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‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts
are authored by established experts in their fields, reviewed by an international
advisory board, and contain numerous examples and problems, many of which
include fully worked solutions.

The UTiCS concept centers on high-quality, ideally and generally quite concise
books in softback format. For advanced undergraduate textbooks that are likely
to be longer and more expository, Springer continues to offer the highly regarded
Texts in Computer Science series, to which we refer potential authors.
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Preface to the Third Edition

After the publication of the second edition of this book, unexpected things have
happened. Because of the COVID pandemic, many onsite programming contests
were canceled or organized online. After that, generative AI has improved so that
it can now automatically solve many competitive programming problems.

Despite all this, competitive programming is still a popular and effective way
to learn programming and problem solving. This third edition of the book has new
chapters that discuss the use of Python in programming contests, how to prepare
for the IOI contest, and the future of competitive programming.

Helsinki, Finland
April 2024

Antti Laaksonen
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Preface to the Second Edition

This second edition of the book contains several new sections that discuss
advanced topics, such as calculating the Fourier transform, finding minimum cost
flows in graphs, and using automata in string problems.

I am grateful to Olli Matilainen for reading through most of the new material
and giving many useful comments and suggestions.

Helsinki, Finland
February 2020

Antti Laaksonen
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Preface to the First Edition

The purpose of this book is to give you a comprehensive introduction to modern
competitive programming. It is assumed that you already know the basics of pro-
gramming, but previous background in algorithm design or programming contests
is not necessary. Since the book covers a wide range of topics of various difficulty,
it suits both for beginners and more experienced readers.

Programming contests already have a quite long history. The International Col-
legiate Programming Contest for university students started during the 1970’s, and
the first International Olympiad in Informatics for secondary school students was
organized in 1989. Both competitions are now established events with a large
number of participants from all around the world.

Today, competitive programming is more popular than ever. The Internet has
played a significant role in this progress. There is now an active online community
of competitive programmers, and many contests are organized every week. At the
same time, the difficulty of contests is increasing. Techniques that only the very
best participants mastered some years ago are now standard tools known by a large
number of people.

Competitive programming has its roots in the scientific study of algorithms.
However, while a computer scientist writes a proof to show that their algorithm
works, a competitive programmer implements their algorithm and submits it to a
contest system. Then, the algorithm is tested using a set of test cases, and if it
passes all of them, it is accepted. This is an essential element in competitive pro-
gramming, because it provides a way to automatically get strong evidence that an
algorithm works. In fact, competitive programming has proved to be an excellent
way to learn algorithms, because it encourages to design algorithms that really
work, instead of sketching ideas that may work or not.

Another benefit of competitive programming is that contest problems require
thinking. In particular, there are no spoilers in problem statements. This is actu-
ally a severe problem in many algorithms courses. You are given a nice problem
to solve, but then the last sentence says, for example: “Hint: modify Dijkstra’s
algorithm to solve the problem.” After reading this, there is not much thinking
needed, because you already know how to solve the problem. This never happens
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x Preface to the First Edition

in competitive programming. Instead, you have a full set of tools available, and
you have to figure out yourself which of them to use.

Solving competitive programming problems also improves one’s programming
and debugging skills. Typically, a solution is awarded points only if it correctly
solves all test cases, so a successful competitive programmer has to be able to
implement programs that do not have bugs. This is a valuable skill in software
engineering, and it is not a coincidence that IT companies are interested in people
who have a background in competitive programming.

It takes a long time to become a good competitive programmer, but it is also
an opportunity to learn a lot. You can be sure that you will get a good general
understanding of algorithms if you spend time reading the book, solving problems,
and taking part in contests.

If you have any feedback, I would like to hear it! You can always send me a
message to ahslaaks@cs.helsinki.fi.

I am very grateful to a large number of people who have sent me feedback
on draft versions of this book. This feedback has greatly improved the quality
of the book. I especially thank Mikko Ervasti, Janne Junnila, Janne Kokkala,
Tuukka Korhonen, Patric Östergård, and Roope Salmi for giving detailed feed-
back on the manuscript. I also thank Simon Rees and Wayne Wheeler for excellent
collaboration when publishing this book with Springer.

Helsinki, Finland
October 2017

Antti Laaksonen

mailto:ahslaaks@cs.helsinki.fi
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1Introduction 

This chapter shows what competitive programming is about, outlines the contents of 
the book, and discusses additional learning resources. 

Section 1.1 goes through the elements of competitive programming, introduces 
a selection of popular programming contests, and gives advice on how to practice 
competitive programming. 

Section 1.2 discusses the goals and topics of this book, and briefly describes the 
contents of each chapter. 

Section 1.3 presents the CSES Problem Set, which contains a collection of practice 
problems. Solving the problems while reading the book is a good way to learn 
competitive programming. 

Section 1.4 discusses other books related to competitive programming and the 
design of algorithms. 

1.1 What Is Competitive Programming? 

Competitive programming combines two topics: the design of algorithms and the 
implementation of algorithms. 

Design of Algorithms The core of competitive programming is about inventing 
efficient algorithms that solve well-defined computational problems. The design of 
algorithms requires problem solving and mathematical skills. Often a solution to a 
problem is a combination of well-known methods and new insights. 

Mathematics plays an important role in competitive programming. Actually, there 
are no clear boundaries between algorithm design and mathematics. This book has 
been written so that not much background in mathematics is needed. The appendix 
of the book reviews some mathematical concepts that are used throughout the book, 
such as sets, logic and functions, and the appendix can be used as a reference when 
reading the book. 
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Implementation of Algorithms In competitive programming, the solutions to prob-
lems are evaluated by testing an implemented algorithm using a set of test cases. 
Thus, after coming up with an algorithm that solves the problem, the next step is to 
correctly implement it, which requires good programming skills. Competitive pro-
gramming greatly differs from traditional software engineering: programs are short 
(usually at most some hundreds of lines), they should be written quickly, and it is 
not needed to maintain them after the contest. 

At the time of writing this book, C++ is clearly the most popular language in 
competitive programming. Java and Python also have some popularity, and other 
languages are little used. For example, in 2023, C++ was used in 91% of the CSES 
Problem Set submissions, Java in 3% and Python in 5%. 

Many people regard C++ as the best choice for a competitive programmer. In 
particular, almost all top competitive programmers use C++. The benefits of using 
C++ are that it is a very efficient language and its standard library contains a large 
collection of data structures and algorithms. 

All example programs in this book are written in C++, except for Chap. 16 that 
discusses Python. The data structures and algorithms available in the C++ standard 
library are often used in the book. The programs follow the C++11 standard, which 
can be used in most contests nowadays. If you cannot program in C++ yet, now is a 
good time to start learning. 

1.1.1 Programming Contests 

IOI The International Olympiad in Informatics is an annual programming contest for 
secondary school students. Each country is allowed to send a team of four students 
to the contest. 

The IOI consists of two five-hour long contests. In both contests, the participants 
are asked to solve three difficult programming tasks. The tasks are divided into 
subtasks, each of which has an assigned score. While the contestants are divided into 
teams, they compete as individuals. 

Participants for the IOI are selected through national contests. Before the IOI, 
many regional contests are organized, such as the Baltic Olympiad in Informatics 
(BOI), the Central European Olympiad in Informatics (CEOI), and the Asia-Pacific 
Informatics Olympiad (APIO). 

ICPC The International Collegiate Programming Contest is an annual programming 
contest for university students. Each team in the contest consists of three students, 
and unlike in the IOI, the students work together; there is only one computer available 
for each team. 

The ICPC consists of several stages, and finally the best teams are invited to the 
World Finals. While there are tens of thousands of participants in the contest, there 
are only a small number of final slots available, so even advancing to the finals is a 
great achievement.
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In each ICPC contest, the teams have five hours of time to solve about ten algorithm 
problems. A solution to a problem is accepted only if it solves all test cases efficiently. 
During the contest, competitors may view the results of other teams, but for the last 
hour the scoreboard is frozen and it is not possible to see the results of the last 
submissions. 

Online Contests There are also many online contests that are open for everybody. 
At the time of writing this book, AtCoder and Codeforces are active contest sites 
that organize contests about weekly. Some companies also organize online contests 
with onsite finals. Companies use those contests for recruiting: performing well in a 
contest is a good way to prove one’s skills in programming. 

1.1.2 Tips for Practicing 

Learning competitive programming requires a great amount of work. However, there 
are many ways to practice, and some of them are better than others. 

When solving problems, one should keep in mind that the number of solved 
problems is not as important as the quality of the problems. It is tempting to select 
problems that look nice and easy and solve them, and skip problems that look hard 
and tedious. However, the way to really improve one’s skills is to focus on the latter 
type of problems. 

Another important observation is that most programming contest problems can 
be solved using simple and short algorithms, but the difficult part is to invent the 
algorithm. Competitive programming is not about learning complex and obscure 
algorithms by heart, but rather about learning problem solving and ways to approach 
difficult problems using simple tools. 

Finally, some people despise the implementation of algorithms: it is fun to design 
algorithms but boring to implement them. However, the ability to quickly and cor-
rectly implement algorithms is an important asset, and this skill can be practiced. It 
is a bad idea to spend most of the contest time for writing code and finding bugs, 
instead of thinking of how to solve problems. 

1.2 About This Book 

The IOI Syllabus [ 1] regulates the topics that may appear at the International 
Olympiad in Informatics, and the syllabus has been a starting point when select-
ing topics for this book. However, the book also discusses some advanced topics that 
are (as of 2024) excluded from the IOI but may appear in other contests. Examples 
of such topics are maximum flows, nim theory, and suffix structures. 

While many competitive programming topics are discussed in standard algorithms 
textbooks, there are also differences. For example, many textbooks focus on imple-
menting sorting algorithms and fundamental data structures from scratch, but this 
knowledge is not very relevant in competitive programming, because standard library 
functionality can be used. Then, there are topics that are well-known in the competi-
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tive programming community but rarely discussed in textbooks. An example of such 
a topic is the segment tree data structure that can be used to solve a large number of 
problems that would otherwise require tricky algorithms. 

One of the purposes of this book has been to document competitive programming 
techniques that are usually only discussed in online forums and blog posts. When-
ever possible, scientific references have been given for methods that are specific to 
competitive programming. However, this has not often been possible, because many 
techniques are now part of competitive programming folklore and nobody knows 
who has originally discovered them. 

The structure of the book is as follows: 

• Chapter 2 reviews features of the C++ programming language, and then discusses 
recursive algorithms and bit manipulation. 

• Chapter 3 focuses on efficiency: how to create algorithms that can quickly process 
large data sets. 

• Chapter 4 discusses sorting algorithms and binary search, focusing on their appli-
cations in algorithm design. 

• Chapter 5 goes through a selection of data structures of the C++ standard library, 
such as vectors, sets and maps. 

• Chapter 6 introduces an algorithm design technique called dynamic programming, 
and presents examples of problems that can be solved using it. 

• Chapter 7 discusses elementary graph algorithms, such as finding shortest paths 
and minimum spanning trees. 

• Chapter 8 deals with some advanced algorithm design topics, such as bit-
parallelism and amortized analysis. 

• Chapter 9 focuses on efficiently processing array range queries, such as calculating 
sums of values and determining minimum values. 

• Chapter 10 presents specialized algorithms for trees, including methods for pro-
cessing tree queries. 

• Chapter 11 discusses mathematical topics that are relevant in competitive pro-
gramming. 

• Chapter 12 presents advanced graph techniques, such as strongly connected com-
ponents and maximum flows. 

• Chapter 13 focuses on geometric algorithms and presents techniques using which 
geometric problems can be solved conveniently. 

• Chapter 14 deals with string techniques, such as string hashing, the Z-algorithm, 
and using suffix arrays. 

• Chapter 15 discusses a selection of more advanced topics, such as square root 
algorithms and dynamic programming optimization. 

• Chapter 16 focuses on the use of Python in competitive programming and the 
differences between C++ and Python. 

• Chapter 17 gives an overview of the IOI contest and contains advice for students 
who are preparing for the contest. 

• Chapter 18 shows how generative AI can be used for solving problems and dis-
cusses the future of competitive programming.
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1.3 CSES Problem Set 

The CSES Problem Set provides a collection of problems that can be used to practice 
competitive programming. The problems have been arranged in order of difficulty, 
and many of the techniques needed for solving the problems are discussed in this 
book. The problem set is available at the following address: 

https://cses.fi/problemset/ 

Let us see how to solve the first problem in the problem set, called Weird Algorithm. 
The problem statement is as follows: 

Consider an algorithm that takes as input a positive integer n. If n is even, the algorithm 
divides it by two, and if n is odd, the algorithm multiplies it by three and adds one. The 
algorithm repeats this, until n is one. For example, the sequence for n = 3 is as follows: 

. 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1

Your task is to simulate the execution of the algorithm for a given value of n. 

Input 

The only input line contains an integer n. 

Output 

Print a line that contains all values of n during the algorithm. 

Constraints 

• 1 ≤ n ≤ 106

Example 

Input: 

3 

Output: 

3 10 5 16 8 4 2 1  

This problem is connected to the famous Collatz conjecture which states that the 
above algorithm terminates for every value of n. However, nobody has been able to 
prove it. In this problem, though, we know that the initial value of n will be at most 
one million, which makes the problem much easier to solve. 

This problem is a simple simulation problem, which does not require much think-
ing. Here is a possible way to solve the problem in C++:

https://cses.fi/problemset/
https://cses.fi/problemset/
https://cses.fi/problemset/
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#include <iostream> 

using namespace std; 

int main() { 
int n; 
cin >> n; 
while (true) {  

cout << n << " "; 
if (n == 1) break; 
if (n%2 == 0) n /= 2; 
else n = n*3+1; 

} 
cout << "\n"; 

} 

The code first reads in the input number n, and then simulates the algorithm and 
prints the value of n after each step. It is easy to test that the algorithm correctly 
handles the example case n = 3 given in the problem statement. 

Now is time to submit the code to CSES. Then the code will be compiled and 
tested using a set of test cases. For each test case, CSES will tell us whether our code 
passed it or not, and we can also examine the input, the expected output, and the 
output produced by our code. 

After testing our code, CSES gives the following report 1 : 

Test Verdict Time (s) 
#1 ACCEPTED 0.06/1.00 
#2 ACCEPTED 0.06/1.00 
#3 ACCEPTED 0.07/1.00 
#4 ACCEPTED 0.06/1.00 
#5 ACCEPTED 0.06/1.00 
#6 TIME LIMIT EXCEEDED –/1.00 
#7 TIME LIMIT EXCEEDED –/1.00 
#8 WRONG ANSWER 0.07/1.00 
#9 TIME LIMIT EXCEEDED –/1.00 
#10 ACCEPTED 0.06/1.00 

This means that our code passed some of the test cases (ACCEPTED), was some-
times too slow (TIME LIMIT EXCEEDED), and also produced an incorrect output 
(WRONG ANSWER). This is quite surprising! 

The first test case that fails has n = 138367. If we test our code locally using this 
input, it turns out that the code is indeed slow. In fact, it never terminates. 

The reason why our code fails is that n can become quite large during the simula-
tion. In particular, it can become larger than the upper limit of an int variable. To

1 Note that if you try to submit this code to CSES, you may get a slightly different result because 
there may be new features and test cases in the judging environment. 
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fix the problem, it suffices to change our code so that the type of n is long long. 
Then we will get the desired result: 

Test Verdict Time (s) 
#1 ACCEPTED 0.05/1.00 
#2 ACCEPTED 0.06/1.00 
#3 ACCEPTED 0.07/1.00 
#4 ACCEPTED 0.06/1.00 
#5 ACCEPTED 0.06/1.00 
#6 ACCEPTED 0.05/1.00 
#7 ACCEPTED 0.06/1.00 
#8 ACCEPTED 0.05/1.00 
#9 ACCEPTED 0.07/1.00 
#10 ACCEPTED 0.06/1.00 

As this example shows, even very simple algorithms may contain subtle bugs. 
Competitive programming teaches how to write algorithms that really work. 

1.4 Other Resources 

Besides this book, there are several other books on competitive programming. 
Skiena’s and Revilla’s Programming Challenges [ 2] is a pioneering book in the 
field published in 2003. Halim and Halim have published a series of competitive 
programming books. At the time of writing this book, their most recent book is 
Competitive Programming 4 [ 3]. 

There are also introductory books that teach competitive programming using a 
language other than C++. Zingaro’s Algorithmic Thinking [ 4] discusses algorithm 
ideas and shows how they can implemented in C. Dürr’s and Vie’s Competitive 
Programming in Python [ 5] focuses on competitive programming using Python and 
preparing for job interviews. 

Looking for a Challenge? [ 6] is an advanced book, which present a collection of 
difficult problems from Polish programming contests. The most interesting feature 
of the book is that it provides detailed analyses of how to solve the problems. The 
book is intended for experienced competitive programmers. 

Of course, general algorithms books are also good reads for competitive program-
mers. The most comprehensive of them is Introduction to Algorithms [ 7] written by 
Cormen, Leiserson, Rivest, and Stein, also called the CLRS. This book is a good 
resource if you want to check all details concerning an algorithm and how to rigor-
ously prove that it is correct. 

Kleinberg’s and Tardos’s Algorithm Design [ 8] focuses on algorithm design tech-
niques, and thoroughly discusses the divide and conquer method, greedy algorithms, 
dynamic programming, and maximum flow algorithms. Skiena’s The Algorithm 
Design Manual [ 9] is a more practical book which includes a large catalogue of 
computational problems and describes ways how to solve them.
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2Programming Techniques 

This chapter presents some of the features of the C++ programming language that 
are useful in competitive programming, and gives examples of how to use recursion 
and bit operations in programming. 

Section 2.1 discusses a selection of topics related to C++, including input and 
output methods, working with numbers, and how to shorten code. 

Section 2.2 focuses on recursive algorithms. First we will learn an elegant way 
to generate all subsets and permutations of a set using recursion. After this, we will 
use backtracking to count the number of ways to place n non-attacking queens on 
an n × n chessboard. 

Section 2.3 discusses the basics of bit operations, and shows how to use them to 
represent subsets of sets. 

2.1 Language Features 

A typical C++ code template for competitive programming looks like this: 

#include <bits/stdc++.h> 

using namespace std; 

int main() { 
// solution comes here 

} 

The #include line at the beginning of the code is a feature of the g++ compiler 
that allows us to include the entire standard library. Thus, it is not needed to separately 
include libraries such as iostream, vector, and algorithm, but rather they 
are available automatically. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
A. Laaksonen, Guide to Competitive Programming, Undergraduate Topics in Computer 
Science, https://doi.org/10.1007/978-3-031-61794-2_2 

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61794-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61794-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2
https://doi.org/10.1007/978-3-031-61794-2_2


10 2 Programming Techniques 

The using line declares that the classes and functions of the standard library can 
be used directly in the code. Without the using line we would have to write, for 
example, std::cout, but now it suffices to write cout. 

The code can be compiled using the following command: 

g++ -std=c++11 -O2 -Wall test.cpp -o test 

This command produces a binary file test from the source code test.cpp. The 
compiler follows the C++11 standard (-std=c++11), optimizes the code (-O2) 
and shows warnings about possible errors (-Wall). 

2.1.1 Input and Output 

In most contests, standard streams are used for reading input and writing output. In 
C++, the standard streams are cin for input and cout for output. Also C functions, 
such as scanf and printf, can be used. 

The input for the program usually consists of numbers and strings separated with 
spaces and newlines. They can be read from the cin stream as follows: 

int a, b; 
string x; 
cin >> a >> b >> x; 

This kind of code always works, assuming that there is at least one space or 
newline between each element in the input. For example, the above code can read 
both the following inputs: 

123 456 monkey 

123 456 
monkey 

The cout stream is used for output as follows: 

int a = 123, b = 456; 
string x = "monkey"; 
cout << a << " " << b << " " << x << "\n";  

Input and output is sometimes a bottleneck in the program. The following lines 
at the beginning of the code make input and output more efficient:
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ios::sync_with_stdio(0); 
cin.tie(0); 

Note that the newline "\n" works faster than endl, because endl always causes 
a flush operation. 

The C functions scanf and printf are an alternative to the C++ standard 
streams. They are usually slightly faster, but also more difficult to use. The following 
code reads two integers from the input: 

int a, b; 
scanf("%d %d", &a, &b); 

The following code prints two integers: 

int a = 123, b = 456; 
printf("%d %d\n", a, b); 

Sometimes the program should read a whole input line, possibly containing spaces. 
This can be accomplished by using the getline function: 

string s; 
getline(cin, s); 

If the amount of data is unknown, the following loop is useful: 

while (cin >> x) { 
// code 

} 

This loop reads elements from the input one after another, until there is no more 
data available in the input. 

In some contest systems, files are used for input and output. An easy solution for 
this is to write the code as usual using standard streams, but add the following lines 
to the beginning of the code: 

freopen("input.txt", "r", stdin); 
freopen("output.txt", "w", stdout); 

After this, the program reads the input from the file “input.txt” and writes the 
output to the file “output.txt”.
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2.1.2 Working with Numbers 

Integers The most used integer type in competitive programming is int, which is 
a 32-bit type 1 with a value range of −231 . . . 231 − 1 (about −2 · 109 . . . 2 · 109). If 
the type int is not enough, the 64-bit type long long can be used. It has a value 
range of −263 . . . 263 − 1 (about −9 · 1018 . . . 9 · 1018). 

The following code defines a long long variable: 

long long x = 123456789123456789LL; 

The suffix LL means that the type of the number is long long. 
A common mistake when using the type long long is that the type int is still 

used somewhere in the code. For example, the following code contains a subtle error: 

int a = 123456789; 
long long b = a*a;  
cout << b << "\n"; // -1757895751 

Even though the variable b is of type long long, both numbers in the expression 
a*a are of type int and the result is also of type int. Because of this, the variable 
b will have a wrong result. The problem can be solved by changing the type of a to 
long long, or by changing the expression to (long long)a*a. 

Usually contest problems are set so that the type long long is enough. Still, it 
is good to know that the g++ compiler also provides a 128-bit type __int128_t 
with a value range of −2127 . . . 2127 − 1 (about −1038 . . . 1038). However, this type 
is not available in all contest systems. 

Modular Arithmetic Sometimes, the answer to a problem is a very large number but 
it is enough to output it “modulo m”, i.e., the remainder when the answer is divided 
by m (for example, “modulo 109 + 7”). The idea is that even if the actual answer is 
very large, it suffices to use the types int and long long. 

We denote by x mod m the remainder when x is divided by m. For example, 
17 mod 5 = 2, because 17 = 3 · 5 + 2. An important property of remainders is that 
the following formulas hold: 

(a + b) mod m = (a mod m + b mod m) mod m
(a − b) mod m = (a mod m − b mod m) mod m
(a · b) mod m = (a mod m · b mod m) mod m

Thus, we can take the remainder after every operation and the numbers will never 
become too large.

1 In fact, the C++ standard does not exactly specify the sizes of the number types, and the bounds 
depend on the compiler and platform. The sizes given in this section are those you will very likely 
see when using modern systems. 
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For example, the following code calculates n!, the factorial of n, modulo m: 

long long x = 1;  
for (int i = 1; i <= n; i++) { 

x = (x*i)%m;  
} 
cout << x << "\n"; 

Usually we want the remainder to always be between 0 . . .m−1. However, in C++  
and other languages, the remainder of a negative number is either zero or negative. 
An easy way to make sure there are no negative remainders is to first calculate the 
remainder as usual and then add m if the result is negative: 

x = x%m;  
if (x < 0) x += m;  

However, this is only needed when there are subtractions in the code and the 
remainder may become negative. 

Floating Point Numbers In most competitive programming problems it suffices 
to use integers, but sometimes floating point numbers are needed. The most useful 
floating point types in C++ are the 64-bit double and, as an extension in the g++ 
compiler, the 80-bit long double. In most cases, double is enough, but long 
double is more accurate. 

The required precision of the answer is usually given in the problem statement. 
An easy way to output the answer is to use the printf function and give the number 
of decimal places in the formatting string. For example, the following code prints 
the value of x with 9 decimal places: 

printf("%.9f\n", x); 

A difficulty when using floating point numbers is that some numbers cannot be 
represented accurately as floating point numbers, and there will be rounding errors. 
For example, in the following code, the value of x is slightly smaller than 1, while 
the correct value would be 1. 

double x = 0.3*3+0.1; 
printf("%.20f\n", x); // 0.99999999999999988898 

It is risky to compare floating point numbers with the == operator, because it is 
possible that the values should be equal but they are not because of precision errors. 
A better way to compare floating point numbers is to assume that two numbers are 
equal if the difference between them is less than ε, where ε is a small number. For 
example, in the following code ε = 10−9:
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if (abs(a-b) < 1e-9) { 
// a and b are equal 

} 

Note that while floating point numbers are inaccurate, integers up to a certain 
limit can still be represented accurately. For example, using double, it is possible 
to accurately represent all integers whose absolute value is at most 253. 

2.1.3 Shortening Code 

Type Names The command typedef can be used to give a short name to a data 
type. For example, the name long long is long, so we can define a short name 
ll as follows: 

typedef long long ll; 

After this, the code 

long long a = 123456789; 
long long b = 987654321; 
cout << a*b << "\n"; 

can be shortened as follows: 

ll a = 123456789; 
ll b = 987654321; 
cout << a*b << "\n"; 

The command typedef can also be used with more complex types. For example, 
the following code gives the name vi for a vector of integers and the name pi for 
a pair that contains two integers. 

typedef vector<int> vi;  
typedef pair<int,int> pi;  

Macros Another way to shorten code is to define macros. A macro specifies that 
certain strings in the code will be changed before the compilation. In C++, macros 
are defined using the #define keyword. 

For example, we can define the following macros: 

#define F first 
#define S second 
#define PB push_back 
#define MP make_pair 
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After this, the code 

v.push_back(make_pair(y1,x1)); 
v.push_back(make_pair(y2,x2)); 
int d = v[i].first+v[i].second; 

can be shortened as follows: 

v.PB(MP(y1,x1)); 
v.PB(MP(y2,x2)); 
int d = v[i].F+v[i].S; 

A macro can also have parameters, which makes it possible to shorten loops and 
other structures. For example, we can define the following macro: 

#define REP(i,a,b) for (int i = a; i <= b; i++) 

After this, the code 

for (int i = 1; i <= n; i++) { 
search(i); 

} 

can be shortened as follows: 

REP(i,1,n) { 
search(i); 

} 

2.2 Recursive Algorithms 

Recursion often provides an elegant way to implement an algorithm. In this section, 
we discuss recursive algorithms that systematically go through candidate solutions to 
a problem. First, we focus on generating subsets and permutations, and then discuss 
the more general backtracking technique. 

2.2.1 Generating Subsets 

Our first application of recursion is generating all subsets of a set of n elements. For 
example, the subsets of {1, 2, 3} are ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}.
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Fig. 2.1 The recursion tree 
when generating the subsets 
of the set {1, 2, 3}

The following recursive function search can be used to generate the subsets. The 
function maintains a vector 

vector<int> subset; 

that will contain the elements of each subset. The search begins when the function 
is called with parameter 1. 

void search(int k) { 
if (k == n+1) { 

// process subset 
} else { 

// include k in the subset 
subset.push_back(k); 
search(k+1); 
subset.pop_back(); 
// don’t include k in the subset 
search(k+1); 

} 
} 

When the function search is called with parameter k, it decides whether to 
include the element k in the subset or not, and in both cases, then calls itself with 
parameter k + 1 Then, if k = n + 1, the function notices that all elements have been 
processed and a subset has been generated. 

Figure 2.1 illustrates the generation of subsets when n = 3. At each function call, 
either the upper branch ( k is included in the subset) or the lower branch ( k is not 
included in the subset) is chosen. 

2.2.2 Generating Permutations 

Next we consider the problem of generating all permutations of a set of n elements. 
For example, the permutations of {1, 2, 3} are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),
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(3, 1, 2) and (3, 2, 1). Again, we can use recursion to perform the search. The fol-
lowing function search maintains a vector 

vector<int> permutation; 

that will contain each permutation, and an array 

bool chosen[n+1]; 

which indicates for each element if it has been included in the permutation. The 
search begins when the function is called without parameters. 

void search() { 
if (permutation.size() == n) { 

// process permutation 
} else { 

for (int i = 1; i <= n; i++) { 
if (chosen[i]) continue; 
chosen[i] = true; 
permutation.push_back(i); 
search(); 
chosen[i] = false; 
permutation.pop_back(); 

} 
} 

} 

Each function call appends a new element to permutation and records that it 
has been included in chosen. If the size of permutation equals the size of the 
set, a permutation has been generated. 

Note that the C++ standard library also has the function next_permutation 
that can be used to generate permutations. The function is given a permutation, and 
it produces the next permutation in lexicographic order. The following code goes 
through the permutations of {1, 2, . . . , n}: 

for (int i = 1; i <= n; i++) { 
permutation.push_back(i); 

} 
do { 

// process permutation 
} while (next_permutation(permutation.begin(), 

permutation.end())); 
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2.2.3 Backtracking 

A backtracking algorithm begins with an empty solution and extends the solution 
step by step. The search recursively goes through all different ways how a solution 
can be constructed. 

As an example, consider the problem of calculating the number of ways n queens 
can be placed on an n × n chessboard so that no two queens attack each other. For 
example, Fig. 2.2 shows the two possible solutions for n = 4. 

The problem can be solved using backtracking by placing queens on the board 
row by row. More precisely, exactly one queen will be placed on each row so that no 
queen attacks any of the queens placed before. A solution has been found when all 
n queens have been placed on the board. 

For example, Fig. 2.3 shows some partial solutions generated by the backtracking 
algorithm when n = 4. At the bottom level, the three first configurations are illegal, 
because the queens attack each other. However, the fourth configuration is valid, and 
it can be extended to a complete solution by placing two more queens on the board. 
There is only one way to place the two remaining queens. 

Fig. 2.2 The possible ways to place 4 queens on a 4 × 4 chessboard 

Fig. 2.3 Partial solutions to the queen problem using backtracking
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The algorithm can be implemented as follows: 

void search(int y) { 
if (y == n) { 

count++; 
return; 

} 
for (int x = 0; x < n; x++) {  

if (col[x] || diag1[x+y] || diag2[x-y+n-1]) continue; 
col[x] = diag1[x+y] = diag2[x-y+n-1] = 1; 
search(y+1); 
col[x] = diag1[x+y] = diag2[x-y+n-1] = 0; 

} 
} 

The search begins by calling search(0). The size of the board is n, and the 
code calculates the number of solutions to count. The code assumes that the rows 
and columns of the board are numbered from 0 to n − 1. When search is called 
with parameter y, it places a queen on row y and then calls itself with parameter 
y+1. Then, if y = n, a solution has been found and the value of count is increased 
by one. 

The array col keeps track of the columns that contain a queen, and the arrays 
diag1 and diag2 keep track of the diagonals. It is not allowed to add another 
queen to a column or diagonal that already contains a queen. For example, Fig. 2.4 
shows the numbering of columns and diagonals of the 4 × 4 board. 

The above backtracking algorithm tells us that there are 92 ways to place 8 queens 
on the 8 × 8 board. When n increases, the search quickly becomes slow, because 
the number of solutions grows exponentially. For example, it takes already about a 
minute on a modern computer to calculate that there are 14772512 ways to place 16 
queens on the 16 × 16 board. 

In fact, nobody knows an efficient way to count the number of queen combinations 
for larger values of n. Currently, the largest value of n for which the result is known is 
27: there are 234907967154122528 combinations in this case. This was discovered 
in 2016 by a group of researchers who used a cluster of computers to calculate the 
result [ 1]. 

Fig. 2.4 Numbering of the 
arrays when counting the 
combinations on the 4 × 4
board
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2.3 Bit Manipulation 

In programming, an n bit integer is internally stored as a binary number that consists 
of n bits. For example, the C++ type int is a 32-bit type, which means that every 
int number consists of 32 bits. For example, the bit representation of the int 
number 43 is 

00000000000000000000000000101011.

The bits in the representation are indexed from right to left. To convert a bit repre-
sentation bk · · · b2b1b0 into a number, the formula 

bk2
k + . . . + b22

2 + b12
1 + b02

0.

can be used. For example, 

1 · 25 + 1 · 23 + 1 · 21 + 1 · 20 = 43.

The bit representation of a number is either signed or unsigned. Usually a signed 
representation is used, which means that both negative and positive numbers can be 
represented. A signed variable of n bits can contain any integer between −2n−1 and 
2n−1 − 1. For example, the int type in C++ is a signed type, so an int variable 
can contain any integer between −231 and 231 − 1. 

The first bit in a signed representation is the sign of the number (0 for nonnegative 
numbers and 1 for negative numbers), and the remaining n − 1 bits contain the 
magnitude of the number. Two’s complement is used, which means that the opposite 
of a number is calculated by first inverting all the bits in the number, and then 
increasing the number by one. For example, the bit representation of the int number 
−43 is 

11111111111111111111111111010101.

In an unsigned representation, only nonnegative numbers can be used, but the 
upper bound for the values is larger. An unsigned variable of n bits can contain any 
integer between 0 and 2n − 1. For example, in C++, an unsigned int variable 
can contain any integer between 0 and 232 − 1. 

There is a connection between the representations: a signed number −x equals 
an unsigned number 2n − x . For example, the following code shows that the signed 
number x = −43 equals the unsigned number y = 232 − 43: 

int x = -43; 
unsigned int y = x;  
cout << x << "\n"; // -43 
cout << y << "\n"; // 4294967253 

If a number is larger than the upper bound of the bit representation, the number 
will overflow. In a signed representation, the next number after 2n−1 − 1 is −2n−1,
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and in an unsigned representation, the next number after 2n − 1 is 0. For example, 
consider the following code: 

int x = 2147483647; 
cout << x << "\n"; // 2147483647 
x++; 
cout << x << "\n"; // -2147483648 

Initially, the value of x is 231 − 1. This is the largest value that can be stored in 
an int variable, so the next number after 231 − 1 is −231. 

2.3.1 Bit Operations 

And Operation The and operation x & y produces a number that has one bits in 
positions where both x and y have one bits. For example, 22 & 26 = 18, because 

10110 (22)
& 11010 (26)
= 10010 (18) .

Using the and operation, we can check if a number x is even because x & 1 = 0  
if x is even, and x & 1 = 1 if x is odd. More generally, x is divisible by 2k exactly 
when x & (2k − 1) = 0.  

Or Operation The or operation x | y produces a number that has one bits in positions 
where at least one of x and y have one bits. For example, 22 | 26 = 30, because 

10110 (22)
| 11010 (26)

= 11110 (30) .

Xor Operation The xor operation x ˆ y produces a number that has one bits in 
positions where exactly one of x and y have one bits. For example, 22ˆ26 = 12, 
because 

10110 (22)
ˆ11010 (26)

= 01100 (12) .

Not Operation The not operation ~ x produces a number where all the bits of x have 
been inverted. The formula ~x = −x−1 holds, for example, ~29 = −30. The result 
of the not operation at the bit level depends on the length of the bit representation,
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because the operation inverts all bits. For example, if the numbers are 32-bit int 
numbers, the result is as follows: 

x = 29 00000000000000000000000000011101
~x = −30 11111111111111111111111111100010

Bit Shifts The left bit shift x << k appends k zero bits to the number, and the right bit 
shift x >> k removes the k last bits from the number. For example, 14 << 2 = 56, 
because 14 and 56 correspond to 1110 and 111000. Similarly, 49 >> 3 = 6, because 
49 and 6 correspond to 110001 and 110. Note that x << k corresponds to multiplying 
x by 2k , and x >> k corresponds to dividing x by 2k rounded down to an integer. 

Bit Masks A bit mask of the form 1 << k has a one bit in position k and all other 
bits are zero, so we can use such masks to access single bits of numbers. In particular, 
the kth bit of a number is one exactly when x & (1 << k) is not zero. The following 
code prints the bit representation of an int number x : 

for (int k = 31; k >= 0; k--) { 
if (x&(1<<k)) cout << "1"; 
else cout << "0"; 

} 

It is also possible to modify single bits of numbers using similar ideas. The formula 
x | (1 << k) sets the kth bit of x to one, the formula x & ~ (1 << k) sets the kth bit 
of x to zero, and the formula xˆ(1 << k) inverts the kth bit of x . Then, the formula 
x & (x − 1) sets the last one bit of x to zero, and the formula x & −x sets all the one 
bits to zero, except for the last one bit. The formula x | (x − 1) inverts all the bits 
after the last one bit. Finally, a positive number x is a power of two exactly when x
& (x − 1) = 0. 

One pitfall when using bit masks is that 1«k is always an int bit mask. An easy 
way to create a long long bit mask is 1LL«k. 

Additional Functions The g++ compiler also provides the following functions for 
counting bits: 

• __builtin_clz(x): the number of zeros at the beginning of the bit representa-
tion 

• __builtin_ctz(x): the number of zeros at the end of the bit representation 
• __builtin_popcount(x): the number of ones in the bit representation 
• __builtin_parity(x): the parity (even or odd) of the number of ones in the 
bit representation
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The functions can be used as follows: 

int x = 5328; // 00000000000000000001010011010000 
cout << __builtin_clz(x) << "\n"; // 19 
cout << __builtin_ctz(x) << "\n"; // 4 
cout << __builtin_popcount(x) << "\n"; // 5 
cout << __builtin_parity(x) << "\n"; // 1 

Note that the above functions only support int numbers, but there are also long 
long versions of the functions available with the suffix ll. 

2.3.2 Representing Sets 

Every subset of a set {0, 1, 2, . . . , n − 1} can be represented as an n bit integer 
whose one bits indicate which elements belong to the subset. This is an efficient way 
to represent sets, because every element requires only one bit of memory, and set 
operations can be implemented as bit operations. 

For example, since int is a 32-bit type, an int number can represent any subset 
of the set {0, 1, 2, . . . , 31}. The bit representation of the set {1, 3, 4, 8} is 

00000000000000000000000100011010,

which corresponds to the number 28 + 24 + 23 + 21 = 282. 
The following code declares an int variable x that can contain a subset of 

{0, 1, 2, . . . , 31}. After this, the code adds the elements 1, 3, 4 and 8 to the set 
and prints the size of the set. 

int x = 0;  
x |= (1<<1); 
x |= (1<<3); 
x |= (1<<4); 
x |= (1<<8); 
cout << __builtin_popcount(x) << "\n"; // 4 

Then, the following code prints all elements that belong to the set: 

for (int i = 0; i < 32; i++) { 
if (x&(1<<i)) cout << i << " "; 

} 
// output: 1 3 4 8  

Set Operations Table 2.1 shows how set operations can be implemented as bit oper-
ations. For example, the following code first constructs the sets x = {1, 3, 4, 8} and 
y = {3, 6, 8, 9}, and then constructs the set z = x ∪ y = {1, 3, 4, 6, 8, 9}:
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int x = (1<<1)|(1<<3)|(1<<4)|(1<<8); 
int y = (1<<3)|(1<<6)|(1<<8)|(1<<9); 
int z = x|y;  
cout << __builtin_popcount(z) << "\n"; // 6 

The following code goes through the subsets of {0, 1, . . . , n − 1}: 

for (int b = 0; b < (1<<n); b++) { 
// process subset b 

} 

Then, the following code goes through the subsets with exactly k elements: 

for (int b = 0; b < (1<<n); b++) { 
if (__builtin_popcount(b) == k) { 

// process subset b 
} 

} 

Finally, the following code goes through the subsets of a set x : 

int b = 0;  
do { 

// process subset b 
} while (b=(b-x)&x); 

Why does the above code work? The idea is that the formula b − x detects the 
rightmost one bit in x that is zero in b. This bit becomes one and all bits after it 
become zero. Then the and operation ensures that the resulting value is a subset of 
x . Note that b − x equals −(x − b) so we can think that we first remove all one bits 
that appear in b and then invert the value and add one. 

C++ Bitsets The C++ standard library also provides the bitset structure, which 
corresponds to an array whose each value is either 0 or 1. For example, the following 
code creates a bitset of 10 elements: 

Table 2.1 Implementing set operations as bit operations 

Operation Set syntax Bit syntax 

Intersection a ∩ b a & b

Union a ∪ b a | b
Complement ā ~ a

Difference a \ b a & (~  b)
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bitset<10> s; 
s[1] = 1; 
s[3] = 1; 
s[4] = 1; 
s[7] = 1; 
cout << s[4] << "\n"; // 1 
cout << s[5] << "\n"; // 0 

The function count returns the number of one bits in the bitset: 

cout << s.count() << "\n"; // 4 

Also bit operations can be directly used to manipulate bitsets: 

bitset<10> a, b; 
// ... 
bitset<10> c = a&b; 
bitset<10> d = a|b; 
bitset<10> e = a^b; 
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3Efficiency 

The efficiency of algorithms plays a central role in competitive programming. In this 
chapter, we learn tools that make it easier to design efficient algorithms. 

Section 3.1 introduces the concept of time complexity, which allows us to estimate 
running times of algorithms without implementing them. The time complexity of an 
algorithm shows how quickly its running time increases when the size of the input 
grows. 

Section 3.2 presents two algorithm design problems which can be solved in many 
ways. In both problems, we can easily design a slow brute force solution, but it turns 
out that we can also create much more efficient algorithms. 

Section 3.3 discusses code optimization. First we learn how we can examine 
machine code produced by a compiler and see some optimization tricks. After this, 
we focus on how modern processors use caches and parallelism to speed up code 
execution. 

3.1 Time Complexity 

The time complexity of an algorithm estimates how much time the algorithm will use 
for a given input. By calculating the time complexity, we can often find out whether 
the algorithm is fast enough for solving a problem—without implementing it. 

A time complexity is denoted O(· · · ) where the three dots represent some func-
tion. Usually, the variable n denotes the input size. For example, if the input is an 
array of numbers, n will be the size of the array, and if the input is a string, n will be 
the length of the string. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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3.1.1 Calculation Rules 

If a code consists of single commands, its time complexity is O(1). For example, 
the time complexity of the following code is O(1). 

a++; 
b++; 
c = a+b;  

The time complexity of a loop estimates the number of times the code inside the 
loop is executed. For example, the time complexity of the following code is O(n), 
because the code inside the loop is executed n times. We assume that “...” denotes 
a code whose time complexity is O(1). 

for (int i = 1; i <= n; i++) { 
... 

} 

Then, the time complexity of the following code is O(n2): 

for (int i = 1; i <= n; i++) { 
for (int j = 1; j <= n; j++) { 

... 
} 

} 

In general, if there are k nested loops and each loops goes through n values, the 
time complexity is O(nk). 

A time complexity does not tell us the exact number of times the code inside a 
loop is executed, because it only shows the order of growth and ignores the constant 
factors. In the following examples, the code inside the loop is executed 3n, n + 5
and  n/2 times, but the time complexity of each code is O(n). 

for (int i = 1; i <= 3*n; i++) { 
... 

} 

for (int i = 1; i <= n+5; i++) { 
... 

} 

for (int i = 1; i <= n; i += 2) {  
... 

} 
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As another example, the time complexity of the following code is O(n2), because 
the code inside the loop is executed 1+ 2+ · · · + n = 1

2 (n
2 + n) times. 

for (int i = 1; i <= n; i++) { 
for (int j = 1; j <= i; j++) { 

... 
} 

} 

If an algorithm consists of consecutive phases, the total time complexity is the 
largest time complexity of a single phase, The reason for this is that the slowest 
phase is the bottleneck of the algorithm. For example, the following code consists 
of three phases with time complexities O(n), O(n2) and O(n). Thus, the total time 
complexity is O(n2). 

for (int i = 1; i <= n; i++) { 
... 

} 
for (int i = 1; i <= n; i++) { 

for (int j = 1; j <= n; j++) { 
... 

} 
} 
for (int i = 1; i <= n; i++) { 

... 
} 

Sometimes the time complexity depends on several factors, and the time com-
plexity formula contains several variables. For example, the time complexity of the 
following code is O(nm): 

for (int i = 1; i <= n; i++) { 
for (int j = 1; j <= m; j++) { 

... 
} 

} 

The time complexity of a recursive function depends on the number of times the 
function is called and the time complexity of a single call. The total time complexity 
is the product of these values. For example, consider the following function: 

void f(int n) { 
if (n == 1) return; 
f(n-1); 

} 
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The call f(n) causes n function calls, and the time complexity of each call is 
O(1), so the total time complexity is O(n). 

As another example, consider the following function: 

void g(int n) { 
if (n == 1) return; 
g(n-1); 
g(n-1); 

} 

What happens when the function is called with a parameter n? First, there are two 
calls with parameter n−1, then four calls with parameter n−2, then eight calls with 
parameter n − 3, and so on. In general, there will be 2k calls with parameter n − k
where k = 0, 1, . . . , n − 1. Thus, the time complexity is 

. 1+ 2+ 4+ · · · + 2n−1 = 2n − 1 = O(2n).

3.1.2 Common Time Complexities 

The following list contains common time complexities of algorithms: 

O(1) The running time of a constant-time algorithm does not depend on the input 
size. A typical constant-time algorithm is a direct formula that calculates the 
answer. 

O(log n) A logarithmic algorithm often halves the input size at each step. The 
running time of such an algorithm is logarithmic, because log2 n equals the number 
of times n must be divided by 2 to get 1. Note that the base of the logarithm is not 
shown in the time complexity. 

O(
√
n) A square root algorithm is slower than O(log n) but faster than O(n). A  

special property of square roots is that
√
n = n/

√
n, so  n elements can be divided 

into O(
√
n) blocks of O(

√
n) elements. 

O(n) A linear algorithm goes through the input a constant number of times. This 
is often the best possible time complexity, because it is usually necessary to access 
each input element at least once before reporting the answer. 

O(n log n) This time complexity often indicates that the algorithm sorts the input, 
because the time complexity of efficient sorting algorithms is O(n log n). Another 
possibility is that the algorithm uses a data structure where each operation takes 
O(log n) time. 

O(n2) A quadratic algorithm often contains two nested loops. It is possible to go 
through all pairs of the input elements in O(n2) time. 

O(n3) A cubic algorithm often contains three nested loops. It is possible to go 
through all triplets of the input elements in O(n3) time. 

O(2n) This time complexity often indicates that the algorithm iterates through all 
subsets of the input elements. For example, the subsets of {1, 2, 3} are ∅, {1}, {2}, 
{3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}.
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O(n!) This time complexity often indicates that the algorithm iterates through all 
permutations of the input elements. For example, the permutations of {1, 2, 3} are 
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) and (3, 2, 1). 

An algorithm is polynomial if its time complexity is at most O(nk) where k is a 
constant. All the above time complexities except O(2n) and O(n!) are polynomial. In 
practice, the constant k is usually small, and therefore a polynomial time complexity 
roughly means that the algorithm can process large inputs. 

Most algorithms in this book are polynomial. Still, there are many important 
problems for which no polynomial algorithm is known, i.e., nobody knows how to 
solve them efficiently. NP-hard problems are an important set of problems, for which 
no polynomial algorithm is known. 

3.1.3 Estimating Efficiency 

By calculating the time complexity of an algorithm, it is possible to check, before 
implementing the algorithm, that it is efficient enough for solving a problem. The 
starting point for estimations is the fact that a modern computer can perform some 
hundreds of millions of simple operations in a second. 

For example, assume that the time limit for a problem is one second and the 
input size is n = 105. If the time complexity is O(n2), the algorithm will perform 
about (105)2 = 1010 operations. This should take at least some tens of seconds, so 
the algorithm seems to be too slow for solving the problem. However, if the time 
complexity is O(n log n), there will be only about 105 log 105 ≈ 1.6 ·106 operations, 
and the algorithm will surely fit the time limit. 

On the other hand, given the input size, we can try to guess the required time 
complexity of the algorithm that solves the problem. Table 3.1 contains some useful 
estimates assuming a time limit of one second. 

For example, if the input size is n = 105, it is probably expected that the time 
complexity of the algorithm is O(n) or O(n log n). This information makes it easier 
to design the algorithm, because it rules out approaches that would yield an algorithm 
with a worse time complexity. 

Table 3.1 Estimating time complexity from input size 

Input size Expected time complexity 

n ≤ 10 O(n!)
n ≤ 20 O(2n)

n ≤ 500 O(n3)

n ≤ 5000 O(n2)

n ≤ 106 O(n log n) or O(n)

n is large O(1) or O(log n)
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Still, it is important to remember that a time complexity is only an estimate of 
efficiency, because it hides the constant factors. For example, an algorithm that runs 
in O(n) time may perform n/2 or 5n operations, which has an important effect on 
the actual running time of the algorithm. 

3.1.4 Formal Definitions 

What does it exactly mean that an algorithm works in O( f (n)) time? It means 
that there are constants c and n0 such that the algorithm performs at most c f (n)
operations for all inputs where n ≥ n0. Thus, the O notation gives an upper bound 
for the running time of the algorithm for sufficiently large inputs. 

For example, it is technically correct to say that the time complexity of the fol-
lowing algorithm is O(n2). 

for (int i = 1; i <= n; i++) { 
... 

} 

However, a better bound is O(n), and it would be very misleading to give the 
bound O(n2), because everybody actually assumes that the O notation is used to 
give an accurate estimate of the time complexity. 

There are also two other common notations. The  notation gives a lower bound 
for the running time of an algorithm. The time complexity of an algorithm is ( f (n)), 
if there are constants c and n0 such that the algorithm performs at least c f (n)
operations for all inputs where n ≥ n0. Finally, the notation gives an exact bound: 
the time complexity of an algorithm is ( f (n)) if it is both O( f (n)) and  ( f (n)). 
For example, since the time complexity of the above algorithm is both O(n) and 
 (n), it is also  (n). 

We can use the above notations in many situations, not only for referring to time 
complexities of algorithms. For example, we might say that an array contains O(n)
values, or that an algorithm consists of O(log n) rounds. 

3.2 Algorithm Design Examples 

This section presents two algorithm design examples where a problem can be solved 
in several different ways. We start with simple brute force algorithms, and then create 
more efficient solutions by using various algorithm design ideas. 

3.2.1 Maximum Subarray Sum 

Given an array of n numbers, our task is to calculate the maximum subarray sum, 
i.e., the largest possible sum of a sequence of consecutive values in the array. There
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Fig. 3.1 The maximum sum 
subarray of this array is 
[2, 4,−3, 5, 2], whose sum 
is 10 

may be negative values in the array, and an empty subarray is allowed. For example, 
Fig. 3.1 shows an array and its maximum sum subarray. 

O(n3) Time Solution A straightforward way to solve the problem is to go through 
all possible subarrays, calculate the sum of values in each subarray and maintain the 
maximum sum. The following code implements this algorithm: 

int best = 0; 
for (int a = 0; a < n; a++) { 

for (int b = a; b < n; b++) {  
int sum = 0;  
for (int k = a; k <= b; k++) { 

sum += array[k]; 
} 
best = max(best,sum); 

} 
} 
cout << best << "\n"; 

The variables a and b fix the first and last index of the subarray, and the sum of 
values is calculated to the variable sum. The variable best contains the maximum 
sum found during the search. The time complexity of the algorithm is O(n3), because 
it consists of three nested loops that go through the input. 

O(n2) Time Solution It is easy to make the algorithm more efficient by removing 
one loop from it. This is possible by calculating the sum at the same time when the 
right end of the subarray moves. The result is the following code: 

int best = 0; 
for (int a = 0; a < n; a++) { 

int sum = 0; 
for (int b = a; b < n; b++) {  

sum += array[b]; 
best = max(best,sum); 

} 
} 
cout << best << "\n"; 

After this change, the time complexity is O(n2). 

O(n) Time Solution It turns out that it is possible to solve the problem in O(n)
time, which means that just one loop is enough. The idea is to calculate for each
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array position the maximum sum of a subarray that ends at that position. After this, 
the answer to the problem is the maximum of those sums. 

Consider the subproblem of finding the maximum sum subarray that ends at 
position k. There are two possibilities: 

1. The subarray only contains the element at position k. 
2. The subarray consists of a subarray that ends at position k − 1, followed by the 

element at position k. 

In the latter case, since we want to find a subarray with maximum sum, the subarray 
that ends at position k − 1 should also have the maximum sum. Thus, we can solve 
the problem efficiently by calculating the maximum subarray sum for each ending 
position from left to right. 

The following code implements the algorithm: 

int best = 0, sum = 0; 
for (int k = 0; k < n; k++) { 

sum = max(array[k],sum+array[k]); 
best = max(best,sum); 

} 
cout << best << "\n"; 

The algorithm only contains one loop that goes through the input, so the time 
complexity is O(n). This is also the best possible time complexity, because any 
algorithm for the problem has to examine all array elements at least once. 

Efficiency Comparison How efficient are the above algorithms in practice? Table 3.2 
shows the running times of the above algorithms for different values of n on a modern 
computer. In each test, the input was generated randomly, and the time needed for 
reading the input was not measured. 

The comparison shows that all algorithms work quickly when the input size is 
small, but larger inputs bring out remarkable differences in the running times. The 
O(n3) algorithm becomes slow when n = 104, and the O(n2) algorithm becomes 

Table 3.2 Comparing running times of the maximum subarray sum algorithms 

Array size n O(n3) (s) O(n2) (s) O(n) (s)

102

103

104

105

106

107

0.0

0.1

>10.0

>10.0

>10.0

>10.0

0.0

0.0

0.1

5.3

>10.0

>10.0

0.

0.0

0.0

0.0

0.0

0.0

0
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slow when n = 105. Only the O(n) algorithm is able to process even the largest 
inputs instantly. 

3.2.2 Two Queens Problem 

Given an n×n chessboard, our task is to count the number of ways we can place two 
queens on the board in such a way that they do not attack each other. For example, as 
Fig. 3.2 shows, there are eight ways to place two queens on the 3×3 board. Let q(n)
denote the number of valid combinations for an n×n board. For example, q(3) = 8, 
and Table 3.3 shows the values of q(n) for 1 ≤ n ≤ 10. 

To start with, a simple way to solve the problem is to go through all possible ways 
to place two queens on the board and count the combinations where the queens do 
not attack each other. Such an algorithm works in O(n4) time, because there are n2

ways to choose the position of the first queen, and for each such position, there are 
n2 − 1 ways to choose the position of the second queen. 

Since the number of combinations grows fast, an algorithm that counts combina-
tions one by one will certainly be too slow for processing larger values of n. Thus, to 
create an efficient algorithm, we need to find a way to count combinations in groups. 

Fig. 3.2 All possible ways 
to place two non-attacking 
queens on the 3× 3
chessboard 

Table 3.3 First values of the function q(n): the number of ways to place two non-attacking queens 
on an n × n chessboard 

Board size n Number of ways q(n)

1 0 

2 0 

3 8 

4 44 

5 140 

6 340 

7 700 

8 1288 

9 2184 

10 3480
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Fig. 3.3 The queen attacks 
all squares marked with “*” 
on the board 

Fig. 3.4 Possible positions 
for queens on the last row 
and column 

One useful observation is that it is quite easy to calculate the number of squares that 
a single queen attacks (Fig. 3.3). First, it always attacks n − 1 squares horizontally 
and n−1 squares vertically. Then, for both diagonals, it attacks d−1 squares where 
d is the number of squares on the diagonal. Using this information, we can calculate 
in O(1) time the number of squares where the other queen can be placed, which 
yields an O(n2) time algorithm. 

Another way to approach the problem is to try to formulate a recursive function 
that counts the number of combinations. The question is: if we know the value of 
q(n), how can we use it to calculate the value of q(n + 1)? 

To get a recursive solution, we may focus on the last row and last column of the 
n × n board (Fig. 3.4). First, if there are no queens on the last row or column, the 
number of combinations is simply q(n − 1). Then, there are 2n − 1 positions for a 
queen on the last row or column. It attacks 3(n−1) squares, so there are n2−3(n−1)−
1 positions for the other queen. Finally, there are (n−1)(n−2) combinations where 
both queens are on the last row or column. Since we counted those combinations 
twice, we have to remove this number from the result. By combining all this, we get 
a recursive formula 

. 
q(n) = q(n − 1)+ (2n − 1)(n2 − 3(n − 1)− 1)− (n − 1)(n − 2)

= q(n − 1)+ 2(n − 1)2(n − 2),

which provides an O(n) solution to the problem. 
Finally, it turns out that there is also a closed-form formula 

. q(n) = 3n4 − 10n3 + 9n2 − 2n

6
which can be proved using induction. Using this formula, we can solve the problem 
in O(1) time.
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3.3 Code Optimization 

While the time complexity of an algorithm tells a lot about its efficiency, implemen-
tation details are also important. For example, here are two codes that check if an 
array has an element x : 

bool ok = false; 
for (int i = 0; i < n; i++) { 

if (a[i] == x) ok = true; 
} 

bool ok = false; 
for (int i = 0; i < n; i++) { 

if (a[i] == x) {ok =  true; break;} 
} 

Both codes work in O(n) time, but the second code can be much more efficient 
in practice, because it immediately stops when x has been found. This is a useful 
optimization, because it really improves the performance of the code, and it is also 
easy to implement. 

Could we further improve the code? There is one classic trick that we can try: we 
can use a sentinel value, i.e., append a new array element whose value is x . Then we 
do not have to do the test i < n in the loop: 

a[n] = x; 
int i; 
bool ok = false; 
for (i = 0; a[i] != x; i++); 
if (i < n) ok =  true; 

This is a nice trick but does not seem very useful in practice: it turns out that 
the test i < n is not the real bottleneck in the algorithm, because accessing array 
elements takes much more time. Thus, not all optimizations are useful—they may 
only make the code more difficult to understand. 

3.3.1 Compiler Output 

A C++ compiler converts C++ code into machine code that the processor can execute. 
An important task of the compiler is to optimize the code. The resulting machine 
code should correspond to the C++ code but also be as fast as possible. There are 
often a large number of possible optimizations. 

We can get the machine code (in assembly form) produced by the g++ compiler 
using the flag -S as follows:
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g++ -S test.cpp -o test.out 

This command creates a file test.out that contains the assembly code. There 
is also a useful online tool Compiler Explorer 1 that can be used to examine outputs 
of various compilers, including g++. 

Compiler Optimizations For example, consider the following C++ code: 

int collatz(int n) { 
if (n%2 == 0) return n/2; 
else return 3*n+1; 

} 

The assembly output of g++ (using the -O2 optimization flag) can be as follows: 

test dil, 1 
jne .L2 
mov eax, edi 
shr eax, 31 
add eax, edi 
sar eax 
ret 

.L2: 
lea eax, [rdi+1+rdi*2] 
ret 

Even this small assembly output has many optimizations. The instruction test 
checks if the rightmost bit of n is 1, i.e., it is an odd number, which is faster than a 
modulo operation. Then, the instruction sar performs a right bit shift that calculates 
the value of n/2, which is faster than a division operation. Finally, the value of 3n+1
is calculated using an additional trick: the purpose of the instruction lea is actually 
to determine the memory address of an array element, but it can also be used for 
simple calculations. 

It is often not necessary to use optimization tricks (like prefer bit operations 
to modulo and division) in C++, because the compiler also knows the tricks and 
can apply them. The compiler can also detect unnecessary code and remove it. For 
example, consider the following function: 

void test(int n) { 
int s = 0;  
for (int i = 1; i <= n; i++) { 

s += i;  
} 

} 

1 https://godbolt.org/. 

https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
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The corresponding assembly output is simply 

ret 

meaning that we return from the function. Since the value of s is not used, the variable 
and the loop can be removed and the code works in O(1) time. For this reason, when 
measuring the running time of a code, it is important that the result of the code is 
used (for example, we can print it), so that the compiler cannot optimize away all 
the code. 

Hardware Specific Optimizations The g++ flag -march=native turns on hard-
ware specific optimizations. For example, some processors have special instructions 
that other processors do not have. Here native means that the compiler automat-
ically detects the actual architecture of the processor and uses hardware specific 
optimizations if possible. 

For example, consider the following code that calculates the sum of one bits using 
the g++ function __builtin_popcount: 

c = 0;  
for (int i = 1; i <= n; i++) { 

c += __builtin_popcount(i); 
} 

Many processors have a special instruction popcnt that efficiently performs 
the bit count operation. However, since not all processors support it, g++ does not 
automatically use it and we need to use the -march=native flag to enable it. The 
above code can be two or three times faster using the flag. 

The -march=native flag is not often set in contest systems, but we can specify 
the architecture in our code using a #pragma directive. However, in this context, the 
value native is not supported but we have to name the architecture. For example, 
the following directive (assuming the Sandy Bridge architecture) can work: 

#pragma GCC target ("arch=sandybridge") 

3.3.2 Processor Features 

When processors execute code, they also try to do it as fast as possible. There are 
caches that speed up memory accesses, and it may also be possible to execute several 
instructions in parallel. Modern processors are very complex, and not many people 
actually understand how they work. 

Caches As using the main memory is relatively slow, processors have caches that 
contain small parts of the memory and can be accessed faster. The caches are automat-
ically used when nearby memory contents are read or written. In particular, scanning
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array elements from left to right is fast, while inspecting random array positions is 
slow. 

As an example, consider the following codes: 

for (int i = 0; i < n; i++) { 
for (int j = 0; j < n; j++) {  

s += x[i][j];  
} 

} 

for (int i = 0; i < n; i++) { 
for (int j = 0; j < n; j++) {  

s += x[j][i];  
} 

} 

Both codes calculate the sum of values in a two-dimensional array, but the first 
code can be much more efficient, because it is cache-friendly. The elements of the 
array are stored in the memory in the following order: 

. x[0][0],x[0][1], . . . ,x[0][n − 1],x[1][0],x[1][1], . . .
Thus, it is better that the outermost loop handles the first dimension and the innermost 
loop handles the second dimension. 

Parallelism Modern processors can execute multiple instructions at the same time, 
and this happens automatically in many situations. In general, two consecutive 
instructions can be executed in parallel if they do not depend on each other. For 
example, consider the following code: 

ll f = 1; 
for (int i = 1; i <= n; i++) { 

f = (f*i)%M; 
} 

The code computes the factorial of n modulo M using a loop. We can try to make 
the code more efficient as follows (assuming that n is even): 

ll f1 = 1; 
ll f2 = 1; 
for (int i = 1; i <= n; i += 2) {  

f1 = (f1*i)%M; 
f2 = (f2*(i+1))%M; 

} 
ll f = f1*f2%M; 

The idea is that we use two independent variables: f1 will contain the product 
1 · 3 · 5 · · · n − 1 and f2 will contain the product 2 · 4 · 6 · · · n. After the loop, the
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results are combined. Surprisingly, this code typically works about twice as fast as 
the first code, because the processor is able to parallelly execute the instructions that 
modify the variables f1 and f2 in the loop. We can even try to use more variables 
(like four or eight) to further speed up the code.



4Sorting and Searching 

Many efficient algorithms are based on sorting the input data, because sorting often 
makes solving the problem easier. This chapter discusses the theory and practice of 
sorting as an algorithm design tool. 

Section 4.1 first discusses three important sorting algorithms: bubble sort, merge 
sort, and counting sort. After this, we will learn how to use the sorting algorithm 
available in the C++ standard library. 

Section 4.2 shows how sorting can be used as a subroutine to create efficient 
algorithms. For example, to quickly determine if all array elements are unique, we 
can first sort the array and then simply check all pairs of consecutive elements. 

Section 4.3 presents the binary search algorithm, which is another important build-
ing block of efficient algorithms. 

4.1 Sorting Algorithms 

The basic problem in sorting is as follows: Given an array that contains n elements, 
sort the elements in increasing order. For example, Fig. 4.1 shows an array before 
and after sorting. 

In this section we will go through some fundamental sorting algorithms and exam-
ine their properties. It is easy to design an O(n2) time sorting algorithm, but there 
are also more efficient algorithms. After discussing the theory of sorting, we will 
focus on using sorting in practice in C++. 

4.1.1 Bubble Sort 

Bubble sort is a simple sorting algorithm that works in O(n2) time. The algorithm 
consists of n rounds, and on each round, it iterates through the elements of the array. 
Whenever two consecutive elements are found that are in wrong order, the algorithm 
swaps them. The algorithm can be implemented as follows: 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
A. Laaksonen, Guide to Competitive Programming, Undergraduate Topics in Computer 
Science, https://doi.org/10.1007/978-3-031-61794-2_4 
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Fig. 4.1 An array before and 
after sorting 

1 3 8  2 9 2 5 6original array 

1 2 2  3 5 6  8 9sorted array 

Fig. 4.2 The first round of 
bubble sort 

1 3 8  2 9 2 5 6  

1 3 2 8 9 2 5 6  

1 3 2 8 2 9 5 6  

1 3 2 8 2 5 9 6 

1 3 2 8 2 5 6  9 

for (int i = 0; i < n; i++) { 
for (int j = 0; j < n-1; j++) { 

if (array[j] > array[j+1]) { 
swap(array[j],array[j+1]); 

} 
} 

} 

After the first round of bubble sort, the largest element will be in the correct 
position, and more generally, after k rounds, the k largest elements will be in the 
correct positions. Thus, after n rounds, the whole array will be sorted. 

For example, Fig. 4.2 shows the first round of swaps when bubble sort is used to 
sort an array. 

Bubble sort is an example of a sorting algorithm that always swaps consecutive 
elements in the array. It turns out that the time complexity of such an algorithm 
is always at least O(n2), because in the worst case, O(n2) swaps are required for 
sorting the array. 

Inversions A useful concept when analyzing sorting algorithms is an inversion: a  
pair of array indices (a, b) such that a < b and array[a] > array[b], i.e., the 
elements are in wrong order. For example, the array in Fig. 4.3 has three inversions: 
(3, 4), (3, 5) and (6, 7).
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1 2 2  6 3 5 9 8 
0 1 2  3 4 5 6  7 

Fig. 4.3 This array has three inversions: (3, 4), (3, 5) and (6, 7)

The number of inversions indicates how much work is needed to sort the array. 
An array is completely sorted when there are no inversions. On the other hand, if the 
array elements are in the reverse order, the number of inversions is 

. 1+ 2+ · · · + (n − 1) = n(n − 1)

2
= O(n2),

which is the largest possible. 
Swapping a pair of consecutive elements that are in the wrong order removes 

exactly one inversion from the array. Hence, if a sorting algorithm can only swap 
consecutive elements, each swap removes at most one inversion, and the time com-
plexity of the algorithm is at least O(n2). 

4.1.2 Merge Sort 

If we want to create an efficient sorting algorithm, we have to be able to reorder 
elements that are in different parts of the array. There are several such sorting algo-
rithms that work in O(n log n) time. One of them is merge sort, which is based on 
recursion. Merge sort sorts a subarray array [a . . . b] as follows: 

1. If a = b, do not do anything, because a subarray that only contains one element 
is already sorted. 

2. Calculate the position of the middle element: k =  (a + b)/2 . 
3. Recursively sort the subarray array[a . . . k]. 
4. Recursively sort the subarray array[k + 1 . . . b]. 
5. Merge the sorted subarrays array[a . . . k] and array[k + 1 . . . b] into a sorted 

subarray array [a . . . b]. 

For example, Fig. 4.4 shows how merge sort sorts an array of eight elements. First, 
the algorithm divides the array into two subarrays of four elements. Then, it sorts 
these subarrays recursively by calling itself. Finally, it merges the sorted subarrays 
into a sorted array of eight elements. 

Merge sort is an efficient algorithm, because it halves the size of the subarray at 
each step. Then, merging the sorted subarrays is possible in linear time, because they 
are already sorted. Since there are O(log n) recursive levels, and processing each 
level takes a total of O(n) time, the algorithm works in O(n log n) time.
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Fig. 4.4 Sorting an array 
using merge sort 

1 3 6 2 8 2 5 9 

1 3 6 2 8 2 5 9 

1 2  3 6 2 5 8 9 

1 2 2  3 5 6  8 9 

Fig. 4.5 The progress of a 
sorting algorithm that 
compares array elements 

x < y? 

x < y? x < y? 

x < y? x < y? x < y? x < y? 

4.1.3 Sorting Lower Bound 

Is it possible to sort an array faster than in O(n log n) time? It turns out that this 
is not possible when we restrict ourselves to sorting algorithms that are based on 
comparing array elements. 

The lower bound for the time complexity can be proved by considering sorting as 
a process where each comparison of two elements gives more information about the 
contents of the array. Figure 4.5 illustrates the tree created in this process. 

Here “x < y?” means that some elements x and y are compared. If x < y, the 
process continues to the left, and otherwise to the right. The results of the process 
are the possible ways to sort the array, a total of n! ways. For this reason, the height 
of the tree must be at least 

. log2(n!) = log2(1) + log2(2) + · · · + log2(n).

We get a lower bound for this sum by choosing the last n/2 elements and changing 
the value of each element to log2(n/2). This yields an estimate 

. log2(n!) ≥ (n/2) · log2(n/2),

so the height of the tree and the worst-case number of steps in a sorting algorithm is 
Ω(n log n).



4.1 Sorting Algorithms 47

Fig. 4.6 Sorting an array 
using counting sort

1 3 6 9 9  3 5 9 

0 1 0 2 0 1 1  0 0 3  
0 1 2  3 4 5 6  7 8 9 

4.1.4 Counting Sort 

The lower bound Ω(n log n) does not apply to algorithms that do not compare array 
elements but use some other information. An example of such an algorithm is count-
ing sort that sorts an array in O(n) time assuming that every element in the array is 
an integer between 0 . . . c and c = O(n). 

The algorithm creates a bookkeeping array, whose indices are elements of the 
original array. The algorithm iterates through the original array and calculates how 
many times each element appears in the array. As an example, Fig. 4.6 shows an 
array and the corresponding bookkeeping array. For example, the value at position 
3 is 2, because the value 3 appears 2 times in the original array. 

The construction of the bookkeeping array takes O(n) time. After this, the sorted 
array can be created inO(n) time, because the number of occurrences of each element 
can be retrieved from the bookkeeping array. Thus, the total time complexity of 
counting sort is O(n). 

Counting sort is a very efficient algorithm but it can only be used when the constant 
c is small enough, so that the array elements can be used as indices in the bookkeeping 
array. 

4.1.5 Sorting in Practice 

In practice, it is almost never a good idea to implement a home-made sorting algo-
rithm, because all modern programming languages have good sorting algorithms 
in their standard libraries. There are many reasons to use a library function: it is 
certainly correct and efficient, and also easy to use. 

In C++, the function sort efficiently 1 sorts the contents of a data structure. For 
example, the following code sorts the elements of a vector in increasing order: 

vector<int> v = {4,2,5,3,5,8,3}; 
sort(v.begin(),v.end()); 

1 The C++11 standard requires that the sort function works in O(n log n) time; the exact imple-
mentation depends on the compiler. 
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After the sorting, the contents of the vector will be [2, 3, 3, 4, 5, 5, 8]. The default 
sorting order is increasing, but a reverse order is possible as follows: 

sort(v.rbegin(),v.rend()); 

An ordinary array can be sorted as follows: 

int n = 7;  // array size 
int a[] = {4,2,5,3,5,8,3}; 
sort(a,a+n); 

Then, the following code sorts the string s: 

string s = "monkey"; 
sort(s.begin(), s.end()); 

Sorting a string means that the characters of the string are sorted. For example, 
the string “monkey” becomes “ekmnoy”. 

Comparison Operators The sort function requires that a comparison operator is 
defined for the data type of the elements to be sorted. When sorting, this operator 
will be used whenever it is necessary to find out the order of two elements. 

Most C++ data types have a built-in comparison operator, and elements of those 
types can be sorted automatically. Numbers are sorted according to their values, and 
strings are sorted in alphabetical order. Pairs are sorted primarily according to their 
first elements and secondarily according to their second elements: 

vector<pair<int,int>> v; 
v.push_back({1,5}); 
v.push_back({2,3}); 
v.push_back({1,2}); 
sort(v.begin(), v.end()); 
// result: [(1,2),(1,5),(2,3)] 

In a similar way, tuples are sorted primarily by the first element, secondarily by 
the second element, etc. 2 : 

vector<tuple<int,int,int>> v; 
v.push_back({2,1,4}); 
v.push_back({1,5,3}); 
v.push_back({2,1,3}); 
sort(v.begin(), v.end()); 
// result: [(1,5,3),(2,1,3),(2,1,4)] 

2 Note that in some older compilers, the function make_tuple has to be used to create a tuple  
instead of braces (for example, make_tuple(2,1,4) instead of {2,1,4}). 
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User-defined structs do not have a comparison operator automatically. The oper-
ator should be defined inside the struct as a function operator<, whose parameter 
is another element of the same type. The operator should return true if the element 
is smaller than the parameter, and false otherwise. 

For example, the following struct point contains the x and y coordinates of a 
point. The comparison operator is defined so that the points are sorted primarily by 
the x coordinate and secondarily by the y coordinate. 

struct point { 
int x, y; 
bool operator<(const point &p) { 

if (x == p.x) return y < p.y;  
else return x < p.x;  

} 
}; 

Comparison Functions It is also possible to give an external comparison function 
to the sort function as a callback function. For example, the following comparison 
function comp sorts strings primarily by length and secondarily by alphabetical 
order: 

bool comp(string a, string b) { 
if (a.size() == b.size()) return a < b;  
else return a.size() < b.size(); 

} 

Now a vector of strings can be sorted as follows: 

sort(v.begin(), v.end(), comp); 

4.2 Solving Problems by Sorting 

Often, we can easily solve a problem in O(n2) time using a brute force algorithm, 
but such an algorithm is too slow if the input size is large. In fact, a frequent goal 
in algorithm design is to find O(n) or O(n log n) time algorithms for problems that 
can be trivially solved in O(n2) time. Sorting is one way to achieve this goal. 

For example, suppose that we want to check if all elements in an array are unique. 
A brute force algorithm goes through all pairs of elements in O(n2) time: 

bool ok = true; 
for (int i = 0; i < n; i++) { 

for (int j = i+1; j < n; j++) { 
if (array[i] == array[j]) ok = false; 

} 
} 
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However, we can solve the problem in O(n log n) time by first sorting the array. 
Then, if there are equal elements, they are next to each other in the sorted array, so 
they are easy to find in O(n) time: 

bool ok = true; 
sort(array, array+n); 
for (int i = 0; i < n-1; i++) { 

if (array[i] == array[i+1]) ok = false; 
} 

Several other problems can be solved in a similar way in O(n log n) time, such 
as counting the number of distinct elements, finding the most frequent element, and 
finding two elements whose difference is minimum. 

4.2.1 Sweep Line Algorithms 

A sweep line algorithm models a problem as a set of events that are processed in 
a sorted order. For example, suppose that there is a restaurant and we know the 
arriving and leaving times of all customers on a certain day. Our task is to find out 
the maximum number of customers who visited the restaurant at the same time. 

For example, Fig. 4.7 shows an instance of the problem where there are four 
customers A, B, C , and D. In this case, the maximum number of simultaneous 
customers is three between A’s arrival and B’s leaving. 

To solve the problem, we create two events for each customer: one event for 
arrival and another event for leaving. Then, we sort the events and go through them 
according to their times. To find the maximum number of customers, we maintain 
a counter whose value increases when a customer arrives and decreases when a 
customer leaves. The largest value of the counter is the answer to the problem. 

Figure 4.8 shows the events in our example scenario. Each customer is assigned 
two events: “+” denotes an arriving customer and “–” denotes a leaving customer. 
The resulting algorithm works in O(n log n) time, because sorting the events takes 
O(n log n) time and the sweep line part takes O(n) time. 

A 
B 

C 

D 

Fig. 4.7 An instance of the restaurant problem 

++ ++ −− −− 

Fig. 4.8 Solving the restaurant problem using a sweep line algorithm
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4.2.2 Scheduling Events 

Many scheduling problems can be solved by sorting the input data and then using a 
greedy strategy to construct a solution. A greedy algorithm always makes a choice 
that looks the best at the moment and never takes back its choices. 

As an example, consider the following problem: Given n events with their starting 
and ending times, find a schedule that includes as many events as possible. For 
example, Fig. 4.9 shows an instance of the problem where an optimal solution is to 
select two events. 

In this problem, there are several ways how we could sort the input data. One 
strategy is to sort the events according to their lengths and select as short events as 
possible. However, this strategy does not always work, as shown in Fig. 4.10. Then, 
another idea is to sort the events according to their starting times and always select 
the next possible event that begins as early as possible. However, we can find a 
counterexample also for this strategy, shown in Fig. 4.11. 

A third idea is to sort the events according to their ending times and always select 
the next possible event that ends as early as possible. It turns out that this algorithm 
always produces an optimal solution. To justify this, consider what happens if we 
first select an event that ends later than the event that ends as early as possible. Now, 
we will have at most an equal number of choices left how we can select the next 
event. Hence, selecting an event that ends later can never yield a better solution, and 
the greedy algorithm is correct. 

Fig. 4.9 An instance of the scheduling problem and an optimal solution with two events 

Fig. 4.10 If we select the short event, we can only select one event, but we could select both long 
events 

Fig. 4.11 If we select the first event, we cannot select any other events, but we could to select the 
other two events
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4.2.3 Tasks and Deadlines 

Finally, consider a problem where we are given n tasks with durations and deadlines 
and our task is to choose an order to perform the tasks. For each task, we earn d − x
points where d is the task’s deadline and x is the moment when we finish the task. 
What is the largest possible total score we can obtain? 

For example, suppose that the tasks are as follows: 

Task Duration Deadline 
A
B
C
D

4 2 
3 10 
2 8 
4 15 

Figure 4.12 shows an optimal schedule for the tasks in our example scenario. 
Using this schedule, C yields 6 points, B yields 5 points, A yields−7 points, and D
yields 2 points, so the total score is 6. 

It turns out that the optimal solution to the problem does not depend on the 
deadlines at all, but a correct greedy strategy is to simply perform the tasks sorted 
by their durations in increasing order. The reason for this is that if we ever perform 
two tasks one after another such that the first task takes longer than the second task, 
we can obtain a better solution if we swap the tasks. 

For example, in Fig. 4.13, there are two tasks X and Y with durations a and 
b. Initially, X is scheduled before Y . However, since a > b, the tasks should be 
swapped. Now X gives b points less and Y gives a points more, so the total score 
increases by a − b > 0. Thus, in an optimal solution, a shorter task must always 
come before a longer task, and the tasks must be sorted by their durations. 

C B A D 

0 5 10  

Fig. 4.12 An optimal schedule for the tasks 

Fig. 4.13 Improving the 
solution by swapping tasks 
X and Y

X Y  

a b 

initial order 

Y X  

b a 

swapped order
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4.3 Binary Search 

Binary search is an O(log n) time algorithm that can be used, for example, to effi-
ciently check whether a sorted array contains a given element. In this section, we 
first focus on the implementation of binary search, and after that, we will see how 
binary search can be used to find optimal solutions for problems. 

4.3.1 Implementing the Search 

Suppose that we are given a sorted array of n elements and we want to check if 
the array contains an element with a target value x . Next we discuss two ways to 
implement a binary search algorithm for this problem. 

First Method The most common way to implement binary search resembles looking 
for a word in a dictionary. 3 The search maintains an active subarray in the array, 
which initially contains all array elements. Then, a number of steps is performed, 
each of which halves the search range. At each step, the search checks the middle 
element of the active subarray. If the middle element has the target value, the search 
terminates. Otherwise, the search recursively continues to the left or right half of 
the subarray, depending on the value of the middle element. For example, Fig. 4.14 
shows how an element with value 9 is found in the array. 

The search can be implemented as follows: 

int a = 0, b = n-1;  
while (a <= b) { 

int k = (a+b)/2; 
if (array[k] == x) { 

// x found at index k 
} 
if (array[k] < x) a = k+1; 
else b = k-1; 

} 

In this implementation, the range of the active subarray is a . . . b, and the initial 
range is 0 . . . n− 1. The algorithm halves the size of the subarray at each step, so the 
time complexity is O(log n). 

Second Method Another way to implement binary search is to go through the array 
from left to right making jumps. The initial jump length is n/2, and the jump length 
is halved on each round: first n/4, then n/8, then n/16, etc., until finally the length 
is 1. On each round, we make jumps until we would end up outside the array or in 
an element whose value exceeds the target value. After the jumps, either the desired

3 Some people, including the author of this book, still use printed dictionaries. Another example is 
finding a phone number in a printed phone book, which is even more obsolete. 
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Fig. 4.14 The traditional 
way to implement binary 
search. At each step we 
check the middle element of 
the active subarray and 
proceed to the left or right 
part 

1 3 3  4 5 5 6  9 10 12 12 15 

1 3 3  4 5 5 6  9 10 12 12 15 

1 3 3  4 5 5 6  9 10 12 12 15 

1 3 3  4 5 5 6  9 10 12 12 15 

Fig. 4.15 An alternative 
way to implement binary 
search. We scan the array 
from left to right jumping 
over elements 

1 3 3  4 5 5 6  9 10 12 12 15 

1 3 3  4 5 5 6  9 10 12 12 15 

1 3 3  4 5 5 6  9 10 12 12 15 

1 3 3  4 5 5 6  9 10 12 12 15 

element has been found or we know that it does not appear in the array. Figure 4.15 
illustrates the technique in our example scenario. 

The following code implements the search: 

int k = 0;  
for (int b = n/2; b >= 1; b /= 2) {  

while (k+b < n &&  array[k+b] <= x) k += b; 
} 
if (array[k] == x) { 

// x found at index k 
} 

During the search, the variable b contains the current jump length. The time 
complexity of the algorithm is O(log n), because the code in the while loop is 
performed at most twice for each jump length. 

4.3.2 Finding Optimal Solutions 

Suppose that we are solving a problem and have a function valid(x) that returns 
true if x is a valid solution and false otherwise. In addition, we know that



4.3 Binary Search 55

Fig. 4.16 An optimal 
processing schedule: 
machine 1 processes four 
jobs, machine 2 processes 
three jobs and machine 3 
processes one job 

0 1 2 3 4 5 6 7 8 9 

machine 1 

machine 2 

machine 3 

valid(x) is false when x < k and true when x ≥ k. In this situation, we can 
use binary search to efficiently find the value of k. 

The idea is to binary search for the largest value of x for which valid(x) is 
false. Thus, the next value k = x + 1 is the smallest possible value for which 
valid(k) is true. The search can be implemented as follows: 

int x = -1; 
for (int b = z; b >= 1; b /= 2) {  

while (!valid(x+b)) x += b; 
} 
int k = x+1; 

The initial jump length z has to be an upper bound for the answer, i.e., any value 
for which we surely know that valid(z) is true. The algorithm calls the function 
valid O(log z) times, so the running time depends on the function valid. For  
example, if the function works in O(n) time, the running time is O(n log z). 

Example Consider a problem where our task is to process k jobs using n machines. 
Each machine i is assigned an integer pi : the time to process a single job. What is 
the minimum time to process all the jobs? 

For example, suppose that k = 8, n = 3 and the processing times are p1 = 2, 
p2 = 3, and p3 = 7. In this case, the minimum total processing time is 9, by 
following the schedule in Fig. 4.16. 

Let valid(x) be a function that finds out whether it is possible to process all 
the jobs using at most x units of time. In our example scenario, clearly valid(9) is 
true, because we can follow the schedule in Fig. 4.16. On the other hand, valid(8)
must be false, because the minimum processing time is 9. 

Calculating the value of valid(x) is easy, because each machine i can process 
at most  x/pi jobs in x units of time. Thus, if the sum of all  x/pi values is k
or more, x is a valid solution. Then, we can use binary search to find the minimum 
value of x for which valid(x) is true. 

How efficient is the resulting algorithm? The function valid takes O(n) time, 
so the algorithm works in O(n log z) time, where z is an upper bound for the answer. 
One possible value for z is kp1 which corresponds to a solution where only the first 
machine is used to process all the jobs. This is surely a valid upper bound.
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This chapter introduces the most important data structures of the C++ standard 
library. In competitive programming, it is crucial to know which data structures 
are available in the standard library and how to use them. This often saves a large 
amount of time when implementing an algorithm. 

Section 5.1 first describes the vector structure which is an efficient dynamic array. 
After this, we will focus on using iterators and ranges with data structures, and briefly 
discuss deques, stacks, and queues. 

Section 5.2 discusses sets, maps and priority queues. Those data structures are 
often used as building blocks of efficient algorithms, because they allow us to main-
tain dynamic structures that support both efficient searches and updates. 

Section 5.3 shows some results about the efficiency of data structures in practice. 
As we will see, there are important performance differences that cannot be detected 
by only looking at time complexities. 

5.1 Dynamic Arrays 

In C++, ordinary arrays are fixed-size structures, and it is not possible to change the 
size of an array after creating it. For example, the following code creates an array 
which contains n integer values: 

int array[n]; 

A dynamic array is an array whose size can be changed during the execution of 
the program. The C++ standard library provides several dynamic arrays, most useful 
of them being the vector structure. 
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5.1.1 Vectors 

A vector is a dynamic array that allows us to efficiently add and remove elements at 
the end of the structure. We can use a vector to store a list of elements. For example, 
the following code creates an empty vector and adds three elements to it: 

vector<int> v;  
v.push_back(3); // [3] 
v.push_back(2); // [3,2] 
v.push_back(5); // [3,2,5] 

Then, the elements can be accessed like in an ordinary array: 

cout << v[0] << "\n"; // 3 
cout << v[1] << "\n"; // 2 
cout << v[2] << "\n"; // 5 

Another way to create a vector is to give a list of its elements: 

vector<int> v = {2,4,2,5,1}; 

We can also give the number of elements and their initial values: 

vector<int> a(8); // size 8, initial value 0 
vector<int> b(8,2);// size 8, initial value 2 

The function size returns the number of elements in the vector. For example, 
the following code iterates through the vector and prints its elements: 

for (int i = 0; i < v.size(); i++) { 
cout << v[i] << "\n"; 

} 

A shorter way to iterate through a vector is as follows: 

for (auto x : v) {  
cout << x << "\n"; 

} 

The function back returns the last element of a vector, and the function 
pop_back removes the last element: 

vector<int> v = {2,4,2,5,1}; 
cout << v.back() << "\n"; // 1 
v.pop_back(); 
cout << v.back() << "\n"; // 5 
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Vectors are implemented so that the push_back and pop_back operations 
work in O(1) time on average. In practice, using a vector is almost as fast as using 
an ordinary array. 

5.1.2 Iterators and Ranges 

An iterator is a variable that points to an element of a data structure. The iterator 
begin points to the first element of a data structure, and the iterator end points to 
the position after the last element. For example, the situation can look as follows in 
a vector v that consists of eight elements: 

[ 5, 2, 3, 1, 2, 5, 7, 1 ] 
↑ ↑
v.begin() v.end() 

Note the asymmetry in the iterators: begin() points to an element in the data 
structure, while end() points outside the data structure. 

A range is a sequence of consecutive elements in a data structure. The usual way 
to specify a range is to give iterators to its first element and the position after its 
last element. In particular, the iterators begin() and end() define a range that 
contains all elements in a data structure. 

The C++ standard library functions typically operate with ranges. For example, 
the following code first sorts a vector, then reverses the order of its elements, and 
finally shuffles its elements. 

sort(v.begin(),v.end()); 
reverse(v.begin(),v.end()); 
random_shuffle(v.begin(),v.end()); 

The element to which an iterator points can be accessed using the * syntax. For 
example, the following code prints the first element of a vector: 

cout << *v.begin() << "\n"; 

To give a more useful example, lower_bound gives an iterator to the first 
element in a sorted range whose value is at least x , and upper_bound gives an 
iterator to the first element whose value is larger than x : 

vector<int> v = {2,3,3,5,7,8,8,8}; 
auto a = lower_bound(v.begin(),v.end(),5); 
auto b = upper_bound(v.begin(),v.end(),5); 
cout << *a << " " << *b << "\n"; // 5 7 

Note that the above functions only work correctly when the given range is sorted. 
The functions use binary search and find the requested element in logarithmic time.
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If there is no such element, the functions return an iterator to the element after the 
last element in the range. 

The C++ standard library contains a large number of useful functions that are 
worth exploring. For example, the following code creates a vector that contains the 
unique elements of the original vector in a sorted order: 

sort(v.begin(),v.end()); 
v.erase(unique(v.begin(),v.end()),v.end()); 

5.1.3 Other Structures 

A deque is a dynamic array that can be efficiently manipulated at both ends of 
the structure. Like a vector, a deque provides the functions push_back and 
pop_back, but it also provides the functions push_front and pop_front 
which are not available in a vector. A deque can be used as follows: 

deque<int> d;  
d.push_back(5); // [5] 
d.push_back(2); // [5,2] 
d.push_front(3); // [3,5,2] 
d.pop_back(); // [3,5] 
d.pop_front(); // [5] 

The operations of a deque also work in O(1) average time. However, deques have 
larger constant factors than vectors, so deques should be used only if there is a need 
to manipulate both ends of the array. 

C++ also provides two specialized data structures that are, by default, based on a 
deque. A stack has the functions push and pop for inserting and removing elements 
at the end of the structure, and the function top that retrieves the last element: 

stack<int> s;  
s.push(2); // [2] 
s.push(5); // [2,5] 
cout << s.top() << "\n"; // 5 
s.pop(); // [2] 
cout << s.top() << "\n"; // 2 

Then, in a queue, elements are inserted at the end of the structure and removed 
from the front of the structure. Both the functions front and back are provided 
for accessing the first and last element.
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queue<int> q;  
q.push(2); // [2] 
q.push(5); // [2,5] 
cout << q.front() << "\n"; // 2 
q.pop(); // [5] 
cout << q.back() << "\n"; // 5 

5.2 Set Structures 

A set is a data structure that maintains a collection of elements. The basic operations 
of sets are element insertion, search and removal. Sets are implemented so that all 
the above operations are efficient, which often allows us to improve on running times 
of algorithms using sets. 

5.2.1 Sets and Multisets 

The C++ standard library contains two set structures: 

• set is based on a balanced binary search tree and its operations work in O(log n)
time. 

• unordered_set is based on a hash table and its operations work, on average, 1
in O(1) time. 

Both structures are efficient, and often either of them can be used. Since they are 
used in the same way, we focus on the set structure in the following examples. 

The following code creates a set that contains integers, and shows some of its 
operations. The function insert adds an element to the set, the function count 
returns the number of occurrences of an element in the set, and the function erase 
removes an element from the set. 

set<int> s;  
s.insert(3); 
s.insert(2); 
s.insert(5); 
cout << s.count(3) << "\n"; // 1 
cout << s.count(4) << "\n"; // 0 
s.erase(3); 
s.insert(4); 
cout << s.count(3) << "\n"; // 0 
cout << s.count(4) << "\n"; // 1 

1 The worst-case time complexity of the operations is O(n), but this is very unlikely to occur. 
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An important property of sets is that all their elements are distinct. Thus, the 
function count always returns either 0 (the element is not in the set) or 1 (the 
element is in the set), and the function insert never adds an element to the set if 
it is already there. The following code illustrates this: 

set<int> s;  
s.insert(3); 
s.insert(3); 
s.insert(3); 
cout << s.count(3) << "\n"; // 1 

A set can be used mostly like a vector, but it is not possible to access the elements 
using the [] notation. The following code prints the number of elements in a set, 
and then iterates through the elements: 

cout << s.size() << "\n"; 
for (auto x : s) {  

cout << x << "\n"; 
} 

The function find(x) returns an iterator that points to an element whose value 
is x . However, if the set does not contain x , the iterator will be end(). 

auto it = s.find(x); 
if (it == s.end()) { 

// x is not found 
} 

Ordered Sets The main difference between the two C++ set structures is that set 
is ordered, while unordered_set is not. Thus, if we want to maintain the order 
of the elements, we have to use the set structure. 

For example, consider the problem of finding the smallest and largest value in a 
set. To do this efficiently, we need to use the set structure. Since the elements are 
sorted, we can find the smallest and largest value as follows: 

auto first = s.begin(); 
auto last = s.end(); last--; 
cout << *first << " " <<  *last << "\n"; 

Note that since end() points to an element after the last element, we have to 
decrease the iterator by one. 

The set structure also provides the functions lower_bound(x) and 
upper_bound(x) that return an iterator to the smallest element in a set whose
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value is at least or larger than x , respectively. In both the functions, if the requested 
element does not exist, the return value is end(). 

cout << *s.lower_bound(x) << "\n"; 
cout << *s.upper_bound(x) << "\n"; 

Multisets A multiset is a set that can have several copies of the same value. C++ has 
the structures multiset and unordered_multiset that resemble set and 
unordered_set. For example, the following code adds three copies of the value 
5 to a multiset. 

multiset<int> s;  
s.insert(5); 
s.insert(5); 
s.insert(5); 
cout << s.count(5) << "\n"; // 3 

The function erase removes all copies of a value from a multiset: 

s.erase(5); 
cout << s.count(5) << "\n"; // 0 

Often, only one value should be removed, which can be done as follows: 

s.erase(s.find(5)); 
cout << s.count(5) << "\n"; // 2 

Note that the functions count and erase have an additional O(k) factor where 
k is the number of elements counted/removed. In particular, it is not efficient to count 
the number of copies of a value in a multiset using the count function. 

5.2.2 Maps 

A map is a set that consists of key-value pairs. A map can also be seen as a gen-
eralized array. While the keys in an ordinary array are always consecutive integers 
0, 1, . . . , n − 1, where n is the size of the array, the keys in a map can be of any data 
type and they do not have to be consecutive values. 

The C++ standard library contains two map structures that correspond to the set 
structures: map is based on a balanced binary search tree and accessing elements 
takes O(log n) time, while unordered_map uses hashing and accessing elements 
takes O(1) time on average.
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The following code creates a map whose keys are strings and values are integers: 

map<string,int> m;  
m["monkey"] = 4; 
m["banana"] = 3; 
m["harpsichord"] = 9; 
cout << m["banana"] << "\n"; // 3 

If the value of a key is requested but the map does not contain it, the key is 
automatically added to the map with a default value. For example, in the following 
code, the key “aybabtu” with value 0 is added to the map. 

map<string,int> m;  
cout << m["aybabtu"] << "\n"; // 0 

The function count checks if a key exists in a map: 

if (m.count("aybabtu")) { 
// key exists 

} 

Then, the following code prints all keys and values in a map: 

for (auto x : m) {  
cout << x.first << " " << x.second << "\n"; 

} 

5.2.3 Priority Queues 

A priority queue is a multiset that supports element insertion and, depending on the 
type of the queue, retrieval and removal of either the minimum or maximum element. 
Insertion and removal take O(log n) time, and retrieval takes O(1) time. 

A priority queue is usually based on a heap structure, which is a special binary 
tree. While a multiset provides all the operations of a priority queue and more, 
the benefit of using a priority queue is that it has smaller constant factors. Thus, if 
we only need to efficiently find minimum or maximum elements, it is a good idea to 
use a priority queue instead of a set or multiset. 

By default, the elements in a C++ priority queue are sorted in decreasing order, 
and it is possible to find and remove the largest element in the queue. The following 
code illustrates this:
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priority_queue<int> q;  
q.push(3); 
q.push(5); 
q.push(7); 
q.push(2); 
cout << q.top() << "\n"; // 7 
q.pop(); 
cout << q.top() << "\n"; // 5 
q.pop(); 
q.push(6); 
cout << q.top() << "\n"; // 6 
q.pop(); 

If we want to create a priority queue that supports finding and removing the 
smallest element, we can do it as follows: 

priority_queue<int,vector<int>,greater<int>> q; 

5.2.4 Policy-Based Sets 

The g++ compiler also provides some data structures that are not part of the C++ 
standard library. Such structures are called policy-based structures. To use these 
structures, the following lines must be added to the code: 

#include <ext/pb_ds/assoc_container.hpp> 
using namespace __gnu_pbds; 

After this, we can define a data structure indexed_set that is like set but can 
be indexed like an array. The definition for int values is as follows: 

typedef tree<int,null_type,less<int>,rb_tree_tag, 
tree_order_statistics_node_update> indexed_set; 

Then, we can create a set as follows: 

indexed_set s; 
s.insert(2); 
s.insert(3); 
s.insert(7); 
s.insert(9); 

The speciality of this set is that we have access to the indices that the elements 
would have in a sorted array. The function find_by_order returns an iterator to 
the element at a given position:
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auto x = s.find_by_order(2); 
cout << *x << "\n"; // 7 

Then, the function order_of_key returns the position of a given element: 

cout << s.order_of_key(7) << "\n"; // 2 

If the element does not appear in the set, we get the position that the element 
would have in the set: 

cout << s.order_of_key(6) << "\n"; // 2 
cout << s.order_of_key(8) << "\n"; // 3 

Both the functions work in logarithmic time. 

5.3 Experiments 

In this section, we present some results concerning the practical efficiency of the 
data structures presented in this chapter. While time complexities are a great tool, 
they do not always tell the whole truth about the efficiency, so it is worthwhile to 
also do experiments with real implementations and data sets. 

5.3.1 Set Versus Sorting 

Many problems can be solved using either sets or sorting. It is important to realize 
that algorithms that use sorting are usually much faster, even if this is not evident by 
just looking at the time complexities. 

As an example, consider the problem of calculating the number of unique elements 
in a vector. One way to solve the problem is to add all the elements to a set and return 
the size of the set. Since it is not needed to maintain the order of the elements, we 
may use either a set or an unordered_set. Then, another way to solve the 
problem is to first sort the vector and then go through its elements. It is easy to count 
the number of unique elements after sorting the vector. 

Table 5.1 shows the results of an experiment where the above algorithms were 
tested using random vectors of int values. It turns out that the unordered_set 
algorithm is about two times faster than the set algorithm, and the sorting algorithm 
is more than ten times faster than theset algorithm. Note that both theset algorithm 
and the sorting algorithm work in O(n log n) time; still the latter is much faster. The 
reason for this is that sorting is a simple operation, while the balanced binary search 
tree used in set is a complex data structure.
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Table 5.1 The results of an experiment where the number of unique elements in a vector was 
calculated. The first two algorithms insert the elements to a set structure, while the last algorithm 
sorts the vector and inspects consecutive elements 

Input size n Set (s) Unordered_set (s) Sorting (s) 

106 0.65 0.34 0.11

2 · 106 1.50 0.76 0.18

4 · 106 3.38 1.63 0.33

8 · 106 7.57 3.45 0.68

16 · 106 17.35 7.18 1.38

Table 5.2 The results of an experiment where the most frequent value in a vector was determined. 
The two first algorithms use map structures, and the last algorithm uses an ordinary array 

Input size n Map (s) Unordered_map (s) Array (s) 

106 0.55 0.23 0.01

2 · 106 1.14 0.39 0.02

4 · 106 2.34 0.73 0.03

8 · 106 4.68 1.46 0.06

16 · 106 9.57 2.83 0.11

5.3.2 Map Versus Array 

Maps are convenient structures compared to arrays, because any indices can be used, 
but they also have large constant factors. In our next experiment, we created a vector 
of n random integers between 1 and 106 and then determined the most frequent value 
by counting the number of each element. First we used maps, but since the upper 
bound 106 is quite small, we were also able to use arrays. 

Table 5.2 shows the results of the experiment. While unordered_map is about 
three times faster than map, an array is almost a hundred times faster. Thus, arrays 
should be used whenever possible instead of maps. Especially, note that while 
unordered_map provides O(1) time operations, there are large constant factors 
hidden in the data structure. 

5.3.3 Priority Queue Versus Multiset 

Are priority queues really faster than multisets? To find this out, we conducted 
another experiment where we created two vectors of n random int numbers. First, 
we added all elements of the first vector to a data structure. Then, we went through the 
second vector and repeatedly removed the smallest element from the data structure 
and added the new element to it.
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Table 5.3 The results of an experiment where elements were added and removed using a multiset 
and a priority queue 

Input size n Multiset (s) Priority_queue (s) 

106 1.17 0.19

2 · 106 2.77 0.41

4 · 106 6.10 1.05

8 · 106 13.96 2.52

16 · 106 30.93 5.95

Table 5.3 shows the results of the experiment. It turns out that in this problem a 
priority queue is about five times faster than a multiset.
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Dynamic programming is an algorithm design technique that can be used to find 
optimal solutions to problems and to count the number of solutions. This chapter 
is an introduction to dynamic programming, and the technique will be used many 
times later in the book when designing algorithms. 

Section 6.1 discusses the basic elements of dynamic programming in the context 
of a coin change problem. In this problem we are given a set of coin values and our 
task is to construct a sum of money using as few coins as possible. There is a simple 
greedy algorithm for the problem, but as we will see, it does not always produce an 
optimal solution. However, using dynamic programming, we can create an efficient 
algorithm that always finds an optimal solution. 

Section 6.2 presents a selection of problems that show some of the possibilities 
of dynamic programming. The problems include determining the longest increasing 
subsequence in an array, finding an optimal path in a two-dimensional grid, and 
generating all possible weight sums in a knapsack problem. 

6.1 Basic Concepts 

In this section, we go through the basic concepts of dynamic programming in the 
context of a coin change problem. First we present a greedy algorithm for the problem, 
which does not always produce an optimal solution. After this, we show how the 
problem can be efficiently solved using dynamic programming. 

6.1.1 When Greedy Fails 

Suppose that we are given a set of coin values coins = {c1, c2, . . . , ck} and a 
target sum of money n, and we are asked to construct the sum n using as few coins as 
possible. There are no restrictions on how many times we can use each coin value. For 
example, if coins = {1, 2, 5} and n = 12, the optimal solution is 5+ 5+ 2 = 12, 
which requires three coins. 
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There is a natural greedy algorithm for solving the problem: always select the 
largest possible coin so that the sum of coin values does not exceed the target sum. 
For example, if n = 12, we first select two coins of value 5, and then one coin of 
value 2, which completes the solution. This looks like a reasonable strategy, but is it 
always optimal? 

It turns out that this strategy does not always work. For example, if coins =
{1, 3, 4} and n = 6, the optimal solution has only two coins (3 + 3 = 6) but the 
greedy strategy produces a solution with three coins (4 + 1 + 1 = 6). This simple 
counterexample shows that the greedy algorithm is not correct. 1

How could we solve the problem, then? Of course, we could try to find another 
greedy algorithm, but there are no other obvious strategies that we could consider. 
Another possibility would be to create a brute force algorithm that goes through all 
possible ways to select coins. Such an algorithm would surely give correct results, 
but it would be very slow on large inputs. 

However, using dynamic programming, we can create an algorithm that is almost 
like a brute force algorithm but it is also efficient. Thus, we can both be sure that the 
algorithm is correct and use it for processing large inputs. Furthermore, we can use 
the same technique for solving a large number of other problems. 

6.1.2 Finding an Optimal Solution 

To use dynamic programming, we should formulate the problem recursively so that 
the solution to the problem can be calculated from solutions to smaller subproblems. 
In the coin problem, a natural recursive problem is to calculate values of a function 
solve(x): what is the minimum number of coins required to form a sum x? Clearly, 
the values of the function depend on the values of the coins. For example, if coins =
{1, 3, 4}, the first values of the function are as follows: 

. 

solve(0) = 0
solve(1) = 1
solve(2) = 2
solve(3) = 1
solve(4) = 1
solve(5) = 2
solve(6) = 2
solve(7) = 2
solve(8) = 2
solve(9) = 3
solve(10) = 3

For example, solve(10) = 3, because at least 3 coins are needed to form the 
sum 10. The optimal solution is 3+ 3+ 4 = 10.

1 It is an interesting question when exactly does the greedy algorithm work. Pearson [ 1] describes 
an efficient algorithm for testing this. 
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The essential property of solve is that its values can be recursively calculated 
from its smaller values. The idea is to focus on the first coin that we choose for the 
sum. For example, in the above scenario, the first coin can be either 1, 3 or 4. If 
we first choose coin 1, the remaining task is to form the sum 9 using the minimum 
number of coins, which is a subproblem of the original problem. Of course, the 
same applies to coins 3 and 4. Thus, we can use the following recursive formula to 
calculate the minimum number of coins: 

. 

solve(x) = min(solve(x − 1) + 1,

solve(x − 3) + 1,

solve(x − 4) + 1).

The base case of the recursion is solve(0) = 0, because no coins are needed to 
form an empty sum. For example, 

. solve(10) = solve(7) + 1 = solve(4) + 2 = solve(0) + 3 = 3.

Now we are ready to give a general recursive function that calculates the minimum 
number of coins needed to form a sum x : 

. solve(x) =

⎧
⎪⎨

⎪⎩

∞ x < 0

0 x = 0

minc∈coins solve(x − c) + 1 x > 0

First, if x < 0, the value is infinite, because it is impossible to form a negative 
sum of money. Then, if x = 0, the value is zero, because no coins are needed to form 
an empty sum. Finally, if x > 0, the variable c goes through all possibilities how to 
choose the first coin of the sum. 

Once a recursive function that solves the problem has been found, we can directly 
implement a solution in C++ (the constant INF denotes infinity): 

int solve(int x) { 
if (x < 0)  return INF; 
if (x == 0) return 0; 
int best = INF; 
for (auto c : coins) { 

best = min(best, solve(x-c)+1); 
} 
return best; 

} 

Still, this function is not efficient, because there may be a large number of ways to 
construct the sum and the function checks all of them. Fortunately, it turns out that 
there is a simple way to make the function efficient. 

Memoization The key idea in dynamic programming is memoization, which means 
that we store each function value in an array directly after calculating it. Then, when
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the value is needed again, it can be retrieved from the array without recursive calls. 
To do this, we create arrays 

bool ready[N]; 
int value[N]; 

where ready[x] indicates whether the value of solve(x) has been calculated, and 
if it is, value[x] contains this value. The constant N has been chosen so that all 
required values fit in the arrays. 

After this, the function can be efficiently implemented as follows: 

int solve(int x) { 
if (x < 0)  return INF; 
if (x == 0) return 0; 
if (ready[x]) return value[x]; 
int best = INF; 
for (auto c : coins) { 

best = min(best, solve(x-c)+1); 
} 
ready[x] = true; 
value[x] = best; 
return best; 

} 

The function handles the base cases x < 0 and x = 0 as previously. Then it 
checks from ready[x] if solve(x) has already been stored in value[x], and if 
it is, the function directly returns it. Otherwise the function calculates the value of 
solve(x) recursively and stores it in value[x]. 

This function works efficiently, because the answer for each parameter x is calcu-
lated recursively only once. After a value ofsolve(x) has been stored invalue[x], 
it can be efficiently retrieved whenever the function will be called again with the 
parameter x . The time complexity of the algorithm is O(nk), where n is the target 
sum and k is the number of coins. 

Iterative Implementation Note that we can also iteratively construct the array 
value using a loop as follows: 

value[0] = 0; 
for (int x = 1; x <= n; x++) { 

value[x] = INF; 
for (auto c : coins) { 

if (x-c >= 0) { 
value[x] = min(value[x], value[x-c]+1); 

} 
} 

} 
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In fact, most competitive programmers prefer this implementation, because it 
is shorter and has smaller constant factors. From now on, we also use iterative 
implementations in our examples. Still, it is often easier to think about dynamic 
programming solutions in terms of recursive functions. 

Constructing a Solution Sometimes we are asked both to find the value of an optimal 
solution and to give an example how such a solution can be constructed. To construct 
an optimal solution in our coin problem, we can declare a new array that indicates 
for each sum of money the first coin in an optimal solution: 

int first[N]; 

Then, we can modify the algorithm as follows: 

value[0] = 0; 
for (int x = 1; x <= n; x++) { 

value[x] = INF; 
for (auto c : coins) { 

if (x-c >= 0 && value[x-c]+1 < value[x]) { 
value[x] = value[x-c]+1; 
first[x] = c; 

} 
} 

} 

After this, the following code prints the coins that appear in an optimal solution 
for the sum n: 

while (n > 0) {  
cout << first[n] << "\n"; 
n -= first[n]; 

} 

6.1.3 Counting Solutions 

Let us now consider another variant of the coin problem where our task is to calcu-
late the total number of ways to produce a sum x using the coins. For example, if 
coins = {1, 3, 4} and x = 5, there are a total of 6 ways: 

• 1+ 1+ 1+ 1+ 1
• 1+ 1+ 3
• 1+ 3+ 1

• 3+ 1+ 1
• 1+ 4
• 4+ 1

Again, we can solve the problem recursively. Let solve(x) denote the number of 
ways we can form the sum x . For example, ifcoins = {1, 3, 4}, then solve(5) = 6
and the recursive formula is
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. 

solve(x) = solve(x − 1)+
solve(x − 3)+
solve(x − 4).

Then, the general recursive function is as follows: 

. solve(x) =

⎧
⎪⎨

⎪⎩

0 x < 0

1 x = 0
 

c∈coins solve(x − c) x > 0

If x < 0, the value is zero, because there are no solutions. If x = 0, the value is 
one, because there is only one way to form an empty sum. Otherwise we calculate 
the sum of all values of the form solve(x − c) where c is in coins. 

The following code constructs an array count such that count[x] equals the 
value of solve(x) for 0 ≤ x ≤ n: 

count[0] = 1; 
for (int x = 1; x <= n; x++) { 

for (auto c : coins) { 
if (x-c >= 0) { 

count[x] += count[x-c]; 
} 

} 
} 

Often the number of solutions is so large that it is not required to calculate the 
exact number but it is enough to give the answer modulo m where, for example, 
m = 109 + 7. This can be done by changing the code so that all calculations are 
done modulo m. In the above code, it suffices to add the line 

count[x] %= m; 

after the line 

count[x] += count[x-c]; 

6.2 Further Examples 

After having discussed the basic concepts of dynamic programming, we are now 
ready to go through a set of problems that can be efficiently solved using dynamic 
programming. As we will see, dynamic programming is a versatile technique that 
has many applications in algorithm design.
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6.2.1 Longest Increasing Subsequence 

The longest increasing subsequence in an array of n elements is a maximum-length 
sequence of array elements that goes from left to right, and each element in the 
sequence is larger than the previous element. For example, Fig. 6.1 shows the longest 
increasing subsequence in an array of eight elements. 

We can efficiently find the longest increasing subsequence in an array using 
dynamic programming. Let length(k) denote the length of the longest increasing 
subsequence that ends at position k. Then, if we calculate all values of length(k)
where 0 ≤ k ≤ n − 1, we will find out the length of the longest increasing subse-
quence. The values of the function for our example array are as follows: 

. 

length(0) = 1
length(1) = 1
length(2) = 2
length(3) = 1
length(4) = 3
length(5) = 2
length(6) = 4
length(7) = 2

For example, length(6) = 4, because the longest increasing subsequence that 
ends at position 6 consists of 4 elements. 

To calculate a value of length(k), we should find a position i < k for which 
array[i] < array[k] and length(i) is as large as possible. Then we know that 
length(k) = length(i)+1, because this is an optimal way to append array[k]
to a subsequence. However, if there is no such position i , then length(k) = 1, 
which means that the subsequence only contains array[k]. 

Since all values of the function can be calculated from its smaller values, we can 
use dynamic programming to calculate the values. In the following code, the values 
of the function will be stored in an array length. 

for (int k = 0; k < n; k++) { 
length[k] = 1; 
for (int i = 0; i < k; i++) {  

if (array[i] < array[k]) { 
length[k] = max(length[k],length[i]+1); 

} 
} 

} 

Fig. 6.1 The longest 
increasing subsequence of 
this array is [2, 5, 7, 8] 6 2 5 1 7 4 8 3  

0 1 2  3 4 5 6  7



76 6 Dynamic Programming 

The resulting algorithm clearly works in O(n2) time. 2

6.2.2 Paths in a Grid 

Our next problem is to find a path from the upper-left corner to the lower-right corner 
of an n × n grid, with the restriction that we may only move down and right. Each 
square contains an integer, and the path should be constructed so that the sum of the 
values along the path is as large as possible. 

As an example, Fig. 6.2 shows an optimal path in a 5 × 5 grid. The sum of the 
values on the path is 67, and this is the largest possible sum on a path from the 
upper-left corner to the lower-right corner. 

Assume that the rows and columns of the grid are numbered from 1 to n, and 
value[y][x] equals the value of square (y, x). Let sum(y, x) denote the maximum 
sum on a path from the upper-left corner to square (y, x). Then, sum(n, n) tells us 
the maximum sum from the upper-left corner to the lower-right corner. For example, 
in the above grid, sum(5, 5) = 67. Now we can use the formula 

. sum(y, x) = max(sum(y, x − 1),sum(y − 1, x)) + value[y][x],
which is based on the observation that a path that ends at square (y, x) can come 
either from square (y, x − 1) or from square (y − 1, x) (Fig. 6.3). Thus, we select 
the direction that maximizes the sum. We assume that sum(y, x) = 0 if y = 0 or 
x = 0, so the recursive formula also works for leftmost and topmost squares. 

Fig. 6.2 An optimal path 
from the upper-left corner to 
the lower-right corner 

3 7 9 2 7 
9 8 3 5 5  
1 7 9 8 5  
3 8 6  4 10 
6 3  9 7 8 

Fig. 6.3 Two possible ways 
to reach a square on a path 

→ 
↓

2 In this problem, it is also possible to calculate the dynamic programming values more efficiently 
in O(n log n) time. Can  you  find a way to do this?.  
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Since the function sum has two parameters, the dynamic programming array also 
has two dimensions. For example, we can use an array 

int sum[N][N]; 

and calculate the sums as follows: 

for (int y = 1; y <= n; y++) { 
for (int x = 1; x <= n; x++) { 

sum[y][x] = max(sum[y][x-1],sum[y-1][x])+value[y][x]; 
} 

} 

The time complexity of the algorithm is O(n2). 

6.2.3 Knapsack Problems 

The term knapsack refers to problems where a set of objects is given, and subsets 
with some properties have to be found. Knapsack problems can often be solved using 
dynamic programming. 

In this section, we focus on the following problem: Given a list of weights 
[w1,w2, . . . ,wn], determine all sums that can be constructed using the weights. 
For example, Fig. 6.4 shows the possible sums for weights [1, 3, 3, 5]. In this case, 
all sums between 0 . . . 12 are possible, except 2 and 10. For example, the sum 7 is 
possible because we can choose the weights [1, 3, 3]. 

To solve the problem, we focus on subproblems where we only use the first k
weights to construct sums. Let possible(x, k) = true if we can construct a sum 
x using the first k weights, and otherwise possible(x, k) = false. The values 
of the function can be recursively calculated using the formula 

. possible(x, k) = possible(x − wk, k − 1) or possible(x, k − 1),

which is based on the fact that we can either use or not use the weight wk in the 
sum. If we use wk , the remaining task is to form the sum x −wk using the first k− 1
weights, and if we do not use wk , the remaining task is to form the sum x using the 
first k − 1 weights. The base cases are 

. possible(x, 0) =
 
true x = 0

false x  = 0,

because if no weights are used, we can only form the sum 0. Finally, possible(x, n)

tells us whether we can construct a sum x using all weights. 

Fig. 6.4 Constructing sums 
using the weights [1, 3, 3, 5]            

0 1 2  3 4 5 6  7 8 9 10 11 12
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Fig. 6.5 Solving the 
knapsack problem for the 
weights [1, 3, 3, 5] using 
dynamic programming
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Figure 6.5 shows all values of the function for the weights [1, 3, 3, 5] (the symbol 
”  ” indicates the true values). For example, the row k = 2 tells us that we can 
construct the sums [0, 1, 3, 4] using the weights [1, 3]. 

Let m denote the total sum of the weights. The following O(nm) time dynamic 
programming solution corresponds to the recursive function: 

possible[0][0] = true; 
for (int k = 1; k <= n; k++) { 

for (int x = 0; x <= m; x++) { 
if (x-w[k] >= 0) { 

possible[x][k] |= possible[x-w[k]][k-1]; 
} 
possible[x][k] |= possible[x][k-1]; 

} 
} 

It turns out that there is also a more compact way to implement the dynamic 
programming calculation, using only a one-dimensional array possible[x] that 
indicates whether we can construct a subset with sum x . The trick is to update the 
array from right to left for each new weight: 

possible[0] = true; 
for (int k = 1; k <= n; k++) { 

for (int x = m-w[k]; x >= 0; x--) {  
possible[x+w[k]] |= possible[x]; 

} 
} 

Note that the general dynamic programming idea presented in this section can 
also be used in other knapsack problems, such as in a situation where objects have 
weights and values and we have to find a maximum-value subset whose weight does 
not exceed a given limit. 

6.2.4 From Permutations to Subsets 

Using dynamic programming, it is often possible to change an iteration over per-
mutations into an iteration over subsets. The benefit of this is that n!, the number of
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permutations, is much larger than 2n , the number of subsets. For example, if n = 20, 
n! ≈ 2.4 · 1018 and 2n ≈ 106. Thus, for certain values of n, we can efficiently go 
through the subsets but not through the permutations. 

As an example, consider the following problem: There is an elevator with maxi-
mum weight x , and n people who want to get from the ground floor to the top floor. 
The people are numbered 0, 1, . . . , n− 1, and the weight of person i is weight[i]. 
What is the minimum number of rides needed to get everybody to the top floor? 

For example, suppose that x = 12, n = 5, and the weights are as follows: 

• weight[0] = 2
• weight[1] = 3
• weight[2] = 4
• weight[3] = 5
• weight[4] = 9

In this scenario, the minimum number of rides is two. One optimal solution is as 
follows: first, people 0, 2 and 3 take the elevator (total weight 11), and then, people 
1 and 4 take the elevator (total weight 12). 

The problem can be easily solved in O(n!n) time by testing all possible permu-
tations of n people. However, we can use dynamic programming to create a more 
efficient O(2nn) time algorithm. The idea is to calculate for each subset of people 
two values: the minimum number of rides needed and the minimum weight of people 
who ride in the last group. 

Let rides(S) denote the minimum number of rides for a subset S, and let 
last(S) denote the minimum weight of the last ride in a solution where the number 
of rides is minimum. For example, in the above scenario 

. rides({3, 4}) = 2 and last({3, 4}) = 5,

because the optimal way for people 3 and 4 to get to the top floor is that they take 
two separate rides and person 4 goes first, which minimizes the weight of the second 
ride. Of course, our final goal is to calculate the value of rides({0 . . . n − 1}). 

We can calculate the values of the functions recursively and then apply dynamic 
programming. To calculate the values for a subset S, we go through all people who 
belong to S and optimally choose the last person p who enters the elevator. Each 
such choice yields a subproblem for a smaller subset of people. If last(S \ p) +
weight[p] ≤ x , we can add p to the last ride. Otherwise, we have to reserve a new 
ride that only contains p. 

A convenient way to implement the dynamic programming calculation is to use 
bit operations. First, we declare an array 

pair<int,int> best[1<<N];
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that contains for each subset S a pair (rides(S),last(S)). For the empty subset, 
we create a single empty ride: 

best[0] = {1,0}; 

Then, we can fill the array as follows: 

for (int s = 1; s < (1<<n); s++) { 
// initial value: n+1 rides are needed 
best[s] = {n+1,0}; 
for (int p = 0; p < n; p++) {  

if (s&(1<<p)) { 
auto option = best[s^(1<<p)]; 
if (option.second+weight[p] <= x) { 

// add p to an existing ride 
option.second += weight[p]; 

} else { 
// reserve a new ride for p 
option.first++; 
option.second = weight[p]; 

} 
best[s] = min(best[s], option); 

} 
} 

} 

Note that the above loop guarantees that for any two subsets S1 and S2 such 
that S1 ⊂ S2, we process S1 before S2. Thus, the dynamic programming values are 
calculated in the correct order. 

6.2.5 Counting Tilings 

Sometimes the states of a dynamic programming solution are more complex than 
fixed combinations of values. As an example, consider the problem of calculating 
the number of distinct ways to fill an n×m grid using 1× 2 and 2× 1 size tiles. For 
example, there are a total of 781 ways to fill the 4 × 7 grid, one of them being the 
solution shown in Fig. 6.6. 

The problem can be solved using dynamic programming by going through the 
grid row by row. Each row in a solution can be represented as a string that contains 

Fig. 6.6 One way to fill the 
4× 7 grid using 1× 2 and 
2× 1 tiles
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m characters from the set { , , , }. For example, the solution in Fig. 6.6 consists 
of four rows that correspond to the following strings: 

•        
•        
•        
•        

Suppose that the rows of the grid are indexed from 1 to n. Let count(k, x)
denote the number of ways to construct a solution for rows 1 . . . k such that string x
corresponds to row k. It is possible to use dynamic programming here, because the 
state of a row is constrained only by the state of the previous row. 

A solution is valid if row 1 does not contain the character  , row n does not 
contain the character  , and all consecutive rows are compatible. For example, the 
rows        and       are compatible, while the rows        
and        are not compatible. 

Since a row consists ofm characters and there are four choices for each character, 
the number of distinct rows is at most 4m . We can go through the O(4m) possible 
states for each row, and for each state, there are O(4m) possible states for the previous 
row, so the time complexity of the solution is O(n42m). In practice, it is a good idea to 
rotate the grid so that the shorter side has length m, because the factor 42m dominates 
the time complexity. 

It is possible to make the solution more efficient by using a more compact rep-
resentation for the rows. It turns out that it suffices to know which columns of the 
previous row contain the upper square of a vertical tile. Thus, we can represent a 
row using only the characters  and  , where  is a combination of the characters 
 ,  and  . Using this representation, there are only 2m distinct rows and the time 
complexity is O(n22m). 

As a final note, there is also a surprising direct formula for calculating the number 
of tilings 3 : 

. 

 n/2  

a=1

 m/2  

b=1

4 ·
 

cos2
πa

n + 1
+ cos2

πb

m + 1

 

This formula is very efficient because it calculates the number of tilings in only 
O(nm) time. However, it would be difficult to use the formula in practice because 
the intermediate results are real numbers which should be stored accurately to get 
correct results.

3 Another surprising fact is that the formula was discovered independently two times [ 2, 3] in the  
same year (1961). 
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7Graph Algorithms 

Many programming problems can be solved by considering the situation as a graph 
and using an appropriate graph algorithm. In this chapter, we will learn the basics of 
graphs and a selection of important graph algorithms. 

Section 7.1 discusses graph terminology and data structures that can be used to 
represent graphs in algorithms. 

Section 7.2 introduces two fundamental graph traversal algorithms. Depth-first 
search is a simple way to visit all nodes that can be reached from a starting node, 
and breadth-first search visits the nodes in increasing order of their distance from 
the starting node. 

Section 7.3 presents algorithms for finding shortest paths in weighted graphs. 
The Bellman-Ford algorithm is a simple algorithm that finds shortest paths from a 
starting node to all other nodes. Dijkstra’s algorithm is a more efficient algorithm 
which requires that all edge weights are nonnegative. The Floyd-Warshall algorithm 
determines shortest paths between all node pairs of a graph. 

Section 7.4 explores special properties of directed acyclic graphs. We will learn 
how to construct a topological sort and how to use dynamic programming to effi-
ciently process such graphs. 

Section 7.5 focuses on successor graphs where each node has a unique successor. 
We will discuss an efficient way to find successors of nodes and Floyd’s algorithm 
for cycle detection. 

Section 7.6 presents Kruskal’s and Prim’s algorithms for constructing minimum 
spanning trees. Kruskal’s algorithm is based on an efficient union-find structure 
which has also other uses in algorithm design. 
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7.1 Basics of Graphs 

In this section, we first go through terminology which is used when discussing 
graphs and their properties. After this, we focus on data structures that can be used 
to represent graphs in algorithm programming. 

7.1.1 Graph Terminology 

A graph consists of nodes (also called vertices) that are connected with edges. In  
this book, the variable n denotes the number of nodes in a graph, and the variable 
m denotes the number of edges. The nodes are numbered using integers 1, 2, . . . , n. 
For example, Fig. 7.1 shows a graph with 5 nodes and 7 edges. 

A path leads from a node to another node through the edges of the graph. The 
length of a path is the number of edges in it. For example, Fig. 7.2 shows a path 
1 → 3 → 4 → 5 of length 3 from node 1 to node 5. A cycle is a path where the first 
and last node is the same. For example, Fig. 7.3 shows a cycle 1 → 3 → 4 → 1. 

A graph is connected if there is a path between any two nodes. In Fig. 7.4, the left 
graph is connected, but the right graph is not connected, because it is not possible to 
get from node 4 to any other node. 

The connected parts of a graph are called its components. For example, the graph 
in Fig. 7.5 has three components: {1, 2, 3}, {4, 5, 6, 7}, and {8}. 

Fig. 7.1 A graph  with  
5 nodes and 7 edges
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Fig. 7.2 A path from node 
1 to node 5
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Fig. 7.3 A cycle of three 
nodes

1 2 

3 4 

5 

Fig. 7.4 The left graph is 
connected, the right graph is 
not 
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Fig. 7.5 A graph with three 
components
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Fig. 7.6 A tree 1 2 
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Fig. 7.7 A directed graph 1 2 

3 4 
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Fig. 7.8 A weighted graph 
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A tree is a connected graph that does not contain cycles. Figure 7.6 shows an 
example of a graph that is a tree. 

In a directed graph, the edges can be traversed in one direction only. Figure 7.7 
shows an example of a directed graph. This graph contains a path 3 → 1 → 2 → 5
from node 3 to node 5, but there is no path from node 5 to node 3. 

In a weighted graph, each edge is assigned a weight. The weights are often inter-
preted as edge lengths, and the length of a path is the sum of its edge weights. For 
example, the graph in Fig. 7.8 is weighted, and the length of the path 1 → 3 → 4 → 5
is 1 + 7 + 3 = 11. This is the shortest path from node 1 to node 5. 

Two nodes are neighbors or adjacent if there is an edge between them. The degree 
of a node is the number of its neighbors. Figure 7.9 shows the degree of each node of 
a graph. For example, the degree of node 2 is 3, because its neighbors are 1, 4 and 5. 

Fig. 7.9 Degrees of nodes 
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Fig. 7.10 Indegrees and 
outdegrees 1 2 

3 4 
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Fig. 7.11 A bipartite graph 
and its coloring
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The sum of degrees in a graph is always 2m, where m is the number of edges, 
because each edge increases the degree of exactly two nodes by one. For this reason, 
the sum of degrees is always even. A graph is regular if the degree of every node is 
a constant d . A graph is complete if the degree of every node is n − 1, i.e., the graph 
contains all possible edges between the nodes. 

In a directed graph, the indegree of a node is the number of edges that end at 
the node, and the outdegree of a node is the number of edges that start at the node. 
Figure 7.10 shows the indegree and outdegree of each node of a graph. For example, 
node 2 has indegree 2 and outdegree 1. 

A graph is bipartite if it is possible to color its nodes using two colors in such a 
way that no adjacent nodes have the same color. It turns out that a graph is bipartite 
exactly when it does not have a cycle with an odd number of edges. For example, 
Fig. 7.11 shows a bipartite graph and its coloring. 

7.1.2 Graph Representation 

There are several ways to represent graphs in algorithms. The choice of a data struc-
ture depends on the size of the graph and the way the algorithm processes it. Next 
we will go through three popular representations. 

Adjacency Lists In the adjacency list representation, each node x of the graph is 
assigned an adjacency list that consists of nodes to which there is an edge from x . 
Adjacency lists are the most popular way to represent graphs, and most algorithms 
can be efficiently implemented using them.
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Fig. 7.12 Example graphs 
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A convenient way to store the adjacency lists is to declare an array of vectors as 
follows: 

vector<int> adj[N]; 

The constant N is chosen so that all adjacency lists can be stored. For example, 
the graph in Fig. 7.12a can be stored as follows: 

adj[1].push_back(2); 
adj[2].push_back(3); 
adj[2].push_back(4); 
adj[3].push_back(4); 
adj[4].push_back(1); 

If the graph is undirected, it can be stored in a similar way, but each edge is added 
in both directions. 

For a weighted graph, the structure can be extended as follows: 

vector<pair<int,int>> adj[N]; 

In this case, the adjacency list of node a contains the pair (b,w) always when 
there is an edge from node a to node b with weight w. For example, the graph in 
Fig. 7.12b can be stored as follows: 

adj[1].push_back({2,5}); 
adj[2].push_back({3,7}); 
adj[2].push_back({4,6}); 
adj[3].push_back({4,5}); 
adj[4].push_back({1,2}); 

Using adjacency lists, we can efficiently find the nodes to which we can move 
from a given node through an edge. For example, the following loop goes through 
all nodes to which we can move from node s: 

for (auto u : adj[s]) { 
// process node u 

} 
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Adjacency Matrix An adjacency matrix indicates the edges that a graph contains. 
We can efficiently check from an adjacency matrix if there is an edge between two 
nodes. The matrix can be stored as an array 

int adj[N][N]; 

where each value adj[a][b] indicates whether the graph contains an edge from node 
a to node b. If the edge is included in the graph, then adj[a][b] = 1, and otherwise 
adj[a][b] = 0. For example, the adjacency matrix for the graph in Fig. 7.12a is  

. 

⎡
⎢⎢⎣
0 1 0 0
0 0 1 1
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ .

If the graph is weighted, the adjacency matrix representation can be extended 
so that the matrix contains the weight of the edge if the edge exists. Using this 
representation, the graph in Fig. 7.12b corresponds to the following matrix: 

. 

⎡
⎢⎢⎣
0 5 0 0
0 0 7 6
0 0 0 5
2 0 0 0

⎤
⎥⎥⎦

The drawback of the adjacency matrix representation is that an adjacency matrix 
contains n2 elements, and usually most of them are zero. For this reason, the repre-
sentation cannot be used if the graph is large. 

Edge List An edge list contains all edges of a graph in some order. This is a convenient 
way to represent a graph if the algorithm processes all its edges, and it is not needed 
to find edges that start at a given node. 

The edge list can be stored in a vector 

vector<pair<int,int>> edges; 

where each pair (a, b) denotes that there is an edge from node a to node b. Thus, the 
graph in Fig. 7.12a can be represented as follows: 

edges.push_back({1,2}); 
edges.push_back({2,3}); 
edges.push_back({2,4}); 
edges.push_back({3,4}); 
edges.push_back({4,1}); 

If the graph is weighted, the structure can be extended as follows: 

vector<tuple<int,int,int>> edges;
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Each element in this list is of the form (a, b,w), which means that there is an edge 
from node a to node b with weight w. For example, the graph in Fig. 7.12b can be 
represented as follows 1 : 

edges.push_back({1,2,5}); 
edges.push_back({2,3,7}); 
edges.push_back({2,4,6}); 
edges.push_back({3,4,5}); 
edges.push_back({4,1,2}); 

7.2 Graph Traversal 

This section discusses two fundamental graph algorithms: depth-first search and 
breadth-first search. Both algorithms are given a starting node in the graph, and they 
visit all nodes that can be reached from the starting node. The difference in the 
algorithms is the order in which they visit the nodes. 

7.2.1 Depth-First Search 

Depth-first search (DFS) is a straightforward graph traversal technique. The algo-
rithm begins at a starting node, and proceeds to all other nodes that are reachable 
from the starting node using the edges of the graph. 

Depth-first search always follows a single path in the graph as long as it finds new 
nodes. After this, it returns to previous nodes and begins to explore other parts of 
the graph. The algorithm keeps track of visited nodes, so that it processes each node 
only once. 

Figure 7.13 shows how depth-first search processes a graph. The search can begin 
at any node of the graph; in this example we begin the search at node 1. First the 
search explores the path 1 → 2 → 3 → 5, then returns back to node 1 and visits 
the remaining node 4. 

Implementation 
Depth-first search can be conveniently implemented using recursion. The following 
function dfs begins a depth-first search at a given node. The function assumes that 
the graph is stored as adjacency lists in an array 

vector<int> adj[N]; 

and also maintains an array 

1 In some older compilers, the function make_tuple must be used instead of the braces (for 
example, make_tuple(1,2,5) instead of {1,2,5}). 
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Fig. 7.13 Depth-first search 1 2 
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bool visited[N]; 

that keeps track of the visited nodes. Initially, each array value is false, and when 
the search arrives at node s, the value of visited[ s] becomes true. The function 
can be implemented as follows: 

void dfs(int s) { 
if (visited[s]) return; 
visited[s] = true; 
// process node s 
for (auto u: adj[s]) { 

dfs(u); 
} 

} 

The time complexity of depth-first search is O(n + m) where n is the number of 
nodes and m is the number of edges, because the algorithm processes each node and 
edge once.
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7.2.2 Breadth-First Search 

Breadth-first search (BFS) visits the nodes of a graph in increasing order of their 
distance from the starting node. Thus, we can calculate the distance from the starting 
node to all other nodes using breadth-first search. However, breadth-first search is 
more difficult to implement than depth-first search. 

Breadth-first search goes through the nodes one level after another. First the search 
explores the nodes whose distance from the starting node is 1, then the nodes whose 
distance is 2, and so on. This process continues until all nodes have been visited. 

Figure 7.14 shows how breadth-first search processes a graph. Suppose that the 
search begins at node 1. First the search visits nodes 2 and 4 with distance 1, then 
nodes 3 and 5 with distance 2, and finally node 6 with distance 3. 

Implementation Breadth-first search is more difficult to implement than depth-first 
search, because the algorithm visits nodes in different parts of the graph. A typical 
implementation is based on a queue that contains nodes. At each step, the next node 
in the queue will be processed. 

The following code assumes that the graph is stored as adjacency lists and main-
tains the following data structures: 

queue<int> q;  
bool visited[N]; 
int distance[N]; 

The queue q contains nodes to be processed in increasing order of their distance. 
New nodes are always added to the end of the queue, and the node at the beginning 
of the queue is the next node to be processed. The array visited indicates which 
nodes the search has already visited, and the array distance will contain the 
distances from the starting node to all nodes of the graph. 

Fig. 7.14 Breadth-first 
search
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The search can be implemented as follows, starting at node x : 

visited[x] = true; 
distance[x] = 0; 
q.push(x); 
while (!q.empty()) { 

int s = q.front(); q.pop(); 
// process node s 
for (auto u : adj[s]) { 

if (visited[u]) continue; 
visited[u] = true; 
distance[u] = distance[s]+1; 
q.push(u); 

} 
} 

Like in depth-first search, the time complexity of breadth-first search is O(n+m), 
where n is the number of nodes and m is the number of edges. 

7.2.3 Applications 

Using the graph traversal algorithms, we can check many properties of graphs. Usu-
ally, both depth-first search and breadth-first search may be used, but in practice, 
depth-first search is a better choice, because it is easier to implement. In the appli-
cations described below we will assume that the graph is undirected. 

Connectivity Check A graph is connected if there is a path between any two nodes 
of the graph. Thus, we can check if a graph is connected by starting at an arbitrary 
node and finding out if we can reach all other nodes. 

For example, in Fig. 7.15, since a depth-first search from node 1 does not visit all 
the nodes, we can conclude that the graph is not connected. In a similar way, we can 
also find all connected components of a graph by iterating through the nodes and 
always starting a new depth-first search if the current node does not belong to any 
component yet. 

Cycle Detection A graph contains a cycle if during a graph traversal, we find a 
node whose neighbor (other than the previous node in the current path) has already 
been visited. For example, in Fig. 7.16, a depth-first search from node 1 reveals that 
the graph contains a cycle. After moving from node 2 to node 5 we notice that the 
neighbor 3 of node 5 has already been visited. Thus, the graph contains a cycle that 
goes through node 3, for example, 3 → 2 → 5 → 3. 

Fig. 7.15 Checking the 
connectivity of a graph
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Fig. 7.16 Finding a cycle in 
a graph
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Fig. 7.17 A conflict when 
checking bipartiteness
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Another way to determine if a graph contains a cycle is to simply calculate the 
number of nodes and edges in every component. If a component contains c nodes 
and no cycle, it must contain exactly c − 1 edges (so it has to be a tree). If there are 
c or more edges, the component surely contains a cycle. 

Bipartiteness Check A graph is bipartite if its nodes can be colored using two colors 
so that there are no adjacent nodes with the same color. It is surprisingly easy to check 
if a graph is bipartite using graph traversal algorithms. 

The idea is to pick two colors X and Y , color the starting node X , all its neighbors 
Y , all their neighbors X , and so on. If at some point of the search we notice that 
two adjacent nodes have the same color, this means that the graph is not bipartite. 
Otherwise the graph is bipartite and one coloring has been found. 

For example, in Fig. 7.17, a depth-first search from node 1 shows that the graph is 
not bipartite, because we notice that both nodes 2 and 5 should have the same color, 
while they are adjacent nodes in the graph. 

This algorithm always works, because when there are only two colors available, 
the color of the starting node in a component determines the colors of all other nodes 
in the component. It does not make any difference what the colors are. 

Note that in the general case it is difficult to find out if the nodes in a graph can be 
colored using k colors so that no adjacent nodes have the same color. The problem 
is NP-hard already for k = 3. 

7.3 Shortest Paths 

Finding a shortest path between two nodes of a graph is an important problem that 
has many practical applications. For example, a natural problem related to a road 
network is to calculate the shortest possible length of a route between two cities, 
given the lengths of the roads. 

In an unweighted graph, the length of a path equals the number of its edges, and 
we can simply use breadth-first search to find a shortest path. However, in this section 
we focus on weighted graphs where more sophisticated algorithms are needed for 
finding shortest paths.
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7.3.1 Bellman-Ford Algorithm 

The Bellman-Ford algorithm finds shortest paths from a starting node to all nodes 
of the graph. The algorithm can process all kinds of graphs, provided that the graph 
does not contain a cycle with negative length. If the graph contains a negative cycle, 
the algorithm can detect this. 

The algorithm keeps track of distances from the starting node to all nodes of the 
graph. Initially, the distance to the starting node is 0 and the distance to any other node 
in infinite. The algorithm then reduces the distances by finding edges that shorten 
the paths until it is not possible to reduce any distance. 

Figure 7.18 shows how the Bellman-Ford algorithm processes a graph. First, the 
algorithm reduces distances using the edges 1 → 2, 1 → 3 and 1 → 4, then using 
the edges 2 → 5 and 3 → 4, and finally using the edge 4 → 5. After this, no edge 
can be used to reduce distances, which means that the distances are final. 

Implementation The implementation of the Bellman-Ford algorithm below deter-
mines the shortest distances from a node x to all nodes of the graph. The code 
assumes that the graph is stored as an edge list edges that consists of tuples of the 
form (a, b,w), meaning that there is an edge from node a to node b with weight w. 

The algorithm consists of n − 1 rounds, and on each round the algorithm goes 
through all edges of the graph and attempts to reduce the distances. The algorithm 
constructs an array distance that will contain the distances from node x to all 
nodes. The constant INF denotes an infinite distance. 
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Fig. 7.18 The Bellman-Ford algorithm 
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Fig. 7.19 A graph with a 
negative cycle 
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for (int i = 1; i <= n; i++) { 
distance[i] = INF; 

} 
distance[x] = 0; 
for (int i = 1; i <= n-1; i++) { 

for (auto e : edges) { 
int a, b, w; 
tie(a, b, w) = e;  
distance[b] = min(distance[b], distance[a]+w); 

} 
} 

The time complexity of the algorithm is O(nm), because the algorithm consists of 
n−1 rounds and iterates through allm edges during a round. If there are no negative 
cycles in the graph, all distances are final after n − 1 rounds, because each shortest 
path can contain at most n − 1 edges. 

There are several ways to optimize the algorithm in practice. First, the final dis-
tances can usually be found earlier than after n−1 rounds, so we can simply stop the 
algorithm if no distance can be reduced during a round. A more advanced variant is 
the SPFA algorithm (“Shortest Path Faster Algorithm” [ 1]) which maintains a queue 
of nodes that might be used for reducing the distances. Only the nodes in the queue 
will be processed, which often yields a more efficient search. 

Negative Cycles The Bellman-Ford algorithm can also be used to check if the graph 
contains a cycle with negative length. In this case, any path that contains the cycle can 
be shortened infinitely many times, so the concept of a shortest path is not meaningful. 
For example, the graph in Fig. 7.19 contains a negative cycle 2 → 3 → 4 → 2 with 
length −4. 

A negative cycle can be detected using the Bellman-Ford algorithm by running 
the algorithm for n rounds. If the last round reduces any distance, the graph contains 
a negative cycle. Note that this algorithm can be used to search for a negative cycle 
in the entire graph regardless of the starting node. 

7.3.2 Dijkstra’s Algorithm 

Dijkstra’s algorithm finds shortest paths from the starting node to all nodes of the 
graph, like the Bellman-Ford algorithm. The benefit of Dijkstra’s algorithm is that it 
is more efficient and can be used for processing large graphs. However, the algorithm 
requires that there are no negative weight edges in the graph.
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Fig. 7.20 Dijkstra’s algorithm 

Like the Bellman-Ford algorithm, Dijkstra’s algorithm maintains distances to the 
nodes and reduces them during the search. At each step, Dijkstra’s algorithm selects a 
node that has not been processed yet and whose distance is as small as possible. Then, 
the algorithm goes through all edges that start at the node and reduces the distances 
using them. Dijkstra’s algorithm is efficient, because it only processes each edge in 
the graph once, using the fact that there are no negative edges. 

Figure 7.20 shows how Dijkstra’s algorithm processes a graph. Like in the 
Bellman-Ford algorithm, the initial distance to all nodes, except for the starting 
node, is infinite. The algorithm processes the nodes in the order 1, 5, 4, 2, 3, and at 
each node reduces distances using edges that start at the node. Note that the distance 
to a node never changes after processing the node. 

Implementation An efficient implementation of Dijkstra’s algorithm requires that 
we can efficiently find the minimum-distance node that has not been processed. An 
appropriate data structure for this is a priority queue that contains the remaining nodes 
ordered by their distances. Using a priority queue, the next node to be processed can 
be retrieved in logarithmic time. 

A typical textbook implementation of Dijkstra’s algorithm uses a priority queue 
that has an operation for modifying a value in the queue. This allows us to have 
a single instance of each node in the queue and update its distance when needed. 
However, standard library priority queues do not provide such an operation, and
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a somewhat different implementation is usually used in competitive programming. 
The idea is to add a new instance of a node to the priority queue always when its 
distance changes. 

Our implementation of Dijkstra’s algorithm calculates the minimum distances 
from a node x to all other nodes of the graph. The graph is stored as adjacency lists 
so that adj[ a] contains a pair (b,w) always when there is an edge from node a to 
node b with weight w. The priority queue 

priority_queue<pair<int,int>> q; 

contains pairs of the form (−d, x), meaning that the current distance to node x is d. 
The array distance contains the distance to each node, and the array processed 
indicates whether a node has been processed. 

Note that the priority queue contains negative distances to nodes. The reason for 
this is that the default version of the C++ priority queue finds maximum elements, 
while we want to find minimum elements. By exploiting negative distances, we can 
directly use the default priority queue. 2 Also note that while there may be several 
instances of a node in the priority queue, only the instance with the minimum distance 
will be processed. 

The implementation is as follows: 

for (int i = 1; i <= n; i++) { 
distance[i] = INF; 

} 
distance[x] = 0; 
q.push({0,x}); 
while (!q.empty()) { 

int a = q.top().second; q.pop(); 
if (processed[a]) continue; 
processed[a] = true; 
for (auto u : adj[a]) { 

int b = u.first, w = u.second; 
if (distance[a]+w < distance[b]) { 

distance[b] = distance[a]+w; 
q.push({-distance[b],b}); 

} 
} 

} 

The time complexity of the above implementation is O(n + m logm), because 
the algorithm goes through all nodes of the graph and adds for each edge at most 
one distance to the priority queue. 

Negative Edges The efficiency of Dijkstra’s algorithm is based on the fact that the 
graph does not have negative edges. However, if the graph has a negative edge, the

2 Of course, we could also declare the priority queue as in Sect. 5.2.3 and use positive distances, but 
the implementation would be longer. 
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Fig. 7.21 A graph  where  
Dijkstra’s algorithm fails 
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algorithm may give incorrect results. As an example, consider the graph in Fig. 7.21. 
The shortest path from node 1 to node 4 is 1 → 3 → 4 and its length is 1. However, 
Dijkstra’s algorithm incorrectly finds the path 1 → 2 → 4 by greedily following 
minimum weight edges. 

7.3.3 Floyd-Warshall Algorithm 

The Floyd-Warshall algorithm provides an alternative way to approach the problem 
of finding shortest paths. Unlike the other algorithms in this chapter, it finds shortest 
paths between all node pairs of the graph in a single run. 

The algorithm maintains a matrix that contains distances between the nodes. The 
initial matrix is directly constructed based on the adjacency matrix of the graph. 
Then, the algorithm consists of consecutive rounds, and on each round, it selects a 
new node that can act as an intermediate node in paths from now on, and reduces 
distances using this node. 

Let us simulate the Floyd-Warshall algorithm for the graph in Fig. 7.22. In this 
case, the initial matrix is as follows: 

. 

⎡
⎢⎢⎢⎢⎣

0 5 ∞ 9 1
5 0 2 ∞ ∞
∞ 2 0 7 ∞
9 ∞ 7 0 2
1 ∞ ∞ 2 0

⎤
⎥⎥⎥⎥⎦

On the first round, node 1 is the new intermediate node. There is a new path 
between nodes 2 and 4 with length 14, because node 1 connects them. There is also 
a new path between nodes 2 and 5 with length 6. 

Fig. 7.22 An input for the 
Floyd-Warshall algorithm 3 4 
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. 

⎡
⎢⎢⎢⎢⎣

0 5 ∞ 9 1
5 0 2 14 6
∞ 2 0 7 ∞
9 14 7 0 2
1 6 ∞ 2 0

⎤
⎥⎥⎥⎥⎦

On the second round, node 2 is the new intermediate node. This creates new paths 
between nodes 1 and 3 and between nodes 3 and 5: 

. 

⎡
⎢⎢⎢⎢⎣

0 5 7 9 1
5 0 2 14 6
7 2 0 7 8
9 14 7 0 2
1 6 8 2 0

⎤
⎥⎥⎥⎥⎦

The algorithm continues like this, until all nodes have been appointed intermediate 
nodes. After the algorithm has finished, the matrix contains the minimum distances 
between any two nodes: 

. 

⎡
⎢⎢⎢⎢⎣

0 5 7 3 1
5 0 2 8 6
7 2 0 7 8
3 8 7 0 2
1 6 8 2 0

⎤
⎥⎥⎥⎥⎦

For example, the matrix tells us that the shortest distance between nodes 2 and 4 
is 8. This corresponds to the path in Fig. 7.23. 

Implementation The Floyd-Warshall algorithm is particularly easy to implement. 
The implementation below constructs a distance matrix where dist[a][b] denotes 
the shortest distance between nodes a and b. First, the algorithm initializes dist 
using the adjacency matrix adj of the graph: 

for (int i = 1; i <= n; i++) { 
for (int j = 1; j <= n; j++) { 

if (i == j) dist[i][j] = 0; 
else if (adj[i][j]) dist[i][j] = adj[i][j]; 
else dist[i][j] = INF; 

} 
} 

After this, the shortest distances can be found as follows: 

Fig. 7.23 A shortest path 
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for (int k = 1; k <= n; k++) { 
for (int i = 1; i <= n; i++) { 

for (int j = 1; j <= n; j++) {  
dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]); 

} 
} 

} 

The time complexity of the algorithm is O(n3), because it contains three nested 
loops that go through the nodes of the graph. 

Since the implementation of the Floyd-Warshall algorithm is simple, the algorithm 
can be a good choice even if it is only needed to find a single shortest path in the 
graph. However, the algorithm can only be used when the graph is so small that a 
cubic time complexity is fast enough. 

7.4 Directed Acyclic Graphs 

An important class of graphs are directed acyclic graphs, also called DAGs. Such 
graphs do not contain cycles, and many problems are easier to solve if we may assume 
that this is the case. In particular, we can always construct a topological sort for the 
graph and then apply dynamic programming. 

7.4.1 Topological Sorting 

A topological sort is an ordering of the nodes of a directed graph such that if there 
is a path from node a to node b, then node a appears before node b in the ordering. 
For example, in Fig. 7.24, one possible topological sort is [4, 1, 5, 2, 3, 6]. 

A directed graph has a topological sort exactly when it is acyclic. If the graph 
contains a cycle, it is not possible to form a topological sort, because no node of the 
cycle can appear before the other nodes of the cycle in the ordering. It turns out that 
depth-first search can be used to both check if a directed graph contains a cycle and, 
if it does not, to construct a topological sort. 

The idea is to go through the nodes of the graph and always begin a depth-first 
search at the current node if it has not been processed yet. During the searches, the 
nodes have three possible states: 

Fig. 7.24 A graph  and a  
topological sort
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• state 0: the node has not been processed (white) 
• state 1: the node is under processing (light gray) 
• state 2: the node has been processed (dark gray) 

Initially, the state of each node is 0. When a search reaches a node for the first 
time, its state becomes 1. Finally, after all edges from the node have been processed, 
its state becomes 2. 

If the graph contains a cycle, we will discover this during the search, because 
sooner or later we will arrive at a node whose state is 1. In this case, it is not possible 
to construct a topological sort. If the graph does not contain a cycle, we can construct 
a topological sort by adding each node to a list when its state becomes 2. Finally, we 
reverse the list and get a topological sort for the graph. 

Now we are ready to construct a topological sort for our example graph. The first 
search (Fig. 7.25) proceeds from node 1 to node 6, and adds nodes 6, 3, 2 and 1 to the 
list. Then, the second search (Fig. 7.26) proceeds from node 4 to node 5, and adds 
nodes 5 and 4 to the list. The final reversed list is [4, 5, 1, 2, 3, 6], which corresponds 
to a topological sort (Fig. 7.27). Note that a topological sort is not unique; there can 
be several topological sorts for a graph. 

Figure 7.28 shows a graph that does not have a topological sort. During the search, 
we reach node 2 whose state is 1, which means that the graph contains a cycle. Indeed, 
there is a cycle 2 → 3 → 5 → 2. 

7.4.2 Dynamic Programming 

Using dynamic programming, we can efficiently answer many questions regarding 
paths in directed acyclic graphs. Examples of such questions are: 

• What is the shortest/longest path from node a to node b? 
• How many different paths are there? 

Fig. 7.25 The first search 
adds nodes 6, 3, 2 and 1 to 
the list 
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Fig. 7.26 The second search 
adds nodes 5 and 4 to the list
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Fig. 7.27 The final 
topological sort 1 2 34 5 6
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Fig. 7.28 This graph does 
not have a topological sort, 
because it contains a cycle 
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Fig. 7.29 Calculating the 
number of paths from node 1 
to node 6 

1 2 3 

4 5 6 
1 1 4  

1 2 2  

• What is the minimum/maximum number of edges in a path? 
• Which nodes appear in every possible path? 

Note that many of the above problems are difficult to solve or not well-defined 
for general graphs. 

As an example, consider the problem of calculating the number of paths from 
node a to node b. Let paths(x) denote the number of paths from node a to node 
x . As a base case, paths(a) = 1. Then, to calculate other values of paths(x), we  
can use the recursive formula 

. paths(x) = paths(s1) + paths(s2) + · · · + paths(sk),

where s1, s2, . . . , sk are the nodes from which there is an edge to x . Since the graph 
is acyclic, the values of paths can be calculated in the order of a topological sort. 

Figure 7.29 shows the values of paths in an example scenario where we want 
to calculate the number of paths from node 1 to node 6. For example, 

. paths(6) = paths(2) + paths(3),

because the edges that end at node 6 are 2 → 6 and 3 → 6. Since paths(2) = 2
and paths(3) = 2, we conclude that paths(6) = 4. The paths are as follows: 

• 1 → 2 → 3 → 6
• 1 → 2 → 6
• 1 → 4 → 5 → 2 → 3 → 6
• 1 → 4 → 5 → 2 → 6

Processing Shortest Paths Dynamic programming can also be used to answer ques-
tions regarding shortest paths in general (not necessarily acyclic) graphs. Namely, 
if we know minimum distances from a starting node to other nodes (for example, 
after using Dijkstra’s algorithm), we can easily create a directed acyclic shortest 
paths graph that indicates for each node the possible ways to reach the node using
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Fig. 7.30 A graph and its 
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Fig. 7.31 Coin problem as a 
directed acyclic graph 
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a shortest path from the starting node. For example, Fig. 7.30 shows a graph and the 
corresponding shortest paths graph. 

Coin Problem Revisited In fact, any dynamic programming problem can be rep-
resented as a directed acyclic graph where each node corresponds to a dynamic 
programming state and the edges indicate how the states depend on each other. 

For example, consider the problem of forming a sum of money n using coins 
{c1, c2, . . . , ck} (Sect. 6.1.1). In this scenario, we can construct a graph where each 
node corresponds to a sum of money, and the edges show how the coins can be 
chosen. For example, Fig. 7.31 shows the graph for the coins {1, 3, 4} and n = 6. 
Using this representation, the shortest path from node 0 to node n corresponds to 
a solution with the minimum number of coins, and the total number of paths from 
node 0 to node n equals the total number of solutions. 

7.5 Successor Graphs 

Another special class of directed graphs are successor graphs. In those graphs, the 
outdegree of each node is 1, i.e., each node has a unique successor. A successor 
graph consists of one or more components, each of which contains one cycle and 
some paths that lead to it. 

Successor graphs are sometimes called functional graphs, because any successor 
graph corresponds to a function succ(x) that defines the edges of the graph. The
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Fig. 7.32 A successor graph 
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parameter x is a node of the graph, and the function gives the successor of the node. 
For example, the function 

x 1 2 3 4 5 6 7 8 9 
succ(x) 3 5 7 6 2 2 1 6 3 

defines the graph in Fig. 7.32. 

7.5.1 Finding Successors 

Since each node of a successor graph has a unique successor, we can also define a 
function succ(x, k) that gives the node that we will reach if we begin at node x and 
walk k steps forward. For example, in our example graph succ(4, 6) = 2, because 
we will reach node 2 by walking 6 steps from node 4 (Fig. 7.33). 

A straightforward way to calculate a value of succ(x, k) is to start at node x and 
walk k steps forward, which takes O(k) time. However, using preprocessing, any 
value of succ(x, k) can be calculated in only O(log k) time. 

Let u denote the maximum number of steps we will ever walk. The idea is to 
precalculate all values of succ(x, k) where k is a power of two and at most u. This 
can be efficiently done, because we can use the following recurrence: 

. succ(x, k) =
 
succ(x) k = 1

succ(succ(x, k/2), k/2) k > 1

The idea is that a path of length k that begins at node x can be divided into two 
paths of length k/2. Precalculating all values of succ(x, k) where k is a power of 
two and at most u takes O(n log u) time, because O(log u) values are calculated for 
each node. In our example graph, the first values are as follows: 

Fig. 7.33 Walking in a 
successor graph

4 6 2 5 2 5 2



7.5 Successor Graphs 105

x 1 2 3 4 5 6 7 8 9 
succ(x, 1) 3 5 7 6 2 2 1 6 3 
succ(x, 2) 7 2 1 2 5 5 3 2 7 
succ(x, 4) 3 2 7 2 5 5 1 2 3 
succ(x, 8) 7 2 1 2 5 5 3 2 7 
· · ·

After the precalculation, any value of succ(x, k) can be calculated by presenting 
k as a sum of powers of two. Such a representation always consists of O(log k) parts, 
so calculating a value of succ(x, k) takes O(log k) time. For example, if we want 
to calculate the value of succ(x, 11), we use the formula 

. succ(x, 11) = succ(succ(succ(x, 8), 2), 1).

In our example graph, 

. succ(4, 11) = succ(succ(succ(4, 8), 2), 1) = 5.

7.5.2 Cycle Detection 

Consider a successor graph that only contains a path that ends in a cycle. We may 
ask the following questions: if we begin our walk at the starting node, what is the 
first node in the cycle and how many nodes does the cycle contain? For example, 
in Fig. 7.34, we begin our walk at node 1, the first node that belongs to the cycle is 
node 4, and the cycle consists of three nodes (4, 5 and 6). 

A simple way to detect the cycle is to walk in the graph and keep track of all nodes 
that have been visited. Once a node is visited for the second time, we can conclude 
that the node is the first node in the cycle. This method works in O(n) time and also 
uses O(n) memory. However, there are better algorithms for cycle detection. The 
time complexity of such algorithms is still O(n), but they only use O(1) memory, 
which may be an important improvement if n is large. 

One such algorithm is Floyd’s algorithm, which walks in the graph using two 
pointers a and b. Both pointers begin at the starting node x . Then, on each turn, the 
pointer a walks one step forward and the pointer b walks two steps forward. The 
process continues until the pointers meet each other: 

Fig. 7.34 A cycle  in  a  
successor graph 
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a = succ(x); 
b = succ(succ(x)); 
while (a != b) { 

a = succ(a); 
b = succ(succ(b)); 

} 

At this point, the pointer a has walked k steps and the pointer b has walked 2k
steps, so the length of the cycle divides k. Thus, the first node that belongs to the 
cycle can be found by moving the pointer a to node x and advancing the pointers 
step by step until they meet again. 

a = x;  
while (a != b) { 

a = succ(a); 
b = succ(b); 

} 
first = a; 

After this, the length of the cycle can be calculated as follows: 

b = succ(a); 
length = 1; 
while (a != b) { 

b = succ(b); 
length++; 

} 

7.6 Minimum Spanning Trees 

A spanning tree contains all nodes of a graph and some of its edges so that there is a 
path between any two nodes. Like trees in general, spanning trees are connected and 
acyclic. The weight of a spanning tree is the sum of its edge weights. For example, 
Fig. 7.35 shows a graph and one of its spanning tree. The weight of this spanning 
tree is 3 + 5 + 9 + 3 + 2 = 22. 

A minimum spanning tree is a spanning tree whose weight is as small as possible. 
Figure 7.36 shows a minimum spanning tree for our example graph with weight 20. 
In a similar way, a maximum spanning tree is a spanning tree whose weight is as large 
as possible. Figure 7.37 shows a maximum spanning tree for our example graph with 
weight 32. Note that a graph may have several minimum and maximum spanning 
trees, so the trees are not unique. 

It turns out that several greedy methods can be used to construct minimum and 
maximum spanning trees. This section discusses two algorithms that process the 
edges of the graph ordered by their weights. We focus on finding minimum spanning
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Fig. 7.35 A graph  and a  
spanning tree 
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Fig. 7.36 A minimum 
spanning tree with weight 20 
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Fig. 7.37 A maximum  
spanning tree with weight 32 
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trees, but the same algorithms can also find maximum spanning trees by processing 
the edges in reverse order. 

7.6.1 Kruskal’s Algorithm 

Kruskal’s algorithm builds a minimum spanning tree by greedily adding edges to a 
graph that initially only contains the nodes of the original graph and no edges. The 
algorithm goes through the edges of the original graph ordered by their weights, and 
always adds an edge to the new graph if the edge does not create a cycle. 

The algorithm maintains the components of the new graph. Initially, each node 
of the graph belongs to a separate component. Always when an edge is added to the 
graph, two components are joined. Finally, all nodes belong to the same component, 
and a minimum spanning tree has been found. 

As an example, let us construct a minimum spanning tree for our example graph 
(Fig. 7.35). The first step is to sort the edges in increasing order of their weights:
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Fig. 7.38 Kruskal’s algorithm 

Edge Weight 
5–6 2 
1–2 3 
3–6 3 
1–5 5 
2–3 5 
2–5 6 
4–6 7 
3–4 9 

Then, we go through the list and add each edge to the graph if it joins two separate 
components. Figure 7.38 shows the steps of the algorithm. Initially, each node belongs 
to its own component. Then, the first edges on the list (5–6, 1–2, 3–6 and 1–5) are 
added to the graph. After this, the next edge would be 2–3, but this edge is not added, 
because it would create a cycle. The same applies to edge 2–5. Finally, the edge 4–6 
is added, and the minimum spanning tree is ready. 

Why Does This Work? It is a good question why Kruskal’s algorithm works. Why 
does the greedy strategy guarantee that we will find a minimum spanning tree? 

Let us see what happens if the minimum weight edge of the graph is not included 
in the spanning tree. For example, suppose that a minimum spanning tree of our 
example graph would not contain the minimum weight edge 5–6. We do not know
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Fig. 7.39 A hypothetical 
minimum spanning tree 
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Fig. 7.40 Including the edge 
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the exact structure of such a spanning tree, but in any case it has to contain some 
edges. Assume that the tree would look like the tree in Fig. 7.39. 

However, it is not possible that the tree in Fig. 7.39 would be a minimum spanning 
tree, because we can remove an edge from the tree and replace it with the minimum 
weight edge 5–6. This produces a spanning tree whose weight is smaller, shown in 
Fig. 7.40. 

For this reason, it is always optimal to include the minimum weight edge in the 
tree to produce a minimum spanning tree. Using a similar argument, we can show 
that it is also optimal to add the next edge in weight order to the tree, and so on. 
Hence, Kruskal’s algorithm always produces a minimum spanning tree. 

Implementation When implementing Kruskal’s algorithm, it is convenient to use 
the edge list representation of the graph. The first phase of the algorithm sorts the 
edges in the list in O(m logm) time. After this, the second phase of the algorithm 
builds the minimum spanning tree as follows: 

for (...) { 
if (!same(a,b)) unite(a,b); 

} 

The loop goes through the edges in the list and always processes an edge (a, b)
where a and b are two nodes. Two functions are needed: the function same deter-
mines if a and b are in the same component, and the function unite joins the 
components that contain a and b. 

The problem is how to efficiently implement the functions same and unite. 
One possibility is to implement the function same as a graph traversal and check if 
we can get from node a to node b. However, the time complexity of such a function 
would be O(n+m) and the resulting algorithm would be slow, because the function 
same will be called for each edge in the graph. 

We will solve the problem using a union-find structure that implements both 
functions in O(log n) time. Thus, the time complexity of Kruskal’s algorithm will 
be O(m log n) after sorting the edge list.
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7.6.2 Union-Find Structure 

A union-find structure maintains a collection of sets. The sets are disjoint, so no 
element belongs to more than one set. Two O(log n) time operations are supported: 
the unite operation joins two sets, and the find operation finds the representative 
of the set that contains a given element. 

In a union-find structure, one element in each set is the representative of the 
set, and there is a path from any other element of the set to the representative. For 
example, assume that the sets are {1, 4, 7}, {5} and {2, 3, 6, 8}. Figure 7.41 shows 
one way to represent these sets. 

In this case the representatives of the sets are 4, 5 and 2. We can find the represen-
tative of any element by following the path that begins at the element. For example, 
the element 2 is the representative for the element 6, because we follow the path 
6 → 3 → 2. Two elements belong to the same set exactly when their representatives 
are the same. 

To join two sets, the representative of one set is connected to the representative of 
the other set. For example, Fig. 7.42 shows a possible way to join the sets {1, 4, 7}
and {2, 3, 6, 8}. From this on, the element 2 is the representative for the entire set 
and the old representative 4 points to the element 2. 

The efficiency of the union-find structure depends on how the sets are joined. It 
turns out that we can follow a simple strategy: always connect the representative of 
the smaller set to the representative of the larger set (or if the sets are of equal size, 
we can make an arbitrary choice). Using this strategy, the length of any path will be 
O(log n), so we can find the representative of any element efficiently by following 
the corresponding path. 

Implementation The union-find structure can be conveniently implemented using 
arrays. In the following implementation, the array link indicates for each element 
the next element in the path, or the element itself if it is a representative, and the 
array size indicates for each representative the size of the corresponding set. 

Fig. 7.41 A union-find 
structure with three sets 
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Initially, each element belongs to a separate set: 

for (int i = 1; i <= n; i++) link[i] = i; 
for (int i = 1; i <= n; i++) size[i] = 1; 

The function find returns the representative for an element x . The representative 
can be found by following the path that begins at x . 

int find(int x) { 
while (x != link[x]) x = link[x]; 
return x; 

} 

The function same checks whether elements a and b belong to the same set. This 
can easily be done by using the function find: 

bool same(int a, int b) { 
return find(a) == find(b); 

} 

The function unite joins the sets that contain elements a and b (the elements 
have to be in different sets). The function first finds the representatives of the sets 
and then connects the smaller set to the larger set. 

void unite(int a, int b) { 
a = find(a); 
b = find(b); 
if (size[a] < size[b]) swap(a,b); 
size[a] += size[b]; 
link[b] = a; 

} 

The time complexity of the function find is O(log n) assuming that the length 
of each path is O(log n). In this case, the functions same and unite also work 
in O(log n) time. The function unite makes sure that the length of each path is 
O(log n) by connecting the smaller set to the larger set. 

Path Compression Here is an alternative way to implement the find operation: 

int find(int x) { 
if (x == link[x]) return x; 
return link[x] = find(link[x]); 

} 

This function uses path compression: each element in the path will directly point 
to its representative after the operation. It can be shown that using this function, the 
union-find operations work in amortized O(α(n)) time, where α(n) is the inverse 
Ackermann function which grows very slowly (it is almost a constant). However,
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path compression cannot be used in some applications of the union-find structure, 
such as in the dynamic connectivity algorithm (Sect. 15.6.4). 

7.6.3 Prim’s Algorithm 

Prim’s algorithm is an alternative method for constructing minimum spanning trees. 
The algorithm first adds an arbitrary node to the tree, and then always chooses a 
minimum-weight edge that adds a new node to the tree. Finally, all nodes have been 
added and a minimum spanning tree has been found. 

Prim’s algorithm resembles Dijkstra’s algorithm. The difference is that Dijkstra’s 
algorithm always selects a node whose distance from the starting node is minimum, 
but Prim’s algorithm simply selects a node that can be added to the tree using a 
minimum-weight edge. 

As an example, Fig. 7.43 shows how Prim’s algorithm constructs a minimum 
spanning tree for our example graph, assuming that the starting node is node 1. 

Like Dijkstra’s algorithm, Prim’s algorithm can be efficiently implemented using 
a priority queue. The priority queue should contain all nodes that can be connected 
to the current component using a single edge, in increasing order of the weights of 
the corresponding edges. 
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Fig. 7.43 Prim’s algorithm
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The time complexity of Prim’s algorithm is O(n + m logm) that equals the time 
complexity of Dijkstra’s algorithm. In practice, Prim’s and Kruskal’s algorithms 
are both efficient, and the choice of the algorithm is a matter of taste. Still, most 
competitive programmers use Kruskal’s algorithm. 

Reference 

1. D. Fanding. A faster algorithm for shortest-path—SPFA. J. Southwest Jiaotong Univ. 2 (1994)
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This chapter discusses a selection of algorithm design topics. 
Section 8.1 focuses on bit-parallel algorithms that use bit operations to efficiently 

process data. Typically, we can replace a for loop with bit operations, which may 
remarkably improve the running time of the algorithm. 

Section 8.2 presents the amortized analysis technique, which can be used to es-
timate the time needed for a sequence of operations in an algorithm. Using the 
technique, we can analyze algorithms for determining nearest smaller elements and 
sliding window minima. 

Section 8.3 discusses ternary search and other techniques for efficiently calculating 
minimum values of certain functions. 

8.1 Bit-Parallel Algorithms 

Bit-parallel algorithms are based on the fact that individual bits of numbers can 
be manipulated in parallel using bit operations. Thus, a way to design an efficient 
algorithm is to represent the steps of the algorithm so that they can be efficiently 
implemented using bit operations. 

8.1.1 Hamming Distances 

The Hamming distance hamming(a, b) between two strings a and b of equal length 
is the number of positions where the strings differ. For example, 

. hamming(01101, 11001) = 2.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
A. Laaksonen, Guide to Competitive Programming, Undergraduate Topics in Computer 
Science, https://doi.org/10.1007/978-3-031-61794-2_8 

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61794-2_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61794-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8
https://doi.org/10.1007/978-3-031-61794-2_8


116 8 Algorithm Design Topics 

Consider the following problem: Given n bit strings, each of length k, calculate 
the minimum Hamming distance between two strings. For example, the answer for 
[00111, 01101, 11110] is 2, because 

• hamming(00111, 01101) = 2, 
• hamming(00111, 11110) = 3, and 
• hamming(01101, 11110) = 3. 

A straightforward way to solve the problem is to go through all pairs of strings 
and calculate their Hamming distances, which yields an O(n2k) time algorithm. The 
following function calculates the distance between strings a and b: 

int hamming(string a, string b) { 
int d = 0;  
for (int i = 0; i < k; i++) {  

if (a[i] != b[i]) d++; 
} 
return d; 

} 

However, since the strings consist of bits, we can optimize the solution by storing 
the strings as integers and calculating distances using bit operations. In particular, if 
k ≤ 32, we can just store the strings as int values and use the following function 
to calculate distances: 

int hamming(int a, int b) { 
return __builtin_popcount(a^b); 

} 

In the above function, the xor operation constructs a string that has one bits in 
positions where a and b differ. Then, the number of one bits is calculated using the 
__builtin_popcount function. 

Table 8.1 shows a comparison of running times of the original algorithm and 
the bit-parallel algorithm on a modern computer. In this problem, the bit-parallel 
algorithm is about 20 times faster than the original algorithm. 

8.1.2 Counting Subgrids 

As another example, consider the following problem: Given an n × n grid whose 
each square is either black (1) or white (0), calculate the number of subgrids whose 
all corners are black. For example, Fig. 8.1 shows two such subgrids in a grid. 

There is an O(n3) time algorithm for solving the problem: go through all O(n2)
pairs of rows, and for each pair (a, b) calculate, in O(n) time, the number of columns 
that contain a black square in both rows a and b. The following code assumes that 
color[y][x] denotes the color in row y and column x :
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Table 8.1 The running times of the algorithms when calculating minimum Hamming distances of 
n bit strings of length k = 30 

Size n Original algorithm (s) Bit-parallel algorithm (s) 

5000 0.84 0.06 

10000 3.24 0.18 

15000 7.23 0.37 

20000 12.79 0.63 

25000 19.99 0.97 

Fig. 8.1 This grid contains 
two subgrids with black 
corners 

int count = 0; 
for (int i = 0; i < n; i++) { 

if (color[a][i] == 1 && color[b][i] == 1) { 
count++; 

} 
} 

Then, after finding out that there are count columns where both squares are 
black, we can use the formula count(count − 1)/2 to calculate the number of 
subgrids whose first row is a and last row is b. 

To create a bit-parallel algorithm, we represent each row k as an n-bit bitset row[k]
where one bits denote black squares. Then, we can calculate the number of columns 
where rows a and b both have black squares using an and operation and counting 
the number of one bits. This can be conveniently done as follows using bitset 
structures: 

int count = (row[a]&row[b]).count(); 

Table 8.2 shows a comparison of the original algorithm and the bit-parallel algo-
rithm for different grid sizes. The comparison shows that the bit-parallel algorithm 
can be up to 30 times faster than the original algorithm.
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Table 8.2 The running times of the algorithms for counting the subgrids 

Grid size n Original algorithm (s) Bit-parallel algorithm (s) 

1000 0.65 0.05 

1500 2.17 0.14 

2000 5.51 0.30 

2500 12.67 0.52 

3000 26.36 0.87 

8.1.3 Reachability in Graphs 

Given a directed acyclic graph of n nodes, consider the problem of calculating for 
each node x a value reach(x): the number of nodes that can be reached from node 
x . For example, Fig. 8.2 shows a graph and its reach values. 

The problem can be solved using dynamic programming in O(n2) time by con-
structing for each node a list of nodes that can be reached from it. Then, to create 
a bit-parallel algorithm, we represent each list as a bitset of n bits. This permits us 
to efficiently calculate the union of two such lists using an or operation. Assuming 
that reach is an array of bitset structures and the graph is stored as adjacency 
lists in adj, the calculation for node x can be done as follows: 

reach[x][x] = 1; 
for (auto u : adj[x]) { 

reach[x] |= reach[u]; 
} 

Table 8.3 shows some running times for the bit-parallel algorithm. In each test, 
the graph has n nodes and 2n random edges a → b where a < b. Note that the 
algorithm uses a great amount of memory for large values of n. In many contests, 
the memory limit may be 512 MB or lower. 

Fig. 8.2 A graph and its reach values. For example, reach(2) = 3, because nodes 2, 4 and 5 
can be reached from node 2
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Table 8.3 The running times of the algorithms when counting reachable nodes in a graph 

Graph size n Running time (s) Memory usage (MB) 

2 · 104 0.06 50 

4 · 104 0.17 200 

6 · 104 0.32 450 

8 · 104 0.51 800 

105 0.78 1250 

8.2 Amortized Analysis 

The structure of an algorithm often directly tells us its time complexity, but sometimes 
a straightforward analysis does not give a true picture of the efficiency. Amortized 
analysis can be used to analyze a sequence of operations whose time complexity 
varies. The idea is to estimate the total time used to all such operations during the 
algorithm, instead of focusing on individual operations. 

8.2.1 Two Pointers Method 

In the two pointers method, two pointers walk through an array. Both pointers move 
to one direction only, which ensures that the algorithm works efficiently. As a first 
example of how to apply the technique, consider a problem where we are given an 
array of n positive integers and a target sum x , and we want to find a subarray whose 
sum is x or report that there is no such subarray. 

The problem can be solved in O(n) time by using the two pointers method. The 
idea is to maintain pointers that point to the first and last value of a subarray. On each 
turn, the left pointer moves one step to the right, and the right pointer moves to the 
right as long as the resulting subarray sum is at most x . If the sum becomes exactly 
x , a solution has been found. 

For example, Fig. 8.3 shows how the algorithm processes an array when the target 
sum is x = 8. The initial subarray contains the values 1, 3 and 2, whose sum is 6. Then, 
the left pointer moves one step right, and the right pointer does not move, because 
otherwise the sum would exceed x . Finally, the left pointer moves one step right, and 
the right pointer moves two steps right. The sum of the subarray is 2 + 5 + 1 = 8, 
so the desired subarray has been found. 

The running time of the algorithm depends on the number of steps the right pointer 
moves. While there is no useful upper bound on how many steps the pointer can move 
on a single turn, we know that the pointer moves a total of O(n) steps during the 
algorithm, because it only moves to the right. Since both the left and right pointer 
move O(n) steps, the algorithm works in O(n) time. 

2SUM Problem Another problem that can be solved using the two pointers method 
is the 2SUM problem: given an array of n numbers and a target sum x , find two array 
values such that their sum is x , or report that no such values exist.
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Fig. 8.3 Finding a subarray 
with sum 8 using the two 
pointers method 
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Fig. 8.4 Solving the 2SUM 
problem using the two 
pointers method 
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To solve the problem, we first sort the array values in increasing order. After that, 
we iterate through the array using two pointers. The left pointer starts at the first 
value and moves one step to the right on each turn. The right pointer starts at the last 
value and always moves to the left until the sum of the left and right value is at most 
x . If the sum is exactly x , a solution has been found. 

For example, Fig. 8.4 shows how the algorithm processes an array when the target 
sum is x = 12. In the initial position, the sum of the values is 1+ 10 = 11 which is 
smaller than x . Then the left pointer moves one step right, and the right pointer moves 
three steps left, and the sum becomes 4 + 7 = 11. After this, the left pointer moves 
one step right again. The right pointer does not move, and a solution 5+ 7 = 12 has 
been found. 

The running time of the algorithm is O(n log n), because it first sorts the array in 
O(n log n) time, and then both pointers move O(n) steps. 

Note that it is also possible to solve the problem in another way in O(n log n) time 
using binary search. In such a solution, we first sort the array and then iterate through 
the array values and for each value binary search for another value that yields the sum 
x . In fact, many problems that can be solved using the two pointers method can also 
be solved using sorting or set structures, sometimes with an additional logarithmic 
factor. 

The more general kSUM problem is also interesting. In this problem we have to 
find k elements such that their sum is x . It turns out that we can solve the 3SUM 
problem in O(n2) time by extending the above 2SUM algorithm. Can you see how 
we can do it? For a long time, it was actually thought that O(n2) would be the best 
possible time complexity for the 3SUM problem. However, in 2014, Grønlund and 
Pettie [ 1] showed that this is not the case.
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8.2.2 Nearest Smaller Elements 

Amortized analysis is often used to estimate the number of operations performed on 
a data structure. The operations may be distributed unevenly so that most operations 
occur during a certain phase of the algorithm, but the total number of the operations 
is limited. 

As an example, suppose that we want to find for each array element the nearest 
smaller element, i.e., the first smaller element that precedes the element in the array. 
It is possible that no such element exists, in which case the algorithm should report 
this. Next we will efficiently solve the problem using a stack structure. 

We go through the array from left to right and maintain a stack of array elements. 
At each array position, we remove elements from the stack until the top element is 
smaller than the current element, or the stack is empty. Then, we report that the top 
element is the nearest smaller element of the current element, or if the stack is empty, 
there is no such element. Finally, we add the current element to the stack. 

Figure 8.5 shows how the algorithm processes an array. First, the element 1 is 
added to the stack. Since it is the first element in the array, it clearly does not have a 
nearest smaller element. After this, the elements 3 and 4 are added to the stack. The 
nearest smaller element of 4 is 3, and the nearest smaller element of 3 is 1. Then, the 
next element 2 is smaller than the two top elements in the stack, so the elements 3 
and 4 are removed from the stack. Thus, the nearest smaller element of 2 is 1. After 
this, the element 2 is added to the stack. The algorithm continues like this, until the 
entire array has been processed. 
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Fig. 8.5 Finding the nearest smaller elements in linear time using a stack
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The efficiency of the algorithm depends on the total number of stack operations. 
If the current element is larger than the top element in the stack, it is directly added to 
the stack, which is efficient. However, sometimes the stack can contain several larger 
elements and it takes time to remove them. Still, each element is added exactly once 
to the stack and removed at most once from the stack. Thus, each element causes 
O(1) stack operations, and the algorithm works in O(n) time. 

8.2.3 Sliding Window Minimum 

A sliding window is a constant-size subarray that moves from left to right through 
an array. At each window position, we want to calculate some information about the 
elements inside the window. Next we will focus on the problem of maintaining the 
sliding window minimum, which means that we want to report the smallest value 
inside each window. 

The sliding window minima can be calculated using a similar idea that we used 
to calculate the nearest smaller elements. This time we maintain a queue where each 
element is larger than the previous element, and the first element always corresponds 
to the minimum element inside the window. After each window move, we remove 
elements from the end of the queue until the last queue element is smaller than the 
new window element, or the queue becomes empty. We also remove the first queue 
element if it is not inside the window anymore. Finally, we add the new window 
element to the queue. 

Figure 8.6 shows how the algorithm processes an array when the sliding window 
size is 4. At the first window position, the smallest value is 1. Then the window 
moves one step right. The new element 3 is smaller than the elements 4 and 5 in 

Fig. 8.6 Finding sliding 
window minima in linear 
time 
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the queue, so the elements 4 and 5 are removed from the queue and the element 3 
is added to the queue. The smallest value is still 1. After this, the window moves 
again, and the smallest element 1 does not belong to the window anymore. Thus, it 
is removed from the queue and the smallest value is now 3. Also the new element 
4 is added to the queue. The next new element 1 is smaller than all elements in the 
queue, so all elements are removed from the queue, and it only contains the element 
1. Finally, the window reaches its last position. The element 2 is added to the queue, 
but the smallest value inside the window is still 1. 

Since each array element is added to the queue exactly once and removed from 
the queue at most once, the algorithm works in O(n) time. 

8.3 Finding Minimum Values 

Suppose that there is a function f (x) that first only decreases, then attains its min-
imum value, and then only increases. For example, Fig. 8.7 shows such a function 
whose minimum value is marked with an arrow. If we know that our function has 
this property, we can efficiently find its minimum value. 

8.3.1 Ternary Search 

Ternary search provides an efficient way to find the minimum value of a function 
that first decreases and then increases. Assume that we know that the value of x that 
minimizes f (x) is in a range [xL , xR]. The idea is to divide the range into three 
equal-size parts [xL , a], [a, b] and [b, xR] by choosing 

. a = 2xL + xR
3

and b = xL + 2xR
3

.

Then, if f (a) < f (b), we conclude that the minimum must be in range [xL , b], and 
otherwise it must be in range [a, xR]. After this, we recursively continue the search, 
until the size of the active range is small enough. 

As an example, Fig. 8.8 shows the first step of ternary search in our example 
scenario. Since f (a) > f (b), the new range becomes [a, xR]. 

In practice, we often consider functions whose parameters are integers, and the 
search is terminated when the range only contains one element. Since the size of 

Fig. 8.7 A function and its 
minimum value
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Fig. 8.8 Searching for the 
minimum using ternary 
search 
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the new range is always 2/3 of the previous range, the algorithm works in O(log n)
time, where n is the number of elements in the original range. 

Note that when working with integer parameters, we can also use binary search 
instead of ternary search, because it suffices to find the first position x for which 
f (x) ≤ f (x + 1). 

8.3.2 Convex Functions 

A function is convex if a line segment between any two points on the graph of the 
function always lies above or on the graph. For example, Fig. 8.9 shows the graph of 
f (x) = x2, which is a convex function. Indeed, the line segment between points a
and b lies above the graph. 

If we know that the minimum value of a convex function is in range [xL , xR], 
we can use ternary search to find it. However, note that several points of a convex 
function may have the minimum value. For example, f (x) = 0 is convex and its 
minimum value is 0. 

Convex functions have some useful properties: if f (x) and g(x) are convex func-
tions, then also f (x)+g(x) andmax( f (x), g(x)) are convex functions. For example, 
if we have n convex functions f1, f2, . . . , fn , we immediately know that also the 

Fig. 8.9 Example of a 
convex function: f (x) = x2

a 

b
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function f1 + f2 + . . . + fn has to be convex and we can use ternary search to find 
its minimum value. 

8.3.3 Minimizing Sums 

Given n numbers a1, a2, . . . , an , consider the problem of finding a value of x that 
minimizes the sum 

. |a1 − x | + |a2 − x | + · · · + |an − x |.
For example, if the numbers are [1, 2, 9, 2, 6], the optimal solution is to choose 
x = 2, which produces the sum 

. |1 − 2| + |2 − 2| + |9 − 2| + |2 − 2| + |6 − 2| = 12.

Since each function |ak − x | is convex, the sum is also convex, so we could 
use ternary search to find the optimal value of x . However, there is also an easier 
solution. It turns out that the optimal choice for x is always the median of the 
numbers, i.e., the middle element after sorting. For example, the list [1, 2, 9, 2, 6]
becomes [1, 2, 2, 6, 9] after sorting, so the median is 2. 

The median is always optimal, because if x is smaller than the median, the sum 
becomes smaller by increasing x , and if x is larger then the median, the sum becomes 
smaller by decreasing x . If n is even and there are two medians, both medians and 
all values between them are optimal choices. 

Then, consider the problem of minimizing the function 

. (a1 − x)2 + (a2 − x)2 + · · · + (an − x)2.

For example, if the numbers are [1, 2, 9, 2, 6], the best solution is to choose x = 4, 
which produces the sum 

. (1 − 4)2 + (2 − 4)2 + (9 − 4)2 + (2 − 4)2 + (6 − 4)2 = 46.

Again, this function is convex and we could use ternary search to solve the prob-
lem, but there is also a simple solution: the optimal choice for x is the average of 
the numbers. In the example the average is (1 + 2 + 9 + 2 + 6)/5 = 4. This can be 
proved by presenting the sum as follows: 

. nx2 − 2x(a1 + a2 + · · · + an) + (a21 + a22 + · · · + a2n)

The last part does not depend on x , so we can ignore it. The remaining parts form 
a function nx2 − 2xs where s = a1 + a2 + · · · + an . This is a parabola opening 
upwards with roots x = 0 and x = 2s/n, and the minimum value is the average of 
the roots x = s/n, i.e., the average of the numbers a1, a2, . . . , an . 
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9Range Queries 

In this chapter, we discuss data structures for efficiently processing range queries on 
arrays. Typical queries are range sum queries (calculating the sum of values) and 
range minimum queries (finding the minimum value). 

Section 9.1 focuses on a simple situation where the array values are not modified 
between the queries. In this case it suffices to preprocess the array so that we can 
efficiently determine the answer for any possible query. We will first learn to process 
sum queries using a prefix sum array, and then we will discuss the sparse table 
algorithm for processing minimum queries. 

Section 9.2 presents two tree structures that allow us to both process queries and 
update array values efficiently. A binary indexed tree supports sum queries and can 
be seen as a dynamic version of a prefix sum array. A segment tree is a more versatile 
structure that supports sum queries, minimum queries, and several other queries. The 
operations of both the structures work in logarithmic time. 

9.1 Queries on Static Arrays 

In this section, we focus on a situation where the array is static, i.e., the array values 
are never updated between the queries. In this case, it suffices to preprocess the array 
so that we can efficiently answer range queries. 

First we will discuss a simple way to process sum queries using a prefix sum 
array, which can also be generalized to higher dimensions. After this, we will learn 
the sparse table algorithm for processing minimum queries, which is somewhat more 
difficult. Note that while we focus on processing minimum queries, we can always 
also process maximum queries using similar methods. 
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9.1.1 Sum Queries 

Let sumq(a, b) (“range sum query”) denote the sum of array values in a range [a, b]. 
We can efficiently process any sum query by first constructing a prefix sum array. 
Each value in the prefix sum array equals the sum of values in the original array up to 
the corresponding position, i.e., the value at position k is sumq(0, k). For example, 
Fig. 9.1 shows an array and its prefix sum array. 

The prefix sum array can be constructed in O(n) time. Then, since the prefix sum 
array contains all values of sumq(0, k), we can calculate any value of sumq(a, b) in 
O(1) time using the formula 

. sumq(a, b) = sumq(0, b)− sumq(0, a − 1).

By defining sumq(0,−1) = 0, the above formula also holds when a = 0. 
As an example, Fig. 9.2 shows how to calculate the sum of values in the range 

[3, 6] using the prefix sum array. We can see in the original array that sumq(3, 6) =
8+6+1+4 = 19. Using the prefix sum array, we need to examine only two values: 
sumq(3, 6) = sumq(0, 6)− sumq(0, 2) = 27− 8 = 19. 

Higher Dimensions It is also possible to generalize this idea to higher dimensions. 
For example, Fig. 9.3 shows a two-dimensional prefix sum array that can be used to 
calculate the sum of any rectangular subarray in O(1) time. Each sum in this array 
corresponds to a subarray that begins at the upper-left corner of the array. The sum 
of the gray subarray can be calculated using the formula 

. S(A)− S(B)− S(C)+ S(D),

where S(X) denotes the sum of values in a rectangular subarray from the upper-left 
corner to the position of X . 

Fig. 9.1 An array and its 
prefix sum array 1 3 4 8 6 1 4 2  

0 1 2 3 4 5 6 7 

original array 

1 4 8 16 22 23 27 29 

0 1 2 3 4 5 6 7 

prefix sum array 

Fig. 9.2 Calculating a range 
sum using the prefix sum 
array 

1 3 4 8 6 1 4 2  

0 1 2 3 4 5 6 7 

original array 

1 4 8 16 22 23 27 29 

0 1 2 3 4 5 6 7 

prefix sum array
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Fig. 9.3 Calculating a 
two-dimensional range sum 

AB 

CD 

Fig. 9.4 Preprocessing for 
minimum queries 1 3 4 8 6 1 4 2  

0 1 2 3 4 5 6 7 

original array 

1 3 4 6 1 1 2 – 
0 1 2 3 4 5 6 7 

range size 2 

1 3 1 1 1 – – –  
0 1 2 3 4 5 6 7 

range size 4 

1 – – – – – – –  
0 1 2 3 4 5 6 7 

range size 8 

9.1.2 Minimum Queries 

Letminq(a, b) (“range minimum query”) denote the minimum array value in a range 
[a, b]. We will next discuss a technique using which we can process any minimum 
query in O(1) time after an O(n log n) time preprocessing. The method is due to 
Bender and Farach-Colton [ 1], and often called the sparse table algorithm. 

The idea is to precalculate all values of minq(a, b) where b − a + 1 (the length 
of the range) is a power of two. For example, Fig. 9.4 shows the precalculated values 
for an array of eight elements. 

The number of precalculated values is O(n log n), because there are O(log n)
range lengths that are powers of two. The values can be calculated efficiently using 
the recursive formula 

. minq(a, b) = min(minq(a, a + w − 1),minq(a + w, b)),

where b − a + 1 is a power of two and w = (b − a + 1)/2. Calculating all those 
values takes O(n log n) time. 

After this, any value of minq(a, b) can be calculated in O(1) time as a minimum 
of two precalculated values. Let k be the largest power of two that does not exceed 
b − a + 1. We can calculate the value of minq(a, b) using the formula 

. minq(a, b) = min(minq(a, a + k − 1),minq(b − k + 1, b)).

In the above formula, the range [a, b] is represented as the union of the ranges 
[a, a + k − 1] and [b − k + 1, b], both of length k.
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Fig. 9.5 Calculating a range 
minimum using two 
overlapping ranges 

1 3 4 8 6 1 4 2  

0 1 2 3 4 5 6 7 

range size 6 

1 3 4 8 6 1 4 2  

0 1 2 3 4 5 6 7 

range size 4 

1 3 4 8 6 1 4 2  

0 1 2 3 4 5 6 7 

range size 4 

As an example, consider the range [1, 6] in Fig. 9.5. The length of the range is 6, 
and the largest power of two that does not exceed 6 is 4. Thus the range [1, 6] is the 
union of the ranges [1, 4] and [3, 6]. Since minq(1, 4) = 3 and minq(3, 6) = 1, we  
conclude that minq(1, 6) = 1. 

Note that there are also sophisticated techniques using which we can process 
range minimum queries in O(1) time after an only O(n) time preprocessing (see 
e.g. Fischer and Heun [ 2]), but they are beyond the scope of this book. 

9.2 Tree Structures 

This section presents two tree structures, using which we can both process range 
queries and update array values in logarithmic time. First, we discuss binary indexed 
trees that support sum queries, and after that, we focus on segment trees that also 
support several other queries. 

9.2.1 Binary Indexed Trees 

A binary indexed tree (or a Fenwick tree) [  3] can be seen as a dynamic variant of a 
prefix sum array. It provides two O(log n) time operations: processing a range sum 
query and updating a value. Even if the name of the structure is a binary indexed tree, 
the structure is usually represented as an array. When discussing binary indexed trees, 
we assume that all arrays are one-indexed, because it makes the implementation of 
the structure easier. 

Let p(k) denote the largest power of two that divides k. We store a binary indexed 
tree as an array tree such that 

. tree[k] = sumq(k − p(k)+ 1, k),

i.e., each position k contains the sum of values in a range of the original array whose 
length is p(k) and that ends at position k. For example, since p(6) = 2, tree[6]
contains the value of sumq(5, 6). Figure 9.6 shows an array and the corresponding 
binary indexed tree. Figure 9.7 shows more clearly how each value in the binary 
indexed tree corresponds to a range in the original array. 

Using a binary indexed tree, any value ofsumq(1, k) can be calculated in O(log n)
time, because a range [1, k] can always be divided into O(log n) subranges whose
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Fig. 9.6 An array and its 
binary indexed tree 1 3 4 8 6 1 4 2  

1 2 3 4 5 6 7 8 

original array 

1 4 4  16 6 7 4 29 

1 2 3 4 5 6 7 8 

binary indexed tree 

Fig. 9.7 The ranges in a 
binary indexed tree 1 4 4  16 6 7 4 29 

1 2 3 4 5 6 7 8 

Fig. 9.8 Processing a range 
sum query using a binary 
indexed tree 

1 4 4  16 6 7 4 29 

1 2 3 4 5 6 7 8 

sums have been stored in the tree. For example, to calculate the value of sumq(1, 7), 
we divide the range [1, 7] into three subranges [1, 4], [5, 6] and [7, 7] (Fig. 9.8). 
Since the sums of those subranges are available in the tree, we can calculate the sum 
of the entire range using the formula 

. sumq(1, 7) = sumq(1, 4)+ sumq(5, 6)+ sumq(7, 7) = 16+ 7+ 4 = 27.

Then, to calculate the value of sumq(a, b) where a > 1, we can use the same 
trick that we used with prefix sum arrays: 

. sumq(a, b) = sumq(1, b)− sumq(1, a − 1)

We can calculate both sumq(1, b) and sumq(1, a− 1) in O(log n) time, so the total 
time complexity is O(log n). 

After updating an array value, several values in the binary indexed tree should 
be updated. For example, when the value at position 3 changes, we should update 
the subranges [3, 3], [1, 4] and [1, 8] (Fig. 9.9). Since each array element belongs to 
O(log n) subranges, it suffices to update O(log n) tree values. 

Implementation The operations of a binary indexed tree can be efficiently imple-
mented using bit operations. The key fact needed is that we can easily calculate any 
value of p(k) using the bit formula 

. p(k) = k& − k,

which isolates the least significant one bit of k.
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Fig. 9.9 Updating a value in 
a binary indexed tree 1 4 4  16 6 7 4 29 

1 2 3 4 5 6 7 8 

First, the following function calculates the value of sumq(1, k): 

int sum(int k) { 
int s = 0;  
while (k >= 1) { 

s += tree[k]; 
k -= k&-k; 

} 
return s; 

} 

Then, the following function increases the array value at position k by x ( x can 
be positive or negative): 

void add(int k, int x) { 
while (k <= n) { 

tree[k] += x; 
k += k&-k; 

} 
} 

The time complexity of both the functions is O(log n), because the functions 
access O(log n) values in the binary indexed tree, and each move to the next position 
takes O(1) time. 

9.2.2 Segment Trees 

A segment tree is a data structure that provides twoO(log n) time operations: process-
ing a range query and updating an array value. Segment trees support sum queries, 
minimum queries, and many other queries. Segment trees have their origins in geo-
metric algorithms (see e.g. Bentley and Wood [ 4]), and the elegant bottom-up imple-
mentation presented in this section follows the textbook by Stańczyk [ 5]. 

A segment tree is a binary tree whose bottom level nodes correspond to the array 
elements, and the other nodes contain information needed for processing range 
queries. When discussing segment trees, we assume that the size of the array is 
a power of two and zero-based indexing is used, because it is convenient to build a
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Fig. 9.10 An array and the 
corresponding segment tree 
for sum queries 

5 8 6 3 2 7 2 6 

0 1 2 3 4 5 6 7 

5 8 6 3 2 7 2 6 

13 9 9 8 

22 17 

39 

Fig. 9.11 Processing a range 
sum query using a segment 
tree 

5 8 6 3 2 7 2 6 

0 1 2 3 4 5 6 7 

5 8 6 3 2 7 2 6 

13 9 9 8 

22 17 

39 

segment tree for such an array. If the size of the array is not a power of two, we can 
always append extra elements to it. 

We will first discuss segment trees that support sum queries. As an example, 
Fig. 9.10 shows an array and the corresponding segment tree for sum queries. Each 
internal tree node corresponds to an array range whose size is a power of two. When 
a segment tree supports sum queries, the value of each internal node is the sum of 
the corresponding array values, and it can be calculated as the sum of the values of 
its left and right child node. 

It turns out that any range [a, b] can be divided into O(log n) subranges whose 
values are stored in tree nodes. For example, Fig. 9.11 shows the range [2, 7] in the 
original array and in the segment tree. In this case, two tree nodes correspond to the 
range, and sumq(2, 7) = 9 + 17 = 26. When the sum is calculated using nodes 
located as high as possible in the tree, at most two nodes on each level of the tree are 
needed. Hence, the total number of nodes is O(log n). 

After an array update, we should update all nodes whose value depends on the 
updated value. This can be done by traversing the path from the updated array element 
to the top node and updating the nodes along the path. For example, Fig. 9.12 shows 
the nodes that change when the value at position 5 changes. The path from bottom
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Fig. 9.12 Updating an array 
value in a segment tree 5 8 6 3 2 7 2 6 

0 1 2 3 4 5 6 7 

5 8 6 3 2 7 2 6 

13 9 9 8 

22 17 

39 

Fig. 9.13 The contents of a 
segment tree in an array 39 22 17 13 9 9 8 5 8 6 3 2 7 2 6 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

to top always consists of O(log n) nodes, so each update changes O(log n) nodes in 
the tree. 

Implementation A convenient way to store the contents of a segment tree is to use 
an array of 2n elements where n is the size of the original array. The tree nodes are 
stored from top to bottom: tree[1] is the top node, tree[2] and tree[3] are its 
children, and so on. Finally, the values from tree[n] to tree[2n − 1] correspond 
to the bottom level of the tree, which contains the values of the original array. Note 
that the element tree[0] is not used. 

For example, Fig. 9.13 shows how our example tree is stored. Note that the parent 
oftree[k] istree[ k/2 ], its left child istree[2k] and its right child is tree[2k+
1]. In addition, the position of a node (other than the top node) is even if it is a left 
child and odd if it is a right child. 

The following function calculates the value of sumq(a, b): 

int sum(int a, int b) { 
a += n; b += n;  
int s = 0;  
while (a <= b) { 

if (a%2 == 1) s += tree[a++]; 
if (b%2 == 0) s += tree[b--]; 
a /= 2; b /= 2;  

} 
return s; 

} 

The function maintains a range in the segment tree array. Initially, the range is 
[a + n, b+ n]. At each step, the range is moved one level higher in the tree, and the 
values of the nodes that do not belong to the higher range are added to the sum.
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Fig. 9.14 A segment tree for 
processing range minimum 
queries 

5 8 6 3 1 7 2 6 

5 3 1 2 

3 1 

1 

The following function increases the array value at position k by x : 

void add(int k, int x) { 
k += n;  
tree[k] += x; 
for (k /= 2; k >= 1; k /= 2) {  

tree[k] = tree[2*k]+tree[2*k+1]; 
} 

} 

First the value at the bottom level of the tree is updated. After this, the values of 
all internal tree nodes are updated, until the top node of the tree is reached. 

Both the above functions work in O(log n) time, because a segment tree of n
elements consists of O(log n) levels and the functions move one level higher in the 
tree at each step. 

Other Queries Segment trees can support any range queries where we can divide a 
range into two parts, calculate the answer separately for both parts and then efficiently 
combine the answers. Examples of such queries are minimum and maximum, greatest 
common divisor, and bit operations and, or and xor. 

For example, the segment tree in Fig. 9.14 supports minimum queries. In this tree, 
every node contains the smallest value in the corresponding array range. The top 
node of the tree contains the smallest value in the whole array. The operations can 
be implemented like previously, but instead of sums, minima are calculated. 

The structure of a segment tree also allows us to use a binary search style method 
for locating array elements. For example, if the tree supports minimum queries, we 
can find the position of an element with the smallest value in O(log n) time. For 
example, Fig. 9.15 shows how the element with the smallest value 1 can be found by 
traversing a path downwards from the top node. 

9.2.3 Additional Techniques 

Index Compression A limitation in data structures that are built upon arrays is that 
the elements are indexed using consecutive integers. Difficulties arise when large 
indices are needed. For example, if we want to use the index 109, the array should 
contain 109 elements which would require too much memory.
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Fig. 9.15 Using binary 
search to find the minimum 
element 

5 8 6 3 1 7 2 6 

5 3 1 2 

3 1 

1 

Fig. 9.16 Compressing an 
array using index 
compression 

0 0 5 0 0 3 0 4 

0 1 2 3 4 5 6 7 

original array 

5 3 4 

0 1 2  

compressed array 

However, if we know all the indices needed during the algorithm beforehand, we 
can bypass this limitation by using index compression. The idea is to replace the 
original indices with consecutive integers 0, 1, 2, and so on. To do this, we define 
a function c that compresses the indices. The function gives each original index i a 
compressed index c(i) in such a way that if a and b are two indices and a < b, then 
c(a) < c(b). After compressing the indices, we can conveniently perform queries 
using them. 

Figure 9.16 shows a simple example of index compression. Here only indices 2, 5
and 7 are actually used and all other array values are zeros. The compressed indices 
are c(2) = 0, c(5) = 1 and c(7) = 2, which allows us to create a compressed array 
that only contains three elements. 

After index compression, we can, for example, build a segment tree for the com-
pressed array and perform queries. The only modification needed is that we have to 
compress the indices before queries: a range [a, b] in the original array corresponds 
to the range [c(a), c(b)] in the compressed array. 

Range Updates So far, we have implemented data structures that support range 
queries and updates of single values. Let us now consider an opposite situation, 
where we should update ranges and retrieve single values. We focus on an operation 
that increases all elements in a range [a, b] by x . 

It turns out that we can use the data structures presented in this chapter also in this 
situation. To do this, we build a difference array whose values indicate the differences 
between consecutive values in the original array. The original array is the prefix sum 
array of the difference array. Figure 9.17 shows an array and its difference array. 
For example, the value 2 at position 6 in the original array corresponds to the sum 
3− 2+ 4− 3 = 2 in the difference array. 

The advantage of the difference array is that we can update a range in the origi-
nal array by changing just two elements in the difference array. More precisely, to 
increase the values in range [a, b] by x , we increase the value at position a by x
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Fig. 9.17 An array and its 
difference array 3 3 1 1 1 5 2 2  

0 1 2 3 4 5 6 7 

original array 

3 0  −2 0 0 4 −3 0 

0 1 2 3 4 5 6 7 

difference array 

Fig. 9.18 Updating an array 
range using the difference 
array 

3 6 4 4 4 5 2 2  

0 1 2 3 4 5 6 7 

original array 

3 3  −2 0 0 1 −3 0 

0 1 2 3 4 5 6 7 

difference array 

and decrease the value at position b + 1 by x . For example, to increase the original 
array values between positions 1 and 4 by 3, we increase the difference array value 
at position 1 by 3 and decrease the value at position 5 by 3 (Fig. 9.18). 

Thus, we only update single values and process sum queries in the difference 
array, so we can use a binary indexed tree or a segment tree. A more difficult task 
is to create a data structure that supports both range queries and range updates. In 
Sect. 15.2.1, we will see that also this is possible using a lazy segment tree. 
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10Tree Algorithms 

The special properties of trees allow us to create algorithms that are specialized for 
trees and work more efficiently than general graph algorithms. This chapter presents 
a selection of such algorithms. 

Section 10.1 introduces basic concepts and algorithms related to trees. A central 
problem is finding the diameter of a tree, i.e., the maximum distance between two 
nodes. We will learn two linear time algorithms for solving the problem. 

Section 10.2 focuses on processing queries on trees. We will learn to use a tree 
traversal array to process various queries related to subtrees and paths. After this, 
we will discuss methods for determining lowest common ancestors, and an offline 
algorithm which is based on merging data structures. 

Section 10.3 presents two advanced tree processing techniques: centroid decom-
position and heavy-light decomposition. 

10.1 Basic Techniques 

A tree is a connected acyclic graph that consists of n nodes and n−1 edges. Removing 
any edge from a tree divides it into two components, and adding any edge creates a 
cycle. There is always a unique path between any two nodes of a tree. The leaves of 
a tree are the nodes with only one neighbor. 

As an example, consider the tree in Fig. 10.1. This tree consists of 8 nodes and 7 
edges, and its leaves are nodes 3, 5, 7 and 8. 

In a rooted tree, one of the nodes is appointed the root of the tree, and all other 
nodes are placed underneath the root. The lower neighbors of a node are called its 
children, and the upper neighbor of a node is called its parent. Each node has exactly 
one parent, except for the root that does not have a parent. The structure of a rooted 
tree is recursive: each node of the tree acts as the root of a subtree that contains the 
node itself and all nodes that are in the subtrees of its children. 
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Fig. 10.1 A tree that  
consists of 8 nodes and 7 
edges 

1 4 

2 3 7 

5 

68 

Fig. 10.2 A rooted tree 
where node 1 is the root 
node 

1 

42 3 

75 6 

8 

For example, Fig. 10.2 shows a rooted tree where node 1 is the root of the tree. 
The children of node 2 are nodes 5 and 6, and the parent of node 2 is node 1. The 
subtree of node 2 consists of nodes 2, 5, 6 and 8. 

10.1.1 Tree Traversal 

General graph traversal algorithms can be used to traverse the nodes of a tree. How-
ever, the traversal of a tree is easier to implement than that of a general graph, because 
there are no cycles in the tree and it is not possible to reach a node from more than 
one direction. 

A typical way to traverse a tree is to start a depth-first search at an arbitrary node. 
The following recursive function can be used: 

void dfs(int s, int e) { 
// process node s 
for (auto u : adj[s]) { 

if (u != e) dfs(u, s); 
} 

} 

The function is given two parameters: the current node s and the previous node e. 
The purpose of the parameter e is to make sure that the search only moves to nodes 
that have not been visited yet. 

The following function call starts the search at node x : 

dfs(x, 0);
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In the first call e = 0, because there is no previous node, and it is allowed to 
proceed to any direction in the tree. 

Dynamic Programming Dynamic programming can be used to calculate some infor-
mation during a tree traversal. For example, the following code calculates for each 
node s a value count[s]: the number of nodes in its subtree. The subtree contains 
the node itself and all nodes in the subtrees of its children, so we can calculate the 
number of nodes recursively as follows: 

void dfs(int s, int e) { 
count[s] = 1; 
for (auto u : adj[s]) { 

if (u == e) continue; 
dfs(u, s); 
count[s] += count[u]; 

} 
} 

Binary Tree Traversals In a binary tree, each node has a left and right subtree 
(which may be empty), and there are three popular tree traversal orderings: 

• pre-order: first process the root node, then traverse the left subtree, then traverse 
the right subtree 

• in-order: first traverse the left subtree, then process the root node, then traverse 
the right subtree 

• post-order: first traverse the left subtree, then traverse the right subtree, then pro-
cess the root node 

For example, in Fig. 10.3, the pre-order is [1, 2, 4, 5, 6, 3, 7], the in-order is 
[4, 2, 6, 5, 1, 3, 7] and the post-order is [4, 6, 5, 2, 7, 3, 1]. 

If we know the pre-order and in-order of a tree, we can reconstruct its exact 
structure. For example, the only possible tree with pre-order [1, 2, 4, 5, 6, 3, 7] and 
in-order [4, 2, 6, 5, 1, 3, 7] is shown in Fig. 10.3. The post-order and in-order also 
uniquely determine the structure of a tree. However, if we only know the pre-order 
and post-order, there may be more than one tree that match the orderings. 

Fig. 10.3 A binary tree  
1 

2 3 

4 5 

6 

7



142 10 Tree Algorithms 

10.1.2 Calculating Diameters 

The diameter of a tree is the maximum length of a path between two nodes. For 
example, Fig. 10.4 shows a tree whose diameter is 4 that corresponds to a path of 
length 4 between nodes 6 and 7. Note that the tree also has another path of length 4 
between nodes 5 and 7. 

Next we will discuss two O(n) time algorithms for calculating the diameter of a 
tree. The first algorithm is based on dynamic programming, and the second algorithm 
uses depth-first searches. 

First Algorithm A general way to approach tree problems is to first root the tree 
arbitrarily, and then solve the problem separately for each subtree. Our first algorithm 
for calculating diameters is based on this idea. 

An important observation is that every path in a rooted tree has a highest point: 
the highest node that belongs to the path. Thus, we can calculate for each node x the 
length of the longest path whose highest point is x . One of those paths corresponds 
to the diameter of the tree. For example, in Fig. 10.5, node 1 is the highest point on 
the path that corresponds to the diameter. 

We calculate for each node x two values: 

• toLeaf(x): the maximum length of a path from x to any leaf 
• maxLength(x): the maximum length of a path whose highest point is x . 

For example, in Fig. 10.5, toLeaf(1) = 2, because there is a path 1 → 2 → 6, and 
maxLength(1) = 4, because there is a path 6 → 2 → 1 → 4 → 7. In this case, 
maxLength(1) equals the diameter. 

Dynamic programming can be used to calculate the above values for all nodes 
in O(n) time. First, to calculate toLeaf(x), we go through the children of x , 
choose a child c with the maximum toLeaf(c) and add one to this value. Then, 
to calculate maxLength(x), we choose two distinct children a and b such that the 

Fig. 10.4 A tree whose 
diameter is 4 

1 4 

2 3 7 

5 

6 

Fig. 10.5 Node 1 is the 
highest point on the diameter 
path 
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Fig. 10.6 Nodes a, b and c
when calculating the 
diameter 
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sum toLeaf(a) + toLeaf(b) is maximum and add two to this sum. (The cases 
where x has less than two children are easy special cases.) 

Second Algorithm Another efficient way to calculate the diameter of a tree is based 
on two depth-first searches. First, we choose an arbitrary node a in the tree and find 
the farthest node b from a. Then, we find the farthest node c from b. The diameter 
of the tree is the distance between b and c. 

For example, Fig. 10.6 shows a possible way to select nodes a, b and c when 
calculating the diameter for our example tree. 

This is an elegant method, but why does it work? It helps to draw the tree so that 
the path that corresponds to the diameter is horizontal, and all other nodes hang from 
it (Fig. 10.7). Node x indicates the place where the path from node a joins the path 
that corresponds to the diameter. The farthest node from a is node b, node c or some 
other node that is at least as far from node x . Thus, this node is always a valid choice 
for an endpoint of a path that corresponds to the diameter. 

10.1.3 All Longest Paths 

Our next problem is to calculate for every tree node x a value maxLength(x): the 
maximum length of a path that begins at node x . For example, Fig. 10.8 shows a tree 
and its maxLength values. This can be seen as a generalization of the tree diameter 
problem, because the largest of those lengths equals the diameter of the tree. Also 
this problem can be solved in O(n) time. 

Once again, a good starting point is to root the tree arbitrarily. The first part of 
the problem is to calculate for every node x the maximum length of a path that goes 

Fig. 10.8 Calculating 
maximum path lengths
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Fig. 10.9 The longest path 
that starts at node 1 
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Fig. 10.10 The longest path 
from node 3 goes through its 
parent 
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Fig. 10.11 In this case, the 
second longest path from the 
parent should be chosen 
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downwards through a child of x . For example, the longest path from node 1 goes 
through its child 2 (Fig. 10.9). This part is easy to solve in O(n) time, because we 
can use dynamic programming as we have done previously. 

Then, the second part of the problem is to calculate for every node x the maximum 
length of a path upwards through its parent p. For example, the longest path from 
node 3 goes through its parent 1 (Fig. 10.10). At first glance, it seems that we should 
first move to p and then choose the longest path (upwards or downwards) from 
p. However, this does not always work, because such a path may go through x
(Fig. 10.11). Still, we can solve the second part in O(n) time by storing the maximum 
lengths of two paths for each node x : 

• maxLength1(x): the maximum length of a path from x to a leaf 
• maxLength2(x) the maximum length of a path from x to a leaf, in another 
direction than the first path. 

For example, in Fig. 10.11, maxLength1(1) = 2 using the path 1 → 2 → 5, 
and maxLength2(1) = 1 using the path 1 → 3.
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Finally, to determine the maximum-length path from node x upwards through its 
parent p, we consider two cases: if the path that corresponds to maxLength1(p)
goes through x , the maximum length is maxLength2(p) + 1, and otherwise the 
maximum length is maxLength1(p)+ 1. 

10.2 Tree Queries 

In this section we focus on processing queries on rooted trees. Such queries are 
typically related to subtrees and paths of the tree, and they can be processed in 
constant or logarithmic time. 

10.2.1 Finding Ancestors 

The kth ancestor of a node x in a rooted tree is the node that we will reach if we move 
k levels up from x . Let ancestor(x, k) denote the kth ancestor of a node x (or 0
if there is no such an ancestor). For example, in Fig. 10.12, ancestor(2, 1) = 1
and ancestor(8, 2) = 4. 

An easy way to calculate any value of ancestor(x, k) is to perform a sequence 
of k moves in the tree. However, the time complexity of this method is O(k), which 
may be slow, because a tree of n nodes may have a path of n nodes. 

Fortunately, we can efficiently calculate any value ofancestor(x, k) in O(log k)
time after preprocessing. As in Sect. 7.5.1, the idea is to first precalculate all values 
of ancestor(x, k) where k is a power of two. For example, the values for the tree 
in Fig. 10.12 are as follows: 

. 

x 1 2 3 4 5 6 7 8
ancestor(x, 1) 0 1 4 1 1 2 4 7
ancestor(x, 2) 0 0 1 0 0 1 1 4
ancestor(x, 4) 0 0 0 0 0 0 0 0

· · ·
Since we know that a node always has less than n ancestors, it suffices to calculate 

O(log n)values for each node and the preprocessing takesO(n log n) time. After this, 
any value of ancestor(x, k) can be calculated in O(log k) time by representing k
as a sum where each term is a power of two. 

10.2.2 Subtrees and Paths 

A tree traversal array contains the nodes of a rooted tree in the order in which a 
depth-first search from the root node visits them. For example, Fig. 10.13 shows a 
tree and the corresponding tree traversal array.



146 10 Tree Algorithms 

Fig. 10.12 Finding 
ancestors of nodes 
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Fig. 10.13 A tree and its 
tree traversal array 
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An important property of tree traversal arrays is that each subtree of a tree cor-
responds to a subarray in the tree traversal array such that the first element of the 
subarray is the root node. For example, Fig. 10.14 shows the subarray that corre-
sponds to the subtree of node 4. 

Subtree Queries Suppose that each node in the tree is assigned a value, and our task 
is to process two types of queries: updating the value of a node, and calculating the 
sum of values in the subtree of a node. To solve the problem, we construct a tree 
traversal array that contains three values for each node: the identifier of the node, the 
size of the subtree, and the value of the node. For example, Fig. 10.15 shows a tree 
and the corresponding array. 

Using this array, we can calculate the sum of values in any subtree by first deter-
mining the size of the subtree and then summing up the values of the corresponding 
nodes. For example, Fig. 10.16 shows the values that we access when calculating the 
sum of values in the subtree of node 4. The last row of the array tells us that the sum 
of values is 3+ 4+ 3+ 1 = 11. 

1 2 6 3 4 7 8 9 5 

Fig. 10.14 The subtree of node 4 in the tree traversal array
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Fig. 10.15 A tree traversal 
array for calculating subtree 
sums 
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node id 

subtree size 

node value 

1 2 6 3 4 7 8 9 5 

9 2 1 1 4 1 1 1 1  

2 3 4 5 3 4 3 1 1  

Fig. 10.16 Calculating the 
sum of values in the subtree 
of node 4 

node id 

subtree size 

node value 

1 2 6 3 4 7 8 9 5 

9 2 1 1 4 1 1 1 1  

2 3 4 5 3 4 3 1 1  

To answer queries efficiently, it suffices to store the last row of the array in a 
binary indexed or segment tree. After this, we can both update a value and calculate 
the sum of values in O(log n) time. 

Path Queries Using a tree traversal array, we can also efficiently calculate sums of 
values on paths from the root node to any node of the tree. As an example, consider 
a problem where our task is to process two types of queries: updating the value of a 
node, and calculating the sum of values on a path from the root to a node. 

To solve the problem, we construct a tree traversal array that contains for each 
node its identifier, the size of its subtree and the sum of values on a path from the 
root to the node (Fig. 10.17). When the value of a node increases by x , the sums of 

Fig. 10.17 A tree traversal 
array for calculating path 
sums 
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node id 

subtree size 

path sum 

1 2 6 3 4 7 8 9 5 

9 2 1 1 4 1 1 1 1  

4 9 12 7 9 14 12 10 6
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Fig. 10.18 Increasing the 
value of node 4 by 1 
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Fig. 10.19 The lowest 
common ancestor of nodes 5 
and 8 is node 2 
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all nodes in its subtree increase by x . For example, Fig. 10.18 shows the array after 
increasing the value of node 4 by 1. 

To support both the operations, we need to be able to increase all values in a range 
and retrieve a single value. This can be done in O(log n) time using a binary indexed 
or segment tree and a difference array (see Sect. 9.2.3). 

10.2.3 Lowest Common Ancestors 

The lowest common ancestor of two nodes of a rooted tree is the lowest node whose 
subtree contains both the nodes. For example, in Fig. 10.19 the lowest common 
ancestor of nodes 5 and 8 is node 2. 

A typical problem is to efficiently process queries that require us to find the lowest 
common ancestor of two nodes. Next we will discuss two efficient techniques for 
processing such queries. 

First Method Since we can efficiently find the kth ancestor of any node in the tree, 
we can use this fact to divide the problem into two parts. We use two pointers that 
initially point to the two nodes whose lowest common ancestor we should find. 

First, we make sure that the pointers point to nodes at the same level in the tree. 
If this is not the case initially, we move one of the pointers upwards. After this, we 
determine the minimum number of steps needed to move both pointers upwards so 
that they will point to the same node. The node to which the pointers point after this 
is the lowest common ancestor. Since both parts of the algorithm can be performed 
in O(log n) time using precomputed information, we can find the lowest common 
ancestor of any two nodes in O(log n) time. 

Figure 10.20 shows how we can find the lowest common ancestor of nodes 5 and 
8 in our example scenario. First, we move the second pointer one level up so that it
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Fig. 10.20 Two steps to find the lowest common ancestor of nodes 5 and 8 

node id 

depth 

1 2 5 2 6 8 6 2 1 3 1 4 7 4 1  

1 2 3 2 3 4 3 2 1 2 1 2 3 2 1  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Fig. 10.21 An extended tree traversal array for processing lowest common ancestor queries 

node id 

depth 

1 2 5 2 6 8 6 2 1 3 1 4 7 4 1  

1 2 3 2 3 4 3 2 1 2 1 2 3 2 1  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Fig. 10.22 Finding the lowest common ancestor of nodes 5 and 8 

points to node 6 which is at the same level with node 5. Then, we move both pointers 
one step upwards to node 2, which is the lowest common ancestor. 

Second Method Another way to solve the problem, proposed by Bender and Farach-
Colton [ 1], is based on an extended tree traversal array, sometimes called an Euler 
tour tree. To construct the array, we go through the tree nodes using depth-first search 
and add each node to the array always when the depth-first search walks through 
the node (not only at the first visit). Hence, a node that has k children appears k + 1
times in the array and there are a total of 2n − 1 nodes in the array. We store two 
values in the array: the identifier of the node and the depth of the node in the tree. 
Figure 10.21 shows the resulting array in our example scenario. 

Now we can find the lowest common ancestor of nodes a and b by finding the node 
with the minimum depth between nodes a and b in the array. For example, Fig. 10.22 
shows how to find the lowest common ancestor of nodes 5 and 8. The minimum-
depth node between them is node 2 whose depth is 2, so the lowest common ancestor 
of nodes 5 and 8 is node 2.
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Fig. 10.23 Calculating the 
distance between nodes 5 
and 8 
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Note that since a node may appear several times in the array, there may be mul-
tiple ways to choose the positions of nodes a and b. However, any choice correctly 
determines the lowest common ancestor of the nodes. 

Using this technique, to find the lowest common ancestor of two nodes, it suffices 
to process a range minimum query. A usual way is to use a segment tree to process 
such queries in O(log n) time. However, since the array is static, we can also process 
queries in O(1) time after an O(n log n) time preprocessing. 

Calculating Distances Finally, consider the problem of processing queries where 
we need to calculate the distance between nodes a and b (i.e., the length of the path 
between a and b). It turns out that this problem reduces to finding the lowest common 
ancestor of the nodes. First, we root the tree arbitrarily. After this, the distance of 
nodes a and b can be calculated using the formula 

. depth(a)+ depth(b)− 2 · depth(c),
where c is the lowest common ancestor of a and b. 

For example, to calculate the distance between nodes 5 and 8 in Fig. 10.23, we  
first determine that the lowest common ancestor of the nodes is node 2. Then, since 
the depths of the nodes are depth(5) = 3, depth(8) = 4 and depth(2) = 2, we  
conclude that the distance between nodes 5 and 8 is 3+ 4− 2 · 2 = 3. 

10.2.4 Merging Data Structures 

So far, we have discussed online algorithms for tree queries. Those algorithms are 
able to process queries one after another in such a way that each query is answered 
before receiving the next query. However, in many problems, the online property 
is not necessary, and we may use offline algorithms to solve them. Such algorithms 
are given a complete set of queries which can be answered in any order. Offline 
algorithms are often easier to design than online algorithms. 

One method to construct an offline algorithm is to perform a depth-first tree 
traversal and maintain data structures in nodes. At each node s, we create a data 
structure d[s] that is based on the data structures of the children of s. Then, using 
this data structure, all queries related to s are processed.
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Fig. 10.24 The subtree of 
node 4 contains two nodes 
whose value is 3 
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As an example, consider the following problem: We are given a rooted tree where 
each node has some value. Our task is to process queries that ask to calculate the 
number of nodes with value x in the subtree of node s. For example, in Fig. 10.24, 
the subtree of node 4 contains two nodes whose value is 3. 

In this problem, we can use map structures to answer the queries. For example, 
Fig. 10.25 shows the maps for node 4 and its children. If we create such a data 
structure for each node, we can easily process all given queries, because we can 
handle all queries related to a node immediately after creating its data structure. 

However, it would be too slow to create all data structures from scratch. Instead, 
at each node s, we create an initial data structure d[s] that only contains the value of 
s. After this, we go through the children of s and merge d[s] and all data structures 
d[u] where u is a child of s. For example, in the above tree, the map for node 4
is created by merging the maps in Fig. 10.26. Here the first map is the initial data 
structure for node 4, and the other three maps correspond to nodes 7, 8 and 9. 

The merging at node s can be done as follows: We go through the children of s
and at each child u merge d[s] and d[u]. We always copy the contents from d[u] to 
d[s]. However, before this, we swap the contents of d[s] and d[u] if d[s] is smaller 
than d[u]. By doing this, each value is copied only O(log n) times during the tree 
traversal, which ensures that the algorithm is efficient. 

To swap the contents of two data structures a and b efficiently, we can just use 
the following code: 

swap(a,b);
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It is guaranteed that the above code works in constant time when a and b are C++ 
standard library data structures. 

10.3 Advanced Techniques 

In this section, we discuss two advanced tree processing techniques. Centroid decom-
position divides a tree into smaller subtrees and processes them recursively. Heavy-
light decomposition represents a tree as a set of special paths, which allows us to 
efficiently process path queries. 

10.3.1 Centroid Decomposition 

A centroid of a tree of n nodes is a node whose removal divides the tree into subtrees 
each of which contains at most  n/2 nodes. Every tree has a centroid, and it can be 
found by rooting the tree arbitrarily and always moving to the subtree that has the 
maximum number of nodes, until the current node is a centroid. 

In the centroid decomposition technique, we first locate a centroid of the tree and 
process all paths that go through the centroid. After this, we remove the centroid 
from the tree and process the remaining subtrees recursively. Since removing the 
centroid always creates subtrees whose size is at most half of the size of the original 
tree, the time complexity of such an algorithm is O(n log n), provided that we can 
process each path in linear time. 

For example, Fig. 10.27 shows the first step of a centroid decomposition algorithm. 
In this tree, node 5 is the only centroid, so we first process all paths that go through 
node 5. After this, node 5 is removed from the tree, and we process the three subtrees 
{1, 2}, {3, 4}, and {6, 7, 8} recursively. 

Using centroid decomposition, we can, for example, efficiently calculate the num-
ber of paths of length x in a tree. When processing a tree, we first find a centroid 
and calculate the number of paths that go through it, which can be done in linear 
time. After this, we remove the centroid and recursively process the smaller trees. 
The resulting algorithm works in O(n log n) time. 

Fig. 10.27 Centroid 
decomposition 
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Fig. 10.28 Heavy-light 
decomposition 
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10.3.2 Heavy-Light Decomposition 

Heavy-light decomposition 1 divides the nodes of a tree into a set of paths that are 
called heavy paths. The heavy paths are created so that a path between any two tree 
nodes can be represented as O(log n) subpaths of heavy paths. Using the technique, 
we can manipulate nodes on paths between tree nodes almost like elements in an 
array, with only an additional O(log n) factor. 

To construct the heavy paths, we first root the tree arbitrarily. Then, we start the 
first heavy path at the root of the tree, and always move to a node that has a maximum-
size subtree. After this, we recursively process the remaining subtrees. For example, 
in Fig. 10.28, there are four heavy paths: 1–2–6–8, 3, 4–7, and 5 (note that two of 
the paths only have one node). 

Now, consider any path between two nodes in the tree. Since we always chose the 
maximum-size subtree when creating heavy paths, this guarantees that we can divide 
the path into O(log n) subpaths so that each of them is a subpath of a single heavy 
path. For example, in Fig. 10.28, the path between nodes 7 and 8 can be divided into 
two heavy subpaths: first 7–4, then 1–2–6–8. 

The benefit of heavy-light decomposition is that each heavy path can be treated 
like an array of nodes. For example, we can assign a segment tree for each heavy 
path and support sophisticated path queries, such as calculating the minimum node 
value in a path or increasing the value of every node in a path. Such queries can be 
processed in O(log2 n) time, 2 because each path consists of O(log n) heavy paths 
and each heavy path can be processed in O(log n) time. 

While many problems can be solved using heavy-light decomposition, it is good 
to keep in mind that there is often another solution that is easier to implement. 
In particular, the techniques presented in Sect. 10.2.2 can often be used instead of 
heavy-light decomposition.

1 Sleator and Tarjan [ 2] introduced the idea in the context of their link/cut tree data structure. 
2 The notation logk n corresponds to (log n)k . 
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11Mathematics 

This chapter deals with mathematical topics that are recurrent in competitive pro-
gramming. We will both discuss theoretical results and learn how to use them in 
practice in algorithms. 

Section 11.1 discusses number-theoretical topics. We will learn algorithms for 
finding prime factors of numbers, techniques related to modular arithmetic, and 
efficient methods for solving integer equations. 

Section 11.2 explores ways to approach combinatorial problems: how to efficiently 
count all valid combinations of objects. The topics of this section include binomial 
coefficients, Catalan numbers, and inclusion-exclusion. 

Section 11.3 shows how to use matrices in algorithm programming. For example, 
we will learn how to make a dynamic programming algorithm more efficient by 
exploiting an efficient way to calculate matrix powers. 

Section 11.4 first discusses basic techniques for calculating probabilities of events 
and the concept of Markov chains. After this, we will see examples of algorithms 
that are based on randomness. 

Section 11.5 focuses on game theory. First we will learn to optimally play a simple 
stick game using nim theory, and after this, we will generalize the strategy to a wide 
range of other games. 

Section 11.6 presents the Fast Fourier Transform (FFT) algorithm using which we 
can efficiently calculate convolutions, such as products of polynomials. 

Section 11.7 shows how to solve mathematical problems by first finding the first 
values of a sequence and then guessing a formula that matches the sequence. 

11.1 Number Theory 

Number theory is a branch of mathematics that studies integers. In this section, we 
discuss a selection of number-theoretical topics and algorithms, such as finding prime 
numbers and factors, and solving integer equations. 
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11.1.1 Primes and Factors 

An integer a is called a factor or a divisor of an integer b if a divides b. If a is a 
factor of b, we write a | b, and otherwise we write a  b. For example, the factors of 
24 are 1, 2, 3, 4, 6, 8, 12, and 24. 

An integer n > 1 is a prime if its only positive factors are 1 and n. For example, 
7, 19 and 41 are primes, but 35 is not a prime, because 5 · 7 = 35. For every integer 
n > 1, there is a unique prime factorization 

. n = pα1
1 pα2

2 · · · pαk
k ,

where p1, p2, . . . , pk are distinct primes and α1, α2, . . . , αk are positive integers. 
For example, the prime factorization for 84 is 

. 84 = 22 · 31 · 71.
Let τ(n) denote the number of factors of an integer n. For example, τ(12) = 6, 

because the factors of 12 are 1, 2, 3, 4, 6, and 12. To calculate the value of τ(n), we  
can use the formula 

. τ(n) =
k 

i=1

(αi + 1),

because for each prime pi , there are αi +1ways to choose how many times it appears 
in the factor. For example, since 12 = 22 · 3, τ(12) = 3 · 2 = 6. 

Then, let σ(n) denote the sum of factors of an integer n. For example, σ(12) = 28, 
because 1 + 2 + 3 + 4 + 6 + 12 = 28. To calculate the value of σ(n), we can use 
the formula 

. σ(n) =
k 

i=1

(1 + pi + · · · + pαi
i ) =

k 

i=1

pαi +1
i − 1

pi − 1
,

where the latter form is based on the geometric progression formula. For example, 
σ(12) = (23 − 1)/(2 − 1) · (32 − 1)/(3 − 1) = 28. 

Basic Algorithms If an integer n is not prime, it can be represented as a product 
a · b, where a ≤ √

n or b ≤ √
n, so it certainly has a factor between 2 and  √

n . 
Using this observation, we can both test if an integer is prime and find its prime 
factorization in O(

√
n) time. 

The following function prime checks if a given integer n is prime. The function 
attempts to divide n by all integers between 2 and  √

n , and if none of them divides 
n, then n is prime. 

bool prime(int n) { 
if (n < 2)  return false; 
for (int x = 2; x*x <= n; x++) { 

if (n%x == 0) return false; 
} 
return true; 

} 
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Then, the following function factors constructs a vector that contains the prime 
factorization of n. The function divides n by its prime factors, and adds them to the 
vector. The process ends when the remaining number n has no factors between 2 and 
 √

n . If n > 1, it is prime and the last factor. 

vector<int> factors(int n) { 
vector<int> f;  
for (int x = 2; x*x <= n; x++) { 

while (n%x == 0) { 
f.push_back(x); 
n /= x;  

} 
} 
if (n > 1) f.push_back(n); 
return f; 

} 

Note that each prime factor appears in the vector as many times as it divides the 
number. For example, 12 = 22 · 3, so the result of the function is [2, 2, 3]. 
Properties of Primes It is easy to show that there is an infinite number of primes. If 
the number of primes would be finite, we could construct a set P = {p1, p2, . . . , pn}
that would contain all the primes. For example, p1 = 2, p2 = 3, p3 = 5, and so on. 
However, using such a set P , we could form a new prime 

. p1 p2 · · · pn + 1

that would be larger than all elements in P . This is a contradiction, and the number 
of primes has to be infinite. 

The prime-counting function π(n) gives the number of primes up to n. For exam-
ple, π(10) = 4, because the primes up to 10 are 2, 3, 5 and 7. It is possible to show 
that 

. π(n) ≈ n

ln n
,

which means that primes are quite frequent. For example, an approximation for 
π(106) is 106/ ln 106 ≈ 72382, and the exact value is 78498. 

11.1.2 Sieve of Eratosthenes 

The sieve of Eratosthenes is a preprocessing algorithm that constructs an array 
sieve from which we can efficiently check if any integer x between 2 . . . n is 
prime. If x is prime, then sieve[x] = 0, and otherwise sieve[x] = 1. For exam-
ple, Fig. 11.1 shows the contents of sieve for n = 20. 

To construct the array, the algorithm iterates through the integers 2 . . . n one by 
one. Always when a new prime x is found, the algorithm records that the num-
bers 2x, 3x, 4x , etc., are not primes. The algorithm can be implemented as follows, 
assuming that every element of sieve is initially zero:
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0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Fig. 11.1 The outcome of the sieve of Eratosthenes for n = 20 

for (int x = 2; x <= n; x++) { 
if (sieve[x]) continue; 
for (int u = 2*x; u <= n; u += x) {  

sieve[u] = 1; 
} 

} 

The inner loop of the algorithm is executed  n/x times for each value of x . Thus, 
an upper bound for the running time of the algorithm is the harmonic sum 

. 

n 

x=2

 n/x =  n/2 +  n/3 +  n/4 + · · · = O(n log n).

In fact, the algorithm is more efficient, because the inner loop will be executed 
only if the number x is prime. It can be shown that the running time of the algorithm 
is only O(n log log n), a complexity very near to O(n). In practice, the sieve of 
Eratosthenes is very efficient; Table 11.1 shows some real running times. 

There are several ways to extend the sieve of Eratosthenes. For example, we can 
calculate for each number k its smallest prime factor (Fig. 11.2). After this, we can 
efficiently factorize any number between 2 . . . n using the sieve. (Note that a number 
n has O(log n) prime factors.) 

Table 11.1 Running times of the sieve of Eratosthenes 

Upper bound n Running time (s) 

106 0.01

2 · 106 0.03

4 · 106 0.07

8 · 106 0.14

16 · 106 0.28

32 · 106 0.57

64 · 106 1.16

128 · 106 2.35

2 3 2 5 2 7 2 3 2 11 2 13 2 3 2 17 2 19 2 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Fig.11.2 An extended sieve of Eratosthenes that contains the smallest prime factor of each number
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11.1.3 Euclid’s Algorithm 

The greatest common divisor of integers a and b, denoted gcd(a, b), is the largest 
integer that divides both a and b. For example, gcd(30, 12) = 6. A related concept 
is the lowest common multiple, denoted lcm(a, b), which is the smallest integer that 
is divisible by both a and b. The formula 

. lcm(a, b) = ab

gcd(a, b)

can be used to calculate lowest common multiples. For example, lcm(30, 12) =
360/ gcd(30, 12) = 60. 

One way to find gcd(a, b) is to divide a and b into prime factors, and then choose 
for each prime the largest power that appears in both factorizations. For example, to 
calculate gcd(30, 12), we can construct the factorizations 30 = 2·3·5 and 12 = 22 ·3, 
and conclude that gcd(30, 12) = 2 · 3 = 6. However, this technique is not efficient 
if a and b are large numbers. 

Euclid’s algorithm provides an efficient way to calculate the value of gcd(a, b). 
The algorithm is based on the formula 

. gcd(a, b) =
 

a b = 0

gcd(b, a mod b) b  = 0.

For example, 
. gcd(30, 12) = gcd(12, 6) = gcd(6, 0) = 6.

The algorithm can be implemented as follows: 

int gcd(int a, int b) { 
if (b == 0) return a; 
return gcd(b, a%b); 

} 

Why does the algorithm work? Do understand this, consider Fig. 11.3, where 
x = gcd(a, b). Since x divides both a and b, it must also divide a mod b, which 
shows why the recursive formula holds. 

It can be proved that Euclid’s algorithm works in O(log n) time, where n =
min(a, b). 

Extended Euclid’s Algorithm Euclid’s algorithm can also be extended so that it 
gives integers x and y for which 

. ax + by = gcd(a, b).

Fig. 11.3 Why does 
Euclid’s algorithm work? 

a 

b b a mod b 

x x x x x x x x
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For example, when a = 30 and b = 12, 

. 30 · 1 + 12 · (−2) = 6.

We can solve also this problem using the formula gcd(a, b) = gcd(b, a mod b). 
Suppose that we have already solved the problem for gcd(b, a mod b), and we know 
values x  and y for which 

. bx  + (a mod b)y = gcd(a, b).

Then, since a mod b = a −  a/b · b, 

. bx  + (a −  a/b · b)y = gcd(a, b),

which equals 
. ay + b(x  −  a/b · y ) = gcd(a, b).

Thus, we can choose x = y and y = x  −  a/b · y . Using this idea, the following 
function returns a tuple (x, y, gcd(a, b)) that satisfies the equation. 

tuple<int,int,int> gcd(int a, int b) { 
if (b == 0) { 

return {1,0,a}; 
} else { 

int x,y,g; 
tie(x,y,g) = gcd(b,a%b); 
return {y,x-(a/b)*y,g}; 

} 
} 

We can use the function as follows: 

int x,y,g; 
tie(x,y,g) = gcd(30,12); 
cout << x << " " << y << " " << g << "\n"; // 1 -2 6  

11.1.4 Modular Exponentiation 

There is often a need to efficiently calculate the value of xn mod m. This can be done 
in O(log n) time using the following recursive formula: 

. xn =

⎧
⎪⎨

⎪⎩

1 n = 0

xn/2 · xn/2 n is even

xn−1 · x n is odd

For example, to calculate the value of x100, we first calculate the value of x50 and 
then use the formula x100 = x50 · x50. Then, to calculate the value of x50, we first 
calculate the value of x25, and so on. Since n always halves when it is even, the 
calculation takes only O(log n) time.
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The algorithm can be implemented as follows: 

int modpow(int x, int n, int m) { 
if (n == 0) return 1%m; 
long long u = modpow(x,n/2,m); 
u = (u*u)%m;  
if (n%2 == 1) u = (u*x)%m;  
return u; 

} 

11.1.5 Euler’s Theorem 

Two integers a and b are called coprime if gcd(a, b) = 1. Euler’s totient function 
ϕ(n) gives the number of integers between 1 . . . n that are coprime to n. For example, 
ϕ(10) = 4, because 1, 3, 7, and 9 are coprime to 10. 

Any value of ϕ(n) can be calculated from the prime factorization of n using the 
formula 

. ϕ(n) =
k 

i=1

pαi −1
i (pi − 1).

For example, since 10 = 2 · 5, ϕ(10) = 20 · (2 − 1) · 50 · (5 − 1) = 4. 
Euler’s theorem states that 

. xϕ(m) mod m = 1

for all positive coprime integers x and m. For example, Euler’s theorem tells us that 
74 mod 10 = 1, because 7 and 10 are coprime and ϕ(10) = 4. 

If m is prime, ϕ(m) = m − 1, so the formula becomes 

. xm−1 mod m = 1,

which is known as Fermat’s little theorem. This also implies that 

. xn mod m = xn mod (m−1) mod m,

which can be used to calculate values of xn if n is very large. 

Modular Multiplicative Inverses The modular multiplicative inverse of x with 
respect to m is a value invm(x) such that 

. x · invm(x) mod m = 1.

For example, inv17(6) = 3, because 6 · 3 mod 17 = 1. 
Using modular multiplicative inverses, we can divide numbers modulo m, because 

division by x corresponds to multiplication by invm(x). For example, since we know 
that inv17(6) = 3, we can calculate the value of 36/6 mod 17 in another way using 
the formula 36 · 3 mod 17.
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A modular multiplicative inverse exists exactly when x and m are coprime. In this 
case it can be calculated using the formula 

. invm(x) = xϕ(m)−1,

which is based on Euler’s theorem. In particular, if m is prime, ϕ(m) = m − 1 and 
the formula becomes 

. invm(x) = xm−2.

For example, 
. inv17(6) mod 17 = 617−2 mod 17 = 3.

The above formula allows us to efficiently calculate modular multiplicative 
inverses using the modular exponentiation algorithm (Sect. 11.1.4). 

11.1.6 Solving Equations 

Diophantine Equations A Diophantine equation is an equation of the form 

. ax + by = c,

where a, b and c are constants and the values of x and y should be found. Each number 
in the equation has to be an integer. For example, one solution to the equation 

. 5x + 2y = 11

is x = 3 and y = −2. 
We can efficiently solve a Diophantine equation by using the extended Euclid’s 

algorithm (Sect. 11.1.3) which gives integers x and y that satisfy the equation 

. ax + by = gcd(a, b).

A Diophantine equation can be solved exactly when c is divisible by gcd(a, b). 
As an example, let us find integers x and y that satisfy the equation 

. 39x + 15y = 12.

The equation can be solved, because gcd(39, 15) = 3 and 3 | 12. The extended 
Euclid’s algorithm gives us 

. 39 · 2 + 15 · (−5) = 3,

and by multiplying this by 4, the equation becomes 

. 39 · 8 + 15 · (−20) = 12,

so a solution to the equation is x = 8 and y = −20. 
A solution to a Diophantine equation is not unique, because we can form an infinite 

number of solutions if we know one solution. If a pair (x, y) is a solution, then also 
all pairs 

. 

 
x + kb

gcd(a, b)
, y − ka

gcd(a, b)

 

are solutions, where k is any integer.
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Chinese Remainder Theorem The Chinese remainder theorem solves a group of 
equations of the form 

. 

x = a1 mod m1
x = a2 mod m2
· · ·
x = an mod mn

where all pairs of m1, m2, . . . , mn are coprime. 
It turns out that a solution to the equations is 

. x = a1X1invm1(X1) + a2X2invm2(X2) + · · · + an Xn invmn (Xn),

where 
. Xk = m1m2 · · · mn

mk
.

In this solution, for each k = 1, 2, . . . , n, 

. ak Xk invmk (Xk) mod mk = ak,

because 
. Xk invmk (Xk) mod mk = 1.

Since all other terms in the sum are divisible by mk , they have no effect on the 
remainder and x mod mk = ak . 

For example, a solution for 

. 

x = 3 mod 5
x = 4 mod 7
x = 2 mod 3

is 
. 3 · 21 · 1 + 4 · 15 · 1 + 2 · 35 · 2 = 263.

Once we have found a solution x , we can create an infinite number of other 
solutions, because all numbers of the form 

. x + m1m2 · · · mn

are solutions. 

11.2 Combinatorics 

Combinatorics studies methods for counting combinations of objects. Usually, the 
goal is to find a way to count the combinations efficiently without generating each 
combination separately. In this section, we discuss a selection of combinatorial tech-
niques that can applied to a large number of problems.



164 11 Mathematics 

11.2.1 Binomial Coefficients 

The binomial coefficient
 n

k

 
gives the number of ways we can choose a subset 

of k elements from a set of n elements. For example,
 5
3

 = 10, because the set 
{1, 2, 3, 4, 5} has 10 subsets of 3 elements: 

. {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
. {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}

Binomial coefficients can be recursively calculated using the formula 

. 

 
n

k

 
=
 

n − 1

k − 1

 
+
 

n − 1

k

 
.

with the base cases 

. 

 
n

0

 
=
 

n

n

 
= 1.

To see why this formula works, consider an arbitrary element x in the set. If we 
decide to include x in our subset, the remaining task is to choose k − 1 elements 
from n − 1 elements. Then, if we do not include x in our subset, we have to choose 
k elements from n − 1 elements. 

Another way to calculate binomial coefficients is to use the formula 

. 

 
n

k

 
= n!

k!(n − k)!
which is based on the following reasoning: There are n! permutations of n elements. 
We go through all permutations and always include the first k elements of the per-
mutation in the subset. Since the order of the elements in the subset and outside the 
subset does not matter, the result is divided by k! and (n − k)!

For binomial coefficients, 

. 

 
n

k

 
=
 

n

n − k

 
,

because we actually divide a set of n elements into two subsets: the first contains k
elements and the second contains n − k elements. 

The sum of binomial coefficients is 

. 

 
n

0

 
+
 

n

1

 
+
 

n

2

 
+ · · · +

 
n

n

 
= 2n .

The reason for the name “binomial coefficient” can be seen when the binomial 
(a + b) is raised to the nth power: 

. (a + b)n =
 

n

0

 
anb0 +

 
n

1

 
an−1b1 + · · · +

 
n

n − 1

 
a1bn−1 +

 
n

n

 
a0bn .

Binomial coefficients also appear in Pascal’s triangle (Fig. 11.4) where each value 
equals the sum of two above values.
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Fig. 11.4 First 5 rows of 
Pascal’s triangle 

1 

1 1  

1 2 1  

1 3 3 1 

1 4 6 4 1  

Fig. 11.5 Scenario 1: Each 
box contains at most one ball 

Multinomial Coefficients The multinomial coefficient 

. 

 
n

k1, k2, . . . , km

 
= n!

k1!k2! · · · km ! ,
gives the number of ways a set of n elements can be divided into subsets of sizes 
k1, k2, . . . , km , where k1 + k2 + · · · + km = n. Multinomial coefficients can be seen 
as a generalization of binomial coefficients; ifm = 2, the above formula corresponds 
to the binomial coefficient formula. 

Boxes and Balls “Boxes and balls” is a useful model, where we count the ways to 
place k balls in n boxes. Let us consider three scenarios: 

Scenario 1: Each box can contain at most one ball. For example, when n = 5
and k = 2, there are 10 combinations (Fig. 11.5). In this scenario, the number of 
combinations is directly the binomial coefficient

 n
k

 
. 

Scenario 2: A box can contain multiple balls. For example, when n = 5 and 
k = 2, there are 15 combinations (Fig. 11.6). In this scenario, the process of placing 
the balls in the boxes can be represented as a string that consists of symbols “o” 
and “→”. Initially, assume that we are standing at the leftmost box. The symbol “o” 
means that we place a ball in the current box, and the symbol “→” means that we 
move to the next box to the right. Now each solution is a string of length k + n − 1
that contains k symbols “o” and n − 1 symbols “→”. For example, the upper-right 
solution in Fig. 11.6 corresponds to the string “→ → o → o →”. Thus, we can 
conclude that the number of combinations is

 k+n−1
k

 
. 

Scenario 3: Each box may contain at most one ball, and in addition, no two adjacent 
boxes may both contain a ball. For example, when n = 5 and k = 2, there are 6 
combinations (Fig. 11.7). In this scenario, we can assume that k balls are initially 
placed in the boxes and there is an empty box between each two adjacent boxes. The 
remaining task is to choose the positions for the remaining empty boxes. There are 
n − 2k + 1 such boxes and k + 1 positions for them. Thus, using the formula of 
Scenario 2, the number of solutions is

 n−k+1
n−2k+1

 
.
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Fig. 11.6 Scenario 2: A box may contain multiple balls 

Fig. 11.7 Scenario 3: Each box contains at most one ball and no two adjacent boxes contain a ball 

11.2.2 Catalan Numbers 

The Catalan number Cn gives the number of valid parenthesis expressions that 
consist of n left parentheses and n right parentheses. For example, C3 = 5, because 
we can construct a total of five parenthesis expressions using three left parentheses 
and three right parentheses: 

• ()()() 
• (())() 
• ()(()) 
• ((())) 
• (()()) 

What is exactly a valid parenthesis expression? The following rules precisely 
define all valid parenthesis expressions: 

• An empty parenthesis expression is valid. 
• If an expression A is valid, then also the expression ( A) is valid. 
• If expressions A and B are valid, then also the expression AB is valid. 

Another way to characterize valid parenthesis expressions is that if we choose 
any prefix of such an expression, it has to contain at least as many left parentheses 
as right parentheses, and the complete expression has to contain an equal number of 
left and right parentheses. 

Catalan numbers can be calculated using the formula 

.Cn =
n−1 

i=0

Ci Cn−i−1
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Fig. 11.8 There are 5 binary 
trees of 3 nodes 

where we consider the ways to divide the parenthesis expression into two parts that 
are both valid parenthesis expressions, and the first part is as short as possible but not 
empty. For each i , the first part contains i + 1 pairs of parentheses and the number 
of valid expressions is the product of the following values: 

• Ci : the number of ways to construct a parenthesis expression using the parentheses 
of the first part, not counting the outermost parentheses 

• Cn−i−1: the number of ways to construct a parenthesis expression using the paren-
theses of the second part 

The base case is C0 = 1, because we can construct an empty parenthesis expres-
sion using zero pairs of parentheses. 

Catalan numbers can also be calculated using the formula 

. Cn = 1

n + 1

 
2n

n

 
,

which can be explained as follows: 
There are a total of

 2n
n

 
ways to construct a (not necessarily valid) parenthesis 

expression that contains n left parentheses and n right parentheses. Let us calculate 
the number of such expressions that are not valid. 

If a parenthesis expression is not valid, it has to contain a prefix where the number 
of right parentheses exceeds the number of left parentheses. The idea is to pick 
the shortest such prefix and reverse each parenthesis in the prefix. For example, 
the expression ())()( has the prefix ()), and after reversing the parentheses, the 
expression becomes )((()(. The resulting expression consists of n+1 left and n−1
right parentheses. In fact, there is a unique way to produce any expression of n + 1
left and n −1 right parentheses in the above manner. The number of such expressions 
is
 2n

n+1

 
, which equals the number of non-valid parenthesis expressions. Thus, the 

number of valid parenthesis expressions can be calculated using the formula 

. 

 
2n

n

 
−
 

2n

n + 1

 
=
 
2n

n

 
− n

n + 1

 
2n

n

 
= 1

n + 1

 
2n

n

 
.

Counting Trees We can also count certain tree structures using Catalan numbers. 
First, Cn equals the number of binary trees of n nodes, assuming that left and right 
children are distinguished. For example, since C3 = 5, there are 5 binary trees of 3 
nodes (Fig. 11.8). Then, Cn also equals the number of general rooted trees of n + 1
nodes. For example, there are 5 rooted trees of 4 nodes (Fig. 11.9).
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Fig. 11.9 There are 5 rooted 
trees of 4 nodes 

11.2.3 Inclusion-Exclusion 

Inclusion-exclusion is a technique that can be used for counting the size of a union of 
sets when the sizes of the intersections are known, and vice versa. A simple example 
of the technique is the formula 

. |A ∪ B| = |A| + |B| − |A ∩ B|,
where A and B are sets and |X | denotes the size of X . Figure 11.10 illustrates the 
formula. In this case, we want to calculate the size of the union A∪B that corresponds 
to the area of the region that belongs to at least one circle in Fig. 11.10. We can  
calculate the area of A ∪ B by first summing up the areas of A and B and then 
subtracting the area of A ∩ B from the result. 

The same idea can be applied when the number of sets is larger. When there are 
three sets, the inclusion-exclusion formula is 

. |A ∪ B ∪ C | = |A| + |B| + |C | − |A ∩ B| − |A ∩ C | − |B ∩ C | + |A ∩ B ∩ C |,
which corresponds to Fig. 11.11. 

In the general case, the size of the union X1 ∪ X2 ∪ · · · ∪ Xn can be calculated by 
going through all possible intersections that contain some of the sets X1, X2, . . . , Xn . 
If an intersection contains an odd number of sets, its size is added to the answer, and 
otherwise its size is subtracted from the answer. 

Note that there are similar formulas for calculating the size of an intersection from 
the sizes of unions. For example, 

. |A ∩ B| = |A| + |B| − |A ∪ B|

Fig. 11.10 The inclusion-
exclusion principle for two 
sets A BA B  

Fig. 11.11 The inclusion-
exclusion principle for three 
sets 

A B 

C 

A B  

A C  B C  
A B  C
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and 

. |A ∩ B ∩ C | = |A| + |B| + |C | − |A ∪ B| − |A ∪ C | − |B ∪ C | + |A ∪ B ∪ C |.

Counting Derangements As an example, let us count the number of derangements 
of {1, 2, . . . , n}, i.e., permutations where no element remains in its original place. 
For example, when n = 3, there are two derangements: (2, 3, 1) and (3, 1, 2). 

One approach for solving the problem is to use inclusion-exclusion. Let Xk be 
the set of permutations that contain the element k at position k. For example, when 
n = 3, the sets are as follows: 

. 

X1 = {(1, 2, 3), (1, 3, 2)}
X2 = {(1, 2, 3), (3, 2, 1)}
X3 = {(1, 2, 3), (2, 1, 3)}

The number of derangements equals 

. n! − |X1 ∪ X2 ∪ · · · ∪ Xn|,
so it suffices to calculate |X1∪ X2∪· · ·∪ Xn|. Using inclusion-exclusion, this reduces 
to calculating sizes of intersections. Moreover, an intersection of c distinct sets Xk

has (n − c)! elements, because such an intersection consists of all permutations that 
contain c elements in their original places. Thus, we can efficiently calculate the 
sizes of the intersections. For example, when n = 3, 

. 

|X1 ∪ X2 ∪ X3| = |X1| + |X2| + |X3|
−|X1 ∩ X2| − |X1 ∩ X3| − |X2 ∩ X3|
+|X1 ∩ X2 ∩ X3|

= 2 + 2 + 2 − 1 − 1 − 1 + 1
= 4,

so the number of derangements is 3! − 4 = 2. 
It turns out that the problem can also be solved without using inclusion-exclusion. 

Let f (n) denote the number of derangements for {1, 2, . . . , n}. We can use the 
following recursive formula: 

. f (n) =

⎧
⎪⎨

⎪⎩

0 n = 1

1 n = 2

(n − 1)( f (n − 2) + f (n − 1)) n > 2

The formula can be proved by considering the possibilities how the element 1 
changes in the derangement. There are n − 1 ways to choose an element x that 
replaces the element 1. In each such choice, there are two options: 

Option 1: We also replace the element x with the element 1. After this, the remain-
ing task is to construct a derangement of n − 2 elements. 

Option 2: We replace the element x with some other element than 1. Now we 
have to construct a derangement of n − 1 element, because we cannot replace the 
element x with the element 1, and all other elements must be changed.
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11.2.4 Burnside’s Lemma 

Burnside’s lemma can be used to count the number of distinct combinations so that 
symmetric combinations are counted only once. Burnside’s lemma states that the 
number of combinations is 

. 
1

n

n 

k=1

c(k),

where there are n ways to change the position of a combination, and there are c(k)

combinations that remain unchanged when the kth way is applied. 
As an example, let us calculate the number of necklaces of n pearls, where 

each pearl has m possible colors. Two necklaces are symmetric if they are simi-
lar after rotating them. For example, Fig. 11.12 shows four symmetric necklaces, 
which should be counted as a single combination. 

There are n ways to change the position of a necklace, because it can be rotated 
k = 0, 1, . . . , n −1 steps clockwise. For example, if k = 0, all mn necklaces remain 
the same, and if k = 1, only the m necklaces where each pearl has the same color 
remain the same. In the general case, a total of mgcd(k,n) necklaces remain the same, 
because blocks of pearls of size gcd(k, n) will replace each other. Thus, according 
to Burnside’s lemma, the number of distinct necklaces is 

. 
1

n

n−1 

k=0

mgcd(k,n).

For example, the number of distinct necklaces of 4 pearls and 3 colors is 

. 
34 + 3 + 32 + 3

4
= 24.

11.2.5 Cayley’s Formula 

Cayley’s formula states that there are a total of nn−2 distinct labeled trees of n nodes. 
The nodes are labeled 1, 2, . . . , n, and two trees are considered distinct if either their 
structure or labeling is different. For example, when n = 4, there are 44−2 = 16
labeled trees, shown in Fig. 11.13. 

Cayley’s formula can be proved using Prüfer codes. A Prüfer code is a sequence 
of n − 2 numbers that describes a labeled tree. The code is constructed by following 
a process that removes n − 2 leaves from the tree. At each step, the leaf with the 
smallest label is removed, and the label of its only neighbor is added to the code. 
For example, the Prüfer code of the tree in Fig. 11.14 is [4, 4, 2], because we remove 
leaves 1, 3 and 4. 

Fig. 11.12 Four symmetric 
necklaces
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Fig. 11.13 There are 16 
distinct labeled trees of 4 
nodes 

1 

2 3 4 

2 

1 3 4 

3 

1 2 4 

4 

1 2 3 

1 2 3 4 1 2 4 3 1 3 2 4 

1 3 4 2 1 4 2 3 1 4 3 2 

2 1 3 4 2 1 4 3 2 3 1 4 

2 4 1 3 3 1 2 4 3 2 1 4 

Fig. 11.14 The Prüfer code 
of this tree is [4, 4, 2] 1 2 

3 4 

5 

We can construct a Prüfer code for any tree, and more importantly, the original 
tree can be reconstructed from a Prüfer code. Hence, the number of labeled trees of 
n nodes equals nn−2, the number of Prüfer codes of length n. 

11.3 Matrices 

A matrix is a mathematical concept that corresponds to a two-dimensional array in 
programming. For example, 

. A =
⎡

⎣
6 13 7 4
7 0 8 2
9 5 4 18

⎤

⎦

is a matrix of size 3 × 4, i.e., it has 3 rows and 4 columns. The notation [i, j] refers 
to the element in row i and column j in a matrix. For example, in the above matrix, 
A[2, 3] = 8 and A[3, 1] = 9. 

A special case of a matrix is a vector that is a one-dimensional matrix of size 
n × 1. For example, 

. V =
⎡

⎣
4
7
5

⎤

⎦

is a vector that contains three elements. 
The transpose AT of a matrix A is obtained when the rows and columns of A are 

swapped, i.e., AT [i, j] = A[ j, i]: 

.AT =

⎡

⎢⎢⎣

6 7 9
13 0 5
7 8 4
4 2 18

⎤

⎥⎥⎦
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A matrix is a square matrix if it has the same number of rows and columns. For 
example, the following matrix is a square matrix: 

. S =
⎡

⎣
3 12 4
5 9 15
0 2 4

⎤

⎦ .

11.3.1 Matrix Operations 

The sum A + B of matrices A and B is defined if the matrices are of the same size. 
The result is a matrix where each element has the sum of the corresponding elements 
in A and B. For example, 

. 

 
6 1 4
3 9 2

 
+
 
4 9 3
8 1 3

 
=
 
6 + 4 1 + 9 4 + 3
3 + 8 9 + 1 2 + 3

 
=
 
10 10 7
11 10 5

 
.

Multiplying a matrix A by a value x means that each element of A is multiplied 
by x . For example, 

. 2 ·
 
6 1 4
3 9 2

 
=
 
2 · 6 2 · 1 2 · 4
2 · 3 2 · 9 2 · 2

 
=
 
12 2 8
6 18 4

 
.

The product AB of matrices A and B is defined if A is of size a × n and B is of 
size n × b, i.e., the width of A equals the height of B. The result is a matrix of size 
a × b whose elements are calculated using the formula 

. AB[i, j] =
n 

k=1

(A[i, k] · B[k, j]).

The idea is that each element of AB is a sum of products of elements of A and B
according to Fig. 11.15. For example, 

. 

⎡

⎣
1 4
3 9
8 6

⎤

⎦ ·
 
1 6
2 9

 
=
⎡

⎣
1 · 1 + 4 · 2 1 · 6 + 4 · 9
3 · 1 + 9 · 2 3 · 6 + 9 · 9
8 · 1 + 6 · 2 8 · 6 + 6 · 9

⎤

⎦ =
⎡

⎣
9 42
21 99
20 102

⎤

⎦ .

Fig. 11.15 The intuition 
behind the matrix 
multiplication formula 

A AB  

B
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We can directly use the above formula to calculate the product C of two n × n
matrices A and B in O(n3) time 1: 

for (int i = 1; i <= n; i++) { 
for (int j = 1; j <= n; j++) { 

for (int k = 1; k <= n; k++) { 
C[i][j] += A[i][k]*B[k][j]; 
} 

} 
} 

Matrix multiplication is associative, so A(BC) = (AB)C holds, but it is not 
commutative, so usually AB  = B A. 

An identity matrix is a square matrix where each element on the diagonal is 1 
and all other elements are 0. For example, the following matrix is the 3 × 3 identity 
matrix: 

. I =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

Multiplying a matrix by an identity matrix does not change it. For example, 

. 

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ·
⎡

⎣
1 4
3 9
8 6

⎤

⎦ =
⎡

⎣
1 4
3 9
8 6

⎤

⎦ and

⎡

⎣
1 4
3 9
8 6

⎤

⎦ ·
 
1 0
0 1

 
=
⎡

⎣
1 4
3 9
8 6

⎤

⎦ .

The power Ak of a matrix A is defined if A is a square matrix. The definition is 
based on matrix multiplication: 

. Ak = A · A · A · · · A    
k times

For example, 

. 

 
2 5
1 4

 3
=
 
2 5
1 4

 
·
 
2 5
1 4

 
·
 
2 5
1 4

 
=
 
48 165
33 114

 
.

In addition, A0 is an identity matrix. For example, 

. 

 
2 5
1 4

 0
=
 
1 0
0 1

 
.

The matrix Ak can be efficiently calculated in O(n3 log k) time using the algorithm 
in Sect. 11.1.4. For example, 

.

 
2 5
1 4

 8
=
 
2 5
1 4

 4
·
 
2 5
1 4

 4
.

1 While the straightforward O(n3) time algorithm is sufficient in competitive programming, there 
are theoretically more efficient algorithms. In 1969, Strassen [ 1] discovered the first such algorithm, 
now called Strassen’s algorithm, whose time complexity is O(n2.81). The best current algorithm, 
proposed by Le Gall [ 2] in 2014, works in O(n2.37) time. 
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11.3.2 Linear Recurrences 

A linear recurrence is a function f (n) whose initial values are f (0), f (1), . . . ,
f (k − 1) and larger values are calculated recursively using the formula 

. f (n) = c1 f (n − 1) + c2 f (n − 2) + · · · + ck f (n − k),

where c1, c2, · · · , ck are constant coefficients. 
Dynamic programming can be used to calculate any value of f (n) in O(kn) time 

by calculating all values of f (0), f (1), . . . , f (n) one after another. However, as 
we will see next, we can also calculate the value of f (n) in O(k3 log n) time using 
matrix operations. This is an important improvement if k is small and n is large. 

Fibonacci Numbers A simple example of a linear recurrence is the following func-
tion that defines the Fibonacci numbers: 

. 

f (0) = 0
f (1) = 1
f (n) = f (n − 1) + f (n − 2)

In this case, k = 2 and c1 = c2 = 1. 
To efficiently calculate Fibonacci numbers, we represent the Fibonacci formula 

as a square matrix X of size 2 × 2, for which the following holds: 

. X ·
 

f (i)
f (i + 1)

 
=
 

f (i + 1)
f (i + 2)

 

Thus, values f (i) and f (i + 1) are given as “input” for X , and X calculates values 
f (i + 1) and f (i + 2) from them. It turns out that such a matrix is 

. X =
 
0 1
1 1

 
.

For example, 

. 

 
0 1
1 1

 
·
 

f (5)
f (6)

 
=
 
0 1
1 1

 
·
 
5
8

 
=
 
8
13

 
=
 

f (6)
f (7)

 
.

Thus, we can calculate f (n) using the formula 

. 

 
f (n)

f (n + 1)

 
= Xn ·

 
f (0)
f (1)

 
=
 
0 1
1 1

 n

·
 
0
1

 
.

The value of Xn can be calculated in O(log n) time, so the value of f (n) can also 
be calculated in O(log n) time. 

General Case Let us now consider the general case where f (n) is any linear recur-
rence. Again, our goal is to construct a matrix X for which 

.X ·

⎡

⎢⎢⎢⎣

f (i)
f (i + 1)

...

f (i + k − 1)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

f (i + 1)
f (i + 2)

...

f (i + k)

⎤

⎥⎥⎥⎦ .
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Such a matrix is 

. X =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ck ck−1 ck−2 · · · c1

⎤

⎥⎥⎥⎥⎥⎦
.

In the first k − 1 rows, each element is 0 except that one element is 1. These rows 
replace f (i) with f (i + 1), f (i + 1) with f (i + 2), and so on. Then, the last row 
contains the coefficients of the recurrence to calculate the new value f (i + k). 

Now, f (n) can be calculated in O(k3 log n) time using the formula 

. 

⎡

⎢⎢⎢⎣

f (n)

f (n + 1)
...

f (n + k − 1)

⎤

⎥⎥⎥⎦ = Xn ·

⎡

⎢⎢⎢⎣

f (0)
f (1)
...

f (k − 1)

⎤

⎥⎥⎥⎦ .

11.3.3 Graphs and Matrices 

The powers of adjacency matrices of graphs have interesting properties. When M is 
an adjacency matrix of an unweighted graph, the matrix Mn gives for each node pair 
(a, b) the number of paths that begin at node a, end at node b and contain exactly n
edges. It is allowed that a node appears on a path several times. 

As an example, consider the graph in Fig. 11.16a. The adjacency matrix of this 
graph is 

. M =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
1 0 0 0 1 1
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Fig. 11.16 Example graphs 
for matrix operations 1 

4 

2 3 

5 6 

(a) 

1 

4 

2 3 

5 6 

4 1 

2 4 

1 2 3 

2 
(b)
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Then, the matrix 

. M4 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 0
2 0 0 0 2 2
0 2 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

gives the number of paths that contain exactly 4 edges. For example, M4[2, 5] = 2, 
because there are two paths of 4 edges from node 2 to node 5: 2 → 1 → 4 → 2 → 5
and 2 → 6 → 3 → 2 → 5. 

Using a similar idea in a weighted graph, we can calculate for each node pair 
(a, b) the shortest length of a path that goes from a to b and contains exactly n
edges. To calculate this, we define matrix multiplication in a new way, so that we do 
not calculate numbers of paths but minimize lengths of paths. 

As an example, consider the graph in Fig. 11.16b. Let us construct an adjacency 
matrix where ∞ means that an edge does not exist, and other values correspond to 
edge weights. The matrix is 

. M =

⎡

⎢⎢⎢⎢⎢⎢⎣

∞ ∞ ∞ 4 ∞ ∞
2 ∞ ∞ ∞ 1 2
∞ 4 ∞ ∞ ∞ ∞
∞ 1 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 3 ∞ 2 ∞

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Instead of the formula 

. AB[i, j] =
n 

k=1

(A[i, k] · B[k, j])

we now use the formula 

. AB[i, j] = n
min
k=1

(A[i, k] + B[k, j])
for matrix multiplication, so we calculate minima instead of sums, and sums of 
elements instead of products. After this modification, matrix powers minimize path 
lengths in the graph. For example, as 

. M4 =

⎡

⎢⎢⎢⎢⎢⎢⎣

∞ ∞ 10 11 9 ∞
9 ∞ ∞ ∞ 8 9
∞ 11 ∞ ∞ ∞ ∞
∞ 8 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 12 13 11 ∞

⎤

⎥⎥⎥⎥⎥⎥⎦
,

we can conclude that the minimum length of a path of 4 edges from node 2 to node 
5 is 8. Such a path is 2 → 1 → 4 → 2 → 5.
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11.3.4 Gaussian Elimination 

Gaussian elimination is a systematic way to solve a group of linear equations. The 
idea is to represent the equations as a matrix, and then apply a sequence of sim-
ple matrix row operations that both preserve the information of the equations and 
determine a value for each variable. 

Suppose that we are given a group of n linear equations, each of which contains 
n variables: 

. 

a1,1x1 + a1,2x2 + · · · + a1,n xn = b1
a2,1x1 + a2,2x2 + · · · + a2,n xn = b2

· · ·
an,1x1 + an,2x2 + · · · + an,n xn = bn

We represent the equations as a matrix as follows: 

. 

⎡

⎢⎢⎢⎣

a1,1 a1,2 · · · a1,n b1
a2,1 a2,2 · · · a2,n b2
...

...
. . .

...
...

an,1 an,2 · · · an,n bn

⎤

⎥⎥⎥⎦

To solve the equations, we want to transform the matrix to 

. 

⎡

⎢⎢⎢⎣

1 0 · · · 0 c1
0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 cn

⎤

⎥⎥⎥⎦ ,

which tells us that the solution is x1 = c1, x2 = c2, . . . , xn = cn . To do this, we use 
three types of matrix row operations: 

1. Swap the values of two rows. 
2. Multiply each value in a row by a nonnegative constant. 
3. Add a row, multiplied by a constant, to another row. 

Each above operation preserves the information of the equations, which guarantees 
that the final solution agrees with the original equations. We can systematically 
process each matrix column so that the resulting algorithm works in O(n3) time. 

As an example, consider the following group of equations: 

. 

2x1 + 4x2 + x3 = 16
x1 + 2x2 + 5x3 = 17

3x1 + x2 + x3 = 8

In this case the matrix is as follows: 

.

⎡

⎣
2 4 1 16
1 2 5 17
3 1 1 8

⎤

⎦
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We process the matrix column by column. At each step, we make sure that the 
current column has a one in the correct position and all other values are zeros. To 
process the first column, we first multiply the first row by 12 : 

. 

⎡

⎣
1 2 1

2 8
1 2 5 17
3 1 1 8

⎤

⎦

Then we add the first row to the second row (multiplied by −1) and the first row to 
the third row (multiplied by −3): 

. 

⎡

⎢⎢⎣

1 2 1
2 8

0 0 9
2 9

0 −5 − 1
2 −16

⎤

⎥⎥⎦

After this, we process the second column. Since the second value in the second 
row is zero, we first swap the second and third row: 

. 

⎡

⎢⎢⎣

1 2 1
2 8

0 −5 − 1
2 −16

0 0 9
2 9

⎤

⎥⎥⎦

Then we multiply the second row by − 1
5 and add it to the first row (multiplied by 

−2): 

. 

⎡

⎢⎢⎣

1 0 3
10

8
5

0 1 1
10

16
5

0 0 9
2 9

⎤

⎥⎥⎦

Finally, we process the third column by first multiplying it by 2
9 and then adding 

it to the first row (multiplied by − 3
10 ) and to the second row (multiplied by − 1

10 ): 

. 

⎡

⎣
1 0 0 1
0 1 0 3
0 0 1 2

⎤

⎦

Now the last column of the matrix tells us that the solution to the original group 
of equations is x1 = 1, x2 = 3, x3 = 2. 

Note that Gaussian elimination only works if the group of equations has a unique 
solution. For example, the group 

. 
x1 + x2 = 2

2x1 + 2x2 = 4

has an infinite number of solutions, because both the equations contain the same 
information. On the other hand, the group 

. 
x1 + x2 = 5
x1 + x2 = 7

cannot be solved, because the equations are contradictory. If there is no unique 
solution, we will notice this during the algorithm, because at some point we will not 
be able to successfully process a column.
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11.4 Probability 

A probability is a real number between 0 and 1 that indicates how probable an event 
is. If an event is certain to happen, its probability is 1, and if an event is impossible, 
its probability is 0. The probability of an event is denoted P(· · · ) where the three 
dots describe the event. For example, when throwing a dice, there are six possible 
outcomes 1, 2, . . . , 6, and P(“the outcome is even”) = 1/2. 

To calculate the probability of an event, we can either use combinatorics or sim-
ulate the process that generates the event. As an example, consider an experiment 
where we draw the three top cards from a shuffled deck of cards. 2 What is the 
probability that each card has the same value (for example, ♠8, ♣8 and ♦8)? 

One way to calculate the probability is to use the formula 

. 
number of desired outcomes

total number of outcomes
.

In our example, the desired outcomes are those in which the value of each card is 
the same. There are 13

 4
3

 
such outcomes, because there are 13 possibilities for the 

value of the cards and
 4
3

 
ways to choose 3 suits from 4 possible suits. Then, there 

are a total of
 52
3

 
outcomes, because we choose 3 cards from 52 cards. Thus, the 

probability of the event is 

. 
13
 4
3

 
 52
3

 = 1

425
.

Another way to calculate the probability is to simulate the process that generates 
the event. In our example, we draw three cards, so the process consists of three steps. 
We require that each step of the process is successful. 

Drawing the first card certainly succeeds, because any card is fine. The second 
step succeeds with probability 3/51, because there are 51 cards left and 3 of them 
have the same value as the first card. In a similar way, the third step succeeds with 
probability 2/50. Thus, the probability that the entire process succeeds is 

. 1 · 3

51
· 2

50
= 1

425
.

11.4.1 Working with Events 

A convenient way to represent events is to use sets. For example, the possible out-
comes when throwing a dice are {1, 2, 3, 4, 5, 6}, and any subset of this set is an 
event. The event “the outcome is even” corresponds to the set {2, 4, 6}. 

Each outcome x is assigned a probability p(x), and the probability P(X) of an 
event X can be calculated using the formula

2 A deck of cards consists of 52 cards. Each card has a suit (spade ♠, diamond ♦, club ♣ or heart 
♥) and a value (an integer between 1 and 13). 
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. P(X) =
 

x∈X

p(x).

For example, when throwing a dice, p(x) = 1/6 for each outcome x , so the proba-
bility of the event “the outcome is even” is 

. p(2) + p(4) + p(6) = 1/2.

Since the events are represented as sets, we can manipulate them using standard 
set operations: 

• The complement Ā means “A does not happen”. For example, when throwing a 
dice, the complement of A = {2, 4, 6} is Ā = {1, 3, 5}. 

• The union A ∪ B means “ A or B happen”. For example, the union of A = {2, 5}
and B = {4, 5, 6} is A ∪ B = {2, 4, 5, 6}. 

• The intersection A ∩ B means “A and B happen”. For example, the intersection 
of A = {2, 5} and B = {4, 5, 6} is A ∩ B = {5}. 

Complement The probability of Ā is calculated using the formula 

. P( Ā) = 1 − P(A).

Sometimes, we can solve a problem easily using complements by solving the 
opposite problem. For example, the probability of getting at least one six when 
throwing a dice ten times is 

. 1 − (5/6)10.

Here 5/6 is the probability that the outcome of a single throw is not six, and (5/6)10

is the probability that none of the ten throws is a six. The complement of this is the 
answer to the problem. 

Union The probability of A ∪ B is calculated using the formula 

. P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

For example, consider the events A = “the outcome is even” and B = “the outcome 
is less than 4” when throwing a dice. In this case, the event A∪ B means “the outcome 
is even or less than 4”, and its probability is 

. P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 1/2 + 1/2 − 1/6 = 5/6.

If the events A and B are disjoint, i.e., A ∩ B is empty, the probability of the event 
A ∪ B is simply 

. P(A ∪ B) = P(A) + P(B).

Intersection The probability of A ∩ B can be calculated using the formula 

. P(A ∩ B) = P(A)P(B|A),

where P(B|A) is the conditional probability that B happens assuming that we know 
that A happens. For example, using the events of our previous example, P(B|A) =
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1/3, because we know that the outcome belongs to the set {2, 4, 6}, and one of the 
outcomes is less than 4. Thus, 

. P(A ∩ B) = P(A)P(B|A) = 1/2 · 1/3 = 1/6.

Events A and B are independent if 

. P(A|B) = P(A) and P(B|A) = P(B),

which means that the fact that B happens does not change the probability of A, and 
vice versa. In this case, the probability of the intersection is 

. P(A ∩ B) = P(A)P(B).

11.4.2 Random Variables 

A random variable is a value that is generated by a random process. For example, 
when throwing two dice, a possible random variable is 

. X = “the sum of the outcomes”.

For example, if the outcomes are [4, 6] (meaning that we first throw a four and then 
a six), then the value of X is 10. 

We denote by P(X = x) the probability that the value of a random variable X
is x . For example, when throwing two dice, P(X = 10) = 3/36, because the total 
number of outcomes is 36 and there are three possible ways to obtain the sum 10: 
[4, 6], [5, 5] and [6, 4]. 
Expected Values The expected value E[X ] indicates the average value of a random 
variable X . The expected value can be calculated as a sum 

. 

 

x

P(X = x)x,

where x goes through all possible values of X . 
For example, when throwing a dice, the expected outcome is 

. 1/6 · 1 + 1/6 · 2 + 1/6 · 3 + 1/6 · 4 + 1/6 · 5 + 1/6 · 6 = 7/2.

A useful property of expected values is linearity. It means that the sum E[X1 +
X2 + · · · + Xn] always equals the sum E[X1] + E[X2] + · · · + E[Xn]. This holds 
even if random variables depend on each other. For example, when throwing two 
dice, the expected sum of their values is 

. E[X1 + X2] = E[X1] + E[X2] = 7/2 + 7/2 = 7.

Let us now consider a problem where n balls are randomly placed in n boxes, and 
our task is to calculate the expected number of empty boxes. Each ball has an equal 
probability to be placed in any of the boxes. 

For example, Fig. 11.17 shows the possibilities when n = 2. In this case, the 
expected number of empty boxes is 

.
0 + 0 + 1 + 1

4
= 1

2
.
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Fig. 11.17 Possible ways to 
place two balls in two boxes 

Then, in the general case, the probability that a single box is empty is 

. 

 n − 1

n

 n
,

because no ball should be placed in it. Hence, using linearity, the expected number 
of empty boxes is 

. n ·
 n − 1

n

 n
.

Distributions The distribution of a random variable X shows the probability of each 
value that X may have. The distribution consists of values P(X = x). For example, 
when throwing two dice, the distribution for their sum is: 

x 2 3 4 5 6 7 8 9 10 11 12 
P(X = x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

In a uniform distribution, the random variable X has n possible values a, a +
1, . . . , b and the probability of each value is 1/n. For example, when throwing a 
dice, a = 1, b = 6 and P(X = x) = 1/6 for each value x . 

The expected value of X in a uniform distribution is 

. E[X ] = a + b

2
.

In a binomial distribution, n attempts are made and the probability that a single 
attempt succeeds is p. The random variable X counts the number of successful 
attempts, and the probability of a value x is 

. P(X = x) = px (1 − p)n−x
 

n

x

 
,

where px and (1 − p)n−x correspond to successful and unsuccessful attempts, and  n
x

 
is the number of ways we can choose the order of the attempts. 
For example, when throwing a dice ten times, the probability of throwing a six 

exactly three times is (1/6)3(5/6)7
 10
3

 
. 

The expected value of X in a binomial distribution is 

. E[X ] = pn.

In a geometric distribution, the probability that an attempt succeeds is p, and we 
continue until the first success happens. The random variable X counts the number 
of attempts needed, and the probability of a value x is 

. P(X = x) = (1 − p)x−1 p,

where (1 − p)x−1 corresponds to the unsuccessful attempts and p corresponds to 
the first successful attempt.
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For example, if we throw a dice until we get a six, the probability that the number 
of throws is exactly 4 is (5/6)31/6. 

The expected value of X in a geometric distribution is 

. E[X ] = 1

p
.

11.4.3 Markov Chains 

A Markov chain is a random process that consists of states and transitions between 
them. For each state, we know the probabilities of moving to other states. A Markov 
chain can be represented as a graph whose nodes correspond to the states and edges 
describe the transitions. 

As an example, consider a problem where we are in floor 1 in an n floor building. 
At each step, we randomly walk either one floor up or one floor down, except that 
we always walk one floor up from floor 1 and one floor down from floor n. What is 
the probability of being in floor m after k steps? 

In this problem, each floor of the building corresponds to a state in a Markov 
chain. For example, Fig. 11.18 shows the chain when n = 5. 

The probability distribution of a Markov chain is a vector [p1, p2, . . . , pn], where 
pk is the probability that the current state is k. The formula p1 + p2 + · · · + pn = 1
always holds. 

In the above scenario, the initial distribution is [1, 0, 0, 0, 0], because we always 
begin in floor 1. The next distribution is [0, 1, 0, 0, 0], because we can only move 
from floor 1 to floor 2. After this, we can either move one floor up or one floor down, 
so the next distribution is [1/2, 0, 1/2, 0, 0], and so on. 

An efficient way to simulate the walk in a Markov chain is to use dynamic pro-
gramming. The idea is to maintain the probability distribution, and at each step go 
through all possibilities how we can move. Using this method, we can simulate a 
walk of m steps in O(n2m) time. 

The transitions of a Markov chain can also be represented as a matrix that updates 
the probability distribution. In the above scenario, the matrix is 

. 

⎡

⎢⎢⎢⎢⎣

0 1/2 0 0 0
1 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1
0 0 0 1/2 0

⎤

⎥⎥⎥⎥⎦
.

Fig. 11.18 A Markov chain  
for a building that consists of 
five floors 1 2 3 4 5 

1 1 2 1 2 1 2  

11 21 21 2
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When we multiply a probability distribution by this matrix, we get the new dis-
tribution after moving one step. For example, we can move from the distribution 
[1, 0, 0, 0, 0] to the distribution [0, 1, 0, 0, 0] as follows: 

. 

⎡

⎢⎢⎢⎢⎣

0 1/2 0 0 0
1 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1
0 0 0 1/2 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1
0
0
0
0

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0
1
0
0
0

⎤

⎥⎥⎥⎥⎦
.

By calculating matrix powers efficiently, we can calculate the distribution after m
steps in O(n3 logm) time. 

11.4.4 Randomized Algorithms 

Sometimes we can use randomness for solving a problem, even if the problem is 
not related to probabilities. A randomized algorithm is an algorithm that is based on 
randomness. There are two popular types of randomized algorithms: 

• AMonte Carlo algorithm is an algorithm that may sometimes give a wrong answer. 
For such an algorithm to be useful, the probability of a wrong answer should be 
small. 

• A Las Vegas algorithm is an algorithm that always gives the correct answer, but its 
running time varies randomly. The goal is to design an algorithm that is efficient 
with high probability. 

Next we will go through three example problems that can be solved using such 
algorithms. 

Order Statistics The kth order statistic of an array is the element at position k
after sorting the array in increasing order. It is easy to calculate any order statistic 
in O(n log n) time by first sorting the array, but is it really needed to sort the entire 
array just to find one element? 

It turns out that we can find order statistics using a Las Vegas algorithm, whose 
expected running time is O(n). The algorithm chooses a random element x from 
the array, and moves elements smaller than x to the left part of the array, and all 
other elements to the right part of the array. This takes O(n) time when there are n
elements. 

Assume that the left part contains a elements and the right part contains b elements. 
If a = k, element x is the kth order statistic. Otherwise, if a > k, we recursively find 
the kth order statistic for the left part, and if a < k, we recursively find the r th order 
statistic for the right part where r = k − a − 1. The search continues in a similar 
way, until the desired element has been found. 

When each element x is randomly chosen, the size of the array about halves at 
each step, so the time complexity for finding the kth order statistic is about 

.n + n/2 + n/4 + n/8 + · · · = O(n).
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Note that the worst case of the algorithm requires O(n2) time, because it is possible 
that x is always chosen in such a way that it is one of the smallest or largest elements 
in the array and O(n) steps are needed. However, the probability of this is so small 
that we may assume that this never happens in practice. 

Verifying Matrix Multiplication Given matrices A, B, and C , each of size n × n, 
our next problem is to verify if AB = C holds. Of course, we can solve the problem 
by just calculating the product AB in O(n3) time, but one could hope that verifying 
the answer would by easier than to calculate it from scratch. 

It turns out that we can solve the problem using a Monte Carlo algorithm whose 
time complexity is only O(n2). The idea is simple: we choose a random vector X
of n elements, and calculate the matrices AB X and C X . If AB X = C X , we report 
that AB = C , and otherwise we report that AB  = C . 

The time complexity of the algorithm is O(n2), because we can calculate the 
matrices AB X and C X in O(n2) time. We can calculate the matrix AB X efficiently 
by using the representation A(B X), so only two multiplications of n × n and n × 1
size matrices are needed. 

The drawback of the algorithm is that there is a small chance that the algorithm 
makes a mistake when it reports that AB = C . For example, 

. 

 
6 8
1 3

 
 =
 
8 7
3 2

 
,

but 

. 

 
6 8
1 3

  
3
6

 
=
 
8 7
3 2

  
3
6

 
.

However, in practice, the probability that the algorithm makes a mistake is small, 
and we can decrease the probability by verifying the result using multiple random 
vectors X before reporting that AB = C . 

Graph Coloring Given a graph that contains n nodes andm edges, our final problem 
is to find a way to color the nodes using two colors so that for at least m/2 edges, 
the endpoints have different colors. For example, Fig. 11.19 shows a valid coloring 
of a graph. In this case the graph contains seven edges, and the endpoins of five of 
them have different colors in the coloring. 

The problem can be solved using a Las Vegas algorithm that generates random 
colorings until a valid coloring has been found. In a random coloring, the color of 
each node is independently chosen so that the probability of both colors is 1/2. 
Hence, the expected number of edges whose endpoints have different colors is m/2. 
Since it is expected that a random coloring is valid, we will quickly find a valid 
coloring in practice. 

Fig. 11.19 A valid coloring 
of a graph 

1 2 

3 4 

5
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11.5 Game Theory 

In this section, we focus on two-player games where the players move alternately, 
have the same set of moves available, and there are no random elements. Our goal 
is to find a strategy that we can follow to win the game no matter what the opponent 
does, if such a strategy exists. 

It turns out that there is a general strategy for such games, and we can analyze the 
games using nim theory. First, we will analyze simple games where players remove 
sticks from heaps, and after this, we will generalize the strategy used in those games 
to other games. 

11.5.1 Game States 

Let us consider a game that starts with a heap of n sticks. Two players move alter-
nately, and on each move, the player has to remove 1, 2 or 3 sticks from the heap. 
Finally, the player who removes the last stick wins the game. 

For example, if n = 10, the game may proceed as follows: 

• Player A removes 2 sticks (8 sticks left). 
• Player B removes 3 sticks (5 sticks left). 
• Player A removes 1 stick (4 sticks left). 
• Player B removes 2 sticks (2 sticks left). 
• Player A removes 2 sticks and wins. 

This game consists of states 0, 1, 2, . . . , n, where the number of the state corre-
sponds to the number of sticks left. 

A winning state is a state where the player will win the game if they play optimally, 
and a losing state is a state where the player will lose the game if the opponent plays 
optimally. It turns out that we can classify all states of a game so that each state is 
either a winning state or a losing state. 

In the above game, state 0 is clearly a losing state, because the player cannot make 
any moves. States 1, 2 and 3 are winning states, because the player can remove 1, 
2 or 3 sticks and win the game. State 4, in turn, is a losing state, because any move 
leads to a state that is a winning state for the opponent. 

More generally, if there is a move that leads from the current state to a losing state, 
it is a winning state, and otherwise it is a losing state. Using this observation, we can 
classify all states of a game starting with losing states where there are no possible 
moves. Figure 11.20 shows the classification of states 0 . . . 15 (W denotes a winning 
state and L denotes a losing state). 

L W W W  L W W W  L W W W  L W W W  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fig. 11.20 Classification of states 0 . . . 15 in the stick game
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Fig. 11.21 State graph of 
the divisibility game 
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Fig. 11.22 Classification of 
states 1 . . . 9 in the 
divisibility game 

L W L W L W L W L 
1 2 3 4 5 6 7 8 9 

It is easy to analyze this game: a state k is a losing state if k is divisible by 4, and 
otherwise it is a winning state. An optimal way to play the game is to always choose 
a move after which the number of sticks in the heap is divisible by 4. Finally, there 
are no sticks left and the opponent has lost. Of course, this strategy requires that the 
number of sticks is not divisible by 4 when it is our move. If it is, there is nothing 
we can do, and the opponent will win the game if they play optimally. 

Let us then consider another stick game, where in each state k, it is allowed to 
remove any number x of sticks such that x is smaller than k and divides k. For  
example, in state 8 we may remove 1, 2 or 4 sticks, but in state 7 the only allowed 
move is to remove 1 stick. Figure 11.21 shows the states 1 . . . 9 of the game as a state 
graph, whose nodes are the states and edges are the moves between them: 

The final state in this game is always state 1, which is a losing state, because there 
are no valid moves. Figure 11.22 shows the classification of states 1 . . . 9. It turns out 
that in this game, all even-numbered states are winning states, and all odd-numbered 
states are losing states. 

11.5.2 Nim Game 

The nim game is a simple game that has an important role in game theory, because 
many other games can be played using the same strategy. First, we focus on nim, 
and after this, we generalize the strategy to other games. 

There are n heaps in nim, and each heap contains some number of sticks. The 
players move alternately, and on each turn, the player chooses a heap that still contains 
sticks and removes any number of sticks from it. The winner is the player who 
removes the last stick. 

The states in nim are of the form [x1, x2, . . . , xn], where xi denotes the number of 
sticks in heap i . For example, [10, 12, 5] is a state where there are three heaps with 
10, 12 and 5 sticks. The state [0, 0, . . . , 0] is a losing state, because it is not possible 
to remove any sticks, and this is always the final state.
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Analysis It turns out that we can easily classify any nim state by calculating the nim 
sum s = x1 ⊕ x2 ⊕ · · · ⊕ xn , where ⊕ denotes the xor operation. The states whose 
nim sum is 0 are losing states, and all other states are winning states. For example, 
the nim sum of [10, 12, 5] is 10 ⊕ 12 ⊕ 5 = 3, so the state is a winning state. 

But how is the nim sum related to the nim game? We can explain this by looking 
at how the nim sum changes when the nim state changes. 

Losing states: The final state [0, 0, . . . , 0] is a losing state, and its nim sum is 0, as 
expected. In other losing states, any move leads to a winning state, because when a 
single value xi changes, the nim sum also changes, so the nim sum is different from 
0 after the move. 

Winning states: We can move to a losing state if there is any heap i for which 
xi ⊕ s < xi . In this case, we can remove sticks from heap i so that it will contain 
xi ⊕ s sticks, which will lead to a losing state. There is always such a heap, where 
xi has a one bit at the position of the leftmost one bit of s. 

Example As an example, consider the state [10, 12, 5]. This state is a winning state, 
because its nim sum is 3. Thus, there has to be a move which leads to a losing state. 
Next we will find out such a move. 

The nim sum of the state is as follows: 

10 1010 
12 1100 
5 0101 
3 0011 

In this case, the heap with 10 sticks is the only heap that has a one bit at the 
position of the leftmost one bit of the nim sum: 

10 10 10 
12 1100 
5 0101 
3 00 11 

The new size of the heap has to be 10 ⊕ 3 = 9, so we will remove just one stick. 
After this, the state will be [9, 12, 5], which is a losing state: 

9 1001 
12 1100 
5 0101 
0 0000 

Misère Game In a misère nim game, the goal of the game is opposite, so the player 
who removes the last stick loses the game. It turns out that the misère nim game can 
be optimally played almost like the standard nim game.
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The idea is to first play the misère game like the standard game, but change the 
strategy at the end of the game. The new strategy will be introduced in a situation 
where each heap would contain at most one stick after the next move. In the standard 
game, we should choose a move after which there is an even number of heaps with 
one stick. However, in the misère game, we choose a move so that there is an odd 
number of heaps with one stick. 

This strategy works because a state where the strategy changes always appears in 
the game, and this state is a winning state, because it contains exactly one heap that 
has more than one stick so the nim sum is not 0. 

11.5.3 Sprague–Grundy Theorem 

The Sprague–Grundy theorem generalizes the strategy used in nim to all games that 
fulfil the following requirements: 

• There are two players who move alternately. 
• The game consists of states, and the possible moves in a state do not depend on 
whose turn it is. 

• The game ends when a player cannot make a move. 
• The game surely ends sooner or later. 
• The players have complete information about the states and allowed moves, and 
there is no randomness in the game. 

Grundy Numbers The idea is to calculate for each game state a Grundy number 
that corresponds to the number of sticks in a nim heap. When we know the Grundy 
numbers of all states, we can play the game like the nim game. 

The Grundy number of a game state is calculated using the formula 

. mex({g1, g2, . . . , gn}),
where g1, g2, . . . , gn are the Grundy numbers of the states to which we can move 
from the state, and the mex function gives the smallest nonnegative number that is 
not in the set. For example, mex({0, 1, 3}) = 2. If a state has no possible moves, its 
Grundy number is 0, because mex(∅) = 0. 

For example, Fig. 11.23 shows a state graph of a game where each state is assigned 
its Grundy number. The Grundy number of a losing state is 0, and the Grundy number 
of a winning state is a positive number. 

Consider a state whose Grundy number is x . We can think that it corresponds to 
a nim heap that has x sticks. In particular, if x > 0, we can move to states whose 

Fig. 11.23 Grundy numbers 
of game states 

0 1 0 

2 0 2
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Fig. 11.24 Possible moves 
on the first turn 

@**** 

* 

* 

Fig. 11.25 Grundy numbers 
of game states 

0 1 0 1 

0 1 2  

0 2 1 0 

3 0 4 1  

0 4 1 3 2 

Grundy numbers are 0, 1, . . . , x − 1, which simulates removing sticks from a nim 
heap. There is one difference, though: it may be possible to move to a state whose 
Grundy number is larger than x and “add” sticks to a heap. However, the opponent 
can always cancel any such move, so this does not change the strategy. 

As an example, consider a game where the players move a figure in a maze. Each 
square of the maze is either floor or wall. On each turn, the player has to move the 
figure some number of steps left or up. The winner of the game is the player who 
makes the last move. Figure 11.24 shows a possible initial configuration of the game, 
where @ denotes the figure and * denotes a square where it can move. The states of 
the game are all floor squares of the maze. Figure 11.25 shows the Grundy numbers 
of the states in this configuration. 

According to the Sprague–Grundy theorem, each state of the maze game corre-
sponds to a heap in the nim game. For example, the Grundy number of the lower-right 
square is 2, so it is a winning state. We can reach a losing state and win the game by 
moving either four steps left or two steps up. 

Subgames Assume that our game consists of subgames, and on each turn, the player 
first chooses a subgame and then a move in the subgame. The game ends when it is 
not possible to make any move in any subgame. In this case, the Grundy number of 
a game equals the nim sum of the Grundy numbers of the subgames. The game can 
then be played like a nim game by calculating all Grundy numbers for subgames and 
then their nim sum. 

As an example, consider a game that consists of three mazes. On each turn, the 
player chooses one of the mazes and then moves the figure in the maze. Figure 11.26 
shows an initial configuration of the game, and Fig. 11.27 shows the corresponding 
Grundy numbers. In this configuration, the nim sum of the Grundy numbers is 2 ⊕
3 ⊕ 3 = 2, so the first player can win the game. One optimal move is to move two 
steps up in the first maze, which produces the nim sum 0 ⊕ 3 ⊕ 3 = 0. 

Grundy’s Game Sometimes a move in a game divides the game into subgames that 
are independent of each other. In this case, the Grundy number of a game state is 

.mex({g1, g2, . . . , gn}),
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Fig. 11.26 A game that  
consists of three subgames 

@ @ @ 

Fig. 11.27 Grundy numbers 
in subgames 
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where there are n possible moves and 

. gk = ak,1 ⊕ ak,2 ⊕ · · · ⊕ ak,m,

meaning that move k divides the game into m subgames whose Grundy numbers are 
ak,1, ak,2, . . . , ak,m . 

An example of such a game is Grundy’s game. Initially, there is a single heap 
that has n sticks. On each turn, the player chooses a heap and divides it into two 
nonempty heaps such that the heaps are of different size. The player who makes the 
last move wins the game. 

Let g(n) denote the Grundy number of a heap of size n. The Grundy number 
can be calculated by going through all ways to divide the heap into two heaps. For 
example, when n = 8, the possibilities are 1 + 7, 2 + 6 and 3 + 5, so  

. g(8) = mex({g(1) ⊕ g(7), g(2) ⊕ g(6), g(3) ⊕ g(5)}).
In this game, the value of g(n) is based on the values of g(1), . . . , g(n − 1). The 

base cases are g(1) = g(2) = 0, because it is not possible to divide the heaps of 1 
and 2 sticks into smaller heaps. The first Grundy numbers are: 

. 

g(1) = 0
g(2) = 0
g(3) = 1
g(4) = 0
g(5) = 2
g(6) = 1
g(7) = 0
g(8) = 2

The Grundy number for n = 8 is 2, so it is possible to win the game. The winning 
move is to create heaps 1 + 7, because g(1) ⊕ g(7) = 0.
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11.6 Fourier Transform 

Given two polynomials f (x) and g(x), our goal in this section is to efficiently 
calculate the product f (x)g(x). For example, if f (x) = 2x + 3 and g(x) = 5x + 1, 
the desired result is f (x)g(x) = 10x2 + 17x + 3. An easy way to calculate the 
product would be to go through all pairs of terms from f (x) and g(x) and sum the 
products of the terms as follows: 

. f (x)g(x) = 2x · 5x + 2x · 1 + 3 · 5x + 3 · 1 = 10x2 + 17x + 3

However, this simple technique is slow: it takes O(n2) time where n is the degree 
of the polynomial. Fortunately, we can calculate the product faster in O(n log n) time 
using the Fast Fourier Transform (FFT) algorithm. The idea of the algorithm is to 
convert the polynomials into a special point-value form where it is easier to calculate 
the product. 

11.6.1 Working with Polynomials 

Consider a polynomial 

. f (x) = c0 + c1x + · · · + cn−1xn−1

whose degree is n − 1. There are two standard ways to represent such a polynomial: 

• Coefficient representation: We create a list 

. [c0, c1, . . . , cn−1]
that contains the coefficients of the polynomial. 

• Point-value representation: We create a list 

. [(x0, f (x0)), (x1, f (x1)), . . . , (xn−1, f (xn−1))]
that shows the values of the polynomial at n distinct points. This representation 
is based on the fact that if the degree of a polynomial is n − 1 and we know its 
values at n distinct points, this uniquely defines the polynomial. 

For example, consider the polynomial f (x) = x3 + 2x + 5 whose coefficient 
representation is [5, 2, 0, 3]. To create a point-value representation, we can choose 
any n distinct points and evaluate the polynomial at those points. One possible point-
value representation is [(0, 5), (1, 8), (2, 17), (3, 38)], which means that f (0) = 5, 
f (1) = 8, f (2) = 17 and f (3) = 38. 
Both above ways to represent polynomials have some advantages. Using the coef-

ficient representation, it is easy to calculate the value of the polynomial at any given 
point. However, if we have two polynomials f (x) and g(x) and want to calculate 
their product f (x)g(x), the point-value representation is more convenient: if we 
know that f (xi ) = ai and g(xi ) = bi at some point xi , we can easily calculate 
f (xi )g(xi ) = ai bi . For example, if we know that f (1) = 5 and g(1) = 6, we  
directly know that f (1)g(1) = 30.
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Still, apart from calculating products, we would usually like to use the coefficient 
representation. For this reason, a possible way to calculate the product of polynomials 
f (x) and g(x), given in coefficient form, is as follows: 

1. Create point-value representations for f (x) and g(x). 
2. Calculate the product f (x)g(x) in point-value form. 
3. Create the coefficient representation for f (x)g(x). 

Note that if f (x) and g(x) have degree n − 1, then f (x)g(x) has degree 2n − 2. 
Thus, we have to calculate 2n − 1 values in step 1 to make sure that we can find the 
correct polynomial in step 3. 

Step 2 is easy to do in O(n) time, because we can simply calculate the products at 
all points. Steps 1 and 3 are more difficult, but next we will see how we can perform 
them in O(n log n) time using the FFT algorithm. The idea is to work with point-
value representations where the polynomial is evaluated at special complex number 
points that allow us to efficiently switch between the representations. 

11.6.2 FFT Algorithm 

Given a vector a = [c0, c1, . . . , cn−1] that represents the polynomial 

. f (x) = c0 + c1x + · · · + cn−1xn−1,

the Fourier transform of a is a vector 

. t = [ f (ω0
n), f (ω1

n), . . . , f (ωn−1
n )]

where 
. ωn = e2π i/n = cos(2π/n) + sin(2π/n)i.

The vector t corresponds to a point-value representation of the polynomial f (x), 
evaluated at points ω0

n, ω1
n, . . . , ωn−1

n . The value ωn is a complex number called a 
principal root of unity that satisfies ωn

n = 1. As an example, Fig. 11.28 shows the 
values ω4 and ω8 and their powers on the complex plane. 

The Fast Fourier Transform (FFT ) algorithm calculates the Fourier transform 
in O(n log n) time. The algorithm uses properties of the ωn values to efficiently 
calculate the transform. From now on, we assume that n (the length of the input 

Fig. 11.28 The powers of 
ω4 and ω8 on the complex 
plane 
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vector a) is a power of two. If it is not, we can add additional zeros to the end of the 
vector before the algorithm begins. 

The idea of the FFT algorithm is to divide the vector a = [c0, c1, . . . , cn−1]
into two vectors aEV E N = [c0, c2, . . . , cn−2] and aO DD = [c1, c3, . . . , cn−1]. The 
vectors consist of n/2 values and represent the polynomials c0 + c2x + c4x2 + · · · +
cn−2xn/2−1 and c1+c3x +c5x2 +· · ·+cn−1xn/2−1. Then, the algorithm recursively 
calculates the Fourier transforms of aEV E N and aO DD to vectors tEV E N and tO DD . 
Finally, the algorithm calculates the Fourier transform of a using the formula 

. t[k] = tEV E N [k mod (n/2)] + tO DD[k mod (n/2)]ωk
n .

This formula works, because ωk
n/2 = ω2k

n and ωk
n = ωk mod n

n (see Fig. 11.28). Since 
the algorithm divides the input vector of size n into two vectors of size n/2 and 
recursively processes them, the algorithm works in O(n log n) time. 

The FFT algorithm can also be used to calculate the inverse Fourier transform, i.e., 
convert a point-value representation of a polynomial into a coefficient representation. 
Surprisingly, if we calculate the Fourier transform of the vector 

. t = [ f (ω0
n), f (ω1

n), . . . , f (ωn−1
n )]

so that we use 1/ωn instead of ωn and divide all output values by n, the output vector 
is the original coefficient vector a. 

Implementation The FFT algorithm is tricky to implement well. In particular, it is 
not a good idea to create new vectors and process them recursively, because such 
an implementation would have large constant factors. Often, the algorithm is used 
as a black box to efficiently calculate Fourier transforms without focusing on the 
implementation details. The following implementation is based on the pseudocode 
given in CLRS [  3]; if you want to know what the code exactly does, you can consult 
the book for more information. 

First, we define a complex number type cd that uses double numbers in real and 
imaginary parts, and a variable pi that has the value of π . 

typedef complex<double> cd;  
double pi = acos(-1); 

Then, the function fft performs the FFT algorithm. The function is given a vector 
a that contains the coefficients of the polynomial, and an additional parameter d. If  
d is 1 (default), the function calculates the ordinary Fourier transform, and if d is 
−1, it calculates the inverse transform. As mentioned above, the function assumes 
that n is a power of two. 

The function first constructs a vector r that has the contents of a as a bit reversal 
permutation which corresponds to the order the values are accessed at the bottom 
level of the recursion. This trick allows us to calculate the transform without creating 
additional vectors and recursive calls. After this, the function calculates Fourier 
transforms for vectors of size 2, 4, 8, . . . , n. Finally, if the inverse transform is being 
calculated, the function divides all output values by n.
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vector<cd> fft(vector<cd> a, int d = 1) {  
int n = a.size(); 
vector<cd> r(n); 
for (int k = 0; k < n; k++) {  

int b = 0;  
for (int z = 1; z < n; z *= 2) {  

b *= 2;  
if (k&z) b++; 

} 
r[b] = a[k]; 

} 
for (int m = 2; m <= n; m *= 2) {  

cd wm = exp(cd{0,d*2*pi/m}); 
for (int k = 0; k < n; k += m) {  

cd w = 1; 
for (int j = 0; j < m/2;  j++) { 

cd u = r[k+j];  
cd t = w*r[k+j+m/2]; 
r[k+j] = u+t; 
r[k+j+m/2] = u-t; 
w = w*wm;  

} 
} 

} 
if (d == -1) { 

for (int i = 0; i < n; i++) r[i] /= n; 
} 
return r; 

} 

The following code shows how we can use the fft function to calculate the 
product of f (x) = 2x + 3 and g(x) = 5x + 1. First we convert the polynomials into 
point-value form, then calculate the product, and finally convert the result back into 
coefficient form. The result is 10x2 + 17x + 3 as expected. 

int n = 4;  
vector<cd> f = {3,2,0,0}; 
vector<cd> g = {1,5,0,0}; 
auto tf = fft(f); 
auto tg = fft(g); 
vector<cd> tp(n); 
for (int i = 0; i < n; i++) tp[i] = tf[i]*tg[i]; 
auto p = fft(tp,-1); // [3,17,10,0] 

While the FFT algorithm operates with complex numbers, our input and out-
put values are often integers. After calculating the product, we can use the syntax 
(int)(p[i].real()+0.5) to get the real part of the complex number p[i] 
and convert it into an integer.
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Fig. 11.29 Signal 
processing: 
c[1] = 5 · 3 + 1 · 2 = 17 and 
c[5] = 4 ·1+2 ·3+1 ·2 = 12
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11.6.3 Calculating Convolutions 

In general, we can use the FFT algorithm to calculate the convolution of two arrays 
in O(n log n) time. Given arrays a and b, their convolution c = a ∗ b is an array 
whose each element corresponds to the formula 

. c[k] =
 

i+ j=k

a[i]b[ j].

If a and b consist of coefficients of polynomials, the convolution represents the 
product of the polynomials, but we can also calculate convolutions that are not 
related to polynomials. Here are some examples: 

Combinations We have apples and bananas, and each of them has an integer weight 
between 1 . . . n. We want to calculate for each weight w ≤ 2n the number of ways 
we can choose an apple and banana whose combined weight is w. 

We can solve the problem by creating arrays a and b where a[i] denotes the 
number of apples of weight i and b[i] denotes the number of bananas of weight i . 
Then the convolution of the arrays gives the desired result. 

Signal Processing We can think that array a is a signal and array b is a mask that 
modifies the signal. The mask moves through the signal from left to right, and the sum 
of products is calculated at each position. We can calculate the result as a convolution 
if we first reverse the mask. 

For example, suppose that a = [5, 1, 3, 4, 2, 1, 2] and b = [1, 3, 2]. We first 
create a reverse mask b = [2, 3, 1] and then calculate the convolution 

. c = a ∗ b = [10, 17, 14, 18, 19, 12, 9, 7, 2].
Figure 11.29 shows the interpretation of the values c[1] and c[5]. 
Differences Given a bit string s of length n, we want to calculate for each k =
1, 2, . . . , n − 1 the number of ways we can choose two positions i and j such that 
s[i] = s[ j] = 1 and j − i = k. 

We can solve the problem by calculating the convolution c = s ∗ s where s is 
the reverse of s. Then c[n + k − 1] gives the answer for each k (we can also think 
that s is both a signal and a mask). 

11.7 Guessing Formulas 

An effective way to solve many mathematical problems is to first solve some small 
cases using a brute force algorithm and then guess a formula that corresponds to the 
data. This method can be especially used in problems where the answer is a single 
number that indicates in how many ways something can be done.
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11.7.1 Using OEIS 

OEIS (The On-Line Encyclopedia of Integer Sequences) is a large online database 
that contains integer sequences. If we know some numbers of a sequence, we can 
search for the sequence and find information about it. If there is a formula that can 
be used to calculate the values, we can often find it in OEIS. 

For example, consider the problem discussed in Sect. 3.2.2: given an integer n, 
calculate the number of ways we can place two queens on an n × n chessboard in 
such a way that they do not attack each other. This problem corresponds to an integer 
sequence whose first numbers are: 

. 

s(1) = 0
s(2) = 0
s(3) = 8
s(4) = 44
s(5) = 140
s(6) = 340
s(7) = 700
s(8) = 1288

Using this data, we can use OEIS to search for an integer sequence that begins with 
0, 0, 8, 44, 140, 340, 700, 1288. OEIS tells us that sequence A036464 corresponds 
to our problem and we can use the formula 

. s(n) =
 

n

3

 
(3n − 1)

to calculate the values of the sequence. This is the same formula that we discussed 
in Sect. 3.2.2, given in a bit different form. 

Let us then consider a problem that has two parameters: given integers n and k, 
count the number of trees that have n nodes and exactly k leaves. Let s(n, k) denote 
the number of such trees. For example, s(4, 2) = 3 because there are 3 trees that 
have 4 nodes and 2 leaves, shown in Fig. 11.30. 

Since the problem has two parameters, we can try to fix one parameter to find the 
sequence in OEIS. Here are the values where n = 9: 

. 

s(9, 1) = 1
s(9, 2) = 28
s(9, 3) = 196
s(9, 4) = 490
s(9, 5) = 490
s(9, 6) = 196
s(9, 7) = 28
s(9, 8) = 1

Now we can search for a sequence that contains the numbers 1, 28, 196, 490, 
490, 196, 28, 1. Such a sequence is A001263 which corresponds to the triangle of 
Narayana numbers. OEIS tells us that this sequence is related to many mathematical
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Fig. 11.30 There are 3 trees 
of 4 nodes and 2 leaves 

problems, including our problem of counting the number of trees. We also get a 
useful formula 

. s(n, k) = 1

k

 
n − 1

k − 1

  
n − 2

k − 1

 

for efficiently solving the problem. 
Of course, you can use OEIS only if it is allowed to use the internet during the 

contest. 

11.7.2 Finding Polynomials 

If the answer to a problem is a polynomial p(n) and we know some first values of 
the function, there is also an algorithm that we can use to find the polynomial. 

The algorithm starts with a list [p(1), p(2), p(3), . . . ] that contains the first values 
of the polynomial. On each round, the algorithm creates a new list whose each element 
is a difference between two consecutive elements in the previous list. The algorithm 
stops when each number in the list is the same. Then we know that the degree of the 
polynomial is k and its first coefficient is x/k! where k is the number of rounds and 
x is the repeating number in the final list. 

As an example, consider again the problem of counting the number of combina-
tions where two queens do not attack each other. In this case the algorithm creates 
the following lists: 

• Round 0: [0, 0, 8, 44, 140, 340, 700, 1288]
• Round 1: [0, 8, 36, 96, 200, 360, 588]
• Round 2: [8, 28, 60, 104, 160, 228]
• Round 3: [20, 32, 44, 56, 68]
• Round 4: [12, 12, 12, 12]

After round 4, each number in the list is the same. This means that the degree of 
the polynomial is 4 and the first coefficient is 12/4! = 1/2. 

We can repeat the algorithm several times to find all the coefficients. When we 
know the values of k and x , we can create a new polynomial 

. p (n) = p(n) − x

k!nk

that does not have the first term of the previous polynomial. After that, we can use 
the same algorithm again for p . In the above example, we can repeat the algorithm 
four times to get the following polynomial:



References 199

. q(n) = 1

2
n4 − 5

3
n3 + 3

2
n2 − 1

3
n.

This corresponds to the polynomial discussed in Sect. 3.2.2. 
Note that the algorithm always finds a polynomial for a sequence, even if the 

answer to the problem is not a polynomial. The reason for this is that we consider 
a list that has only a prefix of the sequence. If the initial list has n elements, the 
algorithm always stops after at most n − 1 rounds. However, the polynomial may 
not be meaningful. 

For example, we can try to create a polynomial for factorials using the input list 
[1!, 2!, 3!, 4!, 5!]. The algorithm gives the following polynomial: 

. f (n) = 53

24
n4 − 81

4
n3 + 1627

24
n2 − 375

4
n + 45

Indeed, n! = f (n) for n = 1, 2, . . . , 5. However 6!  = f (6). In this case the 
polynomial only works for values in the input list and has not much use. 

It is also possible to automatically find linear recurrences, given the first values 
of the sequence. A popular algorithm for this is the Berlekamp–Massey algorithm 
which is not discussed in this book. 
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12Advanced Graph Algorithms 

This chapter discusses a selection of advanced graph algorithms. 
Section 12.1 presents an algorithm for finding the strongly connected components 

of a graph. After this, we will learn how to efficiently solve the 2SAT problem using 
the algorithm. 

Section 12.2 focuses on Eulerian and Hamiltonian paths. An Eulerian path goes 
through each edge of the graph exactly once, and a Hamiltonian path visits each node 
exactly once. While the concepts look quite similar at first glance, the computational 
problems related to them are very different. 

Section 12.3 first shows how we can determine the maximum flow from a source 
to a sink in a graph. After this, we will see how to reduce several other graph problems 
to the maximum flow problem. 

Section 12.4 discusses properties of depth-first search and problems related to 
biconnected graphs. 

Section 12.5 deals with another flow problem where we want to find a minimum 
cost flow from a source to a sink. This is quite a general problem, because we can 
reduce both the shortest path problem and the maximum flow problem to it. 

12.1 Strong Connectivity 

A directed graph is called strongly connected if there is a path from any node to all 
other nodes in the graph. For example, the left graph in Fig. 12.1 is strongly connected 
while the right graph is not. The right graph is not strongly connected, because, for 
example, there is no path from node 2 to node 1. 

A directed graph can always be divided into strongly connected components. Each 
such component contains a maximal set of nodes such that there is a path from any 
node to all other nodes, and the components form an acyclic component graph that 
represents the deep structure of the original graph. For example, Fig. 12.2 shows a 
graph, its strongly connected components and the corresponding component graph. 
The components are A = {1, 2}, B = {3, 6, 7}, C = {4} and D = {5}. 
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Fig. 12.1 The left graph is 
strongly connected, the right 
graph is not 
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A component graph is a directed acyclic graph, so it is easier to process than the 
original graph. Since the graph does not contain cycles, we can always construct a 
topological sort and use dynamic programming to process it. 

12.1.1 Kosaraju’s Algorithm 

Kosaraju’s algorithm is an efficient method for finding the strongly connected com-
ponents of a graph. The algorithm performs two depth-first searches: the first search 
constructs a list of nodes according to the structure of the graph, and the second 
search forms the strongly connected components. 

The first phase of Kosaraju’s algorithm constructs a list of nodes in the order in 
which depth-first search processes them. The algorithm goes through the nodes, and 
begins a depth-first search at each unprocessed node. Each node will be added to the 
list after it has been processed. 

For example, Fig. 12.3 shows the processing order of the nodes in our example 
graph. The notation x/y means that processing the node started at time x and finished 
at time y. The resulting list is [4, 5, 2, 1, 6, 7, 3]. 

The second phase of Kosaraju’s algorithm forms the strongly connected compo-
nents. First, the algorithm reverses every edge of the graph. This guarantees that 
during the second search, we will always find valid strongly connected components. 
Figure 12.4 shows the graph in our example after reversing the edges.
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Fig. 12.3 The processing order of the nodes 
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Fig. 12.5 Constructing the strongly connected components 

After this, the algorithm goes through the list of nodes created by the first search, in 
reverse order. If a node does not belong to a component, the algorithm creates a new 
component by starting a depth-first search that adds all new nodes found during the 
search to the new component. Note that since all edges are reversed, the components 
do not “leak” to other parts of the graph. 

Figure 12.5 shows how the algorithm processes our example graph. The process-
ing order of the nodes is [3, 7, 6, 1, 2, 5, 4]. First, node 3 generates the component 
{3, 6, 7}. Then, nodes 7 and 6 are skipped, because they already belong to a com-
ponent. After this, node 1 generates the component {1, 2}, and node 2 is skipped. 
Finally, nodes 5 and 4 generate the components {5} and {4}. 

The time complexity of the algorithm is O(n+m), because the algorithm performs 
two depth-first searches.
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12.1.2 2SAT Problem 

In the 2SAT problem, we are given a logical formula 

. (a1 ∨ b1) ∧ (a2 ∨ b2) ∧ · · · ∧ (am ∨ bm),

where each ai and bi is either a logical variable (x1, x2, . . . , xn) or a negation of 
a logical variable (¬x1,¬x2, . . . ,¬xn). The symbols “ ∧” and “ ∨” denote logical 
operators “and” and “or”. Our task is to assign each variable a value so that the 
formula is true, or state that this is not possible. 

For example, the formula 

. L1 = (x2 ∨ ¬x1) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x4)

is true when the variables are assigned as follows: 

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = false

x2 = false

x3 = true

x4 = true

However, the formula 

. L2 = (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ ¬x3)

is always false, regardless of how we assign the values. The reason for this is that 
we cannot choose a value for x1 without creating a contradiction. If x1 is false, both 
x2 and ¬x2 should be true which is impossible, and if x1 is true, both x3 and ¬x3
should be true which is also impossible. 

An instance of the 2SAT problem can be represented as an implication graph 
whose nodes correspond to variables xi and negations ¬xi , and edges determine 
the connections between the variables. Each pair (ai ∨ bi ) generates two edges: 
¬ai → bi and ¬bi → ai . This means that if ai does not hold, bi must hold, and 
vice versa. For example, Fig. 12.6 shows the implication graph of L1, and Fig. 12.7 
shows the implication graph of L2. 

Fig. 12.6 The implication 
graph of L1

x3 x2 

x4 x1 

x1 x4 

x2 x3 

Fig. 12.7 The implication 
graph of L2

x3 x2 x2 x3 

x1 

x1
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Fig. 12.8 The component 
graph of L1

A B C D 

The structure of the implication graph tells us whether it is possible to assign the 
values of the variables so that the formula is true. This can be done exactly when 
there are no nodes xi and ¬xi such that both nodes belong to the same strongly 
connected component. If there are such nodes, the graph contains a path from xi to 
¬xi and also a path from ¬xi to xi , so both xi and ¬xi should be true which is not 
possible. For example, the implication graph of L1 does not have nodes xi and ¬xi

such that both nodes belong to the same strongly connected component, so there is a 
solution. Then, in the implication graph of L2 all nodes belong to the same strongly 
connected component, so there are no solutions. 

If a solution exists, the values for the variables can be found by going through 
the nodes of the component graph in a reverse topological sort order. At each step, 
we process a component that does not contain edges that lead to an unprocessed 
component. If the variables in the component have not been assigned values, their 
values will be determined according to the values in the component, and if they 
already have values, the values remain unchanged. The process continues until each 
variable has been assigned a value. 

Figure 12.8 shows the component graph of L1. The components are A = {¬x4}, 
B = {x1, x2,¬x3}, C = {¬x1,¬x2, x3} and D = {x4}. When constructing the 
solution, we first process the component D where x4 becomes true. After this, we 
process the component C where x1 and x2 become false and x3 becomes true. All 
variables have been assigned values, so the remaining components A and B do not 
change the values of the variables. 

Note that this method works, because the implication graph has a special structure: 
if there is a path from node xi to node x j and from node x j to node ¬x j , then node 
xi never becomes true. The reason for this is that there is also a path from node ¬x j

to node ¬xi , and both xi and x j become false. 
A more difficult problem is the 3SAT problem, where each part of the formula is 

of the form (ai ∨ bi ∨ ci ). This problem is NP-hard, so no efficient algorithm for 
solving the problem is known. 

12.2 Complete Paths 

In this section we discuss two special types of paths in graphs: an Eulerian path is a 
path that goes through each edge exactly once, and a Hamiltonian path is a path that 
visits each node exactly once. While such paths look quite similar at first glance, the 
computational problems related to them are very different. 

12.2.1 Eulerian Paths 

An Eulerian path is a path that goes exactly once through each edge of a graph. 
Furthermore, if such a path starts and ends at the same node, it is called an Eulerian



206 12 Advanced Graph Algorithms 

Fig. 12.9 A graph  and an  
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circuit. Figure 12.9 shows an Eulerian path from node 2 to node 5, and Fig. 12.10 
shows an Eulerian circuit that starts and ends at node 1. 

The existence of Eulerian paths and circuits depends on the degrees of the nodes. 
First, an undirected graph has an Eulerian path exactly when all the edges belong to 
the same connected component and 

• the degree of each node is even, or 
• the degree of exactly two nodes is odd, and the degree of all other nodes is even. 

In the first case, each Eulerian path is also an Eulerian circuit. In the second case, 
the odd-degree nodes are the endpoints of an Eulerian path which is not an Eulerian 
circuit. In Fig. 12.9, nodes 1, 3 and 4 have degree 2, and nodes 2 and 5 have degree 
3. Exactly two nodes have an odd degree, so there is an Eulerian path between nodes 
2 and 5, but the graph does not have an Eulerian circuit. In Fig. 12.10, all nodes have 
an even degree, so the graph has an Eulerian circuit. 

To determine whether a directed graph has Eulerian paths, we focus on indegrees 
and outdegrees of the nodes. A directed graph contains an Eulerian path exactly 
when all the edges belong to the same connected component and 

• in each node, the indegree equals the outdegree, or 
• in one node, the indegree is one larger than the outdegree, in another node, the 
outdegree is one larger than the indegree, and in all other nodes, the indegree 
equals the outdegree. 

In the first case, each Eulerian path is also an Eulerian circuit, and in the second 
case, the graph has an Eulerian path that begins at the node whose outdegree is larger 
and ends at the node whose indegree is larger. For example, in Fig. 12.11, nodes 1, 3 
and 4 have both indegree 1 and outdegree 1, node 2 has indegree 1 and outdegree 2, 
and node 5 has indegree 2 and outdegree 1. Hence, the graph contains an Eulerian 
path from node 2 to node 5. 

Fig. 12.10 A graph  and an  
Eulerian circuit 1 2 
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Fig. 12.11 A directed graph 
and an Eulerian path 1 2 
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Construction Hierholzer’s algorithm is an efficient method for constructing an Eule-
rian circuit for a graph. The algorithm consists of several rounds, each of which adds 
new edges to the circuit. Of course, we assume that the graph contains an Eulerian 
circuit; otherwise Hierholzer’s algorithm cannot find it. 

The algorithm begins with an empty circuit that contains only a single node, and 
then extends the circuit step by step by adding subcircuits to it. The process continues 
until all edges have been added to the circuit. The circuit is extended by finding a 
node x that belongs to the circuit but has an outgoing edge that is not included in the 
circuit. Then, a new path from node x that only contains edges that are not yet in the 
circuit is constructed. Sooner or later, the path will return to node x , which creates 
a subcircuit. 

If a graph does not have an Eulerian circuit but has an Eulerian path, we can still 
use Hierholzer’s algorithm to find the path by adding an extra edge to the graph 
and removing the edge after the circuit has been constructed. For example, in an 
undirected graph, we add the extra edge between the two odd-degree nodes. 

As an example, Fig. 12.12 shows how Hierholzer’s algorithm constructs an 
Eulerian circuit in an undirected graph. First, the algorithm adds a subcircuit 
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Fig. 12.12 Hierholzer’s algorithm
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Fig. 12.13 A graph, a Hamiltonian path and a Hamiltonian circuit 

1 → 2 → 3 → 1, then a subcircuit 2 → 5 → 6 → 2, and finally a subcircuit 
6 → 3 → 4 → 7 → 6. After this, since all edges have been added to the circuit, we 
have successfully constructed an Eulerian circuit. 

12.2.2 Hamiltonian Paths 

A Hamiltonian path is a path that visits each node of a graph exactly once. Further-
more, if a such a path begins and ends at the same node, it is called a Hamiltonian 
circuit. For example, Fig. 12.13 shows a graph that has both a Hamiltonian path and 
a Hamiltonian circuit. 

Problems related to Hamiltonian paths are NP-hard: nobody knows a general 
way to efficiently check if a graph has a Hamiltonian path or circuit. Of course, in 
some special cases we can be certain that a graph contains a Hamiltonian path. For 
example, if the graph is complete, i.e., there is an edge between all pairs of nodes, it 
surely contains a Hamiltonian path. 

A simple way to search for a Hamiltonian path is to use a backtracking algorithm 
that goes through all possible ways to construct a path. The time complexity of such 
an algorithm is at least O(n!), because there are n! different ways to choose the 
order of n nodes. Then, using dynamic programming, we can create a more efficient 
O(2nn2) time solution, which determines for each subset of nodes S and each node 
x ∈ S if there is a path that visits all nodes of S exactly once and ends at node x . 

12.2.3 Applications 

De Bruijn Sequences A De Bruijn sequence is a string that contains every string of 
length n exactly once as a substring, for a fixed alphabet of k characters. The length 
of such a string is kn + n − 1 characters. For example, when n = 3 and k = 2, an  
example of a De Bruijn sequence is 

. 0001011100.

The substrings of this string are all combinations of three bits: 000, 001, 010, 011, 
100, 101, 110, and 111. 

A De Bruijn sequence always corresponds to an Eulerian path in a graph where 
each node contains a string of n − 1 characters and each edge adds one character to 
the string. For example, the graph in Fig. 12.14 corresponds to the scenario where 
n = 3 and k = 2. To create a De Bruijn sequence, we start at an arbitrary node and



12.2 Complete Paths 209

Fig. 12.14 Constructing a 
De Bruijn sequence from an 
Eulerian path 
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follow an Eulerian path that visits each edge exactly once. When the characters in the 
starting node and on the edges are added together, the resulting string has kn + n −1
characters and is a valid De Bruijn sequence. 

Knight’s Tours A knight’s tour is a sequence of moves of a knight on an n × n
chessboard following the rules of chess such that the knight visits each square exactly 
once. A knight’s tour is called closed if the knight finally returns to the starting square 
and otherwise it is called open. For example, Fig. 12.15 shows an open knight’s tour 
on a 5 × 5 board. 

A knight’s tour corresponds to a Hamiltonian path in a graph whose nodes repre-
sent the squares of the board, and two nodes are connected with an edge if a knight 
can move between the squares according to the rules of chess. A natural way to con-
struct a knight’s tour is to use backtracking. Since there is a large number of possible 
moves, the search can be made more efficient by using heuristics that attempt to 
guide the knight so that a complete tour will be found quickly. 

Warnsdorf’s rule is a simple and effective heuristic for finding a knight’s tour. 
Using the rule, it is possible to efficiently construct a tour even on a large board. The 
idea is to always move the knight so that it ends up in a square where the number of 
possible follow-up moves is as small as possible. For example, in Fig. 12.16, there are 
five possible squares to which the knight can move (squares a . . . e). In this situation, 

Fig. 12.16 Using 
Warndorf’s rule to construct 
a knight’s tour 
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Warnsdorf’s rule moves the knight to square a, because after this choice, there is 
only a single possible move. The other choices would move the knight to squares 
where there would be three moves available. 

12.3 Maximum Flows 

In the maximum flow problem, we are given a directed weighted graph that contains 
two special nodes: a source is a node with no incoming edges, and a sink is a node 
with no outgoing edges. Our task is to send as much flow as possible from the source 
to the sink. Each edge has a capacity that restricts the flow that can go through the 
edge, and in each intermediate node, the incoming and outgoing flow has to be equal. 

As an example, consider the graph in Fig. 12.17, where node 1 is the source and 
node 6 is the sink. The maximum flow in this graph is 7, shown in Fig. 12.18. The 
notation v/k means that a flow of v units is routed through an edge whose capacity 
is k units. The size of the flow is 7, because the source sends 3+ 4 units of flow and 
the sink receives 5+2 units of flow. It is easy see that this flow is maximum, because 
the total capacity of the edges leading to the sink is 7. 

It turns out that the maximum flow problem is connected to another graph problem, 
the minimum cut problem, where our task is to remove a set of edges from the graph 
such that there will be no path from the source to the sink after the removal and the 
total weight of the removed edges is minimum. 

For example, consider again the graph in Fig. 12.17. The minimum cut size is 7, 
because it suffices to remove the edges 2 → 3 and 4 → 5, as shown in Fig. 12.19. 
After removing the edges, there will be no path from the source to the sink. The size 
of the cut is 6+ 1 = 7, and the cut is minimum, because there is no valid cut whose 
weight would be less than 7. 

It is not a coincidence that the maximum flow and minimum cut are equal in our 
example graph. Rather, it turns out that they are always equal, so the concepts are 
two sides of the same coin. Next we will discuss the Ford–Fulkerson algorithm that 
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Fig. 12.19 The minimum 
cut of the graph is 7 
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can be used to find the maximum flow and minimum cut of a graph. The algorithm 
also helps us to understand why they are equal. 

12.3.1 Ford–Fulkerson Algorithm 

The Ford–Fulkerson algorithm finds the maximum flow in a graph. The algorithm 
begins with an empty flow, and at each step finds a path from the source to the 
sink that generates more flow. Finally, when the algorithm cannot increase the flow 
anymore, the maximum flow has been found. 

The algorithm uses a special graph representation where each original edge has 
a reverse edge in another direction. The weight of each edge indicates how much 
more flow we could route through it. At the beginning of the algorithm, the weight 
of each original edge equals the capacity of the edge and the weight of each reverse 
edge is zero. Figure 12.20 shows the new representation for our example graph. 

The Ford–Fulkerson algorithm consists of several rounds. On each round, the 
algorithm finds a path from the source to the sink such that each edge on the path 
has a positive weight. If there is more than one possible path available, any of them 
can be chosen. After choosing the path, the flow increases by x units, where x is the 
smallest edge weight on the path. In addition, the weight of each edge on the path 
decreases by x and the weight of each reverse edge increases by x . 

The idea is that increasing the flow decreases the amount of flow that can go 
through the edges in the future. On the other hand, it is possible to cancel flow later 
using the reverse edges if it turns out that it would be beneficial to route the flow 
in another way. The algorithm increases the flow as long as there is a path from the 
source to the sink through positive-weight edges. Then, if there are no such paths, 
the algorithm terminates and the maximum flow has been found. 

Figure 12.21 shows how the Ford–Fulkerson algorithm finds the maximum flow 
for our example graph. In this case, there are four rounds. On the first round, the 
algorithm chooses the path 1 → 2 → 3 → 5 → 6. The minimum edge weight on 
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Fig. 12.21 The Ford–Fulkerson algorithm 

this path is 2, so the flow increases by 2 units. Then, the algorithm chooses three 
other paths that increase the flow by 3, 1 and 1 units. After this, there is no path with 
positive-weight edges, so the maximum flow is 2 + 3 + 1 + 1 = 7. 

Finding Paths The Ford–Fulkerson algorithm does not specify how we should 
choose the paths that increase the flow. In any case, the algorithm will terminate 
sooner or later and correctly find the maximum flow. However, the efficiency of the 
algorithm depends on how the paths are chosen. A simple way to find paths is to 
use depth-first search. Usually this works well, but in the worst case, each path only 
increases the flow by one unit and the algorithm is slow. Fortunately, we can avoid 
this situation by using one of the following techniques: 

The Edmonds-Karp algorithm chooses each path so that the number of edges on 
the path is as small as possible. This can be done by using breadth-first search instead
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Fig. 12.22 Nodes 1, 2 and 4 
belong to the set A

1 

2 3 

6 

4 5 

2 

3 

0 

6 0 

5 
0 

4 0 

1 

0 

2 

0 3 71 

of depth-first search for finding paths. It can be proved that this guarantees that the 
flow increases quickly, and the time complexity of the algorithm is O(m2n). 

The capacity scaling algorithm 1 uses depth-first search to find paths where each 
edge weight is at least an integer threshold value. Initially, the threshold value is 
some large number, for example the sum of all edge weights of the graph. Always 
when a path cannot be found, the threshold value is divided by 2. The algorithm 
terminates when the threshold value becomes 0. The time complexity of the algorithm 
is O(m2 log c), where c is the initial threshold value. 

In practice, the capacity scaling algorithm is easier to implement, because depth-
first search can be used for finding paths. Both algorithms are efficient enough for 
problems that typically appear in programming contests. 

Minimum Cuts It turns out that once the Ford–Fulkerson algorithm has found a 
maximum flow, it has also determined a minimum cut. Consider the graph produced 
by the algorithm, and let A be the set of nodes that can be reached from the source 
using positive-weight edges. Now the minimum cut consists of the edges of the 
original graph that start at some node in A, end at some node outside A, and whose 
capacity is fully used in the maximum flow. For example, in Fig. 12.22, A consists of 
nodes 1, 2 and 4, and the minimum cut edges are 2 → 3 and 4 → 5, whose weight 
is 6 + 1 = 7. 

Why is the flow produced by the algorithm maximum and why is the cut minimum? 
The reason is that a graph cannot contain a flow whose size is larger than the weight 
of any cut of the graph. Hence, always when a flow and a cut are equal, they are a 
maximum flow and a minimum cut. 

To see why the above holds, consider any cut of the graph such that the source 
belongs to A, the sink belongs to B and there are some edges between the sets 
(Fig. 12.23). The size of the cut is the sum of the weights of the edges that go from 
A to B. This is an upper bound for the flow in the graph, because the flow has to 
proceed from A to B. Thus, the size of a maximum flow is smaller than or equal to 
the size of any cut in the graph. On the other hand, the Ford–Fulkerson algorithm 
produces a flow whose size is exactly as large as the size of a cut in the graph. Thus, 
the flow has to be a maximum flow and the cut has to be a minimum cut.

1 This elegant algorithm is not very well known; a detailed description can be found in a textbook 
by Ahuja, Magnanti, and Orlin [ 1]. 
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Fig. 12.23 Routing the flow 
from A to B

A B 

12.3.2 Disjoint Paths 

Many graph problems can be solved by reducing them to the maximum flow problem. 
Our first example of such a problem is as follows: we are given a directed graph with 
a source and a sink, and our task is to find the maximum number of disjoint paths 
from the source to the sink. 

Edge-Disjoint Paths We first focus on the problem of finding the maximum number 
of edge-disjoint paths from the source to the sink. This means that each edge may 
appear in at most one path. For example, in Fig. 12.24, the maximum number of 
edge-disjoint paths is 2 (1 → 2 → 4 → 3 → 6 and 1 → 4 → 5 → 6). 

It turns out that the maximum number of edge-disjoint paths always equals the 
maximum flow of the graph where the capacity of each edge is one. After the max-
imum flow has been constructed, the edge-disjoint paths can be found greedily by 
following paths from the source to the sink. 

Node-Disjoint Paths Then, consider the problem of finding the maximum number 
of node-disjoint paths from the source to the sink. In this case, every node, except for 
the source and sink, may appear in at most one path, which may reduce the maximum 
number of disjoint paths. Indeed, in our example graph, the maximum number of 
node-disjoint paths is 1 (Fig. 12.25). 
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Fig. 12.26 A construction 
that limits the flow through 
the nodes 
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We can reduce also this problem to the maximum flow problem. Since each node 
can appear in at most one path, we have to limit the flow that goes through the nodes. 
A standard construction for this is to divide each node into two nodes such that 
the first node has the incoming edges of the original node, the second node has the 
outgoing edges of the original node, and there is a new edge from the first node to 
the second node. Figure 12.26 shows the resulting graph and its maximum flow in 
our example. 

12.3.3 Maximum Matchings 

A maximum matching of a graph is a maximum-size set of node pairs where each pair 
is connected with an edge and each node belongs to at most one pair. While solving 
the maximum matching problem in a general graph requires tricky algorithms, the 
problem is much easier to solve if we assume that the graph is bipartite. In this case 
we can reduce the problem to the maximum flow problem. 

The nodes of a bipartite graph can always be divided into two groups such that all 
edges of the graph go from the left group to the right group. For example, Fig. 12.27 
shows a maximum matching of a bipartite graph whose left group is {1, 2, 3, 4} and 
right group is {5, 6, 7, 8}. 

We can reduce the bipartite maximum matching problem to the maximum flow 
problem by adding two new nodes to the graph: a source and a sink. We also add 
edges from the source to each left node and from each right node to the sink. After 
this, the size of a maximum flow in the resulting graph equals the size of a maximum 
matching in the original graph. For example, Fig. 12.28 shows the reduction and the 
maximum flow for our example graph. 

Hall’s Theorem Hall’s theorem can be used to find out whether a bipartite graph has 
a matching that contains all left or right nodes. If the number of left and right nodes 
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Fig. 12.28 Maximum 
matching as a maximum flow 
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is the same, Hall’s theorem tells us if it is possible to construct a perfect matching 
that contains all nodes of the graph. 

Assume that we want to find a matching that contains all left nodes. Let X be 
any set of left nodes and let f (X) be the set of their neighbors. According to Hall’s 
theorem, a matching that contains all left nodes exists exactly when for every possible 
set X , the condition |X | ≤ | f (X)| holds. 

Let us study Hall’s theorem in our example graph. First, let X = {1, 3} which 
yields f (X) = {5, 6, 8} (Fig. 12.29). The condition of Hall’s theorem holds, because 
|X | = 2 and | f (X)| = 3. Then, let X = {2, 4}which yields f (X) = {7} (Fig. 12.30). 
In this case, |X | = 2 and | f (X)| = 1, so the condition of Hall’s theorem does not 
hold. This means that it is not possible to form a perfect matching for the graph. This 
result is not surprising, because we already know that the maximum matching of the 
graph is 3 and not 4. 

If the condition of Hall’s theorem does not hold, the set X explains why we cannot 
form such a matching. Since X contains more nodes than f (X), there are no pairs for 
all nodes in X . For example, in Fig. 12.30, both nodes 2 and 4 should be connected 
with node 7 which is not possible. 

Kőnig’s Theorem A minimum node cover of a graph is a minimum set of nodes 
such that each edge of the graph has at least one endpoint in the set. In a general 
graph, finding a minimum node cover is a NP-hard problem. However, if the graph
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Fig. 12.31 A minimum 
node cover 
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is bipartite, Kőnig’s theorem tells us that the size of a minimum node cover always 
equals the size of a maximum matching. Thus, we can calculate the size of a minimum 
node cover using a maximum flow algorithm. 

For example, since the maximum matching of our example graph is 3, Kőnig’s 
theorem tells us that the size of a minimum node cover is also 3. Figure 12.31 shows 
how such a cover can be constructed. 

The nodes that do not belong to a minimum node cover form a maximum inde-
pendent set. This is the largest possible set of nodes such that no two nodes in the set 
are connected with an edge. Again, finding a maximum independent set in a general 
graph is a NP-hard problem, but in a bipartite graph we can use Kőnig’s theorem 
to solve the problem efficiently. Figure 12.32 shows a maximum independent set for 
our example graph. 

12.3.4 Path Covers 

A path cover is a set of paths in a graph such that each node of the graph belongs 
to at least one path. It turns out that in directed acyclic graphs, we can reduce the 
problem of finding a minimum path cover to the problem of finding a maximum flow 
in another graph. 

Node-Disjoint Path Covers In a node-disjoint path cover, each node belongs to 
exactly one path. As an example, consider the graph in Fig. 12.33. A minimum 
node-disjoint path cover of this graph consists of three paths (Fig. 12.34). 

We can find a minimum node-disjoint path cover by constructing a matching graph 
where each node of the original graph is represented by two nodes: a left node and a 
right node. There is an edge from a left node to a right node if there is such an edge 
in the original graph. In addition, the matching graph contains a source and a sink, 
and there are edges from the source to all left nodes and from all right nodes to the
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Fig. 12.33 An example 
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Fig. 12.36 A minimum 
general path cover 
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sink. Each edge in the maximum matching of the matching graph corresponds to an 
edge in the minimum node-disjoint path cover of the original graph. Thus, the size 
of the minimum node-disjoint path cover is n − c, where n is the number of nodes 
in the original graph and c is the size of the maximum matching. 

For example, Fig. 12.35 shows the matching graph for the graph in Fig. 12.33. 
The maximum matching is 4, so the minimum node-disjoint path cover consists of 
7 − 4 = 3 paths. 

General Path CoversA general path cover is a path cover where a node can belong to 
more than one path. A minimum general path cover may be smaller than a minimum 
node-disjoint path cover, because a node can be used multiple times in paths. Consider 
again the graph in Fig. 12.33. The minimum general path cover of this graph consists 
of two paths (Fig. 12.36). 

A minimum general path cover can be found almost like a minimum node-disjoint 
path cover. It suffices to add some new edges to the matching graph so that there 
is an edge a → b always when there is a path from a to b in the original graph
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Fig. 12.37 A matching 
graph for finding a minimum 
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Fig. 12.38 Nodes 3 and 7 
form a maximum antichain 
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(possibly through several nodes). Figure 12.37 shows the resulting matching graph 
for our example graph. 

Dilworth’s Theorem An antichain is a set of nodes in a graph such that there is 
no path from any node to another node using the edges of the graph. Dilworth’s 
theorem states that in a directed acyclic graph, the size of a minimum general path 
cover equals the size of a maximum antichain. For example, in Fig. 12.38, nodes 
3 and 7 form an antichain of two nodes. This is a maximum antichain, because a 
minimum general path cover of this graph has two paths (Fig. 12.36). 

12.4 Depth-First Search Trees 

When depth-first search processes a connected graph, it also creates a rooted directed 
spanning tree that can be called a depth-first search tree. Then, the edges of the graph 
can be classified according to their roles during the search. In an undirected graph, 
there will be two types of edges: tree edges that belong to the depth-first search tree, 
and back edges that point to already visited nodes. Note that a back edge always 
points to an ancestor of a node. 

For example, Fig. 12.39 shows a graph and its depth-first search tree. The solid 
edges are tree edges, and the dashed edges are back edges. 

In this section, we will discuss some applications for depth-first search trees in 
graph processing. 

12.4.1 Biconnectivity 

A connected graph is called biconnected if it remains connected after removing 
any single node (and its edges) from the graph. For example, in Fig. 12.40, the left
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Fig. 12.39 A graph and its depth-first search tree 

Fig. 12.40 The left graph is 
biconnected, the right graph 
is not 
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graph is biconnected but the right graph is not. The right graph is not biconnected, 
because removing node 3 from the graph disconnects the graph by dividing it into 
two components {1, 4} and {2, 5}. 

A node is called an articulation point if removing the node from the graph dis-
connects the graph. Thus, a biconnected graph does not have articulation points. 
In a similar way, an edge is called a bridge if removing the edge from the graph 
disconnects the graph. For example, in Fig. 12.41, nodes 4, 5 and 7 are articulation 
points, and edges 4–5 and 7–8 are bridges. 

We can use depth-first search to efficiently find all articulation points and bridges 
in a graph. First, to find bridges, we begin a depth-first search at an arbitrary node, 
which builds a depth-first search tree. For example, Fig. 12.42 shows a depth-first 
search tree for our example graph. 

An edge a → b corresponds to a bridge exactly when it is a tree edge and there 
is no back edge from the subtree of b to a or any ancestor of a. For example, in 
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Fig. 12.42, edge 5 → 4 is a bridge, because there is no back edge from nodes 
{1, 2, 3, 4} to node 5. However, edge 6 → 7 is not a bridge, because there is a back 
edge 7 → 5 and node 5 is an ancestor of node 6. 

Finding articulation points is a bit more difficult, but we can again use the depth-
first search tree. First, if a node x is the root of the tree, it is an articulation point 
exactly when it has two or more children. Then, if x is not the root, it is an articulation 
point exactly when it has a child whose subtree does not contain a back edge to an 
ancestor of x . 

For example, in Fig. 12.42, node 5 is an articulation point, because it is the root 
and has two children, and node 7 is an articulation point, because the subtree of its 
child 8 does not contain a back edge to an ancestor of 7. However, node 2 is not 
an articulation point, because there is a back edge 3 → 4, and node 8 is not an 
articulation point, because it does not have any children. 

12.4.2 Eulerian Subgraphs 

An Eulerian subgraph of a graph contains the nodes of the graph and a subset of 
the edges such that the degree of each node is even. For example, Fig. 12.43 shows 
a graph and its Eulerian subgraph. 

Consider the problem of calculating the total number of Eulerian subgraphs for a 
connected graph. It turns out that there is a simple formula for this: there are always 
2k Eulerian subgraphs were k is the number of back edges in the depth-first search 
tree of the graph. Note that k = m − (n − 1) where n is the number of nodes and m
is the number of edges. 

The depth-first search tree helps to understand why this formula holds. Consider 
any fixed subset of back edges in the depth-first search tree. To create an Eulerian 
subgraph that contains these edges, we need to choose a subset of the tree edges so 
that each node has an even degree. To do this, we process the tree from bottom to 
top and always include a tree edge in the subgraph exactly when it points to a node 
whose degree is even with the edge. Then, since the sum of degrees is even, also the 
degree of the root node will be even. 

Fig. 12.43 A graph  and an  
Eulerian subgraph 
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12.5 Minimum Cost Flows 

In the minimum cost flow problem, we are given a directed graph with a source and 
a sink. Each edge has two values: a capacity, the maximum amount of flow we can 
send through the edge, and a cost, the unit price for the flow that goes through the 
edge. Our task is to send k units of flow from the source to the sink in such a way 
that the total cost of the flow is as small as possible. 

The minimum cost flow problem resembles the maximum flow problem 
(Sect. 12.3), but there are two differences: First, we want to send exactly k units 
of flow even if it would be possible to send more flow. Second, edges have costs and 
we want to find a solution that minimizes the total cost of the flow. 

For example, Fig. 12.44 shows a minimum cost flow graph where node 1 is the 
source and node 4 is the sink. The notation a; b means that the capacity of the edge 
is a and the cost is b. For example, we can send at most 5 units of flow from node 2 
to node 3, and the unit cost of the flow will be 3. Figure 12.45 shows an optimal way 
to send k = 4 units of flow from the source to the sink. The cost of this solution is 
29, which can be calculated as follows: 

• We send 2 units of flow from node 1 to node 2 (cost 2 · 1 = 2). 
• We send 1 unit of flow from node 2 to node 3 (cost 1 · 3 = 3). 
• We send 1 unit of flow from node 2 to node 4 (cost 1 · 8 = 8). 
• We send 2 units of flow from node 1 to node 3 (cost 2 · 5 = 10). 
• We send 3 units of flow from node 3 to node 4 (cost 3 · 2 = 6). 

Note that the minimum cost flow problem is quite a general problem, and some 
other problems are its special cases. If we ignore the costs and want to determine 
the maximum possible value of k, the problem corresponds to the maximum flow 
problem. And if the capacity of each edge is infinite (or at least k), the problem 
reduces to finding a minimum-cost path from the source to the sink. 

Fig. 12.44 A minimum cost 
flow problem 
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Fig. 12.45 An optimal way 
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12.5.1 Minimum Cost Paths Algorithm 

Assuming that the input graph does not have a negative cost cycle, we can solve 
the minimum cost flow problem using a modified version of the Ford–Fulkerson 
algorithm (Sect. 12.3). As in the maximum flow problem, we construct paths that 
generate flow from the source to the sink. It turns out that if we always choose a path 
whose total cost is minimum, the resulting flow will be an optimal solution for the 
minimum cost flow problem [ 2]. 

To use the Ford–Fulkerson algorithm, we first add for each edge a reverse edge 
with capacity 0 and cost −c where c is the original cost. 2 The costs of the edges 
never change during the algorithm. Then, we run the Ford–Fulkerson algorithm and 
always choose a minimum-cost path from the source to the sink. We increase the 
flow and update the capacities like in the maximum flow problem, with the following 
exception: if the current flow is f and a path would increase it by x where f +x > k, 
we only increase it by k − f and immediately terminate. 

While the graph does not have a negative cost cycle, it can have edges whose 
costs are negative. For this reason, we construct the minimum-cost paths using the 
Bellman–Ford algorithm, which supports negative edge costs. The resulting algo-
rithm works in O(nmk) time, because each path increases the flow at least by one 
and it takes O(nm) time to find a path using the Bellman–Ford algorithm. 

Figure 12.46 shows how the algorithm works in our example graph assuming that 
the target flow is k = 4. First it constructs a path 1 → 2 → 3 → 4 whose cost is 
1+ 3+ 2 = 6. This path increases the flow by 2 and the cost by 2 · 6 = 12. Then the 
algorithm constructs a path 1 → 3 → 4, which increases the flow by 1 and the cost 
by 7. Finally, the algorithm constructs a path 1 → 3 → 2 → 4, which increases the 
flow by 1 and the cost by 10. Note that the last path could increase the flow by 2, but  
it only increases it by 1, because the target flow is 4. The total cost of the solution is 
12 + 7 + 10 = 29, as expected. 

Why does the algorithm work? The algorithm is based on the following fact that 
we will not prove here: if the graph (with the reverse edges) has a flow of size f and 
there is no negative cost cycle where each edge has a positive capacity, then the flow 
is a minimum cost flow of size f . 

We know that the initial graph does not have a negative cost cycle, and since we 
always construct a minimum cost path from the source to the sink, this ensures that 
there will never be a negative cost cycle. Thus, since we are able to establish a flow of 
size k without creating a negative cost cycle, the resulting flow has to be a minimum 
cost flow of size k.

2 If there is an edge from a to b and also an edge  from b to a, we have to add a reverse edge for 
both of the edges. Thus, we cannot combine edges like in the maximum flow problem, because the 
edges have costs which must be taken into account. 
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Fig. 12.46 Determining a minimum cost flow (k = 4) using the minimum cost paths algorithm 

12.5.2 Minimum Weight Matchings 

One application for minimum cost flows is that we can solve the minimum weight 
bipartite matching problem: given a bipartite weighted graph, find a matching of size 
k whose total weight is minimized. This problem is a generalization of the maximum 
bipartite matching problem and can be solved in a similar way using a minimum cost 
flow algorithm. 

For example, suppose that a company has n employees and n tasks, each employee 
will be assigned exactly one task, and we know for each employee the cost of carrying 
out each task. What is the minimum total cost if we act optimally? For example, for 
the input. 

Employee Task 1 Task 2 Task 3 
Anna 150 400 200 
John 400 350 200 

Maria 500 100 250
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Fig. 12.47 Finding an 
optimal assignment by 
representing a minimum 
weight matching as a 
minimum cost flow 
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the optimal solution is to assign task 1 to Anna, task 2 to Maria and task 3 to John. 
The total cost of this solution is 150 + 100 + 200 = 450. 

Figure 12.47 shows how this scenario can be represented as a minimum cost flow 
problem. We create a graph that has 2n + 2 nodes: a source, a sink, and a node for 
each employee and task. The capacity of each edge is 1, the cost of each edge from 
the source or to the sink is 0, and the cost of each edge from an employee to a task 
is the cost of giving the task to the employee. Now the minimum cost flow of size n
in the graph corresponds to the optimal solution. 

12.5.3 Improving the Algorithm 

If we knew that the graph used in the minimum cost paths algorithm does not have 
negative cost edges with positive capacity, we could improve the algorithm by using 
Dijkstra’s algorithm instead of the Bellman–Ford algorithm. It turns out that we can 
do this by modifying the graph so that there will be no negative cost edges with 
positive capacity, and at the same time, each minimum cost path in the new graph 
corresponds to a minimum cost path in the original graph. 

We exploit the following trick also used in Johnson’s algorithm [ 3]: Suppose that 
each node x is assigned a value p[x] which can be any number. Then we can modify 
the graph so that the cost of an edge from node a to node b becomes c(a, b) +
p[a] − p[b] where c(a, b) is the original cost. This modification does not change 
any minimum cost path in the graph: if the cost of a path from node x to node y in the 
original graph is k, then the cost of the same path in the new graph is k + p[x]− p[y]
where p[x] − p[y] is constant for any path from node x to node y. This happens 
because p values in intermediate path nodes cancel each other out. 

The idea is to choose the p values so that there will be no negative cost edges 
after the modification. We can do this by setting p[x] to be the minimum cost of a 
path from the source to node x . After this, for any edge from node a to node b

. p[b] ≤ p[a] + c(a, b),

which means that 
. c(a, b) + p[a] − p[b] ≥ 0,

i.e., the new cost of the edge is not negative. 
We can now implement the minimum cost paths algorithm as follows: We first run 

the Bellman–Ford algorithm once from the source and construct minimum cost paths
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to all nodes that can be reached using positive capacity edges. Then we modify the 
edge costs using the p values which ensures that each edge with positive capacity has 
a nonnegative cost. After this, we start the actual algorithm that generates flow and 
use Dijkstra’s algorithm to find minimum cost paths. We always construct minimum 
cost paths to all nodes that can be reached using positive capacity edges, and then 
update the edge costs according to the p values. Then, we use the original edge 
costs when calculating the cost of the new path. The resulting algorithm works in 
O(nm + k(m log n)) time, because we run the Bellman–Ford algorithm once and 
Dijkstra’s algorithm at most k times. 

Figure 12.48 shows how the improved algorithm determines the minimum cost 
flow in our example graph. We have already modified the initial edge costs using the 
Bellman–Ford algorithm, and now run Dijkstra’s algorithm three times to construct 
minimum cost paths. Each edge with positive capacity has a nonnegative cost, so 
Dijkstra’s algorithm works correctly. Note that each path correspond to a path in 
Fig. 12.46; only the edge costs are different and we have to use the original edge 
costs to calculate the cost of the resulting flow. 
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Fig. 12.48 Determining a minimum cost flow (k = 4) using the improved algorithm
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We first use the Bellman–Ford algorithm, because the initial graph may have 
negative cost edges with positive capacity. However, after that, we are sure that 
there are no such edges and we can use Dijkstra’s algorithm. Note that some edge 
capacities change when the flow increases after constructing a path, but this never 
creates negative cost edges, because all such edges belong to a minimum cost path 
from the source to the sink: when the path goes from node a to node b, then we know 
that p[b] = p[a] + c(a, b), which means that both the new cost from a to b and the 
new cost from b to a will be 0. 

In practice, when implementing the improved minimum cost paths algorithm, it 
is not necessary to modify the edge costs. Instead, we can just add and subtract p
values when constructing paths, and then update the p values after each round. 
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13Geometry 

This chapter discusses algorithm techniques related to geometry. The general goal 
of the chapter is to find ways to conveniently solve geometric problems, avoiding 
special cases and tricky implementations. 

Section 13.1 introduces the C++ complex number class which has useful tools for 
geometric problems. After this, we will learn to use cross products to solve various 
problems, such as testing whether two line segments intersect and calculating the 
distance from a point to a line. Finally, we discuss ways to calculate polygon areas 
and explore special properties of Manhattan distances. 

Section 13.2 focuses on sweep line algorithms which play an important role in 
computational geometry. We will see how to use such algorithms for counting inter-
section points, finding closest points, and constructing convex hulls. 

13.1 Geometric Techniques 

A challenge when solving geometric problems is how to approach the problem so 
that the number of special cases is as small as possible and there is a convenient way 
to implement the solution. In this section, we will go through a set of tools that make 
solving geometric problems easier. 

13.1.1 Complex Numbers 

A complex number is a number of the form x + yi , where i = √−1 is the imaginary 
unit. A geometric interpretation of a complex number is that it represents a two-
dimensional point (x, y) or a vector from the origin to a point (x, y). For example, 
Fig. 13.1 illustrates the complex number 4 + 2i . 
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Fig. 13.1 The complex 
number 4 + 2i interpreted as 
a point and a vector 

The C++ complex number class complex is useful when solving geometric 
problems. Using the class we can represent points and vectors as complex numbers, 
and use the features of the class to manipulate them. To do this, let us first define 
a coordinate type C. Depending on the situation, a suitable type is long long or 
long double. As a general rule, it is good to use integer coordinates whenever 
possible, because calculations with integers are exact. 

Here are possible coordinate type definitions: 

typedef long long C; 

typedef long double C; 

After this, we can define a complex type P that represents a point or a vector: 

typedef complex<C> P; 

Finally, the following macros refer to x and y coordinates: 

#define X real() 
#define Y imag() 

For example, the following code creates a point p = (4, 2) and prints its x and y 
coordinates: 

P p = {4,2}; 
cout << p.X << " " << p.Y << "\n"; // 4 2  

Then, the following code creates vectors v = (3, 1) and u = (2, 2), and after that 
calculates the sum s = v + u. 

P v = {3,1}; 
P u = {2,2}; 
P s = v+u;  
cout << s.X << " " << s.Y << "\n"; // 5 3  
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Functions The complex class also has functions that are useful in geometric prob-
lems. The following functions should only be used when the coordinate type is long 
double (or another floating point type). 

The function abs(v) calculates the length |v| of a vector v = (x, y) using the 
formula

 
x2 + y2. The function can also be used for calculating the distance between 

points (x1, y1) and (x2, y2), because that distance equals the length of the vector 
(x2 − x1, y2 − y1). For example, the following code calculates the distance between 
points (4, 2) and (3, −1)

P a = {4,2}; 
P b = {3,-1}; 
cout << abs(b-a) << "\n"; // 3.16228 

The function arg(v) calculates the angle of a vector v = (x, y) with respect to 
the x axis. The function gives the angle in radians, where r radians equals 180r/π
degrees. The angle of a vector that points to the right is 0, and angles decrease 
clockwise and increase counterclockwise. 

The function polar(s, a) constructs a vector whose length is s and that points 
to an angle a, given in radians. A vector can be rotated by an angle a by multiplying 
it by a vector with length 1 and angle a. 

The following code calculates the angle of the vector (4, 2), rotates it 1/2 radians 
counterclockwise, and then calculates the angle again: 

P v = {4,2}; 
cout << arg(v) << "\n"; // 0.463648 
v *= polar(1.0,0.5); 
cout << arg(v) << "\n"; // 0.963648 

13.1.2 Points and Lines 

The cross product a × b of vectors a = (x1, y1) and b = (x2, y2) is defined to be 
x1y2 − x2y1. It tells us the direction to which b turns when it is placed directly after 
a. There are three cases, illustrated in Fig. 13.2: 

• a × b > 0: b turns left 
• a × b = 0: b does not turn (or turns 180 ◦) 
• a × b < 0: b turns right 

For example, the cross product of vectors a = (4, 2) and b = (1, 2) is 4·2−2·1 =
6, which corresponds to the first scenario of Fig. 13.2. The cross product can be 
calculated using the following code:
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Fig. 13.2 The interpretation of cross products 

Fig. 13.3 Testing the 
location of a point 
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P a = {4,2}; 
P b = {1,2}; 
C p = (conj(a)*b).Y; // 6 

The above code works, because the function conj negates the y coordinate of 
a vector, and when the vectors (x1, −y1) and (x2, y2) are multiplied together, the y 
coordinate of the result is x1y2 − x2y1. 

Next we will go through some applications of cross products. 

Testing Point Location Cross products can be used to test whether a point is located 
on the left or right side of a line. Assume that the line goes through points s1 and 
s2, we are looking from s1 to s2 and the point is p. For example, in Fig. 13.3, p is 
located on the left side of the line. 

The cross product (p − s1) × (p − s2) tells us the location of the point p. If the  
cross product is positive, p is located on the left side, and if the cross product is 
negative, p is located on the right side. Finally, if the cross product is zero, the points 
s1, s2 and p are on the same line. 

Line Segment Intersection Next, consider the problem of testing whether two line 
segments ab and cd intersect. It turns out that if the line segments intersect, there 
are three possible cases: 

Case 1: The line segments are on the same line and they overlap each other. In 
this case, there is an infinite number of intersection points. For example, in Fig. 13.4, 
all points between c and b are intersection points. To detect this case, we can use 
cross products to test if all points are on the same line. If they are, we can then sort 
them and check whether the line segments overlap each other. 

Case 2: There is a single intersection point which is also a vertex. For example, 
in Fig. 13.5 the intersection point is c. This case is easy to check, because there are
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Fig. 13.4 Case 1: the line 
segments are on the same 
line and overlap each other 
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only four possible intersection points. For example, c is the intersection point exactly 
when it is between a and b. 

Case 3: There is exactly one intersection point that is not a vertex of any line 
segment. In Fig. 13.6, the point p is the intersection point. In this case, the line 
segments intersect exactly when both points c and d are on different sides of a line 
through a and b, and points a and b are on different sides of a line through c and d. 
We can use cross products to check this. 

Distance from a Point to a Line Another property of cross products is that the area 
of a triangle can be calculated using the formula 

. 
|(a − c) × (b − c)|

2
,

where a, b and c are the vertices of the triangle. Using this fact, we can derive a 
formula for calculating the shortest distance between a point and a line. For example, 
in Fig. 13.7, d is the shortest distance between the point p and the line that is defined 
by the points s1 and s2.
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Fig. 13.8 Point a is inside 
and point b is outside the 
polygon 
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Fig. 13.9 Sending rays from 
points a and b
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The area of a triangle whose vertices are s1, s2 and p can be calculated in two ways: 
it is both 1

2 |s2−s1|d (the standard formula taught in school) and 12 ((s1− p)×(s2− p))
(the cross product formula). Thus, the shortest distance is 

. d = (s1 − p) × (s2 − p)

|s2 − s1| .

Point in a Polygon Finally, consider the problem of testing whether a point is located 
inside or outside a polygon. For example, in Fig. 13.8, point a is inside the polygon 
and point b is outside the polygon. 

A convenient way to solve the problem is to send a ray from the point to an 
arbitrary direction and calculate the number of times it touches the boundary of the 
polygon. If the number is odd, the point is inside the polygon, and if the number is 
even, the point is outside the polygon. 

For example, in Fig. 13.9, the rays from a touch 1 and 3 times the boundary of the 
polygon, so a is inside the polygon. In a similar way, the rays from b touch 0 and 2 
times the boundary of the polygon, so b is outside the polygon. 

13.1.3 Polygon Area 

A general formula for calculating the area of a polygon, sometimes called the 
shoelace formula, is as follows: 

.
1

2
|
n−1 

i=1

(pi × pi+1)| = 1

2
|
n−1 

i=1

(xi yi+1 − xi+1yi )|.
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Fig. 13.10 A polygon 
whose area is 17/2 

Here the vertices are p1 = (x1, y1), p2 = (x2, y2), . . ., pn = (xn, yn) in such an 
order that pi and pi+1 are adjacent vertices on the boundary of the polygon, and the 
first and last vertex is the same, i.e., p1 = pn . 

For example, the area of the polygon in Fig. 13.10 is 

. 
|(2 · 5 − 5 · 4) + (5 · 3 − 7 · 5) + (7 · 1 − 4 · 3) + (4 · 3 − 4 · 1) + (4 · 4 − 2 · 3)|

2
= 17/2.

The idea behind the formula is to go through trapezoids whose one side is a side 
of the polygon, and another side lies on the horizontal line y = 0. For example, 
Fig. 13.11 shows one such trapezoid. The area of each trapezoid is 

. (xi+1 − xi )
yi + yi+1

2
,

where the vertices of the polygon are pi and pi+1. If xi+1 > xi , the area is positive, 
and if xi+1 < xi , the area is negative. Then, the area of the polygon is the sum of 
areas of all such trapezoids, which yields the formula 

. |
n−1 

i=1

(xi+1 − xi )
yi + yi+1

2
| = 1

2
|
n−1 

i=1

(xi yi+1 − xi+1yi )|.

Note that the absolute value of the sum is taken, because the value of the sum may 
be positive or negative, depending on whether we walk clockwise or counterclock-
wise along the boundary of the polygon. 

Pick’s Theorem Pick’s theorem provides another way to calculate the area of a 
polygon, assuming that all vertices of the polygon have integer coordinates. Pick’s 
theorem tells us that the area of the polygon is 

.a + b/2 − 1,
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Fig. 13.11 Calculating the 
area of the polygon using 
trapezoids 
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Fig. 13.12 Calculating the 
polygon area using Pick’s 
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where a is the number of integer points inside the polygon and b is the number of 
integer points on the boundary of the polygon. For example, the area of the polygon 
in Fig. 13.12 is 

. 6 + 7/2 − 1 = 17/2.

13.1.4 Distance Functions 

A distance function defines the distance between two points. The usual distance 
function is the Euclidean distance where the distance between points (x1, y1) and 
(x2, y2) is 

. 

 
(x2 − x1)2 + (y2 − y1)2.

An alternative distance function is the Manhattan distance where the distance 
between points (x1, y1) and (x2, y2) is 

. |x1 − x2| + |y1 − y2|.

For example, in Fig. 13.13, the Euclidean distance between the points is 

.

 
(5 − 2)2 + (2 − 1)2 = √

10
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Euclidean distance Manhattan distance 

Fig. 13.13 Two distance functions 

Fig. 13.14 Regions within a 
distance of 1 

Euclidean distance Manhattan distance 

Fig. 13.15 Points B and C
have the maximum 
Manhattan distance 

A 

C 

B 

D 

and the Manhattan distance is 

. |5 − 2| + |2 − 1| = 4.

Figure 13.14 shows regions that are within a distance of 1 from the center point, 
using the Euclidean and Manhattan distances. 

Some problems are easier to solve if Manhattan distances are used instead of 
Euclidean distances. As an example, given a set of points in the two-dimensional 
plane, consider the problem of finding two points whose Manhattan distance is maxi-
mum. For example, in Fig. 13.15, we should select points B andC to get the maximum 
Manhattan distance 5. 

A useful technique related to Manhattan distances is to transform the coordinates 
so that a point (x, y) becomes (x + y, y−x). This rotates the point set 45 ◦ and scales 
it. For example, Fig. 13.16 shows the result of the transformation in our example 
scenario. 

Then, consider two points p1 = (x1, y1) and p2 = (x2, y2) whose transformed 
coordinates are p 

1 = (x  
1, y

 
1) and p 

2 = (x  
2, y

 
2). Now there are two ways to express 

the Manhattan distance between p1 and p2: 

.|x1 − x2| + |y1 − y2| = max(|x  
1 − x  

2|, |y 
1 − y 

2|)
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Fig. 13.16 The maximum 
Manhattan distance after 
transforming the coordinates A 

C 

B 

D 

For example, if p1 = (1, 0) and p2 = (3, 3), the transformed coordinates are 
p 
1 = (1, −1) and p 

2 = (6, 0) and the Manhattan distance is 

. |1 − 3| + |0 − 3| = max(|1 − 6|, | − 1 − 0|) = 5.

The transformed coordinates provide a simple way to operate with Manhattan 
distances, because we can consider x and y coordinates separately. In particular, to 
maximize the Manhattan distance, we should find two points whose transformed 
coordinates maximize the value of 

. max(|x  
1 − x  

2|, |y 
1 − y 

2|).

This is easy, because either the horizontal or vertical difference of the transformed 
coordinates has to be maximum. 

13.2 Sweep Line Algorithms 

Many geometric problems can be solved using sweep line algorithms. The idea in 
such algorithms is to represent an instance of the problem as a set of events that 
correspond to points in the plane. Then, the events are processed in increasing order 
according to their x or y coordinates. 

13.2.1 Intersection Points 

Given a set of n line segments, each of them being either horizontal or vertical, 
consider the problem of counting the total number of intersection points. For example, 
in Fig. 13.17, there are five line segments and three intersection points. 

It is easy to solve the problem in O(n2) time, because we can go through all 
possible pairs of line segments and check if they intersect. However, we can solve 
the problem more efficiently in O(n log n) time using a sweep line algorithm and a 
range query data structure. The idea is to process the endpoints of the line segments 
from left to right and focus on three types of events:
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Fig. 13.17 Five line 
segments with three 
intersection points 

Fig. 13.18 Events that 
correspond to the line 
segments 

1 2  

1 2  

1 2  
3 3  

(1) horizontal segment begins 
(2) horizontal segment ends 
(3) vertical segment 

Figure 13.18 shows the events in our example scenario. 
After creating the events, we go through them from left to right and use a data 

structure that maintains the y coordinates of the active horizontal segments. At event 
1, we add the y coordinate of the segment to the structure, and at event 2, we remove 
the y coordinate from the structure. Intersection points are calculated at event 3: 
when processing a vertical segment between points y1 and y2, we count the number 
of active horizontal segments whose y coordinate is between y1 and y2, and add this 
number to the total number of intersection points. 

To store y coordinates of horizontal segments, we can use a binary indexed or 
segment tree, possibly with index compression. Processing each event takes O(log n)

time, so the algorithm works in O(n log n) time. 

13.2.2 Closest Pair Problem 

Given a set of n points, our next problem is to find two points whose Euclidean 
distance is minimum. For example, Fig. 13.19 shows a set of points, where the closest 
pair is painted black. 

This is another example of a problem that can be solved in O(n log n) time using 
a sweep line algorithm. 1 We go through the points from left to right and maintain 
a value d: the minimum distance between two points seen so far. At each point, we

1 Creating an efficient algorithm for the closest pair problem was once an important open problem in 
computational geometry. Finally, Shamos and Hoey [ 1] discovered a divide and conquer algorithm
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Fig. 13.19 An instance of the closest pair problem 

d 

d 

Fig. 13.20 The region where the closest point must lie 

find its nearest point to the left. If the distance is less than d, it is the new minimum 
distance and we update the value of d. 

If the current point is (x, y) and there is a point to the left within a distance of 
less than d, the x coordinate of such a point must be between [x − d, x] and the y 
coordinate must be between [y − d, y + d]. Thus, it suffices to only consider points 
that are located in those ranges, which makes the algorithm efficient. For example, 
in Fig. 13.20, the region marked with dashed lines contains the points that can be 
within a distance of d from the active point. 

The efficiency of the algorithm is based on the fact that the region always contains 
only O(1) points. To see why this holds, consider Fig. 13.21. Since the current 
minimum distance between two points is d, each d/2 × d/2 square may contain at 
most one point. Thus, there are at most eight points in the region. 

We can go through the points in the region in O(log n) time by maintaining a set 
of points whose x coordinates are between [x − d, x] so that the points are sorted 
in increasing order according to their y coordinates. The time complexity of the 
algorithm is O(n log n), because we go through n points and determine for each 
point its nearest point to the left in O(log n) time. 

that works in O(n log n) time. The sweep line algorithm presented here has common elements with 
their algorithm, but it is easier to implement.
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Fig. 13.21 The closest point 
region contains O(1) points 

d 

d 

13.2.3 Convex Hull Problem 

A convex hull is the smallest convex polygon that contains all points of a given 
point set. Here convexity means that a line segment between any two vertices of the 
polygon is completely inside the polygon. For example, Fig. 13.22 shows the convex 
hull of a point set. 

There are many efficient algorithms for constructing convex hulls. Perhaps the 
simplest among them is Andrew’s algorithm [ 2], which we will describe next. The 
algorithm first determines the leftmost and rightmost points in the set, and then 
constructs the convex hull in two parts: first the upper hull and then the lower hull. 
Both parts are similar, so we can focus on constructing the upper hull. 

First, we sort the points primarily according to x coordinates and secondarily 
according to y coordinates. After this, we go through the points and add each point 
to the hull. Always after adding a point to the hull, we make sure that the last line 
segment in the hull does not turn left. As long as it turns left, we repeatedly remove 
the second last point from the hull. Figure 13.23 shows how Andrew’s algorithm 
creates the upper hull for our example point set. 

Fig. 13.22 The convex hull 
of a point set
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step 1 step 2 step 3 step 4 

step 5 step 6 step 7 step 8 

step 9 step 10 step 11 step 12 

step 13 step 14 step 15 step 16 

step 17 step 18 step 19 step 20 

Fig. 13.23 Constructing the upper part of the convex hull using Andrew’s algorithm 
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14String Algorithms 

This chapter deals with topics related to string processing. 
Section 14.1 presents the trie structure which maintains a set of strings. After this, 

dynamic programming algorithms for determining longest common subsequences 
and edit distances are discussed. 

Section 14.2 discusses the string hashing technique which is a general tool for 
creating efficient string algorithms. The idea is to compare hash values of strings 
instead of their characters, which allows us to compare strings in constant time. 

Section 14.3 introduces the Z-algorithm which determines for each string position 
the longest substring which is also a prefix of the string. The Z-algorithm is an 
alternative for many string problems that can also be solved using hashing. 

Section 14.4 discusses the suffix array structure, which can be used to solve some 
more advanced string problems. 

Section 14.5 presents an introduction to automata theory, and shows how we can 
use pattern matching automata and suffix automata as an alternative way to solve 
many string problems. 

14.1 Basic Topics 

Throughout the chapter, we assume that all strings are zero indexed. For example, a 
string s of length n consists of characters s[0],s[1], . . . ,s[n − 1]. 

An alphabet defines the characters that can be used in strings. For example, the 
alphabet {a,b, . . . ,z} consists of the lowercase Latin letters. 

A substring is a sequence of consecutive characters in a string. We use the notation 
s[a . . . b] to refer to a substring of s that starts at position a and ends at position b. 
A subsequence is any sequence of characters in a string in their original order. All 
substrings are subsequences, but the converse is not true (Fig. 14.1). A substring or 
subsequence is called proper if it is not the entire string. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
A. Laaksonen, Guide to Competitive Programming, Undergraduate Topics in Computer 
Science, https://doi.org/10.1007/978-3-031-61794-2_14 

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61794-2_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61794-2_14&domain=pdf
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14
https://doi.org/10.1007/978-3-031-61794-2_14


244 14 String Algorithms 

Fig. 14.1 NVELO is a 
substring, NEP is a 
subsequence 

a substring 

a subsequence 

A prefix is a substring that contains the first character of a string, and a suffix is 
a substring that contains the last character of a string. For example, the string BYTE 
has prefixes {B,BY,BYT,BYTE} and suffixes {E,TE,YTE,BYTE}. A  border is a 
substring that is both a prefix and suffix. For example, AB is a border of ABCAAB. 

A rotation of a string can be created by repeatedly moving the first character of 
the string to the end of the string. For example, the rotations of ATLAS are ATLAS, 
TLASA, LASAT, ASATL and SATLA. 

14.1.1 Trie Structure 

A trie is a rooted tree that maintains a set of strings. Each string in the set is stored as a 
character chain that starts at the root node. If two strings have a common prefix, they 
also have a common chain in the tree. As an example, the trie in Fig. 14.2 corresponds 
to the set {CANAL,CANDY,THE,THERE}. A circle in a node means that a string in 
the set ends at the node. 

After constructing a trie, we can easily check whether it contains a given string 
by following the chain that starts at the root node. We can also add a new string to 
the trie by first following the chain and then adding new nodes if necessary. Both the 
operations work in O(n) time where n is the length of the string. 

A trie can be stored in an array 

int trie[N][A]; 

where N is the maximum number of nodes (the maximum total length of the strings 
in the set) and A is the size of the alphabet. The trie nodes are numbered 0, 1, 2, . . .

Fig. 14.2 A trie that  
contains the strings CANAL, 
CANDY, THE, and  THERE
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in such a way that the number of the root is 0, and trie[s][c] specifies the next 
node in the chain when we move from node s using character c. 

There are several ways how we can extend the trie structure. For example, suppose 
that we are given queries that require us to calculate the number of strings in the set 
that have a certain prefix. We can do this efficiently by storing for each trie node the 
number of strings whose chain goes through the node. 

14.1.2 Dynamic Programming 

Dynamic programming can be used to solve many string problems. Next we will 
discuss two examples of such problems. 

Longest Common Subsequence The longest common subsequence of two strings 
is the longest string that appears as a subsequence in both strings. For example, the 
longest common subsequence of TOUR and OPERA is OR. 

Using dynamic programming, we can determine the longest common subsequence 
of two strings x and y in O(nm) time, where n andm denote the lengths of the strings. 
To do this, we define a functionlcs(i, j) that gives the length of the longest common 
subsequence of the prefixes x[0 . . . i] and y[0 . . . j]. Then, we can use the recurrence 

. lcs(i, j) =
 
lcs(i − 1, j − 1)+ 1 x[i] = y[ j]
max(lcs(i, j − 1),lcs(i − 1, j)) otherwise.

The idea is that if characters x[i] and y[ j] are equal, we match them and increase 
the length of the longest common subsequence by one. Otherwise, we remove the 
last character from either x or y, depending on which choice is optimal. 

For example, Fig. 14.3 shows the values of the lcs function in our example 
scenario. 

Edit Distances The edit distance (or Levenshtein distance) between two strings 
denotes the minimum number of editing operations that transform the first string 
into the second string. The allowed editing operations are as follows: 

• insert a character (e.g. ABC → ABCA) 
• remove a character (e.g. ABC → AC) 
• modify a character (e.g. ABC → ADC) 

Fig. 14.3 The values of the 
lcs function for 
determining the longest 
common subsequence of 
TOUR and OPERA 
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Fig. 14.4 The values of the 
edit function for 
determining the edit distance 
between LOVE and MOVIE 

For example, the edit distance between LOVE and MOVIE is 2, because we can 
first perform the operation LOVE → MOVE (modify) and then the operation MOVE 
→ MOVIE (insert). 

We can calculate the edit distance between two strings x and y in O(nm) time, 
where n and m are the lengths of the strings. Let edit(i, j) denote the edit distance 
between the prefixes x[0 . . . i] and y[0 . . . j]. The values of the function can be 
calculated using the recurrence 

. 

edit(a, b) = min(edit(a, b − 1)+ 1,

edit(a − 1, b)+ 1,

edit(a − 1, b − 1)+ cost(a, b)),

where cost(a, b) = 0 if x[a] = y[b], and otherwise cost(a, b) = 1. The formula 
considers three ways to edit the string x: insert a character at the end of x, remove 
the last character from x, or match/modify the last character of x. In the last case, if 
x[a] = y[b], we can match the last characters without editing. 

For example, Fig. 14.4 shows the values of the edit function in our example 
scenario. 

14.2 String Hashing 

Using string hashing we can efficiently check whether two strings are equal by 
comparing their hash values. A hash value is an integer that is calculated from the 
characters of the string. If two strings are equal, their hash values are also equal, 
which makes it possible to compare strings based on their hash values. 

14.2.1 Polynomial Hashing 

A usual way to implement string hashing is polynomial hashing, which means that 
the hash value of a string s of length n is 

. (s[0]An−1 + s[1]An−2 + · · · + s[n − 1]A0) mod B,

where s[0], s[1], . . . , s[n − 1] are interpreted as characters codes, and A and B are 
prechosen constants.



14.2 String Hashing 247

For example, let us calculate the hash value of the string ABACB. The character 
codes of A, B and C are 65, 66 and 67. Then, we need to fix the constants; suppose 
that A = 3 and B = 97. Thus, the hash value is 

. (65 · 34 + 66 · 33 + 65 · 32 + 66 · 31 + 67 · 30) mod 97 = 40.

When polynomial hashing is used, we can calculate the hash value of any substring 
of a string s in O(1) time after an O(n) time preprocessing. The idea is to construct 
an array h such that h[k] contains the hash value of the prefix s[0 . . . k]. The array 
values can be recursively calculated as follows: 

. 
h[0] = s[0]
h[k] = (h[k − 1]A + s[k]) mod B

In addition, we construct an array p where p[k] = Ak mod B: 

. 
p[0] = 1
p[k] = (p[k − 1]A) mod B.

Constructing the above arrays takes O(n) time. After this, the hash value of any 
substring s[a . . . b] can be calculated in O(1) time using the formula 

. (h[b] − h[a − 1]p[b − a + 1]) mod B

assuming that a > 0. If a = 0, the hash value is simply h[b]. 

14.2.2 Applications 

We can efficiently solve many string problems using hashing, because it allows us 
to compare arbitrary substrings of strings in O(1) time. In fact, we can often simply 
take a brute force algorithm and make it efficient by using hashing. 

Pattern Matching A fundamental string problem is the pattern matching problem: 
given a string s and a pattern p, find the positions where p occurs in s. For example, 
the pattern ABC occurs at positions 0 and 5 in the string ABCABABCA (Fig. 14.5). 

We can solve the pattern matching problem in O(n2) time using a brute force 
algorithm that goes through all positions where p may occur in s and compares 
strings character by character. Then, we can make the brute force algorithm efficient 
using hashing, because each comparison of strings then only takes O(1) time. This 
results in an O(n) time algorithm. 

Fig. 14.5 The pattern ABC appears two times in the string ABCABABCA
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Distinct Substrings Consider the problem of counting the number of distinct sub-
strings of length k in a string. For example, the string ABABAB has two distinct 
substrings of length 3: ABA and BAB. Using hashing, we can calculate the hash 
value of each substring and reduce the problem to counting the number of distinct 
integers in a list, which can be done in O(n log n) time. 

Minimal Rotation Consider the problem of finding the lexicographically minimal 
rotation of a string. For example, the minimal rotation of ATLAS is ASATL. 

We can efficiently solve the problem by combining string hashing and binary 
search. The key idea is that we can find out the lexicographic order of two strings in 
logarithmic time. First, we calculate the length of the common prefix of the strings 
using binary search. Here hashing allows us to check in O(1) time whether two 
prefixes of a certain length match. After this, we check the next character after the 
common prefix, which determines the order of the strings. 

Then, to solve the problem, we construct a string that contains two copies of 
the original string (e.g. ATLASATLAS) and go through its substrings of length n
maintaining the minimal substring. Since each comparison can be done in O(log n)
time, the algorithm works in O(n log n) time. 

14.2.3 Collisions and Parameters 

An evident risk when comparing hash values is a collision, which means that two 
strings have different contents but equal hash values. In this case, an algorithm that 
relies on the hash values concludes that the strings are equal, but in reality they are 
not, and the algorithm may give incorrect results. 

Collisions are always possible, because the number of different strings is larger 
than the number of different hash values. However, the probability of a collision is 
small if the constants A and B are carefully chosen. A usual way is to choose random 
constants near 109, for example as follows: 

. 
A = 911382323
B = 972663749

Using such constants, the long long type can be used when calculating hash 
values, because the products AB and BB will fit in long long. But is it enough 
to have about 109 different hash values? 

Let us consider three scenarios where hashing can be used: 
Scenario 1: Strings x and y are compared with each other. The probability of a 

collision is 1/B assuming that all hash values are equally probable.
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Table 14.1 Collision probabilities in hashing scenarios when n = 106

Constant B Scenario 1 Scenario 2 Scenario 3 

10 0.00 1.00 1.00

106 0.00 0.63 1.00

109 0.00 0.00 1.00

1012 0.00 0.00 0.39

1015 0.00 0.00 0.00

1018 0.00 0.00 0.00

3

Scenario 2: A string x is compared with strings y1, y2, . . . , yn . The probability 
of one or more collisions is 

. 1− (1− 1/B)n .

Scenario 3: All pairs of strings x1, x2, . . . , xn are compared with each other. The 
probability of one or more collisions is 

. 1− B · (B − 1) · (B − 2) · · · (B − n + 1)

Bn
.

Table 14.1 shows the collision probabilities for different values of B when n =
106. The table shows that in Scenarios 1 and 2, the probability of a collision is 
negligible when B ≈ 109. However, in Scenario 3 the situation is very different: a 
collision will almost always happen when B ≈ 109. 

The phenomenon in Scenario 3 is known as the birthday paradox: if there are n
people in a room, the probability that some two people have the same birthday is 
large even if n is quite small. In hashing, correspondingly, when all hash values are 
compared with each other, the probability that some two hash values are equal is 
large. 

We can make the probability of a collision smaller by calculating multiple hash 
values using different parameters. It is unlikely that a collision would occur in all 
hash values at the same time. For example, two hash values with parameter B ≈ 109

correspond to one hash value with parameter B ≈ 1018, which makes the probability 
of a collision very small. 

Some people use constants B = 232 and B = 264, which is convenient, because 
operations with 32 and 64 bit integers are calculated modulo 232 and 264. However, 
this is not a good choice, because it is possible to construct inputs that always generate 
collisions when constants of the form 2x are used [ 1].
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14.3 Z-Algorithm 

The Z-array z of a string s of length n contains for each k = 0, 1, . . . , n − 1 the 
length of the longest substring of s that begins at position k and is a prefix of s. 
Thus, z[k] = p tells us that s[0 . . . p − 1] equals s[k . . . k + p − 1], but s[p] and 
s[k + p] are different characters (or the length of the string is k + p). 

For example, Fig. 14.6 shows the Z-array of ABCABCABAB. In the array, for 
example, z[3] = 5, because the substring ABCAB of length 5 is a prefix of s, but the 
substring ABCABA of length 6 is not a prefix of s. 

14.3.1 Constructing the Z-Array 

Next we describe an algorithm, called the Z-algorithm which efficiently constructs 
the Z-array in O(n) time. 1 The algorithm calculates the Z-array values from left 
to right by both using information already stored in the array and by comparing 
substrings character by character. 

To efficiently calculate the Z-array values, the algorithm maintains a range [x, y]
such that s[x . . . y] is a prefix of s, the value of z[x] has been determined, and y is 
as large as possible. Since we know that s[0 . . . y − x] and s[x . . . y] are equal, we 
can use this information when calculating subsequent array values. Suppose that we 
have calculated the values of z[0],z[1], . . . ,z[k − 1] and we want to calculate the 
value of z[k]. There are three possible scenarios: 

Scenario 1: y < k. In this case, we do not have information about the position 
k, so we calculate the value of z[k] by comparing substrings character by character. 
For example, in Fig. 14.7, there is no [x, y] range yet, so we compare the substrings 
starting at positions 0 and 3 character by character. Since z[3] = 5, the new [x, y]
range becomes [3, 7]. 

Scenario 2: y ≥ k and k+z[k−x] ≤ y. In this case we know thatz[k] = z[k−x], 
because s[0 . . . y − x] and s[x . . . y] are equal and we stay inside the [x, y] range. 
For example, in Fig. 14.8, we conclude that z[4] = z[1] = 0. 

Scenario 3: y ≥ k and k+z[k−x] > y. In this case we know thatz[k] ≥ y−k+1. 
However, since we do not have information after the position y, we have to compare 
substrings character by character starting at positions y − k + 1 and y + 1. For  
example, in Fig. 14.9, we know that z[6] ≥ 2. Then, since s[2]  = s[8], it turns out 
that, in fact, z[6] = 2. 

Fig. 14.6 The Z-array of 
ABCABCABAB

1 Gusfield [ 2] presents the Z-algorithm as the simplest known method for linear-time pattern match-
ing, and attributes the original idea to Main and Lorentz [ 3]. 
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Fig. 14.7 Scenario 1: 
Calculating the value of z[3]

Fig. 14.8 Scenario 2: 
Calculating the value of z[4]

Fig. 14.9 Scenario 3: 
Calculating the value of z[6]

The resulting algorithm works in O(n) time, because always when two characters 
match when comparing substrings character by character, the value of y increases. 
Thus, the total work needed for comparing substrings is only O(n).
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In practice, we can implement the Z-algorithm as follows: 

int x = 0, y = 0;  
for (int i = 1; i < n; i++) { 

z[i] = (y < i) ? 0 : min(y-i+1,z[i-x]); 
while (i+z[i] < n && s[z[i]] == s[i+z[i]]) {  

z[i]++; 
} 
if (i+z[i]-1 > y) { 

x = i; y = i+z[i]-1; 
} 

} 

14.3.2 Applications 

The Z-algorithm provides an alternative way to solve many string problems that 
can be also solved using hashing. However, unlike hashing, the Z-algorithm always 
works and there is no risk of collisions. In practice, it is often a matter of taste whether 
to use hashing or the Z-algorithm. 

Pattern Matching Consider again the pattern matching problem, where our task is 
to find the occurrences of a pattern p in a string s. We already solved the problem 
using hashing, but now we will see how the Z-algorithm handles the problem. 

A recurrent idea in string processing is to construct a string that consists of multiple 
individual parts separated by special characters. In this problem, we can construct a 
string p# s, where p and s are separated by a special character # that does not occur 
in the strings. Then, the Z-array of p# s tells us the positions where p occurs in s, 
because such positions contain the length of p. 

Figure 14.10 shows the Z-array for s =ABCABABCA and p =ABC. Positions 4 
and 9 contain the value 3, which means that p occurs in positions 0 and 5 in s. 

Finding Borders All borders of a string can be efficiently found using the 
Z-algorithm, because a suffix at position k is a border exactly when k + z[k] = n
where n is the length of the string. For example, in Fig. 14.11, A, ABA and ABACABA 
are borders, because 10+ z[10] = 11, 8+ z[8] = 11, and 4+ z[4] = 11. 

Fig. 14.10 Pattern matching 
using the Z-algorithm 

Fig. 14.11 Finding borders 
using the Z-algorithm
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14.4 Suffix Arrays 

The suffix array of a string describes the lexicographic order of its suffixes. Each 
value in the suffix array is a starting position of a suffix. For example, Fig. 14.12 
shows the suffix array of the string ABAACBAB. 

It is often convenient to represent the suffix array vertically, and also show the 
corresponding suffixes (Fig. 14.13). However, note that the suffix array itself only 
contains the starting positions of the suffixes and not their characters. 

14.4.1 Prefix Doubling Method 

A simple and efficient way to create the suffix array of a string is to use a prefix-
doubling construction, which works in O(n log2 n) or O(n log n) time, depending on 
the implementation. 2 The algorithm consists of rounds numbered 0, 1, . . . ,  log2 n , 
and round i goes through substrings whose length is 2i . During a round, each sub-
string x of length 2i is given an integer label l(x) such that l(a) = l(b) exactly when 
a = b and l(a) < l(b) exactly when a < b. 

On round 0, each substring consists of only one character, and we can, for example, 
use labels A = 1,B = 2, and so on. Then, on round i , where i > 0, we use the labels 
for substrings of length 2i−1 to construct labels for substrings of length 2i . To give a  
label l(x) for a substring x of length 2i , we divide x into two halves a and b of length 
2i−1 whose labels are l(a) and l(b). (If the second half begins outside the string, we 
assume that its label is 0.) First, we give x an initial label that is a pair (l(a), l(b)). 
Then, after all substrings of length 2i have been given initial labels, we sort the initial 
labels and give final labels that are consecutive integers 1, 2, 3, etc. The purpose of 

Fig. 14.12 The suffix array 
of the string ABAACBAB 

Fig. 14.13 Another way to 
represent the suffix array

2 The idea of prefix doubling is due to Karp, Miller and Rosenberg [ 4]. There are also more advanced 
O(n) time algorithms for constructing suffix arrays; Kärkkäinen and Sanders [ 5] provide a quite 
simple such algorithm. 
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– – – – – – – – 1 2 1 1 3 2 1 2  

initial labels final labels 
round 0 

length 1 

2 5 1 3 6 5 2 4  

initial labels final labels 
round 1 

length 2 

3 6 1 4 8 7 2 5 

initial labels final labels 
round 2 

length 4 

3 6 1 4 8 7 2 5 

initial labels final labels 
round 3 

length 8 

Fig. 14.14 Constructing the labels for the string ABAACBAB 

giving the labels is that after the last round, each substring has a unique label, and the 
labels show the lexicographic order of the substrings. Then, we can easily construct 
the suffix array based on the labels. 

Figure 14.14 shows the construction of the labels for ABAACBAB. For example, 
after round 1, we know that l(AB) = 2 and l(AA) = 1. Then, on round 2, the initial 
label for ABAA is (2, 1). Since there are two smaller initial labels ((1, 6) and (2, 0)), 
the final label is l(ABAA) = 3. Note that in this example, each label is unique already 
after round 2, because the first four characters of the substrings completely determine 
their lexicographical order. 

The resulting algorithm works in O(n log2 n) time, because there are O(log n)
rounds and we sort a list of n pairs on each round. In fact, an O(n log n) implemen-
tation is also possible, because we can use a linear-time sorting algorithm to sort the 
pairs. Still, a straightforward O(n log2 n) time implementation just using the C++ 
sort function is usually efficient enough. 

14.4.2 Finding Patterns 

After constructing the suffix array, we can efficiently find the occurrences of any 
given pattern in the string. This can be done in O(k log n) time, where n is the length 
of the string and k is the length of the pattern. The idea is to process the pattern 
character by character and maintain a range in the suffix array that corresponds to 
the prefix of the pattern processed so far. Using binary search, we can efficiently 
update the range after each new character. 

For example, consider finding the occurrences of the pattern BA in the string 
ABAACBAB (Fig. 14.15). First, our search range is [0, 7], which spans the entire 
suffix array. Then, after processing the character B, the range becomes [4, 6]. Finally, 
after processing the character A, the range becomes [5, 6]. Thus, we conclude that 
BA has two occurrences in ABAACBAB in positions 1 and 5.
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Fig. 14.15 Finding the occurrences of BA in ABAACBAB using a suffix array 

Compared to string hashing and the Z-algorithm discussed earlier, the advantage 
of the suffix array is that we can efficiently process several queries that are related 
to different patterns, and it is not necessary to know the patterns beforehand when 
constructing the suffix array. 

14.4.3 LCP Arrays 

The LCP array of a string gives for its each suffix a LCP value: the length of the 
longest common prefix of the suffix and the next suffix in the suffix array. Figure 14.16 
shows the LCP array for the string ABAACBAB. For example, the LCP value of the 
suffix BAACBAB is 2, because the longest common prefix of BAACBAB and BAB is 
BA. Note that the last suffix in the suffix array does not have a LCP value. 

Next we present an efficient algorithm, due to Kasai et al. [ 6], for constructing 
the LCP array of a string, provided that we have already constructed its suffix array. 
The algorithm is based on the following observation: Consider a suffix whose LCP 
value is x . If we remove the first character from the suffix and get another suffix, 
we immediately know that its LCP value has to be at least x − 1. For example, in 
Fig. 14.16, the LCP value of the suffix BAACBAB is 2, so we know that the LCP 
value of the suffix AACBAB has to be at least 1. In fact, it happens to be exactly 1. 

Fig. 14.16 The LCP array 
of the string ABAACBAB
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We can use the above observation to efficiently construct the LCP array by calcu-
lating the LCP values in decreasing order of suffix length. At each suffix, we calculate 
its LCP value by comparing the suffix and the next suffix in the suffix array character 
by character. Now we can use the fact that we know the LCP value of the suffix 
that has one more character. Thus, the current LCP value has to be at least x − 1, 
where x is the previous LCP value, and we do not need to compare the first x − 1
characters of the suffixes. The resulting algorithm works in O(n) time, because only 
O(n) comparisons are done during the algorithm. 

Using the LCP array, we can efficiently solve some advanced string problems. 
For example, to calculate the number of distinct substrings in a string, we can simply 
subtract the sum of all values in the LCP array from the total number of substrings, 
i.e., the answer to the problem is 

. 
n(n + 1)

2
− c,

where n is the length of the string and c is the sum of all values in the LCP array. 
For example, the string ABAACBAB has 

. 
8 · 9
2

− 7 = 29

distinct substrings. 

14.5 String Automata 

An automaton 3 is a directed graph whose nodes are called states and edges are called 
transitions. One of the states is a start state, marked with an incoming edge, and there 
can be any number of accept states, marked with double circles. Each transition is 
assigned a character. 

We can use an automaton to check if a string has a required format. To do that, 
we begin at the start state and then process the characters from left to right and move 
through the transitions. If the final state after processing the entire string is an accept 
state, the string is accepted, and otherwise it is rejected. 

In automata theory, any set of strings can be called a language. The language of 
an automaton consists of all strings it accepts. An automaton recognizes a language 
if it is able to accept all strings in the language and reject all other strings. 

For example, the automaton in Fig. 14.17 accepts all strings that consist of char-
acters A and B and whose first and last character are different. i.e., the language of 
the automaton is 

. {AB,BA,AAB,ABB,BAA,BBA, . . . }.
In this automaton, state 1 is the start state and states 3 and 5 are accept states. When 
the automaton is given the string ABB, it goes through states 1 → 2 → 3 → 3 and

3 More precisely, we focus on deterministic finite automata, also called DFA’s. 
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Fig. 14.17 An automaton 
that accepts all AB-strings 
whose first and last character 
is different 

accepts the string, and when the automaton is given the string ABA, it goes through 
states 1 → 2 → 3 → 2 and rejects the string. 

We assume that our automata are deterministic, i.e., there are no two transitions 
from a state with the same character. This allows us to efficiently and unambiguously 
process any string using an automaton. 

14.5.1 Regular Languages 

A language is called regular if there is an automaton that recognizes it. For example, 
the set of AB-strings whose first and last character is different is a regular language, 
because the automaton in Fig. 14.17 recognizes it. 

It turns out that a language is regular exactly when there is a regular expression 
that describes the required format of the strings in the language. Regular expressions 
have the following basic building blocks: 

• A vertical bar | means that we can choose one of the options. For example, the 
regular expression AB|BA|C accepts the strings AB, BA and C. 

• Parentheses ( and ) can be used in grouping. For example, the regular expression 
A(A|B)C accepts the strings AAC and ABC. 

• An asterisk * means that the preceding part can be repeated any number of times 
(including zero times). For example, the regular expression A(BC)* accepts the 
strings A, ABC, ABCBC, etc. 

Here is a regular expression for the automaton in Fig. 14.17: 

. A(A|B)*B|B(A|B)*A

In this case, we have two options: either the string begins with A and ends with 
B or begins with B and ends with A. The part (A|B)* corresponds to any string 
consisting of characters A and B. 

Intuitively, a language is regular if we can create an algorithm that goes through 
the input string from left to right once, uses a constant amount of memory and can 
detect if the string belongs to the language. For example, the language 

.{AB,AABB,AAABBB,AAAABBBB, . . . }
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is not regular, because we should remember the number of A’s and then check that 
the number of B’s is the same, but this is not possible for arbitrarily long strings 
using a constant amount of memory. 

Note that regular expression implementations in programming languages often 
have extensions that allow them to recognize languages that actually are not regular 
and it is not possible to create automata for such languages. 

14.5.2 Pattern Matching Automata 

A pattern matching automaton can be used to efficiently detect all occurrences of a 
pattern in a string. The idea is to create an automaton that accepts a string exactly 
when the pattern is a suffix of the string. Then, when the automaton processes a 
string, it always moves to an accept state when it has found a pattern occurrence. 

Given a pattern p of n characters, a pattern matching automaton consists of n+ 1
states. The states are numbered 0, 1, . . . , n, where state 0 is the start state and state 
n is the only accept state. When we are in state i , we have been able to match the 
prefix p[0 . . . i − 1], i.e., the first i characters, of the pattern. Then we either move 
to state i + 1 if the next input character is p[i], or to some state x ≤ i otherwise. 

For example, Fig. 14.18 shows a pattern matching automaton that detects occur-
rences of the pattern ABA. When the automaton processes the string ABABA, it moves 
through states 0 → 1 → 2 → 3 → 2 → 3. It reaches the accept state 3 two times, 
which corresponds to two pattern occurrences. 

To construct the automaton, we should determine all transitions between the states. 
Let nextState[s][c] denote the state where we move from state s after reading 
character c. For example, in Fig. 14.18, nextState[1][B] = 2, because we move 
from state 1 to state 2 after reading B. It turns out that we can efficiently calculate the 
nextState values by first creating a border array for the pattern where border[i]
denotes the length of the longest (proper) border of p[0 . . . i]. For example, Fig. 14.19 
shows the border array of ABAABABAAA. For example, border[4] = 2, because 
AB is the maximum length border of ABAAB. 

Fig. 14.18 A pattern  
matching automaton for the 
pattern ABA 

Fig. 14.19 The border array 
of ABAABABAAA
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We can construct the border array in O(n) time as follows: 

border[0] = 0; 
for (int i = 1; i < n; i++) { 

int k = border[i-1]; 
while (k != 0 && p[k] != p[i]) {  

k = border[k-1]; 
} 
border[i] = (p[k] == p[i]) ? k+1 : 0; 

} 

The algorithm calculates the values of border[i] using the previously calculated 
values in the array. The idea is to go through the borders of p[0 . . . i − 1] and select 
the longest border that can be extended by adding the character p[i]. The algorithm 
works in O(n) time, because border[i+1] ≤ border[i]+1, so the total number 
of iterations of the while loop is O(n). 

After constructing the border array, we can use the formula 

. nextState[s][c] =

⎧⎪⎨
⎪⎩
s + 1 s < n and p[s] = c

0 s = 0

nextState[border[s − 1]][c] otherwise

to calculate the transitions. If we can extend our currently matched prefix, we move to 
the next state. If we cannot and we are in state 0, we stay in that state. Otherwise, we 
determine the longest border of our current prefix and follow a previously calculated 
transition. Using this formula, the pattern matching automaton can be constructed in 
O(n) time assuming a constant alphabet. 

The Knuth–Morris–Pratt algorithm [ 7] is a well-known pattern matching algo-
rithm based on simulating a pattern matching automaton. It can be seen as an alter-
native for the Z-algorithm (Sect. 14.3). 

14.5.3 Suffix Automata 

A suffix automaton [ 8] is an automaton that accepts all suffixes of a string and has 
the minimum amount of states. For example, Fig. 14.20 shows a suffix automaton 
for the string BACA. This automaton accepts the suffixes A, CA, ACA and BACA. 

Each state of a suffix automaton corresponds to a set of strings, meaning that if we 
are in that state, we have matched one of the strings. For example, in Fig. 14.20, state 
3 corresponds to {C,AC,BAC} state 5 corresponds to {A}. Let length[x] denote 

Fig. 14.20 A suffix  
automaton for the string 
BACA
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the maximum length of a string in state x . Using this notation, length[3] = 3 and 
length[5] = 1. It turns out that all strings in a state are suffixes of the longest string 
and their lengths cover a contiguous interval. For example, in state 3, all strings are 
suffixes of BAC and their lengths are 1 . . . 3. 

Given a string s of length n, we can create its suffix automaton in O(n) time by 
starting with an empty automaton that has only state 0, and adding all the characters 
one by one to the automaton. To do this, we also store for each state x > 0 a suffix 
link link[x] that points to a previous state in the automaton. We add a new character 
c to the automaton as follows: 

1. Let x denote the current last state of the automaton, i.e., the state that has no 
outgoing transitions. We create a new state y and add a transition from x to y
using c. Then, we set length[y] = length[x] + 1 and link[y] = 0. 

2. We follow suffix links starting from x and add for each visited state a new transition 
to y using c, until we find a state s that already has a transition using c. If there is 
no such state s, we terminate when we reach state 0. Otherwise we move to the 
next step. 

3. Let u denote the state such that there is a transition from s to u using c. If  
length[s] + 1 = length[u], we set link[y] = u and terminate. Otherwise 
we move to the next step. 

4. We create a new state z by cloning state u (we copy all outgoing transitions from 
u to z and set link[z] = link[u]), add a transition from s to z using c and set 
length[z] = length[s] + 1. Then, we set link[u] = link[y] = z. 

5. Finally, we follow suffix links starting from s. As long as the current state has a 
transition to state u using c, we replace u by z in that transition. When we find a 
state without a transition to state u using c, or when we reach state 0, we terminate. 

Figure 14.21 shows the process that creates a suffix automaton for the stringBACA. 
After adding the last character, we must create an additional state 5 by cloning state 
2. In this example, all suffix links point to state 0, expect that in the final automaton, 
there are suffix links from states 2 and 4 to state 5 which are marked as dashed edges. 
After creating the automaton, we can determine the accept states by starting at the 
last state (state 4) and following the suffix links until we reach state 0. All states on 
that path (states 4 and 5) are accept states. 

Note that suffix links tell us to which state we should move if we want to find 
shorter strings that are suffixes of the strings in our current state. In our example, 
state 4 corresponds to {CA,ACA,BACA} and state 5 corresponds to {A}. Thus, the 
suffix link from state 4 to state 5 can be used to find the shorter suffix A. In fact, if 
we follow suffix links from state x to state 0, we will find all suffixes of the longest 
string in state x , and each suffix belongs to exactly one state. 

After creating a suffix automaton, we can check in O(m) if any given pattern of 
length m occurs in the string. By using dynamic programming, we can also find the 
number of times a pattern occurs, calculate the number of distinct substrings, etc. 
In general, suffix automata are an alternative for suffix arrays, and we can approach 
many string problems from a new viewpoint using them.
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Fig. 14.21 Suffix automaton 
construction 

References 

1. J. Pachocki, J. Radoszewski, Where to use and how not to use polynomial string hashing. Olymp. 
Inf. 7(1), 90–100 (2013) 

2. D. Gusfield, Algorithms on Strings, Computer Science and Computational Biology, Trees and 
Sequences (Cambridge University Press, 1997) 

3. M.G. Main, R.J. Lorentz, An O(n log n) algorithm for finding all repetitions in a string. J. Algo. 
5(3), 422–432 (1984) 

4. R.M. Karp, R.E. Miller, A.L. Rosenberg, Rapid identification of repeated patterns in strings, 
trees and arrays, in 4th Annual ACM Symposium on Theory of Computing (1972), (pp. 125–135) 

5. J. Kärkkäinen, P. Sanders, Simple linear work suffix array construction, in International Collo-
quium on Automata, Languages, and Programming (2003), pp. 943–955 

6. T. Kasai, G. Lee, H. Arimura, S. Arikawa, K. Park, Linear-time longest-common-prefix compu-
tation in suffix arrays and its applications, in 12th Annual Symposium on Combinatorial Pattern 
Matching (2001), pp. 181–192 

7. D.E. Knuth, J.H. Morris Jr., V.R. Pratt, Fast pattern matching in strings. SIAM J. Comput. 6(2), 
323–350 (1977) 

8. A. Blumer et al., The smallest automation recognizing the subwords of a text. Theor. Comput. 
Sci. 40, 31–55 (1985)



15Additional Topics 

This chapter presents a selection of advanced algorithms and data structures. Master-
ing the techniques of this chapter may sometimes help you to solve the most difficult 
problem in a programming contest. 

Section 15.1 discusses square root techniques for creating data structures and 
algorithms. Such solutions are often based on the idea of dividing a sequence of n
elements into O(

√
n) blocks, each of which consists of O(

√
n) elements. 

Section 15.2 further explores the possibilities of segment trees. For example, we 
will see how to create a segment tree that supports both range queries and range 
updates at the same time. 

Section 15.3 presents the treap data structure which allows us to efficiently split 
an array into two parts and combine two arrays into a single array. 

Section 15.4 focuses on optimizing dynamic programming solutions. First we will 
learn the convex hull trick which is used with linear functions, and after this we will 
discuss the divide and conquer optimization and Knuth’s optimization. 

Section 15.5 shows some ideas how we can optimize backtracking algorithms. 
First we improve an algorithm that counts paths in a grid by pruning the search tree, 
and after this we solve the 15 puzzle problem using the IDA ∗ algorithm. 

Section 15.6 deals with miscellaneous algorithm design techniques, such as meet 
in the middle and parallel binary search. 

15.1 Square Root Techniques 

A square root can be seen as a “poor man’s logarithm”: the complexity O(
√

n) is 
better than O(n) but worse than O(log n). In any case, many data structures and 
algorithms involving square roots are fast and usable in practice. This section shows 
some examples of how square roots can be used in algorithm design. 
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15.1.1 Data Structures 

Sometimes we can create an efficient data structure by dividing an array into blocks 
of size

√
n and maintaining information about array values inside each block. For 

example, suppose that we should process two types of queries: modifying array values 
and finding minimum values in ranges. We have previously seen that a segment tree 
can support both operations in O(log n) time, but next we will solve the problem in 
another simpler way where the operations take O(

√
n) time. 

We divide the array into blocks of
√

n elements, and maintain for each block the 
minimum value inside it. For example, Fig. 15.1 shows an array of 16 elements that 
is divided into blocks of 4 elements. When an array value changes, the corresponding 
block needs to be updated. This can be done in O(

√
n) time by going through the 

values inside the block, as shown in Fig. 15.2. Then, to calculate the minimum value 
in a range, we divide the range into three parts such that the range consists of single 
value and blocks between them. Figure 15.3 shows an example of such a division. 
The answer to the query is either a single value or the minimum value inside a block. 
Since the number of single elements is O(

√
n) and the number of blocks is also 

O(
√

n), the query takes O(
√

n) time. 
How efficient is the resulting structure in practice? To find this out, we conducted 

an experiment where we created an array of n random int values and then processed 
n random minimum queries. We implemented three data structures: a segment tree 
with O(log n) time queries, the square root structure described above with O(

√
n)

time queries, and a plain array with O(n) time queries. Table 15.1 shows the results 
of the experiment. It turns out that in this problem, the square root structure is quite 
efficient up to n = 218; however, after this, it requires clearly more time than a 
segment tree. 

15.1.2 Subalgorithms 

Next we discuss two problems that can be efficiently solved by creating two subal-
gorithms that are specialized for different kinds of situations during the algorithm. 
While either of the subalgorithms could be used to solve the problem without the 
other, we get an efficient algorithm by combining them. 

5 8 6 3 4 7 2 6 7 1 7 5 6 2 3 2 

3 2 1 2  

Fig. 15.1 A square root structure for finding minimum values in ranges 

5 8 6 3 4 7 5 6 7 1 7 5 6 2 3 2 

3 4 1 2  

Fig. 15.2 When an array value is updated, the value in the corresponding block has to be also 
updated 
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5 8 6 3 4 7 2 6 7 1 7 5 6 2 3 2 

3 2 1 2  

Fig. 15.3 To determine the minimum value in a range, the range is divided into single values and 
blocks 

Table 15.1 The running times of three data structures for range minimum queries: a segment tree 
(O(log n)), a square root structure (O(

√
n)), and a plain array (O(n)) 

Input size n O(log n) Queries O(
√

n) Queries O(n) Queries 

216 0.02 s 0.05 s 1.50 s 

217 0.03 s 0.16 s 6.02 s 

218 0.07 s 0.28 s 24.82 s 

219 0.14 s 1.14 s > 60 s 

220 0.31 s 2.11 s > 60 s 

221 0.66 s 9.27 s > 60 s 

Square Distances Our first problem is as follows: We are given an n × n grid whose 
each square is assigned a color. What is the minimum Manhattan distance between 
two squares that have the same color? Figure 15.4 shows an example scenario where 
each number represents a color. The minimum distance is 2 between the two squares 
with color 4. 

To solve the problem, we can go through all colors that appear in the grid, and 
for each color c, determine the minimum distance between two squares with color 
c. Consider two algorithms for processing a fixed color c: 

Algorithm 1: Go through all pairs of squares that contain the color c, and determine 
the minimum distance pair among them. This algorithm works in O(k2) time, where 
k is the number of squares with color c. 

Algorithm 2: Perform a breadth-first search that simultaneously begins at each 
square with color c. The search takes O(n2) time. 

Both algorithms have certain worst-case situations. The worst case for Algorithm 
1 is a grid where each square has the same color, in which case k = n2 and the 
algorithm takes O(n4) time. Then, the worst case for Algorithm 2 is a grid where 
each square has a distinct color. In this case, the algorithm is performed O(n2) times, 
which takes O(n4) time. 

Fig. 15.4 An instance of the 
square distance problem 

1 3 5 1 

2 4 6 4 

5 1 2 3 

3 6 5 1 
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Fig. 15.5 A turn in the black 
squares game. The minimum 
distance from X to a black 
square is 3 

X 

However, we can combine the algorithms so that they function as subalgorithms of 
a single algorithm. The idea is to decide for each color c separately which algorithm 
to use. Clearly, Algorithm 1 works well if k is small, and Algorithm 2 is best suited 
for cases where k is large. Thus, we can fix a constant x and use Algorithm 1 if k is 
at most x , and otherwise use Algorithm 2. 

In particular, by choosing x = 
√

n2 = n, we get an algorithm that works in O(n3) 

time. First, each square that is processed using Algorithm 1 is compared with at most 
n other squares, so processing those squares takes O(n3) time. Then, since there are 
at most n colors that appear in more than n squares, Algorithm 2 is performed at 
most n times and its total running time is also O(n3). 

Black Squares As another example, consider the following game: We are given 
an n × n grid where exactly one square is black and all other squares are white. 
On each turn, one white square is chosen, and we should calculate the minimum 
Manhattan distance between this square and a black square. After this, the white 
square is painted black. This process continues for n2 − 1 turns, after which all 
squares have been painted black. 

For example, Fig. 15.5 shows a turn in the game. The minimum distance from the 
chosen square X to a black square is 3 (by going two steps down and one step right). 
After this, the square is painted black. 

We can solve the problem by processing the turns in batches of k turns. Before 
each batch, we calculate for each square of the grid the minimum distance to a 
black square. This can be done in O(n2) time using breadth-first search. Then, 
when processing a batch, we keep a list of all squares that have been painted black 
during the current batch. Thus, the minimum distance to a black square is either the 
precalculated distance or a distance to one of the squares on the list. Since the list 
contains at most k values, it takes O(k) time to go through the list. 

Then, by choosing k = 
√

n2 = n, we get an algorithm that works in O(n3) 

time. First, there are O(n) batches, so the total time used for breadth-first searches 
is O(n3). Then, the list of squares in a batch contains O(n) values, so calculating 
minimum distances for O(n2) squares also takes O(n3) time. 

Tuning Parameters In practice, it is not necessary to use the exact square root 
value as the parameter, but rather we can fine-tune the performance of an algorithm 
by experimenting with different parameters and choosing the parameter that works 
best. Of course, the optimal parameter depends on the algorithm and also on the 
properties of the test data. 

Table 15.2 shows the results of an experiment where the O(n3) time algorithm for 
the black squares game was performed for different values of k when n = 500. The 
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Table 15.2 Optimizing the value of the parameter k in the black squares algorithm 

Parameter k Running time 

200 5.74 s 

500 2.41 s 

1000 1.32 s 

2000 1.02 s 

5000 1.28 s 

10000 2.13 s 

20000 3.97 s 

Fig. 15.6 Some integer 
partitions of a stick 
of length 7 

7 

3 4 

1 3 1 2 

Fig. 15.7 The possible sums 
using the weights [3, 3, 4] 

order in which the squares were painted black was randomly selected. In this case, 
the optimal parameter seems to be about k = 2000. 

15.1.3 Integer Partitions 

Suppose that there is a stick whose length is n and it is divided into some parts 
whose lengths are integers. For example, Fig. 15.6 shows some possible partitions 
for n = 7. What is the maximum number of distinct lengths in such a partition? 

It turns out that there are at most O(
√

n) distinct lengths. Namely, an optimal 
way to produce as many distinct lengths as possible is to include lengths 1, 2, . . . ,  k. 
Then, since 

. 1 + 2 + · · ·  +  k = 
k(k + 1) 

2 
, 

we can conclude that k can be at most O(
√

n). Next we will see how this observation 
can be used when designing algorithms. 

Knapsack Problem Consider a knapsack problem where we are given a list of 
integer weights [w1, w2, . . . ,  wk] such that w1 + w2 +  · · ·  +  wk = n, and our task 
is to determine all possible weight sums that can be created. For example, Fig. 15.7 
shows the possible sums using the weights [3, 3, 4]. 
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Using a standard knapsack algorithm (Sect. 6.2.3), we can solve the problem in 
O(nk) time, so if k = O(n), the time complexity becomes O(n2). However, since 
there are at most O(

√
n) distinct weights, we can actually solve the problem more 

efficiently by simultaneously processing all weights of a certain value. For example, 
if the weights are [3, 3, 4], we first process the two weights of value 3, and then the 
weight of value 4. It is not difficult to modify the standard knapsack algorithm so 
that processing each group of equal weights only takes O(n) time, which yields an 
O(n

√
n) time algorithm. 

String Construction As another example, suppose that we are given a string of 
length n and a dictionary of words whose total length is m. Our task is to count the 
number of ways we can construct the string using the words. For example, there are 
four ways to construct the string ABAB using the words {A, B, AB}: 

• A + B + A + B 
• AB + A + B 
• A + B + AB 
• AB + AB 

Using dynamic programming, we can calculate for each k = 0, 1, . . . ,  n the 
number of ways to construct a prefix of length k of the string. One way to do this is 
to use a trie that contains reverses of all the words in the dictionary, which yields an 
O(n2 + m) time algorithm. However, another approach is to use string hashing and 
the fact that there are at most O(

√
m) distinct word lengths. Thus, we can restrict 

ourselves to word lengths that actually exist. This can be done by creating a set that 
contains all hash values of words, which results in an algorithm whose running time 
is O(n

√
m + m) (using unordered_set). 

15.1.4 Mo’s Algorithm 

Mo’s algorithm 1 processes a set of range queries on a static array (i.e., the array 
values do not change between the queries). Each query requires us to calculate 
something based on the array values in a range [a, b]. Since the array is static, the 
queries can be processed in any order, and the trick in Mo’s algorithm is to use a 
special order which guarantees that the algorithm works efficiently. 

The algorithm maintains an active range in the array, and the answer to a query 
concerning the active range is known at each moment. The algorithm processes the 
queries one by one, and always moves the endpoints of the active range by inserting 
and removing elements. The array is divided into blocks of k = O(

√
n) elements, 

and a query [a1, b1] is always processed before a query [a2, b2] if 

1 According to [ 1], Mo’s algorithm is named after Mo Tao, a Chinese competitive programmer. 
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Fig. 15.8 Moving between 
two ranges in Mo’s 
algorithm 

4 2 5 4 2 4 3 3 4 

4 2 5 4 2 4 3 3 4 

•  a1/k <  a2/k or 
•  a1/k =  a2/k and b1 < b2. 

Thus, all queries whose left endpoints are in a certain block are processed one after 
another sorted according to their right endpoints. Using this order, the algorithm only 
performs O(n

√
n) operations, because the left endpoint moves O(n) times O(

√
n) 

steps, and the right endpoint moves O(
√

n) times O(n) steps. Thus, both endpoints 
move a total of O(n

√
n) steps during the algorithm. 

Example Consider a problem where we are given a set of array ranges, and we are 
asked to calculate the number of distinct values in each range. In Mo’s algorithm, 
the queries are always sorted in the same way, but the way the answer to the query 
is maintained depends on the problem. 

To solve the problem, we maintain an array count where count[x] indicates 
the number of times an element x occurs in the active range. When we move from 
one query to another query, the active range changes. For example, consider the two 
ranges in Fig. 15.8. When we move from the first range to the second range, there will 
be three steps: the left endpoint moves one step to the right, and the right endpoint 
moves two steps to the right. 

After each step, the array count needs to be updated. After adding an element 
x , we increase the value of count[x] by 1, and if count[x] =  1 after this, we 
also increase the answer to the query by 1. Similarly, after removing an element 
x , we decrease the value of count[x] by 1, and if count[x] =  0 after this, we 
also decrease the answer to the query by 1. Since each step requires O(1) time, the 
algorithm works in O(n

√
n) time. 

15.2 Segment Trees Revisited 

A segment tree is a versatile data structure that can be used to solve a large number 
of problems. However, so far we have only seen a small part of the possibilities of 
segment trees. Now is time to discuss some more advanced variants of segment trees 
that allow us to solve more advanced problems. 

Until now, we have implemented the operations of a segment tree by walking 
from bottom to top in the tree. For example, we have used the following function 
(Sect. 9.2.2) to calculate the sum of values in a range [a, b]: 
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int sum(int a, int b) { 
a += n; b += n;  
int s = 0;  
while (a <= b) { 

if (a%2 == 1) s += tree[a++]; 
if (b%2 == 0) s += tree[b--]; 
a /= 2; b /= 2;  

} 
return s; 

} 

However, in advanced segment trees, it is often necessary to implement the oper-
ations from top to bottom as follows: 

int sum(int a, int b, int k, int x, int y) { 
if (b < x || a > y) return 0; 
if (a <= x && y <= b)  return tree[k]; 
int d = (x+y)/2; 
return sum(a,b,2*k,x,d) + sum(a,b,2*k+1,d+1,y); 

} 

Using this function, we can calculate the sum in a range [a, b] as follows: 

int s = sum(a,b,1,0,n-1); 

The parameter k indicates the current position in tree. Initially k equals 1, 
because we begin at the root of the tree. The range [x, y] corresponds to k and is 
initially [0, n − 1]. When calculating the sum, if [x, y] is outside [a, b], the sum is 
0, and if [x, y] is completely inside [a, b], the sum can be found in tree. If  [x, y] 
is partially inside [a, b], the search continues recursively to the left and right half of 
[x, y]. The left half is [x, d] and the right half is [d + 1, y] where d =  x+y 

2  . 
Figure 15.9 shows how the search proceeds when calculating the value of 

sumq (a, b). The gray nodes indicate nodes where the recursion stops and the sum 
can be found in tree. Also in this implementation, operations take O(log n) time, 
because the total number of visited nodes is O(log n). 

15.2.1 Lazy Propagation 

Using lazy propagation, we can build a segment tree that supports both range updates 
and range queries in O(log n) time. The idea is to perform updates and queries from 
top to bottom and perform updates lazily so that they are propagated down the tree 
only when it is necessary. 

The nodes of a lazy segment tree contain two types of information. Like in an ordi-
nary segment tree, each node contains the sum, minimum value or some other value 
related to the corresponding subarray. In addition, a node may contain information 
about a lazy update which has not been propagated to its children. Lazy segment 
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Fig. 15.9 Traversing a segment tree from top to bottom 

5 8 6 3 2 7 2 6 7 1 7 5 6 2 3 2 

13/0 9/0 9/0 8/0 8/0 12/0 8/0 5/0 

22/0 17/0 20/0 13/0 

39/0 33/0 

72/0 

Fig. 15.10 A lazy segment tree for range updates and queries 

trees can support two types of range updates: each array value in the range is either 
increased by some value or assigned some value. Both operations can be imple-
mented using similar ideas, and it is even possible to construct a tree that supports 
both operations at the same time. 

Let us consider an example where our goal is to construct a segment tree that 
supports two operations: increasing each value in [a, b] by a constant and calculating 
the sum of values in [a, b]. To achieve this goal, we construct a tree where each node 
has two values s/z: s denotes the sum of values in the range, and z denotes the value 
of a lazy update, which means that all values in the range should be increased by z. 
Figure 15.10 shows an example of such a tree, where z = 0 in all nodes, meaning 
that there are no ongoing lazy updates. 

We implement the tree operations from top to bottom. To increase the values in 
a range [a, b] by u, we modify the nodes as follows: If the range [x, y] of a node is 
completely inside [a, b], we increase the z value of the node by u and stop. Then, if 
[x, y] partially belongs to [a, b], we continue our walk recursively in the tree, and 



272 15 Additional Topics 

5 8 6 3 2 9 2 6 7 1 7 5 6 2 3 2 

13/0 9/0 11/0 8/2 8/0 12/0 8/2 5/0 
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45/0 45/0 

90/0 

a b 

Fig. 15.11 Increasing the values in the range [a, b] by 2 

5 8 6 3 2 9 2 6 7 1 7 5 6 2 3 2 

13/0 9/0 11/0 8/2 8/2 12/2 8/2 5/0 

22/0 23/0 28/0 17/0 

45/0 45/0 

90/0 

a b 

Fig. 15.12 Calculating the sum of values in the range [a, b] 

after this calculate the new s value for the node. As an example, Fig. 15.11 shows 
our tree after increasing the range [a, b] by 2. 

In both updates and queries, lazy updates are propagated downwards when we 
move in the tree. Always before accessing a node, we check if it has an ongoing 
lazy update. If it has, we update its s value, propagate the update to its children, and 
then clear its z value. For example, Fig. 15.12 shows how our tree changes when we 
calculate the value of suma(a, b). The rectangle contains the nodes whose values 
change when a lazy update is propagated downwards. 

Polynomial Updates We can generalize the above segment tree so that it is possible 
to update ranges using polynomials of the form 

.p(u) = tkuk + tk−1uk−1 +  · · ·  +  t0. 
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In this case, the update for a value at position i in [a, b] is p(i − a). For example, 
adding the polynomial p(u) = u + 1 to [a, b] means that the value at position a 
increases by 1, the value at position a + 1 increases by 2, and so on. 

To support polynomial updates, each node is assigned k +2 values, where k equals 
the degree of the polynomial. The value s is the sum of the elements in the range, 
and the values z0, z1, . . . ,  zk are the coefficients of a polynomial that corresponds to 
a lazy update. Now, the sum of values in a range [x, y] equals 

. s + 
y−x 

u=0 

(zkuk + zk−1uk−1 + · · ·  +  z1u + z0), 

and the value of such a sum can be efficiently calculated using sum formulas. For 
example, the term z0 corresponds to the sum z0(y − x + 1), and the term z1u 
corresponds to the sum 

. z1(0 + 1 +  · · ·  +  y − x) = z1 
(y − x)(y − x + 1) 

2 
. 

When propagating an update in the tree, the indices of p(u) change, because in 
each range [x, y], the values are calculated for u = 0, 1, . . . ,  y − x . However, we 
can easily handle this, because p (u) = p(u + h) is a polynomial of equal degree as 
p(u). For example, if p(u) = t2u2 + t1u + t0, then 

. p (u) = t2(u + h)2 + t1(u + h) + t0 = t2u2 + (2ht2 + t1)u + t2h2 + t1h + t0. 

15.2.2 Dynamic Trees 

An ordinary segment tree is static, which means that each node has a fixed position 
in the segment tree array and the structure requires a fixed amount of memory. In a 
dynamic segment tree, memory is allocated only for nodes that are actually accessed 
during the algorithm, which can save a large amount of memory. 

The nodes of a dynamic tree can be represented as structs: 

struct node { 
int value; 
int x, y; 
node *left, *right; 
node(int v, int x, int y) : value(v), x(x), y(y) {} 

}; 

Here value is the value of the node, [x, y] is the corresponding range, and left 
and right point to the left and right subtree. Nodes can be created as follows: 

// create a node with value 2 and range [0,7] 
node *x = new node(2,0,7); 
// change value 
x->value = 5; 
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Fig. 15.13 A sparse  
segment tree where the 
elements at positions 3 and 
10 have been modified 

Sparse Segment Trees A dynamic segment tree is a useful structure when the under-
lying array is sparse, i.e., the range [0, n − 1] of allowed indices is large, but most 
array values are zeros. While an ordinary segment tree would use O(n) memory, 
a dynamic segment tree only uses O(k log n) memory, where k is the number of 
operations performed. 

A sparse segment tree initially has only one node [0, n − 1] whose value is zero, 
which means that every array value is zero. After updates, new nodes are dynamically 
added to the tree. Any path from the root node to a leaf contains O(log n) nodes, so 
each segment tree operation adds at most O(log n) new nodes to the tree. Thus, after 
k operations, the tree contains O(k log n) nodes. For example, Fig. 15.13 shows a 
sparse segment tree where n = 16 and the elements at positions 3 and 10 have been 
modified. 

Note that if we know all elements that will be updated during the algorithm 
beforehand, a dynamic segment tree is not necessary, because we can use an ordinary 
segment tree with index compression (Sect. 9.2.3). However, this is not possible when 
the indices are generated during the algorithm. 

Persistent Segment Trees Using a dynamic implementation, we can also create a 
persistent segment tree that stores the modification history of the tree. In such an 
implementation, we can efficiently access all versions of the tree that have existed 
during the algorithm. When the modification history is available, we can perform 
queries in any previous tree like in an ordinary segment tree, because the full structure 
of each tree is stored. We can also create new trees based on previous trees and modify 
them independently. 

Consider the sequence of updates in Fig. 15.14, where marked nodes change and 
other nodes remain the same. After each update, most nodes of the tree remain the 
same, so a compact way to store the modification history is to represent each historical 
tree as a combination of new nodes and subtrees of previous trees. Figure 15.15 shows 
how the modification history can be stored. The structure of each previous tree can 
be reconstructed by following the pointers starting at the corresponding root node. 
Since each operation adds only O(log n) new nodes to the tree, it is possible to store 
the full modification history of the tree. 
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step 1 step 2 step 3 

Fig. 15.14 A modification history of a segment tree: the initial tree and two updates 

step 1 step 2 step 3 

Fig. 15.15 A compact way to store the modification history 

15.2.3 Data Structures in Nodes 

Instead of single values, the nodes of a segment tree can also contain data structures 
that maintain information about the corresponding ranges. As an example, suppose 
that we should be able to efficiently count the number of occurrences of an element 
x in a range [a, b]. To do this, we can create a segment tree where each node is 
assigned a data structure that can be asked how many times any element x appears 
in the corresponding range. After this, the answer to a query can be calculated by 
combining the results from nodes that belong to the range. 

The remaining task is to choose a suitable data structure for the problem. A good 
choice is a map structure whose keys are array elements and values indicate how 
many times each element occurs in a range. Figure 15.16 shows an array and the 
corresponding segment tree. For example, the root node of the tree tells us that 
element 1 appears 4 times in the array. 

Each query in the above segment tree works in O(log2 n) time, because each node 
has a map structure whose operations take O(log n) time. The tree uses O(n log n) 
memory, because it has O(log n) levels, and each level contains n elements that have 
been distributed in the map structures. 

15.2.4 Two-Dimensional Trees 

A two-dimensional segment tree allows us to process queries related to rectangular 
subarrays on a two-dimensional array. The idea is to create a segment tree that 
corresponds to the columns of the array, and then assign each node of this structure 
a segment tree that corresponds to the rows of the array. 
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Fig. 15.16 A segment tree for calculating the number of occurrences of an element in an array 
range 

For example, Fig. 15.17 shows a two-dimensional segment tree that supports two 
queries: calculating the sum of values in a subarray, and updating a single array value. 
Both the queries take O(log2 n) time, because O(log n) nodes in the main segment 
tree are accessed, and processing each node takes O(log n) time. The structure uses 
a total of O(n2) memory, because the main segment tree has O(n) nodes, and each 
node has a segment tree of O(n) nodes. 

15.3 Treaps 

A treap is a binary tree that can store the contents of an array in such a way that we 
can efficiently split an array into two arrays and merge two arrays into an array. Each 
node in a treap has two values: a weight and a value. Each node’s weight is smaller 
or equal than the weights of its children, and the node is located in the array after all 
nodes in its left subtree and before all nodes in its right subtree. 

Figure 15.18 shows an example of an array and the corresponding treap. For 
example, the root node has weight 1 and value D. Since its left subtree contains three 
nodes, this means that the array element at position 3 has value D. 

15.3.1 Splitting and Merging 

When a new node is added to the treap, it is assigned a random weight. This guar-
antees that the tree is balanced (its height is O(log n)) with high probability, and its 
operations can be performed efficiently. 
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Fig. 15.17 A two-dimensional array and the corresponding segment tree for calculating sums of 
rectangular subarrays 

Fig. 15.18 An array and the 
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Splitting The splitting operation of a treap creates two treaps which divide the array 
into two arrays so that the first k elements belong to the first array and the rest of 
the elements belong to the second array. To do this, we create two new treaps that 
are initially empty, and traverse the original treap starting at the root node. At each 
step, if the current node belongs to the left treap, the node and its left subtree is 
added to the left treap and we recursively process its right subtree. Similarly, if the 
current node belongs to the right treap, the node and its right subtree is added to the 
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Fig. 15.19 Splitting an array 
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right treap and we recursively process its left subtree. Since the height of the treap 
is O(log n), this operation works in O(log n) time. 

For example, Fig. 15.19 shows how to divide our example array into two arrays so 
that the first array contains the first five elements of the original array and the second 
array contains the last three elements. First, node D belongs to the left treap, so we 
add node D and its left subtree to the left treap. Then, node C belongs to the right 
treap, and we add node C and its right subtree to the right treap. Finally, we add node 
W to the left treap and node I to the right treap. 

Merging The merging operation of two treaps creates a single treap that concatenates 
the arrays. The two treaps are processed simultaneously, and at each step, the treap 
whose root has the smallest weight is selected. If the root of the left treap has the 
smallest weight, the root and its left subtree are moved to the new treap and its right 
subtree becomes the new root of the left treap. Similarly, if the root of the right treap 
has the smallest weight, the root and its right subtree are moved to the new treap and 
its left subtree becomes the new root of the right treap. Since the height of the treap 
is O(log n), this operation works in O(log n) time. 

For example, we may now swap the order of the two arrays in our example scenario, 
and then concatenate the arrays again. Figure 15.20 shows the arrays before merging, 
and Fig. 15.21 shows the final result. First, node D and its right subtree is added to 
the new treap. Then, node A and its right subtree become the left subtree of node 
D. After this, node C and its left subtree become the left subtree of node A. Finally, 
node H and node S are added to the new treap. 

15.3.2 Implementation 

Next we will learn a convenient way to implement a treap. First, here is a struct that 
stores a treap node: 
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Fig. 15.20 Merging two 
arrays into an array, before 
merging 
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Fig. 15.21 Merging two 
arrays into an array, after 
merging 
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struct node { 
node *left, *right; 
int weight, size, value; 
node(int v) { 

left = right = NULL; 
weight = rand(); 
size = 1; 
value = v; 

} 
}; 

The field size contains the size of the subtree of the node. Since a node can be 
NULL, the following function is useful: 
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int size(node *treap) { 
if (treap == NULL) return 0; 
return treap->size; 

} 

The following function split implements the splitting operation. The function 
recursively splits the treap treap into treaps left and right so that the left treap 
contains the first k nodes and the right treap contains the remaining nodes. 

void split(node *treap, node *&left, node *&right, int k) { 
if (treap == NULL) { 

left = right = NULL; 
} else { 

if (size(treap->left) < k) { 
split(treap->right, treap->right, right, 

k-size(treap->left)-1); 
left = treap; 

} else { 
split(treap->left, left, treap->left, k); 
right = treap; 

} 
treap->size = size(treap->left)+size(treap->right)+1; 

} 
} 

Then, the following function merge implements the merging operation. This 
function creates a treap treap that contains first the nodes of the treap left and 
then the nodes of the treap right. 

void merge(node *&treap, node *left, node *right) { 
if (left == NULL) treap = right; 
else if(right == NULL) treap = left; 
else { 

if (left->weight < right->weight) { 
merge(left->right, left->right, right); 
treap = left; 

} else { 
merge(right->left, left, right->left); 
treap = right; 

} 
treap->size = size(treap->left)+size(treap->right)+1; 

} 
} 
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For example, the following code creates a treap that corresponds to the array 
[1, 2, 3, 4]. Then it divides it into two treaps of size 2, and swaps their order to create 
a new treap that corresponds to the array [3, 4, 1, 2]. 

node *treap = NULL; 
merge(treap, treap, new node(1)); 
merge(treap, treap, new node(2)); 
merge(treap, treap, new node(3)); 
merge(treap, treap, new node(4)); 
node *left, *right; 
split(treap, left, right, 2); 
merge(treap, right, left); 

15.3.3 Additional Techniques 

The splitting and merging operations of treaps are very powerful, because we can 
freely “cut and paste” arrays in logarithmic time using them. Treaps can be also 
extended so that they work almost like segment trees. For example, in addition to 
maintaining the size of each subtree, we can also maintain the sum of its values, the 
minimum value, and so on. 

One special trick related to treaps is that we can efficiently reverse an array. This 
can be done by swapping the left and right child of each node in the treap. For 
example, Fig. 15.22 shows the result after reversing the array in Fig. 15.18. To do  
this efficiently, we can introduce a field that indicates if we should reverse the subtree 
of the node, and process swapping operations lazily. 

Fig. 15.22 Reversing an 
array using a treap H C I W D N A S  
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15.4 Dynamic Programming Optimization 

This section discusses techniques for optimizing dynamic programming solutions. 
First, we focus on the convex hull trick, which can be used to efficiently find minimum 
values of linear functions. After this, we discuss two other techniques that are based 
on properties of cost functions. 

15.4.1 Convex Hull Trick 

The convex hull trick allows us to efficiently find the minimum function value at a 
given point x among a set of n linear functions of the form f (x) = ax + b. For  
example, Fig. 15.23 shows functions f1(x) = x + 2, f2(x) = x/3 + 4, f3(x) = 
x/6+5 and f4(x) = −x/4+7. The minimum value at point x = 4 is f2(4) = 16/3. 

The idea is to divide the x axis into ranges where a certain function has the 
minimum value. It turns out that each function will have at most one range, and we 
can store the ranges in a sorted list that will contain at most n ranges. For example, 
Fig. 15.24 shows the ranges in our example scenario. First, f1 has the minimum 
value, then f2 has the minimum value, and finally f4 has the minimum value. Note 
that f3 never has the minimum value. 

Given a list of ranges, we can find the minimum function value at point x in 
O(log n) time using binary search. For example, since point x = 4 belongs to the 
range of f2 in Fig. 15.24, we immediately know that the minimum function value at 
point x = 4 is f2(4) = 16/3. Thus, we can process a set of k queries in O(k log n) 
time. Moreover, if the queries are given in increasing order, we can process them in 
O(k) time by just iterating through the ranges from left to right. 

Then, how to determine the ranges? If the functions are given in decreasing order 
of their slopes, we can easily find the ranges, because we can maintain a stack that 
contains the ranges, and the amortized cost for processing each function is O(1). If  
the functions are given in an arbitrary order, we need to use a more sophisticated set 
structure and processing each function takes O(log n) time. 

Example Suppose that there are n consecutive concerts. The ticket for concert i 
costs pi euros, and if we attend the concert, we get a discount coupon whose value 

Fig. 15.23 The minimum 
function value at point x = 4 
is f2(4) = 16/3 
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f4 
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Fig. 15.24 The ranges 
where f1, f2, and  f4 have 
the minimum value 

f1 

f2 

f3 

f4 

f1 f2 f4 

is di (0 < di < 1). We can later use the coupon to buy a ticket for di p euros where 
p is the original price. It is also known that di ≥ di+1 for all consecutive concerts i 
and i + 1. We definitely want to attend the last concert, and we can also attend other 
concerts. What is the minimum total price for this? 

We can easily solve the problem using dynamic programming by calculating for 
each concert i a value ui : the minimum price for attending concert i and possibly 
some previous concerts. A simple way to find the optimal choice for the previous 
concert is to go through all previous concerts in O(n) time, which results in an O(n2) 

time algorithm. However, we can use the convex hull trick to find the optimal choice 
in O(log n) time and get an O(n log n) time algorithm. 

The idea is to maintain a set of linear functions, which initially only contains the 
function f (x) = x , which means that we do not have a discount coupon. To calculate 
the value ui for a concert, we find a function f in our set that minimizes the value of 
f ( pi ), which can be done in O(log n) time using the convex hull trick. Then, we add 
a function f (x) = di x + ui to our set, and we can use it to attend another concert 
later. The resulting algorithm works in O(n log n) time. 

Note that if it is additionally known that pi ≤ pi+1 for all consecutive concerts 
i and i + 1, we can solve the problem more efficiently in O(n) time, because we 
can process the ranges from left to right and find each optimal choice in amortized 
constant time instead of using binary search. 

15.4.2 Divide and Conquer Optimization 

The divide and conquer optimization can be applied to certain dynamic programming 
problems where a sequence s1, s2, . . . ,  sn of n elements has to be divided into k 
subsequences of consecutive elements. A cost function cost(a, b) is given, which 
determines the cost of creating a subsequence sa, sa+1, . . . ,  sb. The total cost of a 
division is the sum of the individual costs of the subsequences, and our task is to find 
a division that minimizes the total cost. 

As an example, suppose that we have a sequence of positive integers and 
cost(a, b) = (sa + sa+1 + · · ·  +  sb)

2. Figure 15.25 shows an optimal way to 
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Fig. 15.25 An optimal way 
to divide a sequence into 
three blocks 

2 3 1 2 2 3 4 1  
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divide a sequence into three subsequences using this cost function. The total cost of 
the division is (2 + 3 + 1)2 + (2 + 2 + 3)2 + (4 + 1)2 = 110. 

We can solve the problem by defining a function solve(i, j ) which gives the 
minimum total cost of dividing the first i elements s1, s2, . . . ,  si into j subsequences. 
Clearly, solve(n, k) equals the answer to the problem. To calculate a value of 
solve(i, j ), we have to find a position 1 ≤ p ≤ i that minimizes the value of 

. solve( p − 1, j − 1) + cost( p, i). 

For example, in Fig. 15.25, an optimal choice for solve(8, 3) is p = 7. A simple 
way to find an optimal position is to check all positions 1, 2, . . . ,  i , which takes 
O(n) time. By calculating all values of solve(i, j) like this, we get a dynamic 
programming algorithm that works in O(n2k) time. However, using the divide and 
conquer optimization, we can improve the time complexity to O(nk log n). 

The divide and conquer optimization can be used if the cost function satisfies the 
quadrangle inequality 

. cost(a, c) + cost(b, d) ≤ cost(a, d) + cost(b, c) 

for all a ≤ b ≤ c ≤ d. Let pos(i, j ) denote the smallest position p that minimizes 
the cost of a division for solve(i, j). If the above inequality holds, it is guaranteed 
that pos(i, j ) ≤ pos(i +1, j ) for all values of i and j , which allows us to calculate 
the values of solve(i, j) more efficiently. 

The idea is to create a function calc( j, a, b, x, y) that calculates all values of 
solve(i, j ) for a ≤ i ≤ b and a fixed j using the information that x ≤ pos(i, j ) ≤ 
y. The function first calculates the value of solve(z, j) where z =  (a + b)/2 . 
Then it performs recursive calls calc( j, a, z −1, x, p) and calc( j, z + 1, b, p, y) 
where p = pos(z, j). Here the fact that pos(i, j ) ≤ pos(i + 1, j ) is used to limit 
the search range. To calculate all values of solve(i, j), we perform a function call 
calc( j, 1, n, 1, n) for each j = 1, 2, . . . ,  k. Since each such function call takes 
O(n log n) time, the resulting algorithm works in O(nk log n) time. 

Finally, let us prove that the squared sum cost function in our example satisfies 
the quadrangle inequality. Let sum(a, b) denote the sum of values in range [a, b], 
and let x = sum(b, c), y = sum(a, c) −sum(b, c) and z = sum(b, d) −sum(b, c). 
Using this notation, the quadrangle inequality becomes 

. (x + y)2 + (x + z)2 ≤ (x + y + z)2 + x2, 

which is equal to 
. 0 ≤ 2yz. 

Since y and z are nonnegative values, this completes the proof. 
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Fig. 15.26 An optimal way 
to divide an array into single 
elements 
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15.4.3 Knuth’s Optimization 

Knuth’s optimization 2 can be used in certain dynamic programming problems where 
we are asked to divide a sequence s1, s2, . . . ,  sn of n elements into single elements 
using splitting operations. A cost function cost(a, b) gives the cost of processing a 
sequence sa, sa+1, . . . ,  sb, and our task is to find a solution that minimizes the total 
sum of the splitting costs. 

For example, suppose that cost(a, b) = sa +sa+1+· · ·+sb. Figure 15.26 shows 
an optimal way to process a sequence in this case. The total cost of this solution is 
19 + 9 + 10 + 5 = 43. 

We can solve the problem by defining a function solve(i, j ) which gives the 
minimum cost of dividing the sequence si , si+1, . . . ,  s j into single elements. Then, 
solve(1, n) gives the answer to the problem. To determine a value of solve(i, j ), 
we have to find a position i ≤ p < j that minimizes the value of 

. cost(i, j ) + solve(i, p) + solve(p + 1, j). 
If we check all positions between i and j , we get a dynamic programming algorithm 
that works in O(n3) time. However, using Knuth’s optimization, we can calculate 
the values of solve(i, j) more efficiently in O(n2) time. 

Knuth’s optimization is applicable if 

. cost(b, c) ≤ cost(a, d) 

and 
. cost(a, c) + cost(b, d) ≤ cost(a, d) + cost(b, c) 

for all values of a ≤ b ≤ c ≤ d. Note that the latter inequality is the quadrangle 
inequality that was also used in the divide and conquer optimization. Let pos(i, j ) 

2 Knuth [ 2] used his optimization to construct optimal binary search trees; later, Yao [ 3] generalized 
the optimization to other similar problems. 
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denote the smallest position p that minimizes the cost for solve(i, j ). If the above 
inequalities hold, we know that 

. pos(i, j − 1) ≤ pos(i, j ) ≤ pos(i + 1, j). 

Now we can perform n rounds 1, 2, . . . ,  n, and on round k calculate the values of 
solve(i, j ) where j − i + 1 = k, i.e., we process the subsequences in increasing 
order of length. Since we know that pos(i, j) has to be between pos(i, j − 1) 
and pos(i + 1, j ), we can perform each round in O(n) time, and the total time 
complexity of the algorithm becomes O(n2). 

15.5 Backtracking Techniques 

This section shows some ideas how we can make backtracking algorithms work 
faster. We first consider a problem where we want to count the number of paths in a 
grid and can improve the algorithm by pruning the search tree. After that, we solve 
the 15 puzzle problem using the IDA ∗ algorithm and heuristic functions. 

15.5.1 Pruning the Search Tree 

We can improve many backtracking algorithms by pruning the search tree: if we 
notice that a partial solution cannot be extended to a complete solution, it is no use 
to continue the search. 

Let us consider the problem of calculating the number of paths in a 7 × 7 grid 
from the upper-left corner to the lower-right corner such that the path visits each 
square exactly once. Figure 15.27 shows one such path, and it turns out that the total 
number of paths is 111712. 

We begin with a simple backtracking algorithm, and then optimize it step by step 
using observations of how the search can be pruned. After each optimization, we 
measure the running time of the algorithm and the number of recursive calls to see 
the effect of each optimization on the efficiency of the search. 

Basic algorithm The first version of the algorithm does not contain any optimiza-
tions. We simply use backtracking to generate all possible paths from the upper-left 
corner to the lower-right corner and count the number of such paths. 

Fig. 15.27 A path from the 
upper-left corner to the 
lower-right corner 
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Fig. 15.28 Two symmetric 
paths about the diagonal of 
the grid 

Fig. 15.29 We reach the 
lower-right square before 
visiting all other squares 

• running time: 483 s 
• number of recursive calls: 76 · 109 

Optimization 1 In any solution, we first move one step down or right and there are 
two paths that are symmetric about the diagonal of the grid. For example, the paths 
in Fig. 15.28 are symmetric. Hence, we can decide that we always first move one 
step down (or right), and finally multiply the number of solutions by two. 

• running time: 244 s 
• number of recursive calls: 38 · 109 

Optimization 2 If the path reaches the lower-right square before visiting all other 
squares of the grid, it will clearly not be possible to complete the solution. An example 
of this is shown in Fig. 15.29. Using this observation, we can terminate the search 
immediately if we reach the lower-right square too early. 

• running time: 119 s 
• number of recursive calls: 20 · 109 

Optimization 3 If the path touches a wall and can turn either left or right, the grid 
splits into two parts that contain unvisited squares. For example, the path in Fig. 15.30 
can turn either left or right. In this case, we cannot visit all squares anymore, so we 
can terminate the search. This optimization is very useful: 
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Fig. 15.30 The path splits 
the grid into two parts that 
contain unvisited squares 

Fig. 15.31 A more general 
situation where the path 
splits the grid into two parts 

• running time: 1.8 s 
• number of recursive calls: 221 · 106 

Optimization 4 The idea of the previous optimization can be generalized: if the path 
cannot continue forward but can turn either left or right, the grid splits into two parts 
that both contain unvisited squares. Figure 15.31 shows an example of such a case. 
It is clear that we cannot visit all squares anymore, so we can terminate the search. 
After this optimization, the search is very efficient: 

• running time: 0.6 s 
• number of recursive calls: 69 · 106 

Conclusion Now is a good point to stop optimizing the algorithm and see what we 
have achieved. The running time of the original algorithm was 483 s, and after the 
optimizations, the running time is only 0.6 s. Thus, the algorithm became nearly 1000 
times faster thanks to the optimizations. 

This is a usual phenomenon in backtracking, because the search tree is usually 
large and even simple observations can effectively prune the search. Especially useful 
are optimizations that occur during the first steps of the algorithm, i.e., at the top of 
the search tree. 



15.5 Backtracking Techniques 289 

Fig. 15.32 The final grid in 
the 15 puzzle problem 
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Fig. 15.33 The minimum 
number of moves in this grid 
is 61 
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15.5.2 Heuristic Functions 

In some backtracking problems, we want to find an optimal solution, such as a 
sequence of moves that contains the minimum number of moves. In such problems, 
we can improve the search by using a heuristic function that estimates the distance 
from a search state to a final state. 

In the 15 puzzle problem, we are given a 4×4 grid that contains 15 tiles (numbered 
1, 2, . . . ,  15) and an empty square. On each move, we can choose any tile adjacent 
to the empty square and move it to the empty square. We want to find the minimum 
number of moves that produces the final grid shown in Fig. 15.32. 

To solve the problem, we use an algorithm called IDA ∗ that consists of several 
backtracking searches. Each search attempts to find a solution where the number of 
moves is at most  k. The initial value of k is 0 and we increase k by 1 after each search 
until a solution is found. 

The algorithm uses a heuristic function that estimates the remaining number of 
moves needed to reach the final grid. The heuristic function must be admissible 
which means that it never overestimates the number of moves. Thus, we get a lower 
bound for the number of moves using the function. 

As an example, we consider the grid shown in Fig. 15.33. It turns out that the 
minimum number of moves in this grid is 61. Since each search state has 2–4 possible 
moves, depending on the position of the empty grid, a simple backtracking algorithm 
would take too much time. Fortunately, the A ∗ algorithm includes a heuristic function 
that can make the search much faster. 

We next consider several heuristic functions and measure the running time of 
the algorithm and the number of recursive calls. In all heuristics, we implement the 
backtracking so that it never cancels the previous move, because this would not lead 
to an optimal solution. 

Heuristic 1 A simple heuristic is to calculate for each tile the Manhattan distance 
from its current position to the final position. The Manhattan distance is calculated 
using the formula |xc − x f |+ |yc − y f | where (xc, yc) is the current position of a tile 
and (x f , y f ) is its final position. We get a lower bound for the number of moves by 
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summing all such distances, because each move changes the horizontal or vertical 
position of a single tile by one. 

• running time: 126 s 
• number of recursive calls: 1.5 · 109 

Heuristic 2 We can create a better heuristic by focusing on tiles that are already 
in the correct row or column. As an example, consider tiles 6 and 8 in our example 
puzzle. They are already in the correct row but their order is wrong. We have to move 
one of them vertically to change their order, which creates two extra moves. 

Thus, we can improve our heuristic as follows: we first calculate the sum of 
Manhattan distances but then add two extra moves for each row/column where two 
tiles are in the correct row/column in the wrong order. 

• running time: 22 s 
• number of recursive calls: 1.43 · 108 

Heuristic 3 We can further improve the previous heuristic: if there are more than 
two tiles that are in the correct row/column, we may be able to add more than two 
extra moves. For example, consider tiles 5, 6 and 8 in our example puzzle. Since 
they are in the reverse order, we have to move at least two of them vertically which 
produces four extra moves. 

More precisely, if there are c1 tiles in the correct row/column and there are c2 tiles 
in a maximum size subset of them where the order is correct, we can add 2(c1 − c2) 
extra moves. 

• running time: 39 s 
• number of recursive calls: 1.36 · 108 

Conclusion What happened? We created a better heuristic but it increased the running 
time of the algorithm from 22 s to 39 s. 

A good heuristic function has two properties: it gives a lower bound that is close to 
the real distance and it can be calculated efficiently. Our last heuristic is more accurate 
than the previous heuristic but it is difficult to calculate, so a simpler heuristic seems 
to be a better choice in this case. 

15.6 Miscellaneous 

This section presents a selection of miscellaneous algorithm design techniques. We 
discuss the meet in the middle technique, a dynamic programming algorithm for 
counting subsets, the parallel binary search technique, and an offline solution to the 
dynamic connectivity problem. 
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15.6.1 Meet in the Middle 

The meet in the middle technique divides the search space into two parts of about 
equal size, performs a separate search for both of the parts, and finally combines the 
results of the searches. Meet in the middle allows us to speed up certain O(2n) time 
algorithms so that they work in only O(2n/2) time. Note that O(2n/2) is much faster 
than O(2n), because 2n/2 = 

√
2n . Using an O(2n) algorithm we can process inputs 

where n ≈ 20, but using an O(2n/2) algorithm the bound is n ≈ 40. 
Suppose that we are given a set of n integers and our task is to determine whether 

the set has a subset with sum x . For example, given the set {2, 4, 5, 9} and x = 15, 
we can choose the subset {2, 4, 9}, because 2 + 4 + 9 = 15. We can easily solve 
the problem in O(2n) time by going through every possible subset, but next we will 
solve the problem more efficiently in O(2n/2) time using meet in the middle. 

The idea is to divide our set into two sets A and B such that both sets contain about 
half of the numbers. We perform two searches: the first search generates all subsets 
of A and stores their sums to a list SA, and the second search creates a similar list 
SB for B. After this, it suffices to check if we can choose one element from SA and 
another element from SB such that their sum is x , which is possible exactly when 
the original set contains a subset with sum x . 

For example, let us see how the set {2, 4, 5, 9} is processed. First, we divide the 
set into sets A = {2, 4} and B = {5, 9}. After this, we create lists SA = [0, 2, 4, 6] 
and SB = [0, 5, 9, 14]. Since SA contains the sum 6 and SB contains the sum 9, we 
conclude that the original set has a subset with sum 6 + 9 = 15. 

With a good implementation, we can create the lists SA and SB in O(2n/2) time 
in such a way that the lists are sorted. After this, we can use a two pointers algorithm 
to check in O(2n/2) time if the sum x can be created from SA and SB . Thus, the total 
time complexity of the algorithm is O(2n/2). 

15.6.2 Counting Subsets 

Let X = {0 . . .  n − 1}, and each subset S ⊂ X is assigned an integer value[S]. Our 
task is to calculate for each S 

. sum(S) =
 

A⊂S 

value[A], 

i.e., the sum of values of subsets of S. 
For example, suppose that n = 3 and the values are as follows: 

• value[∅] = 3 
• value[{0}] = 1 
• value[{1}] = 4 
• value[{0, 1}] = 5 

• value[{2}] = 5 
• value[{0, 2}] = 1 
• value[{1, 2}] = 3 
• value[{0, 1, 2}] = 3 

In this case, for example, 

. 
sum({0, 2}) = value[∅] + value[{0}] + value[{2}] + value[{0, 2}] 

= 3 + 1 + 5 + 1 = 10. 
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Next we will see how to solve the problem in O(2nn) time using dynamic pro-
gramming and bit operations. The idea is to consider subproblems where it is limited 
which elements may be removed from S. 

Let partial(S, k) denote the sum of values of subsets of S with the restriction 
that only elements 0 . . .  k may be removed from S. For example, 

. partial({0, 2}, 1) = value[{2}] + value[{0, 2}], 
because we only may remove elements 0 . . .  1. Note that we can calculate any value 
of sum(S) using partial, because 

. sum(S) = partial(S, n − 1). 

To use dynamic programming, we have to find a recurrence for partial. First, 
the base cases are 

. partial(S, −1) = value[S], 
because no elements can be removed from S. Then, in the general case we can 
calculate the values as follows: 

. partial(S, k) =
 
partial(S, k − 1) k /∈ S 

partial(S, k − 1) + partial(S \ {k}, k − 1) k ∈ S 

Here we focus on the element k. If  k ∈ S, there are two options: we can either keep 
k in the subset or remove it from the subset. 

Implementation There is a particularly clever way to implement a dynamic pro-
gramming solution using bit operations. Namely, we can declare an array 

int sum[1<<N]; 

that will contain the sum of each subset. The array is initialized as follows: 

for (int s = 0; s < (1<<n); s++) { 
sum[s] = value[s]; 

} 

Then, we can fill the array as follows: 

for (int k = 0; k < n; k++) { 
for (int s = 0; s < (1<<n); s++) { 

if (s&(1<<k)) sum[s] += sum[s^(1<<k)]; 
} 

} 

This code calculates the values of partial(S, k) for k = 0 . . .  n − 1 to the array 
sum. Since partial(S, k) is always based on partial(S, k − 1), we can reuse 
the array sum, which yields a very efficient implementation. 
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Fig. 15.34 An instance of 
the road building problem 

1 2 

3 4 

day 1 

1 2 

3 4 

day 2 

1 2 

3 4 

day 3 

1 2 

3 4 

day 4 

15.6.3 Parallel Binary Search 

Parallel binary search is a technique that allows us to make some binary search based 
algorithms more efficient. The general idea is to perform several binary searches 
simultaneously, instead of doing the searches separately. 

As an example, consider the following problem: There are n cities numbered 
1, 2, . . . ,  n. Initially there are no roads between the cities. Then, during m days, each 
day a new road is built between two cities. Finally, we are given k queries of the form 
(a, b), and our task is to determine for each query the earliest moment when cities a 
and b are connected. We can assume that all requested pairs of cities are connected 
after m days. 

Figure 15.34 shows an example scenario where there are four cities. Suppose that 
the queries are q1 = (1, 4) and q2 = (2, 3). The answer for q1 is 2, because cities 
1 and 4 are connected after day 2, and the answer for q2 is 4, because cities 2 and 3 
are connected after day 4. 

Let us first consider an easier problem where we have only one query (a, b). In  
this case, we can use a union-find structure to simulate the process of adding roads 
to the network. After each new road, we check if cities a and b are connected and 
stop the search if they are. Both adding a road and checking if cities are connected 
takes O(log n) time, so the algorithm works in O(m log n) time. 

How could we generalize this solution to k queries? Of course we could process 
each query separately, but such an algorithm would take O(km log n) time, which 
would be slow if both k and m are large. Next we will see how we can solve the 
problem more efficiently using parallel binary search. 

The idea is to assign each query a range [x, y] which means that the cities are 
connected for the first time no earlier than after x days and no later than after y days. 
Initially, each range is [1, m]. Then, we simulate logm times the process of adding 
all roads to the network using a union-find structure. For each query, we check at 



294 15 Additional Topics 

moment u =  (x + y)/2 if the cities are connected. If they are, the new range 
becomes [x, u], and otherwise the range becomes [u + 1, y]. After logm rounds, 
each range only contains a single moment which is the answer to the query. 

During each round, we add m roads to the network in O(m log n) time and check 
whether k pairs of cities are connected in O(k log n) time. Thus, since there are logm 
rounds, the resulting algorithm works in O((m + k) log n logm) time. 

15.6.4 Dynamic Connectivity 

Suppose that there is a graph of n nodes and m edges. Then, we are given q queries, 
each of which is either “add an edge between nodes a and b” or “remove the edge 
between nodes a and b”. Our task is to efficiently report the number of connected 
components in the graph after each query. 

Figure 15.35 shows an example of the process. Initially, the graph has three com-
ponents. Then, the edge 2–4 is added, which joins two components. After this, the 
edge 4–5 is added and the edge 2–5 is removed, but the number of components 
remains the same. Then, the edge 1–3 is added, which joins two components, and 
finally, the edge 2–4 is removed, which divides a component into two components. 

If edges would only be added to the graph, the problem would be easy to solve 
using a union-find data structure, but the removal operations make the problem much 
more difficult. Next we will discuss a divide and conquer algorithm for solving the 
offline version the problem where all queries are known beforehand and we are 
allowed to report the results in any order. The algorithm presented here is based on 
the work by Kopeliovich [ 4]. 

The idea is to create a timeline where each edge is represented by an interval 
that shows the insertion and removal time of the edge. The timeline spans a range 
[0, q + 1], and an edge that is added on step a and removed on step b is represented 
by an interval [a, b]. If an edge belongs to the initial graph, a = 0, and if an edge is 
never removed, b = q +1. Figure 15.36 shows the timeline in our example scenario. 

To process the intervals, we create a graph that has n nodes and no edges, and use a 
recursive function that is called with range [0, q +1]. The function works as follows 
for a range [a, b]: First, if [a, b] is completely inside the interval of an edge, and the 
edge does not belong to the graph, it is added to the graph. Then, if the size of [a, b] 
is 1, we report the number of connected components, and otherwise we recursively 
process ranges [a, k] and [k, b] where k =  (a +b)/2 . Finally, we remove all edges 
that were added at the beginning of processing the range [a, b]. 

Always when an edge is added or removed, we also update the number of com-
ponents. This can be done using a union-find data structure, because we always 
remove the edge that was added last. Thus, it suffices to implement an undo oper-
ation for the union-find structure, which is possible by storing information about 
operations in a stack. Since each edge is added and removed at most O(log q) times 
and each operation works in O(log n) time, the total running time of the algorithm 
is O((m + q) log q log n). 
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Fig. 15.35 The dynamic connectivity problem 
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Note that in addition to counting the number of components, we may maintain 
any information that can combined with the union-find data structure. For example, 
we may maintain the number of nodes in the largest component or the bipartiteness 
of each component. The technique can also be generalized to other data structures 
that support insertion and undo operations. 
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16Python in Competitive Programming 

While C++ is the predominant language in competitive programming, Python has 
also gained some popularity in recent years. Even if one usually uses C++, Python 
has some useful features that can be worth learning. In this chapter, we take a look 
at the Python language from a competitive programming perspective. 

Section 16.1 shows how to solve an example competitive programming problem 
using Python. After that, we go through some Python features: handling input and 
output, working with numbers and generating combinations of objects. 

Section 16.2 deals with Python data structures that are useful in competitive pro-
gramming: list structures, hash structures and priority queues. We also discuss the 
differences between Python and C++ when using data structures. 

Section 16.3 presents two scenarios where a natural C++ solution is to use binary 
search tree data structures. The Python standard library does not have such data 
structures, and we have to find alternative ways to solve the problems. 

Section 16.4 discusses the use of recursive functions in Python. We will see how 
to increase the default recursion depth limit and how to implement dynamic pro-
gramming solutions in Python. 

Section 16.5 studies the efficiency of Python through experiments. We will both 
compare the efficiency of two Python implementations (CPython and PyPy) and the 
efficiency between Python and C++. 

Section 16.6 shows how Python can be used as a tool for generating tests, stress 
testing solutions and implementing an algorithm for finding polynomials. 

16.1 Introduction 

At the beginning of this book, we created a C++ solution to the Weird Algorithm 
problem from the CSES Problem Set. Let us now solve the problem in Python. The 
problem statement is as follows: 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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Consider an algorithm that takes as input a positive integer n. If  n is even, the algorithm 
divides it by two, and if n is odd, the algorithm multiplies it by three and adds one. The 
algorithm repeats this, until n is one. For example, the sequence for n = 3 is as follows:  

3 → 10 → 5 → 16 → 8 → 4 → 2 → 1 

Your task is to simulate the execution of the algorithm for a given value of n. 

Input 

The only input line contains an integer n. 

Output 

Print a line that contains all values of n during the algorithm. 

Constraints 

• 1 ≤ n ≤ 106 

Example 

Input: 

3 

Output: 

3 10 5 16 8 4 2 1  

The following Python code can be used to solve the problem: 

n = int(input()) 

while True: 
print(n, end=" ") 
if n == 1:  

break 
if n % 2 == 0:  

n = n // 2  
else: 

n = 3 * n + 1  
print() 

When we solved the problem in C++, we had to carefully select the type of the 
variable n so that it is large enough to hold all intermediate values during the calcu-
lation. In Python, we do not have to think about this because built-in Python integers 
can contain arbitrarily large values. Other than that, there are no big differences when 
implementing the solution in C++ and Python. 

16.1.1 Input and Output 

The Python function input reads a line from the standard input and returns the line 
as a string. For example, the following code reads two lines from the standard input. 
The first line is converted to an integer, and the second line is stored as a string.
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n = int(input()) 
s = input() 

If a line consists of several values separated by spaces, we can use the split 
function to convert them to a list: 

t = input().split() 

Using the above code, each value in the list is a string. To convert each value to 
an integer, we can use the following code which uses the list comprehension syntax 
to construct a list of integers: 

t = [int(x) for x in input().split()] 

Another approach is to use the map function for integer conversion and the list 
function to create a list from a map object. 

t = list(map(int, input().split())) 

The print function writes a line to the standard output. For example, the fol-
lowing code writes three lines: 

print(a) 
print(b) 
print(c) 

The following code writes each value on the same line, separated by spaces: 

print(a, b, c) 

The end and sep parameters can be used to change the newline and separator 
strings when using the print function. By default, end is "\n" and sep is ” ”. 
The following code writes the values on the same line, separated by spaces: 

print(a, end=" ") 
print(b, end=" ") 
print(c) 

The following code writes each value on a separate line: 

print(a, b, c, sep="\n")
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16.1.2 Working with Numbers 

In Python, built-in integers can contain arbitrarily large values. For example, the 
following code prints the integer 133713: 

print(1337**13) 

The output of the code is as follows: 

43622273306113847375878664912656177214297 

Thus, it is convenient to use Python when it is necessary to handle integers that 
do not fit into 64 bit or 128 bit integer types in C++. 1

The operator / always produces a floating point number, even if both numbers 
are integers. The operator // can be used for integer division. 

print(3 / 2)  # 1.5 
print(3 // 2) # 1  

The pow function can be used to efficiently calculate the value of an expression 
ab mod c. For example, the following code prints the value of 99910

6 
mod 123. 

print(pow(999, 10**6, 123)) # 42  

The module math contains some useful functions for integer calculations. 2 The 
functions gcd and lcm calculate the greatest common divisor and lowest common 
multiple for a list of numbers. The function factorial returns the factorial of a 
number, and the function comb can be used to calculate binomial coefficients. 

import math 

print(math.gcd(8, 12)) # 4  
print(math.gcd(8, 12, 6)) # 2  
print(math.lcm(8, 12)) # 24  

print(math.factorial(5)) # 120 
print(math.comb(5, 3)) # 10  

1 However, in some recent Python versions, conversions between large integers and their string rep-
resentations are restricted. For example, it is not possible by default to print an integer that has more 
than 4300 digits. The purpose of this change is to prevent denial of service attacks in Python appli-
cations, because such conversions are slow. The sys.set_int_max_str_digits function 
can be used to increase the limit. 
2 Some of these functions are not available in older Python versions. 
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The module fractions provides a way to perform exact calculations with 
fractions. For example, the following code creates the fractions 1/2 and 5/7: 

from fractions import Fraction 

a = Fraction(1, 2) 
b = Fraction(5, 7) 

print(a) # 1/2 
print(b) # 5/7 
print(float(a)) # 0.5 
print(float(b)) # 0.7142857142857143 

Fractions are automatically shown in the reduced form: 

print(Fraction(1, 2)) # 1/2 
print(Fraction(2, 4)) # 1/2 
print(Fraction(3, 6)) # 1/2 

Mathematical operators can be used for calculating with fractions: 

a = Fraction(1, 2) 
b = Fraction(5, 7) 

print(a + b)  # 17/14 
print(a * b)  # 5/14 
print(a < b)  # True 

16.1.3 Generating Combinations 

The module itertools can be used to generate combinations of objects. The 
module includes the following functions: 

• The function permutations generates all permutations of the input sequence. 
For example, the permutations of [1, 2, 3] are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), 
(3, 1, 2) and (3, 2, 1). 

• The function combinations generates all subsequences of the input sequence 
that have k elements. For example, when the input sequence is [1, 2, 3] and k = 2, 
the combinations are (1, 2), (1, 3) and (2, 3). Each subsequence corresponds to a 
subset of size k. 

• The function product generates all sequences of length k where each element 
comes from the input sequence. For example, when the input sequence is [1, 2, 3] 
and k = 2, the sequences are (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), 
(3, 2) and (3, 3).
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• The functioncombinations_with_replacements generates all sequences 
of length k where each element comes from the input sequence and the order of 
the elements is the same as in the input sequence. For example, when the input 
sequence is [1, 2, 3] and k = 2, the combinations are (1, 1), (1, 2), (1, 3), (2, 2), 
(2, 3) and (3, 3). 

The following code demonstrates how to use the functions: 

import itertools 

s = [1, 2, 3] 
k = 2  

print(list(itertools.permutations(s))) 
print(list(itertools.combinations(s, k))) 
print(list(itertools.product(s, repeat=k))) 
print(list(itertools.combinations_with_replacement(s, k))) 

The output of the code is as follows: 

[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), 
(3, 2, 1)] 
[(1, 2), (1, 3), (2, 3)] 
[(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), 
(3, 2), (3, 3)] 
[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)] 

16.2 Data Structures 

The Python standard library has several data structures that are useful in competitive 
programming. In this section, we discuss some of those data structures and also 
highlight some differences between Python and C++ data structures. 

One difference between Python and C++ is that in Python, the syntax a = b  
only copies the reference to the data structure and does not copy the contents of the 
data structure like in C++. The following code demonstrates this: 

a = [1, 2, 3] 
b = a  
a.append(4) 

print(a) # [1, 2, 3, 4] 
print(b) # [1, 2, 3, 4] 

Here the variables a and b point to the same list and when an element is added 
through a, it will also be visible through b.
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The same applies to function calls: if we modify a list given to a function as a 
parameter, the changes will be visible outside the function. In the following code, 
the function adds a new element to a list that is given as a parameter. 

def test(x): 
x.append(4) 

a = [1, 2, 3] 
test(a) 
print(a) # [1, 2, 3, 4] 

Another difference is that Python has two types of data structures: mutable and 
immutable data structures. Mutable data structures can be modified using methods 
and operators but immutable data structures cannot be modified. 

For example, a list is a mutable data structure because we can use the [] syntax 
to modify the list: 

x = [1, 2, 3] 
x[1] = 5 
print(x) # [1, 5, 3] 

However, strings and tuples are immutable and there are no methods or operators 
that could be used to modify them. For example, the following code does not work 
because it is not allowed to modify a string: 

x = "abc"  
x[1] = "e" # TypeError 
print(x) 

16.2.1 List Structures 

In Python, a list is a dynamic array where elements can be efficiently added and 
removed at the end of the list. The Python list structure corresponds to the C++ 
vector structure. 

Lists can be created using the [] syntax. The following code creates a list with 
three elements: 

t = [1, 2, 3]
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Another way to create a list is to use the method append that adds a new element 
at the end of the list: 

t = []  
t.append(1) 
t.append(2) 
t.append(3) 
print(t) # [1, 2, 3] 

The method pop removes and returns the last element of the list: 

t = [1, 2, 3] 
print(t.pop()) # 3  
print(t) # [1, 2] 

The elements of the list can be accessed using the [] syntax: 

t = [1, 2, 3] 
print(t[1]) # 2  
t[1] = 5 
print(t[1]) # 5  

Sorting Lists There are two ways to sort a list. The first way is to use the sort 
method as follows: 

t = [3, 2, 1] 
t.sort() 
print(t) # [1, 2, 3] 

Another way is to use the sorted function which creates a new sorted list without 
modifying the original list: 

t = [3, 2, 1] 
print(sorted(t)) # [1, 2, 3] 
print(t) # [3, 2, 1] 

Deques Python also has a deque data structure that allows efficient insertion and 
deletion of elements both at the beginning and at the end of the list. It has two special 
methods appendleft and popleft that modify the beginning of the list.
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The following code shows how a deque can be used: 

from collections import deque 

d = deque() 
d.append(1) 
d.append(2) 
d.appendleft(3) 
print(d) # [3, 1, 2] 
d.pop() 
print(d) # [3, 1] 
d.popleft() 
print(d) # [1] 

In Python, deques are implemented as linked lists and it is not possible to efficiently 
access their elements using the [] syntax. This differs from C++ where deques are 
implemented as dynamic arrays. 

16.2.2 Hash Structures 

Python has two useful data structures that are based on hash tables: a set and a 
dictionary. They correspond to the C++ unordered_set and unordered_map 
data structures. 

Sets A set maintains a collection of elements. It provides efficient methods add 
and remove for element insertion and removal. In addition, the operator in can be 
used to efficiently check if a set contains an element. 

The following code shows how to use the set data structure: 

s = set() 

s.add(1) 
s.add(2) 
s.add(3) 
print(s) # {1, 2, 3} 

print(2 in s) # True 
s.remove(2) 
print(2 in s) # False 

Each element can appear at most once in a set: 

s = set() 
s.add(5) 
s.add(5) 
s.add(5) 
print(s) # {5} 
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Dictionaries A dictionary consists of key-value pairs which can be efficiently 
accessed through the keys. Dictionaries can be created using the {} syntax, and the 
values can be accessed using the [] syntax. 

The following code shows how to use the dictionary data structure: 

d = {}  

d["monkey"] = 1 
d["banana"] = 2 
d["harpsichord"] = 3 

print("banana" in d) # True 
print(d["banana"]) # 2  

Unlike in C++, there are no default values. For example, the following code does 
not work because the dictionary does not have the key “monkey”. 

d = {}  
print(d["monkey"]) # KeyError: ’monkey’ 

However, there is another data structure defaultdict that has default values 
for missing keys. For example, we can define a dictionary with type int that works 
as follows: 

from collections import defaultdict 

d = defaultdict(int) 

print(d["monkey"]) # 0  
d["monkey"] += 1 
print(d["monkey"]) # 1  

Only immutable values, such as numbers, strings and tuples, can be used as keys in 
Python sets and dictionaries. For example, the following code does not work because 
a list is not immutable: 

s = set() 
s.add([1, 2, 3]) # TypeError 

16.2.3 Priority Queues 

The module heapq has functions that perform binary heap operations on a list. The 
first element of the list is the minimum element. The function heappush adds an 
element to the heap, and the function heappop removes and returns the minimum 
element. Using those functions, we can use lists as priority queues.
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The following code shows how the functions can be used: 

from heapq import heappush, heappop 

q = []  
heappush(q, 2) 
heappush(q, 1) 
heappush(q, 4) 
heappush(q, 3) 

print(q[0]) # 1  
heappop(q) 
print(q[0]) # 2  

Both the functions heappush and heappop work in O(log n) time. In addition, 
the function heapify can be used to convert a list to a heap in O(n) time. The 
function can be used as follows: 

from heapq import heapify 

q = [2, 1, 4, 3] 
heapify(q) 
print(q) # [1, 2, 4, 3] 

16.3 Coping Without Binary Search Trees 

The Python standard library does not have binary search tree data structures. Thus, 
there are no equivalents for the C++ data structures set and map in Python. 

Using binary search tree data structures, we can maintain a set where it is possible 
to efficiently find minimum and maximum elements and also process queries like 
“what is the smallest element larger than x” or “what is the largest element smaller 
than x”. In Python, such features are not available in the standard library. 

Fortunately, even if it would seem at first glance that a problem requires binary 
search trees, we can often solve the problem using an alternative way that only 
requires tools included in the Python standard library, such as sorting, hash structures 
and priority queues. 

16.3.1 Minimum Queries 

Let us first consider the situation where we would like to use a data structure that 
has the following operations: 

• add an element to the set 
• remove an element from the set 
• find the minimum element in the set
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It turns out that we can create such a data structure using two Python data struc-
tures: a set and a priority queue. When an element is added, we add it to both the data 
structures. When an element is removed, we remove it only from the set because it 
is not possible to remove arbitrary elements from a priority queue. 

The most interesting operation in the data structure is finding the minimum ele-
ment. The priority queue can be used to find the minimum element, but it can contain 
elements that have already been removed. For this reason, as long as the minimum 
element in the priority queue is not in the set anymore, we remove it also from the 
priority queue. Then, when we find an element that is also in the set, we return it. 

We can implement the operations as follows: 

def add(x): 
s.add(x) 
heappush(q, x) 

def remove(x): 
s.remove(x) 

def find_min(): 
while q[0] not in s: 

heappop(q) 
return q[0] 

Using this implementation, the find_min function may need to remove a large 
number of elements from the priority queue before returning the actual minimum 
element. However, every element that is added to the set is removed at most once. 
For this reason, each function works efficiently on average. 

Note that we previously used a similar trick for implementing Dijkstra’s algorithm 
using a C++ priority queue (Sect. 7.3.2). 

16.3.2 Example Problem 

While we can support minimum and maximum queries using a combination of a set 
and a priority queue, there is no easy way to process queries like ”what is the smallest 
element larger than x”. However, if we would need such queries in a problem, there 
may still be a way to avoid them using an alternative approach. 

Let us consider the following problem from the CSES Problem Set: 

There are n concert tickets available, each with a certain price. Then, m customers arrive, 
one after another. 

Each customer announces the maximum price they are willing to pay for a ticket, and after 
this, they will get a ticket with the nearest possible price such that it does not exceed the 
maximum price.
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Input 

The first input line contains integers n and m: the number of tickets and the number of 
customers. 

The next line contains n integers h1, h2, . . . ,  hn : the price of each ticket. 

The last line contains m integers t1, t2, . . . ,  tm : the maximum price for each customer in the 
order they arrive. 

Output 

Print, for each customer, the price that they will pay for their ticket. After this, the ticket 
cannot be purchased again. 

If a customer cannot get any ticket, print −1. 

Constraints 

• 1 ≤ n, m ≤ 2 · 105 
• 1 ≤ hi , ti ≤ 109 

Example 

Input: 

5 3  

5 3 7 8 5  

4 8 3  

Output: 

3 

8

-1 

In C++, we could use a multiset for solving the problem. First, we could add 
all ticket prices to the set and then efficiently find the ticket price for each customer. 
To find the ticket price, we could use the upper_bound function to find the smallest 
ticket price that is too large and then choose the previous element in the set which is 
the desired ticket price. 

To solve the problem in Python, we have to design another solution that does not 
require maintaining a set of ticket prices with efficient queries for finding the ticket 
price for a customer. It turns out this problem is easier to solve if we change the order 
the customers are processed and create an offline solution. 

The idea is to create a list of events. There are two types of events: (1) a customer 
wants to buy a ticket whose price is at most x and (2) there is a new ticket available 
with price x . We sort the list in descending order by ticket price, and then process the 
events one by one. In addition, we maintain a priority queue that contains customers 
who have already requested a ticket. The customers are sorted by arrival time in the 
priority queue.
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When we process an event of type 1, we add the customer to the priority queue. 
When we process an event of type 2, we remove the customer with the minimum 
arrival time from the priority queue and give the ticket to that customer. If there are no 
customers in the priority queue, nobody will get the ticket. After we have processed 
all events, we can report the ticket price for each customer. 

There is a linear number of events and we can efficiently process each event using 
the priority queue, which results in an efficient algorithm. 

16.4 Recursive Functions 

Consider the following recursive Python function that computes the factorial of n: 

def factorial(n): 
if n == 0:  

return 1 
return factorial(n - 1) * n 

For small numbers, the function works fine: 

print(factorial(0)) # 1  
print(factorial(2)) # 2  
print(factorial(5)) # 120 
print(factorial(9)) # 362880 

However, we cannot compute the factorial of 1000: 

print(factorial(1000)) # RecursionError 

The reason for this is that the maximum recursion depth in Python is quite small 
by default. We can increase the limit by using the sys.setrecursionlimit 
function as follows: 

import sys 
sys.setrecursionlimit(5000) 
print(factorial(1000)) # 402387260077093773543702433923... 

16.4.1 Dynamic Programming 

We can often use dynamic programming to make a recursive function efficient. Here 
is a recursive function that calculates Catalan numbers (Sect. 11.2.2):



16.4 Recursive Functions 311

def catalan(n): 
if n == 0:  

return 1 
s = 0  
for i in range(n): 

s += catalan(i) * catalan(n - i - 1)  
return s 

For small numbers, the function works fine: 

print(catalan(2)) # 2  
print(catalan(3)) # 5  
print(catalan(5)) # 42  

However, for larger numbers the function is slow because the number of recursive 
calls is too large. 

print(catalan(100)) # too slow 

Here is a way to make the function efficient using dynamic programming: 

def catalan(n, d={}): 
if n == 0:  

return 1 
if n not in d: 

s = 0  
for i in range(n): 

s += catalan(i) * catalan(n - i - 1)  
d[n] = s 

return d[n] 

Now the function uses a dictionary to store its return values and it makes recursive 
calls only once for each parameter. After this modification, the function is efficient: 

print(catalan(100)) # 896519947090131496687170070074... 

Note how each function call uses the same dictionary to store the results, which 
is given as a parameter. In Python, if a function parameter has a default value which 
creates a data structure, each function call that uses the default value uses the same 
data structure. 

In the above situation this feature is useful but it can sometimes cause confusion. 
For example, consider the following code:
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def test(t=[]): 
t.append(1) 
print(t) 

test() # [1] 
test() # [1, 1] 
test() # [1, 1, 1] 

One could think that each function call adds an element to an empty list. However, 
in reality each function call adds an element to the same list. 

16.4.2 Cache Decorator 

In Python there is also a built-in way to store function results and create efficient 
dynamic programming solutions. The module functools has a decorator cache 
that can be used as follows 3 : 

import functools 

@functools.cache 
def catalan(n): 

if n == 0:  
return 1 

s = 0  
for i in range(n): 

s += catalan(i) * catalan(n - i - 1)  
return s 

Using the decorator, the function return values for different parameters are stored 
automatically and the previously calculated value is returned if the function is called 
again with the same parameter. 

16.5 Efficiency 

In this section, we compare the efficiency of two Python implementations (CPython 
and PyPy) and C++. CPython is the standard Python implementation which is the 
most common way to execute Python code. PyPy is an alternative Python implemen-
tation which includes a just-in-time compiler and is often faster.

3 The cache decorator was recently added to Python. Older Python versions have a similar deco-
ratorlru_cache(maxsize=None). 
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16.5.1 Finding Primes 

In the first experiment, we count the number of primes between 2 and n using the 
sieve of Eratosthenes. Here is the Python code used in the experiment: 

sieve = [0]*(n+1) 
count = 0 
for i in range(2, n+1): 

if sieve[i]: 
continue 

count += 1 
for j in range(2*i, n+1, i): 

sieve[j] = 1 
print(count) 

Here is the corresponding code in C++: 

vector<int> sieve(n+1); 
int count = 0; 
for (int i = 2; i <= n; i++) { 

if (sieve[i]) continue; 
count++; 
for (int j = 2*i; j <= n; j += i) {  

sieve[j] = 1; 
} 

} 
cout << count << "\n"; 

Table 16.1 shows the results of the experiment. It can be seen that PyPy and C++ 
are much faster than CPython in large tests. However, the difference between PyPy 
and C++ is quite small. 

Table 16.1 The results of the prime counting experiment 

Input Size n CPython PyPy C++ 

106 0.32 s 0.12 s 0.01 s 

2 · 106 0.68 s 0.15 s 0.03 s 

4 · 106 1.51 s 0.21 s 0.09 s 

8 · 106 3.00 s 0.34 s 0.19 s 

16 · 106 5.97 s 0.60 s 0.39 s 

32 · 106 12.61 s 1.14 s 0.82 s 

64 · 106 25.05 s 2.22 s 1.69 s
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16.5.2 Counting Permutations 

In the second experiment, we count the number of permutations of 1, 2, . . . ,  n where 
there are no consecutive numbers whose difference is 1. For example, when n = 4, 
there are two such permutations (2, 4, 1, 3) and (3, 1, 4, 2). 

The following Python code counts the permutations: 

c = 0  
for p in itertools.permutations(range(1,n+1)): 

f = False 
for i in range(n-1): 

if abs(p[i]-p[i+1]) == 1: 
f = True 
break 

if not f: 
c += 1  

print(c) 

Here is the corresponding code in C++: 

vector<int> p(n); 
iota(p.begin(), p.end(), 1); 
int c = 0;  
do { 

bool f =  false; 
for (int i = 0; i < n-1; i++) { 

if (abs(p[i]-p[i+1]) == 1) { 
f = true; 
break; 

} 
} 
if (!f) c++; 

} while (next_permutation(p.begin(), p.end())); 
cout << c << "\n"; 

Table 16.2 shows the results of the experiment. In this experiment PyPy is much 
more faster than CPython, but C++ is also much more faster than PyPy. 

Table 16.2 The results of the permutation counting experiment 

Input Size n CPython PyPy C++ 

8 0.06 s 0.07 s 0.01 s 

9 0.33 s 0.12 s 0.01 s 

10 3.46 s 0.37 s 0.03 s 

11 36.00 s 3.19 s 0.26 s 

12 >60 s 36.52 s 2.92 s
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16.6 Python as a Tool 

Instead of solving contest problems using Python, we can also use Python as a tool, 
for example for creating test cases or testing solutions. It can be more convenient to 
write such programs in Python than in C++. 

16.6.1 Generating Tests 

Assume that we want to generate a large random test input for a problem whose input 
consists of two lines: the length of the list and the contents of the list. The following 
Python program (generate.py) can be used for that: 

import random 
import sys 

n = int(sys.argv[1]) 

t = [str(random.randint(1, 100)) for x in range(n)] 

print(n) 
print(" ".join(t)) 

The list sys.argv contains the command line parameters given to the program 
(parameter 0 is the file name and parameter 1 is the first ”real” parameter). The 
function random.randint generates a random integer between two integers. 

For example, we can generate a test input where n = 20 as follows: 

$ python3 generate.py 20 
20 
60 19 46 83 12 61 44 58 55 77 79 72 27 94 78 47 23 49 33 41 

16.6.2 Stress Testing 

We can use stress testing to test that an implemented solution works correctly or to 
find a test input where it does not produce the correct result. The idea is to create two 
additional programs: a brute force solution that should work correctly, and a testing 
program that generates random inputs and checks that both the solutions produce the 
same answers for each test. 

Assume that our solution binary files are code (efficient solution) and brute 
(brute force solution) and the input consists of two lines: the length of the list and 
the contents of the list. The following Python program (test.py) can be used for 
stress testing:
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import os 
import random 

c = 0  
while True: 

c += 1  
print("test", c) 

n = random.randint(1, 10) 
t = [str(random.randint(1, 100)) for x in range(n)] 

f = open("input.txt", "w") 
f.write(str(n) + "\n") 
f.write(" ".join(t) + "\n") 
f.close() 

os.system("./code < input.txt > output1.txt") 
os.system("./brute < input.txt > output2.txt") 

o1 = open("output1.txt").readline() 
o2 = open("output2.txt").readline() 
if o1 == o2: 

print("ok") 
else: 

print("fail") 
break 

Here the function os.system is used to run an external program. The method 
readline reads the first line from a file. If there are several lines, we can use the 
method readlines that reads all the lines and returns them as a list. 

This testing program has a loop whose each iteration creates a random test case, 
writes it to an input file, gives the input file to both the solutions and compares their 
output files. If the program finds a test case where the solutions produce different 
answers, the program stops. After that, we can check the input file and try to find out 
why the answers are different. 

Here n is between 1 and 10 in each test, and in general it is usually a good approach 
to generate a large number of small test cases. If there is a bug in the solution, there 
is usually some small test case where the bug appears. After finding the test case it 
is convenient that we have a small input file where the solution produces a wrong 
answer. Then we can check the test case manually and try to find a reason why the 
solution does not work correctly. 

16.6.3 Finding Polynomials 

We can also use Python to conveniently implement the algorithm given in Sect. 11.7.2. 
The algorithm is given a list that contains the first values of a polynomial, and the 
algorithm finds the corresponding polynomial.
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Since the intermediate values in the list and the coefficients can be fractions, it is 
convenient that we can use built-in fractions available in Python. We can implement 
the algorithm as follows: 

from fractions import Fraction 
from math import factorial 

def find(p): 
c = 0  
while min(p) != max(p): 

c += 1  
p = [p[i+1]-p[i] for i in range(len(p)-1)] 

return c, p[0] / factorial(c) 

p = [0, 0, 8, 44, 140, 340, 700, 1288] 

p = [Fraction(x,1) for x in p] 
while True: 

k, a = find(p) 
print(a, k) 
p = [p[i]-a*(i+1)**k for i in range(len(p))] 
if k == 0:  break 

Here the input list is [0, 0, 8, 44, 140, 340, 700, 1288] which corresponds to the 
number of queen combinations where the queens do not attack each other. The 
algorithm produces the following result: 

1/2 4
-5/3 3 
3/2 2
-1/3 1 
0 0  

This means that the polynomial is 

1 

2 
n4 − 

5 

3 
n3 + 

3 

2 
n2 − 

1 

3 
n.
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IOI (International Olympiad in Informatics) is an international high school pro-
gramming contest, organized every year in a host country. This chapter describes the 
structure of the contest and gives advice for future IOI participants. 

Section 17.1 presents an overview of IOI: what is the format of the contest and 
how the contest has evolved over the years. 

Section 17.2 discusses the process of being selected to IOI and what is a good way 
to practice and prepare for the contest before the contest. 

Section 17.3 deals with technical skills that are needed at IOI. For example, it is 
useful to know how to use command line tools and the IOI task interface. 

Section 17.4 gives advice on what to do during the actual contest to maximize the 
score: how to allocate the time and how to utilize subtasks and feedback. 

17.1 Contest Overview 

Each participating country can send a team of four contestants to IOI. The contestants 
must be high school students and there must be a national selection process that is 
open for everybody. There are often training events and regional contests that are 
used in team selection. 

IOI is organized every year in a host country. Table 17.1 shows the list of IOI host 
countries at the time of writing this book. The host country provides accommodation, 
food, contest facilities and excursions for all participants, which means organizing 
an IOI requires a lot of money. The teams pay only for their own travel expenses 
when they travel to the host country. 
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Table 17.1 IOI host countries 1989–2026 

Year Country Year Country Year Country 

1989 Bulgaria 2002 South Korea 2015 Kazakhstan 

1990 Soviet Union 2003 USA 2016 Russia 

1991 Greece 2004 Greece 2017 Iran 

1992 Germany 2005 Poland 2018 Japan 

1993 Argentina 2006 Mexico 2019 Azerbaijan 

1994 Sweden 2007 Croatia 2020 Singapore (online) 

1995 Netherlands 2008 Egypt 2021 Singapore (online) 

1996 Hungary 2009 Bulgaria 2022 Indonesia 

1997 South Africa 2010 Canada 2023 Hungary 

1998 Portugal 2011 Thailand 2024 Egypt (future) 

1999 Turkey 2012 Italy 2025 Bolivia (future) 

2000 China 2013 Australia 2026 Uzbekistan (future) 

2001 Finland 2014 Taiwan 

Each IOI contestant competes individually and there is no team work. There are 
two contest days during which the contestants solve tasks. 1 At the end of the contest, 
the best students will get medals (gold, silver and bronze). 

17.1.1 History 

The first IOI was organized in 1989 in Bulgaria, with 46 contestants from 13 coun-
tries [ 1]. The number of participants increased rapidly, and there were already 171 
contestants from 51 countries in 1992 in Germany. At the time of writing this book, 
about 90 countries participate in IOI. In 2023 in Hungary, there were 351 contestants 
from 87 countries. 

IOI has changed a lot over the years. One big change is that IOI tasks are now 
more difficult than in the early years. For example, here is the task The Triangle from 
IOI 1994: 

7 

3 8  

8 1 0  

2 7 4 4  

4 5 2 6 5 (Figure 1) 

1 IOI problems are called tasks and we use this term throughout this chapter. 
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Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers 
passed on a route that starts at the top and ends somewhere on the base. 

• Each step can go either diagonally down to the left or diagonally down to the right. 
• The number of rows in the triangle is > 1 but <= 100. 

• The numbers in the triangle, all integers, are between 0 and 99. 

Input Data 

Data about the number of rows in the triangle are first read from the INPUT.TXT file. In 
our example, INPUT.TXT appears as follows: 

5 

7 

3 8  

8 1 0  

2 7 4 4  

4 5 2 6 5  

Output Data 

The highest sum is written as an integer in the OUTPUT.TXT file. In our example: 

30 

This would be a simple dynamic programming exercise by today’s standards 
and not suitable for IOI. However, the situation was different in 1994. At that time 
dynamic programming was an advanced technique mastered only by some contes-
tants. 

The above task also shows that there were no subtasks in old IOI tasks. Instead, you 
had to guess how many points a certain type of solution would give you. Another 
difference is that there was no feedback available during the contest. When your 
solution was ready, there was no way of knowing how many points you will get. The 
scores were reported to contestants only after the contest. 

17.1.2 Schedule 

The typical IOI schedule is as follows: 

• Day 1: arrivals 
• Day 2: practice session, opening ceremony 
• Day 3: first contest 
• Day 4: first excursion 
• Day 5: second contest 
• Day 6: second excursion 
• Day 7: closing ceremony 
• Day 8: departures
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There are two contest days, and both days have a contest of five hours. This 
means that most of the time is spent on other activities than programming. Indeed, 
the purpose of IOI is not only to find out who is the best young programmer in the 
world, but also to meet new people and get experiences. 

17.1.3 Tasks 

Both IOI contest days consist of three tasks. Only a small number of people know 
the tasks beforehand. The evening before a contest day, the tasks for the following 
day are revealed to team leaders. Then the tasks will be discussed and the leaders 
will translate the tasks from English into other languages. 

For each task, you can get a score between 0 and 100. Thus, the maximum total 
number of points available during the two contest days is 600. The tasks are divided 
into subtasks with some partial scores. This means that you can decide to solve some 
easier subtasks and get partial points for a task. 

As an example, here is the task Overtaking from IOI 2023 (with some sections 
on technical details and examples omitted): 

There is a one-lane, one-way road from Budapest Airport to Hotel Forrás. The road is L
kilometres long. 

Over the IOI 2023 event, N + 1 transfer buses traverse this road. Buses are numbered from 
0 to N . Bus  i (0 ≤ i < N ) is scheduled to leave the airport at the T [i]th second of the event, 
and can travel 1 kilometer inW [i] seconds. Bus N is a reserve bus that can travel 1 kilometer 
in X seconds. The time Y when it will leave the airport has not yet been decided. 

Overtaking is not allowed on the road in general, but the buses are allowed to overtake each 
other at sorting stations. There  are M (M > 1) sorting stations on the road, numbered from 
0 to M − 1. Sorting station j (0 ≤ j < M) is located S[ j] kilometres from the airport 
along the road. The sorting stations are sorted in increasing distance from the airport, that is, 
S[ j] < S[ j + 1] for each 0 ≤ j ≤ M − 2. The first sorting station is the airport and the last 
one is the hotel, that is, S[0] = 0 and S[M − 1] = L . 

Each bus travels at maximum speed unless it catches up to a slower bus travelling ahead of 
it on the road, in which case they get bunched and forced to travel at the same lower speed, 
until reaching the next sorting station. There, the faster buses will overtake the slower buses. 

Formally, for each i and j such that 0 ≤ i ≤ N and 0 ≤ j < M , the  time ti, j (in seconds) 
when bus i arrives at sorting station j is defined as follows. Let ti,0 = T [i] for each i < N , 
and let tN ,0 = Y . Otherwise, for each j such that 0 < j < M : 

• Define the expected time of arrival (in seconds) of bus i at sorting station j , denoted 
by ei, j , as the time when bus i would arrive at sorting station j if it was travelling at full 
speed from the time it arrived at sorting station j − 1. That is, let 

– ei, j = ti, j−1 + W [i] · (S[ j] − S[ j − 1]) for each 0 ≤ i < N , and  

– eN , j = tN , j−1 + X · (S[ j] − S[ j − 1]).
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• Bus i arrives at sorting station j at the maximum of the expected times of arrivals of bus i
and of every other bus that arrived at station j − 1 earlier than bus i . Formally, let ti, j be 
the maximum of ei, j and every ek, j for which 0 ≤ k ≤ N and tk, j−1 < ti, j−1. 

The IOI organizers want to schedule the reserve bus (bus N ). Your task is to answer Q
questions of the organizers, which are of the following form: given the time Y (in seconds) 
when the reserve bus is supposed to leave the airport, at what time would it arrive at the 
hotel? 

Constraints 

• 1 ≤ L ≤ 109

• 1 ≤ N ≤ 1 000

• 0 ≤ T [i] ≤ 1018 (for each i such that 0 ≤ i < N ) 

• 1 ≤ W [i] ≤ 109 (for each i such that 0 ≤ i < N ) 

• 1 ≤ X ≤ 109

• 2 ≤ M ≤ 1 000

• 0 = S[0] < S[1] < · · · < S[M − 1] = L

• 1 ≤ Q ≤ 106

• 0 ≤ Y ≤ 1018. 

Subtasks 

1. (9 points) N = 1, Q ≤ 1 000

2. (10 points) M = 2, Q ≤ 1 000

3. (20 points) N ,M, Q ≤ 100

4. (26 points) Q ≤ 5 000

5. (35 points) No additional constraints. 

This was the easiest task in the contest with average 44.62 points. However, only 
28 out of 351 contestants fully solved the task and got 100 points. This shows how 
important the subtasks are: even if you cannot completely solve a task, you can get 
a good number of points by solving subtasks. 

17.1.4 Medals 

During the closing ceremony, the best contestants will receive medals. In the past 
there was no live scoreboard and it was not known before the closing ceremony who 
would receive which medal. Today the situation is different because the scoreboard 
and the medal boundaries are known before the closing ceremony. 

The medals are allocated so that about one twelfth of the contestants will receive 
a gold medal, about one sixth of the contestants will receive a silver medal and about 
one quarter of the contestants will receive a bronze medal. Thus, about one half of 
the contestants will receive some medal.
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Table 17.2 The most successful IOI countries in the years 1989–2023 

Country Gold medals Silver medals Bronze medals 

China 100 27 12 

Russia 68 40 12 

USA 65 38 16 

South Korea 48 47 28 

Poland 42 50 35 

Japan 35 28 10 

Romania 33 58 36 

Iran 31 65 23 

Bulgaria 27 51 45 

Taiwan 25 61 27 

Table 17.2 shows the ten most successful IOI countries in the years 1989–2023 
and the number of gold, silver and bronze medals for each country. 

17.2 Before the Contest 

There are many steps before you meet your team mates at the airport and your trip 
to IOI begins. Obviously, you must first to get on the team by being one of the best 
young programmers in your country. After that, it is also important to practice and 
prepare for the contest well. 

17.2.1 Getting on the Team 

The first step towards IOI is to participate in the national contest in your country. If you 
get a good result in the contest, you will probably get an invitation to training which 
can include online problem solving, training camps and participation in regional 
contests. Finally, the four best competitors will be selected for IOI. 

The difficulty of becoming an IOI contestant varies a lot depending on the country. 
In some countries there are not many students who train competitive programming, 
and IOI teams may have contestants who can barely program. In some other countries 
it may require years of active practice and dedication to have a chance to get on the 
IOI team. 

The more you practice, the better chance you have of being invited to IOI. Remem-
ber that the amount of solved problems is not important. Instead, you should solve 
problems that are difficult enough to learn new things. There are many online contests 
and problem sets that you can use for practicing.
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17.2.2 Practicing 

When you have secured your team place in your country’s IOI team, is it time to 
relax? Indeed, some students stop practicing when they know that they have been 
selected and there are no longer opponents who could take their place. However, it 
is not a good idea to do so. 

When you have been invited to IOI, you should start practicing even more to 
achieve a good result in the contest. Even if you are the best programmer in your 
country or region, this does not guarantee that you would be successful at interna-
tional level. 

It is useful to practice using old IOI contests and other contests of the same type, 
such as national and regional contests. You can practice by simulating the contest 
situation and trying to get as many points as possible during the contest time. In 
addition, after the practice contest you can try to solve subtasks you could not solve 
during the actual contest. 

It is not allowed to use any material or pre-written code in IOI. Thus, you should be 
able to quickly implement the algorithms and data structures you need. For example, 
it should not take more than a few minutes to write a segment tree from scratch. If 
you can quickly implement standard algorithms and data structures, it will be a great 
advantage in the contest. 

17.2.3 Flexibility 

You should not expect that you can use your favorite programming language, operat-
ing system, text editor and other tools at IOI. Instead, you have to use what is available 
in the contest. It is good to be flexible and prepared to use a contest environment that 
is not ideal to you. 

Usually you will be given a computer that has a Linux environment with some 
popular compilers, text editors and tools. You should not expect that a specific pro-
gramming environment has been installed on the machine or that it contains specific 
plugins. One safe choice is to either use Vim or Emacs as a text editor, because they 
are usually available, or to be ready to use some basic text editor which does not have 
special features. You should learn how to compile and run code on the command line 
and not expect that there is a graphical interface available. 

At the time of writing this book, C++ is the only allowed programming language 
at IOI. So, there is no need to choose which language to use. Over the years, the 
languages available at IOI have changed and it is possible that new languages will 
be introduced in the future. Still, C++ is a safe choice as long as almost all serious 
competitive programmers use it. If you use C++, you can be sure that it is properly 
supported and there is no downside to using it. 

17.2.4 Contest Website 

The contest website is usually a good source of information. There are two important 
documents: contest rules and contest environment.
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The contest rules document specifies what is allowed and not allowed to do during 
the contest, such as what items you can bring to the contest hall. It also describes how 
the contest system works and what kind of feedback you will get after submitting 
a solution. There are often small differences between contests, such as how many 
submissions are allowed for a task during the contest. 

The contest environment document describes the hardware and software available 
during the contest. It often tells you what compilers, text editors and tools you can 
use in the contest. It may also contain a link to a virtual machine image that you can 
use to test the contest environment beforehand on your own computer. 

17.3 Technical Skills 

A typical computer at IOI has a Linux environment with some text editors, compilers 
and other tools. There is not much time for learning to use such an environment during 
the IOI week, so it is better to practice using the environment before the contest trip 
starts. 

17.3.1 Command Line 

It is a useful skill to know how to use the command line. Here are some commands 
for working with files and directories: 

• The command ls shows the contest of a directory. 

$ ls  
a.cpp b.cpp c.cpp 

• The command cat shows the contents of a file. 

$ cat code.cpp 
#include <iostream> 

using namespace std; 

int main() { 
cout << "hello\n"; 

} 

• The command head shows the first lines of a file. 

$ head --lines=3 test.txt 
line 1 
line 2 
line 3 
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• The command tail shows the last lines of a file. 

$ tail --lines=3 test.txt 
line 98 
line 99 
line 100 

• The command cp creates a copy of a file. 

$ cp old.cpp new.cpp 

• The command mv moves a file (changes its name). 

$ mv old.cpp new.cpp 

• The command rm removes a file. 

$ rm old.cpp 

• The command touch creates a new empty file. 

$ touch new.cpp 

• The command mkdir creates a new directory. 

$ mkdir tmp 

• The command cd changes the current directory (the syntax .. means the parent 
directory). 

$ cd tmp  
$ cd ..  

• The command rmdir removes a directory. 

$ rmdir tmp
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We can compile and run a C++ program as follows: 

$ g++ a.cpp -o a -O2 
$ ./a  
3 
hello 
hello 
hello 

We can stop a running program by pressing Control + C. 
The syntax < can be used to read the input from a file instead of the standard 

input, and the syntax > can be used to write the output to a file instead of the standard 
output. For example, we can do as follows: 

$ cat in.txt 
3 
$ ./a < in.txt 
hello 
hello 
hello 
$ ./a < in.txt > out.txt 
$ cat out.txt 
hello 
hello 
hello 

The command cat can also be used to create a new file using the > syntax: 

$ cat > in.txt 
5 
^D 
$ cat in.txt 
5 

In the above example, ^D means that we press Control + D. 
The command grep shows lines that contain a given string, and the command 

wc shows the number of lines, words and characters. 

$ grep int a.cpp 
int main() { 

int n; 
for (int i = 1; i <= n; i++) { 

$ wc a.cpp 
11 28 151 a.cpp 
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We can use the | syntax to use the output of the first command as the input for 
the second command. For example, we can do as follows: 

$ ./a < in.txt | wc 
3 3 18  

The command tee both shows its input and writes it to a file. We can use the 
command as follows: 

$ ./a < in.txt | tee out.txt 
hello 
hello 
hello 

The command time can be used to measure how long it takes to execute a 
program. For example, we can measure the time it takes to process a test case given 
in a file as follows: 

$ time ./a < in.txt 

The command ulimit can be used to set memory limits for the program. One 
common use case is to increase the stack size to run a program that uses recursion. 
After running the following command, there is no limit for the stack size. 

$ ulimit -s unlimited 

17.3.2 Keyboard Layouts 

Usually either a local keyboard or an American keyboard is available at IOI, and you 
can also bring your own keyboard. 

The setxkbmap command can be used to select the keyboard layout. For exam-
ple, the following command selects the Finnish keyboard layout: 

$ setxkbmap fi 

17.3.3 Debugging Tools 

There are often debugging tools available in the contest environment. Two common 
tools are Valgrind (valgrind) and the GNU Debugger (gdb).
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A typical bug when using C++ is that the code writes to or reads from a wrong 
memory location. For example, consider the following code: 

#include <iostream> 
#include <vector> 

using namespace std; 

int main() { 
vector<int> v;  
v[0] = 5; 

} 

Here v is an empty vector and the memory location v[0] is invalid. When we 
try to run the code, it crashes and produces a segmentation fault. 

Before debugging the code, it should be compiled without optimizations and with 
the -g flag which adds debugging information to the binary file: 

$ g++ code.cpp -g -o code 

Let us first use Valgrind to debug the code. Valgrind is a tool that can be used to 
detect memory errors. We can run the code as follows: 

$ valgrind ./code 
... 
Invalid write of size 4 

at 0x10917D: main (code.cpp:8) 

Here Valgrind detects an invalid write of size 4 (the size of an int value is 4 
bytes) and shows that this happens on line 8. 

We can also use the GNU Debugger to debug the code as follows: 

$ gdb ./code 
... 
(gdb) run 
... 
Program received signal SIGSEGV, Segmentation fault. 
main () at code.cpp:8 
8 v[0] = 5; 

Here the debugger shows the line where the segmentation fault happens. 

17.3.4 Task Interface 

Modern IOI tasks use a special interface for input and output that is not used in many 
national and regional contests. Instead of using standard input and output, functions



17.3 Technical Skills 331

are used. For example, here are the implementation details for the Overtaking task 
from IOI 2023: 

Your task is to implement the following procedures. 

void init(int L, int N, int64[] T, int[] W, 

int X, int M, int[] S) 

• L: the length of the road. 

• N : the number of non-reserve buses. 

• T : an array of length N describing the times at which non-reserve buses are scheduled to 
leave from the airport. 

• W : an array of length N describing the maximum speeds of non-reserve buses. 

• X : the time it takes for the reserve bus to travel 1 km. 

• M : the number of sorting stations. 

• S: an array of length M describing the distances of the sorting stations from the airport. 

• This procedure is called exactly once for each test case, before any calls toarrival_time. 

int64 arrival_time(int64 Y) 

• Y : the time at which the reserve bus (bus N ) is supposed to leave from the airport. 

• This procedure should return the time at which the reserve bus would arrive at the hotel. 

• This procedure is called exactly Q times. 

This means that you should create a file that has two functions, and the grader 
program will then call those functions and test that they work correctly. There is also 
a sample grader available that works as follows: 

The sample grader reads the input in the following format: 

• line 1: L N X M Q

• line 2: T [0] T [1] . . . T [N − 1]
• line 3: W [0] W [1] . . . W [N − 1]
• line 4: S[0] S[1] . . . S[M − 1]
• line 5 + k (0 ≤ k < Q): Y for question k

The sample grader prints your answers in the following format: 

• line 1 + k (0 ≤ k < Q): the return value of arrival_time for question k

Using the sample grader, it can be easier to test the program because you can use 
the traditional input and output convention.
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In any case, it is important to practice before IOI by solving tasks that have this 
kind of interface: how to create the code file, how to compile it and how to test it 
using the sample grader and otherwise. It would be a very bad idea to lose time 
during the actual IOI because you cannot use the task interface. 

17.4 During the Contest 

IOI has a clear goal: you should get as many points as possible during the two 
contest days. However, IOI is not only about actual programming skills, and good 
preparation for the contest situation is also important. What should you do during 
the contest to get a good result? 

17.4.1 Practice Session 

During the practice session, the contestants enter the contest hall and can test the 
contest environment that will be available in the actual contest. Usually there are 
some practice tasks available. The practice tasks can be tasks that were proposed for 
the actual contest but were not selected. 

However, more important than trying to solve the practice tasks is to find out how 
the contest environment exactly works and what compilers, editors and tools are 
available. In addition, it is useful to test submitting different kinds of solutions to the 
contest system and check what feedback is available. 

If you notice any problems during the practice session (for example, some text 
editor does not work properly), you can report them to contest organizers and they 
may be able to fix the problems before the actual contest. 

17.4.2 Time Usage 

The duration of an IOI contest is five hours. It is important to understand beforehand 
how much time five hours is and to have a plan on how to allocate the time. 

There are three tasks which means that you can use about 1.5 h time for each 
task. Since submissions times do not affect your score, you can use time to carefully 
read the task statements and think about the tasks before starting coding. You cannot 
assume that the tasks would be ordered by difficulty. 

It is really important not to get stuck in a single task and ignore other tasks. If you 
use four hours for the first task, you will only have one hour for the other two tasks 
and you will probably lose important points. 

17.4.3 Subtasks 

Each task consists of subtasks that can be used to get partial points. It is often difficult 
to get a full score for a task, and it is really important to solve subtasks. In fact, many
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contestants perform worse than they could because they ignore easy subtasks, try to 
get more points and finally fail to get any points. 

In most tasks, there are easy subtasks that you can start with and that give you 
some points. Even if you have ideas for mode advanced solutions, it can be a good 
idea to first solve easy subtasks if it does not take long to solve them. By solving 
easy subtasks, you can also check that you have understood the task correctly and 
you can get ideas for solving more difficult subtasks. 

In many cases it is possible to build the solution incrementally and use subtasks 
to check that some parts of the solution are correct. For example, assume that there 
is a task that can be solved using a greedy algorithm that requires a tricky tree data 
structure. You can first implement the algorithm using a slow data structure instead 
of the tree structure and check that the algorithm correctly solves a subtask. After 
that, you can assume that the idea of the algorithm is correct and then use time 
to implement the tree structure. This is much better than to first use one hour to 
implement the tree structure and then realize that the idea is not correct. 

Sometimes a solution (possibly with some optimizations) solves more subtasks 
than it should solve. Also in this case it is a good idea to first implement something 
simple and see how well it works, before using a large amount of time to implement 
something complex that is actually not needed. 

17.4.4 Feedback 

After sending a solution, you will get useful feedback from the contest system. 
Usually you will get feedback for each subtask but not for each test case inside a 
subtask. If your program does not solve all tests in a subtask, you can get feedback 
such as “output isn’t correct” or “execution timed out”. 

There are no penalties for extra submissions and you can sometimes use the 
feedback to make sure that some assumptions about the task are correct. For example, 
suppose that you have implemented a correct brute force solution for a task and you 
suspect that a variable n is always even at some point of the code due to the properties 
of the task. You can add the following line to the code to check if this assumption is 
correct: 

if (n%2 != 0) while (true); 

If the modified code still correctly solves a subtask, you can assume that n is 
indeed always even. However, if you get an ”execution timed out” message, you 
know that the code has reached the infinite loop and there is some situation where n
is not even, which means that the assumption is not correct. 

17.4.5 Psychological Factors 

An IOI participation may be a once in a lifetime experience and the whole world 
will see your ranking after the contest. It is not surprising that psychological factors
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play an important role at IOI. It is much easier to solve problems at home without 
pressure than in the IOI contest hall. 

Sometimes some contestants start immediately typing code at high speed when 
the contest starts. This does not mean that you should do so or that you are dumb 
if you do not know how to solve any of the tasks immediately. In addition, you do 
not know what the other people are doing. Maybe they are writing their templates or 
coding something that is not useful at all. 

The fact that there are two contest days is an additional factor that may affect 
the results. If you fail the first contest day, the situation is difficult when the second 
contest day starts. However, there will also be contestants who fail the second contest 
day or even both the days. If the second contest day goes well, you can still get a 
good ranking. 

It can also help you to think about what will really happen if you completely fail 
the contest. It is not the end of the world. In fact, most people even do not know what 
IOI is. 
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Many competitive programming problems can be solved using generative AI, and 
it can be expected that AI systems will be even better in the future. The question 
discussed in this chapter is: what will be the future of competitive programming if 
generative AI learns to solve contest problems better than humans? 

Section 18.1 shows an example of how generative AI can be used to solve a 
competitive programming problem. We give a problem statement to ChatGPT, and 
it automatically creates an efficient solution to the problem. 

Section 18.2 discusses the impact of generative AI on programming contests. 
While generative AI may affect competitive programming, we do not believe that 
people would stop solving problems because of AI systems. 

18.1 Generative AI 

Generative AI can be used, among other things, to solve competitive programming 
problems [ 1]. For example, let us try to solve the following CSES problem: 

There are n sticks with some lengths. Your task is to modify the sticks so that each stick has 
the same length. 

You can either lengthen and shorten each stick. Both operations cost x where x is the differ-
ence between the new and original length. 

What is the minimum total cost? 

Input 

The first input line contains an integer n: the number of sticks. 

Then there are n integers: p1, p2, . . . , pn : the lengths of the sticks. 

Output 

Print one integer: the minimum total cost. 
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Constraints 

• 1 ≤ n ≤ 2 · 105
• 1 ≤ pi ≤ 109

Example 

Input: 

5 

2 3 1 5 2  

Output: 

5 

When this problem statement is given as a prompt to ChatGPT, it produces the 
following answer: 

To find the minimum total cost of modifying the sticks so that each stick has the same length, 
one approach is to use the median of the array of stick lengths as the target length to which 
all sticks will be modified. 

The median is the middle value in an ordered list of numbers, and using the median minimizes 
the sum of absolute differences to the numbers in the list. In case we have an even number 
of sticks, we can choose any value between the two middle numbers as the optimal length 
without changing the total cost (since it’s symmetrical). 

Here’s a step-by-step solution: 

1. Read the number of sticks n. 

2. Read the n stick lengths p_1, p_2, ..., p_n and store them in a list or array. 

3. Sort the list of stick lengths. 

4. Find the median stick length. If n is odd, the median is the middle number. If n is even, 
the median could be any of the two middle numbers (or even any value between them), 
but for simplicity, we can just choose one of them. 

5. Calculate the total cost by summing up the absolute differences between the median and 
all the stick lengths. 

6. Output the total cost. 

Here’s the pseudocode corresponding to the steps above: 

read n 

read list of stick lengths: p[1], p[2], ..., p[n] 

sort the list p 

if n is odd: 

median = p[(n + 1) / 2] 

else: 

median = p[n / 2] or p[(n / 2) + 1] 
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# since it does not matter which one we choose 

total_cost = 0 

for i from 1 to n: 

total_cost += abs(p[i] - median) 

print total_cost 

Let’s translate that pseudocode into a programming language like Python: 

n = int(input()) 

stick_lengths = list(map(int, input().split())) 

# Sort the stick lengths to find the median 

stick_lengths.sort() 

# Find the median 

if n % 2 == 1:  

median = stick_lengths[n // 2] 

else: 

median = stick_lengths[(n // 2) - 1] 

# Calculate the total cost 

total_cost = 0 

for length in stick_lengths: 

total_cost += abs(length - median) 

print(total_cost) 

This code snippet will calculate the minimum total cost of modifying the sticks so that each 
stick has the same length, given that the number n of sticks and their lengths are provided as 
an input in the format specified. 

Note: You can optimize the code by using more concise functions for summing if the pro-
gramming language supports them—for example, sum(abs(x - median) for x in 
stick_lengths) in Python. However, the general approach will be the same. 

This is a very good answer: it describes an efficient algorithm for the problem and 
provides both pseudocode and a Python implementation. If we send the Python code 
to CSES, the code correctly solves all tests without problems. 

In fact, the code is easier to understand than most code written by competitive 
programmers because it has good variable names and comments. There is one thing 
that we could do better. It is not necessary to have two cases depending on the parity 
of n. Instead, we could just use the value stick_lengths[n // 2] in both 
cases because it also works when n is even.
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18.2 What Will Happen Next? 

At the time of writing this book, generative AI can solve a large number of standard 
competitive programming problems and also some more difficult problems. What 
will happen if generative AI gets even better and outperforms most (or all) competitive 
programmers? Will it be the end of competitive programming? 

In 1997, a chess computer defeated the world’s best chess player for the first time. 
Today standard chess programs are so good that humans have no chance against them. 
However, this does not mean that nobody plays chess anymore. Instead, according to 
some estimates, chess is now more popular than ever. Thus, even if computers learn 
some skill, it does not make people stop doing it. 

It is not allowed to use the internet (including generative AI) in important onsite 
contests such as IOI and ICPC. Thus, if you want to succeed in those contests, you 
must be able to solve problems yourself. However, it is difficult to detect or prevent 
the use of generative AI in online contests, especially when it is used to give ideas for 
algorithm design instead of creating code. Generative AI may affect online contests 
if it becomes better and many people start using it. 

On the other hand, the reason for participating in programming contests should be 
to learn programming and problem solving. If you use generative AI for solving the 
problems, there is no learning. You may achieve a good ranking in a contest using 
generative AI without real skills but this is not worth much—especially if anybody 
else can do the same. 
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Mathematical Background 

A.1 Sum Formulas 

Each sum of the form 

. 

n 

x=1 

xk = 1k + 2k + 3k + · · ·  +  nk , 

where k is a positive integer, has a closed-form formula that is a polynomial of degree 
k + 1. For example, 1 

. 

n 

x=1 

x = 1 + 2 + 3 + . . .  + n = 
n(n + 1) 

2 

and 

. 

n 

x=1 

x2 = 12 + 22 + 32 + . . .  + n2 = 
n(n + 1)(2n + 1) 

6 
. 

An arithmetic progression is a sequence of numbers where the difference between 
any two consecutive numbers is constant. For example, 

. 3, 7, 11, 15 

is an arithmetic progression with constant 4. The sum of an arithmetic progression 
can be calculated using the formula 

. a + · · ·  +  b    
n numbers 

= 
n(a + b) 

2 

1 There is even a general formula for such sums, called Faulhaber’s formula, but it is too complex 
to be presented here. 
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where a is the first number, b is the last number and n is the amount of numbers. For 
example, 

. 3 + 7 + 11 + 15 = 
4 · (3 + 15) 

2
= 36. 

The formula is based on the fact that the sum consists of n numbers and the value of 
each number is (a + b)/2 on average. 

A geometric progression is a sequence of numbers where the ratio between any 
two consecutive numbers is constant. For example, 

. 3, 6, 12, 24 

is a geometric progression with constant 2. The sum of a geometric progression can 
be calculated using the formula 

. a + ak + ak2 + · · ·  +  b = 
bk − a 

k − 1 
where a is the first number, b is the last number and the ratio between consecutive 
numbers is k. For example, 

. 3 + 6 + 12 + 24 = 
24 · 2 − 3 
2 − 1

= 45. 

This formula can be derived as follows. Let 

. S = a + ak + ak2 +  · · ·  +  b. 

By multiplying both sides by k, we get  

. kS  = ak + ak2 + ak3 +  · · ·  +  bk, 

and solving the equation 
. kS  − S = bk − a 

yields the formula. 
A special case of a sum of a geometric progression is the formula 

. 1 + 2 + 4 + 8 + . . .  + 2n−1 = 2n − 1. 

A harmonic sum is a sum of the form 

. 

n 

x=1 

1 

x 
= 1 + 

1 

2 
+ 

1 

3 
+ . . .  + 

1 

n 
. 

An upper bound for a harmonic sum is log2(n) + 1. Namely, we can modify each 
term 1/k so that k becomes the nearest power of two that does not exceed k. For  
example, when n = 6, we can estimate the sum as follows: 

. 1 + 
1 

2 
+ 

1 

3 
+ 

1 

4 
+ 

1 

5 
+ 

1 

6 
≤ 1 + 

1 

2 
+ 

1 

2 
+ 

1 

4 
+ 

1 

4 
+ 

1 

4 
. 

This upper bound consists of log2(n) + 1 parts ( 1, 2 ·1/2, 4 ·1/4, etc.), and the value 
of each part is at most 1. 
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A.2 Sets 

A set is a collection of elements. For example, the set 

. X = {2, 4, 7} 
contains elements 2, 4 and 7. The symbol ∅ denotes an empty set, and |S| denotes 
the size of a set S, i.e., the number of elements in the set. For example, in the above 
set, |X | =  3. If a set S contains an element x , we write x ∈ S, and otherwise we 
write x /∈ S. For example, in the above set, 4 ∈ X and 5 /∈ X . 

New sets can be constructed using set operations: 

• The intersection A∩ B consists of elements that are in both A and B. For example, 
if A = {1, 2, 5} and B = {2, 4}, then A ∩ B = {2}. 

• The union A ∪ B consists of elements that are in A or B or both. For example, if 
A = {3, 7} and B = {2, 3, 8}, then A ∪ B = {2, 3, 7, 8}. 

• The complement Ā consists of elements that are not in A. The interpretation of a 
complement depends on the universal set, which contains all possible elements. 
For example, if A = {1, 2, 5, 7} and the universal set is {1, 2, . . . ,  10}, then Ā = 
{3, 4, 6, 8, 9, 10}. 

• The difference A\ B = A∩ B̄ consists of elements that are in A but not in B. Note 
that B can contain elements that are not in A. For example, if A = {2, 3, 7, 8} and 
B = {3, 5, 8}, then A \ B = {2, 7}. 

If each element of A also belongs to S, we say that A is a subset of S, denoted by 
A ⊂ S. A set S always has 2|S| subsets, including the empty set. For example, the 
subsets of the set {2, 4, 7} are 

∅, {2}, {4}, {7}, {2, 4}, {2, 7}, {4, 7} and {2, 4, 7}. 

Some often used sets are N (natural numbers), Z (integers), Q (rational numbers) 
and R (real numbers). The set N can be defined in two ways, depending on the 
situation: either N = {0, 1, 2, . . .} or N = {1, 2, 3, ...}. 

There are several notations for defining sets. For example, 

. A = {2n : n ∈ Z} 
consists of all even integers, and 

. B = {x ∈ R : x > 2} 
consists of all real numbers that are greater than two. 

A.3 Logic 

The value of a logical expression is either true (1) or false (0). The most important 
logical operators are ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⇒ (implication) 
and ⇔ (equivalence). Table A.1 shows the meanings of these operators. 
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Table A.1 Logical operators 

A B ¬A ¬B A ∧ B A ∨ B A ⇒ B A ⇔ B 

0 0 1 1 0 0 1 1 

0 1 1 0 0 1 1 0 

1 0 0 1 0 1 0 0 

1 1 0 0 1 1 1 1 

The expression ¬A has the opposite value of A. The expression A ∧ B is true if 
both A and B are true, and the expression A ∨ B is true if A or B or both are true. 
The expression A ⇒ B is true if whenever A is true, also B is true. The expression 
A ⇔ B is true if A and B are both true or both false. 

A predicate is an expression that is true or false depending on its parameters. 
Predicates are usually denoted by capital letters. For example, we can define a pred-
icate P(x) that is true exactly when x is a prime number. Using this definition, P(7) 
is true but P(8) is false. 

A quantifier connects a logical expression to the elements of a set. The most 
important quantifiers are ∀ (for all) and ∃ (there is). For example, 

. ∀x(∃y(y < x)) 

means that for each element x in the set, there is an element y in the set such that 
y is smaller than x . This is true in the set of integers, but false in the set of natural 
numbers. 

Using the notation described above, we can express many kinds of logical propo-
sitions. For example, 

. ∀x((x > 1 ∧ ¬P(x)) ⇒ (∃a(∃b(a > 1 ∧ b > 1 ∧ x = ab)))) 

means that if a number x is larger than 1 and not a prime number, then there are 
numbers a and b that are larger than 1 and whose product is x . This proposition is 
true in the set of integers. 

A.4 Functions 

The function  x rounds the number x down to an integer, and the function  x 
rounds the number x up to an integer. For example, 

.  3/2 =  1 and  3/2 =  2. 

The functions min(x1, x2, . . . ,  xn) and max(x1, x2, . . . ,  xn) give the smallest and 
largest of values x1, x2, . . . ,  xn . For example, 

. min(1, 2, 3) = 1 and max(1, 2, 3) = 3. 
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The factorial n! can be defined by 

. 

n 

x=1 

x = 1 · 2 · 3 · . . .  · n 

or recursively 

. 
0! =  1 
n! =  n · (n − 1)! 

The Fibonacci numbers arise in many situations. They can be defined recursively 
as follows: 

. 

f (0) = 0 
f (1) = 1 
f (n) = f (n − 1) + f (n − 2) 

The first Fibonacci numbers are 

. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .  

There is also a closed-form formula for calculating Fibonacci numbers, which is 
sometimes called Binet’s formula: 

. f (n) = 
(1 + 

√
5)n − (1 − 

√
5)n 

2n
√
5 

. 

A.5 Logarithms 

The logarithm of a number x is denoted logb(x), where b is the base of the logarithm. 
It is defined so that logb(x) = a exactly when ba = x . The natural logarithm ln(x) 
of a number x is a logarithm whose base is e ≈ 2.71828. 

A useful property of logarithms is that logb(x) equals the number of times we 
have to divide x by b before we reach the number 1. For example, log2(32) = 5 
because 5 divisions by 2 are needed: 

. 32 → 16 → 8 → 4 → 2 → 1 
The logarithm of a product is 

. logb(xy) = logb(x) + logb(y), 

and consequently, 
. logb(x

n) = n · logb(x). 

In addition, the logarithm of a quotient is 

. logb

 x 

y

 
= logb(x) − logb(y). 

Another useful formula is 

. logu(x) = 
logb(x) 

logb(u) 
, 

using which it is possible to calculate logarithms to any base if there is a way to 
calculate logarithms to some fixed base. 
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A.6 Number Systems 

Usually, numbers are written in base 10, which means that the digits 0, 1, . . . ,  9 are 
used. However, there are also other number systems, like the base 2 binary system that 
has only two digits 0 and 1. In general, in a base b system, the integers 0, 1, . . . ,  b−1 
are used as digits. 

We can convert a base 10 number to base b by dividing the number by b until it 
becomes zero. The remainders in reverse order correspond to the digits in base b. 
For example, let us convert the number 17 to base 3: 

• 17/3 = 5 (remainder 2) 
• 5/3 = 1 (remainder 2) 
• 1/3 = 0 (remainder 1) 

Thus, the number 17 in base 3 is 122. Then, to convert a base b number to base 10, 
it suffices to multiply each digit by bk , where k is the zero-based position of the digit 
starting from the right, and sum the results together. For example, we can convert 
the base 3 number 122 back to base 10 as follows: 

. 1 · 32 + 2 · 31 + 2 · 30 = 17 

The number of digits of an integer x in base b can be calculated using the formula 
 logb(x) + 1 . For example,  log3(17) + 1 =  3. 
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