Learn Programming
For Fun

THE ART OF

GO

BASICS

INTRODUCTION TO
PROGRAMMING IN GO

Harry Yoon PhD

TABLE OF CONTENTS

Copyright
Preface

[oin Our Mailing List

Introduction

I: First Steps

1.

The Simplest Go Program

. Hello World

. Simple Arithmetic

. Two Numbers

. Multiplication Table

. Find the Largest Number

. Rotate Numbers

. Leap Years

© 0 N oy U1 W N

. BMI Calculator

10. Birth Date

11. Greatest Common Divisor

12. Reverse a Number

Review - Packages, Functions, Variables

II: Moving Forward
13. Hello Morse Code
14. "LED" Clock

15. Euclidean Distance

16. Area Calculation

17. Rock Paper Scissors
18. File Cat

19. World Time API

20. Where the ISS at

21. Simple Web Server
22. TCP Client and Server

Review - Structs, Methods, Interfaces

[II: Having Fun
23. Folder Tree
24. Stack Interface

25. Web Page Scraping

26. Producer Consumer

Review - Goroutines, Channels

IV: Final Projects

27. Go Fish

28. Go Fish Galore
Appendix A: Go Keywords

Appendix B: Builtin Functions

Appendix C: Full Code Listing
Credits

Request for Feedback
About the Author

COPYRIGHT

The Art of Go - Basics:
Introduction to Programming in Go for Smart Beginners

© 2021 Coding Books Press

All rights reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to
ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty,
either express or implied. Neither the author, nor its dealers and
distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Published: May 2021

Harry Yoon
San Diego, California

PREFACE

Learn programming for fun.

Go is one of the most popular programming languages. It is
primarily used for Web backend and server side programming.
But it is finding broader uses in other areas as well. Go is an
interesting language. It is much simpler than most other modern
programming languages. It is easier to learn.

Go almost has a "retro" feel to it. It does not support an object
oriented programming style well. It does not support a functional
programming style. It is almost like the good ol' "C". But it is
easler to use. It is safer to use. It is more fun to use.

If you are just starting with programming, then Go is the perfect
language to learn programming with.

If you are a seasoned developer, and looking to expand your
horizon, then Go is the perfect language to pick up as your next
programming language.

The Art of Go - Basics: Introduction to Programming in Go
for Smart Beginners is written for broad audience.

It starts from the absolute basics and moves on to more advanced

topics. Although it is an introductory book, you will gain
sufficient knowledge, after reading this book, that you can
venture into a journey of programming in Go on your own.

There are a lot of books and other resources that teach
programming. They are more or less the same. The Art of Go -
Basics: Introduction to Programming in Go for Smart
Beginners takes a rather unique approach. For one thing, it
emphasizes "reading" before "writing". Readers are encouraged
to read the book through, from beginning to end, without having
to feel guilty about "not actually programming".

The conventional wisdom is that you learn programming by
programming. That is, by actually doing it. That is a truth. But,
that is not the only truth.

This book, for example, does not start with instructions on how
to install the compiler tools, etc., which probably 99% of
introductory programming books do. It is an important topic, but
it is easy to learn. You can easily figure it out (from other
resources).

There are two kinds of knowledge. In fact, a whole spectrum
between the two extremes.

First, there is this "quick knowledge" for the lack of better words.
Suppose that you have bought one of those "furniture Kkits" from
IKEA, those kinds that are "assembly required". Knowing how to
assemble the furniture is very important. But, it is not something
you have to consciously "learn". Nobody studies the furniture
assembly instructions before they buy an IKEA furniture. When
you need it, you learn it (e.g., from the instruction that comes
with the furniture). And then you forget it. That’s a disposable

knowledge. Learning how to install Go compiler tools, for
instance, is rather similar to that metaphor.

On the other hand, there is a type of knowledge that requires
some "understanding”. Why does the Moon not "fall" to the earth
while all apples from an apple tree do? It requires
"understanding” to answer this kind of questions.

The Art of Go - Basics: Introduction to Programming in Go
for Smart Beginners tries to provide this type of knowledge
when it comes to programming and programming in Go.

Knowledge is largely about familiarity. "Deep knowledge" (the
sort that requires understanding) is no different. Over time, with
enough exposure to related facts and examples, you will feel like
you know them, you understand them.

Throughout this book, we will introduce certain terms or
concepts without precisely defining them first and then we will
elaborate on them later in the book. You do not have to learn,
understand, or memorize, everything on your first encounter.

This book teaches programming in Go through repetitions.

There are a lot of programming "technicians”. I hope the readers
of this book strive to become "artists". Artists in programming.

Good luck!

JOIN OUR MAILING LIST

Please join our mailing list, join@codingbookspress.com, to
receive coding tips and other news from Coding Books Press.

Advance review copies will be made available to select members
on the list before new books are published.

mailto:join@codingbookspress.com

INTRODUCTION

66 Premature optimization is the root of all evil.
~ Donald Knuth

Learning a programming language is not much different from
learning a foreign language. You learn from examples, primarily
by listening and reading.

The speaking and writing abilities follow, more or less in
proportion with your listening and reading skills.

Programming languages are not meant to be spoken, but the
same principle applies. You learn from examples, primarily by
reading well-written code.

The Art of Go - Basics: Introduction to Programming in Go
for Smart Beginners is organized into a series of small lessons.

Each lesson teaches basic concepts of programming, and
programming in Go, in particular, by going through carefully-
designed sample code.

All lessons are more or less "self-contained". But it will be best if

you go through them sequentially, especially if you are new to
programming.

The lessons gradually progress from basic topics to more
advanced subjects. You can advance at your own pace. If you are
just starting out, you can take your time. If you have some
programming experience (e.g., in other languages), then you can
skip, or skim through, some of the earlier lessons.

The book covers a lot of subjects, but it is not meant to be a
comprehensive introduction to the Go programming language.
This is not an academic textbook.

The Art of Go - Basics covers the following topics, among other
things:

= The basic structure of a Go program.

= Basic constructs of the Go language such as expressions and
statements.

= Primitive types, slices, maps, and functions.

= Custom types, in particular, structs and interfaces, and
methods.

= Goroutines and channels.

The examples used in this book are, although small and
elementary, all inspired by the real world use cases, to varying
degrees. Readers are encouraged to try to "read" the code
samples first, not just the text in the book, before diving into the
main part of each lesson.

Much of the code may not make much sense at the first reading.
But, that’s how we learn a new language. That’s how we learn a
new skill.

There is a Chinese saying, which can be translated into
something like this:

66 If you read a book a hundred times, then the
meaning of its content will seem obvious to you.

The lessons are organized into four parts: First Steps, Moving
Forward, Having Fun. and Final Projects.

This division is somewhat arbitrary, but the first part, Part I:
First Steps, is mostly focused on general programming. If you
are coming from a different programming language, especially C-
style languages, then you will feel comfortable with lessons in
this part.

The second part, Part II: Moving Forward, focuses on some Go-
specific topics like Go structs and interfaces. We will also go
over some basic examples of Web programming in Go as well in
this part.

In Part III: Having Fun, we will cover a few independent topics,
ranging from file system-related programming to Web scraping.
We introduce "goroutines” in this part, which is often omitted in
introductory books on Go.

Finally, in Part IV: Final Projects, we will work on a few
complete projects, from beginning to end. We will design and
implement a card game, "Go Fish", as a command line game. The

readers are encouraged to tackle all the projects in this part.
They are excellent projects for beginning programmers.

Exercises are optional. They may require knowledge on some
subjects we have not covered by that point.

Regarding the sample programs, one thing to note is that we do
not include comments in the code. Comments will mostly add
clutter in books like this. The content of the book serves as code
comments. And, more.

In practice, writing good comments, and documentations, is a
very important skill to learn.

As stated, Go is an "easy" language to learn, and to start
programming with. But, it has some quirks as well. The Go’s
language grammar is relatively simple, but there are a few
exceptions to the general rules, and there are some "gotchas".

It will take time and effort to become really proficient in Go.
Hope you find this book helpful in your journey into the
programming world, in Go.

Let’s get started.

|: FIRST STEPS

A journey of a thousand miles begins with a single step.

TIP: The code examples in this book are meant to be read. You do
not have to type them on computer to get "hands-on" experience.

1. THE SIMPLEST GO PROGRAM

1.1. Agenda

We will review our first Go program together.

1.2. Code Reading

Here’s a small Go program.
Listing 1. smallest-program/main.go
1 package main

2
3 fune main() {}

NOTE: The label indicates that the source code is copied from a
file main.go under a folder named smallest-program.

1.2.1. Explanation

This is the simplest Go program that compiles and runs, in a
single file (named "main.go" in this example). It does nothing.

You can run this program as follows on command line.

1.2.2. Keywords

This simple program, which does nothing, includes two Go
language "keywords".

A keyword in a programming language is a word or identifier
that has special meaning to the language and the language tools
such as compilers. Programmers cannot use language keywords
for other purposes, e.g., as variable names, etc.

Go comprises 25 keywords. This example program uses the
following two:

= package: The package line is a declaration indicating that this
source file belongs to a certain package, main in this example.

= func: The keyword func declares a function and introduces its

definition to the program. main() is a special function, and the
func declaration has a slightly different semantics.

TIP: The book gradually introduces important concepts through

repetitions. You do not have to try to understand everything in
your first encounter, especially if you are new to programming.
Remember, knowledge is mostly about familiarity.

1.2.3. Grammar

A Go program is written in one or more source files. Each source
file must start with the package line. This is called a "package
declaration".

A package is a basic unit of organization in the Go language. In
many programming languages, a file is typically a basic unit. In
Go, however, it is the package, which can include one or more
files.

An executable Go program has to include a special package
"main", as in this example.

A go program comprises a set of packages. Each package can
include a certain top level declarations, and most importantly,
function definitions. Functions are essential components of Go
programs. We will get back to the topic of functions in later
lessons.

Empty lines, such as the second line of this example code, are
ignored by the compiler.

1.2.4. Deep Dive

In some program languages, an empty program is a perfectly
valid one. In Go, however, an empty program (or, an empty
source code file) does not exist.

Every runnable program has to include at least one (and no more

than one) main function, which should be part of the main
package.

If you run the above program, then you’ll see the following
output:

That is, nothing. The fact that the program runs and does not
produce an output does not necessarily mean that the program
has done nothing.

But, in this case, the program itself does literally nothing.

How do you even know that it has run (if it doesn’t produce an
output)? A good question. In this particular example, the absence
of an error likely indicates that the program has run successfully.

A Go program can be clearly more complex than this simple
example. A program can include many lines of code and it can
include a large number of packages and source files, etc. But,
there is one commonality across all different Go programs, from
the simple to the most complex.

Each Go program starts running from the main function. The
definition of a function, e.g., a set of statements to be run, is to be
included inside a pair of angular braces, {...}.

In this example, the main function just happens to be empty. We
can clearly see that there is nothing between the opening and
closing angular braces in the program. This means that we are
telling the computer to do nothing. And, it will do nothing, if it
runs successfully (other than the basic work done by the

operating system to load the program into memory, etc.).

Is it a useful program? Probably not. But, it is definitely a valid
one.

1.3. Summary

We introduced the important concepts of packages and functions
in this lesson. They will be discussed in more detail in later
lessons.

1.4, Questions

1. What is the first line of a Go program source file?

2. What is amain() function?

AUTHOR'S NOTE

Development Environment Setup

We are not going to discuss how to install Go tools in this book. That is a
"trivial" (albeit important) task, which you can figure out using various
resources (e.g., Web search).

Having a Go development environment on your computer is not a prerequisite
to reading this book.

If you haven’t installed the Go tools, and if you would like to do so, then there is
a quick instruction on the golang website: golang.org/doc/install.

TIP: There are many different types of resources that can help you learn
programming in Go. The Art of Go - Basics: Introduction to Programming in
Go for Smart Beginners is designed to be read. This book is not meant to be
used as a stand-alone be-all and end-all book.

https://golang.org/doc/install

2. HELLO WORLD

2.1. Agenda

We will review a few simple programs which do basic input and
output.

2.2. Code Reading - Hello World 1

Here’s a simple "hello world" program in Go:
Listing 2. hello-world-1/main.go

1 package main

2

3 fune main() {

4 println("hello world!")
5}

NOTE: Throughout this book, the label of a source code snippet
indicates that the example code is taken from a certain file in a
certain folder (on the author’s computer). The source file names,
and the file paths, are largely irrelevant to the execution of a Go
program.

2.2.1. Explanation

This program is not much more complicated than the one from
Lesson 1. The code includes essentially one more line (excluding

braces), printin(..).

The println() function prints out its argument to the console
output.

We can run this program as follows:

It produces the following output:

2.2.2. Keywords

This "hello world" example code in Go includes the following two
keywords:

= package: The package keyword declares a package that this
source file belongs to, main in this particular example.

= func: The func keyword generally declares a function and
introduces its name and definition into the program. The
main() function is special in a Go program, and any executable
program should include one and only one main() function.

NOTE: As stated, there will be (deliberately) a fair amount of
repetitions across different lessons. You can skip any part of the
book (not just the keyword sections) which you are already
familiar with. As for the keywords, there is an appendix that
includes all Go keywords, Go Language Keywords, at the end of
the book.

2.2.3. Built-in Functions

println() (with a lowercase p) is a "built-in" function.

It takes one or more string arguments (e.g., "hello world!"), and
it prints out the arguments to stdout (e.g., the console or terminal
output). A newline is automatically added after the argument is

printed (as the suffix 1n indicates).

The Go programming language includes a few built-in functions
which you can use in your programs without having to refer to
any particular libraries.

Builtin functions may be considered "more important” or "more
essential" in writing a program. The println() function is,
however, an exception. There are "better" functions in other
libraries that do what println() does, and more. This built-in

function may be deprecated or removed in the future releases of
Go (although unlikely).

This is the only lesson in which we use println() in this book.

2.2.4. Grammar

A Go program is organized into one or more packages. A package
in Go is a fundamental building block, which plays an essential
role in many different aspects of the language.

A package can be written in one or more source code files. Each
source file must start with the package declaration (excluding
white spaces and comments):

package <package_name>

This statement means that this source file (in which this source
code is written) belongs to the named package.

In this example, the package name happens to be a special word
"main", indicating that this source code file is part of the special
main package of this program. Any executable Go program must
include one, and only one, main package.

A package can include zero or more function definitions, among
other things. A runnable Go program must include a special

main() function as part of the main package. When the program

is executed, the operating system invokes the main() function of
the Go program as an entry point. The main function has the
following syntax:

func main() {
// A series of statements goes here

}

The middle line is a program comment, which is included here
for illustration. Comments are ignored by the compiler. If you are
new to programming, the important part of this syntax is the

keyword func, main, (), {, and }, in this particular order.

The body of a function, from right after the opening bracket “{”
to just before the closing bracket “}”, can include any number of
statements. A "statement"” in a program is an instruction to the
computer as to what needs to be done.

The main function of the example program above includes one
statement (one more than the first example),

println("hello world!")

It is a "function call". This statement is an instruction to call a
function, the builtin println() function in this example, with an
argument "hello world!".

The text "hello world!"™ (including the opening and closing
double quotes "") is an example of a "string literal".

NOTE: As stated, we will briefly introduce certain concepts or
topics in earlier lessons and elaborate on them later in the
subsequent lessons. Many of the explanations given in this book,

especially those in the earlier lessons, are, by necessity,
incomplete.

2.2.5. Deep Dive

In some programming languages, it requires only one line of
code to print "hello world" (or something similar) to the console.

In Go, it requires 4 or 5 lines (depending on how you define a
"line"). In some other languages, a lot more than 5 lines may be
needed to produce a simple output. Different programming
languages have different tradeoffs in their language designs.

A Go program starts when the system calls the main function.
The Go program executes the statements in a function from top
to bottom, roughly speaking. (Not all of them may end up being
executed, however.) When a function has no more statements to
run, the function returns. When the main function of a program
has no more statements to run, the program exits.

In this example, the program has only one function, the main()
function, and the function includes only one statement
println("hello world!"), which is a function call.

When the println() function does its job (i.e., printing "hello
world!" to the standard output), it returns to the caller, which is
the main() function. Since there is no more statement after
println(), the program terminates.

2.3. Code Reading - Hello World 2

Here’s a slightly more complicated version of the "hello world"
program.

Listing 3. hello-world-2/main.go

1 package main

2

3 import "fmt"

4

5 const name string = "Joe"

6

7 func main() {

8 var greeting string = "Hello"

9 fmt.Println(greeting + " " + name)
10 }

This source code file has the same name "main.go", but it is
stored in a different directory, "hello-world-2".

The file name "main.go" has no special significance. A source file
that includes the main function of the program is typically, but
not always, named "main.go".

2.3.1. Explanation

This example program includes a bit more components, and a
few more lines of code.

You can run the program as before:

It produces the following output:

2.3.2. Keywords

This program includes three new keywords:

= import: import declares that the source file depends on the

functionality of the imported package, which is specified by an
identifier for finding and accessing the package.

= const: const declares a list of constant names. The const
declaration binds those names to the values of a list of
constant expressions. The number of identifiers must be equal
to the number of expressions.

= var: var declares one or more variables. The var declaration

binds the given identifiers to those variables, and gives each a
type and an initial value.

2.3.3. Grammar

In Go, packages serve as basic components for code sharing. If
you know how to find a package anywhere on the Internet, and if
you have permission to access the source code of the package,
then you can use it in your program, or more precisely in your
package.

In many programming languages, code reuse is often based on
special constructs like "libraries" (e.g., C/C++, ...) or "packages"
(e.g., Node.js, Python, DotNet, ... not to be confused with Go
packages), or just simple archive files like "jars" or "wars" (e.g.,
Java).

In Go, no special "packaging" is needed. If you know how to
access the source code of a package, then you can use it.

Likewise, if anybody knows where you keep your source code (of
a certain package), and if they have a permission to do so, then
they can use your code (of that package).

We will discuss this code sharing aspect of packages further
throughout the book, but one thing to note here is that you
cannot share your main packages. The sole purpose of the main
package, along with the main function, in a program is to make
the program executable. The main packages cannot be shared by
other Go programs.

Go comes with a set of special packages known as the "standard
library" (just like any other programming language). The "fmt"

package is one of them. And, the import "fmt" statement of the
example code lets you use the fmt package in your code.

The Go language specification does not specify, or dictate, how
exactly you can use somebody else’s packages.

In the case of the standard libraries, you simply use the name of
the package in the import declaration.

import "<package_name>"

The pair of double quotes around the package name is part of the
syntax.

Once you “import” an package into your program, you can use
the imported package just like it is a part of your program. (We

will cover the access control aspect of a package in later lessons.)

The import statement introduces the names, such as those of
functions or other declarations, in the package into your
program so that you can use them.

Line 9 of the "hello-world-2" example shows how to use Print1ln()

function from the "fmt" package. You just use the imported
package name as a prefix with a “.”.

fmt.Println("Hello!")

The fmt package’s Println() (with a capital P) is very similar to
the builtin print1ln() function. It prints out its string arguments to
stdout.

In the example code, the argument happens to be an

"expression”, greeting + + name.

An expression is a fancy term for a "value" (as the compiler sees
it) or anything that evaluates to a value. "Hello!" (a string literal)
is a value, and hence it is an expression. Number 5 is an

expression as well as 2 + 3 since it evaluates to 5, which is a
value.

In this example, the argument of the Println() function is a
string concatenation (denoted by “+”), which evaluates to a value,
another string. For example, "hello" + "world" is "hellowor1ld".

The expression, greeting + + name, includes two other Go
programming constructs. Namely, "constants" and "variables".

In this case, the name greeting is a variable, as declared by the
var keyword in line 8.

var greeting string = "Hello"

And, the name, name, is a constant, as declared by the const
keyword in line 5.

const name string = "Joe"

Both declarations have more or less the same syntactic structure.

There is an equal sign = in the middle. On its left hand side, there
is the keyword var or const followed by a name, or an
"identifier”, and a "type", string in this case. Note that, in some

languages, the type comes before the identifier, and in other
languages, the order is reversed.

On the right hand side of =, there is an expression, string literals
in both cases.

In this particular example, const and var declarations are placed
in different places, one inside a function (the main() function in

this case) and the other outside a function. But, that is just
incidental.

Both const and var declarations can be used within a function or
outside. Their placement affects the constant/variable’s "scope".
"Scoping" is a big topic, and we will cover the scoping throughout
this book.

The difference between const and var is that const can declare
names which do not change during the execution of a program.
In fact, the value of a const name should be known at compile
time. The right hand side of the const declaration should be a
"constant expression".

On the other hand, the value of a var name can change. One can
"assign" a different value, or it can change as a result of other
operations.

Go is a statically typed language. All consts and vars have specific
types, known to the compiler, at compile time (there are
exceptions), and their types do not change during the execution
of a program.

Clearly, type is a very big, and important, subject, and we will
have to defer its full coverage to later lessons.

Just to give a quick explanation, however, a type defines what a
const/var is, how to interpret its values in memory, and what
kind of values the const/var is allowed to have, among other
things.

TIP: Not to repeat the same points, but whatever doesn’t make
sense to you, you can ignore and move on. You can always come
back later, if necessary.

2.3.4. APls

Being familiar with common libraries, especially the standard
libraries, is an important part of becoming a proficient
programmer in a given programming language.

Although it is not a main focus of this book, we will try to touch
as many standard library functions and types as possible, and we
will document some of them in these special sections, "APIs".

In the example "hello-world-2", we use package "fmt", and one of
its exported functions, Print1ln().

"Package fmt: Package fmt implements formatted I/O with
functions analogous to C’s printf and scanf. The format "verbs"
are derived from C’s but are simpler.

https://golang.org/pkg/fmt/

> func Println: Println formats using the default formats for

its operands and writes to standard output. Spaces are
always added between operands and a newline is appended.

NOTE: This information 1is taken from the official Go
documentation pages.

2.3.5. Deep Dive

The example code, however simple it may be, illustrates one of
the most important structures in a Go program.

A Go source file follows this structure:

1. package declaration (line 1),

2. one or more import declarations (line 3), if needed, and
3. "the rest" (lines 5~10).

Every Go source file has to follow this structure, in this particular
order.

We have not fully explained what you can put in "the rest" part.
But, we have seen some examples like function definitions. You
cannot put arbitrary statements like fmt.Println(..) here. Many
of the general kind statements are only allowed inside a function
definition.

Other types of statements that can be put at the top-level, or in
the "package scope", include const and var declarations, as
demonstrated by the example code.

https://golang.org/pkg/fmt/#Println

As indicated, both kinds of declarations could have been put in
the package-level scope. Or, both inside the main() function
("function scope").

A name can be used only within a valid scope, that is, (typically)
within a block, including its inner blocks, where the name is
introduced. In case of variables, its scope starts from the point
where the name is first introduced and it ends at the point where
the enclosing block ends. The "package scope" is a little bit
different from other scopes (e.g., functions, blocks), but
essentially the same rules apply. Any name that is included
outside a function in a source file is in the package scope.

As an example, the following code will be valid. The const name
can be used within the main() function, or outside.

const name string = "Joe"
func main() { /* ... */ }
fmt.Println("My name is", name)

On the other hand, the variable greeting is in the main function’s
function scope. After the closing bracket } of the function, it
cannot be used. In fact, this variable cannot be used before the
declaration even within the same block. In this small example,
there is nothing else before the declaration (line 8), but even if
there were any statements, they could not have used greeting. In
case of variables, the "scope" starts from the line where the
variable is declared.

Also note that we could have used either const or var for both
name and greeting, in this particular example.

As a program gets larger and more complex, the choice of const
vs var, and their scope, will be important. As a general rule, it is a
good practice to prefer constants to variables whenever it makes
sense. It is also a good practice to declare consts/vars within the
smallest possible scope.

In this particular example of "hello-world-2", both names should
have been const and both should have been declared within the
main() function before we use them (e.g. before fmt.Print1n()).

But, choice of const and var also conveys certain information (to
the compiler as well as to the human readers).

For example, suppose that your name happens to be "Joe". This
fact will not change even if the program grows bigger and if the
program ends up including more functions, etc. Putting the name
name in a package scope as const would make more sense in that
case.

On the other hand, suppose that your intention was trying out
different greeting phrases within the program. In such a case, it
would make sense to make greeting a variable. We could assign a
different value to it, if needed.

For example,

var greeting string = "Hello"
fmt.Println(greeting + " Joe!")
greeting = "Hi"
fmt.Println(greeting + " Joe!")

®OOO

NOTE: Many of the code snippets we use in this book may not be
a complete program, as in this example. This should be obvious

from the context or from other cues. For instance, this code
snippet does not follow the general structure of a Go source file,
and hence it cannot be a complete program, or even a package.

@ is the now-familiar var declaration.
@ the Print1n() will print out Hello Joe!
® is an "assignment" statement. The assignment changes the value of the variable.

@ the output will now be Hi joe!.

The first line of the code snippet declares a variable, greeting,
and it initializes its value to "Hello". One can also just declare a
variable first and assign a value later in two different statements.

var greeting string
greeting = "Hello"

If a var is declared without an explicit initial value, then the
type’s "default value", or "zero value”, is automatically assigned.
In the case of the string type, the default initial value is an empty
string ("").

When a const/var is declared with an initial value, as in our
lesson example, the compiler may be able to easily infer the type
of the constant/variable. In that case, the type specification in a
const/const declaration may be omitted.

For example,

var greeting = "Hello"

The type of the variable greeting can be easily inferred, say,
based on the type of the expression/value on the right hand side,

a string literal in this example. Hence the variable greeting is of
type string. This is called "type inference", and the type is
normally omitted in const/var declarations unless necessary.

In the example program, the fmt.Println() function takes a
single argument, which is a string concatenation of three strings.
We could have assigned the result of the concatenation to a new

variable and used that result as an argument to Print1ln().

For example,

var helloGreeting = greeting + + name
fmt.Println(helloGreeting)

There is really no difference. It’s very likely that the compiler will
generate more or less the same code.

In simple cases like this, it’s just a matter of taste. As a program
grows, there might be other requirements/constraints to consider
and one style may be preferred to the other.

In this particular example, the variable greeting, which is var not
const, may be reused for this purpose. For example,

greeting += " " + name
fmt.Println(greeting)

The += operator is a shorthand for
greeting = greeting + " " + name

In the assignment statement in Go, the right hand side is always
computed first before the assignment. Hence, when the right

hand side expression is evaluated, the greeting variable holds the
value "Hello". After the assignment, however, greeting becomes
"Hello Joe", the concatenation of all three strings, including the
"old" greeting.

Most functions take a fixed number of arguments, including zero.
For example, the main() function takes no arguments. You cannot
pass an argument of any kind.

The fmt.Println() function (as well as the builtin printin()) takes

a variable number of arguments. From zero to as many as you’d
like.

Another way to print out the desired text to the console,
therefore, is something like this:

fmt.Println(greeting, name)
n n

A space is automatically added between the arguments in

case of fmt.Println(), and hence the output will be the same as
the original, that is, Hello Joe.

2.4. Code Reading - Hello World 3

Now we are moving beyond a simple "Hello World" program.
(Well, just a little bit.) Let’s take a look at the following sample
code.

Listing 4. hello-world-3/main.go

1 package main
2

3 import (

4 "fmt"

5 IIOSII

6)

7

8 func main() {

9 var greeting = "Hello"
10 var name string

11

12 if len(os.Args) > 1 {
13 name = 0s.Args[1]

14 } else {

15 name = "you"

16 }

17 greeting += " " + name
18

19 fmt.Println(greeting)
20 }

2.4.1. Explanation

This program takes an (optional) argument. If you run the
program in the usual way,

It produces the following output:

If you run the program as follows, with an extra text "Joe" in the
command line,

It produces a different output:

2.4.2. Keywords

This program includes two more new keywords which we have
not discussed yet.

= if: The if keyword is used to create a conditional statement.
An if statement has a Boolean expression and one or two

branches of execution. If the expression evaluates to true, then
the if branch is executed. Otherwise, if the else branch is

present, then that branch is executed.

= else: The else keyword is used to define an (optional) branch,
which is executed when the if expression evaluates to false.

2.4.3. Built-in Functions

len() is a builtin function, which takes one argument. It returns
the length of its argument based on its type.

As we will discuss shortly, in the case of an argument with a
"slice" type (which happens to the type of 0s.Args), len() returns
the number of elements in the slice. If the argument is nil, then
the length is zero.

All builtin functions are listed in the Appendix, Go Builtin
Functions, at the end of the book.

2.4.4, Grammar

This example program introduces a few new constructs of the Go
programming language.

The keywords if and else are used for a conditional statement.

if is followed by a Boolean expression (i.e., an expression that
evaluates to a bool value, true or false) and a "block"” (from the
opening bracket { to the closing bracket }).

If the Boolean expression (len(os.Args) > 1 in this case) is
evaluated to true, the statements in this block is executed, if any.

An optional else can be used, as in this example. The statements
in this block is executed if the value of the Boolean expression is
false.

For example, in the following example,

if false {
fmt.Println("hello")
fmt.Println("joe")

}

None of the strings will be printed. Neither "hello” nor "joe".

Go’s if-else statements are similar, or equivalent, to those of
other C-style languages.

One thing to note is that Go has a particular set of formatting
rules. Note that the Boolean expression is not enclosed in

parentheses (()) as in most other languages. The brackets are
required even if there is only one statement in the block. The
opening bracket ({) must be in the same line as the end of the
Boolean expression. The else keyword, if present, must be in the
same line as its opening bracket and "if's closing bracket, as
shown in the example code of "hello-world-3".

This formatting rules are not limited to if-else statements. We

have not mentioned it yet, but functions have to follow certain
formatting rules as well. By the way, where are the semicolons

(;)?

These rules can be confusing, especially to programmers coming
from other C-style language background. Not just the rules but
the very fact that these rules exist and that they are tightly
integrated into the language (or, more precisely, into the
compiler tool chain). We will get back to this topic later in the
book, but for now, we learn by examples.

All operating systems allow passing some kind of arguments to a
starting program. These are generally known as "command line
arguments”". The C programming language started using a
convention where the command line arguments are passed in to

the main() function as the function’s parameters.

The exact function signature is not important, but C’s main()
function accepts the command line arguments (say, multiple
arguments separated by space) as a list of values or, an "array".
Most Cs descendant languages follow this convention, with
minor variations.

Go does it slightly differently. Instead of using the main()
function’s arguments, Go stores the command line arguments
into global variables when the program starts up.

This is where os.Args comes in. os is a standard library package,
and it defines a package-level variable Args (just like we do with
var or const in our programs).

0s.Args is of a type "slice" of strings. We will discuss the slice

type in more detail in later lessons, but for now it suffices to say
that a single variable os.Args slice can store a list of values,
strings in this case.

By the C convention, the first element of 0s.Args, 0s.Args[@] using
an index notation (0-based), is the name of the program (used to
start the program).

Go is a compiled language. The source code (from one or more
packages, each of which can comprise one or more source files)
is first compiled into a "binary"” (in the languages that computers
of a particular architecture understand). Then you can run the
generated binary/executable (just like any other programs, or
"apps”, on your system).

When we do go run main.go, it is a shortcut provided by the go
tool. In fact, this command does a two-step task: First, it compiles
main.go into a binary (and stores it in a temporary location), and
then executes the binary as if the program was run from the
current directory.

Normally, the "build" step is done by the go build command.

Running this command, when successful, generates an
executable program, or a binary. If you do Is -/, then you can see
an output like this:

NOTE: This particular output is taken from a Unix/Linux shell (in
particular, BASH), but the explanation given here, and
throughout this book, is not specific to a particular platform.

As you can see, there is an executable program named main,
which was generated by the go build command. The name of the
program main was taken from the file name "main.go". If you use
a different file name for a source file that includes the main()
function, then go-build will use that name as an executable name
by default.

For example, if we change the name "main.go" to "hello.go", the
executable will be named hello.

If you run the program as follows (e.g., in Bash shell):

It produces the same output as that from go run hello.go:

Now, if you pass a command line argument, say, "Joe":

It produces the same output as that from go run hello.go joe:

What happens if we run this program with more than one
arguments? Say, how about ./hello Joe and Jill? 1t will produce the
same output, Hello Joe.

The os.Args would be a 4 element slice in this case, {"./hello",
"Joe", "and", "Ji11"}, but our program, hello or main, ignores
most of them and only uses the second element os.Args[1].

(Again, arrays and slices are zero-based, meaning that the first
element has index 0, as in most C-style languages.)

The sample code of "hello-world-3" includes a builtin function
len(). The 1en() function can take an argument of different types.
In this example, the argument is a slice type, and it returns the
number of elements in the slice.

If we run ./main, len(os.Args) will return 1 (the name of the

executable is always the first element, "./main" in this case). If we
run ./main joe, it will return 2. ./hello Joe and Jill it will return 4.

2.4.5. APls

"Package os: Package os provides a platform-independent
interface to operating system functionality. The design is Unix-
like, although the error handling is Go-like; failing calls return
values of type error rather than error numbers. The os
interface is intended to be uniform across all operating
systems.

° var_Args: Args hold the command-line arguments, starting
with the program name.

NOTE: The API information is taken from the official Go

https://golang.org/pkg/os/
https://golang.org/pkg/os/#pkg-variables

documentation pages.

2.4.6. Deep Dive

You can import more than one packages into your program. This
example code of "hello-world-3" imports "fmt" and "os".

According to the Go language specification, you can have
multiple import declarations:

import "fmt"
import "os"

The Go formatter does not like this, however. It is considered a
good practice to use a single import declaration with multiple
packages.

import (
"fmt n
"OS"

)

Note the syntax. It uses parentheses () to include one or more
packages within a single import declaration.

The two are equivalent (as far as the compiler is concerned), but
you will most likely only use the latter syntax.

Each package import spec should be listed in a separate line. You
can use this form of import (with parentheses) even if one
package is imported. As stated, in case of the standard packages,
simply the package name is used to specify a package to include.

This code in "main.go" follows the general structure of a Go

source file, as it must: the package declaration first, the import
declaration(s), and then the rest, main() {} in this case.

Although this is how (a source file of) a Go program is structured,
imports are generally declared while the program’s the main part
is being written. For example, in line 12 you end up using the "o0s"
package, and hence you will import "os" at this point. (Most IDEs
can automatically take care of imports without you having to
explicitly declare them.)

TIP: "IDE" stands for integrated development environment. An
IDE is essentially a programmer’s editor, in which you can write,
test, and debug a program. If you run into the terms you are not
familiar with in this book, then the best strategy is that you
ignore them, but remember that have you run into something
you don’t know, and then just continue with reading. You can
always do a Web search later when you have a chance.

One other important thing to note about import is that the
declaration is "file-scoped”. This is one of the few places where a
source file plays a role. Most of other things that are in the file
level are all package-scoped.

The import declarations have effects only within the file in which
they are declared. If you need to use the same imported names
(e.g., 0s.Args) from a different file, even in the same package,
then you will need to use the same import declaration again in
that file.

The main() function declares a couple of variables, greeting and

name. Note the difference. Both are of type string, but greeting is
explicitly initialized (with a string literal), and hence the type

specification is omitted. It is of type string and the compiler can
easily infer that.

On the other hand, name does not have an explicit initial value,
and hence its type needs to be explicitly specified. The name's
initial value is an empty string "" because a string type variable’s

default initial value is "".

In line 12, the os.Args variable (made available via the import) is
checked, and, if its length is bigger than 1 (this example program
does not care how long as long as it’s bigger than 1), then it uses
the second element (which is guaranteed to exist since
len(os.Args) > 1) as name (line 13). If its length is not bigger than
1 (or, if it is less than 1 or equal to 1), then the command line
argument os.Args is ignored. The name variable is assigned a
generic "you" in this case (line 15).

It should be noted that which branch of the if will be executed
cannot be known at this point, just by looking at the source code.
The compiler does not know it either.

Which branch will be executed will be determined only at "run
time".

Depending on the result of the conditional statement, greeting
may be Hello you or something else, like Hello Jill, if the first
command line argument (after the program name) happens to be
"Jill". This is shown in line 17. The value of the greeting variable
changes through string concatenation (with itself).

Then, the program prints out the result in line 19 using
fmt.Println(), and the program terminates.

Note the if-else statement (including the variable declaration for
name) in the program:

var name string
if len(os.Args) > 1 {
name = 0s.Args[1]
} else {
name = "you"
}

This could have been written as follows:

var name string = "you"
if len(os.Args) > 1 {
name = 0s.Args[1]

}

They are equivalent. Depending on whether a user provides an
argument or not, their behavior is exactly the same. Would you
prefer one style over the other? Why?

So, how does a user of this program know that she should
provide a command line argument to get the behavior she
desires. How does she know how this program works?

One way is to read the source code and understand what it does.
Clearly, that is not practical for all but the simplest programs,
however. In many cases, the users will not have access to the
program source code.

This is where the "documentation" comes in. All programs
(intended to be used by other users) should be documented. All
source code that can be shared with other programmers should
be documented. All exported names, variables and functions,
etc., of a Go package should be documented. Many of the internal

implementations should be documented, if necessary, for other
programmers who may end up having to read your source code.

We will discuss more about documentation and comments,
primarily with regards to the source code, later in the book.

All functions "return” (to whoever called them). Even the special
main function returns (to the operating system or the runtime).

When a function has no more thing to do (e.g., since it has
reached the end of the function after executing the last
statement, e.g., fmt.Println() in this example), it automatically
returns.

You can explicitly add a return statement at the end of a function,
but that should not be normally needed, as in this example,
unless a function happens to return a value(s). More on this later.

When the main() function of a program returns, the program
terminates.

2.5. Code Reading - Hello World 4

We will deal with simple input handling in a Go program.
Listing 5. hello-world-4/main.go

1 package main
2

3 import (

4 "bufio"

5 "fmt"

6 IIOSII

7 "strings"
8)

9

10 func main() {
11 fmt.Println("What is your name?")

12
13 reader := bufio.NewReader(os.Stdin)
14 name, _ := reader.ReadString('\n")

15 name = strings.TrimSuffix(name, "\n")
16 name = strings.Title(name)

17

18 fmt.Printf("Hello %s!\n", name)

19 }

TIP: Readers are encouraged to read the example source code,
line by line, even if it may not make much sense. You will
recognize the things you already know, and the things you do
not. That is a very important part of the learning process.

2.5.1. Explanation

The program asks the user for his/her name, and it uses the name
to personalize its greeting.

Let’s try running the program:

It prints out the following "question™:

If you "answer" it with, say, "joe", then it prints out the following
personalized greeting to the terminal.

The whole "conversation" may look like this:

@

@ 1is the input your provided on the terminal. You type, say, "jill", and press Enter (a
newline). Then, the program reads your input and does what it is instructed to do
next.

2.5.2. Grammar

This sample code is mostly based on what we have already
covered in this book.

There is a 'package' declaration (line 1). There is an import
declaration (lines 3~8). There is this main() function for the
program (lines 10~19). There are function calls, calling functions
from the standard library packages (line 11, lines 13~16, and line
18).

The empty lines are ignored by the compiler. They are often
added to increase the readability (lines 2, 9, 12, and 17).
Sometimes the Go formatter (from the standard Go tool chain)
will insert empty lines to separate important parts, if you haven’t
already done so (lines 2 and 9). The Go formatter does not like
more than one consecutive empty lines.

The statements in lines 13 and 14 use a new syntax, known as
"short variable declarations". Instead of the normal equal sign
(=), these statements use :=.

This is equivalent to a combination of a variable declaration
(with var) and an assignment of an initial value to the variable.
This shorthand notation can be rather convenient in many
circumstances.

One thing to note is that this syntax can only be used for "local

variables", the variables defined within a function or other
blocks. You cannot use the short variable declaration outside a
function, that is, in the package-level scope.

Lines 13 and 14 are equivalent to the following:

var reader = bufio.NewReader(o0s.Stdin)
var name, _ = reader.ReadString('\n")

There is really not much difference. But, most experienced Go
programmers prefer the new syntax. You will therefore see more
of the short variable declarations in other people’s code.

There are a few things to note, however. In this new syntax, you
cannot specify a type of a variable (unlike the var declaration).
And, related to this, you have to provide an initial value, which
the compiler will use to infer its type, among other things.

There are some gotchas as well if you are not too careful, due to
variable scoping and "shadowing" rules, as we will discuss later.

Line 14 has an interesting syntax, if you are new to the Go
programming language. Unlike many C-style languages, a
function in Go can return more than one value. The left hand
side of line 14 looks strange, name, _. The comma in the middle
indicates that we are expecting that the function on the right
hand side reader.ReadString('\n') return two values (not 1, not
3).

The first one of the two return values will be assigned to the
newly declared variable name.

The underscore “_” in the second position is a predefined

identifier, or a "name", that signals to the compiler that even
though we receive two values from the function we will ignore

the second one. _is known as the "blank identifier".

In Go, you cannot declare a variable that is not used in a
program. Hence, the blank identifier _ is needed in this case.

By the way, how do you know that this particular function
reader.ReadString() returns two values?

One word. Documentation.

One of the interesting things about the short variable declaration
(:=) is that there should be at least one new variable on the left
hand side. Not every variable has to be new. Just at least one. The
name variable in our example satisfies this requirement.

We are calling 6 different functions from 4 different (standard)
packages in this small example. Note that their names are all
capitalized, Println() and Printf() from the fmt package,
NewReader () from buffio, ReadString() on a reader object of a type
*bufio.Reader, which is returned from the NewReader() call, and
TrimSuffix() and Title() from the strings package.

In the Go programming language, any variables, constants, or
functions (or, types, which we have not introduced yet) of a
package that are capitalized are "exported". That means, anyone
who has access to the package can use these variables, functions,
etc.

On the other hand, none of the names that are not capitalized is
exported. These variables, functions, etc. can only be used within

the package where they are declared/defined.

Just to be clear, this is not a "convention". It is part of the Go
language grammar.

By convention, Go programmers generally use PascalCase for
exported names and camelCase for non-exported names, which
satisfy the requirements. (Both PascalCase and camelCase
capitalize each word in a name. In PascalCase, the first word is
capitalized whereas the first letter in a name in the camelCase
style has a lowercase.)

In line 15, a string literal "\n" is used as one of the arguments to
strings.TrimSuffix(). "\n" is a one letter, or character, string. The
character happens to be a newline. Character representation like
this \n is known as an "escape character". Although there appears
to be two characters (\ and n), it really represents one character

to the compiler, which could have been unrepresentable
otherwise.

A pair of double quotes (" and ") is used to represent a string
literal, as in the example of line 15. Line 14, however, includes a
newline escape character in single quotes (opening ' and closing
). "\n', or 'a’, is a byte literal. It is a value of type byte (or, rune).

byte is one of Go’s builtin or primitive types, in particular a
numeric type. (It represents a number.) Go has a number of
primitive types. Here’s a list of integer types.

int8
8 bit signed integer

int16
16 bit signed integer

int32
32 bit signed integer

int64
64 bit signed integer

int
signed integer (architecture-dependent, typically 32 or 64 bit)

uint8
8 bit unsigned integer

uint16
16 bit unsigned integer

uint32
32 bit unsigned integer

uint64
64 bit unsigned integer

uint
unsigned integer (architecture-dependent, typically 32 or 64
bit)

In addition, there are a few more integer numeric types. byte is

an alias type for uint8 and rune is an alias type for int32. A rune is
more like a character. One or two runes can represent a Unicode
character.

String is one of the more difficult types to deal with in Go. In fact,
in any programming languages. In Go, the string type has a dual
nature. A string can be viewed as a series of bytes or as a series of
runes.

Every character in ASCII (English) fits into a byte. It is often more
convenient to wuse bytes than runes. The function

reader.ReadString() of line 14 takes a byte argument to be used
as a delimiter. You can view a byte in this context as a character.
In fact, in C and other similar languages, 'a’, for instance, is a
literal of type char.

This example code also includes other important concepts such
as "pointers" and "methods", etc. in the Go programming
language. They will be explained in later lessons. Knowing those
concepts is not required to understand this code.

2.5.3. APIs

We have seen fmt.Println() before. In addition, this program
includes fmt.Printf().

= func Printf: Printf formats according to a format specifier and

writes to standard output. It returns the number of bytes
written and any write error encountered.

In our example, fmt.Printf("Hello %s!\n", name), the first
argument "Hello %s!\n" is a format specifier. The %s is a
placeholder, known as a "verb", which will be replaced by a
subsequent argument, name in our example, when it is printed to
the output. The s in %s comes from string. To print an integer

https://golang.org/pkg/fmt/#Printf

number, you use %d (presumably from decimal or digit).

The number of the placeholders and the number of the
arguments after the format specifier should match. For example,

func main() {
count := 99
food := "Hamburgers"
fmt.Printf("I ordered %d %s.\n", count, food)

}

The output will be something like this:

fmt.Printf(), and its related functions, is one of the most
frequently used functions when you are learning the Go
language (and beyond).

Other functions/methods included in this example are as follows:

"Package bufio: Package bufio implements buffered I/O. It
wraps an io.Reader or io.Writer object, creating another object
(Reader or Writer) that also implements the interface but
provides buffering and some help for textual I/O.

> func NewReader: NewReader returns a new Reader whose
buffer has the default size.

- type Reader: Reader implements buffering for an io.Reader
object.

* func (*Reader) ReadString: ReadString reads until the first
occurrence of the delim argument in the input, returning
a string containing the data up to and including the

https://golang.org/pkg/bufio/
https://golang.org/pkg/bufio/#NewReader
https://golang.org/pkg/bufio/#Reader
https://golang.org/pkg/bufio/#Reader.ReadString

delimiter. If ReadString encounters an error before
finding a delimiter, it returns the data read before the
error and the error itself (often io.EOF).

= Package strings: Package strings implements simple functions
to manipulate UTF-8 encoded strings.

o func TrimSuffix: TrimSuffix returns the first string argument

without the provided trailing suffix string, the second
argument.

> func Title: Title returns a copy of the string argument with

all Unicode letters that begin words mapped to their
Unicode title case.

2.5.4. Deep Dive

This program of "hello-world-4" is not much more complicated
than the previous one. But, it uses more library functions and
other constructs.

This example code reads an input from the console, or "stdin",
rather than getting it from the command line argument.

In line 11, it first prints out a question as a prompt to the user.
He/she knows at this point that an input is expected, in
particular, the user’s name. The program then waits for the user
input.

There are a number of ways that a Go program can process user
input. This program uses an API bufio.Reader.ReadString(). In
order to use ReadString(), an object of type bufio.Reader must be
instantiated. That is what a package-level function NewReader ()

https://golang.org/pkg/strings/
https://golang.org/pkg/strings/#TrimSuffix
https://golang.org/pkg/strings/#Title

does from the bufio package in line 13. It creates an instance of

type bufio.Reader and it returns its pointer. We will defer the
topic of pointers to later lessons. But, for now you can ignore the
difference between a value and a pointer.

It should be noted that the NewReader() function takes an
argument of type io0.Reader from the standard io package (which
need not be explicitly imported in our program). In this example,
we pass the predefined variable os.Stdin in the os package to
NewReader (). The type of 0s.Stdin is i0.Reader.

The created object is then assigned to a new variable reader in
line 13.

The type bufio.Reader has a number of functions associated with
it. These functions are often called "methods" rather than just
functions. And, they are invoked with a slightly different syntax.

We call a package level function with the package name prefix,
for example, as in fmt.Println(). fmt is a package name.
Println() is a package level function defined in the fmt package.

In the case of methods, we use the variable name as a prefix. In
reader.ReadString() of line 14, reader is the name of the variable
(of type bufio.Reader), as defined in the previous line.
ReadString() is a function, or a method, associated with type
bufio.Reader.

bufio.Reader.ReadString() takes an argument of type byte, and
returns a string which it has read when it encounters the given
byte.

byte is another builtin type of the Go language. It literally
represents a byte (8 bit). As stated, we can view it as a character
In certain contexts.

The statement of line 14, therefore, reads a line of text from
0s.Stdin (a line terminates at a newline, by definition), and it
stores its read value (a string) into a variable, name.

When ReadString() encounters an error while reading the input,
it returns the error message as a second return value. For this
simple example program, we ignore the error. Hence, the blank
identifier ().

The strings package include various helper functions to make it
more convenient to deal with strings. strings.TrimSuffix() of
line 15 removes the trailing newlines from the input, if any.
strings.Title() of line 16 capitalize the value of name, if needed.

Notice the pattern. In each of these operations, the old name is

being replaced by a new name. Since we do not need the old
values after transformations, we can reuse the same variable.

Now, the last statement of the main() function prints out the
personalized greeting to the console, ending with a newline (\n).

2.6. Summary

In this lesson, we covered some basics of handling input and
output in a Go program.

This kind of user interaction is often known as "command line
interface", or CLI for short.

Although there are still a lot that we need to learn, this lesson
introduces some of the most important and essential concepts of
the Go programming language so that you can start
programming in Go on your own.

2.7.Questions

1. What is the general structure of a Go program source
file?
2. What is the role of a main() function in a Go program?

3. How do you use exported variables from another
package in your program?

4. How do you use a function imported from another
package?

2.8. Exercises

1. Write a version of Hello World program with the
following requirements:

= If the program is run with a command line argument,
use it as a name as in "hello-world-3".

« I[f a full name is provided ("first_name last name"),
then use the full name (including the space).

« I[f the program starts without a command line
argument, ask for the user’s name as in "hello-world-
4",

= Print "Now <your name> is a Hello World
programmer!” to the terminal.

To clarify, if you run your program this way,

The output should be something like this:

TIP: All exercises in this book are optional. In fact, it is best to
skip exercises in your first reading, especially, if you are new to
programming.

AUTHOR'S NOTE

Why Hello World?

Doing "Hello World" is now almost a rite of passage for beginning
programmers.

So, why do we do it? One of the important roles which this type of simple
programs play is, in fact, to verify your development environment setup.

Suppose that you have installed the go tools from the golang.org website. How
do you know that they "work"? How do you know that your installation was
successful? A quick way to test the dev env setup, including build tools, is to test
the build system using a simple program.

That’s where the Hello-World program comes in. When you install the Go tools
(if you haven’t already done so), try to build and run your hello world program
(the simplest version like "hello-world-1" should suffice), and make sure that it
compiles and runs.

NOTE: This is like a chicken-and-egg problem. @

If you don’t have the tools, you cannot create a program. If you don’t have a

program, you cannot test the tools.

3. SIMPLE ARITHMETIC

3.1. Agenda

We will learn how to do simple calculations in Go in this lesson.

o4

NOTE: If you are familiar with basics of programming (in any
language), and if you find any of the lessons too slow moving,
then you can skip them.

3.2. Code Reading

This sample code illustrates various operations using primitive

types.

Listing 6. simple-arithmetic/main.go

1 package main

2

3 import "fmt"

4

5 func main() {

Str : llgoll + ll'I-angll
fmt.Printf("go + lang = %s\n",

6
7 str)
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

sum := 1 + 1

fmt.Printf("1 + 1 = %d\n", sum)

diff int16(5) - int16(2)
fmt.Printf("5 - 2 = %d\n",

diff)

prod := 1.0 * 5.0
fmt.Printf("1.0 * 5.0

%f\n", prod)

div := 8.0 / 3.0

fmt.Printf("8.0 / 3.0 = %.4f\n",

numer := 7
denom := 2
quotient, remainde
fmt.Printf("%

fmt.Printf("%

numer/denom,
= %d\n", numer,
%d\n", numer,

%% %d =
boolAnd := true && false
boolOr := true || false

29 fmt.Printf("t && f = %t; t |
30 fmt.Printf("t || f = %[2]t;
boo10r)

31
32
33
34
35
36
37
38

=

|
t &8

var b1 byte = 0b10 //

var b2 byte = 0b110 //

bitAnd := b1 & b2

bitOr := b1 | b2

bitShift := b2 << 2

fmt.Printf("b1 & b2 = %08b; b1 | b2
bitAnd, bitOr, bitShift)

0000010
0000110

div)

numer%denom
denom, quotient)
denom, remainder)

\n'

0,
(]

boolAnd, boolOr)
[1]t t || f=%[2]t\n",

S

boolAnd,

= %08b; b2 << 2 = %08b\n",

39 }

3.3. Explanation

The main() function of the program includes a series of
statements which perform some basic operations. It prints out
the results in various formats using fmt.Printf().

If you run the program as before:

It produces the following output:

3.4. Keywords

The sample code includes three keywords, which we already
covered in the previous two lessons.

= package: The package line should be the first (non-empty) line
in any source file.

= import: If you use functionalities from other packages, they
need to be imported.

= func: The func keyword is used to declare/define a new
function.

main is not a Go language keyword although it has a special
meaning. In particular, func main() is special in Go. Every
executable program should include one and only one main()
function in the main package.

As stated, you can find the keyword summary in the appendix,
Go Language Keywords.

3.5. Grammar

A computer is a machine that "computes". At the most
fundamental level, computers deal with numbers. Binary
numbers.

Everything the computer stores and processes is @'s and 1's.

So, what does, say, 00110011 mean?

Suppose that we have a series of 0’s and 1’s in a particular
location in memory, for instance. What do these numbers mean?

This is where the "type" comes in. Based on the type of the value
at a certain memory location, we can interpret what those
numbers mean. If a byte in memory has a value 01000001 and if
its type is byte, then it is A (or, a number 65). If the byte is a part
of a 32 bit integer type value, then it could mean a very different
thing. If this byte is a part of a value of a string type, then it could
mean A or something completely different.

"Type" has a fundamental importance in programming.

We deal with a number of different primitive types in this
sample code.

= String type: Lines 6~7

= Integer types: Lines 9~13, 21~25, 32~38

= Floating point number types: Lines 18~19

= Boolean type: Lines 27~30

As discussed in the previous lesson, Hello World, there are a
number of different integer types, from uint8 and int8 to uint64
and int64 as well as machine-dependent uint and int.

When an integer literal, e.g., a whole number like 125, is used as
an initial value in a variable declaration (without an explicit type
specification), the variable is inferred as int.

In most cases, without any special requirements, you can just use
the int type for integral numbers.

Go has two builtin types for floating point numbers.

float32
32 bit floating point number

float64
64 bit floating point number

If a floating number literal, e.g., a number with a decimal point

like 12.3, 1s used as an initial value in a variable declaration
(without an explicit type specification), then the variable is
inferred as float64.

In an assignment, the types of the left hand side (e.g., a variable)
and the right hand side (e.g., an expression) must match. In fact,
their types must be identical.

If their types are "compatible” in some way, then a value can be
"converted" to a desired type. We will cover the topic of type
conversion, or casting, in later lessons.

In a multiple assignment (e.g., line 23), the types of each of the
corresponding pair should be identical.

When you need to print variables of different types using
fmt.Printf(), different kinds of "verbs" are used. For string, it’s
%s. For integers, it’s %d. For floating point numbers, it’s %f. For
Boolean values, it’s %t, and for bytes, it’s %b, and so forth.

There are other rules governing the formatting specifiers of
fmt.Printf() and the related functions. We will point them out
when we encounter them throughout this book.

Go supports C/C++ style comments. /* .. */ is a multi-line
comment. Anything between /* and */ is ignored by the

compiler. // .. is a single line comment. Anything after // in a
line is ignored.

5.6. Deep Dive

The rules of basic operations in Go, such as addition and

multiplication, are essentially identical to those of almost all of
the C-style languages.

If you have been programming in any of these languages, then
there is really not much new to learn in Go, as far as these basic
operations go.

One thing to note is that all operands in an expression must have
the same type. In some C-style languages, including C, some
implicit "widening" casting is allowed. For example, you can

assign a value of int32 to a variable of type int64 because any
value of type int32 can be represented by type int64.

In Go, there is no implicit conversion. If the types are
"compatible” and one or the other’s type conversion is
considered safe in certain operations, then they still need to be
explicitly converted into one type or another to make their types
match.

Line 6 of the sample code declares a variable str of type string
(since the right hand side is an expression involving strings
which will evaluate to string). The right hand side is a string
concatenation and its value will be "golang". To print the value of

str, we use the formatting verb %s (line 7).

In line 9, since the right hand side is an expression with integer
literals, the new variable sum is of type int. To print the value of
sum, we use the formatting verb %d (line 10).

In line 12, however, since the right hand side is an expression
that evaluates to a value of type int16, the new variable diff is of
type int16. Here, the integer literals are given specific types (via

type_name() syntax).

One can also give a particular type to the variable in the
declaration. For example,

var diff int16 =

In this example, diff is explicitly declared to be int16. Hence, the
integer numbers on the right hand side are also assumed to be of
type int16. To print the value of diff, we use the same formatting
verb %d (line 13).

Line 15 of the example code introduces a floating point number
operation. On the right hand side, two numbers are multiplied.
Since there is no precise type information from this float number

expression, the type of the newly declared variable prod will be
float64, as stated earlier. To print the value of a floating point
number, we use a formatting verb %f (line 16).

The statement of line 18 follows the same pattern. The type of div
is again float64. In this case, the evaluated value of the
expression on the right hand side is 2.666666666666....

For output purposes, we can round off the number at a certain
precision. fmt.Printf() of line 19 uses a formatting verb %.4f.
This prints the number down to 4 decimals below zero.

One thing to note is that floating point number calculations on a
computer have finite precisions. This is generally true, not just in
cases like this example. The float numbers are only
approximately correct, and one has to be mindful in floating
number calculations.

Lines from 21 to 25 show other integer expressions, namely
integer division and modulo operations.

In math, an integer division can produce a float number result,
as in 3/2 = 1.5. In Go, an integer division produces an integer
number with the same type as their operands.

Dividing an integer 7 with an integer 2 is an integer 3, as can be
seen from the output of line 24. The modulo operation produces
a remainder of an integer division, which is an integer 1 in this
particular example.

In Go, one can declare or initialize multiple variables in one
statement. For example, in line 23, both quotient and remainder
are declared and initialized in one line. The same holds true with
assignment.

quotient, remainder := numer/denom, numer%denom

In this particular example, this statement is equivalent to two
separate statements.

quotient := numer/denom
remainder := numer%denom

But, in general, this may or may not hold true.
Initialization/assignment generally depends on the order of the
evaluation. In this two-statement example, numer/denom 1is
evaluated first, and then the value is assigned to quotient. Next
numer%denom is evaluated, and its result is assigned to remainder.

In multiple variable assignment, all expressions on the right

hand side are evaluated first before any assignment. For
example, in line 23, both expressions numer/denom and numer%denom
are evaluated before each of their values are assigned to quotient
and remainder, respectively.

In Printf() like functions, the format specifier includes a
character %. Formatting verbs start with this character, and they
have special meanings in this context. If you need to print the %
character itself to the output, it needs to be escaped. Line 25
shows an example. The character % is escaped as %% in the
formatting string.

Statements in lines from 27 to 30 demonstrate Boolean
operations. Namely, Boolean AND && (line 27) and Boolean OR | |
(line 28). Boolean operations in Go can be done only with
Boolean type variables and expressions. As stated, there is no
implicit type conversion in Go, and an integer value, for example,
cannot be used as an operand of a Boolean operation.

As the output of fmt.Printf() in line 29 shows, true && false is
false whereas true || falseis true.

For completeness, true && true is true and true || true is true.
false && falseis false and false || falseis false.

The statement of line 30 shows another interesting aspect of the
Printf()-like functions. So far, we have used the same number of
formatting verbs and their value arguments. They match one to
one, from left to right, in the order provided.

One can use a square bracket notation to designate a particular
argument. For example, %[1]t in the example refers to the first

value argument (of type bool) whereas %[2]t refers to the second
value argument, which happens to be bool0r in this example.

Note that, in this particular example, there are 3 verbs whereas
there are 2 value arguments. This would not have been possible
with positional matching only.

The final segment of the main() function (after the last empty
line) illustrates bitwise operations.

First, numbers, or numeric literals, can be represented with
decimal numbers or numbers with a different base. In particular,
Go supports binary, octal, and hexadecimal number literals.
Hexadecimal numbers start with 0x. For example, 0x1 is 1. and
0x10 is 16 in decimal representation. Octal numbers start with 0x,
and Binary numbers start with @b.

The statements in lines 32 and 33 declare two byte variables, b1
and b2, and initialize them with two numbers, 2 (0b10) and 6

(0b110), respectively. This could have been written as follows
with multiple variable assignment syntax:

var b1, b2 byte = 0b10, 0b110

Since the values on the right hand side are constant expressions,
this statement is equivalent to the the two statements in the
example (lines 32 and 33).

The comments in those lines show the bit patterns of each
number (since we are going to demonstrate the bitwise
operations). Since leading zeros are ignored after the integer
base prefix (that is, 0x10 is the same as 0x00010 as far as Go

programs are concerned), we could have written it as follows:

var b1 byte = 0b00000010

var b2 byte = 0b00000110
Or, even

var b1 byte = 0b_0000_0010

var b2 byte = 0b_0000_0110

Underscores in integer literals are ignored. It’s not entirely
obvious from this simple example, but adding underscores in
numbers can increase readability and reduce a chance of
inadvertent errors.

In this particular example, note that a set of 4 digits in a binary
number corresponds to 1 digit in a hexadecimal number.

Lines 34 and 35 demonstrate bitwise AND and bitwise OR
operations, respectively. In bitwise AND or OR operations,
corresponding bits of the two numbers, or bytes, are operated on

independently of the other bits. 1 & 1 results in 1. Likewise, 1 & 0
is0,0 & 1is9,and 0 & 0is@. Also,1 | 1is1,1 | 0is1,0 | 1is1,
and 0 | 0is®.

The statement of line 36 demonstrates a (left) bit shift operation.
It shifts each bit of the given byte (the first operand) to the left by

the second operand. That is, 0b_1110_0010 << 1 becomes
0b_1100_0100. Note that it does not "wrap around". Rather, it fills
the right-most positions with zeros.

The same holds true with the right bit shift operator >>. It just
moves bits to the right (with no wrapping).

The resulting bytes are printed with special formatting, %08t. This
means that the argument type is a byte (and treats it as a byte
rather than a number) and use 8 spaces. And, if the string
representation occupies less than 8 spaces, then fill the empty
spaces with 0s.

You may think, by now, that there are so many rules in
formatting. But you don’t have to memorize them all. You can
always look them up when needed in the API documentations.
You will get more familiar, and they will seem more natural, over
time.

One last thing to note from this example is that a statement can
be written in more than one lines (as in lines 37 and 38). It seems
obvious, but it is not. In Go, splitting a statement into multiple
lines has to follow certain (formatting) rules.

On the flip side, in Go, more than one statement is not allowed in
a single line, unlike in many other C-style programming
languages such as C++, C#, Java, etc. More on this later.

3.7.Summary

We learned how to do basic operations in Go. There are integer
and float operations. Boolean operations. And, bitwise
operations.

We also learned how to write these values of different types to
the console using fmt.Printf().

AUTHOR’'S NOTE

Who is this book for?

Learning programming is hard. Learning a new language is hard. It’s often
frustrating. It’s sometimes discouraging. ...

This book is written primarily for beginners who have tried, and tried, and
given up because it was just too hard.

As stated, Go is probably one of the best languages to learn programming with.
In many ways, Go is a much better choice for beginning programmers than
Javascript or Python, or even PHP or Ruby.

This book is also written with more experienced programmers in mind who
want to learn the Go programming language.

There are a lot of resources, but none really explains what Go really is. Its
apparent similarity to other C-style languages like C/C++, Java, C#, ... can be
deceiving. If you want to really use Go, then you really have to learn it as a new
language. Learning just Go syntax will not do. Youwll need deeper
understanding.

Hope you can find some interesting ideas in this book that will help you
become a better Go programmer.

4, TWO NUMBERS

4.1. Agenda

We will go over a series of small programs to illustrate various
essential features of the Go programming language.

A

4.2.Code Reading - Sum of Two Numbers

Listing 7. two-numbers-1/main.go

1 package main
2

3 import (

4 "fmt"

5)

6

7 func main() {

8 numl1, num2 := 10, 999

9 sum := sum(numl, num2)
10 fmt.Println("Sum is", sum)
1}

12

13 func sum(x, y int) int {
14 sum := x +y

15 return sum

16 }

4.2.1. Explanation

This program adds two numbers, 10 and 999 and prints out its
result.

4.2.2. Keywords

We are now familiar with keywords, package, import, and func.
The example code uses one more keyword, return.

= return: A return statement is used in a function to terminate its
execution. A return statement can optionally provide one or
more result values.

4.2.3. Deep Dive

For the first time (in this book), we write our own (non-main)
function.

The func keyword is used to declare a new function.

func sum(x, y int) int { /* ... */ }

The function definition (e.g., a series of statements) is included
within the pair of angular brackets.

This function sum(), unlike the main() function, takes two
arguments x and y, and it return a value of type int. That is what
the "function signature”, func(int, int) 1int, indicates. And, its
implementation must be compatible with that declaration.

As with const and var declarations, the types of the arguments
are given after the arguments. In this case, both x and y are int,
and x, y intisashorthand for x int, y int. Whenever there are

multiple consecutive arguments in the argument list with the
same type, all of them can be denoted with a single type name.

This example code follows the general structure of a Go program
source file. The package declaration, the import statements (if
needed), and then "the rest". The rest happens to include two
functions in this example, main() and sum(). The order is largely
irrelevant. We could put sum() first and main() at the end. As far
as the Go compiler is concerned, there is little difference.

In some programming languages, most notably C and C++, we
have to introduce the name before we can use it. This is called
"forward declaration".

In this example, as written, we use the sum() function in main()
before it is declared. In Go, this is perfectly all right.

The sum() function could have been put into a different file. Like
this:

Listing 8. two-numbers-1/sum.go

1 package main

2

3 func sum(x, y int) int {
4 sum = x +y

5 return sum

6}

And, the main() function, or any other function in the main
package, can use the sum() function. There is little difference
whether you put function or other declarations in the same file
or in different files. As stated, a package is the basic unit, not a
source file, in Go. (There are some exceptions, however.)

We could have even put sum() into a different package. We will
cover multi-package programs in later lessons.

The sum() function’s "body" includes two statements.

sum = X + Yy
return sum

The first statement does the addition operation of the given
arguments x and y, and it stores the computed value into a local
variable sum. Then, in the second statement, the value of sum is
returned to the caller (the main() function, in our example), as we
promise in the function signature. For this, the return keyword is
used.

The return statement can just return to the caller (with no
arguments), or it can return one or more values (or, "references”,
which will be discussed further later in this lesson, as well as
throughout this book).

In this example, it returns one value, the value of sum. It should
be noted that we state that the function "returns the value of sum",
not it "returns sum".

Go is a "block-scoped"” language. We have not really discussed the
important topic of "scoping”, but in this example, the lifetime of
the variable sum is limited to the function block. Or, more
precisely, from the time when sum comes into existence (the first
statement) to the time when the block ends, or the function sum()
ends, with the closing }.

When the sum() function returns (a value of) sum, the runtime

makes a copy of the value of sum. And the copied value is used in
the context of the caller. In our example,

sum := sum(numl, num2)

The value of the right hand side expression sum(num1, num?2) is the
copied value of sum (which does not exist outside the sum()
function). This copied value is used as an initial value for a new
sum variable, which is a local variable in the main() function.

Syntactically, main()'s sum has nothing to do with the sum variable
of sum().

TIP: Using the same names in different places may sound like a
bad idea, which can cause confusion. But, it is natural to do so in
many cases. There is no reason to use var suml, var sum2, func
addition() etc., as long as they do not "conflict" with each other.
Using the same names in the same scope, or in nested scopes, can
have unintended consequences. One needs to be more careful in

those circumstances.

One thing to note is that the sum local variable of the sum()
function is mostly unnecessary, in this example. We could have
done away with it:

func sum(x, y int) int {
return x + vy

}

These two implementations are mostly equivalent. Modern
compilers will most likely generate the same machine code from
these two different function definitions.

Some people prefer the shorter version, for example, because it’s
slightly more concise. Some people prefer the original version,
for example, because it’s slightly more readable. (That is, because
the variable is called a "sum" although the function name "sum()"
is a dead giveaway in this particular example.)

In this simplest example, there is really no difference. But, in
general, it should be noted that there is always a tradeoff
between "simple" and "verbose". There is no absolute rule to
prefer one style over the other.

Finally, the program writes the result to the console using the
fmt.Println() function. As stated, this function can take an
arbitrary number of arguments, and it prints out all of them,
separated by space.

4.3. Code Reading - Bigger of Two Numbers

Listing 9. two-numbers-Z2/main.go

1 package main

2

3 import (

4 "fmt"

5)

6

7 func main() {

8 numl, num2 := 10, 999

9 max := bigger(num1, num2)
10 fmt.Println("Max is", max)

1}

12

13 func bigger(x, y int) int {
14 if x >y {

15 return x

16 }

17 return y

18 }

4.3.1. Explanation

This program finds the bigger of the two numbers, 10 and 999 and
prints out the result.

4.3.2. Deep Dive

We define a new function bigger () using the func keyword.

func bigger(x, y int) int { /* ... */ }

bigger() has the exact same function signature as the sum()
function from the previous example, func(int, int) int. It
accepts two int arguments and returns an int value.

The function names or the argument names have no real

significance. We could have defined this function as follows:

func biggerOfTwo(n1, n2 int) int { /* ... */ }

It has the same signature.

This new program "two-numbers-2/main.go" has exactly the
same structure as the previous example.

It starts with the package declaration, and then the import
statement. "The rest" follows next, which happens to comprise
two functions as before. As stated, the order of these functions
has no real significance to the execution of the program.

Every Go program starts by executing the first statement of the
main() function in the main package. Other functions are invoked
as long as the statements in the main() function call those
functions, either directly or indirectly.

We sometimes use phrases like a "call chain" or "call stack"”, in
various contexts, to emphasize this aspect of program execution.

A function calls another function. This function calls another
function. etc. An invoked function returns to the caller. This
caller function in turn returns to its own caller. etc. It all starts

from main() and ends at main() (in a normal program execution).

Go is a function-based programming language. Just like C. (Not to
be confused with a functional programming language, however.
Go does not support a functional programming style.)

The bigger () function looks like this:

func bigger(x, y int) int {
if x>y {
return x

}

return y

}

We introduced the if conditional statement in an earlier lesson.
The if statement in this particular example comprises a Boolean
expression (x > y), and an if block { return x }, but not an else
block.

If the expression x > y holds true for the given two numbers, it
returns the value of the first of those two numbers. Otherwise,
the if block is not executed, and it goes past the closing } of the
if statement.

In this example, that happens to be another return statement,

return y. It returns the value of the second argument, which
happens to be equal to the first or bigger.

At first sight, there seems to be an asymmetry. If x == vy, then it
returns y, not x.

But, that’s just because of the way the program is written. We are
not actually returning "x" or "y". We are returning the value of x,
or the value of y. When the value of x is equal to that of y, the
statements return x and return y do exactly the same. They
return a value that happens to be the same as x or y under that

condition (x == y).

We could have used x >= vy:

if x >=y {
return x

}

return y

There will be no difference in the way this program behaves.

These operators, > >=, and ==, are known as comparison
operators. The result of the comparison is a Boolean value. They
compare the two given operands and determine the result based
on the operator used.

> is a "bigger than" operator. If the value of the first operand is
bigger than that of the second, it returns true. Otherwise, it
returns false. >= represents "bigger than or equal to". ==
compares equality. != is the opposite of ==. It returns true if the
values of the two operands are different. It returns false
otherwise. < is, in general, the opposite of >. It returns true if the
value of the first argument is smaller than, or equal to, that of the
second. Otherwise, it returns false. < is a "less than" operator.

One thing to note is that, in this particular example, the if
statement could have been written as follows.

if x >y {
return x

} else {
return y

}

There is semantically no difference between this and the original
code in the sample.

TIP: Without formally defining these terms, "syntax" has

something to do with "forms" and "semantics" is related to
"meanings".

NOTE: Go does not have a "ternary operator" (i.e., ?:). This if-

else statement could have been written in one line with a
ternary operator.

In effect, the bigger() function returns the bigger value between
the two arguments. If the two values are the same, then it just
returns that value.

The max var in the main() function is then initialized with this
value:

max := bigger(num1, num2)

At the risk of stating the obvious, values are "copied". Once the
returned value from bigger() is assigned to the max var in main(),
max has the same value. But, otherwise, the value of max has no

memory, so to speak, as to where it came from. Values are
copied.

In the last line of the main() function, the max value is printed to
the terminal, and the program terminates (because there is no
more statement in the main() function).

4.4, Code Reading - Difference of Two
Numbers

Listing 10. two-numbers-3/main.go

1 package main
2
3 import (

4 "fmt"

5)

6

7 func main() {

8 numl, num2 := 10, 999

9 d := diff(num1, num2)
10 fmt.Println("Difference is", d)

11}

12

13 func diff(x, y int) int {
14 if x >y {

15 return x - vy

16 } else {

17 return y - x

18 }

19 }

4.4.1. Explanation

This program computes the difference between two numbers, 10
and 999 and prints out its result.

4.4.2. Deep Dive

Let’s define the "difference” between two numbers as the value
of a gap between two numbers. That is, the difference between
10 and 50 is 40, and the difference between 50 and 10 is 40.

It is not dependent on the order of the operands, unlike
subtraction, for instance.

Based on this definition, we can easily implement a "difference”
function:

func diff(x, y int) int {
if x>y {

return x -y
} else {
return y - x
}
}

This function has the same signature as the previous two
example functions, that is, func(int, 1int) int. It takes two int
arguments and returns an int value.

If the value of the first argument x is bigger than that of the

second vy, the function returns the value of x - y, which will be
non-negative.

Likewise, if the value of x is not bigger than that of y, the function

returns the value of y - x (through the else block), which will be
again non-negative.

As in the previous sample function bigger(), the apparent
asymmetry is incidental. There is no difference whether we use x
> y or x >= y for the conditional expression. When x == vy, the
value of x - yisthe same as that ofy - x, namely, 0.

Note that the Go standard library has a similar function in the
math package, func math.Abs, which takes two float64 arguments
and returns a float64 value.

When the diff() function returns, it return a value equal to x - y
or y - x depending on their relative size. The value is then
copied to a local variable d in the main() function.

d := diff(num1, num2)

https://golang.org/pkg/math/#Abs

As stated, although the diff() function is declared below 'main()’,
the main() function can still use diff() at this point. This is a
general rule. Forward declaration is not needed in Go.

The value of d is then written to the console using the
fmt.Println() function, and the main() function returns.

Before moving on to the next example, let’s take a look at the if
statement in the diff() function’s body.

As with the previous example, bigger(), it could have been
written one of two ways. An alternative would be:

func diff(x, y int) int {
if x>y {
return x - vy

}

return y - x
}

In this simple example, these two implementations are
equivalent. This is a rather special case. It is a very small

function with not much complicated logic, and the if branch
returns.

Now, the question is, which "form" is better, in general? One
choice is if bool {} else {}:

if x >y {

// Do something
} else {

// Do something else
}

And, the otheris if bool {}; (the rest):

if x >y {
// Do something

}
// Do the rest

This is really beyond the scope of this book, whose focus is
teaching the Go language syntax, but it is important to think
about this type of issues when you start learning programming.

Why would you prefer one style over the other? In what
situations?

Note that the if branch and the else branch is "symmetric" in the
first case. It can even be written as follows:

if x <=y {

// Do something else
} else {

// Do something
}

The if and else branches are expected to do more or less the
same kind of tasks.

On the other hand, in the if bool {}; (the rest) form, the task
to be done in "the rest" part might have intrinsically different
characteristics than the task to be done in the if branch.

4.5, Code Reading - Average of Two Numbers

Listing 11. two-numbers-4/main.go

1 package main
2

3 import (

4 "fmt"

5)

6
7 func main() {
8 numl, num2 := 10, 999

9 avg := average(numl, num2)

10 fmt.Println("Average is", avg)
11 }

12

13 func average(x, y int) (avg float32) {
14 avg = float32(x+y) / 2.0

15 return

16 }

4.5.1. Explanation

This program computes the average of the two numbers, 10 and
999 and prints out its result.

4.5.2. Deep Dive

Although this code looks rather similar to the previous examples,
there are a few differences worth noting.

As before, the func keyword is used to define a new function
average():

func average(x, y int) (avg float32) {
avg = float32(x+y) / 2.0
return

}

This function’s signature is func(int, 1int) float32. Since the
average computation may yield a non-integer number even if the
two operands are ints, the function returns a floating point
number.

avg = float32(x+y) /

In Go, all operands in an operation must have the same type. x +
y evaluates to an int, and hence it has to be explicitly cast to the
desired type, float32(x+y).

The floating point literal 2.0 has no fixed type. Since the type of
the left hand side of the division is float32, it is treated as
float32. A mere 2 would have required an explicit casting since
none of the integer number types is compatible with float32.

Now the computed value of type float32 is assigned to the var
avg.

The average() function uses a "named return value". Instead of
declaring only the return type float32, it gives a name avg in the

function declaration, (avg float32). This variable can be used in
a function body.

Then, the return statement does not have to explicitly specify the
variable name. Just return suffices (instead of return avg) since it
is already known that it is the value of avg that the function is
returning.

As before, the function return value is copied to a new variable
avg in the main() function. And, it is written to the terminal.

avg := average(numl, num2)
fmt.Println("Average is", avg)

This is just an example program for illustration, but if the

program’s primary purpose was to print out the computed value,
we could do away with the local variable avg.

fmt.Println("Average is", average(numl, num2))

As we stated before, this is largely a personal preference in many
cases.

4.6. Code Reading - Swap Two Numbers 1

Listing 12. two-numbers-5/main.go

1 package main

2

3 import (

4 "fmt"

5)

6

7 func main() {

8 numl1, num2 := 10, 999

9 a, b := swap(num1, num2)

10 fmt.Println("Original:", num1, num2)
11 fmt.Print1ln("Swapped:", a, b)
12 }

13

14 func swap(x, y int) (int, int) {
15 return y, x

16 }

4.6.1. Explanation

This program swaps two given numbers, 10 and 999 and prints
out its result.

4.6.2. Deep Dive

This is another simple example to demonstrate features of Go
functions. This function takes two int arguments and returns
them in the opposite order.

func swap(x, y int) (int, int) {
return y, x

}

In fact, this function is so simple that we could have just used it
inline. That is, instead of

a, b := swap(num1, num2)

We could have just done

a, b := num2, numl

That is exactly what the swap() function does. We have seen this
before. It is called "multiple variable assignment” (although this
example is really multiple variable initialization).

This is equivalent to

var a, b int = num2, numl

It is also equivalent to

var a, b int
a, b = num2, numT

Now, that is a multiple variable assignment.

As stated, the expressions on the right hand side of a multiple

variable assignment statement are evaluated first. They happen
to be num2 and numl, in this case. Then the values on the right
hand side are assigned to the variables on the left hand side, in
the corresponding order. That is, something like a = num2 and b =
num1.

Without using the local variables a and b, the pair num1 and num2
can be swapped as follows:

num2, numl = numl, num?2

Again, it should be remembered that the right hand side is
evaluated first before the assignment.

Now let’s get back to our original sample code, in particular, the
swap() function. It is equivalent to the following:

func swap(x, y int) (int, int) {

X, Y=V, X
return x, vy

}

Now let’s go through this function in some detail.

First, this function returns more than one value. Two to be exact.
We have seen a function like this. For example,
bufio.Reader.ReadString() returns two values, the second of
which is of an error type. This is one of the unique features of the
Go programming language.

When the arguments of a function are passed in, as in this
example, their values are copied. The caller, the main() function
in this example, calls swap() with num1 and num2. They are copied

to x and y, respectively.
Conceptually, this is almost like this:

X, y = num1, num2

Clearly, this is not a valid statement since x and y are local
variables of swap() whereas num1 and num2 are variables locally
declared in main().

As stated, the names are not that significant. The swap() function
could have used num1 and num2 as argument names instead of x
and y.

Then, the values of the variables, x and y, are swapped in x, y =

y, X. We have seen this before, but it is worth repeating.
Statements like this may look rather strange to you if you have
not seen much Go code.

An important thing to remember is that the y and x on the right
side are values. More generally, expressions. On the other hand,
the x and y on the left hand side are variables. It is an
assignment.

So, the statement x, y = y, x assigns the (old) value of y to the
variable x, and it assigns the old value of x, not the newly
assigned value, to the variable y. Hence the values are swapped.

The swap() function then returns the (swapped) values of the
variables x and y to the caller. Again, the values are copied, and a
and b of the main() function now, in effect, have the values of the

swapped values of num1 and num2.

Since the argument values are copied when the swap() function is
called, the original values of num1 and num2 in main() remain
intact. When we print out both pairs of num1 and num2 and of a
and b,

fmt.Println("Original:", num1, num2)
fmt.Print1ln("Swapped:", a, b)

Their values are switched. The function does what it is supposed
to do, namely, swapping the argument values.

4.7.Code Reading - Swap Two Numbers 2

Listing 13. two-numbers-6/main.go

1 package main

2

3 import (

4 "fmt"

5)

6

7 func main() {

8 numl, num2 := 10, 999
9 swap(&numl, &num2)

10 fmt.Println("Swapped:", numl, num2)
11 }

12

13 func swap(p, q *int) {
14 *p, *q = *q, *p

15 }

4.7.1. Explanation

This program does exactly the same thing as the previous
example. It swaps two numbers, 10 and 999 in this case, and
prints out the swapped pair.

4.7.2. Deep Dive

Depending on your previous experience, this might be one of the
most esoteric examples (so far).

Go has a "pointer" type. It is based on the original C’s pointer. But
there are some subtle, and fundamental, differences.

NOTE: We will not discuss the "unsafe" features of the Go
programming language in this book.

A C’s pointer refers to a location in memory, or an address, of a
value. The pointers in Go are indeed based on the memory
addresses. But, that aspect of pointers are not of much use, at
least in the "safe Go". Go does not even allow "pointer
arithmetic". (It should be noted that the Go runtime uses garbage
collection.)

Instead, in this book, we will present an alternative explanation
of Go pointers. We will first introduce some basic concepts in the
remaining part of this lesson.

So far in this book, we have only dealt with "values". As stated,
values are copied, e.g., when they are passed to a function.
Variables of values follow what they call "value semantics".

Everything, every action, that we have seen so far follows the
value semantics. In the context of the Go programming
languages, the value semantics simply means "copy" semantics.
Values are copied.

Not surprisingly, there is another way to deal with values in
programming. The C language’s pointers more or less behave in
this way. It is called "reference semantics".

In many programming languages, all types but a few are
reference types, which behave according to the reference
semantics.

For example, in Java, all custom types are reference types. The
primitive types are the only exceptions, which follow the good
old value semantics.

We will look at pointers in Go from this perspective. Go pointers
follow the reference semantics. Go pointers are "references".

Going back to the example code, the swap() function in this
example is defined this way.

func swap(p, q *int) {
*p, *q = *q, *p
}

The function’s signature is func(*int, *int). It does not return
any value.

*int represents an int pointer type. For a value type, there is a
corresponding pointer type. For a value type T, there is a pointer
type *T, which follows the reference semantics.

For a reference, or a variable of a reference type, p, *p is the

value associated with the reference. The * in this context is called
a "dereference operator".

Now,
*p, ~kq = *q, ~kp

This statement is very much like x, y = y, x in the previous
example.

On the right hand side, there are two values. *q is the value
associated with the pointer q. *p is the value associated with the
pointer p. *q and *p roughly correspond to the y and x of the
previous swap() function, respectively.

The *p and *q on the left hand side, however, are syntactically
different. *X on the left hand side of an assignment, for instance,
means that we are assigning a value to the associated value of
the pointer variable X, say, rather than assigning the value to the
(pointer) variable.

In many cases, we are more interested in the underlying value of
a pointer rather than the pointer itself. A pointer, or a reference,
is just a wrapper, or a handle, which provides the reference
semantics for the associated value.

Now the result of this two value assignment is that the values of
the underlying variables end up being swapped.

After calling the swap function,

swap(&num1, &num2)

The values of num1 and num2 are swapped. Note that there are no
return values. Calling this swap() with references, or pointers,

directly changes the associated values of those pointers.

Notice the syntax. The & is a reference operator. (It is also known
as an "address of" operator in C.) ¨ is an int pointer since
numl is an int type. Likewise, &num?2 is an int pointer.

The new swap() function of this example takes two int pointers.
Hence, swap(&num1, &num2) is syntactically correct.

This can be written as follows to make it easier to see the types:

var p1, p2 *int = &num1, &num2
swap(p1, p2)

Not to make things more confusing, but the passed-in pointer
arguments to a function are in fact "copied". The pointer &num1 of
main(), for instance, is different from p of swap(). But they "point"
to the same underlying value. That is how the pointer arguments
to a function can change the content of the values which the
pointers are holding, or pointing to.

If you look at the values of num1 and num2 at this point in the
main() function, after calling swap(), their values will have been
swapped, as can be verified by the fmt.Println() statement in the
next line.

4.8. Summary

We covered various important aspects of functions in Go in this
lesson.

A function can be declared with the func keyword. The order or

place of a function within a package is not important. A Go
function can take zero or more arguments and return zero or
more values.

We also introduced pointer types in Go.

Pointers in Go are more closely related to references in garbage-
collected languages such as Java and C# rather than to pointers in
C and C++. Go’s pointers follow reference semantics.

We will often wuse the terms pointers and references
interchangeably in this book.

4.9, Questions

1. What is a function signature?

2. What does a return statement do?

3. How do you return multiple values from a function?
4,

What is a pointer in the Go programming language?

AUTHOR'S NOTE

Who is This Book Not for?

Learning new things, or new skills, requires patience, and perseverance.

If you are only interested in getting some quick knowledge on the Go
programming language, then this book may not be for you. There are a lot of
books, and other resources, which claim that they can make you a world-class
programmer in 7 days, or in 24 hours, or even in 5 hours or less.

This book does not make such promises. This book does not make promises that
you will get a job as a Go programmer and make tons of money, after finishing
all the lessons in this book.

If you view learning programming, learning a new programming language, as
something you’ll have to do to advance in your career, to become rich, etc.,,
then this book may not be for you.

Learning programming can be fun. Programming can be fun. And, useful. Not
just as a career choice. But programming can be fun. Period.

If you don’t have much intellectual curiosity, then this book may not be for you.

5. MULTIPLICATION TABLE

5.1. Agenda

We will cover in this lesson basics of slices and for-loops in Go.

5.2. Code Reading
This program is a little bit longer than those we have seen so far.
It includes a few new concepts.

Listing 14. multiplication-table/main.go

1 package main

2

3 import (

4 "fmt"

5)

6

7 const low int = 2

8 const high int = 9

9
10 func main() {
11 fmt.Println("Multiplication Table:")
12 printMultiplicationTable()
13}
14
15 func printMultiplicationTable() {
16 axis := make([]int, high-low+1)
17 for i :=0; i < high-low+1; i++ {

18 axis[i] = low + i
19 }

20

21 fmt.Print(" ")

22 for _, v := range axis {
23 fmt.Printf("%4d", v)
24}

25 fmt.Println("")

26 fmt.Print(" -")

27 for range axis {

28 fmt.Printf("%4s", "--")
29 }

30 fmt.Println("")

31

32 for _, 1 := range axis {
33 fmt.Printf("%4d", 1)

34 fmt.Printf("%4c", '|")
35 for _, r := range axis {
36 m:=1%*r

37 fmt.Printf("%4d", m)
38 }

39 fmt.Println("")

40 }

41}

5.2.1. Explanation
We all learned the multiplication table by heart. The code

generates a multiplication table within a given integer range.

If you build and run the program from command line, it
produces the following output:

LS

(@ "Header".
@ Divider between the header and the body.

3 Actual multiplication values start from this line.

5.2.2. Keywords

This program includes a few keywords that we have already seen
and that we are more or less familiar with by now, package,

import, func, and const.

It also includes the following two new keywords:

= for: The for keyword is used to create a compound statement
that specifies repeated execution of a block.

= range: A for loop can be controlled by a range clause.

Although it is not a keyword, nil is a globally defined constant in
Go, which is comparable to Null in other garbage collected

language.

5.2.3. Builtin Functions

= make(): The make built-in function allocates and initializes a

value of a reference type. The first argument is a type. Its
return type is the same as the type of its argument.

5.2.4. Grammar

We have discussed const and var variables before.

In programming in general, a variable is something that holds a
value. A const can be viewed as a variable as well. In Go, the
value of a constant is fixed at build time, and it cannot change.

In some programming languages, there are different kinds of
variables, like "immutable variables" and "mutable variables",
etc. But, in Go, all variables are mutable. The values of all
variables in a Go program can potentially change during the
execution of a program, e.g., through an assignment or in other
ways. You cannot make Go variables immutable (like a constant).

Using const constants is generally preferred over var variables
whenever possible. But, in Go, you can only use const for values
that are known at compile time. const is limited to number types
and strings.

Constants and variables can be declared globally, that is, within a
"package scope", or in a function or in a block.

The constants of the example code are declared in a package
scope, and they are available to any functions or expressions

within the main package.

Note that these values are "hard-coded" in this example. If these
numbers have to be set via a program’s action, e.g., by reading
from a user input, then these could not have been declared as
const.

A slice is one of the most important constructs in Go. A slice is a

collection type, so to speak. A variable of a type slice can hold
multiple values of the same type. A slice variable is declared with
the following syntax:

var myIntSlice []int

The elements, or items, in a slice are ordered, and they can be
accessed via an index notation ([]). They occupy consecutive
spaces in memory.

A slice is defined over an (implicit or explicit) array. An array is a
fixed-size type. Once declared, the length of an array type
variable cannot change.

A variable of an array type can be declared as follows:

var myIntArrayWithSize10 [10]int

This declares a variable myIntArrayWithSize10 with a type [10]int.

It is a 10-element array with each element of int type. When an
array variable is declared, all of its elements are initialized by
default, O in this example.

Note that the size of an array is a part of a type. That is, for

example, [10]int and [11]int are two different types. On the
other hand, three is only one int slice type, namely, []int. There
is only one float64 slice type, []float64, etc.

A newly declared slice variable with no explicit initialization has
a nil value. Or, a slice can be initialized with an empty collection.
For instance,

var myEmptySlice = []int{}

Since the variable’s type can be inferred from the right-hand side
expression, there is no need to explicitly specify the type ([]int)

in this case. This statement declares a variable myEmptySlice and
initializes it with an empty slice (e.g., its length == 0).

The size of a slice can change. A slice can grow as more elements
are added to the slice. A slice has two size-related attributes, len
(length) and cap (capacity).

The length is the current size of the slice. The len is always less
than, or equal to, the cap of a slice because a slice may contain an

extra "room to grow". The capacity of a slice is essentially the
length of the underlying array (implicit or explicit).

It should be noted that a given slice cannot grow beyond its
capacity, which is a constant.

The builtin functions len() and cap() are used to get the length
and the capacity of a slice, respectively.

The slice type is one of the few "reference types" in Go, which
means that variables of type slice follow the reference

semantics. A slice variable is essentially a pointer to the
underlying array, which is incidentally a value type.

As the size of a slice grows, that is, beyond the current capacity,
for example, the runtime may need to allocate new memory and
create a different (and larger) array. A new slice variable may be
needed to point to the newly allocated array in such a case.

The values from the old array are copied to the new one, and the
old array may be garbage collected unless the array is still being
used, e.g., by other slices, etc.

You can initialize a slice with a desired length, and a capacity,
using builtin function make(). For example,

var myByteSlice = make([]byte, 10, 20)

The make function on the right hand side accepts 3 arguments,
the type of the slice to be created ([]byte), the initial length (10),
and the capacity (20). All values of its elements are initialized
with the element type’s default value, 8b0 in this case.

The capacity argument can be omitted. If the capacity is not
provided, the length is also optional. make([]byte) will create a
byte slice of len == 0 and cap == 0.

All programming languages have constructs for facilitating
repeated execution of a statement or a set of statements. It is
known as a "loop".

Go supports multiple kinds of loops, with a keyword for.

One of them is a "classic" for loop. Another is a for range loop.

const N =

for i :=0; i <N; i++ {
fmt.Println("i =", i)

}

This "classic" for loop is based on C’s for loop. There are three
statements after the keyword for and before the "for block” ({ ..

}). The first statement is typically used for initializing a "loop
variable".

The second statement must be a Boolean expression, if present.
As long as this value evaluates to true the statements in the for-
block will be repeatedly executed. If this expression is missing,
then it is considered true.

The third statement is executed between iterations.

Notice that the loop variable i is initialized with the "short
variable assignment" syntax.

One thing to note is that, in Go, there is no "comma (,) operator".
(You can ignore this if you don’t know what the comma operator
is.) You cannot have more than one statements in each of these
three slots. But, you can have an empty statement.

For example, the following is a perfectly valid statement.
for ; ; {}

In Go, you can even omit all semicolons, like this:

for { }

There are a few different variations of for loops in Go, but
syntactically, you cannot have a single semicolon. Either both or
none should be present.

Another form of for loop is so-called "for range loop". The syntax
looks like this:

for i, v := range X {
// Statements here.
}

X must be a type that supports range, e.g., a slice.

Variable i is a (0-based) index. Variable v is a value of the
elements from X.

For example,

slice := make([]int, 10)
for i, v := range slice {
fmt.Println("i =", i, "v =", v, "slice[i] =", slice[i])

}

In this example, an int slice is used for the range. i runs from 0

to 9 in this example, and values of v will be all zero because the
slice has been only initialized with default values. Likewise
slice[1] will all be zero through the range of 1.

One thing to note is that v is a "copy" of each element in slice.

Although the values of v and the corresponding slice[1i] have the
same values, they can behave differently.

If an element of slice is a value type as in this case (int), you
cannot change the values of slice by manipulating v because it is
just copies. That’s value semantics.

If the elements are a reference type (e.g., pointers or other slices),
on the other hand, then the "copies" may actually be pointing to
the same underlying values, according to the reference

semantics, and changing the content of v may indeed affect the
content of the slice.

In the range loop, you may end up using only one variables. In
Go, unused variables cannot be declared.

In case you are using only one, you can use the blank identifier
(_) for the other.

For example,

for _, v := range X {
// Use v here
}

If you do not use the second variable, you can just omit it. Like
this:

for i := range X {
// Use 1 here
}

If you use neither, then you can do away with whole variable
declarations:

for range X { }

NOTE: Unlike other C-style languages like Java, C#, or JavaScript
there are no parentheses after the for keyword. The braces { }'
are always required.

5.2.5. APIs

The fmt package exports many functions. We have seen
fmt.Println() and fmt.Printf(). This lesson’s sample code
includes another function fmt.Print(). fmt.Print() is similar to
fmt.Println(), but it does not add a newline at the end.

= func Print: Print formats using the default formats for its
operands and writes to standard output. Spaces are added
between operands when neither is a string. It returns the
number of bytes written and any write error encountered.

5.2.6. Deep Dive

The goal of this program is to print a multiplication table as
shown earlier.

You start from the requirements, and go backward. In this case,
the desired output is the requirement.

First, we initialize the range (from low to high). You can use the

classic for loop, or you can do it using range as in the example
code of this lesson.

You can assign values to a slice using a loop:

axis := make([]int, high-Tow+1)
for i :=0; 1 < high-low+1; i++ {
axis[i] = low + i

https://golang.org/pkg/fmt/#Print

We happen to know the length of the slice we are going to use,
high-1low+1. Hence we use that information when calling make().

Then, we "initialize" the slice with the values from the integer
range. All variables in Go are initialized by default when
declared, and the loop here is really a series of assignments. But,
conceptually, this loop amounts to "initialization".

Once we create this axis variable, we can use it for looping in
subsequent statements. Using the "classic" for loops are generally

more error-prone (e.g., because one needs to specify more
parameters, etc.).

Using this axis slice, we print "headers".

fmt.Print(" ")
for _, v := range axis {
fmt.Printf("%4d", v)

}
fmt.Println("")

In this example, we use 4 spaces for the width of each "table cell”,
as indicated by the formatting verb "%4d".

Then, the "divider":

fmt.Print(" -")
for range axis {
fmt.Printf("%4s", "--")

}
fmt.Println("")

Again, 4 spaces per "cell". (We could have used a const for this

fixed length.)

How does one know if this prints out what one wants? It’s
generally done via "trials and errors". Print out something first
and, based the result, change the formatting slightly, etc.

It sounds tedious. But, a lot of programming tasks involve tedious
work in case you are new to programming and have romantic
ideas. @

Because this printing does not involve any numbers from the
axis slice, we can just ignore the loop variables. We just use the
for range syntax in this example.

Finally, the body of the table is printed with "row headers" for
each row:

for _, 1 := range axis {
fmt.Printf("%4d", 1) ©)
fmt.Printf("%4c", '|") @
®

for _, r := range axis {
m:=1%*r
fmt.Printf("%4d", m)
}

fmt.Println("")
}

@ "Row header".
@ Divider. The verb "%c" is for "characters" or bytes in Go.

@ Inner loop where the actual multiplication numbers are computed and printed.

As in most other programming languages, the for loops in Go can
be nested.

The multiplication table is "2-dimensional”. One loop goes over

the horizontal axis, or across columns (the inner loop in this
example), and the other loop goes over the vertical axis, or across
rows (the outer loop in this example).

The value 1 corresponds to a number printed on the left hand
side. The value r corresponds to a number printed on top. The

value of each "cell", at a given row and column, is a product of
two numbers, one from the row and the other from the column.

m:=1%*r

This number is printed with 4 space width. That’s the
multiplication table. The nested loops produce the "two-
dimensional” printout.

5.3. Summary

We learned some basic features of slice. A slice is a reference

type. A slice variable is a pointer pointing to the underlying
array.

We also reviewed a couple of different forms of for loops. In

particular, we used the nested for .. range loops to create a
"table" printout.

5.4. Questions

1. If you change the multiplication table range to a range
from 6 to 12, what happens? How would you change the
formatting to make the table look "regular"?

2. How can you "initialize" values in an int array of 10

elements with non-zero values?

5.5. Exercises

1. A slice can include elements of a slice type, which makes
it sort of a "two-dimensional” slice. For example,

var my2DSlice = [][]int{}

This statement declares and initializes my2DS1lice, whose
type is a slice of a slice of int.

Create a 2-D slice of strings and store the multiplication
table printout first. Then print out the slice using nested
loops.

AUTHOR'S NOTE

Many Faces of Go

When you start learning Go, especially if you are coming from other (backend)
programming language background, things can be rather confusing.

For example, the language specification seems to require semicolons at the end
of each statement. But, in some contexts, they seem optional. And, in some
other contexts, it seems that you cannot use semicolons at all.

Which is it?

This is not limited to the use of semicolons. In all C-style languages, for
example, white spaces (including tabs and newlines) generally have very little
significance, other than as a token separator. You can put a statement in two
lines, or you can put two statements in one line.

This is also true with Go. At least, in theory.

But, in practice, it does not work that way. You’ll have to follow a particular
style when programming in Go. You cannot, for example, put two statements in
one line. You will have to put opening braces in particular places. And so forth.

Go uses a formatter, go fmt. It is not mandatory. The Go compiler mostly does
not care (as long as it ultimately receives grammatically correct code). But,
virtually everybody uses it. If you use an IDE or other editor tools that
understand Go (or, gofmt), as most programmers do, then you are bound by
these rules.

This is comparable to using linting in languages like Javascript. This is
reminiscent of programming in Python where white spaces (e.g., indentations)
are crucial part of the grammar/syntax.

We will not discuss go fmt in this book. As stated, if you use an IDE or a
programmer’s editor, like VSCode, then you will most likely not have to pay
attention to these. As far as the programmers are concerned, the gofmt rules are
part of the grammar.

You cannot, for example, use semicolons at the end of a statement. You cannot
use spaces for indentation. You have to use tabs. And so forth.

For some people, this may seem rather strange, but after a bit of initial
resistance, you will end up accepting it. ®

It will eventually feel natural to you.

That is Go.

6. FIND THE LARGEST NUMBER

6.1. Agenda

We will learn basics of error handling in Go, among other things.

N

6.2. Code Reading |

This program comprises two source files, main.go, and
findmax.go.

Listing 15. find-largest-1/main.go

1 package main

2

3 import "fmt"

4

5 fune main() {

sequence := []int{17, 7, 29, 3, 11}
fmt.Println("Input sequence =", sequence)

max := findMax1(sequence)
10 fmt.Println("Largest =", max)

Listing 16. find-largest-1/findmax.go

1 package main

2

3 func findMax1(s []int) int {
4 max := s[0]

5 for _, v :=range s {

6 if v > max {
/ max = v

8 }

9 }

10 return max

1}

As stated before, the file names are of little consequences in Go.

There is a source code file which contains the main function,
named main.go in this example, and there is another file which
contains a function findMax1(), whose name is findmax.go.

Both files belong to the same package, main.

6.2.1. Explanation

This is the first example in this book where a program includes
more than one file (albeit both being small).

In order to build a program with main package containing more

than one source files, you specify the package location in the
build command. For example,

The . argument refers to the "current directory” where the main
package resides (e.g., in a Unix shell).

It is not specified in the Go language specification, but in the Go
compiler tool chain requires that all source files of a package live
in a single folder.

Another requirement is that you cannot have multiple packages
in the same folder. (There are exceptions.)

Therefore, there is roughly one-to-one correspondence between
the physical construct, a folder/directory, and Go’s language

construct, package.

In this example, you could not have put findmax.go in any other
directory. It has to be in a directory where other files reside that

belong to the same main package.

go build ., by default, uses the directory name, find-largest-1 in
this case, as a default executable name when the build succeeds.

As a shortcut during the development, one can use go run as well,
which builds and runs the program in one go.

Again, you provide the location of the main package as an

argument, . in this case.

Running this program produces the following output:

6.2.2. Grammar

A slice is essentially a sequence of values. Or, more precisely, a
pointer to a sequence of values.

A variable of a slice type can be initialized in a number of
different ways. Creating a slice with builtin make() function
initializes all elements with a default value of the element type.

Another way is to initialize each element with explicit values:
hello := []byte{'h", 'e', '1', '1", '0'}

This statement declares a new variable hello of type []byte (a
byte slice) of length 5, and initializes the values with 'h', 'e',
1", 'l', 'o'. That is, after the initialization, hello[@] == 'h’,
hello[1] == 'e', hello[2] == '1', hello[3] == 'l', and hello[4]

== '0'.

A slice can also be created based on an existing array.

First of all, an array can be initialized in a similar way:
arr := [5]byte{'h", 'e", '1', '1", '0o'}

Notice the difference in syntax. This statement creates a new

array arr of type [5]byte (5 as in 5 elements). The length of an
array cannot change once it is created.

Since the number of elements for the array, and hence its type, is
clear from the right hand side expression, we can omit the
number of elements in the declaration. That is,

arr := [...]byte{'h", 'e', "1', '1', '0'}

A pair of empty square brackets ([]) represents a slice type.

Square brackets with three dots ([..]) indicates that it is for an
array initialization.

A slice of a "related" type (e.g., []lbyte from [5]byte) can be
created from an array. Here’s an example:

[...]int{101, , , , , , , }
array[:]

array :
slice :

An array with name array has been declared and initialized as
before. A new variable slice is created based on array using the

syntax <array_name>[:] (a pair of square brackets with a colon
inside them).

The type of this slice is []int (since it is based on the array of
type [8]int), and its length is 8 (since it is based on the array of

type [8]int). In this example, the capacity of the slice will also be
8 since it cannot grow beyond the size of the underlying array.

One can create a slice of a different length as well, by specifying
the starting (inclusive) and/or ending (exclusive) indices. For
example,

[...]int{701, 102, 103, 104, 105, 106, 107, 108}
array[0:3]

array :
slice :

The length of the slice in this example would be 3, with slice[0]
== 101, slice[1] == 102, and slice[2] == 103. Its capacity is 8.

0 is used for a missing starting index, and len(array) is used for a
missing ending index. For instance, array[:] would be equivalent
to array[0:1len(array)], or array[0:8] in this particular example.

The same syntax can also be used to create a slice variable from
another slice. e.g., <slice_name>[s:e] where s and e are optional
beginning and end indices, respectively. For example,

array := [...]int{101, 102, 103, 104, 105, 106, 107, 108}
slicel := array[1:3]
slice?2 := slicel[0:5]

Here slice? is created from slicel. Its underlying array of slice2
is the same array array.

One interesting thing to note in this example is that len(slice1)

== 2 whereas len(slice2) == 5. We have created a bigger slice
from a smaller slice. However, you cannot create a slice beyond
the underlying array’s capacity.

One other thing to note is that because slicel is a slice starting
from index 1 of array, its starting element slice1[0] refers to the
value of array[1]. Therefore slicel[0:5] is equivalent to
array[1:6]. slice2 in this example points to a "slice" of these 5
elements in array, 102, 103, 104, 105, 106.

Interestingly, in this particular example, there is no way,
syntactically, to access array[@] from the slice variable slicel.

Although we can access beyond its rightmost element of a slice
(up to the last element of array), Go does not provide a way to
access the elements on the left hand side of its leftmost element
of a slice. This is the case as of this writing (version 1.16).

6.2.3. Deep Dive

The main() function creates a test slice of 5 elements, sequence,
and calls findMax1() function with this slice as an argument.

The findMax1() function is defined in file find-largest-
1/findmax.go in this example. Note first that this source file does
not include any import statements (because none is needed).

findMax1() has a signature func([]int) int. It takes an argument
of type []int (a slice of int) and it returns an int value.

One thing to note is that we use a slice type (e.g., []int) not an
array type value (e.g., [5]int) as an argument of the function
findMax1().

This is very common in Go. Arrays are rarely used (other than as
an underlying storage for a slice).

In this particular example, passing in an array, not a slice, could
have limited the use of the function to a specific size array. The
function’s implementation can be clearly more general than that.

The main() function of this example happens to use an array

[5]int, but that is just incidental. That is just for illustration.
There is really no reason to write separate functions for different
array types: one for [1]int, another for [2]int, and another for
[3]int, etc.

Using a slice []int can potentially cover all these use cases.

TIP: The same, or similar, arguments can be made for functions
using []int vs []int32 vs []floatb4, ... Unfortunately, Go does not
support "generics", as of this writing. It is, however, expected that
generics will be a part of Go in the near future.

Furthermore, as stated, an array is a value type. Every time we
call functions like this with an array argument, it will need to be
"copied”, which can be rather expensive, especially for big
arrays.

The function findMax1() goes through each element of the given

slice, starting from the first element s[0], and find the largest
value.

Notice how it is done in this example. It checks the value of each
element in the slice, and every time we see a value greater than
the "current max" (max) it replaces the current max with the new
largest value.

At the end of the loop, you will end up with the largest value
from the given slice.

This is an example of an "algorithm".

This findMax1() function has an issue. If the passed-in argument

is nil or if it has zero elements, then the program will crash. Go
programs "panic"” in situations like this.

Here’s an example error message in case the input sequence is
empty.

One way to deal with issues like this is making it the caller’s
responsibility.

For example, in this simple example, the caller can check the size
of the argument, and only if it has at least one element, the caller

calls the findMax1() function.
Here’s an example:

// Receive sequence, say, from the user input.
var max int
if len(sequence) > @ { // check if it

max = findMax1(sequence)

}

// otherwise do something else.

In general, however, functions, especially the ones designed to be
used by other programs, need to be able to deal with certain
"exceptional” cases in some way, including notifying the caller of
the exception.

We will take a look at this issue next.

6.3. Code Reading Il

This program also comprises two source files, main.go and
findmax.go, under a folder named find-largest-2 (on the author’s
computer).

Listing 17. find-largest-2/main.go

1 package main
2
3 import "fmt"
4
5 func main() {
sequence := []int{17, 7, 29, 3, 11}

6
7 fmt.Println("Input sequence =", sequence)
8

9 index, max := findMax2(sequence)
10 if index == -1 {
1 fmt.Print1n("Empty input. No max found.")

12 return

13 }

14 fmt.Println("Largest =", max)
15 }

The findmax.go, file includes one function findMax2().
Listing 18. find-largest-2/findmax.go
1 package main

2
3 func findMax2(s []int) (index, max int) {

4 if len(s) == 0 {

5 return -1, 0

6 }

7 index = -1

8 max = s[0]

9 for i, v := range s {
10 if v > max {

11 index, max = i, v
12 }

13 }

14 return

15 }

Note that the findMax2() function uses "named return values",

(index int, max int).

6.3.1. Explanation

We can run the program in the same way, using go run.

We get the same result:

6.3.2. Deep Dive

In the previous example, there was no easy way to convey the
information that something unusual happened.

The function findMax1() is expecting a non-nil, non-empty slice,
and if it gets something unexpected, what is it supposed to do?

One way to handle situations like this is to return an unlikely, or
invalid, value as a normal return value. Suppose that all input
values should be positive integers. Then, returning a non-positive
value like -1 can potentially indicate some kind of errors.

In this particular case, however, that is not an option since we
are dealing with all ints, positive or negative, in general.

One possibility is to modify the program to also return the index
of the max value. This is the implementation of findMax2(). It
returns a pair of numbers (index int, max int).

Since the index cannot be negative, returning a negative integer,
like -1, could indicate an error.

The caller can now check the return value and see if the function
has worked as expected, in which case it can use the return value
max, or something unexpected happened, in which case it can
deal with the situation in some way.

That is what the main() function does in this example.

This is a usable option, but Go does it better.

6.4. Code Reading Il

Go provides a type error for representing an error value. It is an
"Interface type", but that is not significant at this point. error is
not a builtin type like int or string. But that distinction is not that
significant either.

The error type is always available just like other primitive types.

This third example uses the error type to convey the unexpected,
or unusual, situations.

Listing 19. find-largest-3/main.go

1 package main

2

3 import "fmt"

4

5 func main() {

6 // sequence := []int{}

7 sequence := []int{17, 7, 29, 3, 11}
8 max, err := findMax3(sequence)

9 if err != nil {

10 fmt.Printf("Error: %v\n", err)
11 return

12 }
13 fmt.Println(max)
14 }

The findMax3() function returns two values of types (int, error).
Listing 20. find-largest-3/findmax.go

1 package main

2

3 import (

4 "errors"

5)

6

7 func findMax3(s []int) (int, error) {
8 if len(s) == 0 {

9 return 0, errors.New("Empty input")
10 }

11 max := s[0]

12 for _, v :=range s {

13 if v > max {
14 max = v
15 }

16 }

17 return max, nil
18 }

6.4.1. Explanation

If we run the program, we get the same result as before:

If we run the program with an empty or nil slice, that is, by
modifying the value of sequence in main() to something like
[1int{}, then we get the following result:

6.4.2. APIs

"Package errors: Package errors implements functions to
manipulate errors. The New function creates errors whose
only content is a text message.

- func New: New returns an error that formats as the given

text. Each call to New returns a distinct error value even if
the text is identical.

6.4.5. Deep Dive

Many modern programming languages use "exceptions" for error
handling.

Go doesn’t.

Go uses a convention in which one of the return values from a
function is used to convey an error, or unexpected, situation. The
error return value should be the last one in the set of return

values, and its type has to be the error type.
That is the convention.

The caller of a function then checks this special return value to
see if something unexpected happened within the function (other
than what is expected from calling the function).

For example, in the main() function, we do the following:

max, err := findMax3(sequence)
if err !'= nil {
// Handle the "error" here

}

https://golang.org/pkg/errors/
https://golang.org/pkg/errors/#New

Returning from main() terminates the program.

The use of this if err != nil {} statement is idiomatic after
calling a function that can potentially return a non-nil error.

TIP: Although we use the terms, "errors" or "exceptions", in
programming, they do not necessarily mean that something bad
has happened. Or, some kind of mistakes. As we will see
throughout this book, the caller-callee relationship is
complicated. @

"Error handling" is essentially a way of communication between
the caller and the callee, in particular, from the called function to
the calling function (or, to everyone upstream in the call chain).

In the findMax3() function, we check the "validity" of the passed-
in argument s.

If the length of s is zero, we simply return with an error value. In

this case, the normal return value, max in this case, is irrelevant
since the caller function is expected to check the error value and
if there has been an error, in general, it is not to use the normal
return value. (There are always exceptions.)

In this example, we use a special function errors.New() from the
standard library package errors, for convenience, to create a
value of an error type. But, that is not strictly necessary. As we
will cover later in the book, any value of a type which "behaves"
like error will do. In this particular case, the error value has to be
of a type that implements the Error() "method", whose signature
is func() string.

In case of a normal execution of the function, without "errors",
the findMax3() function simply returns nil value as an error, in
addition to the normal return value, max.

nil is a predefined constant in Go, which indicates that the value
has "no value". nil cannot be used as a value for a value type. All
variables of a value type has real values. A nil value for a pointer
type indicates that the pointer "points to nothing". A nil value for
a variable of an interface type, like error, indicates that the
variable references no real value of any compatible concrete

type.

When a called function encounters a situation which it does not
know how to handle, etc., there are a number of options.

It can just terminate the program, for example. It is a valid
option. But it may not be the best option since the caller function
has a better context and it may know how to handle the situation
better.

Normally, a better way to handle an unexpected situation which
is beyond the purview of the normal functionality of a function,
is just send a signal to the caller function that indicates such a
situation.

In Go, a non-nil error return value signals an "error".

We will cover Go’s panic (and, recover) in later lessons, which is
another way to handle error situations in Go.

In the main() function of this example, we use a special verb %v to
print the error:

fmt.Printf("Error: %v\n", err)

The verb %v (v for verbose, presumably) is mainly used for
debugging. The format %+v, with + in front of v, prints out more

information. %#v (with four +'s, essentially) can print out even
more information, if available.

In this example, this is equivalent to

fmt.Printf("Error: %s\n", err)

The returned error has no more information than what we have
provided, a string "Empty input". Or, we can just use Println(),
which simply prints the "string value" of each of its arguments.

fmt.Println("Error:", err)

Incidentally, the error interface type includes a method Error(),
which returns a value of string type. The returned error value
can be of any type, in general, as long as the type implements this
Error() method of type func() string. If we need to get its string-
equivalent value, then we can call its Error () method.

fmt.Println("Error:", err.Error())

We will review the interface types in later lessons.

6.5. Summary

We learned a basic error handling mechanism in Go, which uses
the "error return value" convention.

A function which can potentially run into an unexpected, or
exceptional, situation can return a possible error information as
the last return value of type error.

The caller of this function is then expected to check the error
return value to see if it can use the normal return value(s). If the
error return value is non-nil, then it should treat the normal
return values with caution. Normally, it should discard the
normal return values if it receives a non-nil error.

AUTHOR'S NOTE

"Thought Programming”

The author loves books. He owns thousands of Kindle books (although he has
read only a tiny fraction of them @ []).

The Art of Go - Basics: Introduction to Programming in Go for Smart
Beginners is a book for reading.

Keep it on your night stand. Keep it on your coffee table. Take it to lunch.

You do not need a computer to read this book. Read, and if you need to
practice, then do it in you head. Like "thought programming". As in a "thought
experiment".

Obviously, this is an oxymoron. But, it is possible. And, this is a much better
alternative to making excuses and postponing. You may say, "Oh, I don’t have
access to computer right now. I’ll do it later". And, you may never do it.

Just do "thought programming” when you need to do programming.

/. ROTATE NUMBERS

/.1. Agenda

We will explore the slice types a little bit more in this lesson.

\
e
N

/.2. Code Reading

Suppose that we have an array or slice of ints, say, 2, 4, 2, 6, 8.
We would like to "rotate" elements by 1, to the left. For example,
from?2, 4, 2, 6, 8to4, 2, 6, 8, 2.

Here’s an example code to solve this problem:
Listing 21. rotate-numbers/main.go

1 package main

2

3 import "fmt"

4

5 func main() {

6 sequence := [7]int{1, 2, 3, 4, 5, 6, 7}

7 fmt.Println("Original sequence:", sequence)
8

9 rotated := rotateByl1(sequence[:])

10 fmt.Println("Rotated sequence:", rotated)
1}

The rotatel.go file includes two functions, rotateBy1() and
rotateByK():

Listing 22. rotate-numbers/rotatel.go

1 package main

2

3 import "fmt"

4

5 func main() {

6 sequence := [7]int{1, 2, 3, 4, 5, 6, 7}

7 fmt.Println("Original sequence:", sequence)
8

9 rotated := rotateByl1(sequence[:])

10 fmt.Println("Rotated sequence:", rotated)
1}

/.2.1. Explanation

In this example, we define a slightly more general function
rotateByK() and use it for the problem at hand, namely, rotating

by 1.

If you run the program as before:

You get the following output:

/.2.2. Builtin Functions

We have used the builtin len() and cap() functions before.
append() is a new function, which we are going to look at in some
detail.

= len(): It returns the length of its argument. In case of an array
or slice, it returns the number of elements in the collection.

= cap(): It returns the capacity of its argument. In case of an
array, cap() is equivalent to len(). In case of a slice, it returns
the maximum possible length of the slice when re-sliced;

= append(): The append() function appends elements to the end

of a given slice. If it has a sufficient capacity, the destination is
re-sliced to accommodate the new elements. Otherwise, a new
underlying array will be allocated, and it returns a slice
pointing to this new array.

/.2.5. Grammar

The slice type is one of the most interesting types in Go. But

dealing with slices can get a little bit tricky.

A slice is a reference to an underlying array. A slice "points to"
the underlying array. The underlying array can be implicitly of
explicitly defined. By changing values in a slice, one ends up
changing the values in the array as well.

You can "reslice" a slice, or "slice" an array, using the [b:e]

syntax, where b and e are optional beginning and end indices,
respectively. But this re-slicing operation is limited by the size of
the underlying array.

In order to add an element to a slice, which may require
allocating a new array, we use the builtin append() function.

func append(slice []Type, elems ...Type) []Type

The append function takes a slice as its first argument, as a
destination, and one or more elements to be added to the slice in
the following positions.

append() returns another slice as a return value. For instance,

seq := [...]int{1, 2, 3, 4, 5} O)
beforel := seq[:2]
after1 := append(beforel, 11, 12)

Or

before2 := []int{1, 2} @
after2 := append(before2, 11, 12)

Or

before3 := make([]int, 2) ®
before3[0] =

before3[1] =

after3 := append(before3, ,)

In all three examples, the slice values have changed. The before1
slice is different from after1, before? is different from after2, and
before3 is different from after3. Not only that, all three "after"

variables in these examples now point to completely different
arrays than those of the "before" variables.

In the first example, a slice before1 is taken from an array seq. In
the second example, a slice before2 is explicitly initialized (with
an implicit underlying array). In the third example, a slice
before3 of length 2 is initialized with default values using the
make() function. before3 will also be implicitly associated with an
array (of length 2). Values are then assigned to each element in
before3.

In these examples, all three after slices are associated with
arrays, whose values happen tobe all 1, 2, 11, 12. And, they are
all different from initial arrays, explicit or implicit, 1, 2, 3, 4,
51, 2,and 1, 2, respectively.

This is generally the case. append() may (likely) need to re-
allocate a slice’s underlying array, which can be expensive.

There is an exception though. If you use a "capacity" value when
creating a new slice with make(). The slice can grow up to the
capacity without requiring a new underlying array.

For example,

slicel := make([]int, @, 10)

slice2 := append(slicel, 1, 2, 3, 4, 5)
slice3 := append(slice2, 6, 7)

slice4 := append(slice3, 8, 9)

All four slice variables have the same underlying array
(implicitly). They are different variables, and they have different
lengths. But they all point to the same array.

This is because make() in this example have created an array with
capacity 10, which is big enough to accommodate all 9 elements,
1 through 9.

Now, if we add a few more elements,

slice5 := append(slice4, 10, 11, 12)

Then the new slice slice5 no longer shares the same underlying
array. The original (implicit) array has only 10 elements
(initialized with zero values). slice5 requires 12 elements. The
append() operation in this last line, therefore, has to create a new
array.

Why is this important? It is because a slice is a reference type. If
we change a value of an element in slice3 for example,

slice3[0] = 100

Slices, slice?2 and slice3, will have the same value in index 0.
That is, slice2[0] == 100 and slice4[@] == 100. (Since the length
of slicel is zero, this element is not accessible to slicel.)

On the other hand, the zero-th element of slice5 remains

unchanged. That is, slice5[0] == 1.

The Go programming language does not provide a way to tell
explicitly which slices share the same underlying array and
which ones do not. Hence, as a programmer, you have to know
what you are doing.

Allocating new memory (and copying old values) can be
expensive. Hence, it is a good practice to use the make function
with a specific capacity if the likely size of the (final) slice is more
or less known.

One other thing to note is that Go is a garbage collected language.
Every time we create a new variable (possibly with new allocated
memory) and leave the old ones around, it can cause issues.

One common idiom when using append() is that we use the same
variables for the existing and the new slices.

sliceX :=[]int{100}
sliceX = append(sliceX,)
sliceX = append(sliceX,)

append() returns a different slice (which may or may not point to
the same underlying array in general). By re-using the variable,
sliceX in this case, the old slice becomes inaccessible in the
program. And, if the old slice happens to have a different array
than the new slice (now assigned to the variable sliceX), then the
old array becomes inaccessible, and it can be garbage-collected.

It should be noted that this idiomatic pattern also alleviates the
issue mentioned earlier: the language itself does not provide an
explicit way to tell which slices share the same underlying array.

Also, calling append() as few times as possible is preferred over
calling it many times. For instance, the above example could
have been done with one append() call:

sliceX = append(sliceX, ,)

(In fact, we could have initialized sliceX without calling append()
in this particular example, but it should be noted that these
examples are primarily for illustration purposes.)

The append() function has an interesting signature, func([]int, ..
int) []int in case of int slices.

The .. notation, before the argument type int, in the function
signature indicates that the function can take an arbitrary
number of ints as arguments after the first []Jint argument. This
kind of functions are often known as "variadic functions".

The variable number arguments should be in the last position in
the function argument list.

We have seen some examples from the standard library. In
particular, the Print family of functions in the fmt package. We
can pass in zero or more arguments to fmt.Print(),
fmt.Println(), and fmt.Printf(), etc. The Printf() function is

even more special in that the verbs in the formatter have to
match the arguments.

One interesting thing about variadic functions in Go is that one
can use a slice in place of a list of values (in the variable number
argument position). For example, the above example could be
written as follows:

args := []int{200, }
sliceX = append(sliceX, args...)

Note the .. notation after the variable name (a slice ints in this
case).

If you are coming from languages like Javascript/Typescript, you
may have seen similar notations. But, their uses are not exactly
the same as ... of Go.

/.2.4. Deep Dive

In this lesson, the task is to "rotate" elements of a given slice by 1
to the left.

We tackle a slightly more general problem, rotating the elements
by k and use the general solution for the specific problem,
namely, rotating by 1, which is a special case of the more general
problem.

In programming, this is a common practice to tackle a set of
related problems, which are expected to have more or less the
same solution.

For example, rotating numbers by 1 might have a similar
solution to that of rotating numbers by 2, and rotating numbers
by 3, etc.

We saw a similar situation in the previous lesson, Find the
Largest Number, for instance. We do not implement different
functions for [1]int, and [2]int, etc. We just implement a generic
function that can handle all these situations as special cases. In
that case, the solution was using a slice, []int, rather than using

fixed size arrays, when we define, and implement, a function.

In the example of this lesson, we implement the general solution
as rotateByK(s []int, k int) []int, and use it in our specific
problem, rotateBy1(s []int) []int.

func rotateBy1(s []int) []int {
return rotateByK(s, 1)
}

When k == 1, rotateByK(s, 1) is equivalent to rotateBy1(s).

In fact, this is the first example of our non-main function calling
another non-main function in the main package. As stated, a Go
program essentially executes through these call chains, one
function calling another, and this in turn calling another, etc.

There can be many different ways to shift elements in a slice (or,
an array) by an integer k. We illustrate one solution using Go’s
append() function in this lesson.

The implementation of rotateByK(s, k) starts by checking some
edge cases. When the argument slice s is nil or empty, we cannot
rotate the elements. Hence we just return s.

When len(s) == 1, we can make a similar argument. That is,
"rotating” a list of one element does not make much sense.
Hence, we just return the input slice, without change. For
simplicity, we will also ignore the case when k < 0. We can
either design a function to accept only non-negative k (e.g., by
declaring k as uvint, for instance) or we can interpret a negative k
as rotating to the right by -k (-k > 0).

1 := len(s)
ifl<=1688&k<=0
return s

}

When k is bigger than 1, we are only interested in the "net
rotation". Hence we can set k to its modulo with 1. And, if the
resulting k is 0, again no rotation. Just return the same input slice.

k=k%1
if k == 0 {
return s

}

Note that, as mentioned before, it is a "copy" of the slice that is
the returned. But they point to the same array in this special case
because slices follow reference semantics.

At this point, we can make a few assumptions. One of them is the
constraints k > 0 && k < 1where 1 = len(s) is bigger than 1.

Now, to rotate the slice of 1 elements to the left by k, we simply
move the first part (from @ to k) to the end of the second part

(from k to 1). That is exactly what the rotateByK(s, k) function
does.

rotated := append(s[k:], s[0:k]...)

As required by the append() function signature (a variadic
function), the second slice argument (the beginning part of the
original slice) has been "spread" as ints using the ... notation.

The core of the function happens in this line. But, we know that

calling append() is safe because we already checked the range of
possible k values, etc. More importantly, @ < k < 1, which is
satisfied by the constraints that we have imposed through some
initial processing.

A new slice which points to a new array that has the "rotated"
content is then returned to the caller, rotateBy1() in this case.
Then, the rotateBy1() function returns its returned value to its
own caller, main() in this example.

The main() function then prints the result, and it returns to its
own caller, which is the Go runtime or the operating system.
Thus the program terminates.

Go is a somewhat strange language. The apparent simplicity can
be deceiving.

For instance, some programmers with background in C/C++, for
instance, might find the implementation of rotateByK() rather
strange.

The append() function possibly allocates memory. And, in this
case, it does. It happens in a function scope of the rotateByK()

function. And yet, we return its pointer (a slice, rotated) to the
(presumably) locally allocated memory.

Clearly, this is an absolute no-no in C/C++. An yet, you can do this
kind of things in Go. In fact, Go allocates the memory globally,
not locally, in this kind of situations.

If your background is in the garbage collected languages like
Java, C#, and Python, then that is how it works most of the time

in those languages.

To repeat, every type in Go but a few are all value types. They
follow the value semantics. (And, to use the reference semantics,
we use pointers.) On the other hand, slice is one of the
exceptions. A slice variable follows reference semantics, and its
memory is automatically managed by the Go runtime.

As we will see later in the book, the Go runtime does memory
management in other cases as well. We will see some examples
in later lessons.

This "dual" nature of Go can be confusing at first to new comers
to Go. In certain contexts, we have to distinguish value and
reference semantics. In certain contexts, like memory
management, Go takes care of it behind the scene.

/.3. Summary

We further explored various aspects of slice types in ths lesson.

In particular, we took a look at the append() function in some
detail.

/.4. Exercises

1. Implement "rotate by 1" without using append(). In fact,
without having to use big new space. (In the example
used in this lesson, we essentially needed an extra space
equal to the size of the original slice/array, which may or
may not be feasible in certain situations.) This can be
done, for instance, by swapping two consecutive

elements, one at a time, across all pairs of the
neighboring elements.

2. In this kind of implementation, a more general problem
"rotate by k" can be a bit more complicated. Can you
solve this problem in a similar manner?

AUTHOR'S NOTE

What You Don’t Know Won’t Hurt You

Throughout this book, we make frequent comparisons of Go with other
programming languages.

This is to the benefit of the readers who have some familiarity with those
languages. Comparisons, and analogies, and contrasts, can be rather useful
when you learn new subjects.

If those comparisons/contrasts do not make sense to you, or if Go is your first
programming language, then you can ignore those comments.

No harm done. sf§

8. LEAP YEARS

3.1. Agenda

A little bit more about functions.

8.2. Code Reading

Let’s create a program that checks if a given year is a leap year.
Listing 23. leap-year/main.go

1 package main
2

3 import "fmt"
4

5 func main() {
6 islLeapYear := islLeapYear]

7

8 answer := isleapYear(1900)

9 fmt.Println("Is 1900 leap year?", answer)
10

11 answer = isLeapYear(1984)

12 fmt.Println("Is 1984 leap year?", answer)
13

14 answer = islLeapYear(2000)

15 fmt.Println("Is 2000 leap year?", answer)
16

17 answer = islLeapYear(2021)

18 fmt.Println("Is 2021 leap year?", answer)
19 }

We will look at three different implementations.

The first implementation:
Listing 24. leap-year/leapyear1.go

1 package main

2

3 func islLeapYear1(year int) bool {
4 var islLeap bool

5 if year%4 == 0 {

6 if year%100 == 0 {

7 if year%400 == 0 {
8 isLeap = true

9 } else {

10 isLeap = false
1 }

12 } else {

13 isLeap = true

14 }

15 } else {

16 isLeap = false

17 }
18 return isleap
19 }

The second implementation:
Listing 25. leap-year/leapyear2.go

1 package main

2

3 func islLeapYear2(year int) bool {
4 if year%400 == 0 {

5 return true

6 } else if year%100 == 0 {
7 return false

8 } else if year%4 == 0 {

9 return true

10 } else {

11 return false

12 }

13}

The third implementation:
Listing 26. leap-year/leapyear3.go

1 package main

2

3 func islLeapYear3(year int) bool {
4 if year%4 == 0 && year%100 !'= 0 || year%400 == 0 {
5 return true

6 7} else {

7 return false

8

9

}
}

8.2.1. Explanation

The program contains three different implementations of
isLeapYear().

In the included example of the main() function, the first version

isLeapYear1() is hard-coded.

If you run the program with go run:

You get the following output:

If you want to use the second version instead, for instance, then
you can assign the name of function, isLeapYear2, to the variable
isLeapYear in the main() function:

isLeapYear := islLeapYear2

8.2.2. Grammar

A function has a type. Just like any other variables or constants,
functions have types.

You can even declare a function type and use it to declare a new
variable of that function type.

We have seen only simple types like int or string so far, and we
have not really discussed how to define a new type. We will come
back to this topic later in the book. But, for now, it is important to
realize that a function has a type.

It may seem a bit confusing, but a function declaration is
comparable to any other variable or literal definitions.

Just the syntax is different.

func isleapYear(year int) bool {
/] ...
}

In this example, the name isLeapYear has a type func(int) bool
(that is, its function signature). The function definition is given
inside the matching angular brackets.

Compare this, for instance, with the following:

const leapYear bool = false

This statement declares a new name leapYear as a bool type and
initializes it with a boolean value false.

The names isLeapYear and leapYear in these declaration are more
or less the same in that both declarations are introducing these
new names and their definitions. They just have different types.

isLeapYear is of type func(int) bool whereas leapYear is of type
bool.

You can use the function names just like any other identifiers in
Go programs. Note, however, that function names are more like
literals than variables.

You can create a variable of a function type.

var newVar func(int) bool

In this example, newVar is a variable of type func(int) bool. It is
not initialized with any explicit function definition. The default

value for a variable of (any) function type is nil.

Since the function isLeapYear happens to have the same type, in
this case, we can assign isLeapYear to newVar, or use it to initialize
newVar in the first place.

var newVar func(int) bool = isleapYear

Or, even

var newVar = islLeapYear

Since the type can be inferred from the right hand side
expression.

Now, you can use the newVar variable as if it is a function name:

leapYear := newVar(2020)

This will all seem natural to programmers with background in
languages like Javascript/Typescript because they have a similar
syntax.

Other languages have different constructs to support similar
functionalities. For instance, C has function pointers. C++ uses
"functors” in addition to function pointers. Java uses interfaces to
support function types. C# has a construct called "delegate",
among other things.

In Go, a function is just a type.

8.2.5. Deep Dive

It is hard to explain how to write a program. If it was easy, then
we could have just taught computers to write a program. (Some
day. Some day soon, maybe. But, not yet. @)

The best advice to beginning programmers is the same three
words that you here in any art:

"Practice, practice, practice."

Modern programs are rather complex. We use "frameworks", or
other libraries, and we often write only a part of a program. The
rest is sometimes implicit, hidden in frameworks or runtimes,
etc.

Regardless, at the core of a program is an "algorithm". Modern
programming does not really fit well into the classic definition of
an algorithm, which can be represented by a flow chart, for
instance. An object-oriented programming style, for instance,
cannot really be described with algorithms, or at least with
algorithms alone.

But, in the broadest possible sense of the word, programming is
all about "algorithms".

Let’s take a look at the "leap year problem" of this lesson: Given a
year, determine if the year is a leap year.

A leap year has 366 days instead of 365. Interestingly, which year
is a leap year is defined algorithmically. For instance, refer to
en.wikipedia.org/wiki/L.eap_year for the definition of leap year.

If the year is divisible by 4, continue.

If the year is not divisible by 4, it is not a leap year. End.
If the year is divisible by 100, continue.
If the year is not divisible by 100, it is a leap year. End.

https://en.wikipedia.org/wiki/Leap_year

If the year 1is divisible by 400, it is a leap year. End.
If the year is not divisible by 400, it is not a leap year. End.

This is an algorithm. We translate this algorithm into a program
in Go. That is the isLeapYear1() function.

If we write the above algorithm slightly differently, then it is
easier to compare:

If the year is divisible by 4, continue.
If the year is divisible by 100, continue.
If the year is divisible by 400, it is a leap year. End.
Else (if the year is not divisible by 400), it is not a leap year. End.
Else (if the year is not divisible by 100), it is a leap year. End.
Else (if the year is not divisible by 4), it is not a leap year. End.

That is precisely the isLeapYear1() function.

This function can be rewritten in the following way, by changing
the order of the if statements:

func islLeapYear1Alt(year int) bool {
var isleap bool
if year%400 == 0 {
isLeap = true
} else {
if year%100 == 0 {
isLeap = false
} else {
if year%4 == 0 {
isLeap = true
} else {
isLeap = false
}
}
}
return isleap

}

Or, this way, by removing the local variable isLeap:

func islLeapYear1Alt(year int) bool {
if year%400 == 0 {
return true
} else {
if year%100 == 0 {
return false
} else {
if year%4 == 0 {
return true
} else {
return false
}
}
}
}

The nested i1f-else statements can be written without nesting.

func islLeapYear1Alt(year int) bool {
if year%400 == 0 {
return true
} else if year%100 == 0 {
return false
} else if year%4 == 0 {
return true
} else {
return false

}
}

These two functions are exactly the same. But, this version is
"flatter" and it is easier to read, and this form is generally
preferred over the nested version. This is the version presented
earlier, the isLeapYear2() function.

Now, all three Boolean expressions can be combined into a single
Boolean expression.

func islLeapYear1Alt(year int) bool {
if (year%4 == 0 && year%100 != 0) || year%400 == 0 {
return true
} else {
return false
}

}

You can easily convince yourself that these two functions behave
exactly the same way for all eight different conditions.

(true/false for 3 boolean expressions yields 8.2 * 2 * 2 = 8.)

The Boolean && operator has a higher "precedence" than the ||

operator in Go. Hence the the parentheses around the &&
expression can be omitted.

That’s the function isLeapYear3() presented earlier, and it is the
final version.

8.3. Summary

A function in Go has a type, and functions can be assigned to
variables, or otherwise manipulated.

AUTHOR'S NOTE

"It Does Not Work"

One of the most frequent complaints that we hear from beginning
programmers is "it does not work". "My program does not work", "this function
does not work", etc.

This is not limited to beginners. Even experienced programmers fall into this
trap. For example, many complain, "this API does not work", "this backend
component does not work", etc.

What they really mean by that is that something does not work as he/she has

expected.

The interesting thing is, in many cases, their expectations are wrong. Not the
programs.

It is often helpful to think carefully what exactly you are doing instead of
jumping into programming right away.

9. BMI CALCULATOR

9.1. Agenda

We will discuss type conversion in this lesson.

e B

9.2. Code Reading

We accept user inputs and calculate the user’s body mass index
(BMI), en.wikipedia.org/wiki/Body_mass_index.

Listing 27. bmi-calculator/main.go

1 package main

2

3 import (

4 "fmt"

5 "os"

6)

7

8 func main() {

9 w, err := readInput("Weight (in pounds)")
10 if err != nil {

11 fmt.Fprintf(os.Stderr, "Error = %v\n
12 0s.Exit(1)

13 }

14

15 h, err := readInput("Height (in inches)")

16 if err != nil {

17 fmt.Fprintf(os.Stderr, "Error = %v\n", err)
18 os.Exit(1)

19 }

20

21 bmi := bmi(w, h)

22 fmt.Printf("Your BMI is %.2f kg/m2\n", bmi)

23 }

, err)

It is not really necessary to use multiple small files in a package,
but for illustration purposes the main package in this lesson has
been divided into 3 files. One for the "main program", and one
for the core calculation (bmi.go), and the other for the input
handling (input.go).

We can even put these files in a different package(s), as we will
see in the next lesson.
Listing 28. bmi-calculator/bmi.go

1 package main

2
3 func bmi(w, h float32) float32 {

https://en.wikipedia.org/wiki/Body_mass_index

4 wInKilos := float64(w) * 0.453592

5 hInMeters := float64(h) * 0.0254

6 bmi := wInKilos / (hInMeters * hInMeters)
7 return float32(bmi)

8 }

Listing 29. bmi-calculator/input.go

1 package main

2

3 import (

4 "bufio"

5 "fmt"

6 "OS"

7 "strconv"
8 "strings"
9)
10

11 var reader = bufio.NewReader(os.Stdin)

12

13 func readInput(prompt string) (float32, error) {
14 fmt.Printf("%s: ", prompt)

15 str, err := reader.ReadString('\n")

16 if err != nil {

17 return 0, err

18 }

19 str = strings.TrimSuffix(str, "\n")

20

21 value, err := strconv.ParsefFloat(str, 32)
22 if err != nil {

23 return 0, err

24}

25 dinput := float32(value)
26

27 return input, nil

28 }

9.2.1. Explanation

We can run the program as before:

go run .

Heres a sample output:

(D Numbers 300 and 75 are user inputs.

This is a big person. (Clearly, we are just using arbitrary
numbers.) Normally, BMI of 25 or less, and above 18.5, is
considered a healthy weight (although it is not entirely scientific).

9.2.2. Grammar

There are so many different integer types, from uint8 and int8 to
uintb4 and int64. And, even machine architecture dependent
uint and int types. Which one to use?

In general, it is a difficult question to answer. We will show a few
examples later in the book. For now, you can just use int in most

cases. (Or, uint, if you are specifically dealing with unsigned
integers.)

For floating point numbers, things are much easier. There are
only two floating point number types to begin with, float32 and
float64.

If you are inclined, you can just use float64 for all floating point
numbers.

The downside is, though, the values of float64 take up the double
amount of space than those of float32. If there is memory or
storage constraint, then you may have to choose float32 for

some, or all, floating numbers. Besides, in most cases, you won’t
need the 64 bit precision. float32 will suffice unless you have
special requirements.

There ia a gotcha, however. All computations should be done
using float64. This is not a must, but highly recommended.

During computations, floating point numbers lose precision, as a
general rule. As you do more calculations, the resulting numbers
become less and less precise.

Therefore, it is important to use higher precision numbers
during calculations. You can convert them back to float32 type, if
you need to, before storing them, etc.

This is why various functions in the math package use float64.

This is a general rule. But, there is a small twist in Go. Go does
not allow implicit conversion from float32 ("single precision") to
floatb4 ("double precision"). This implicit "widening" conversion

or casting, e.g., for integer and floating point numbers, is
generally allowed in most C-style languages. But not so in Go.

Youwll have to explicitly convert between each and every value
which has a different type. This can be rather cumbersome.

So, going back to our general rule of thumb, just use the float64
type for all floating numbers, that is, unless you have a particular
reason otherwise. As a matter of fact, memory is cheap. Storage
is cheap. Computation is cheap. Your time spent in writing a
program might be the most valuable resources.

Having said that, however, we will try to use float32 as much as

possible in this book. These examples are for illustration
purposes, and depending on the context, they may or may not be
as realistic or even practical.

When a program terminates, it returns an "exit code" to the
operating system. This is a convention, or a requirement, on
Unix-like systems.

An integer return value of 0 indicates that the program has run
successfully. Any non-zero value indicates some kind of errors.

In many C-style programming languages, the main() function
returns the exit code as its function return value. When no value
is returned, it is assumed that the exit code is 0, that is, "success".

In Go, the main() function does not return any value. Instead, it
uses a system function, os.Exit().

Normally, we do not need to call this function with @ since that is
the normal termination of a program.

In cases of exceptions, or errors, we call os.Exit(<exit_code>)
with a non-zero value. Unless you are using a particular error
code, the convention is just to use 1 or something comparable, as
is done in the example of this lesson.

Any non-zero value will do for this purpose, that is, to indicate an
unspecified error to the operating system, or the runtime. As is
indicated in the API documentation, however, a value in the

range of [0, 125] is recommended.

9.2.5. APIs

=Package strconv: Package strconv implements conversions to
and from string representations of basic data types.

- func ParseFloat: ParseFloat converts the string s to a
floating-point number with the precision specified by
bitSize: 32 for float32, or 64 for float64. When bitSize=32, the
result still has type float64, but it will be convertible to
float32 without changing its value.

"Package o0s: Package os provides a platform-independent
interface to operating system functionality. The design is Unix-
like, although the error handling is Go-like; failing calls return
values of type error rather than error numbers.

- func Exit: Exit causes the current program to exit with the
given status code. Conventionally, code zero indicates
success, non-zero an error. The program terminates
immediately; deferred functions are not run. For portability,
the status code should be in the range [0, 125].

9.2.4. Deep Dive

The United States is one of the very few countries in the world,
where we still use the "imperial" system of units rather than the
metric system.

The BMI index is computed using the numbers in the metric
system, in particular, kilograms and meters. So, we will need to
do some conversion.

The user inputs in the command line interface are all strings.
They do not have a type in fact, but we treat them as text, or
strings, because CLI is, by definition, character- or text-based.

https://golang.org/pkg/strconv/
https://golang.org/pkg/strconv/#ParseFloat
https://golang.org/pkg/os/
https://golang.org/pkg/os/#Exit

The input, the body weight and height, are numbers. So, we will
need to convert the input text to numbers.

We use, in this example, parseFloat() from the strconv package.
This package includes a number of helper functions to convert
between strings and other primitive types.

The parseFloat() function returns an error, as a second return
value, if the given argument string is not convertible to a floating
point number. The second argument parseFloat() decides the
precision of the parsed number. The parseFloat() function
always returns float64 regardless of the value of this argument.

Here’s a simple function that demonstrates some of the strconv
package functions:

func parseDemo() {
f, el := strconv.ParseFloat("12.99", 64)
fmt.Println(f, el)

i, e2 := strconv.Parselnt("1234", 32, 64)
fmt.Println(i, e2)

d, e3 := strconv.ParseInt("@xabc", 0, 64)
fmt.Println(d, e3)

u, e4 := strconv.ParselUint("@555", 0, 64)
fmt.Println(u, e4)

n, e5 := strconv.Atoi("234")
fmt.Println(n, eb)

n, e5 = strconv.Atoi("100")
fmt.Println(n, eb)

Refer to the API documentation, golang.org/pkg/, for more
information.

https://golang.org/pkg/

Reading an input for the weight is more or less the same as
reading for the height. Therefore, it makes sense to encapsulate
this functionality of reading inputs in a separate function. In the
example, that is the readInput() function. Then we can re-use this
function in multiple places.

This is a reasonable thing to do, say, to increase readability, even
if the function might not be intended to be used outside of the
program, as in this case. The main() function becomes easier to
read.

Although it is not strictly necessary, we put the part of the
program that calculates the actual BMI number in a separate
function bmi(), which we could have called computeBMI() or by
some other names. We even put this function in a separate file,
bmi.go. This is not generally necessary in small programs like
this.

Now, the main() function becomes much easier to read. If we
ignore the error handling,

func main() {
w, _ := readInput("Weight (in pounds)") ©)
h, readInput("Height (in inches)") @
®
@

bmi := bmi(w, h)
fmt.Printf("Your BMI is %.2f kg/m2\n", bmi)
}

@ Read the user’s weight.
@ Read the user’s height.
3 Compute the BMI value.

@ Print out the result.

That’s it. That is the whole program. We could have gone even
further. Something like this:

func main() {
w, h := readWeightAndHeight()
bmi := computeBMI(w, h)
writeQutput(bmi)

}

Or, even

func main() {
readInputAndComputeBMIAndWriteOutput()
}

Clearly, there should be a sweet spot somewhere in between,
depending on the requirements and based on other
considerations and context, etc.

In Go programs, a function is a basic unit of "code reusability".

The implementation of the bmi() function is straightforward. Its
function signature is func(float32, float32) float32.

The body mass index is defined to be a person’s weight divided
by a square of the person’s height, in kilograms and meters,
respectively. Since we accept the user inputs in pounds and
inches, we convert them first, and then compute the BMI.

As stated, as a general rule, it is best to use float64 for
computation even if the argument and return values are in
float32. The function-like notation, float64(), represents type
conversion to float64. Likewise, float32() represents type
conversion to float32.

We use bufio.Reader to read the user input, which we used in
earlier lessons.

Both bufio.Reader.ReadString() and strconv.ParseFloat() can
return an error. It is a good practice to check the error values
unless you are sure that it is safe to ignore them, or that there is
little consequence in doing so.

A function can handle the errors, if it knows how to, or it can
pass them to its caller.

In this example, the main function has the big picture, and it is

probably best to defer the proper error handling to the main
function.

if err != nil {
return 0, err

}

In this particular example, the main() function simply terminates
the program when any of the input values, weight or height, is
invalid. The readInput() function could have done the same, but
normally that is not the function’s job whose primary
responsibility is limited to reading an input text and convert it to
float32.

Incidentally, this function readInput() could have been written in
a somewhat simpler form using fmt.Scanf(), which we have used
before.

Listing 30. bmi-calculator/input2.go

1 package main
2
3 import (

4 "fmt"

5)

6

7 func readInput2(prompt string) (input float32, err error) {
8 fmt.Printf("%s: ", prompt)

9 _, err = fmt.Scanf("%f", &input)

10 return

11}

The readInput2() function uses named return values to further
simplify the implementation.

9.3. Summary

We reviewed basics of type conversion in this lesson, for
example, using strconv.ParseFloat().

We also reviewed error handling some more.

To terminate a program before the entire program ends in a
normal fashion, we use the os.Exit() function.

AUTHOR'S NOTE

Software Stack

Building software is not unlike building a skyscraper, or a pyramid.

There are things that go near the ground, and there are things that go near the
top. Viewing software as a vertical stack of blocks is a very useful metaphor.
Sometimes we look at things from top to bottom, and sometime we look at
things from bottom to top.

In Go, the building blocks are packages. When you use a package from the
standard library, for example, you are putting your block on top of the
standard package block.

The closer to the ground, the packages do smaller but more generic tasks. The
packages in the higher up do broader but more specific tasks.

At the top of the pyramid is the main package of your program, which nobody
else can use.

In Go, packages cannot have circular dependencies. That is, if a package A
uses/imports package B, and the package B uses/imports package C, then the
package C cannot use/import the package A. Doing so would create a
dependency cycle.

This is consistent with our "pyramid" view. A package at a higher level may
depend on the packages below, but not the other way around.

10. BIRTH DATE

10.1. Agenda

We will learn how to use more than one packages in a program.
That is, we will start using our first non-main package in this

lesson.

We will also introduce "Go modules" for the first time in this
book.

Sfo!

10.2. Code Reading

What day of the week was it when you were born?

The program accepts year, month, and day as an input, and
prints out the day of the week for the given date.

It uses the Go module.
Listing 31. birth-date/go.mod

1 module examples/birth-date
2
3go 1.16

The go.mod file is in the same directory as the file that include
the main() function.

Listing 32. birth-date/main.go

1 package main

2

3 import (

4 "fmt"

5 "109"

6

7 "examples/birth-date/week"
8)

9

10 func main() {

11 fmt.Print("Enter year (e.g., 2000), month (1~12), and date (1~31): ")
12

13 var y, m, d int

14 if _, err := fmt.Scan(&y, &m, &d); err != nil {

15 log.Fatalln("Scan for y, m, and d failed:", err)
16 }

17

18 weekday := week.Weekday(y, m, d)

19 fmt.Println("weekday =", weekday)

20 }

The weekday.go file is put in a subdirectory, week.
Listing 33. birth-date/week/weekday.go

1 package week

2

3 import (

4 "time"

5)

6

7 func Weekday(year, month, day int) time.Weekday {

8 date := time.Date(year, time.Month(month), day, @, @, @, @, time.Local)
9 return date.Weekday()

10 }

10.2.1. Explanation

You can run the program as before using go run:

You get the following output:

@

(D Numbers 2021, 5, and 5 are user inputs. The date happens to be the day when this
book is first published.

10.2.2. Grammar

Go was originally created to be used uniformly over the Internet.
All libraries, or packages, across the world (with proper
permission) can be used just like any other packages from the
standard libraries or those from your own computers.

It was a lofty goal, but it was just an ideal. In practice, the
libraries change. Their code change. They are often released as
different versions. For example, instead of "version 1.0.0", a
newer version might be released with "1.1.0" or even "2.0.0", etc.

The dependency management is one of the most important
aspects of software engineering.

Go, as was initially released, did not have a tool for dependency
management. From the early days, the need was obvious, and
many developers started using "home grown" dependency
management systems.

Eventually, the Go team released an official tool for dependency
management. That is the "Go modules".

With a bit of over-generalization, if you write more than one

programs on your computer, then you will need to use Go
modules. That is, every Go programmer, for every program,
needs to use Go modules.

NOTE: We will not discuss, in this book, the old system of using
the global GOPATH variable.

Go does not have a concept of a "project” or something similar.
The package is the fundamental unit as far as the Go
programming language is concerned.

A Go module provides a higher-level construct, which behaves
like a "project"”.

A Go module can include one or more packages. It includes
special files like "go.mod" in its root directory, and it provides a
uniform dependency management over all packages under that
go module directory.

The Go module is comparable to "venv", or other virtual
environment tools, in Python. (But, not to pip packages, which

more or less correspond to packages's in Go.)

It is comparable to solutions and projects in the DotNet
framework (e.g., for C#). It is comparable to a package (e.g.,
"project.json”) in Node.js (Javascript/Typescript). Rust has a cargo
project. Java uses tools like Maven and Gradle to manage their
project dependencies.

Go uses a "module"” to manage library/package dependencies,
among other things.

You can create a Go module with the "go mod" command.

The name of a module can be a string with some restrictions. A
path- or subpath-like string works fine in most cases. A URL-like
string works fine in most cases. The module name, however,
cannot start or end with a slash /.

The names of the packages within a module are interpreted
relative to the module name.

Here’s an example go.mod file:

module first-steps/example-33 ®
go 1.16 @
require example.com/other/package v1.0.1 ©)

@ It declares a module with name "first-steps/example-33".
@ It declares the Go language version used in this module.

3 The packages in this module depend on the version "1.0.1" of the library
"example.com/other/package".

You need not include dependencies on the packages in the
standard library. Also, you do not specify inter-dependencies
among the packages within the same module.

Most of the example code used in this book do not have external
dependencies, and hence Go modules are not needed, strictly
speaking. However, as indicated, a Go module does a little bit
more than external dependency management. It is still a good
practice to use modules to manage your "projects".

If you have an external dependency in your project, specify the

dependencies in the "go.mod" file, as shown in the require line in
the above example, and you can use the Go command go get to
download those dependent packages to your system. You can
then import those packages in your program packages and use
their exported names.

A Go module, or a Go program, can include multiple packages. A
runnable Go program should have one and only one special
package, main package. A Go module can have at most one main
package within its subfolder hierarchy, starting from the module
root directory.

Although the language specification does not explicitly specify, a
package in Go corresponds to a folder in a file system. All source
files in a folder should belong to the same package (with one
possible exception, as we will see later). All source files of a
package should be in one directory.

This is how it works with the current Go compiler tools.

If you have the main package in a module, then the main package
directory should be the root directory of the module, where the
"go.mod" file is.

When you refer to a package in a subfolder of a module root
folder, you use the module name as a prefix to the package name.

If you have a package under a directory "sub", within a module
with name "first-steps/example-33", for instance, then you can
refer to that package as "first-steps/example-33/sub” from other
packages in the module.

For example,

import (
"first-steps/example-33/sub"
)

It is generally a convention to use the subfolder’s name, the last
segment in the file path, as a package name, if possible.

In a Go package, the names (e.g., identifiers of variables,
constants, or functions) that are capitalized are exported. Go
does not use special keywords like "export" or "public" as in
other programming languages.

Exported names of a package can be used by other packages by
importing the package.

Names that start with lowercase letters are not exported, and
they can be accessed only within the package in which they are
declared.

10.2.3. APIs

"Package log: Package log implements a simple logging
package. It defines a type, Logger, with methods for formatting
output. It also has a predefined 'standard' Logger accessible
through helper functions Print[f|In], Fatal[f|In], and
Panic[f|In], which are easier to use than creating a Logger
manually. That logger writes to standard error and prints the
date and time of each logged message.

> func Fatalln: Fatalln() is equivalent to Println() followed by
a call to os.Exit(1).

"Package time: Package time provides functionality for
measuring and displaying time. The calendrical calculations

https://golang.org/pkg/log/
https://golang.org/pkg/log/#Fatalln
https://golang.org/pkg/time/

always assume a Gregorian calendar, with no leap seconds.

- func Date: Date returns the Time corresponding to yyyy-mm-

dd hh:mm:ss + nsec nanoseconds in the appropriate zone for
that time in the given location. The month, day, hour, min,
sec, and nsec values may be outside their usual ranges and
will be normalized during the conversion. For example,
October 32 converts to November 1.

° type Time: A Time represents an instant in time with
nanosecond precision. Programs using times should
typically store and pass them as values, not pointers. That is,
time variables and struct fields should be of type time.Time,
not *time.Time.

° type Month: A Month specifies a month of the year (January =
1,...).

- type Weekday: A Weekday specifies a day of the week (Sunday
=0, ...).

* func Weekday: Weekday()"* returns the day of the week for
the given time.

> var Local: Local represents the system’s local time zone. On

Unix systems, Local consults the TZ environment variable to
find the time zone to use. No TZ means use the system
default /etc/localtime. TZ="" means use UTC. TZ="foo" means
use file foo in the system timezone directory.

10.2.4. Deep Dive

In Go, a package is a basic unit of code sharing.

https://golang.org/pkg/time/#Date
https://golang.org/pkg/time/#Time
https://golang.org/pkg/time/#Month
https://golang.org/pkg/time/#Weekday
https://golang.org/pkg/time/#Time.Weekday
https://golang.org/pkg/time/#Location

The program of this lesson include an extra week package in
addition to the main package. The week package includes one
source file, weekday.go, in this example.

package week
/]

The source file includes one function, func Weekday(year, month,
day int) time.Weekday. This function Weekday() is exported from
the week package since its name starts with a capital letter, W, in
this case.

The main() function uses this function via import package
declaration.

import "examples/birth-date/week"

The import path is a concatenation of the module name,
"examples/birth-date", and the last segment of the directory path,
"week", where the source file(s) of the week package reside. They
are combined as if the "week" folder is a subdirectory of a
(hypothetical) folder named "examples/birth-date", the module
name.

Through the import statement, all exported names of the week
package are now available in this file, "main.go".

The names in the week package can be accessed using the package
name as a prefix. For example,

day := week.Weekday(y, m, d)

It should be noted that the week in this prefix comes from the
package week line of the source file weekday.go, which belong to
the week package, not from the import "examples/birth-date/week"
statement. By convention, we generally use the name of the

package as a folder name of the package, but they could be
different.

The import spec syntax is dictated by the Go tool chain, whereas
the package names and the use of their exported names are
governed by the Go language specification.

If you would like to use a different name than the default
package name, then you can add a desired name to the import
declaration. For example,

import w "examples/birth-date/week"

Now, the week package can be referred to as w in this source file.
For example,

package main
import w "examples/birth-date/week"

func main() {
/]
day := w.Weekday(y, m, d)
/] ...

}

The Weekday() function of the week package essentially "looks up”
the given date (on a calendar), and it returns the day of the week
for the specified date.

The Date() function from the time package return a value of type

time.Time. The Time type has a method Weekday(), which returns
the day of the week of the given date.

We have not really discussed "methods" yet, but a method is a
function, with a slightly different syntax. In this example, we call

the Weekday() function, or method, on the variable date (of type
Time):

weekday := date.Weekday()

Its returned value, via week.Weekday(y, m, d), is then printed in
the main() function, and the program terminates.

The if statement in Go can have an initialization clause. In this
example,

var y, m, d int

if _, err := fmt.Scan(&y, &m, &d); err != nil {
log.Fatalln("Scan for y, m, and d failed:", err)

}

The statement _, err := fmt.Scan(&y, &m, &d) is executed first
before the Boolean expression, err != nil in this case, is
evaluated.

The fmt.Scan() function can return an error. If there is no error,

then we proceed with the read numbers, y, m, and d after the if
statement block.

If there is a non-nil error, on the other hand, then we log the
error and terminate the program. The log.Fataln() function

outputs the error (just like fmt.Println()) and then it calls
0s.Exit() with non-zero error code 1.

A statements like if err := doSomething(); err != nil { /* Do
error handling */} is one of the commonly used "idioms" in Go.

10.3. Summary

We introduced Go modules in this lesson. A module helps
manage dependent external packages, among other things.

A Go module can contain more than one packages. Packages that
are in the same module and are used by the main package should

be imported.

AUTHOR'S NOTE

Don’t Be a Parrot

It is not uncommon to see a beginning programmer copy code from a book to a
computer. Or, copy code on the Internet to his/her computer.

Often they type the code, not even just copy and paste, and they claim that they
learn better by actually typing.

There is no evidence for that. If anything, that will be a very inefficient way to
learn programming. While imitation is an important part of learning a new
language, or a new skill, mindless imitation would not enhance your speaking
or writing skills very much.

The author made a conscious decision not to release the sample code of this
book. For one thing, it has little value, really. But, there are other reasons as
well. In his opinion, downloadable code samples do more harm than good.

Often learning students download a code sample and run it on their computers.
And, they think that that’s the end of of it. It works. Now, let’s move on. In doing
so, however, they have learned very little. On the contrary, they only ended up
with the false sense that they were able to "write" the same code because they
compiled the code and ran it. Or, because they even "typed" the code.

Obviously, they did not write the code.

Although the author has asserted that this book is "for reading", if you are
inclined to try out some sample code in this book, then here’s a suggestion.

Learn the main points of the lesson.

Try to understand the sample code, and what it does.

Then close the book.

Recall the problem which the sample code is trying to solve.
Create your solution to the problem.

Gk Wb

You may, or more likely may not, end up with the same code. But, that’s
perfectly all right.

If you get stuck, then refer back to the example code. Try to understand what it
does, and how it does it. And then, close the book and try again.

11. GREATEST COMMON DIVISOR

11.1. Agenda

We will take a look at recursion in this lesson.

11

11.2. Code Reading

We will implement a function to find the greatest common
divisor of two given numbers.

11.2.1. "go.mod"

We start by creating a Go module:

The module names are largely arbitrary unless you are planning
to let others use one or more packages in your module.

Listing 34. greatest-common-divisor/go.mod

1 module examples/greatest-common-divisor
2
3go 1.16

11.2.2. Package main

We will see two versions of the greatest common divisor
functions, one using recursion and the other using iteration.

We use a constant useRecursive to switch between these two
implementations.

Listing 35. greatest-common-divisor/main.go

1 package main

2

3 import (

4 "examples/greatest-common-divisor/gcd”
5 "fmt"
6)

7

8 const useRecursive = true

9

10 func main() {

11 var a, b int64 = 30, 12

12 fmt.Printf("a = %d, b = %d\n", a, b)
13

14 var fn func(int64, int64) int64

15 1if useRecursive {

16 fn = gcd.GCD1

17 } else {

18 fn = gcd.GCD2

19 }

20

21 g := fn(a, b)

22 fmt.Printf("ged = %d\n", g)
23 }

11.2.3. Package gcd

The first implementation using recursion:
Listing 36. greatest-common-divisor/gcd/gcdl.go

1 package gcd

2
3 func GCD1(a, b int64) int64 {
4 if b==10 {
5 return a
6 } else {
7 return GCD1(b, a%b)
8
9

}
}

The second implementation using iteration:
Listing 37. greatest-common-divisor/gcd/gcd2.go

1 package gcd

2

3 func GCD2(a, b int64) int64 {
4 for b =0 {

5 a, b =0>b, a%b

6 }

7 return a

8 }

11.2.4. Explanation

The program includes two different implementations for
computing the greatest common divisor of two integers.

Depending on the value of useRecursive, one or the other
implementation is used.

If you run the program with go run ., with either useRecursive ==
true or useRecursive == false, you get the following output:

11.2.5. Deep Dive

The program uses a Go module, as in the previous lesson. In fact,
all the examples in this book use Go modules although its benefit
is not entirely obvious in certain situations.

You can refer back to the the previous lesson, or you can refer to
the official doc, Go Modules Reference, for more information.

It includes two packages, main and gcd.

Each source file in a directory, which happens to be named "gcd",
starts with the package declaration:

package gcd

The name of the 6CD1() function starts with a capital letter G, and
hence it is exported. Its signature is func(intb4, int64) int64.

One interesting thing about the GCD1() function is that it calls
itself in its function body.

func GCD1(a, b int64) int64 {
if b==0
return a

https://golang.org/ref/mod

} else {
return GCD1(b, a%b)
}
}

It is called "recursion” in programming.

The greatest common divisor (GCD) of two positive integers is the
largest positive integer that divides each of the integers. For
example, the GCD of 8 and 12 is 4, and the GCD of 9 and 12 is 3.

The GCD1() function implements what is known as the Euclidean
algorithm. Here’s a link to the Wikipedia article:
en.wikipedia.org/wiki/Greatest_common_divisor.

As Euclid first discovered, the GCD of two positive numbers, a
and b, is the same as that of b and the remainder of a divided by
b. When the remainder becomes zero, the other value in the pair,
a in this case, is the greatest common divisor.

That is precisely what the GCD1() function implements.

TIP: You do not have to "understand" why, or how exactly, an
algorithm works in order to be able to use it. You will just have to
know what the exact steps are to implement the algorithm.

Recursive algorithms, or implementations, say, for a given
problem, tend to appear more natural in many cases. They are
not, however, the most efficient implementations, for the given
problem, in general.

The second version of the GCD function, GCD2(), implements the
logic in an iterative way.

https://en.wikipedia.org/wiki/Greatest_common_divisor

func GCD2(a, b int64) int64 {
for b !=0 {
a, b =Db, a%b
}

return a

}

This is the same Euclidean algorithm. It just uses the for loop
iteration to find the greatest common divisor.

Note that, in each iteration of the loop, the pair a, b is replaced
by b, a%b. Eventually, the remainder operation b = a%b will yield
0, and the other value of the pair, 3, is the GCD.

In the main() function, we declare a variable fn of type

func(int64, int64) int64. Both 6CD1() and GCD2() functions have
the same type, and hence they can be assigned to this variable,
fn.

Calling fn() will be the same as calling GCD1() or GCD2()
depending on the value of useRecursive.

The program then prints out the result, and it terminates.

11.3. Summary

We introduced recursion in this lesson. We also reviewed
function types.

AUTHOR'S NOTE

What It Takes to Be a Good Programmer

Programming, or more broadly software development, involves a lot of

different skills and talents.

First, you will need to be an expert in the language you use in programming.
This is actually the easiest skill you can learn. Programming languages have
well-defined grammar, unlike spoken languages, with a finite set of rules.
Resources like this book can help you learn the languages.

Second, you will need to be familiar with commonly used libraries and APIs. It
takes experience. The longer you program, the more familiar you will become
with various libraries. It is not "difficult", but it just takes time.

Third, you will need some problem solving skills. This is not something you can
learn by reading books or anything like that. But, you will get better over time
as you train yourself by working on more problems. It helps to learn some
common algorithms as well. "Familiarity" with diverse set of problems will be
definitely useful when you face a new problem.

And, eventually, you will need to develop system design skills. This is different
from programming skills. Creating a large software is like "building a pyramid",
using the analogy we used before, or building a "starship" using lego blocks.
You can only learn this skill by actually doing it, by building a large scale
software.

12. REVERSE A NUMBER

12.1. Agenda

We will review Go’s testing framework in this lesson.

12.2. Code Reading

This program "reverses" an integer number. That is, given a
number 1234, it produces another number 4321.

12.2.1. Package main

The main() function handles input and output, and it delegates
the core logic to another package.

Listing 38. reverse-number/main.go

1 package main

2

3 import (

4 rn "examples/reverse-number/reverse"
5 "fmt"

6 ||'Logll

7)

8

9 func main() {

10 fmt.Print("Enter a number: ")

11

12 var num int64

13 if _, err := fmt.Scan(&num); err != nil {

14 log.Fatalln("Scan for number failed:", err)
15 }

16

17 reversed := rn.ReverseNumber(num)

18 fmt.Printf("Reversed number: %d\n", reversed)
19 }

12.2.2. Package reverse

The core function, ReverseNumber (), of this program is defined in
a different package, reverse.
Listing 39. reverse-number/reverse/reverse.go

1 package reverse
2
3 func ReverseNumber (num int64) int64 {

4 var reversed int64 = 0
5 for num != 0 {

6 reversed = reversed*10 + num%10
7 num /= 10

8 }

9 return reversed

0}

Note that the main.go file is located in a folder reverse-number
(e.g., in a certain directory path) and the reverse.go file is located
in its subfolder reverse-number/reverse.

12.2.3. Package reverse_test

We have a couple of simple unit tests for the ReverseNumber ()
function, depending on how you count the "tests". The test file is
put in the same directory as reverse.go.

Listing 40. reverse-number/reverse/reverse_test.go

1 package reverse_test

2

3 import (

4 "examples/reverse-number/reverse"
5 "testing"

6)

7

8 func TestReverseNumber(t *testing.T) {

9 var number int64 = 1234

10 var expected intb4 = 4321

11 got := reverse.ReverseNumber (number)

12 if got != expected {

13 t.Errorf("ReverseNumber(%d) = %d; want %d", number, got, expected)
14 }

15

16 number = 24356879

17 expected = 97865342

18 got = reverse.ReverseNumber(number)

19 1if got != expected {

20 t.Errorf("ReverseNumber(%d) = %d; want %d", number, got, expected)
21 }

22}

12.2.4. Explanation

You can run the program as before from the main package
directory:

You get the following output:

@ 1235678 is a user input.

You can run the test program(s) in the reverse folder as follows:

It will output something like this,

Or, if the test fails,

12.2.5. Deep Dive

Testing is built into the standard Go tool chain. This is one of the
nicest features of Go.

It is beyond the scope of this book to discuss the program testing
methodologies in general. We will do some unit testing in this
lesson, and possibly in some future lessons.

We will try to provide an absolute minimum so that you can start
testing your code right away. There are more resources on the
Web if you want more thorough introduction to testing in Go.

The Go testing framework uses certain conventions.

For example, a file that includes test code should have a name
that ends with _test.go. A function that starts with Test and a
capital letter after that is a test function, which will run with the
go test command.

A Go test function has a signature func(*testing.T). The

argument of type *testing.T will be used to manage the test
states, and what not, by the testing framework.

The testing package needs to be imported in all test files.

import "testing"

As for where to put the test files, there are a few different
conventions across different programming communities. Some
prefer to put src files and test files in separate folders, for
example.

In Go, it is best to put the test file(s) in the same directory as the
file being tested.

You can put the test files in the same package as the source files.
Or, you can put the test files in a different package (but in the

same directory).

As mentioned, this is an exception to the "one package - one
folder" rule imposed by the Go compiler tools. You can put test
files in a special test package named <sourcepackage>_test. That
is, if the source files belong to a package named reverse, then you
can put the test files in a package named reverse_test.

If you are primarily interested in testing exported names, as if
you are an client of the source package, then it is better to use the

xxx_test package.

If you want to test all internal implementations, then the test files
should be put in the same package as the source files.

You cannot mix, however. You can have only one test package in
a folder for all test files, whether it is the source file package or it

is the _test package.

Now the type testing.T provides a number of functions and
other types to make testing easier.

One thing to note is that Go testing framework does not provide
the "assert" type APIs.

It is almost universal across different test frameworks, across
different programming languages, to have some kind of "assert”
functions, which determine "pass" or "fail" of a test scenario. But
Go does not follow such conventions.

In fact, Go’s standard testing framework is much simpler.

You simply use conditional statements to test, for instance, if a

certain evaluation works as expected.

When you determine that your code does not work as expected,
you explicitly call testing.T.Fail(), or its variations, to let the
testing framework know.

In this example,

func TestReverseNumber(t *testing.T) {
var number int64 = 1234
var expected int64 = 4321
got := reverse.ReverseNumber(number)
if got != expected {
t.Errorf("ReverseNumber(%d) = %d; want %d", number, got, expected)

}
}

The t.Errorf() function first calls t.Logf() to log the error
message, and then it calls t.Fail() to report it as a test failure.

TIP: In order to view test log messages even when a test does not
fail, use go test -v.

"Package testing: Package testing provides support for
automated testing of Go packages. It is intended to be used in
concert with the "go test" command, which automates
execution of any function of the form func TestXxx(*testing.T)
where Xxx does not start with a lowercase letter. The function
name serves to identify the test routine.

°type T: T is a type passed to Test functions to manage test
state and support formatted test logs. A test ends when its
Test function returns or calls any of the methods FailNow,
Fatal, Fatalf, SkipNow, Skip, or Skipf.

https://golang.org/pkg/testing/
https://golang.org/pkg/testing/#T

* func (*T) Fail: Fail marks the function as having failed but
continues execution.

The implementation of the example test function above is
otherwise straightforward. Except for the use of type testing.T, it
is just a normal Go function.

As a general comment, you do not have to use testing
frameworks to test your code. In certain cases, you can just
manually test your code, and that can be sufficient. As we have
been doing in this book, you can just use the main() function for
quick and dirty testing as well.

Use of testing frameworks is recommended in general, however.
For many projects, automated testing is a must, for example, to
catch regressions during an active development, etc.

If you have multiple packages, e.g., in the same Go module, then
you can run go test for all packages as follows:

The full coverage of testing is beyond the scope of this book, but
the testing package includes a lot of features which will help
make your testing easier, among other things. You can refer to
the official documentations for more information. For example,
the package doc, golang.org/pkg/testing/, includes all the APIs that
you will need to create/run test cases.

The main() function of this lesson is simple. It uses fmt.Scan() to
get an integer input, and it calls ReverseNumber ().

https://golang.org/pkg/testing/#T.Fail
https://golang.org/pkg/testing/

One thing to note is that the source file import statement uses a
syntax that we have not seen before.

import rn "examples/reverse-number/reverse”

This import declaration renames the default package name of
reverse to rn. Then, in this source file, we can refer to the
package as rn rather than reverse.

That is what we do when we call ReverseNumber():

reversed := rn.ReverseNumber(num)

12.3. Summary

We reviewed testing in Go.

The Go testing framework uses certain naming conventions. For
example, a file that includes test code should have a name that

ends with _test.go. A function that starts with Test (and a capital
letter after that) is a test function.

You use go test command to run the test cases.

12.4. Exercises

1. The example code of this lesson has minimal error
handling. What would you do if the reversed number
overflows (when the input number is a valid int64)?
Modify the code to handle such an error.

2. Implement ReverseNumber () using recursion.

3. Run the unit test for your recursive ReverseNumber()
function.

AUTHOR'S NOTE

Request for Review

Congratulations! You just finished the first part of this book. This could have
been the most difficult part, depending on where you are coming from. The
real fun starts from the second part, Moving Forward, where we cover Go’s
unique features like structs and methods as well as interfaces.

If you find this book helpful in any way, then please leave an honest review on
Amazon for other people, who may find this book useful in learning
programming, and programming in Go.

Here’s the link to the book page on Amazon:

= The Art of Go - Basics: Introduction to Programming in
Go

Now, let’s move forward! @

https://www.amazon.com/dp/B08WYNG6YP/

REVIEW - PACKAGES,
FUNCTIONS, VARIABLES

Key Concepts

Packages

Packages are what Go programs are made up of. Programs
start running in package main. You can import other packages
using an import declaration. Your non-main packages may be
imported by other programs as well.

A package comprises one ore more source files. Each source
file must begin with the package declaration and the import
statement(s), if needed.

Exported Names

A top-level name in a package that starts with a capital letter
is exported. When importing a package, you can refer only to
its exported names. Non-exported names are not accessible
from outside the package.

Functions

A function can take zero or more parameters. Function
arguments are declared with zero or more pairs of a variable

name and its type, separated with comma ,. A function can
return zero or more results. Functions declare their return
values using their types. Return variables can be optionally
declared with names as well.

Basic Types
Go’s basic types includes the following:

bool string int int8 1int16 1int32 1intb4 uint uint8 uint16 uint32 uintbd
byte rune float32 floatb4

All types but a few have fixed widths. int and uint types can
be 32 or 64 bit wide depending on the system architecture.

Variables

The var statement declares a list of variables. In a var
declaration, variable names are followed by their respective
types. A var declaration can include initializers. If an
initializer is present, the type can be omitted. The type will be
"Inferred" based on the type of the initializer.

A var statement can be at package or function level. Inside a
function, the :=" short assignment statement can be used in
place of a var declaration with implicit type. At a package
level, every statement must begin with a keyword (var, func,

...), and the short variable declaration cannot be used.

Zero Values

Variables declared without an explicit initial value are given
their zero value, for example, 0 for numeric types, false for
the boolean type, and "" (the empty string) for strings.

Constants

Constants are declared like variables, but with the const
keyword. Constants can be string, boolean, or numeric values,
including bytes and runes. Constants cannot be declared using
the short variable assignment (:=) syntax.

Type Conversions

There is no implicit conversion between items of different
types in Go. For example, an assignment of a value of one type
to a variable with another type requires an explicit

conversion. The expression T(v)' converts the value v to the
type T.

Type Inferences

When declaring a variable without specifying an explicit type,
the variable’s type is inferred from the value on the right
hand side. When it is typed, the new variable is of that same

type.

Flow Control

For Statement

The classic for loop has three components separated by
semicolons, (1) the (optional) init statement: executed before
the first iteration, if present, (2) the condition expression:
evaluated before every iteration, and (3) the (optional) post
statement: executed at the end of every iteration, if present.
Both semicolons are required if either of the init or post
statements are present. If neither exists, both semicolons can
be omitted. In this case, the for loop is like the while loop in
other programming languages.

If the condition expression is omitted, then it is equivalent to
having a Boolean value true.

For Range

The for range loop iterates over an array, slice, or map. When
ranging over a slice, two values are returned for each
iteration. The first is the index, and the second is a copy of the
element at that index.

If Statement

The if statement can start with a short statement to execute
before the condition. Variables declared by the statement are
only in scope within the if and any of the else blocks.

Advanced Types

Pointers

A pointer is a reference type. The type *T is a pointer to a
value of type T. The & operator generates a pointer to its
operand. The * operator denotes the pointer’s underlying
value. Pointer’s zero value is nil.

Arrays

An array is a type for a sequence of values of a fixed length.
The type [n]T is an array of n values of type T. An array’s
length is part of its type.

Slices
A slice is similar to an array, but it is dynamically-sized. It is a
view into the elements of an underlying array. The type [T is
a slice with elements of type T. A slice is formed by specifying

two indices, a low and high bound, separated by a colon.
Slices are like references to arrays. The zero value of a slice is

nil.

A slice has both a length and a capacity. The length of a slice is
the number of elements it contains. The capacity of a slice is
the number of elements in the underlying array, counting
from the first element in the slice. The length and capacity of a
slice s can be obtained using the expressions len(s) and cap(s).

Slices can be created with the built-in make() function. A new
slice can be also initialized with a slice literal.

To append a new element(s) to a slice, the built-in append()"
function is used, which returns a new slice variable. If the
backing array of s is too small to fit all the given values a
bigger array will be allocated. The returned slice will point to
the newly allocated array.

Error Handling

Errors

Go programs use function’s return values to express error
states. The error type is a built-in interface that is used for
error values. When a function returns an error value, the
calling code should handle errors by testing whether the error
i1snil or not. A nil error denotes success (i.e., "no error"), and
a non-nil error denotes failure.

II: MOVING FORWARD

There is no royal road to learning.

13. HELLO MORSE CODE

13.1. Introduction

Morse code is a method for encoding a set of alphabets and
numbers used in telecommunications. It uses a combination of
two types of signals, short (or, "dot") or long (or, "dash"), along
with various length "gaps", to represent characters, and words.

For more information, refer to other resources on the Web. For
example, the wikipedia page: en.wikipedia.org/wiki/Morse_code

In this lesson, we will write an "encoder" (alphabets to Morse
code) and a "decoder" (Morse code to alphabets) in the Go
programming language.

This is not a realistic program, and it is not intended to be a
practical example. However, the concepts presented here might
be useful in general programming, especially in the context of
communications.

The program is primarily written as a library, and it is included
in the morse package. The main() function in this example, as in
many projects in this book, is mainly used as a "quick and dirty"
test driver. As stated, the main package is not shareable.

https://en.wikipedia.org/wiki/Morse_code

_’f
13.2. Code Review
13.2.1. Package main

Here’s a sample solution.

The morse package exports two functions, Encode() and Decode().
The main function calls these two functions with some sample
data, and just prints out the results for visual inspection.

Listing 41. morse-code/main.go (lines 8-16)

8 func main() {

9 text2 := "Hello, World!"

10 code? := morse.Encode(text2)

11 fmt.Printf("text: %s => code: %s\n", text2, code?)

12

13 codel := ".... . .-, -o. --- -- com- - - e
14 text1 := morse.Decode(codel)

15 fmt.Printf("code: %s => text: %s\n", codel, text1)
16 }

13.2.2. Package morse

For this example, we simply use strings for both English text and
Morse code. We define a mapping from alphabets (and numbers
and punctuations) to Morse code, and also its reverse mapping.

Listing 42. morse-code/morse/code.go (lines 8-18)

8 var morseCode = make(map[byte]string, 26*2+10+16)
9

10 func init() {

11 for k, v := range code {

12 morseCode[k] = v

13 if unicode.Isletter(rune(k)) {

14 u := []byte(strings.ToUpper(string(k)))[0]
15 morseCode[u] = v

16 }

17 }

18 }

Listing 43. morse-code/morse/code.go (lines 20-26)

20 var reverseCode = make(map[string]byte, 26+10+16)
21

22 func init() {

23 for k, v := range code {

24 reverseCode[v] = k

25 }

26 }

Note the special package function, init(), to initialize two
package scope variables, morseCode and reverseCode.

Here we use an internal variable code of a type map to define the
alphabet to (the string representation of) Morse code.

Listing 44. morse-code/morse/chars.go (lines 3-9)

3 var code = map[byte]string{
4 'a': ".,-"

5 'b': “-...%,

6 ‘'c': "-.-",

7 'd':"-.0Y,

g 'e': "."

9 f':"..-"

Listing 45. morse-code/morse/chars.go (lines 54-60)

54 '+': ",.-.-.",

55 ‘-t t-lL-",
5 ' ' "LL--L-",
57 ""tio"o-lu-u",
58 '$': "---.--.",
5 '@': ".--.-.",
60 }

In principle, characters in Go are runes, and using the rune type
for the English alphabets, and numbers and punctuation
symbols, would have been more appropriate. For the ASCII
characters, however, runes and Dbytes are roughly
interchangeable.

As explained earlier, strings in Go have a dual nature. A string
can viewed as a sequence of bytes, or as a sequence of runes.

"Encoding" a text amounts to mapping the alphabets of the text to
the corresponding strings representing the Morse code. In
practice, Morse code involves a few different length of gaps, etc.
We will represent those gaps with spaces.

The implementation of Encode() is straightforward.
Listing 46. morse-code/morse/encode.go (lines 7-21)
7 func Encode(text string) string {

8 var sb strings.Builder
9 for _, b := range []byte(text) {

10 if ¢, ok := morseCode[b]; ok {

11 sb.WriteString(c + " ")
12 } else {

13 ifb==""/{

14 sb.WriteString(" ")
15 } else {

16 sb.WriteString("?7?")
17 }

18 }

19 }

20 return sb.String()

21}

If a character is not representable by a Morse code, then we
simply output "???" in this example.

Implementing the Decode() function requires a little more
thinking. This is not necessarily an artifact of our toy example.
Decoding Morse code is inherently more complicated than
encoding.

This is because while the unit of a signal is dots and dashes (and
gaps) it is a series of these signals (one or more) that represent a
single character in English.

The following Decode() function implements one of the simplest
solutions. One can probably implement this more efficiently
using more advanced algorithms.

Listing 47. morse-code/morse/decode.go (lines 9-48)

9 func Decode(code string) string {
10 var sb strings.Builder

11 var char []byte

12 var spaceCount = 0

13 for _, b := range []byte(code) {

14 ifbl="'"{
15 if spaceCount > 0 {
16 if len(char) > 0 {

17 letter, err := findChar(char)

18 if err != nil {

19 fmt.Println(err)
20 sb.WriteString("?"
21 } else {

22 sb.WriteString(string(letter))
23 }

24 }

25 char = []byte{}

26

27 if spaceCount > 1 {

28 sb.WriteString(" ")
29 }

30 spaceCount = 0

31 }

32 char = append(char, b)

33 } else {

34 spaceCount++

35 }

36 }

37 if len(char) > 0 {
38 letter, err := findChar(char)
39 if err = nil {

40 fmt.Println(err)

41 sb.WriteString("?")

4?) } else {

43 sb.WriteString(string(letter))
44 }

45 }

46

47 return sb.String()

48 }

Listing 48. morse-code/morse/decode.go (lines 50-57)

50 func findChar(bytes []byte) (byte, error) {

51 str := string(bytes)

52 if ¢, ok := reverseCode[str]; ok {

53 return ¢, nil

54 1} else {

55 return 0b@, errors.New(fmt.Sprintf("Unrecognized code: %s", str))
56 }

57 }

This particular implementation relies on the assumption (specific
to this example) that one space is used between characters and

more than one spaces are used between words.

Note that the function findChar() is not exported from this
package as it uses the lowercase first letter for its function name.

All exported names (variables, functions, etc.) should be
documented, as a general practice. As stated, however, the
content of the book serves as a documentation for these
examples, and the sample programs in this book are mostly
undocumented.

We will discuss Go’s "doc comments" in later lessons.

If you run the program as before:

You get the following output:

13.3. Pair Programming

Let’s start from the beginning.
When you are given a problem, as a general rule, it is best to
solve the problem from top to bottom. That is, from the high-level

organization, description, understanding, etc. to the lower-level
details. This is often known as "design" in software engineering.

Then, you start to implement lower level components first and

build upward.

This is a general guideline in solving computational problems.
This kind of strategy may not work in all problem domains.

In this particular example, we may need to read an input in some
form (presumably, converted from the Morse code signals,
electrical or otherwise), and convert them into English. On the
flip side, we can convert an English text to a sequence of symbols
in certain formats (which can be read and converted to Morse
code signals in some way, for instance).

Without considering specific (executable) programs, therefore,
we can imagine that we will need the following "API" to support
a broad range of programs.

func Encode(text string) (code string) { /* ... */ }
func Decode(code string) (text string) { /* ... */ }

In this particular example, as with most examples in this book,
we do not have well-defined, and specific, requirements. In
reality, we will most likely start from a set of particular
requirements, which will likely constrain our "API design".

In this lesson, we will use the use cases of the main() function as a
requirement. Then, this API design will most likely support those
use cases.

Now, how do we implement the Encode() function?

As stated, "encoding" is simply a "dictionary lookup”, in this
example. The Go programming language provides a builtin data
type map, which we can use for this purpose. (map is a keyword in

Go.)

= map: A map is an unordered group of elements of one type,

called the element type, indexed by a set of unique keys of
another type, called the key type. The value of an uninitialized
map is nil. The comparison operators == and != must be fully

defined for operands of the key type.

A map is another reference type in Go. (One other reference type
we have seen so far is slice.)

It is like a hashtable, a dictionary, or a map in other languages. It
stores key-value pairs, and it provides a way to retrieve the value
corresponding to a given key.

A variable of the map type can be declared as follows:

var myMap map[string]int

Note the syntax. In this example, the type of keys is string, and
the type of values is int.

A map can be initialized with an empty value:

myMap := map[byte]float64{}

Or, a map can be created with the make() function with an
(optional) initial capacity:

myMap := make(map[string][]byte, 10)

In this example, the value type is []byte, a slice of bytes, and its
initial capacity is 10. The types of map values can be just about
anything, but the key types are limited to those that are
"comparable".

The language spec defines this more precisely, but in short,
comparable types are boolean, numeric, string, pointer, channel,
and interface types, and structs or arrays that contain only those
types. Slices, maps, and functions cannot be used as keys of a

map since these types cannot be compared using ==.

Note that, unlike in the case of slices, maps cannot be
automatically initialized with default values. The size of the map
created this way is always zero, initially.

If you would like to provide some initial values, then you can use
a map literal using the following syntax:

ages := map[string]int{
"John": ,
"Joe": ,

Now, you can use the square bracket notation ages["John"] to
access an element, like in many C-style programming languages.
In Go, however, accessing a non-existent key does not throw an
error. It simply return the default value of the map’s value type.

For instance, in the above example, ages["Lisa"] will return 0.

To differentiate the cases where the key does not exist in the map
and where the value happens to be a default value, Go’s map
access returns two values, in fact.

It returns the map’s value corresponding to the given key, if it
exists, and a bool value as a second return value, which indicates
whether the key exists in the given map or not.

This is an idiom in Go:

if v, ok := ages[name]; ok {

// v is the value of ages[name] for a given key, name
} else {

// the key, name, is not found in ages.

}

Using the variable name ok is a convention.

You can add a new element, or overwrite an existing item, this
way:

ages["Michael"] = 40
ages["Joe"] = 10

The builtin function 1en() can be used to get the size of a map.
size := len(ages)

You can delete an existing element using another builtin
function, delete()

= delete(): The delete built-in function deletes the element with

the specified key from a map. If the the map is nil or there is
no such element specified by the key, delete is a no-op.

For example,

delete(ages, "Mary")

Deleting a non-existent element is a null operation. It does not
throw an error.

One can iterate over a map, similar to the iteration over a slice or
an array.

for name, age := range ages {
fmt.Printf("%s is %d years old\n", name, age)

}

The first values in the for loop are the keys and the second values
are the values of the map.

In this example, we use a map of bytes to strings to represent the
mapping from the letters (e.g., Alphabets and numbers) to the
Morse code:

var code = map[byte]string{}

The map, code, is initialized with all characters relevant to
English.

The Morse does not distinguish upper and lowercase letters. For
convenience, we create a new map that includes both lowercase
and uppercase Alphabets in the init function.

A Go package can contain one or more init() functions to set up
whatever initial state is needed.

func init() {}

The init() functions do not return any value like the main()
function. They run after all package scope variables and
constants are initialized.

The init() functions in a source file are called after all init()
functions in the imported packages are called.

This new map initialized via the first init() function in morse-
code/morse/code.go is named morseCode in this example. Note that
the map is created with an initial capacity of 26*2+10+16 to
accommodate 26*2 Alphabets (upper and lowercase letters), 10
numbers, and 16 punctuation symbols.

The Encode() function uses a type strings.builder.

"type Builder: A Builder is used to efficiently build a string
using Write methods. It minimizes memory copying. The zero
value is ready to use. Do not copy a non-zero Builder.

o func (*Builder) WriteString: WriteString appends the
contents of a given string to the builder’s buffer. It returns
the length of the string argument and a ni1 error.

- func (*Builder) String: String returns the accumulated
string.

It goes through each character or byte in the given text, and if it
has a corresponding Morse code (ok == true), then the code is
added to the strings.Builder. If not, it adds three spaces for a
space (' ') or an invalid value, "777".

https://golang.org/pkg/strings/#Builder
https://golang.org/pkg/strings/#Builder.WriteString
https://golang.org/pkg/strings/#Builder.String

The accumulated string is then returned via the String()
function.

Writing, or understanding, the Decode() function requires a little
bit more thinking. We will leave this as an exercise to the reader.
But, it essentially follows the same logic as Encode(). It starts with
a map reverseCode and it iterates over the byte slice of the input
code.

The only difference is that we will need to read possibly more
than one bytes (until the next space) to match the code to a
corresponding letter.

13.4. Summary

We reviewed Go’s builtin map type in this lesson. A map is a
reference type.

A map stores key-value pairs. Go uses mostly similar syntax to
those used in other programming languages for similar data

types.

13.5. Exercises

1. Study the implementation of the Decode() function in this
lesson, and implement the same functionality from
memory (without directly copying the function).

2. Write a program that reads an input in Morse code and
prints out a warning every time it sees a code
corresponding to "SOS" in the input.

14. "LED" CLOCK

14.1. Introduction

Before the time of Graphical User Interface, early users of
computers often used character-based rendering, known as
"ASCII art", to "draw pictures” on the screen, or on paper using
dot matrix printers: en.wikipedia.org/wiki/ASCII_art.

In this lesson, we are going to write a program that prints out the
current time in "big letters".

Here’s, for example, a big letter @ in a two dimensional slice, that
is, a slice of slices:

= [1[Ibyte{
1 l, l@l, 1 l},
1 1 1 1 l},
1 l},
'}
'}

1 1 1

o0

I
I I

|’ @
l, l@
, 0

l, I@I 1

I

We just use the smallest possible dimension, 5 by 3, in this
example, which can clearly represent all 10 digits.

The purpose of the program is to write the current time in these

https://en.wikipedia.org/wiki/ASCII_art

"big letters". For instance, here’s a sample display from the
example program.

Once we have a set of [][]byte for all pertinent letters, printing
them out in a vertical way is trivial. For example,

This can be done by printing one big letter ([][]byte) after
another, 0, 2, and 4, in this example.

Printing them horizontally, however, as is needed for our time
display, requires a bit of thinking.

Otherwise, the design of this program is straightforward. Get the

current time first, "translate” it into big letters, and print out all
the letters, horizontally put together.

|

14.2. Code Review
14.2.1. Package main

The main function of this program is simple:
Listing 49. led-clock/main.go (lines 7-9)
7 fune main() {

8 big.DisplayTime()
9}

14.2.2. Package big

The core functionality is included in the DisplayTime() function
in the big package.

Listing 50. led-clock/big/time.go (lines 8-13)

8 func DisplayTime() {
9 now := time.Now()
10 displayStr := fmt.Sprintf("%02d:%02d", now.Local().Hour(),
now.Local().Minute())
11 tm := CreateBigDigits([]byte(displayStr)...)
12 tm.Print()
13 }

(As stated, file names have generally no relevance in go
programs.)

The DisplayTime() function gets the current time via time.Now()
and it converts the time into a string in a displayable format,
namely, "HH:MM".

"Package time: Package time provides functionality for
measuring and displaying time. The calendrical calculations
always assume a Gregorian calendar, with no leap seconds.

> func Now: Now returns the current local time.

°type Time: A Time represents an instant in time with
nanosecond precision. Programs using times should typically
store and pass them as values, not pointers. That is, time
variables and struct fields should be of type time.Time, not
*time.Time.

* func (Time) Local: Local returns the Time with the location
set to local time.

* func (Time) Hour: Hour returns the hour within the day
specified by the Time, in the range [0, 23].

* func (Time) Minute: Minute returns the minute offset

https://golang.org/pkg/time/
https://golang.org/pkg/time/#Now
https://golang.org/pkg/time/#Time
https://golang.org/pkg/time/#Time.Local
https://golang.org/pkg/time/#Time.Hour
https://golang.org/pkg/time/#Time.Minute

within the hour specified by the Time, in the range [0, 59].

Then DisplayTime() passes the formatted string to the
CreateBigDigits() function, which takes a variable number of
bytes (or, "characters") as arguments.

Listing 51. led-clock/big/text.go (lines 8-39)

8 type BigText [][]byte

9

10 const height int = 5

1

12 var le = [height][]byte{}
13

14 func (c BigText) append(c1 BigText) BigText {
15 1x := make(BigText, height)

16 for i := range le {

17 Ix[i] = append(c[i], c1[i]...)

18 }

19 return 1x

20 }

21

22 func (c BigText) Print() {

23 1len := len(c[0])

24 bar := strings.Repeat("=", len)

25

26 fmt.Printf("%s\n", bar)

27 for _, v :=range c {

28 fmt.Printf("%s\n", v)

29 }

30 fmt.Printf("%s\n", bar)

31}

32

33 func CreateBigDigits(digits ...byte) BigText {
34 1x := make(BigText, height)

35 for _, d := range digits {

36 1x = 1x.append(let[d]).append(let[' "])
37 }

38 return 1x

39 }

The "big letters" are defined here:

Listing 52. led-clock/big/digits.go (lines 3-24)

3 var let = map[byte]BigText{

4 '0"': {

5 {0,y
6 {'e', "', '0'},
7 {'e', " ", '0'},
8 {'e', " ", '0'},
9 {0, Y,
10 1},

1M1 '"1": {

12 N I 8
13 {0,
14 R R O
15 T I
16 "', "1, "1},
17 '},

18 '2': {

19 {'2', "2, "'},
20 ¢t 2y,
21 Y A
22 {2, "t
23 {'2', '2', '2'},
24}

Listing 53. led-clock/big/digits.go (lines 74-88)

74 ' ' A
75
76
77
78
79
80 },
81 '":': {
82 {
83 {
84 {
{
{

~

e e
= 3 =

~

P = S

85

86

87 1,
88 }

The big package includes a couple of methods defined on the
type BigText, which is a new type defined based off [][]byte.

The magic happens in the BigText.append() function. When big
letters are concatenated, we combine the byte slices of each row.
There are 5 rows in this example, and we use an array of 5 empty

byte slices, le, for the for loop ranges.

Then, the implementation of BigText.Print() is straightforward.
Just print all rows in the given BigText, from top to bottom.
Printing the bar string, before and after the time, is merely for
display purposes.

14.3. Pair Programming

We have discussed "types" in Go in the earlier lessons. We have
dealt with primitive types like int and float64. We have used
builtin reference types like slice and map.

A type plays a central role in the Go programming language. This
is similar to the roles that a "class" plays in the object-oriented
programming languages.

A type can be associated with a set of "methods", or functions.
You can add methods to the types that you define (in the same
package).

We will start tackling this problem by defining a new type
BigText, which is equivalent to [][]byte. This is merely for
convenience (and for illustration), and it is not strictly required.

It leads to an idiomatic Go program.

type BigText [][]byte

In this statement, using the keyword type, BigText is defined to be
equivalent to [][]byte (a slice of a slice of bytes).

= type: A type definition creates a new, distinct type with the

same underlying type and operations as the given type, and
binds an identifier to it. The new type is called a defined type.
It is different from any other type, including the type it is
created from.

This statement does not create a type alias per se. It defines a new
type BigText, which happens to behave just like [][]byte.

The keyword type is similar to typedef in C/C++. The typedef
creates a type alias, just a different name for an existing type. On
the other hand, the type definition in Go defines a new and
distinct type.

The new type BitText, in this example, is identical to the type []
[1byte, in every aspect. Nonetheless, variables/constants of these

types cannot be used interchangeably. Explicit type conversion is
required.

A C-style typedef alias can be created using a different syntax.
For example,

type smallText = [][]byte

The name smallText is just an alias to [][]byte in this case, and
they can be used interchangeably.

Although it is typical to create type definitions or aliases in a

package scope, it is also possible to create new types/aliases in a
function scope, or even in a block scope. A defined or alias type is
valid only within the scope where it is defined/declared.

Types defined in a package scope can be exported. The BigText
type is exported, in this example, as denoted by the capital B.

As indicated in the previous section, the design of this program is
rather straightforward. We define "big letters”, and create a way
to write a "big string", or a sentence, using these big letters. Then
we print each row of the byte slice as a string.

All this logic can be encapsulated into the new type BigText.

A method of a type is defined as a function with a "receiver" with
that type, or its pointer type.

func (c BigText) Print() { /* ... */ }

In this example, ¢ of a type BigText is the receiver. The type of
this method is func(BigText). Note that the receiver type is the
type of the first argument, before the function name.

You can call the method using the dot notation.

text := BigText{} ®
text.Print() @

@ Note the initialization syntax. This is equivalent to [][Jbyte{}.

@ The function Print() is called on the variable text.

Note that we could not have declared a method like Print() on
the type [][]byte. Methods of a type can be only defined in the

package where the type is defined.

The append() method on type BigText takes an argument of type
BigText and returns a value of type BigText. Note that BigText is a
reference type since [][]byte is a reference type.

func (c BigText) append(c1 BigText) BigText {
Ix := make(BigText, height)

for i := range le {

Ix[1] = append(c[i], c1[i]...)
}
return 1x

}

Note that the type of the append() method is func(BigText,
BigText) BigText.

This function signature, and the fact that BigText is a reference
type, allows us to do "chaining". For example, in the function
definition of CreateBigDigits(),

func CreateBigDigits(digits ...byte) BigText {
Ix := make(BigText, height)
for _, d := range digits {
1x = 1x.append(let[d]).append(let[' '])
}

return 1x

We call the append() method twice in each iteration over the byte
slice.

Now, at this point, all we have to do is to get the current time and
display it as BigText. That is done in the DisplayTime() function.

The main() function of this program simply calls

big.DisplayTime().

14.4. Summary

We introduced a type definition in this lesson. One can define a
set of methods on a new type. The dot notation is used on a
variable of that type to call its methods.

We will introduce a couple of different kinds of types in the
coming lessons, including structs and interfaces.

15. EUCLIDEAN DISTANCE

15.1. Introduction

A distance between two points in a Euclidean space can be
calculated using the Pythagorean theorem.

In this lesson, we will define a coordinate in a 2-D Euclidean
space as a Point using Go’s struct. Then, we will create a function
which returns the distance between two given points.

The goal of this lesson is to introduce a struct and various
features of Go that are relevant to structs.

As an exercise, we will write a program that takes a Point as an
input and writes the distance between the given Point and the
previous Point. This continues in a loop. For the first Point, we
will compute the distance of the point from the "origin", a Point
with the coordinate, (0, 0), which we call a "radius" of the Point.

The program terminates when an input Point is the origin.

15.2. Code Review

An "infinite loop" is a scary thing. Especially, to beginning
programmers.

If you run your program and if it keeps running and running,
and it does not terminate, then it is probably because there is a
problem with your code. Generally, however, many programs
are written to run "forever", that is, unless otherwise instructed.

At the heart of many programs with user interactions, for
instance, are infinite loops. Many server programs run
indefinitely, say, until they crash or they are explicitly stopped.

15.2.1. Package main

We use an infinite loop in this example to implement a user
input handling. This is similar to an "event loop" typically found
in a GUI program (or, in a GUI framework, hidden from the
application developers).

Although we do not use "events" per se, the idea is the same.

There is an infinite for loop at the heart of the main() function.
Listing 54. euclid-distance/main.go (lines 10~31)

10 func main() {

11 prev := euclid.Origin

12 for {

13 p, err := readPoint(repeat)
14 if err = nil {

15 log.Fatalln(err)

16 }

17

18 if p == euclid.Origin {

19 fmt.Println("Now your are back to the origin. Exiting...")

20 0s.Exit(0)

21 }

22

23 if prev == euclid.Origin {

24 fmt.Printf("The \"radius\" of the point is %.4f\n", p.Radius())
25 } else {

26 fmt.Printf("The distance of the new point from the previous point is
%.4f\n", euclid.Distance(prev, p))

27 }

28

29 prev = p

30 }

31}

We read an input (a Point) and prints out its distance from the
previous point, or from the "origin" (@, 0) if it happens to be first

input point. This for loop runs forever until the program is
stopped (e.g., using Ctrl+C) until the input is the origin.

In the main() function, os.Exit(@) with the exit code 0, i.e., a

normal exit, is equivalent to a simple return. It iS sometimes
more, or less, readable to use one or the other.

The main() function uses the readPoint() function to read two
numbers as a Point.

Listing 55. euclid-distance/main.go (lines 33-51)

33 const repeat = 3

34

35 func readPoint(repeat int) (euclid.Point, error) {

36 var x, y float32

37 for attempts := 0; ; {

38 fmt.Print("Input a point (x, y): ")

39 if _, err := fmt.Scanf("%f,%f", &x, &y); err != nil {

40 attempts++

41 if attempts <= repeat {

42 fmt.Print1n("The input point should be a form \"x, y\", including
the comma.")

43 continue

44 } else {

45 return euclid.Origin, err
46 }

47 }

48 break

49 }

50 return euclid.Point{X: x, Y: y}, nil
51 }

We use fmt.Scanf() to read a pair of floating point numbers and
convert it to a Point. As specified by the format "%f,%f", the two

numbers have to be separated by a comma ,. (Spaces are
ignored.)

When there is an error in the input, we give the user a few more
chances. If the user fails for repeat times, then we return the
error to the caller, which "gracefully” terminates the program in
this example.

We could have used an infinite loop in this case as well, but that
would have been too intrusive even for this simple program. The
only way to terminate the program (other than inputting an
input in the correct format, which the user appears to be having
a trouble in this case) would have been using "Ctrl+C" (or,
whatever the termination signal is on the user’s computer).

15.2.2. Package euclid

We define Point as a struct of two float32 numbers. This type is
exported, and other packages can use the type Point as long as
they have proper access to do so.

Listing 56. euclid-distance/euclid/point.go (lines 5-7)

5 type Point struct {
6 X, Y float32
7}

15.3. Pair Programming

We have stated that types play a crucial role in Go programs.

One of the ways to create a type is using the struct keyword.

= struct: A struct is a sequence of named elements, called fields,
each of which has a name and a type.

Field names may be specified explicitly or implicitly. A field
declared with a type but no explicit field name is called an
embedded field.

An embedded field must be specified as a type name T or as a

pointer to a non-interface type name *T. The unqualified type
name, without the package name prefix, acts as the field name.

A field or method f of an embedded field in a struct x is called
promoted if x.f is a legal selector that denotes that field or
method f. Promoted fields act like ordinary fields of a struct. But

they cannot be used as field names in composite literals of the
struct.

Given a struct type S and a defined type T, promoted methods are
included in the method set of the struct as follows:

= If S contains an embedded field T, the method sets of S and *S
both include promoted methods with receiver T. The method
set of *S also includes promoted methods with receiver *T.

= If S contains an embedded field *T, the method sets of § and *S
both include promoted methods with receiver T or *T.

A field declaration may be followed by an optional string literal
tag, which becomes an attribute for all the fields in the
corresponding field declaration. An empty tag string is
equivalent to an absent tag.

A struct type is a value type. A variable of a struct type can be
declared just like those of any other types.

var p Point

In this declaration, the value of p is initialized with default
values. The default value of a struct type comprises the default
value of each field.

For example, in the case of Point, the default value will be X:
0.0, Y: 0.0.

A variable of a struct can be initialized this way, using a struct
literal:

p := Point{X: , Y }

Or, using a different formatting,

In this example, notice the trailing comma , at the end of the last
field. This is required by go fmt.

The expression on the right hand side is an example of a
"composite literal".

You can access the fields with the dot notation, for read and
write.

p := Point{X: 1.0, Y: -2.0}
X 1= p.X
p.Y = 3.0

Go’s struct is based on C’s struct. It has some similarities to class
in object oriented programming languages. But, they are
fundamentally different constructs.

Go’s struct types have no constructors or destructors.

In the case of "complex" struct types, it is often a convention to
create a builder function for the type, using a name New() or
names that start with New...().

In the example code, we have NewPoint() function for the Point
type.

Listing 57. euclid-distance/euclid/new.go (lines 3-9)

3 func NewPoint(x, y float32) *Point {

4 p := Point{
5 X: X,

4] Y:y,
7}

8 return &p
9}

We can return a type or a pointer type to the given type. Many
programmers prefer to return a pointer because the word "new"
is often associated with functions that create and return a
pointer or reference type, including Go’s builtin new() function.

= func new(Type) *Type: The new() function allocates memory.

The first argument is a type, not a value, and the value
returned is a pointer to a newly allocated zero value of that

type.

In this example, the NewPoint() function returns a pointer type to
Point.

As mentioned before, returning a pointer to a local, or auto,
variable is generally not allowed in most C-style block-scoped
languages that support pointer types.

In this NewPoint() function, for instance, when the function

returns, the local variable p of value type Point (which is
allocated on the stack) will be deleted. And, accessing its pointer
is a disaster waiting to happen. Generally speaking.

Go, however, automatically takes care of the situations like this.
The memory of the value p is allocated in the heap, and its value
is copied. Its pointer &p is now safe to use even outside the scope
of this function.

Here’s a test code for NewPoint():
Listing 58. euclid-distance/euclid/new_test.go (lines 8~15)

8 func TestNew(t *testing.T) {

9 p := euclid.NewPoint(1.0, 2.0)

10 t.Logf("New point created: %s", *p)
11

12 if p.X = 1.0 || p.Y != 2.0 {

13 t.Fail()

14 }

15 }

The type of p in this code is *Point. Note that we use the same dot
notation to access its fields regardless of whether a type is a
struct or a pointer type to a struct. This is also true when we
access its methods.

One thing to note in this case is that we use the formatting verb
% when we print the point’s value using the "Printf"-like
functions, testing.T.Logf() in this case.

Variables of any type T which has a function String() of a type
func(T) string can be used in formatted print functions with the
%s verb (s for string).

In our Point example, this is possible because we have defined
the String() function for the type:
Listing 59. euclid-distance/euclid/string.go (lines 5-7)

5 func (p Point) String() string {
6 return fmt.Sprintf("(%.4f, %.4f)", p.X, p.Y)
7}

String() is a method defined in the Stringer interface. We will
cover interfaces in later lessons.

The Distance() function between two points is implemented
using math.Hypot() function:

Listing 60. euclid-distance/euclid/distance.go (lines 5-9)

5 func Distance(p1, p2 Point) float32 {

6 dx := float64(p1.X) - float64(p2.X)

7 dy := floatb64(p1.Y) - float64(p2.Y)

8 return float32(math.Hypot(float64(dx), float64(dy)))
9}

We could have implemented the distance function as a method to
Point. In this particular case, a function seems more natural
since their symmetry is more obvious. That is, in principle,

Distance(p1, p2) == Distance(p2, p1)

This symmetry would have been less obvious if we used
methods. E.g.,

p1.Distance(p2) == p2.Distance(p1) // Not so obvious

As stated, floating point operations are approximate and there
could be rounding errors. The strict equality test between
(computed) float numbers are not generally used.

The Radius() method of Point is then defined using Distance():
Listing 61. euclid-distance/euclid/point.go (lines 9-11)

9 func (p Point) Radius() float32 {
10 return Distance(Origin, p)
11 }

As we discussed in the previous lesson, "LED" Clock), the method
declaration syntax includes a receiver, (p Point) in this case.

You can have either a value type or its pointer type as a receiver
type. For example,

func (p *Point) MoveToOrigin() {
p.X, p.Y =0, 0
}

This method, MoveToOrigin(), using the receive (p *Point) resets
the values of both X and Y to 0.

p := Point{X: 3.0, Y: 4.0}
p.MoveToOrigin()
fmt.Println("p =", p)

The Println() statement will print out (0.0000, 0.0000). This
would not have worked if we used a value receiver (p Point).

Note that func (p Point) Radius() float32 {} is more or less
equivalent to func Radius(p Point) float32 {}. And, func (p
*Point) MoveToOrigin() {} is more or less equivalent to func
MoveToOrigin(p *Point) {}.

As explained before, for example, in Two Numbers, you will have
to pass arguments of pointer types to a function if you need to
change the "content” of the variables. Variables of value types
are copied. Changes to the copies have no effect to the original
values.

We will come back to this question, in later lessons, as to when to
use value receivers and when to use pointer receivers.

TIP. As will be further discussed later, func (p *Point)
MoveToOrigin() may not be an ideal method to use for "small"

types like Point, which can be consistently used as a value type.
In this case, functions like func MoveToOrigin(p Point) Point or
func Move(target Point, delta Distance) Point (where type
Distance Point) might be a better choice.

Now, we have all the building blocks. In the spirit of the bottom-
up approach, let’s start building "the program" using these
components, that is, the top-level main() function.

We have an infinite for loop that handles the user input.

func main() {
prev := euclid.Origin
for {
p, err := readPoint(repeat)
/]
prev = p
}
}

First, in each iteration, we get the user input as a Point variable.

The implementation of the readPoint() is straightforward. One
thing to note here is the location of the repeat declaration in the
file, "main.go".

const repeat =

Some styles prefer putting all consts and vars in the beginning of
a source file. Some styles prefer putting them in the places closest
to where they are used.

In this example, we could have done it either way. The const
repeat happens to be used by the readPoint() function only, and

placing it before readPoint() rather than, say, before main()
seems appropriate.

In fact, since nobody else uses it (as is currently written), we can
even put it inside the readPoint() function. It is generally,
however, easier to read, and modify, the code when you place
variables and constants where they are more easily visible. And,
programs change. We update code over time, etc.

In this particular example, the number 3 is more or less
arbitrary. And, you may decide to use a different number in the
future. (That is why we use the const repeat in the first place
instead of hard coding the number into the 1if Boolean
expression.)

Next, when we receive a valid input point, we first compare it
with the Origin because that is the program termination input in
this example.

If the user inputs Origin (that is, @, 0), then we terminate the
program using os.Exit(0).

If not, we print the "radius"” of the point if it is the first iteration.
Or, we print the distance between this point and the previous
point in subsequent iterations. Radius() and Distance() are the
functions/methods we created earlier, that is, they are the
building blocks.

func main() {
prev := euclid.Origin
for {
p, err := readPoint(repeat)
/] ...
if prev == euclid.Origin {

r := p.Radius()
/]
} else {
d := euclid.Distance(prev, p)
/]
}

prev = p

Note the comparison operator (==) between two points. Equality
comparison between variables of a user-defined struct type is
automatically made available by Go based on the field-wise
comparison.

In this example, p == Originifand only p.X = 0.0 and p.Y == 0.0.

(Note that euclid.Distance(prev, p) is the same as p.Radius()
when prev == euclid.Origin in this example. Hence we did not
need the if statement. We could have just called
euclid.Distance(prev, p).)

At the end of each iteration, we replace the prev var with the
current point p.

prev =p

As stated, Point is a value type, and this assignment copies the
values of p.X and p.Y to prev.X and prev.Y, respectively.

Before we move on to the next lesson, here’s an interesting
question.

Is Go an object oriented programming language?

The answer is, Yes and No. @

Obviously, the answer depends on what we mean by "object
oriented programming" (OOP). It is debateable, but one of the
most important aspects of OOP is "data encapsulation". And, an
ability to expose the data only through a well defined "interface".

All object oriented programming languages have a construct
called "class" or something comparable. A class can have
"private" fields. A class can have "public" methods. They all
satisfy this fundamental requirement of data encapsulation. And,
that’s why they are called "object oriented programming"”
languages.

Other characteristics like inheritance, polymorphism, etc., are all
secondary.

Now, let’s take a look at Go’s struct.

Within a package, there is no such support. There is no data
encapsulation. There is no private or public methods. Everything
is visible to everyone. Go’s struct is not a class. You cannot do
OOP within a package.

On the other hand, there are some level of access controls across
different packages. You can access only the exported names of
another package. Nobody can access non-exported names of your
package. You can hide what you need to hide within a package
and you can expose only the types (and methods, etc.) which you
want to expose to the outside world.

You can definitely practice OOP in Go if you understand that it is
package not struct that is comparable to class in other OOP

languages.

NOTE: Go does not really use the term "object". An object is an
abstract concept in "object oriented programming". But it is also
a term used in many OOP languages to refer to a value of a
reference type. In Go, if you use a value of the pointer type
corresponding to a struct type, then that is the closest thing to an
"object" in the OOP languages. But, regardless, Go does not
support inheritance-based polymorphism. So, the concept of
"object" has less significance. As stated, Go supports an "object"
oriented programming style using types, and methods. Hence, a
better terminology would be "type-oriented programming". An
interface in Go can represent either a value type or a pointer
type, as we will discuss in later lessons. Go’s type-oriented
programming style is not limited to "objects" or pointers.

15.4. Summary
We learned struct types in this lesson.
A struct type is a sequence of fields. struct allows us to create a

new type, known as a composite type, from other existing types.
A set of "methods" can be defined on a struct type.

15.5. Exercises

1. Write a function that accepts a slice of Points and finds a
pair that has the shortest distance among all the pairs of
points.

16. AREA CALCULATION

16.1. Introduction

This lesson also includes a somewhat artificial example to
demonstrate certain features of the Go programming language.
In particular, structs and interfaces.

We will define a few types that represent geometric "shapes" like
a rectangle, an isosceles (a triangle with two equal sides), and a
circle.

We will define a couple of methods to compute its area and
perimeter for each shape.

Now, the problem that we are going to tackle in this lesson is to
create a function that accepts an arbitrary shape (among the
three we have defined) and computes its area. Likewise, create a
function that accepts an arbitrary shape and computes its
perimeter.

This is a kind of "polymorphism", and this is where Go’s
interface is used.

by

16.2. Code Review

As before, we take a top-down approach to discuss the problem.

16.2.1. Package main

We define a few "demo" functions in the main package to test-
drive the functions we are going to create. We could just use unit
test functions for this purpose, but it should be easier to read
these normal functions, as presented in the book.

The main function of this program simply calls these demo
functions, one at a time.

The first demo function will create a slice of "shapes" and
compute their total areas and total perimeters. It simply uses the
area() and perimeter() methods of each shape.

Listing 62. area-calculation/shapes.go (lines 11-26)

11 func shapesDemo() {
12 shapes := []shape.Shape{}

13 shapes = append(shapes, isosceles.New(1.0, 2.0))
14 shapes = append(shapes, rectangle.New(2, 3))

15 shapes = append(shapes, circle.New(2))

16

17 totalArea := 0.0

18 totalPerimeter := 0.0

19 for _, s := range shapes {

20 totalArea += float64(shape.Area(s))

21 totalPerimeter += float64(shape.Perimeter(s))

22 }

23

24 fmt.Printf("totalArea = %.5f\n", totalArea)

25 fmt.Printf("totalPerimeter = %.5f\n", totalPerimeter)
26 }

Shape is an interface type as we will see shortly.

The second demo will illustrate a use of a function which accepts
an arbitrary number of variables of any type that has Area()

method defined and returns their total area.
Listing 63. area-calculation/areas.go (lines 11-19)

11 func areasDemo1() {
12 areaer := []shape.Areaer{}

13 areaer = append(areaer, isosceles.New(1.0, 2.0))
14 areaer = append(areaer, rectangle.New(2, 3))

15 areaer = append(areaer, circle.New(2))

16

17 totalAreal := shape.Areas(areaer...)

18 fmt.Printf("totalAreal = %.5f\n", totalAreal)
19 }

Areaer is another interface type which we will introduce shortly.

The

third demo is the same except that we weill use the

Perimeter() functions instead of Area().

Listing 64. area-calculation/perimeters.go (lines 11-19)

11 func perimetersDemo1() {
12 a := []shape.Perimeterer{}

13 a = append(a, isosceles.New(1.0, 2.0))

14 a = append(a, rectangle.New(2, 3))

15 a = append(a, circle.New(2))

16

17 totalPerimeter1 := shape.Perimeters(a...)

18 fmt.Printf("totalPerimeter1 = %.5f\n", totalPerimeter1)
19 }

In this example, Perimeterer is another interface type.

An interface is essentially a set of methods, with a name. Go’s

interface is similar to the interfaces in other object-oriented
programming languages. But, there are some crucial differences
as well.

For one thing, we do not have to define an interface when we
create a type. We only need an interface when we use the types.
We will give more detailed explanation later in this lesson.

16.2.2. Package rect

We define the Rectangle type as follows:
Listing 65. area-calculation/rect/rectangle.go

1 package rect

2

3 type Rectangle struct {

4 width float32

5 height float32

6}

7

8 func New(w, h float32) Rectangle {
9 return Rectangle{width: w, height: h}
10 }
11
12 func (r Rectangle) Area() float32 {

13 a := floatb4(r.width) * float64(r.height)

14 return float32(a)

15 }

16

17 func (r Rectangle) Perimeter() float32 {

18 p := 2 * (floatb4(r.width) + floatb64(r.height))
19 return float32(p)

20 }

The Area() and Perimeter methods are defined on this type,
rectangle, as well as the New() function.

16.2.3. Package iso

We define the Isosceles type as follows:
Listing 66. area-calculation/iso/isosceles.go

1 package iso

2

3 import "math"

4

5 type Isosceles struct {

6 base float32

7 height float32

8}

9

10 func New(w, h float32) Isosceles {

11 return Isosceles{base: w, height: h}

12 }

13

14 func (t Isosceles) Area() float32 {

15 a := 0.5 * floatb4(t.base) * floatb4(t.height)
16 return float32(a)

17 }

18

19 func (t Isosceles) Perimeter() float32 {
20 h := math.Hypot(0.5*float64(t.base), floatb4(t.height))
21 p := floatb4(t.base) + 2*h

22 return float32(p)

23}

The Area() and Perimeter methods are defined on this type

isosceles as well.

16.2.4. Package circ
The type Circle looks like this:

Listing 67. area-calculation/circ/circle.go

1 package circ

2

3 import "math"

4

5 type Circle struct {

6 radius float32

7}

8

9 func New(r float32) Circle {

10 return Circle{radius: r}

11}

12

13 func (c Circle) Area() float32 {
14 a := 0.5 * math.Pi * float64(c.radius) * floatb4(c.radius)
15 return float32(a)

16 }

17

18 func (c Circle) Perimeter() float32 {
19 p := math.Pi * float64(c.radius)
20 return float32(p)

21}

The Circle type also has a similar set of methods, Area() and
Perimeter.

16.2.5. Package shape

In order to create functions with polymorphic behavior in Go, we
will need to introduce interfaces.

The interface type definition uses the following syntax, which is
similar to those used in defining other types. It uses the interface

keyword:
Listing 68. area-calculation/shape/area.go (lines 3-5)

3 type Areaer interface {
4 Area() float32

5}

The interface type Areaer includes one method Area(). The name

Areaer looks rather strange, but it is generally a convention that,
in case of an interface with one method, we use the name of the
method + "er" as the interface name. We mentioned the Stringer

interface before, which includes one method String().

= interface: An interface type specifies a method set called its

interface. A variable of interface type can store a value of any
type with a method set that is any superset of the interface.
Such a type is said to implement the interface. An interface
type may specify methods explicitly through method
specifications, or it may embed methods of other interfaces
through interface type names.

Now we can define an Area() function that takes an argument of
type Areaer.

Listing 69. area-calculation/shape/area.go (lines 7-9)

7 func Area(shape Areaer) float32 {
8 return shape.Area()

9}

The function signature func(shape Areaer) float32 indicates that
this function accepts, as an argument, a variable of any type
which includes the Area() method, as declared by the Areaer
interface, and it returns a float32 value. That is the "contract".

As can be seen from the Area()'s implementation, in this
example, the function does use the fact that it can call the
argument’s Area() method. Variables of any type that does not

include the Area() method with the same signature could not
have been passed in to this function.

We can define a similar interface type for the types that have the
Perimeter () method.

Listing 70. area-calculation/shape/perimeter.go (lines 3-5)

3 type Perimeterer interface {
4 Perimeter() float32

5}

The name of the interface Perimeterer is again based on the name
of the method Perimeter ().

Now, we can define a polymorphic function, func
Perimeter(shape Perimeterer) float32, that computes the
perimeter of an argument as long as its type is Perimeterer, that
is, as long as it has a method Perimeter().

Listing 71. area-calculation/shape/perimeter.go (lines 7-9)

7 func Perimeter(shape Perimeterer) float32 {
8 return shape.Perimeter()

9}

As in the case of the Area(Areaer) function, this function’s
implementation also relies on the constraint that the argument
shape has the method Perimeter () with the same type.

Note that, in case of "concrete" types like structs, the function
signature of a method includes a receiver. On the other hand, a

method in the interface type does not include receivers.

That is just a syntactic difference. As long as everything else is
the same, the functions types of the methods of a concrete type
and an interface type are considered the same.

Interfaces can be combined. For example,
Listing 72. area-calculation/shape/shape.go (lines 3-6)

3 type Shape interface {
4 Areaer
5 Perimeterer

6}

The interface type Shape has a method set that includes both
Area() (from Areaer) and Perimeter (from Perimeterer).

For illustration, we also define two functions that take an
arbitrary number of Areaer or Perimeterer arguments and return
their total areas and perimeters, respectively.

Listing 73. area-calculation/shape/area.go (lines 11-17)

11 package shape

12

13 type Areaer interface {

14 Area() float32

15 }

16

17 func Area(shape Areaer) float32 {
18 return shape.Area()

19 }

20

21 func Areas(shapes ...Areaer) float32 {
22 totalArea := 0.0

23 for _, s := range shapes {

24 totalArea += floatb64(s.Area())
25 }

26 return float32(totalArea)

27 }

Listing 74. area-calculation/shape/perimeter.go (lines 11-17)

11 func Perimeters(shapes ...Perimeterer) float32 {
12 totalPerimeter := 0.0

13 for _, s := range shapes {

14 totalPerimeter += float64(s.Perimeter())

15 }

16 return float32(totalPerimeter)

17 }

16.3. Pair Programming

Let’s start from the shapesDemo() function.
The type of the variable shapes is a slice of Shapes.

shapes := []shape.Shape{}

We add a few "shapes" to shapes, a Rectangle, an Isosceles, and a
Circle. Then we iterate over shapes.

for _, s := range shapes {
totalArea += float64(shape.Area(s))
totalPerimeter += float64(shape.Perimeter(s))

}

The type of s is the interface type Shape. The function
shape.Area() is polymorphic. Although s is declared to be of
interface type Shape, the implementation of shape.Area() does the
proper area calculation based on the specific type of s.

The same with shape.Perimeter().

Now, as for the areasDemol() function of area-
calculation/areas.go, shape.Areas() is a variadic function, which

takes a variable number of arguments of type Areaer.

When we pass variables of types, Rectangle, Isosceles, and
Circle, to shape.Areas() (as defined in area-
calculation/shape/area.go), the implementation uses the "correct"
implementation of the Area() method based on the type of each
argument. The behavior is again polymorphic.

Go uses interface types for polymorphism, at the point of use, so
to speak. In other object programming languages, interfaces are
used to constrain a type, e.g., a class, at the point of type
definition. Java, for example, uses the keyword implements (or,

extends) to declare that an object of a class can behave like a
certain interface. C# uses a slightly different syntax (e.g., using

non

:"), but the idea is the same.

Go, on the other hand, does not use interfaces to add a behavior
to a type.

For example, the type Rectangle, in this example, does not know
anything, and does not care, about the Areaer interface, or the
Perimeterer interface.

The polymorphic behavior happens at the point of use. In the
shapesDemo() function, for example, functions shape.Area() and
shape.Perimeter() called with arguments of an interface type
correctly identifies their concrete type.

As long as a variable of a type X has a method Do() which has the
same name and function type as Do() defined in an interface
Doer, the variable can be used as if it is a type Doer, in any place

where a Doer is required.

The same holds true for interfaces with more than one methods.
As long as a type implements all methods in the "method set" of
an interface, a variable (or, a constant or a literal) of that type
can be used in any place where a type of that interface is
required.

The empty interface, interface{}, is special in that any variable
(constant, literal) can behave like the empty interface type, since
there is no requirement imposed by its method set (which is
empty).

In many object oriented programming languages that support
inheritance, there is something like an "Object" type that (almost)
everything else inherits from. In Go, the empty interface,

interface{}, is sort of like that top-level Object. Any variable can
be cast to the interface{} type.

One thing to note is that an interface provides a polymorphic
behavior, but not a slice of interfaces. A Shape is an Areaer, and it
is a Perimeterer. But, a slice of Shapes is not a slice of Areaers. It is
not a slice of Perimeterers. It is not a slice of Rectangles.

If we need to use []Shape for [JAreaer, for example, you will need
to explicitly convert them. There is no polymorphic behavior.

Listing 75. area-calculation/areas.go (lines 21-33)

21 func areasDemo2() {
22 s := []shape.Shape{}

23 s = append(s, isosceles.New(1.0, 2.0))
24 s = append(s, rectangle.New(2, 3))
25 s = append(s, circle.New(2))

26

27 b := make([]shape.Areaer, len(s))

28 for i, d := range s {

29 b[i] = d

30}

31 totalArea2 := shape.Areas(b...)

32 fmt.Printf("totalArea2 = %.5f\n", totalArea2)
33}

The same with []Shape vs []Perimeterer.
Listing 76. area-calculation/perimeters.go (lines 21-33)

21 func perimetersDemo2() {
22 s := []shape.Shape{}

23 s = append(s, isosceles.New(1.0, 2.0))
24 s = append(s, rectangle.New(2, 3))

25 s = append(s, circle.New(2))

26

27 b := make([]shape.Perimeterer, len(s))

28 for i, d := range s {

29 b[i] = d

30 }

31 totalPerimeter2 := shape.Perimeters(b...)

32 fmt.Printf("totalPerimeter2 = %.5f\n", totalPerimeter2)
33}

16.4. Summary

We introduced interfaces in this lesson.

An interface defines a "behavior" in terms of a set of methods
which a type has to satisfy, and it can be used to support
polymorphism in Go.

16.5. Questions

1. Whatis interface in Go?

2. Whatis struct?

17. ROCK PAPER SCISS0ORS

17.1. Introduction

We have covered a lot of important topics in the last few lessons.
Types, structs, and interfaces. And, more.

In this lesson, we are going to take it a little bit easy, and work on
a rock paper scissors game. Rock paper scissors is one of the most
well-known games, which does not really require introduction.

The program of this lesson lets you play rock paper scissors with
the computer.

>

17.2. Code Review

17.2.1. Package main

The main function of this program merely creates a variable of
type Game, and it calls the Game's main method, Start().

Listing 77. rock-paper-scissors/main.go (lines 7-10)

7 func main() {

8 game := rps.NewGame()
9 game.Start()

10 }

17.2.2. Package rps

The rps package includes a package init function, which is called
when the package is imported.

Listing 78. rock-paper-scissors/rps/random.go (lines 8-10)

8 func init() {
9 rand.Seed(time.Now().UnixNano())
10 }

The rand.Seed() function seeds the random number generator
from the math/rand package.

A struct Game is the main type in this example:
Listing 79. rock-paper-scissors/rps/game.go (lines 7-9)

7 type Game struct {
8 wins, losses, ties int

9}

The main logic of the program is implemented in the Start()
function:

Listing 80. rock-paper-scissors/rps/game.go (lines 20-49)

20 func (g *Game) Start() {

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

L ")
fmt.Println("Welcome to Rock Paper Scissors!")

fmt.Println("Type X or Q to end the game.")
fmt.Println("----=-----mmmmm ")

for {
playerHand, err := readHand()
if err = nil {
fmt.Println("Error:", err)
continue

}
fmt.Printf("Your Hand = %s\n", playerHand)

myHand := randomHand()
fmt.Printf("My Hand = %s\n", myHand)

wol := compareHands(playerHand, myHand)
if wol == Win {
g.wins++
} else if wol == Lose {
g.losses++
} else {
g.ties++

}

fmt.Printf("Your wins: %d, losses: %d out of %d plays\n", g.wins,

g.losses, g.wins+g.losses+g.ties)

47
48

49 }

fmt.Println("---------------oi e e e e e e i i i i e oo ")
}

This function, when invoked, prints out a welcome banner first,
and then it starts a game loop (the infinite for loop).

Each iteration of the loop corresponds to one "play" of hands. It
first reads the player’s hand, it generates its hand (the
computer’s hand), and it compares the two hands to decide who

wins. It then updates the struct's fields, wins, losses, and ties.

The game continues until the player inputs Q (Quit) or X (eXit).

If you run the program,

go run .

It prints out the banner and the first prompt.

Welcome to Rock Paper Scissors!
Type X or Q to end the game.

Rock (R), Paper (P), or Scissors (S)?

Here’s an example of a round of plays.

Welcome to Rock Paper Scissors!
Type X or Q to end the game.

Rock (R),
.

Your Hand
My Hand =

Your wins:

Rock (R),

P
Your Hand

My Hand =

Your wins:

Rock (R),
S

Your Hand
My Hand =

Your wins:

Rock (R),
S

Your Hand
My Hand =

Your wins:

Rock (R),
.
Your Hand

Paper (P), or Scissors (S)?

= Rock
Rock

0, losses:

Paper (P),

= Paper
Paper

0, losses:

Paper (P),

= Scissors
Paper

1, losses:

Paper (P),

= Scissors
Scissors

1, losses:

Paper (P),

= Rock

out of 1 plays

Scissors (S)?

out of 2 plays

Scissors (S)?

out of 3 plays

Scissors (S)?

out of 4 plays

Scissors (S)?

17.2.3. Pair Programming

An iteration of the game loop in the Game.Start() function
essentially consists of three actions:

1. Read the player’s hand,
2. Generate the computer’s hand, and

3. Compare the two hands.

The main functionality of each of these steps is implemented in
readdand(), randomHand(), and compareHands() functions,
respectively.

The readHand() function is defined in the file, rps/input.go.
Listing 81. rock-paper-scissors/rps/input.go (lines 17-32)

17 func readHand() (Hand, error) {

18 reader := bufio.NewReader(os.Stdin)

19

20 fmt.Println("Rock (R), Paper (P), or Scissors (S)?")
21 str, err := reader.ReadString('\n")

22 if err != nil {

23 return NullHand, err

24 }

25 str = strings.TrimSuffix(str, "\n")

26 if s := strings.ToUpper(str); strings.HasPrefix(s, "Q") ||
strings.HasPrefix(s, "X") {

27 fmt.Println("Thanks for playing the game!")

28 0s.Exit(0)

29 }

30 hand, err := parseHand(str)
31 return hand, err
32}

It essentially reads the text input and translates it into a Hand.
Listing 82. rock-paper-scissors/rps/hand.go (lines 7-11)

7 const (

8 Rock Hand = iota + 1
9 Paper

10 Scissors

1)

Go does not support "enum" types. Instead, Go uses consts to
represent a set of related constants, as in this example. It is
customary to use a single "factored" const statement to defines a
set of related constants.

iota is a special value that starts from 0 and increments by 1
within a const statement. For Hand, which is a type defined to be
uint8, there are three constants defined: Rock == 1, Paper == 2,
and Scissors ==

Note that we use values, 1, 2, and 3 in this example, not 0, 1, and
2.0 can be a good "default value", e.g., to indicate an invalid Hand.

The implementation of randomHand() is simple:
Listing 83. rock-paper-scissors/rps/random.go (lines 12-14)

12 func randomHand() Hand {
13 return Hand(rand.Intn(3) + 1)
14 }

It just picks a random Hand based on a random number in the
range {1, 2, 3}. The expression Hand() represents a type

conversion or casting.

The compareHands() function implements the rock paper scissors
logic.
Listing 84. rock-paper-scissors/rps/hand.go (lines 13-33)

13 type WinOrLose uint8

14

15 const (

16 Tie WinOrLose = iota

17 Win

18 Lose

19)

20

21 func compareHands(h1, h2 Hand) WinOrLose {
22 if h1 == h2 {

23 return Tie

24} else {

25 if (h1 == Rock && h2 == Scissors) ||
26 (h1 == Paper && h2 == Rock) ||

27 (h1 == Scissors && h2 == Paper) {
28 return Win

29 } else {

30 return Lose

31 }

32 }

33}

That is, Rock beats Scissors, Scissors bests Paper, and Paper beats
Rock.

The type Hand implements the Stringer method, String():
Listing 85. rock-paper-scissors/rps/hand.go (lines 35-46)

35 func (h Hand) String() string {
36 switch h {
37 case Rock:

38 return "Rock"
39 case Paper:
40 return "Paper”

41 case Scissors:
4) return "Scissors"

43 default:

44 return "?"
45 '}

46 }

Note that we use the switch statement to map a Hand value to a

string. We could have alternatively used a map to do the same, in
this particular example. Or, in general, we could have
implemented the same logic using the if-else statement.

The switch statement in Go is based on C’s switch. But, there are
differences.

= switch: Switch statements provide multi-way execution. An
expression or type specifier is compared to the cases inside the
switch to determine which branch to execute.

A switch statement comprises a condition expression and a
number of cases. It runs the first case whose value is equal to the
condition expression. Switch cases evaluate cases from top to
bottom, stopping when a case succeeds. Go’s switch does not
need break after each case unlike in other C-style languages.

Instead, Go has fallthrough in cases where the execution needs to
cross over the case boundaries.

= fallthrough: A fallthrough statement transfers control to the
first statement of the next case clause in an expression switch

statement. It may be used only as the final non-empty
statement in such a clause.

Now that we have implemented all important building blocks,
let’s go back to the Game.Start() method.

func (g *Game) Start() {
for {
playerHand, _ := readHand()
fmt.Printf("Your Hand = %s\n", playerHand)

myHand := randomHand()
fmt.Printf("My Hand = %s\n", myHand)

wol := compareHands(playerHand, myHand)
// Update the win-loss stats.

}
}

Incidentally, we could have implemented the part where the
stats (wins/losses) are computed (lines 38-44), using switch:

switch wol {
case Win:
g.wins++
case Lose:
g.losses++
default:
g.ties++

}

Generally, switch statements are easier to read than long if-then-
else chains. Even in this simple case, the switch version seems
preferable.

In each iteration of the for loop in the Game.Start() method, it
does the three things we mentioned earlier, which correspond to
readHand(), randomHand(), and compareHands(), respectively.

Then, the main() calls this rps.NewGame().Start() function. That is
the entire program.

One thing to note regarding the Game.Start() method is that it

uses a pointer receiver (g *Game), not a value receiver (g Game).
What is the difference?

As we stated in the earlier lessons, for example, in Euclidean
Distance, if you may have to possibly change the value of a
variable, then you will have to use a pointer receiver. The
argument value of a value receiver is copied, and hence any
changes to the copied value (including its field values, etc.) will
not affect the original receiver value.

A pointer receiver is also generally preferred when the copying
of the receiver argument is expensive, for instance, because the
receiver is a large struct.

We will revisit this question of value receiver vs pointer receiver
in later lessons, but as a general rule of thumb, a pointer receiver
is preferred, for a number of reasons including the above two.

17.3. Summary

We created a simple game using a random number generator
from the math/rand package. We also quickly reviewed Go’s
switch statement.

18. FILE CAT

18.1. Introduction

The cat command on the Unix-like platforms prints out the
content of one or more files together. Hence the name

conCATenate.

If the argument is not provided, then it reads from the standard
input.

Let’s implement a simple version of cat in Go.

18.2. Code Review
18.2.1. Package main

Here’s the "program":
Listing 86. file-cat/main.go (lines 11-28)

11 fune main() {

12 if len(os.Args) == 1 {

13 if _, err := io0.Copy(os.Stdout, o0s.Stdin); err != nil {
14 if err != i0.EOF {

15 log.Fatalln(err)

16 }

17 }

18 return

19 }

20

21 for _, fname := range os.Args[1:] {
22 err := file.Copy(os.Stdout, fname)
23 if err != nil {

24 fmt.Fprintln(os.Stderr, err)

25 continue

26 }

27 '}
28 }

The main() function first checks if a command line argument is
provided. If there is none, then it simply copies the input from
stdin to stdout, using the Copy() function in the io package in the
standard library.

If there is one or more arguments, then it copies the content of
each file to stdout. The logic is implemented in the file.Copy()
function.

18.2.2. Package file

The file.Copy() function is exported, and it has a type
func(*os.File, string) error.

Listing 87. file-cat/file/copy.go (lines 8-28)

8 // Copy finds a named file and copies its content

9 // to the destination file.

10 // 1t returns error if opening the file or copying fails.
11 func Copy(dest *os.File, name string) error {

12 var file *os.File

13 if name == "-" {

14 file = 0s.Stdin

15 } else {

16 var err error

17 file, err = os.Open(name)
18 if err != nil {

19 return err

20 }

21 defer file.Close()

22 }

23

24 if _, err := i0.Copy(dest, file); err != nil {
25 return err

26 }

27 return nil
28 }

This function takes two arguments, a destination file, dest of type
*0s.File, and a source file name, name of type string.

Note that the function is written slightly more generally than
required by the main() function. The program only uses os.Stdout
as destination, and yet Copy() can be used with an arbitrary
destination (of type *os.File).

Copy() is slightly more useful (e.g., since it can be used in a wider
range of situations), at the expense of being slightly more
complicated (e.g., since the caller has to provide two arguments
instead of one). This is a design choice.

Note also that the source and destination arguments are not
"symmetric". They have different types, and they should be
interpreted differently. In cases like this, a function name like
Copy might be too generic. A more descriptive name might be
useful.

The function includes what is called "doc comments". Any
comment immediately preceding exported names (or, other
unexported top-level constructs, etc.), without any blank lines, is
considered part of the API documentation.

You, or anyone who wuses this package, can generate
documentation using the go doc command.

The Open() function first tries to open the file of the given name
(or, file path), and if it fails, it returns an error. If it successfully
opens the file, then it copies the content of the file to the
destination file, using i0.Copy().

One small twist is that, just like in "real cat", if the given file
name is "-", then we read from os.Stdin instead of trying to open
a file with that name.

18.3. Pair Programming

Much of the file-related APIs is included in the os and io packages
in the standard library. Getting familiar with file handling APIs,
and IO in general, is essential to be a proficient programmer in
Go.

The example program deals with a few basic functions for file
opening and file copying. The function’s logic is straightforward.

In the implementation of file.Copy(), there are a couple of things
to note.

First, errors in Go do not literally mean that they are "errors" as
commonly used in English. This is true across all programming
languages, regardless of what kind of error or exception
handling mechanisms are used.

As stated before, an error is a signaling mechanism from a callee
function to its caller.

If the callee function does not know how to handle certain
situations (e.g., due to lack of broader context), or if it decides
that its caller may be the better one to handle those situations,
etc., then it can return an error so that the caller function can
pay special attention, if necessary.

When dealing with files, encountering EOF ("end of file") while

reading a file is not an "error"” per se. All files have endings. Some
of Go’s IO functions (but not i0.Copy()) happen to use the error
return value to convey the information that they have read all
content of the file, using the variable io.EQOF.

It is worth repeating that the error handling in Go is simply a
convention. Functions return an error as a normal return value
(as the last one, if there are multiple return values), and they use
the interface type error for the error return value. It is just a
convention, not hard-wired into the Go programming language.

It is based on C’s convention, and it is a big improvement. But,
there are cases where simply returning error values to the caller
(and the caller returning the errors to its own caller, etc.)
through the normal call chain has limitations.

Need for frequent error checking can also lead to code bloating.

Many other modern languages use "exceptions"”, which has a
slightly different semantics. Exception mechanisms (e.g., using
try and catch) have some limitations as well. The current "trend"
in the programming language design seems to be using "option"
style values, as commonly found in functional programming
languages.

In Go, if something really disastrous happens that the program
cannot recover from, then it is often best to just terminate the

program (e.g., using os.Exit(1)).

Between these two extremes, there is another mechanism for
handling exceptional or unexpected situations: panic() and
recover(). This is similar, although rather limited, to the

exception handling mechanism in other programming languages.

We will cover some essential features of panic and recover in
later lessons.

One other thing to note in this file.Copy() function
implementation is the defer statement.

We use the defer keyword in this example that we have not seen
in the previous lessons.

= defer: A defer statement invokes a function whose execution is
deferred to the moment the surrounding function returns.

A defer statement starts with the defer keyword, which is
followed by a certain kind of expression, namely a function or
method call. The expression cannot be put in parentheses.

Deferred functions are invoked immediately before the
surrounding function returns, in the reverse order they were
deferred.

It is very common to use defer statements to clean up resources.

In this example, opening a file uses resources (e.g., the file
handle, etc.). It is best to close the file before returning. A
function can return in many different ways (either explicitly or
implicitly).

The defer statement guarantees that the deferred function will be
called regardless of how the function returns, even through
panics. The exception is os.Exit(), which immediately

terminates the program.

When we open the named file using os.0Open(), we use the
following two statements:

var err error
file, err = os.Open(name)

Rather than, say, using the more common short variable
declaration:

file, err := os.0Open(name)

This is because the compiler sometimes treats the left-hand side
of := as all new variables, and sometimes it does not. (The short
variable declaration syntax is valid as long as there is at least one
new variable.)

If a variable, file in this case, happen to be in the same scope, it
is considered as the same variable (because a variable cannot be
declared twice in the same scope). And, err is a new variable in
this case, the := declaration is valid. Because of the "at least one
new variable" rule on the left-hand side of the short variable
declaration, the compile does not complain.

On the other hand, if a variable, file in this case, happens to
exist outside the block, that is, in the surrounding block, then the
variable on the left hand side of :=is considered new because the
"variable shadowing" is allowed. In this case, in the second one-
liner example, the compiler treats both file and err as new
variables. The file variable declared before the if statement is
different from the file variable which assign using the :=

statement.

TIP: A variable can be re-declared in a block even if a variable
with the same name exists in an outer scope, e.g., in a block
surrounding this block. Within the scope of this variable in the
inner block, the name refers to the variable declared (or,
redeclared) in this block, not the variable declared outside
(which would have been "in scope"” if not for the redelaration).
This is called variable shadowing.

Clearly, that is not what we intend here. Hence, in cases like this,
you cannot use the short variable declaration syntax.

This is one of the frequent gotchas for new Go programmers.
This is one of the rare cases in Go where you build/compile a
program successfully and yet you still have a trivial, but
potentially critical, bug that could have been easily caught by a
compiler.

One other thing worth noting is that the package ioutil in the
standard library has been deprecated as of this writhing (Go
version 1.16). Many of the functions which was in the ioutil
have been moved other packages, including io.

Although the Go programming language rarely changes,
libraries, even the (stable) standard libraries, change.

The io.Copy() function is a utility function. It performs certain
tasks behind the scene, like reading the source file and writing to
the destination file.

Let’s try to rewrite our file.Copy() function without using
i0.Copy().

Listing 88. file-cat/file/copy2.go (lines 8-29)

8 // Copy2 finds a named file and copies its content to the destination file.
9 // It returns the number of bytes copied and a possible error.

10 // 1t return non-nil error if opening the file or reading and writing the

content fails.

11 func Copy2(dest *os.File, name string) (int, error) {

12 file, err := os.0Open(name)

13 if err != nil {

14 return -1, err

15 }

16 defer file.Close()

17

18 data, err := io.ReadAll(file)

19 if err != nil {

20 return -1, err

21 }

22

23 written, err := dest.Write(data)

24 if err != nil {

25 return -1, err
26 }

27

28 return written, nil
29 }

The file.Copy2() function, not the best descriptive name, uses
the 10.ReadAl1() and File.Write() functions instead of i0.Copy().

Since i0.ReadAll() is supposed to read the whole content of the
file into memory, it does not return io.EOF as an error value. And,

because of this, i0.ReadA11() may not, in general, be the most
suitable function to use. See the exercise at the end of this lesson.

File.Write() returns an error if the size of the input content
len(data) is different from the size of the written content,
written. Hence an error checking like this is not required when
using the File.Write() function:

if len(data) != written {
return -1, errors.New(
fmt.Sprintf("The numbers of bytes read (%d) and written (%d) are
different/n",
len(data), written))

}

Note the way in which we split a single statement into multiple
lines.

The implementation of file.Copy2() is straightforward. It opens a
file with a given name, reads it, and then writes the content to
the given output file. Most of the code is for error handling.

The file.Copy2() function is also preceded by a doc comment.

You can generate, or view, the documentation for the file
package using the go doc command.

Note that the file argument is the name of the package, or the last
segment of the path, not a path as is the case with most other go
commands like go build, go run, and go test.

Here’s a sample output:

You can include un-exported names in the documentation using
-u flag.

You can also use go doc for viewing documentations for other
libraries. For the standard library, for instance, you just specify a
package name, or qualified names other symbols.

It prints the information on all exported names from the io
package, constants, variables, types, and functions.

It prints the information on the i0.Copy() function.

18.4. Summary

We learned some basic file and I0-related functions.
A defer statement is used to clean up resources before returning

from the function. The deferred functions execute just before the
function returns.

18.5. Exercises

1. The i0.ReadAl1() function may not be the best option
when you read a file, especially if the file is large. Create
a copy function that copies the content of one file to the

other, one line at a time, without having to read all
content into the memory.

19. WORLD TIME API

19.1. Introduction

Go is one of the most popular languages for Web backend
development.

In fact, Web backend is one of most important uses of the Go
programming language. Go is rarely used in GUI programming,
for instance. Go’s support is minimal for data science or machine
learning. At least as of now. Not many programmers use Go for
developing mobile games.

If you use Go, then Web backend, or other server side
programming, is the sweet spot. We will briefly touch on a few
examples that are in the area of Web development in this book.

In this lesson, we look at a simple example that demonstrates the
use of some simple functions of the net/http package in the
standard library.

19.2. Code Review
19.2.1. Package main

The main() function calls the "World Time API" service to retrieve
the current time every 10 seconds.

Listing 89. world-time-api/main.go (lines 9-24)

9 const maxErrorCount = 5

10 const interval = 10 * time.Second

11 const url = "http://worldtimeapi.org/api/timezone/America/New_York.txt"
12

13 func main() {

14 for errorCount := @; errorCount < maxErrorCount; {

15 datetime, err := world.Datetime(url)
16 if err = nil {

17 errorCount++

18 fmt.Println("Error:", err)

19 continue

20 }

21 fmt.Printf("datetime: %s\n", datetime)
22 time.Sleep(interval)

23 }

24 }

The particular endpoint we wuse for this example is
"http://worldtimeapi.org/api/timezone/America/New_York.txt".

It serves the time in the New York time zone, and the output is
plain text (e.g., as opposed to JSON format), as indicated by the
".txt" suffix in the URL.

19.2.2. Package world

The world.Datetime() function fetches the content on the Web,
reads the content of the response body, and parses the content to
find the desired data, datetime in our example.

Listing 90. world-time-api/world/datetime.go (lines 11-33)

11 func Datetime(url string) (string, error) {

12 response, err := http.Get(url)

13 if err != nil {

14 return "", err

15 }

16

17 responseData, err := io.ReadAll(response.Body)
18 if err != nil {

19 return "", err

20 }

21

22 scanner := bufio.NewScanner(strings.NewReader(string(responseData)))
23 for scanner.Scan() {

24 text := scanner.Text()

25 s := strings.SplitN(text, ":", 2)

26
27 if s[0] == "datetime" {

28 return s[1], nil

29 }

30 }

31

32 return "", errors.New("Datetime not found!")
33}

The Datetime() function uses http.Get(), one of the simplest
functions in the net/http package.

It returns the datetime string to the caller, the main() function,
which simply prints out the result and waits for 10 seconds
before it calls Datetime() again.

19.3. Pair Programming

Given a URL, the first thing to do is to fetch the content from the
URL. One of the easiest way to do is using http.Get() function.

Since we covered how to read Go docs in the previous lesson,
let’s try that:

This lists all exported names from the http package. Now, let’s try
the Get() function:

Here’s the output:

That is useful. In particular, we can confirm that this is indeed a
function which we can use: Get() issues a HTTP GET command to
the target URL.

http.Get() returns the response of type *http.Response (along
with a potential error value). You can read the body content
using io.ReadAll(response.Body) which we used in the previous
lesson, File Cat.

TIP: In case you are not familiar, an HTTP response comprises
the header part and the rest, "body", separated by a blank line.

The 10.ReadAl1() function returns the content in a byte slice type.

It is generally a good idea to spend some time to understand the
API and figure out how the API service works. Reading the

documentation can be useful. Trying out some endpoints using
command line tools such as curl can be useful.

For the World Time API service, everything you need to know to
use the API is available on their home page: worldtimeapi.org.

Let’s try to get the London time using one of their examples.

TIP: You can use tools other than curl as well. The point of this
exercise is to understand the response format from the service.
Since we already implemented http.Get() at this point, we can
actually use the (work-in-progress) program we are writing for
this purpose. We can just print out the received content (both the
headers and the body) to the console output.

A typical response from the server will look like this:

http://worldtimeapi.org

Anything above the blank line is headers. Anything that follows
the blank line is the body.

Now, where is the London time?

As you can easily figure out, the desired data is in a line that
starts with "datetime: ". What we need to get is the value after
this prefix, "2021-04-23T21:41:03.119143+01:00" in this particular
response.

So, one way to get the datetime is to go through all lines from the
response body, line by line, and find a line that starts with
"datetime: ". It is easy to write such a function using library
functions like strings.HasPrefix().

In this example, we are using a slightly more specialized API,
namely, bufio.Scanner, for demonstration.

Let’s browse the doc:

Here’s an output:

TIP: The Go documentation is also available online. For the
standard library, the best place is golang.org/pkg.

As you can see from the doc, a new Scanner can be created using

NewScanner() function. (The naming convention, as well as its
function signature, clearly indicates that this is a function we can
use to create a new Scanner.)

$ go doc bufio.NewScanner

https://golang.org/pkg

The NewScanner () function takes an argument of type io0.Reader.

We have responseDate which is a type of []byte. A byte slice can
be cast to a string. A new io.Reader can be created from a string
using strings.NewReader () function.

$ go doc strings.NewReader

strings.Reader is an interface type of io.Reader, among other
things.

Hence, we get scanner of type *bufio.Scanner this way:

scanner := bufio.NewScanner(strings.NewReader(string(responseData)))

bufio.NewScanner() creates a Scanner which by default "tokenizes"
the content using newlines.

Now, we can use the Scan() method of bufio.Scanner to read
responseData, line by line.

$ go doc bufio.Scanner.Scan

We use the scanner.Text() method to get the next "token":

$ go doc bufio.Scanner.Text

The next thing we will need to do is to split each line into a "key-
value" pair, This is based on the knowledge we gained by
browsing the sample response body.

$ go doc strings.SplitN

Based on this doc, we know we can use something like this to get
the key and the rest (i.e., the value). Note the value 2 for n (the
third argument):

s := strings.SplitN(text, ":", 2)

The for scanner.Scan() loop continues until we find the desired
key "datetime" or it runs out of tokens.

In the latter case, we return a non-nil error to indicate that we
have not found what we are looking for. You can wuse

errors.New() to create a value of an interface type error:

$ go doc errors.New

That is our Datetime function implementation.

In the main function, we keep calling world.Datetime() on a
regular interval. We "sleep” for 10 seconds.

$ go doc time.Sleep

time.Second is a constant (of type time.Duration) defined in the
time package:

$ go doc time.Second

package time // import "time"

const (
Nanosecond Duration = 1
Microsecond = 1000 * Nanosecond
Millisecond = 1000 * Microsecond
Second = 1000 * Millisecond
Minute = 60 * Second
Hour = 60 * Minute

)

Common durations. There is no definition for units of Day or larger to
avoid
confusion across daylight savings time zone transitions.

To count the number of units in a Duration, divide:

second := time.Second
fmt.Print(int64(second/time.Millisecond)) // prints 1000

To convert an integer number of units to a Duration, multiply:

seconds := 10
fmt.Print(time.Duration(seconds)*time.Second) // prints 10s

If we run into a certain number of errors, then we terminate the
program.

Let’s run the program. Here’s a sample output:

$ go run .

Error: Datetime not found!

datetime: 2021-04-23717:32:42.207099-04:00
datetime: 2021-04-23717:32:52.418983-04:00
Error: Datetime not found!

datetime: 2021-04-23717:33:33.179857-04:00
datetime: 2021-04-23T717:33:43.432816-04:00
datetime: 2021-04-23T17:33:53.671061-04:00
datetime: 2021-04-23717:34:03.901718-04:00
signal: interrupt

One of the things that we see by browsing the documentation for
the http.Get() function is that "Get is a wrapper around
DefaultClient.Get".

http.Get uses the variable DefaultClient. In the next lesson, we
will look into the http client in some more detail.

19.4. Summary

We used the http.Get() function to fetch Web content. We parsed
the response body to get the current time in a particular
timezone.

19.5. Exercises

1. Modify the url in the main package to get the time in your
own timezone.

2. Use the number consecutive errors not the total error
count as a criterion to terminate the program.

3. Parse the datetime string and print it out in a particular
format, e.g., "April 21st, 2:15PM".

4. Use the "big digit LED clock", "LED" Clock, to display the
datetime from the server.

20. WHERE THE ISS AT

20.1. Introduction

The website, Where the ISS at?, provides the real-time location
data of the International Space Station (ISS) in REST API.

Here’s the REST API documentation: wheretheiss.at/w/developer.
There are five API endpoints. They do not require authentication,
as of this writing,

One thing to note is that they have rate limits, around 1 request
per second.

The satellites endpoint returns a list of satellites and their IDs.

$ curl https://api.wheretheiss.at/v1/satellites

There is currently only one satellite supported, and that is the
ISS. Its ID is 25544,

You can get the current position of the ISS using the satellites/[ID]
endpoint. Let’s write a program which displays the current
location and altitude of the ISS on a regular interval.

https://wheretheiss.at
https://wheretheiss.at/w/developer

20.2. Code Review

First, let’s try out this endpoint:

Here’s a sample response:

Again, note the empty line separating the headers and the body.
By default, it sends the data in the JSON format in the response
body. We can "pretty print" the body of the response:

{
"name": "iss",
"id": 25544,
"latitude": -21.409188508186,
"longitude”: -32.420309123332,
"altitude": 424.89524314303,
"velocity": 27565.45635825,
"visibility": "eclipsed",
"footprint": 4532.2848807191,
"timestamp": 1619234901,
"daynum": 2459328.6446875,
"solar_lat": 12.915312498887,
"solar_lon": 127.45847703932,
"units": "kilometers"

We are only interested in the four fields, latitude, longitude,
altitude, and timestamp (in Unix epoch seconds), in this example.

This program’s logic/structure will be pretty much the same as
that of the previous lesson, World Time API.

= Call the API endpoint.
= Fetch the data, and parse the response.

= Print out the result.

The primary difference will be, in this example, we will deal with
JSON responses.

20.2.1. Package main

Here’s a portion of the source file, main.go, which includes the

main() function:
Listing 91. wheretheiss-api/main.go (lines 9-15)

9 const issID = 25544

10 const endpoint = "https://api.wheretheiss.at/v1/satellites"
11 const interval = 10 * time.Second

12

13 func main() {

14 trackISS()

15 }

A few constants are defined here, and then the main() function

merely calls another function, trackISS(), in the same package.
We are going to work on a few different versions of the program,
and we will use a different "track ISS" function for each version.

The trackISS() function is defined as follows:
Listing 92. wheretheiss-api/main.go (lines 17-28)

17 func trackISS() {

18 for {

19 sat, err := iss.Track(endpoint, issID)
20 if err = nil {

21 fmt.Println("Error while tracking ISS:", err)
22 continue

23 }

24 fmt.Println(*sat)

25

26 time.Sleep(interval)

27 }

28 }

We have an infinite loop, as before, and in each iteration, we call
the iss.Track() function defined in the iss package. Then, we

print out the result, and repeat the same after waiting about 10
seconds.

The iss.Track() function does all the heavy lifting.

20.2.2. Package client

First, let’s create an http.Client. In the previous lesson, we used
http.Get() to fetch the data, which indirectly calls
http.DefaultClient.Get().

This time, we will explicitly create a variable of type http.Client
(or, its pointer type), and use its methods.

Listing 93. wheretheiss-api/client/client.go (lines 8-15)

8 const timeout = 5 * time.Second
9

10 func New() *http.Client {

11 client := http.Client{

12 Timeout: timeout,

13 }

14 return &client

15 }

The type, http.(Client, includes a few exported (or, public) fields,
and their values can be customized. In this example, we set the
request timeout duration to 5 seconds.

The conventional New() function returns a pointer to an
http.Client value.

20.2.3. Package iss

Based on the sample JSON response data, and according to our
requirements, we create a struct type SatelliteData.

This will be used to store the ISS position data.
Listing 94. wheretheiss-api/iss/iss.go (lines 9-14)

9 type SatelliteData struct {
10 Timestamp int64 ‘json:"timestamp"®

11 Latitude float64 ‘json:"latitude"'
12 Longitude float64 ‘json:"longitude"'
13 Altitude float64 ‘json:"altitude"®
14 }

Each field of a struct definition can include an optional "tag",
after the field type, a string which has no real significance to the
compiler. Other applications, or packages, can use the tags as
needed.

In this example, the tags are to be used for marshaling and
unmarshaling JSON data.

Listing 95. wheretheiss-api/iss/iss.go (lines 16-23)

16 func Unmarshal(data []byte) (*SatelliteData, error) {
17 sat := SatelliteData{}

18 err := json.Unmarshal(data, &sat)

19 if err != nil {

20 return nil, err
21 }

22 return &sat, nil
23 }

The iss.Unmarshal() function converts the response byte slice
(JSON string) into a value of type SatelliteData.

The magic happens in json.Unmarshal(). The json package in the
Go standard library includes functions for marshaling/encoding
and unmarshaling/decoding JSON strings.

$ go doc json.Unmarshal

For convenience, we also implement the Stringer interface
method, String(), on the type SatelliteData. Functions like
fmt.Printf() uses the Stringer interface.

Listing 96. wheretheiss-api/iss/iss.go (lines 25-28)

25 func (s SatelliteData) String() string {

26 t := time.Unix(s.Timestamp, 0)

27 return fmt.Sprintf("%s: (Lat:%.4f, Lon:%.4f, Alt:%.4f)",
t.Format(time.RFC1123), s.lLatitude, s.Longitude, s.Altitude)
28 }

The implementation of this method uses a couple of exported
functions from the time package.

$ go doc time.Unix

time.Unix() is used to create a value of type time.Time from the

timestamp, and Time.Format() is used to format the time for
display.

$ go doc time.Format

Here’s the iss.Track() function:
Listing 97. wheretheiss-api/iss/track.go (lines 10-41)

10 func Track(endpoint string, issID int) (*SatelliteData, error) {
1 url := fmt.Sprintf("%s/%d", endpoint, issID)

12

13 req, err := http.NewRequest(

14 http.MethodGet,

15 url,

16 nil,

17)

18 if err != nil {

19 return nil, err

20 }

21

22 req.Header.Add("Accept”, "application/json")
23

24 httpClient := client.New()

25 res, err := httpClient.Do(req)
26 if err != nil {

27 return nil, err

28 }

29

30 data, err := io.ReadAll(res.Body)
31 if err != nil {

32 return nil, err

33 }

34

35 sat, err := Unmarshal(data)

36 if err != nil {

37 return nil, err

38 }

39

40 return sat, err

41 }

The Track() function calls the ISS Satellite endpoint, it reads the
response body as a JSON string, and deserializes it into a variable
of type SatelliteData.

20.3. Pair Programming

As indicated, the Track() function uses a value of http.Client
directly rather than using higher level functions such as
http.Get(), which uses http.DefaultClient in its implementation.
This gives us some more control.

var httpClient = &http.Client{
Timeout: 5 * time.Second,

}

Furthermore, we use (lient.Do() method instead of simpler
Client.Get(). If we need to customize a request, e.g., set a header,
or add a cookie, etc, then we will need to create a value of
http.Request and use the Client.Do(request) method.

In this example, we set a header "Accept: application/json" to
the request. This is not entirely required in this case since the
Where the ISS at API happens to return JSON response by default.
Code samples included in this book are primarily for illustration.

Track() then uses io.ReadAll() to read the body of the response

(a JSON string). As stated before, i0.ReadAl1() might not be the
best choice in some situations, but in this case, it is perfectly all
right. We cannot parse JSON until we see the whole string.

The iss.Unmarshal() function is a simple wrapper around

json.Unmarshal(), which is generally not necessary. In this
example, it saves us one line. @

In some cases, you may want to have more control over
deserialization over the default behavior provided by the

implementation of json.Unmarshal().

The iss.Track() function includes some boilerplate code for
error handling:

if err != nil {
return nil, err

}

This 3-liner if statement is included four times in this small
function.

The purpose of the if statement in this example is just to "relay"
any non-nil errors returned by the functions that Track() calls to
its own caller, and nothing else.

Unfortunately, there is no easy way to reduce this clutter, that is,
as long as we use this error-as-a-return-value convention in Go.
This is a simple example, but one can easily imagine a long call
chain where a function calls a function, which calls another
function, and so forth.

As alluded before, Go provides another way of handling
exceptional, or unexpected, situations.

Panics automatically "bubble up", or propagate upstream in the
call chain. When a panic happens in a function, the execution
stops at this point, and it immediately returns, after calling only
the deferred functions. The same thing happens to its caller, and
its caller, ..., until it reaches the main() function, at which point
the program terminates, with a non-zero exit code.

A good example of the use of panic is when dividing a number by

a variable whose value is 0. (As a side note, if you attempt to
divide a number by a constant @ or 0.0, or numeric literals
equivalent to 0, the Go compiler catches it at a build time. It’s a
compile error, not a run-time error.)

= func panic(v interface{}): The panic built-in function stops

normal execution of the current goroutine. When a function F
calls panic, normal execution of F stops immediately. Any
functions whose execution was deferred by F are run in the
usual way, and then F returns to its caller.

We can call panic() with an arbitrary value, of any type.

During the unwinding of the call stack, or during the "panicking",
as is called in Go, any function in the call chain may decide to

handle the panic from downstream, using Go’s builtin recover()
function.

= func recover() interface{}: The recover built-in function

allows a program to manage behavior of a panicking
goroutine. Executing a call to recover inside a deferred
function stops the panicking sequence by restoring normal
execution.

The recover () function is normally, and almost always, used in a
deferred function. recover() returns the same value as the
parameter used when panic() was called. If recover() is called
when the goroutine is not panicking, then it merely returns nil.

As an example, let’s try to rewrite the Track() function so that we

do not have to include the 3-liner error handling if statement
everywhere. Simply putting the if statement in a separate
function, and calling that function, will not work since that
function call has to go through the normal call chain as well.

Here, in the second version of the Track function, we use panic():
Listing 98. wheretheiss-api/iss/track.go (lines 43-65)

43 func Track2(endpoint string, issID int) (sat *SatelliteData, err error) {
44 defer func() {

45 if r := recover(); r !'= nil {
46 err = r.(error)

47 }

48 }()

49

50 url := fmt.Sprintf("%s/%d", endpoint, issID)
51 req, err := http.NewRequest(http.MethodGet, url, nil)
52 panicOnError(err)

53

54 req.Header.Add("Accept", "application/json")
55 res, err := client.New().Do(req)

56 panicOnError(err)

57

58 data, err := i0.ReadAll(res.Body)

59 panicOnError(err)

60

61 sat, err = Unmarshal(data)

62 panicOnError(err)

63

64 return

65 }

The panicOnError() function is defined as follows:
Listing 99. wheretheiss-api/iss/track.go (lines 85-89)

85 func panicOnError(err error) {
86 if err != nil {

87 panic(err)

88 }

89 }

Every time we run into an error, we call panic(err). In a deferred
function, we then call recover() to check if there has been an
error. And, if so, recover() != nil, then we "convert the return
value r back to an error type" and return that error to the caller.

The expression r.(error) casts r, which is of type interface{}, to
error type. This is known as a "type assertion".

At the risk of sounding like a broken record, all example
programs in this book are primarily for illustration purposes,
and this example, in particular, only demonstrates the use of

panic() and recover ().

Incidentally, the defer statement uses an anonymous function
literal, and it calls the function immediately at the point of its
definition.

func() { /* ... */ }(0)

This is equivalent to

f = func() { /* ... */ }
fO)

This variation of Track(), or Track2(), does not require any real

changes to its caller(s). Refer to trackISS2() in the code listing at
the end of the book, Code Listing - Part II.

We can even go a little bit further with this example.

This example of using panic/recover in the same function,
Track2(), does not add much value, beyond the body of this

function. Its callers will still have to deal with errors.

We can just use panics throughout our program. Every time we
encounter an error (from the functions we use), we convert it to
panic and deal with it later. In situations where a long call chain
is involved, it can potentially reduce the code clutter
significantly.

The example still uses one caller and one callee, but it can be
used in multiple function call sequences.

Here’s a new version of Track():
Listing 100. wheretheiss-api/iss/track.go (lines 67-83)

67 func Track3(endpoint string, issID int) *SatelliteData {
68 url := fmt.Sprintf("%s/%d", endpoint, issID)

69 req, err := http.NewRequest(http.MethodGet, url, nil)
70 panicOnError(err)

71

72 req.Header.Add("Accept", "application/json")

73 res, err := client.New().Do(req)

74 panicOnError(err)

75

76 data, err := io.ReadAll(res.Body)

77 panicOnError(err)

78

79 sat, err := Unmarshal(data)

80 panicOnError(err)

81

82 return sat

83}

We use the same panicOnError() function as before. It simply
calls panic() when it receives a non-nil error.

The difference between Track3() and Track2() is that, in this new

version, we do not call recover(). It lets its caller, or the caller’s
caller, etc., handle the panicking situation as they see fit.

Now, one of the functions in the call chain, trackISS3() in this

case, which is really the main() function of the program (this
additional layer of function call is somewhat artificial in this
example), may decide to do something with panics.

For example,
Listing 101. wheretheiss-api/main.go (lines 43-52)

43 func trackISS3() {

44 defer restartOnPanic()

45

46 for {

47 sat := iss.Track3(endpoint, issID)
48 fmt.Println(*sat)

49

50 time.Sleep(interval)

51 }

52 }

Listing 102. wheretheiss-api/main.go (lines 54-59)

54 func restartOnPanic() {

55 if r := recover(); r != nil {

56 fmt.Println("Error while tracking ISS:", r.(error))
57 trackISS3()

58 }

59 }

The restartOnPanic() simply restarts the for loop, essentially by
calling restartOnPanic() again, in the error situation.

The three versions of trackISS() behave the same way.

Here’s a sample output:

Note that we can change the request timeout duration by
changing the http.Client's Timeout value. For example,

20.4. Summary

We learned how to make simple HTTP GET requests in a Go
program using a value of type http.Request.

We also reviewed the error handling mechanism, using panic()
and recover().

20.5. Exercises

1. Although we do not cover GUI programming, including
the Web frontend, if you are familiar with Web mapping
APIs, such as Google Maps, then you can plot the
(projections of) the ISS’s positions on the map of the
planet, real time.

21. SIMPLE WEB SERVER

21.1. Introduction

Let’s write a simple HTTP server.

There are many "Web framework" libraries in Go. Many Go
programmers use these Web frameworks for various reasons.
For example, some frameworks may have better performance.
Some frameworks may expose APIs which are "easier" to use
(although "easy" is really a subjective characterization in this
context). Etc.

But, Go’s standard library has a perfectly good support for Web
backend programming.

We will try out a few simple APIs from the net/http package in
this lesson.

21.2. Code Review

As always, let’s start from the main() function.

When you are trying to read and understand a program source
code, which is new to you, the main package is the best place to
start, especially the main() function.

Generally, but not always, the top-down approach works best
when designing a new program, or when trying to get a high-
level understanding of an existing program.

21.2.1. Package main
The main function in this example is very simple:

Listing 103. web-server-simple/main.go (lines 9-17)

9 func main() {

10 fmt.Println("Server starting...")

11

12 http.HandleFunc("/", handler.Handler1)

13

14 if err := http.ListenAndServe(":8080", nil); err != nil {
15 panic(err)

16 }

17 }

It sets up a handler function,

http.HandleFunc("/", handler.Handler1)

And, it calls http.ListenAndServe()

if err := http.ListenAndServe(":8080", nil); err != nil {
panic(err)
}

This if statement is pretty idiomatic when you start a long-
running server program.

The http.HandleFunc() maps a URL path, or route, the "root" / in
this case, to a handler function of type func(http.ResponseWriter,
*http.Request). All requests will be handled by the Handler1()
function in the handler package, in this example.

In general, the Web server program may include multiple
handlers for different paths.

$ go doc http.HandleFunc

The doc says that http.HandleFunc() uses http.DefaultServeMux,

which is of a type http.ServeMux. You can go doc each of these
names, and then the names that are included in those docs, and
so forth, if you need to.

But, in this case, all we need is essentially the type of the handler
argument. We will write, or review, a handler function shortly.

Likewise, we can look up the http.ListenAndServe() function:

$ go doc http.ListenAndServe

Again, we are using the default http.DefaultServeMux variable
defined in the net/http package when calling the

http.ListenAndServe() function with nil Handler second
argument, as in this example.

We can easily create a custom handler type (e.g., using struct) by
implementing a method, ServeHTTP(http.ResponseWriter,
*http.Request), as defined in the http.Handler interface type:

$ go doc http.Handler

The http.ListenAndServe() function does not return, except for
the case of an error. When this function returns, the error value
will always be non-nil.

Therefore, the following implementation is also idiomatic:

func main() {
http.HandleFunc("/", handler.Handler1)
log.Fatal(http.ListenAndServe(":8080", nil))
}

When http.ListenAndServe() returns, if ever, it logs the error
(which is always non-nil) and terminates the program with a
non-zero exit code.

21.2.2. Package handler

Here’s the simplest handler function of type func(Responselriter,
*Request):
Listing 104. web-server-simple/handler/handlers.go (lines 8-10)

8 func Handler1(w http.ResponseWriter, r *http.Request) {
9 ijo.WriteString(w, "Hello\n")
10 }

This function merely returns a string "Hello" as a plain text.

Here’s a slightly more complex version:

Listing 105. web-server-simple/handler/handlers.go (lines 12-15)

12 func Handler2(w http.ResponseWriter, r *http.Request) {
13 w.Header().Add("Content-Type", "application/json")

14 io.WriteString(w, ‘{"greeting":"hello"}")

15 }

The Handler2 function sets a header, "Content-Type:
application/json”, and it returns a simple JSON string
{"greeting":"hello"}.

When you start this simple Web server, it print out the message,
"Server starting...", and it just waits.

$ go run .

Let’s try to access this Web server using, for example, curl.

$ curl http://localhost:8080/

It just returns the string "Hello" regardless of the URL path.

$ curl http://localhost:8080/abc

You can also try to access the server using a web browser.

21.3. Pair Programming

A function has a type. A variable or a literal of a function type
can be used just like any other values.

Functions like http.HandleFunc(), for example, accept arguments
of a function type. In particular, the second argument of
http.HandleFunc() is a type func(http.ResponseWriter,
*http.Request).

As an exercise, let’s create a kind of "universal" function that
does any kind of binary operation, which takes two ints and
returns an int.

func doBinaryOperation(1l, r int, f func(int, int) int) int {
return (1, r)
}

This function accepts a value of function type, func(int, int)
int, as its third argument, and calls the argument function using
its first two arguments, which are ints.

If we pass a function argument that does addition, then
doBinaryOperation() does addition. If we pass a function

argument that does multiplication, then doBinaryOperation() does
multiplication. It does anything that the argument function does.

Here’s a simple test code:

func TestDoBinaryOperation(t *testing.T) {
1, r :=1, 2

sum := func(l int, r int) int {
return 1 + r

}
p := doBinaryOperation(l, r, sum)
if p!1=3{
t.Fail()
}

doBinaryOperation(1l, r, func(l int, r int) int {

3
11

return 1 - r

})
ifm!l=-1{
t.Fail()
}
}

Both of these two tests "pass". The first test case calls
doBinaryOperation() with a variable sum which has a type func(1
int, r 1int) 1int. The second test case uses a function literal,
func(l int, r int) int { return 1 - r }).

We can go a little bit further.

In this Web server example, the http.HandleFunc() function maps
a path to a single handler function. You can use different
handlers for different paths, but as is written, you can call only
one handler per path.

Many Web server frameworks support constructs called
"middleware”. A middleware is a function that runs in the
"middle" from the time when a request is received to the time
when a response is sent. You can run multiple middlewares in
series.

Let’s build, as an exercise, a middleware framework into our
simple Web server.

We can define a "middleware" as follows:

type middleware = func(http.Handler) http.Handler

It is a function that takes a http.Handler function and returns
another http.Handler function. http.Handler is an interface type

from the http package, and it is being used as a reference type.
We can "chain-call" our middlewares one after another.

Here’s an example of our middleware function:

func LogMiddleware(next http.Handler) http.Handler {
return http.HandlerFunc(
func(w http.ResponseWriter, r *http.Request) {
log.Printf("%v\n", *r)
next.ServeHTTP(w, r)
b

This function return a function that simply logs the request r and
calls the "next" handler function. Note that the type of
LogMiddleware() is middleware, that 1is, func(http.Handler)
http.Handler.

Now, let’s create a function that takes a set of middlewares and
return a http.Handler function, which we can use as the second
argument for http.Handle().

func RunMiddlewares(h http.Handler, middlewares ...middleware) http.Handler {
for _, mw := range middlewares {
h = mw(h)
}

return h

We can use this function as follows:

func main() {
http.Handle("/", handler.RunMiddlewares(
http.HandlerFunc(handler.Handler1),
handler.Middleware1,
handler.Middleware2,
)

log.Fatal(http.ListenAndServe(":8080", nil))
}

Note that we use http.Handle() instead of http.HandleFunc() in
this example.

21.4. Summary

We implemented a simple Web server using APIs of the http
package. We also implemented a simple "middleware"
framework using a function that takes a function and returns a
function.

21.5. Exercises

1. Implement a handler that uses a query parameter, say,
name and returns a string "Hello <name>". We have not
discussed how to read URL query parameters, but go doc
(or, the online Go documentations) is your best friend.

2. Create a simple Web server using a custom http.ServeMux,
not the http.DefaultServeMux.

3. The RunMiddlewares() function calls middleware function
in the reverse order. And, it calls the "main handler" last
(e.g., handler.Handler1 in the example). How would you
change its implementation so that middlewares are
called in the order they are added but the main handler
is still called last?

22. TCP CLIENT AND SERVER

22.1. Introduction

The Internet is built on top of the TCP/IP protocol. The HTTP
application layer protocol is built on top of TCP/IP, among other
things.

Telnet is another popular application layer protocol that is built
on TCP/IP. 1t used to be one of the main ways to connect to a
remote machine, e.g., to get a shell access, but that use is mostly

superseded by SSH at this point, which is more secure.

The Telnet protocol, however, still remains to be one of the most
basic methods to facilitate "text-based" communications among
remote hosts on the Internet. Here’s a Wikipedia article, if you
need more information: en.wikipedia.org/wiki/Telnet.

We are going to write a simple Telnet client, as well as a server,
in this lesson.

https://en.wikipedia.org/wiki/Telnet

N S
22.2.Code Review - Client

Let’s start with the client.

22.2.1. Package main
Here’s the client’s main() function:

Listing 106. telnet-client-simple/main.go (lines 10-31)

10 const (

11 host = "localhost"
12 port = 2323

13)

14

15 func main() {

16 client := telnet.NewClient(host, port)
17 err := client.Connect(false)

18 if err != nil {

19 log.Fatalln(err)

20 }

21 defer client.Close()

22

23 go client.Listen()

24

25 err = client.ProcessInput()
26 if err == i0.EOF {

27 0s.Exit(0)

28 } else if err != nil {

29 log.Fatalln(err)

30 }

31}

The main() function first creates a client of type telnet.Client

(or, its pointer type) from the telnet package. It uses its methods
to connect and process input/output.

22.2.2. Package telnet

First, we create a new type Client to represent a Telnet client
program and its behavior.

Listing 107. telnet-client-simple/telnet/client.go (lines 15-19)

15 type Client struct {

16 address string
17 connection net.Conn
18 ignoreNewline bool

19 }

The Client struct includes three fields. For example, connection is

a network connection of type net.Conn. Note that none of them is
exported.

Client implements the following set of methods:

func (c *Client) Connect(newline bool) (err error) {}
func (c *Client) Close() {}

func (¢ *Client) Listen() {}

func (c *Client) ProcessInput() error {}

The Connect() method is implemented as follows:
Listing 108. telnet-client-simple/telnet/client.go (lines 30-34)

30 func (c *Client) Connect(ignoreNewline bool) (err error) {
31 c.connection, err = net.Dial(TCP, c.address)

32 c.ignoreNewline = ignoreNewline

33 return

34 }

This method is just a simple wrapper around net.Dial(), which
does all the heavy lifting.

"Package net: Package net provides a portable interface for
network I/O, including TCP/IP, UDP, domain name resolution,
and Unix domain sockets. Although the package provides
access to low-level networking primitives, most clients will
need only the basic interface provided by the Dial, Listen, and
Accept functions and the associated Conn and Listener
interfaces.

- func Dial: Dial connects to the address on the named
network. For TCP and UDP networks, the address has the
form "host:port". The host must be a literal IP address, or a
host name that can be resolved to IP addresses. The port
must be a literal port number or a service name.

Note that the C(lient.Connect() method accepts a Boolean
argument, 1ignoreNewline. We wuse this variable in the
implementation of ProcessInput().

The C(Close() method is a also simple wrapper around
net.Conn.Close():

Listing 109. telnet-client-simple/telnet/client.go (lines 36-41)

https://golang.org/pkg/net/
https://golang.org/pkg/net/#Dial

36 fune (c *Client) Close() {
37 if c.connection != nil {

38 c.connection.Close()
39 c.connection = nil
40 }

41 }

The Listen() method starts a "listener loop".
Listing 110. telnet-client-simple/telnet/client.go (lines 43-62)

43 func (¢ *Client) Listen() {

44 for {

45 if c.connection != nil {
46 err := doCopy(c.connection)
47 if err = nil {

48 fmt.Println(err)
49 return

50 }

51 } else {

52 return

53 }

54 }

55 }

56

57 func doCopy(src io.Reader) error {

58 if _, err := io.Copy(os.Stdout, src); err !I= mil {
59 return err

60 }

61 return nil

62 }

This listener looping continues until the connection is broken, or
until it encounters an error.

The ProcessInput() method is defined as follows:
Listing 111. telnet-client-simple/telnet/client.go (lines 64-84)

64 func (c *Client) ProcessInput() error {
65 reader := bufio.NewReader(os.Stdin)

66 for {

67 cmd, err := reader.ReadString('\n")
68 if err = nil {

69 return err

70 }

71 if c.ignoreNewline {

72 cmd = strings.TrimRight(cmd, "\n")
73 }

74 c.send(cmd)

75 }

76 }

77

78 func (c *Client) send(cmd string) error {
79 if c.connection == nil {

80 return errors.New("Connection not established")
81 }

82 fmt.Fprint(c.connection, cmd)
83 return nil
84 }

ProcessInput() simply copies the user input to the destination
connection, using a helper method, send().

22.5. Pair Programming - Client

The implementation of this client program is straightforward.

The main() function creates a client for a particular remote
address. The host and port are hard-coded in this case as consts.

Normally, it will be better to read these values from the
command line as we have done in some previous lessons.

The main() function first starts a goroutine to listen to the
messages coming from a server, client.Listen(). Then (in
parallel), it processes the wuser input from the terminal,
client.ProcessInput().

The go keyword starts a function or method in a "goroutine", a
thread of execution different from the one where the main()

function is running. Note that we run the ProcessInput() function
within the main goroutine. In this example, we ignore
synchronization between these two goroutines.

The client.Listen() method starts an infinite loop. In each
iteration, it reads an input from the connection and it copies the
content to the os.Stdout, if any. The doCopy(c.connection)
function simply calls i0.Copy(os.Stdout, c.connection).

The ProcessInput() method starts another infinite loop. It

processes the user input on a line-by-line basis. It calls send() to
send the user input to the connection, e.g., to the remote server.

Clearly, we cannot run both in the same thread, or goroutine. At
least one, or both, functions will have to be run as separate
goroutines.

Note the use of the ignoreNewline flag in the ProcessInput()
method.

When a user types a text and presses an Enter key on the
terminal, a newline is automatically added. In general, it may not
be the user’s intention to add a newline. It is just a signal
indicating that the user is done with this particular line of input.

When you issue a command "Is" on a Unix shell, for instance, you
press the 1 key, the s key, and the Enter key. The shell receives

three characters corresponding to these three keystrokes. But,
the command is actually "1s", without the trailing newline.

The same holds true with telnet. In fact, a telnet server like
telnetd expects a newline (\n or \r\n) after each line of input.

By default, the ignoreNewline is set to false. But, there can be
situations where that is not very convenient.

For instance, in some communications, a newline may have a
special meaning. If we use the newline as an end of line symbol,
then it will be hard to tell which is a real newline and which is
just an end of line signal.

As another example, if you develop a game server and a client
that communicate over Telnet (or, over TCP), using some kind of
a predefined text-based protocol, then it will be more desirable
not to include the newline characters after each line.

HTTP is a text based protocol. In fact, we can use our "Telnet
client" to communicate with an HTTP server. It is, strictly
speaking, not a Telnet client per se in this use case. It is more of a
TCP client. But, the distinction is not that important in practice.

The only thing we need to be careful about is the newlines. In
HTTP, a "line" does not end with a newline character.

We built a simple Web server in the previous lesson, Simple Web
Server. Let’s run it on the localhost with port 8080.

Then, we can use our client to "talk" to this Web server. Run the
client with the server address, "localhost:8080". Note that we
will need to change the ignoreNewline value to true in the

Connect() method since we are not really using the "Telnet"
protocol.

Once the client program runs, type the following in the input:

@

@
®
@ Type 'GET /HTTP/1.1 ° and Enter.

@ Type Host: localhost and Enter.

® Just Enter.

You will get the same output as in the previous lesson:

This is an example request in the HTTP/1.1 protocol. Note the
empty "line" at the end.

Obviously, our "Telnet client" does not know anything about
HTTP, which is an application layer protocol. But, it knows TCP,

thanks to the library we use, e.g., the net package.

We can use this client app to talk to any TCP server that uses text-
based protocols as long as we understand those protocols.

22.4. Code Review - Server

22.4.1. Package main

The main() function creates a server of type echo.Server (or, its

pointer type) from the echo package. The host and port are also
hard-coded in this example.

Listing 112. tcp-server-echo/main.go (lines 8-21)

8 const (
9 host
10 port
1)

12

"localhost"
2323

13 func main() {
14 server, err := echo.NewServer(host, port)
15 if err != nil {

16 log.Fatalln("Failed to create a server:", err)
17 }

18 defer server.Close()

19

20 Tlog.Fatalln(server.Listen())

21}

The use of the port number 2323 is arbitrary. Telnet servers use
port 23 by default.

22.4.2. Package echo

As with Client, let’s create a new type Server to represent a TCP
server’s behavior:

Listing 113. tcp-server-echo/echo/server.go (lines 12-15)

12 type Server struct {
13 Address string

14 net.Listener

15}

The Server struct includes two fields. Note that it has an

embedded field net.Listener, which allows us to use a simpler
syntax using "promotion".

The type Server implements the following method:

func (s *Server) Listen() error {}

Note that we have deliberately chosen an API that is rather
similar to http.ListenAndServe() from the http package. This
function does not return unless there is an error.

Listing 114. tcp-server-echo/echo/server.go (lines 30-47)

30 func (s *Server) Listen() error {
31 fmt.Printf("Listening on %s....\n", s.Address)

32

33 for {

34 conn, err := s.Accept()
35 if err = nil {

36 return err

37 }

38

39 err = handleConnection(conn)
40 if err == j0.EOF {

41 continue

42 }

43 if err = nil {

44 return err

45 }

46 }

47 }

Here’s handleConnection():

Listing 115. tcp-server-echo/echo/server.go (lines 49-58)

49 func handleConnection(conn net.Conn) error {
50 defer conn.Close()

51

52 for {

53 err := echo(conn)

54 if err = nil {

55 return err

56 }

57 }

58 }

The handleConnection() function also includes an "infinite loop"
to process user inputs. The main service this this "echo server"
provides is to echo the user input back to the client:

Listing 116. tcp-server-echo/echo/server.go (lines 60-78)

60 func echo(conn net.Conn) error {
61 buf := make([]byte, 1024)

62 read, err := conn.Read(buf)

63 if err != nil {

04 return err

65 }

66

67 bytes := buf[:read]

68 input := strings.TrimRight(string(bytes), "\n")

69 fmt.Println("Received:", input)

70

71 output := fmt.Sprintf("ECHO: %s\n", input)
72 _, err = conn.Write([]byte(output))

73 if err !'= nil {

74 return err

75 }

76

77 return nil

78 }

22.5. Pair Programming - Server

Note the idiomatic way to start a server in the main() function:

log.Fatalln(server.Listen())

We will leave the implementation to the reader. As always, try to
understand the sample code first, close the book, and create the
same or similar program on your own. Your program does not
have to be exactly the same as the sample.

TIP: You can just do "thought programming”. Youw’ll likely learn
more by actually programming on computer, but that is not
always required. Depending on where you are right now while
reading this book, do whatever works best for you.

Once you are done with the server implementation, you can run
both the server and the client, and test them to see if they really
work.

Here’s a sample session:

Listing 117. Server

Listing 118. Client

@
®

@ The client-side user types "Hello server!" and Enter.

@ The user types "How are you?" + Enter.

3 The user types "Bye bye" + Enter.

Before we end this lesson, let’s go back to the question, the value
receiver vs the pointer receiver.

In the case of telnet.Client and tcp.Server, all the methods are
implemented on the pointer types.

fune (c
fune (c
func (c
fune (c

fune (s

*Client) Connect(newline bool) (err error) {}
*Client) Close() {}

*Client) Listen() {}

*Client) ProcessInput() error {}

*Server) Listen() error {}

As explained, there are a couple of reasons to use a pointer
receiver. First, in order for the method to be able to modify the
receiver value, it needs to use the pointer receiver. Second, to

avoid copying the value on each method call, the pointer receiver
is preferred.

We then suggested, as a general rule, prefer using pointer
receivers.

So, when do we use value receivers?

In order to answer this question, we will have to go back to our
discussion on value types vs reference types.

In languages like Java, this is essentially a non-issue. All custom
types are reference types. There is no choice. In C#, the choice is

limited: struct for value types, and class for reference types.

In languages like C++ and Go, however, it is much more
complicated.

First of all, all custom types in Go are value types. But, for every
value type, we can define a reference type corresponding to the
value type, that is, its pointer type.

In general, all types in Go have this dual nature. (The builtin
reference types like slice and map are exceptions.)

And, you can use a type either way, as a value type (or, "value-
semantics” type) or as a reference type (or, "reference-semantics”
type), e.g., using pointers. In some sense, this is a good thing. It
gives a programmer more flexibility, more freedom, and more
power.

Well...

66 With great power comes great responsibility. @
~ Ben Parker Spider-Man

It is generally a best practice to create a new type for one or the
other use, but not for both. Not to mix their uses.

When you create a type, you will have to think of this question: Is
this more like a value type (or, a value-semantics type), or more
like a reference type (or, a reference-semantics type)?

"Small" types like Point and Hand that we used in the earlier
lessons are value-semantics types, by their nature. Anything that
are, in some ways, comparable to primitive types like int is a
value type. Anything that it makes sense to "copy" is a value type.

Everything else should be a reference-semantics type. That is,
you will (almost) exclusively use its pointer type *T rather than
type T itself. The Client and Server types in this lesson belong to
this category.

One other thing to note is that a value type should not include a
reference type. For example, if a struct type includes a pointer
type field, or a slice, then it will be probably best to use that type
as a reference type.

This is a general guideline. The compiler does not care, but you
will end up writing better code if you stick to this rule or
guideline.

An experienced C programmer intuitively knows this even if
he/she may not have explicitly thought about it. In C, there is also
an issue of memory management, which is tied to this issue of

value vs reference.

In Go, unlike in C++, however, there is one additional twist. You
cannot implement an interface method for both a type and its
pointer type. Go does not allow function overloading. Youw’ll have
to choose one or the other.

If you stick to the above guideline, then everything works out
fine. For a value-semantics type, you use value receivers for all
its methods. (Or, for almost all.) For a reference-semantics type,
you use pointer receivers for all its methods. (Or, for almost all.)

This general rule will encompass the two special cases
mentioned before where only pointer receivers can be used (or,
pointer receivers are preferred).

This discussion is really beyond the scope of an introductory
book like this, but it is essential to understand this concept to
become a proficient Go programmer. In the long run.

To reiterate, when you create a new type, you decide: Is the value
semantics, or the reference semantics, more suitable for the
values of this type?

22.6. Summary

We touched upon basic client-server programming. We used
APIs in the net package in the Go standard library.

We also spent some time discussing value receivers vs pointer
receivers. The general rule is that, for a type, you use one or the
other type receivers (almost) exclusively for all its methods and
do not mix them.

22.7. Exercises

1. Try running Client.ProcessInput() iIn a separate
goroutine. What changes are required? The simplest way
to do this is probably using sync.WaitGroup. Refer to the
API doc online, or use go doc sync.WaitGroup.

2. Create an echo server, as in this example, and create
another server that does "relaying". A client talks to the
relay server, and it merely re-sends the message to the
echo server. Once the relay server receives the response
from the echo server, it relays the response back to the
client. How would you write this "relay server"?

AUTHOR'S NOTE

"Polyglotting”

How was it? Was it fun? That was the end of Part II. Hope you learned
something new from the lessons in this part. If any of the topics we covered
here was not clear to you, then you can always go back and repeat the lessons
(remember, "if you read a book 100 times, ..." @), or you can refer to different
resources on the Web.

Many people learn foreign languages for fun. Even if you have no plans to
travel to Japan, for instance, at least not in the near future, you can still learn
the Japanese language just for the fun of it. A lot of people do. A lot of people
speak many languages.

Likewise, many programmers learn and use many different programming
languages. Often, for practical reasons. But, sometimes, just for fun.

All programming languages are different. They offer different perspectives.
They have different strengths and weaknesses. They have different areas of
primary uses. For example, Python is now becoming the language for
Al/machine learning. If you are interested in low-level systems programming,
then you will have to use C/C++ or Rust.

Learn a new programming language just for the fun of it. If you use Java, for

instance, at your work, then learn C#. Use C# to build something fun.

The author has used over 20 different programming languages over the years,
sometimes by necessity, sometimes just for fun.

Here’s a list of upcoming books by the author, if you are interested:

= The Art of C# - Basics: Introduction to Programming in C#
9.0

= The Art of Python - Basics: Introduction to Programming
in Python 3

= The Art of Typescript - Basics: Introduction to
Programming in Typescript and Javascript

= The Art of Rust - Basics: Introduction to Programming in
Rust

= The Art of C++ - Basics: Introduction to Programming in
Modern C++

Yes, they all have more or less the same titles, except for the language part. @

They are part of the "Learn Programming (Languages) for Fun" series.

https://www.amazon.com/dp/B08X2SCG2Y
https://www.amazon.com/dp/B08X2SHM6C
https://www.amazon.com/dp/B08X2354J4
https://www.amazon.com/dp/B08X2VDKW7
https://www.amazon.com/dp/B08X2SNZ96

REVIEW - STRUCTS, METHODS,
INTERFACES

Key Concepts

Function Types and Values

In Go, a function is a value, with a function type. Functions
can be passed around just like other values. Function values
may be used as function arguments and return values.

Flow Control

Switch Statements

A switch statement comprises a condition expression and a
number of cases. It runs the first case whose value is equal to
the condition expression. Switch cases evaluate cases from top
to bottom, stopping when a case succeeds. Go’s switch' does
not need break after each case.

Switch without a condition is the same as switch true. This
construct can be a clean way to write long if-then-else chains.

Defer Statements

A defer' statement defers the execution of a function until the
surrounding function returns. The deferred call’s arguments
are evaluated immediately, but the function call is not
executed until the surrounding function returns. Deferred
function calls are pushed onto a stack. When a function
returns, its deferred calls are executed in last-in-first-out
order.

Advanced Types

Maps
A map stores a key to value mapping. The make function
returns a map of the given type, initialized and ready for use.
A map can also be initialized with a map literal. If the top-
level type is just a type name, you can omit it from the
elements of the literal.

Structs

A struct is a collection of fields of one or more types. Struct
fields are accessed using the dot notation (.). They can be

accessed through a struct pointer with the same dot notation
without the explicit dereference.

A struct literal denotes a newly allocated struct value by
listing the values of its fields. You can list just a subset of fields

by using the Name: syntax. The order of named fields is
irrelevant.

Methods
You can define methods on types, including struct types. A

method is a function with a special receiver argument. The
receiver appears in its own argument list between the func
keyword and the method name. Methods are just functions
with a different syntax.

Receivers

You can declare methods with value or pointer receivers. You
can only declare a method with a receiver whose type is
defined in the same package as the method.

Methods with a pointer receiver can modify the value to
which the receiver points. Since methods often need to modify
their receiver, pointer receivers are more common than value
receivers. With a value receiver, the methods operate on a
copy of the original value.

Interfaces

A set of method types defines an interface type. A type
implicitly implements an interface by implementing its
methods. An interface value holds a value of a specific
underlying concrete type, which implements those methods.
Calling a method on an interface value executes the method of
the same name on its underlying type.

Implicit interfaces decouple the definition of an interface
from its implementation, which could then appear in any
package without prearrangement.

The Empty Interface

The interface type that specifies zero methods is known as the
empty interface, interface{}.” An empty interface may hold

values of any type. The empty interface type can be used by
code that handles values of unknown type at build time.

Type Assertions

A type assertion provides access to an interface value’s
underlying concrete value. For example, the statement t :=
i.(T) asserts that the interface value i holds the concrete type

T and assigns the underlying T value to the variable t. If i does
not hold a T, the statement will trigger a panic.

To test whether an interface value holds a specific type, a type
assertion can return two values: the underlying value and a
boolean value that reports whether the assertion succeeded.
E.g., in t, ok := 1.(T), if 1 holds a T, then t will be the
underlying value and o'k will be true. If not, ‘ok will be
false and t will be the zero value of type T, and no panic
occurs.

I11: HAVING FUN

There is no royal road to programming.

25. FOLDER TREE

23.1. Problem

There is a Unix command tree, which lists the content of a
directory, files and subdirectories, in a tree-like format.

Implement a simple tree command in Go.

Here’s a relevant part from the tree man page.

Here’s a sample output from the tree command:

23.2.Discussion

The Go standard library includes various functions to facilitate
file system related operations. We will use those APIs to traverse
a directory hierarchy.

One of the the most convenient functions to use in this context is
filepath.WalkDir(). Or, we can manually traverse the directory
tree using the fs package APIs.

"Package filepath: Package filepath implements utility routines
for manipulating filename paths in a way compatible with the
target operating system-defined file paths.

o func WalkDir: WalkDir walks the file tree rooted at root,
calling fn for each file or directory in the tree, including

https://golang.org/pkg/path/filepath/
https://golang.org/pkg/path/filepath/#WalkDir

root. All errors that arise visiting files and directories are
filtered by fn: see the fs.WalkDirFunc documentation for
details. The files are walked in lexical order, which makes
the output deterministic but requires WalkDir to read an
entire directory into memory before proceeding to walk that
directory. WalkDir does not follow symbolic links.

"Package fs: Package fs defines basic interfaces to a file system.
A file system can be provided by the host operating system but
also by other packages.

° type WalkDirFunc: WalkDirFunc is the type of the function
called by WalkDir to visit each file or directory. The path
argument contains the argument to WalkDir as a prefix.
That is, if WalkDir is called with root argument "dir" and
finds a file named "a" in that directory, the walk function
will be called with argument "dir/a".

- type DirEntry: A DirEntry is an entry read from a directory
(using the ReadDir function or a ReadDirFile’s ReadDir
method).

23.3. Sample Code Snippets

The main function parses the command line argument, and if
there is at least one argument, then it uses the first argument as a
starting directory.

Otherwise it uses the current folder (.) by default.
Listing 119. folder-tree/main.go (lines 9-19)

9 func main() {
10 folder := "."
11 if len(os.Args[1:]) > 0 {

https://golang.org/pkg/io/fs/
https://golang.org/pkg/io/fs/#WalkDirFunc
https://golang.org/pkg/io/fs/#DirEntry

12 folder = os.Args[1]

13 }

14

15 err := tree.Treel(folder)
16 if err != nil {

17 log.Fatalln(err)

18 }

19 }

The easiest way to traverse a directory hierarchy is using
filepath.WalkDir(). Here’s a sample function, Tree1().
Listing 120. folder-tree/tree/treel.go (lines=9-25)

9 func Treel(folder string) error {
10 refDepth := computeDepth(folder, 0)
11 err := filepath.WalkDir(folder,

12 func(path string, d fs.DirEntry, err error) error {
13 if err != nil {

14 return err

15 }

16 depth := computeDepth(path, refDepth)
17 prefix := buildPrefix(d.IsDir(), depth)
18 printTree(prefix, d.Name())

19 return nil

20 1)

21 if err != nil {

22 return err

23 }

24 return nil

25}

Here’s an alternative implementation to traverse the directory
structure in recursive way.

Listing 121. folder-tree/tree/tree2.go (lines=21-42)

21 func list(parentPath string, folder string, depth int) error {

22 path, err := filepath.Abs(parentPath + string(filepath.Separator) +
folder)

23 if err != nil {

24 return err

25 }

26

27 files, err := os.ReadDir(path)

28 if err != nil {

29 return err

30 }

31

32 for _, file := range files {

33 prefix := buildPrefix(file.IsDir(), depth)
34 printTree(prefix, file.Name())

35

36 if file.IsDir() {

37 list(path, file.Name(), depth+1)
38 }

39 }

40

41 return nil

42 }

The full code is included in the appendix at the end of the book.

Here’s a sample output:

23.4. Exercises

1. The sample code of this lesson does not include the
counts of dirs and files, as in "real tree". Modify either or

both Tree() functions to display that information.

2. Implement your own version of the tree command.

24, STACK INTERFACE

24.1. Problem

A stack is a data structure commonly used in programming.
Here’s a Wikipedia article if you need an intro or refresher:
en.wikipedia.org/wiki/Stack_(abstract data_type).

1. Implement a stack data structure using a slice.

2. Implement another stack using a linked list.

3. Create Push() and Pop() functions which take either type
of stack as arguments.

Readers are encouraged to think about this problem before
continuing.

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

il o\ g
24.2. Discussion

A stack, by definition, supports "push" and "pop" operations, in a
LIFO fashion (last in, first out).

r

It is easy to implement a stack using a slice. We can embed a slice
inside a stack structure, and support push() and pop() via slice
operations.

We can append() to a slice to emulate the stack push. We can re-
slice the slice to remove the last element and return it to emulate
the stack pop.

It is a little bit harder to implement a stack using a linked list. Go
standard library includes a doubly linked list container type, but
not a singly linked list. We can either use the standard library
doubly linked list or implement our own singly linked list.

Once we have a linked list data structure, we can map stack’s

push to a list operation of adding an item to the front. And, we
can map stack’s pop to a list operation of removing an item from
the front.

In order to provide polymorphic behavior for Push() and Pop()
functions, we will need to define an interface that encapsulate
the "stackness" of slice-based stacks and linked-list-based stacks.

24.3. Sample Code Snippets

The main() function demonstrates the uses of the polymorphic

functions named PushToStack() and PopFromStack(). These two
functions call the corresponding methods in the stack types.

Listing 122. stack-interface/main.go (lines 10-30)

10 func main() {

11 sliceStack := slice.New()

12

13 stack.PushToStack(sliceStack, [Jint{1, 2, 3})
14 stack.PushToStack(sliceStack, []int{4, 5})

15 stack.PrintStack(sliceStack)

16

17 sliceltem := stack.PopFromStack(sliceStack)
18 fmt.Printf("Item = %v\n", sliceltem)

19 stack.PrintStack(sliceStack)

20

21 linkedStack := linked.New()

22

23 stack.PushToStack(linkedStack, []int{1, 2, 3})
24 stack.PushToStack(1linkedStack, []int{4, 5})
25 stack.PrintStack(1linkedStack)

26

27 linkedItem := stack.PopFromStack(1linkedStack)
28 fmt.Printf("Item = %v\n", linkedItem)

29 stack.PrintStack(linkedStack)

30 }

We define a stack using a slice as follows:

Listing 123. stack-interface/slice/slicestack.go (lines 5-9)

5 type data = interface{}
6

7 type SliceStack struct {
8 slice []data

9}

Note that we use the empty interface type, interface{}, the
mother of all types, for our data type. This is a common practice
in Go since the language does not support generics (as of yet).

You can just pick a simple type like int or string. There is no
difference for this exercise.

The SliceStack type implements the Push() and Pop() methods as
follows:

Listing 124. stack-interface/slice/slicestack.go (lines 18-30)

18 func (s *SliceStack) Push(item interface{}) {
19 s.slice = append(s.slice, item.(data))

20 }

21

22 func (s *SliceStack) Pop() interface{} {

23 1 := len(s.slice)

24 if 1 == 0 {
25 return nil
26 }

27 item := s.slice[l-1]

28 s.slice = s.slice[:1-1]
29 return item

30 }

SliceStack does not need to be concerned about formal
interfaces at this point. But, it is important to keep in mind that
we are implementing a "behavior". A stack’s behavior is defined
by "push" and "pop".

Next, let’s take a look at another example, a stack which
internally uses a singly linked list. For this, we will need to create
a type that represents a singly linked list.

Listing 125. stack-interface/linked/list.go (lines 3-5)

3 type list struct {
4 head *node

5}

Here a node is defined as follows:
Listing 126. stack-interface/linked/node.go (lines 3-8)

3 type data = interface{}
4

5 type node struct {

6 item data

7 next *node

8}

The 1list implements the following two methods:
Listing 127. stack-interface/linked/list.go (lines 13-24)

13 func (1 *list) pushFront(n *node) {
14 n.next = 1.head

15 1.head = n

16 }

17

18 func (1 *1ist) popFront() (n *node) {
19 if 1l.head == nil {

20 return nil

21 }

22 n, l.head = 1.head, 1.head.next
23 return

24 }

A generic linked list will support more general API, but these two
methods suffice for our purposes.

Then, we define a stack using this list, which we call LinkedStack,

as follows:
Listing 128. stack-interface/linked/linkedstack.go (lines 8-10)
8 type LinkedStack struct {

9 *list
10 }

Note that we use "embedding" for the 1list field. This is
semantically equivalent to the following although the embedding
provides some syntactic convenience.

type LinkedStack struct {
list *list
}

The LinkedStack type implements the Push() and Pop() methods
as follows:

Listing 129. stack-interface/linked/linkedstack.go (lines 19-31)

19 func (s *LinkedStack) Push(item interface{}) {

20 n := node{

21 item: item.(data),
22 }

23 s.pushFront(&n)

24 }

25

26 func (s *LinkedStack) Pop() interface{} {
27 n := s.popFront()

28 if n == nil {

29 return nil

30 }

31 return n.item

32}

Note that we use s.pushFront(&n), for instance, instead of
s.list.pushFront(&n). Syntactically, it is almost as if LinkedStack
"Inherits" from 1ist, in object oriented programming languages.
This is called "promotion" in Go.

Now, let’s create a function that takes a stack and pushes an
element into the given stack.

For this, we will need to define an interface that captures this
behavior. That is, a stack is something which we can push an
element into.

Listing 130. stack-interface/stack/stack.go (lines 3-5)

3 type Pusher interface {
4 Push(item interface{})

5}

Following the convention, we named this interface Pusher
(because it includes one method Push()). We just use the broadest
possible type interface{} for the item type.

Note that this is not type-aliased as in the case of data in concrete
stack implementations. We have chosen the broadest possible
API for these functions. Also, using a custom type name (type
alias or type definition) will make the interface less generic.

We implement our polymorphic function as follows:
Listing 131. stack-interface/stack/operations.go (lines 5-7)

5 func PushToStack(s Pusher, item interface{}) {
6 s.Push(item)
7}

The PushToStack() function just pushes the given item into the
given Pusher. Now, since both SliceStack and LinkedStack
implement the Push() method with the same signature as that in
the Pusher interface, we can use a value of either of these stack
types as an argument to the PushToStack() function.

We can do the same with a function that takes a stack and pops
the head element from the given stack.

For this, we will need to define an interface that captures this
behavior. That is, a stack is something which we can pop an
element from. We name this interface Popper.

Listing 132. stack-interface/stack/stack.go (lines 7-9)

7 type Popper interface {
8 Pop() interface{}
9}

Now, the PopFromStack() function:
Listing 133. stack-interface/stack/operations.go (lines 9-11)
9 func PopFromStack(s Popper) interface{} {

10 return s.Pop()
11 }

This function pops an item from the given Popper and returns the
item.

Since both SliceStack and LinkedStack implement the Pop()

method with the same signature as that in the Popper interface,
we can use a value of either of these stack types as an argument
to the PopFromStack() function.

You can find the full code listing in the appendix at the end of the
book.

24.4. Exercises

1. Implement a slice-based stack type using a concrete data

type, not interface{}. Is there any difference when you
use a value type vs a pointer type?

. Implement a linked list type using a concrete data type,
not interface{}. Is there any difference when you use a
value type vs a pointer type?

. Implement a stack using a new linked list with the
concrete data type. Is there any difference when you use
a value data type vs a pointer type?

. Implement a Peek() function for each stack type. A "peek"
function returns an element at the top of a stack, if any,
without "popping" the element. What are the
considerations when you use a value data type vs a
pointer type?

. Create a stack type whose implementation can be
switched at runtime, e.g., using a flag.

25. WEB PAGE SCRAPING

25.1. Problem

Given a web page URL, retrieve the page’s information, in
particular, its title and its description and keywords meta tags.

25.2. Discussion

HTML pages, written in the HTML markup language, are
primarily to be consumed by end users, after a Web browser
renders them in a user readable format.

Sometimes, however, a machine may need to consume the Web
content in HTML, just like the Web browser program.

This is often known as "web scraping”. We can extract some
useful data from the websites in various ways.

NOTE: Web scraping of certain websites can potentially violate
the copyright laws in your jurisdiction, for example, depending
on how you use the scraped data.

In our sample code, we get the HTML page from a given website,
and extract its page title, and the description, keywords, and
author fields from meta tags, if present.

Here’s a sample output from the Yahoo home page:

$ go run . https://www.yahoo.com

We internally create a JSON object based on the extracted data
(e.g., for further processing down the line). If we "pretty print”
this data,

{

"title": "Yahoo",
"description”: "News, email and search are just the beginning. Discover more
every day. Find your yodel.",

"keywords": [

"yahoo",

"yahoo home page",

"yahoo homepage",

"yahoo search",

"yahoo mail",

"yahoo messenger",

"yahoo games",

"news",

"finance",

"sport",

"entertainment”
]I

"author":

}

In this example, the Yahoo home page does not include a meta
tag for "author".

25.3. Sample Code Snippets

The main() function reads one or more URL arguments from the
command line, and processes each URL sequentially.

Listing 134. website-title-single/main.go (lines 10-26)

10 func main() {

11 if len(os.Args) == 1 {

12 log.Fatalln("Provide URLs in the command line argument")
13 }

14

15 for 1, url := range os.Args[1:] {

16 log.Printf("[%2d] URL: %s\n", i, url)

17

18 htmlmeta, err := processWebsite(url)
19 if err = nil {

20 log.Println("Error:", err)

21 continue

22 }

23

24 log.Printf("Extracted: %s\n", htmlmeta)

25 }
26 }

The processWebsite() function fetches the HTML content from
the given URL and it calls Extract() in the meta package.

Listing 135. website-title-single/main.go (lines 28-41)

28 func processWebsite(url string) (*meta.HTMLMeta, error) {

29 res, err := http.Get(url)
30 if err != nil {

31 return nil, err

32 }

33

34 htmlmeta, err := meta.Extract(res.Body)

35 if err != nil {

36 return nil, err

37 }

38 defer res.Body.Close()
39

40 return htmlmeta, nil
41 }

The meta.Extract() does the "scraping” on the given HTML page
content (res.Body). It returns a pointer value of HTMLMeta along

with a potential error.

The HTMLMeta struct is defined in the meta package:

Listing 136. website-title-single/meta/htmlmeta.go (lines 5-10)

5 type HTMLMeta struct {

6 Title string ‘json:
7 Description string ‘json:
8 Keywords [Istring ‘json:
9 Author string ‘json:

10 }

"title""
"description"’
"keywords"*
"author™®

Although the page title is not "meta" per se, we just lump them
together in one struct for convenience.

The Extract() function parses the HTML content using the

"golang.org/x/net/html" package.
Listing 137. website-title-single/meta/extract.go (lines 10-53)

10 func Extract(resp io.Reader) (*HTMLMeta, error) {
11 tkzer := html.NewTokenizer(resp)

12

13 hm := NewMeta()

14 1inTitleTag := false

15 for token := tkzer.Next(); token != html.ErrorToken; token = tkzer.Next()

{
16 switch token {

17 case html.StartTagToken, html.SelfClosingTagToken:
18 t := tkzer.Token()

19 if t.Data == "body" {

20 return hm, nil

21 } else if t.Data == "title" {

22 inTitleTag = true

23 } else if t.Data == "meta" {

24 desc, ok := extractMetaProperty(t, "description")
25 if ok {

26 hm.Description = desc

27 }

28

29 keywords, ok := extractMetaProperty(t, "keywords")
30 if ok {

31 hm.Keywords = regexp.MustCompile(*(\s*,\s*)+").Split(keywords,
-1)

32 }

33

34 author, ok := extractMetaProperty(t, "author")

35 if ok {

36 hm.Author = author

37 }

38 }

39 case html.TextToken:

40 if inTitleTag {

41 t := tkzer.Token()

42 hm.Title = t.Data

43 inTitleTag = false

44 }

45 }

46 }

47

48 err := tkzer.Err()
49 if err != nil && err != i0.EOF {

50 return nil, tkzer.Err()
51 }

52 return hm, nil

53 }

This is the first and the only time we use packages that are not
from the standard library or from our own modules.

import (
"golang.org/x/net/html"
)

The Go compiler tools use this string to find the package to
import. Currently, the import spec has to be a URL-like string
pointing to a source code repository (aka "go-gettable") so that
the tools can fetch the necessary package code. The Go tools
currently support a few source control systems including git.

The location "golang.org/x" contains a special set of packages.
Some of them might be moved to the standard library in the
future.

Here’s the "go.mod" file:
Listing 138. website-title-single/go.mod

module examples/website-title-single
go 1.16

require golang.org/x/net v0.0.0-20210428140749-89ef3d95e781

Note the require line which includes a specific version
information for the golang.org/x/net package.

You can download the external packages to your computer using
the "go get" command:

Or, if you want to update the dependencies to the latest versions,
you can use the -u flag:

When you have external package dependencies in your module,
the go module tools also create a file called "go.sum", which
includes information on indirect/transitive dependencies.
Normally, you do not have to look at this file. This is primarily
used, and managed, by the tools.

Listing 139. website-title-single/go.sum

golang.org/x/net v0.0.0-20210428140749-89ef3d95e781
h1:DzZ89Mc09/gWPsQXS/FVKA1G02ZjaQbA1ZRBimEY0dO=
golang.org/x/net v0.0.0-20210428140749-89ef3d95e781/go0.mod
h1:0JAsFXCW18Ukc7SiCT/9KSuxbyM7479/AVIXFRxuMCk=
golang.org/x/sys v0.0.0-20201119102817-184b799fce68/g0.mod
h1:h1NjWce9XRLGQESW7wpKNCjGIDtNLC1VuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210423082822-04245dca@1da/go.mod
h1:hTNjWce9XRLGQEsW7wpKNCjGIDtN1C1VuFLEZdDNbES=
golang.org/x/term v@.0.0-20201126162022-7de9c90e9dd1/go.mod
h1:bj7SfCRtBDWHUbI9snD1AeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/text v@.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF61r09z98xDceosuGiQ=
golang.org/x/tools v@.0.0-20180917221912-90fa682c2abe/go.mod
h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvMAmQ=

In order to clean up your dependencies, you do

The implementation of Extract() should be easy to understand. It
uses the Tokenizer type from the net/http package.

It iterates over the "tokens" using the “for ;;” loop. Note that this

use of the for loop is similar to the do while loop in other C-style
languages.

It uses the switch statement to find what we are looking for, e.g.,
<title>..</title> and other meta tags.

TIP: When you scrape Web content, it is best to start by browsing
the HTML source of the target page. How to scrape certain data
depends on how the data is embedded in the HTML markup.

In this particular example, we are only interested in the content
in the <head>..<head> part, and we ignore the <body>..</body> part.
In general, however, we will more likely want to extract data
from the HTML body.

One thing to note in this function is that we use the regex
package, which we haven’t covered in this book.

hm.Keywords = regexp.MustCompile(*(\s*,\s*)+").Split(keywords, -1)

We will leave it as an exercise to the reader to understand what
this statement does. (Remember, "documentation,
documentation, documentation".)

We could have used a simpler function strings.Split(), but then

we would have to trim all keywords. (Take a look at an HTML
page source to see why that is.)

hm.Keywords = strings.Split(keywords, ",")

If we reach the end of the token list, as signaled by err == i0.EOF
by the html/Tokenizer, or if we run into an error, then we

terminate the parsing.

The full code is included in the appendix at the end of the book.

25.4. Exercises

1. In the example code, we call extractMetaProperty()
multiple times, once for each meta tag we are looking for.
How can we improve this implementation?

2. Get a list of all congressmen in your state, or any state if
you live outside the United States, from the U.S. Congress
website, Www.congress.gov.

3. Create a Web crawler. Fetch all URLs (from <a>' tags)
from a given site, follow them recursively, up to a certain
depth, and extract each site’s title and description, among
other things.

https://www.congress.gov

26. PRODUCER CONSUMER

26.1. Problem

Implement the classic producer consumer problem using
goroutines: Producer-consumer problem.

Let the producer generate 10 integer numbers, and let the
consumer print out those 10 numbers.

Once the task is done, terminate the program.

https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem

26.2. Discussion

An idiomatic way to tackle this kind of problem is using
channels.

Goroutines communicate via channels, which is considered a
better practice than sharing data directly in memory. Using
shared memory requires exclusiveness. Using channels requires
coordination.

We used goroutines in this book before.

A goroutine is a (lightweight) thread of execution managed by
the Go runtime. Goroutines run in the same memory space, and
the memory shared across different goroutines must be
synchronized, in some way.

The Go standard library includes package sync, which provides
basic synchronization primitives such as mutual exclusion locks
(e.g., Mutex). Using these synchronization primitives are the
traditional, and most common, ways of managing multiple
threads. You can use them in Go as well if you need to, or if you
want to.

In Go, however, sharing data via channels, instead of using
shared memory, is considered a "better" way.

Channels are a typed conduit through which goroutines can send
and receive values of a specific element type. The keyword chan
is used to declare a channel type.

The optional — operator specifies the channel direction, send or
receive. If no direction is given, the channel is bidirectional. A

channel may be constrained only to send or only to receive by
assignment or explicit conversion.

The following channel can be used to send and receive values of
type string:

var ch chan string

The following channel can only used to send int64 values:

var ch chan<- int64

The following channel can only used to receive float64 values:

var ch <-chan float64

A channel is a reference type. A nil channel is never ready for
communication. Channels must be initialized before use, just like
slices or maps.

Channels act as FIFO queues (first in, first out). The values sent
on a channel, from a goroutine, are received, say, by another
goroutine, in the order they are sent. Channels do not need
synchronization, unlike slices or maps.

A new, initialized channel value can be made using the built-in
function make(), which takes a channel type and an optional
capacity as arguments:

ch := make(chan int, 100)

A channel with zero capacity is "unbuffered". Communication

succeeds only when both the sender and receiver are ready.

Otherwise, the channel is buffered and communication succeeds
without blocking if the buffer is not full (for sends) or not empty
(for receives).

A channel may be closed with the built-in function close(). The
multi-valued assignment form of the receive operator reports
whether a received value was sent before the channel was
closed.

A sender goroutine can close a channel to indicate that no more
values will be sent. A receiver goroutine can test whether a
channel has been closed by assigning a second parameter to the
receive expression:

v, ok := <-ch

The value of ok will be false if there are no more values to receive
and the channel is closed.

The loop “for i := range ch”" receives values from the channel
repeatedly until it is closed.

26.3. Sample Code Snippets

Here’s the main() function, which creates two (unbuffered)
channels, one for data communication, msgs, and another for
sending the "done" signal, done.

Listing 140. producer-consumer/main.go (lines 9-23)

9 const buff int =
10
11 func main() {

12 var msgs = make(chan int, buff)
13 var done = make(chan bool)

14

15 var p producer.Producer
16 var c consumer.Consumer
17

18 go p.Produce()

19 go c.Consume()

producer .MakeProducer(msgs, done)
consumer .MakeConsumer (msgs, done)

20

21 b := <-done

22 fmt.Println("DONE", b)
23 }

It creates a variable of the interface type Producer (as defined in
the producer package) and a variable of the interface type
Consumer (as defined in the consumer package).

And, it starts goroutines Produce() and Consume() on the producer
and the consumer, respectively.

It should be noted that since chan is a reference type, the same
msgs and done channels are shared by both producer p and
consumer c.

Finally, it waits for the "done"” message on the done channel.

b := <-done

When it receives the "done" value (true or false), it terminates
the program.

TIP: In situations like this where we do not care about the actual
values, a value of an empty struct type struct{} is often used. In
this particular example, we will use the bool value to indicate a
certain termination state.

The Producer interface type is introduced to demonstrate
polymorphic behaviors. This is not really necessary for the
operations of the goroutines and channels.

Listing 141. producer-consumer/producer/producer.go (lines 10-12)

10 type Producer interface {
11 Produce()
12 }

The QuickProducer struct is a concrete type, which implements
the Produce() method.

Listing 142. producer-consumer/producer/producer.go (lines 14-17)

14 type QuickProducer struct {
15 msgs chan int

16 done chan bool

17 }

The Produce() method of the QuickProducer type generates ten
integers, from 1 to 10, and it returns.

Listing 143. producer-consumer/producer/producer.go (lines 27-35)

27 func (p *QuickProducer) Produce() {

28 for i :=1; i <=10; i++ {

29 fmt.Printf("P: Sending Msg %d\n", 1)
30 p.msgs <- i

31 fmt.Printf("P: Sent %d\n", i)

32 time.Sleep(delay)

33 }

34 close(p.msgs)

35}

Closing the channel is not needed in this case.

Likewise, the Consumer interface type 1is introduced to
demonstrate polymorphic behaviors.

Listing 144. producer-consumer/consumer/consumer.go (lines 10-12)

10 type Consumer interface {
11 Consume()
12 }

The QuickConsumer struct is a concrete type, which implements
the Consume() method.
Listing 145. producer-consumer/consumer/consumer.go (lines 14-17)

14 type QuickConsumer struct {
15 msgs chan int

16 done chan bool

17 }

The Consume() method of the QuickConsumer type waits for int
values on the msgs channel. When it has received 10 int values, it
sends the "done" message to the done channel.

Listing 146. producer-consumer/consumer/consumer.go (lines 27-45)

27 func (c *QuickConsumer) Consume() {

28 count := 0

29 for {

30 fmt.Println("C: Waiting...")
31 msg, ok := <-c.msgs

32 if lok {

33 c.done <- false

34 break

35 }

36 count++

37 fmt.Printf("C: Msg received %d\n", msg)
38 time.Sleep(delay)

39

40 if count >= 10 {

41 c.done <- true

42 break

43 }

44 }

45 }

We can let the producer produce more than 10 values. But, the

overall behavior would not change, in this particular example.
Once the consumer receives 10 ints, it will send "done".

On the other hand, if the producer does not produce 10 values,
then it can potentially lead to a deadlock since the consumer is
waiting for 10 values.

The producer explicitly closing the channel in that case would
help.

close(p.msgs)

The consumer can detect the channel closure, and act
appropriately. In this example, it sends the "done" message (with
value false), effectively terminating the program.

If you are new to goroutines and channels, then it would be
instructive to see how its behavior changes when you change
various parameters in the program (e.g., the message channel

capacity, the relative size of the delay variables on the consumer
and producer sides, etc.).

Here’s a sample output (with buff == 0):

$ go run .

You can find the full code listing in the appendix.

26.4. Exercises

1. Update the consumer for loop using the "channel range"
loop. We have not discussed this in the book. You’ll need
to do some research to find out what that is.

2. Modify the web scraper to get the site metadata in
parallel using goroutines. Use a map
map[string]*HTMLMeta to store the scraped data. (Use URLs
as keys.) There are a number of different ways you can

do this. Let’s suppose that the goal is to get the data from
many websites (say, 1000 websites) as fast as possible.

AUTHOR'S NOTE

Request for Feedback

The author is constantly looking to improve the book.

If you have any suggestions, then please let us know. We, and the future
readers, will really appreciate it.

It can be anything from simple typos, unclear sentences, and formatting errors
to bugs in the sample code and maybe downright incorrect explanations.
Here’s the author’s email:

= harry@codingbookspress.com.

The author will try to correct the errors as soon as possible, if needed.

mailto:harry@codingbookspress.com

Thank you! ®

REVIEW - GOROUTINES,
CHANNELS

Key Concepts

Goroutines

A goroutine is a lightweight thread managed by the Go
runtime. You can start a new goroutine by calling a function
or a method with the go keyword. Goroutines run in the same
address space, so access to shared memory must be
synchronized.

Channels

Channels are a typed conduit through which you can send
and receive values with the channel operator, —. (The data
flows in the direction of the arrow.) A channel can be created
using the make() function. You cannot send or receive data via
an unbuffered channel until the other side is ready. This
allows goroutines to synchronize without explicit locks or
condition variables.

Channels with non-zero length are buffered. You can send
data to a buffered channel unless the buffer is full. You can
receive data from a buffered channel unless the buffer is

empty.

IV: FINAL PROJECTS

All’s well that ends well.

2/7.GO FISH

27.1.Project

As a final project, we will work on a card game, in particular, "Go
Fish".

Go Fish is one of the most popular card games played around the
world: en.wikipedia.org/wiki/Go_Fish. We will design and
implement this game, to be played on the terminal (e.g., via
"CLI"), in this lesson.

Here’s an except from the Wikipedia article, in case you are not
familiar with the game:

https://en.wikipedia.org/wiki/Go_Fish

left. When all sets of cards have been 1laid down in books, the game ends. The
player with the most books wins.

27.2. Design

We will create a "single player” version of the game. More
precisely, it will be a "one on one" play between a player and the

computer.

The game, Go Fish, is available on Unix/Linux platforms.

$ man go-fish

NAME
go-fish — play “Go Fish”

SYNOPSIS
go-fish [-p]

NOTE: Incidentally, Go Fish was the first game that the author
played on Unix. That was almost 40 years ago. @®

Now how would you implement a game like this?

First, we will need some types to represent cards, hands, books,
etc. This is not a must, but it helps to create an idiomatic Go
program.

The game will have a "loop", as in most games, to process the
user input, etc.

A Go Fish game will go through a number of different "phases”. A
game starts by dealing an initial set of cards to each player, that
is, the user ("you") and the computer ("me").

Then, in the game loop, we need to determine which player’s
turn it is.

Then, if it’s a player’s turn, read the player’s input (e.g., a request
for cards of a certain rank), handle the input according to the
rules of the game, and determine the outcome.

The outcome can be one of the following:

= The computer does not have any cards of rank that is
requested. That is, "Go Fish", or

= The computer has one or more cards of the requested rank,
and it hands over those cards to the player.

Based on the outcome, it determines who plays the next round.

If it’s a computer’s turn, we need first to pick a rank to ask for
from the player. And, the game proceeds in a similar way.

We keep track of the books made throughout the game, and
when ultimately all cards are exhausted and all books are made,
the game ends.

Whoever has more books at the end wins the game.

27.5. Implementation

We will leave the implementation to the reader, as an exercise.
An example program is included in the appendix: Code Listing -

Part IV.

Here’s a sample session:

28. GO FISH GALORE

A few more Go Fish projects. After all, this is a book on Go. @

i
‘ A s
NOTE: There is no sample code for these final projects. This is a
time for you to test your Go skills! 4

28.1. Project A

In the previous lesson, Go Fish, we created a program that lets
you play a Go Fish game against a computer.

Modify the program so that you can play with multiple computer
players, say, 1 to 5.

For example, you can specify the number of computer players as
a command line argument:

Note that when there are more than two players in the game, a
player has to pick one of the other players before asking for
cards.

28.2.Project B

Create a Go Fish game server and client programs. You can use
the basic TCP server and client programs from TCP Client and
Server as a basis for these programes.

The server can accept game requests from multiple users across
the network. Use goroutines to handle each game.

Each player/client plays a one-on-one game against the game
server.

28.3. Project C

Now, create a Go Fish game server that lets two or more users
play in the same game. The game server can support multiple
simultaneous games, with each game allowing multiple players.
You can also add zero or more computer players in the mix.

This project requires a bit of design.

How will a user create a new game? How will a user start the
game? How will a user find games that are currently accepting
new players? Etc. etc.

All "project ideas" in this lesson are "open-ended". Use your
imagination.

28.4.Project D

Make the computer player "smarter". What is the best strategy to
win in Go Fish? Implement the strategy for the computer player.

Use your smart player in your server implementations in the
previous projects, A, B, and C.

NOTE: These are not easy projects for beginners. But, we covered
everything you need to know to work on these problems in this
book. Good luck!

AUTHOR’'S NOTE

Final Remarks

Congratulations! You made it! §

It is not easy to read a technical book like this from beginning to end,
regardless of your skill levels. This is a big achievement. Congrats!

As stated, knowledge is familiarity. The more you read, and the more you
practice, the better you will become. In any art. Especially, in the art of
programming.

Hope you had as much fun reading this book as I did writing it. ¢

APPENDIX A: GO KEYWORDS

Go Language Keywords

package @

The package line is a declaration which indicates that a
particular source file belongs to a certain package. The
package declaration should be the first non-white statement
in a Go program source file.

import @
Import declares that the source file depends on functionality of
the imported package, which is specified by an identifier for
finding and accessing the package. The import declaration
enables access to exported identifiers of that package.

type @

A type declaration binds an identifier, the type name, to a
type. Type declarations come in two forms: alias declarations
and type definitions.

func @

func declares a function and introduces its definition to the
program. You can declare/define any function using the func

keyword. func is also used to declare a function type.

struct @

A struct is a sequence of named elements, called fields, each
of which has a name and a type. Field names may be specified
explicitly or implicitly ("embedding").

interface @

An interface type specifies a method set called its interface. A
variable of interface type can store a value of any type with a
method set that is any superset of the interface. Such a type is
said to "implement" the interface.

map ©
A map is an unordered group of elements of one type, called
the element type, indexed by a set of unique keys of another
type, called the key type. The comparison operators == and !=
must be fully defined for operands of the key type.

chan ©

A chan provides a mechanism for concurrently executing
functions to communicate by sending and receiving values of
a specified element type. The optional — operator specifies the
channel direction, send or receive. If no direction is given, the
channel is bidirectional.

var @

var declares one or more variables. The var declaration binds
the given identifiers, or the variable names, to those variables,
and gives each a type and an initial value.

const ©

const declares a list of constant names. The const declaration
binds those names to the values of a list of constant
expressions. The number of identifiers must be equal to the
number of expressions.

for @
A for statement specifies repeated execution of a block. There
are three forms: The iteration may be controlled by a single
condition (equivalent to "while"), a for clause (called "classic
for" in this book), or a range clause ("for-range" loop).

range @
range is used to create a "for range" loop for slices and maps.
if @
if statements specify the conditional execution of two
branches according to the value of a boolean expression. If

the expression evaluates to true, the if branch is executed,
otherwise, if present, the else branch is executed.

else @

The else keyword defines an optional else block in the if-else

statement. If the if expression evaluates to false, then the else
block is executed.

select @

A select statement chooses which of a set of possible send or
receive operations will proceed. It looks similar to a switch

statement but with the cases all referring to communication
operations.

switch @

switch statements provide multi-way execution. An
expression or type specifier is compared to the cases inside

the switch to determine which branch to execute. There are
two forms: expression switches and type switches.

case @

The case keyword is used in a switch statement to define a
case branch.

default @

The default keyword is used in a switch statement to define
the default branch.

fallthrough @

A fallthrough statement transfers control to the first

statement of the next case clause in an expression switch
statement.

continue @

A continue statement begins the next iteration of the
innermost for loop at its post statement. The for loop must be
within the same function. If there is a label, it must be that of
an enclosing for statement, and that is the one whose
execution advances.

break @

A break statement terminates execution of the innermost for,
switch, or select statement within the same function. If there

is a label, it must be that of an enclosing for, switch, or select
statement, and that is the one whose execution terminates.

return @

A return statement in a function terminates its execution, and
optionally provides one or more result values. Any functions
deferred by a function are executed before the function
returns to its caller.

goto @

A goto statement transfers control to the statement with the
corresponding label within the same function.

defer @

A defer statement invokes a function whose execution is
deferred to the moment the surrounding function returns,
either because the surrounding function executed a return
statement, reached the end of its function body, or because
the corresponding goroutine is panicking.

go ©
A go statement starts the execution of a function call as an
independent concurrent thread of control, or goroutine,
within the same address space. The expression must be a

function or method call; it cannot be parenthesized. Calls of
built-in functions are restricted as for expression statements.

NOTE: The following keyword references are mostly adopted
from the golang website reference pages.

Break statements (break)

A break statement terminates execution of the innermost for,
switch, or select statement within the same function.

BreakStmt = "break" [Label] .

If there is a label, it must be that of an enclosing for, switch, or

select statement, and that i1s the one whose execution
terminates.

OuterlLoop:
for i = 0; i <n; i++ {
for j =0; j <m; j++ {
switch a[i][j] {
case nil:
state = Error
break OuterlLoop
case item:
state = Found
break OuterlLoop

}

Switch statements (switch, case, default)

Switch statements provide multi-way execution. An expression or

type specifier is compared to the cases inside the switch to
determine which branch to execute.

SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .

There are two forms: expression switches and type switches. In
an expression switch, the cases contain expressions that are
compared against the value of the switch expression. In a type
switch, the cases contain types that are compared against the
type of a specially annotated switch expression. The switch
expression is evaluated exactly once in a switch statement.

Expression switches

In an expression switch, the switch expression is evaluated and
the case expressions, which need not be constants, are evaluated

left-to-right and top-to-bottom; the first one that equals the
switch expression triggers execution of the statements of the
associated case; the other cases are skipped. If no case matches
and there is a default case, its statements are executed. There
can be at most one default case and it may appear anywhere in
the switch statement. A missing switch expression is equivalent
to the boolean value true.

ExprSwitchStmt
ExprCaseClause
ExprCaseClause
ExprSwitchCase

"switch" [SimpleStmt ";"] [Expression] "{" {
H}ll .

ExprSwitchCase ":" StatementList .

"case" ExpressionlList | "default" .

1 - 1

If the switch expression evaluates to an untyped constant, it is
first implicitly converted to its default type; if it is an untyped
boolean value, it is first implicitly converted to type bool. The
predeclared untyped value nil cannot be used as a switch
expression.

If a case expression is untyped, it is first implicitly converted to
the type of the switch expression. For each (possibly converted)
case expression x and the value t of the switch expression, X ==
must be a valid comparison.

In other words, the switch expression is treated as if it were used
to declare and initialize a temporary variable t without explicit
type; it is that value of t against which each case expression x is
tested for equality.

In a case or default clause, the last non-empty statement may be
a (possibly labeled) fallthrough statement to indicate that control
should flow from the end of this clause to the first statement of
the next clause. Otherwise control flows to the end of the switch

statement. A fallthrough statement may appear as the last
statement of all but the last clause of an expression switch.

The switch expression may be preceded by a simple statement,
which executes before the expression is evaluated.

switch tag {

default: s3()

case 0, 1, 2, 3: s1()
case 4, 5, 6, 7: s2()
}

switch x := f(); { // missing switch expression means "true"
case x < 0: return -x
default: return x

}

switch {

case x < y: f1()
case x < z: f2()
case x == 4: f3()
}

Implementation restriction: A compiler may disallow multiple
case expressions evaluating to the same constant. For instance,
the current compilers disallow duplicate integer, floating point,
or string constants in case expressions.

Type switches

A type switch compares types rather than values. It is otherwise
similar to an expression switch. It is marked by a special switch
expression that has the form of a type assertion using the
reserved word type rather than an actual type:

switch x.(type) {
// cases

}

Cases then match actual types T against the dynamic type of the
expression x. As with type assertions, X must be of interface type,
and each non-interface type T listed in a case must implement
the type of x. The types listed in the cases of a type switch must
all be different.

TypeSwitchStmt = "switch" [SimpleStmt ";"] TypeSwitchGuard "{" {
TypeCaseClause } "}" .

TypeSwitchGuard = [identifier ":="] PrimaryExpr "." "(" "type" ")"
TypeCaseClause = TypeSwitchCase ":" Statementlist .

TypeSwitchCase = "case" Typelist | "default" .

TypelList = Type { "," Type } .

The TypeSwitchGuard may include a short variable declaration.
When that form is used, the variable is declared at the end of the
TypeSwitchCase in the implicit block of each clause. In clauses
with a case listing exactly one type, the variable has that type;
otherwise, the variable has the type of the expression in the
TypeSwitchGuard.

Instead of a type, a case may use the predeclared identifier nil;
that case is selected when the expression in the
TypeSwitchGuard is a nil interface value. There may be at most
one nil case.

Given an expression x of type interface\{}, the following type
switch:

switch i := x.(type) {
case nil:

printString("x is nil") // type of 1 is type of x
(interface{})
case int:

printInt(i) // type of 1 is int
case float64:

printFloat64(i) // type of 1 is float64
case func(int) floatb64:

printFunction(i) // type of i is func(int) float64
case bool, string:

printString("type is bool or string") // type of i is type of x
(interface{})
default:

printString("don't know the type") // type of i is type of x
(interface{})

could be rewritten:

v :=x // x is evaluated exactly once

if v == nil {
ii=v // type of 1 is type of x
(interface{})

printString("x is nil")
} else if i, isInt := v.(int); isInt {

printInt(i) // type of 1 is int
} else if i, isFloat64 := v.(float64); isFloat64 {

printFloat64(i) // type of i is float64
} else if i, isFunc := v.(func(int) float64); isFunc {

printFunction(i) // type of i is func(int) float64
} else {

_, isBool := v.(bool)
_, 1sString := v.(string)
if isBool || isString {

ii=v // type of i is type of x (interface{})
printString("type is bool or string")

} else {
ii=v // type of i is type of x (interface{})

printString("don't know the type")

The type switch guard may be preceded by a simple statement,
which executes before the guard is evaluated.

The fallthrough statement is not permitted in a type switch.

Fallthrough statements (fallthrough)

A fallthrough statement transfers control to the first statement of

the next case clause in an expression switch statement. It may be
used only as the final non-empty statement in such a clause.

FallthroughStmt = "fallthrough" .

Channel types (chan)

A channel provides a mechanism for concurrently executing
functions to communicate by sending and receiving values of a
specified element type. The value of an uninitialized channel is
nil.

ChannelType = ("chan" | "chan" "<-" | "< chan") ElementType .

The optional — operator specifies the channel direction, send or
receive. If no direction is given, the channel is bidirectional. A
channel may be constrained only to send or only to receive by
assignment or explicit conversion.

chan T // can be used to send and receive values of type T
chan<- float64 // can only be used to send floatbds
<-chan int // can only be used to receive ints

The — operator associates with the leftmost chan possible:

chan<- chan int // same as chan<- (chan int)
chan<- <-chan int // same as chan<- (<-chan int)
<-chan <-chan int // same as <-chan (<-chan int)
chan (<-chan int)

A new, initialized channel value can be made using the built-in
function make, which takes the channel type and an optional
capacity as arguments:

make(chan int, 100)

The capacity, in number of elements, sets the size of the buffer in
the channel. If the capacity is zero or absent, the channel is
unbuffered and communication succeeds only when both a
sender and receiver are ready. Otherwise, the channel is
buffered and communication succeeds without blocking if the
buffer is not full (sends) or not empty (receives). A nil channel is
never ready for communication.

A channel may be closed with the built-in function close. The
multi-valued assignment form of the receive operator reports
whether a received value was sent before the channel was
closed.

A single channel may be used in send statements, receive
operations, and calls to the built-in functions cap and len by any
number of goroutines without further synchronization. Channels
act as first-in-first-out queues. For example, if one goroutine
sends values on a channel and a second goroutine receives them,
the values are received in the order sent.

Select statements (select)

A select statement chooses which of a set of possible send or
receive operations will proceed. It looks similar to a switch

statement but with the cases all referring to communication
operations.

SelectStmt = "select" "{" { CommClause } "}" .

CommClause = CommCase ":" StatementList .

CommCase = "case" (SendStmt | RecvStmt) | "default" .

RecvStmt = [ExpressionList "=" | IdentifierList ":="] RecvExpr .
RecvExpr = Expression .

A case with a RecvStmt may assign the result of a RecvExpr to
one or two variables, which may be declared using a short
variable declaration. The RecvExpr must be a (possibly
parenthesized) receive operation. There can be at most one
default case and it may appear anywhere in the list of cases.

Execution of a select statement proceeds in several steps:

1. For all the cases in the statement, the channel operands
of receive operations and the channel and right-hand-
side expressions of send statements are evaluated exactly
once, in source order, upon entering the select
statement. The result is a set of channels to receive from
or send to, and the corresponding values to send. Any
side effects in that evaluation will occur irrespective of
which (if any) communication operation is selected to
proceed. Expressions on the left-hand side of a RecvStmt
with a short variable declaration or assignment are not
yet evaluated.

2. If one or more of the communications can proceed, a
single one that can proceed is chosen via a uniform
pseudo-random selection. Otherwise, if there is a default
case, that case is chosen. If there is no default case, the
select statement blocks until at least one of the
communications can proceed.

3. Unless the selected case is the default case, the respective
communication operation is executed.

4. If the selected case is a RecvStmt with a short variable
declaration or an assignment, the left-hand side
expressions are evaluated and the received value (or

values) are assigned.

5. The statement list of the selected case is executed.

Since communication on nil channels can never proceed, a select
with only nil channels and no default case blocks forever.

var a []int
var ¢, c1, c2, c3, c4 chan int
var i1, i2 int
select {
case il = <-cl:
print("received ", i1, " from c1\n")
case c2 <- i2:
print("sent ", 12, " to c2\n")
case i3, ok := (<-c3): // same as: i3, ok := <-c3

if ok {
print("received ", i3, " from c3\n")
} else {
print("c3 is closed\n")
}
case a[f()] = <-c4:
// same as:
// case t 1= <-c4
/7 alt()] = t
default:
print("no communication\n")
}
for { // send random sequence of bits to c
select {
case ¢ <- 0: // note: no statement, no fallthrough, no folding of cases
case ¢ <- 1:
}

}

select {} // block forever

Constant declarations (const)

A constant declaration binds a list of identifiers (the names of the
constants) to the values of a list of constant expressions. The

number of identifiers must be equal to the number of
expressions, and the nth identifier on the left is bound to the
value of the nth expression on the right.

ConstDecl = "const" (ConstSpec | "(" { ConstSpec ";" } ")") .
ConstSpec = IdentifierList [[Type] "=" ExpressionList] .
IdentifierList = identifier { "," identifier } .

ExpressionList = Expression { "," Expression } .

If the type is present, all constants take the type specified, and
the expressions must be assignable to that type. If the type is
omitted, the constants take the individual types of the
corresponding expressions. If the expression values are untyped
constants, the declared constants remain untyped and the
constant identifiers denote the constant values. For instance, if
the expression is a floating-point literal, the constant identifier
denotes a floating-point constant, even if the literal’s fractional
part is zero.

const Pi float64 = 3.14159265358979323846

const zero = 0.0 // untyped floating-point constant
const (

size int64 = 1024

eof = -1 // untyped integer constant

)

const a, b, ¢ =3, 4, "foo" // a=3,b=4,c="foo", untyped integer and
string constants

const u, v float32 = 0, 3 //u=20.0, v=3.0

Within a parenthesized const declaration list the expression list
may be omitted from any but the first ConstSpec. Such an empty
list is equivalent to the textual substitution of the first preceding
non-empty expression list and its type if any. Omitting the list of
expressions is therefore equivalent to repeating the previous list.
The number of identifiers must be equal to the number of

expressions in the previous list. Together with the iota constant
generator this mechanism permits light-weight declaration of
sequential values:

const (
Sunday = iota
Monday
Tuesday
Wednesday
Thursday
Friday
Partyday
numberOfDays // this constant 1s not exported

Tota

Within a constant declaration, the predeclared identifier iota
represents successive untyped integer constants. Its value is the
index of the respective ConstSpec in that constant declaration,
starting at zero. It can be used to construct a set of related
constants:

const (
cd = iota // cO == 0
¢l =iota // cl ==1
c2 =iota // c2 == 2
)
const (
a=1<<dota // a==1 (iota == 0)
b=1«<< dota // b==2 (jota==1)
c =3 // ¢ == 3 (iota == 2, unused)
d=1<<diota // d==8 (iota == 3)
)
const (
u =1iota * 42 // u == (untyped integer constant)
v floatb4 = iota * 42 // v == 42.0 (float64 constant)
w = iota * 42 // w == 84 (untyped integer constant)

jota // x == 0
iota // y==10

const x
const vy

By definition, multiple uses of iota in the same ConstSpec all have
the same value:

const (
bit@, mask® = 1 << ijota, 1<<iota - 1 // bitd == 1, maskd == 0 (iota == 0)
bit1, maskl // bitl == 2, maskl == (iota == 1)
-1 - // (iota ==
unused)
bit3, mask3 // bit3 == 8, mask3 == 7 (iota == 3)

)

This last example exploits the implicit repetition of the last non-
empty expression list.

Constant expressions

Constant expressions may contain only constant operands and
are evaluated at compile time.

Untyped boolean, numeric, and string constants may be used as
operands wherever it is legal to use an operand of boolean,
numeric, or string type, respectively.

A constant comparison always yields an untyped boolean
constant. If the left operand of a constant shift expression is an
untyped constant, the result is an integer constant; otherwise it is
a constant of the same type as the left operand, which must be of
integer type.

Any other operation on untyped constants results in an untyped
constant of the same kind; that is, a boolean, integer, floating-
point, complex, or string constant. If the untyped operands of a
binary operation (other than a shift) are of different kinds, the

result is of the operand’s kind that appears later in this list:
integer, rune, floating-point, complex. For example, an untyped
integer constant divided by an untyped complex constant yields
an untyped complex constant.

const a =2 + 3.0 // a3 ==5.0 (untyped floating-point constant)
const b =15/ 14 // b == (untyped integer constant)

const ¢ = 15/ 4.0 // ¢ == 3.75 (untyped floating-point constant)
const © floatb4 = 3/2 // 0 ==1.0 (type floatb4, 3/2 is integer
division)

const M float64 = 3/2. // M ==1.5 (type floatb4, 3/2. is float
division)

const d = 1 << 3.0 // d == (untyped integer constant)

const e = 1.0 << 3 // e == (untyped integer constant)

const f = int32(1) << 33 // illegal (constant 8589934592 overflows int32)
const g = float64(2) >> 1 // illegal (floatb4(2) is a typed floating-point
constant)

const h = "foo" > "bar" // h == true (untyped boolean constant)

const j = true // j == true (untyped boolean constant)

const k = 'w' + 1 // k == "x'" (untyped rune constant)

const 1 = "hi" // 1 =="hi" (untyped string constant)

const m = string(k) // m=="x"(type string)

const = =1 - 0.707i // (untyped complex constant)

const A = 3 + 2.0e-4 // (untyped complex constant)

const ® = iota*1i - 1/11 // (untyped complex constant)

Applying the built-in function complex to untyped integer, rune,
or floating-point constants yields an untyped complex constant.

const ic = complex(@, ¢) // ic == 3.751 (untyped complex constant)
const i@ = complex(@, ©) // i@ == 1i (type complex128)

Constant expressions are always evaluated exactly; intermediate
values and the constants themselves may require precision
significantly larger than supported by any predeclared type in
the language. The following are legal declarations:

const Huge = 1 << 100 // Huge ==
1267650600228229401496703205376 (untyped integer constant)

const Four int8 = Huge >> 98 // Four == (type
int8)

The divisor of a constant division or remainder operation must
not be zero:

3.14 / 0.0 // illegal: division by zero

The values of typed constants must always be accurately
representable by values of the constant type. The following
constant expressions are illegal:

uint(-1) // -1 cannot be represented as a uint

int(3.14) // 3.14 cannot be represented as an int

int64(Huge) // 1267650600228229401496703205376 cannot be represented as an
int64

Four * 300 // operand 300 cannot be represented as an int8 (type of Four)
Four * 100 // product 400 cannot be represented as an int8 (type of Four)

The mask used by the unary bitwise complement operator #
matches the rule for non-constants: the mask is all 1s for
unsigned constants and -1 for signed and untyped constants.

N // untyped integer constant, equal to -2

uint8(A1) // illegal: same as uint8(-2), -2 cannot be represented as a uint8
Auint8(1) // typed uint8 constant, same as OxFF A uint8(1) = uint8(0xFE)
int8(M) // same as int8(-2)

ANint8(1) // same as -1 A int8(1) = -2

Implementation restriction: A compiler may use rounding while
computing untyped floating-point or complex constant
expressions; see the implementation restriction in the section on
constants. This rounding may cause a floating-point constant
expression to be invalid in an integer context, even if it would be
integral when calculated using infinite precision, and vice versa.

Continue statements (continue)

A continue statement begins the next iteration of the innermost

for loop at its post statement. The for loop must be within the
same function.

ContinueStmt = "continue" [Label] .

If there is a label, it must be that of an enclosing for statement,
and that is the one whose execution advances.

RowLoop:
for y, row := range rows {
for x, data := range row {
if data == endOfRow {
continue RowlLoop

}

row[x] = data + bias(x, y)
}
}

Defer statements (defer)

A defer statement invokes a function whose execution is deferred
to the moment the surrounding function returns, either because
the surrounding function executed a return statement, reached
the end of its function body, or because the corresponding
goroutine is panicking.

DeferStmt = "defer" Expression .

The expression must be a function or method call; it cannot be
parenthesized. Calls of built-in functions are restricted as for
expression statements.

Each time a defer statement executes, the function value and
parameters to the call are evaluated as usual and saved anew but
the actual function is not invoked. Instead, deferred functions
are invoked immediately before the surrounding function
returns, in the reverse order they were deferred. That is, if the
surrounding function returns through an explicit return
statement, deferred functions are executed after any result
parameters are set by that return statement but before the
function returns to its caller. If a deferred function value
evaluates to nil, execution panics when the function is invoked,
not when the defer statement is executed.

For instance, if the deferred function is a function literal and the
surrounding function has named result parameters that are in
scope within the literal, the deferred function may access and
modify the result parameters before they are returned. If the
deferred function has any return values, they are discarded
when the function completes. (See also the section on handling
panics.)

lock(1)
defer unlock(1l) // unlocking happens before surrounding function returns

// prints 3 2 1 @ before surrounding function returns
for 1 := 0; i <= 3; i++ {

defer fmt.Print(1)
}

// f returns 42
func () (result int) {
defer func() {
// result is accessed after it was set to 6 by the return statement
result *= 7

110

return 6

If statements (if, else)

If statements specify the conditional execution of two branches
according to the value of a boolean expression. If the expression
evaluates to true, the if branch is executed, otherwise, if present,

the else branch is executed.

IfStmt = "if" [SimpleStmt ";"] Expression Block ["else" (IfStmt | Block)]

if x > max {
X = max

}

The expression may be preceded by a simple statement, which
executes before the expression is evaluated.

if x 1= f(); x<y{
return x

} else if x > z {
return z

} else {
return y

}

For statements (for, range)

A for statement specifies repeated execution of a block. There are
three forms: The iteration may be controlled by a single

condition, a for clause, or a range clause.

ForStmt = "for" [Condition | ForClause | RangeClause] Block .
Condition = Expression .

For statements with single condition

In its simplest form, a for statement specifies the repeated
execution of a block as long as a boolean condition evaluates to
true. The condition is evaluated before each iteration. If the
condition is absent, it is equivalent to the boolean value true.

for a <b {
7“2)

}

For statements with for clause

A for statement with a ForClause is also controlled by its
condition, but additionally it may specify an init and a post
statement, such as an assignment, an increment or decrement
statement. The init statement may be a short variable
declaration, but the post statement must not. Variables declared
by the init statement are re-used in each iteration.

ForClause = [InitStmt] ";" [Condition] ";" [PostStmt] .

InitStmt = SimpleStmt .
PostStmt = SimpleStmt .
for i :=0; 1 <10; i++ {

(1)
}

If non-empty, the init statement is executed once before
evaluating the condition for the first iteration; the post statement
is executed after each execution of the block (and only if the
block was executed). Any element of the ForClause may be empty
but the semicolons are required unless there is only a condition.
If the condition is absent, it is equivalent to the boolean value
true.

is the same as for ; cond ; { S() }

for cond O}
O } is the same as for true { S(O) }

for

For statements with range clause

A for statement with a range clause iterates through all entries of
an array, slice, string or map, or values received on a channel.
For each entry it assigns iteration values to corresponding
iteration variables if present and then executes the block.

RangeClause = [ExpressionList "=" | IdentifierList ":="] "range" Expression .

The expression on the right in the range clause is called the range
expression, which may be an array, pointer to an array, slice,
string, map, or channel permitting receive operations. As with an
assignment, if present the operands on the left must be
addressable or map index expressions; they denote the iteration
variables. If the range expression is a channel, at most one
iteration variable is permitted, otherwise there may be up to two.
If the last iteration variable is the blank identifier, the range
clause is equivalent to the same clause without that identifier.

The range expression x is evaluated once before beginning the
loop, with one exception: if at most one iteration variable is
present and len(x) is constant, the range expression is not
evaluated.

Function calls on the left are evaluated once per iteration. For
each iteration, iteration values are produced as follows if the
respective iteration variables are present:

Range expression 1st value 2nd value

array or slice a [n]E, *[n]E, or []E index i int ali] E
string s string type index i int see below rune
map m map[K]V key k K mk] V
channel ¢ chan E, <-chan E element e E

1. For an array, pointer to array, or slice value a, the index
iteration values are produced in increasing order,
starting at element index 0. If at most one iteration
variable is present, the range loop produces iteration
values from 0 up to len(a)-1 and does not index into the
array or slice itself. For a nil slice, the number of
iterations is 0.

2. For a string value, the range clause iterates over the
Unicode code points in the string starting at byte index 0.
On successive iterations, the index value will be the index
of the first byte of successive UTF-8-encoded code points
in the string, and the second value, of type rune, will be
the value of the corresponding code point. If the iteration
encounters an invalid UTF-8 sequence, the second value
will be OXFFFD, the Unicode replacement character, and
the next iteration will advance a single byte in the string.

3. The iteration order over maps is not specified and is not
guaranteed to be the same from one iteration to the next.
If a map entry that has not yet been reached is removed
during iteration, the corresponding iteration value will
not be produced. If a map entry is created during
iteration, that entry may be produced during the
iteration or may be skipped. The choice may vary for
each entry created and from one iteration to the next. If
the map is nil, the number of iterations is 0.

4. For channels, the iteration values produced are the
successive values sent on the channel until the channel is
closed. If the channel is nil, the range expression blocks
forever.

The iteration values are assigned to the respective iteration
variables as in an assignment statement.

The iteration variables may be declared by the range clause using
a form of short variable declaration (:=). In this case their types
are set to the types of the respective iteration values and their
scope is the block of the for statement; they are re-used in each
iteration. If the iteration variables are declared outside the for
statement, after execution their values will be those of the last
iteration.

var testdata *struct {

a *[7]int
}
for i, _ := range testdata.a {
// testdata.a is never evaluated; len(testdata.a) is constant
// 1 ranges from @ to 6
f(i)
}

var a [10]string
for i, s := range a {
// type of 1 is int
// type of s is string
// s == 3a[1]
g(i, s)
}

var key string
var val interface{} // element type of m is assignable to val
m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5,
"sun":6}
for key, val = range m {
h(key, val)
}
// key == last map key encountered in iteration
// val == map[key]

var ch chan Work = producer()
for w := range ch {

doWork (w)
}

// empty a channel
for range ch {}

Function types (func)

A function type denotes the set of all functions with the same
parameter and result types. The value of an uninitialized
variable of function type is nil.

FunctionType = "func" Signature .

Signature = Parameters [Result] .

Result = Parameters | Type .

Parameters = "(" [ParameterList ["," 11 "™)" .
ParameterList = ParameterDecl { "," ParameterDecl } .
ParameterDecl = [IdentifierList] ["..."] Type .

Within a list of parameters or results, the names (IdentifierList)
must either all be present or all be absent. If present, each name
stands for one item (parameter or result) of the specified type
and all non-blank names in the signature must be unique. If
absent, each type stands for one item of that type. Parameter and
result lists are always parenthesized except that if there is
exactly one unnamed result it may be written as an
unparenthesized type.

The final incoming parameter in a function signature may have a
type prefixed with ... A function with such a parameter is called
variadic and may be invoked with zero or more arguments for
that parameter.

func()

func(x int) int

func(a, _ int, z float32) bool
func(a, b int, z float32) (bool)
func(prefix string, values ...int)

func(a, b int, z float64, opt ...interface{}) (success bool)
func(int, int, float64) (float64, *[]int)
func(n int) func(p *T)

Function declarations

A function declaration binds an identifier, the function name, to
a function.

FunctionDecl = "func" FunctionName Signature [FunctionBody] .
FunctionName = identifier .
FunctionBody = Block .

If the function’s signature declares result parameters, the
function body’s statement list must end in a terminating
statement.

func IndexRune(s string, r rune) int {
for i, ¢ := range s {
if c ==r1 {
return i
}
}

// invalid: missing return statement

A function declaration may omit the body. Such a declaration
provides the signature for a function implemented outside Go,
such as an assembly routine.

func min(x int, y int) int {
if x <y {
return x

}

return y

}

func flushICache(begin, end uintptr) // implemented externally

Method declarations

A method is a function with a receiver. A method declaration
binds an identifier, the method name, to a method, and
associates the method with the receiver’s base type.

MethodDecl
Receiver

"func" Receiver MethodName Signature [FunctionBody] .
Parameters .

The receiver is specified via an extra parameter section
preceding the method name. That parameter section must
declare a single non-variadic parameter, the receiver. Its type
must be a defined type T or a pointer to a defined type T. T is
called the receiver base type. A receiver base type cannot be a
pointer or interface type and it must be defined in the same
package as the method. The method is said to be bound to its
receiver base type and the method name is visible only within
selectors for type T or *T.

A non-blank receiver identifier must be unique in the method
signature. If the receiver’s value is not referenced inside the body
of the method, its identifier may be omitted in the declaration.
The same applies in general to parameters of functions and
methods.

For a base type, the non-blank names of methods bound to it
must be unique. If the base type is a struct type, the non-blank
method and field names must be distinct.

Given defined type Point, the declarations

func (p *Point) Length() float64 {
return math.Sqrt(p.x * p.x + p.y * p.y)
}

func (p *Point) Scale(factor float64) {
p.x *= factor
p.y *= factor

}

bind the methods Length and Scale, with receiver type *Point, to
the base type Point.

The type of a method is the type of a function with the receiver as
first argument. For instance, the method Scale has type

func(p *Point, factor float64)

However, a function declared this way is not a method.

Function literals
A function literal represents an anonymous function.

FunctionLit = "func" Signature FunctionBody .

func(a, b int, z float64) bool { return a*b < int(z) }

A function literal can be assigned to a variable or invoked
directly.

f := func(x, y int) int { return x + vy }
func(ch chan int) { ch <- ACK }(replyChan)

Function literals are closures: they may refer to variables defined
in a surrounding function. Those variables are then shared
between the surrounding function and the function literal, and
they survive as long as they are accessible.

Return statements (return)

A return statement in a function F terminates the execution of F,
and optionally provides one or more result values. Any functions
deferred by F are executed before F returns to its caller.

ReturnStmt = "return" [ExpressionList] .

In a function without a result type, a return statement must not
specify any result values.

func noResult() {
return

}

There are three ways to return values from a function with a
result type:

The return value or values may be explicitly listed in the return
statement. Each expression must be single-valued and assignable
to the corresponding element of the function’s result type.

func simpleF() int {
return 2

}

func complexF1() (re float64, im floatb4) {
return -7.0, -4.0
}

The expression list in the return statement may be a single call to
a multi-valued function. The effect is as if each value returned
from that function were assigned to a temporary variable with
the type of the respective value, followed by a return statement
listing these variables, at which point the rules of the previous

case apply.

func complexF2() (re float64, im floatb4) {
return complexF1()

}

The expression list may be empty if the function’s result type
specifies names for its result parameters. The result parameters
act as ordinary local variables and the function may assign
values to them as necessary. The return statement returns the
values of these variables.

func complexF3() (re float64, im floatb4) {

re = 7.0
im = 4.0
return
}
func (devnull) Write(p []byte) (n int, _ error) {
n = len(p)
return
}

Regardless of how they are declared, all the result values are
initialized to the zero values for their type upon entry to the
function. A return statement that specifies results sets the result
parameters before any deferred functions are executed.

Implementation restriction: A compiler may disallow an empty
expression list in a return statement if a different entity
(constant, type, or variable) with the same name as a result
parameter is in scope at the place of the return.

func f(n int) (res int, err error) {
if _, err := f(n-1); err != nil {
return // invalid return statement: err is shadowed

}

return

Go statements ()

A go statement starts the execution of a function call as an
independent concurrent thread of control, or goroutine, within
the same address space.

GoStmt = "go" Expression .

The expression must be a function or method call; it cannot be
parenthesized. Calls of built-in functions are restricted as for
expression statements.

The function value and parameters are evaluated as usual in the
calling goroutine, but unlike with a regular call, program
execution does not wait for the invoked function to complete.
Instead, the function begins executing independently in a new
goroutine. When the function terminates, its goroutine also
terminates. If the function has any return values, they are
discarded when the function completes.

go Server()
go func(ch chan<- bool) { for { sleep(10); ch <- true }} (c)

Goto statements (goto)

A goto statement transfers control to the statement with the
corresponding label within the same function.

GotoStmt = "goto" Label .

goto Error

Executing the goto statement must not cause any variables to
come into scope that were not already in scope at the point of the
goto. For instance, this example:

goto L // BAD
v i= 3

is erroneous because the jump to label L skips the creation of v.

A goto statement outside a block cannot jump to a label inside
that block. For instance, this example:

if n%2 == 1 {
goto L1

}

for n > 0 {

()

is erroneous because the label L1 is inside the for statement’s
block but the goto is not.

Package clause (package)
A package clause begins each source file and defines the package
to which the file belongs.

PackageClause = "package" PackageName .
PackageName = identifier .

The PackageName must not be the blank identifier.

package math

A set of files sharing the same PackageName form the
implementation of a package. An implementation may require
that all source files for a package inhabit the same directory.

Import declarations (import)

An import declaration states that the source file containing the
declaration depends on functionality of the imported package
(§Program initialization and execution) and enables access to
exported identifiers of that package. The import names an
identifier (PackageName) to be used for access and an
ImportPath that specifies the package to be imported.

ImportDecl = "import" (ImportSpec | "(" { ImportSpec ";" } ")") .
ImportSpec = ["." | PackageName] ImportPath .
ImportPath = string_lit .

The PackageName is used in qualified identifiers to access
exported identifiers of the package within the importing source
file. It is declared in the file block. If the PackageName is omitted,
it defaults to the identifier specified in the package clause of the
imported package. If an explicit period (.) appears instead of a
name, all the package’s exported identifiers declared in that
package’s package block will be declared in the importing source
file’s file block and must be accessed without a qualifier.

The interpretation of the ImportPath is implementation-
dependent but it is typically a substring of the full file name of
the compiled package and may be relative to a repository of

installed packages.

Implementation restriction: A compiler may restrict ImportPaths
to non-empty strings using only characters belonging to
Unicode’s L, M, N, P, and S general categories (the Graphic
characters without spaces) and may also exclude the characters
"#$%8&()*,:;;<=?[]1""\{| } and the Unicode replacement character
U+FFFD.

Assume we have compiled a package containing the package
clause package math, which exports function Sin, and installed
the compiled package in the file identified by 1ib/math. This table
illustrates how Sin is accessed in files that import the package
after the various types of import declaration.

Import declaration Local name of Sin
import "lib/math" math.Sin

import m "lib/math" m.Sin

import . "lib/math" Sin

An import declaration declares a dependency relation between
the importing and imported package. It is illegal for a package to
import itself, directly or indirectly, or to directly import a
package without referring to any of its exported identifiers. To
import a package solely for its side-effects (initialization), use the
blank identifier as explicit package name:

import _ "lib/math"

Type declarations (type)

A type declaration binds an identifier, the type name, to a type.
Type declarations come in two forms: alias declarations and type

definitions.

"type" (TypeSpec | "(" { TypeSpec ";" } ")") .
AliasDecl | TypeDef .

TypeDecl
TypeSpec

Alias declarations
An alias declaration binds an identifier to the given type.

AliasDecl = identifier "=" Type .

Within the scope of the identifier, it serves as an alias for the
type.

type (
nodeList = []*Node // nodelist and []*Node are identical types
Polar = polar // Polar and polar denote identical types

Type definitions

A type definition creates a new, distinct type with the same
underlying type and operations as the given type, and binds an
identifier to it.

TypeDef = identifier Type .

The new type is called a defined type. It is different from any
other type, including the type it is created from.

type (

Point struct{ x, y floatb4 } // Point and struct{ x, y float64 } are
different types

polar Point // polar and Point denote different types

)

type TreeNode struct {

left, right *TreeNode
value *Comparable

}

type Block interface {
BlockSize() int
Encrypt(src, dst []byte)
Decrypt(src, dst []byte)

A defined type may have methods associated with it. It does not
inherit any methods bound to the given type, but the method set
of an interface type or of elements of a composite type remains
unchanged:

// A Mutex is a data type with two methods, Lock and Unlock.
type Mutex struct { /* Mutex fields */ }

func (m *Mutex) Lock() { /* Lock implementation */ }
func (m *Mutex) Unlock() { /* Unlock implementation */ }

// NewMutex has the same composition as Mutex but its method set is empty.
type NewMutex Mutex

// The method set of PtrMutex's underlying type *Mutex remains unchanged,
// but the method set of PtrMutex is empty.
type PtrMutex *Mutex

// The method set of *PrintableMutex contains the methods
// Lock and Unlock bound to its embedded field Mutex.
type PrintableMutex struct {

Mutex

}

// MyBlock is an interface type that has the same method set as Block.
type MyBlock Block

Type definitions may be used to define different boolean,
numeric, or string types and associate methods with them:

type TimeZone int

const (

EST TimeZone = -(5 + iota)
CST
MST
PST

)

func (tz TimeZone) String() string {
return fmt.Sprintf("GMT%+dh", tz)
}

Interface types (interface)

An interface type specifies a method set called its interface. A
variable of interface type can store a value of any type with a
method set that is any superset of the interface. Such a type is
said to implement the interface. The value of an uninitialized
variable of interface type is nil.

InterfaceType = "interface" "{" { (MethodSpec | InterfaceTypeName) ";" }
ll}ll .

MethodSpec = MethodName Signature .

MethodName = identifier .

InterfaceTypeName = TypeName .

An interface type may specify methods explicitly through method
specifications, or it may embed methods of other interfaces
through interface type names.

// A simple File interface.
interface {
Read([]byte) (int, error)
Write([]byte) (int, error)
Close() error

}

The name of each explicitly specified method must be unique
and not blank.

interface {
String() string
String() string // illegal: String not unique
_(x 1int) // 1llegal: method must have non-blank name

}

More than one type may implement an interface. For instance, if
two types S1 and S2 have the method set

func (p T) Read(p []byte) (n int, err error)
func (p T) Write(p []byte) (n int, err error)
func (p T) Close() error

(where T stands for either S1 or S2) then the File interface is
implemented by both S1 and S2, regardless of what other
methods S1 and 52 may have or share.

A type implements any interface comprising any subset of its
methods and may therefore implement several distinct
interfaces. For instance, all types implement the empty interface:

interface{}

Similarly, consider this interface specification, which appears
within a type declaration to define an interface called Locker:

type Locker interface {
Lock()
Unlock()

}

If S1 and S2 also implement

func (p T) Lock() { & }
func (p T) Unlock() { & }

they implement the Locker interface as well as the File interface.

An interface T may use a (possibly qualified) interface type name
E in place of a method specification. This is called embedding
interface E in T. The method set of T is the union of the method

sets of T’s explicitly declared methods and of T’s embedded
interfaces.

type Reader interface {
Read(p []byte) (n int, err error)
Close() error

}

type Writer interface {
Write(p []byte) (n int, err error)
Close() error

}

// ReadWriter's methods are Read, Write, and Close.

type ReadWriter interface {
Reader // includes methods of Reader in ReadWriter's method set
Writer // includes methods of Writer in ReadWriter's method set

A union of method sets contains the (exported and non-exported)
methods of each method set exactly once, and methods with the
same names must have identical signatures.

type ReadCloser interface {
Reader // includes methods of Reader in ReadCloser's method set
Close() // illegal: signatures of Reader.Close and Close are different

An interface type T may not embed itself or any interface type
that embeds T, recursively.

// 1llegal: Bad cannot embed itself
type Bad interface {
Bad

}

// illegal: Badl cannot embed itself using Bad2
type Bad1 interface {

Bad?

}

type Bad2 interface {
Bad1

}

Struct types (struct)

A struct is a sequence of named elements, called fields, each of
which has a name and a type. Field names may be specified
explicitly (IdentifierList) or implicitly (EmbeddedField). Within a
struct, non-blank field names must be unique.

StructType = "struct" "{" { FieldDecl ";" } "}" .

FieldDecl = (IdentifierlList Type | EmbeddedField) [Tag] .
EmbeddedField = ["*"] TypeName .

Tag = string_lit .

// An empty struct.

struct {}
// A struct with 6 fields.
struct {
X, y int
u float32
_ float32 // padding
A *[]int
F func()
}

A field declared with a type but no explicit field name is called an
embedded field. An embedded field must be specified as a type

name T or as a pointer to a non-interface type name *T, and T
itself may not be a pointer type. The unqualified type name acts
as the field name.

// A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4
struct {

T1 // field name is T1
2 // field name is T2
P.T3 // field name is T3

*P.T4 // field name is T4
x, y int // field names are x and y

The following declaration is illegal because field names must be
unique in a struct type:

struct {
T // conflicts with embedded field *T and *P.T
*T // conflicts with embedded field T and *P.T
*P.T // conflicts with embedded field T and *T

A field or method f of an embedded field in a struct x is called
promoted if x.f is a legal selector that denotes that field or
method f.

Promoted fields act like ordinary fields of a struct except that
they cannot be used as field names in composite literals of the
struct.

Given a struct type S and a defined type T, promoted methods are
included in the method set of the struct as follows:

= If S contains an embedded field T, the method sets of S and *S
both include promoted methods with receiver 7. The method

set of *S also includes promoted methods with receiver *T.

= If S contains an embedded field *T, the method sets of § and *S
both include promoted methods with receiver T or *T.

A field declaration may be followed by an optional string literal
tag, which becomes an attribute for all the fields in the
corresponding field declaration. An empty tag string is
equivalent to an absent tag. The tags are made visible through a
reflection interface and take part in type identity for structs but
are otherwise ignored.

struct {
x, y float64 "" // an empty tag string is like an absent tag
name string "any string is permitted as a tag"
[4]byte "ceci n'est pas un champ de structure"

}

// A struct corresponding to a TimeStamp protocol buffer.
// The tag strings define the protocol buffer field numbers;
// they follow the convention outlined by the reflect package.
struct {

microsec uint64 ‘protobuf:"1"*

serverIP6 uint64 ‘protobuf:"2"’

Map types (map)

A map is an unordered group of elements of one type, called the
element type, indexed by a set of unique keys of another type,
called the key type. The value of an uninitialized map is nil.

llmap
Type .

MapType [" KeyType "]" ElementType .

KeyType

The comparison operators == and != must be fully defined for

operands of the key type; thus the key type must not be a
function, map, or slice. If the key type is an interface type, these
comparison operators must be defined for the dynamic key
values; failure will cause a run-time panic.

map[string]int
map[*T]struct{ x, y float64 }
map[string]interface{}

The number of map elements is called its length. For a map m, it
can be discovered using the built-in function len and may change
during execution. Elements may be added during execution
using assignments and retrieved with index expressions; they
may be removed with the delete built-in function.

A new, empty map value is made using the built-in function make,
which takes the map type and an optional capacity hint as
arguments:

make(map[string]int)
make(map[string]int, 100)

The initial capacity does not bound its size: maps grow to
accommodate the number of items stored in them, with the
exception of nil maps. A nil map is equivalent to an empty map
except that no elements may be added.

Variable declarations (var)

A variable declaration creates one or more variables, binds
corresponding identifiers to them, and gives each a type and an
initial value.

VarDecl = "var" (VarSpec | "(" { VarSpec ";" } ")") .

VarSpec = IdentifierList (Type ["=" ExpressionList] |
) .

ExpressionList

var
var
var

i int
u, v
k
var x, y float32 = -1, -2
(
i
u,

W floatb4

S ~

var
int
v, s =12.0, 3.0, "bar"

var re, im = complexSqrt(-1)
var _, found = entries[name] // map lookup; only interested in "found"

If a list of expressions is given, the variables are initialized with
the expressions following the rules for assignments. Otherwise,
each variable is initialized to its zero value.

If a type is present, each variable is given that type. Otherwise,
each variable is given the type of the corresponding initialization
value in the assignment. If that value is an untyped constant, it is
first implicitly converted to its default type; if it is an untyped
boolean value, it is first implicitly converted to type bool. The
predeclared value nil cannot be used to initialize a variable with
no explicit type.

var d = math.Sin(0.5) // d is floatb4

var i = 42 // 1 is int

var t, ok = x.(T) // t is T, ok is bool
var n = nil // 1llegal

Implementation restriction: A compiler may make it illegal to
declare a variable inside a function body if the variable is never
used.

Short variable declarations

A short variable declaration uses the syntax:

ShortVarDecl = IdentifierList ":=" ExpressionlList .

It is shorthand for a regular variable declaration with initializer
expressions but no types:

"var" IdentifierList = Expressionlist .

i, J =0, 10
f := func() int { return 7 }
ch := make(chan int)

r, w, _ :=o0s.Pipe() // os.Pipe() returns a connected pair of Files and an
error, 1f any
_, Y, _ :=coord(p) // coord() returns three values; only interested in vy

coordinate

Unlike regular variable declarations, a short variable declaration
may redeclare variables provided they were originally declared
earlier in the same block (or the parameter lists if the block is the
function body) with the same type, and at least one of the non-
blank variables is new. As a consequence, redeclaration can only
appear in a multi-variable short declaration. Redeclaration does
not introduce a new variable; it just assigns a new value to the
original.

field1, offset := nextField(str, 0)

field2, offset := nextField(str, offset) // redeclares offset

a, a:=1, 2 // 1llegal: double declaration of a
or no new variable if a was declared elsewhere

Short variable declarations may appear only inside functions. In
some contexts such as the initializers for if, for, or switch
statements, they can be used to declare local temporary

variables.

Pointer types (*)

A pointer type denotes the set of all pointers to variables of a
given type, called the base type of the pointer. The value of an
uninitialized pointer is nil.

PointerType = "*" BaseType .
BaseType = Type .

*Point

*[4]int

Selectors (.)

For a primary expression x that is not a package name, the
selector expression

X. T

denotes the field or method f of the value x (or sometimes *x; see
below). The identifier f is called the (field or method) selector; it
must not be the blank identifier. The type of the selector
expression is the type of f. If x is a package name, see the section
on qualified identifiers.

A selector f may denote a field or method f of a type T, or it may
refer to a field or method f of a nested embedded field of T. The
number of embedded fields traversed to reach f is called its
depth in T. The depth of a field or method f declared in T is zero.
The depth of a field or method f declared in an embedded field A

in T is the depth of f in A plus one.

The following rules apply to selectors:

1.

For a value x of type T or *T where T is not a pointer or
interface type, x.f denotes the field or method at the
shallowest depth in T where there is such an f. If there is

not exactly one f with shallowest depth, the selector
expression is illegal.

For a value x of type I where I is an interface type, x.f
denotes the actual method with name f of the dynamic
value of x. If there is no method with name f in the
method set of I, the selector expression is illegal.

. As an exception, if the type of x is a defined pointer type

and (*x).f is a valid selector expression denoting a field
(but not a method), x.f is shorthand for (*x).f.

In all other cases, x.f is illegal.

If x is of pointer type and has the value nil and x.f

denotes a struct field, assigning to or evaluating x.f
causes a run-time panic.

If x is of interface type and has the value nil, calling or
evaluating the method x.f causes a run-time panic.

For example, given the declarations:

type T0 struct {
x int

}

func (*T0) MO()
type T1 struct {
y int
}
func (T1) M1()
type T2 struct {
z int
T1
*TQ
}
func (*T2) M2()
type Q *T2
var t T2 // with .70 = nil

var p *T2 // with p = nil and (*D)T@ = nil
var @ Q =p

one may write:

t.z // t.z

t.y /]t Ty

t.x // (Ft.70).x

p.z // (*p).z

p.y /7 (*p).Tl.y

p.X [/ (*(*p).T0).x

q.X // (*(*q).T0).x (*q).x 1s a valid field selector
p.Mo() // ((*p).T@).Ma() M@ expects *T@ receiver

p.M1() // ((*p).T1).M1() M1 expects T1 receiver

p.M2() // p.M2() M2 expects *T2 receiver

t.M2() // (&t).M2() M2 expects *T2 receiver, see section on
Calls

but the following is invalid:

q.Mo() // (*q).M@ is valid but not a field selector

APPENDIX B: BUILTIN FUNCTIONS

Go Builtin Functions

NOTE: This list is taken from the golang website,
golang.org/pkg/builtin/. It is included here for the readers'
convenience.

func append()

func append(slice []Type, elems ...Type) []Type

The append built-in function appends elements to the end of a
slice. If it has sufficient capacity, the destination is resliced to
accommodate the new elements. If it does not, a new underlying
array will be allocated. Append returns the updated slice. It is
therefore necessary to store the result of append, often in the
variable holding the slice itself:

slice
slice

append(slice, elem1, elem2)
append(slice, anotherSlice...)

As a special case, it is legal to append a string to a byte slice, like
this:

https://golang.org/pkg/builtin/

slice = append([]byte("hello "), "world"...)

func cap()

func cap(v Type) int

The cap built-in function returns the capacity of v, according to
its type:

Array: the number of elements in v (same as len(v)).

Pointer to array: the number of elements in *v (same as len(v)).
Slice: the maximum length the slice can reach when resliced;

if v is nil, cap(v) is zero.

Channel: the channel buffer capacity, in units of elements;

if v is nil, cap(v) is zero.

For some arguments, such as a simple array expression, the
result can be a constant. See the Go language specification’s
" "Length and capacity" section for details.

func close()

func close(c chan<- Type)

The close built-in function closes a channel, which must be either
bidirectional or send-only. It should be executed only by the
sender, never the receiver, and has the effect of shutting down
the channel after the last sent value is received. After the last
value has been received from a closed channel c, any receive
from ¢ will succeed without blocking, returning the zero value
for the channel element. The form

will also set ok to false for a closed channel.

func complex()

func complex(r, i FloatType) ComplexType

The complex built-in function constructs a complex value from
two floating-point values. The real and imaginary parts must be
of the same size, either float32 or float64 (or assignable to them),
and the return value will be the corresponding complex type
(complex64 for float32, complex128 for float64).

func copy()

func copy(dst, src []Type) int

The copy built-in function copies elements from a source slice
into a destination slice. (As a special case, it also will copy bytes
from a string to a slice of bytes.) The source and destination may
overlap. Copy returns the number of elements copied, which will
be the minimum of len(src) and len(dst).

func delete()

func delete(m map[Type]Typel, key Type)
The delete built-in function deletes the element with the specified

key (m[key]) from the map. If m is nil or there is no such
element, delete is a no-op.

func 1mag()

func imag(c ComplexType) FloatType

The imag built-in function returns the imaginary part of the
complex number c. The return value will be floating point type
corresponding to the type of c.

func len()

func len(v Type) int

The len built-in function returns the length of v, according to its
type:

Array: the number of elements in v.

Pointer to array: the number of elements in *v (even if v is nil).

Slice, or map: the number of elements in v; if v is nil, len(v) is zero.

String: the number of bytes in v.

Channel: the number of elements queued (unread) in the channel buffer;
if v is nil, len(v) is zero.

For some arguments, such as a string literal or a simple array
expression, the result can be a constant. See the Go language
specification’s * "Length and capacity" section for details.

func make()

func make(t Type, size ...IntegerType) Type

The make built-in function allocates and initializes an object of
type slice, map, or chan (only). Like new, the first argument is a
type, not a value. Unlike new, make’s return type is the same as
the type of its argument, not a pointer to it. The specification of
the result depends on the type:

Slice

The size specifies the length. The capacity of the slice is equal
to its length. A second integer argument may be provided to
specify a different capacity; it must be no smaller than the
length. For example, make([]Jint, 0, 10) allocates an underlying
array of size 10 and returns a slice of length 0 and capacity 10
that is backed by this underlying array.

Map

An empty map is allocated with enough space to hold the
specified number of elements. The size may be omitted, in
which case a small starting size is allocated.

Channel

The channel’s buffer is initialized with the specified buffer
capacity. If zero, or the size is omitted, the channel is
unbuffered.

func new()

func new(Type) *Type

The new built-in function allocates memory. The first argument
is a type, not a value, and the value returned is a pointer to a
newly allocated zero value of that type.

func panic()

func panic(v interface{})

The panic built-in function stops normal execution of the current
goroutine. When a function F calls panic, normal execution of F

stops immediately. Any functions whose execution was deferred
by F are run in the usual way, and then F returns to its caller. To
the caller G, the invocation of F then behaves like a call to panic,
terminating G’s execution and running any deferred functions.
This continues until all functions in the executing goroutine have
stopped, in reverse order. At that point, the program is
terminated with a non-zero exit code. This termination sequence
is called panicking and can be controlled by the built-in function
recover.

func print()

func print(args ...Type)

The print built-in function formats its arguments in an
implementation-specific way and writes the result to standard
error. Print is useful for bootstrapping and debugging; it is not
guaranteed to stay in the language.

func printin()

func println(args ...Type)

The println built-in function formats its arguments in an
implementation-specific way and writes the result to standard
error. Spaces are always added between arguments and a
newline is appended. Println is useful for bootstrapping and
debugging; it is not guaranteed to stay in the language.

func real()

func real(c ComplexType) FloatType

The real built-in function returns the real part of the complex
number c. The return value will be floating point type
corresponding to the type of c.

func recover()

func recover() interface{}

The recover built-in function allows a program to manage
behavior of a panicking goroutine. Executing a call to recover
inside a deferred function (but not any function called by it)
stops the panicking sequence by restoring normal execution and
retrieves the error value passed to the call of panic. If recover is
called outside the deferred function it will not stop a panicking
sequence. In this case, or when the goroutine is not panicking, or
if the argument supplied to panic was nil, recover returns nil.
Thus the return value from recover reports whether the
goroutine is panicking.

APPENDIX C: FULL CODE LISTING

Here’s a list of all code samples used in this book. The code is all
tested, using go version 1.16, and verified. You do not have to
copy, or type, this code on your computer to learn programming.

TIP: Read the code first, and try to understand. Then, close the
book and write the same or similar program based on your
understanding. Your program does not have to be exactly the
same as the sample code.

Code Listing - Part |
The Simplest Go Program

Listing 147. smallest-program/main.go

package main

func main() {}

Listing 148. smallest-program/go.mod

module examples/smallest-program

go 1.16

Hello World

Listing 149. hello-world-1/main.go
package main
func main() {

println("hello world!")
}

Listing 150. hello-world-1/go.mod
module examples/hello-world-1

go 1.16

Listing 151. hello-world-2/main.go
package main
import "fmt"
const name string = "Joe"
func main() {

var greeting string = "Hello"
fmt.Println(greeting + " " + name)

}

Listing 152. hello-world-2/go.mod
module examples/hello-world-2

go 1.16

Listing 153. hello-world-3/main.go

package main

import (
n fmt n
IIOS n

)

func main() {
var greeting = "Hello"
var name string

if len(os.Args) > 1 {
name = 0s.Args[1]

} else {
name = "you"

}

greeting += " " + name

fmt.Println(greeting)

Listing 154. hello-world-3/go.mod

module examples/hello-world-3

go 1.16

Listing 155. hello-world-4/main.go

package main

import (
"bufio"
n fmt n
llOs n
"strings"

func main() {
fmt.Println("What is your name?")

reader := bufio.NewReader(os.Stdin)
name, _ := reader.ReadString('\n")
name = strings.TrimSuffix(name, "\n")
name = strings.Title(name)

fmt.Printf("Hello %s!\n", name)

Listing 156. hello-world-4/go.mod

module examples/hello-world-4

go 1.16

Simple Arithmetic
Listing 157. simple-arithmetic/main.go
package main
import "fmt"
func main() {
str := "go" + "lang"

fmt.Printf("go + lang = %s\n", str)

sum := 1 + 1
fmt.Printf("1 + 1 = %d\n", sum)

diff := int16(5) - int16(2)
fmt.Printf("5 - 2 = %d\n", diff)

prod := 1.0 * 5.0
fmt.Printf("1.0 * 5.0

%f\n", prod)

div := 8.0 / 3.0

fmt.Printf("8.0 / 3.0 = %.4f\n", div)

numer := 7

denom := 2

quotient, remainder := numer/denom, numer%denom
fmt.Printf("%d / %d = %d\n", numer, denom, quotient)

fmt.Printf("%d %% %d = %d\n", numer, denom, remainder)

boolAnd := true && false
boolOr := true || false
fmt.Printf("t && f = %t; t || f = %t\n", boolAnd, boolOr)

fmt.Printf("t || f = %[2]t; t & f = %[1]t; t || f = %[2]t\n", boolAnd,
bool0r)

var b1 byte = 0b10 // 00000010

var b2 byte = 0b110 // 00000110

bitAnd := b1 & b2

bitOr := b1 | b2

bitShift := b2 << 2

fmt.Printf("b1 & b2 = %08b; b1 | b2 = %08b; b2 << 2 = %08b\n",
bitAnd, bitOr, bitShift)

Listing 158. simple-arithmetic/go.mod
module examples/simple-arithmetic

go 1.16

Two Numbers

Listing 159. two-numbers-1/main.go

package main

import (
n fmt n
)

func main() {
numl, num?2 := 10, 999
sum := sum(numl, num2)
fmt.Println("Sum is", sum)

}

func sum(x, y int) int {
sum = X +y
return sum

Listing 160. two-numbers-1/go.mod

module examples/two-numbers-1

go 1.16

Listing 161. two-numbers-2/main.go
package main

import (
n f|'|'|t n
)

func main() {
num1, num2 := 10, 999
max := bigger(num1, num2)
fmt.Println("Max is", max)

}

func bigger(x, y int) int {
if x>y {
return x
}

return y

}

Listing 162. two-numbers-2/go.mod
module examples/two-numbers-2

go 1.16

Listing 163. two-numbers-3/main.go

package main

import (
n fmt n
)

func main() {
num1, num?2 := 10, 999
d := diff(num1, num2)
fmt.Println("Difference is", d)
}

func diff(x, y int) int {

if x>y {
return x - vy
} else {

return y - x
}
}

Listing 164. two-numbers-3/go.mod
module examples/two-numbers-3

go 1.16

Listing 165. two-numbers-4/main.go
package main

import (
n fmt n
)

func main() {
num1, num2 := 10, 999
avg := average(num1, num2)
fmt.Println("Average is", avg)

}

func average(x, y int) (avg float32) {
avg = float32(x+y) / 2.0
return

Listing 166. two-numbers-4/go.mod

module examples/two-numbers-4

go 1.16

Listing 167. two-numbers-5/main.go

package main

import (
n fmt n

)

func main() {
num1, num2 := 10, 999
a, b := swap(numl, num2)
fmt.Println("Original:", num1, num2)
fmt.Println("Swapped:", a, b)

}

func swap(x, y int) (int, int) {
return y, x

}

Listing 168. two-numbers-5/go.mod
module examples/two-numbers-5

go 1.16

Listing 169. two-numbers-6/main.go

package main

import (
n fmt n
)

func main() {
num1, num2 := 10, 999
swap(&num1, &num2)
fmt.Println("Swapped:", numl, num2)
}

func swap(p, q *int) {

*p, *q - *q, *p
}

Listing 170. two-numbers-6/go.mod

module examples/two-numbers-6

go 1.16

Multiplication Table

Listing 171. multiplication-table/main.go

package main

import (
n fmt n
)

const low int = 2
const high int = 9

func main() {
fmt.Println("Multiplication Table:")
printMultiplicationTable()

}

func printMultiplicationTable() {
axis := make([]int, high-Tow+1)
for i := 0; i < high-low+1; i++ {
axis[i] = low + i
}

fmt.Print(" ")

for _, v := range axis {
fmt.Printf("%4d", v)

}

fmt.Println("")

fmt.Print(" -")

for range axis {
fmt.Printf("%4s", "--")

}

fmt.Println("")

for _, 1 := range axis {
fmt.Printf("%4d", 1)
fmt.Printf("%4c", "|")
for _, r := range axis {
m:=1%*r
fmt.Printf("%4d", m)
}
fmt.Println("")
}
}

Listing 172. multiplication-table/go.mod

module examples/multiplication-table

go 1.16

Find the Largest Number

Listing 173. find-largest-1/main.go
package main
import "fmt"
func main() {

sequence := [Jint{17, 7, 29, 3, 11}
fmt.Println("Input sequence =", sequence)

max := findMax1(sequence)

fmt.Println("Largest =", max)
}
Listing 174. find-largest-1/go.mod
module examples/find-largest-1

go 1.16

Listing 175. find-largest-1/findmax.go
package main

func findMax1(s []int) int {
max := s[0]
for _, v := range s {
if v > max {
max = v
}
}

return max

Listing 176. find-largest-2/main.go
package main

import "fmt"

func main() {
sequence := [Jint{17, 7, 29, 3, 11}
fmt.Println("Input sequence =", sequence)

index, max := findMax2(sequence)

if index == -1 {
fmt.Println("Empty input. No max found.")
return

}
fmt.Println("Largest =", max)

Listing 177. find-largest-2/go.mod
module examples/find-largest-2

go 1.16

Listing 178. find-largest-2/findmax.go
package main
func findMax2(s []int) (index, max int) {

if len(s) == 0 {
return -1, 0

}
index = -1
max = s[0]

for i, v := range s {
if v > max {
index, max = i, v
}
}

return

Listing 179. find-largest-3/main.go
package main
import "fmt"
func main() {
// sequence := []int{}

sequence := []int{17, 7, 29, 3, 11}
max, err := findMax3(sequence)

if err != nil {
fmt.Printf("Error: %v\n", err)
return

}
fmt.Println(max)

}
Listing 180. find-largest-3/go.mod

module examples/find-largest-3

go 1.16

Listing 181. find-largest-3/findmax.go
package main

import (
"errors"

)

func findMax3(s []int) (int, error) {
if len(s) == 0 {
return 0, errors.New("Empty input")
}

max := s[0]
for _, v := range s {
if v > max {
max = v
}
}

return max, nil

Rotate Numbers

Listing 182. rotate-numbers/main.go
package main
import "fmt"
func main() {

sequence := [7]int{1, 2, 3, 4, 5, 6, 7}
fmt.Println("Original sequence:", sequence)

rotated := rotateBy1(sequence[:])
fmt.Println("Rotated sequence:", rotated)

}

Listing 183. rotate-numbers/go.mod
module examples/rotate-numbers

go 1.16

Listing 184. rotate-numbers/rotatel.go

package main

func rotateBy1(s []int) []int {
return rotateByK(s, 1)

}
func rotateByK(s []int, k int) []int {
1 := len(s)
if 1<=18& k<=0 {
return s
}
k=k%1
if k ==0 {
return s
}

rotated := append(s[k:], s[0:k]...)
return rotated

Listing 185. rotate-numbers/rotate2.go

package main

func rotateBy1s(s []int) []int {
return append(s[1:], s[1])
}

func rotateByKs(s []int, k int) []int {
return append(s[k:], s[0:k]...)
}

Leap Years
Listing 186. leap-year/main.go

package main
import "fmt"

func main() {
isLeapYear := islLeapYearl

answer := isleapYear(1900)
fmt.Println("Is 1900 leap year?", answer)

answer = islLeapYear(1984)
fmt.Println("Is 1984 leap year?", answer)

answer = islLeapYear(2000)
fmt.Println("Is 2000 leap year?", answer)

answer = islLeapYear(2021)
fmt.Println("Is 2021 leap year?", answer)

Listing 187. leap-year/go.mod

module examples/leap-year

go 1.16

Listing 188. leap-year/leapyear1.go

package main

func islLeapYearT1(year int) bool {
var islLeap bool
if year%4 == 0 {
if year%100 == 0 {
if year%400 == 0 {
isLeap = true
} else {

isLeap = false

}
} else {
isLeap = true

}

} else {
isLeap = false
}

return isleap

}

Listing 189. leap-year/leapyear2.go
package main

func isLeapYear2(year int) bool {
if year%400 == 0 {
return true
} else if year%100 == 0 {
return false
} else if year%4 == 0 {
return true
} else {
return false
}
}

Listing 190. leap-year/leapyear3.go

package main

func isLeapYear3(year int) bool {
if year%4 == 0 && year%100 '= 0 || year%400 == 0 {
return true
} else {
return false

}
}

BMI Calculator

Listing 191. bmi-calculator/main.go

package main

import (
n fmt n
"05 n

func main() {
w, err := readInput("Weight (in pounds)")
if err != nil {
fmt.Fprintf(os.Stderr, "Error = %v\n
os.Exit(1)

, err)

h, err := readInput("Height (in inches)")

if err = nil {
fmt.Fprintf(os.Stderr, "Error = %v\n", err)
os.Exit(1)

bmi := bmi(w, h)
fmt.Printf("Your BMI is %.2f kg/m2\n", bmi)

Listing 192. bmi-calculator/go.mod
module examples/bmi-calculator

go 1.16

Listing 193. bmi-calculator/bmi.go

package main

func bmi(w, h float32) float32 {
wInKilos := float64(w) * 0.453592
hInMeters := float64(h) * 0.0254
bmi := wInKilos / (hInMeters * hInMeters)
return float32(bmi)

}

Listing 194. bmi-calculator/input.go

package main

import (
"bufio"
n fmt n
IIOs n
"strconv"
"strings"

var reader = bufio.NewReader(o0s.Stdin)

func readInput(prompt string) (float32, error) {
fmt.Printf("%s: ", prompt)
str, err := reader.ReadString('\n")
if err = nil {
return 0, err

}

str = strings.TrimSuffix(str, "\n")
value, err := strconv.ParsefFloat(str, 32)
if err != nil {

return 0, err
}

input := float32(value)

return input, nil

Birth Date

Listing 195. birth-date/main.go
package main

import (
"fmt"
"109"

"examples/birth-date/week"
)

func main() {
fmt.Print("Enter year (e.g., 2000), month (1~12), and date (1~31): ")

var y, m, d int

if _, err := fmt.Scan(&y, &m, &d); err != nil {
log.Fatalln("Scan for y, m, and d failed:", err)

}

weekday := week.Weekday(y, m, d)
fmt.Println("weekday =", weekday)

Listing 196. birth-date/go.mod

module examples/birth-date

go 1.16

Listing 197. birth-date/week/weekday.go
package week

import (
"time"

)

func Weekday(year, month, day int) time.Weekday {
date := time.Date(year, time.Month(month), day, @, @, @, @, time.Local)
return date.Weekday()

}

Greatest Common Divisor

Listing 198. greatest-common-divisor/main.go

package main

import (
"examples/greatest-common-divisor/gcd"
n fmt n

)

const useRecursive = true

func main() {
var a, b int64 = 30, 12
fmt.Printf("a = %d, b = %d\n", a, b)

var fn func(int64, int64) int64
if useRecursive {
fn = ged.GCD1
} else {
fn = gcd.GCD2
}

g := fn(a, b)
fmt.Printf("gcd = %d\n", q)

Listing 199. greatest-common-divisor/go.mod
module examples/greatest-common-divisor

go 1.16

Listing 200. greatest-common-divisor/gcd/gcd1.go
package gcd

func GCD1(a, b int64) int64 {

if b==20{
return a
} else {

return GCD1(b, a%b)

}
}

Listing 201. greatest-common-divisor/gcd/gcd2.go
package gcd
func GCD2(a, b int64) int64 {
for b I=0 {
a, b =0>b, a%b
}

return a

Reverse a Number

Listing 202. reverse-number/main.go

package main

import (
rn "examples/reverse-number/reverse"
"fmt"
"109"

)

func main() {
fmt.Print("Enter a number: ")

var num int64

if _, err := fmt.Scan(&num); err != nil {
log.Fatalln("Scan for number failed:", err)

}

reversed := rn.ReverseNumber(num)
fmt.Printf("Reversed number: %d\n", reversed)

Listing 203. reverse-number/go.mod

module examples/reverse-number

go 1.16

Listing 204. reverse-number/reverse/reverse.go
package reverse

func ReverseNumber(num int64) int64 {
var reversed int64 = 0
for num !'= 0 {
reversed = reversed*10 + num%10
num /= 10
}

return reversed

Listing 205. reverse-number/reverse/reverse_test.go

package reverse_test

import (
"examples/reverse-number/reverse"
"testing"

)

func TestReverseNumber(t *testing.T) {
var number int64 = 1234
var expected int64 = 4321
got := reverse.ReverseNumber (number)
if got != expected {
t.Errorf("ReverseNumber(%d) = %d; want %d", number, got, expected)
}

number = 24356879
expected = 97865342

got = reverse.ReverseNumber (number)
if got != expected {
t.Errorf("ReverseNumber(%d) = %d; want %d", number, got, expected)
}
}

Code Listing - Part I

Hello Morse Code

Listing 206. morse-code/main.go

package main

import (
"examples/morse-code/morse"
n _I:mt n

)

func main() {

text2 := "Hello, World!"

code? := morse.Encode(text2)

fmt.Printf("text: %s => code: %s\n", text2, code2)
codel := ".... . .-, -.. - -- - - -
text1 := morse.Decode(codel)
fmt.Printf("code: %s => text: %s\n", codel, text1)

Listing 207. morse-code/go.mod

module examples/morse-code

go 1.16

Listing 208. morse-code/morse/code.go

package morse

import (
"strings"
"unicode"
)

var morseCode = make(map[byte]string, 26*2+10+16)

func init() {
for k, v := range code {
morseCode[k] = v
if unicode.Isletter(rune(k)) {
u := []byte(strings.ToUpper(string(k)))[0]
morseCode[u] = v

}
}
}

var reverseCode = make(map[string]byte, 26+10+16)
fune init() {

for k, v := range code {
reverseCode[v] = k
}

}

Listing 209. morse-code/morse/chars.go

package morse

var code = map[byte]string{

da . 0= g
e'r "-L-L",
ldl: ll_..ll’
'e': ".",
1 1 n n

g': "--.",
|h|: u....n'

l_il: ll.."'
LI | n n

e o=t
Ikl: II_._Il’
I'I-I: “.-,."'

m: "--",

n': ,
'o': "---",
lpl: n "'
lql: ll__ _"'
lrl_ no_ n,
st M.,
't'. ll_ll’

u's "L,
IVI n _"'
w'r "=t
IXI: n "'
lyl: ll_ __"'
z' M-,

l@l: "o __ ll’

|1|: ll.____"

Izl: ll..___",

I3|: II...__"’
|4|: II...._II’
5t Y,
l6|: ll_.-.."
I7|: II__..."

l9l: “————."

r
o n n
’ T T
191 n o n
. r
l\ll no_ n’
TP, n_o
H . ’
|/|. "o u,
l(l n o u'
l)l n__ _n’
I&l: "o u,
L, n n
. Ll -T = I
[n n
r T r
_, n "
- T e g
Ty no u,
o n n
- - ’
[n o n
- r
IKIR no _on
’
I$l: no_ ||’
1@1: "o n’

Listing 210. morse-code/morse/encode.go

package morse

import (
"strings"

)

func Encode(text string) string {
var sb strings.Builder
for _, b := range []byte(text) {
if ¢, ok := morseCode[b]; ok {
sb.WriteString(c + " ")
} else {
ifb==""{
sb.WriteString(" ")
} else {
sb.WriteString("?7?")
}

}
}
return sb.String()

}

Listing 211. morse-code/morse/decode.go

package morse

import (
"errors"
n fmt n
"strings"
)

func Decode(code string) string {
var sb strings.Builder
var char []byte
var spaceCount = 0
for _, b := range []byte(code) {
ifb!=""¢{
if spaceCount > 0 {
if len(char) > 0 {
letter, err := findChar(char)
if err !'= nil {
fmt.Println(err)
sb.WriteString("?"
} else {
sb.WriteString(string(letter))
}
}
char = []byte{}

if spaceCount > 1 {
sb.WriteString(" ")

}
spaceCount = 0
}
char = append(char, b)
} else {
spaceCount++

}
}
if len(char) > 0 {
letter, err := findChar(char)
if err = nil {
fmt.Println(err)

sb.WriteString("?")
} else {
sb.WriteString(string(letter))

}
}

return sb.String()
}

func findChar(bytes []byte) (byte, error) {
str := string(bytes)
if ¢, ok := reverseCode[str]; ok {
return ¢, nil

} else {
return 0b@, errors.New(fmt.Sprintf("Unrecognized code: %s", str))
}

}

"LED" Clock

Listing 212. led-clock/main.go
package main
import (

"examples/led-clock/big"
)

func main() {
big.DisplayTime()
}
Listing 213. led-clock/go.mod

module examples/led-clock

go 1.16

Listing 214. led-clock/big/time.go
package big
import (

n fmt n
"time"

)

func DisplayTime() {

now := time.Now()

displayStr := fmt.Sprintf("%02d:%02d", now.Local().Hour(),
now.Local().Minute())

tm := CreateBigDigits([]byte(displayStr)...)

tm.Print()
}

Listing 215. led-clock/big/text.go

package big

import (
n fmt n
"strings"
)

type BigText [][]byte
const height int = 5
var le = [height][]byte{}

func (c BigText) append(c1 BigText) BigText {
1x := make(BigText, height)
for i := range le {
Ix[1] = append(c[i], c1[i]...)
}

return 1x

}

func (c BigText) Print() {
len := len(c[@])
bar := strings.Repeat("=", len)

fmt.Printf("%s\n", bar)
for _, v := range c {
fmt.Printf("%s\n", v)
}
fmt.Printf("%s\n", bar)
}

func CreateBigDigits(digits ...byte) BigText {
1x := make(BigText, height)
for _, d := range digits {

1x = 1x.append(let[d]).append(let[" '])
}

return 1x

}

Listing 216. led-clock/big/digits.go
package big
var let = map[byte]BigText{

I@l: {
l@l,

{I l, 1 I},
{'0', 1 l’ I@l}'
{I@l, 1 I, l@l}'
{I@l, 1 l, l@l}'
{I l, l@l, 1 I},
H
"1 A
{I l, '1', 1 I}'
{I l, llll, 1 I},
{l ', l1l’ 1 l}'
{I l, l‘II, 1 l}'
{|1|, '1', I’II}'

;12
)
2,
)
: }

|2|’ |2|

E l3l’ 1 l}'
, 1 I, l3l}'
, |3|, 1 1

, 1 l, I3I}’
E l3l’ 1 l}'

IIIIIIIIIIIIIIIIIIIIIIIII

e e P eI SN e e
o T o ~~_ T o o T oo T T T T
,,,,,,,,,,,,,,,,,,,,,,,,,
© ©o o ~ ~r~ © o o o o x0T x
,,,,,,,,,,,,,,,,,,,, apapbapiagiie ~ . . s .
T bowo +~ |~ &« o «~ o o - 7T =
(SRR GNP G G SR P G GNP G § S G T SO0 G SAMP | SRSPA SARP | G S TS P S SR C S T

-~ -~ o0 ~o - <

-~ - -~ - -~ - -~ - -~ -

Euclidean Distance

Listing 217. euclid-distance/main.go

package main

import (
"examples/euclid-distance/euclid"”
Ilfmt"
"109"
llos"

)

func main() {
prev := euclid.Origin
for {
p, err := readPoint(repeat)
if err !'= nil {
log.Fatalln(err)
}

if p == euclid.Origin {
fmt.Println("Now your are back to the origin. Exiting...")
0s.Exit(0)

}

if prev == euclid.Origin {
fmt.Printf("The \"radius\" of the point is %.4f\n", p.Radius())
} else {
fmt.Printf("The distance of the new point from the previous point is
%.4f\n", euclid.Distance(prev, p))
}

prev = p
}
}

const repeat = 3

func readPoint(repeat int) (euclid.Point, error) {
var x, y float32
for attempts := 0; ; {
fmt.Print("Input a point (x, y): ")
if _, err := fmt.Scanf("%f,%f", &x, &y); err != nil {

attempts++
if attempts <= repeat {
fmt.Println("The input point should be a form \"x, y\", including
the comma.")

continue
} else {
return euclid.Origin, err
}
}
break
}
return euclid.Point{X: x, Y: y}, nil

}

Listing 218. euclid-distance/go.mod
module examples/euclid-distance

go 1.16

Listing 219. euclid-distance/euclid/point.go
package euclid
var Origin Point

type Point struct {
X, Y float32

}

func (p Point) Radius() float32 {
return Distance(Origin, p)

}

Listing 220. euclid-distance/euclid/new.go

package euclid

func NewPoint(x, y float32) *Point {
p := Point{
X: X,
Y:y,
}

return &p

}

Listing 221. euclid-distance/euclid/distance.go

package euclid
import "math"

func Distance(p1, p2 Point) float32 {
dx := float64(p1.X) - float64(p2.X)
dy := float64(p1.Y) - float64(p2.Y)
return float32(math.Hypot(float64(dx), float64(dy)))
}
Listing 222. euclid-distance/euclid/string.go

package euclid
import "fmt"
func (p Point) String() string {

return fmt.Sprintf("(%.4f, %.4f)", p.X, p.Y)
}

Listing 223. euclid-distance/euclid/point_test.go

package euclid_test

import (
"examples/euclid-distance/euclid"
"math"
"testing"

)

func TestRadius(t *testing.T) {
p1 := euclid.Point{X: 1.1, Y: 2.5}
r1 := p1.Radius()
t.Logf("Distance of p1 from the origin is %f\n", r1)

if math.Abs(float64(r1-2.731300)) > 0.00001 {

t.Fail()
}
p2 := euclid.Point{X: 2.1, Y: 5.5}
r2 := p2.Radius()

t.Logf("Distance of p2 from the origin is %f\n", r2)

if math.Abs(float64(r2-5.887274)) > 0.00001 {

t.Fail()

}
}

Listing 224. euclid-distance/euclid/new_test.go

package euclid_test

import (
"examples/euclid-distance/euclid"
"testing"

)

func TestNew(t *testing.T) {
p := euclid.NewPoint(1.0, 2.0
t.Logf("New point created: %s", *p)

if p.X 1= 1.0 || p.Y != 2.0 {
t.Fail()
}
¥

Listing 225. euclid-distance/euclid/distance_test.go

package euclid_test

import (
"examples/euclid-distance/euclid"
"math"
"testing"

)

func TestDistance(t *testing.T) {
p1 := euclid.Point{
X: 1.1,
Y: 2.5,
}
p2 := euclid.Point{
X: 2.1,
Y: 5.5,
}
dist1 := euclid.Distance(p1, p2)
t.Logf("Distance between p1 and p2 is %f\n", dist1)
if math.Abs(float64(dist1-3.162278)) > 0.00001 {

t.Fail()

}

dist2 := euclid.Distance(p2, p1)
if math.Abs(float64(dist1-dist2)) > 0.00001 {
t.Fail()
}
}

Listing 226. euclid-distance/euclid/string _test.go

package euclid_test

import (
"examples/euclid-distance/euclid"
"testing"

)

func TestString(t *testing.T) {
p1 := euclid.Point{
X: 1.1,
Y: 2.5,

uclid.Point{
1,
5,

dist := euclid.Distance(p1, p2)

t.Logf("Distance between p1 %s and p2 %s is %f\n", p1, p2, dist)

if p1.String() != "(1.1000, 2.5000)" {
t.Fail()
}

if p2.String() != "(2.1000, 5.5000)" {
t.Fail()
}

}

Area Calculation

Listing 227. area-calculation/main.go

package main

import "fmt"

func main() {

fmt.Println(">>>>> Shape Demo")
shapesDemo()

fmt.Println(">>>>> Area Demo 1")
areasDemo1()

fmt.Println(">>>>> Perimeter Demo 1")
perimetersDemol()

fmt.Println(">>>>> Area Demo 2")
areasDemo2()

fmt.Println(">>>>> Perimeter Demo 2")
perimetersDemo2()

Listing 228. area-calculation/go.mod

module examples/area-calculation

go 1.16

Listing 229. area-calculation/areas.go

package main

import (

)

circle "examples/area-calculation/circ"
isosceles "examples/area-calculation/iso"
rectangle "examples/area-calculation/rect"
"examples/area-calculation/shape”

n f|'|'|t n

func areasDemo1() {

areaer := []shape.Areaer{}

areaer = append(areaer, isosceles.New(1.0, 2.0))
areaer = append(areaer, rectangle.New(2, 3))
areaer = append(areaer, circle.New(2))
totalAreal := shape.Areas(areaer...)

fmt.Printf("totalAreal = %.5f\n", totalAreal)

func areasDemo2() {

s := []shape.Shape{}
append(s, isosceles.New(1.0, 2.0))
append(s, rectangle.New(2, 3))
append(s, circle.New(2))

S
S
S

b := make([]shape.Areaer, len(s))
for i, d := range s {
b[i] = d
}
totalArea2 := shape.Areas(b...)
fmt.Printf("totalArea2 = %.5f\n", totalAreal)

Listing 230. area-calculation/perimeters.go

package main

import (
circle "examples/area-calculation/circ"
isosceles "examples/area-calculation/iso"
rectangle "examples/area-calculation/rect
"examples/area-calculation/shape"
n fmt n

)

func perimetersDemol() {

a := []shape.Perimeterer{}
append(a, isosceles.New(1.0, 2.0))
append(a, rectangle.New(2, 3))
append(a, circle.New(2))

d
d
d

totalPerimeter1 := shape.Perimeters(a...)
fmt.Printf("totalPerimeter1 = %.5f\n", totalPerimeter1)

}

func perimetersDemo2() {

s := []shape.Shape{}
append(s, isosceles.New(1.0, 2.0))
append(s, rectangle.New(2, 3))
append(s, circle.New(2))

S
S
S
b := make([]shape.Perimeterer, len(s))

for i, d := range s {

b[i] = d
}

}

totalPerimeter2 := shape.Perimeters(b...)
fmt.Printf("totalPerimeter2 = %.5f\n", totalPerimeter2)

Listing 231. area-calculation/shapes.go

package main

import (

)

circle "examples/area-calculation/circ"
isosceles "examples/area-calculation/iso"
rectangle "examples/area-calculation/rect"
"examples/area-calculation/shape"

n fmt n

func shapesDemo() {

shapes := []shape.Shape{}

shapes = append(shapes, isosceles.New(1.0, 2.0))
shapes = append(shapes, rectangle.New(2, 3))
shapes = append(shapes, circle.New(2))

totalArea := 0.0

totalPerimeter := 0.0

for _, s := range shapes {
totalArea += floatb4(shape.Area(s))
totalPerimeter += float64(shape.Perimeter(s))

}

fmt.Printf("totalArea = %.5f\n", totalArea)
fmt.Printf("totalPerimeter = %.5f\n", totalPerimeter)

Listing 232. area-calculation/rect/rectangle.go

package rect

type Rectangle struct {

}

width float32
height float32

func New(w, h float32) Rectangle {

}

return Rectangle{width: w, height: h}

func (r Rectangle) Area() float32 {
a := floatb4(r.width) * floatb64(r.height)
return float32(a)

}

func (r Rectangle) Perimeter() float32 {
p := 2 * (floatb4(r.width) + float64(r.height))
return float32(p)

}

Listing 233. area-calculation/iso/isosceles.go
package iso
import "math"

type Isosceles struct {
base float32
height float32

}

func New(w, h float32) Isosceles {
return Isosceles{base: w, height: h}

}

func (t Isosceles) Area() float32 {
a := 0.5 * floatb4(t.base) * floatb4(t.height)
return float32(a)

}

func (t Isosceles) Perimeter() float32 {
h := math.Hypot(0.5*floatb64(t.base), float64(t.height))
p := floatb4(t.base) + 2*h

return float32(p)
}

Listing 234. area-calculation/circ/circle.go
package circ
import "math"

type Circle struct {
radius float32
}

func New(r float32) Circle {
return Circle{radius: r}

}

func (c Circle) Area() float32 {
3 := 0.5 * math.Pi * float64(c.radius) * float64(c.radius)
return float32(a)

}

func (c Circle) Perimeter() float32 {
p := math.Pi * floatb4(c.radius)
return float32(p)

}

Listing 235. area-calculation/shape/area.go
package shape

type Areaer interface {
Area() float32
¥

func Area(shape Areaer) float32 {
return shape.Area()

}

func Areas(shapes ...Areaer) float32 {
totalArea := 0.0
for _, s := range shapes {
totalArea += float64(s.Area())
}

return float32(totalArea)
}

Listing 236. area-calculation/shape/perimeter.go
package shape

type Perimeterer interface {
Perimeter() float32
}

func Perimeter(shape Perimeterer) float32 {
return shape.Perimeter()

}

func Perimeters(shapes ...Perimeterer) float32 {
totalPerimeter := 0.0
for _, s := range shapes {
totalPerimeter += float64(s.Perimeter())
}

return float32(totalPerimeter)
}

Listing 237. area-calculation/shape/shape.go

package shape

type Shape interface {
Areaer
Perimeterer

Rock Paper Scissors

Listing 238. rock-paper-scissors/main.go

package main

import (
"examples/rock-paper-scissors/rps"

)

func main() {
game := rps.NewGame()
game.Start()

}

Listing 239. rock-paper-scissors/go.mod

module examples/rock-paper-scissors

go 1.16

Listing 240. rock-paper-scissors/rps/random.go
package rps
import (

"math/rand"
"time"

)

func init() {
rand.Seed(time.Now().UnixNano())
}

func randomHand() Hand {
return Hand(rand.Intn(3) + 1)
}

Listing 241. rock-paper-scissors/rps/hand.go
package rps
type Hand uint8

const NullHand Hand = 0

const (
Rock Hand = iota + 1
Paper
Scissors

)

type WinOrLose uint8

const (
Tie WinOrLose = iota
Win
Lose

)

func compareHands(h1, h2 Hand) WinOrLose {
if h1 == h2 {
return Tie
} else {
if (h1 == Rock && h2 == Scissors) ||
(h1 == Paper && h2 == Rock) ||
(h1 == Scissors &t h2 == Paper) {
return Win
} else {
return Lose
}
}
}

func (h Hand) String() string {

switch h {
case Rock:
return "Rock"
case Paper:
return "Paper”
case Scissors:
return "Scissors"
default:
return "?"
}
}

Listing 242. rock-paper-scissors/rps/input.go
package rps

import (
"bufio"
"errors”
“fmt"
IIOSII
"strings"

)

var handMap = map[string]Hand{
"R": Rock,
"P": Paper,
"S": Scissors,

}

func readHand() (Hand, error) {
reader := bufio.NewReader(os.Stdin)

fmt.Print1n("Rock (R), Paper (P), or Scissors (S)?")
str, err := reader.ReadString('\n")
if err = nil {
return NullHand, err
}

str = strings.TrimSuffix(str, "\n")
if s := strings.ToUpper(str); strings.HasPrefix(s, "Q") ||
strings.HasPrefix(s, "X") {
fmt.Println("Thanks for playing the game!")
0s.Exit(0)
}
hand, err := parseHand(str)
return hand, err

}

func parseHand(s string) (Hand, error) {
_if S == nmn {
return NullHand, errors.New("Empty input")
}

b := strings.ToUpper(string(s[@]))

if h, ok := handMap[b]; ok {
return h, nil

}

return NullHand, errors.New("Hand not recognized: " + b)

}

Listing 243. rock-paper-scissors/rps/game.go
package rps
import (

n fmt n
)

type Game struct {
wins, losses, ties int

¥
func NewGame() *Game {
g := Game{
wins: 0,
losses: 0,
ties: 0,
}
return &g

}

func (g *Game) Start() {
fmt.Println(*------------—----"--- -
fmt.Println("Welcome to Rock Paper Scissors!")
fmt.Println("Type X or Q to end the game.")
I 2 T o

for {
playerHand, err := readHand()
if err = nil {
fmt.Println("Error:", err)
continue

}
fmt.Printf("Your Hand = %s\n", playerHand)

myHand := randomHand()
fmt.Printf("My Hand = %s\n", myHand)

wol := compareHands(playerHand, myHand)

if wol == Win {
g.wins++

} else if wol == Lose {
g.losses++

} else {
g.ties++

}

fmt.Printf("Your wins: %d, losses: %d out of %d plays\n", g.wins,

g.losses,

g.wins+g.losses+g.ties)

fmt.Println("-------------m oo

}
}

File Cat

Listing 244.

file-cat/main.go

package main

import (

"examples/file-cat/file"

"fmt"
"ig"
"log"
s

)

func main() {
if len(os.Args) == 1 {

if

}
ret
}
for ,
err
if

_, err := i0.Copy(os.Stdout, 0s.Stdin); err != nil {
if err != i0.EOF {

log.Fatalln(err)
}

urn

fname := range os.Args[1:] {

:= file.Copy(os.Stdout, fname)
err !=nil {
fmt.Fprintln(os.Stderr, err)

continue

Listing 245. file-cat/go.mod
module examples/file-cat

go 1.16

Listing 246. file-cat/file/copy.go

package file

import (
ll_ioll
Ilos"
)

// Copy finds a named file and copies its content
// to the destination file.
// It returns error if opening the file or copying fails.
func Copy(dest *os.File, name string) error {
var file *os.File

if name == "-" {
file = o0s.Stdin
} else {

var err error
file, err = os.0pen(name)
if err = nil {

return err

}
defer file.Close()

}

if _, err := io0.Copy(dest, file); err != mil {
return err
}

return nil

Listing 247. file-cat/file/copy2.go

package file

import (

// Copy2 finds a named file and copies its content to the destination file.
// It returns the number of bytes copied and a possible error.
// 1t return non-nil error if opening the file or reading and writing the
content fails.
func Copy2(dest *os.File, name string) (int, error) {

file, err := os.Open(name)

if err != nil {

return -1, err
}

defer file.Close()

data, err := io.ReadAll(file)
if err = nil {
return -1, err

}
written, err := dest.Write(data)
if err = nil {

return -1, err

}

return written, nil

World Time API

Listing 248. world-time-api/main.go

package main

import (
"examples/world-time-api/world"
n fmt n
"time"

)

const maxErrorCount = 5
const interval = 10 * time.Second
const url = "http://worldtimeapi.org/api/timezone/America/New_York.txt"

func main() {

for errorCount := 0; errorCount < maxErrorCount; {
datetime, err := world.Datetime(url)
if err != nil {
errorCount++
fmt.Println("Error:", err)
continue
}
fmt.Printf("datetime: %s\n", datetime)
time.Sleep(interval)
}
}

Listing 249. world-time-api/go.mod
module examples/world-time-api

go 1.16

Listing 250. world-time-api/world/datetime.go
package world

import (
"bufio"
"errors"
Il_ioll
"net/http"
"strings"

)

func Datetime(url string) (string, error) {
response, err := http.Get(url)
if err = nil {

return , err

}

responseData, err := io.ReadAll(response.Body)
if err = nil {

return , err

}

scanner := bufio.NewScanner(strings.NewReader(string(responseData)))
for scanner.Scan() {

text := scanner.Text()

s := strings.SplitN(text, ":", 2)

if s[0] == "datetime" {
return s[1], nil
}
}

return "", errors.New("Datetime not found!")

Where the ISS at

Listing 251. wheretheiss-api/main.go

package main

import (
"examples/wheretheiss-api/iss"
n f|'|'|t n
"time"

)

const issID = 25544
const endpoint = "https://api.wheretheiss.at/v1/satellites"
const interval = 10 * time.Second

func main() {
trackISS()
}

func trackISS() {
for {
sat, err := iss.Track(endpoint, issID)
if err = nil {
fmt.Println("Error while tracking ISS:", err)
continue

}
fmt.Println(*sat)

time.Sleep(interval)
}
}

funce trackISS2() {
for {
sat, err := iss.Track2(endpoint, issID)
if err = nil {
fmt.Println("Error while tracking ISS:", err)

continue

}
fmt.Println(*sat)

time.Sleep(interval)
}
}

funce trackISS3() {
defer restartOnPanic()

for {
sat := iss.Track3(endpoint, issID)
fmt.Println(*sat)

time.Sleep(interval)
}
}

func restartOnPanic() {
if r := recover(); r !'= nil {
fmt.Println("Error while tracking ISS:", r.(error))
trackISS3()
}
}

Listing 252. wheretheiss-api/go.mod
module examples/wheretheiss-api

go 1.16

Listing 253. wheretheiss-api/client/client.go

package client

import (
"net/http"
"time"

)

const timeout = 5 * time.Second

func New() *http.Client {
client := http.Client{
Timeout: timeout,

}

return &client

Listing 254. wheretheiss-api/iss/iss.go

package iss

import (
"encoding/json"
n f|'|'|t n
"time"

)

type SatelliteData struct {
Timestamp int64 ‘json:"timestamp
Latitude float64 ‘json:"latitude"'
Longitude float64 ‘json:"longitude"®
Altitude float64 ‘json:"altitude"'
}

LAY

func Unmarshal(data []byte) (*SatelliteData, error) {
sat := SatelliteData{}
err := json.Unmarshal(data, &sat)
if err != nil {
return nil, err
}

return &sat, nil

}

func (s SatelliteData) String() string {

t := time.Unix(s.Timestamp, @)

return fmt.Sprintf("%s: (Lat:%.4f, Lon:%.4f, Alt:%.4f)",
t.Format(time.RFC1123), s.Latitude, s.Longitude, s.Altitude)
}

Listing 255. wheretheiss-api/iss/track.go
package iss

import (
"examples/wheretheiss-api/client”
n f|'|'|t n
n _i Oll
"net/http"

)

func Track(endpoint string, issID int) (*SatelliteData, error) {
url := fmt.Sprintf("%s/%d", endpoint, issID)

req, err := http.NewRequest(
http.MethodGet,
url,
nil,
)
if err = nil {
return nil, err
}

req.Header.Add("Accept", "application/json")

httpClient := client.New()
res, err := httpClient.Do(req)
if err = nil {

return nil, err
}

data, err := io.ReadAll(res.Body)
if err != nil {

return nil, err
}

sat, err := Unmarshal(data)
if err = nil {

return nil, err
}

return sat, err

}

func Track2(endpoint string, issID int) (sat *SatelliteData, err error) {
defer func() {
if r := recover(); r !'= nil {
err = r.(error)
}
O

url := fmt.Sprintf("%s/%d", endpoint, issID)
req, err := http.NewRequest(http.MethodGet, url, nil)
panicOnError(err)

req.Header.Add("Accept", "application/json")
res, err := client.New().Do(req)

panicOnError(err)

data, err := io.ReadAll(res.Body)
panicOnError(err)

sat, err = Unmarshal(data)
panicOnError(err)

return

}

func Track3(endpoint string, issID int) *SatelliteData {
url := fmt.Sprintf("%s/%d", endpoint, issID)
req, err := http.NewRequest(http.MethodGet, url, nil)
panicOnError(err)

req.Header.Add("Accept", "application/json")
res, err := client.New().Do(req)
panicOnError(err)

data, err := io.ReadAll(res.Body)
panicOnError(err)

sat, err := Unmarshal(data)
panicOnError(err)

return sat

}

func panicOnError(err error) {
if err !'= nil {
panic(err)
}
}

Simple Web Server

Listing 256. web-server-simple/main.go
package main

import (
"examples/web-server-simple/handler"”
n fmt n
"net/http"

)

func main() {
fmt.Println("Server starting...")

http.HandleFunc("/", handler.Handler1)
if err := http.ListenAndServe(":8080", nil); err != nil {
panic(err)

}
}

Listing 257. web-server-simple/go.mod
module examples/web-server-simple

go 1.16

Listing 258. web-server-simple/handler/handlers.go

package handler

import (
Il_io"
"net/http"
)

func Handler1(w http.ResponseWriter, r *http.Request) {
io.WriteString(w, "Hello\n")
}

func Handler2(w http.ResponseWriter, r *http.Request) {
w.Header().Add("Content-Type", "application/json")
jo.WriteString(w, ‘{"greeting":"hello"}")

}

Listing 259. web-server-simple/handler/middleware.go

package handler

import (
"-I_Og"
"net/http"
)

type middleware = func(http.Handler) http.Handler

func RunMiddlewares(h http.Handler, middlewares ...middleware) http.Handler {
for _, mw := range middlewares {
h = mw(h)
}

return h

}

func LogMiddlewarel(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
log.Printf("LOGT: %v\n", *r)
next.ServeHTTP(w, r)
b
}

func LogMiddleware2(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
log.Printf("L0G2: %v\n", *r)
next.ServeHTTP(w, r)
b
}

TCP Client and Server
Telnet Client

Listing 260. telnet-client-simple/main.go

package main

import (
"examples/telnet-client-simple/telnet"
Il_ioll
"109"
llos"

)

const (
host = "localhost"
port = 2323

)

func main() {
client := telnet.NewClient(host, port)
err := client.Connect(false)
if err = nil {
log.Fatalln(err)

}
defer client.Close()

go client.Listen()

err = client.ProcessInput()
if err == i0.EQF {
0s.Exit(0)
} else if err != nil {
log.Fatalln(err)
}
}

Listing 261. telnet-client-simple/go.mod
module examples/telnet-client-simple

go 1.16

Listing 262. telnet-client-simple/telnet/client.go

package telnet

import (
"bufio"
"errors"
"fmt"
Il_ioll
"net"
Ilosll
"strings"

)
const TCP = "tcp"

type Client struct {

address string
connection net.Conn
ignoreNewline bool
}
func NewClient(host string, port int) *Client {
¢ := Client{
address: fmt.Sprintf("%s:%d", host, port),
connection: nil,

ignoreNewline: false,

}

return &c

}

func (c *Client) Connect(ignoreNewline bool) (err error) {
c.connection, err = net.Dial(TCP, c.address)
c.ignoreNewline = ignoreNewline
return

}

func (c *Client) Close() {
if c.connection != nil {
c.connection.Close()
c.connection = nil

}
}
func (¢ *Client) Listen() {
for {
if c.connection != nil {
err := doCopy(c.connection)
if err != nil {
fmt.Println(err)
return
}
} else {
return
}
}
}

func doCopy(src io.Reader) error {
if _, err := io.Copy(os.Stdout, src); err != nil {
return err
}

return nil

}

func (c *Client) ProcessInput() error {
reader := bufio.NewReader(os.Stdin)
for {
cmd, err := reader.ReadString('\n")
if err = nil {
return err
}

if c.ignoreNewline {
cmd = strings.TrimRight(cmd, "\n")

}

c.send(cmd)

}
}

func (c *Client) send(cmd string) error {
if c.connection == nil {
return errors.New("Connection not established")
}

fmt.Fprint(c.connection, cmd)
return nil

Listing 263. telnet-client-simple/telnet/client_test.go

package telnet

import (
"testing"
"time"
)
const (
host = "localhost"
port = 8080
)

func TestSend(t *testing.T) {
client := NewClient(host, port)
err := client.Connect(true)
if err = nil {
t.Log(err)
t.Fail()

}
defer client.Close()

go client.Listen()

emd := ‘GET / HTTP/1.1
Host: localhost

\

err = client.send(cmd)
if err = nil {
t.Log(err)
t.Fail()
}

time.Sleep(1 * time.Second)
}

Echo Server
Listing 264. tcp-server-echo/main.go

package main

import (
"examples/tcp-server-echo/echo”
"log"

)

const (
host = "localhost"
port = 2323

)

func main() {
server, err := echo.NewServer(host, port)
if err = nil {
log.Fatalln("Failed to create a server:", err)

}

defer server.Close()

log.Fatalln(server.Listen())

Listing 265. tcp-server-echo/go.mod

module examples/tcp-server-echo

go 1.16

Listing 266. tcp-server-echo/echo/server.go
package echo

import (
"fmt"
Il_ioll
"net"
"strings"

)

const TCP = "tcp"

type Server struct {
Address string
net.Listener

}

func NewServer(host string, port int) (*Server, error) {

address := fmt.Sprintf("%s:%d", host, port)
listener, err := net.Listen(TCP, address)
if err != nil {

return nil, err
}

s := Server{
Address: address,
Listener: listener,
}

return &s, nil

}

func (s *Server) Listen() error {
fmt.Printf("Listening on %s....\n", s.Address)

for {
conn, err := s.Accept()
if err != nil {
return err
}

err = handleConnection(conn)
if err == i0.EOF {

continue

+

if err != nil {
return err

}

}
}

func handleConnection(conn net.Conn) error {
defer conn.Close()

for {
err := echo(conn)
if err = nil {
return err

}
}
}

func echo(conn net.Conn) error {
buf := make([]byte, 1024)
read, err := conn.Read(buf)
if err = nil {
return err
}

bytes := buf[:read]
input := strings.TrimRight(string(bytes), "\n")
fmt.Println("Received:", input)

output := fmt.Sprintf("ECHO: %s\n", input)
_, err = conn.Write([]byte(output))
if err = nil {
return err
}

return nil

Code Listing - Part |l

Folder Tree
Listing 267. folder-tree/main.go

package main

import (
"examples/folder-tree/tree"
"109"
IIOS"

)

func main() {
folder := "."
if len(os.Args[1:]1) > 0 {
folder = o0s.Args[1]
}

err := tree.Treel(folder)
if err = nil {
log.Fatalln(err)

}
}

Listing 268. folder-tree/go.mod

module examples/folder-tree

go 1.16

Listing 269. folder-tree/tree/treel.go

package tree

import (
"jo/fs"
"path/filepath”
"strings"

)

func Treel(folder string) error {
refDepth := computeDepth(folder, 0)
err := filepath.WalkDir(folder,
func(path string, d fs.DirEntry, err error) error {

if err = nil {
return err
}

depth := computeDepth(path, refDepth)
prefix := buildPrefix(d.IsDir(), depth)
printTree(prefix, d.Name())
return nil
}
if err !'= nil {
return err
}

return nil

}

func computeDepth(path string, refDepth int) int {
depth := len(strings.Split(path, string(filepath.Separator))) - refDepth

if path == "." {
depth = 0

}

return depth

}

Listing 270. folder-tree/tree/tree2.go

package tree

import (
n fmt n
llOS n
"path/filepath”
)

func Tree2(folder string) error {
full, err := filepath.Abs(folder)
if err = nil {
return err

}

fmt.Printf("%s\n", folder)
list(full, "", 1)

return nil

}

func list(parentPath string, folder string, depth int) error {
path, err := filepath.Abs(parentPath + string(filepath.Separator) + folder)
if err = nil {

return err

}

files, err := o0s.ReadDir(path)
if err !'= nil {
return err

}

for _, file := range files {
prefix := buildPrefix(file.IsDir(), depth)
printTree(prefix, file.Name())

if file.IsDir() {
list(path, file.Name(), depth+1)
}
}

return nil

Stack Interface

Listing 271. stack-interface/main.go

package main

import (
"examples/stack-interface/linked"
"examples/stack-interface/slice"
"examples/stack-interface/stack"
n fmt n

)

func main() {
sliceStack := slice.New()

stack.PushToStack(sliceStack, [Jint{1, 2, 3})
stack.PushToStack(sliceStack, []int{4, 5})
stack.PrintStack(sliceStack)

sliceltem := stack.PopFromStack(sliceStack)
fmt.Printf("Item = %v\n", sliceltem)
stack.PrintStack(sliceStack)

linkedStack := linked.New()

stack.PushToStack(1linkedStack, []int{1, 2, 3})
stack.PushToStack(1linkedStack, []int{4, 5})
stack.PrintStack(linkedStack)

linkedItem := stack.PopFromStack(1linkedStack)

fmt.Printf("Item = %v\n", linkedItem)
stack.PrintStack(linkedStack)

Listing 272. stack-interface/go.mod

module examples/stack-interface

go 1.16

Listing 273. stack-interface/slice/slicestack.go

package slice
import "fmt"
type data = interface{}

type SliceStack struct {
slice []data
}

func New() *SliceStack {
s := SliceStack{
slice: []data{},
}

return &s

}

func (s *SliceStack) Push(item interface{}) {
s.slice = append(s.slice, item.(data))
}

func (s *SliceStack) Pop() interface{} {
1 := len(s.slice)
if 1 ==0{
return nil
}

item := s.slice[1-1]
s.slice = s.slice[:1-1]
return item

}
func (s SliceStack) String() string {

str := fmt.Sprintf("%v", s.slice)
return str

Listing 274. stack-interface/linked/node.go
package linked
type data = interface{}
type node struct {

item data
next *node

Listing 275. stack-interface/linked/list.go
package linked

type list struct {
head *node
}

func newlList() *Llist {
return &list{
head: nil,
}

}

func (1 *list) pushFront(n *node) {
n.next = 1.head
1l.head = n

}

func (1 *1ist) popFront() (n *node) {
if 1.head == nil {

return nil
}
n, l.head = 1.head, 1.head.next
return

Listing 276. stack-interface/linked/linkedstack.go

package linked

import (
n fmt n
"strings"

)

type LinkedStack struct {
*1ist
}

func New() *LinkedStack {
s := LinkedStack{
list: newlList(),
}

return &s

}

func (s *LinkedStack) Push(item interface{}) {
n := node{
item: item.(data),
}

s.pushFront(&n)
}

func (s *LinkedStack) Pop() interface{} {
n := s.popFront()
if n == nil {
return nil
}

return n.item

}

func (s LinkedStack) String() string {
var sb strings.Builder
sb.WriteByte('[")
n := s.head
for n = nil {
e := fmt.Sprintf("%v", n.item)
sb.WriteString(e)
n = n.next
if n = nil {
sb.WriteByte(' ')
}
}
sb.WriteByte(']")
return sb.String()

Listing 277. stack-interface/stack/stack.go
package stack

type Pusher interface {
Push(item interface{})
¥

type Popper interface {
Pop() interface{}

¥

type Stack interface {
Pusher
Popper

}

Listing 278. stack-interface/stack/operations.go
package stack
import "fmt"

func PushToStack(s Pusher, item interface{}) {
s.Push(item)

}

func PopFromStack(s Popper) interface{} {
return s.Pop()

}

func PrintStack(s Stack) {
fmt.Printf("%s\n", s)
}

Web Page Scraping

Listing 279. website-title-single/main.go
package main

import (
"examples/website-title-single/meta"

"109"
"net/http"
"OS"

)

func main() {
if len(os.Args) == 1 {
log.Fatalln("Provide URLs in the command line argument")
}

for i, url := range os.Args[1:] {
log.Printf("[%2d] URL: %s\n", i, url)

htmlmeta, err := processWebsite(url)

if err 1= nil {
log.Println("Error:", err)
continue

}

log.Printf("Extracted: %s\n", htmlmeta)
}
}

func processWebsite(url string) (*meta.HTMLMeta, error) {
res, err := http.Get(url)

if err != nil {
return nil, err
}

htmlmeta, err := meta.Extract(res.Body)
if err = nil {
return nil, err
}
defer res.Body.(Close()

return htmlmeta, nil

Listing 280. website-title-single/go.mod
module examples/website-title-single
go 1.16

require golang.org/x/net v0.0.0-20210428140749-89ef3d95e781

Listing 281. website-title-single/meta/htmlmeta.go

package meta
import "encoding/json"

type HTMLMeta struct {
Title string
Description string
Keywords [Istring
Author string json:"author

}

func NewMeta() *HTMLMeta {
h := HTMLMeta{

‘json:"title""
‘json:"description™®
‘json:"keywords""

n\

Title: "
Description: "",
Keywords: [Istring{},
Author: "

}

return &h

}
func (h HTMLMeta) String() string {
bytes, err := json.Marshal(h)
if err = nil {
return ""
}

return string(bytes)
¥

Listing 282. website-title-single/meta/extract.go

package meta

import (
Il_ioll
"regexp"

"golang.org/x/net/html"
)

func Extract(resp io.Reader) (*HTMLMeta, error) {
tkzer := html.NewTokenizer(resp)

hm := NewMeta()
inTitleTag := false
for token := tkzer.Next(); token != html.ErrorToken; token = tkzer.Next() {

switch token {
case html.StartTagToken, html.SelfClosingTagToken:
t := tkzer.Token()
if t.Data == "body" {
return hm, nil
} else if t.Data == "title" {
inTitleTag = true
} else if t.Data == "meta" {
desc, ok := extractMetaProperty(t, "description")
if ok {
hm.Description = desc

}

keywords, ok := extractMetaProperty(t, "keywords")
if ok {
hm.Keywords = regexp.MustCompile(*(\s*,\s*)+").Split(keywords,

1)
}
author, ok := extractMetaProperty(t, "author")
if ok {
hm.Author = author
}
}
case html.TextToken:
if inTitleTag {
t := tkzer.Token()
hm.Title = t.Data
inTitleTag = false
}
}
}

err := tkzer.Err()

if err !'= nil && err != i0.EQOF {
return nil, tkzer.Err()

}

return hm, nil

}

func extractMetaProperty(t html.Token, prop string) (content string, ok bool) {
for _, attr := range t.Attr {

if attr.Key == "name" && attr.Val == prop {
ok = true

}

if attr.Key == "content" {

content = attr.Val

}

if ok == true && content != "" {
return
}
}
return

Producer Consumer

Listing 283. producer-consumer/main.go

package main

import (
"examples/producer-consumer/consumer"
"examples/producer-consumer/producer”
n n
fmt

)
const buff int = 0
func main() {

var msgs
var done

make(chan int, buff)
make(chan bool)

var p producer.Producer = producer.MakeProducer(msgs, done)
var c¢ consumer.Consumer = consumer .MakeConsumer(msgs, done)

go p.Produce()
go c.Consume()

b := <-done
fmt.Println("DONE", b)

Listing 284. producer-consumer/go.mod

module examples/producer-consumer

go 1.16

Listing 285. producer-consumer/producer/producer.go

package producer

import (
n fmt n
"time"
)

const delay time.Duration = 100 * time.Millisecond

type Producer interface {
Produce()
¥

type QuickProducer struct {
msgs chan int
done chan bool

}

func MakeProducer(msgs chan int, done chan bool) *QuickProducer {
p := QuickProducer{

msgs: msgs,
done: done,
}
return &p
}
func (p *QuickProducer) Produce() {
for i :=1; i<=10; i++ {
fmt.Printf("P: Sending Msg %d\n", 1)
p.msgs <- i
fmt.Printf("P: Sent %d\n", i)
time.Sleep(delay)
}
close(p.msgs)
}

Listing 286. producer-consumer/consumer/consumer.go

package consumer

import (
n f|'|'|t n
"time"
)

const delay time.Duration = 200 * time.Millisecond

type Consumer interface {
Consume()

}

type QuickConsumer struct {
msgs chan int
done chan bool

}

func MakeConsumer(msgs chan int, done chan bool) *QuickConsumer {
¢ := QuickConsumer{

msgs: msgs,
done: done,
}
return &c
}
func (c *QuickConsumer) Consume() {
count := 0
for {

fmt.Println("C: Waiting...")
msg, ok := <-c.msgs
if lok {
c.done <- false
break
}
count++
fmt.Printf("C: Msg received %d\n", msq)
time.Sleep(delay)

if count >= 10 {
c.done <- true
break

Code Listing - Part IV
Go Fish

Listing 287. go-fish/main.go
package main
import (

"examples/go-fish/gofish"
)

func main() {
gofish.NewGame().Start()
}

Listing 288. go-fish/go.mod
module examples/go-fish

go 1.16

Listing 289. go-fish/gofish/game.go
package gofish

import (
"examples/go-fish/deck"
n fmt n
"math/rand"
"time"

)

const NumInitialCards = 7

type Game struct {
pile deck.Pile
me Player
player Player

}

func NewGame() *Game {
rand.Seed(time.Now().UnixNano())
g := Game{
pile: *deck.NewPile(),
me: *NewPlayer(),

player: *NewPlayer(),
}
return &g

}

func (g *Game) DealHands() {
c, _ :=g.pile.PopCards(NumInitialCards)
b := g.player.Initialize(c)
fmt.Printf("You were dealt %d cards\n", NumInitialCards)
if b !'= nil {
fmt.Printf("Yay, you already made a book, %d\n", b.Rank)
}
fmt.Printf("Your hand: %s\n", g.player.Hand)

¢, _ = g.pile.PopCards(NumInitialCards)
b = g.me.Initialize(c)
fmt.Printf("I now have %d cards as well\n", NumInitialCards)
if b !'= nil {
fmt.Printf("Yay, I already made a book, %d\n", b.Rank)
}
}

func (g *Game) Start() {
fmt.Println("Starting a new game.")

fmt.Print1ln("Dealing cards.")
g.DealHands()

time.Sleep(1 * time.Second)

fmt.Print("Determining the turn... ")
isMyTurn := determineIfIGoFirst()
if isMyTurn {

fmt.Println("I play first.")
} else {

fmt.Println("You get to play first.")
}

time.Sleep(1000 * time.Millisecond)

Gameloop:
for {
myBookCount := g.me.BookCount()
playerBookCount := g.player.BookCount()
total := myBookCount + playerBookCount
if total == 13 {

if myBookCount > playerBookCount {
fmt.Printf("You lost. I made %d books and you made %d books!\n",
myBookCount, playerBookCount)
} else {
fmt.Printf("You won! You won by %d books vs me %d books!\n",
playerBookCount, myBookCount)
b

break

}

fmt . Println("---=-ccemmooo e

______ ll)
fmt.Printf("Me: %d books, You: %d books\n", myBookCount, playerBookCount)

R

______ ll)
if isMyTurn {

fmt.Println("It's my turn:")

time.Sleep(500 * time.Millisecond)

r := g.me.PickRankToRequest()
fmt.Printf("Give me %s\n", r)

if g.player.HasCardOfRank(r) {
c1, err := g.player.TakeCardsOfRank(r)
if err != nil {
panic(fmt.Sprintf("Program error: Tried to take a card which the
player does not have: %s", r))

}

fmt.Printf("You gave me %d %ss\n", len(c1), r)

b1 := g.me.AddCards(c1)
if b1 != nil {

fmt.Printf("I made a book: %s\n", b1.Rank)
}

time.Sleep(500 * time.Millisecond)
continue Gameloop
} else {
if r != deck.UnknownRank {
fmt.Println("You say, \"Go Fish!\"")
}

c2, err := g.pile.Pop()
if err != nil {
panic("Program error: Could not draw a card from the pool.")

}

fmt.Println("I drew a card")
b2 := g.me.AddCard(c2)
if b2 != nil {
fmt.Printf("I made a book: %s.\n", b2.Rank)
}

if r == c2.Rank() {
fmt.Printf("I drew a card of the rank I asked for: %s. Playing
again.\n", c2)

time.Sleep(500 * time.Millisecond)
continue Gameloop

} else {
isMyTurn = false

time.Sleep(500 * time.Millisecond)
continue Gameloop
}
¥
+ else {
fmt.Println("It's your turn:")

fmt.Printf("Your hand: %s\n", g.player.Hand)
fmt.Print1n("Ask me for a card by rank (1 ~ 13)")

r := deck.UnknownRank
if g.player.Hand.IsEmpty() {
for true {
r = processInput()
if g.validatePlayerInputRank(r) {
break
} else {
fmt.Println("Try again!")
}

}
}

if g.me.HasCardOfRank(r) {
c1, err := g.me.TakeCardsOfRank(r)
if err != nil {
panic(fmt.Sprintf("Program error: Tried to take a card which I
do not have: %s", r))
}

fmt.Printf("You took %d %ss from me\n", len(c1), r)

b1 := g.player.AddCards(c1)
if b1 != nil {
fmt.Printf("You made a book: %s.\n", b1.Rank)

}

time.Sleep(500 * time.Millisecond)
continue Gameloop
} else {
if r != deck.UnknownRank {
fmt.Println("\"Go Fish!\"")
}

c2, err := g.pile.Pop()
if err != nil {
panic("Program error: Could not draw a card from the pool.")
}
b2 := g.player.AddCard(c2)
fmt.Printf("You drew %s\n", c2)

if b2 != nil {
fmt.Printf("You made a book: %s.\n", b2.Rank)
}

if r == c2.Rank() {
fmt.Printf("You drew a card of the rank you asked for: %s.
Playing again.\n", c2)

time.Sleep(500 * time.Millisecond)
continue Gameloop
} else {
isMyTurn = true
fmt.Printf("Your hand: %s\n", g.player.Hand)

time.Sleep(500 * time.Millisecond)
continue Gameloop

}
}
}
}

func (g *Game) validatePlayerInputRank(r deck.Rank) bool {
return g.player.HasCardOfRank(r)
}

func determineIfIGoFirst() bool {
X := rand.Intn(2)
if x == 0 {
return false
}

return true

}

func (g Game) currentBooks() (m []deck.Book, p []deck.Book) {
m = g.me.Books
p = g.player.Books
return

Listing 290. go-fish/gofish/input.go
package gofish

import (
"bufio"
"examples/go-fish/deck"
n fmt n
llOS n
"strconv"
"strings"

)

func readRank() deck.Rank {
var i int
Input:
if _, err := fmt.Scanf("%d", &i); err !I=nil || (i <1 |] 1> 13) {
fmt.Println("Input is invalid.")
fmt.Print1n("Rank can be any number between 1 (Ace) and 13 (King)")
goto Input
}
return deck.Rank(i)
}

func processInput() deck.Rank {
reader := bufio.NewReader(os.Stdin)

Input:
str, err := reader.ReadString('\n")
if err = nil {
fmt.Fprintf(os.Stderr, "Input is invalid: %v
goto Input

, err)

}
str = strings.TrimSuffix(str, "\n")
str = strings.TolLower(str)

if strings.HasPrefix(str, "e") { // exit
fmt.Fprintln(os.Stderr, "Exiting the program.")

0s.Exit(0)

}

if strings.HasPrefix(str, "x") { // expert mode
fmt.Fprintln(os.Stderr, "Expert mode not implemented.")
goto Input

}

var i int64 = 0
if strings.HasPrefix(str, "a") { // ace

1 =1
} else if strings.HasPrefix(str, "t") { // ten
i=10
} else if strings.HasPrefix(str, "j") { // jack
i=1
} else if strings.HasPrefix(str, "q") { // queen
i=12
} else if strings.HasPrefix(str, "k") { // king
i=13
}
if 1 ==0{
i, err = strconv.Parselnt(str, 10, 8)
iferr I=nil || (i <1 || 1>13) {
fmt.Println("Input is invalid.")
fmt.Print1n("Rank can be any number between 1 (Ace) and 13 (King)")
goto Input
}
}

return deck.Rank(i)

Listing 291. go-fish/gofish/player.go

package gofish

import (
"errors”
"examples/go-fish/deck"
“fmt"
"math/rand"

)

type Player struct {
Hand deck.Hand
Books []deck.Book
}

func NewPlayer() *Player {
p := Player{
Hand: *deck.NewHand(),
Books: []deck.Book{},
}

return &p

}

func (p *Player) BookCount() int {
return len(p.Books)
}

func (p *Player) makeABook() *deck.Book {
for r, v := range p.Hand.Cards {
if len(v) == 4 {
book := deck.NewBook(

r,
)
p.Books = append(p.Books, *book)
delete(p.Hand.Cards, r)
return book
}
}

return nil

}

func (p *Player) Initialize(cards []deck.Card) *deck.Book {
return p.AddCards(cards)
}

func (p *Player) AddCards(cards []deck.Card) *deck.Book {
p.Hand.AddCards(cards)
return p.makeABook ()

}

func (p *Player) AddCard(c deck.Card) *deck.Book {
p.Hand.Add(c)
return p.makeABook ()

}

func (p *Player) TakeCardsOfRank(r deck.Rank) ([]deck.Card, error) {
cards, ok := p.Hand.Cards[r]
if lok || len(cards) == @ { // This should not happen.
return []deck.Card{}, errors.New(fmt.Sprintf("Player does not have a card
of given rank, %s", r))

}

¢ := cards[:]
delete(p.Hand.Cards, r)

return c, nil

}

func (p *Player) HasCardOfRank(r deck.Rank) bool {
return p.Hand.HasRank(r)
}

func (p Player) PickRankToRequest() deck.Rank {
return p.PickRandomRank()
}

func (p Player) PickRandomRank() deck.Rank {
count := 0
for _, c := range p.Hand.Cards {
count += len(c)

if count == 0 {
return deck.UnknownRank

}
X := rand.Intn(count)
i:=0

for r, s := range p.Hand.Cards {
for range s {
if 1 == x {
return r

}
i++
}
}

return deck.UnknownRank // This should not happen
}

// TBD: Pick a rank which will likely give me a book.
// One strategy is to pick a rank with the most number of cards on my
hand.
func (p Player) PickRankSmart1() deck.Rank {
return deck.UnknownRank
}

// TBD: Ultimately, the best strategy is using the information

// on what the other player asked for in the past,
// and what books have been made so far, etc.
func (p Player) PickRankSmart2() deck.Rank {

return deck.UnknownRank

}

Listing 292. go-fish/deck/rank.go
package deck
import "fmt"
type Rank uint8
const UnknownRank Rank = Rank(0)

const (
Ace Rank = iota + 1
R2
R3
R4
R5
R6
R7
R8
R9
RT
Jack
Queen
King
)

func (r Rank) String() string {
switch r {
case Ace:
return "A"
case RT:
return "T"
case Jack:
return "J"
case Queen:
return "Q"
case King:
return "K"
case R2, R3, R4, R5, R6, R7, R8, RO:
return fmt.Sprintf("%d", r)
}

return

Listing 293. go-fish/deck/suit.go
package deck
type Suit uint8

const InvalidSuit = Suit(0)

const (
Spades Suit = iota + 1
Hearts
Diamonds
Clubs
)

func (s Suit) String() string {
switch s {
case Spades:
return "Spades”
case Hearts:
return "Hearts"
case Diamonds:
return "Diamonds"
case (lubs:
return "Clubs”
}

return

Listing 294. go-fish/deck/card.go
package deck
import "fmt"
type Card uint16
const NullCard = Card(0)
const (
SA Card = iota + 101

52
S3

S4
S5
Sé6
S7
S8
S9
ST
SJ
3Q
SK

const (
HA Card = iota + 201
H2
H3
H4
H5
H6
H7
H8
HI
HT
HJ
HQ
HK

const (
DA Card = iota + 301
D2
D3
D4
D5
D6
D7
D8
D9
DT
DJ
DQ
DK

const (
CA Card = jota + 401
€2

(3
C4
5
Co
C7
(8
€9
CT
¢J
CQ
CK
)

func (c Card) Suit() Suit {
return Suit(int(c) / 100)
}

func (c Card) Rank() Rank {
return Rank(int(c) % 100)
}

func (c Card) String() string {
return fmt.Sprintf("%s of %s", c.Rank(), c.Suit())
}

func SingleDeck() [52]Card {
arr := [52]Card{}
i:=0
for s :=1; s <= 4; s++ {
for r :=1; r <= 13; r++ {
arr[i] = Card(s*100 + r)
i+
}
}

return arr

}

// Not being used.
func SingleDeckTedious() [52]Card {
return [...]Card{
SA,
S2,
53,
S4,
S5,
S6,
S7,

S8,
59,
ST,
51,
5Q,

HA,
H2,
H3,
H4,
H5,
H6,
H7,
H8,
H9,
HT,
H,
HQ,
HK,

DA,
D2,
D3,
D4,
D5,
D6,
D7,
D8,
D9,
DT,
DJ,
DQ,

CA,
c2,
(3,
c4,
5,
Co,
c7,
8,
9,
cT,
cJ,
cQ,

cK,

Listing 295. go-fish/deck/hand.go

package deck

import (
n fmt n
"sort"
"strings"
)

type Hand struct {
Cards map[Rank][]Card
}

func NewHand() *Hand {
return &Hand{
Cards: map[Rank][]Card{},
}
}

func (h Hand) IsEmpty() bool {
return len(h.Cards) > 0
}

func (h Hand) HasRank(r Rank) bool {
_, ok := h.Cards[r]
return ok

}

func (h *Hand) AddCards(cards []Card) {
for _, c := range cards {
h.Add(c)
}
}

func (h *Hand) Add(c Card) {

r := c.Rank()

cards, ok := h.Cards[r]

if lok {

cards = []Card{}

}

h.Cards[r] = append(cards, c)
}

func (h Hand) String() string {
keys := make([]int, len(h.Cards))
i=0
for r := range h.Cards {
keys[i] = int(r)
i++
}
sort.Ints(keys)

var sb strings.Builder

for _, r := range keys {
rank := Rank(r)
str := fmt.Sprintf("[%s: %d], ", rank, len(h.Cards[rank]))
sb.WriteString(str)

}
return sb.String()

Listing 296. go-fish/deck/pile.go

package deck

import (
"errors"
"math/rand"
)

type Pile struct {
cards []Card
}

func NewPile() *Pile {
singleDeck := SingleDeck()
pile := Pile{
cards: singleDeck[:],
}
pile.shuffle()
return &pile

}

func (p *Pile) shuffle() {
rand.Shuffle(len(p.cards), func(i, j int) {
p.cards[i], p.cards[j] = p.cards[j], p.cards[i]
1))
}

// Fisher-Yates algorithm.
func shuffle2(slice []int) {
for i := len(slice) - 1; i > 0; i-- {
j :=rand.Intn(i + 1)
slice[i], slice[j] = slice[j], slice[i]
}
}

func (p *Pile) PopCards(count int) ([]Card, error) {
len := len(p.cards)
if len < count {
return []Card{}, errors.New("Not enough cards")

}

¢ := p.cards[len-count : len]
p.cards = p.cards[:1len-count]

return ¢, nil

}
func (p *Pile) Pop() (Card, error) {
len := len(p.cards)
if len < 1 {
return C2, errors.New("No more cards")

}

c := p.cards[len-1]
p.cards = p.cards[:1len-1]

return ¢, nil

Listing 297. go-fish/deck/book.go
package deck

type Book struct {

Rank Rank
}
func NewBook(r Rank) *Book {
b := Book{
Rank: r,
}
return &b

// Not implemented

func (b Book) cards() []Card {
return []Card{}

}

CREDITS

Images

All drawings used in this book are taken from undraw.co, an
amazing service with an amazing open source license. Many
thanks to the creator of the site: twitter.com/ninalLimpi!

Icons

All icons used in this book are from fontawesome.com.
Fontawesome is a very popular tool, probably used by almost
everyone who does Web or mobile programming.

Typesetting
Here’s another absolutely fantastic software, asciidoctor.org,
which is used to create an ebook as well as paperback
versions of this book. AsciiDoc is like a Markdown on steroid.

Other Resources

The author has relied on many resources on the Web in
writing this book, in particular, golang.org. If the book
includes any material from these resources, then the
copyright of those content belong to the respective owners.

https://undraw.co
https://twitter.com/ninaLimpi
https://fontawesome.com
https://asciidoctor.org
https://asciidoc.org
https://golang.org

REQUEST FOR FEEDBACK

If you find this book useful in any way, please leave an honest
review on Amazon for other readers.

= The Art of Go - Basics

Please provide any feedback to the author to make the book
better in the next edition.

= feedback@codingbookspress.com

Revision 1.0.2, 2021-05-05

https://www.amazon.com/dp/B08WYNG6YP
mailto:feedback@codingbookspress.com

ABOUT THE AUTHOR

Harry Yoon has been programming for over three decades. He
has used over 20 different programming languages in his
professional career. His experience spans from scientific
programming and machine learning to enterprise software and
Web and mobile app development.

You can reach him via email: harry@codingbookspress.com.

mailto:harry@codingbookspress.com

	Copyright
	Preface
	Join Our Mailing List
	Introduction
	I: First Steps
	1. The Simplest Go Program
	2. Hello World
	3. Simple Arithmetic
	4. Two Numbers
	5. Multiplication Table
	6. Find the Largest Number
	7. Rotate Numbers
	8. Leap Years
	9. BMI Calculator
	10. Birth Date
	11. Greatest Common Divisor
	12. Reverse a Number
	Review - Packages, Functions, Variables

	II: Moving Forward
	13. Hello Morse Code
	14. "LED" Clock
	15. Euclidean Distance
	16. Area Calculation
	17. Rock Paper Scissors
	18. File Cat
	19. World Time API
	20. Where the ISS at
	21. Simple Web Server
	22. TCP Client and Server
	Review - Structs, Methods, Interfaces

	III: Having Fun
	23. Folder Tree
	24. Stack Interface
	25. Web Page Scraping
	26. Producer Consumer
	Review - Goroutines, Channels

	IV: Final Projects
	27. Go Fish
	28. Go Fish Galore

	Appendix A: Go Keywords
	Appendix B: Builtin Functions
	Appendix C: Full Code Listing
	Credits
	Request for Feedback
	About the Author

