey crust, topped with vanilla ice cream",

Add some apple pie to the

dessert menu...

true,
1.59));

// add more menu items here

é'\ Onte we've construeted our

entive menu hievarchy, we hand

waitress.printMenu() ; the whole H“"S to the Waitress,
) <_\ and as you've seen, it's as easy as

} apple pie for her o print it out.

Waitress waitress = new Waitress (allMenus) ;

you are here » 369

another test drive

Getting ready for a test drive...

NOTE: this output is based on the complete source.

File Edit Window Help

% java MenuTestDrive

ALL MENUS, All menus combined

&_ Heve’s all our menus...we ?v'm‘tcd all

£his Jus‘f: b\/ call‘mg ?rin’(:() on the

J(:of'-—|cvc| menu.
K&B’ s Pancake Breakfast(v), 2.99

-- Pancakes with scrambled eggs and toast
Regular Pancake Breakfast, 2.99

-- Pancakes with fried eggs, sausage
Blueberry Pancakes(v), 3.49

-- Pancakes made with fresh blueberries, and blueberry syrup
Waffles(v), 3.59

-- Waffles with your choice of blueberries or strawberries

DINER MENU, Lunch

Vegetarian BLT(v), 2.99

-- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99

-- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29

-- A bowl of the soup of the day, with a side of potato salad
Hot Dog, 3.05

-- A hot dog, with sauerkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice(v), 3.99

-- Steamed vegetables over brown rice
Pasta(v), 3.89

-- Spaghetti with marinara sauce, and a slice of sourdough bread

DESSERT MENU, Dessert of course! The new

£— dessert menu
Apple Pie(v), 1.59 is printed
-- Apple pie with a flakey crust, topped with vanilla ice cream when we are
Cheesecake(v), 1.99

-- Creamy New York cheesecake, with a chocolate graham crust ?ﬁ"ﬁ"5a"£h‘
Sorbet(v), 1.89 Diner menu

-- A scoop of raspberry and a scoop of lime com?mun£$

CAFE MENU, Dinner

Veggie Burger and Air Fries(v), 3.99

-- Veggie burger on a whole wheat bun, lettuce, tomato, and fries
Soup of the day, 3.69

-- A cup of the soup of the day, with a side salad
Burrito(v), 4.29

-- A large burrito, with whole pinto beans, salsa, guacamole

370 Chapter 9

iterator composite

What's the story?
First you tell us One Class, One
Responsibility, and now you're giving us a
pattern with two responsibilities in one class.
The Composite Pattern manages a hierarchy
AND it performs operations related to Menus.

There is some truth to that observation. We could

say that the Composite Pattern takes the Single Responsibility
Principle and trades it for transparency. What’s transparency? Well, by
allowing the Component interface to contain the child management
operations and the leaf operations, a client can treat both composites
and leaves uniformly; so whether an element is a composite or leaf
node becomes transparent to the client.

Now, given we have both types of operations in the Component
class, we lose a bit of safety because a client might try to do something
inappropriate or meaningless on an element (like try to add a menu
to a menu item). This is a design decision; we could take the design
in the other direction and separate out the responsibilities into
interfaces. This would make our design safe, in the sense that any
inappropriate calls on elements would be caught at compile time or
runtime, but we’d lose transparency and our code would have to use
conditionals and the instanceof operator.

So, to return to your question, this is a classic case of tradeoff. We
are guided by design principles, but we always need to observe the
effect they have on our designs. Sometimes we purposely do things
in a way that seems to violate the principle. In some cases, however,
this is a matter of perspective; for instance, it might seem incorrect to
have child management operations in the leaves (like add(), remove(),
and getChild()), but then again you can always shift your perspective
and see a leaf as a node with zero children.

371

interview with

HeadFirst: We’re here tonight speaking with the
Composite Pattern. Why don’t you tell us a little about
yourself, Composite?

Composite: Sure...I'm the pattern to use when you have
collections of objects with whole-part relationships and
you want to be able to treat those objects uniformly.

HeadFirst: Okay, let’s dive right in here...what do you
mean by whole-part relationships?

Composite: Imagine a graphical user interface (GUI);
there you’ll often find a top-level component like a Frame
or a Panel, containing other components, like menus,
text panes, scrollbars, and buttons. So your GUI consists
of several parts, but when you display it, you generally
think of it as a whole. You tell the top-level component
to display, and count on that component to display all

its parts. We call the components that contain other
components, composile objects, and components that don’t
contain other components leaf objects.

HeadFirst: Is that what you mean by treating the objects
uniformly? Having common methods you can call on
composites and leaves?

Composite: Right. I can tell a composite object to
display or a leaf object to display and it will do the right
thing. The composite object will display by telling all its
components to display.

HeadFirst: That implies that every object has the same
interface. What if you have objects in your composite that
do different things?

Composite: In order for the composite to work
transparently to the client, you must implement the same
interface for all objects in the composite; otherwise, the
client has to worry about which interface each object

1s implementing, which kind of defeats the purpose.
Obviously that means that at times you’ll have objects for
which some of the method calls don’t make sense.

372

Patterns Exposed

This week’s interview:
The Composite Pattern, on implementation issues

HeadFirst: So how do you handle that?

Composite: Well, there are a couple of ways to handle
it; sometimes you can just do nothing, or return null or
false—whatever makes sense in your application. Other
times you’ll want to be more proactive and throw an
exception. Of course, then the client has to be willing to
do a little work and make sure that the method call didn’t
do something unexpected.

HeadFirst: But if the client doesn’t know which kind of
object they’re dealing with, how would they ever know
which calls to make without checking the type?

Composite: If you're a little creative you can structure
your methods so that the default implementations do
something that does make sense. For instance, if the client
is calling getChild() on the composite, this makes sense.
And it makes sense on a leaf too, if you think of the leaf
as an object with no children.

HeadFirst: Ah...smart. But I've heard some clients are
so worried about this issue that they require separate
interfaces for different objects so they aren’t allowed to
make nonsensical method calls. Is that still the Composite
Pattern?

Composite: Yes. It’s a much safer version of the
Composite Pattern, but it requires the client to check the
type of every object before making a call so the object can
be cast correctly.

HeadFirst: Tecll us a little more about how these
composite and leaf objects are structured.

Composite: Usually it’s a tree structure, some kind of
hierarchy. The root is the top-level composite, and all its
children are either composites or leaves.

HeadFirst: Do children ever point back up to their
parents?

Composite: Yes, a component can have a pointer to a
parent to make traversal of the structure easier. And, if

iterator

you have a reference to a child and you need to delete it,
you’ll need to get the parent to remove the child. Having
the parent reference makes that easier too.

HeadFirst: There’s really quite a lot to consider in your
implementation. Are there other issues we should think
about when implementing the Composite Pattern?

Composite: Actually, there are. One is the ordering

of children. What if you have a composite that needs to
keep its children in a particular order? Then you’ll need a
more sophisticated management scheme for adding and
removing children, and you’ll have to be careful about
how you traverse the hierarchy.

HeadFirst: A good point I hadn’t thought of.
Composite: And did you think about caching?
HeadFirst: Caching?

Composite: Ycah, caching. Sometimes, if the
composite structure is complex or expensive to traverse,
it’s helpful to implement caching of the composite nodes.
Tor instance, if you are constantly traversing a composite
and all its children to compute some result, you could
implement a cache that stores the result temporarily to
save traversals.

HeadFirst: Well, there’s a lot more to the Composite
Patterns than I ever would have guessed. Before we wrap
this up, one more question: what do you consider your
greatest strength?

Composite: I think I'd definitely have to say simplifying
life for my clients. My clients don’t have to worry about
whether they’re dealing with a composite object or a

leaf object, so they don’t have to write if statements
everywhere to make sure they’re calling the right methods
on the right objects. Often, they can make one method
call and execute an operation over an entire structure.

HeadFirst: That does sound like an important benefit.
There’s no doubt you're a useful pattern to have around
for collecting and managing objects. And, with that, we’re
out of time. Thanks so much for joining us and come
back soon for another Patterns Exposed.

composite

373

crossword puzzle

Q Design Patterns Crossword

Wrap your brain around this composite crossword.

NN -

!
.

-

-
S

MEEEEEN

ACROSS
1. Collection and Iterator are in this package.
3. This class indirectly supports Iterator.

8. Iterators are usually created using this pattern (two
words).

12. A class should have only one reason to do this.
13. We encapsulated this.

15. User interface packages often use this pattern for
their components.

16. Name of the principle that states only one
responsibility per class (two words).

17. This menu caused us to change our entire
implementation.

374 Chapter 9

o]

DOWN

2. Has no children.

4. Merged with the Diner (two words).
5. The lterator Pattern decouples the client from the
aggregate’s .

6. A separate object that can traverse a collection.

7. HashMap values and ArrayList both implement this

interface.

9. We Java-enabled her.

10. A component can be a composite or this.
11. A composite holds these.

12. Third company acquired.

14. We deleted the PancakeHouseMenulterator because

this class already provides an iterator.

iterator composite

WHQ DQES WHAT?

Match each pattern with its description:

Pattern Description

Strategy Clients treat collections
of objects and individual
objects uniformly

Adapter Provides a way to traverse
a collection of objects
Without exposing the
collection’s implementation

[terator
Simplifies the interface of

a group of classes

Changes the interface of

Facade
one or more classes

Allows a group of objects to
be notified when some state

Composite
P ehanges

Encapsulates interchangeable
behaviors and uses delegation to

Observer
> decide which one to use

375

your design toolbox

Tools for your Pesign Toolbox

Two new patterns for your toolbox—two great ways to
deal with collections of objects.

00 Prmtiples

Encapsulate what vanies

. wkante
¥ £ Yoi\J(j\on over nhee
avor Lo

Progrmn to 'm’argaus, no{
'\m?\:mf.hk,&{\ons‘
\ed desiyns
e for loosel ¢¥ -
itI,wV:cnO::b)ccb that nkevcatt
for C*‘kcnS'lon
hould be OY.CV\- -
(\:J\a::oz:d for mod&\caho
u t
L‘E\ons. Do no
Degend o1 a\os‘c*ajcc o ov‘hawh
degend on tontre \(JC a“ojd\“ . .
- antip) \ased on ¢
Lalk to You* Leien ko
- n 3 des\gn
Dont call vo well eall yow
on
A tlass dhould have only one eason i
¢
to thande:
00 Patkerms ™ Another buo—for—one
" T f‘-‘ = Vl : : : Chavtcr
. — | |
g L — —
L phethad D e
: CB ‘ S M JER T = "
"'\ ; .A F:’ . m‘.L"‘ c.r ---- ‘\:L'(a V’nl-'(“' ‘
VP SR mand - F22 ,(
RERE (\nm";‘“ \ates 2 veoues)
. p ! V E\nl‘.avsu .
a WYL Adavker - M
oy i ay o attes® v
i ol Z’cc Jbyett e .
- \‘hcv? en ol: an aggrcg .) ‘
Lhe elem . e ‘
Cnha\\\’ wrh\\ou’c e Y s.r\:c :
S elying ¥e esentation Compo
. ‘ tree sheuttures

376 Chapter 9

% BULLET POINTS —

= An lterator allows access to an
aggregate’s elements without
exposing its internal structure.

= An lterator takes the job of
iterating over an aggregate
and encapsulates it in another
object.

= When using an lterator, we
relieve the aggregate of the
responsibility of supporting
operations for traversing its
data.

= An lterator provides a
common interface for
traversing the items of an
aggregate, allowing you to use
polymorphism when writing
code that makes use of the
items of the aggregate.

® The lterable interface provides
a means of getting an
iterator and enables Java's
enchanced for loop.

= We should strive to assign
only one responsibility to each
class.

® The Composite Pattern allows
clients to treat composites and
individual objects uniformly.

= AComponent is any object
in a Composite structure.
Components may be other
composites or leaves.

= There are many design
tradeoffs in implementing
Composite. You need to
balance transparency and
safety with your needs.

J B

9 c

_ @aoharpen your pencil
§&P ySolgtion

Based on our implementation of printMenu(), which of the following apply?

aq A

iterator composite

We are coding to the
PancakeHouseMenu and DinerMenu
concrete implementations, not to an
interface.

The Waitress doesn’t implement the
Java Waitress API and so she isn’t
adhering to a standard.

If we decided to switch from using
DinerMenu to another type of menu
that implemented its list of menu items
with a hash table, we’d have to modify
a lot of code in the Waitress.

E/‘D. The Waitress needs to know how each
menu represents its internal collection of
menu items; this violates encapsulation.

@/E. We have duplicate code: the printMenu()
method needs two separate loops to
iterate over the two different kinds of
menus. And if we added a third menu,
we’d have yet another loop.

(A F The implementation isn’t based on
MXML (Menu XML) and so isn’t as
interoperable as it should be.

_ G harpen your pencil
X

solutlon Before looking at the next page, quickly jot down the three
things we have to do to this code to fit it into our framework:

| implement the Menu interface

1. get vid of getitemsO)

3. add treatelterator() and veturn an [terator that can step through the HashMap values

377

exercise solutions

Code Magnets Solution

The unscrambled “Alternating” DinerMenu Iterator.

import java.util.Iterator;

import java.util.Calendar;

public class AlternatingDinerMenuIterator [| iMPlements Iterator<MenuItem>

MenuItem[] items;

int position;

this.items = items;

position = Calendar.DAY OF WEEK % 2;

public boolean hasNext () {

if (position >= items.length || items[position] == null) {
return false;

} else {

return true;

Menultem menultem = items[position];
position = position + 2;
return menultem;

Notice that this [terator
/ implementation does not
support vemove().

"Alternating Diner Menu Iterator does not support remove()") ;

throw new UnsupportedOperationException(

378 Chapter 9

Match each pattern with its description:

Pattern

N> 3
WH+HQ Do WH AT

the iterator and composite patterns

SQLLT\QN

Description

Strategy

Adapter

iteraiQY

Facade

Composite

Observer

Allows a group of objects to

Clients treat collections
of objects and individual
objects uniformly

Provides a way to traverse
a collection of objects
without exposing the
collection’s implementation

Simplifies the interface of
a group of classes

Changes the interface of
one or more classes

be notified when some state
changes

Encapsulates interchangeable
behaviors and uses delegation to
decide which one to use

you are here » 379

crossword puzzle solution

Q Design Patterns Crossword Solution

Wrap your brain around this composite crossword. Here’s our solution.

FlalciTlolrly mE|T H|o D]
i 3

o

380 Chapter 9

10 the State Pattern

¥
* The State of Things *

T thought things in Objectville were
going to be so easy, but now every time I
turn around there's another change request
coming in. I'm at the breaking point! Oh,
maybe I should have been going to Betty's
Wednesday night patterns group all along.
I'm in such a statel

A little-known fact: the Strategy and State Patterns
are twins separated at birth. You'd think theyd live similar lives,

but the Strategy Pattern went on to create a wildly successful business around

interchangeable algorithms, while State took the perhaps more noble path of helping

objects to control their behavior by changing their internal state. As different as their

paths became, however, underneath you’ll find almost precisely the same design. How

can that be? As you'll see, Strategy and State have very different intents. First, let’s

dig in and see what the State Pattern is all about, and then we'll return to explore their

relationship at the end of the chapter.

this is a new chapter 381

meet mighty gumball

Vo
Jaw Breakers

Gumball machines have gone high tech. That’s right, the
major manufacturers have found that by putting CPUs
into their candy machines, they can increase sales, monitor

inventory over the network, and measure customer satisfaction
more accurately.

\east .
But these manufacturers are gumball machine experts, not < t{: Lk they) 90 ‘8005
software developers, and they’ve asked for your help: i

i i Lroller needs to
! 4hink the 5umba|| matihl.nc ton
HC‘;;SVJCV::\, :‘cw:zY::\; \/o:r tan im\>l¢m¢n+, this inJava do‘{; u;'c l/‘/ctv;:y
:: aading more behavior in the future, so you nee P

Mlg}tty Gumball, Ine. dCSigh as flexible and mam{;amable as Yossnb e
Where the Gumball Machine L MIS‘\‘{Z‘/ évm\ba“ EV\S'"\CCYS
is Never Half Empty
& of
Oa\r"‘\’a\\s

382 Chapter 10

the state pattern

Cubicle Conversation

Let's take a look at this
diagram and see what the
Mighty Gumball guys want...

Judy: This diagram looks like a state diagram.
Joe: Right, each of those circles is a state...
Judy: ...and each of the arrows is a state transition.

Frank: Slow down, you two, it’s been too long since I studied state diagrams.
Can you remind me what they’re all about?

Judy: Sure, Irank. Look at the circles; those are states. “No Quarter” is

} probably the starting state for the gumball machine because it’s just sitting there
(’) waiting for you to put your quarter in. All states are just different configurations
Frank udy Joe of the machine that behave in a certain way and need some action to take them to

another state.

Joe: Right. See, to go to another state, you need to do something like put a quarter in the machine. See the arrow
from “No Quarter” to “Has Quarter”?

Frank: Ves...

Joe: That just means that if the gumball machine is in the “No Quarter” state and you put a quarter in, it will
change to the “Has Quarter” state. That’s the state transition.

Frank: Oh, I see! And if I'm in the “Has Quarter” state, I can turn the crank and change to the “Gumball Sold”
state, or eject the quarter and change back to the “No Quarter” state.

Judy: You got it!

Frank: This doesn’t look too bad then. We’ve obviously got four states, and I think we also have four actions: “insert

quarter,” “eject quarter,” “turn crank,” and “dispense.” But...when we dispense, we test for zero or more gumballs

in the “Gumball Sold” state, and then either go to the “Out of Gumballs” state or the “No Quarter” state. So we
actually have five transitions from one state to another.

Judy: That test for zero or more gumballs also implies we’ve got to keep track of the number of gumballs too. Any

time the machine gives you a gumball, it might be the last one, and if it is, we need to transition to the “Out of
Gumballs” state.

Joe: Also, don’t forget that you could do nonsensical things, like try to eject the quarter when the gumball machine is
in the “No Quarter” state, or insert two quarters.

Frank: Oh, I didn’t think of that; we’ll have to take care of those too.

Joe: Tor every possible action we’ll just have to check to see which state we’re in and act appropriately. We can do
this! Let’s start mapping the state diagram to code...

you are here » 383

review of state machines

State machines 101

How are we going to get from that state diagram to actual code? Here’s a quick
introduction to implementing state machines:

o First, gather up your states:

é\m“’a\\

‘ sad Heve are the skates — four in total
o
‘)/

e Next, create an instance variable to hold the current state, and define values for each of the states:

Let’s \')usf call “Out of 6wnba"s"

“Cold Out’ " Lor short.

final static
final static
final static

final static

int state =

~

int SOLD OUT = 0; Heve's eath state vepresented
int NO QUARTER = 1; as a unique integer-
int HAS_QUARTER = 2;

int SOLD = 3;

..and here’s an instante vaviable that holds the

SOLD_OUT; é_’\ turvent state. We'll go ahead and set it to “Sold

Out” since the mathine will be unfilled when it’s
Fivst aken out of its box and turned on.

e Now we gather up all the actions that can happen in the system:

et "\“av{cr B erank J interface —the things
c)cd: quarter you tan do with it.

These attions are ,
the 5wnba" mathine s

dispense
/) o Dispense is more of an internal
Looking at the diagram, invoking any attion the machine invokes on itself.

these attions tauses 3 state {:\ra\nsi{:ion.

384 Chapter 10

the state pattern

e Now we create a class that acts as the state machine. For each action,
we create a method that uses conditional statements to determine
what behavior 1s appropriate in each state. For instance, for the

“Insert quarter” action, we might write a method like this:

public void insertQuarter () { Eacth ?ossiblc

state is thetked
with a tonditional

if (state == HAS_QUARTER) { " datement
S ement...

System.out.println("You can't insert another quarter");

_and exhibits the awro\w‘\a{c

} else if (state == NO_QUARTER) { \aoss\b\c state--

behavior for eath

state = HAS QUARTER;

System.out.println("You inserted a quarter");

_but ¢an also transition to other states,
b else 1f (state == SOLD_OUD) { ")us{: as depicted in the diagram.

System.out.println("You can't insert a quarter, the machine is sold out");
} else if (state == SOLD) {

System.out.println("Please wait, we're already giving you a gumball");

Here we're talking
about a common fechnique:
modeling state within an object
by creating an instance variable to hold
the state values and writing conditional
code within our methods to handle
the various states.

With that quick review, let’s go implement the Gumball Machine!

you are here » 385

implement the gumball machine

Writing the code

It’s time to implement the Gumball Machine. We know we’re going to have an instance
variable that holds the current state. Irom there, we just need to handle all the actions,
behaviors, and state transitions that can happen. For actions, we need to implement
inserting a quarter, removing a quarter, turning the crank, and dispensing a gumball; we
also have the empty Gumball Machine condition to implement.

tes; they mateh the
e e U o ke

public class GumballMachine { s the | skante vaviable hat is 501“,5
H{::rl:cscy £r;2k of the eurvent state weve
in. We start in the SOLD_OUT state.

final static int SOLD_OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS QUARTER = 2;

We have a second instance variable thak
final static int SOLD = 3;

keeps track of the number of gumballs
in the mathine.

int state = SOLD_OUT;
int count = 0; The eonstructor takes an initial inventory
. . - of 5umba.“s. [£ the invcn{:o\r\/ isn't zevo,
publ:.c-GumballMach:Lne (int count) { the y...a(_}.,,hc enters state NO_QUARTER,
this.count = count; ."‘63'\"\5 it is waiJcing for someone to
if (count > 0) { insert a qua\r{:cr; °£I'ICV‘Wisc, it 5{',375 in
state = NO_QUARTER; the SOLD_OUT state.
} Now we start .""\7\"““{-’.‘“3
} C the attions as methods. -

When 8 t\uarﬁcv is insevted...

public void insertQuarter () { / l:/ ‘{'\ a Quav{:cv is alrcad‘/

if (state == HAS QUARTER) { insevted, we tell the

System.out.println("You can't insert another quarter"); tustomer-..

} else if (state == NO_QUARTER) ({ .otherwise, we aceept the
state = HAS QUARTER; <« S quarter and transition to
System.out.println("You inserted a quarter"); the HAS__QMARTER state.

} else if (state == SOLD_OUT) {

System.out.println("You can't insert a quarter, the machine is sold out");

} else if (state == SOLD) {

System.out.println("Please wait, we're already giving you a gumball");
} } ~—_ [£ the customer \)uch bo.ugh{: a And if the machine is sold
5umba||, he needs to wait until the out, we rc\')cd‘, the ﬂuaVJCC‘“

Leansattion is complete before
inserting another quarter.

386 Chapter 10

the state pattern

public void ejectQuarter() ({ Now, i £ the tustomer tvies 4o vemove the a\uav{‘,cr...

if (state == HAS QUARTER) { K~ _of fhere is 3 quarter, ve
System.out.println("Quarter returned"); rcbwnikand5053d<{°{h‘
state = NO_QUARTER; & No QUARTER state..

} else if (state == NO_QUARTER) { -
System.out.println("You haven't inserted a quarter"); nofhcrwkgif theve isn't

} else if (state == SOLD) { Z—— one we tan't give it back.
System.out.println("Sorry, you already turned the crank");

} else if (state == SOLD_OUT) ({

System.out.println("You can't eject, you haven't inserted a quarter yet");

}

} /L, You tan't eject if the machine is sold £ the customer just
out, it doesn't aceept quarters! turned the evank, we
can't give a refund; he
The tustomer tries to turn the erank... alveady has the qumball [
public void turnCrank() {

if (state == SOLD) { — Someone’s {;r\/‘mg to theat the mathine.
System.out.println("Turning twice doesn't get you another gumball!");

} else if (state == NO_QUARTER) {

System.out.println("You turned but there's no quarter"); c— We need a

} else if (state == SOLD OUT) { quarter fiest
System.out.println("You turned, but there are no gumballs"); , .

} else if (state == HAS QUARTER) { Whﬁa“{'ddwcv
System.out.println("You turned..."); k:———’ 5umb$k3{hcrc
state = SOLD; are none.

} dispense () Suceess! They get a qumball. Change

} the state to SOLD and eall the
Called to dispense a gumball. machine’s dispense() method.
public void dispense() { o khe
if (state == SOLD) { e Weve n Le; aive
System.out.println("A gumball comes rolling out the slot"); SOLJDS & 9
count = count - 1; "em 3 Qumbdll
if (count == 0) {
System.out.println("Oops, out of gumballs!"); Htrfsvhcvcvmﬁﬁndk #hf
state = SOLD OUT; “ou‘t O‘C 5umba“s LOhdltloY\'

} else { B [€ this was the last one, we
state = NO QUARTER; set the machine’s state to

} - SOLD_OUT; otherwise, we've

} else if (state == NO_QUARTER) { back to not having a quarter.
System.out.println("You need to pay first");

} else if (state == SOLD_OUT) {) €~ None of these should ever
System.out.println("No gumball dispensed") ; P haﬂ%h,bwﬁi@{hc d

} else if (state == HAS QUARTER) { o Y doy

. - we give ‘em an evvor, not
System.out.println("You need to turn the crank"); !
} a 3wmba“.
}

// other methods here like toString() and refill()

you are here » 387

test the gumball machine

In-house testing

That feels like a nice solid design using a well-thought-out methodology, doesn’t
it? Let’s do a little in-house testing before we hand it off’ to Mighty Gumball to
be loaded into their actual gumball machines. Here’s our test harness:

public class GumballMachineTestDrive {

388

public static void main(String[] args) {

Load it up with five
(\ Sumbans {‘)0‘{'/3‘
GumballMachine gumballMachine = new GumballMachine (5) ;

System.out.println(gumballMachine); £ — Print out the state of the machine. v-/

(— Throw a quarter in..
& Turn the trank; we should get our qumball.

gumballMachine.insertQuarter() ;
gumballMachine. turnCrank () ;

_—

System.out.println(gumballMachine); &£ —— Print out the state of the machine agdin. /

gumballMachine.
gumballMachine.
gumballMachine.

System.out.println(gumballMachine); &——— Pyint out the state of the mathine again.

gumballMachine.

insertQuarter() ;

<€ —— Throw a quarter in..
< Ask ‘For it back.
&——— Tuen the evank; we shouldn't get our qumball.

_

-
7

ejectQuarter() ;
turnCrank () ;

insertQuarter(); &—— Throw a quar{:cr in...

gumballMachine. turnCrank () ; <—— Turn the erank; we should gch our qumball.
gumballMachine.insertQuarter() ; <—— Throw a quarter in..
gumballMachine. turnCrank () ; PR Turn the erank; we should 56‘(‘, our Sumball-

gumballMachine.

System.out.println(gumballMachine); &—

gumballMachine.
gumballMachine.
gumballMachine.
gumballMachine.
gumballMachine.
gumballMachine.
gumballMachine.

ejectQuarter() ;

& Ask for a quarter back we didn't put in.
Print out the state of the machine again.

-

insertQuarter() ;

&—— Throw TWO quarters in...
PR Turn the erank; we should get our gumball.

insertQuarter() ;
turnCrank () ; /
insertQuarter() ; N (: .

ow +or the stress testing...
turnCrank () ; é/ d
insertQuarter() ;

turnCrank () ;

System.out.println(gumballMachine); &—— Print that machine state one more time. /

Chapter 10

the state pattern

File Edit Window Help mightygumball.com
%$java GumballMachineTestDrive

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs

Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs

Machine is waiting for quarter

You inserted a quarter
Quarter returned
You turned but there's no quarter

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs

Machine is waiting for quarter

You inserted a quarter

You turned...

A gumball comes rolling out the slot
You inserted a quarter

You turned...

A gumball comes rolling out the slot
You haven't inserted a quarter

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 2 gumballs

Machine is waiting for quarter

You inserted a quarter

You can't insert another quarter

You turned...

A gumball comes rolling out the slot

You inserted a quarter

You turned...

A gumball comes rolling out the slot

Oops, out of gumballs!

You can't insert a quarter, the machine is sold out
You turned, but there are no gumballs

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs

Machine is sold out

you are here » 389

gumball buying game

You knew it was coming...a change request!

Mighty Gumball, Inc., has loaded your code into their
newest machine and their quality assurance experts are
putting it through its paces. So far, everything’s looking
great from their perspective.

In fact, things have gone so smoothly they’d like to take
things to the next level...

We think that by turning
“gumball buying” into a game we
can significantly increase our
sales. We're going to put one of
these stickers on every machine.
We're so glad we've got Java
in the machines because this is
going to be easy, right?

Be a Winner!
OneinTengeta
FREE Gumba

/7

Io% 0‘(: the time,

CEO, Mighty when the crark
Gorball, Tt « baned, B¢
bomer 9¢
{2“3“:;\2“ - o queballs
um :

Guwballs_J inskead of one:

390 Chapter 10

the state pattern

Design Puzzle

Draw a state diagram for a Gumball Machine that handles the 1 in 10
contest. In this contest, 10% of the time the Sold state leads to two
balls being released, not one. Check your answer with ours (at the
end of the chapter) to make sure we agree before you go further...

Use Mighty Gumball’s stationery to draw your state diagram.

you are here » 391

things get messy

The messy STATE of things...

Just because you’ve written your gumball machine using a well-thought-out
methodology doesn’t mean it’s going to be easy to extend. In fact, when you go back

and look at your code and think about what you’ll have to do to modify it, well...

— @gharpen your pencil
s Sl

final static int SOLD OUT = 0; Fiest, you'd have to add a vew WINNER state
final static int NO QUARTER = 1; J heve. That isnt too bad...
2;

final static int HAS_QUARTER =
final static int SOLD = 3;

public void insertQuarter () {
// insert quarter code here

V\ ..but then, owd have to add a new tonditional
«— in every sin;/le method +o handle the WINNER

} ? skate; that's a lot of tode to modify.

public void turnCrank() {

public void ejectQuarter() {
// eject quarter code here

// turn crank code here

} turnCrank() will get espetially messy, betause \/ou'd
have +o add code to theck to see whether you've
public void dispense() { aot a WINNER and then switch fo either the
// dispense code here W'NNER state or the SOLD state.
}

Which of the following describe the state of our implementation?
(Choose all that apply.)

[A. This code certainly isn’t adhering to the [d D. State transitions aren’t explicit; the
y g P y

Open Closed Principle. are buried in the middle of a bunch of
[d B. This code would make a FORTRAN conditional statements.
programmer proud. (A E. We haven’t encapsulated anything that

. . . varies here.
(1 C. This design isn’t even very object-

oriented. [d F Further additions are likely to cause bugs
in working code.

392

Chapter 10

the state pattern

Okay, this isn't good. I think
our first version was great, but it isn't
going to hold up over time as Mighty Gumball
keeps asking for new behavior. The rate of bugs
is just going to make us look bad, not to mention
the CEO will drive us crazy.

Frank: You're right about that! We need to refactor this code so that it’s easy
to maintain and modify.

Judy: We really should try to localize the behavior for each state so that if we
make changes to one state, we don’t run the risk of messing up the other code.

Frank: Right; in other words, follow that ol’ “encapsulate what varies”
principle.

Judy: Exactly.

Frank:: If we put each state’s behavior in its own class, then every state just
implements its own actions.

Judy: Right. And maybe the Gumball Machine can just delegate to the state
object that represents the current state.

Frank: Ah, you’re good: favor composition...more principles at work.

Judy: Cute. Well, ’'m not 100% sure how this is going to work, but I think
we’re on to something,

Frank: I wonder if this will make it easier to add new states?

Judy: I think so... We’ll still have to change code, but the changes will be
much more limited in scope because adding a new state will mean we just
have to add a new class and maybe change a few transitions here and there.

Frank: I like the sound of that. Let’s start hashing out this new design!

you are here » 393

a new design

The new design

It looks like we’ve got a new plan: instead of maintaining our existing code, we’re going to
rework it to encapsulate state objects in their own classes and then delegate to the current
state when an action occurs.

We’re following our design principles here, so we should end up with a design that is easier to
maintain down the road. Here’s how we’re going to do it:

Q First, we’re going to define a State interface that
contains a method for every action in the Gumball
Machine.

e Then we’re going to implement a State class for
every state of the machine. These classes will be
responsible for the behavior of the machine when it
is in the corresponding state.

Q Finally, we’re going to get rid of all of our conditional
code and instead delegate the work to the State class.

Not only are we following design principles, as you’ll see, we’re actually implementing the
State Pattern. But we’ll get to all the official State Pattern stuff after we rework our code...

Now we're going
to put all the behavior of a
state into one class. That way,

we're localizing the behavior and
making things a lot easier to
change and understand.

394

Pefining the State interfaces and classes

First let’s create an interface for State, which all our states implement:

Heve's the intecface
+o attions that could happen

for all states. The methods map divectly
4o the Gumball Machine (these

ave the same methods as in the previous tode).

Then take each state in our design and
encapsulate it in a class that implements

the State interface.

To ‘Cigwc out what
skates we need, we look
at our previous code.-

<<interface>>
State

dispense()

insertQuarter()
ejectQuarter()
turnCrank()

N N7 Ve

the state pattern

SoIdOu.tState

NoQuérterState

SoldState HasQuarterState
insertQuarter() insertQuarter() insertQuarter() insertQuarter()
ejectQuarter() ejectQuarter() ejectQuarter() ejectQuarter()
turnCrank() turnCrank() turnCrank() turnCrank()
dispense() dispense() dispense() dispense()
T T

final static
final static
final static

final static

int state

int count

public class GumballMachine {

int SOLD_OUT = 0;
int NO_QUARTER = 1;
int HAS_QUARTER = 2;
int SOLD = 3;

SOLD_OUT;
0;

Don't forget,
too that im"lcw\en
tome back to this a
Livst version of the Qumball Machine.

w177

..and we map eath state
diveetly to a ¢lass.

we need a new “winner” state ,
Ls the State intecface. We'll
fLev we veimplement the

WinnerState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
T —

you are here » 395

what are all the states

— ddharpen your pencil

Go to HasQuarterState.

Qo to SoldState.

Tell the tustomer, “There are no 3umba||s."

Tell the customer, “You haven't insevted a quarter.” —3

Tell the customer, “Please wait, we've alveady giving you a qumball.”

)

Dispense one gqumball. Chetk number of qumballs; if > O,
90 to NoQuarterState; othervise, g0 to SoldOutShate —————

T

NoQuarterState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
T

HasQuarterState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

SoldState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
T ———————

SoldOutState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
T —————

WinnerState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
T ——

Go ahead and fill this out even though we've implementing it la

P To implement our states, we first need to specify the behavior of the
classes when each action is called. Annotate the diagram below with the
behavior of each action in each class; we've already filled in a few for you.

396 Chapter 10

the state pattern

lmplementing our State classes

Time to implement a state: we know what behaviors we want; we just need to get it down in code. We’re going to
closely follow the state machine code we wrote, but this time everything is broken out into different classes.

Let’s start with the NoQuarterState:
We get passed a refevente to

ntecface.
First we need to \m"\tmcw{’, the State n the Gumall Machine £hrough the
H/ construttor. We've ﬁ‘:{: 9oing to

stash this in an instance vaviable.
public class NoQuarterState implements State {

GumballMachine gumballMachine;

£ someone inserts a quarter,
we print 3 message saying the
quarter was aceepted and then

4 change the machine’s state to
the HasQuarterState.

public NoQuarterState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;

public void insertQuarter() {
System.out.println("You inserted a quarter");
gumballMachine.setState (gumballMachine.getHasQuarterState()) ; \/ou)“ see how these

} N /" work in Jus{: a seé...

public void ejectQuarter() {
System.out.println("You haven't inserted a quarter"); = \/ou cant gc{‘, money

} batk if you never gave

it 4o us!

public void turnCrank() {

System.out.println("You turned, but there's no quarter");
} K And You tan't get a gumball
if You don't PayY us.
public void dispense() {

) . .
System.out.println("You need to pay first"); We can't be dlspcnsmg
} gumballs without payment.

What we're doing is
implementing the behaviors that
are appropriate for the state
we're in. In some cases, this behavior
includes moving the Gumball
Machine to a new state.

you are here » 397

state objects in the gumball machine

Reworking the Gumball Machine

Before we finish the State classes, were going to rework the Gumball
Machine—that way, you can see how it all fits together. We’ll start
with the state-related instance variables and switch the code from
using integers to using state objects:

public class GumballMachine {

final static int SOLD_OUT = 0;
int NO_QUARTER =1;
int HAS QUARTER = 2;

int SOLD = 3;

final static

final static

final static

int state = SOLD_OUT;

0;

int count

|n the 6umba“MaLh'm
tode to use the new €

the static integevs- .
cmilav, extept that i

e, we update the
lasses vather than
The tode is quite
n one tlass we have

integers and in the other dbjetts-

Old code

State
State
State
State

New tode
State

All the State objeets are ereated
and assigncd in the tonstruttor.

398 Chapter 10

public class GumballMachine {

int count = 0;

soldOutState;
noQuarterState;
hasQuarterState;

soldState;

state soldOutState;

T‘us now ho\ds a
S{-’a{-,c ob\')CCh) not
an 'm‘tCQCY'

the state pattern

Now, let’s look at the complete GumballMachine class...

public class GumballMachine {

Heve ave all the Ghates again--

State soldOutState;
State noQuarterState;
State hasQuarterState;
State soldState;

State state;
int count = 0;

public GumballMachine (int numberGumballs) {
soldOutState = new SoldOutState (this);
noQuarterState = new NoQuarterState (this) ;
hasQuarterState = new HasQuarterState (this) ;
soldState = new SoldState(this) ;

this.count = numberGumballs;

if (numberGumballs > 0) {

state = noQuarterState;

} else {
state = soldOutState;
}
}

public void insertQuarter() {
state.insertQuarter () ;

}

public void ejectQuarter() ({
state.ejectQuarter() ;

}

public void turnCrank() {
state. turnCrank () ;
state.dispense() ;

}

void setState(State state) {
this.state = state;

}

void releaseBall() {

S —

..and the State instante variable.

The tount instante vaviable holds the count
of gumballs——ini{:iall\/ the machine is empty.

L/_\ Our tonstruttor takes the imbial

number of 5umba||s and stores it
in an instance vaviable.

ST [t also eveates the State
instantes, one o§ eath.

[theve ave move than O gumballs we

€ et the stabe 4o the NoGQuarberShate;

othevwise, we start in the SoldOutState.

Now for the attions. These are

i . We
EASY to |my\Cmcn{: now
;E%,R;/c\ega{:c 4o the turvent state.

/ Note that we don't need an

attion method for dispense() in
QumballMathine because it's Jus{: an
internal action; a user tan't ask the
machine to dispense divectly. But we
do call dispense() on the State objcc{:
Lrom the turnCrank() method.

—

This method allows other ob\')c(:(:s (like
S o Skake objeeds) 4o bransition the

mathine to a diffevent state.

System.out.println("A gumball comes rolling out the slot...");

if (count > 0) {
count = count - 1;
}
}

The mathine supports a veleaseBall()
helper method that releases the ball and
decrements the count instante variable.

N

// More methods here including getters for each State...

/t This includes methods like getNoQuarterState() for getting eath
state ochC‘{‘,, and 56‘(:Couh{:0 -(:o\r 3:‘[:{:in5 the gumba“ tount.

you are here »

399

400

more states for the gumball machine

Implementing more states

Now that you’re starting to get a feel for how the Gumball Machine and the states
fit together, let’s implement the HasQuarterState and the SoldState classes...

e S‘\’,a{',c s '\ns{',ah‘t\a{',cd

en th he
o hass ita rc(:e*cv\"c.Joo -
public class HasQuarterState implements State { ‘é'c ballM athine: This 18 uSC‘ho ,
um ine
GumballMachine gumballMachine; %o Lransition he mathin

diffecent state

public HasQuarterState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;

} .
Ay\ \V\aY v-o\:‘r\a{C
K—\ aC‘E\o“ oY ‘h\\\s
public void insertQuarter() { s‘hahc.
System.out.println("You can't insert another quarter");
}

)
public void ejectQuarter() { Return the tustomer's

gumb and
System.out.println("Quarter returned") ; K o\uav{xv
y : e) ransition back to the
allMachine.setState (gumballMachine.getNoQuarterState()) ; NoQuar{:chJca{c.

}

public void turnCrank() { When the erank is

System.out.println("You turned..."); < turned we transition
11Machi tStat 11Machi tSoldStat the mathine to the
gumballMachine.setState (gumballMachine.getSo ate()) ; ColdCkate sbate b\/
}

calling its setState()
method and passing it
the SoldState ob\')ccﬁ
Systemout-printin(H 11 4 ar) ; The SoldState object
y | T Tepensedny is vetvieved by the
| 5c£SoldS£a{:c)
aetter method

public void dispense() {

P‘“°H‘CY (theve is one of these
napyve v\a{—,c. 5:{:{:& methods for
atkion For th¥ 2ach state)

state.

Chapter 10

the state pattern

Now, let’s check out the SoldState class... Weve ave all the

public class SoldState implements State { '\'\3\7\7“‘){\3&1\‘.
. 1S
//constructor and instance variables here atkions for
state-

public void insertQuarter () {

System.out.println("Please wait, we're already giving you a gumball") ;

public void ejectQuarter() {

System.out.println("Sorry, you already turned the crank");

public void turnCrank() {

System.out.println ("Turning twice doesn't get you another gumball!");
}

And heve's wheve the

veal work begins... We've in the SoldState, whith means the

public void dispense() { L/_, tustomer paid. So, we irst "“ﬁ to ask
gumballMachine.releaseBall () ; the machine to velease a gumball
if (gumballMachine.getCount() > 0) {

gumballMachine.setState (gumballMachine.getNoQuarterState()) ;
} else {

System.out.println("Oops, out of gumballs!");

gumballMachine.setState (gumballMachine.getSoldOutState()) ;

Then we ask the machine what the 3umba“
tount is, and either fransition to the
NoQuarterState or 4he SoldOutState.

@RA“«
‘PQWEWR
Look back at the GumballMachine implementation. If the crank is turned and

not successful (say the customer didn’t insert a quarter first), we call dispense()
anyway, even though it's unnecessary. How might you fix this?

you are here » 401

your turn to

_ % harpen your pencil

A We have one remaining class we haven’'t implemented: SoldOutState.
Why don’t you implement it? To do this, carefully think through how the
Gumball Machine should behave in each situation. Check your answer
before moving on...

public class SoldOutState implements {
GumballMachine gumballMachine;

public SoldOutState (GumballMachine gumballMachine) {

public void insertQuarter() {

public void ejectQuarter() {

public void turnCrank() {

public void dispense() {

402

the state pattern

Let’s take a look at what we’ve done so far...

For starters, you now have a Gumball Machine implementation that is structurally quite
different from your first version, and yet functionally it is exactly the same. By structurally
changing the implemention, you've:

= JLocalized the behavior of each state into its own class.
= Removed all the troublesome if statements that would have been difficult to maintain.

= (losed each state for modification, and yet left the Gumball Machine open to extension
by adding new state classes (and we’ll do this in a second).

= (Created a code base and class structure that maps much more closely to the Mighty
Gumball diagram and is easier to read and understand.

Now let’s look a little more at the functional aspect of what we did:

The G ball Mathine now holds an
(4 m

e \ass- .
instante of eath Ghate ¢1d N oum ba" Machln 0 Sfafes

current state

&

S :
Dbalne

Sold
The curvent state of the
macthine is alwa\/s one
these ¢lass instances.
Soldos®

you are here » 403

state fransitions

cion is talled, it is '
3/:;:;31:: ‘{'DOJ:,‘\\C CUW‘CV\{: S‘{‘,a‘{‘,c. oumba" Machme sfafes

k————s turnCrank()

turnCrank()

current state ~

In this case, the turnCrank()
method is being called when the
machine is in the HasQuarter
state, so as a vesult the machine
transitions to the Sold state.

TRANSITION TO SOLD STATE

\’

thine enters

he mad
Tt\; Sold state ““‘;a .
Svm\)a\\ is dispense (}umbaﬂ Machme States Move ‘,’)um\"a“s
=
& =N
...and then the
dispense() NoQuar™® mathine will
either 90 to

the SoldOut

or NoQuarter
state depending
on the number of
gumballs vemaining
in the mathine.

Sold out

</

SoldOs*

404 Chapter 10

the state pattern

Gadharpen your pencil Behind the Scenes:
§\\£ i Self-Guided Tour

Trace the steps of the Gumball Machine starting with the NoQuarter state. Also annotate the diagram with actions
and output of the machine. For this exercise you can assume there are plenty of gumballs in the machine.

@) ®

¢umball Machine States ¢unthall Machine States
NoQuart® NoQuact®

D

’L/asQuo“"é

1S e
Dbaiec”

Sold Sold
SoldOuY SoldOv

¢umball Machine Stafes Gumball Machine States
s
Noguers® Noguert®

@D @9 D, 9

&

MbaleS

Sold Sold
Soldou SoldOst

you are here » 405

state pattern defined

The State Pattern defined

Yes, it’s true, we just implemented the State Pattern! So now, let’s take a look at what it’s all about:

The State Pattern allows an object to alter its behavior
when its internal state changes. The object will appear to
change its class.

The first part of this description makes a lot of sense, right? Because the pattern encapsulates
state into separate classes and delegates to the object representing the current state, we know
that behavior changes along with the internal state. The Gumball Machine provides a good
example: when the gumball machine is in the NoQuarterState and you insert a quarter, you get
different behavior (the machine accepts the quarter) than if you insert a quarter when it’s in the
HasQuarterState (the machine rejects the quarter).

What about the second part of the definition? What does it mean for an object to “appear to
change its class”? Think about it from the perspective of a client: if an object you’re using can
completely change its behavior, then it appears to you that the object is actually instantiated from
another class. In reality, however, you know that we are using composition to give the appearance
of a class change by simply referencing different state objects.

Okay, now it’s time to check out the State Pattern class diagram:

The State interface defines a tommon

The Context is the ¢lass that intecface for all conevete stz Les; the
tan have a number o‘(: intevnal states all im?lcrncn'(: the same i""ZCV“Fatc,
states. [n our example, the S0 they are in erchangeable
GumballMathine is the Context.
k& Context N State i
request() handle() I
‘Sta‘e-ha”dle() ConcreteStateA ConcreteStateB | 3

)
ﬁ handle() I handle() I Ag:{':‘)' Contrete

s €S adre P°SSible.

Wh;"cvc"'tfhc request() is K J
made on the)
o dted éozt:xsi’al: ContvekeStates handle vequests (:vo.m Jd?c
o tandle c Context. Eath ContreteState provides .n{:s

own im?lcmcn{',a‘{:'lon for a vequest. In ﬂus

way, when the Context thanges state, its

behavior will change as well.

406 Chapter 10

state

Wait a sec; from what
T remember of the Strategy
Pattern, this class diagram is
EXACTLY the same.

You've got a good eye (or you read the beginning of the chapter)!
Yes, the class diagrams are essentially the same, but the two patterns
differ in their tent.

With the State Pattern, we have a set of behaviors encapsulated in
state objects; at any time the context is delegating to one of those
states. Over time, the current state changes across the set of state
objects to reflect the internal state of the context, so the context’s
behavior changes over time as well. The client usually knows very
little, if anything, about the state objects.

With Strategy, the client usually specifies the strategy object that
the context is composed with. Now, while the pattern provides the
flexibility to change the strategy object at runtime, often there is

a strategy object that is most appropriate for a context object. For
instance, in Chapter 1, some of our ducks were configured to fly
with typical flying behavior (like mallard ducks), while others were
configured with a fly behavior that kept them grounded (like rubber
ducks and decoy ducks).

In general, think of the Strategy Pattern as a flexible alternative to
subclassing; if you use inheritance to define the behavior of a class,
then you’re stuck with that behavior even if you need to change it.
With Strategy you can change the behavior by composing with a
different object.

Think of the State Pattern as an alternative to putting lots of
conditionals in your context; by encapsulating the behaviors within
state objects, you can simply change the state object in context to
change its behavior.

407

q&a about the

408

therejare no
b Questions

Dum

Q; In GumballMachine, the states decide what the
next state should be. Do the ConcreteStates always
decide what state to go to next?

A: No, not always. The alternative is to let the Context
decide on the flow of state transitions.

As a general guideline, when the state transitions are fixed
they are appropriate for putting in the Context; however,
when the transitions are more dynamic, they are typically
placed in the state classes themselves (for instance, in
GumballMachine the choice of the transition to NoQuarter or
SoldOut depended on the runtime count of gumballs).

The disadvantage of having state transitions in the state
classes is that we create dependencies between the state
classes. In our implementation of GumballMachine we tried
to minimize this by using getter methods on the Context,
rather than hardcoding explicit concrete state classes.

Notice that by making this decision, you are making a
decision as to which classes are closed for modification—
the Context or the state classes—as the system evolves.

Q: Do clients ever interact directly with the states?

A: No. The states are used by the Context to represent
its internal state and behavior, so all requests to the states
come from the Context. Clients don’t directly change the
state of the Context. It is the Context’s job to oversee its
state, and you don’t usually want a client changing the state
of a Context without that Context’s knowledge.

Q} If I have lots of instances of the Context in my
application, is it possible to share the state objects
across them?

A: Yes, absolutely, and in fact this is a very common
scenario. The only requirement is that your state objects do
not keep their own internal context; otherwise, you'd need a
unique instance per context.

To share your states, you'll typically assign each state to a
static instance variable. If your state needs to make use of
methods or instance variables in your Context, you'll also
have to give it a reference to the Context in each handler()
method.

Q: It seems like using the State Pattern always
increases the number of classes in our designs. Look
how many more classes our GumballMachine had than
the original design!

A: You're right; by encapsulating state behavior

into separate state classes, you'll always end up with

more classes in your design. That's often the price you

pay for flexibility. Unless your code is some “one-off’
implementation you're going to throw away (yeah, right),
consider building it with the additional classes and you'll
probably thank yourself down the road. Note that often what
is important is the number of classes that you expose to
your clients, and there are ways to hide these extra classes
from your clients (say, by declaring them package private).

Also, consider the alternative: if you have an application
that has a lot of state and you decide not to use separate
objects, you'll instead end up with very large, monolithic
conditional statements. This makes your code hard to
maintain and understand. By using objects, you make states
explicit and reduce the effort needed to understand and
maintain your code.

Q,: The State Pattern class diagram shows that State
is an abstract class. But didn’t you use an interface in
the implementation of the gumball machine’s state?

A: Yes. Given we had no common functionality to put
into an abstract class, we went with an interface. In your
own implementation, you might want to consider an abstract
class. Doing so has the benefit of allowing you to add
methods to the abstract class later, without breaking the
concrete state implementations.

the state pattern

We still need to finish the Gumball 1 in 10 game

Remember, we’re not done yet. We've got a game to implement, but now that we’ve got the State
Pattern implemented, it should be a breeze. First, we need to add a state to the GumballMachine class:

public class GumballMachine {

State soldOutState;

State :oQuarterState; Al you need 1o add heve is
State hasQuarterState; £he new Winncrg{:afc and

State soldState; /_\ ihihahu i the (,ons{rud‘,or'
State winnerState;

State state = soldOutState; Don't «(:orgc{: You also have
int count = 0; 4o add a SCH‘,CY method for
// methods here WinnerState +oo.

Now let’s implement the WinnerState class; it’s remarkably similar to the SoldState class:

public class WinnerState implements State {

ust like ColdState:

// instance variables and constructor

J
// insertQuarter error message /—\

// ejectQuarter error message
Heve we velease two gumballs and then

either 9o to the NoRuarterState or

// turnCrank error message

e.
public void dispense() { the SoldOutStat
gumballMachine.releaseBall() ;
if (gumballMachine.getCount() == 0) {
gumballMachine.setState (gumballMachine.getSoldOutState()) ;
} else { .
gumballMachine.releaseBall () ; £— |£ we have setond 5“'“"3“' we velease it

System.out.println ("YOU'RE A WINNER! You got two gumballs for your quarter");
if (gumballMachine.getCount() > 0) { bl
gumballMachine.setState (gumballMachine.getNoQuarterState()) ; H: we weve able
} else { o velease two
e let
System.out.println("Oops, out of gumballs!"); SMMba“S' "

. . the user know
gumballMachine.setState (gumballMachine.getSoldOutState()) ; .
he was 3 winnev-

you are here » 409

implementing the 1 in 10 game

Finishing the game

We’ve got just one more change to make: we need to implement the random
chance game and add a transition to the WinnerState. We’re going to add both to
the HasQuarterState since that’s where the customer turns the crank:

public class HasQuarterState implements State ({ p F\rs{: we add 3
‘rAhdo"‘ humbc\’
aenevator to

10%
5¢ncra£c the

thante of winning..

Random randomWinner = new Random(System.currentTimeMillis()) ;
GumballMachine gumballMachine;

public HasQuarterState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;

public void insertQuarter() {

System.out.println("You can't insert another quarter");

public void ejectQuarter() ({
System.out.println ("Quarter returned") ;

gumballMachine.setState (gumballMachine.getNoQuarterState()) ;

} ..then we determine
/ if this eustomer won.

public void turnCrank() {

System.out.println("You turned...");

int winner = randomWinner.nextInt (10) ;

if ((winner == 0) && (gumballMachine.getCount() > 1)) {

gumballMachine.setState (gumballMachine.getWinnerState()) ;
} else {

gumballMachine.setState (qumballMachine.getSoldState()) ;

£ {:hc\/ won, and theve’s enough qumballs

ICH‘. ‘Fo\r U\Cm 'bo 56‘{: {:wo, we 50 'bo

WinnerState; otherwise, we g0 to

public void dispense() { SoldState (ust like we always did).
System.out.println("No gumball dispensed") ;

Wow, that was pretty simple to implement! We just added a new state to the GumballMachine
and then implemented it. All we had to do from there was to implement our chance game and
transition to the correct state. It looks like our new code strategy is paying off...

410 Chapter 10

the state pattern

Pemo for the CEQ of Mighty Gumball, Ine.

The CEO of Mighty Gumball has dropped by for a demo of your new gumball game code. Let’s
hope those states are all in order! We’ll keep the demo short and sweet (the short attention span of
CEOs 1s well documented), but hopetully long enough so that we’ll win at least once.

This code veally hasn't thanged at all;

J we ")us{: shortened it a bit.

public class GumballMachineTestDrive { Onte, again, start with a 5umba“
machine with 5 gumballs.
public static void main(String[] args) { Of-
GumballMachine gumballMachine = new GumballMachine (5) ;

System.out.println (gumballMachine) ;

gumballMachine.insertQuarter() ;
gumballMachine. turnCrank() ;

We want to 3:{, a winning state,
é\ so we \')us{: keep pumping in those

quarters and furning the evank. We
System.out.println(gumballMachine) ; ?rin{‘, out the state o(: the 3umba||

mathine every so often...
gumballMachine.insertQuarter() ;
gumballMachine. turnCrank() ;
gumballMachine.insertQuarter() ;
gumballMachine. turnCrank() ; /

System.out.println (gumballMachine) ;

The whole engineexing Leam is waiting
outside the tonkerente voom +o ;cc
£ the new State Pattern—base

design is 50'"‘5 to work!!

you are here » 411

testing the gumball machine

File Edit Window Help Whenisagumballajawbreaker?

Yes! That rocks! %$java GumballMachineTestDrive

Mighty Gumball, Inc.
o) Java-enabled Standing Gumball Model #2004
0 Inventory: 5 gumballs

/!-h\ Machine is waiting for quarter

You inserted a quarter

You turned...

A gumball comes rolling out the slot...

A gumball comes rolling out the slot...

YOU'RE A WINNER! You got two gumballs for your quarter

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 3 gumballs

Machine is waiting for quarter

You inserted a quarter
Gee, did we get M vou turned. ..
orvma{?lnow’d6"° A gumball comes rolling out the slot...
{D{thEOrW‘“m“ You inserted a quarter
L onte, bu{: {-,w\LC! You turned...
ne A gumball comes rolling out the slot...
\\\A A gumball comes rolling out the slot...
YOU'RE A WINNER! You got two gumballs for your quarter
Oops, out of gumballs!

Mighty Gumball, Inc.

Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs

Machine is sold out

[)

o

therejare no
Dumb Questions

Q: Why do we need the WinnerState? Couldn’t we just have the SoldState dispense two gumballs?

A: That's a great question. SoldState and WinnerState are almost identical, except that WinnerState dispenses two
gumballs instead of one. You certainly could put the code to dispense two gumballs into SoldState. The downside is, of
course, that now you've got TWO states represented in one State class: the state in which you're a winner, and the state
in which you're not. So you are sacrificing clarity in your State class to reduce code duplication. Another thing to consider
is the principle you learned in the previous chapter: the Single Responsibility Principle. By putting the WinnerState
responsibility into the SoldState, you've just given the SoldState TWO responsibilities. What happens when the
promotion ends? Or the stakes of the contest change? So, it's a tradeoff and comes down to a design decision.

412 Chapter 10

Sanity check...

Yes, the CEO of Mighty Gumball probably needs a sanity check, but that’s not what
we’re talking about here. Let’s think through some aspects of the GumballMachine

that we might want to shore up before we ship the gold version:

= We've got a lot of duplicate code in the Sold and Winning
states and we might want to clean those up. How would we
do it? We could make State into an abstract class and build
in some default behavior for the methods; after all, error
messages like, “You already inserted a quarter,” aren’t going
to be seen by the customer. So all “error response” behavior
could be generic and inherited from the abstract State class.

= The dispense() method always gets called, even if the crank is
turned when there is no quarter. While the machine operates
correctly and doesn’t dispense unless it’s in the right state, we
could easily fix this by having turnCrank() return a boolean
or by introducing exceptions. Which do you think is a better

solution?

= All of the intelligence for the state transitions is in the State
classes. What problems might this cause? Would we want to
move that logic into the GumballMachine? What would be

the advantages and disadvantages of that?

= Will you be instantiating a lot of GumballMachine objects?
If so, you may want to move the state instances into static
instance variables and share them. What changes would this

require to the GumballMachine and the States?

Bravo! Great job,
gang. Our sales are already
going through the roof with the new
game. You know, we also make soda
machines, and I was thinking we could put
one of those slot-machine arms on the
side and make that a game too. We've got
four-year-olds gambling with the
gumball machines; why stop there?

e

Damm\{: Jim,
l'm a waa\\
mathine, not 3
Lomvu{iﬂ'!

state

413

fireside chats: state and strategy

Fireside Chats

Strategy:
Hey, bro. Did you hear I was in Chapter 1?

I was just over giving the Template Method guys a
hand—they needed me to help them finish off their
chapter. So, anyway, what is my noble brother up to?

I don’t know, you always sound like you've just
copied what I do and you’re using different words
to describe it. Think about it: I allow objects to
incorporate different behaviors or algorithms
through composition and delegation. You're just
copying me.

Oh yeah? How so? I don’t get it.

Yeah, that was some fine work...and I'm sure you can
see how that’s more powerful than inheriting your
behavior, right?

Sorry, you're going to have to explain that.

414 Chapter 10

Tonight’s talk: A Strategy and State Pattern Reunion.

State:

Yeah, word is definitely getting around.

Same as always—helping classes to exhibit different
behaviors in different states.

I admit that what we do is definitely related, but my
intent is totally different than yours. And the way I
teach my clients to use composition and delegation
is totally different.

Well, if you spent a little more time thinking about
something other than yourself, you might. Anyway;,
think about how you work: you have a class you're
instantiating and you usually give it a strategy object
that implements some behavior. Like, in Chapter 1
you were handing out quack behaviors, right? Real
ducks got a real quack; rubber ducks got a quack
that squeaked.

Yes, of course. Now, think about how I work; it’s
totally different.

Strategy:

Hey, come on, I can change behavior at runtime
too; that’s what composition is all about!

Well, I admit, I don’t encourage my objects to have
a well-defined set of transitions between states. In
fact, I typically like to control what strategy my
objects are using.

Yeah, yeah, keep living your pipe dreams, brother.
You act like you're a big pattern like me, but check
it out: I'm in Chapter 1; they stuck you way out in
Chapter 10. I mean, how many people are actually
going to read this far?

That’s my brother, always the dreamer.

the state pattern

State:

Okay, when my Context objects get created, I may
tell them the state to start in, but then they change
their own state over time.

Sure you can, but the way I work is built around
discrete states; my Context objects change state
over time according to some well-defined state
transitions. In other words, changing behavior is
built in to my scheme—it’s how I work!

Look, we’ve already said we’re alike in structure, but
what we do is quite different in intent. Face it, the
world has uses for both of us.

Are you kidding? This is a Head First book and
Head First readers rock. Of course they’re going to
get to Chapter 10!

you are here » 415

refill exercise

We almost forgot!

) " foraot to put in the o\,r'ug,inal specwe
@ T::;cas :;‘c/ ta::g;;rl:: 3:»33\\ machlinc wtcv{s: it's ou{; o\z ugudv:\:as\lsc |
t i i us¢
! {301am — Lan You implement or
gbi;y gcg::dgii '::l {:(::?r:s‘t of ‘Ehc\lgumba“ mathine we have no doubt
" szbl?gaiﬁz you ¢an add this in 3) (—\/!
Whe:: Itlgflerui—::WaEmpty

— The Mighty Gumball Engineers

vefill

416 Chapter 10

_ % harpen your pencil
AN

state

We need you to write the refill() method for the Gumball machine. It has one
argument—the number of gumballs you're adding to the machine—and
should update the gumball machine count and reset the machine’s state.

You've done some amazing work!
T've got some more ideas that
are going to change the gumball
industry and I need you to implement
them. Shhhhh! T'll let you in on these
ideas in the next chapter.

417

who what?

* + ©F

WHOQ DQES wwaT™

Match each pattern with its description:

Pattern Description

Encapsulate interchangeable
State behaviors and use delegation to
decide which behavior to use.

Subclasses decide how

Strategy to implement steps in an
algorithm.
Encapsulate state-based
Template Method behavior and delegate

behayior to the current state.

418

s Tools for your Pesign Toolbox

It’s the end of another chapter; you’ve got enough
patterns here to breeze through any job interview!

00 PV"\V\C\\’\CS

EnLaYSu\a‘bC w\\a‘\: vavies:

¥ to \70§\\'jon over inhevitante \\’mov?\\.\sm
avor Lo
vam 0 \n’ccvfc‘accs, not \‘cﬁb““
?Y;?Cmcn‘ba‘t\ons.
. designs
{ el toupled
e fr o
Lension
(Classes hould be OY-CE- Q:‘:‘o? .
\J:‘E tlosed Lo moditic Y\“C‘Y\C y
tions: Do not e : T“a‘h SNCS :
Jbstrat g
Dc\’cnd - te ¢t\asses: L\‘aY : ‘\:\\c
depend " tontye i - o
Iy talk o Yyour Leiends:
On\[
Dont eall vs) well eall you
on
only one eason
A elass hould have -
e ,
ko Ehand patteen. 1§ you'e
man851n5 state in
\ 3 tlass, the Chate
ns Pattern gives you
OO Pa‘t‘h? . r s a ‘{',CL‘\V\.N\VC or
B o R) b entapsulating that
e ct P‘\ '.,,i,:.u\n AMatL-~A . ._\h‘ o ‘-l‘ ‘ o
"3 F A = b \
| b S.‘-A ‘-— rnufs“'
" D\ p \{‘ j Nda:ﬂ' oYX — Enl'.;msu\x";s A ')
a ‘ / n pc D oo ‘
g) 1] F:P ade __Pwrav \ S " "
- 127 chate - Alow 2 g b s
a ILE or when s nkernd e .‘
| ! o
' s 11 \’C:a Joject will appea” ‘o
- S v The o0)
. s elass:

the state pattern

% BULLET POINTS —

m The State Pattern allows an
object to have many different
behaviors that are based on
its internal state.

Unlike a procedural state
machine, the State Pattern
represents each state as a
full-blown class.

The Context gets its behavior
by delegating to the current
state object it is composed
with.

By encapsulating each state
into a class, we localize any
changes that will need to be
made.

The State and Strategy
Patterns have the same class
diagram, but they differ in
intent.

The Strategy Pattern typically
configures Context classes
with a behavior or algorithm.

The State Pattern allows

a Context to change its
behavior as the state of the
Context changes.

State transitions can be
controlled by the State
classes or by the Context
classes.

Using the State Pattern will
typically result in a greater
number of classes in your
design.

State classes may be shared
among Context instances.

you are here » 419

exercise solutions

Design Puzz]e Solution

Draw a state diagram for a Gumball Machine that handles the 1-in-10
contest. In this contest, 10% of the time the Sold state leads to two
balls being released, not one. Here’s our solution.

Y%
oo
s U
Mighty Gumball. Inc. NN & tur.
Where the Gumball Machine gumballs = O 9\;6 69 Srg
is Never Half Empty Ve ."/é

420 Chapter 10

state

_ % harpen Your pencil

A solutwn Which of the following describe the state of our implementation?
(Choose all that apply.) Here's our solution.

MA. This code certainly isn’t adhering to the M D. State transitions aren’t explicit; they

Open Closed Principle. are buried in the middle of a bunch of
™ B. This code would make a FORTRAN conditional statements.
programmer proud. E{ E. We haven’t encapsulated anything that

. . . varies here.
E(C. This design isn’t even very object-

oriented. &/ F. Further additions are likely to cause bugs
in working code.

_ (@rpen your pencil
A solutlon We have one remaining class we haven't implemented: SoldOutState. Why
don’t you implement it? To do this, carefully think through how the Gumball

Machine should behave in each situation. Here’s our solution.

< {a{C: we V‘CA“\[

|n the Sold ou’s L someont
public class SoldOutState implements State { cant do avx\f‘:\\‘“‘.’) un .
GumballMachine gumballMachine; J'\\\S the é\,mba“ Mathine-
v

public SoldOutState (GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;

}

public void insertQuarter() {
System.out.println("You can't insert a quarter, the machine is sold out");

}

public void ejectQuarter() ({
System.out.println("You can't eject, you haven't inserted a quarter yet");

}

public void turnCrank() {
System.out.println("You turned, but there are no gumballs") ;

}

public void dispense() {
System.out.println("No gumball dispensed") ;

}

421

exercise solutions

_ qaoharpen your pencil
sf ySoIEtion

Go to HasQuarterState.

Tell the customer, “You turned, but there’s no quarter.”
Tell the customer, “You need to pay fivst.”

Tell the customer, “You ean’t insert another quarter.”
Give back quarter, g0 to NoQuarter state.
Qo 1o SoldState.

Tell the customer, “You haven't insevted a quarter.”

T

—
———

—

Tell the Cusbomcr, “No gumba” disPcnscd"’

Tell the customer, “Please wait, we've alveady giving you a qumball”
Tell the customer, “Sorvy, you alveady turned the trank.”

Tell the customer, “Turning twice doesn't 9et you another gumball.”

Dispense one qumball. Chetk number of qumballs; if > 0, g0
to NoQuarter state; otherwise, g0 to SoldOut state.

Tell the customer, “The machine is sold out.”
Tell the customer, “You haven't insevted a quarter yet.”

Tell the tustomer, “There are no gumballs.”

Tell the £us+,omcr, “No 5umba" disFCV\scd-"

Tell the tustomer, “Please wait, we've alveady giving You @ qumball.”

Tell the customer, “Sorv-\/, you alveady turned the evank.”

Tell the customer, “Turning twice doesn't 9et you another gumball.”

Dispense two gumballs. Chetk number of qumballs; if > 0,
90 to NoQuarter state; otherwise, g0 to SoldOutState.

—

S

_—a

1

e

/\——_’3

_—_a

1

To implement the states, we first need to define what the behavior will
be when the corresponding action is called. Annotate the diagram below
with the behavior of each action in each class; here’s our solution.

NoQuarterState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
T —————

HasQuarterState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()
T

SoldState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
T

SoldOutState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
T —————

WinnerState

insertQuarter()
ejectQuarter()
turnCrank()

dispense()
T—

422 Chapter 10

delegates 1,
Current stat :2

@)

insertQuarter() aymhall Machine States

%Qucmﬁ

A/asQuo\"‘é

insertQuarter()

s .év
DMbalInec™

machine aetion

Sold

SoldOv’

¢umball Machine Stafes

dispense() NoQuar™®

»‘/,,SQUO\«%

Here the macthine &
gives out a qumball

b\/ calling the internal

diSPCV\scO attion... SoldOv*

the state pattern

Behind the Scenes:
Self-Guided Tour

Solution

®

del
: cga{xs! ¢umball Machine States

turnCrank @
NOQuov’(”

current state

&
S L HOsQuoﬂ
T “baimec

mathine action

Sold

turnCrank()

SoldOuY

transitions to)
HasQuarter state

Lransitions to
Sold state

¢umball Machine States

N"Quof"d

A/asQro‘é

Sold

..and then transitions Sold0vt

‘{',o N oQuar‘Ecr.

you are here » 423

exercise

*W\-‘Q DQ“ WH AT
- SQA\LLTI\QN
Match each pattern with its description:
Pattern Description

Encapsulate interchangeable

State behaviors and use delegation to
decide which behavior to use.
Subclasses decide how
Strategy to implement steps in an
algorithm.
Encapsulate state-based
Template Method

behavior and delegate
behavior to the current state.

N (@rpen your pencil

solutlon To refill the Gumball Machine, we add a refill() method to the State interface,
which each State must implement. In every state except SoldOutState, the
method does nothing. In SoldOutState, refill() transitions to NoQuarterState.
We also add a refill() method to GumballMachine that adds to the count of
gumballs, and then calls the current state’s refill() method.
public void refill() {

. , SO~ We add his method o
gumballMachine.setState (gumballMachine.getNoQuarterState()) ; the SoldOutState...

}

. . . .and add this method to
void refill (int count) { £ Ehe GumballMathine elass.

this.count += count;

System.out.println("The gumball machine was just refilled; its new count is: " + this.count);
state.refill () ;

424

11 the Proxy Pattern
Controlling
* Object Access +

With you as my proxy,
T'll be able to triple the
amount of lunch money I can
extract from friends!

Ever play good cop, bad cop? You're the good cop and you provide all
your services in a nice and friendly manner, but you don’t want everyone asking you
for services, so you have the bad cop control access to you. That’s what proxies do:
control and manage access. As you're going to see, there are lots of ways in which
proxies stand in for the objects they proxy. Proxies have been known to haul entire
method calls over the internet for their proxied objects; they’ve also been known to

patiently stand in for some pretty lazy objects.

this is a new chapter 425

what’s the

Hey team, I'd really like to
get some better monitoring for
my gumball machines. Can you find a
way to get me a report of inventory
and machine state?

Sounds easy enough. If you remember, we’ve already
got methods in the gumball machine code for getting the
count of gumballs, getCount(), and getting the current
state of the machine, getState().

All we need to do is create a report that can be printed out
and sent back to the CEO. Hmmm, we should probably
add a location field to each gumball machine as well; that
way the CEO can keep the machines straight.

R (\b Let’s just jump in and code this. We’ll impress the CEO
member the CEO of with a very fast turnaround.
Mighty Gumball, [ne.?

426

the proxy pattern

Coding the Monitor

Let’s start by adding support to the GumballMachine class so that it
can handle locations:

public class GumballMachine { A location is JHS‘E a S'bring

// other instance variables

String location;

public GumballMachine (String location, int count) {
// other constructor code here N _ The location is passed into the
this.location = location; tonstruttor and stored in +he
} instance variable.

public String getlLocation() {

return location;
} Let's also add a getter method_{:o
grab 4he lotation when we need it

// other methods here

Now let’s create another class, GumballMonitor, that retrieves the machine’s
location, inventory of gumballs, and current machine state and prints them in a
nice little report:

public class GumballMonitor {
GumballMachine machine; \/_\ The monitor takes the mathine in
its construttor and assigns it 4o
public GumballMonitor (GumballMachine machine) { the machine instance variable.

this.machine = machine;

public void report() ({
System.out.println("Gumball Machine: " + machine.getLocation()) ;
System.out.println("Current inventory: " + machine.getCount() + " gumballs");

System.out.println("Current state: " + machine.getState())

Our \rcPo\r-'l:() method

location, invcn‘bo\r‘\/, Just prints a veport with

and the mathine’s state.

you are here » 427

local gumball monitor

Testing the Monitor

We implemented that in no time. The CEO is going to be thrilled and amazed by our
development skills.

Now we just need to instantiate a GumballMonitor and give it a machine to monitor:

public class GumballMachineTestDrive {

public static void main(String[] args) { Pass in a lotation and initial # of

int count = 0; (\ 5umba||s on the tommand line.

if (args.length < 2) {
System.out.println ("GumballMachine <name> <inventory>") ;

System.exit (1) ; Don't ‘Forgd; to give
} the tonstruetor 3

location and ¢count...
count = Integer.parselnt(args[1l])

GumballMachine gumballMachine = new GumballMachine (args[0], count) ;

GumballMonitor monitor = new GumballMonitor (gumballMachine) ;
and instantiate a monitor and pass ita
mathine to provide a veport on.

// rest of test code here

File Edit Window Help FlyingFish

%$java GumballMachineTestDrive Austin 112

monitor.report() ;
Gumball Machine: Austin

}
(When we need a veport on Current Inventory: 112 gumballs

the machine, we call the Current State: waiting for quarter
veport() method.

)

And here's the output!

The monitor output looks
great, but I guess I wasn't clear. I need
to monitor gumball machines REMOTELY!
In fact, we already have the networks in
place for monitoring. Come on guys, you're
supposed fo be the internet generation!

428 Chapter 11

the proxy pattern

Don't worry, guys, I've
been brushing up on my design
patterns. All we need is a remote
proxy and we'll be ready to go.

Well, that will teach us to
gather some requirements
before we jump in and code. I hope
we don't have to start over...

Frank Jim Joe

Frank: A remote what?

Joe: Remote proxy. Think about it: we’ve already got the monitor code written, right? We give the
GumballMonitor class a reference to a machine and it gives us a report. The problem is that the monitor runs
in the same JVM as the gumball machine and the CEO wants to sit at his desk and remotely monitor the
machines! So what if we left our GumballMonitor class as is, but handed it a proxy to a remote object?

Frank: I'm not sure I get it.
Jim: Me neither.

Joe: Let’s start at the beginning...a proxy is a stand in for a real object. In this case, the proxy acts just like it
is a Gumball Machine object, but behind the scenes it is communicating over the network to talk to the real,
remote GumballMachine.

Jim: So you’re saying we keep our code as it is, and we give the monitor a reference to a proxy version of the
GumballMachine...

Frank: And this proxy pretends it’s the real object, but it’s really just communicating over the net to the real
object.

Joe: Yeah, that’s pretty much the story.
Frank: It sounds like something that’s easier said than done.

Joe: Perhaps, but I don’t think it’ll be that bad. We have to make sure that the gumball machine can act as
a service and accept requests over the network; we also need to give our monitor a way to get a reference to
a proxy object, but we’ve got some great tools already built into _Java to help us. Let’s talk a little more about
remote proxies first...

you are here » 429

remote proxy

The role of the ‘remote proxy’

A remote proxy acts as a local representative to a remote object. What's a “remote
object”? It’s an object that lives in the heap of a different Java Virtual Machine
(or more generally, a remote object that is running in a different address space).
What’s a “local representative”? It’s an object that you can call local methods on
and have them forwarded on to the remote object.

’ Remote Gumbal .
CEO' deskist ckends to) umball Machi
T T S il M
L%' —_—“‘ buk s just aTs‘cand n A)
R al Thing
“——'—— Local Heap for the Re Remote Heap

===, o .

he 6\m\ba“

\’II/T:;\:;V is the L\i.cv,\{:
Jbietts ik thinks s
Jc,a{k'mg to the Real
\m\ba“ mathing, \)u.
s veally \')us{: ’r,a?kmg
4o the prox) which
Lhen talks 1o the _)
Rca\ gumba“ mathine Came 35 \IOT“;) ‘\:\\a‘h .
over the network. cane & Vs g

Lalking t0 3 ProY

The client i?cc{: is the ob\')ct.{:

ind use the proxy—in our
[e mbalontor 05
Your client object acts like it’s making remote method calls.
But what it’s really doing is ca]ling methods on a heap-
loca] “proxy” object that handles a]l the Jow-]eve] details of
network communication.

430 Chapter 11

proxy

This is a pretty slick idea.
We're going to write some code that
takes a method invocation, somehow transfers it
over the network, and invokes the same method
on a remote object. Then I presume when the call is
complete, the result gets sent back over the network
to our client. But it seems to me this code is going
to be very tricky to write.

Hold on now, we aren't going
to write that code ourselves; it's
pretty much built into Java's remote
invocation functionality. All we have to
do is retrofit our code so that it takes
advantage of RMI.

_ @RA\N
‘PQWEWR
Before going further, think about how you’d design a system to enable Remote Method

Invocation (RMI). How would you make it easy on the developer so that she has to write as
little code as possible? How would you make the remote invocation look seamless?

. >
_ @yv:m«
‘PQOQWEWR
Should making remote calls be totally transparent? Is that a good idea? What might be a
problem with that approach?

431

rmi

Adding a remote proxy to the Gumball
Machine wmonitoring code

On paper our plan looks good, but how do we create a proxy that knows how to invoke a
method on an object that lives in another JVM?

Hmmm. Well, you can’t get a reference to something on another heap, right? In other words,

you can’t say:

Duck d = <object in another heap>

Whatever the variable d is referencing must be in the same heap space as the code running
the statement. So how do we approach this? Well, that’s where Java’s Remote Method
Invocation (RMI) comes in...RMI gives us a way to find objects in a remote JVM and allows
us to invoke their methods.

Now might be a good time to brush up on RMI with your favorite Java reference, or you can
take the BMI Detour ahead, and we’ll walk you though the high points of RMI before adding
the proxy support to the Gumball Machine code.

In either case, here’s our plan:

432

€@ First, we’re going to take the RMI

Detour and explore RMI. Even if you are
familiar with RMI, you might want to
follow along and check out the scenery.

© Then we’re going to take our Gumball

Machine and make it a remote service
that provides a set of methods calls
that can be invoked remotely.

Finally, we going to create a proxy that
can talk to a remote Gumball Machine,
again using RMI, and put the monitoring
system back together so that the CEO can
monitor any number of remote machines.

A __
O Lo
An BRMI Detour

)

If you're new to RMI,

take the detour that runs
over the next few pages;
otherwise, you might want to
Jjust quickly thumb through
the detour as a review. If
you'd like to continue on,
Jjust getting the gist of the
remote proxy, that is fine
too—you can skip the detour.

the proxy pattern

Rewmote methods 101 ﬁ%ﬁ

) . Lon-.- . helper \7\’6{3"“*S
Consider s desr i}:c\:\f ch\’scvv\t,c, w

the
s st 3 proxy for
QCIien’r heap ﬁcsai)?h\v\s- Server heap

\=

. ‘nks
C\'\CV\{" ob\)cd: thinl
s balking to the
Real Servite:

Lhinks the C\.\CV\{? e 0\7) \,S
helper is ’c\\c‘h Jc:\‘\"?)do T Service helper gets the T %{:;\ Covuite £ ;\\’c‘;\\c
that can acualy This is 9oin9 vequest from the elient e ik the ™€
the veal work. 1o be our helper, unpacks it, and °\’5°°Jc cwaly does The
pro%y. talls the method on the fnat 3 "
Real Sevvice. ved W

Walking through the design

Let’s say we want to design a system that allows us to call a local object that forwards each request

to a remote object. How would we design it? We’d need a couple of helper objects that do the
communicating for us. The helpers make it possible for the client to act as though it’s calling a method
on a local object (which it is). The client calls a method on the client helper, as if the client helper were
the actual service. The client helper then takes care of forwarding that request for us.

In other words, the client object thinks it’s calling a method on the remote service, because the client

helper is pretending to be the service object—that is, pretending to be the thing with the method the
client wants to call.

But the client helper isn’t really the remote service. Although the client helper acts like it (because it has
the same method that the service is advertising), the client helper doesn’t have any of the method logic
the client is expecting. Instead, the client helper contacts the server, transfers information about the
method call (e.g., name of the method, arguments, etc.), and waits for a return from the server.

On the server side, the service helper receives the request from the client helper (through a Socket
connection), unpacks the information about the call, and then invokes the real method on the real service
object. So, to the service object, the call is local. It’s coming from the service helper, not a remote client.

The service helper gets the return value from the service, packs it up, and ships it back (over a Socket’s
output stream) to the client helper. The client helper unpacks the information and returns the value to
the client object.

Let’s walk through this to make it clearer...

you are here » 433

remote method invocation

How the method call happens

@ The Client object calls doBigThing() on the client helper object.

D Client heap

doBigThing()

. <
Tient poR”
Cy’énf o‘O\Q’o

==

—_—

Server heap

The Client helper packages up information about the call

(arguments, method name, etc.) and ships it over the
network to the service helper.

Q Client heap

doBigThing()

“client wants to call a method"

=)

. <
< Tient neR”
o . CI
Tient goy?

—

Server heap

The Service helper unpacks the information from the client
helper, finds out which method to call (and on which object),

and invokes the real method on the real service object.

D Client heap

doBigThing() <

“client wants to call a method"

434

Chapter 11

doBigThing()\ i’

=

Server heap

member, Lhis s the
E\i)erfc with the REAL
method logie: The one
that does fhe veal wovk!

The method is invoked on the service object, which returns

some result to the service helper.

Q Client heap

1=

Server heap

The Service helper packages up information returned from the
call and ships it back over the network to the client helper.

Q Client heap

packaged up result

-

Server heap

The Client helper unpackages the returned values and returns
them fo the client object. To the client object, this was all

transparent.

D Client heap

result

. <
Tient neR®
Tient o\

Server heap

ﬁ o

=

=B

p—

the proxy pattern

An BMI Detour

you are here »

435

rmi: the big picture

Java RMI, the Big Picture

Okay, you've got the gist of how remote methods work;
now you just need to understand how to use RMI.

What RMI does for you is build the client and service
helper objects, right down to creating a client helper
object with the same methods as the remote service. The
nice thing about RMI is that you don’t have to write

any of the networking or I/0 code yourself. With your
client, you call remote methods (i.e., the ones the Real
Service has) just like normal method calls on objects
running in the client’s own local JVM.

RMI also provides all the runtime infrastructure to make
it all work, including a lookup service that the client can
use to find and access the remote objects.

An RMI Detour

There is one difference between RMI calls and local
(normal) method calls. Remember that even though to
the client it looks like the method call is local, the client
helper sends the method call across the network. So
there is networking and I/O. And what do we know
about networking and I/0O methods?

They’re risky! They can fail! And so they throw
exceptions all over the place. As a result, the client does
have to acknowledge the risk. We’ll see how in a few

pages.

RMI nomenclature: in RMI, the client helper is a “stub” and the

service helper is a “skeleton.”

This is 3o'm5
1o att as our
\wo%\/!

Now let’s go through all the steps needed to make an object

1=

Server heu

RMT SKELETON

into a service that can accept remote calls and also the steps

needed to allow a client to make remote calls.

You might want to make sure your seat belt is fastened; there

are a lot of steps—but nothing to be too worried about.

436 Chapter 11

the proxy pattern

Making the Remote service

This is an overview of the five steps for making the remote service—in other
words, the steps needed to take an ordinary object and supercharge it so it can
be called by a remote client. We’ll be doing this later to our Gumball Machine.
For now, let’s get the steps down and then we’ll explain each one in detail.

Step one:
Make a Remote Interface

The remote interface defines the methods that
a client can call remotely. It’s what the client
will use as the class type for your service. Both
the Stub and actual service will implement

MyService.java

this.
ice: the tlass
. The Real Sevvite 4
Step two: pomee | & b)) dhe methods that do
Make a Remote Implementation o the veal work. [t implemen
This 1s the class that does the Real Work. It the vemote interrate.

.) MyServicelmpl.java
has the real implementation of the remote y P

methods defined in the remote interface.
It’s the object that the client wants to call
methods on (e.g,, GumballMachine).

Step three:

Start the RMI registry (rmiregistry)

File Edit Window Help Drink
The rmuregistry is like the white pages of a phone $rmiregistry
book. It’s where the client goes to get the proxy

(the client stub/helper object). &—

Step four:

Start the remote service

An RMI Detour

Run this in 3 scyava{c
+,crm'ma\ window-

File Edit Window Help BeMerry
You have to get the service object up and running. Your

service implementation class instantiates an instance
of the service and registers it with the RMI registry.
Registering it makes the service available for clients.

%java MyServiceImpl

The Stub and Skeleton are

101101
10 110 1
0110
001 10
001 01

Stub

9enerated dynamically for You

behind the stenes.

you are here » 437

make a remote interface

Step one: make a Remote interface

An RMI Detour
(@ Extend java.rmi.Remote
Remote is a “marker” interface, which means it has no methods. It has
special meaning for RMI, though, so you must follow this rule. Notice that
we say “extends” here. One interface is allowed to extend another interface. s dells us hat H\cb »
& inteclate s ‘5°“"3 J“Za“cs ’
public interface MyRemote extends Remote ({ 4o support veme ¢

@ Declare that all methods throw RemoteException

The remote interface is the one the client uses as the type for the service. In
other words, the client invokes methods on something that implements the
remote interface. That something is the stub, of course, and since the stub is
doing networking and I/0O, all kinds of bad things can happen. The client has
to acknowledge the risks by handling or declaring the remote exceptions. If

the methods in an interface declare exceptions, any code calling methods on a
reference of that type (the interface type) must handle or declare the exceptions.
a.rmi.

. i {;cr(:atc is in :)av
3. %; & Remote i

import java.rm
[‘\ Evc\ry remote method
eall is considered
“risky." Dccla\ring
RemoteExeeption on
} every method forees the
tlient to pay attention

and acknowledgc that
(® Be sure arguments and return values are primitives or Serializable things might not work.

public interface MyRemote extends Remote ({

public String sayHello () throws RemoteException;

Arguments and return values of a remote method must be either primitive
or Serializable. Think about it. Any argument to a remote method has to

be packaged up and shipped across the network, and that’s done through Cheek out your
Serialization. The same thing applies with return values. If you use primitives, Lavorite Java

Strings, and the majority of types in the API (including arrays and collections), veference if you

you’ll be fine. If you are passing around your own types, just be sure that you need to velfresh your
make your classes implement Serializable. memory on Sevializable.

public String sayHello() throws RemoteException;

R This veturn value is 90nna be shi
server back to the tlient, so it
how args and veturn values get

Pped over the wire from the
must be Sevializable. That’s
Packaged up and sent.

438 Chapter 11

the proxy pattern

Step two: make a Remote implementation

An RMI Detour
(@) Implement the Remote interface

Your service has to implement the remote interface—the one with
the methods your client is going to call.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

public String sayHello() { e\

return "Server says, 'Hey'"; .
ys, Y The tompiler will make sure +ha

) all the methods from the inte

// more code in class In this tase, there’s onl\/ one.

t Y°V'VC iMPlc»«cnfcd
rﬁac: You imFICan{.

}
(@ Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some functionality
related to “being remote.” The simplest way is to extend UnicastRemoteObject
(from the java.rmi.server package) and let that class (your superclass) do the
work for you.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

private static final long serialVersionUID = 1L; <— “"icaszmochcha{; implements

Sevializable, so we need the
(® Write a no-arg constructor that declares RemoteException sevialVersionU[D field.

Your new superclass, UnicastRemoteObject, has one little problem—its
constructor throws RemoteException. The only way to deal with this is to declare
a constructor for your remote implementation, just so that you have a place to
declare RemoteException. Remember, when a class is instantiated, its superclass
constructor 1s always called. If your superclass constructor throws an exception,

you have no choice but to declare that your constructor also throws an except\i{(::.do“,t ave o \m{; an\I{h\ng _la“
the Lons{'xuc‘kor. \{ou Jus‘l', nee e
public MyRemoteImpl () throws RemoteException { } e e e et

tonstruttor throws an exteption.
@ Register the service with the RMI registry

Now that you’ve got a remote service, you have to make it available to remote
clients. You do this by instantiating it and putting it into the RMI registry (which
must be running or this line of code fails). When you register the implementation
object, the RMI system actually puts the stub in the registry, since that’s what the
client really needs. Register your service using the static rebind() method of the

e (that clients tan use

java.rmi.Naming class.

[\te 3 nam 4 .
hE ?:T Z\‘:u'nrisjw'\‘n the rcg\s{'xy) and r-cg(\is%fhrc it
MyRemote service = new MyRemoteImpl () ; ‘{—,: the RMI rcs'\s{'x\f. When you b.m e
g - " 11 .) WV . . t RM| Swa?s {hc scvv‘cc
Naming.rebind ("RemoteHello", service); sevvite ochc , ane e YCS\Sh\I,
} catch(Exception ex) {...} A~ chib and Dot the b i

you are here » 439

start the service

Step three: run rmiregistry
An RMI Detour
@ Bring up a terminal and start the rmiregistry.

Be sure you start it from a directory that has access to
your classes. The simplest way is to start it from your
classes directory.

File Edit Window Help Huh?

$rmiregistry

Step four: start the service

(@) Bring up another terminal and start your service

This might be from a main() method in your remote
implementation class or from a separate launcher class.
In this simple example, we put the starter code in the
implementation class, in a main method that instantiates
the object and registers it with RMI registry.

File Edit Window Help Huh?

%java MyRemoteImpl

therejare no
Dumb Questions

Q,: Why are you showing stubs and skeletons in the diagrams for the RMI code? | thought we got
rid of those way back.

A: You're right; for the skeleton, the RMI runtime can dispatch the client calls directly to the remote
service using reflection, and stubs are generated dynamically using Dynamic Proxy (which you'll learn
more about a bit later in the chapter). The remote object’s stub is a java.lang.reflect.Proxy instance (with an
invocation handler) that is automatically generated to handle all the details of getting the local method calls
by the client to the remote object. But we like to show both the stub and skeleton, because conceptually

it helps you to understand that there is something under the covers that’s making that communication
between the client stub and the remote service happen.

440 Chapter 11

the proxy pattern

Complete code for the server side

An RMI Detour
Let’s take a look at all the code for the server side:
The Remote interface:
; d the Remote
RemoteExeeption and the ™ .
vl tevkate are in the java-rmi package
import java.rmi.*; v~ Your intecface MUST extend)ava.miRcmoﬁc-

public interface MyRemote extends Remote {

All of your vemote methods must

public String sayHello() throws RemoteException;
detlave RCMO‘ECEXCCF‘Eion.

The Remote service (the implementation):

Mnicas{:RCmo‘l:COb\')cC{: is In

import java.rmi.*; L Ehe iava.rmi.secver Vackagc. |
\) V\icas{zRCmo{cOb\')cL{: is the

import java.rmi.server.*; E*{cnd\\ng U obe ob)c et
em

caS\CS‘t way to make 3 v
ublic class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {
P Y mp J mp Y

private static final long serialVersionUID = 1L;

You have to implement all the You MUST implement

public String sayHello() { infcr‘pa(',c mc‘l:hods, o‘c Course. Bu{: o remete ihfcrﬁacd/
return "Server says, 'Hey'"; notice that you do NOT have 4o
, detlare the RemoteException.

public MyRemoteImpl () throws RemoteException { } ‘{ow suyc\rtlass CO,\S{WL{-pr (‘(:or

R UnicastRemoteObject) detlaves an cxcc\?{:ifn,
so YOU must write 3 tonstruttor, because it

means that your consbruttor is ealling visky

public static void main (String[] args) {
tode (its super construetor).

try {
MyRemote service = new MyRemoteImpl () ;

Naming.rebind ("RemoteHello", service);

} catch (Exception ex) { Make the remote obiect “
ex.printStackTrace () ; \ V‘mircsis'ltky using 'Ehc\)s‘l:a:t:h;z; ?’lhd r-(: to the

you are here » 441

how to get the stub object

An RMI Detour
How does the client actually get
the stub object?
And that’s where the RMI registry comes in.
And, you’re right; the client has to get the stub object
(our proxy), because that’s the thing the client will call
methods on. To do that, the client does a “lookup,”
like going to the white pages of a phone book, and
essentially says, “Here’s a name, and I'd like the stub
that goes with that name.”
Let’s take a look at the code we need to look up and
retrieve a stub object.
, . wo\(\LS
Were s \\ow*:f‘)a%&
on the ¢
/@ Code Up Close
Thc tlient always uses the remote
m{:chcat‘.c as the {\/Pc oﬁ the sevvice.
II: £aet, the client never needs to Thi
r::\:{i:hc ac_fual tlass name of your {:ha";: 2;515 be j(;he name
sevviee. lookup(is static method registered puper.
\ﬁ of the Naming ¢lass. €a undev-.

MyRemote service = \[/

(MyRemote) Naming.lookup("rmi://127.0.0.1/RemoteHello") ;
~— N

You have to tast it to the The hozhamc or |P
interface, since the lookup addvess wheve the

method veturns type Object.

servite is running.

(127.0.0. is lotalhost.)

442 Chapter 11

the proxy pattern

An BMI Detour

RMI registry (on server)

tRemote Hello -
gemote ol

How it works...

(@ Client does a lookup on the RMI registry
Naming.lookup("rmi://127.0.0.1/RemoteHello") ;

@ RMI registry returns the stub object

(as the return value of the lookup method) and RMI
deserializes the stub automatically.

Client invokes a method on the stub, as if the
stub IS the real service

you are here » 443

the

Complete code for the client side

Let’s take a look at all the code for the client side:
The Naming elass (for doing the rmiregistry
K lookuy) is in the \)ava.v-mi Packagc.

public class MyRemoteClient {

import java.rmi.*;

public static void main (String[] args) {
new MyRemoteClient () .go() ;

}
: Lyre
. . skey 38
public void go() { |k comes out 0? %\C Y:E‘{-,\n‘ tast
ek, so don e <Y
try { \[)
MyRemote service = (MyRemote) Naming.lookup ("rmi://127.0.0.1/RemoteHello") ;
You need the |P T l\
String s = service.sayHello(); addvess or hostname... _and the name used to
bind /vebind the sevvite
System.out.println(s) ; £ looks Jus{: like a chular old
} catch(Exception ex) { mek-l;hod ealll (EXCCP{; it must
} ex.printStackTrace() ; ac nowledgc the RC”‘°‘£CEXCCP£i9h_)

The things programmers do wrong %’

with RMI are:

gWafch it! EN D

1. Forget to start rmiregistry before starting the remote :
service (when the service is registered using Naming. : O F
rebind(), the rmiregistry must be running!) :

(you won'’t know until runtime; this is not something the
compiler will detect).

2. Forget to make arguments and return types serializable DE TOUR

the proxy pattern

Back to our GumballMachine remote proxy

Okay, now that you have the RMI basics down, you’ve got the tools you need
to implement the gumball machine remote proxy. Let’s take a look at how the
GumballMachine fits into this framework:

K - | i R.c"‘°'l:e ﬁumba”Machinc
b is @ proxy et
ij:c)(;c vemote with 2 Jom
ﬂ—:—_—_(ém\oa\\Mac\\\ne. o A)

This is our

Monitor tode. |£

The
rees 3 provy o Z'hc lkclc{:or\ aceepts the Gumball Mathine is
talk to remote c::;o .tch-ca”S and makes our vemote sevvite;
5um\>a\\ mathines: szc Slinj)cwork on the s a0ing +o ochsc
' a vemote interrate
for the client o
use.

_ @RA\N
‘PQWEWR
Stop and think through how we're going to adapt the gumball machine code to work with

a remote proxy. Feel free to make some notes here about what needs to change and
what’s going to be different than the previous version.

you are here » 445

remote interface for the gumball machine

Getting the GumballMachine ready to
be a remote service

The first step in converting our code to use the remote proxy is to enable the
GumballMachine to service remote requests from clients. In other words,
we’re going to make it into a service. To do that, we need to:

1. Create a remote interface for the GumballMachine. This will provide a set
of methods that can be called remotely.

2. Make sure all the return types in the interface are serializable.
3. Implement the interface in a concrete class.

We’ll start with the remote interface:

Dont (:orge{: 4o import \')ava.mi.*

This is the vemote intevface.

import java.rmi.*;

public interface GumballMachineRemote extends Remote {
public int getCount() throws RemoteException;
public String getLocation() throws RemoteException;
public State getState() throws RemoteException;

} ,\
All vetuwen types need Here ave the methods we've going fo support.
to be primitive or Eath one throws RemoteExeeption.
Sevializable...

We have one return type that isn’t Serializable: the State class. Let’s fix it up...

import java.io.*; - Sevializable is in the java.io package.

public interface State extends Serializable ({)
Then we just extend 4he Sevializable

public void insertQuarter () ; Il/ in{:cr‘(:au (which has no methods in Wb
public void ejectQuarter() ; And now State in all the subtlasses ¢an
public void turnCrank() ; be {,rans(:cwcd over the network.

public void dispense() ;

446 Chapter 11

the proxy pattern

Actually, we’re not done with Serializable yet; we have one problem with State. As you may
remember, each State object maintains a reference to a gumball machine so that it can call the
gumball machine’s methods and change its state. We don’t want the entire gumball machine
serialized and transferred with the State object. There is an easy way to fix this:
In eath im?ltmtnﬁa{jon of State, we add
— the sevialVersionld|D and the fransient

public class NoQuarterState implements State { kc\/wovd £o the 6umb8"M3£MV\C instante

private static final long serialVersionUID = 2L; waizble. The {:ransianc kcywovd tells the

transient GumballMachine gumballMachine; S~ _ JUM not to sevialize this field. No{.-,‘(c:

// all other methods here that this ean be sliE,hJcly dangevous v you
' try to ateess his field once the ob\)cdu

been sevialized and transferved.

We’ve already implemented our GumballMachine, but we need to make sure it can act as a service and
handle requests coming from over the network. To do that, we have to make sure the GumballMachine is
doing everything it needs to implement the GumballMachineRemote interface.

As you’ve already seen in the RMI detour, this is quite simple; all we need to do is add a couple of things...

El/‘\r/]sf, :Lck;c:f ” 'mFor{: e éumba"Machihc is
P \[going +o subtlass the
MnicachRcmo{:cOb\")chc;
import java.rmi.*; Lhis gjves it the abuhfc\/ +o GumballMachine aleo i
E—— act as 3 vemote service (‘ implement the vemote intevface...

public class GumballMachine
extends UnicastRemoteObject implements GumballMachineRemote

{
private static final long serialVersionUID = 2L;
// other instance variables here
public GumballMachine (String location, int numberGumballs) throws RemoteException {
// code here
}
Publi:ti::ﬁ gjﬁ::?nt() { ~-and the COthrquov needs
} ; to throw a remote exteption,
\ because the superclass does.
public State getState() { K That's i‘U Nothin
} return state; J changes heve at all_/
public String getLocation() {
return location;
}
// other methods here
}

you are here » 447

register the gumball service

Registering with the RMI registry...

That completes the gumball machine service. Now we just need to fire it up so
it can receive requests. First, we need to make sure we register it with the RMI
registry so that clients can locate it.

We’re going to add a little code to the test drive that will take care of this for us:
public class GumballMachineTestDrive {

public static void main(String[] args) {
GumballMachineRemote gumballMachine = null;
int count;

if (args.length < 2) {
System.out.println("GumballMachine <name> <inventory>");
System.exit (1) ;
} First we need 4o add a try/eateh block
/ around the qumball instantiation because our
- eonstruttor tan now throw exteptions.
count = Integer.parselnt(args[1]);

gumballMachine = new GumballMachine (args[0], count);
Naming.rebind("//" + args[0] + "/gumballmachine", gumballMachine) ;
} catch (Exception e) {

e.printStackTrace() ;
: K We also add the call to Naming.vebind,
: which publishes the QumballMathine stub
} under the name 3umba||machin&
Let’s go ah his running... TR
e e This gets the RM We've using the oﬁ\ua‘\‘ /\Vl“b)"{"\/
1 N show

o b Ft ey serice v Gurbal machives 12 T

and running,. substitute yowr own

’ heve, oF “lotalhost -

File Edit Window Help Huh?

% rmiregistry

File Edit Window Help Huh?

% java GumballMachineTestDrive austin.mightygumball.com 100

-j\ This 56{‘,5 the GQumballMachine up and vunning
Run this second. and vegisters it with the RM| vegistry.

448 Chapter 11

the proxy pattern

Now for the GumballMonitor client...

Remember the GumballMonitor? We wanted to reuse it without
having to rewrite it to work over a network. Well, we’re pretty much
going to do that, but we do need to make a few changes.

We need 4o import the RMI package because we
impOrt Java.EmL. X7 < jre using the RemoteExteption tlass below.-

Now we've going to rcl\/ on the vemote

ublic class GumballMonitor {
P é’/f intecface vather than the conevete

GumballMachineRemote machine; 6umbal| Mathine elass.

public GumballMonitor (GumballMachineRemote machine) ({

this.machine = machine;

public void report() {

try {
System.out.println("Gumball Machine: " + machine.getLocation())

System.out.println("Current inventory: " + machine.getCount() + " gumballs");

System.out.println("Current state: " + machine.getState());

} catch (RemoteException e) {

O oS e () £ We also need 1o ¢ateh any vemote exceptions

that might happen as we try to invoke methods
that are ultimately happening over the network.

Joe was right;
this is working out
quite nicely!

you are here » 449

test drive the monitor

Writing the Monitor test drive

Now we’ve got all the pieces we need. We just need to write some
code so the GEO can monitor a bunch of gumball machines:

Heve's the monitor test drive. The
CEO is going 4o vun this!

import java.rmi.*; W crc < all the \oCB{Z‘O"‘S

wC e 60"\5 “ID mont
We create an arvay
of lotations, one tor

eath mathine.
public static void main(String[] args) {

String[] location = {"rmi://santafe.mightygumball.com/gumballmachine",
"rmi://boulder.mightygumball.com/gumballmachine",
"rmi://austin.mightygumball.com/gumballmachine"};

public class GumballMonitorTestDrive {

GumballMonitor[] monitor = new GumballMonitor[location.length];

We also eveate an
for (int i=0; i < location.length; i++) { avray of monitors.

try {
GumballMachineRemote machine =
(GumballMachineRemote) Naming.lookup (location[i]) ;
monitor[i] = new GumballMonitor (machine) ;
System.out.println (monitor[i]) ;
} catch (Exception e) {

e.printStackTrace () ; Now we need to get a proxy
} to eath vemote mathine.

for (int i=0; i < monitor.length; i++) ({

monitor[i] .report() ;

} Then we itevate through eath
} mathine and Vrm{: out its ‘rc"or{',

450 Chapter 11

the proxy pattern

p Cade Up Close

This veturns a proxy 4o the remote Remember, Naming.looku?() is a
éumball M)athinc (or throws an exception static method in the RM| package
if one ean't be lotated). that takes a lotation and service

try { name and looks it up in {:hc
; . rmiregis{‘x\/ at that loeation.
GumballMachineRemote machine =

(GumballMachineRemote) Naming.lookup (location[i]) ;

monitor[i] = new GumballMonitor (machine) ;

} catch (Exception e) { Z‘Ont,c we get 3 pro¥y to the vemote

ba\\Moni{',ov
Tty mathine, we (xca{:c a.ncw éum Lo,
} and pass it the mathine +o mont

Another demo for the CEQ of Mighty Guwball...

Okay, it’s time to put all this work together and give another demo. First let’s make
sure a few gumball machines are running the new code:

On eath mathine, vun vmircgisjcv'\/ in ..and then vun the GumballMachine, 9iving it

the backgraund or from 3 separate a lotation and an initial gumball count.
terminal window...

File Edit Window Help Huh?
; % rmiregistry &

% java GumballMachineTestDrive santafe.mightygumball.com 100

File Edit Window Help Huh?

o

% rmiregistry &

% java GumballMachineTestDrive boulder.mightygumball.com 100

File Edit Window Help Huh?

()

% rmiregistry &

java GumballMachineTestDrive austin.mightygumball.com 250

Popular machine/ _Jﬂ\

you are here » 451

demoing the monitor

And now let’s put the monitor in the hands of the CEQ.
Hopetully, this time he’ll love it:

File Edit Window Help GumballsAndBeyond

% java GumballMonitorTestDrive
Gumball Machine: santafe.mightygumball.com

Current inventory: 99 gumballs h
Current state: waiting for quarter s il Hlarels

over eath remote
. . machine and ¢alls
Gumball Machine: boulder.mightygumball.com its getLotation),

Current inventory: 44 gumballs getCount(), and
getState() methods.

Current state: waiting for turn of crank

Gumball Machine: austin.mightygumball.com
Current inventory: 187 gumballs

Current state: waiting for quarter o L .
This is amazing; it's going to
revolutionize my business and

blow away the competition!

%

By involcing methods on the proxy, we make
a remote call across the wire, and get hack
a String, an integer, and a State object.
Because we are using a proxy, the Gumball
Monitor doesn’t know, or care, that calls
are remote (other than Laving to worry

about remote exceptions).

452 Chapter 11

the proxy pattern

This worked great! But

I want to make sure I
understand exactly what's
going on...

Behind
the Scenes

The CEO runs the monitor, which first grabs the proxies to the remote
gumball machines and then calls getState() on each one (along with
getCount() and getLocation()).

Remote GumballMach;
with 3 JVM Machi ne

you are here » 453

proxy behind the scenes

© getState() is called on the proxy, which forwards the call to the remote
service. The skeleton receives the request and then forwards it to the
GumballMachine.

getState()

e

&
Skeleto® St bal N\oa(\

GumballMachine returns the state to the skeleton, which serializes it and
transfers it back over the wire o the proxy. The proxy deserializes it and
returns it as an object to the monitor.

g,

Serializéd
Z State§

()

Likewise, the 6umba“Mathinc
.) I,
Thz MEV:R’;‘::?“:’ :};;ng:?oif{;v im?ltmch‘[‘,s another ihfcr‘(:ac.c AV.'d-
::mc:{:c c%tcy‘{:ions. [t also uses the ”‘a‘/s{{?h'f‘: abvc{:m‘tc exteption in its
Gomball achineRemote interface vather porstructon bt obher than Tt the
4han a tonevete iM\’lCMCh{:a{:iOV\- bode hasn't Ehanged.

We also have a small bit of tode to vegister and locate stubs using the
RM| vegstry. But no matter what, if we were writing something to

work over the internet, we'd need some kind of lotator sevvice.

454 Chapter 11

The Proxy Pattern defined

We’ve already put a lot of pages behind us in this chapter; as you

can see, explaining the Remote Proxy is quite involved. Despite that,

you’ll see that the definition and class diagram for the Proxy Pattern
1s actually fairly straightforward. Note that the Remote Proxy is one
implementation of the general Proxy Pattern; there are actually

quite a few variations of the pattern, and we’ll talk about them later.

For now, let’s get the details of the general pattern down.

Here’s the Proxy Pattern definition:

The Proxy Pattern provides a surrogate or
placeholder for another object to control access to it.

Well, we’ve seen how the Proxy Pattern provides a surrogate or
placecholder for another object. We've also described the proxy as
a “representative” for another object.

But what about a proxy controlling access? That sounds a little
strange. No worries. In the case of the gumball machine, just think
of the proxy controlling access to the remote object. The proxy
needed to control access because our client, the monitor, didn’t
know how to talk to a remote object. So in some sense the remote
proxy controlled access so that it could handle the network details
for us. As we just discussed, there are many variations of the Proxy
Pattern, and the variations typically revolve around the way the
proxy “controls access.” We’re going to talk more about this later,
but for now here are a few ways proxies control access:

B As we know, a remote proxy controls access to a remote
object.

® A virtual proxy controls access to a resource that is expensive
to create.

B A protection proxy controls access to a resource based on
access rights.

Now that you've got the gist of the general pattern, check out the
class diagram...

proxy

Use the Proxy

Pattern to create a
representative olaject
that controls access

to another oLject,
which may bhe remote,
expensive to create, or
in need of securing.

455

the proxy pattern defined

Both the Prony and the

f RealSubjeet imp CmCV\{’,. the
Sub ett m‘hcr(:at,c This

«?Lel;fiaeccet» a\\ows any tlient to K‘a{
request() the Y‘ro‘ﬁ‘{ {AS{Z like the
Rea\SubJec

ReaISu’bject & Proxy i

request() l request() l é\
keeps 3
The RealSubt eck i ’\/ The Prony Lo the

vc(:cmncc

.z:;illz;itc °b E et The Pro%\/ o‘(:‘{‘,cv\ instantiates g\,\o\')cc’c, so it tan
of the rcalm:,:rk or handles the eveation of QorwavdSYCf\“:JC

\ . he Subye
the Pro*)’ tontrols the RcalSuchch {:h:(’“ cncccs\laY‘f

actess to it.

Let’s step through the diagram...

First we have a Subject, which provides an interface for the RealSubject and the
Proxy. Because it implements the same interface as the RealSubject, the Proxy can
be substituted for the RealSubject anywhere it occurs.

The RealSubject is the object that does the real work. It’s the object that the Proxy
represents and controls access to.

The Proxy holds a reference to the RealSubject. In some cases, the Proxy may be
responsible for creating and destroying the RealSubject. Clients interact with the
RealSubject through the Proxy. Because the Proxy and RealSubject implement the
same interface (Subject), the Proxy can be substituted anywhere the Subject can be
used. The Proxy also controls access to the RealSubject; this control may be needed
if the Subject is running on a remote machine, if the Subject is expensive to create
in some way, or if access to the subject needs to be protected in some way.

Now that you understand the general pattern, let’s look at some other ways of using
proxy beyond the Remote Proxy...

456 Chapter 11

the proxy pattern

Get ready for the Virtval Proxy

Okay, so far you'’ve seen the definition of the Proxy Pattern and you’ve taken a look
at one specific example: the Remote Proxy. Now we’re going to take a look at a different
type of proxy, the Virtual Proxy. As you’ll discover, the Proxy Pattern can manifest
itself in many forms, yet all the forms follow roughly the general proxy design. Why
so many forms? Because the Proxy Pattern can be applied to a lot of different use
cases. Let’s check out the Virtual Proxy and compare it to the Remote Proxy:

Rewmote Proxy

With the Remote Proxy, the proxy
acts as a local representative

for an object that lives ina
different JVM. A method call on
the proxy results in the call being
transferred over the wire and
invoked remotely, and the result
being returned back to the proxy
and then to the Client.

We know this diagram
FYC‘H:\/ well b\/ now...

ate” ob)cc{:.

BIS “C*YC“S.‘VC ‘{’p tre

The proxy treates

Virtval Proxy the RealSubject

The Virtual Proxy acts as a 1est) when it’s needed.
representative for an object that red

may be expensive to create. The O"’

Virtual Proxy often defers the

creation of the object until it Proxy o
is needed; the Virtual Proxy Cliext 1 Req|ouod

also acts as a surrogate for

the object before and while it is
being created. After that, the proxy
delegates requests directly to the
RealSubject.

The proxy may handle the vequest, or if
the RealSubject has been treated, delegate
the ¢alls to the RealSubject.

you are here » 457

image proxy

Displaying Album covers

Let’s say you want to write an application that displays your favorite album covers.
You might create a menu of the album titles and then retrieve the images from an
online service like Amazon.com. If you’re using Swing, you might create an Icon
and ask it to load the image from the network. The only problem is, depending
on the network load and the bandwidth of your connection, retrieving an album
cover might take a little time, so your application should display something while
you’re waiting for the image to load. We also don’t want to hang up the entire
application while it’s waiting on the image. Once the image is loaded, the message
should go away and you should see the image.

An easy way to achieve this is through a virtual proxy. The virtual proxy can stand
in place of the icon, manage the background loading, and before the image 1s
fully retrieved from the network, display “Loading album cover, please wait...”.
Once the image 1s loaded, the proxy delegates the display to the Icon.

Album Cover Viewer

ChOOSC the a'bum Cover O‘F Buddha Bar
Selected Ambient Works, Vol. 2

YOVY 'Iklhg hCV‘C. Northern Exposure

o0 e Album Cover Viewer
Favorite Albums

Loading album cover, please wait... /_\ Wh'lc ‘bhc a,bhm COVCY‘ iS 'Oadiha'

the proxy displays a message.

eoe Album Cover Viewer
Favorite Albums

ENIGMAF

s
When the aloum cover ! /_‘a

Loy \oaded: .‘c\nc proty
display® Yhe Wm0

458

Pesigning the Album Cover Virtual Proxy

Before writing the code for the Album Cover Viewer, let’s look at the class diagram.
You'll see this looks just like our Remote Proxy class diagram, but here the proxy is
used to hide an object that is expensive to create (because we need to retrieve the data
for the Icon over the network) as opposed to an object that actually lives somewhere
else on the network.

This is Javax.swing.lmagclt‘,on,

This is the Swin5

leon interfate used >
to display images in a

user interface.

<<interface>>
Icon

getlconWidth()
getlconHeight()

.'N

Imagelcon

proxy

getlconWidth()
/ getlconHeight()
painticon()

paintlcon()
74
- subject -
ImageProxy
getlconWidth()
getlconHeight()
painticon()

3 ¢tlass that displays an [mage.

How ImageProxy is going to work:

(2]

While the bytes of the image are being retrieved,
ImageProxy displays “Loading album cover, please
wait...”.

This is our proxy, which Fiest
displays a message and then, when
the image is loaded, delegates +o
[mageleon to display the image.

ImageProxy first creates an Imagelcon and starts
loading it from a network URL.

When the image is fully loaded, ImageProxy delegates
all method calls to the image icon, including
painticon(), geticonWidth(), and getilconHeight().

If the user requests a new image, we’ll create a new
proxy and start the process over.

459

the image proxy

The |ma5cPro~/~\[

8 L]
Writing the Image Proxy implements the [con
) Qace- Icon

class ImageProxy implements Icon { nter geticonWidth()
volatile ImageIcon imageIcon; getlconHeight()
final URL imageURL; paintlcon()
Thread retrievalThread;
boolean retrieving = false; The imagelcon is the REAL iton that we

460

eventually want to display when it's loaded.
public ImageProxy (URL url) { imageURL = url; }

PUbh:': int ge;Icon?idthJ(_;_ { We pass the URL of the image into
. (;::ginc::lagglzloln)gei{:IconWidth() . the tonsbruttor. This 'lls the image we
} else { ’ ’ need to dis\?la\/ onte it's loadcd,l
return 800;
} } SN We veturn a default width and height
public int getIconHeight() { uwﬁl{hcimagdC0h35103dCd5£hﬂ\wc
if (imageIcon != null) { Z 4uen it over to the imageleon.
return imageIcon.getIconHeight() ;
} else {
return 600;
}
' & magelton is used by two diffevent
i - . Lhreads, so along with making the variable
synclélliz:l::cai Ziz:nscjtiﬁg:izzz fImageIcon imageIcon) { volatile (ko YYO&L{_’ veads), we use a~
) o seteon onchronized sekber (b protect writes)
public void paintIcon(final Component c, Graphics g, int x, int y) {
if (imagelIcon !'= null) {
imageIcon.paintlIcon(c, g, x, y);
} else {
g.drawString("Loading album cover, please wait...", x+300, y+190);

if ('retrieving) {
retrieving = true;

retrievalThread = new Thread(new Runnable() {
public void run() {
try {
setImageIcon (new ImageIcon (imageURL, "Album Cover")) ;
c.repaint () ;

} catch (Exception e) { Heve's wheve things get intevesting.
e.printStackTrace() ; This ¢tode pain£s the iton on the

' streen (by delegating to image|eon).
! However, if we don't have a (:ull\/

)

imaaeleon, then we treate
retrievalThread.start() ; treated imageleon,

one. Let’s look at this up tlose on the
} next page...

Chapter 11

the proxy pattern

ﬁ Code Up Clsse

This method is ealled when it's time to paint the icon on the streen.

public void paintIcon(final Component c, Graphics g, int x, int y) {
if (imagelIcon != null) {
[£ we've got an icon alveady, we go
imageIcon.paintIcon(c, g, x, y); & ahead and tell it to ?ain‘{: itself.

} else {
g.drawString("Loading album cover, please wait...", x+300, y+190);
if ('retrieving) { K} O'U\ekwisc we
display the
| . »
retrieving = true; °ad"\3 message.

retrievalThread = new Thread(new Runnable () {
public void run() {
try {
setImageIcon (new ImageIcon (imageURL, "Album Cover")) ;
c.repaint() ;
} catch (Exception e) {
e.printStackTrace() ;
P‘L ‘Lon '\m3‘5€' No{'.,c ‘E\\a{:
. \ONOUS*

d
" Bere's Wheve ' ik leonlmage S syn | he image
Lhe mage \oading :Qo L vc‘hw\v‘r\ w\{:a\

retrievalThread.start() ; \-,,\agc\"«"‘;‘. That doesn toge v m:ase d'\SY\a\’Cd’
s

you are here » 461

image proxy up close

Code Way Up Close

't alveady trying o vetrieve the image...

|€ we aven

dhen it's time o start vetrieving it (iy.\ case You
weve wondering, only one thread ealls yam{:(,: S{f ;lc
should be okay here in Lerms of thread satety)-
if (!'retrieving) ({
retrieving = true; / We dont want to hang up {‘;hc
/—— entive user interfate, so weve
oing to use another thread to
retrievalThread = new Thread(new Runnable () { vc{vkve{hcimagb

public void run() {
try {

setImageIcon (new ImageIcon (imageURL, "Album Cover")) ;

c.repaint() ; N Inowr thread we
} catch (Exception e) { instantiate the
leon object. |¢s

e.printStackTrace() ;

) When we have the image, tonstruetor will not
we tell Swing that we f‘f“"" until the
} need to be vepainted. Image is loaded.

})

retrievalThread.start() ;

So, the next time the display is painted after the [magelcon is instantiated,
the paintleon() method will paint the image, not the loading message.

462

Chapter 11

the proxy pattern

- SGR Design Puzzle

The ImageProxy class appears to have two states that are controlled
by conditional statements. Can you think of another pattern that might
clean up this code? How would you redesign ImageProxy?

class ImageProxy implements Icon {

// instance variables & constructor here

public int getIconWidth () {

if (imageIcon '= null) {
return imageIcon.getIconWidth() ; Two states
} else {

return 800;

public int getIconHeight() ({

if (imageIcon '= null) {

return imageIcon.getIconHeight() ; Two states
} else {

return 600;

public void paintIcon(final Component c, Graphics g, int x, int y) {

if (imageIcon '= null) {
imageIcon.paintIcon(c, g, %X, V)’
g P g y Two skates
} else {
g.drawString("Loading album cover, please wait...", x+300, y+190);

// more code here

you are here » 463

test drive the image proxy

Testing the Album Cover Viewer

Okay, it’s time to test out this fancy new virtual proxy. Behind the scenes
22 DA PROPPR we’ve been baking up a new ImageProxyTestDrive that sets up the window,
=\ Reapy Bake

creates a frame, installs the menus, and creates our proxy. We don’t go

Il Cove through all that code in gory detail here, but you can always grab the
o source code and have a look, or check it out at the end of the chapter
where we list all the source code for the Virtual Proxy.

Here’s a partial view of the test drive code:

public class ImageProxyTestDrive ({
ImageComponent imageComponent;
public static void main (String[] args) throws Exception ({

ImageProxyTestDrive testDrive = new ImageProxyTestDrive() ;

}
public ImageProxyTestDrive () throws Exception { HCV'C~ we treate an image proxy and
set it to an initial URL. Whenever
// set up frame and menus You Ch°°sf a selection from the Album
meny, You I 56{: a new image proxy.
Icon icon = new ImageProxy(initialURL) ;
imageComponent = new ImageComponent (icon) ; 6\ Next we wrap our proxy ina
frame.getContentPane () .add (imageComponent) ; (,om\?oncn‘(‘, so it tan be added +o
} ’X the frame. The component will
) .
’ Finally we add the proxy to the {"a_k‘ Care °£. ﬂ“ proxys width,
frame so it can be displayed. height, and similar details.

Now let’s run the test drive:

File Edit Window Help JustSomeOfTheAlbumsThatGotUsThroughThisBook

java ImageProxyTestDrive

Rum\ing lmach\roX\/Tcs{:Drivc — —
should give you a window like his. rorTTe

aphex twin

Things to try...

© Use the menu to load different album covers; watch the
proxy display “loading” until the image has arrived.

© Resize the window as the “loading” message is displayed.

Notice that the proxy is handling the loading without
hanging up the Swing window.

O Add your own favorite albums to ImageProxyTestDrive.

464 Chapter 11

the proxy pattern

What did we do?

Behind
We created an ImageProxy class for the display. The
paintIcon() method is called and ImageProxy fires off a ﬂle Scenes
thread to retrieve the image and create the ImageIcon.

3
a cPY'O*‘I (xca‘:c.s
— ‘{\\v‘iad to \“sba“‘t\a‘tCéhc
- aintIcon() |magc|fa°"’ ‘“"‘-‘t’y‘ star Some image
ot P vebrieving the image: server on
o) the internet
o get image
Sy
U Imcqée Magerco®
displays loading A
message
image rngjjgygd
=
At some point the image is returned and % \ -
the ImageIcon fully instantiated.
lmageICC’(\
e After the ImageIcon is created, the next time paintIcon()

is called, the proxy delegates to the ImageIcon.

aintIcon
pa! 0 paintIcon()

0
iy mcxge? ‘/\’hage];co‘\

displays the real image

you are here » 465

q&a about the

Q; The Remote Proxy and Virtual
Proxy seem so different to me; are
they really ONE pattern?

A: You'll find a lot of variants of the
Proxy Pattern in the real world; what
they all have in common is that they
intercept a method invocation that the
client is making on the subject. This
level of indirection allows us to do
many things, including dispatching
requests to a remote subject, providing
a representative for an expensive
object as it is created, or, as you'll see,
providing some level of protection that
can determine which clients should be
calling which methods. That'’s just the
beginning; the general Proxy Pattern
can be applied in many different ways,
and we'll cover some of the other ways
at the end of the chapter.

Q: ImageProxy seems just like

a Decorator to me. | mean, we are
basically wrapping one object with
another and then delegating the calls
to the Imagelcon. What am | missing?

A: Sometimes Proxy and Decorator
look very similar, but their purposes are
different: a decorator adds behavior to
a class, while a proxy controls access
to it. You might ask, “Isn’t the loading
message adding behavior?” In some
ways it is; however, more importantly,
the ImageProxy is controlling access
to an Imagelcon. How does it control
access? Well, think about it this way:
the proxy is decoupling the client from
the Imagelcon. If they were coupled

466

therejare no
Dumb Questions

the client would have to wait until each
image is retrieved before it could paint
its entire interface. The proxy controls
access to the Imagelcon so that before
itis fully created, the proxy provides
another onscreen representation. Once
the Imagelcon is created, the proxy
allows access.

Q: How do | make clients use the
Proxy rather than the Real Subject?

A: Good question. One common
technique is to provide a factory that
instantiates and returns the subject.
Because this happens in a factory
method, we can then wrap the subject
with a proxy before returning it. The
client never knows or cares that it's
using a proxy instead of the real thing.

Q: I noticed in the ImageProxy
example, you always create a new
Imagelcon to get the image, even if
the image has already been retrieved.
Could you implement something
similar to the ImageProxy that
caches past retrievals?

A: You are talking about a
specialized form of a Virtual Proxy

called a Caching Proxy. A caching proxy
maintains a cache of previously created
objects and when a request is made it
returns a cached object, if possible.

We're going to look at this and at
several other variants of the Proxy
Pattern at the end of the chapter.

Q; | see how Decorator and Proxy
relate, but what about Adapter? An
adapter seems very similar as well.

A: Both Proxy and Adapter sit in front
of other objects and forward requests to
them. Remember that Adapter changes
the interface of the objects it adapts,
while Proxy implements the same
interface.

There is one additional similarity that
relates to the Protection Proxy. A
Protection Proxy may allow or disallow
a client access to particular methods

in an object based on the role of the
client. In this way a Protection Proxy
may only provide a partial interface to

a client, which is quite similar to some
Adapters. We are going to take a look at
Protection Proxy in a few pages.

Fireside Chats

Proxy:

Hello, Decorator. I presume you’re here because
people sometimes get us confused?

Me copying your ideas? Please. I control access to
objects. You just decorate them. My job 1is so much
more important than yours it’s just not even funny.

Fine, so maybe you’re not entirely frivolous...but I
still don’t get why you think I’'m copying all your
ideas. I'm all about representing my subjects, not
decorating them.

I don’t think you get it, Decorator. I stand in for
my Subjects; I don’t just add behavior. Clients use
me as a surrogate of a Real Subject, because I can
protect them from unwanted access, or keep their
GUIs from hanging up while they’re waiting for big
objects to load, or hide the fact that their Subjects
are running on remote machines. I'd say that’s a
very different intent from yours!

the proxy pattern

Tonight’s talk: Proxy and Decorator get intentional,

Decorator:

Well, I think the reason people get us confused is
that you go around pretending to be an entirely
different pattern, when in fact, you’re just Decorator
in disguise. I really don’t think you should be
copying all my ideas.

“Just” decorate? You think decorating is some
frivolous, unimportant pattern? Let me tell you
buddy, I add behavior. That’s the most important
thing about objects—what they do!

You can call it “representation” but if it looks like

a duck and walks like a duck... I mean, just look at
your Virtual Proxy; it’s just another way of adding
behavior to do something while some big expensive
object 1s loading, and your Remote Proxy is a way
of talking to remote objects so your clients don’t
have to bother with that themselves. It’s all about
behavior, just like I said.

Call it what you want. I implement the same
interface as the objects I wrap; so do you.

you are here » 467

fireside chats: proxy and decorator

Proxy:

Okay, let’s review that statement. You wrap an
object. While sometimes we informally say a proxy
wraps its Subject, that’s not really an accurate term.

Think about a remote proxy...what object am
I wrapping? The object I'm representing and
controlling access to lives on another machine!
Let’s see you do that.

Sure, okay, take a virtual proxy...think about the
album viewer example. When the client first uses
me as a proxy the subject doesn’t even exist! So
what am I wrapping there?

I never knew decorators were so dumb! Of course

I sometimes create objects. How do you think a
virtual proxy gets its subject?! Okay, you just pointed
out a big difference between us: we both know
decorators only add window dressing; they never get
to instantiate anything,

Hey, after this conversation I'm convinced you’re
just a dumb proxy!

Very seldom will you ever see a proxy get into
wrapping a subject multiple times; in fact, if you’re
wrapping something 10 times, you better go back
reexamine your design.

468 Chapter 11

Decorator:

Oh yeah? Why not?

Okay, but we all know remote proxies are kinda
weird. Got a second example? I doubt it.

Uh huh, and the next thing you’ll be saying is that
you actually get to create objects.

Oh yeah? Instantiate this!

Dumb proxy? I'd like to see you recursively wrap
an object with 10 decorators and keep your head
straight at the same time.

Just like a proxy, acting all real when in fact you just
stand in for the objects doing the real work. You
know, I actually feel sorry for you.

the proxy pattern

Using the Java APl’s Proxy to create a
protection proxy

Java’s got its own proxy support right in the java.lang.reflect package. With this package,
Java lets you create a proxy class on the fly that implements one or more interfaces and
forwards method invocations to a class that you specify. Because the actual proxy class is
created at runtime, we refer to this Java technology as a dynamic proxy.

We’re going to use Java’s dynamic proxy to create our next proxy implementation (a
protection proxy), but before we do that, let’s quickly look at a class diagram that shows
how dynamic proxies are put together. Like most things in the real world, it differs
slightly from the classic definition of the pattern:

<<interface>> <<interface>>
Subject InvocationHandler
request) l invoke()
AN 4 Z. i
7 : e The P‘ro‘ﬁ\[now COV\S\S{',S
) o of tuo tlasses
RealSubject Proxy InvocationHandler

request() request()

invoke()

The Pvrox\/ is generated

:Z:J::Zi:cng:;zlcc: s You supply the [nvotationttandler;, which gets passed
J

i he Proxy.-
i Il method calls that ave invoked on t
e %hc ICnVoj,a{ionHandlcv tontrols attess to the

methods of the RcalSub\')chc.

Because Java creates the Proxy class_for you, you need a way to tell the Proxy class what
to do. You can’t put that code into the Proxy class like we did before, because you’re not
implementing one directly. So, if you can’t put this code in the Proxy class, where do
you put it? In an InvocationHandler. The job of the InvocationHandler is to respond to
any method calls on the proxy. Think of the InvocationHandler as the object the Proxy
asks to do all the real work after it has received the method calls.

Okay, let’s step through how to use the dynamic proxy...

you are here » 469

protection proxy

Geeky Matchmaking in Objectville

Every town needs a matchmaking service, right? You've risen to the task and
implemented a dating service for Objectville. You've also tried to be innovative
by including a “Geek rating” feature where participants can rate each other’s
geekiness (a good thing)—you figure this keeps your customers engaged and

looking through possible matches; it also makes things a lot more fun. ﬁEEKmatcnmaking

Your service revolves around a Person interface that allows you to set and get
information about a person:

- well
This 18 the 'm{:cv-cacc, w{;on
tbc’c, Lo the mplemen
wn 'us{, a seb- H.cre -
n et ; |
\5 about the Peioh,;"f:::a{;,oh

public interface Person ({

String getName () ;
String getGender() ;
String getInterests();
int getGeekRating() ;

void setName (String name) ;
void setGender (String gender) ;

void setInterests(String interests);

void setGeekRating(int rating) ; é
: /\ c{écc\tRa’c'mSO takes ar imbege”
° ; he running
We can also set the same and add}‘t g\: pevson-
information {ihv'ough the average O

vespective method calls.

Now let’s check out the implementation...

470 Chapter 11

the proxy pattern

The Person implementation
[The Personlmpl implements the Pevson interface.

public class PersonImpl implements Person {
String name;
String gender;
String interests; —— The instance vaviables.
int rating;
int ratingCount = 0;

public String getName () {
return name;

All the getter methods; they each veturn
B g geroenden the appropriate instante variable...
return gender;

public String getInterests() {
return interests;

} extept for aetGeekRating0),
whith tomputes the average

B e e | of the vatings by dividing the
e meinaco 07 3tings by the vatingCount:

return (rating/ratingCount) ;

public void setName (String name) {
this.name = name; And heve's all the setter

} / methods, which set the

torresponding instance variable.
public void setGender (String gender) {

this.gender = gender;

public void setInterests(String interests) ({
this.interests = interests;

}
. Finall 4
public void setGeekRating(int rating) { . Y The setGeekRat; 0
this.rating += rating; ;ZZ"'ZC'\‘&S the total razsaac::%(’d d
)] s th . T an
} ratingCount++; ¢ "ajc"‘f) to the Funning {ot;).

you are here » 471

person needs protecting

T wasn't very successful finding dates.
Then T noticed someone had changed my
interests. I also noticed that a lot of
people are bumping up their Geek scores
by giving themselves high ratings. You
shouldn't be able to change someone else's
interests or give yourself a rating!

While we suspect other factors may be keeping Elroy from getting
dates, he’s right: you shouldn’t be able to vote for yourself or to
change another customer’s data. The way Person 1s defined, any client
can call any of the methods.

This is a perfect example of where we might be able to use a

Protection Proxy. What’s a Protection Proxy? It’s a proxy that controls = T
access to an object based on access rights. For instance, if we had an
employee object, a Protection Proxy might allow the employee to call ’Q

certain methods on the object, a manager to call additional methods Elro\/
(like setSalary()), and a human resources employee to call any method
on the object.

In our dating service we want to make sure that a customer can set
his own information while preventing others from altering it. We also
want to allow just the opposite with the Geek ratings: we want the
other customers to be able to set the rating, but not that particular
customer. We also have a number of getter methods in Person, and
because none of these return private information, any customer
should be able to call them.

472 Chapter 11

the proxy pattern

Five-minute drama: protecting subjects

The internet bubble seems a distant memory: those were the days
when all you needed to do to find a better, higher-paying job was

to walk across the street. Even agents for software developers
were in vogue...

Subject el

; ’
y e

I'd like o make an
offer, can we get her on
the phone?

She's tied up...uh...
in a meeting right now,
what did you have in
mind?

14 cevtar
Jane DO{ZCOV" \ ’

Come on.
You're wasting our time
here! Not a chance! Come
back later with a better
offer.

We think we can
meet her current
salary plus 15%.

Py
&

you are here » 473

big picture of proxy

Big Picture: creating a Pynawmic Proxy
for the Person

We have a couple of problems to fix: customers shouldn’t be changing their
own Geek rating and customers shouldn’t be able to change other customers’
personal information. To fix these problems we’re going to create two proxies:
one for accessing your own Person object and one for accessing another

customer’s Person object. That way, the proxies can control what requests can ber this diagram
. . is di
be made in each circumstance. Remember)

from a few pages back...

To create these proxies we’re going to use the Java

APT’s dynamic proxy that you saw a few pages

<<interface>> [<<interface>> |
back. Java will create two proxies for us; all we requestos"b’“t M
need to do is supply the handlers that know what invoke()
to do when a method is invoked on the proxy. Q_V *

St e p one: ReaISu.l.)ject Pro;y Invocati'onHandIer
Create two InvocationHandlers. request) request() invoke)

InvocationHandlers implement the behavior

of the proxy. As you’ll see, Java will take care
of creating the actual proxy class and object;

we just need to supply a handler that knows We need two

what to do when a method is called on it. of these.
Step two: We tveate the

Worite the code that creates the proxy itself at

dynamic proxies. vuntime.

We need to write a little bit of code to
generate the proxy class and instantiate it.
We’ll step through this code in just a bit.

Proxy > OwnerlnvocationHandler
Step three: request() invoke()
Wrap any Person object with the
appropriate proxy. B
When we need to use a Person object, either it’s When a tustomer is viewing his own bean
the object of the customer himself (in that case,
we’ll call him the “owner”), or it’s another user When a tustomer is viewing someone else’s bean
of the service that the customer is checking out 4
(in that case we’ll call him “non-owner”). -
Proxy » NonOwnerlnvocationHandler

In either case, we create the appropriate proxy request()

invoke()
for the Person.

474 Chapter 11

the proxy pattern

Step one: creating Invocation Handlers

We know we need to write two invocation handlers, one for the owner and one for
the non-owner. But what are invocation handlers? Here’s the way to think about
them: when a method call is made on the proxy, the proxy forwards that call to
your invocation handler, but not by calling the invocation handler’s corresponding
method. So, what does it call? Have a look at the InvocationHandler interface:

<<interface>>
InvocationHandler

invoke()

There’s only one method, invoke(), and no matter what methods get called

on the proxy, the invoke() method is what gets called on the handler. Let’s see
how this works:

Let's say the setGeekRating()
method is called on the proxy.

-

i @ The proxy then
proxy.setGeekRating (9) ; turns around and

calls invoke() on the

w ﬁ InvocationHandler.

invoke (Object proxy, Method method, Object[] args) 6_—)

"

The Method ¢lass, part of the

Heve's how veflection AP, Lells us what

@ The handler decides we invoke the method was talled on the proxy

what it should do method on the via its getName() method.

with the request RealSubject

and possibly

forwards it on to

the RealSubject. —= return method.invoke (person, args);

How does the /\

handler decide? T 7

We'll find out next. Heve we invoke the .with the original

ohl now weé
invch it on the argumcn{-,s,

RealSubject -

oviginal method that was

called on the proxy. This

ob)cé{: was passed 1o us in
the invoke eall.

you are here » 475

creating an invocation handler

Creating Invocation Handlers, continved...

When invoke() is called by the proxy, how do you know what to do with the call?
Typically, you’ll examine the method that was called on the proxy and make
decisions based on the method’s name and possibly its arguments. Let’s implement
OwnerlnvocationHandler to see how this works:

[nvotationttandler is part of the ")ava.lang.rc(:lcc%

) . All invotation ha
package, so we need to import '{"2 implement -l::c relers
InvotationHandler interface.
import java.lang.reflect.*; \\/

We've Passed the
public class OwnerInvocationHandler implements InvocationHandler { RCJISuBJccf in +h
e

Person person; tonstruttor and we

o keep a veference 4o it
public OwnerInvocationHandler (Person person) {

this.person = person; Heve's the invoke()

) / method that gets

called every time a
. method is invoked
public Object invoke (Object proxy, Method method, Object[] args)
on the proxy.

throws IllegalAccessException {

[the method is a getter,

try { we 90 ahead and invoke it
if (method.getName () .startsWith("get")) { on the veal sub\’)cc{;

return method.invoke (person, args);

} else if (method.getName () .equals ("setGeekRating")) {

throw new IllegalAccessException() ;
; . Othevwise, if it is
} else if (method.getName () .startsWith("set")) {

. the setGeekRating()
return method.invoke (person, args); method we disallow
’ it by throwing
} catch (InvocationTargetException e) { “|653| AcccssEuc?‘Ei on.

e.printStackTrace() ;

} e Betause we are the
return null; This will happen if owner, any other set
} the veal SuchC‘E method is fine and we
} throws an C"tcP{:ion, 90 ahead and invoke it
|£ any other method is called, on the veal sub‘)cC{L

we've JuS{: 9oing to veturn null
vather than take a chante.

476 Chapter 11

the proxy pattern

The NonOwnerlnvocationHandler works just like the OwnerlnvocationHandler except
that it allows calls to setGeekRating() and it disallows calls to any other set method.

EY-QRC‘SQ Go ahead and write this handler yourself:

you are here » 477

create the proxy

Step two: creating the Proxy class and
instantiating the Proxy object

Now, all we have left is to dynamically create the Proxy class and instantiate the proxy
object. Let’s start by writing a method that takes a Person object and knows how to create
an owner proxy for it. That is, we’re going to create the kind of proxy that forwards its
method calls to OwnerlnvocationHandler. Here’s the code:

This method takes a Person obBc(,’c (the veal

i it the This tode treates the
subjett) and vetuens a proxy For it. Betause ate
me i Late as the subject, we proxy: Now this is somc,
\::°:;/nh:5Pt::°:é ¢ nkertate) mighty ualy L?dc, so let’s
\/ S{',CF {')w'oug\r\ it carcﬁu”\/-

own To treate a proxy we use the
Person get! erProxy (Person person) { cha{:iL nchY‘oﬁ\/InS‘{:anCc 0

method on the Proxy ¢lass.

return (Person) Proxy.newProxyInstance (

person.getClass () .getClassLoader (), &— We pass it the tlass loader (:ov' o suchcf,-..

person.getClass () .getInterfaces(),

new OwnerInvocationHandler (person)) ; S"-a“d the set of interfaces the
} proxy needs to implement...

We pass the veal sub\)c«‘:l: into the construttor of

the invotation handler. I£ you look batk two pages, ..and an invotation handler, in this
you'll see this is how the handler gets aceess to case our Ownev|nvotationtandler.
the veal subject.

_ G harpen Your pencil

} While it is a little complicated, there isn't much to creating
a dynamic proxy. Why don’t you write getNonOwnerProxy(),
which returns a proxy for NonOwnerlnvocationHandler:

Take it further: can you write a method called getProxy() that takes
a handler and a person and returns a proxy that uses that handler?

478 Chapter 11

the proxy pattern

Testing the matchmaking service

Let’s give the matchmaking service a test run and see how it controls access to
the setter methods based on the proxy that is used.

The main() method \')usk treates

public class MatchMakingTestDrive { 4he test drive and calls its dvive()
// instance variables here /_\ method to 5:{: things going,

public static void main(String[] args) {
MatchMakingTestDrive test = new MatchMakingTestDrive() ;
test.drive() ;

} The tonstruttor initializes our database
/ o£ Vco\?lc in the ma{:thmaking servite.
public MatchMakingTestDrive() {

initializeDatabase() ;
} Let’s vetrieve a person

from the database...
public void drive() { [—

Person joe = getPersonFromDatabase ("Joe Javabean") ;

Person ownerProxy = getOwnerProxy (joe) ; <«— .and treate an owner proxy-
System.out.println ("Name is .+ ownerProxy.getName());, <—___ Call a ch‘,CK--
ownerProxy.setInterests ("bowling, Go");

System.out.println("Interests set from owner proxy") ..and then a setter.

try {
ownerProxy.setGeekRating (10) ; <—_ And then {:\r\/ +o

} catch (Exception e) { thange the vaJcing-
System.out.println("Can't set rating from owner proxy");

} This shouldn't work!

System.out.println("Rating is " + ownerProxy.getGeekRating());
Now treate a non—

Person nonOwnerProxy = getNonOwnerProxy (joe) ; K ownevr ?ro%\/n-
System.out.println("Name is " + nonOwnerProxy.getName()), —=__ .and call 3 5:{: er...
try {
nonOwnerProxy.setInterests ("bowling, Go"); <—_ _ fLollowed b\/ a
} catch (Exception e) ({ setter.
System.out.println("Can't set interests from non owner proxy");
} This shouldn't WOYk.’

nonOwnerProxy.setGeekRating (3) ;
System.out.println("Rating set from non owner proxy") ;

System.out.println("Rating is " + nonOwnerProxy.getGeekRating()) ; Then {‘,r\/ 4o set
} the vating.
// other methods like getOwnerProxy and getNonOwnerProxy here This should work,’

you are here » 479

test drive the protection proxy

Running the code...

File Edit Window Help Born2BDynamic

[0

Name is Joe Javabean

Interests set from owner proxy

Can't set rating from owner proxy

Rating is 7

Name is Joe Javabean

Can't set interests from non owner proxy

Rating set from non owner proxy

Rating is 5

%

% java MatchMakingTestDrive

Our Owner proxy allows
sc'H:ing and sc*{:‘{‘,'mg,
exeept for the Geek

vating,

Our NonOwner proxy allows

ge‘H:ing only, but also

allows calls to set the Geek

vating.

The new vating is the average of the previous vating, 7,
and the value set by the NonOwner proxy, 3.

Q,: So what exactly is the “dynamic”
aspect of dynamic proxies? Is it that I'm
instantiating the proxy and setting it to a
handler at runtime?

A: No, the proxy is dynamic because

its class is created at runtime. Think about

it: before your code runs there is no proxy
class; it is created on demand from the set of
interfaces you pass it.

Q,: My InvocationHandler seems like a
very strange proxy; it doesn’t implement
any of the methods of the class it's
proxying.

480 Chapter 11

therejare no
Dumb Questions

A: That's because the InvocationHandler

isn't a proxy—it’s a class that the proxy
dispatches to for handling method calls. The
proxy itself is created dynamically at runtime
by the static Proxy.newProxyInstance()
method.

Q: Is there any way to tell if a class is
a Proxy class?

A: Yes. The Proxy class has a static

method called isProxyClass(). Calling this
method with a class will return true if the
class is a dynamic proxy class. Other than
that, the proxy class will act like any other
class that implements a particular set of
interfaces.

Q Are there any restrictions on
the types of interfaces | can pass into
newProxylnstance()?

A: Yes, there are a few. First, it

is worth pointing out that we always

pass newProxylnstance() an array of
interfaces—only interfaces are allowed, no
classes. The major restrictions are that

all non-public interfaces need to be from
the same package. You also can't have
interfaces with clashing method names
(that is, two interfaces with a method with
the same signature). There are a few other
minor nuances as well, so at some point
you should take a look at the fine print on
dynamic proxies in the javadoc.

proxy

4

W+ Q DQES W AT ?

Match each pattern with its description:

Pattern Description

Decorgtor Wraps another ij’ect
and provides a different
interface to it.

Facade Wraps another object
and provides additional
behavior for it.

Proxy Wraps another object

to contro] access to t.

Wraps a bunch of
Adapter objects to simplity
their interface.

481

the proxy zoo

The Proxy Zoo

Welcome to the Objectville Zoo!

You now know about the remote, virtual, and protection proxies, but
out in the wild you’re going to see lots of mutations of this pattern.
Over here in the Proxy corner of the zoo we’ve got a nice collection
of wild proxy patterns that we’ve captured for your study.

Our job 1sn’t done; we’re sure you're going to see more variations of
this pattern in the real world, so give us a hand in cataloging more
proxies. Let’s take a look at the existing collection:

[\ Habitat: often seen in the lotation

Firewall Proxy of cor?ora{:c Fivewall s\/s{:cms.

controls access to a
set of network
resources, protecting
the subject from “bad” clients.

X

Help £ind a habitat

Smart Reference Proxy
provides additional actions
whenever a subject is
referenced, such as counting
the number of references to
an object.

Caching Proxy provides (;\

temporary storage for Habitat: often seen in web sevver proxies as well

T;iiual:‘-z Z‘f(:g:;(\l/‘l’elo;: as con{',cvx{: manayn\cn{: and yublishing s\/s{:Cms.

can also allow multiple clients to share
the results to reduce computation or
network latency.

482 Chapter 11

proxy

[—\ SCC'I lla"a"la av our d CO”C&{:lO“S; th‘ (4 '{: ton k‘ O'S

Synthronized aceess 4o , :
in & multithreaded i :m::f:')'ma set of objeets

Synchronization Proxy %’@/

provides safe access o a
subject from multiple threads.

Help find a habitat > Complexity Hiding Proxy
hides the complexity of
and controls access to a
complex set of classes.
This is sometimes called
the Facade Proxy for obvious reasons.
The Complexity Hiding Proxy differs from
the Facade Pattern in that the proxy
controls access, while the Facade Pattern
just provides an alternative interface.

Copy-On-Write Proxy
controls the copying of

an object by deferring LA _
the copying of an Habitat: seen in the vicimb(of the
object until it is required by Java's Co\?\/OnWri{cAY‘Y‘B\/L‘S{"'

a client. This is a variant of
the Virtual Proxy.

Field Notes: please add your observations of other proxies in the wild here:

483

crossword puzzle

&3

Design Patterns Crossword

It’s been a LONG chapter. Why not unwind by doing a

crossword puzzle before it ends?

ANEEEEEEN

!
.

ACROSS
5. Group of first album cover displayed (two words).
7. Commonly used proxy for web services (two words).

8. In RMI, the object that takes the network requests on
the service side.

11. Proxy that protects method calls from unauthorized
callers.

13. Group that did the album MCMXC a.D.

14. A proxy class is created at runtime.
15. Place to learn about the many proxy variants.
16. The Album viewer used this kind of proxy.

17. In RMI, the proxy is called this.

18. We took one of these to learn RMI.

19. Why Elroy couldn’t get dates.

484 Chapter 11

DOWN
1. Objectville Matchmaking is for

2. Java’s dynamic proxy forwards all requests to this (two
words).

3. This utility acts as a lookup service for RMI.
4. Proxy that stands in for expensive objects.

6. Remote was used to implement the gumball
machine monitor (two words).

9. Software developer agent was being this kind of proxy.

10. Our first mistake: the gumball machine reporting was
not

12. Similar to proxy, but with a different purpose.

Tools for your Design Toolbox

Your design toolbox is almost full; you’re prepared for

almost any design problem that comes your way.

nn Basits

sbeattion

00 Peimtiples

avies: “La\,s.,\a’cw"

Ereasate W

Favor to position over inhexitante: \\lmoYY\\\Sm
avov ! |
am ko nkeckaces: not Levikante
?:;?:mtnﬂﬁon&
\ed desions
3 \oosely tov¥ ‘
Ghyive for e
\between ©)ccb that ! .
on for extens!
\d b
(Classes shoul d\ﬁ\ba{—,‘o“ B
dg ™ol y y
bud close . Dot No new ?V\V\ \4 ° Sese the
rac‘hov\s. ‘tcn La“\i . a\\
DCY“: - ontveke tlasses i:\a‘; “ "\em\)“
depen on .
orly talk o YO k
Dov\’ t eall
\ Our new patteen
OO Pa‘bhgvns - A Proxy atts as @
-) e . vepresentative Lor
< (\‘ 1 L A D Cie - " Y‘{:h b cc{
| s et . evr o
e ct AF:P“‘M\I M""\; PR alase IO VR S :) . :
n y"‘ . C"u-n\p PR » S - - ‘
vé c \1 ‘; ‘; (‘” . “_ - F,\raom\ahs 2 veoue .) \
‘ | Ao ! } a Py L1 i
0o e P e
| F: \ow an obet
- 2 w Alow » vroﬁa‘h
il be Pror - onV\dc g "
\ Y \ \r\o\dev ano‘\',\\cr 3
N 114} \af’:: | actess
. s tle contro
-
-
-
-
-

the proxy pattern

Q BULLET POINTS —

The Proxy Pattern provides
a representative for another
object in order to control the
client’s access to it. There
are a number of ways it can
manage that access.

= ARemote Proxy manages
interaction between a client
and a remote object.

= AVirtual Proxy controls
access to an object that is
expensive to instantiate.

= AProtection Proxy controls
access to the methods of an
object based on the caller.

= Many other variants of
the Proxy Pattern exist
including caching proxies,
synchronization proxies,
firewall proxies, copy-on-write
proxies, and so on.

= Proxy is structurally similar
to Decorator, but the two
patterns differ in their purpose.

= The Decorator Pattern adds
behavior to an object, while
Proxy controls access.

= Java’s built-in support for
Proxy can build a dynamic
proxy class on demand and
dispatch all calls on it to a
handler of your choosing.

m Like any wrapper, proxies
will increase the number of
classes and objects in your
designs.

you are here » 485

exercise

The NonOwnerinvocationHandler works just like the OwnerlnvocationHandler except
that it allows calls to setGeekRating() and it disallows calls to any other set method.
Here’s our solution:

xeRcise
)OLutIOoN

import java.lang.reflect.*;

public class NonOwnerInvocationHandler implements InvocationHandler ({

Person person;

public NonOwnerInvocationHandler (Person person) {
this.person = person;

public Object invoke (Object proxy, Method method, Object[] args)
throws IllegalAccessException {

try {
if (method.getName () .startsWith("get")) {
return method.invoke (person, args);
} else if (method.getName () .equals ("setGeekRating")) {
return method.invoke (person, args);
} else if (method.getName ().startsWith("set")) {
throw new IllegalAccessException() ;
}
} catch (InvocationTargetException e) ({
e.printStackTrace() ;

}

return null;

- SR Design Puzz]e Solution

The ImageProxy class appears to have two states that are controlled
by conditional statements. Can you think of another pattern that might
clean up this code? How would you redesign ImageProxy?

Use the State Pattern: implement two states, Imageloaded and ImageNotLoaded. Then put
the code from the if statements into their respective states. Start in the ImageNotLoaded state
and then transition to the ImageLoaded state once the Imagelcon had been retrieved.

486

the proxy pattern

Gadharpen your pencil
Loy

SOIUtIOH While it is a little complicated, there isn’t much to creating a dynamic
proxy. Why don’t you write getNonOwnerProxy(), which returns a
proxy for the NonOwnerlnvocationHandler? Here’s our solution:

Person getNonOwnerProxy (Person person) {

return (Person) Proxy.newProxyInstance (
person.getClass () .getClassLoader (),
person.getClass () .getInterfaces(),

new NonOwnerInvocationHandler (person)) ;

* Design Patterns Crossword Solution

S
<7

>
™ [m o]
<]z [

H

E v
s [k |E|LIE|T|ON]
s a

E|X|T|W|I|N

© |
SEEICIEICICIEICIE

|

|
R
o
T
E|
a
T
1
o
N

16

v

you are here »

487

exercise solutions

488

SR>
W+ D W AT ?
¢ SaAnOTI\QN

Match each pattern with its description:

Pattern Description

Decorator Wraps another object
and provides a different
interface to it.

Facade Wraps another object
and provides additional
behavior for it.

Proxy Wraps another object
to control access to .
Wraps a bunch of

Adapter objects to simplity

their interface.

Chapter 11

proxy

T

= keavs Bake The code for the Album Cover Viewer

package headfirst.designpatterns.proxy.virtualproxy;

import java.net.¥*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
public class ImageProxyTestDrive ({
ImageComponent imageComponent;
JFrame frame = new JFrame ("Album Cover Viewer") ;
JMenuBar menuBar;
JMenu menu;
Hashtable<String, String> albums = new Hashtable<String, String>();

public static void main (String[] args) throws Exception ({

ImageProxyTestDrive testDrive = new ImageProxyTestDrive();

public ImageProxyTestDrive () throws Exception{
albums.put ("Buddha Bar", "http://images.amazon.com/images/P/B00009XBYK.01.LZZZZZZZ.

jpg") ;
albums.put("Ima","http://images.amazon.com/images/P/BO00005IRM. 01 .LZZZZZZZ.jpg") ;
albums.put ("Karma", "http://images.amazon.com/images/P/B000005DCB.01.LZZZZZZZ .
gif");
albums.put ("MCMXC a.D.","http://images.amazon.com/images/P/B000002URV.01.LZZZZZZZ.
jpg") ;

albums.put ("Northern Exposure","http://images.amazon.com/images/P/B000003SFN.01.
LZZ2ZZZZ.jpg") ;

albums.put ("Selected Ambient Works, Vol. 2","http://images.amazon.com/images/P/
BO0O0002MNZ .01 .LZZZZZZZ. jpg") ;

URL initialURL = new URL((String)albums.get("Selected Ambient Works, Vol. 2"));
menuBar = new JMenuBar () ;
menu = new JMenu ("Favorite Albums") ;

menuBar . add (menu) ;

489

ready-bake code:

The code for the Albuwm Cover
Viewer, continued...

frame.setJMenuBar (menuBar) ;

for (Enumeration e = albums.keys(); e.hasMoreElements();) ({
String name = (String)e.nextElement() ;
JMenultem menultem = new JMenultem (name) ;
menu.add (menultem) ;
menultem.addActionListener (event -> {

imageComponent.setIcon (
new ImageProxy (getAlbumUrl (event.getActionCommand()))) ;

frame.repaint () ;

3

// set up frame and menus

Icon icon = new ImageProxy (initialURL) ;
imageComponent = new ImageComponent (icon) ;
frame.getContentPane () .add (imageComponent) ;
frame.setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;
frame.setSize (800,600) ;

frame.setVisible (true) ;

}
URL getAlbumUrl (String name) {
try {
return new URL((String)albums.get (name)) ;
} catch (MalformedURLException e) {

e.printStackTrace() ;

return null;

490

proxy

JZ2X Reany Bake The code for the Album Cover

| Cove Viewer, continved...

package headfirst.designpatterns.proxy.virtualproxy;

import java.net.¥*;
import java.awt.*;
import javax.swing.¥*;

class ImageProxy implements Icon {
volatile ImageIcon imageIcon;
final URL imageURL;
Thread retrievalThread;
boolean retrieving = false;

public ImageProxy (URL url) { imageURL = url; }

public int getIconWidth () {

if (imageIcon '= null) {
return imageIcon.getIconWidth() ;
} else {

return 800;

public int getIconHeight() {

if (imageIcon '= null) {
return imagelIcon.getIconHeight() ;
} else {

return 600;

synchronized void setImagelcon(Imagelcon imageIcon) {
this.imageIcon = imageIcon;

public void paintIcon(final Component c, Graphics g, int x, int y) {

if (imageIcon '= null) {
imageIcon.paintIcon(c, g, X, y)’
} else {
g.drawString("Loading album cover, please wait...", x+300, y+190);

if ('retrieving) {
retrieving = true;

491

ready-bake code:

The code for the Albuwm Cover Viewer,
continved...

retrievalThread = new Thread(new Runnable () {
public void run() {
try {
setImageIcon (new ImageIcon (imageURL, "Album Cover")) ;
c.repaint() ;
} catch (Exception e) {
e.printStackTrace() ;

})

retrievalThread.start() ;

package headfirst.designpatterns.proxy.virtualproxy;

import java.awt.*;
import javax.swing.*;

class ImageComponent extends JComponent {
private Icon icon;

public ImageComponent (Icon icon) {
this.icon = icon;

public void setIcon(Icon icon) {
this.icon = icon;

public void paintComponent (Graphics g) {
super.paintComponent (g) ;
int w = icon.getIconWidth() ;

int h = icon.getIconHeight() ;
int x = (800 - w)/2;
int y = (600 - h)/2;

icon.paintIcon(this, g, x, y);

492

12 compound patterns

. Patterns *
of Patterns

Who would have ever guessed that Patterns could work together?
You've already witnessed the acrimonious Fireside Chats (and you haven’t even seen the Pattern

Death Match pages that the editor forced us to remove from the book), so who would have
thought patterns can actually get along well together? Well, believe it or not, some of the most
powerful OO designs use several patterns together. Get ready to take your pattern skills to the
next level; it's time for compound patterns.

this is a new chapter

493

patterns can

Working together)

N
One of the best ways to use patterns is to get them out of the house so k

they can interact with other patterns. The more you use patterns the
more you're going to see them showing up together in your designs. We
have a special name for a set of patterns that work together in a design
that can be applied over many problems: a compound pattern. That’s right,
we are now talking about patterns made of patterns!

You'll find a lot of compound patterns in use in the real world. Now
that you’ve got patterns in your brain, you'll see that they are really just
patterns working together, and that makes them easier to understand.

We’re going to start this chapter by revisiting our friendly ducks in the
SimUDuck duck simulator. It’s only fitting that the ducks should be here
when we combine patterns; after all, they’ve been with us throughout

the entire book and they’ve been good sports about taking part in lots

of patterns. The ducks are going to help you understand how patterns
can work together in the same solution. But just because we’ve combined
some patterns doesn’t mean we have a solution that qualifies as a
compound pattern. For that, it has to be a general-purpose solution that
can be applied to many problems. So, in the second half of the chapter
we’ll visit a real compound pattern: the Model-View-Controller, otherwise
known as MVC. If you haven’t heard of MVC, you will, and you’ll find
MVC is one of the most powerful compound patterns in your design
toolbox.

Patterns are often used togetller and
combined within the same c[esign solution.

A c0mpounJ pattern combines two or

more patterns into a solution that solves a
recurring or general Prol)lem.

494

compound

Puck reunion

As you’ve already heard, we’re going to get to work with the ducks again. This
time the ducks are going to show you how patterns can coexist and even
cooperate within the same solution.

We’re going to rebuild our duck simulator from scratch and give it some
interesting capabilities by using a bunch of patterns. Okay, let’s get started...

@ First, we'll create a Quackable interface.

Like we said, we're starting from scratch. This time around, the Ducks are
going to implement a Quackable interface. That way we'll know what things
in the simulator can quack()—like Mallard Ducks, Redhead Ducks, Duck
Calls, and we might even see the Rubber Duck sneak back in.

ced to do

public interface Quackable {
evl

kables only ©
public void quack(); « - &"21“\“5 well: Qua
on

@ Now, some Ducks that implement Quackable

What good is an interface without some classes to implement it? Time to
create some concrete ducks (but not the “lawn art” kind, if you know what

we meah).
/\ \(ow S‘handavd

Mallacd duek-
public class MallardDuck implements Quackable {

public void quack() {
System.out.println("Quack") ;

public class RedheadDuck implements Quackable {
public void quack() {

; " "y . We've 5o{: 4o have some variation
System.out.println("Quack"); _ 0‘('\ SYCCics i{: we want this 4o be

} an intevesting simulator.

495

adding more ducks

This wouldn't be much fun if we didn't add other kinds of Ducks too.

Remember last time? We had duck calls (those things hunters use—they
are definitely quackable) and rubber ducks.

public class DuckCall implements Quackable {
public void quack() {
System.out.println("Kwak") ; \ A DuekCall that quacks but
} doesn't sound quite like the veal

} ‘U’\ihg-

public class RubberDuck implements Quackable {
public void quack() {

System.out.println("Squeak") ; \ A RubberDuek that makes a
squeak when it quacks.

@ Okay, we've got our ducks; now all we need is a simulator.
Let's cook up a simulator that creates a few ducks and makes sure their

quackers are working... ﬂ ere's our maind) ethod

v oing:

public class DuckSimulator { to SCJC C"“\IH""?’ "
public static void main(String[] args) { - sto
DuckSimulator simulator = new DuckSimulator(); g, We treate a simulator

simulator.simulate () ; and then eall |
| S simulate() method.

void simulate() {
Quackable mallardDuck = new MallardDuck() ;
Quackable redheadDuck = new RedheadDuck() ;
Quackable duckCall = new DuckCall() ;
Quackable rubberDuck = new RubberDuck() ;

We need some dueks, so
heve we treate one
eath Quatkable.-

System.out.println("\nDuck Simulator") ;

simulate (mallardDuck) ; hen we simulate
simulate (redheadDuck) ;)
eath one.
simulate (duckCall) ; <
simulate (rubberDuck) ; Heve we overload the simulate()

} / method to simulate \')us{: one duck.

void simulate (Quackable duck) {

} duck.quack () ; ,t_/ Here we let polymorphism do its magie: no

matter what kind of Quackable gets passed in,
' the simulate() method asks it to quack.

496 Chapter 12

compound patterns

File Edit Window Help ItBetterGetBetterThanThis

Not to0 exeiti
haven’t added ;gt)fj:/“f -

Duck Simulator
Quack
Quack

Kwak

% java DuckSimulator

Squeak

[kable
They all im lement the same Qua§
\ngc\/r("acc, Eu{: their im\?\:m:n{&hons allow
them to quack in their own way-

Tt looks like everything is working; so far, so good.

@ When ducks are around, geese can't be far.

Where there is one waterfowl, there are probably two. Here's a Goose
class that has been hanging around the simulator.

public class Goose {
public void honk() { N\ A Qoose is a honker,

not a quacker-
System.out.println("Honk") ;

_ @?xwtnw
‘PQOQWEWR
Let’'s say we wanted to be able to use a Goose anywhere we’d want to use a

Duck. After all, geese make noise; geese fly; geese swim. Why can’t we have
Geese in the simulator?

What pattern would allow Geese to easily intermingle with Ducks?

you are here » 497

goose adapter

®

498

We need a goose adapter.

Our simulator expects to see Quackable interfaces. Since geese
aren't quackers (they're honkers), we can use an adapter to adapt

a goose to a duck. \/’\
Remember, an Adapter

i i i cr‘cacc
public class GooseAdapter implements Quackable { 1m\7\cm€7\{'f5 the {‘,8"56{3 nt)

Goose goose; whith in Lhis tase is Quackab\c.

public GooseAdapter (Goose goose) {
this.goose = goose;

e— The tonstruttor takes the

} aoose we ave going to adapt

public void quack() {
goose.honk () ;

a— When quack is called, the call is delegated

) to the goose’s honk() method.

}

Now geese should be able to play in the simulator, too.

All we need to do is create a Goose and wrap it in an adapter
that implements Quackable, and we should be good to go.

public class DuckSimulator {
public static void main(String[] args) {
DuckSimulator simulator = new DuckSimulator() ;
simulator.simulate() ;

void simulate() { We make Goose that atts
Quackable mallardDuck = new MallardDuck() ; like a Dutk b\[wrapping the
Quackable redheadDuck = new RedheadDuck() ; in the 50055Adav‘tﬂ~
Quackable duckCall = new DuckCall() ; 6005‘
Quackable rubberDuck = new RubberDuck() ;
Quackable gooseDuck = new GooseAdapter (new Goose()) ;

System.out.println("\nDuck Simulator: With Goose Adapter");

simulate (mallardDuck) ; Onte the 60055 s W‘ra?\"d’ we tan treat

simulate (redheadDuck) ; </ it \')us{: like other dutk Quackable ob\')cb{',S.

simulate (duckCall) ;
simulate (rubberDuck) ;
simulate (gooseDuck) ;

void simulate (Quackable duck) {
duck.quack() ;

Chapter 12

compound patterns

@ Now let's give this a quick run...

This time when we run the simulator, the list of objects passed
to the simulate() method includes a Goose wrapped in a duck
adapter. The result? We should see some honking!

File Edit Window Help GoldenEggs

% java DuckSimulator

Duck Simulator: With Goose Adapter
Quack
Quack

Kwak
There’s the goose! Now the =

Qoose tan quack with the

vest of the Ducks. L/A7

Squeak

Honk

Quackologists are fascinated by all aspects of Quackable behavior. One
thing Quackologists have always wanted to study is the total number of
quacks made by a flock of ducks.

How can we add the ability to count duck quacks without having to
change the duck classes?

Can you think of a pattern that would help?

J. Brewev,
Park Ranger and
Quackologis{:

you are here » 499

duck decorator

We're going to make those Quackologists happy and give

500

them some quack counts.

How? Left's create a decorator that gives the ducks some new
behavior (the behavior of counting) by wrapping them with a
decorator object. We won't have to change the Duck code at all.

As with Adapter, we need to
implement the target intevface.

We've 9ot an instance variable
\, 4o hold on to the t\uackcr

we've decorating.

QuatkCounter is a decorator

public class QuackCounter implements Quackable {

Quackable duck; And we've counting ALL

static int numberOfQuacks; p Qua(,ks, so we'll use 3 statie
variable to keep track.
public QuackCounter (Quackable duck) {

this.duck = duck; \ We get the veferente 1o Lhe
}

Quackable we've decorating
in the constructor.
public void quack() {

duck. quack () ; < When quackQ is called, we delegate the ¢3ll

numberOfQuacks++; \fp the Quackable we're choYa‘Eing...
}

~then we ;
nérease

bLi . the number. of quacks.
P ic static int getQuacks() {

return numberOfQuacks; \
}

We've adding one other method 4o the
detorator. This static method iust
veturns the number of quacks that
have otturred in all Quackables.

Chapter 12

compound patterns

@ We need to update the simulator to create decorated ducks.

Now, we must wrap each Quackable object we instantiate in a
QuackCounter decorator. If we don't, we'll have ducks running
around making uncounted quacks.

public class DuckSimulator ({

public static void main(String[] args) {
DuckSimulator simulator = new DuckSimulator() ; E .
simulator.simulate () ; ach time we create a

} Ruackable, we wrap it with

a new detorator.

void simulate () {
Quackable mallardDuck new QuackCounter (new MallardDuck()) ;
Quackable redheadDuck = new QuackCounter (new RedheadDuck()) ;
Quackable duckCall = new QuackCounter (new DuckCall()) ;
Quackable rubberDuck = new QuackCounter (new RubberDuck()) ;
Quackable gooseDuck = new GooseAdapter (new Goose()) ;

System.out.println("\nDuck Simulator: With Decorator") ;

simulate (mallardDuck) ; The)Fa\rk vanger told us he
simulate (redheadDuck) ; didn't want to count geese
simulate (duckCall) ; honks, so we don't decorate it.
simulate (rubberDuck) ;

simulate (gooseDuck) ;

p Heve's where we

ekin

System.out.println ("The ducks quacked " + ‘53{"\"6‘." the a\‘ﬁ\c)
QuackCounter.getQuacks () + " times"); behavior .or
} Quacko\ogls‘l:5~

void simulate (Quackable duck) {

; corated
duck . quack () ; S Nothing chanes heve; the detor

} objects are skill Quackables.
}
File Edit Window Help DecoratedEggs
% java DuckSimulator
\f\cvc,s H‘C /_\> Duck Simulator: With Decorator
ov{:\’“ I Quack
Quack
Kwak
RCMC"‘\’“' Squeak
we e no Honk
tounting geese: The ducks quacked 4 times

%

you are here » 501

duck factory

This quack counting is great. We're learning
things we never knew about the little quackers.
But we're finding that too many quacks aren't
being counted. Can you help?

You have to decorate objects to
get decorated behavior.

He’s right, that’s the problem with wrapping objects:
you have to make sure they get wrapped or they don’t
get the decorated behavior.

Why don’t we take the creation of ducks and localize
it in one place; in other words, let’s take the duck
creation and decorating and encapsulate it.

What pattern does that sound like?

We need a factory to produce ducks!

Okay, we need some quality control to make sure our ducks get wrapped.
We're going to build an entire factory just to produce them. The factory
should produce a family of products that consists of different types of
ducks, so we're going o use the Abstract Factory Pattern.

Let's start with the definition of the AbstractDuckFactory class:
We've defining an sbstract factory
f’\ that subelasses will implement to
eveate diffecent Lamilies.
public abstract class AbstractDuckFactory ({
public abstract Quackable createMallardDuck() ;
public abstract Quackable createRedheadDuck() ;

public abstract Quackable createDuckCall() ;
public abstract Quackable createRubberDuck() ;

Eath method eveates one kind of duck.

502 Chapter 12

compound patterns

Next we'll create a factory that creates ducks without decorators, just to
get the hang of the factory:

public class DuckFactory extends AbstractDuckFactorm

public Quackable createMallardDuck() { DuckFac‘Eovy extends
return new MallardDuck() ; the abstract l:at,{‘pr\/.

public Quackable createRedheadDuck () {

duct:
' I method ereates a pro
} return new Redheadbuck () Ea;arEZu\ar kind of Quatkable:

[known
The attual Yvodut,{: IS un 1
{:h: simulator —it \')ush knows it's

public Quackable createDuckCall() { 5&:{1'\5 3 Qua ckable.

return new DuckCall() ;

public Quackable createRubberDuck () {
return new RubberDuck () ;

CountingDuckFattory
Now let's create the factory we really want, the CountingDuckFactory: also extends the
abstratt «Cac‘oovy-

public class CountingDuckFactory extends AbstractDuckFactory ({

public Quackable createMallardDuck() {
return new QuackCounter (new MallardDuck()) ;

Eath method wraps the
Quackable with the quack

tounting decorator. The
public Quackable createRedheadDuck () { simulator will never know

return new QuackCounter (new RedheadDuck()) ; the di ﬁmn ce; it ust
} gets back a Quackable.

Bu{: now our rangers tan
be sure that all quacks
are bcin5 tounted.

public Quackable createDuckCall() {
return new QuackCounter (new DuckCall()) ;

public Quackable createRubberDuck () {
return new QuackCounter (new RubberDuck()) ;

you are here » 503

families of

@) Let's set up the simulator fo use the factory.

Remember how Abstract Factory works? We create a polymorphic method
that takes a factory and uses it to create objects. By passing in different
factories, we get to use different product families in the method.

We're going to alter the simulate() method so that it takes a factory and
uses it fo create ducks.

Firest we eveate

e fatkory
public class DuckSimulator ({ H\ajc were 909
public static void main(String[] args) { ko pass nto 5
DuckSimulator simulator = new DuckSimulator() ; the S'\"‘“\a‘hc
AbstractDuckFactory duckFactory = new CountingDuckFactory () ; mcjd“od'
.)
<

simulator.simulate (duckFactory) ;

) L/\

void simulate (AbstractDuckFactory duckFactory) ({

Quackable mallardDuck = duckFactory.createMallardDuck() ; AbstractDuekFa C*bo\r\/
Quackable redheadDuck = duckFactory.createRedheadDuck() ; and uses it to eveate
Quackable duckCall = duckFactory.createDuckCall () ; ducks vather than
Quackable rubberDuck = duckFactory.createRubberDuck () ; i"s‘ta“{?iati“S them
Quackable gooseDuck = new GooseAdapter (new Goose()) ; dnrct{:l\/.
System.out.println("\nDuck Simulator: With Abstract Factory");
simulate (mallardDuck) ;
simulate (redheadDuck) ;
simulate (duckCall) ;
simulate (rubberDuck) ;
simulate (gooseDuck) ; 4(\

. No{hing thanges
System.out.println ("The ducks quacked " +

é;///’

QuackCounter.getQuacks () +

" times") ;

void simulate (Quackable duck) {
duck.quack() ;

504

The simulate()
method takes an

here! Same ol ¢tode.

compound patterns

Here's the output using the (:ac{'pry...

File Edit Window Help EggFactory

/‘$ % java DuckSimulator

: Duck Simulator: With Abstract Factor
Same 33 \ast. time, ¥
- Lime Quack

but s e

wC’V e CV\SW'.‘“S) Quack

the dutks are all Kwak

dccova{-,cd bCL:“SC Squeak

| (4
we ave usind . Honk
Couv\{'J\n%D“C\‘Fad"or\l

4 quacks were counted

%

G harpen your pencil

A We're still directly instantiating Geese by relying on concrete
classes. Can you write an Abstract Factory for Geese? How should
it handle creating “goose ducks”?

you are here » 505

flock of

This isnt very /

manageable! \\

506

Ah, he wants to manage a flock

of ducks.

It's getting a little difficult to manage
all these different ducks separately.
Is there any way you can help us
manage ducks as a whole, and perhaps even
allow us to manage a few duck “families"
that we'd like to keep track of?

Here’s another good question from Ranger Brewer:
S

Why are we managing ducks individually?

Quackable mallardDuck
Quackable redheadDuck

duckFactory.createMallardDuck () ;
duckFactory.createRedheadDuck () ;

Quackable duckCall = duckFactory.createDuckCall() ;

Quackable rubberDuck = duckFactory.createRubberDuck () ;

Quackable gooseDuck = new GooseAdapter (new Goose()) ;

simulate (mallardDuck) ;
simulate (redheadDuck) ;
simulate (duckCall) ;
simulate (rubberDuck) ;

simulate (gooseDuck) ;

What we need is a way to talk about collections of
ducks and even subcollections of ducks (to deal with
the family request from Ranger Brewer). It would
also be nice if we could apply operations across the

whole set of ducks.

What pattern can help us?

compound patterns

Let's create a flock of ducks (well, actually a flock of Quackables).

Remember the Composite Pattern that allows us to treat a collection of
objects in the same way as individual objects? What better composite than
a flock of Quackables!

Let's step through how this is going to work:

i implement
member, the com\705|£c needs to imp
g E\:c csamc intecface as the leaf elements. Our

leaf elements ave Quatkables.

We've using an AvrayList inside each Floek to
public class Flock implements Quackable { hold the Quackables that belong to the Floek.

List<Quackable> quackers = new ArrayList<Quackable>() ;

public void add(Quackable quacker) { \’/ The 3dd0) method adds a
quackers.add (quacker) ; Quatkable 4o the Flock.

public void quack() {
Iterator<Quackable> iterator = quackers.iterator();
while (iterator.hasNext()) {
Quackable quacker = iterator.next();
quacker.quack() ;

} i kable too.
ekO mcjchod——a‘(:{‘,cv' all, the Flotk is a Quac

} ?:\: F:;clf(h)c::’:hod in Flotk needs to work over the entive Flock.Jchrc

} we iJ:cra{:c through the Arra\/Lich and call ﬂ\uack() on eath element.

Code Up Close

Did you notice that we tried to sneak a Design Pattern
by you without mentioning it?

public void quack() {
: _ ; K\ Theve it isl The [tevator
Iterator<Quackable> iterator = quackers.iterator(); t Kl
while (iterator.hasNext()) ({ / Pattern at work:

Quackable quacker = iterator.next();
quacker.quack() ;

you are here » 507

duck composite

@ Now we need to alter the simulator.

Our composite is ready; we just need some code to round up the
ducks into the composite structure.

public class DuckSimulator {
// main method here Create all the

void simulate (AbstractDuckFactory duckFactory) { &"ackablcs’
Quackable redheadDuck = duckFactory.createRedheadDuck () ;)us{ like bc(:o\rc.
Quackable duckCall = duckFactory.createDuckCall() ;
Quackable rubberDuck = duckFactory.createRubberDuck () ;
Quackable gooseDuck = new GooseAdapter (new Goose()) ;

System.out.println("\nDuck Simulator: With Composite - Flocks") ;

<\ Fivst we eveate a Flotk and

flockOfDucks . add (redheadDuck) ; load it up with Quatkables.

flockOfDucks.add (duckCall) ; /
flockOfDucks.add (rubberDuck) ;

flockOfDucks.add (gooseDuck) ;

Flock flockOfDucks = new Flock() ;

Then we treate a new

/ Flotk of mallards.

Flock flockOfMallards = new Flock() ;
)

Quackable mallardOne = duckFactory.createMallardDuck() ; m Heve ?Nc ve
Quackable mallardTwo = duckFactory.createMallardDuck() ; C_“a{:'% a.
Quackable mallardThree = duckFactory.createMallardDuck() ; little ‘(:3"‘"\/ of
Quackable mallardFour = duckFactory.createMallardDuck() ; mallards...
flockOfMallards.add (mallardOne) ; and addina them to the
flockOfMallards.add (mallardTwo) ; k_/ Flotk (_\ glla\rds
flockOfMallards.add (mallardThree) ; orkorm '
flockOfMallards.add (mallardFour) ; Then we add the Flock of

e mallards +o the main Llock.

flockOfDucks.add (flockOfMallards) ;

System.out.println("\nDuck Simulator: Whole Flock Simulation") ;
simulate (flockOfDucks) ; - Leb's test out Lhe entive Flock_/

System.out.println ("\nDuck Simulator: Mallard Flock Simulation") ;
simulate (flockOfMallards) ; é\
Then let’s Jjust test out the mallard Floek.

System.out.println("\nThe ducks quacked " +
QuackCounter.getQuacks () +

} " times"); ’_/ Finall\/, let’s give the

Quackologis{: the data.
void simulate (Quackable duck) {

duck.quack() ;
} \ No{:hing needs to thange here; a Flock is a Quackable!

508 Chapter 12

compound patterns

Let's give it a spin...

File Edit Window Help FlockADuck
% java DuckSimulator

Duck Simulator: With Composite - Flocks
Duck Simulator: Whole Flock Simulation
Quack

Kwak é(//’“
Squeak

Honk

Quack

Quack

Quack
Quack

Heve's the Livst flock.

Duck Simulator: Mallard Flock Simulation

Quack d now the mallards.

An
Quack f

Quack The data looks
Quack good (vemember the
goose doesnt get

Loun{xd)-
The ducks quacked 11 times

Safety versus transparency

You might remember that in the Composite Pattern chapter the composites (the Menus) and the
leaves (the Menultems) had the same exact set of methods, including the add() method. Because
they had the same set of methods, we could call methods on Menultems that didn't really make
sense (like trying to add something to a Menultem by calling add()). The benefit of this was that the
distinction between leaves and composites was transparent: the client didn't have to know whether
it was dealing with a leaf or a composite; it just called the same methods on both.

Here, we've decided to keep the composite’s child maintenance methods separate from the leaf
nodes: that is, only Flocks have the add() method. We know it doesn’t make sense to try to add
something to a Duck, and in this implementation, you can’t. You can only add() to a Flock. So

this design is safer—you can't call methods that don't make sense on components—but it's less
transparent. Now the client has to know that a Quackable is a Flock in order to add Quackables to it.

As always, there are tradeoffs when you do OO design and you need to consider them as you create
your own composites.

you are here » 509

duck observer

The Composite is working great! Thanks!
Now we have the opposite request: we also
need to track individual ducks. Can you give
us a way to keep track of individual duck
quacking in real time?

Can you say “observer”?

It sounds like the Quackologist would like to observe individual
duck behavior. That leads us right to a pattern made for observing
the behavior of objects: the Observer Pattern.

First we need an interface for our Subject.

Remember that the Subject is the object being observed. Let's call it

something more memorable—how about Observable? An Observable needs

methods for registering and notifying observers. We could also have a

method for removing observers, but we'll keep the implementation simple

here and leave that out. QuackObservable is the intevface

that Quatkables should imy\cma&
i they want to be obsevved.

public interface QuackObservable {
public void registerObserver (Observer observer) ;

public void notifyObservers () ; b H', has a method ‘FOV‘ YCgiS‘&CY‘ing

Obsevvers. Any ob\)cc{: imylcmcn{:ing
the Obsevver interface can listen
to quacks. We'll define the Obsevver

1€ also has a method for interface in a sec.

no{:i«c\/ing the observers.

Now we need to make sure all Quackables implement this interface...

public interface Quackable extends QuackObservable {

public void quack(); K
} So, we extend the Quatkable

interface with QuackObserver.

510 Chapter 12

compoun

@ Now, we need to make sure all the concrete
classes that implement Quackable can handle
being a QuackObservable.

nervous!

We could approach this by implementing registration and

Stop looking at me.
You're making me

d patterns

notification in each and every class (like we did in Chapter OO
2). But we're going to do it a little differently this time:
we're going to encapsulate the registration and notification -
code in another class, call it Observable, and compose it .
with QuackObservable. That way, we only write the real
code once and QuackObservable just needs enough code to
delegate to the helper class Observable. i
n
Let's begin with the Observable helper class. ~—
Quat,kObscvvcvab\c

i ™ Il the ‘(“uhé{:iona\'l{‘.‘/
Ob&c;fgil‘cmv‘::d: 't Cc an cbsevvable. We Observable musk implement QuackObserable
3 (w

. it into a class and have because these are the same method calls
3&‘;;2“2f3i‘%2€6 l:o Observable. g that are going to be delegated to it
' [n the construttor we 5‘1‘
public class Observable implements QuackObservable { passed the QuackObservavle

List<Observer> observers = new ArrayList<Observer>() ;

uackObservable duck;
@ behavior. Chetk

public Observable (QuackObservable duck) { bc\ow}gov)“ see

that is using this objc&,
+o manaoe its obsevvable

out the

nolf,i(:\[Obscvvcrs() method

that when

this.duck = duck; a nobify otturs, Obsevvable
} passes this dbjeet alony so
that the observer knows
. ; i acking.
public void registerObserver (Observer observer) { which ob\)cd{: 1S qu 9
observers.add (observer) ; &/ Hcvc’s the tode 1(,‘0\r
} vegistering an obsevver.
public void notifyObservers () {
Iterator iterator = observers.iterator() ;
while (iterator.hasNext()) {
Observer observer = iterator.next();
b .update (duck) ; .
cbeerver.update (duck) K And the code for doing
} the notifications.
}
} Now let’s see how a Quackable class uses this helper..
you are here » 511

quack decorators are observables too

_ % harpen Your pencil

Integrate the helper Observable with the Quackable classes.

This shouldn't be too bad. All we need to do is make sure the Quackable classes
are composed with an Observable and that they know how to delegate to it. After
that, they're ready to be Observables. Here's the implementation of MallardDuck;
the other ducks are the same.

public class MallardDuck implements Quackable { Each Q“ackab‘c has an. ble
Observable observable; @/ Obsevvable inskante vaviaole.

public MallardDuck() { In the construttor, we eveate an
observable = new Observable (this); é‘/ Obsevvable and pass it a veference
} to the MallardDuck ochC£.

public void quack() {
System.out.println("Quack") ; When we quack, we need
)

notifyObservers () ; £ 4o let the observers know
} about it.

public void registerObserver (Observer observer) {
observable.registerObserver (observer) ;

public void notifyObservers () ({

observable.notifyObservers () ; Here are our two QuackObservable
) <\ methods. Notice that we \')us{:
, delegate to the helper.

P We haven't changed the implementation of one Quackable, the
QuackCounter decorator. We need to make it an Observable too.
Why don’t you write that one:

512

Chapter 12

compound patterns

We're almost there! We just need to work on the Observer side
of the pattern.

We've implemented everything we need for the Observables; now we
need some Observers. We'll start with the Observer interface:

The Observey interface

ace us{: ha
method, update(), whichJis Fassidoleh
Qu&tkObscrvablc that is quacking. ’

public interface Observer {

public void update (QuackObservable duck) ;

Now we need an Observer: where are
those Quackologists?!

We need to implement the Observer interfate or else
we won't be able to register with a QuatkObservable.

\

public class Quackologist implements Observer {

public void update (QuackObservable duck) {
System.out.println("Quackologist: " + duck + " just quacked.");

|)

The Quackologis{: is Sim
method, update()
Quackable fha’cJ

. F,c'. i'EJUS‘E has one
) whith Prints out the
ust quacked.

you are here » 513

flock composites are

_ % harpen Your pencil
N

What if a Quackologist wants to observe an entire flock? What does that
mean anyway? Think about it like this: if we observe a composite, then
we're observing everything in the composite. So, when you register with
a flock, the flock composite makes sure you get registered with all its
children (sorry, all its little quackers), which may include other flocks.

Go ahead and write the Flock observer code before we go any further.

514

compound

We're ready to observe. Let's update the
simulator and give it a try:

public class DuckSimulator {
public static void main(String[] args) {
DuckSimulator simulator = new DuckSimulator () ;

AbstractDuckFactory duckFactory = new CountingDuckFactory() ;

simulator.simulate (duckFactory) ;

void simulate (AbstractDuckFactory duckFactory) {
// create duck factories and ducks here

// create flocks here

System.out.println("\nDuck Simulator: With Observer") ;

All we do here is ereate

Quackologist quackologist = new Quackologist() ; a Quackdog\s{ and set

flockOfDucks.registerObserver (quackologist) ; him as an observer
the flock.
simulate (flockOfDucks) ; é\
..)
System.out.println("\nThe ducks quacked " + Th'? time we'll
kCount. tQuacks () + we just simulate
QuackCounter.getQuacks () the entive ‘F'odk.
" times");
}
void simulate (Quackable duck) { Let's give it a v
duck.quack() ; and see how it works!

515

the duck finale

This is the big finale. Five—no, six—patterns have come together to

create this amazing Duck Simulator. Without further ado, we present

DuckSimulator!

File Edit Window Help DucksAreEverywhere

% java DuckSimulator

Duck Simulator: With Observer

Quack
Quackologist:
Kwak
Quackologist:
Squeak
Quackologist:
Honk
Quackologist:
Quack
Quackologist:
Quack
Quackologist:
Quack
Quackologist:
Quack
Quackologist:

Q,: So this was a compound pattern?

- No, this was just a set of patterns
working together. A compound pattern is a
set of a few patterns that are combined to
solve a general problem. We're just about
to take a look at the Model-View-Controller
compound pattern; it's a collection of a few
patterns that has been used over and over in
many design solutions.

516 Chapter 12

After eath
l\uadﬁ; no
matter what

Redhead Duck just quacked. & kind of quatk

Duck Call just quacked.

Rubber Duck just quacked.

it was, the
obsevver gets 3

notification.

Goose pretending to be a Duck just quacked.

Mallard Duck just quacked.
Mallard Duck just quacked.

Mallard Duck just quacked.

Mallard Duck just quacked.&/
The Ducks quacked 7 times.

therejare no
Dumb Questions

Q,: So the real beauty of Design
Patterns is that | can take a problem and
start applying patterns to it until | have a
solution. Right?

A: Wrong. We went through this exercise
with Ducks to show you how patterns can
work together. You'd never actually want to
approach a design like we just did. In fact,
there may be solutions to parts of the Duck
Simulator for which some of these patterns
were big-time overkill. Sometimes just using
good OO design principles can solve a
problem well enough on its own.

And the
t\uacko|ogis£ still
56'{:5 his tounts.

We're going to talk more about this in the
next chapter, but you only want to apply
patterns when and where they make sense.
You never want to start out with the intention
of using patterns just for the sake of it. You
should consider the design of the Duck
Simulator to be forced and artificial. But hey,
it was fun and gave us a good idea of how
several patterns can fit into a solution.

compound

What did we do?

We started with a bunch of Quackables...

A goose came along and wanted to act like a Quackable too. So we
used the Adapter Pattern to adapt the goose to a Quackable. Now, you can call quack() on a
goose wrapped in the adapter and it will honk!

Then, the Quackologists decided they wanted to count quacks. So we
used the Decorator Pattern to add a QuackCounter decorator that keeps track of the number
of times quack() is called, and then delegates the quack to the Quackable it's wrapping.

But the Quackologists were worried they’d forget to add the
QuackCounter decorator. So we used the Abstract Factory Pattern to create ducks
for them. Now, whenever they want a duck, they ask the factory for one, and it hands back
a decorated duck. (And don't forget, they can also use another duck factory if they want an
undecorated duck!)

We had management problems keeping track of all those ducks and
geese and quackables. So we used the Composite Pattern to group Quackables
into Flocks. The pattern also allows the Quackologist to create subFlocks to manage duck
families. We used the Iterator Pattern in our implementation by using java.util’s iterator in
ArrayList.

The Quackologists also wanted to be notified when any Quackable
quacked. So we used the Observer Pattern to let the Quackologists register as Quackable
Observers. Now they're notified every time any Quackable quacks. We used iterator again
in this implementation. The Quackologists can even use the Observer Pattern with their
composites.

That was quite a Desigh Pattern
workout. You should study the class
diagram on the next page and then

take a relaxing break before continuing
on with Model-View-Controller.

517

duck's-eye view

A Dhed’s duck’s-eye view: the class diagram

We’ve packed a lot of patterns into one small duck simulator! Here’s the big picture of what we did

1

DuckSimulator

I Duckgimula{'xw

uses a fattory to eveate Dutks.

AbstractDuckFactory

createMallardDuck()
createRedheadDuck()
createDuckCall()
createRubberDuck()

/

DuckFactory

CountingDuckFactory

createMallardDuck()

createDuckCall()
createRubberDuck()

createRedheadDuck()

createMallardDuck()
createRedheadDuck()
createDuckCall()
createRubberDuck()

\

I

Heve ave two diffevent
factovies that produce

Lhe same Family
products. The DuckFactory

l\c a elass
implemendt:s
Observer, that
means it tan
observe Ruackables,
and will be notified
whenever 3

Quackable quacks.

<<interface>>
Observer
update(QuackObservable) I
S
> Quackologist i

update(QuackObservable)

WC Oﬂ’y "V\P'C”\Chted on k'hd O“ Obs rvey
[4
€rve j

Ruatkab)es ¢
—th .
Dut any ¢lass that i”‘P’C:ccSz‘:c::ioa'sﬂ

518 Chapter 12

tveates dutks, and the
Coun{:ingDuLkFac{:ory -
cha{’,cs DuLks wrawcd n
QuatkCounter dectovrators.

compound patterns

The &uackObscvvablc intecfate

wves us a set

m

ethods that

any Observable must imvlcmcn{;.

<<interface>>
ﬁuackable is {the interfs ce QuackObservable
at all C'asscs {:],.a.l: have registerObserver(Observer)
ﬂuadkma bCh&Viov- i"‘P,Cmcn{: notifyObservers()

Eath Quactkable has an
instanee of Observable
1o keep track of their
observers and no{:i(:\/ them
when the Quackable quacks.

— o
N Observable
> <<interface>> I List observers
Quackable QuackObservable duck
quack) registerObserver(Observer)
¢ i N VAVANVAN notifyObservers()
— MallardDuck GooseAdapter
o RedheadDuck . Goose goose
U DuckCall i quack() This Ada"JCCY'm
S e registerObserver(Observer)
od RubberDuck . § notifyObservers() <
re] T
- nol 4uack() :
T registerObserver(Observer) | 1/ fooeeeeeennns Flock
notifyObservers() List ducks
. add(Quackabl
We have two kinds of 3 A1 qua(ck(l;ac e ..and this
Quackablcs: dutks and registerObserver(Observer) Composite...
other things that want : notifyObservers() ,
Quackab\c behavior: like ; ————————
t\'\c éOOSCAdaV{xh which 5N] QuackCounter
wraps 3 Goose and makes
. R Quackabl
it look like 8 Quackab\c, uackable duck i
Flock, which is 3 getQuacks() Da " {_i:
Quatkable Composite, and a0 o
. d registerObserver(Observer) all ach like
&uackCouh{:cY; which adds)
) bl notifyObservers() QuackablCS.’
behavior {;o Quacka es. —

you are here » 519

the model view controller song

The King of Compound Patterns

If Elvis were a compound pattern, his name would be Model-View-Controller,

and he’d be singing a little song like this...

Meodel, View, Controller
L\/Y'ics and musié by James DCm?sc\/~

MVC’s a yavadigm ‘co\' Fat{:o\rihg Your tode
into Fund:ionﬂ scgmcn‘[‘,s, so Your brain does not cxylodc-

To achieve veusability, you gotta keep those boundaries
tlean

Model on the one side, View on the other, the Controller’s
in between.

\/iew /\/

Creamy
Con‘cvo\\cr

=

i/ Model

Model View, it’s got three layers like Oveos do
Model View Controller
Model View, Model View, Model View Controller

Model objects vepresent your application’s vaison d'étre
Custom ob\)cd:s that tontain da{:a, logic, and et cetera
You tveate tustom tlasses, in Your aﬂ?’s problem domain
You tan thoose to veuse them with all the views

but the model ob\")cc‘l:s stay the same.

You tan model a throttle and a manifold
Model the toddle of a wo year old

520 Chapter 12

Model a bottle of fine Chardonnay
Model all the glottal stops people say
Model the eoddling of boiling eggs

You tan model the waddle in Hexley's legs

Model View, You ean model all the models that pose for 4@
Model View Controller

Co does Java‘.
View objects tend to be controls used to display and edit
Cotoa'sgot a lot of those, well written to its evedit.
Take an NSTextView, hand it any old Unicode string
The user tan interact with it, it can hold most anything
But the view don't know about the Model

That s’cring tould be a phone number or the works of
Avistotle

ch‘? the Loupling loose

and so athieve a massive level of veuse

Model View, all rendered very nicely in aqua blue
Model View Controller

You'vc onbably wondcving now

You've onbably wondering how

Data flows between Model and View
The Controller has to mediate
Between each layer’s thanging state
To synthronize the data of the two
[£ pulls and pushes every changed value

Model View, mad props to the smalltalk evew!
Model View Controller

compound patterns

How we gonna deep six all that glue
Model View, it's pronounted Oh Oh not Ooo Doo Model View Controller
Model View Controller

Controllers know the Model and View very intimately
There's a little left to this story They often use hardeoding whith ean be foreboding for

A few move miles upon this voad veusability

But now Yyou tan tonnett eath model kc\/ that You seleet

Nobody seems 1o get much 5""7 +o any view Pro?cr'{:\/

From writing the tontroller code

And onte You start binding

Well, the model’s mission evitical
e mission foH | think \/ou," be ‘(:'mding less tode in Your sourte tree

And gorgeous is the view

[might be lazy, but sometimes it's Jusf erazy
How muth tode [write is just glue

And it wouldn't be so tragic

But the tode ain't doing maogie

[t's just moving values through

Yeah, | know | was elated by the stuff they've automated
and the things you get for free

And | think it bears vepeating
all the eode you won't be needing
when You hook it up in [B.

S Wamg S
Model View even handles multiple selettions too
Model View Controller

Ahd | don't mean 1o be vitious
But it gets vepetitious
Doing all the things tontrollers do

And [wish | had a dime
For every single time

| sent a TextField StringValue.

Model View, bet | ship my application before You
Model View Controller

Model View

EAWwR
PQweEWw

Don't just read! After all, this is a Head First book...check out this URL:

https://www.youtube.com/watch?v=YYvOGPMLVDo

Sit back and give it a listen.

you are here » 521

https://www.youtube.com/watch?v=YYvOGPMLVDo

mvc

Cute song, but is that really supposed
to teach me what Model-View-

Controller is? I've tried learning MVC
before and it made my brain hurt.

Design Patterns are your key
to understanding MVC.

We were just trying to whet your appetite
with the song. Tell you what, after you finish
reading this chapter, go back and listen to the
song again—you’ll have more fun.

It sounds like you’ve had a bad run-in with
MVC before? Most of us have. You've
probably had other developers tell you it’s
changed their lives and could possibly create
world peace. It’s a powerful compound
pattern, for sure, and while we can’t claim it
will create world peace, it will save you hours
of writing code once you know it.

But first you have to learn it, right? Well,
there’s going to be a big difference this time
around because now you know patterns!

That’s right, patterns are the key to MVC.
Learning MVC from the top down is difficult;
not many developers succeed. Here’s the
secret to learning MVC: it’s just a few patterns
put together When you approach learning
MVC by looking at the patterns, all of a
sudden it starts to make sense.

Let’s get started. This time around, you’re
going to nail MVC!

522

compound patterns

Meet Model-View-Controller

Imagine you’re using your favorite music player, like iTunes. You can use its interface to add
new songs, manage playlists, and rename tracks. The player takes care of maintaining a little
database of all your songs along with their associated names and data. It also takes care of
playing the songs and, as it does, the user interface is constantly updated with the current song
title, the running time, and so on.

Well, underneath it all sits Model-View-Controller...

Y se
T, you V% e and
U QI/SIO/ e’/l/ \n‘e\'fa LoNS
'Oddf 5)//5 o_“ ac‘t\o
€d £ Y o the
Yo, You see the song 90 " roler

display update and
hear the new song

playing

“Play new song"

Controller

Model tells the

view the state has Controller asks

Player model o

changed ;
begin playing

€ mo, song
the Vie e/ nOtifies the controller
'n Stat, a¢ an manipulates
Je the model

The model ¢contains all the state, / M0d2|

data, and ayyhca{iom \og'u‘, needed
to maintain and vla\/ m"%s.

you are here »

523

mvc up close

A closer look...

The music player description gives us a high-level view of MVC, but it really
doesn’t help you understand the nitty-gritty of how the compound pattern
works, how you’d build one yourself, or why it’s such a good thing. Let’s start by
stepping through the relationships among the model, view, and controller, and
then we’ll take second look from the perspective of Design Patterns.

CONTROLLER

Takes user input and figures out
what it means to the model.

VIEW

Gives you a presentation
of the model. The view
usually gets the state
and data it needs to
display directly from
the model.

Heve's the creamy .
controller; it lives in

‘{’)\C mldd\c \/

i

< ®

Change your
The user did Controller state
something /
@ Change your
display

@

T . \I needsso)ur state /

This is the user information

'm{',cvl:acb

524 Chapter 12

T've changedd ———————

MODEL

The model holds all

the data, state, and
application logic. The
model is oblivious to
the view and controller,
although it provides an
interface to manipulate
and retrieve its

state and it can send
notifications of state
changes to observers.

class Player
play() {}

rip() {}
burn() {}

Model

Heve's the
model; it
handles all
a\,‘;hcaﬂbon data
and logie-

Q

You're the user—you interact with the view.
The view is your window to the model. When you do something to the view (like click

compound

the Play button), then the view tells the controller what you did. It's the controller's

Jjob to handle that.

Q

The controller asks the model to change its state.
The controller takes your actions and interprets them. If you click a button,

it's the controller's job to figure out what that means and how the model
should be manipulated based on that action.

Q
@Q
Q

The controller may also ask the view to change.

When the controller receives an action from the view, it may need to tell the view
to change as a result. For example, the controller could enable or disable certain
buttons or menu items in the interface.

The model notifies the view when its state has changed.

When something changes in the model, based either on some action you took (like
clicking a button) or some other internal change (like the next song in the playlist
has started), the model notifies the view that its state has changed.

The view asks the model for state.
The view gets the state it displays directly from the model. For instance, when the

model notifies the view that a new song has started playing, the view requests the
song name from the model and displays it. The view might also ask the model for
state as the result of the controller requesting some change in the view.

there]gre no

Q- Does the controller ever become an
observer of the model?

A: Sure. In some designs the controller
registers with the model and is notified

of changes. This can be the case when
something in the model directly affects the
user interface controls. For instance, certain
states in the model may dictate that some
interface items be enabled or disabled. If so,
it's really the controller’s job to ask the view
to update its display accordingly.

Dumb Questions

Q,: All the controller does is take user
input from the view and send it to the
model, correct? Why have it at all if that
is all it does? Why not just have the code
in the view itself? In most cases isn’t the
controller just calling a method on the
model?

A: The controller does more than just

“send it to the model”; it is responsible for

interpreting the input and manipulating the
model based on that input. But your real
question is probably, “Why can’t | just do that
in the view code?”

You could; however, you don’t want to for two
reasons. First, you'll complicate your view
code because it now has two responsibilities:
managing the user interface and dealing

with the logic of how to control the model.
Second, you're tightly coupling your view

to the model. If you want to reuse the view
with another model, forget it. The controller
separates the logic of control from the view
and decouples the view from the model.

By keeping the view and controller loosely
coupled, you are building a more flexible and
extensible design, one that can more easily
accommodate change down the road.

525

the patterns in mvc

Understanding MVC as a set of Patterns

We've already suggested that the best path to learning MVC is to see it for what it is: a
set of patterns working together in the same design.

Let’s start with the model: the model uses Observer to keep the views and controllers
updated on the latest state changes. The view and the controller, on the other hand,
implement the Strategy Pattern. The controller is the strategy of the view, and it
can be easily exchanged with another controller if you want different behavior. The
view itself also uses a pattern internally to manage the windows, buttons, and other
components of the display: the Composite Pattern.

Let’s take a closer look:

Strategy

The view and controller implement the classic Strategy Pattern: the
view is an object that is configured with a strategy. The controller
provides the strategy. The view is concerned only with the visual
aspects of the application, and delegates to the controller any
decisions about the interface behavior. Using the Strategy Pattern also
keeps the view decoupled from the model because it is the controller
that is responsible for interacting with the model to carry out user
requests. The view knows nothing about how this gets done.

7

The user did
something

Q,Q\N\Q“ !

=

—

—
View

The display consists of a nested set of
windows, panels, buttons, text labels, and so
on. Each display component is a composite
(like a window) or a leaf (like a button). When
the controller tells the view to update, it
only has to tell the top view component, and
Composite takes care of the rest.

526

e

/

—

Controll chonge Your 0
ontrolier
state bSerV
Change your
diSPIGY class Player
play () {}
rip() {}
burn () {}
I've changed ——

T need your stafe
information

Model

7

The model implements the Observer Pattern
to keep interested objects updated when
state changes occur. Using the Observer
Pattern keeps the model completely
independent of the views and controllers. It
allows us to use different views with the same
model, or even use multiple views at once.

compound patterns

Observer

w All these observers will be
notified whenever state
Lhangcs in the model.

Observers

Observable

My state has
changed!

View

Controller

e

W pny obyect that

—= 1 intevested in state
thanges in the wodel

View rcg’ns{ers with the
model as an observer

I'd like to register
os an observer The model has no dependenties on

viewers or tontrollers!

Strategy K el s e

The user did . Cor the
i or
somerting / i{;‘:zk _C.?\{I:’s the dojeet
to
Thc s H\a‘t k":;'s :\:Ct at’,{:'\ons.
delegates 4, Controller handle the

'EO hahd’e 'U'\c

We can SWap in
user aetions.

€ view b ¢hanai
the Lonty Y ans ")

oller.

The view onl\/ worvries about ?rcscn{‘,a'(:ion. The controller Controller

worvies about translating user input to attions on the model.

GOWIPOSHQ Paim()/_\ The view is a tomposite

i S of GUI tomponents (\abe\)s,
| b Loms, et entry, ett)
The 'bo‘?—\cu\ Lom?ontn{:
tontains other tomponents)
whith tontain other

% .. ."‘I tomponents) and so on unti
S / you 9et Lo the leaf nodes:

you are here » 527

mvc and the dj view

Using MVC to control the beat...

It’s your time to be the DJ. When you’re a DJ it’s all about the beat. You might start
your mix with a slowed, down-tempo groove at 95 beats per minute (BPM) and
then bring the crowd up to a frenzied 140 BPM of trance techno. You'll finish off
your set with a mellow 80 BPM ambient mix.

How are you going to do that? You have to control the beat, and you’re going to
build the tool to get you there.

Meet the Java I View

Let’s start with the view of the tool. The view allows you to create
a driving drumbeat and tune its beats per minute...

A ?uls'ms bar shows the beat in veal time.

0 O O View

- -

SREMEERNEL 4 A display shows the curvent BPMs and is

automatically set whenever the BPM changes.
The view has two j
YaV'hS) ‘thc YQV{

Lor viewing the

skate of the model

and the \73"{" for

controlling things- & O © Contral
DJ Control \/ to BP »
E BEM: | 120 ou tan enter a spetitic BPM and clie

il S— the Set button to set a specifie beats
€ St) per minute, or You ean use the intrease
(<<)(> ; and detvease buttons for fine tuning,
Detveases Ineveases

£he BPM by the BPM by
one beat per one beat per
minuwte: minute.

528 Chapter 12

compound patterns

Here ave a few more ways to ¢ontrol the DJ View...

& O © Control You tan S{”ar{—' the Z:Z{l:: ‘H‘cshsuio‘7 & O O Control
DJ Control / beat kickin \I{,’a\,)c down the beat

thoosing the “DJ Scnera‘{:loh

menu \‘tC"‘ \V\ \\C
ConJCfO‘ ment

Notice Stop is Notice Start is /
disabled until You disabled after
U start the beat. the beat has
started.

All user actions are
scn‘E {‘,0 Jchc Lon{:\ro”cr.

The controller is in the wmiddle...
The controller sits between the view and
model. It takes your input, like selecting

Start from the DJ Control menu, and turns m

it into an action on the model to start the
The Lon'[‘xo"cr {:akcs mPu{:

beat generation. from the user and fngwcs
out how to translate that
into rcc\ues{:s on the model.

Controller

Let’s not forget about the model underneath it all...

You can’t see the model, but you can hear it. The
model sits underneath everything else, managing the
beat and driving the speakers.

%zo‘\'MOde Y,

The BeatModel is the heavt of
the application. [£ |m‘>|cmcn-{:s
the logie to start and stop

the beat, set the BP, and
generate the sound.

The model also allows us to /‘

obtain its eurrent state {:h\r‘ough
the 9etBPMO) method.

you are here » 529

the dj model, view, and controller

Putting the pieces together

The beat is set at 119 BPM and you
would like to intrease it to 120. ’

& O & Control
D) Control

Cliek the

Enter BPM:
/ intrease beat
€ See) button...

View ...whith vesults in the
tontvoller bcing invoked.

/ The eontroller asks
£he model o update
its BPM by one.

Controller

You see the beat bar
pulse every 1/2 setond.
\2 Because the BPM is 120 t
i .) hC
View view 9ets a beat notification
o | every 1/2. setond
* Current BPM: 120 \//
Thc view iﬁa{ed ViCW s y\o‘{‘,.l‘(:iCd ‘t\'\a‘{', ‘H’\C
o 120 BPM. BPM changed. [t calls

gc{:BPM() on the model state.

530 Chapter 12

compound patterns

Building the pieces

Okay, you know the model is responsible for maintaining all the data, state, and any
application logic. So what’s the BeatModel got in 1t? Its main job is managing the beat,
so it has state that maintains the current beats per minute and code to play an audio
clip to create the beat that we hear. It also exposes an interface that lets the controller
manipulate the beat and lets the view and controller obtain the model’s state. Also,
don’t forget that the model uses the Observer Pattern, so we also need some methods to
let objects register as observers and send out notifications.

Let’s check out the BeatModellnterface before
looking at the implementation:

Lee
. alled ak)
public interface BeatModelInterface { This ‘.’)‘J(’Sdc\ ” ~m5{—,anjc\3£°d'
oQ¢
void initialize(); -— BeatM

These are the methods
the tontroller will void on() ; & These methods turn the

use to divect the /_—“ beat generator on and off.
model based on user

. . id off ()
intevaction. void off() This method seks the beats per
L minute After it is called, the beat
void setBPM(int bpm); frequenty thanges immediately.
int getBPM() ; & The 9etBPMO method
turns the current BPMs,
methods allow retuer i
I::ssicwc an‘; the void registerObserver (BeatObserver o); ©¥ 0 if the 5"‘"3{3“ is off.
controller 4o et
state and o become void removeObserver (BeatObserver o) ;
observers.

void registerObserver (BPMObserver o) ;

void removeObserver (BPMObserver o) ;
} /\
This should look Lamiliav.
These methods allow objcc{:s

to rcgis{:cr as obsevvers for

s{:aJcc changcs-

We've split this into two kinds of observers:
observers that want to be notified on every
beat, and observers that just want to be
notified when the beats per minute change.

you are here » 531

the beat model

Now let’s have a look at the concrete BeatModel class
e implement the
F gca‘c/&lodcllv\{crﬁacc and Runnable.

public class BeatModel implements BeatModelInterface, Runnable {
List<BeatObserver> beatObservers = new ArrayList<BeatObserver>() ;

List<BPMObserver> bpmObservers = new ArrayList<BPMObserver>() ;

int bpm = 90,' /L ThCSC LIS+,5 "\Old ‘H’\C {-’wo kihds O£

Thread thread;
boolean stop = false; ObSCY‘VCV‘S (Bca't And BPM OBSCV‘VCV‘S).

e— We use these to start and
/ stop the beat thread.

Clip clip; & This is the audio clip we play for the beat The bpm variable holds the frequency
public void initialize() { of bca{s——b\/ dc-(:auljc, 1 B
try {
File resource = new File("clap.wav") ; 4’\

This method does setup

lip = (Cli AudioSystem.getLi Li .Info(Clip.cl ;
clip (Clip) AudioSystem.getLine (new Line.Info(Clip.class)) ‘Fo\r fhe beat track.

clip.open (AudioSystem.getAudioInputStream(resource)) ;

}

catch (Exception ex) { /* ... */}

}

public void on() { < The on() method seks the BPMs to the default,

bpm = 90; and stavts the thread to play the beat.

notifyBPMObservers () ; K_f/

thread = new Thread(this) ;

stop = false;

thread.start() ;

}

public void off() { < fnd off0) shuts it down by setting BPMs o

stopBeat () ; O and stopping the thread playing the beat.

stop = true;

}

ublic void run .

F while (!st0p)() {{ R The vun() method vuns the beat thread, playing
playBeat() ; a beat determined by the BPM, and notifies the
notifyBeatObservers () ; beat observers that a beat’s been played. The loop
try { Lerminates when we seleet Stop £rom the menu.

Thread.sleep (60000/getBPM()) ;
} catch (Exception e) {}

’ The setBPMO method is the way 1 o~
}ublic void setBPM(int bpm) { {‘)\c COV\‘{‘,Y‘O”CY‘ mani?ub‘{‘,cs Jd\c Reabg BaKe Cove]
P this.bpm = bpm; P beat. [t sets the bpm variable, and | This model uses an

notifyBPMObservers () ; notifies all BPM Observers that audio clip to generate

} the BPM has thanged. be?tt;. You car? ctheck

. s out the complete
pubi::uiﬁtbg:t:BPM() { &—\ The 9etBPMO method JuS‘t returns implementation of all

} the eurvent beats per minute. the DJ classes in the Java

source files, available on

// Code to register and notify observers the wickedlysmart.com

// Audio code to handle the beat site, or look at the code

} at the end of the chapter.

632 Chapter 12

compound patterns

The View

Now the fun starts; we get to hook up a view and visualize the BeatModel!

The first thing to notice about the view is that we’ve implemented it so that it is displayed in two
separate windows. One window contains the current BPM and the pulse; the other contains

the interface controls. Why? We wanted to emphasize the difference between the interface that
contains the view of the model and the rest of the interface that contains the set of user controls.
Let’s take a closer look at the two parts of the view:

We've separated
[\ the view of the
mOdC\ ‘crom ‘H\C
O O 6O View . view with the
— controls. Y
Current BPM: 120 l Lontrol
The DJ view e - DJ Control

displays two

as?‘:t:;,/s of the Enter BPM: |

BeatModel...
..the eurvent ..and a «bca.{: bar Y i}
bca‘{:s per {:ha£ Yulscs n s\/m'., /7 p
minute, Lrom the with the beat, driven _ .
BPMObserver by the BeatObserver his is £he pork of 4
notifications... notifieations. You use 4o ehape the bc bt

View passes ever eat. This

_ @ywnmu
Our BeatModel makes no assumptions about the view. The model is implemented using the
Observer Pattern, so it just notifies any view registered as an observer when its state changes.

The view uses the model’s API to get access to the state. We’ve implemented one type of view;
can you think of other views that could make use of the notifications and state in the BeatModel?

A light show that is based on the veal-time beat.

A textual view that displays a music genve based on the BPM (ambient, downbeat, tethno, ete.).

you are here » 533

the dj view

Implementing the View

The two parts of the view—the view of the model, and —
the view with the user interface controls—are displayed 1 | What we’ve done here is
in two windows, but live together in one Java class. We’ll WatC]fl lt- split ONE class into TWO,
first show you just the code that creates the view of the : showing you one part of

The code on these two
pages is just an outline!

model, which displays the current BPM and the beat bar. the view on this page, and the other
Then we’ll come back on the next page and show you just part on the next page. All this code is
the code that creates the user interface controls, which . really in ONE class—DJView.java. It’s
displays the BPM text entry field, and the buttons. : all listed at the end of the chapter.

DIView is an observer for both veal—time beats and BPM changes.

public class DJView implements ActionListener, BeatObserver, BPMObserver ({

B 11 f 1; .
eatModelInterface mode <~ The view holds a veferente to both the model and
ControllerInterface controller; .
the tontroller. The tontroller is only used by the

JFrame viewFrame; . .) .
: tontrol interface, which we'll 9o over in a sec...
JPanel viewPanel;

BeatBar beatBar; fcrc, we treate 3 few
JLabel bpmOutputLabel; omponents for the disFlay.

public DJView (ControllerInterface controller, BeatModelInterface model) {

this. troll = troller;
is.controller = controller 6\ The constructor SC{; a vefevente

this.model = model; f o i
o

model . registerObserver ((BeatObserver) this) ; to the tontroller an em)

and we store vefeventes to those

model . registerObserver ((BPMObserver) this) ;

} in the instante variables.
public void createView() { WCB ;'soo\rgglstcr as a BeatObsevver and
// Create all Swing components here 3 BPMObserver of the model.
}
e The updateBPMO) method is ealled when 3 state
public void updateBPM() { thange oteurs in the model. When that happens, we
int bpm = model.getBPM() ; — update the display with the eurvent BPM. We can get
if (bpm == 0) { +this value b\/ \rcqucs{:ing it dirccﬂ\/ From the model.
bpmOutputLabel .setText ("offline") ;
} else {
bpmOutputLabel.setText ("Current BPM: " + model.getBPM()) ;
}
}
—— Likewise, the updateBeat() method is called
public void updateBeat() { when the model starts a new beat. When that
beatBar.setValue (100) ; happens, we need to pulse our beat bar. We do
} this b‘/ SCH‘JV\S it to its maximum value (100)
} and letting it handle the animation of the pulse.

534 Chapter 12

compound patterns

lmplementing the View, continved...

Now, we’ll look at the code for the user interface controls part of the view. This view lets you control
the model by telling the controller what to do, which in turn, tells the model what to do. Remember,
this code is in the same class file as the other view code.

public class DJView implements ActionListener, BeatObserver, BPMObserver {
BeatModelInterface model;
ControllerInterface controller;
JLabel bpmLabel;
JTextField bpmTextField;
JButton setBPMButton;
JButton increaseBPMButton;
JButton decreaseBPMButton; }
JMenuBar menuBar;
JMenu menu;
JMenuItem startMenultem;
JMenultem stopMenultem;

® O O Control
DJ Control

public void createControls() { SN This method eveates all
// Create all Swing components here

the tontrols and

. : places them

chn the interface. 1t also takes tave of the mem. When
hi stop or start items ave thosen, the torresponding

Public void ensbleStopMemuIten() | methods are called on the tontroller.

stopMenuItem.setEnabled (true) ;

}

}
Al these methods allow the start and

public void disableStopMenuItem() { s-bo\? items in the menu o be enabled and
stopMenuItem.setEnabled (false) ; disabled. We'll see that the eontroller uses
} these to thange the interface.

public void enableStartMenuItem() {
startMenuItem.setEnabled (true) ;

}

i i is elicked.
public void disableStartMenuTtem() { This method is called when a button is elicked

startMenuItem.setEnabled (false) ;

} £ the Set button is
tlicked, then it is passed

public void actionPerformed (ActionEvent event) { on 1o the tontroller
if (event.getSource() == setBPMButton) { along with the new b?m.

int bpm = Integer.parselnt (bpmTextField.getText())
controller.setBPM (bpm) ;

} else if (event.getSource() == increaseBPMButton) ({ Likewise, i£ the intvrease or
controller.increaseBPM() ; i’\ detvease button is elicked,

} else if (event.getSource() == decreaseBPMButton) { g +his information is yasscd
controller.decreaseBPM() ; on to the tontroller.

}

you are here » 535

the dj controller

Now for the Controller

It’s time to write the missing piece: the controller. Remember the controller
is the strategy that we plug into the view to give it some smarts.

Because we are implementing the Strategy Pattern, we need to start with
an interface for any Strategy that might be plugged into the DJ View. We're
going to call it ControllerInterface.

Here are all £he
methods the view ean
eall on {:hc COh‘l:\ro“cv.

S These should look familiar to You after seeing

N the model’s intecface. You can stop and start

void increaseBPM() ; <~ the beat genevation and change the BPM.
&_

public interface ControllerInterface {
void start();

void stop() ;

This intevface is “richer” than the BeatModel
in{:cr‘(:adc betause You tan ad\')us{: the BPMs
with intvease and decvease.

void decreaseBPM() ;

void setBPM(int bpm) ;

Design Puzzle

You've seen that the view and controller together make use of the Strategy
Pattern. Can you draw a class diagram of the two that represents this pattern?

536 Chapter 12

compound patterns

And here’s the implementation of the controller: The controler implements

[— the Controllernterfate.

public class BeatController implements ControllerInterface {
BeatModelInterface model; The tontroller is the treamy stuff

DJView view; Q in the middle of the MVC Oreo
tookie, so it is the object that

public BeatController (BeatModelInterface model) ({ 5:‘[:5 10 hold on to the view and the
this.model = model; model and glues it all together.
view = new DJView (this, model) ; .
voller is passed the
view.createView() ; 6\ The eontro 14

model in the tonstruttor and

view.createControls () ; then eveates the view.

view.disableStopMenultem() ;
view.enableStartMenuItem() ;
model.initialize();

) When You thoose Start from the user
P intevfate menu, the tontroller tuens

public void start() { the model on and then alters the user
mt-:del .<.>n O; intevfate so that the Start menu
view.disableStartMenulItem() ; item is disabled and the Stop menu
view.enableStopMenultem() ; ikem is enabled.

}

public void stop() { £ Likewise, when You thoose Stop From
model.off () ; the menw, the tontroller turns the
view.disableStopMenultem() ; model off and alters the user interface
view.enableStartMenultem() ; so that the S‘EOP menu item is disabled

} and the Start menu item is enabled.

NOTE: the controller is

public void increaseBPM() { making the ih{:t“igcn{;

int bpm = model.getBPM() ; [§ the intvease button is tlicked, detisions for +he view.
model.setBPM(bpm + 1) ; the tontroller gets the turvent The view just knows how
} BPM from the model, adds one, 4o turn menu items on
and then sets a new BPM. and off; it doesn't know
public void decreaseBPM() { the situations in whith
int bpm = model.getBPM() ; it should disable Lhem.
model.setBPM(bpm - 1); Same thing heve, only we subtract
} one from the curvent BPM.

public void setBPM(int bpm) {

model . setBPM (bpm) ; Fih&"‘/; if the user interface is used 4o

} set an arbitrary BPM, the controller
} instructs the model 4o set its BPM.

you are here » 537

putting it all together

Putting it all together...

We've got everything we need: a model, a view, and a controller.
Now it’s time to put them all together! We’re going to see and

hear how well they work together.

All we need is a little code to get things started; it won’t take much:

public class DJTestDrive {

public static void main (String[] args) {

Fiest ev
BeatModelInterface model = new BeatModel () ; K eate 3

ControllerInterface controller = new BeatController (model) ;

And now for a test rum...

pass it the model. Reme

mode]...

IL, ...then treate a tontroller and

mbcr,

the tontroller eveates the view,
so we don't have to do that.

Make sure You have File Edit_Window Help LetTheBassKick
the file elip-wav at % java DJTestDrive

the top level of the %
tode ‘co\dc\’!

..and \/ou)“ see this.

Things fo try

o
2]

©

538

Start the beat generation with the Start menu item;
notice the controller disables the item afterward.

Use the text entry along with the increase and
decrease buttons to change the BPM. Notice how the
view display reflects the changes despite the fact that
it has no logical link to the controls.

Notice how the beat bar always keeps up with the beat
since it’s an observer of the model.

Put on your favorite song and see if you can match the
beat by using the increase and decrease controls.

Stop the generator. Notice how the controller disables
the Stop menu item and enables the Start menu item.

Chapter 12

éj

Run this...
0O 6 View e O O Control
‘_ DJ Control
Current BPM: 120 . Enter BPM:

€ Set I
(<<)(>>:‘2

compound patterns

Exploring Strategy

Let’s take the Strategy Pattern just a little further to get a
better feel for how it is used in MVC. We’re going to see
another friendly pattern pop up too—a pattern you’ll often
see hanging around the MVC trio: the Adapter Pattern.

Think for a second about what the D] View does: it displays
a beat rate and a pulse. Does that sound like something else?
How about a heartbeat? It just so happens that we have a
heart monitor class; here’s the class diagram:

HeartModel We've got 3 mekhod for getting
getHeartRate() the turvent heart vate:
registerBeatObserver() 3
registerBPMObserver() & And luckily, its developers knew about the
Il other heart methods Beat and BPM Obsevver intevfaces!

_ @RA\N
‘PQWEWR
It certainly would be nice to reuse our current view with the HeartModel, but we need a
controller that works with this model. Also, the interface of the HeartModel doesn’t match what
the view expects because it has a getHeartRate() method rather than a getBPM(). How would

you design a set of classes to allow the view to be reused with the new model? Jot down your
class design ideas below.

you are here » 539

mvc and adapter

Adapting the Model

For starters, we’re going to need to adapt the HeartModel to a BeatModel. If we don’t, the
view won’t be able to work with the model, because the view only knows how to getBPMY),
and the equivalent heart model method 1s getHeartRate(). How are we going to do this?
We’re going to use the Adapter Pattern, of course! It turns out that this is a common
technique when working with MVC: use an adapter to adapt a model to work with existing
controllers and views.

Here’s the code to adapt a HeartModel to a BeatModel: We need to implement the

\/_\ target interface —in this
tase, BeatModellnterface.
public class HeartAdapter implements BeatModelInterface {
HeartModelInterface heart;

public HeartAdapter (HeartModelInterface heart) ({ \ Heve, we store a rc‘(:crcv\(,c
this.heart = heart;

) k_/ 4o +he heart model.

public void initialize() {}

\ We don't know what these would

public void on() {} . do 1o a heart, but it sounds seary-

) . {h as “ o s."
public void off () {} K/ So we'll Jus{: leave them as ‘no op
Publ:l.c int getBPM() { WhCV\ SC‘{:BPM() is Ca”cd, WC)" \)MS‘{',
return heart.getfesrtRate(); = tramlate it bo 3 getheartRateD)
} ¢all on the heart model.

public void setBPM(int bpm) {} é——\ We dor't viant 4o do Ehis on a heavt/

.) . « ”
public void registerObserver (BeatObserver o) { Aﬁa"’" let's leave it asa “no °p

heart.registerObserver (0) ;

public void removeObserver (BeatObserver o) ({

v observer methods.
heart.removeObserver (0) ; Heve are ow

We just delegate them to the
wrapped heart model.

public void registerObserver (BPMObserver o) {
heart.registerObserver (o) ;

public void removeObserver (BPMObserver o) {
heart.removeObserver (0) ;

540 Chapter 12

compound patterns

Now we’re ready for a HeartController

With our HeartAdapter in hand, we should be ready to create a controller and get
the view running with the HeartModel. Talk about reuse!

The HeartController implements
the ControllerInterface, just
like the BeatController did.
public class HeartController implements ControllerInterface ({

HeartModelInterface model;

DJView view;

Like before, the

public HeartController (HeartModelInterface model) { tontroller eveates the
this.model = model; view and gets everything
view = new DJView(this, new HeartAdapter (model)) ; 5|ucd {:ogc{:hcr.
view.createView() ;
v:?.ew.c%'eateControls (O Theve is one Lhahgc? we are ?asscd
view.disableStopMenuItem() ; a2 HeartModel, not a BeatModel...
view.disableStartMenulItem() ;

} ...and we need to wrap that

b1 (4 start model with an ada{?‘{:ﬂ' bcco\rc
public void start() {} we hand it 1o the view.
public void stop() {} Finally, the HeartController disables the

menu items betause they aven't needed.
public void increaseBPM() {}

public void decreaseBRi() U é\ﬂ\crc’s not a lot to do heve; after all,
we tan't veally tontrol hearts like we

public void setBPM(int bpm) {} ¢an beat machines.

And that’s it! Now it’s time for some test code...

public class HeartTestDrive {

public static void main (String[] args) {
HeartModel heartModel = new HeartModel () ;
ControllerInterface model = new HeartController (heartModel) ;
}
} I
All we need to do is treate the
tontroller and pass it a heart monitor.

you are here » 541

test the heart model

And now for a test rum...

File Edit Window Help CheckMyPulse

% java HeartTestDrive
%

...and \/ou'" see this. ’\/

Things fo fry

542

o

© 06 0 O

Notice that the display works great with a heart!
The beat bar looks just like a pulse. Because the
HeartModel also supports BPM and Beat Observers,
we can get beat updates just like with the DJ beats.

As the heartbeat has natural variation, notice the
display is updated with the new beats per minute.

Each time we get a BPM update, the adapter is doing
its job of translating getBPM() calls to getHeartRate()
calls.

The Start and Stop menu items are not enabled
because the controller disabled them.

The other buttons still work but have no effect
because the controller implements no ops for them.
The view could be changed to support the disabling
of these items.

Chapter 12

éj

Run this...

O O O Control

DJ Control

Enter BPM:
Set

<< -

8 0O 6 view

r——
Current BPM: 68 -

Nice healthy
heart vate.

Q: It seems like you are really hand-
waving the fact that the Composite
Pattern is really in MVC. Is it really there?

A: Yes, Virginia, there really is a
Composite Pattern in MVC. But, actually,
this is a very good question. Today GUI
packages, like Swing, have become so
sophisticated that we hardly notice the
internal structure and the use of Composite
in the building and update of the display.
It's even harder to see when we have web
browsers that can take markup language
and convert it into a user interface.

Back when MVC was first discovered,
creating GUIs required a lot more manual
intervention and the pattern was more
obviously part of the MVC.

Q: Does the controller ever implement
any application logic?

A: No, the controller implements behavior
for the view. It is the smarts that translates
the actions from the view to actions on the
model. The model takes those actions and
implements the application logic to decide
what to do in response to those actions. The
controller might have to do a little work to
determine what method calls to make on

the model, but that's not considered the
“application logic.” The application logic is the
code that manages and manipulates your
data and it lives in your model.

Q: I've always found the word “model”
hard to wrap my head around. | now

get that it’s the guts of the application,
but why was such a vague, hard-to-
understand word used to describe this
aspect of MVC?

therejare no
Dumb Questions

A: When MVC was named they needed a
word that began with a “M” or otherwise they
couldn’t have called it MVC.

But seriously, we agree with you. Everyone
scratches their head and wonders what a
model is. But then everyone comes to the
realization that they can’t think of a better
word either.

Q,: You've talked a lot about the state
of the model. Does this mean it has the
State Pattern in it?

A: No, we mean the general idea of state.
But certainly some models do use the State
Pattern to manage their internal states.

Q,: I've seen descriptions of MVC
where the controller is described as

a “mediator” between the view and the
model. Is the controller implementing the
Mediator Pattern?

A: We haven't covered the Mediator
Pattern (although you'll find a summary of
the pattern in the appendix), so we won't go
into too much detail here, but the intent of
the mediator is to encapsulate how objects
interact and promote loose coupling by
keeping two objects from referring to each
other explicitly. So, to some degree, the
controller can be seen as a mediator, since
the view never sets state directly on the
model, but rather always goes through the
controller. Remember, however, that the
view does have a reference to the model to
access its state. If the controller were truly a
mediator, the view would have to go through
the controller to get the state of the model
as well.

compound

Q: Does the view always have to ask
the model for its state? Couldn’t we use
the push model and send the model’s
state with the update notification?

A: Yes, the model could certainly send

its state with the notification, and we could
do something similar with the BeatModel

by sending just the state that the view

is interested in. If you remember the
Observer Pattern chapter, however, you'll
also remember that there are a couple of
disadvantages to this. If you don't, go back
to Chapter 2 and have a second look. The
MVC model has been adapted to a number
of similar models—in particular, for the web’s
browser/server environment—so you'll find a
lot of exceptions to the rule out there.

Q- If | have more than one view, do |
always need more than one controller?

A: Typically, you need one controller
per view at runtime; however, the same

controller class can easily manage many
views.

Q,: The view is not supposed to
manipulate the model; however, | noticed
in your implementation that the view has
full access to the methods that change
the model’s state. Is this dangerous?

A: You are correct; we gave the view full
access to the model's set of methods. We
did this to keep things simple, but there may
be circumstances where you want to give the
view access to only part of your model’'s API.
There’s a great design pattern that allows
you to adapt an interface to provide only a
subset. Can you think of it?

543

your

Most of my user
interfaces are

actually browser-based.
Is any of this going to
help me?

Yes!

MVC s so useful that it has been adapted to many web
frameworks. Of course, the web works differently than your
standard application, so there are several different approaches
to applying the MVC Pattern to the web.

Web applications have a client side (the browser) and a server
side. Given that, we can make different design tradeoffs based
on where the model, the view, and the controller reside. In
thin client approaches, the model, most of the view, and the
controller all reside in the server, with the browser providing
a way to display the view, and to get input from the browser
to the controller. Another approach is the single page application,
where almost all of the model, view, and controller reside on
the client side. Those are the two ends of the spectrum, and
you’ll find frameworks that vary the extent to which each
component—that is the model, the view, and the controller—
reside on the client or the server, along with hybrid models
where some components are shared across the client and server.

There are many popular web MVC frameworks, like Spring
Web MVC, Django, ASPNET MVC, Angular]S, Ember]S,
JavaScriptMVC, Backbone, and no doubt more on the way.
For the most part each framework has its own unique way it
maps the model, the view, and the controller across the client
and the server. Now that you know the MVC Pattern, you
will have no problem adapting your knowledge to whatever
framework you choose to use.

544

Tools for your Pesign Toolbox

You could impress anyone with your design toolbox. Wow, look

at all those principles, patterns, and now, compound patterns!

00 Peintiples
sulate what varies:

Entay

Favor t,omvos'\’c;\on over

Program to 'm\;cvgaccs,
‘\m\?\emcn’c,a{:\ov\&

\ed desiyns
we & \ooselY LWY. '
it:::ccc::\)")cc\:s that nkecatt

\d be open Lor extension
3 or mod\‘c'\f,a{i\on-

\'\\'\cr'\{'ﬁ"“'

ot

Classes sh
\)\A‘h f’\oSCd n
Joskrattions Do

Degerd o tontrete tlasses:

dc\’f—"d on
only talk £ Y

o Sriends:

Don't eall us) we\l eall yor
on

A tlass should
Lo thandt:

00 Patterrs

0 Dasits
P\\)S‘\'Xac' on

Encavsu\a{f\""
Po\\’mdf\’\‘\s'"
|nhevitance

ave on\‘[one reason

We have a new

ate o€ I mvC
ide @ su‘f"°‘3. LS{CSOY\/.
o) PYO:\!\(;C?E: another o\)\)cﬁ,ﬂ 4o s a Lomyound
ceno! .
?(Y::n:xo\ attess 0 v pattern.
\¢

C Yo\md Pajchcws 4)

- Lombines
Compound PEE™ 70
P(va a so\u‘\’)‘?"
¥

compound patterns

% BULLET POINTS —

= The Model View Controller
(MVC) Pattern is a compound
pattern consisting of the
Observer, Strategy, and
Composite Patterns.

= The model makes use of the
Observer Pattern so that it
can keep observers updated
yet stay decoupled from them.

= The controller is the Strategy
for the view. The view can use
different implementations of
the controller to get different
behavior.

= The view uses the Composite
Pattern to implement
the user interface, which
usually consists of nested
components like panels,
frames, and buttons.

® These patterns work together
to decouple the three players
in the MVC model, which
keeps designs clear and
flexible.

= The Adapter Pattern can be
used to adapt a new model
to an existing view and
controller.

= MVC has been adapted to
the web.

= There are many web MVC
frameworks with various
adaptations of the MVC
pattern to fit the client/server
application structure.

545

you are here »

exercise solutions

SER Exercise Solutions

_ % harpen your pencil

A solutmn The QuackCounter is a Quackable too. When we change
Quackable to extend QuackObservable, we have to change every

class that implements Quackable, including QuackCounter:

aCkCovm{:cr is Quackab\c, so
g ?:w its a &uack0bscrvab\c +oo.

public class QuackCounter implements Quackable {
Quackable duck;
static int numberOfQuacks; Here's the duck that QuackCounter
/\ is dccov-a{:ing. [+'s this duek that
public QuackCounter (Quackable duck) { “3“7 needs to handle the observable
. methods.
this.duck = duck;

o Al of this tode 1s the
same 3s the previous

. ev.
numberOfQuacks++; vevsion of Qua(,kCoun‘E

duck.quack() ;

public static int getQuacks() {

return numberOfQuacks;

public void registerObserver (Observer observer) {

duck.registerObserver (observer) ; V__ Here are the £
wo
} QuackObservable
L/' methods. Notice that
public void notifyObservers() { e JuS{: dclcga'l:c both

ealls to the duck
that we've decorating,

duck.notifyObservers () ;

546 Chapter 12

compound patterns

_ % harpen Your pencil

A solutwn What if our Quackologist wants to observe an entire flock? What does that
mean anyway? Think about it like this: if we observe a composite, then we're
observing everything in the composite. So, when you register with a flock, the
flock composite makes sure you get registered with all its children, which may
include other flocks.

Flotk is a Quatkable, so now
\/\ s a Qu&tkObscrvablc o0
public class Flock implements Quackable {
List<Quackable> quackers = new ArrayList<Quackable>() ;
_ _ Here are the Quackables
public void add(Quackable duck) { that ave in the Floek.
ducks.add (duck) ;

public void quack() {
Iterator<Quackable> iterator = quackers.iterator();
while (iterator.hasNext()) {
Quackable duck = iterator.next();

duck.quack() ;

When You vegjster as an Observer
[with the Flotk, you actually

9get vcgis’ccrcd with cvc.r\l{',\.\mg

that's [N the flotk, whith is

Quatkable, whether it's 3
F\oc\(.

cvc\r\[

ublic void registerObserver (Observer observer
P g () { dutk or another

Iterator<Quackable> iterator = ducks.iterator();

while (iterator.hasNext()) { We iterate through all the
Quackable duck = iterator.next() ; Quatkables in the Floek
duck.registerObserver (observer); &— and delegate the eall to
eath Quackable. [£ the
Quatkable is another Floek,
} it will do the same.

public void notifyObservers() { }

'Q, Each Quackable does its own no‘ti‘pica‘(:ion, so
Floek doesn’t have +o worry about it. This
happens when Flock delegates quack() to each
Quackable in the Flock.

you are here » 547

exercise solutions

_ qaoharpen your pencil
Af ySoIEtion

We're still directly instantiating Geese by relying on concrete classes.
Can you write an Abstract Factory for Geese? How should it handle

creating “goose ducks”?

You tould add a eveateGooseDuek() method to the existing Duck Fattories. O,
you tould treate a completely separate Factory for eveating families of Geese.

% Design

Puzz]e Solution

You've seen that the view and controller together make use of the Strategy

Pattern. Can you draw a class diagram of the two that represents this pattern?

7N

Thc Vicw dc'caafcs
behavior o the
tontroller. The
behavior it
delegates is how +o
eontrol the model
bascd on user

inPu‘l:.

ﬂhc

DJView

controller

Con{ro\\cvln{crﬁacc

createView()
updateBPM()
updateBeat()
createControls()
enableStopMenultem()
disableStopMenultem()
enableStartMenultem()
disableStartMenultem()
actionPerformed()

<<interface>> .
Controllerinterface 1S ‘U\c mJCCY"ca(’i
setBPM() fhat all contrete
increaseBPM() (,on{;ro“CY'S
decreaseBPM()]m\ylemcv&- This
AN s -H»\C S{Y‘a{ies\l
: nterfate.
Controller i K)
setBPM()
increaseBPM() We ean P'ug
decreaseBPM() in di«cxccren{
tontrollers
to provide
different
bchaviov-s ‘Fo\r'
the view.

548 Chapter 12

compound

Here's the complete implementation of the DJView. It shows all the
MIDI code to generate the sound, and all the Swing components to
create the view. You can also download this code at
https://www.wickedlysmart.com. Have fun!

package headfirst.designpatterns.combined.djview;
public class DJTestDrive {
public static void main (String[] args) {

BeatModelInterface model = new BeatModel () ;

ControllerInterface controller = new BeatController (model) ;

The Beat Model

package headfirst.designpatterns.combined.djview;

public interface BeatModelInterface {

void initialize();

void on() ;

void off () ;

void setBPM(int bpm) ;

int getBPM() ;

void registerObserver (BeatObserver o) ;
void removeObserver (BeatObserver o) ;
void registerObserver (BPMObserver o) ;

void removeObserver (BPMObserver o) ;

549

http://www.wickedlysmart.com

ready-bake code:

package headfirst.designpatterns.combined.djview;

import
import
import
import
import

public

550

java.util.*;
javax.sound.sampled.AudioSystem;
javax.sound.sampled.Clip;
java.io.*;
javax.sound.sampled.Line;

class BeatModel implements BeatModelInterface, Runnable {
List<BeatObserver> beatObservers = new ArrayList<BeatObserver>() ;
List<BPMObserver> bpmObservers = new ArrayList<BPMObserver>() ;
int bpm = 90;

Thread thread;

boolean stop = false;

Clip clip;

public void initialize() {

public

public

try {
File resource = new File("clap.wav");
clip = (Clip) AudioSystem.getLine (new Line.Info(Clip.class));
clip.open (AudioSystem.getAudioInputStream(resource)) ;

}

catch (Exception ex) ({
System.out.println("Error: Can’t load clip");
System.out.println (ex) ;

void on() {

bpm = 90;
notifyBPMObservers () ;
thread = new Thread(this) ;
stop = false;
thread.start () ;

void off () {
stopBeat () ;
stop = true;

compound

. :
Reapy Bake
| Cove

public void run() {
while (!stop) {
playBeat() ;
notifyBeatObservers() ;
try {
Thread.sleep (60000/getBPM()) ;
} catch (Exception e) {}

}

public void setBPM(int bpm) {
this.bpm = bpm;
notifyBPMObservers () ;
}

public int getBPM() {
return bpm;

}

public void registerObserver (BeatObserver o) {
beatObservers.add (o) ;

}

public void notifyBeatObservers() {
for (int i = 0; i < beatObservers.size(); i++) {
BeatObserver observer = (BeatObserver)beatObservers.get (i)
observer.updateBeat() ;

}

public void registerObserver (BPMObserver o) {
bpmObservers.add (o) ;
}

public void notifyBPMObservers () {
for (int i = 0; i < bpmObservers.size(); i++) {
BPMObserver observer = (BPMObserver)bpmObservers.get(i) ;
observer.updateBPM() ;

551

ready-bake code:

public void removeObserver (BeatObserver o) ({
int i = beatObservers.indexOf (o) ;
if (1 >=0) {
beatObservers.remove (1) ;

}

public void removeObserver (BPMObserver o) {
int i = bpmObservers.indexOf (o) ;
if (1 >=0) {
bpmObservers.remove (i) ;

}

public void playBeat() {
clip.setFramePosition (0) ;
clip.start();

public void stopBeat() {

clip.setFramePosition (0) ;
clip.stop() ;

552

compound

The View

v
package headfirst.designpatterns.combined.djview;

public interface BeatObserver ({

void updateBeat() ;

package headfirst.designpatterns.combined.djview;

public interface BPMObserver {
void updateBPM() ;

package headfirst.designpatterns.combined.djview;

import java.awt.¥*;
import java.awt.event.*;
import javax.swing.¥*;

public class DJView implements ActionListener, BeatObserver, BPMObserver {
BeatModelInterface model;
ControllerInterface controller;
JFrame viewFrame;
JPanel viewPanel;
BeatBar beatBar;
JLabel bpmOutputLabel;
JFrame controlFrame;
JPanel controlPanel;
JLabel bpmLabel;
JTextField bpmTextField;
JButton setBPMButton;
JButton increaseBPMButton;
JButton decreaseBPMButton;
JMenuBar menuBar;
JMenu menu;
JMenulItem startMenultem;
JMenultem stopMenultem;

public DJView (ControllerInterface controller, BeatModelInterface model) {
this.controller = controller;
this.model = model;
model . registerObserver ((BeatObserver) this) ;
model . registerObserver ((BPMObserver) this) ;

\ Reany Bake

553

ready-bake code:

public void createView() {
// Create all Swing components here
viewPanel = new JPanel (new GridLayout(l, 2));
viewFrame = new JFrame ("View") ;
viewFrame.setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;
viewFrame.setSize (new Dimension (100, 80));
bpmOutputLabel = new JLabel ("offline", SwingConstants.CENTER) ;
beatBar = new BeatBar (),
beatBar.setValue (0) ;
JPanel bpmPanel = new JPanel (new GridLayout(2, 1));
bpmPanel . add (beatBar) ;
bpmPanel . add (bpmOutputLabel) ;
viewPanel.add (bpmPanel) ;
viewFrame.getContentPane () .add (viewPanel, BorderLayout.CENTER) ;
viewFrame.pack() ;
viewFrame.setVisible (true) ;

public void createControls() ({
// Create all Swing components here
JFrame.setDefaultLookAndFeelDecorated (true) ;
controlFrame = new JFrame ("Control") ;
controlFrame.setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;
controlFrame.setSize (new Dimension (100, 80));

controlPanel = new JPanel (new GridLayout(l, 2));

menuBar = new JMenuBar () ;
menu = new JMenu("DJ Control") ;
startMenuItem = new JMenultem("Start");
menu.add (startMenuItem) ;
startMenuItem.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent event) {
controller.start() ;
}
|
stopMenultem = new JMenuItem("Stop") ;
menu.add (stopMenultem) ;
stopMenultem.addActionListener (new ActionListener() ({
public void actionPerformed (ActionEvent event) {
controller.stop() ;
}
|
JMenultem exit = new JMenuItem("Quit") ;
exit.addActionlListener (new ActionListener() {
public void actionPerformed (ActionEvent event) {
System.exit (0) ;
}
|

554

compound

. |
Reany Bake
Cove

menu.add (exit) ;
menuBar.add (menu) ;
controlFrame.setJMenuBar (menuBar) ;

bpmTextField = new JTextField(2) ;

bpmLabel = new JLabel ("Enter BPM:", SwingConstants.RIGHT) ;
setBPMButton = new JButton ("Set") ;
setBPMButton.setSize (new Dimension (10,40));
increaseBPMButton = new JButton (">>");

decreaseBPMButton = new JButton ("<<");
setBPMButton.addActionListener (this) ;
increaseBPMButton.addActionListener (this) ;
decreaseBPMButton.addActionListener (this) ;

JPanel buttonPanel = new JPanel (new GridLayout(l, 2));
buttonPanel.add (decreaseBPMButton) ;
buttonPanel.add (increaseBPMButton) ;

JPanel enterPanel = new JPanel (new GridLayout(l, 2));
enterPanel . add (bpmLabel) ;

enterPanel . add (bpmTextField) ;

JPanel insideControlPanel = new JPanel (new GridLayout(3, 1));
insideControlPanel.add (enterPanel) ;

insideControlPanel.add (setBPMButton) ;

insideControlPanel.add (buttonPanel) ;

controlPanel.add (insideControlPanel) ;

bpmLabel . setBorder (BorderFactory.createEmptyBorder (5,5,5,5)) ;
bpmOutputLabel . setBorder (BorderFactory.createEmptyBorder(5,5,5,5)) ;

controlFrame.getRootPane () . setDefaultButton (setBPMButton) ;
controlFrame.getContentPane () .add (controlPanel, BorderLayout.CENTER) ;

controlFrame.pack() ;
controlFrame.setVisible (true) ;

public void enableStopMenulItem() {
stopMenuItem.setEnabled (true) ;

public void disableStopMenuItem() {
stopMenuItem.setEnabled (false) ;

555

ready-bake code:

public void enableStartMenuItem() {
startMenultem. setEnabled (true) ;
}

public void disableStartMenulItem() {
startMenultem. setEnabled (false) ;
}

public void actionPerformed (ActionEvent event) ({
if (event.getSource() == setBPMButton) ({
int bpm = 90;
String bpmText = bpmTextField.getText() ;

if (bpmText == null || bpmText.contentEquals("")) {
bpm = 90;
} else {

bpm = Integer.parselnt (bpmTextField.getText()) ;
}
controller.setBPM (bpm) ;

} else if (event.getSource() == increaseBPMButton) {
controller.increaseBPM() ;
} else if (event.getSource() == decreaseBPMButton) {

controller.decreaseBPM() ;

}

public void updateBPM() {
int bpm = model.getBPM() ;
if (bpm == 0) {
bpmOutputLabel.setText ("offline") ;
} else {

bpmOutputLabel.setText ("Current BPM: " + model.getBPM()) ;

public void updateBeat() {
beatBar.setValue (100) ;
}
}

The Controller

package headfirst.designpatterns.combined.djview;

public interface ControllerInterface {
void start();
void stop() ;
void increaseBPM() ;
void decreaseBPM() ;
void setBPM(int bpm) ;

556

compound

Reapy Baxe
| Cope

package headfirst.designpatterns.combined.djview;

public class BeatController implements ControllerInterface {
BeatModelInterface model;
DJView view;

public BeatController (BeatModelInterface model) {
this.model = model;
view = new DJView (this, model) ;
view.createView() ;
view.createControls() ;
view.disableStopMenultem() ;
view.enableStartMenultem() ;
model.initialize() ;

public void start() {
model.on() ;
view.disableStartMenuItem() ;
view.enableStopMenulItem() ;

public void stop() {
model.off () ;
view.disableStopMenultem() ;
view.enableStartMenulItem() ;

public void increaseBPM() {
int bpm = model.getBPM() ;
model.setBPM(bpm + 1) ;

public void decreaseBPM() {
int bpm = model.getBPM() ;
model.setBPM(bpm - 1) ;

public void setBPM(int bpm) {
model . setBPM (bpm) ;

557

ready-bake code:

The Heart Model

package headfirst.designpatterns.combined.djview;
public class HeartTestDrive ({

public static void main (String[] args) {
HeartModel heartModel = new HeartModel () ;
ControllerInterface model = new HeartController (heartModel) ;

package headfirst.designpatterns.combined.djview;

public interface HeartModelInterface {
int getHeartRate() ;
void registerObserver (BeatObserver o) ;
void removeObserver (BeatObserver o) ;
void registerObserver (BPMObserver o) ;
void removeObserver (BPMObserver o) ;

package headfirst.designpatterns.combined.djview;
import java.util.*;

public class HeartModel implements HeartModelInterface, Runnable ({
List<BeatObserver> beatObservers = new ArrayList<BeatObserver>() ;
List<BPMObserver> bpmObservers = new ArrayList<BPMObserver>() ;
int time = 1000;
int bpm = 90;
Random random = new Random(System.currentTimeMillis()) ;
Thread thread;

public HeartModel() {
thread = new Thread(this)
thread.start() ;

}

public void run() {

int lastrate = -1;

for(;;) {
int change = random.nextInt (10);
if (random.nextInt(2) == 0) {

change = 0 - change;
}
int rate = 60000/ (time + change) ;

558

compound

if (rate < 120 && rate > 50) {

time += change; o eaq) :)
notifyBeatObservers() ; Reaw BaKe
if (rate '= lastrate) { f

lastrate = rate;
notifyBPMObservers () ;
}
}
try {
Thread.sleep (time) ;
} catch (Exception e) {}
}
}
public int getHeartRate () {
return 60000/time;

}

public void registerObserver (BeatObserver o) {
beatObservers.add (o) ;
}

public void removeObserver (BeatObserver o) ({
int i = beatObservers.indexOf (o) ;
if (1 >= 0) {
beatObservers.remove (i) ;
}
}

public void notifyBeatObservers () {
for(int i = 0; i < beatObservers.size(); it++) {
BeatObserver observer = (BeatObserver)beatObservers.get (i) ;
observer.updateBeat () ;

}

public void registerObserver (BPMObserver o) {
bpmObservers.add (o) ;
}

public void removeObserver (BPMObserver o) {
int i = bpmObservers.indexOf (o) ;
if (1 >= 0) {
bpmObservers.remove (i) ;
}
}

public void notifyBPMObservers() {
for(int i = 0; i < bpmObservers.size(); i++) {
BPMObserver observer = (BPMObserver)bpmObservers.get (i) ;
observer.updateBPM() ;

559

ready-bake code:

The Heart Adapter

package headfirst.designpatterns.combined.djview;

public class HeartAdapter implements BeatModelInterface {
HeartModelInterface heart;

public HeartAdapter (HeartModelInterface heart) {
this.heart = heart;

public void initialize() {}

public void on() {}

public void off() {}

public int getBPM() {
return heart.getHeartRate() ;

public void setBPM(int bpm) {}

public void registerObserver (BeatObserver o) {

heart.registerObserver (o) ;

public void removeObserver (BeatObserver o) {
heart.removeObserver (o) ;

public void registerObserver (BPMObserver o) {
heart.registerObserver (o) ;

public void removeObserver (BPMObserver o) {
heart.removeObserver (0) ;

560

compound

The Controller Reay Bake

| Cove

package headfirst.designpatterns.combined.djview;
public class HeartController implements ControllerInterface {
HeartModelInterface model;
DJView view;
public HeartController (HeartModelInterface model) {
this.model = model;
view = new DJView(this, new HeartAdapter (model)) ;
view.createView() ;
view.createControls() ;

view.disableStopMenuItem() ;
view.disableStartMenultem() ;

public void start() {}

public void stop() {}

public void increaseBPM() {}

public void decreaseBPM() {}

public void setBPM(int bpm) {}

561

13 better living with patterns

 Patterns in the * M
Real World

Ahhhh, now you’re ready for a bright new world filled with
Design Patterns. But, before you go opening all those new doors of opportunity, we
need to cover a few details that you'll encounter out in the real world—that'’s right, things
get a little more complex than they are here in Objectville. Come along, we’ve got a nice
guide to help you through the transition on the next page...

this is a new chapter 563

Wh ear T uiae

o Guide to @@;%

itLt jDesign Pattewns

g with pattewns nt

7 he Olojectvi

Better Living w
ith tips & t’Licl(S)(om livin

Lle ’Leal

p [ease accept 0

[d. In this guiale you will

Aeﬁnition of a

wot

ns about the

mmon misconceptio

& Leamn the a” too o
“ibesign Pattewn- i

& Discover those n@f:ty i)esign

get one.
gn Pattewn at the wrong time:

o ﬁvoio{ the ombaassment of using @ Desi

why you just have to

patte’ms catalogs arwl

ns whete tLley L)e[ong.

attewns classiﬁcatio

& Leamn how to lwep p
. voad out quic!c

euns s tjust
attetns witer t00-

& See that cliscoveling patt
JJow To ancl become ap

Four is ’zevealw[.

e tuue ialentity of the mystenious gang of
L)ooks any patte’ms user

& e thete leen th

& J(eep up with the neigllbo%s/tl'w coﬁ[ee table

must own-

lce a Zen master.

& Leamnto train Yyout minol li

e Win ﬁiends anol inﬂuence devel

VOC&L)LL ary-

your patte’ms

opets bg imp’wving

5
64 Chapter 13

better living with patterns

Pesign Pattern defined

We bet you've got a pretty good idea of what a pattern is after reading this book. But
we’ve never really given a definition for a Design Pattern. Well, you might be a bit
surprised by the definition that is in common use:

A Pattern is a solution to a problem in a context.

That’s not the most revealing definition, is it? But don’t worry, we’re going to
step through each of these parts: context, problem, and solution: Example: You have a

f tollettion of ob")cc{',s-

The context is the situation in which the pattern applies. This should be

a recurring situation. You need to step
{:hrough the ob\)cC{:s

The problem refers to the goal you are trying to achieve in this context, without exposing

but it also refers to any constraints that occur in the context. S the eollection’s

The solution is what you're after: a general design that anyone can implementation.

apply that resolves the goal and set of constraints.

~ Encapsulate the

iteration into g
separate ¢lass.
This 1s one of those definitions that takes a while to sink in, but take it one step
at a time. Try thinking of it like this:

“If you find yourself in a context with a problem that has a goal that
is affected by a set of constraints, then you can apply a design that
resolves the goal and constraints and leads to a solution.”

Now, this seems like a lot of work just to figure out what a Design Pattern

1s. After all, you already know that a Design Pattern gives you a solution to a
common recurring design problem. What is all this formality getting you? Well,
you’re going to see that by having a formal way of describing patterns we can
create a catalog of patterns, which has all kinds of benefits.

you are here » 565

design pattern defined

T've been thinking about
the three-part definition,

and I don't think it defines a
pattern at all.

You might be right; let’s think about this a bit... We need a problem, a
solution, and a context:

Problem: How do I get to work on time?
Context: I've locked my keys in the car.

Solution: Break the window, get in the car, start the
engine, and drive to work.

We have all the components of the definition: we have a problem,
which includes the goal of getting to work, and the constraints of time,
distance, and probably some other factors. We also have a context in
which the keys to the car are inaccessible. And we have a solution that
gets us to the keys and resolves both the time and distance constraints.
We must have a pattern now! Right?

_ @&RA»:
‘PQWEWR
We followed the Design Pattern definition and defined a problem, a context, and

a solution (which works!). Is this a pattern? If not, how did it fail? Could we fail the
same way when defining an OO Design Pattern?

566 Chapter 13

Looking more closely at the
Pesign Pattern definition

Our example does seem to match the Design Pattern
definition, but it isn’t a true pattern. Why? Tor starters,
we know that a pattern needs to apply to a recurring
problem. While an absent-minded person might lock
his keys in the car often, breaking the car window
doesn’t qualify as a solution that can be applied over
and over (or at least isn’t likely to if we balance the

goal with another constraint: cost).

It also fails in a couple of other ways: first, it isn’t easy
to take this description, hand it to someone, and have
him apply it to his own unique problem. Second, we’ve
violated an important but simple aspect of a pattern:
we haven’t even given it a name! Without a name, the
pattern doesn’t become part of a vocabulary that can

be shared with other developers.

Luckily, patterns are not described and documented as
a simple problem, context, and solution; we have much
better ways of describing patterns and collecting them

together into patterns catalogs.

Q: Am | going to see pattern
descriptions that are stated as a problem,

a context, and a solution?

< Pattern descriptions, which you'll
typically find in patterns catalogs, are usually
a bit more revealing than that. We're going
to look at patterns catalogs in detail in just
a minute; they describe a lot more about a
pattern’s intent and motivation and where it
might apply, along with the solution design
and the consequences (good and bad) of
using it.

with

therejare no
Dumb Questions

Q: Is it okay to slightly alter a pattern’s
structure to fit my design? Or am | going
to have to go by the strict definition?

A: Of course you can alter it. Like design
principles, patterns are not meant to be laws
or rules; they are guidelines that you can
alter to fit your needs. As you've seen, a lot
of real-world examples don't fit the classic
pattern designs.

However, when you adapt patterns, it
never hurts to document how your pattern
differs from the classic design—that way,
other developers can quickly recognize the
patterns you're using and any differences

between your pattern and the classic pattern.

Next time someone
tells you a pattern is a
solution to a problem in a context, just
nod and smile. You know what they mean,
even if it isn't a definition sufficient to
describe what a Design Pattern really is.

Q: Where can | get a patterns catalog?

A: The first and most definitive patterns
catalog is Design Patterns: Elements of
Reusable Object-Oriented Software, by
Gamma, Helm, Johnson, and Vlissides
(Addison Wesley). This catalog lays out 23
fundamental patterns. We'll talk a little more
about this book in a few pages.

Many other patterns catalogs are starting to
be published in various domain areas such
as enterprise software, concurrent systems,
and business systems.

567

forces

568

constraints

o

Geek Bits
May the force be with you

The Design Pattern
definition tells us that
the problem consists of a
goaland a setofconstraints.
Pattern gurus have a term for
these: they call them forces.
Why? Well, we're sure they
have their own reasons, but if
you remember the movie, the force
“‘shapes and controls the Universe.”
Likewise, the forces in the pattern
definition shape and control the solution.
Only when a solution balances both sides of
the force (the light side: your goal, and the dark
side: the constraints) dowe have a useful pattern.

This “force” terminology can be quite confusing
when you first see it in pattern discussions, but
just remember that there are two sides of the force

(goals and constraints) and that they need to be
balanced or resolved to create a pattern solution. Don't
let the lingo get in your way and may the force be with you!

better living with patterns

T wish I'd known
about patterns catalogs
a long time ago...

Joe J.):)

Frank: Iill us in, Jim. I’ve just been learning patterns by reading a few
articles here and there.

Jim: Sure, each patterns catalog takes a set of patterns and describes
cach in detail along with its relationship to the other patterns.

Joe: Are you saying there is more than one patterns catalog?

Jim: Of course; there are catalogs for fundamental Design Patterns
and there are also catalogs on domain-specific patterns, like enterprise
or distributed computing patterns.

Frank: Which catalog are you looking at?

Jim: This is the classic GoF catalog; it contains 23 fundamental
Design Patterns.

Frank: Gol?

Jim: Right, that stands for the Gang of Four. The Gang of Four are
the guys that put together the first patterns catalog.

Joe: What’s in the catalog?

Jim: There is a set of related patterns. For each pattern there is a
description that follows a template and spells out a lot of details of the
pattern. For instance, each pattern has a name.

you are here »

569

using a

570

Frank: Wow, that’s earth-shattering, a name! Imagine that.
8 g g

Jim: Hold on, Frank; actually, the name is really important. When we have a name
for a pattern, it gives us a way to talk about the pattern; you know, that whole shared
vocabulary thing,

Frank: Okay, okay. I was just kidding. Go on, what else is there?

Jim: Well, like I was saying, every pattern follows a template. For each pattern we have

a name and a few sections that tell us more about the pattern. For instance, there is an
Intent section that describes what the pattern is, kind of like a definition. Then there are
Motivation and Applicability sections that describe when and where the pattern might be
used.

Joe: What about the design itself?

Jim: There are several sections that describe the class design along with all the classes
that make it up and what their roles are. There is also a section that describes how to
implement the pattern and often sample code to show you how.

Frank: It sounds like they’ve thought of everything.

Jim: There’s more. There are also examples of where the pattern has been used in real
systems, as well as what I think is one of the most useful sections: how the pattern relates
to other patterns.

Frank: Oh, you mean they tell you things like how the State and Strategy Patterns differ?
Jim: Exactly!

Joe: So Jim, how are you actually using the catalog? When you have a problem, do you
go fishing in the catalog for a solution?

Jim: I try to get familiar with all the patterns and their relationships first. Then, when I
need a pattern, I have some idea of what it is. I go back and look at the Motivation and
Applicability sections to make sure I've got it right. There is also another really important
section: Consequences. I review that to make sure there won’t be some unintended effect
on my design.

Frank: That makes sense. So once you know the pattern is right, how do you approach
working it into your design and implementing it?

Jim: That’s where the class diagram comes in. I first read over the Structure section to
review the diagram and then over the Participants section to make sure I understand each
class’s role. From there, I work it into my design, making any alterations I need to make

it fit. Then I review the Implementation and Sample Code sections to make sure I know
about any good implementation techniques or gotchas I might encounter.

Joe: I can see how a catalog is really going to accelerate my use of patterns!

Frank: Totally. Jim, can you walk us through a pattern description?

All patterns in a tatalog start with /’ﬁ SiveLETON

a name. The name is a vital part of
a \MT{:CW\ — without a 3ood name,

a pattern tan't become part o(:.
the Vm‘.abula\'\/ that Yyou shave with
other developers.

The motivation gives Yyou a tontrete

stenavio that desevibes the problem and

how the solution solves the problem.

pplicability i ituations
The applicability deseribes si ‘
in i:hich the pattern ean be applied.

lasses and
Licipants ave {:hc.c '
::cc::,: "n:\ f\\c desion. This settion
dc\)scﬂbcs their rcs\vonslb
in the pattern.

The tonsequentes destribe the
efbects that using this pattern
may have: good and bad.

ImPICmcn'[:a‘tion Yrovidcs —
Eﬁhniqucs You need to use when
implementing this pattern, and
issues You should wateh out for.

Known Uses destribes 7 >
examples of this pattern
‘cound in veal s\,s{xms.

ilities and voles

Related Patterns

Object Creational

Intent

E aliquat, velesto ent lore euis acillao rperci tat, quat nonseaquam il ea ac nim nos do enim
L a @
ui eratio ex a faci te, sequis dion wtat, volore magnisi.

Motivation

Bt aliqua, velesto entlore feuis acillao rperc tat, quat nonsequarn il ¢a at nim nos do cnim qui
cratio ex ea faci tet, scquis dion utat, volore magnisi,Rud modolore i laomers augiam il cl
lipis dionseaquis dignibh cummy nibh escquar. Duis nulpatem ipisim esecte conullut wissi
Os nisissenim et lumsandre do con el ug
uscidunt digna feugue dunt num ctumy

patucro corercipis augue doloreet luptat amet vel
my nim du blaor sequat num vel etue magna augiat
Aliquis nonse vel xer se minissequis do dolortis ad magait, sim zzrilluc ipsummo dolorem
linibh cuguer scquam e am quate magnim llam 711 s magu o iy delit ut

Applicability

Duis nilputem ipisim escete conullu wissiEctem ad magna aliqui blamet, conullandre
dolore magna feuis nos alit ad magnim quate modolore ven, Io; luptat prat. Dui blaore min
ca feuipiting cnit laore magnibh eniat wisissecte et susclla ad mingines bjsms dolorpe reilc
irit, conse dolore dolore et, verci enis cnit ip elescquil ut ad sccten ing ca con eros autem
diam nonullu patiss ismodignibh .

Structure
salc iniquelnsiance
1 Oiner usef Singeton dat..
stat genstance()
1/ Other usef Singeton metrods.
Participants

Duis lputem ipisim escete conullut wissiEctem ad magna aliqui blamet, conullandre
dolore magna feuis nos alt ad magnim quate modolore vent lnt luptat prat. Dui blaore min
ca feuipiting enit laore magnibh eniat wisisscete t,suscila ad mineines b dolorpe reilic

peomse dolorc dolore e, verei enis nit i clesequis ut ad esecten ing ca con eper s
diam nonullu tpatiss ismodignibh

A dolore dolore et, verci enis eni j
nonullu tpatiss ismodignibh er

o mos alicad magnim quate modolore vent uc uptat prat. Dui blaore min ea
feuipit ing cnit laore magnibh eniat wisissec

i elescquisl ut ad escctem ing ea con eros autem diam

Ad magnim quate modolore vent lut luptat prat. D blaore nrin ca feuipit ing cnit
Collaborations

® Feuipit ing enit laore magnibh eniat wisisseq

cte et, suscilla ad mincinci blam dolorpe reilic
irit, conse dolore,

Consequences

D nulputem ipisim esect conulut wissEctem ad magna aliqui blamr, conullandre:

1+ Dolore dolore et, verei enis enit ip elescquis! ut ad escctem ing ca con eros autem
diam nonullu patiss ismodignibh cr.

2. Modolore vent lut luptat prat. Dui blaore min c.

et, verei enis enit ip elesequisl ut ad escctem.

Dolore dolore et, verci enis enit ip clesequisl ut ad escctem ing ea con eros autem
diam nonullu tpatiss ismodignibh cr.

4 Modolore vent lut luptat prat. Dui blaore min ca feuipic ing enit laore magnibh
eviat wisiseete e, suscila ad mincinci blam dolorpe reilt ik, conse oo dlclore
et, verci enis eni ip elesequisl ut ad esctem,

Implementation/ Sample Code

irit, conse dolore dolore et, verci enis enit ip clesequi
diam nonullu tpatiss ismodignibh cr.

public class Singleton {
Private static Singleton uniqueInstance;

// other useful instance variables here

Pprivate Singleton() ()
public static synchronized Singleton getInstance ()

if (uniquelnstance == nullj
uniqueInstance = new Singleton();

)
zeturn uniquelnstance;

7/ other useful methods here
)

Nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit
Iaore magnibh cnat wisissect ct,suscill ad micinei blam dolorpe sl it e dolore

dolore c, verc ens et ip elesequisl ut ad esecterm ing ca con cros autem dign s g
tpatiss ismodignibh r.

Known Uses

DuDuis nulputem ipisim esccte conn
dolore magna feuis nos alit ad may

Bubuis nulputen ipisim esccte conullut wissiEctem ad magna aliqui blamet, conullandre
olore magna fevis nos alit ad magnim quate modolore vent lut aptar prat. Dui blaore min
ca feuipiting enit laore magnibh eniat wisisscete 1, suscilla ad minines b dolorpe reilic
iy eonse dolore dolore t,vereenis enit i clesequist ut ad escte ing ea con e gaiom
diam nonullu tpatiss ismodignibh er. alit ad m

Dui blaore mi

Elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh cr. alit

vodolore vent lut luptat prat. Dui blaore min ca feuipit i enit lnore
@ et. suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore
p elesequisl ut ad esectem ing ea con eros autem diam nonully tpatiss

better living with patterns

This is the pattern’s

N tlassification or
ca'l:cgov-\/. We'll talk
about these in 3 few
Pagcs.

The intent desevibes what
the pattern does in a short
statement. You ean also think
of this as the patteen’s
definition (just like we've been
using in this book).

< The strutture provides a
diagram illustrating the
velationships among the
classes that participate
in the pattern.

Collaborations tells us
how the yar’ciaiyan’cs wovrk
together in the pattern.

<—— Sa\'"f”e Code
Provides ¢ode
agments {hat
might help with
imPlementation,

)'owr

Related Patterns
deseribes the
velationship between
this pattern and othevs.

you are here » 571

discovering patterns

t]nere are no °
Dumb Questions

Q,: Is it possible to create your own Design
Patterns? Or is that something you have to be a
“patterns guru” to do?

AZ First, remember that patterns are discovered, not
created. So, anyone can discover a Design Pattern and
then author its description; however, it's not easy and
doesn’t happen quickly, nor often. Being a “patterns
writer” takes commitment.

You should first think about why you’d want to—the
majority of people don't author patterns; they just use
them. However, you might work in a specialized domain
for which you think new patterns would be helpful, or you
might have come across a solution to what you think is a
recurring problem, or you may just want to get involved
in the patterns community and contribute to the growing
body of work.

Q: I’'m game; how do | get started?

A: As with any discipline, the more you know, the
better. Studying existing patterns, what they do, and how
they relate to other patterns is crucial. Not only does it
make you familiar with how patterns are crafted, it also
prevents you from reinventing the wheel. From there
you'll want to start writing your patterns on paper, so you
can communicate them to other developers; we're going
to talk more about how to communicate your patterns in
a bit. If you're really interested, you'll want to read the
section that follows these Q&As.

Q: How do | know when | really have a pattern?

A: That's a very good question: you don’t have a
pattern until others have used it and found it to work. In
general, you don’t have a pattern until it passes the “Rule
of Three.” This rule states that a pattern can be called a
pattern only if it has been applied in a real-world solution
at least three times.

572

So you wanna he a Jesign
patterns star?

Well, listen now to what I tell.
Get yoursel{ a patterns catalog,

Then take some time and learn
it well.

And when you’ve got your
c[escription rig]mt,

And three Jevelo])ers agree
without a fight,

Then you'll know it's a pattern
alriglnt.

To the tune of “So \/m: wanna
be a Rock,n,Ro” S{:a\r.,

So you wanna be a Pesign Patterns writer

Do your homework. You need to be well versed in the
existing patterns before you can create a new one. Most patterns
that appear to be new, are, in fact, just variants of existing
patterns. By studying patterns, you become better at recognizing
them, and you learn to relate them to other patterns.

Take time to reflect, evaluate. Your experience— the
problems you’ve encountered, and the solutions you’ve used—
are where ideas for patterns are born. So take some time to
reflect on your experiences and comb them for novel designs
that recur. Remember that most designs are variations on
existing patterns and not new patterns. And when you do find
what looks like a new pattern, its applicability may be too
narrow to qualify as a real pattern.

Get your ideas down on paper in a way others can
understand. Locating new patterns isn’t of much use if

others can’t make use of your find; you need to document your
pattern candidates so that others can read, understand, and
apply them to their own solution and then supply you with
feedback. Luckily, you don’t need to invent your own method of
documenting your patterns. As you've already seen with the GoF
template, a lot of thought has already gone into how to describe
patterns and their characteristics.

Have others try your patterns; then refine and refine
some more. Don’t expect to get your pattern right the first
time. Think of your pattern as a work in progress that will
improve over time. Have other developers review your candidate
pattern, try it out, and give you feedback. Incorporate that
feedback into your description and try again. Your description
will never be perfect, but at some point it should be solid enough
that other developers can read and understand it.

Don’t forget the Rule of Three. Remember, unless your
pattern has been successfully applied in three real-world
solutions, it can’t qualify as a pattern. That’s another good
reason to get your pattern into the hands of others so they can
try it, give feedback, and allow you to converge on a working
pattern.

better living with patterns

Use one of the existing
pattern templates to
define your patteen A lot
of thought has gone into
fhese templates and other
pattern users will vecognize

the format.

you are here » 573

who

what?

Match each pattern with its description:

Pattern Description
Decorator Wraps an object and provides a different
interface to it.
State Subelasses decide how to implement steps in an
. algorithm.
Iterator
Subclasses decide Which concrete classes to
Facade create.
Ensures one and only one object is created.
Strategy Encapsulates interchangeable behaviors and uses
delegation to decide Which one to use.
Proxy
Clients treat collections of objects and individual
Factory Method objects uniformly.
Encapsulates state-based behaviors and uses
AdaPter delegation to switch between behayiors.
Observer Provides a way to traverse a collection of objects
without exposing its implementation.
Template Method Simplifies the interface of a set of classes.
Composite Wraps an object to provide new behavior.
Allows a client to create families of objects
Singleton without specifying their conerete classes.
Allows objects to be notified when state changes.
Abstract Factory
Wraps an object to control access to .
Command Encapsulates a request as an object.

574

with

Organizing Design Patterns

As the number of discovered Design Patterns grows, it makes sense to partition them into
classifications so that we can organize them, narrow our searches to a subset of all Design Patterns,
and make comparisons within a group of patterns.

In most catalogs, you’ll find patterns grouped into one of a few classification schemes. The most
well-known scheme was used by the first patterns catalog and partitions patterns into three distinct
categories based on their purposes: Creational, Behavioral, and Structural.

_ @ harpen your pencil

A Read each category description and
see if you can corral these patterns

into their correct categories. This is a
ct Factory in ect
m ,Comp\osne' M L/\ toughy! But give it your best shot and

\
Decora orl Adapfeﬂ then check out the answers on the
next page.
Factory Method

,&&1 Template Method

Eath of these YaH:crns.bc\ongs
in one of those categories:
Any pattern that is a Behavioral
Creational Patterns involve object PaZfiin Zﬂconc‘;r:\ez W?T ;:\I:;a
wj;i'lﬂda:::)?l:&daagli'.;:lc-)rv-lf(:in?\ the tc:llasses and objects interact and
istribute responsibility.
objects it needs tfo instantiate. ceses o bjcts et
Creational T
Struetural

Structural Patterns let you
compose classes or objects
into larger structures.

575

pattern

Pattern Categories

@aoharpen your pencil
sf ySOIEtiOH

Here’s the grouping of patterns into categories. You probably found the exercise difficult, because
many of the patterns seem like they could fit into more than one category. Don’t worry, everyone

has trouble figuring out the right categories for the patterns.

Creational Patterns involve object
instantiation and all provide a

way to decouple a client from the
objects it needs to instantiate.

Any pattern that is a Behavioral
Pattern is concerned with how
classes and objects interact and
distribute responsibility.

576

Creational Behavioral "
. tor
Singleton Builder Visitor edia
Prototype fEEECE Me*h(;d dITera'ror
Abstract Factory Interpreter omman Memento
Factory Method Observer
actory Metho Chain of Responsibility
State
Strategy
Structural
Proxy
Decorator
Composite ~ Facade
Flyweight Bridge

d We've g0t a Few patterns
o \/ (in grey) that you haven't

seen \/c{: You'll find an
overview of these patterns
in the Awendiﬁ

Structural Patterns let you

compose classes or objects
into larger structures.

Patterns are often classified by a second attribute: whether or not

the pattern deals with classes or objects:

Class Patterns describe how relationships between
classes are defined via inheritance. Relationships in
class patterns are established at compile time.

Class

Template Method

Factory Method Adapter
Interpreter

Strategy
Bridge

with

Object Patterns describe
relationships between objects
and are primarily defined by
composition. Relationships in
object patterns are typically
created at runtime and are
more dynamic and flexible.

Visitor

Iterator

Command Memento

Observer

Chain of Responsibility

State

Prototype

Abstract Factory Builder

Singleton

Qj Are these the only classification
schemes?

A: No, other schemes have been
proposed. Some other schemes start

with the three categories and then add
subcategories, like “Decoupling Patterns.”
You'll want to be familiar with the most
common schemes for organizing patterns,
but also feel free to create your own, if it
helps you to understand the patterns better.

Q: Does organizing patterns into
categories really help you remember
them?

Notice there ave
3 ot move dbjet
atteens than
tlass \;a{;{;cvvxs.

therejare no
Dumb Questions

A: It certainly gives you a framework for
the sake of comparison. But many people
are confused by the creational, structural,
and behavioral categories; often a pattern
seems to fit into more than one category.
The most important thing is to know the
patterns and the relationships among them.
When categories help, use them!

Q: Why is the Decorator Pattern in the
structural category? | would have thought
of that as a behavioral pattern; after all, it
adds behavior!

A: Yes, lots of developers say that!
Here’s the thinking behind the Gang of Four
classification: structural patterns describe
how classes and objects are composed to
create new structures or new functionality.
The Decorator Pattern allows you to
compose objects by wrapping one object
with another to provide new functionality. So
the focus is on how you compose the objects
dynamically to gain functionality, rather than
on the communication and interconnection
between objects, which is the purpose of
behavioral patterns. But remember, the
intent of these patterns is different, and
that's often the key to understanding which
category a pattern belongs to.

577

pattern

578

Guru and Student...
Guru: Student, you look troubled.

Student: Yes, I've just learned about
pattern classification and I’'m confused.

Guru: Continue...

Student: After learning much about patterns, I've

just been told that each pattern fits into one of three
classifications: structural, behavioral, or creational. Why
do we need these classifications?

Guru: Whenever we have a large collection of anything,
we naturally find categories to fit those things into. It
helps us to think of the items at a more abstract level.

Student: Guru; can you give me an example?

Guru: Of course. Take automobiles; there are many
different models of automobiles and we naturally put
them into categories like economy cars, sports cars,
SUVs, trucks, and luxury cars.

Guru: You look shocked; does this not make sense?

Student: Guru, it makes a lot of sense, but | am
shocked you know so much about cars!

Guru: | can’t relate everything to lotus flowers or rice
bowls. Now, may | continue?

Student: Yes, yes, I'm sorry, please continue.

Guru: Once you have classifications or categories, you
can easily talk about the different groupings: “If you’re
doing the mountain drive from Silicon Valley to Santa
Cruz, a sports car with good handling is the best
option.” Or, “With the worsening oil situation, you really
want to buy a economy car; they’re more fuel-efficient.”

Student: So by having categories, we can talk about a
set of patterns as a group. We might know we need a
creational pattern, without knowing exactly which one,
but we can still talk about creational patterns.

Guru: Yes, and it also gives us a way to compare a
member to the rest of the category. For example, “The
Mini really is the most stylish compact car around,” or
to narrow our search, “I need a fuel-efficient car.”

better living with patterns

Student: | see. So | might say that the Adapter Pattern
is the best structural pattern for changing an object’s
interface.

Guru: Yes. We also can use categories for one more
purpose: to launch into new territory. For instance,
“We really want to deliver a sports car with Ferrari
performance at Honda prices.”

Student: That sounds like a death trap.
Guru: I'm sorry, | did not hear you, student.
Student: Uh, | said ‘I see that.”

Student: So categories give us a way to think about the
way groups of patterns relate and how patterns within

a group relate to one another. They also give us a way
to extrapolate to new patterns. But why are there three
categories and not four or five?

Guru: Ah, like stars in the night sky, there are as many
categories as you want to see. Three is a convenient
number and a number that many people have decided
makes for a nice grouping of patterns. But others have
suggested four, five, or more.

you are here » 579

thinking in patterns

Thinking in Patterns

Contexts, constraints, forces, catalogs, classifications...boy, this

1s starting to sound mighty academic. Okay, all that stuff is
important and knowledge 1s power. But, let’s face it, if you
understand the academic stuff’ and don’t have the experience and
practice using patterns, then it’s not going to make much difference
in your life.

Here’s a quick guide to help you start to think in patterns. What do
we mean by that? We mean being able to look at a design and see er Brain on Patterns
where patterns naturally fit and where they don’t.

Keep it simple (KISS)

First of all, when you design, solve things in the simplest way possible. Your goal should be simplicity,
not “how can I apply a pattern to this problem?” Don’t feel like you aren’t a sophisticated developer if
you don’t use a pattern to solve a problem. Other developers will appreciate and admire the simplicity
of your design. That said, sometimes the best way to keep your design simple and flexible is to use a
pattern.

Pesign Patterns aren’t a wmagic bullet: in fact, they’re not even a bullet!

Patterns, as you know, are general solutions to recurring problems. Patterns also have the benefit of
being well tested by lots of developers. So, when you see a need for one, you can sleep well knowing
many developers have been there before and solved the problem using similar techniques.

However, patterns aren’t a magic bullet. You can’t plug one in, compile, and then take an early lunch.
To use patterns, you also need to think through the consequences for the rest of your design.

You know you need a pattern when...

Ah...the most important question: when do you use a pattern? As you approach your design, introduce
a pattern when you’re sure it addresses a problem in your design. If a simpler solution might work, give
that consideration before you commit to using a pattern.

Knowing when a pattern applies is where your experience and knowledge come in. Once you’re sure

a simple solution will not meet your needs, you should consider the problem along with the set of
constraints under which the solution will need to operate—these will help you match your problem to

a pattern. If you’ve got a good knowledge of patterns, you may know of a pattern that is a good match.
Otherwise, survey patterns that look like they might solve the problem. The intent and applicability
sections of the patterns catalogs are particularly useful for this. Once you’ve found a pattern that
appears to be a good match, make sure it has a set of consequences you can live with and study its effect
on the rest of your design. If everything looks good, go for it!

580 Chapter 13

better living with patterns

There is one situation in which you’ll want to use a pattern even if a
simpler solution would work: when you expect aspects of your system to
vary. As we’ve seen, identifying areas of change in your design is usually a
good sign that a pattern is needed. Just make sure you are adding patterns
to deal with practical change that 1s likely to happen, not hypothetical change
that may happen.

Design time isn’t the only time you want to consider introducing patterns;
you’ll also want to do so at refactoring time.

Refactoring time is Patterns time!

Refactoring 1s the process of making changes to your code to improve

the way it 1s organized. The goal is to improve its structure, not change

its behavior. This is a great time to reexamine your design to see if it
might be better structured with patterns. For instance, code that 1s full of
conditional statements might signal the need for the State Pattern. Or, it
may be time to clean up concrete dependencies with Factory. Entire books
have been written on the topic of refactoring with patterns, and as your
skills grow, you’ll want to study this area more.

Take out what you don’t really need. Pon’t be afraid
to remove a Design Pattern from your design.

No one ever talks about when to remove a pattern. You’d think it was
blasphemy! Nah, we’re all adults here; we can take it.

Center your thinking on
design, not on patterns. Use
patterns when there is a natural
need for them. If something

simpler will work, then use it.

So when do you remove a pattern? When your system has become
complex and the flexibility you planned for isn’t needed. In other words,
when a simpler solution without the pattern would be better.

If you don’t need it now, don’t do it now.

Design Patterns are powerful, and it’s easy to see all kinds of ways they
can be used in your current designs. Developers naturally love to create
beautiful architectures that are ready to take on change from any direction.

Resist the temptation. If you have a practical need to support change in
a design today, go ahead and employ a pattern to handle that change.
However, if the reason is only hypothetical, don’t add the pattern; it will
only add complexity to your system, and you might never need it!

you are here » 581

patterns emerge naturally

»' Guru and Student...

Guru: Student, your initial training is almost complete.
What are your plans?

J Student: I'm going to Disneyland! And then I'm
going to start creating lots of code with patterns!

Guru: Whoa, hold on. Never use your big guns
unless you have fto.

Student: What do you mean, Guru? Now that I've learned design
patterns, shouldn’t | be using them in all my designs to achieve maximum
power, flexibility, and manageability?

Guru: No; patterns are a tool, and a tool that should only be used
when needed. You've also spent a lot of time learning design principles.
Always start from your principles and create the simplest code you can
that does the job. However, if you see the need for a pattern emerge,
then use it.

Student: So | shouldn’t build my designs from patterns?

Guru: That should not be your goal when beginning a design. Let
patterns emerge naturally as your design progresses.

Student: If patterns are so great, why should | be so careful about using
them?

Guru: Patterns can introduce complexity, and we never want complexity
where it is not needed. But patterns are powerful when used where they
are needed. As you already know, patterns are proven design experience
that can be used to avoid common mistakes. They're also a shared
vocabulary for communicating our design to others.

Student: Well, when do we know it's okay to introduce design patterns?

Guru: Introduce a pattern when you are sure it’s necessary to solve a
problem in your design, or when you are quite sure that it is needed to
deal with a future change in the requirements of your application.

Student: | guess my learning is going to continue even though | already
understand a lot of patterns.

Guru: Yes; learning to manage the complexity and change in software is
a lifelong pursuit. But now that you know a good set of patterns, the time
has come to apply them where needed in your design and to continue
learning more patterns.

Student: Wait a minute, you mean | don’t know them ALL?

Guru: Student, you've learned the fundamental patterns; you’re going to
find there are many more, including patterns that just apply to particular
domains such as concurrent systems and enterprise systems. But now
that you know the basics, you’re in good shape to learn them.

5682 Chapter 13

better living with patterns

Your Mind on Patterns

The Beginner uses patterns everywhere. This is good:
the beginner gets lots of experience with and practice
using patterns. The beginner also thinks, “The more
patterns | use, the better the design.” The beginner will
learn this is not so, that all designs should be as simple as

possible. Complexity and patterns should only be used
BEGINNER MIND

where they are needed for practical extensibility.

“' need a ?a‘H:crn ‘('\o\r Hello Wo\rld."

As learning progresses, the Intermediate
mind starts to see where patterns are needed
and where they aren’t. The intermediate

mind still tries to fit too many square patterns
into round holes, but also begins to see that
patterns can be adapted to fit situations where
the canonical pattern doesn't fit.

INTERMEDIATE
MIND

“Maybe | need a Singleton heve.”

The Zen mind is able to see patterns where they fit naturally.

The Zen mind is not obsessed with using patterns; rather, it

looks for simple solutions that best solve the problem. The Zen

mind thinks in terms of the object principles and their tradeoffs.

When a need for a pattern naturally arises, the Zen mind applies

it knowing well that it may require adaptation. The Zen mind
ZEN MIND also sees relationships to Zimilar patterns and understands the
subtleties of differences in the intent of related patterns. The
Zen mind is also a Beginner mind—it doesn’t let all that pattern
knowledge overly influence design decisions.

“This is a natural place for Decorator.”

you are here » 583

when

584

to use patterns

Wait a minute; I've
read this entire book and
now you're telling me NOT to
use patterns?

WARNING: Overuse of design patterns can lead to code that
is downright overengineered. Always go with the simplest

Of course we want you to use
Design Patterns!

But we want you to be a good OO designer even
more.

When a design solution calls for a pattern, you

get the benefits of using a solution that has been
time-tested by lots of developers. You’re also
using a solution that is well documented and that
other developers are going to recognize (you know,
that whole shared vocabulary thing).

However, when you use Design Patterns, there
can also be a downside. Design Patterns often
introduce additional classes and objects, and so
they can increase the complexity of your designs.
Design Patterns can also add more layers to your
design, which adds not only complexity, but also
inefficiency:.

Also, using a Design Pattern can sometimes be
outright overkill. Many times you can fall back on
your design principles and find a much simpler
solution to solve the same problem. If that
happens, don’t fight it. Use the simpler solution.

Don’t let us discourage you, though. When a
Design Pattern is the right tool for the job, the
advantages are many.

better living with patterns

Pon’t forget the power of the
shared vocabulary

We’ve spent so much time in this book discussing OO nuts and bolts that it’s
casy to forget the human side of Design Patterns— they don’t just help load
your brain with solutions, they also give you a shared vocabulary with other
developers. Don’t underestimate the power of a shared vocabulary, it’s one of
the buggest benefits of Design Patterns.

Just think, something has changed since the last time we talked about shared
vocabularies; you’ve now started to build up quite a vocabulary of your own!
Not to mention, you have also learned a full set of OO design principles from
which you can easily understand the motivation and workings of any new
patterns you encounter.

Now that you've got the Design Pattern basics down, it’s time for you to

go out and spread the word to others. Why? Because when your fellow
developers know patterns and use a shared vocabulary as well, it leads to
better designs and better communication, and, best of all, it’ll save you a lot
of time that you can spend on cooler things.

So I created this broadcast class. It
keeps track of all the objects listening to it
and any time a new piece of data comes along
it sends a message to each listener. What's cool
is that the listeners can join the broadcast at any

time or they can even remove themselves. And the
broadcast class itself doesn't know anything about
the listeners; any object that implements the
right interface can register.

)

Timc——éonSuming

¢ T

[ncomplete
Condcusing

you are here » 585

five ways your vocabulary

Top five ways to share your vocabulary

1. In design meetings: When you meet with your team to discuss
a software design, use design patterns to help stay “in the design”
longer. Discussing designs from the perspective of Design Patterns
and OO principles keeps your team from getting bogged down in
implementation details and prevents many misunderstandings.

2. With other developers: Use patterns in your discussions
with other developers. This helps other developers learn about new
patterns and builds a community. The best part about sharing what
you've learned is that great feeling when someone else “gets it"!

@

In architecture documentation: When you write
architectural documentation, using patterns will reduce the amount
of documentation you need to write and gives the reader a clearer
picture of the design.

4. In code comments and naming conventions: When
you're writing code, clearly identify the patterns you're using in
comments. Also, choose class and method names that reveal any
patterns underneath. Other developers who have to read your
code will thank you for allowing them to quickly understand your
implementation.

5. To groups of interested developers: Share your knowledge.
Many developers have heard about patterns but don’t have a good
understanding of what they are. Volunteer to give a brown-bag lunch
on patterns or a talk at your local user group.

¢
.
Suetinet —~ 7
| L/
Preeise S Observer B
<
ComyleJcc —

586

with

Cruisin® Objectville with the The GoF launched the sofbware

patterns movement, but many others
c‘a“q Of FOUI’ have made Signi‘(:icah{: tontributions,
including Ward Cunningham, Kent

You won’t find the Jets or Sharks hanging around Objectville, but Betk, Jim Coplien, Grady Booth, Brute
you will find the Gang of Four. As you’ve probably noticed, you Andevson, Richard Gabyiel, Doug Lea,
can’t get far in the World of Patterns without running into them. Peter Coad, and Doug Sehmidt, to

So, who 1s this mysterious gang?

name ")usf a ch.

Put simply, “the Gol” which includes Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides, is the group of guys who
put together the first patterns catalog and in the process, started an
entire movement in the software field!

How did they get that name? No one knows for sure; it’s just a
name that stuck. But think about it: if you’re going to have a “gang
element” running around Objectville, could you think of a nicer
bunch of guys? In fact, they’ve even agreed to pay us a visit...

Today
there are more
patterns than in the
GoF book; learn about
them as well.

Shoot for practical
extensibility. Don't
provide hypothetical

generality; be extensible
in ways that matter.

Go for simplicity
and don't become overexcited.
If you can come up with a
simpler solution without using a
pattern, then go for it.

= Ralph

Johnson

Patterns are tools, not
rules—they need to be

tweaked and adapted to
your problem.

*John Vlissides passed away in 2005. A 5\rca‘f: loss to the Dcsign Patterns COmmuni{:\/‘

587

patterns resources

Your journey has just begun...

Now that you’re on top of Design Patterns and ready to dig deeper, we’ve got three definitive
texts that you need to add to your bookshelf...

The definitive Design Patterns text

This is the book that kicked off the entire field of Design
Patterns when it was released in 1995. You’ll find all the
fundamental patterns here. In fact, this book is the basis for
the set of patterns we used in Head First Design Patterns.

Design Patterns
Elements of Reusable
Object-Oriented Software
Erich Gamma

Richard Helm

Ralph Johnson
lohn Vissides

You won’t find this book to be the last word on Design
Patterns— the field has grown substantially since its
publication—but it is the first and most definitive.

Picking up a copy of Design Patterns is a great way to start

exploring patterns after Head First.

Foreward by Grady Bonch

PaH:cYV\S ave »

The authors of Desigr the “6%3 of Four,

£ {:\Oha{:c\\, known 3s
if ZoF for short.

Christopher Alexander invented

patterns, which inspired applying similar
solutions to solp'(:warc. "

The definitive Patterns texts

Patterns didn’t start with the GoF; they started)’)f/\
with Christopher Alexander, a professor of “
architecture at Berkeley— that’s right, Alexander
1s an architect, not a computer scientist. Alexander
mnvented patterns for building living architectures
(like houses, towns, and cities).

The next time you’re in the mood for some deep,
engaging reading, pick up The Timeless Way of
Bulding and A Pattern Language. You’ll see the true
beginnings of Design Patterns and recognize

the direct analogies between creating “living Alexandef
architecture” and flexible, extensible software. \ C‘\“““pm‘

So grab a cup of Starbuzz coffee, sit back, and -
enjoy... '

588 Chapter 13

better living with patterns

Other Design Patterns resources
You're going to find there is a vibrant, friendly community of patterns

users and writers out there and they’re glad to have you join them.
Here are a few resources to get you started...

€5 € A D ccommmimekoesion

PN

L2 wetcome visitors The Portland Patterns Repository, run by Ward
R e ko gl . Cunningham, is a wiki devoted to all things related to

g — S— patterns. You’ll find threads of discussion on every topic
g ey —— = you can think of related to patterns and OO systems.
e | I c2.com/cgi/wiki?Welcome Visitors

The Hillside Group fosters common programming
\ and design practices and provides a central resource for

=1 patterns work. The site includes information on many

| patterns-related resources such as articles, books, mailing
E. lists, and tools.

| hillside.net

O’Reilly Online Learning provides online design
patterns books, courses, and live teaching. You’ll also find
a design patterns bootcamp course based on this book.

oreilly.com

PATTEAN LANGUAGES OF PROGRANS CONFERENGE 2020 FALL 2020
PLGP 2020 will be i vty tis year because of COVED-33.

Conferences and Workshops

If you’d like to interact with the patterns

R ——— T community, be sure to check out the many

& patterns-related conferences and workshops. The
Hillside site maintains a complete list. Check out
Pattern Languages of Programs (PLoP) and the
ACM Conference on Object-Oriented Systems,
Languages and Applications (OOPSLA), which is
now part of the SPLASH conference.

Other Resources

We’d be remiss if we didn’t mention Google, Stack Overflow, Quora, and many other sites
and services as good places to ask questions, find answers, and discuss design patterns. As
with anything on the web, always double-check the information you receive.

you are here » 589

https://c2.com/cgi/wiki?WelcomeVisitors
https://hillside.net/
https://learning.oreilly.com/

patterns zoo

The Patterns Zoo

As you've just seen, patterns didn’t start with software; they started
with the architecture of buildings and towns. In fact, the patterns
concept can be applied in many different domains. Take a walk
around the Patterns Zoo to see a few...

Architectural Patterns are
used to create the living,

vibrant architecture of Habitat: found in buildings you
buildings, towns, and cities. like to live in, look at and visit.
This is where patterns got

their start.

Habitat: seen hanging avound Application Patterns are

theee—tier avehiteekures, elient—

patterns for creating
sevver s\/s{:cms and the web.

system-level architecture.
Many multitier
architectures fall into this
category.

Field note: MVC has been
known ‘{:o Vass or an
ay\alica{jon ?aH:crw

Domain-Specific Patterns L Help £ind a habitat
are patterns that concern Entevprise Computing
problems in specific domains,
like concurrent systems or
real-time systems.

590 Chapter 13

with

Seen hanging around Corporate
boardrooms and Fkoch:
management: meetings.

Business Process Patterns
describe the interaction
between businesses, customers,
and data, and can be applied

to problems such as how

to effectively make and
communicate decisions.

: : % Organizational Patterns
Help find 3 habitat describe the structures
Development team and practices of human

organizations. Most

efforts to date have
focused on organizations
that produce and/or
support soffware.

Customer support team

User Interface

% Desggdpr“;:ge::: Habitat: seen in {‘)\c VICIV\I‘{',\/
| problems of how to of video game designers, qul

design interactive builders, and producers.
software programs.

Field notes: please add your observations of pattern domains here:

591

anti-

Annihilating evil with Anti-Patterns

The Universe just wouldn’t be complete if we had patterns and no
anti-patterns, now would it?

If a Design Pattern gives you a general solution to a recurring
problem in a particular context, then what does an anti-pattern
give you?

An Anti-Pattern tells you how to go from a problem
to a BAD solution.

You’re probably asking yourself, “Why on earth would anyone
waste their time documenting bad solutions?”

Think about it like this: if there is a recurring bad solution to a
common problem, then by documenting it we can prevent other
developers from making the same mistake. After all, avoiding bad
solutions can be just as valuable as finding good ones!

Let’s look at the elements of an anti-pattern:

An anti-pattern tells you why a bad solution is
attractive. Let’s face it, no one would choose a bad solution if
there wasn’t something about it that seemed attractive up front.
One of the biggest jobs of the anti-pattern is to alert you to the
seductive aspect of the solution.

An anti-pattern tells you why that solution in the long
term is bad. In order to understand why it’s an anti-pattern,
you've got to understand how it’s going to have a negative effect
down the road. The anti-pattern describes where you’ll get into
trouble using the solution.

An anti-pattern suggests other applicable patterns that
may provide good solutions. To be truly helpful, an anti-
pattern needs to point you in the right direction; it should suggest
other possibilities that may lead to good solutions.

Let’s have a look at an anti-pattern.

592

=1
S

An anti-pattern always
looks like a gooJ solution,
but then turns out to he
a bad solution when it

15 applieJ.

By Jocumenting anti-
Patterns we lnelp
others to recognize bad
solutions hefore they
implement them.

Like Patterns, there
are many types

of anti-patterns
incluJing Jevelopment,
00, organizational,
and Jomain-specific
anti-patterns.

better living with patterns

Here's an example of a softwave development anti-patteen. /1

Just like 3 Dcsign Pattern,
an anti-pattern has a name
so we £an treate a shaved

vocabulary.

The ?roblc»\ and tontext,
Just like a Design Pattern
deseviption.

Tells you wh\/
+he solution is
attrattive.

The bad, yet attractive, solution. = 7

How{‘pgc{:{:oa ~ 7

good solution.

Example of where this anti-pattern —

has been observed.

itory's wiki
m the P vtland Pattern Reposi j
A{id,a::zdstfr/liki.tz.c:m/ 2Weleome\/isitors where You I\
%ind mgh\/ anti—patterns and distussions:

&L

— 7 Anfi—PatferN

Name: Golden Hammer

Problem: You need to choose technologies
for your development and you believe that
exactly one technology must dominate the
architecture.

Context: You need to develop some new
system or piece of software that doesn’t
fit well with the technology that the
development team is familiar with.

Forces:

+ The development team is committed
to the technology they know.

« The development team is not familiar
with other technologies.

- Unfamiliar technologies are seen as
risky.

- It is easy to plan and estimate for
development using the familiar
technology.

Supposed solution: Use the familiar
technology anyway. The technology is applied
obsessively to many problems, including
places where it is clearly inappropriate.

Refactored solution: Expand the knowledge
of developers through education, training, and
book study groups that expose developers to
new solutions.

Examples:

Web companies keep using and maintaining
their internal homegrown caching systems
when open source alternatives are in use.

you are here »

593

https://wiki.c2.com/?WelcomeVisitors

your design toolbox

Tools for your Pesign Toolbox

You’ve reached that point where you’ve outgrown us. Now’s the

time to go out in the world and explore patterns on your own...

0 Dasits

P‘bs‘h" ad‘,'\on
E“Lavsu\a‘tw"

00 Printiples

Encapsulate what vavies:
N
inhevitante:
Favor tomposition over nher?
avo!
Prooyam to \V\J(,CY‘QQLCS, not
‘ -
'\m?\emcn’ca\‘,\ons.

Polymorphs™
\V\\\C"‘bv‘“

\ed desions
e for \ooselY toug! g
it:‘:icn ob:)wts fhat interd

hould be oFe"
A s‘:' modikication

for extension bt

Classe

t\osed £ d
abs&radﬁ\ans. Do no‘\: dc\nn

Dcvcnd on Jasses

on (‘,onb\‘d’,c

our ‘Q\;\cnds'

oty £alk bo ¥

D .4 ca\\ us) wc’\\ ca\\ \’ovx-
on

0o Patters .

S |
v - c'
i \ Pron - Provit \(ow Pa{-;\-,cvns Her

wn \ \ COW\YW' /
4 \‘\ ! P‘ CwYode \ /
“\‘ more ?a‘\:{c‘ﬂ‘ /

- solves 3 vebue

\

\
\

o

594 Chapter 13

The time has tome

‘(:ov' \/ou ‘{',o 90 ou{: and
distover move patterns
on Your own. Theve ave
many domain—specific
patterns we haven't even
mentioned and there ave
also some foundational
ones we didn't cover.
You've also got patterns
oﬁ Your own to ereate.

<y

‘ Check out the
Appendix; we'll
give You a heads
up on some move
foundational
?a{:{:crns \/ou)”
i Probabl\/ want to
have a look at.

Q BULLET POINTS —

= | et Design Patterns emerge
in your designs; don't force
them in just for the sake of
using a pattern.

= Design Patterns aren’t setin
stone; adapt and tweak them
to meet your needs.

= Always use the simplest
solution that meets your
needs, even if it doesn’t
include a pattern.

= Study Design Patterns
catalogs to familiarize
yourself with patterns and the
relationships among them.

= Pattern classifications (or
categories) provide groupings
for patterns. When they help,
use them.

= You need to be committed to
be a patterns writer: it takes
time and patience, and you
have to be willing to do lots of
refinement.

= Remember, most patterns you
encounter will be adaptations
of existing patterns, not new
patterns.

= Build your team’s shared
vocabulary. This is one of
the most powerful benefits of
using patterns.

= | jke any community, the
patterns community has its
own lingo. Don't let that hold
you back. Having read this
book, you now know most
of it.

with

Leaving Objectville...

Boy, it’s been great having you in Objectville.

We're going to miss you, for sure. But don’t worry—before you know it, the
next Head First book will be out and you can visit again. What’s the next
book, you ask? Hmmm, good question! Why don’t you help us decide?
Send email to booksuggestions@wickedlysmart.com.

595

exercise solutions

N>
wWw+Q DQ WH AT ?
e - sSaLLT\QN
Match each pattern with its description:
Pattern Description
Decorator Wraps an object and provides a different
interface to it.
State Subelasses decide how to implement steps in an
algorithm.
lterator
Subclasses decide which concrete classes to
Facade credte.
Ensures one and only one object is created.
Strategy

Adapter M

Observer

Comiposite

Template Methed "
\
\

Singleton \

Abstract Factory

Encapsulates interchangeable behaviors and uses
delegation to decide Which one to use.

Clients treat collections of objects and individual
objects uniformly.

Encapsulates state-based behaviors and uses
delegation to switch between behaviors.

Provides a way to traverse a collection of objects
without exposing its implementation.

Simplifies the interface of a set of classes.

™~ Wraps an object to provide new behavior.

Allows a client to create families of objects
without specifying their concrete classes.

Allows objects to be notified when state changes.
Wraps an object to control access to .

Command

>Encapsulates a request as an object.

596

Chapter 13

14 Appendix
Leftover Patterns

Not everyone can be the most popular. Alot has changed
in the last 25+ years. Since Design Patterns: Elements of Reusable Object-
Oriented Software first came out, developers have applied these patterns
thousands of times. The patterns we summarize in this appendix are full-
fledged, card-carrying, official GoF patterns, but aren’t used as often as the
patterns we’ve explored so far. But these patterns are awesome in their own
right, and if your situation calls for them, you should apply them with your
head held high. Our goal in this appendix is to give you a high-level idea of

what these patterns are all about.

this is a new chapter 597

bridge pattern

Bridge

Use the Bridge Pattern to vary not only your

implementations, but also your abstractions. .
) ’ g This is an abstraction. [t could be

A scenario an interfate o an abstract elass.

Imagine you’re writing the code for a new
ergonomic and user-friendly remote control for
TVs. You already know that you’ve got to use
good object-oriented techniques because while

the remote is based on the same abstraction, there

will be lots of umplementations—one for each model Evcr\/ vemote has the
of TV.

RemoteControl
. on()
same abstraction. Y off)

setChannel()

// more methods
RCAControl SonyControl
Lo'f‘,s o‘(" on() on()
implementations, off() off()
one -Fo\r eath TV setChannel() setChannel()
/I'more methods".. /I more methods

{

tuneChannel (channel) ;
@
Your dilemma }

You know that the remote’s user interface won’t be right the
first time. In fact, you expect that the product will be refined
many times as usability data is collected on the remote

control. Using 4his design we £an Yar\/ L
So your dilemma is that the remotes are going to change and only the TV '""\"C"“"‘{"at'”’ "o
the T'Vs are going to change. You've already abstracted the user The user intertate.

interface so that you can vary the implementation over the many
TVs your customers will own. But you are also going to need
to vary the abstraction because it is going to change over time as
the remote is improved based on the user feedback.

So how are you going to create an object-oriented design that
allows you to vary the implementation and the abstraction?

698 Appendix

leftover patterns

Why use the Bridge Pattern?

The Bridge Pattern allows you to vary the implementation and
the abstraction by placing the two in separate class hierarchies.

Implementat; .
Postraction The velationship between Plementation class hierarchy.
tlass \\'\c\«avt\\‘l' P the two is V,C)‘(: evved to as——é
the “bridge.
RemoteControl Has-A v
implementor >
on() on()
off() off()
setChannel()---qreoeo implementor . tuneChannel (channel) ; tuneChannel()
/I more methods \—é // more methods
T —
Z
All methods in the abstraction
ave implemented in terms
ConcreteRemote he i m?l em cn{:a{‘,'loh- RCA Sony
currentStation on() on()
off() off()
O:f() tuneChannel() tuneChannel()
o) setChannel (currentStation + 1); /I more methods /I' more methods
setChannel() ' S
nextChannel() =~
previousChannel()
1/ more methods Contrete subtlasses ave implemented in terms of the
abstrattion, not the implementation.
Now you have two hierarchies, one for the remotes and a separate one for platform-
specific TV implementations. The bridge allows you to vary either side of the two
hierarchies independently.
—Bridge Benefits —Bridge Uses and Drawbacks
= Decouples an implementation so that it is not bound = Useful in graphics and windowing systems that need
permanently to an interface. to run over multiple platforms.
= Abstraction and implementation can be extended = Useful any time you need to vary an interface and an
independently. implementation in different ways.
= Changes to the concrete abstraction classes don’t = |ncreases complexity.
affect the client.

you are here » 599

builder pattern

Builder

Use the Builder Pattern to encapsulate the construction of
a product and allow it to be constructed in steps.

A scenario

You've just been asked to build a vacation planner for Patternsland, a new theme
park just outside of Objectville. Park guests can choose a hotel and various types of
admission tickets, make restaurant reservations, and even book special events. To create

a vacation planner, you need to be able to create structures like this:)
Each vaeation is planned

? over some number of days.

O v
/ ai\
Q O Q
N AN AN
Q00 9000 0O 00O

) s
Howd ok Dinind Hotd ki Secia € Dinind Uik Hore) Secia €

\ NN \

Q0
Q

T,
Dinee Dine® e pu®

Prerns

'\/ Each day tan have any tombination
of hotel vesevvations, tickets,

meals, and special events.

You need a flexible design

Each guest’s planner can vary in the number of days and types of activities it includes.
Tor instance, a local resident might not need a hotel, but wants to make dinner and
special event reservations. Another guest might be flying into Objectville and needs a
hotel, dinner reservations, and admission tickets.

So, you need a flexible data structure that can represent guest planners and all their
variations; you also need to follow a sequence of potentially complex steps to create the
planner. How can you provide a way to create the complex structure without mixing it
with the steps for creating it?

600 Appendix

leftover patterns

Why use the Builder Pattern?

Remember Iterator? We encapsulated the iteration into a separate
object and hid the internal representation of the collection from the
client. It’s the same idea here: we encapsulate the creation of the
trip planner in an object (let’s call it a builder), and have our client
ask the builder to construct the trip planner structure for it.

(\1

The tlient uses an
abstraet interface o
build the Ylanncv.

. builder
The Client diveets | Client AbstractBuilder
the builder o constructPlanner() buildDay()
construet the : addHotel()
ylam\cr addReservation()
: addSpecialEvent()
addTickets()
getVacationPlanner()

builder.buildbay (date) ; The tontrete bui‘;dczs
builder.addHotel (date, "Grand Facadian"); [treates veal pro .“"
and stores them in

builder.addTickets ("Patterns on Ice");

. VacationBuil the vatation composite
// plan rest of vacation acationBuilder s{-,rud',wc~
vacation
Planner yourPlanner =
builder.getVacationPlanner () ; buildDay()
addHotel()
addReservation()
addSpecialEvent()
. Adev to treate addTickets()
The C\\'\cn{ cj.\vc:isu::;b:%dicvs and getVacationPlanner()
annev \n .
E\\\i: calls the 5ch\/aca{\onP\avmcr()b.CCJC.
- ethod 4o vetrieve the tomplete o0}
—Builder Benefits —Builder Uses and Drawbacks
= Encapsulates the way a complex object is = Often used for building composite structures.
constructed. = Constructing objects requires more domain
= Allows objects to be constructed in a multistep and knowledge of the client than when using a Factory.

varying process (as opposed to one-step factories).

® Hides the internal representation of the product from
the client.

= Product implementations can be swapped in and out
because the client only sees an abstract interface.

you are here » 601

chain of responsibility

Chain of Responsibility

Use the Chain of Responsibility Pattern when you want to
give more than one object a chance to handle a request.

A scenario

Mighty Gumball has been getting more email
than they can handle since the release of the
Java-powered Gumball Machine. From their
own analysis they get four kinds of email: fan
mail from customers that love the new 1-in-10
game, complaints from parents whose kids are
addicted to the game, requests to put machines
in new locations, and a fair amount of spam.

All fan mail should go straight to the CEO, all
complaints should go to the legal department,
and all requests for new machines should go to
business development. Spam should be deleted.

Your task

Mighty Gumball has already written some Al
detectors that can tell if an email is spam, fan
mail, a complaint, or a request, but they need
you to create a design that can use the detectors
to handle incoming email.

602

You've got to help us
deal with the flood of email we're
getting since the release of the
Java Gumball Machine.

leftover patterns

How to use the Chain of Responsibility Pattern

With the Chain of Responsibility Pattern, you create a chain of objects
to examine requests. Each object in turn examines a request and either
handles it or passes it on to the next object in the chain.

Eath ob)cch in the thain
acts as a handler and .has
a3 suttessor ob\')ed:. Ik i
tan handle the rcow.cs‘c,
it does; otherwise, 1
Lorwards the chucsjc

Handler

successor

handleRequest()

its suttessov SpamHandler

FanHandler h ComplaintHandler h NewLocHandler h

handleRequest()

As email 1s received, it 1s passed to the first handler:
SpamHandler. If the SpamHandler can’t handle the
1s passed on to the FanHandler. And so on...

Eath email is ?asscd +o
the fivst handlev-

handleRequest() l handleRequest() handleRequest() l

request it Email is not handled if it
Lalls off the end of the

chain—-aH‘)\ough you £an alwa\/s

g implement a tateh—all handler.

g - Spam /ﬁ i Fan 1} — Complaint NewLoc
Handler Handler

— Chain of Responsibility Benefits

= Decouples the sender of the request and its
receivers.

= Simplifies your object because it doesn’t have
to know the chain’s structure and keep direct
references to its members.

= Allows you to add or remove responsibilities

dynamically by changing the members or order of
the chain.

-Chain of Responsibility Uses and Drawbacks-

= Commonly used in Windows systems to handle
events like mouse clicks and keyboard events.

= Execution of the request isn’t guaranteed; it may
fall off the end of the chain if no object handles it
(this can be an advantage or a disadvantage).

= Can be hard to observe and debug at runtime.

you are here » 603

flyweight paitern

Flyweight

Use the Flyweight Pattern when one instance of a class
can be used to provide many virtual instances.

A scenario

You want to add trees as objects in your new landscape design application. In your
application, trees don’t really do very much; they have an X-Y location, and they can
draw themselves dynamically, depending on how old they are. The thing is, a user
might want to have lots and lots of trees in one of their home landscape designs. It
might look something like this:

Ea.ch Tree instance
mamfains its own s'(:a{:
e.

Tree

@ xCoord

yCoord

House

age

display() {
// use X-Y coords

// & complex age

// related calcs

Your big client’s dilemma

You have a key client you’ve been pitching for months.
They’re going to buy 1,000 seats of your application, and
they’re using your software to do the landscape design for
huge planned communities. After using your software for a
week, your client is complaining that when they create large
groves of trees, the app starts getting sluggish...

604 Appendix

Why use the Flyweight Pattern?

What if, instead of having thousands of Tree objects, you
could redesign your system so that you’ve got only one
instance of Tree, and a client object that maintains the state
of ALL your trees? That’s the Flyweight!

All the state, for ALL
of your virtual Tree
ob cc{',s, s stoved in this

7,D arvay:
TreeManager
.:; treeArray

displayTrees () {

// for all trees ({

// get array row

display(x, y, age);
}

— Flyweight Benefits

= Reduces the number of object instances at runtime,
saving memory.

= Centralizes state for many “virtual” objects into a
single location.

leftover patterns

O"C; Slns

Tree °lyec£ & state—fre,

Tree

— Flyweight Uses and Drawbacks

display(x, y, age) {

// use X-Y coords

// & complex age
// related calcs

= The Flyweight is used when a class has many
instances, and they can all be controlled identically.

= Adrawback of the Flyweight Pattern is that once
you've implemented it, single, logical instances of the
class will not be able to behave independently from
the other instances.

you are here » 605

interpreter pattern

Interpreter

Use the Interpreter Pattern to build an
interpreter for a language.

A scenario

Remember the Duck Simulator? You have a hunch it would also
make a great educational tool for children to learn programming;
Using the simulator, each child gets to control one duck with a
simple language. Here’s an example of the language:

Tuen the duck r\?’“‘b

right;
while (daylight) fly;

Fly all day..

quack;
-and then quack.

Now, remembering how to create grammars from one of your old
introductory programming classes, you write out the grammar:

expression ::= <command> | <sequence> | <repetition>

sequence ::= <expression> ';' <expression>

If you'v

(_ A while statement is

a tonditiona| variable

The Interpreter
Pattern requires
some knowledge of
formal grammars.

/ Relax

¢ never studied formal grammars,
: go ahead and read through the pattern;
you'll still get the gist of 1t.

A sequente is 3 set of
expressions separated

«— b\/ semitolons.

We have three
tommands: Yigh‘{i;
o\uack, and ‘m\/

Jus{:
and

an €XPression.

command ::= right | quack | fly
repetition ::= while ' (' <variable> ') '<expression>
variable ::= [A-Z,a-z]+

Now what?

You've got a grammar; now all you need is a way to represent and
interpret sentences in the grammar so that the students can see the
effects of their programming on the simulated ducks.

606 Appendix

How to implement an interpreter

When you need to implement a simple language, the
Interpreter Pattern defines a class-based representation for its
grammar along with an interpreter to interpret its sentences.

To represent the language, you use a class to represent each

rule in the language. Here’s the duck language translated into
classes. Notice the direct mapping to the grammar.

leftover patterns

Expression

T

interpret(context)

Repetition h Sequence h
variable expression1
expression expression2
interpret(context) ' interpret(context) '

Variable h

QuackCommand

/Nh

!

RightCommand FlyCommand

interpret(context) I

interpret(context)

interpret(context)

N

interpret(context) I

To interpret the language, call the interpret() method on each
expression type. This method is passed a context—which
contains the input stream of the program we’re parsing—and

matches the input and evaluates it.

— Interpreter Benefits

printing and more sophisticated program validation.

= Representing each grammar rule in a class makes =
the language easy to implement.

= Because the grammar is represented by classes, you =
can easily change or extend the language.

= By adding methods to the class structure, you can =
add new behaviors beyond interpretation, like pretty "

— Interpreter Uses and Drawbacks

Use Interpreter when you need to implement a
simple language.

Appropriate when you have a simple grammar and
simplicity is more important than efficiency.

Used for scripting and programming languages.

This pattern can become cumbersome when
the number of grammar rules is large. In these
cases a parser/compiler generator may be more
appropriate.

607

you are here »

mediator pattern

Mediator

Use the Mediator Pattern to centralize complex

communications and control between related objects.

A scenario

Bob has an automated home, thanks to the good folks at HouseOf TheFuture. All of
his appliances are designed to make his life easier. When Bob stops hitting the snooze
button, his alarm clock tells the coffee maker to start brewing. Even though life is good
for Bob, he and other customers are always asking for lots of new features: No coffee
on the weekends... Turn off the sprinkler 15 minutes before a shower is scheduled...

Set the alarm early on trash days...

Alarm

onEvent () {
checkCalendar ()
checkSprinkler ()

startCoffee ()
// do more stuff

Calendar

onEvent () {
checkDayOfWeek ()
doSprinkler ()
doCoffee ()
doAlarm ()

// do more stuff

HouseOfTheFuture’s dilemma

It’s getting really hard to keep track of which rules reside in which objects, and how

alendar

the various objects should relate to each other.

608 Appendix

—_
-

CoffeePot

onEvent () {
checkCalendar ()
checkAlarm()
// do more stuff

Sprinkler

onEvent () {
checkCalendar ()
checkShower ()

checkTemp ()

checkWeather ()
// do more stuff

Mediator in action...

With a Mediator added to the system, all
of the appliance objects can be greatly
simplified:

= They tell the Mediator when their state
changes.

= They respond to requests from the
Mediator.

Before we added the Mediator, all of the
appliance objects needed to know about each
other; that is, they were all tightly coupled.
With the Mediator in place, the appliance
objects are all completely decoupled from
each other.

The Mediator contains all of the control
logic for the entire system. When an existing
appliance needs a new rule, or a new
appliance is added to the system, you’ll know
that all of the necessary logic will be added to
the Mediator.

— Mediator Benefits

) /)

alendar

(0]
. Q
offeePot

— Mediator Uses and Drawbacks

leftover patterns

It's such a relief,
not having to figure
out that Alarm clock's
picky rules!

Mediator

if (alarmEvent) {
checkCalendar ()
checkShower ()
checkTemp ()

}

if (weekend) ({
checkWeather ()
// do more stuff
}

if (trashDay) {

resetAlarm()
// do more stuff
}

Increases the reusability of the objects supported by
the Mediator by decoupling them from the system.
Simplifies maintenance of the system by centralizing
control logic.

Simplifies and reduces the variety of messages sent
between objects in the system.

The Mediator is commonly used to coordinate
related GUI components.

A drawback of the Mediator Pattern is that without
proper design, the Mediator object itself can become
overly complex.

you are here » 609

memento pattern

Mewento

Use the Memento Pattern when you need
to be able to return an object to one of its
previous states; for instance, if your user
requests an “undo.”

A scenario

Your interactive role-playing game is hugely successful,
and has created a legion of addicts, all trying to get
to the fabled “level 13.” As users progress to more
challenging game levels, the odds of encountering
a game-ending situation increase. Fans who have
spent days progressing to an advanced level are
understandably miffed when their character gets snuffed,
and they have to start all over. The cry goes out for a
“save progress” command, so that players can store their
game progress and at least recover most of their efforts
when their character is unfairly extinguished. The
“save progress” function needs to be designed to return
a resurrected player to the last level she completed
successfully.

610 Appendix

Just be careful how you go about
saving the game state. It's pretty
complicated, and T don't want anyone
else with access to it mucking it up and
breaking my code.

The Mewmento at work

The Memento has two goals:

= Saving the important state of a system’s key object
g p Y Yy obj

= Maintaining the key object’s encapsulation

Keeping the Single Responsibility Principle in mind, it’s also
a good idea to keep the state that you’re saving separate from
the key object. This separate object that holds the state is
known as the Memento object.

leftover patterns

GameMemento

savedGameState

Client

MasterGameObject

// when new level is reached

Object saved =

// when a restore is required

Whi\c ﬂ\is 'ISV\,{Z mgo.restoreState (saved) ;

a tevribly (:anc\/
im\?\:menjcajcion, notice

hat the Client has

o attess to the
Memento's data.

— Memento Benefits

Keeping the saved state external from the key L
object helps to maintain cohesion. =
Keeps the key object’s data encapsulated.

Provides easy-to-implement recovery capability. =

(Object) mgo.getCurrentState() ;

gameState

Object getCurrentState() {
// gather state

return (gameState) ;

restoreState (Object savedState) {

// restore state

// do other game stuff

— Memento Uses and Drawbacks ———

The Memento is used to save state.
A drawback to using Memento is that saving and
restoring state can be time-consuming.

In Java systems, consider using Serialization to
save a system’s state.

you are here » 611

prototype pattern

Prototype

Use the Prototype Pattern when creating an instance
of a given class is either expensive or complicated.

A scenario

Your interactive role-playing game has an insatiable appetite for monsters. As your
heroes make their journey through a dynamically created landscape, they encounter
an endless chain of foes that must be subdued. You'd like the monster’s characteristics
to evolve with the changing landscape. It doesn’t make a lot of sense for bird-like
monsters to follow your characters into underseas realms. Finally, you’d like to allow
advanced players to create their own custom monsters.

Yikes! Just the act
of creating all of these different

kinds of monster instances is getting
tricky... Putting all sorts of state detail in the
constructors doesn't seem to be very cohesive. It
would be great if there was a single place where
all of the instantiation details could be
encapsulated...

It would be a lot cleaner if
we could decouple the code that
handles the details of creating the

monsters from the code that actually
needs to create the instances on

612 Appendix

leftover patterns

Prototype to the rescue

The Prototype Pattern allows you to make new instances by
copying existing instances. (In Java this typically means using
the clone() method, or deserialization when you need deep

<<interface>>
Monster
copies.) A key aspect of this pattern is that the client code can

make new instances without knowing which specific class is ﬂ 7

being instantiated.

MonsterMaker

makeRandomMonster () {

Monster m =

MonsterRegistry.getMonster () ;

WellKnownMonster I DynamicPlayerGeneratedMonster

The client needs 3 new monster

<.,/ appropriate to 4he turrent

situation. (The client won £ know
what kind of monster he 5&,5.)

MonsterRegistry

Monster getMonster () {

// find the correct monster

return correctMonster.clone() ;

— Prototype Benefits

® Hides the complexities of making new instances
from the client.

= Provides the option for the client to generate
objects whose type is not known.

® |n some circumstances, copying an object can be
more efficient than creating a new object.

<\ T")C V‘caisfy-y ‘Fihds

MOV\S{CV‘, "‘akCS a c,
returns the ¢lone.

the appropri
Phafe
one O‘F i‘t: and

— Prototype Uses and Drawbacks

= Prototype should be considered when a system
must create new objects of many types in a
complex class hierarchy.

= Adrawback to using Prototype is that making a
copy of an object can sometimes be complicated.

you are here » 613

visitor pattern

Visitor

Use the Visitor Pattern when you want to
add capabilities to a composite of objects
and encapsulation is not important.

A scenario

Customers who frequent the Objectville Diner and Objectville
Pancake House have recently become more health conscious. They
are asking for nutritional information before ordering their meals.
Because both establishments are so willing to create special orders,
some customers are even asking for nutritional information on a
per-ingredient basis.

Lou’s proposed solution:
// new methods

getHealthRating()
getCalories () / \
getProtein () § . -
getCarbs ()

// new methods

getHealthRating()

getCalories () \\

getProtein() —m8 —

getCarbs () —

Mel’s concerns...

“Boy, it seems like we’re opening Pandora’s box. Who knows what
new method we’re going to have to add next, and every time we
add a new method we have to do it in two places. Plus, what if
we want to enhance the base application with, say, a recipes class?
Then we’ll have to make these changes in three different places...”

614 Appendix

leftover patterns

The Visitor drops by

The Visitor works hand in hand with a Traverser. The Traverser
knows how to navigate to all of the objects in a Composite. The
Traverser guides the Visitor through the Composite so that the Visitor
can collect state as it goes. Once state has been gathered, the Client
can have the Visitor perform various operations on the state. When
new functionality is required, only the Visitor must be enhanced.

All these composite

tlasses have -bo do is add

a getState() method
The Visitor needs o be able to c.all. (and not vorey about
5C£S{:a£c() atvoss tlasses, and thisis xposing Ehemeelves).
where Yyou tan add new methods for

the tlient to use. !

The Client asks

the Visitor to get
information ‘(:rom the
Composite structure..
New methods éan be
added to the Visitor
without a‘c‘ccé{:ing the
Composite.

" Client /
raverser

The Traverser knows how to
quide fhe Visitor through
Ehe Composite sbrutture.

— Visitor Benefits — Visitor Drawbacks
= Allows you to add operations to a Composite = The Composite classes’ encapsulation is broken
structure without changing the structure itself. when the Visitor is used.
= Adding new operations is relatively easy. = Because the traversal function is involved,
* The code for operations performed by the Visitor is changes to the Composite structure are more
centralized. difficult.

you are here » 615

* Index *

album covers, displaying using Proxy Pattern

A

AbstractButton class 65
abstract class 128, 292, 293

Abstract Factory Pattern
about 153
building ingredient factories 146-148, 167
combining patterns 502-505, 548
defined 156-157
exercise matching description of 574, 596
Factory Method Pattern and 158-161
implementing 158
interview with 158-159

AbstractList 309

abstract superclasses 12

Adapter Pattern

*

about 458

code for 489-492

designing Virtual Proxy 459
reviewing process 465

testing viewer 464

writing Image Proxy 460-463

Alexander, Christopher

A Pattern Language 588
The Timeless Way of Building 588

algorithms, encapsulating

about 277
abstracting prepareRecipe() 284-287
Strategy Pattern and 24
Template Method Pattern and
about 288-290
applets in 309

about 243-244

adapting to Iterator Enumeration interface 251
combining patterns 498-499

dealing with remove() method 252

Decorator Pattern vs. 254-255

defined 245

designing Adapter 251

exercises for 256, 275, 375, 379, 481, 574, 596

Facade Pattern vs. 262

in Model-View-Controller 540

object and class adapters 246249

Proxy Pattern vs. 466

simple real world adapters 250

writing Enumeration Iterator Adapter 252-253

adapters, OO (Object-Oriented)

about 238-239

creating Two Way Adapters 244

in action 240-241

object, class object and class 246249
test driving 242

aggregates 327, 338

code up close 292-293
defined 291
The Hollywood Principle and 298-300
hooks in 293-295
in real world 301
sorting with 302-307
Swing and 308
testing code 296
algorithms, family of 22

Anti-Patterns 592-593

Applicability section, in pattern catalog 571
Application Patterns 590

Architectural Patterns 590

ArrayList, arrays and 320-325, 351

arrays
iteration and 325-326, 345
iterator and hasNext() method with 328
iterator and next() method with 328

this is the index

617

the index

Factory Method Pattern creator and product 131-132
B having single responsibility 340-341
high-level component 139
behavioral patterns categories, Design Patterns 576, identifying as Proxy class 480
578-579 relationships between 22
behaviors state
classes as 14 defining 395
classes extended to incorporate new 86 implementing 397, 400405, 409
declaring variables 15 increasing number in design of 408
delegating to decorated objects while adding 90 reworking 398-399
designing 11-12 state transitions in 408
encapsulating 11, 22 using composition with 23
implementing 11, 13 using instance variables instead of 82-83
separating 10 using instead of Singletons static 184
setting dynamically 20-21 using new operator for instantiating concrete 110-113
Be the L]1\77S13\/I 1s§(l)uti<éré exercises, dealing with multithreading Classification section, in pattern catalog 571

classloaders, using with Singletons 184
Bridge Pattern 598-599

Builder Pattern 600-601

Business Process Patterns 591

class patterns, Design Patterns 577
client heap 433-436
client helper (stubs), in RMI 436-437, 440, 442444,

453-454
C Code Magnets exercise
for DinerMenu Iterator 354, 378

Caching Proxy, as form of Virtual Proxy 466, 432
for Observer Pattern 70, 76

Café Menu, integrating into framework (Iterator Pattern)

347 cohesion 340
Chain of Responsibility Pattern 602-603 Collaborations section, in pattern catalog 571
change collection classes 352
as the one constant in software development 8 collection of objects
identifying 54 abstracting with Iterator Pattern
iteration and 340 about 317
chocolate factory example, using Singleton Pattern adding Iterators 328-334
175176, 183 cleaning up code using java.util.Iterator 335-337
class adapters, object vs. 246-249 remove() method in 334

implementing Iterators for 327

class design, of Observer Pattern 51-52 integrating into framework 347

classes. See also subclasses meaning of 327
abstract 128, 292, 293 using Composite Pattern
adapter 244, 274 about 363
Adapter Pattern 245 implementing components 364366
altering decorator 108 testing code 368-370
as beh'av1ors 14 tree structure 360-362, 368
collection 352 using whole-part relationships 372

creating 10

. . Collections, Iterators and 353
extended to incorporate new behaviors 86

618 Index

the index

Combining Patterns Composite Pattern
Abstract Factory Pattern 502-505 combining patterns 507-509
Adapter Pattern 498-499 defined 360
class diagram for 518-519 dessert submenu using
Composite Pattern 507-509 about 357
Decorator Pattern 500-501 designing 363, 371
Iterator Pattern 507 implementing 364367
Observer Pattern 510-516 testing 368370
command objects exercise matching description of 375, 379, 574, 596
encapsulating requests to do something 196 in Model-View-Controller 526-527, 543
mapplng 201 interview with 372-373
using 204 on implementation issues 372-373

safety vs. transparency 509
transparency in 371
tree structure of 360-362, 368

composition

Command Pattern
command objects
building 203
encapsulating requests to do something 196

mapping 201 adding behavior at runtime 85

favoring over inheritance 23, 85

using 204 . :
defined 206-207 inheritance vs. 93
dumb and smart command objects 228 object adapters and 249
exercise matching description of 574, 596 compound patterns, using
home automation remote control about 493-494
about 193 Model-View-Controller
building 203-205, 235 about 520-521, 523-525
class diagram 207 Adapter Pattern 539
creating commands to be loaded 208-209 Beat model 529, 549-552
defining 206 Composite Pattern 526-527, 543
designing 195-196 controllers per view 543
implementing 210-212 Heart controller 541, 561
macro commands 225, 226-228, 236 Heart model 539, 558-560
mapping 201-202, 235 implementing controller 536-537, 556-557
Null Objectin 214 implementing DJ View 528-535, 553-556
testing 204, 212-213, 227 Mediator Pattern 543
undo commands 217-221, 223-224, 228, 236 model in 543
vendor classes for 194 Observer Pattern 526-527, 531-533
writing documentation 215 song 520-521
logging requests using 230 state of model 543
mapping 201-202, 235 Strategy Pattern 526-527, 536537, 539, 558-560
Null Object 214 testing 538
queuing requests using 229 views accessing model state methods 543
understanding 197-200 multiple patterns vs. 516
compareTo() method 303 concrete classes
Complexity Hiding Proxy 483 deriving from 143

Factory Pattern and 134

components of object 267-271 i
getting rid of 116

you are here » 619

the index

instantiating objects and 138
using new operator for instantiating 110-113
variables holding reference to 143

concrete creators 135

concrete implementation object, assigning, 12
concrete methods, as hooks 293—295
concrete subclasses 121-122, 297
Consequences section, in pattern catalog 571

controlling object access, using Proxy Pattern
about 426428
Caching Proxy 466, 482
Complexity Hiding Proxy 483
Copy-On-Write Proxy 483
Firewall Proxy 482
Protection Proxy
about 469
creating dynamic proxy 474-478
implementing matchmaking service 471-472
protecting subjects 473
testing matchmaking service 479-480
using dynamic proxy 469-470
Remote Proxy
about 429
adding to monitoring code 432
preparing for remote service 446—447
registering with RMI registry 448
reusing client for 449
reviewing process 453—455
role of 430—431
testing 450-452
wrapping objects and 468
Smart Reference Proxy 482
Synchronization Proxy 483
Virtual Proxy
about 4357
designing Virtual Proxy 459
reviewing process 465
testing 464
writing Image Proxy 460-463
Copy-On-Write Proxy 483

create method

replacing new operator with 116
static method vs. 115
using subclasses with 121-122

620 Index

creating static classes instead of Singleton 179-180

creational patterns category, Design Patterns 576,
578-579

creator classes, in Factory Method Pattern 131-132,
134-135

crossword puzzle 33,74, 163, 187, 234, 273, 311, 374,
484

Cunningham, Ward 589

D

Decorator Pattern
about 88-90, 104
Adapter Pattern vs. 254-255
combining patterns 500-501
defined 91
disadvantages of 101
exercises for 256, 275, 481, 574, 596
in Java I/0O 100-101
in Structural patterns category 577
interview with 104
Proxy Pattern vs. 466-468
Starbuzz Coffee project
about 80-81
adding sizes to code 99
constructing drink orders 89-90
drawing beverage order process 94, 107
testing order code 98-99
writing code 95-97
decoupling, Iterator allowing 333, 337, 339, 351-352

delegation, adding behavior at runtime 85
dependence, in Observer Pattern 52

Dependency Inversion Principle (DIP) 139-143, 300
dependency rot 298

depend upon abstractions design principle 139

Design Patterns
becoming writer of 573
behavioral patterns category 576, 578-579
categories of 576-579
class patterns 577
creational patterns category 576, 578-579
defined 565-567
discovering own 572
exercise matching description of 596

frameworks vs. 29

guide to better living with 564
implement on interface in 117
libraries vs. 29

object patterns 577
organizing 575

overusing 584

resources for 588-589

rule of three applied to 573
structural patterns category 576, 578-579
thinking in patterns 580-581
using 29, 582, 584

your mind on patterns 583

Design Patterns- Reusable Object-Oriented Software
(Gamma et al.) 588

design principles
Dependency Inversion Principle 139-143
depend upon abstractions 139
Encapsulate what varies 9, 73, 75, 136, 393
Favor composition over inheritance 23, 73, 75, 393
The Hollywood Principle 298-300

One Class, One Responsibility Principle 184, 340,
371
one instance. See Singleton Pattern
Open-Closed Principle 355, 392
Principle of Least Knowledge 267-271
Program to an interface, not an implementation
11-12, 73, 75-76, 337
Single Responsibility Principle (SRP) 340-341
using Observer Pattern 73, 75
Design Puzzles
drawing class diagram making use of view and con-
troller 536, 548
drawing parallel set of classes 133, 165
drawing state diagram 391, 420
of classes and interfaces 25, 34
redesigning classes to remove redundancy 281,
278-283
redesigning Image Proxy 463, 486
dessert submenu, using Composite Pattern
about 357
designing 363, 371
implementing 364-367
testing 368-370
diner menus, merging (Iterator Pattern)
about 318-319
adding Iterators 328-334

the index

cleaning up code using java.util.Iterator 335-337
encapsulating Iterator 325-326
implementing Iterators for 327
implementing of 320-325
DIP (Dependency Inversion Principle) 139-143, 300
DJ View 528-535, 549-561
Domain-Specific Patterns 590

double-checked locking, reducing use of synchronization
using 182

Duck Magnets exercises, object and class object and class
adapters 247-248
duck simulator, rebuilding
about 495497
adding Abstract Factory Pattern 502-505, 548
adding Adapter Pattern 498-499
adding Composite Pattern 507-509
adding Decorator Pattern 500-501
adding Iterator Pattern 507
adding Observer Pattern 510-516
class diagram 518-519

dumb command objects 228
dynamic aspect of dynamic proxies 480
dynamic proxy 469-470, 474-478

E

Encapsulate what varies design principle 9, 73, 75, 136,
393
encapsulating
behavior 11
code 22-23, 114115, 136
iteration 325-326
method invocation 191, 206
object construction 600
requests 206
encapsulating algorithms
about 277
abstracting prepareRecipe() 284-287
Template Method Pattern and
about 283—-290
AbstractList and 309
code up close 292293
defined 291
The Hollywood Principle and 298-300

you are here » 621

the

hooksin 293-295

in real world 301
sorting with 302-307
Swing and 308
testing code 296

encapsulating subsystem, Facades 262

Enumeration
about 250
adapting to Iterator 251
java.util. Enumeration as older implementation of

Iterator 250, 342

remove() method and 252
writing Adapter that adapts Iterator to 253, 275

exercises
Be the JVM solution, dealing with multithreading

179-180, 188

Code Magnets

for DinerMenu Iterator 354, 378
for Observer Pattern 70, 76

dealing with multithreading 247-248
Design Puzzles

drawing class diagram making use of view and
controller 536, 548

drawing parallel set of classes 133, 165

drawing state diagram 391, 420

of classes and interfaces 25, 34

redesigning classes to remove redundancy 281—
282

redesigning Image Proxy 463, 486

Duck Magnets exercises, object and class object and

class adapters 247

implementing Iterator 329
implementing undo button for macro command 228,

236

Sharpen Your Pencil

622

altering decorator classes 99, 108

annotating Gumball Machine states 405, 423

annotating state diagram 396, 422

building ingredient factory 148, 167

changing classes for Decorator Pattern 512, 546

changing code to fit framework in Iterator Pattern
347, 377

choosing descriptions of state of implementation

392, 421

class diagram for implementation of prepareR-
ecipe() 286, 314
code not using factories 137, 166
creating commands for off buttons 226, 236
creating heat index 62
determining classes violating Principle of Least
Knowledge 270, 274
drawing beverage order process 107
fixing Chocolate Boiler code 183, 190
identifying factors influencing design 84
implementing garage door command 205, 235
implementing state classes 402, 421
making pizza store 124, 164
matching patterns with categories 575577
method for refilling gumball machine 417, 424
on adding behaviors 14
on implementation of printmenu() 324, 377
on inheritance 5, 35
sketching out classes 55
things driving change 8, 35
turning class into Singleton 176, 189
weather station SWAG 42, 75
writing Abstract Factory Pattern 505, 548
writing classes for adapters 244, 274
writing dynamic proxy 478, 487
writing Flock observer code 514, 547
writing methods for classes 83, 106
Who Does What
matching objects and methods to Command Pat-
tern 202, 235
matching patterns with its intent 256, 275
matching pattern with description 300, 314, 375,
379, 418, 424, 481, 488, 574, 596
writing Adapter that adapts Iterator to Enumeration
253,275

writing handler for matchmaking service 477, 486

external iterators 342

F

Facade Pattern

about 256
Adapter Pattern vs. 262
advantages 262

benefits of 262
building home theater system
about 257-259
constructing Facade in 263
implementing Facade class 260-262
implementing interface 264
class diagram 266
Complexity Hiding Proxy vs. 483
defined 266
exercises for 256, 275, 375, 379, 481, 574, 596
Principle of Least Knowledge and 271

factory method

about 125, 134
as abstract 135
declaring 125-127

Factory Method Pattern

about 131-132

about factory objects 114

Abstract Factory Pattern and 158-161
code up close 151

concrete classes and 134

creator classes 131-132

declaring factory method 125-127
defined 134

Dependency Inversion Principle 139-143
drawing parallel set of classes 133, 165
exercise matching description of 574, 596
interview with 158-159

looking at object dependencies 138
product classes 131-132

Simple Factory and 135

Factory Pattern

Abstract Factory
about 153
building ingredient factories 146-148, 167
combining patterns 502-505, 548
defined 156-157
exercise matching description of 574, 596
Factory Method Pattern and 158-160
implementing 158
exercise matching description of 300, 314
Factory Method
about 131-132
advantages of 135
code up close 151
creator classes 131-132

the index

declaring factory method 125-127
defined 134
Dependency Inversion Principle 139-143
drawing parallel set of classes 133, 165
exercise matching description of 574, 596
looking at object dependencies 138
product classes 131-132
Simple Factory and 135

Simple Factory
about factory objects 114
building factory 115
defined 117
Factory Method Pattern and 135
pattern honorable mention 117
using new operator for instantiating concrete

classes 110-113

Favor composition over inheritance design principle 23,

73,75, 393

Fireside Chat

Decorator Pattern vs. Adapter Pattern 254-255
Strategy Pattern vs. State Pattern 414415

Firewall Proxy 482
Flyweight Pattern 604-605
forces 568

for loop 344

frameworks vs. libraries 29

G

Gamma, Erich 587-588
Gang of Four (GoF) 569, 587-588
global access point 177

global variables, Singleton vs. 184

guide to better living with Design Patterns 564

gumball machine controller implementation, using State

Pattern
cleaning up code 413
demonstration of 411412
diagram to code 384-385
finishing 410
one in ten contest
about 390-391
annotating state diagram 396, 422
changing code 392-393

you are here »

623

the index

drawing state diagram 391, 420 Null Object 214
implementing state classes 397, 400405, 409 testing 204, 212-213, 227
new design 394-396 undo commands
reworking state classes 398-399 creating 217-219, 228
refilling gumball machine 416417 implementing for macro command 236
SoldState and WinnerState in 412 testing 220, 223-224
testing code 388-389 using state to implement 221
writing code 386-387 vendor classes for 194
gumball machine monitoring, using Proxy Patterns writing documentation 215
about 426-428 home theater system, building
Remote Proxy about 257-259
about 429 constructing Facade in 263
adding to monitoring code 432 implementing interface 264
preparing for remote service 446447 Sharpen Your Pencil 270
registering with RMI registry 448 using Facade Pattern 260-262
reusing client for 449 hooks, in Template Method Pattern 293-295
reviewing process 453-454
role of 430-431 I
testing 450-452
wrapping objects and 468 Image Proxy, writing 460463
implementations 13, 17, 43
H Implementation section, in pattern catalog 571
HAS-A relationships 23, 91 implement on interface, in design patterns 117
HashMap 348, 352, 353 import and package statements 128
hasNext() method 328, 342, 344 inheritance

Head First learning principles xxviii ;?sr;(li)\?;:tlgge\s/sé) fg{?), 85

Helm, Richard 587-588 favoring composition over 23
high-level component classes 139 for maintenance 4

The Hollywood Principle 298-300 forreuse 4,13~
implementing multiple 246

instance variables 82-83, 97-98

home automation remote control, using Command Pattern

about 193
building 203-205, 235 instantiating 110-113, 138, 170-172
class diagram 207 integrating Café Menu, using Iterator Pattern 347

creating commands to be loaded 208-209
defining 206
designing 195-196

Intent section, in pattern catalog 571
interface 11-12, 110-113

implementing 210-212 interface type 15, 18
macro commands internal iterators 342
about 225

. Interpreter Pattern 606-607
hard coding vs. 228

undo button 228, 236 Interview With
using 226227 Composite Pattern 372-373

mapping 201-202, 235 Decorator Pattern 104

624 Index

Factory Method Pattern and Abstract Factory Pattern
158-159
Singleton Pattern 174

inversion, in Dependency Inversion Principle 141
mvoker 201, 206207, 209, 233

IS-A relationships 23

Iterable interface 343

Iterator Pattern
about 327
class diagram 339
code up close using HashMap 348
code violating Open-Closed Principle 355-356
Collections and 353
combining patterns 507
defined 338-339
exercise matching description of 375, 379, 574, 596
integrating Café Menu 347
java.util.Iterator 334
merging diner menus
about 318-319
adding Iterators 328-334
cleaning up code using java.util.Iterator 335-337
encapsulating Iterator 325-326
implementing Iterators for 327
implementing of 320-325
removing objects 334
Single Responsibility Principle (SRP) 340-341
Iterators
adding 328-334
allowing decoupling 333, 337, 339, 351-352
cleaning up code using java.util.Iterator 335-337
Collections and 353
encapsulating 325-326
Enumeration adapting to 251, 342
external 342
HashMap and 353
implementing 327
internal 342
ordering of 342
polymorphic code using 338, 342
using ListItterator 342
writing Adapter for Enumeration 252-253
writing Adapter that adapts to Enumeration 253, 275

the index

J

JavaBeans library 65

Java Collections Framework 353

Java decorators (java.io packages) 100-103

Java Development Kit (JDK) 65

Java Iterable interface 343

java.lang.reflect package, proxy support in 440, 469, 476
java.util.Collection 353

java.util. Enumeration, as older implementation of Iterator

250, 342
java.util.Iterator
cleaning up code using 335-337
interface of 334
using 342
Java Virtual Machines (JVMs) 182, 432
JButton class 65
JFrames, Swing 308

Johnson, Ralph 587-588

K

Keep It Simple (KISS), in designing patterns 530

Known Uses section, in pattern catalog 571

L

lambda expressions 67

Law of Demeter. See Principle of Least Knowledge

lazy instantiation 177

leaves, in Composite Pattern tree structure 360-362, 368
libraries 29

LinkedList 352

ListItterator 342

logging requests, using Command Pattern 230

looping through array items 323

Loose Coupling Principle 54

you are here » 625

the index

multiple patterns, using
M about 493-494
in duck simulator
about rebuilding 495497
adding Abstract Factory Pattern 502-505, 548
adding Adapter Pattern 498-499
adding Composite Pattern 507-509
adding Decorator Pattern 500-501

macro commands

about 225
macro commands 228, 236

using 226227

maintenance, inheritance for, 4

matchmaking service, using Proxy Pattern adding Iterator Pattern 507
about 470 adding Observer Pattern 510-516
creating dynamic proxy 474478 class diagram 518-519
mmplementing 471-472 multithreading 181-182, 188
protecting subjects 473
testing 479-480 N

Mediator Pattern 543, 608—609

Memento Pattern 610-611 Name section, in pattern catalog 571

merging diner menus (Iterator Pattern) new operator
about 318-319 related to Singleton Pattern 171-172
adding Iterators 328-334 replacing with concrete method 116
cleaning up code using java.util.Iterator 335-337 next() method 328, 342, 344

encapsulating Iterator 325-326
implementing Iterators for 327
implementing of 320-325

NoCommand, in remote control code 214

nodes, in Composite Pattern tree structure 360-362, 368

method of objects, components of object vs. 267-271 Null Objects 214

methods 143, 293-295 O

modeling state 384-385

Model-View-Controller (MVC) object access, using Proxy Pattern for controlling
about 520-521, 523-525 about 426-428
Adapter Pattern 540 Caching Proxy 466, 482
Beat model 529, 549-552 Complexity Hiding Proxy 483
Composite Pattern 526-527, 543 Copy-On-Write Proxy 483
controllers per view 543 Firewall Proxy 482
Heart controller 541, 561 Protection Proxy
Heart model 539 about 469
implementing controller 536-537, 556-557 creating dynamic proxy 474478

implementing D] View 528-535, 553-556
Mediator Pattern 543

model in 543

Observer Pattern 526-527, 531-533

song 520-521

state of model 543

Strategy Pattern 526-527, 536-537, 539, 558-560
testing 538

views accessing model state methods 543

implementing matchmaking service 471-472
protecting subjects 473
testing matchmaking service 479-480
using dynamic proxy 469-470
Remote Proxy
about 429
adding to monitoring code 432
preparing for remote service 446447

N . registering with RMI registry 448
Motivation section, in pattern catalog 571

626 Index

reusing client for 449

reviewing process 453-454

role of 430-431

testing 450452

wrapping objects and 468
Smart Reference Proxy 482
Synchronization Proxy 483
Virtual Proxy

about 457

designing Virtual Proxy 459

reviewing process 465

testing 464

writing Image Proxy 460-463

object adapters vs. class adapters 246-249

object construction, encapsulating 600
object creation, encapsulating 114-115, 136
Object-Oriented (OO) design. See also design principles

the index

in Model-View-Controller 526-527, 531-533
loose coupling in 54
Observer object in 45
one-to-many relationships 51-52
process 4647
Subject object in 45
weather station using
building display elements 60
designing 57
implementing 58
powering up 61
SWAG 42

observers

in class diagram 52
in Five-minute drama 48-50
in Observer Pattern 45

OCP (Open-Closed Principle) 355, 392
One Class, One Responsibility Principle. See Single Re-

adapters
about 238-239
creating Two Way Adapters 244
in action 240-241, 242
object and class object and class 246249
design patterns vs. 30-31
extensibility and modification os code in 87
guidelines for avoiding violation of Dependency Inver-
sion Principle 143
loosely coupled designs and 54

object patterns, Design Patterns 577
objects

components of 267-271

creating 134

loosely coupled designs between 54
sharing state 408

Singleton 171, 174

wrapping 88, 244, 254, 262, 502

Observer Pattern

about 37, 44

class patterns category 574

combining patterns 510-516

comparison to Publish-Subscribe 45
dependence in 52

examples of 65

exercise matching description of 375, 379, 596
in Five-minute drama 48-50

sponsibility Principle (SRP)

one in ten contest in gumball machine, using State Pattern

about 390-391

annotating state diagram 396, 422

changing code 392-393

drawing state diagram 391, 420
implementing state classes 397, 400-405, 409
new design 394-396

reworking state classes 398-399

OO (Object-Oriented) design. See Object-Oriented (OO)

design
Open-Closed Principle (OCP) 355, 392
Organizational Patterns 591

overusing Design Patterns 584

P

package and import statements 128
Participants section, in pattern catalog 571
part-whole hierarchy 360

pattern catalogs 567, 569-572

Pattern Death Match pages 493

A Pattern Language (Alexander) 588
patterns, using compound 493-494

you are here »

627

the index

patterns, using multiple
about 493
in duck simulator
about rebuilding 495497
adding Abstract Factory Pattern 502-505, 548
adding Adapter Pattern 498-499
adding Composite Pattern 507-509
adding Decorator Pattern 500-501
adding Iterator Pattern 507
adding Observer Pattern 510-516
class diagram 518-519
pattern templates, uses of 573

Pizza Store project, using Factory Pattern
Abstract Factory in 153, 156-157
behind the scenes 154-155
building factory 115
concrete subclasses in 121-122
drawing parallel set of classes 133, 165
encapsulating object creation 114-115
ensuring consistency in ingredients 144-148, 167
framework for 120
franchising store 118-119
identifying aspects in 112-113
implementing 142
making pizza store in 123-124
ordering pizza 128-132
referencing local ingredient factories 152
reworking pizzas 149-151

polymorphic code, using on iterator 338, 342
polymorphism 12
prepareRecipe(), abstracting 284287

Principle of Least Knowledge 267-271. See also Single
Responsibility Principle (SRP)

print() method, in dessert submenu using Gomposite Pat-
tern 364-367

programming 12

Program to an interface, not an implementation design
principle 11-12,73,75-76, 337

program to interface vs. program to supertype 12

Protection Proxy
about 469
creating dynamic proxy 474-478
implementing matchmaking service 471-472

628 Index

protecting subjects 473

Proxy Pattern and 466

testing matchmaking service 479-480
using dynamic proxy 469-470

Prototype Pattern 612-613

proxies 425

Proxy class, identifying class as 480
Proxy Pattern

Adapter Pattern vs. 466
Complexity Hiding Proxy 483
Copy-On-Write Proxy 483
Decorator Pattern vs. 466468
defined 455-456
dynamic aspect of dynamic proxies 480
exercise matching description of 481, 574, 596
Firewall Proxy 482
implementation of Remote Proxy
about 429
adding to monitoring code 432
preparing for remote service 446447
registering with RMI registry 448
reusing client for 449
reviewing process 453-454
role of 430-431
testing 450-452
wrapping objects and 468
java.lang.reflect package 440, 469, 476
Protection Proxy and
about 469
Adapters and 466
creating dynamic proxy 474-478
implementing matchmaking service 471-472
protecting subjects 473
testing matchmaking service 479-480
using dynamic proxy 469-470
Real Subject
as surrogate of 466
invoking method on 475
making client use Proxy instead of 466
passing in constructor 476
returning proxy for 478
restrictions on passing types of interfaces 480
Smart Reference Proxy 482
Synchronization Proxy 483
variations 466, 482—483

Virtual Proxy

about 457

Caching Proxy as form of 466, 482

designing 459

reviewing process 465

testing 464

writing Image Proxy 460-463
Publish-Subscribe, as Observer Pattern 45

Q

queuing requests, using Command Pattern 229

R

Real Subject
as surrogate of Proxy Pattern 466
invoking method on 475
making client use proxy instead of 466
passing in constructor 476
returning proxy for 478

refactoring 358, 581
Related patterns section, in pattern catalog 571
relationships, between classes 22

Remote Method Invocation (RMI)
about 432-433, 436
code up close 442
completing code for server side 441-444
importing java.rmi 446
importing packages 447, 449
making remote service 437441
method call in 434-435
registering with RMI registry 448
things to watch out for in 444
Remote Proxy
about 429
adding to monitoring code 432
preparing for remote service 446-447
registering with RMI registry 448
reusing client for 449
reviewing process 453-454
role of 430431
testing 450452
wrapping objects and 468

the index

remove() method
Enumeration and 252
in collection of objects 334
in java.util.Iterator 342

requests, encapsulating 206

resources, Design Patterns 588-589

reuse 4, 85

rule of three, applied to inventing Design Patterns 573

runtime errors, causes of 135

\

Sample code section, in pattern catalog 571
server heap 433-436

service helper (skeletons), in RMI 436-437, 440, 442
444, 453454

shared vocabulary 26-27, 28, 585-586

Sharpen Your Pencil

altering decorator classes 99, 108

annotating Gumball Machine States 405, 423

annotating state diagram 396, 422

building ingredient factory 148, 167

changing classes for Decorator Pattern 512, 546

changing code to fit framework in Iterator Pattern
347, 377

choosing descriptions of state of implementation 392,
421

class diagram for implementation of prepareRecipe()
286, 314

code not using factories 137, 166

creating commands for off buttons 226, 236

creating heat index 62

determining classes violating Principle of Least
Knowledge 270, 274

drawing beverage order process 107

fixing Chocolate Boiler code 183, 190

identifying factors influencing design 84

implementing garage door command 205, 235

implementing state classes 402, 421

making pizza store 124, 164

matching patterns with categories 575577

method for refilling gumball machine 417, 424

on adding behaviors 14

on implementation of printmenu() 324, 377

you are here » 629

the index

on inheritance 5, 35

sketching out classes 55

things driving change 8, 35

turning class into Singleton 176, 189

weather station SWAG 42, 75

writing Abstract Factory Pattern 505, 548

writing classes for adapters 244, 274

writing dynamic proxy 478, 487

writing Flock observer code 514, 547

writing methods for classes 83, 106
Simple Factory Pattern

about factory objects 114

building factory 115

definition of 117

Factory Method Pattern and 135

pattern honorable mention 117

using new operator for instantiating concrete classes

110-113

Single Responsibility Principle (SRP) 184, 340-341, 371
Singleton objects 171, 174

Singleton Pattern
about 169-172
advantages of 170
Chocolate Factory 175-176, 183
class diagram 177
code up close 173
dealing with multithreading 179-182, 188
defined 177
disadvantages of 184
double-checked locking 182
exercise matching description of 574
global variables vs. 184
implementing 173
interview with 174
One Class, One Responsibility Principle and 184
subclasses in 184
using 184
skeletons (service helper), in RMI 436-437, 440, 442—
444, 453-454

smart command objects 228

Smart Reference Proxy 482

software development, change as a constant in 8
sorting methods, in Template Method Pattern 302-307
sort() method 306-311

spliterator method 343

630 Index

SRP (Single Responsibility Principle) 184, 340-341, 371
Starbuzz Coffee Barista training manual project
about 278-283
abstracting prepareRecipe() 284287
using Template Method Pattern
about 288290
code up close 292-293
defined 291
The Hollywood Principle and 298-300
hooks in 293-295
testing code 296
Starbuzz Coffee project, using Decorator Pattern
about 80-81
adding sizes to code 99
constructing drink orders 89-90
drawing beverage order process 94, 107
testing order code 98-99
writing code 95-97
state machines 384-385

State Pattern
defined 406
exercise matching description of 418, 424, 574, 596
gumball machine controller implementation
cleaning up code 413
demonstration of 411-412
diagram to code 384—385
finishing 410
refilling gumball machine 416417
SoldState and WinnerState in 412
testing code 388-389
writing code 386-387
increasing number of classes in design 408
modeling state 384-385
one in ten contest in gumball machine
about 390-391
annotating state diagram 396, 422
changing code 392-393
drawing state diagram 391, 420
implementing state classes 397, 400-405, 409
new design 394-396
reworking state classes 398-399
sharing state objects 408
state transitions in state classes 408
Strategy Pattern vs. 381, 407, 414415

state transitions, in state classes 408

state, using to implement undo commands 221
static classes, using instead of Singletons 184
static method vs. create method 115

Strategy Pattern
algorithms and 24
defined 24
exercise matching description of 300, 314, 375, 379,
418, 424, 574, 596
in Model-View-Controller 526-527, 536-537, 539
State Pattern vs. 381, 407, 414415
Template Method Pattern and 307
strive for loosely coupled designs between objects that in-
teract design principle 54. See also Loose Coupling
Principle
structural patterns category, Design Patterns 576,
578-579

Structure section, in pattern catalog 571

stubs (client helper), in RMI 436-437, 440, 442444,
453-454
subclasses
concrete commands and 207
concrete states and 406
explosion of classes 81
Factory Method and, letting subclasses decide which
class to instantiate 134
in Singletons 184
Pizza Store concrete 121-122
Template Method 288
troubleshooting 4
Subject

in class diagram 52
in Five-minute drama 48-50
in Observer Pattern 4547

subsystems, Facades and 262
superclasses 4, 12

supertype (programming to interface), vs. programming to
interface 12

Swing library 65, 308, 543
synchronization, as overhead 180

Synchronization Proxy 483

the index

T

Template Method Pattern
about 288-290
abstract class in 292, 293, 297
applets in 309
class diagram 291
code up close 292-293
defined 291
exercise matching description of 300, 314, 418, 424,
574, 596
The Hollywood Principle and 298-300
hooks in 293-295, 297
in real world 301
sorting with 302-307
Strategy Pattern and 307
Swing and 308
testing code 296
thinking in patterns 580-581
tightly coupled 54
The Timeless Way of Building (Alexander) 588
transparency, in Composite Pattern 371
tree structure, Composite Pattern 360-362, 368
Two Way Adapters, creating 244

type safe parameters 135

U

undo commands
creating 217-219, 228
implementing for macro command 228
support of 217
testing 220, 223-224

using state to implement 221

User Interface Design Patterns 591

Vv

variables
declaring behavior 15

holding reference to concrete class 143
instance 82-83, 97-98

you are here » 631

the index

Vector 352

Virtual Proxy
about 457
Caching Proxy as form of 466, 482
designing 459
reviewing process 465
testing 464
writing Image Proxy 460-463
Visitor Pattern 614-615
Vlissides, John 587-588

volatile keyword 182

W

weather station
building display elements 60
designing 57
implementing 58
powering up 61

632 Index

Who Does What exercises
matching objects and methods to Command Pattern
202,235
matching patterns with its intent 256, 275
matching pattern with description 300, 314, 375, 379,
418, 424, 481, 488, 574, 596

whole-part relationships, collection of objects using 372
Wickedlysmart website xxxiil
wrapping objects 88, 244, 254, 262, 468, 502

Y

your mind on patterns design pattern 583

Don't know about the website?
We've got updates, video,
projects, author blogs, and more!

Bring your brain over to
wickedlysmart.com

OREILLY

There's much more
where this came from.

Experience books, videos, live online
training courses, and more from O'Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

	Authors of Head First Design Patterns
	Creators of the Head First Series
	Table of Contents (summary)
	Table of Contents (the real thing)
	Intro
	Who is this book for?
	We know what you’re thinking.
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission
	Read Me
	Tech Reviewers
	Tech Reviewers, 2nd Edition
	Acknowledgments
	Very Special Thanks

	1: intro to Design Patterns: Welcome to Design Patterns
	It started with a simple SimUDuck app
	But now we need the ducks to FLY
	But something went horribly wrong...
	Joe thinks about inheritance...
	How about an interface?
	What would you do if you were Joe?
	The one constant in software development
	Zeroing in on the problem...
	Separating what changes from what stays
	Designing the Duck Behaviors
	Implementing the Duck Behaviors
	Integrating the Duck Behaviors
	More integration...
	Testing the Duck code
	Setting behavior dynamically
	The Big Picture on encapsulated behavior
	HAS-A can be better than IS-A
	Speaking of Design Patterns...
	Overheard at the local diner...
	Overheard in the next cubicle...
	The power of a shared pattern vocabulary
	How do I use Design Patterns?
	Skeptical Developer
	Friendly Patterns Guru
	Tools for your Design Toolbox

	2: the Observer Pattern: Keeping your Objects in the Know
	The Weather Monitoring application overview
	Unpacking the WeatherData class
	Our Goal
	Taking a first, misguided implementation of the Weather Station
	What’s wrong with our implementation anyway?
	Meet the Observer Pattern
	Publishers + Subscribers = Observer Pattern
	A day in the life of the Observer Pattern
	Five-minute drama: a subject for observation
	Two weeks later...
	The Observer Pattern defined
	The Observer Pattern: the Class Diagram
	The Power of Loose Coupling
	Cubicle conversation
	Designing the Weather Station
	Implementing the Weather Station
	Implementing the Subject interface in WeatherData
	Now, let’s build those display elements
	Power up the Weather Station
	Looking for the Observer Pattern in the Wild
	Coding the life-changing application
	Meanwhile, back at Weather-O-Rama
	Test Drive the new code
	Tools for your Design Toolbox
	Design Principle Challenge

	3: the Decorator Pattern: Decorating Objects
	Welcome to Starbuzz Coffee
	The Open-Closed Principle
	Meet the Decorator Pattern
	Constructing a drink order with Decorators
	Now let’s see how this all really works
	The Decorator Pattern defined
	Decorating our Beverages
	Cubicle Conversation
	New barista training
	Writing the Starbuzz code
	Coding beverages
	Coding condiments
	Serving some coffees
	Real-World Decorators: Java I/O
	Decorating the java.io classes
	Writing your own Java I/O Decorator
	Test out your new Java I/O Decorator
	Tools for your Design Toolbox

	4: the Factory Pattern: Baking with OO Goodness
	Identifying the aspects that vary
	But the pressure is on to add more pizza
	Encapsulating object creation
	Building a simple pizza factory
	Reworking the PizzaStore class
	The Simple Factory defined
	Franchising the pizza store
	We’ve seen one approach...
	But you’d like a little more quality control
	A framework for the pizza store
	Allowing the subclasses to decide
	Let’s make a Pizza Store
	Declaring a factory method
	Let’s see how it works: ordering pizzas
	So how do they order?
	Let’s check out how these pizzas are really made to order
	We're just missing one thing: Pizzas!
	You’ve waited long enough. Time for some pizzas!
	It’s finally time to meet the Factory Method Pattern
	View Creators and Products in Parallel
	Factory Method Pattern defined
	Looking at object dependencies
	The Dependency Inversion Principle
	Applying the Principle
	Inverting your thinking...
	A few guidelines to help you follow the Principle
	Meanwhile, back at the Pizza Store...
	Ensuring consistency in your ingredients
	Families of ingredients...
	Building the ingredient factories
	Building the New York ingredient factory
	Reworking the pizzas...
	Revisiting our pizza stores
	What have we done?
	More pizza for Ethan and Joel...
	Abstract Factory Pattern defined
	Factory Method and Abstract Factory compared
	Tools for your Design Toolbox

	5 the Singleton Pattern: One-of-a-Kind Objects
	The Little Singleton
	Dissecting the classic Singleton Pattern
	The Chocolate Factory
	Singleton Pattern defined
	Hershey, PA, we have a problem...
	Dealing with multithreading
	Can we improve multithreading?
	Meanwhile, back at the Chocolate Factory
	Congratulations!
	Tools for your Design Toolbox

	6: the Command Pattern: Encapsulating Invocation
	Free hardware! Let’s check out the Remote Control
	Taking a look at the vendor classes
	Cubicle Conversation
	Meanwhile, back at the Diner..., or, A brief introduction to the Command Pattern
	Let’s study the interaction in a little more detail
	The Objectville Diner roles and responsibilities
	From the Diner to the Command Pattern
	Our first command object
	Using the command object
	Creating a simple test to use the Remote Control
	The Command Pattern defined
	Assigning Commands to slots
	Implementing the Remote Control
	Implementing the Commands
	Putting the Remote Control through its paces
	Time to write that documentation...
	The updated code, using lambda expressiobs
	What are we doing?
	Time to QA that Undo button!
	Using state to implement Undo
	Adding Undo to the Ceiling Fan commands
	Get ready to test the ceiling fan
	Testing the ceiling fan...
	Every remote needs a Party Mode!
	Using a macro command
	More uses of the Command Pattern: queuing requests
	More uses of the Command Pattern: logging requests
	Command Pattern in the Real World
	Tools for your Design Toolbox

	7: the Adapter and Facade Patterns: Being Adaptive
	Adapters all around us
	Object-oriented adapters
	If it walks like a duck and quacks like a duck...
	Test drive the adapter
	The Adapter Pattern explained
	Here’s how the Client uses the Adapter
	Adapter Pattern defined
	Object and class adapters
	Real-world adapters
	Adapting an Enumeration to an Iterator
	Designing the Adapter
	Dealing with the remove() method
	Writing the EnumerationIterator adapter
	And now for something different...
	Home Sweet Home Theater
	Watching a movie (the hard way)
	Lights, Camera, Facade!
	Constructing your home theater facade
	Implementing the simplified interface
	Time to watch a movie (the easy way)
	Facade Pattern defined
	The Principle of Least Knowledge
	How NOT to Win Friends and Influence Objects
	Keeping your method calls in bounds...
	The Facade Pattern and the Principle of
	Tools for your Design Toolbox

	8: the Template Method Pattern: Encapsulating Algorithms
	It’s time for some more caffeine
	Whipping up some coffee and tea classes (in Java)
	And now the Tea...
	Let’s abstract that Coffee and Tea
	Taking the design further...
	Abstracting prepareRecipe()
	What have we done?
	Meet the Template Method
	Let’s make some tea...
	What did the Template Method get us?
	Template Method Pattern defined
	Hooked on Template Method...
	Using the hook
	Let’s run the Test Drive
	The Hollywood Principle
	The Hollywood Principle and Template Method
	Template Methods in the Wild
	Sorting with Template Method
	We’ve got some ducks to sort...
	What is compareTo()?
	Comparing Ducks and Ducks
	Let’s sort some Ducks
	Let the sorting commence!
	The making of the sorting duck machine
	Swingin’ with Frames
	Custom Lists with AbstractList
	Tools for your Design Toolbox

	9: the Iterator and Composite Patterns: Well-Managed Collections
	Breaking News: Objectville Diner and Objectville Pancake House Merge
	Check out the Menu Items
	Lou and Mel’s Menu implementations
	What’s the problem with having two different menu representations?
	Implementing the spec: our first attempt
	What now?
	Can we encapsulate the iteration?
	Meet the Iterator Pattern
	Adding an Iterator to DinerMenu
	Reworking the DinerMenu with Iterator
	Fixing up the Waitress code
	Testing our code
	Here’s the test run...
	What have we done so far?
	Reviewing our current design...
	Making some improvements...
	Cleaning things up with java.util.Iterator
	We are almost there...
	What does this get us?
	Iterator Pattern defined
	The Iterator Pattern Structure
	The Single Responsibility Principle
	Meet Java’s Iterable interface
	Java’s enhanced for loop
	Not so fast; Arrays are not Iterables
	Taking a look at the Café Menu
	Reworking the Café Menu code
	Adding the Cafe Menu to the Waitress
	Breakfast, lunch, AND dinner
	What did we do?
	Code Magnets
	Is the Waitress ready for prime time?
	Just when we thought it was safe...
	What do we need?
	The Composite Pattern defined
	Designing Menus with Composite
	Implementing MenuComponent
	Implementing the MenuItem
	Implementing the Composite Menu
	Fixing the print() method
	Getting ready for a test drive...
	Now for the test drive...
	Getting ready for a test drive...
	Tools for your Design Toolbox
	Code Magnets Solution

	10: the State Pattern: The State of Things
	Java Breakers
	Cubicle Conversation
	State machines 101
	Writing the code
	In-house testing
	You knew it was coming...a change request
	The messy STATE of things...
	The new design
	Defining the State interfaces and classes
	Implementing our State classes
	Reworking the Gumball Machine
	Now, let’s look at the complete GumballMachine class
	Implementing more states
	Let’s take a look at what we’ve done so far
	The State Pattern defined
	We still need to finish the Gumball 1 in 10 game
	Finishing the game
	Demo for the CEO of Mighty Gumball, Inc.
	Sanity check...
	We almost forgot!
	Tools for your Design Toolbox

	11: the Proxy Pattern: Controlling Object Access
	Coding the Monitor
	Testing the Monitor
	The role of the ‘remote proxy’
	Adding a remote proxy to the Gumball Mac
	Remote methods 101
	Walking through the design
	How the method call happens
	Java RMI, the Big Picture
	Making the Remote service
	Step one: make a Remote interface
	Step two: make a Remote implementation
	Step three: run rmiregistry
	Step four: start the service
	Complete code for the server side
	Complete code for the client side
	Back to our GumballMachine remote proxy
	Getting the GumballMachine ready to be a remote service
	Registering with the RMI registry...
	Now for the GumballMonitor client...
	Writing the Monitor test drive
	Another demo for the CEO of Mighty Gumball
	The Proxy Pattern defined
	Get ready for the Virtual Proxy
	Displaying Album covers
	Designing the Album Cover Virtual Proxy
	Writing the Image Proxy
	Testing the Album Cover Viewer
	What did we do?
	Using the Java API’s Proxy to create a protection proxy
	Geeky Matchmaking in Objectville
	The Person implementation
	Five-minute drama: protecting subjects
	Big Picture: creating a Dynamic Proxy for the Person
	Step one: creating Invocation Handlers
	Step two: creating the Proxy class and instantiating the Proxy object
	Testing the matchmaking service
	Running the code...
	The Proxy Zoo
	Tools for your Design Toolbox
	The code for the Album Cover Viewer

	12: compound patterns: Patterns of Patterns
	Working together
	Duck reunion
	Safety versus transparency
	What did we do?
	A duck’s-eye view: the class diagram
	The King of Compound Patterns
	Meet Model-View-Controller
	A closer look...
	Understanding MVC as a set of Patterns
	Using MVC to control the beat...
	Putting the pieces together
	Building the pieces
	Now let’s have a look at the concrete BeatModel class
	The View
	Implementing the View
	Now for the Controller
	And here’s the implementation of the controller
	Putting it all together...
	Exploring Strategy
	Adapting the Model
	And now for a test run...
	Tools for your Design Toolbox

	13: better living with patterns: Patterns in the Real World
	Design Pattern defined
	Looking more closely at the Design Pattern definition
	May the force be with you
	So you wanna be a Design Patterns writer
	Organizing Design Patterns
	Thinking in Patterns
	Your Mind on Patterns
	Don’t forget the power of the shared vocabulary
	Cruisin’ Objectville with the Gang of Four
	Your journey has just begun...
	The Patterns Zoo
	Annihilating evil with Anti-Patterns
	Tools for your Design Toolbox
	Leaving Objectville...

	14: appendix: Leftover Patterns
	Bridge
	Builder
	Chain of Responsibility
	Flyweight
	Interpreter
	Mediator
	Memento
	Prototype
	Visitor

	Index

