
Network Programming 
with Go Language

Essential Skills for Programming, Using 
and Securing Networks with Open Source 

Google Golang

Second Edition

Dr. Jan Newmarch
Ronald Petty



Network Programming with Go Language: Essential Skills for Programming, Using 
and Securing Networks with Open Source Google Golang

ISBN-13 (pbk): 978-1-4842-8094-2		  ISBN-13 (electronic): 978-1-4842-8095-9
https://doi.org/10.1007/978-1-4842-8095-9

Copyright © 2022 by Jan Newmarch and Ronald Petty

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: James Markham
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Pat Kay on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004, 
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit  
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer 
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, 
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on 
GitHub. For more detailed information, please visit https://github.com/Apress/network-prog-with-go-2e.

Printed on acid-free paper

Dr. Jan Newmarch
Oakleigh, VIC, Australia

Ronald Petty
San Francisco, CA, USA

https://doi.org/10.1007/978-1-4842-8095-9
http://www.unsplash.com
http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://booktranslations@springernature.com
http://bookpermissions@springernature.com
http://www.apress.com/bulk-sales
https://github.com/Apress/network-prog-with-go-2e


I dedicate this to my family.



v

About the Authors���������������������������������������������������������������������������������������������������xvii

About the Technical Reviewer���������������������������������������������������������������������������������xix

Acknowledgments���������������������������������������������������������������������������������������������������xxi

Preface to the Second Edition�������������������������������������������������������������������������������xxiii

Preface to the First Edition�������������������������������������������������������������������������������������xxv

■■Chapter 1: Architectural Layers������������������������������������������������������������������������������ 1

Protocol Layers������������������������������������������������������������������������������������������������������������������ 1

ISO OSI Protocol��������������������������������������������������������������������������������������������������������������������������������������� 1

OSI Layers������������������������������������������������������������������������������������������������������������������������������������������������ 2

TCP/IP Protocol���������������������������������������������������������������������������������������������������������������������������������������� 2

Some Alternative Protocols��������������������������������������������������������������������������������������������������������������������� 3

Networking������������������������������������������������������������������������������������������������������������������������ 3

Gateways��������������������������������������������������������������������������������������������������������������������������� 4

Host-Level Networking������������������������������������������������������������������������������������������������������ 4

Packet Encapsulation�������������������������������������������������������������������������������������������������������� 4

Connection Models������������������������������������������������������������������������������������������������������������ 5

Connection Oriented�������������������������������������������������������������������������������������������������������������������������������� 5

Connectionless���������������������������������������������������������������������������������������������������������������������������������������� 5

Communications Models��������������������������������������������������������������������������������������������������� 6

Message Passing������������������������������������������������������������������������������������������������������������������������������������� 6

Remote Procedure Call���������������������������������������������������������������������������������������������������������������������������� 7

Table of Contents

https://doi.org/10.1007/978-1-4842-8095-9_1
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec15


vi

■ Table of Contents

Distributed Computing Models������������������������������������������������������������������������������������������ 8

Client-Server System�������������������������������������������������������������������������������������������������������� 9

Client-Server Application�������������������������������������������������������������������������������������������������� 9

Server Distribution���������������������������������������������������������������������������������������������������������� 10

Communication Flows����������������������������������������������������������������������������������������������������� 11

Synchronous Communication���������������������������������������������������������������������������������������������������������������� 11

Asynchronous Communication�������������������������������������������������������������������������������������������������������������� 11

Streaming Communication�������������������������������������������������������������������������������������������������������������������� 11

Publish/Subscribe���������������������������������������������������������������������������������������������������������������������������������� 11

Component Distribution��������������������������������������������������������������������������������������������������� 12

Gartner Classification���������������������������������������������������������������������������������������������������������������������������� 12

Three-Tier Models��������������������������������������������������������������������������������������������������������������������������������� 14

Fat vs. Thin�������������������������������������������������������������������������������������������������������������������������������������������� 15

Middleware Model����������������������������������������������������������������������������������������������������������� 15

Middleware Examples��������������������������������������������������������������������������������������������������������������������������� 16

Middleware Functions��������������������������������������������������������������������������������������������������������������������������� 17

Continuum of Processing������������������������������������������������������������������������������������������������ 17

Points of Failure�������������������������������������������������������������������������������������������������������������� 18

Acceptance Factors��������������������������������������������������������������������������������������������������������� 18

Thoughts on Distributed Computing�������������������������������������������������������������������������������� 19

Transparency������������������������������������������������������������������������������������������������������������������� 19

Access Transparency����������������������������������������������������������������������������������������������������������������������������� 19

Location Transparency��������������������������������������������������������������������������������������������������������������������������� 19

Migration Transparency������������������������������������������������������������������������������������������������������������������������� 19

Replication Transparency����������������������������������������������������������������������������������������������������������������������� 20

Concurrency Transparency�������������������������������������������������������������������������������������������������������������������� 20

Scalability Transparency������������������������������������������������������������������������������������������������������������������������ 20

Performance Transparency�������������������������������������������������������������������������������������������������������������������� 20

Failure Transparency����������������������������������������������������������������������������������������������������������������������������� 20

https://doi.org/10.1007/978-1-4842-8095-9_1#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec24
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec25
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec26
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec32
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec33
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec34
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec35
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec36
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec37
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec38
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec39
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec40
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec41
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec42
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec43
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec44
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec45
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec46
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec47
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec48
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec49


vii

■ Table of Contents

Eight Fallacies of Distributed Computing������������������������������������������������������������������������ 20

Fallacy: The Network Is Reliable������������������������������������������������������������������������������������������������������������ 21

Fallacy: Latency Is Zero������������������������������������������������������������������������������������������������������������������������� 21

Fallacy: Bandwidth Is Infinite����������������������������������������������������������������������������������������������������������������� 21

Fallacy: The Network Is Secure������������������������������������������������������������������������������������������������������������� 22

Fallacy: Topology Doesn’t Change��������������������������������������������������������������������������������������������������������� 22

Fallacy: There Is One Administrator������������������������������������������������������������������������������������������������������� 22

Fallacy: Transport Cost Is Zero��������������������������������������������������������������������������������������������������������������� 22

Fallacy: The Network Is Homogeneous�������������������������������������������������������������������������������������������������� 22

Conclusion����������������������������������������������������������������������������������������������������������������������� 23

■■Chapter 2: Overview of the Go Language������������������������������������������������������������� 25

Types������������������������������������������������������������������������������������������������������������������������������� 26

Slices and Arrays����������������������������������������������������������������������������������������������������������������������������������� 26

Maps������������������������������������������������������������������������������������������������������������������������������������������������������ 28

Pointers������������������������������������������������������������������������������������������������������������������������������������������������� 28

Functions����������������������������������������������������������������������������������������������������������������������������������������������� 29

Structures���������������������������������������������������������������������������������������������������������������������������������������������� 29

Methods������������������������������������������������������������������������������������������������������������������������������������������������� 30

Multithreading����������������������������������������������������������������������������������������������������������������� 31

Packages������������������������������������������������������������������������������������������������������������������������� 31

Modules��������������������������������������������������������������������������������������������������������������������������� 32

Type Conversion�������������������������������������������������������������������������������������������������������������� 32

Statements���������������������������������������������������������������������������������������������������������������������� 33

GOPATH���������������������������������������������������������������������������������������������������������������������������� 33

Running Go Programs����������������������������������������������������������������������������������������������������� 33

Standard Libraries����������������������������������������������������������������������������������������������������������� 33

Error Values��������������������������������������������������������������������������������������������������������������������� 34

Conclusion����������������������������������������������������������������������������������������������������������������������� 34

https://doi.org/10.1007/978-1-4842-8095-9_1#Sec50
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec51
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec52
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec53
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec54
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec55
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec56
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec57
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec58
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec59
https://doi.org/10.1007/978-1-4842-8095-9_2
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec17


viii

■ Table of Contents

■■Chapter 3: Socket-Level Programming����������������������������������������������������������������� 35

The TCP/IP Stack������������������������������������������������������������������������������������������������������������� 35

IP Datagrams����������������������������������������������������������������������������������������������������������������������������������������� 36

UDP�������������������������������������������������������������������������������������������������������������������������������������������������������� 36

TCP�������������������������������������������������������������������������������������������������������������������������������������������������������� 37

Internet Addresses���������������������������������������������������������������������������������������������������������� 37

IPv4 Addresses�������������������������������������������������������������������������������������������������������������������������������������� 37

IPv6 Addresses�������������������������������������������������������������������������������������������������������������������������������������� 38

IP Address Type��������������������������������������������������������������������������������������������������������������� 39

Using Available Documentation and Examples��������������������������������������������������������������� 40

The IPMask Type������������������������������������������������������������������������������������������������������������������������������������ 43

Basic Routing����������������������������������������������������������������������������������������������������������������������������������������� 46

The IPAddr Type������������������������������������������������������������������������������������������������������������������������������������� 48

Host Canonical Name and Addresses Lookup��������������������������������������������������������������������������������������� 49

Services�������������������������������������������������������������������������������������������������������������������������� 51

Ports������������������������������������������������������������������������������������������������������������������������������������������������������ 51

The TCPAddr Type���������������������������������������������������������������������������������������������������������������������������������� 52

TCP Sockets�������������������������������������������������������������������������������������������������������������������� 53

TCP Client���������������������������������������������������������������������������������������������������������������������������������������������� 53

A Daytime Server����������������������������������������������������������������������������������������������������������������������������������� 56

Multithreaded Server����������������������������������������������������������������������������������������������������������������������������� 57

Controlling TCP Connections������������������������������������������������������������������������������������������� 60

Timeout�������������������������������������������������������������������������������������������������������������������������������������������������� 60

Staying Alive������������������������������������������������������������������������������������������������������������������������������������������ 60

UDP Datagrams��������������������������������������������������������������������������������������������������������������� 60

Server Listening on Multiple Sockets������������������������������������������������������������������������������ 63

The Conn, PacketConn, and Listener Types��������������������������������������������������������������������� 63

Raw Sockets and the IPConn Type���������������������������������������������������������������������������������� 66

Conclusion����������������������������������������������������������������������������������������������������������������������� 68

https://doi.org/10.1007/978-1-4842-8095-9_3
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec24
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec25
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec26
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec27
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec28


ix

■ Table of Contents

■■Chapter 4: Data Serialization�������������������������������������������������������������������������������� 69

Structured Data��������������������������������������������������������������������������������������������������������������� 69

Mutual Agreement����������������������������������������������������������������������������������������������������������� 71

Self-Describing Data������������������������������������������������������������������������������������������������������� 71

Encoding Packages��������������������������������������������������������������������������������������������������������� 72

ASN.1������������������������������������������������������������������������������������������������������������������������������� 74

ASN.1 Daytime Client and Server���������������������������������������������������������������������������������������������������������� 84

JSON������������������������������������������������������������������������������������������������������������������������������� 86

A Client and A Server����������������������������������������������������������������������������������������������������������������������������� 90

The Gob Package������������������������������������������������������������������������������������������������������������� 94

A Client and A Server����������������������������������������������������������������������������������������������������������������������������� 98

Encoding Binary Data As Strings����������������������������������������������������������������������������������� 100

Protocol Buffers������������������������������������������������������������������������������������������������������������� 103

Installing and Compiling Protocol Buffers������������������������������������������������������������������������������������������� 105

The Generated personv3.pb.go File����������������������������������������������������������������������������������������������������� 105

Using the Generated Code������������������������������������������������������������������������������������������������������������������� 106

Conclusion��������������������������������������������������������������������������������������������������������������������� 107

■■Chapter 5: Application-Level Protocols�������������������������������������������������������������� 109

Protocol Design������������������������������������������������������������������������������������������������������������� 109

Why Should You Worry?������������������������������������������������������������������������������������������������� 110

Version Control�������������������������������������������������������������������������������������������������������������� 110

The Web����������������������������������������������������������������������������������������������������������������������������������������������� 111

Message Format����������������������������������������������������������������������������������������������������������� 113

Data Format������������������������������������������������������������������������������������������������������������������ 113

Byte Format����������������������������������������������������������������������������������������������������������������������������������������� 113

Character Format��������������������������������������������������������������������������������������������������������������������������������� 114

A Simple Example��������������������������������������������������������������������������������������������������������� 115

A Stand-Alone Application������������������������������������������������������������������������������������������������������������������� 115

The Client-Server Application�������������������������������������������������������������������������������������������������������������� 116

https://doi.org/10.1007/978-1-4842-8095-9_4
https://doi.org/10.1007/978-1-4842-8095-9_4
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_5
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec11


x

■ Table of Contents

The Client Side������������������������������������������������������������������������������������������������������������������������������������� 116

Alternative Presentation Aspects��������������������������������������������������������������������������������������������������������� 117

The Server Side����������������������������������������������������������������������������������������������������������������������������������� 117

Protocol: Informal�������������������������������������������������������������������������������������������������������������������������������� 118

Text Protocol���������������������������������������������������������������������������������������������������������������������������������������� 118

Server Code����������������������������������������������������������������������������������������������������������������������������������������� 119

Client Code������������������������������������������������������������������������������������������������������������������������������������������ 121

Textproto Package������������������������������������������������������������������������������������������������������������������������������� 123

State Information���������������������������������������������������������������������������������������������������������� 125

Application State Transition Diagram�������������������������������������������������������������������������������������������������� 127

Client-State Transition Diagrams��������������������������������������������������������������������������������������������������������� 128

Server-State Transition Diagrams�������������������������������������������������������������������������������������������������������� 128

Server Pseudocode������������������������������������������������������������������������������������������������������������������������������ 129

Conclusion��������������������������������������������������������������������������������������������������������������������� 130

■■Chapter 6: Managing Character Sets and Encodings����������������������������������������� 131

Definitions��������������������������������������������������������������������������������������������������������������������� 132

Character��������������������������������������������������������������������������������������������������������������������������������������������� 132

Character Repertoire/Character Set���������������������������������������������������������������������������������������������������� 132

Character Code������������������������������������������������������������������������������������������������������������������������������������ 132

Character Encoding����������������������������������������������������������������������������������������������������������������������������� 133

Transport Encoding������������������������������������������������������������������������������������������������������������������������������ 133

ASCII������������������������������������������������������������������������������������������������������������������������������ 133

ISO 8859������������������������������������������������������������������������������������������������������������������������ 135

Unicode������������������������������������������������������������������������������������������������������������������������� 135

UTF-8, Go, and Runes���������������������������������������������������������������������������������������������������� 136

UTF-8 Client and Server���������������������������������������������������������������������������������������������������������������������� 137

ASCII Client and Server������������������������������������������������������������������������������������������������������������������������ 137

UTF-16 and Go��������������������������������������������������������������������������������������������������������������� 137

Little-Endian and Big-Endian��������������������������������������������������������������������������������������������������������������� 138

UTF-16 Client and Server�������������������������������������������������������������������������������������������������������������������� 138

Unicode Gotchas����������������������������������������������������������������������������������������������������������� 141

https://doi.org/10.1007/978-1-4842-8095-9_5#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec24
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec25
https://doi.org/10.1007/978-1-4842-8095-9_6
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec16


xi

■ Table of Contents

ISO 8859 and Go������������������������������������������������������������������������������������������������������������ 142

Other Character Sets and Go����������������������������������������������������������������������������������������� 145

Conclusion��������������������������������������������������������������������������������������������������������������������� 145

■■Chapter 7: Security��������������������������������������������������������������������������������������������� 147

ISO Security Architecture���������������������������������������������������������������������������������������������� 147

Functions and Levels��������������������������������������������������������������������������������������������������������������������������� 148

Mechanisms���������������������������������������������������������������������������������������������������������������������������������������� 149

Data Integrity����������������������������������������������������������������������������������������������������������������� 150

Symmetric Key Encryption�������������������������������������������������������������������������������������������� 153

Public Key Encryption���������������������������������������������������������������������������������������������������� 154

X.509 Certificates���������������������������������������������������������������������������������������������������������� 157

TLS�������������������������������������������������������������������������������������������������������������������������������� 160

A Basic Client��������������������������������������������������������������������������������������������������������������������������������������� 160

Server Using a Self-Signed Certificate������������������������������������������������������������������������������������������������ 162

Conclusion��������������������������������������������������������������������������������������������������������������������� 165

■■Chapter 8: HTTP�������������������������������������������������������������������������������������������������� 167

URLs and Resources����������������������������������������������������������������������������������������������������� 167

i18n������������������������������������������������������������������������������������������������������������������������������������������������������ 167

HTTP Characteristics��������������������������������������������������������������������������������������������������������������������������� 169

Versions����������������������������������������������������������������������������������������������������������������������������������������������� 169

HTTP/0.9���������������������������������������������������������������������������������������������������������������������������������������������� 169

HTTP/1.0���������������������������������������������������������������������������������������������������������������������������������������������� 170

HTTP 1.1���������������������������������������������������������������������������������������������������������������������������������������������� 172

HTTP Major Upgrades�������������������������������������������������������������������������������������������������������������������������� 173

HTTP/2������������������������������������������������������������������������������������������������������������������������������������������������� 173

HTTP/3������������������������������������������������������������������������������������������������������������������������������������������������� 173

Simple User Agents������������������������������������������������������������������������������������������������������� 174

The Response Type������������������������������������������������������������������������������������������������������������������������������ 174

The HEAD Method�������������������������������������������������������������������������������������������������������������������������������� 175

The GET Method���������������������������������������������������������������������������������������������������������������������������������� 177

https://doi.org/10.1007/978-1-4842-8095-9_6#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_8
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec17


xii

■ Table of Contents

Configuring HTTP Requests������������������������������������������������������������������������������������������� 181

The Client Object����������������������������������������������������������������������������������������������������������� 182

Proxy Handling�������������������������������������������������������������������������������������������������������������� 184

Simple Proxy���������������������������������������������������������������������������������������������������������������������������������������� 185

Authenticating Proxy��������������������������������������������������������������������������������������������������������������������������� 187

HTTPS Connections by Clients��������������������������������������������������������������������������������������� 189

Servers�������������������������������������������������������������������������������������������������������������������������� 191

File Server������������������������������������������������������������������������������������������������������������������������������������������� 191

Handler Functions������������������������������������������������������������������������������������������������������������������������������� 193

Bypassing the Default Multiplexer������������������������������������������������������������������������������������������������������� 194

HTTPS���������������������������������������������������������������������������������������������������������������������������� 195

Conclusion��������������������������������������������������������������������������������������������������������������������� 197

■■Chapter 9: Templates������������������������������������������������������������������������������������������ 199

Inserting Object Values�������������������������������������������������������������������������������������������������� 199

Using Templates���������������������������������������������������������������������������������������������������������������������������������� 200

Pipelines������������������������������������������������������������������������������������������������������������������������ 202

Defining Functions�������������������������������������������������������������������������������������������������������� 203

Variables������������������������������������������������������������������������������������������������������������������������ 205

Conditional Statements������������������������������������������������������������������������������������������������� 206

The html/template Package������������������������������������������������������������������������������������������ 211

Conclusion��������������������������������������������������������������������������������������������������������������������� 211

■■Chapter 10: A Complete Web Server������������������������������������������������������������������� 213

Browser Site Diagram��������������������������������������������������������������������������������������������������� 213

Browser Files���������������������������������������������������������������������������������������������������������������� 216

Basic Server������������������������������������������������������������������������������������������������������������������ 217

The listFlashCards Function������������������������������������������������������������������������������������������ 219

The manageFlashCards Function���������������������������������������������������������������������������������� 222

The Chinese Dictionary������������������������������������������������������������������������������������������������� 223

The Dictionary Type����������������������������������������������������������������������������������������������������������������������������� 224

https://doi.org/10.1007/978-1-4842-8095-9_8#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec24
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec25
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec26
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec27
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec28
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec29
https://doi.org/10.1007/978-1-4842-8095-9_9
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_10
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec7


xiii

■ Table of Contents

Flashcard Sets��������������������������������������������������������������������������������������������������������������� 224

Fixing Accents��������������������������������������������������������������������������������������������������������������� 226

The ListWords Function������������������������������������������������������������������������������������������������� 229

The showFlashCards Function�������������������������������������������������������������������������������������� 231

Presentation on the Browser����������������������������������������������������������������������������������������� 234

Running the Server������������������������������������������������������������������������������������������������������� 234

Conclusion��������������������������������������������������������������������������������������������������������������������� 234

■■Chapter 11: HTML����������������������������������������������������������������������������������������������� 235

The html/template Package������������������������������������������������������������������������������������������ 236

Tokenizing HTML����������������������������������������������������������������������������������������������������������� 237

XHTML/HTML����������������������������������������������������������������������������������������������������������������� 240

JSON����������������������������������������������������������������������������������������������������������������������������� 240

Conclusion��������������������������������������������������������������������������������������������������������������������� 240

■■Chapter 12: XML������������������������������������������������������������������������������������������������� 241

Unmarshalling XML������������������������������������������������������������������������������������������������������� 242

Marshalling XML������������������������������������������������������������������������������������������������������������ 244

Parsing XML������������������������������������������������������������������������������������������������������������������ 245

The StartElement Type������������������������������������������������������������������������������������������������������������������������� 246

The EndElement Type�������������������������������������������������������������������������������������������������������������������������� 246

The CharData Type������������������������������������������������������������������������������������������������������������������������������� 246

The Comment Type������������������������������������������������������������������������������������������������������������������������������ 246

The ProcInst Type�������������������������������������������������������������������������������������������������������������������������������� 246

The Directive Type������������������������������������������������������������������������������������������������������������������������������� 247

XHTML��������������������������������������������������������������������������������������������������������������������������� 249

HTML����������������������������������������������������������������������������������������������������������������������������� 249

Conclusion��������������������������������������������������������������������������������������������������������������������� 249

https://doi.org/10.1007/978-1-4842-8095-9_10#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_11
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_12
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec12


xiv

■ Table of Contents

■■Chapter 13: Remote Procedure Call������������������������������������������������������������������� 251

Go’s RPC������������������������������������������������������������������������������������������������������������������������ 252

HTTP RPC Server��������������������������������������������������������������������������������������������������������������������������������� 254

HTTP RPC Client����������������������������������������������������������������������������������������������������������������������������������� 255

TCP RPC Server����������������������������������������������������������������������������������������������������������������������������������� 256

TCP RPC Client������������������������������������������������������������������������������������������������������������������������������������� 257

Matching Values���������������������������������������������������������������������������������������������������������������������������������� 259

JSON����������������������������������������������������������������������������������������������������������������������������� 259

JSON RPC Server��������������������������������������������������������������������������������������������������������������������������������� 259

JSON RPC Client���������������������������������������������������������������������������������������������������������������������������������� 261

Conclusion��������������������������������������������������������������������������������������������������������������������� 262

■■Chapter 14: REST������������������������������������������������������������������������������������������������ 263

URIs and Resources������������������������������������������������������������������������������������������������������ 263

Representations������������������������������������������������������������������������������������������������������������ 264

REST Verbs�������������������������������������������������������������������������������������������������������������������� 265

The GET Verb��������������������������������������������������������������������������������������������������������������������������������������� 265

The PUT Verb��������������������������������������������������������������������������������������������������������������������������������������� 266

The DELETE Verb���������������������������������������������������������������������������������������������������������������������������������� 266

The POST Verb������������������������������������������������������������������������������������������������������������������������������������� 266

No Maintained State (That Is, Stateless)����������������������������������������������������������������������� 267

HATEOAS����������������������������������������������������������������������������������������������������������������������� 267

Representing Links�������������������������������������������������������������������������������������������������������� 268

Transactions with REST������������������������������������������������������������������������������������������������� 269

The Richardson Maturity Model������������������������������������������������������������������������������������ 272

Flashcards Revisited����������������������������������������������������������������������������������������������������� 272

URLs���������������������������������������������������������������������������������������������������������������������������������������������������� 273

ServeMux (The Demultiplexer)�������������������������������������������������������������������������������������� 273

Content Negotiation������������������������������������������������������������������������������������������������������� 274

GET /���������������������������������������������������������������������������������������������������������������������������������������������������� 276

POST /�������������������������������������������������������������������������������������������������������������������������������������������������� 278

https://doi.org/10.1007/978-1-4842-8095-9_13
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_14
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec18


xv

■ Table of Contents

Handling Other URLs����������������������������������������������������������������������������������������������������� 278

The Complete Server����������������������������������������������������������������������������������������������������� 279

Client����������������������������������������������������������������������������������������������������������������������������� 285

Using REST or RPC�������������������������������������������������������������������������������������������������������� 289

Conclusion��������������������������������������������������������������������������������������������������������������������� 289

■■Chapter 15: WebSockets������������������������������������������������������������������������������������� 291

WebSockets Server������������������������������������������������������������������������������������������������������� 292

The golang.org/x/net/websocket Package�������������������������������������������������������������������� 292

The Message Object���������������������������������������������������������������������������������������������������������������������������� 292

The JSON Object���������������������������������������������������������������������������������������������������������������������������������� 296

The Codec Type������������������������������������������������������������������������������������������������������������������������������������ 299

WebSockets over TLS�������������������������������������������������������������������������������������������������������������������������� 302

WebSockets in an HTML Page������������������������������������������������������������������������������������������������������������� 304

The github.com/gorilla/websocket Package����������������������������������������������������������������� 308

Echo Server����������������������������������������������������������������������������������������������������������������������������������������� 308

Echo Client������������������������������������������������������������������������������������������������������������������������������������������� 310

Conclusion��������������������������������������������������������������������������������������������������������������������� 311

■■Chapter 16: Gorilla���������������������������������������������������������������������������������������������� 313

Middleware Pattern������������������������������������������������������������������������������������������������������� 313

Standard Library ServeMux Examples�������������������������������������������������������������������������� 316

Customizing Muxes������������������������������������������������������������������������������������������������������� 318

gorilla/mux�������������������������������������������������������������������������������������������������������������������� 319

Why Should We Care����������������������������������������������������������������������������������������������������� 321

Gorilla Handlers������������������������������������������������������������������������������������������������������������� 323

Additional Gorilla Examples������������������������������������������������������������������������������������������� 326

gorilla/rpc���������������������������������������������������������������������������������������������������������������������� 327

gorilla/schema�������������������������������������������������������������������������������������������������������������� 328

gorilla/securecookie������������������������������������������������������������������������������������������������������ 329

Conclusion��������������������������������������������������������������������������������������������������������������������� 331

https://doi.org/10.1007/978-1-4842-8095-9_14#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_15
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_16
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec11


xvi

■ Table of Contents

■■Chapter 17: Testing��������������������������������������������������������������������������������������������� 333

Simple and Broken�������������������������������������������������������������������������������������������������������� 333

httptest Package����������������������������������������������������������������������������������������������������������� 336

Below HTTP������������������������������������������������������������������������������������������������������������������� 338

Leveraging the Standard Library����������������������������������������������������������������������������������� 340

Conclusion��������������������������������������������������������������������������������������������������������������������� 346

■■Appendix A: Fuzzing������������������������������������������������������������������������������������������� 347

Fuzzing in Go����������������������������������������������������������������������������������������������������������������� 347

Fuzzing Failures������������������������������������������������������������������������������������������������������������ 350

Fuzzing Network-Related Artifacts�������������������������������������������������������������������������������� 353

Conclusion��������������������������������������������������������������������������������������������������������������������� 355

■■Appendix B: Generics����������������������������������������������������������������������������������������� 357

A Filtering Function Without Generics��������������������������������������������������������������������������� 358

Refactor Using Generics������������������������������������������������������������������������������������������������ 359

Custom Constraints������������������������������������������������������������������������������������������������������� 360

Using Generics on Collections��������������������������������������������������������������������������������������� 362

How Not to Use Generics?��������������������������������������������������������������������������������������������� 365

Conclusion��������������������������������������������������������������������������������������������������������������������� 371

Index���������������������������������������������������������������������������������������������������������������������� 373

https://doi.org/10.1007/978-1-4842-8095-9_17
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec5


xvii

About the Authors

Dr. Jan Newmarch was head of ICT (higher education) at Box Hill Institute 
before retiring, and still is adjunct professor at Canberra University, and 
adjunct lecturer in the School of Information Technology, Computing and 
Mathematics at Charles Sturt University. He is interested in more aspects 
of computing than he has time to pursue, but the major thrust over the last 
few years has developed from user interfaces under UNIX into Java, the 
Web, and then into general distributed systems. Jan developed a number 
of publicly available software systems in these areas. For the last few years, 
he had been looking at sound for Linux systems and programming the 
Raspberry Pi’s GPU. He is now exploring aspects of the IoT and Cyber 
Security. He lives in Melbourne, Australia, and enjoys the food and culture 
there, but is not so impressed by the weather.

Ronald Petty, M.B.A., M.S., is a principal consultant at RX-M and founder 
of Minimum Distance LLC. He is interested in many aspects of computing 
including distributed systems and machine learning. Kubernetes and 
Go have occupied much of his time in recent years, including presenting 
at KubeCon. He hopes his own experiences help the next generation of 
developers. 



xix

About the Technical Reviewer

Eldon Alameda is a web developer who currently resides in the harsh climates of Kansas. He works as a 
regional webmaster for the US National Weather Service. Prior to this, he did development for a variety 
of companies including local startups, advertising firms, Sprint PCS, and IBM. During the 1990s, he also 
acquired a nice stack of worthless stock options from working for dot-com companies.



xxi

Acknowledgments

I want to share my appreciation for Jan Newmarch for collaborating on this book. This project has offered 
me a tremendous sense of achievement and allowed me to cross a much-anticipated item off my bucket list. 
I would also like to thank Eldon Alameda for his thoughtful approach at letting me know when I am off the 
mark and for providing me with solid advice.

Additionally, I owe gratitude to my partners at Apress, both Steve Anglin for the opportunity and Mark 
Powers for the guidance to help see this through. Thank you to my colleagues at RX-M, including Randy 
Abernethy, Christopher Hanson, Andrew Bassett, and Anita Wu. Our work over the years has allowed for my 
participation in a project such as this book.

Finally, I want to thank my wife Julie and daughter Charlotte. Julie’s capacity to manage the world while 
I hide out on a computer is unmatched and most appreciated. Charlotte’s energy, abilities, and creativity 
inspire me to become better every day.

—Ronald Petty



xxiii

Preface to the Second Edition

While an age has passed in Internet years, Go remains a primary destination for programmers. Go 
conquered the container technology space. It continues to find affection in Cloud Native development. Go 
strives to remain true to itself, backward compatible, yet adding new language features like Generics. Tooling 
improvements such as Fuzzing allow for more secure application development.

Go has changed, and so has this book. The first edition used Go 1.8; we are now on Go 1.18. The code 
has been updated to reflect this new reality. The examples have been largely developed to show a particular 
feature of Go networking without forcing complexity like managing several projects or packages scattered 
across the book; the associated repository can be found here https://github.com/Apress/network-prog-
with-go-2e.

The first version of this book assumed familiarity with Go, and that remains in this edition. We expand 
slightly what we are willing to discuss in this book with the inclusion of more third-party modules, tools, and 
techniques. Jan was correct to keep the focus on Go and not to be distracted with the ecosystem at large.

If you desire to learn about implementing networking concepts with Go, I hope this book serves 
you well.

As a point of comparison, what follows is Jan’s original preface, reflecting Go in 2017.

https://github.com/Apress/network-prog-with-go-2e
https://github.com/Apress/network-prog-with-go-2e


xxv

Preface to the First Edition

It’s always fun to learn a new programming language, especially when it turns out to be a major one. Prior 
to the release of Go in 2009, I was teaching a Master’s level subject in network programming at Monash 
University. It’s good to have a goal when learning a new language, but this time, instead of building yet 
another wine cellar program, I decided to orient my lecture notes around Go instead of my (then) standard 
delivery vehicle of Java.

The experiment worked well: apart from the richness of the Java libraries that Go was yet to match, all 
the programming examples transferred remarkably well, and in many cases were more elegant than the 
original Java programs.

This book is the result. I have updated it as Go has evolved and as new technologies such as HTTP/2 
have arisen. But if it reads like a textbook, well, that is because it is one. There is a large body of theoretical 
and practical concepts involved in network programming and this book covers some of these as well as the 
practicalities of building systems in Go.

In terms of language popularity, Go is clearly rising. It has climbed to 16th in the TIOBE index, is 18th 
in the PYPL (Popularity of Programming Language), and is 15th in the RedMonk Programming Language 
rankings. It is generally rated as one of the fastest growing languages.

There is a growing community of developers both of the core language and libraries and of the 
independent projects. I have tried to limit the scope of this book to the standard libraries only and to the 
“sub-repositories” of the Go tree. While this eliminates many excellent projects that no doubt make many 
programming tasks easier, restricting the book to the official Go libraries provides a clear bound.

This book assumes a basic knowledge of Go. The focus is on using Go to build network applications, 
not on the basics of the language. Network applications are different than command-line applications, 
are different than applications with a graphical user interface, and so on. So the first chapter discusses 
architectural aspects of network programs. The second chapter is an overview of the features of Go that 
we use in this book. The third chapter on sockets covers the Go version of the basics underlying all TCP/
IP systems. Chapters 4, 5, and 6 are more unusual in network programming books. They cover the topics 
of what representations of data will be used, how a network interaction will proceed, and for text, which 
language formats are used. Then in Chapter 7, we look at the increasingly important topic of security. In 
Chapter 8, we look at one of the most common application layer protocols in use, HTTP. The next four 
chapters are about topics related to HTTP and common data formats carried above HTTP – HTML and 
XML. In Chapter 13, we look at an alternative approach to network programming, remote procedure calls. 
Chapters 14 and 15 consider further aspects of network programming using HTTP.

https://doi.org/10.1007/978-1-4842-8095-9_4
https://doi.org/10.1007/978-1-4842-8095-9_5
https://doi.org/10.1007/978-1-4842-8095-9_6
https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_8
https://doi.org/10.1007/978-1-4842-8095-9_13
https://doi.org/10.1007/978-1-4842-8095-9_14
https://doi.org/10.1007/978-1-4842-8095-9_15


1
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_1

CHAPTER 1

Architectural Layers

This chapter covers the major architectural features of distributed systems. A distributed system is a 
collection of components interacting over a network. You can’t build a system without some idea of what you 
want to build. And you can’t build it if you don't know the environment in which it will work. GUI programs 
are different than batch processing programs; games programs are different than business programs; and 
distributed programs are different than stand-alone programs. They each have their approaches, their 
common patterns, the problems that typically arise, and the solutions that are often used.

This chapter covers the high-level architectural aspects of distributed systems. There are many ways 
of looking at such systems, and many of these are dealt with. We begin with a layering model to help us 
understand component boundaries, discuss network implementation details, and consider how our 
components message each other, wrapping up with error conditions and how to think about them.

�Protocol Layers
Distributed systems are hard. There are multiple computers involved, which have to be connected in some 
way. Programs have to be written to run on each computer in the system, and they all have to cooperate to 
get a distributed task done.

The common way to deal with complexity is to break it down into smaller and simpler parts. These 
parts have their own structure, but they also have defined means of communicating with other related parts. 
In distributed systems, the parts are called protocol layers, and they have clearly defined functions. They 
form a stack, with each layer communicating with the layer above and the layer below. The communication 
between layers is defined by protocols.

Network communications require protocols to cover high-level application communication all the way 
down to wire communication and the complexity handled by encapsulation in protocol layers.

�ISO OSI Protocol
Although it was never properly implemented, the OSI (Open Systems Interconnect) protocols have been a 
major influence in ways of talking about and influencing distributed systems design. It is commonly given as 
shown in Figure 1-1.

https://doi.org/10.1007/978-1-4842-8095-9_1#DOI


2

�OSI Layers
The function of each layer from bottom to top is as follows:

•	 The Physical layer conveys the bit stream using electrical, optical, or radio 
technologies.

•	 The Data Link layer puts the information packets into network frames for 
transmission across the Physical layer and back into information packets.

•	 The Network layer provides switching and routing technologies.

•	 The Transport layer provides transparent transfer of data between end systems and 
is responsible for end-to-end error recovery and flow control.

•	 The Session layer establishes, manages, and terminates connections between 
applications.

•	 The Presentation layer provides independence from differences in data 
representation (e.g., encryption).

•	 The Application layer supports application and end-user processes.

A layer in the OSI model often maps to a modern protocol; for example, the IP from TCP/IP maps to the 
Network layer, also known as layer 3 (Physical is layer 1). The Application layer, layer 7, maps to HTTP. Some 
protocols like HTTPS seem to blend layers, 5 (Session) and 6 (Presentation). No model is perfect; 
alternatives exist to the OSI model that maps closer to a given reality, such as the TCP/IP protocol model.

�TCP/IP Protocol
While the OSI model was being argued, debated, partly implemented, and fought over, the DARPA Internet 
research project was busy building the TCP/IP protocols. These have been immensely successful and have 
led to The Internet (with capitals). This is a much simpler stack, as shown in Figure 1-2.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 1-1.  The Open Systems Interconnect protocol

Chapter 1 ■ Architectural Layers



3

application

TCP UDP

IP

h/w interface

application OSI 5−7 

OSI 4

OSI 3

OSI 1−2

Figure 1-2.  The TCP/IP protocols

�Some Alternative Protocols
Although it almost seems like it, the TCP/IP protocols are not the only ones in existence and in the long run 
may not even be the most successful. Wikipedia’s list of network protocols (see https://en.wikipedia.org/
wiki/List_of_network_protocols_(OSI_model)) has a huge number more, at each of the OSI ISO layers. 
Many of these are obsolete or of little use, but due to advances in technology in all sorts of areas – such as the 
Internet in Space and the Internet of Things – there will always be room for new protocols.

The primary focus in this book is on OSI layers 3 and 4 (TCP/IP, including UDP), but you should be 
aware that there are other ones.

�Networking
A network is a communications system for connecting end systems called hosts. The mechanisms of 
connection might be copper wire, Ethernet, fiber optic, or wireless, but that won’t concern us here. A local 
area network (LAN) connects computers that are close together, typically belonging to a home, small 
organization, or part of a larger organization.

A wide area network (WAN) connects computers across a larger physical area, such as between cities. 
There are other types as well, such as MANs (metropolitan area networks), PANs (personal area networks), 
and even BANs (body area networks).

An internet is a connection of two or more distinct networks, typically LANs or WANs. An intranet is an 
Internet with all networks belonging to a single organization.

There are significant differences between an internet and an intranet. Typically, an intranet will be 
under a single administrative control, which will impose a single set of coherent policies. An internet, on the 
other hand, will not be under the control of a single body, and the controls exercised over different parts may 
not even be compatible.

A trivial example of such differences is that an intranet will often be restricted to computers by a small 
number of vendors running a standardized version of a particular operating system. On the other hand, an 
internet will often have a smorgasbord of different computers and operating systems.

Chapter 1 ■ Architectural Layers

https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)


4

The techniques of this book are applicable to internets. They are also valid with intranets, but there you 
will also find specialized, nonportable systems.

And then there is the “mother” of all internets: The Internet. This is just a very, very large internet that 
connects us to Google, my computer to your computer, and so on.

�Gateways
A gateway is a generic term for an entity used to connect two or more networks. A repeater operates at 
the Physical level and copies information from one subnet to another. A bridge operates at the Data Link 
layer level and copies frames between networks. A router operates at the Network level and not only moves 
information between networks but also decides on the route.

�Host-Level Networking
On a single host, we have additional concerns when designing, debugging, or deploying network-based 
software. Some of these items include the following:

•	 DNS (domain name system, i.e., human-friendly naming)

•	 Firewalls (e.g., blocking inbound or outbound traffic)

•	 Routing (e.g., figuring out which network to place a packet)

•	 Host Identity management (e.g., IP address)

•	 Performance controls (e.g., traffic shaping or retries)

•	 Connection issues (e.g., missing network adapter, intramachine process 
communication)

Through examples, we will see how a host misconfiguration might manifest in our software.

�Packet Encapsulation
The communication between layers in either the OSI or the TCP/IP stacks is done by sending packets of data 
from one layer to the next and then eventually across the network. Each layer has administrative information 
that it has to keep about its own layer. It does this by adding header information to the packet it receives from 
the layer above, as the packet passes down. On the receiving side, these headers are removed as the packet 
moves up.

For example, the TFTP (Trivial File Transfer Protocol) moves files from one computer to another. It uses 
the UDP protocol on top of the IP protocol, which may be sent over ethernet. This looks like the diagram 
shown in Figure 1-3.

Chapter 1 ■ Architectural Layers



5

ethernet
header

IP
header

UDP
header

TFTP
header

data

IP
header

UDP
header

TFTP
header

data

UDP
header

TFTP
header

data

TFTP
header

data

data

Figure 1-3.  The TFTP (Trivial File Transfer Protocol)

�Connection Models
In order for two computers to communicate, they must set up a path whereby they can send at least one 
message in a session. There are two major models for this:

•	 Connection oriented

•	 Connectionless

�Connection Oriented
A single connection is established for the session. Two-way communications flow along the connection. 
When the session is over, the connection is broken. The analogy is to a phone conversation. An 
example is TCP.

�Connectionless
In a connectionless system, messages are sent independent of each other. Ordinary mail is the analogy. 
Connectionless messages may arrive out of order. Messages do not have an impact on each other. An 
example is the IP protocol. UDP is a connectionless protocol above IP and is often used as an alternative to 
TCP, as it is much lighter weight. Connectionless is also known as unconnected or stateless.

Connection-oriented transports may be established on top of connectionless ones – TCP over 
IP. Connectionless transports may be established on top of connection-oriented ones – HTTP over 
TCP. Messages over a connection-oriented transport protocol have some kind of relation, for example, a 
sequence number used to keep order. Having state allows for functionality and optimizations; it also has an 
associated cost of storage and computing.

Chapter 1 ■ Architectural Layers



6

There can be variations on these. For example, a session might enforce messages arriving but might not 
guarantee that they arrive in the order sent. However, these two are the most common.

Connection models are not the only way a protocol can vary. One often desired feature is reliability; 
this is where the protocol has logic to fix some types of errors; for example, TCP resends a missing packet. 
It’s pretty common to assume connection-oriented protocols are reliable; this is not always the case (e.g., 
MPLS). Additional features of a network protocol could include message boundary management, delivery 
ordering, error checking, flow control, etc. These features can exist in one protocol layer and not another, 
partly why there are so many network protocol stacks.

Sometimes, these features are reworked throughout the protocol stack. An example of this kind of 
feature rework is with HTTP/3. In HTTP/2, reliability is provided using TCP at layer 4. In HTTP/3, TCP is 
being replaced with UDP, which is not reliable. Instead, reliability will be provided with another protocol 
known as QUIC. While QUIC is considered a Transport layer, like TCP or UDP, it works on top of UDP. As you 
can see, the layer model is not an exact science.

�Communications Models
In a distributed system, there will be many components (i.e., processes) running that have to communicate 
with each other. There are two primary models for this, message passing and remote procedure calls. In 
the context of networking, these models allow interprocess (and/or thread) communication with intent to 
invoke behavior on the remote process.

�Message Passing
Some languages are built on the principle of message passing. Concurrent languages (and tools) often use 
such a mechanism, and the most well-known example is probably the UNIX pipeline. The UNIX pipeline 
is a pipeline of bytes, but this is not an inherent limitation: Microsoft’s PowerShell can send objects along 
its pipelines, and concurrent languages such as Parlog can send arbitrary logic data structures in messages 
between concurrent processes. Recent languages such as Go have mechanisms for message passing 
(between threads).

Message passing is a primitive mechanism for distributed systems. Set up a connection and pump some 
data down it. At the other end, figure out what the message was and respond to it, possibly sending messages 
back. This is illustrated in Figure 1-4.

Chapter 1 ■ Architectural Layers



7

Requestor Responder

Send(Msg, Responder)

Send(Reply, Requestor)

Receive(Msg, Requestor)

Receive(Reply, Responder)

Figure 1-4.  The message passing communications model

Event-driven systems act in a similar manner. At a low level, the programming language node.js runs 
an event loop waiting for I/O events, dispatching handlers for these events and responding. At a higher level, 
most user interface systems use an event loop waiting for user input, while in the networking world, Ajax 
uses the XMLHttpRequest to send and receive requests.

�Remote Procedure Call
In any system, there is a transfer of information and flow control from one part of the system to another. In 
procedural languages, this may consist of the procedure call, where information is placed on a call stack and 
then control flow is transferred to another part of the program.

Even with procedure calls, there are variations. The code may be statically linked so that control transfers 
from one part of the program’s executable code to another part. Due to the increasing use of library routines, 
it has become commonplace to have such code in shared objects (.so) or dynamic link libraries (.dll), where 
control transfers to an independent piece of code.

Libraries run in the same machine as the calling code. it is a simple (conceptual) step to transfer control 
to a procedure running in a different machine (i.e., remote library). The mechanics of this are not so simple! 
However, this model of control has given rise to the remote procedure call (RPC), which is discussed in 
much detail in a later chapter. This is illustrated in Figure 1-5.

Chapter 1 ■ Architectural Layers



8

Client Process

main()
{

}

rpc(a, b, c)

send(x=a, y=b)

receive(x, y)

send(z)

rpc(x, y, z)
{
    ...
}

Server Process

receive(c=z)

Figure 1-5.  The remote procedure call communications model

There are many examples of this: some based on particular programming languages such as the Go 
rpc package (discussed in Chapter 13) or RPC systems covering multiple languages such as SOAP and 
Google’s gRPC.

It may not be clear how message passing and RPC differ. At one level, they both are involved with 
invoking behavior “somewhere else.” Generally speaking, RPC tends to be less abstract (i.e., looks and feels 
like regular procedure calls) compared to message passing where we could be calling remote queueing 
system. Under the hood though, RPC will be passing messages.

�Distributed Computing Models
At the highest level, we could consider the equivalence or the nonequivalence of components of a 
distributed system. The most common occurrence is an asymmetric one: a client sends requests to a server, 
and the server responds. This is a client-server system.

If both components are equivalent, both able to initiate and to respond to messages, then we have a 
peer-to-peer system. Note that this is a logical classification: one peer may be a 16,000-core supercomputer; 
the other might be a mobile phone. But if both can act similarly, then they are peers.

These are illustrated in Figure 1-6.

client–server A B

peer-to-peer A A’

Figure 1-6.  Client-server vs. peer-to-peer systems

Chapter 1 ■ Architectural Layers

https://doi.org/10.1007/978-1-4842-8095-9_13


9

An example of a client-server is a browser talking to a web server. An example of a peer-to-peer system 
could be database system where data is replicated and available on both peers.

Combinations of these systems result in what is known as multitier architectures, where three-tier 
architecture is one of the most common (i.e., presentation -> application -> data or browser -> web server -> 
database).

�Client-Server System
Another view of a client-server system is shown in Figure 1-7.

Client

Client
process

request

System

response

System

hardwarehardware

User Server

Server
process

Figure 1-7.  The client-server system

This view may be held by a developer who needs to know the components of a system. It is also the view 
that may be held by a user: a user of a browser knows it is running on their system but is communicating 
with servers elsewhere.

The prior diagram looks similar to the OSI model we discussed earlier. Layers in Figure 1-7 are also 
optional; for example, we can have both the client and server process on a single piece of hardware. Being 
located on the same machine means we can potentially remove some layers of the OSI model including 
layer 1 (Physical), layer 2 (Data Link), and layer 3 (Network). We say potentially because these layers still may 
be desired for various reasons including tooling homogeneity or security.

�Client-Server Application
Some applications may be seamlessly distributed, with the user unaware that it is distributed. Users will see 
their view of the system, as shown in Figure 1-8.

Chapter 1 ■ Architectural Layers



10

Client Server

Client
process

System

hardware hardware

Process

System

Application

Figure 1-8.  The user’s view of the system

In order to function, both components must be installed, how seamless this complexity will vary by 
application (and its usage).

�Server Distribution
A client-server system need not be simple. The basic model is a single client, single server system, as shown 
in Figure 1-9.

Client Server

Figure 1-9.  The single-client, single-server system

However, you can also have multiple clients, single server, as illustrated in Figure 1-10.

Client ClientMaster

Slave Slave

Figure 1-10.  The multiple-clients, single-server system

In this system, the master receives requests, and instead of handling them one at a time itself, it passes 
them to other servers to handle. This is a common model when concurrent clients are possible.

There are also single client, multiple servers, as shown in Figure 1-11.

Client Server Server

Figure 1-11.  The single-client, multiple-servers system

Chapter 1 ■ Architectural Layers



11

This type of system occurs frequently when a server needs to act as a client to other servers, such as 
a business logic server getting information from a database server. And of course, there could be multiple 
clients with multiple servers.

Again, these components may or may not be on the same physical hardware.

�Communication Flows
The previous diagrams have shown the connection views between high-level components of a system. Data 
will flow between these components, and it can do so in multiple ways, discussed in the following sections.

�Synchronous Communication
In a synchronous communication, one party will send a message and block, waiting for a reply. This is often 
the simplest model to implement and just relies on blocking I/O. However, there may need to be a timeout 
mechanism in case some error means that no reply will ever be sent.

�Asynchronous Communication
In asynchronous communication, one party sends a message and, instead of waiting for a reply, carries 
on with other work. When a reply eventually comes, it is handled. This may be in another thread or by 
interrupting the current thread. Such applications are harder to build but are much more flexible to use.

When thinking of these protocol layers and related implementations, it’s not always obvious how you 
describe communication flow. For example, TCP, is it synchronous or asynchronous? When designing 
network applications, communication flow is used to describe the applications logic (Are you waiting for a 
response or are you not waiting for a response?). When we provide the Transport layer (TCP) data, we don’t 
wait for it to send and respond, our application keeps moving. In that light, we say TCP is asynchronous.

�Streaming Communication
In streaming communication, one party sends a continuous stream of messages. Online video is a good 
example. The streaming may need to be handled in real time, may or may not tolerate losses, and can be 
one-way or allow reverse communication as in control messages. This is why TCP is often used over UDP, 
even if that ordering comes at a cost.

�Publish/Subscribe
In pub/sub systems, parties subscribe to topics, and others post to them. This can be on a small or massive 
scale, as demonstrated by services like Twitter and software like Kafka. Designing a multitier system to 
include pub/sub allows producer and consumers to be decoupled. Decoupling allows us to become more 
fault tolerant and generally improves the ability to grow the system (e.g., more producers and consumers). 
Storage of messages on a third party (i.e., remote queue) provides this ability. How the queue performs and 
grows is its own area of study and distributed computing (and storage).

Chapter 1 ■ Architectural Layers



12

�Component Distribution
A simple but effective way of decomposing many applications is to consider them as made up of three parts:

•	 Presentation component

•	 Application logic

•	 Data access

The presentation component is responsible for interactions with the user, both displaying data and 
gathering input. It may be a modern GUI interface with buttons, lists, menus, etc., or an older command-line 
style interface, asking questions and getting answers. It could also encompass wider interaction styles, such 
as the interaction with physical devices such as a cash register and ATM. It could also cover the interaction 
with a nonhuman user, as in a machine-to-machine system. The details are not important at this level.

The application logic is responsible for interpreting the users’ responses, for applying business rules, for 
preparing queries, and for managing responses from the third component.

The data access component is responsible for storing and retrieving data. This will often be through a 
database, but not necessarily.

�Gartner Classification
Based on this threefold decomposition of applications, Gartner considered how the components might be 
distributed in a client-server system. They came up with five models, shown in Figure 1-12. These models 
conceptualize various purposes on the client or server. While high level, they still enumerate numerous 
possibilities regarding placement of functionality.

presentation

distributed
data

distributed
transaction

distributed
presentation

remote
data

remote
presentation

presentation presentation presentation presentation

presentation
logic

logic logic

logic

logic

logic
data

data data data

data

data

Figure 1-12.  Gartner’s five models

�Example: Distributed Database
Gartner model - distributed data (see Figure 1-13)

Chapter 1 ■ Architectural Layers



13

presentation

logic

data

data

Figure 1-13.  Gartner model – distributed data

Modern mobile phones make good examples of this. Due to limited memory, they may store a small 
part of a database locally so that they can usually respond quickly. However, if data is required that is not 
held locally, then a request may be made to a remote database for that additional data.

Google Maps is another good example. All of the maps reside on Google’s servers. When one is 
requested by a user, the “nearby” maps are also downloaded into a small database in the browser. When the 
user moves the map a little bit, the extra bits required are already in the local store for quick response.

�Example: Network File Service
Gartner model - remote data (see Figure 1-14)

presentation

logic

data

Figure 1-14.  Gartner model – remote data

This classification allows remote clients access to a shared file system. There are many examples of such 
systems: NFS, DCE, etc.

�Example: Web
Gartner classification - distributed transaction (see Figure 1-15)

presentation

logic

logic

data

Figure 1-15.  Gartner model – distributed transaction

Chapter 1 ■ Architectural Layers



14

On the Web the client may have logic in JavaScript (in the past Java Applets or even Adobe Flash) while 
the server has logic in CGI scripts or similar (Ruby on Rails, etc). This is a distributed hypertext system, with 
many additional mechanisms.

�Example: Terminal Emulation
Gartner classification - remote presentation (see Figure 1-16)

presentation

logic

data

Figure 1-16.  Gartner model – remote presentation

Terminal emulation allows a remote system to act as a normal terminal on a local system. Telnet is the 
most common example of this.

�Example: Secure Shell
Gartner classification - distributed presentation (see Figure 1-17)

presentation

presentation

logic

data

Figure 1-17.  Gartner model – distributed presentation

The secure shell on UNIX allows you to connect to a remote system, run a command there, and display 
the presentation locally. The presentation is prepared on the remote machine and displayed locally. Under 
Windows, remote desktop behaves similarly.

�Three-Tier Models
Of course, if you have two tiers, then you can have three, four, or more. Some of the three-tier possibilities are 
shown in Figure 1-18.

Chapter 1 ■ Architectural Layers



15

Figure 1-18.  Three-tier models

The modern Web is a good example of the rightmost of these. The back end is made up of a database, 
often running stored procedures to hold some of the database logic. The middle tier is an HTTP server such 
as Apache running PHP scripts (or Ruby on Rails, or JSP pages, Go net/http package, etc.). This will manage 
some of the logic and will have data such as HTML pages stored locally. The front end is a browser to display 
the pages, under the control of some JavaScript. In HTML5, the front end may also have a local database.

�Fat vs. Thin
A common labeling of components is “fat” or “thin.” Fat components take up a lot of memory and do 
complex processing. Thin components, on the other hand, do little of either. There don't seem to be any 
“normal” size components, only fat or thin!

Fatness or thinness is a relative concept. Browsers are often labeled as thin because all they do is display 
web pages. However, Firefox on my Linux box takes nearly half a gigabyte of memory, which I don't regard as 
small at all!

�Middleware Model
Middleware is the “glue” connecting components of a distributed system. These components are things in 
addition to what the operating system offers. The middleware model is shown in Figure 1-19.

Chapter 1 ■ Architectural Layers



16

Client processes

Client
middleware

Local
services

Nerwork
services

O/S and h/w O/S and h/w

Exchange
protocol

network protocol

Server processes

Server
middleware

Local
services

Network
services

Figure 1-19.  The middleware model

Components of middleware include the following:

•	 The middleware layer is an application-independent software using the network 
services.

•	 Ability to normalize access and/or actions across differing applications.

•	 Configuration (e.g., security profiles).

TCP/IP is an example of a service normally provided by the operating system.

�Middleware Examples
Examples of middleware include the following:

•	 Primitive services such as file transfer or email

•	 Basic services such as RPC (e.g., Apache Thrift or gRPC)

•	 Object services such as RMI and Jini

•	 Integrated services such as DCE (Distributed Computing Environment – DNS, time, 
and more)

•	 Distributed object services such as CORBA and OLE/ActiveX (i.e., discovery)

•	 The World Wide Web

•	 Enterprise Service Buses

We use middleware libraries to minimize the need to develop custom solutions, like any shared library 
but with a focus on network-based services.

Chapter 1 ■ Architectural Layers



17

�Middleware Functions
The functions of middleware can include these:

•	 Initiation of processes at different computers

•	 Session management

•	 Directory services to allow clients to locate servers

•	 Remote data access (e.g., encoding/decoding)

•	 Concurrency control to allow servers to handle multiple clients

•	 Security and integrity

•	 Monitoring

•	 Termination of processes, both local and remote

The term “middleware” is also used when building custom web servers. For example, if you want to log 
each request and/or response to a local file, you can add functions (known as middleware) into a stack of 
operations. When your function happens to leverage a network service as we mention before, we simple call 
it middleware.

�Continuum of Processing
The Gartner model is based on a breakdown of an application into the components of presentation, 
application logic, and data handling. A finer-grained breakdown is illustrated in Figure 1-20.

TYPE ACTIVITY DIVISION

Interactive
processing

Application
processing

Database
processing

keyboard/mouse input

screen handling

graphics/sound/video control

command/menu/dialog interpretation

help processing

data input validation

application logic

error recovery

transaction construction

transaction validation

database access

data management and storage

(Client)

Host
application

Intelligent
terminal

GUI front ene
application

Client/server
transaction
processing

Networked SQL
data base
Files haring
application

(Server)

Figure 1-20.  Breakdown of an application into its components of presentation

Chapter 1 ■ Architectural Layers



18

�Points of Failure
Distributed applications run in a complex environment. This makes them much more prone to failure than 
stand-alone applications on a single computer. The points of failure include the following:

•	 Client-side errors

•	 The client side of the application could crash (out of memory, divide by zero).

•	 The client system may have hardware problems (trip on powercord).

•	 The client’s network card could fail.

•	 Network errors

•	 Network contention could cause timeouts (server is slow to respond, including 
routers).

•	 There may be network address conflicts (routing to wrong host if one even 
is found).

•	 Network elements such as routers could fail.

•	 Transmission errors may lose messages.

•	 Misconfigured DNS.

•	 Client-server errors

•	 The client and server versions may be incompatible (API changes – HTTP path, 
default port configuration, etc.).

•	 Server errors

•	 The server system may have hardware problems (including network card).

•	 The server software may crash (out of memory, divide by zero).

•	 The server’s database may become corrupted (deduplication process fails 
midway).

Applications have to be designed with these possible failures in mind. Any action performed by one 
component must be recoverable if failure occurs in some other part of the system. Techniques such as 
transactions and continuous error checking need to be employed to avoid errors. It should be noted that 
while a stand-alone application may have a lot of control over the errors that can occur, that is not the case 
with distributed systems. For example, the server has no control over network or client errors and can only 
be prepared to handle them. In many cases, the cause of an error may not be available: Did the client crash 
or did the network go down? Very often, the most complicated development work around has a stable and 
predictable distributed system.

�Acceptance Factors
The acceptance factors of a distributed system are similar to those of a stand-alone system. They include the 
following:

•	 Reliability (it doesn’t crash or corrupt)

•	 Performance (how fast an action is performed internally)

Chapter 1 ■ Architectural Layers



19

•	 Responsiveness (how fast an action seems to you)

•	 Scalability (Can we increase capacity with more instances?)

•	 Capacity (how much can we keep asking of the software)

•	 Security (operations are authenticated)

Currently, users often tolerate worse behavior than from a stand-alone system. “Oh, the network is 
slow” seems to be an acceptable excuse. Well, it isn’t really, and developers should not get into the mindset 
of assuming that factors under their control can have ignorable effects.

Another point of comparison, distributed systems are often designed to scale in a more intelligent 
way vs. simply running a stand-alone program more than once and figuring out how to split the input 
across them.

�Thoughts on Distributed Computing
What follows are considerations when constructing distributed systems, whether its software, hardware, 
or both.

�Transparency
The notion of transparency means the details are hidden from us. Implementing solutions to these concepts 
is not trivial, still a reasonable design goal. The “holy grails” of distributed systems are to provide the 
following:

•	 Access transparency

•	 Location transparency

•	 Migration transparency

•	 Replication transparency

•	 Concurrency transparency

•	 Scalability transparency

•	 Performance transparency

•	 Failure transparency

�Access Transparency
The user should not know (or need to know) if access to all or parts of the system is local or remote.

�Location Transparency
The location of a service should not matter.

�Migration Transparency
If part of the system moves to another location, it should make no difference to a user.

Chapter 1 ■ Architectural Layers



20

�Replication Transparency
It should not matter if one or multiple copies of the system are running.

�Concurrency Transparency
There should be no interference between parts of the system running concurrently. For example, if I am 
accessing the database, then you should not know about it.

�Scalability Transparency
It shouldn’t matter if one or a million users are on the system.

�Performance Transparency
Performance should not be affected by any of the system or network characteristics.

�Failure Transparency
The system should not fail. If parts of it fail, the system should recover without the user knowing the failure 
occurred.

Most of these transparency factors are observed more in the breach than in the observance. There are 
notable cases where they are almost met. For example, when you connect to Google, you don’t know (or 
care) where the servers are. Systems using Amazon Web Services are able to scale up or down in response 
to demand. Netflix has what almost seems cruel testing strategies, regularly and deliberately breaking large 
sections of its system to ensure that the whole still works.

�Eight Fallacies of Distributed Computing
Sun Microsystems was a company that performed much of the early work in distributed systems and even 
had a mantra: “The network is the computer.” Based on their experience over many years, a number of the 
scientists at Sun came up with the following list of fallacies commonly assumed:

	 1.	 The network is reliable.

	 2.	 Latency is zero.

	 3.	 Bandwidth is infinite.

	 4.	 The network is secure.

	 5.	 Topology doesn't change.

	 6.	 There is one administrator.

	 7.	 Transport cost is zero.

	 8.	 The network is homogeneous.

Chapter 1 ■ Architectural Layers



21

�Fallacy: The Network Is Reliable
A paper by Bailis and Kingsbury entitled “The Network is Reliable” (see https://queue.acm.org/detail.
cfm?id=2655736) examines this fallacy. It finds many instances, such as Microsoft reporting on their data 
centers giving 5.2 device failures per day and 40.8 link failures per day.

The Chinese government uses “DNS poisoning” as one of its techniques to censor what it considers to 
be undesirable websites. China also runs one of the DNS root servers. In 2010, this server was misconfigured 
and poisoned the DNS servers of many other countries. This made many non-Chinese websites inaccessible 
outside of China as well as inside (see http://www.pcworld.com/article/192658/article.html).

There are many other possible cases, such as DDoS (distributed denial of service) attacks making 
websites unavailable. At Box Hill Institute, a contractor once put a backhoe through the fiber cable 
connecting our DHCP server to the rest of the network, and so we went home for the rest of the day.

The network is not reliable. The implications are that any networked program must be prepared to deal 
with failure. This led to the design choices of Java's RMI and most later frameworks, with application design 
allowing for each network call possibly failing.

�Fallacy: Latency Is Zero
Latency is the delay between sending a signal and getting a reply. In a single-process system, latency can 
depend on the amount of computation performed in a function call before it can return, but on the network, 
it is usually caused by simply having to traverse transports and be processed by all sorts of nodes such as 
routers on the way.

The ping command is a good way of showing latency. A ping to Google’s Australia server takes about 20 
milliseconds from Melbourne. A ping to Baidu's Chinese servers takes about 200 msecs.1

By contrast, Williams (see http://www.eetimes.com/document.asp?doc_id=1200916) 
discusses the latency of the Linux scheduler and comes up with a mean latency of 88 microseconds. 
The latency of network calls is thousands of times greater. Additional popular paper includes 
“numbers to know,” by P. Norvig, showing where latency happens and how components affect it (see 
https://norvig.com/21-days.html#answers).

Latency can greatly affect distributed computing design and functionality. An example is computing 
scheduling decisions; if data is too slow to gather, incorrect decisions can happen.

�Fallacy: Bandwidth Is Infinite
Everyone who goes to make a cup of tea or coffee while a download takes place knows this is a fallacy. I run 
my own web server and on ADSL2 get an upload speed of 800 Kbps. I am unfortunate enough to have HFC 
to my home, and the disastrous Australian National Broadband Network will upgrade this to 1000 Kbps 
perhaps – in three years’ time, by 2020.

In the meantime, I use a local wireless connection to give me 75 Mbps up and down, and it still isn’t 
fast enough!

In the revised edition, in 2021, Ron is getting 400 Mbps down and 12 Mbps up via a cable modem in 
San Francisco. In the future, we will update with Starlink (or the dominant satellite provider); as of 2022, it is 
supposedly providing 200 Mbps down and 20 Mbps up.

1 From my Melbourne, Australia, location, I see the ping time by
$ ping www.google.com.au
PING google.com.au (216.58.203.99) 56(84) bytes of data.
64 bytes from syd09s15-in-f3.1e100.net (216.58.203.99): icmp_seq=1 ttl=50 time=27.1 ms
64 bytes from syd09s15-in-f3.1e100.net (216.58.203.99): icmp_seq=2 ttl=50 time=19.7 ms

Chapter 1 ■ Architectural Layers

https://queue.acm.org/detail.cfm?id=2655736
https://queue.acm.org/detail.cfm?id=2655736
http://www.pcworld.com/article/192658/article.html
http://www.eetimes.com/document.asp?doc_id=1200916
https://norvig.com/21-days.html#answers
http://www.google.com.au


22

�Fallacy: The Network Is Secure
There is a strong push by technology companies for strong crypto to be used for all network communications 
and an equally strong push by governments all over the world for weaker systems or for backdoors “only for 
particular governments.” This seems to apply equally well to demoncratic (my accidental misspelling may be 
accurate!) as well as totalitarian governments.

In addition, of course, there are the general “baddies,” stealing and selling credit card numbers and 
passwords by the millions.

�Fallacy: Topology Doesn’t Change
Well it does. Generally, this may affect latency and bandwidth. But the more hard-coding of routes or of IP 
addresses, the more prone to failure network applications will become. Not uncommon today, moving to the 
cloud or even cloud native is causing many changes in how network applications integrate.

�Fallacy: There Is One Administrator
So what? No problem when everything is working fine. It’s when it goes wrong that problems start – who to 
blame, who to fix it?

A major research topic for years was grid computing, which distributed computing tasks across typically 
many university and research organizations to solve huge scientific problems. This had to resolve many 
complex issues due to not only multiple administrators but also different access and security problems, 
different maintenance schedules, and so on. The advent of cloud computing has solved many of these issues, 
reducing the number of administrators and systems, so cloud computing is more resilient than many grid 
systems.

�Fallacy: Transport Cost Is Zero
Once I've bought my PC, the transport cost from CPU to monitor is zero (well, minor electricity!). But we all 
pay our IP providers money each month because they have to build server rooms, lay cables, and so on. It's 
just a cost that has to be factored in (e.g., paying monthly or forced to watch advertisements).

�Fallacy: The Network Is Homogeneous
The network isn't homogenous, and neither are the endpoints – for example, your and my PCs, iPads, 
Android devices, and mobile phones – let alone with the IoT bringing a myriad of connected devices into 
the picture. There are continual attempts by vendors for product lockin and continually restrictive work 
environments trying to simplify their control systems, which succeed to some extent. But when they fail, 
systems dependent on homogeneity fail too.

As we build our applications and learn the techniques, it pays to remember the layering models we 
discussed earlier. It will help us categorize purposes and activities. Clients and servers may not be the same 
hardware or software, but we can model them, which helps us understand and make sense of it all.

Chapter 1 ■ Architectural Layers



23

�Conclusion
This chapter has tried to emphasize that distributed computing has its own unique features compared to 
other styles of computing. Ignoring these features can only lead to failure of the resultant systems. There are 
continual attempts to simplify the architectural model, with the latest being “microservices” and “serverless” 
computing, but in the end, the complexities still remain.

These have to be addressed using any programming language, and subsequent chapters consider how 
Go manages them.

Chapter 1 ■ Architectural Layers



25
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_2

CHAPTER 2

Overview of the Go Language

There is a continual stream of programming languages being invented. Some are highly specialized; others 
are quite generic, while a third group is designed to fill broad but to some extent niche areas. Go was created 
in 2007 and released publicly in 2009. It was intended to be a systems programming language, augmenting 
(or replacing) C++ and other statically compiled languages for production network and multiprocessing 
systems.

Go joins a group of modern languages including Rust, Swift, Julia, and several others. Go’s particular 
features are a simple syntax, fast compilation of multiple program units based on “structural” typing, and of 
course the benefit of lessons learned from large-scale programs in C, C++, and Java.

The language popularity listings in Q1 2022 such as TIOBE (see http://www.tiobe.com/tiobe-index/) 
rank Go as currently the 13th most popular language. PYPL (see http://pypl.github.io/PYPL.html) 
places it also at number 13. This is alongside the 20+-year-old languages of Java, Python, C, C++, JavaScript, 
and more.

This book assumes you are an experienced programmer with some or extensive knowledge of Go at 
some level. This could be by an introductory text such as Introducing Go by Caleb Doxsey (O’Reilly) or The 
Little Go Book by Karl Seguin or by reading the more formal documentation such as The Go Programming 
Language Specification at https://go.dev/ref/spec.

If you are an experienced programmer, you can skip this chapter. If not, this chapter points out the bits 
of Go that are used in this book, but you should go elsewhere to get the necessary background. There are 
several tutorials on the Go website at https://go.dev such as the following:

•	 Getting started – https://go.dev/learn/

•	 A tutorial for the Go programming language – https://go.dev/doc/tutorial/
getting-started

•	 Online and interactive tutorial – https://go.dev/tour/list

•	 Effective Go – https://go.dev/doc/effective_go

Installing Go is best done from the Go programing language website. Examples in this book will run 
using Go 1.18. The first edition of this book used 1.8. The core language and libraries have largely remained 
the same. The package management and tooling though continues to improve. The primary goal of this book 
is to implement networking concepts in your program and less about “perfect” Go. We will desire to keep up 
with the time and make sure you have the knowledge to not only create but also inspect other code.

You don’t actually need to install Go to test the programs. Go has a “playground” accessible from the 
main page that can be used to run code (https://go.dev/play/). There are also several REPL (Read–Eval–
Print Loop) environments, but these are third party. However, you will not be able to run network-related 
code typically. This is for safety reasons; the playground limits what you can do. It still is valuable for 
learning nonnetwork code and better still sharing code.

https://doi.org/10.1007/978-1-4842-8095-9_2#DOI
http://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
https://go.dev/ref/spec
https://go.dev
https://go.dev/learn/
https://go.dev/doc/tutorial/getting-started
https://go.dev/doc/tutorial/getting-started
https://go.dev/tour/list
https://go.dev/doc/effective_go
https://go.dev/play/


26

The book predominantly uses libraries and packages from the Go Standard Library (https://pkg.
go.dev/std). The Go team also built a further set of packages as “subrepositories,” which often do not have 
the same support as the Standard Library. These are occasionally used. They will need to be installed using 
the go get command. These have package names including an “x,” such as golang.org/x/net/ipv4.

In this revised edition, we will expand upon the related network ecosystem where Go is heavily used; 
examples include common Go networking middleware and microservice tooling (e.g., gRPC).

�Types
There are predefined types of Boolean, numeric, and string types. The numeric types include uint32, int32, 
float32, and other sized numbers, as well as bytes (uint8) and runes. Runes (alias for int32) and strings 
are dealt with extensively in Chapter 6, as issues of internationalization can be significant in distributed 
programs.

There are more complex types, discussed next.

�Slices and Arrays
Arrays are sequences of elements of a single type. Slices are segments of an underlying array. Slices are 
often more convenient to deal with in Go. Slices allow a developer to create many views of an array in theory 
saving memory.

An array can be created statically:

var x [128]int

or dynamically as a pointer:

xp := new([128]int)

A slice may be created along with its underlying array:

x := make([]int, 50, 100)

or

x := new([100]int)[0:50]

These last two are both of type []int (as shown by reflect.TypeOf(x)), capacity of 100, length of 50.
Elements of an array or slice are accessed by their index:

x[1]

The indices are from 0 to len(x)-1.
A slice may be taken of an array or slice by using the lower (inclusive) and upper (exclusive) indices of 

the array or slice:

a := [5]int{-1, -2, -3, -4, -5}
s := a[1:4]  // s is now [-2, -3, -4]

Slices are struct like object that has three key pieces of information contained in them.

Chapter 2 ■ Overview of the Go Language

https://pkg.go.dev/std
https://pkg.go.dev/std
https://doi.org/10.1007/978-1-4842-8095-9_6


27

•	 Reference to the underlying array

•	 Length of your slices view into the array

•	 Capacity field that controls how much more we can see of the underlying array

In the preceding example, s is a slice, while a is an array. Arrays have fixed type and size, and those 
aspects cannot change. So a is of type [5]int, and s is []int. While we see the type with slice s, we do not see 
the length. To retrieve the length or capacity, we have the following built-in functions.

$ go doc builtin.len

package builtin // import "builtin"

func len(v Type) int
    The len built-in function returns the length of v, according to its type:

        Array: the number of elements in v.
        Pointer to array: the number of elements in *v (even if v is nil).
        Slice, or map: the number of elements in v; if v is nil, len(v) is zero.
        String: the number of bytes in v.
        Channel: the number of elements queued (unread) in the channel buffer;
                 if v is nil, len(v) is zero.

    For some arguments, such as a string literal or a simple array expression,
    the result can be a constant. See the Go language specification's "Length
    and capacity" section for details.

$ go doc builtin.cap

package builtin // import "builtin"

func cap(v Type) int
    The cap built-in function returns the capacity of v, according to its type:

        Array: the number of elements in v (same as len(v)).
        Pointer to array: the number of elements in *v (same as len(v)).
        Slice: the maximum length the slice can reach when resliced;
        if v is nil, cap(v) is zero.
        Channel: the channel buffer capacity, in units of elements;
        if v is nil, cap(v) is zero.

    For some arguments, such as a simple array expression, the result can be a
    constant. See the Go language specification's "Length and capacity" section
    for details.

We can now see the length and capacity of each. Other types are mentioned, but we are focusing on 
array and slice here.

fmt.Println(len(a), cap(a)) // 5 5
fmt.Println(len(s), cap(s)) // 3 4

Chapter 2 ■ Overview of the Go Language



28

A goal of slices is we can have many different views into the same array data. For example, a[2:] creates 
a slice where the length is 3 and the capacity is also 3. When the length and the capacity are equal, it means 
the slice cannot grow without modifying the underlying data structure. For example, if we append() to a 
slice, it inserts to the underlying array in the relative position. If cap() – len() == 0, then the underlying array 
would need to be increased in size. This increase does happen in such a case but can be unexpected. There 
is more to learn about this process and how slices share the array (or not if append is too large). More details 
about the relation of slices/arrays including memory details can be found here: https://go.dev/blog/
slices-intro.

�Maps
A map is an unordered group of elements of one type, indexed by a key of another type. We do not use maps 
much in this book, although one place is in Chapter 10, where the values of fields of an HTTP request may be 
accessed through a map using the field name as key.

myval := 10
x := map[string]int{"mykey": myval}

The preceding assignment has a few items worth discussing.

•	 map[string]int is declaring our maps type.

•	 {“mykey”: myval} is using literal syntax to initialize our typed map.

•	 Ultimately assigning to x.

Per the prior section, we can retrieve the number of keys via the len built-in function.

len(x) // 1

Looping over a map (e.g., print out keys and values) in key sorted order is possible since 1.12.
Deleting a map key can be accomplished via another built-in function called delete.

delete(x, "mykey")

A map of length 0 is not the same thing as a nil map.

�Pointers
Pointers behave similarly to pointers in other languages. The * operator dereferences a pointer, while the 
& operator takes the address of a variable. Go simplifies the use of pointers so that most of the time you 
don’t have to worry about them. The most we do in this book is check if a pointer value is nil, which will 
usually signify an error, or conversely, if a possible error value is not nil, as described in the next section.

// returns new pointer to an address that holds an int zero value
x := new(int)

// sets integer value at pointed address location
*x = 10

Chapter 2 ■ Overview of the Go Language

https://go.dev/blog/slices-intro
https://go.dev/blog/slices-intro
https://doi.org/10.1007/978-1-4842-8095-9_10


29

// pointing to, address of the pointer, value where we are pointing to
fmt.Println(x, &x, *x)
// 0xc000094010 0xc000096018 10

//every variable has an address, the value
y := 12
fmt.Println(&y, y)
// 0xc000094018 12

Something to note, when declaring function parameters, pointers and arrays are not the same thing. If 
you intend to pass an array, normally, you want to pass the address; this is because Go is pass by value.

�Functions
Functions are defined using a notation unique to Go. Why the familiar C syntax (or any other for that matter) 
is not used is explained in the Go’s Declaration Syntax blog (see https://go.dev/blog/declaration-
syntax). We leave it to the textbooks to explain the details of the syntax.

Every Go program must have a main function declared as follows:

func main() { ... }

We will frequently use a function checkError defined as follows:

func checkError(err error) {
        if err != nil {
                fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
                os.Exit(1)
        }
}

It takes one parameter and has no return value. It starts with a lowercase letter, so it is local to the 
package in which it is declared.

Functions that return values will often return an error status as well as a substantive value, as in this 
function from Chapter 3:

func readFully(conn net.Conn) ([]byte, error) { ... }

It takes net.Conn as a parameter and returns an array of bytes and an error status (nil if no error 
occurred).

In this book, no more complex definitions than this are used.

�Structures
Structures are similar to those in other languages. In Chapter 4, we consider serialization of data and use the 
example of the following structs:

type Name struct {
        Family   string
        Personal string
}

Chapter 2 ■ Overview of the Go Language

https://go.dev/blog/declaration-syntax
https://go.dev/blog/declaration-syntax
https://doi.org/10.1007/978-1-4842-8095-9_3
https://doi.org/10.1007/978-1-4842-8095-9_4


30

type Email struct {
        Kind    string
        Address string
}
type Person struct {
        Name  Name
        Email []Email
}

A compound struct can be declared as follows:

person := Person{
        Name: Name{Family: "Newmarch", Personal: "Jan"},
        Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
                       Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

�Methods
Go does not have classes in the sense that languages like Java do. However, types can have methods 
associated with them, and these act similar to methods of more standard O/O languages.

We will make heavy use of the methods defined for the various networking types. This will happen from 
the very first programs of the next chapter. For example, the type IPMask is defined as an array of bytes:

type IPMask []byte

A number of functions are defined on this type, such as

func (m IPMask) Size() (ones, bits int)

A variable of type IPMask can have the method Size() applied, as follows:

var m IPMask
...
ones, bits := m.Size()

Learning how to use the methods of the network-related types is the principal aim of this book.
We won’t be defining our own methods much in this book. That’s because to illustrate the Go libraries, 

we don’t need many of our own complex types. A typical use will be pretty-printing a type like the Person 
type defined previously:

func (p Person) String() string {
        s := p.Name.Personal + " " + p.Name.Family
        for _, v := range p.Email {
                s += "\n" + v.Kind + ": " + v.Address
        }
        return s
}

Chapter 2 ■ Overview of the Go Language



31

More specifically, triggering the preceding method would look as follows:

p := Person{}
details := p.String() // String is a method
len(details) // len is a function

There is more extensive use in Chapter 10, where a number of types and methods on these types are 
used. This is because we do need our own types when we are building more realistic systems.

Go also supports first class and higher-order functions. First class functions imply we can store a 
reference to a function (or method) in a variable. Higher-order functions imply that function (or method) 
can accept or return a function. Here is an example of first-class functions.

m := p.String
m() // triggers the p.String() method

Here is an example of a higher-order function.

package main

import (
        "fmt"
)

func f1(f func(string) int, data string) {
        fmt.Println(f(data))
}

func main() {
        f1(func(s string) int { return len(s) }, "testing")
}

$ go run prog.go
7

�Multithreading
Go has a simple mechanism for starting additional threads using the go command. In this book, that is all we 
will need. Complex tasks such as synchronizing multiple threads are not needed here.

�Packages
Go programs are built from linked packages. The packages used by any block of code have to be imported by 
an import statement at the head of the code file. Our own programs are declared to be in package main.

Apart from Chapter 10 again, nearly all of the programs in this book are in the main package.
Most packages are imported from the Standard Library. Some are imported from the subrepositories 

such as golang.org/x/net/ipv4.
The visibility of a structure’s fields is controlled by the case of the first character of the field’s name. If 

it is uppercase, it is visible outside of the package it is declared in; if it is lowercase, it is not. In the previous 
example, all the fields of all the structures are visible.

Chapter 2 ■ Overview of the Go Language

https://doi.org/10.1007/978-1-4842-8095-9_10
https://doi.org/10.1007/978-1-4842-8095-9_10


32

�Modules
Go modules track packages and their versions. Modules allow the tracking of direct and indirect 
dependencies.

While modules are the proper way to group and share code (packages) in Go, users still often use a 
package-only approach.

We will use modules when a singular package will not do. Even were modules are used, the intent is 
to keep the examples focused on the networking code. In this example, a file called “go.mod” is generated, 
which is used by Go tooling to manage our dependencies.

    //example
    $ mkdir myapp; cd myapp
    $ go mod init example.com
    $ // create program
    $ go mod tidy
    $ go run prog.go

You can learn more about modules here: https://go.dev/blog/using-go-modules.
In Go 1.18, a new feature is included to help manage local development across modules; this feature 

is called workspace. We do not leverage this feature in this book, but you can find out more about it here: 
https://go.dev/doc/tutorial/workspaces.

�Type Conversion
The first one we need to worry about in this book is conversion of strings to byte arrays and vice versa. To 
convert a string to a byte array, you do

var b []byte
b = []byte("string")

To convert the whole of an array/slice to a string, use this:

var s string
s = string(b[:])

The second casting we need to note is called a function adapter, most often in the following form:

...
http.Handle("/", http.HandlerFunc(func (w ResponseWriter, r *Request) {fmt.
Fprintf(w,"hi")}))
...

$ go doc --src http.HandlerFunc

package http // import "net/http"

// The HandlerFunc type is an adapter to allow the use of
// ordinary functions as HTTP handlers. If f is a function
// with the appropriate signature, HandlerFunc(f) is a

Chapter 2 ■ Overview of the Go Language

https://go.dev/blog/using-go-modules
https://go.dev/doc/tutorial/workspaces


33

// Handler that calls f.
type HandlerFunc func(ResponseWriter, *Request)

func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request)

By using this type, a call to HandlerFunc.ServeHTTP will now trigger our passed-in function.

�Statements
A function or method will be composed of a set of statements. These include assignments, if and switch 
statements, for and while loops, and several others.

Apart from syntax, these have essentially the same meaning as in other programming languages. Nearly 
all of the statements types will be used in later chapters.

�GOPATH
There are two ways of organizing workspaces for projects: put every project in a shared workspace or have a 
separate workspace for each project.

Either way is supported in the go tool by the environment variable GOPATH. This can be set to a list of 
directories (a ':' separated list in Linux/UNIX a ';' separated list on Windows, and a list on Plan9). It 
defaults to the directory go in the user’s home directory if it’s unset.

For each directory in GOPATH, there will be three subdirectories – src, pkg, and bin. The directory src 
will typically contain one directory per package name and under that will be the source files for that package. 
For example, in Chapter 10, we have a complete web server that uses packages we define of dictionary and 
flashcards. The src/flashcards directory contains the file FlashCards.go.

GOPATH is used as the central location for downloading dependencies, even when using modules. 
There are reasons to set GOPATH to alternative locations, but much of those reasons were prior to Modules 
and Workspaces existing.

�Running Go Programs
A Go program must have a file defining the package main. Most of the programs in this book are defined 
in a single file, such as the program IP.go in Chapter 3. The simplest way to run it is from the directory 
containing the file:

go run IP.go <IP address>

Alternatively, you can build an executable and then run it:

go build IP.go
./IP <IP address>

�Standard Libraries
Go has an extensive set of Standard Libraries. Not as large as C, Java, or C++, for example, but those languages 
have been around for a long time. The Go packages are documented at https://pkg.go.dev/std. We will 
use these extensively in this book, particularly the net, crypto, and encoding packages.

Chapter 2 ■ Overview of the Go Language

https://doi.org/10.1007/978-1-4842-8095-9_10
https://doi.org/10.1007/978-1-4842-8095-9_3
https://pkg.go.dev/std


34

In addition, there is a subrepositories group of packages available from the same page. These are less 
stable but sometimes have useful packages, which we will use occasionally.

In addition to these, there is a large set of user-contributed packages. They will not be used in the body 
of this book, which deals with principles, but in practice, you may find many of them very useful. Some are 
discussed in the concluding chapter.

�Error Values
We discussed in the last chapter that a major difference between distributed and local programming is the 
greatly increased likelihood of errors occurring during execution. A local function call may fail because of 
simple programming errors such as divide by zero; more subtle errors may occur such as out-of-memory 
errors, but their possible occurrences are generally predictable.

On the other hand, almost any function that utilizes the network can fail for reasons beyond the 
application’s control. Networking programs are consequently riddled with error checks. This is tedious, but 
necessary. Just like operating system kernel code is always error checking – errors need to be managed.

In this book, we generally exit a program with errors with appropriate messages on the client side, and 
for servers, attempt to recover by dropping the offending connection and carrying on.

Languages like C generally signal errors by returning “illegal” values such as negative integers and null 
pointers or by raising a signal. Languages like Java raise exceptions, which can lead to messy code and are 
often slow. The standard Go functions give an error in an extra parameter return from a function call.

For example, in the next chapter, we discuss the function in the net package:

func ResolveIPAddr(net, addr string) (*IPAddr, error)

The typical code to manage this is

addr, err := net.ResolveIPAddr("ip", name)
if err != nil {
        ...
}

�Conclusion
This book assumes a knowledge of the Go programming language. This chapter just highlighted those parts 
that will be needed for later chapters.

Chapter 2 ■ Overview of the Go Language



35
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_3

CHAPTER 3

Socket-Level Programming

A socket is an abstract representation of a network endpoint. Depending on the operating system, we 
can construct sockets based on the following features: domain, type, and protocol. A “domain“ typically 
represents either a remote network connection (e.g., via IPv4 or IPv6) or a local connection (e.g., via 
filesystem). Various optimizations can be acquired when we don’t have to concern ourselves crossing many 
networks. A “type” selects a connection-oriented or connectionless pairing of sockets. Sockets provide the 
necessary abstraction to set up point-to-point communication.

There are many kinds of networks in the world. These range from the very old networks, such as serial 
links, to wide area networks made from copper and fiber, to wireless networks of various kinds, both for 
computers and for telecommunications devices such as phones. These networks obviously differ at the 
physical link layer, but in many cases, they also differ at higher layers of the OSI stack.

Over the years, there has been a convergence to the “Internet stack” of IP and TCP/UDP. For example, 
Bluetooth defines physical layers and protocol layers, but on top of that, it has an IP stack, so the same 
Internet programming techniques can be employed on many Bluetooth devices. Similarly, developing 
Internet of Things (IoT) wireless technologies such as LoRaWAN and 6LoWPAN includes an IP stack.

While IP provides the networking layer 3 of the OSI stack, TCP and UDP deal with layer 4. These are 
not the final word, even in the Internet world: SCTP (Stream Control Transmission Protocol) has come 
from the telecommunications world to challenge both TCP and UDP, while to provide Internet services in 
interplanetary space requires new, under-development protocols such as DTN (Delay-Tolerant Networking). 
Nevertheless, IP, TCP, and UDP hold sway as principal networking technologies now and at least for a 
considerable time into the future. Go has full support for this style of programming.

This chapter shows how to do TCP and UDP programming using Go and how to use a raw socket for 
other protocols.

�The TCP/IP Stack
The OSI model (ISO/IEC 7498) was devised using a committee process wherein the standard was set up and 
then implemented. Some parts of the OSI standard are obscure, some parts cannot easily be implemented, 
and some parts have not been implemented.

The TCP/IP protocol was devised through a long-running DARPA project. This worked by 
implementation followed by RFCs (Request for Comments). TCP/IP is the principal UNIX networking 
protocol. TCP/IP stands for Transmission Control Protocol/Internet Protocol (RFC 793/RFC 791).

https://doi.org/10.1007/978-1-4842-8095-9_3#DOI


36

The TCP/IP stack is shorter than the OSI one, as shown in Figure 3-1.

application

TCP UDP

IP

h/w interface

application OSI 5-7

OSI 4

OSI 3

OSI 1-2

Figure 3-1.  TCP/IP stack vs. the OSI

TCP is a connection-oriented protocol, whereas UDP (User Datagram Protocol) is a connectionless 
protocol.

We next discuss the layers above the point-to-point communication (Physical/Data Link) layers.

�IP Datagrams
The IP layer provides a connectionless and unreliable delivery system. It considers each datagram 
independently of the others. Any association between datagrams must be supplied by the higher layers. 
The datagram itself is a well-defined format; at a high level, it includes a header and a payload. Fields of 
importance include address information and higher layer protocol choice.

The IP layer supplies a checksum of its own header. The IP protocol defaults any error correction 
to other layers. The header includes the source and destination addresses. The IP layer handles routing 
through an Internet. It is also responsible for breaking up large datagrams into smaller ones for transmission 
and reassembling them at the other end. Combining the prior statements, each router verifies IP packet 
correctness via its checksum. Additionally, a router will modify the IP packet header (e.g., modified TTL) 
triggering it to recalculate and replace the header.

Above the networking layer, we have the following transport layer options.

�UDP
UDP is also connectionless and unreliable. What it adds to IP is a checksum for the contents of the datagram 
and port numbers. These are used to give a client-server model, which you’ll see later. Think of ports as 
apartment numbers, and an IP address is an apartment street number.

Chapter 3 ■ Socket-Level Programming



37

�TCP
TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that 
two processes can use to communicate. It also uses port numbers to identify services on a host. With TCP, 
the two sockets used in the client-server connection over TCP represent a virtual circuit. While it feels like a 
dedicated physical connection, many virtual circuits can run over the same physical connection(s).

We briefly touched the networking (IP) and transport (UDP/TCP) layers, there is much more to learn. 
For example, IP fragmentation and TCP segmentation allow each layer to control the size of each packet 
it passes to the next layer. It may sound similar, but in this example, TCP segments include sequence 
information to keep packets in order (reliability), and IP fragmentation is focused on optimizing passing 
data to the layers below it (which have their own maximum size).

It is the IP address that is key for the usage of sockets.

�Internet Addresses
In order to use a service, you must be able to find it. The Internet uses an address scheme for devices such as 
computers so that they can be located. This addressing scheme was originally devised when there were only 
a handful of connected computers and very generously allowed up to 2^32 addresses using a 32-bit unsigned 
integer. These are the so-called IPv4 addresses. In recent years, the number of connected (or at least directly 
addressable) devices has threatened to exceed this number, and there is a progressive transition to IPv6. The 
transition is patchy and shown, for example, in the graph by Google (https://www.google.com/intl/en/
ipv6/statistics.html – ~37% as of January 2022). Sadly – from Jan’s viewpoint – few of the Australian 
IP providers support IPv6 (~30% as of 2022). In the United States (for Ron), it’s a little higher at ~50%. These 
numbers are based on observed incoming traffic and related records.

�IPv4 Addresses
The address is a 32-bit integer that gives the IP address. This addresses down to a network interface card 
on a single device. The address is usually written as four bytes in decimal with a dot between them, as in 
127.0.0.1 or 66.102.11.104. This dotted-decimal format captures multiple pieces of information in a 
human-friendly way.

The IP address of any device is generally composed of two parts: the address of the network in which the 
device resides and the address of the device within that network. Once upon a time, the split between network 
address and internal address was simple and was based on the bytes (between dots) used in the IP address.

•	 In a class A network, the first byte identifies the network, while the last three identify 
the device. There are only 128 class A networks, owned by the very early players in the 
Internet space such as IBM, General Electric Company, and MIT.1 Example: 3.x.y.z.

•	 Class B networks use the first two bytes to identify the network and the last two 
to identify devices within the subnet. This allows up to 2^16 (65,536) devices on a 
subnet. Example: 142.90.y.z.

•	 Class C networks use the first three bytes to identify the network and the last one to 
identify devices within that network. This allows up to 2^8 (actually 254, not 256, as 
the bottom and top addresses are reserved) devices. Example: 192.168.123.z.

1 Recently, MIT have returned their class A network to the pool. http://www.iana.org/
assignments/ipv4-address-space/ipv4-address-space.xml. Amazon purchased 3.0.0.0/8 from 
General Electric Company in 2018.

Chapter 3 ■ Socket-Level Programming

https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml


38

There are classes defined beyond class C (D and E). We stop here as it becomes more of historical study 
than useful knowledge when discussing networking today.

This scheme doesn’t work well if you want, say, 400 computers on a network. 254 is too small (class C),  
while 65,536 (-2) is too large (class B). In binary arithmetic terms, you want about 512 (-2). This can be 
achieved by using a 23-bit network address and 9 bits for the device addresses. Similarly, if you want up to 
1024 (-2) devices, you use a 22-bit network address and a 10-bit device address. A newer scheme was created 
to replace class-based addressing, known as Classless Inter-Domain Routing (a.k.a. CIDR), allowing for the 
scenario we are describing.

Given an IP address of a device and knowing how many bits N are used for the network address gives 
a relatively straightforward process for extracting the network address and the device address within that 
network. Form a “network mask” (also called a subnet mask), which is a 32-bit binary number with all ones 
in the first N places and all zeroes in the remaining ones. For example, if 16 bits are used for the network 
address, the mask is 11111111111111110000000000000000. It’s a little inconvenient using binary, so decimal 
bytes are usually used. The netmask for 16-bit network addresses is 255.255.0.0; for 24-bit network 
addresses, it is 255.255.255.0; for 23-bit addresses, it would be 255.255.254.0; and for 22-bit addresses, it 
would be 255.255.252.0. This network mask is a generalization for the class-based addressing. Shorthand 
for a 24-bit network is /24; for a 22-bit address, it is /22.

So to find the network address of a device, bit-wise AND its IP address with the network mask, 
while the device address within the subnet is found with bit-wise AND of the one’s complement 
of the mask with the IP address. For example, the binary value of the IP address 192.168.1.3 is 
11000000101010000000000100000011 (using the IP Address Subnet Mask Calculator). If a 16-bit netmask is 
used, the network is 1100000010101000 0000000000000000 (or 192.168.0.0), while the device address is 
0000000000000000 0000000100000011 (or 0.0.1.3).

A network mask is provided when a network provider gives you a network. For example, a local ISP 
provides your office a w.x.y.z/29 (six host addresses). An ISP gets a block (large number of hosts) from a RIR 
(Regional Internet Registry)/IANA (Internet Assigned Numbers Authority). In general, each reduction of the 
network subnet number results in doubling the number of hosts (power of 2).

�IPv6 Addresses
The Internet has grown vastly beyond original expectations. The initially generous 32-bit addressing 
scheme is on the verge of running out. There are unpleasant workarounds such as NAT (Network Address 
Translation) addressing, but eventually we will have to switch to a wider address space. IPv6 uses 128-bit 
addresses. Even bytes become cumbersome to express such addresses, so hexadecimal digits are used, 
grouped into four digits and separated by a colon. A typical address might be FE80:CD00:0000:0CDE:1257
:0000:211E:729C.

These addresses are not easy to remember! DNS will become even more important. There are tricks 
to reducing some addresses, such as leading zeroes and repeated digits. For example, “localhost” is 
0:0:0:0:0:0:0:1, which can be shortened to ::1.

Each address is divided into three components. The first is the network address used for Internet 
routing and is the first 64 bits of the address. The next part is 16 bits for the netmask. This is used to divide 
the network into subnets. It can give anything from one subnet only (all zeroes) to 65,535 subnets (all 1s). 
The last part is the device component, of 48 bits. The preceding address would be FE80:CD00:0000:0CDE for 
the network, 1257 for the subnet, and 0000:211E:729C for the device.

Some points of comparison between IPv6 and IPv4:

•	 IPv6 has no checksum header (it assumes other layers perform verification).

•	 Many fields in header are optional in IPv6.

Chapter 3 ■ Socket-Level Programming



39

•	 While larger in general, overall packet header structure is quicker to parse 
(simplifying router processing).

•	 IPv6 reduces fragmentation compared to IPv4 due to larger datagram sizing and 
reduced router reconstructing (moving to edge nodes).

�IP Address Type
Finally, we can start using some of the Go language network packages. The package net defines many types, 
functions, and methods of use in Go network programming. The type IP is defined as an array of bytes:

type IP []byte

There are several functions to manipulate a variable of type IP, but you are likely to use only some of 
them in practice. For example, the function ParseIP(String) will take a dotted IPv4 address or a colon IPv6 
address, while the IP method String() will return a string. Note that you may not get back what you started 
with: the string form of 0:0:0:0:0:0:0:1 is ::1.

A program that illustrates this process is ip.go:

$ mkdir ch3
$ cd ch3
ch3$ vi ip.go

/* IP
 */
package main

import (
        "fmt"
        "log"
        "net"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: %s ip-addr\n", os.Args[0])
        }
        name := os.Args[1]
        addr := net.ParseIP(name)
        if addr == nil {
                fmt.Println("Invalid address")
        } else {
                fmt.Println("The address is ", addr.String())
        }
}

Chapter 3 ■ Socket-Level Programming



40

This can be run, for example, as follows:

ch3$ go run ip.go 127.0.0.1

Here is the response:

The address is 127.0.0.1

Or it could be run as

ch3$ go run IP.go 0:0:0:0:0:0:0:1

with this response:

The address is ::1

If you are unfamiliar, the colon addresses are IPv6, including the ::1, which is the IPv6 version of 
127.0.0.1 (in IPv4).

The backing store for the IP type is a byte array. As hinted in the preceding example, we can store both 
IPv4 and IPv6 addresses in the same type. Some purposes for ParseIP (and ultimate storage into IP) are 
for serialization purposes, ease of access of related octets (e.g., class A would be myip[0] – first byte), and 
general normalization of various input forms (e.g., 127.000.000.001 -> 127.0.0.1).

Of potential interest, ParseIP doesn’t necessarily normalize all forms; these nonstandard forms are 
called “Rare IP Address Formats.” As example of a rare ip, some tools expand 127.1 to 127.0.0.1; net.ParseIP 
does not. Like all programming environments, it’s hard to capture all the planned or unplanned standards 
or de facto standards. We can see an ongoing discussion about this very issue on the Golang project tracker 
(“net: should expand IP address 1.1 to 1.0.0.1 #36822”, https://github.com/golang/go/issues/36822).

�Using Available Documentation and Examples
As you proceed with the examples in this book, you use the built-in examples and documentation to dig 
deeper into the standard library. For example, show the alias type known as IP in the net package along with 
functions and methods that use it.

ch3$ go doc net.IP

package net // import "net"

type IP []byte
    An IP is a single IP address, a slice of bytes. Functions in this package
    accept either 4-byte (IPv4) or 16-byte (IPv6) slices as input.

    Note that in this documentation, referring to an IP address as an IPv4
    address or an IPv6 address is a semantic property of the address, not just
    the length of the byte slice: a 16-byte slice can still be an IPv4 address.

func IPv4(a, b, c, d byte) IP
func ParseIP(s string) IP
func (ip IP) DefaultMask() IPMask
func (ip IP) Equal(x IP) bool

Chapter 3 ■ Socket-Level Programming

https://github.com/golang/go/issues/36822


41

func (ip IP) IsGlobalUnicast() bool
func (ip IP) IsInterfaceLocalMulticast() bool
func (ip IP) IsLinkLocalMulticast() bool
func (ip IP) IsLinkLocalUnicast() bool
func (ip IP) IsLoopback() bool
func (ip IP) IsMulticast() bool
func (ip IP) IsUnspecified() bool
func (ip IP) MarshalText() ([]byte, error)
func (ip IP) Mask(mask IPMask) IP
func (ip IP) String() string
func (ip IP) To16() IP
func (ip IP) To4() IP
func (ip *IP) UnmarshalText(text []byte) error

Notice some functions return IP; others are methods that use it. Most of the methods appear to be 
property checks; for example, is the IP the loopback IP?

Next, let’s drill down into net.ParseIP.

ch3$ go doc net.ParseIP

package net // import "net"

func ParseIP(s string) IP
    ParseIP parses s as an IP address, returning the result. The string s can be
    in IPv4 dotted decimal ("192.0.2.1"), IPv6 ("2001:db8::68"), or IPv4-mapped
    IPv6 ("::ffff:192.0.2.1") form. If s is not a valid textual representation
    of an IP address, ParseIP returns nil.

Eventually, you will want to find examples of usage of given function or type. Your Go distribution will 
normally include examples, either via a test function or internal usage. We can find tests related to ParseIP 
(in a Unix-based system) as follows:

ch3$ go test -list ".*ParseIP.*" $(go env GOROOT)/src/net

TestParseIP
BenchmarkParseIP
ExampleParseIP
ok          net        0.106s

Here is an example of running the related test and benchmark from before, focused on net.ParseIP.

ch3$ go test -run ParseIP -bench ParseIP -count=1 $(go env GOROOT)/src/net

goos: darwin
goarch: amd64
pkg: net
cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
BenchmarkParseIP-12              934454              1309 ns/op
PASS
ok          net        2.295s

Chapter 3 ■ Socket-Level Programming



42

There are a couple of items to note regarding these prior commands. “go env GOROOT” will produce 
where the Go standard library is installed; the $() is for UNIX subshell execution (on Windows, you can just 
run go env GOROOT and copy/paste). Assuming standard package layout, we know the net package would 
be located in “$(go env GOROOT)/src/net”. The remaining commands are standard Go test commands:

•	 -list regex // finds test/bench/example that matches regex.

•	 -run regex // runs Testregex.

•	 -bench regex // runs Benchregex.

•	 -count=1 // prevents tests from caching results.

Running a test example is a start; reviewing the code will provide more in-depth knowledge. In the case 
of ParseIP, once we locate the test source, we can review it (your output may differ):

ch3$ grep -l TestParseIP -nr $(go env GOROOT)/src/net

/usr/local/go/src/net/ip_test.go
/usr/local/go/src/net/netip/netip_pkg_test.go (netip package has a 'smaller' ip type)

If you review the related test and its input inside ip_test.go, we can get a feel for the types of input 
ParseIP expects and its related output.

...
var parseIPTests = []struct {
        in  string
        out IP
}{
        {"127.0.1.2", IPv4(127, 0, 1, 2)},
        {"127.0.0.1", IPv4(127, 0, 0, 1)},
        {"127.001.002.003", IPv4(127, 1, 2, 3)},
        {"::ffff:127.1.2.3", IPv4(127, 1, 2, 3)},
        {"::ffff:127.001.002.003", IPv4(127, 1, 2, 3)},
        {"::ffff:7f01:0203", IPv4(127, 1, 2, 3)},
        {"0:0:0:0:0000:ffff:127.1.2.3", IPv4(127, 1, 2, 3)},
        {"0:0:0:0:000000:ffff:127.1.2.3", IPv4(127, 1, 2, 3)},
        {"0:0:0:0::ffff:127.1.2.3", IPv4(127, 1, 2, 3)},

        �{"2001:4860:0:2001::68", IP{0x20, 0x01, 0x48, 0x60, 0, 0, 0x20, 0x01, 0, 0, 0, 0, 0, 
0, 0x00, 0x68}},

        �{"2001:4860:0000:2001:0000:0000:0000:0068", IP{0x20, 0x01, 0x48, 0x60, 0, 0, 0x20, 
0x01, 0, 0, 0, 0, 0, 0, 0x00, 0x68}},

        {"-0.0.0.0", nil},
        {"0.-1.0.0", nil},
        {"0.0.-2.0", nil},
        {"0.0.0.-3", nil},
        {"127.0.0.256", nil},
        {"abc", nil},
        {"123:", nil},
        {"fe80::1%lo0", nil},
        {"fe80::1%911", nil},
        {"", nil},

Chapter 3 ■ Socket-Level Programming



43

        {"a1:a2:a3:a4::b1:b2:b3:b4", nil}, // Issue 6628
}

func TestParseIP(t *testing.T) {
        for _, tt := range parseIPTests {
                if out := ParseIP(tt.in); !reflect.DeepEqual(out, tt.out) {
                        t.Errorf("ParseIP(%q) = %v, want %v", tt.in, out, tt.out)
                }
                if tt.in == "" {
                        // Tested in TestMarshalEmptyIP below.
                        continue
                }
                var out IP
                �if err := out.UnmarshalText([]byte(tt.in)); !reflect.DeepEqual(out, tt.out) 

|| (tt.out == nil) != (err != nil) {
                        �t.Errorf("IP.UnmarshalText(%q) = %v, %v, want %v", tt.in, out, 

err, tt.out)
                }
        }
}
...

Hopefully, this convinces you to review the available documentation and examples. Maybe it will 
convince you to also create good documentation and examples for your own code. We shouldn’t just stop at 
the examples or tests. One often overlooked feature of Go is Go is written in Go. This means it’s pretty easy to 
follow. Since the test is located in test_ip.go, it’s safe to assume the actual code to ParseIP (and in this case, 
IP) is in ip.go.

Beyond this section, we assume you are finding and reviewing related examples in the standard library.

�The IPMask Type
An IP address is typically divided into the components of a network address, a subnet, and a device portion. 
The network address and subnet form a prefix to the device portion. The mask is an IP address of all binary 
ones to match the prefix length, followed by all zeroes.

In order to handle masking operations, you use this type:

type IPMask []byte

The simplest function to create a netmask uses the CIDR notation of ones followed by zeroes up to the 
number of bits:

func CIDRMask(ones, bits int) IPMask

A mask can then be used by a method of an IP address to find the network for that IP address:

func (ip IP) Mask(mask IPMask) IP

Chapter 3 ■ Socket-Level Programming



44

An example of the use of this is the following program called mask.go:

ch3$ vi mask.go

/* Mask
 */
package main

import (
        "fmt"
        "log"
        "net"
        "os"
        "strconv"
)

func main() {
        if len(os.Args) != 4 {
                log.Fatalln("Usage: %s dotted-ip-addr ones bits\n", os.Args[0])
        }
        dotAddr := os.Args[1]
        ones, _ := strconv.Atoi(os.Args[2])
        bits, _ := strconv.Atoi(os.Args[3])
        addr := net.ParseIP(dotAddr)
        if addr == nil {
                log.Fatalln("nil Invalid address")
        }
        mask := net.CIDRMask(ones, bits)
        computedOnes, computedBits := mask.Size()
        network := addr.Mask(mask)
        fmt.Println("Address is ", addr.String(),
                "\nMask length is ", computedBits,
                "\nLeading ones count is ", computedOnes,
                "\nMask is (hex) ", mask.String(),
                "\nNetwork is ", network.String())
}

This can be compiled (go build mask.go) to mask and run as follows:

ch3$ mask <ip-address> <ones> <zeroes>

Or it can be run directly as follows:

ch3$ go run mask.go <ip-address> <ones> <zeroes>

For an IPv4 address of 103.232.159.187 on a /24 network, we get the following:

ch3$ go run mask.go 103.232.159.187 24 32

Address is  103.232.159.187
Mask length is  32

Chapter 3 ■ Socket-Level Programming



45

Leading ones count is  24
Mask is (hex)  ffffff00
Network is  103.232.159.0

For an IPv6 address fda3:97c:1eb:fff0:5444:903a:33f0:3a6b where the network component is 
fda3:97c:1eb, the subnet is fff0, and the device part is 5444:903a:33f0:3a6b, we get the following:

ch3$ go run mask.go fda3:97c:1eb:fff0:5444:903a:33f0:3a6b 52 128

Address is  fda3:97c:1eb:fff0:5444:903a:33f0:3a6b
Mask length is  128
Leading ones count is  52
Mask is (hex)  fffffffffffff0000000000000000000
Network is  fda3:97c:1eb:f000::

When you review the documentation of a function, take note of the result and related error checks. In 
the prior example, if we pass in a “bits” value that doesn’t match the width of IPv4 or IPv6 addresses, it will 
cause CIDRMask to return nil. The nil mask value passed into addr.Mask will then in turn return nil. We can 
debate if the preceding example is too simple to handle errors (probably); it’s also simply good to note what 
the library is returning (even if it doesn’t explain why, e.g., why nil and not an error string).

ch3$ go run mask.go 103.232.159.187 24 44 # 44 != 32 nor 128

Address is  103.232.159.187
Mask length is  0
Leading ones count is  0
Mask is (hex)  <nil>
Network is  <nil>

IPv4 netmasks are often given in the 4-byte dotted notation such as 255.255.255.0 for a /24 network. 
There is a function to create a mask from such a 4-byte IPv4 address:

func IPv4Mask(a, b, c, d byte) IPMask

Also, there is a method of IP that returns the default mask for IPv4 (only):

func (ip IP) DefaultMask() IPMask

Note that the string form of a mask is a hex number, such as ffffff00 for a /24 mask.
The following program called ipv4mask.go illustrates these:

ch3$ vi ipv4mask.go

/* IPv4Mask
 */
package main

import (
        "fmt"
        "log"
        "net"
        "os"
)

Chapter 3 ■ Socket-Level Programming



46

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: %s dotted-ip-addr\n", os.Args[0])
        }
        dotAddr := os.Args[1]
        addr := net.ParseIP(dotAddr)
        if addr == nil {
                log.Fatalln("nil Invalid address")
        }
        mask := addr.DefaultMask()
        network := addr.Mask(mask)
        ones, bits := mask.Size()
        fmt.Println("Address is ", addr.String(),
                "\nDefault mask length is ", bits,
                "\nLeading ones count is ", ones,
                "\nMask is (hex) ", mask.String(),
                "\nNetwork is ", network.String())
        derivedMask := net.IPv4Mask(255, 255, 0, 0) // working on mask
        fmt.Printf("Network using %s: %s\n", derivedMask, addr.Mask(derivedMask))
}

For example, running this

ch3$ go run ipv4mask.go 192.168.1.3

in my home network gives the following result:

Address is  192.168.1.3
Default mask length is  32
Leading ones count is  24
Mask is (hex)  ffffff00
Network is  192.168.1.0
Network using ffff0000: 192.168.0.0

�Basic Routing
Now that we see how you can take an IP address and add (binary) to a subnet mask to reveal the network 
IP, what do we use it for? The primary purpose is in routing, where a router needs to figure out the next hop 
(where to send this packet). Since computers are usually more than one hop away, we use a series of routers 
to move traffic around. Each router has a lookup table and decides where to forward traffic. It would be very 
ineffective to map every destination IP to a specific next hop, so instead, we route many IPs to a specific next 
hop. In other words, a subnet goes to a specific next hop. Here is an example for routing packets to particular 
destinations.

ch3$ vi ipv4router.go

/* IPv4Router
 */
package main

import (

Chapter 3 ■ Socket-Level Programming



47

        "fmt"
        "net"
)

func main() {
        routingTable := []struct {
                subnetmask net.IP
                network    net.IP
                nextHop    net.IP
        }{
                �{net.IP{255, 255, 255, 240}, net.IP{192, 17, 7, 208}, net.IP{192, 12, 

7, 15}},
                �{net.IP{255, 255, 255, 240}, net.IP{192, 17, 7, 144}, net.IP{192, 12, 

7, 67}},
                {net.IP{255, 255, 255, 0}, net.IP{192, 17, 7, 0}, net.IP{192, 12, 7, 251}},
                {net.IP{0, 0, 0, 0}, net.IP{0, 0, 0, 0}, net.IP{10, 10, 10, 10}},
        }
        incomingPacketsToRoute := []struct {
                sourceAddr      net.IP
                destinationAddr net.IP
                data            string
        }{
                {net.IP{1, 2, 3, 4}, net.IP{2, 3, 4, 5}, "who knows, send to 0.0.0.0"},
                {net.IP{1, 2, 3, 4}, net.IP{192, 17, 7, 20}, "better be 192.17.7.251"},
        }
        for _, packetToRoute := range incomingPacketsToRoute {
                for _, routingEntry := range routingTable {
                        �r := packetToRoute.destinationAddr.Mask(net.IPMask(routingEntry.

subnetmask))
                        if r.Equal(routingEntry.network) {
                                �fmt.Printf("For destination %s nexthop is %s\n", 

packetToRoute.destinationAddr, routingEntry.nextHop)
                                break //check remaining ips
                        }
                }
        }
}

ch3$ go run IPv4Router.go

For destination 2.3.4.5 nexthop is 10.10.10.10
For destination 192.17.7.20 nexthop is 192.12.7.251

As we see in the prior output, the first packet had a destination of 2.3.4.5, and our routing table didn’t 
find a match. The last entry in routing tends to be the catch-all route. Our table defaults to the next hop of 
10.10.10.10. The second packet destination for 192.17.7.20 matched the network IP of 192.17.7.0, which has 
the next hop of 192.12.7.251.

Chapter 3 ■ Socket-Level Programming



48

�The IPAddr Type
Many of the other functions and methods in the net package return a pointer to an IPAddr. This is simply a 
structure containing an IP (and a zone which may be needed for IPv6 addresses). The zone may be needed 
for ambiguous IPv6 addresses with multiple network interfaces. You can learn about zones (IPv6 scoped 
addresses) here: https://datatracker.ietf.org/doc/html/rfc4007.

type IPAddr {
    IP IP
    Zone string
}

The primary use of this type is to perform DNS lookups on IP hostnames.

func ResolveIPAddr(net, addr string) (*IPAddr, error)

where net is one of ip, ip4, or ip6. This is shown in the program called resolveip.go:

ch3$ vi resolveip.go

/* ResolveIP
 */
package main

import (
        "fmt"
        "log"
        "net"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: %s hostname\n", os.Args[0])
        }
        name := os.Args[1]
        addr, err := net.ResolveIPAddr("ip", name)
        if err != nil {
                log.Fatalln("Resolution error", err.Error())
        }
        fmt.Println("Resolved address is ", addr.String())
}

Running this

ch3$ go run resolveip.go www.google.com

returns the following:

Resolved address is 142.250.64.22

Chapter 3 ■ Socket-Level Programming

https://datatracker.ietf.org/doc/html/rfc4007


49

If the first parameter to ResolveIPAddr() for the net type is given as ip6 instead of ip, I get this result:

Resolved address is  2404:6800:4006:801::2004

You may get different results, depending on where Google appears to live from your address’s 
perspective.

Per the documentation of ResolveIPAddr, arguments are documented under Dial (go doc net.Dial). 
The network parameter must belong to the IP family, either “ip”, “ip4”, or “ip6”. Optionally appended to the 
network parameter is a protocol such as “icmp” or its protocol number, “1”.

        addr, err := net.ResolveIPAddr("ip4:icmp", name)

The usage of the network parameter and optional protocol allows us to verify that the name can be used 
for that given purpose. For example, if we use an IPv6 address with “ip4:icmp”, it will fail. A starting point to 
learn more is following the internal documentation, go doc -u net.protocols. “-u” is needed because the 
“var protocols” are not exported.

The preceding code uses the variable called name. The official documentation calls the parameter 
address. We use name to show it’s not just an IP address that can be passed in. In general, you should not use 
ResolveIPAddr if your IP end point (name/address) can resolve to more than one IP address. The following 
functions will be more helpful when there is more than a single result.

�Host Canonical Name and Addresses Lookup
The ResolveIPAddr function will perform a DNS lookup on a hostname and return a single IP address. How 
it does this depends on the operating system and its configuration. For example, a Linux/UNIX system may 
use /etc/resolv.conf or /etc/hosts with the order of the search set in /etc/nsswitch.conf.

Many hosts can have more than one name (e.g., www.myserver.com -> myserver.com); these CNAME 
records (canonical name) eventual resolve to an A record (e.g., myserver.com -> IP). If you want to find the 
canonical name, use LookupCNAME:

func LookupCNAME(name string) (cname string, err error).

Some hosts may have multiple IP addresses, usually from multiple network interface cards. They may 
also have multiple hostnames, acting as aliases. The LookupHost function will return a slice of addresses.

func LookupHost(name string) (cname string, addrs []string, err error)

Both are shown in the following program called lookuphost.go:

ch3$ vi lookuphost.go

/* LookupHost
 */
package main

import (
        "fmt"
        "log"
        "net"
        "os"
)

Chapter 3 ■ Socket-Level Programming

http://www.myserver.com


50

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: %s hostname\n", os.Args[0])
        }
        name := os.Args[1]
        cname, _ := net.LookupCNAME(name)
        fmt.Println(cname)
        addrs, err := net.LookupHost(cname)
        if err != nil {
                log.Fatalln("Error: ", err.Error())
        }
        for _, addr := range addrs {
                fmt.Println(addr)
        }
}

We first normalize the hostname by looking for the canonical name. Then we see if that resulting 
name has one or more IPs. Note that this function returns strings, not IP address values. When you run the 
preceding program:

ch3$ go run lookuphost.go go.dev

it prints something similar to this:

2001:4860:4802:32::15
2001:4860:4802:36::15
2001:4860:4802:38::15
2001:4860:4802:34::15
216.239.32.21
216.239.36.21
216.239.38.21
216.239.34.21

If you are on a UNIX platform, you can compare these results via the dig command.

ch3$ ch3 % dig go.dev A go.dev AAAA +short
216.239.34.21
216.239.38.21
216.239.32.21
216.239.36.21
2001:4860:4802:38::15
2001:4860:4802:34::15
2001:4860:4802:36::15
2001:4860:4802:32::15

There are many additional Lookup functions to learn.

go doc net | grep Lookup

like Dial or directly with functions like LookupHost and LookupAddr, varies
func LookupAddr(addr string) (names []string, err error)

Chapter 3 ■ Socket-Level Programming



51

func LookupCNAME(host string) (cname string, err error)
func LookupHost(host string) (addrs []string, err error)
func LookupIP(host string) ([]IP, error)
func LookupMX(name string) ([]*MX, error)
func LookupNS(name string) ([]*NS, error)
func LookupPort(network, service string) (port int, err error)
func LookupSRV(service, proto, name string) (cname string, addrs []*SRV, err error)
func LookupTXT(name string) ([]string, error)

Some are related to email, including MX and TXT, others for general resource identification such as 
CNAME, Host, and NS.

�Services
Services run on host machines. They are typically long lived and are designed to wait for requests and 
respond to them. There are many types of services, and there are many ways in which they can offer their 
services to clients. The Internet world bases many of these services on two methods of communication – 
TCP and UDP – although there are other communication protocols such as SCTP waiting in the wings to take 
over. Many other types of service, such as peer to peer, remote procedure calls, communicating agents, and 
many others, are built on top of TCP and UDP.

�Ports
Services live on host machines. We can locate a host using an IP address. But on each computer, there may 
be many services, and a simple way is needed to distinguish between them. The method used by TCP, UDP, 
SCTP, and others is to use a port number. This is an unsigned integer between 1 and 65,535, and each service 
will associate itself with one or more of these port numbers.

There are many “standard” ports. Telnet typically uses port 23 with the TCP protocol. DNS uses port 53, 
either with TCP or with UDP. FTP uses ports 21 and 20, one for commands and the other for data transfer. 
HTTP usually uses port 80, but it often uses ports 8000, 8080, and 8088, all with TCP. The X Window System 
often takes ports 6000–6007, both on TCP and UDP.

On a UNIX system, the commonly used ports are listed in the file /etc/services. Go has a function to 
look up ports on all systems:

func LookupPort(network, service string) (port int, err error)

The network argument is a string such as "tcp" or "udp", while the service is a string such as "telnet" 
or "domain" (for DNS).

A program using this is lookupport.go:

ch3$ vi lookupport.go

/* LookupPort
 */
package main

import (
        "fmt"
        "log"

Chapter 3 ■ Socket-Level Programming



52

        "net"
        "os"
)

func main() {
        if len(os.Args) != 3 {
                log.Fatalln("Usage: %s network-type service\n", os.Args[0])
        }
        networkType := os.Args[1]
        service := os.Args[2]
        port, err := net.LookupPort(networkType, service)
        if err != nil {
                log.Fatalln("Error: ", err.Error())
        }
        fmt.Println("Service port ", port)
}

For example:

ch3$ go run lookupport.go tcp telnet

Service port  23

ch3$ go run lookupport.go udp quake

Service port  26000

There is more to port management than using a default service mapping (e.g., SSH to 22). One 
idea is called ephemeral ports; these ports range typically from 32768 to 60999 (they can vary by OS). 
Ephemeral ports are used by services to move per-client traffic to a temporary (i.e., ephemeral) port; at 
the communication session conclusion, the port is released. As an additional concern, various software 
platforms also use ranges of ports for predefined purposes; for example, Kubernetes uses the range 32000 
to 32768 by default for exposing services on its internal network. There is no central management for port 
usage, and collisions can occur. Verification and recovery logic is the best practice when dealing with ports.

�The TCPAddr Type
The TCPAddr type is a structure containing an IP, a port, and a zone. The zone is required to distinguish 
between possible ambiguous IPv6 link-local and site-local addresses, as different network interface cards 
(NICs) may have the same IPv6 address.

type TCPAddr struct {
    IP   IP
    Port int
    Zone string
}

Chapter 3 ■ Socket-Level Programming



53

The function to create a TCPAddr is ResolveTCPAddr:

func ResolveTCPAddr(net, addr string) (*TCPAddr, error)

where net is one of tcp, tcp4, or tcp6 and the addr is a string composed of a hostname or IP address, 
followed by the port number after a :, such as www.google.com:80 or 127.0.0.1:ssh. If the address is an 
IPv6 address, which already has colons in it, then the host part must be enclosed in square brackets, such as 
[::1]:23. Another special case is often used for servers, where the host address is zero, so the TCP address is 
really just the port name, as in :80 for an HTTP server.

Similar to IPAddr, resolving to TCPAddr (or UDPAddr – will see later) allows us to verify and normalize 
our network end points.

�TCP Sockets
When you know how to reach a service via its network and port IDs, what then? If you are a client, you need 
an API that will allow you to connect to a service and then to send messages to that service and read replies 
back from the service.

If you are a server, you need to be able to bind to a port and listen at it. When a message comes in, you 
need to be able to read it and write back to the client.

The net.TCPConn is the Go type that allows full duplex communication between the client and the 
server. Two major methods of interest are as follows:

func (c *TCPConn) Write(b []byte) (n int, err error)
func (c *TCPConn) Read(b []byte) (n int, err error)

A TCPConn is used by both a client and a server to read and write messages.
Note that a TCPConn implements the io.Reader and io.Writer interfaces so that any method using a 

reader or writer can be applied to a TCPConn.

�TCP Client
Once a client has established a TCP address for a service, it “dials” the service. If successful, the dial returns 
a TCPConn for communication. The client and the server exchange messages on this. Typically, a client writes 
a request to the server using the TCPConn and reads a response from the TCPConn. This continues until either 
(or both) side closes the connection. A TCP connection is established by the client using this function:

func DialTCP(net string, laddr, raddr *TCPAddr) (*TCPConn, error)

where laddr is the local address (client side), which is usually set to nil, and raddr is the remote 
address of the service (server side). The net string is one of "tcp4", "tcp6", or "tcp", depending on whether 
you want a TCPv4 connection or a TCPv6 connection or don’t care.

A simple example can be provided by a client to a web (HTTP) server. We will deal in substantially more 
detail with HTTP clients and servers in a later chapter, so for now, we will keep it simple.

One of the possible messages that a client can send is the HEAD message. This queries a server for 
information about the server and a document on that server. The server returns information but does not 
return the document itself. The request sent to query an HTTP server could be as follows:

"HEAD / HTTP/1.0\r\n\r\n"

Chapter 3 ■ Socket-Level Programming

http://www.google.com


54

This asks for information about the root document and the server. A typical response might be

HTTP/1.0 200 OK
Content-Type: text/html; charset=ISO-8859-1
P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."
Date: Mon, 02 Aug 2021 21:56:38 GMT
Server: gws
X-XSS-Protection: 0
X-Frame-Options: SAMEORIGIN
Expires: Mon, 02 Aug 2021 21:56:38 GMT
Cache-Control: private
Set-Cookie: 1P_JAR=2021-08-02-21; expires=Wed, 01-Sep-2021 21:56:38 GMT; path=/; domain=.
google.com; Secure
Set-Cookie: NID=220=U9k4rAwVrhFaS20KHO0Ff0EQv6ZxzK_3zgVTlf3uBLPl6G1PZ_040Kz
6SpQvCba7aA9bZo3bKbKadUCN9EQNNPMUJh11QLUsnYeMoS1iOC7QZa-eKDCheZcywo_nMt__
KcKHLIUIc6BUFEIAayyEala5qb4d7YanhTrKPQsEqaA; expires=Tue, 01-Feb-2022 21:56:38 GMT; path=/; 
domain=.google.com; HttpOnly

We first give the program (getheadinfo.go) to establish the connection for a TCP address, send the 
request string, and then read and print the response. The program is getheadinfo.go:

ch3$ vi getheadinfo.go

/* GetHeadInfo
 */
package main

import (
        "fmt"
        "io/ioutil"
        "log"
        "net"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: %s host:port ", os.Args[0])
        }
        service := os.Args[1]
        tcpAddr, err := net.ResolveTCPAddr("tcp4", service)
        checkError(err)
        conn, err := net.DialTCP("tcp", nil, tcpAddr)
        checkError(err)
        _, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
        checkError(err)
        result, err := ioutil.ReadAll(conn)
        checkError(err)
        fmt.Println(string(result))
}

Chapter 3 ■ Socket-Level Programming



55

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error: %s", err.Error())
        }
}

ch3$ go run getheadinfo.go golang.org:80

HTTP/1.0 200 OK
Content-Type: text/html; charset=ISO-8859-1
P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."
Date: Mon, 03 Jan 2022 23:37:35 GMT
Server: gws
X-XSS-Protection: 0
X-Frame-Options: SAMEORIGIN
Expires: Mon, 03 Jan 2022 23:37:35 GMT
Cache-Control: private
Set-Cookie: 1P_JAR=2022-01-03-23; expires=Wed, 02-Feb-2022 23:37:35 GMT; path=/; domain=.
google.com; Secure
Set-Cookie: NID=511=iZvpsJc9liI44GQwANJFCMUc5Xgko8dCWw9Q2_L4QwwizOtxQ3my4Uk8MFjPs
YbOXCsGEntPRPnyHSJoE3UfPqQ6WH3akir2iks2GzKZYv-58SFCx2qN7hFIXalS2nLT5V7X4EBH9wAkzo
dE-5sEcv6gDvu0fAliFXxnuFAFHdw; expires=Tue, 05-Jul-2022 23:37:35 GMT; path=/; domain=.
google.com; HttpOnly

The first point to note is the almost excessive amount of error checking that is going on. This is normal 
for networking programs (and Golang): the opportunities for failure are substantially greater than for stand-
alone programs. Hardware may fail on the client, the server, or on any of the routers and switches in the 
middle; communication may be blocked by a firewall; timeouts may occur due to network load; the server 
may crash while the client is talking to it. The following checks are performed:

•	 There may be syntax errors in the address specified. An example is an 
unspecified port.

•	 The attempt to connect to the remote service may fail. For example, the service 
requested might not be running, or there may be no such host connected to the 
network. An example is a typo in the hostname.

•	 Although a connection has been established, writes to the service might fail if the 
connection has died suddenly, or if the network times out.

•	 Similarly, the reads might fail as above.

Reading from the server requires a comment. In this case, we read essentially a single response from 
the server. This will be terminated by end of file on the connection. However, it may consist of several TCP 
packets, so we need to keep reading until the end of file. The io/ioutil function ReadAll will look after 
these issues and return the complete response. (Thanks to Roger Peppe on the golang-nuts mailing list.)

There are some language issues involved. First, most of the functions return a dual value, with the 
possible error as second value. If no error occurs, then this will be nil. In C, the same behavior is gained by 
special values such as NULL, or -1, or zero being returned – if that is possible. In Java, the same error checking 
is managed by throwing and catching exceptions, which can make the code look very messy.

Chapter 3 ■ Socket-Level Programming



56

�A Daytime Server
The simplest service that we can build is the daytime service. This is a standard Internet service, defined 
by RFC 867, with a default port of 13 on both TCP and UDP. Unfortunately, with the (justified) increase 
in paranoia over security, hardly any sites run a daytime server anymore. Never mind; we can build our 
own. (For those interested, if you install inetd/systemd on your system, you usually get a daytime server 
thrown in.)

A server registers itself on a port and listens on that port. Then it blocks on an “accept” operation, 
waiting for clients to connect. When a client connects, the accept call returns, with a connection object. 
The daytime service is very simple and just writes the current time to the client, closes the connection, and 
resumes waiting for the next client.

The relevant calls are as follows:

func ListenTCP(network string, laddr *TCPAddr) (*TCPListener, error)
func (l *TCPListener) Accept() (Conn, error)

The argument net can be set to one of the strings: "tcp", "tcp4", or "tcp6". The IP address should be 
set to zero if you want to listen on all network interfaces, or to the IP address of a single network interface 
if you only want to listen on that interface. If the port is set to zero, then the O/S will choose a port for you. 
Otherwise, you can choose your own. Note that on a UNIX system, you cannot listen on a port below 1024 
unless you are the system supervisor, root, and ports below 128 are standardized by the IETF. The example 
program chooses port 1200 for no particular reason. The TCP address is given as :1200 – all interfaces, port 
1200. The program is daytimeserver.go:

ch3$ vi daytimeserver.go

/* DaytimeServer
 */
package main

import (
        "log"
        "net"
        "time"
)

func main() {
        service := ":1200"
        tcpAddr, err := net.ResolveTCPAddr("tcp", service)
        checkError(err)
        listener, err := net.ListenTCP("tcp", tcpAddr)
        checkError(err)
        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }
                daytime := time.Now().String()
                conn.Write([]byte(daytime)) // don't care about return value
                conn.Close()                // we're finished with this client
        }
}

Chapter 3 ■ Socket-Level Programming



57

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error: %s", err.Error())
        }
}

If you run this server, it will just wait there, not doing much. When a client connects to it, it will respond 
by sending the daytime string to it and then return to waiting for the next client.

ch3$ go run daytimeserver.go

Note the changed error handling in the server as compared to a client. The server should run forever 
so that if any error occurs with a client, the server just ignores that client and carries on. A client could 
otherwise try to mess up the connection with the server and bring it down!

We haven’t built a client. That is easy, just changing the previous client to omit the initial write. 
Alternatively, just open a telnet connection to that host:

ch3$ telnet localhost 1200

This will produce output such as the following:

Trying ::1...
Connected to localhost.
Escape character is '^]'.
2022-01-03 18:40:16.602125 -0500 EST m=+2.486360923Connection closed by foreign host.

where the date is the output from the server.

�Multithreaded Server
echo is another simple IETF service. The simpleechoserver.go program just reads what the client types and 
sends it back:

ch3$ vi simpleechoserver.go

/* SimpleEchoServer
 */
package main

import (
        "fmt"
        "log"
        "net"
)

func main() {
        service := ":1201"
        tcpAddr, err := net.ResolveTCPAddr("tcp4", service)
        checkError(err)
        listener, err := net.ListenTCP("tcp", tcpAddr)
        checkError(err)

Chapter 3 ■ Socket-Level Programming



58

        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }
                handleClient(conn)
                conn.Close() // we're finished
        }
}
func handleClient(conn net.Conn) {
        var buf [512]byte
        for {
                n, err := conn.Read(buf[0:])
                checkError(err)
                fmt.Println(string(buf[0:]))
                _, err = conn.Write(buf[0:n])
                checkError(err)
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error: %s", err.Error())
        }
}

ch3$ go run simpleechoserver.go

But if you open two more terminals and try to telnet both to the echo service like so, the second will fail:

ch3$ telnet localhost 1201 # in one terminal
// type hello

ch3$ telnet localhost 1201 # in second terminal, blocked by the first telnet client

While it works, there is a significant issue with this server: it is single threaded (just like our daytime 
service). While a client has a connection open to it, no other client can fully connect. Other clients are 
blocked and will probably time out. Fortunately, this is easily fixed by making the client handler a goroutine. 
We have also moved closing the connection into the handler, as it now belongs there. The program is called 
threadedechoserver.go:

ch3$ vi threadedechoserver.go

/* ThreadedEchoServer
 */
package main

import (
        "fmt"
        "log"
        "net"
)

Chapter 3 ■ Socket-Level Programming



59

func main() {
        service := ":1201"
        tcpAddr, err := net.ResolveTCPAddr("tcp4", service)
        checkError(err)
        listener, err := net.ListenTCP("tcp", tcpAddr)
        checkError(err)
        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }
                // run as a goroutine
                go handleClient(conn)
        }
}
func handleClient(conn net.Conn) {
        // close connection on exit
        defer conn.Close()
        var buf [512]byte
        for {
                // read up to 512 bytes
                n, err := conn.Read(buf[0:])
                checkError(err)
                fmt.Println(string(buf[0:]))
                // write the n bytes read
                _, err = conn.Write(buf[0:n])
                checkError(err)
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatal("Fatal error: %s", err.Error())
        }
}

This simple refactoring moves us to a much more interesting world. This book assumes knowledge of 
basic Go; it would still be remiss to not highlight areas to consider. After moving to a concurrent world, we 
should think of state management (if our applications require it), cross thread security, resource exhaustion, 
and more. No details are provided here, but something for your future consideration.

If you run the same scenario as the prior single-threaded version (server, two telnet clients), you will see 
either client can talk on demand.

Chapter 3 ■ Socket-Level Programming



60

�Controlling TCP Connections
�Timeout
The server may want to time out a client if it does not respond quickly enough; that is, it does not write a 
request to the server in time. This should be a long period (several minutes) because the users may be taking 
their time. Conversely, the client may want to time out the server (after a much shorter time). Both do this as 
follows:

func (c *IPConn) SetDeadline(t time.Time) error

This is done before any reads or writes on the socket.

�Staying Alive
A client may want to stay connected to a server even if it has nothing to send. It can use this:

func (c *TCPConn) SetKeepAlive(keepalive bool) error

There are several other connection control methods, which are documented in the net package.
To learn more about deadlines and keepalive, review the existing tests, and run them:

ch3$ go test -test.v -run "Timeout|KeepAlive" -count=1 $(go env GOROOT)/src/net
=== RUN   TestDialerKeepAlive
--- PASS: TestDialerKeepAlive (0.00s)
=== RUN   TestRetryTimeout
    dnsclient_unix_test.go:985: 192.0.2.1:53 {{16532 false 0 false false true false 
RCodeSuccess} [{www.golang.org. TypeTXT ClassINET}] [] [] []} 2022-01-03 18:49: 
09.787565 -0500 EST m=+5.003120852
    dnsclient_unix_test.go:985: 192.0.2.2:53 {{25591 false 0 false false true false 
RCodeSuccess} [{www.golang.org. TypeTXT ClassINET}] [] [] []} 2022-01-03 18:49: 
09.79893 -0500 EST m=+5.014486668
--- PASS: TestRetryTimeout (0.01s)
=== RUN   TestDNSTimeout
--- PASS: TestDNSTimeout (0.00s)
...

ch3$ go test -list "Timeout|KeepAlive" $(go env GOROOT)/src/net
TestDialerKeepAlive
TestRetryTimeout
TestDNSTimeout
...

�UDP Datagrams
In a connectionless protocol, each message contains information about its origin and destination. There is 
no “session” established using a long-lived socket. UDP clients and servers make use of datagrams, which 
are individual messages containing source and destination information. There is no state maintained by 
these messages, unless the client or server does so. The messages are not guaranteed to arrive or may arrive 
out of order.

Chapter 3 ■ Socket-Level Programming



61

The most common situation for a client is to send a message and hope that a reply arrives. The most 
common situation for a server is to receive a message and then send one or more replies back to that client. 
In a peer-to-peer situation, though, the server may just forward messages to other peers.

The major difference between TCP and UDP handling for Go is how to deal with packets arriving from 
multiple clients, without the cushion of a TCP session to manage things. The major calls needed are as 
follows:

func ResolveUDPAddr(network, address string) (*UDPAddr, error)
func DialUDP(network string, laddr, raddr *UDPAddr) (*UDPConn, error)
func ListenUDP(network string, laddr *UDPAddr) (*UDPConn, error)
func (c *UDPConn) ReadFromUDP(b []byte) (n int, addr *UDPAddr, err error
func (c *UDPConn) WriteToUDP(b []byte, addr *UDPAddr) (int, error)

The client for a UDP time service doesn’t need to make many changes; just change the ...TCP... calls 
to ...UDP... calls in the program udpdaytimeclient.go:

ch3$ vi udpdaytimeclient.go

/* UDPDaytimeClient
 */
package main

import (
        "fmt"
        "log"
        "net"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: %s host:port", os.Args[0])
        }
        service := os.Args[1]
        udpAddr, err := net.ResolveUDPAddr("udp", service)
        checkError(err)
        conn, err := net.DialUDP("udp", nil, udpAddr)
        checkError(err)
        _, err = conn.Write([]byte("anything"))
        checkError(err)
        var buf [512]byte
        n, err := conn.Read(buf[0:])
        checkError(err)
        fmt.Println(string(buf[0:n]))
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Chapter 3 ■ Socket-Level Programming



62

The server has to make a few more changes in the program udpdaytimeserver.go:

ch3$ vi udpdaytimeserver.go

/* UDPDaytimeServer
 */
package main

import (
        "log"
        "net"
        "time"
)

func main() {
        service := ":1200"
        udpAddr, err := net.ResolveUDPAddr("udp", service)
        checkError(err)
        conn, err := net.ListenUDP("udp", udpAddr)
        checkError(err)
        for {
                handleClient(conn)
        }
}
func handleClient(conn *net.UDPConn) {
        var buf [512]byte
        _, addr, err := conn.ReadFromUDP(buf[0:])
        checkError(err)
        daytime := time.Now().String()
        conn.WriteToUDP([]byte(daytime), addr)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The server is run as follows:

ch3$ go run udpdaytimeserver.go

A client on the same host is run as follows:

ch3$ go run udpdaytimeclient.go :1200

The client output will be something like this:

2022-01-03 18:57:00.616532 -0500 EST m=+8.044046910

Chapter 3 ■ Socket-Level Programming



63

�Server Listening on Multiple Sockets
A server may be attempting to listen to multiple clients not just on one port, but on many. In this case, it has 
to use some sort of polling mechanism between the ports.

In C, the select() call lets the kernel do this work. The call takes a number of file descriptors. The 
process is suspended. When I/O is ready on one of these, a wakeup is done, and the process can continue. 
This is cheaper than busy polling. In Go, you can accomplish the same by using a different go routine for 
each port. A thread will become runnable when the lower-level select() discovers that I/O is ready for 
this thread.

�The Conn, PacketConn, and Listener Types
So far, we have differentiated between the API for TCP and the API for UDP using, for example, DialTCP 
and DialUDP returning TCPConn and UDPConn, respectively. The Conn type is an interface, and both TCPConn 
and UDPConn implement this interface. To a large extent, you can deal with this interface rather than the 
two types.

Instead of separate dial functions for TCP and UDP, you can use a single function:

func Dial(network, address string) (Conn, error)
func DialIP(network string, laddr, raddr *IPAddr) (*IPConn, error)

The network can be any of tcp, tcp4 (IPv4-only), tcp6 (IPv6-only), udp, udp4 (IPv4-only), udp6 (IPv6-
only), ip, ip4 (IPv4-only), and ip6 (IPv6-only) and several UNIX-specific ones such as unix for UNIX 
sockets. It will return an appropriate implementation of the Conn interface. Note that this function takes a 
string rather than address as the (r)addr argument so that programs using this can avoid working out the 
address type first.

Using this function makes minor changes to the programs. For example, the earlier program to get HEAD 
information from a web page can be rewritten as ipgetheadinfo.go:

ch3$ vi ipgetheadinfo.go

/* IPGetHeadInfo
 */
package main

import (
        "bytes"
        "fmt"
        "io"
        "log"
        "net"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: %s host:port", os.Args[0])
        }
        service := os.Args[1]
        conn, err := net.Dial("tcp", service)

Chapter 3 ■ Socket-Level Programming



64

        checkError(err)
        _, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
        checkError(err)
        result, err := readFully(conn)
        checkError(err)
        fmt.Println(string(result))
}
func readFully(conn net.Conn) ([]byte, error) {
        defer conn.Close()
        result := bytes.NewBuffer(nil)
        var buf [512]byte
        for {
                n, err := conn.Read(buf[0:])
                result.Write(buf[0:n])
                if err != nil {
                        if err == io.EOF {
                                break
                        }
                        return nil, err
                }
        }
        return result.Bytes(), nil
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error: %s", err.Error())
        }
}

This can be run on my own machine as follows:

ch3$ go run ipgetheadinfo.go yahoo.com:80 # can't use go.dev as its on 443 w/TLS

It prints the following about the server running on port 80:

HTTP/1.0 200 OK
Date: Tue, 04 Jan 2022 00:02:13 GMT
Server: ATS
Cache-Control: no-store, no-cache, max-age=0, private
Content-Type: text/html
Content-Language: en
Expires: -1
X-Frame-Options: SAMEORIGIN
Content-Length: 12

Writing a server can be similarly simplified using this function:

func Listen(network, address string) (Listener, error)

Chapter 3 ■ Socket-Level Programming



65

This returns an object implementing the Listener interface. This interface has a method Accept:

type Listener interface {
        // Accept waits for and returns the next connection to the listener.
        Accept() (Conn, error)

        // Close closes the listener.
        // Any blocked Accept operations will be unblocked and return errors.
        Close() error

        // Addr returns the listener's network address.
        Addr() Addr
}

This will allow a server to be built. Using this, the multithreaded Echo server given earlier becomes 
threadedipechoserver.go:

ch3$ vi threadedipechoserver.go

/* ThreadedIPEchoServer
 */
package main

import (
        "log"
        "net"
)

func main() {
        service := ":1200"
        listener, err := net.Listen("tcp", service)
        checkError(err)
        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }
                go handleClient(conn)
        }
}
func handleClient(conn net.Conn) {
        defer conn.Close()
        var buf [512]byte
        for {
                n, err := conn.Read(buf[0:])
                checkError(err)

                _, err = conn.Write(buf[0:n])
                checkError(err)
        }
}

Chapter 3 ■ Socket-Level Programming



66

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error: %s", err.Error())
        }
}

If you want to write a UDP server, there is an interface called PacketConn and a method to return an 
implementation of this:

func ListenPacket(network, address string) (PacketConn, error)

This interface has the primary methods ReadFrom and WriteTo that handle packet reads and writes.
The Go net package recommends using these interface types rather than the concrete ones. But by 

using them, you lose specific methods such as SetKeepAlive of TCPConn and SetReadBuffer of UDPConn, 
unless you do a type cast. It is your choice.

�Raw Sockets and the IPConn Type
This section covers advanced material that most programmers are unlikely to need. It deals with raw sockets, 
which allow programmers to build their own IP protocols or use protocols other than TCP or UDP.

TCP and UDP are not the only protocols built above the IP layer. The website (http://www.iana.org/
assignments/protocol-numbers) lists about 140 of them (this list is often available on UNIX systems in the 
file /etc/protocols). TCP and UDP are only numbers 6 and 17, respectively, on this list.

Go allows you to build so-called raw sockets, to enable you to communicate using one of these other 
protocols, or even to build your own. But it gives minimal support: it will connect hosts and write and read 
packets between the hosts. In a later chapter, we look at designing and implementing your own protocols 
above TCP; this section considers the same type of problem, but at the IP layer.

To keep things simple, we use almost the simplest possible example: how to send an IPv4 ping message 
to a host. Ping uses the echo command from the ICMP protocol. This is a byte-oriented protocol, in which 
the client sends a stream of bytes to another host and the host replies. The format of the ICMP packet 
payload is as follows:

•	 The first byte is 8, standing for the echo message.

•	 The second byte is zero.

•	 The third and fourth bytes are a checksum on the entire message.

•	 The fifth and sixth bytes are an arbitrary identifier.

•	 The seventh and eight bytes are an arbitrary sequence number.

•	 The rest of the packet is user data.

The packet can be sent using the Conn.Write method, which prepares the packet with this payload. 
The replies received include the IPv4 header, which takes 20 bytes. (See, e.g., the Wikipedia article on the 
Internet Control Message Protocol, ICMP.)

Chapter 3 ■ Socket-Level Programming

http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers


67

The following program called ping.go will prepare an IP connection, send a ping request to a host, and 
get a reply. You may need root access in order to run it successfully:

ch3$ vi ping.go

/* Ping
 */
package main

import (
        "fmt"
        "log"
        "net"
        "os"
)

// change this to your own IP address or leave set to 0.0.0.0
const myIPAddress = "0.0.0.0"
const ipv4HeaderSize = 20

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "host")
        }
        localAddr, err := net.ResolveIPAddr("ip4", myIPAddress)
        checkError(err)

        remoteAddr, err := net.ResolveIPAddr("ip4", os.Args[1])
        checkError(err)

        conn, err := net.DialIP("ip4:icmp", localAddr, remoteAddr)
        checkError(err)

        var msg [512]byte
        msg[0] = 8  // echo
        msg[1] = 0  // code 0
        msg[2] = 0  // checksum, fix later
        msg[3] = 0  // checksum, fix later
        msg[4] = 0  // identifier[0]
        msg[5] = 13 // identifier[1] (arbitrary)
        msg[6] = 0  // sequence[0]
        msg[7] = 37 // sequence[1] (arbitrary)
        len := 8

        // now fix checksum bytes
        check := checkSum(msg[0:len])
        msg[2] = byte(check >> 8)
        msg[3] = byte(check & 255)

        // send the message
        _, err = conn.Write(msg[0:len])

Chapter 3 ■ Socket-Level Programming



68

        checkError(err)
        fmt.Print("Message sent:    ")
        for n := 0; n < 8; n++ {
                fmt.Print(" ", msg[n])
        }
        fmt.Println()

        // receive a reply
        size, err2 := conn.Read(msg[0:])
        checkError(err2)
        fmt.Print("Message received:")
        for n := ipv4HeaderSize; n < size; n++ {
                fmt.Print(" ", msg[n])
        }
        fmt.Println()
}
func checkSum(msg []byte) uint16 {
        sum := 0
        // assume even for now
        for n := 0; n < len(msg); n += 2 {
                sum += int(msg[n])*256 + int(msg[n+1])
        }
        sum = (sum >> 16) + (sum & 0xffff)
        sum += (sum >> 16)
        var answer uint16 = uint16(^sum)
        return answer
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error: %s", err.Error())
        }
}

It is run using the destination address as an argument. The received message should differ from the sent 
message in only the first type byte and the third and fourth checksum bytes, as follows:

ch3$ sudo env "PATH=$PATH" go run ping.go google.com

Message sent:     8 0 247 205 0 13 0 37
Message received: 0 0 255 205 0 13 0 37

Notice we are using “sudo” (on Linux) since being root is required to use ICMP, as set in DialIP.

�Conclusion
This chapter considered programming at the IP, TCP, and UDP levels. This is often necessary if you want to 
implement your own protocol or build a client or server for an existing protocol.

Chapter 3 ■ Socket-Level Programming



69

CHAPTER 4

Data Serialization

A client and a server need to exchange information via messages. TCP and UDP provide the transport 
mechanisms to do this. The two processes also need to have a protocol in place so that message exchange 
can take place meaningfully.

Messages are sent across the network as a sequence of bytes, which has no structure except as a linear 
stream of bytes. We address the various possibilities for messages and the protocols that define them in the 
next chapter. In this chapter, we concentrate on a component of messages – the data that is transferred.

A program will typically build complex data structures to hold the current program state. In conversing 
with a remote client or service, the program will be attempting to transfer such data structures across the 
network – that is, outside of the application’s own address space.

�Structured Data
Programming languages use structured data such as the following:

•	 Records/structures: A collection of fields of possibly different data types where the 
type is fixed, also known as a composition.

•	 Variant records: A record that contains a value potentially of differing types.

•	 Array: Fixed size or varying, also known as an aggregation.

•	 String: Fixed size or varying.

•	 Tables: Arrays of records; in data storage terms, a record is a row.

•	 Nonlinear structures such as

•	 Circular linked lists

•	 Binary trees

•	 Objects with references to other objects

For our purpose, a composition is a data structure where nested elements do not exist without the 
parent. In aggregation, the stored/nested elements can potentially exist on their own.

None of the IP, TCP, or UDP packets know the meaning of any of these data types. All that they (packets) 
can contain is a sequence of bytes. Thus, an application has to serialize any data into a stream of bytes in 

© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_4

https://doi.org/10.1007/978-1-4842-8095-9_4#DOI


70

order to write it and deserialize the stream of bytes back into suitable data structures on reading it. These two 
operations are known as marshalling and unmarshalling, respectively.1

For example, consider sending the following variable length table of two columns of variable length 
strings:

fred programmer

liping analyst

sureerat manager

This could be done in various ways. For example, suppose that it is known that the data will be an 
unknown number of rows in a two-column table. Then a marshalled form could be

3                // 3 rows, 2 columns (assumed from above table)
4 fred           // 4 char string, col 1
10 programmer    // 10 char string, col 2
6 liping         // 6 char string, col 1
7 analyst        // 7 char string, col 2
8 sureerat       // 8 char string, col 1
7 manager        // 7 char string, col 2

Variable length things can alternatively have their length indicated by terminating them with an 
“illegal” value, such as \0 for strings. The previous table could also be written with the number of rows again, 
but each string terminated by \0 (the newlines are for readability, not part of the serialization):

3
fred\0
programmer\0
liping\0
analyst\0
sureerat\0
manager\0

Alternatively, it may be known that the data is a three-row fixed table of two columns of strings of length 
8 and 10, respectively. Then a serialization of the table could be (again, the newlines are not part of the 
serialization)

fred\0\0\0\0
programmer
liping\0\0
analyst\0\0\0
sureerat
manager\0\0\0

Any of these formats (and others) is okay, but the message exchange protocol must specify which one is 
used or allow it to be determined at runtime.

1 I’m treating serialization and marshalling as synonymous. There are a variety of opinions on 
this, some more language specific than others. See, search for example, “What is the difference 
between Serialization and Marshaling?” on Stack Overflow or Google.

Chapter 4 ■ Data Serialization



71

�Mutual Agreement
The previous section gave an overview of the issue of data serialization. In practice, the details can be 
considerably more complex. For example, consider the first possibility, marshalling a table into the 
byte stream:

3
4 fred
10 programmer
6 liping
7 analyst
8 sureerat
7 manager

Many questions arise. For example, how many rows are possible for the table – that is, how big an 
integer do we need to describe the row size? If it is 255 or less, then a single byte will do, but if it is more, 
then a short, integer, or long may be needed. A similar problem occurs for the length of each string. With the 
characters themselves, to which character set do they belong? 7-bit ASCII? 16-bit Unicode? The question of 
character sets is discussed at length in a later chapter.

This serialization is opaque or implicit. If data is marshalled using this format, then there is nothing in 
the serialized data to say how it should be unmarshalled. The unmarshalling side has to know exactly how 
the data is serialized in order to unmarshal it correctly. For example, if the number of rows is marshalled as 
an 8-bit integer but unmarshalled as a 16-bit integer, then an incorrect result will occur as the receiver tries 
to unmarshal 3 and 4 as a 16-bit integer, and the receiving program will almost certainly fail later.

An early well-known serialization method is XDR (external data representation) used by Sun’s RPC, 
later known as ONC (Open Network Computing). XDR is defined by RFC 1832, and it is instructive to see 
how precise this specification is. Even so, XDR is inherently type unsafe as serialized data contains no type 
information. The correctness of its use in ONC is ensured primarily by compilers generating code for both 
marshalling and unmarshalling.

Go contains no explicit support for marshalling or unmarshalling opaque serialized data. The RPC 
package in Go does not use XDR but instead uses Gob serialization (also part of Go), described later in this 
chapter.

�Self-Describing Data
Self-describing data carries type information along with the data. For example, the previous data might get 
encoded as follows:

table
   uint8 3
   uint 2
string
   uint8 4
   []byte fred
string
   uint8 10
   []byte programmer
string
   uint8 6
   []byte liping

Chapter 4 ■ Data Serialization



72

string
   uint8 7
   []byte analyst
string
   uint8 8
   []byte sureerat
string
   uint8 7
   []byte manager

Of course, a real encoding would not normally be as cumbersome and verbose as in the example: 
Small integers would be used as type markers, and the whole data would be packed in as small a byte array 
as possible (XML provides a counterexample, though). However, the principle is that the marshaller will 
generate such type information in the serialized data. The unmarshaller will know the type-generation rules 
and will be able to use them to reconstruct the correct data structure.

�Encoding Packages
As mentioned earlier, there is more than one way to encode/decode data. Go provides high level interfaces 
in the “encoding” package. Additionally, Go includes several specialized packages for well-known data 
formats including JSON and XML in subpackages. Take a moment to review the “encoding” package 
documentation; we will cross these and related interfaces throughout this chapter.

$ mkdir ch4
$ cd ch4
ch4$ go doc -all encoding

package encoding // import "encoding"

Package encoding defines interfaces shared by other packages that convert
data to and from byte-level and textual representations. Packages that check
for these interfaces include encoding/gob, encoding/json, and encoding/xml.
As a result, implementing an interface once can make a type useful in
multiple encodings. Standard types that implement these interfaces include
time.Time and net.IP. The interfaces come in pairs that produce and consume
encoded data.

TYPES

type BinaryMarshaler interface {
        MarshalBinary() (data []byte, err error)
}
    BinaryMarshaler is the interface implemented by an object that can marshal
    itself into a binary form.

    MarshalBinary encodes the receiver into a binary form and returns the
    result.

type BinaryUnmarshaler interface {
        UnmarshalBinary(data []byte) error
}

Chapter 4 ■ Data Serialization



73

    BinaryUnmarshaler is the interface implemented by an object that can
    unmarshal a binary representation of itself.

    UnmarshalBinary must be able to decode the form generated by MarshalBinary.
    UnmarshalBinary must copy the data if it wishes to retain the data after
    returning.

type TextMarshaler interface {
        MarshalText() (text []byte, err error)
}
    TextMarshaler is the interface implemented by an object that can marshal
    itself into a textual form.

    MarshalText encodes the receiver into UTF-8-encoded text and returns the
    result.

type TextUnmarshaler interface {
        UnmarshalText(text []byte) error
}
    TextUnmarshaler is the interface implemented by an object that can unmarshal
    a textual representation of itself.

    UnmarshalText must be able to decode the form generated by MarshalText.
    UnmarshalText must copy the text if it wishes to retain the text after
    returning.

As mentioned in the above documentation, we can confirm the usage of these interfaces by reviewing 
the mentioned samples.

ch4$ go doc net.IP.MarshalText

package net // import "net"

func (ip IP) MarshalText() ([]byte, error)
    MarshalText implements the encoding.TextMarshaler interface. The encoding is
    the same as returned by String, with one exception: When len(ip) is zero, it
    returns an empty slice.

You can do the same to read about the UnmarshalText implementation. Unlike net.IP, time.Time does 
use the binary marshaller interface. “go doc” provides an easy and powerful way to learn how Go’s network 
related interfaces are defined and consumed.

You can list the available encoding packages as follows:

ch4$ go list encoding/...

encoding
encoding/ascii85
encoding/asn1
encoding/base32
encoding/base64
encoding/binary
encoding/csv

Chapter 4 ■ Data Serialization



74

encoding/gob
encoding/hex
encoding/json
encoding/pem
encoding/xml

�ASN.1
Abstract Syntax Notation One (ASN.1) was originally designed in 1984 for the telecommunications industry. 
ASN.1 is a complex standard, and a subset of it is supported by Go in the package asn1. It builds self-
describing serialized data from complex data structures. Its primary use in current networking systems is as 
the encoding for X.509 certificates, which are heavily used in authentication systems. The support in Go is 
based on what is needed to read and write X.509 certificates.

Structured data in ASN has similar purpose but differing names; for example, a struct is called a "SET" 
in ASN, a "SEQUENCE OF" is an array, and a "CHOICE" is like a variant. ASN has sets encoding rules that 
provide various levels of complexity vs. performance (i.e., size), including

•	 Basic Encoding Rules (BER)

•	 Distinguished Encoding Rules (DER)

•	 Basic XML Encoding Rules (XER)

•	 And others

ASN.1 support in Go is based on what is needed to read and write X.509 certificates. X.509 uses the DER 
encoding rules, which in turn are a subset of BER.2 A value can often be encoded in more than one way with 
BER, where in DER, it can only have a single encoding. DER offers less chances of misencoding a value, a 
feature good for security.

The documentation not only highlights the interface used but also includes links to learn more about 
the encoding.

ch4$ go doc encoding/asn1

package asn1 // import "encoding/asn1"

Package asn1 implements parsing of DER-encoded ASN.1 data structures, as
defined in ITU-T Rec X.690.

See also “A Layman's Guide to a Subset of ASN.1, BER, and DER,”
http://luca.ntop.org/Teaching/Appunti/asn1.html.

const TagBoolean = 1 ...
const ClassUniversal = 0 ...
var NullBytes = []byte{ ... }
var NullRawValue = RawValue{ ... }
func Marshal(val interface{}) ([]byte, error)
func MarshalWithParams(val interface{}, params string) ([]byte, error)
func Unmarshal(b []byte, val interface{}) (rest []byte, err error)
func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error)

2 You can review the ASN.1 encoding rules for BEF, CER, and DER in document X.690-202102 – 
https://www.itu.int/rec/T-REC-X.690-202102-I/en

Chapter 4 ■ Data Serialization

http://www.itu.int/rec/T-REC-X.690-202102-I/en


75

type BitString struct{ ... }
type Enumerated int
type Flag bool
type ObjectIdentifier []int
type RawContent []byte
type RawValue struct{ ... }
type StructuralError struct{ ... }
type SyntaxError struct{ ... }

As with other encoding packages, there are functions that allow us to marshal and unmarshal data:

func Marshal(val interface{}) ([]byte, error)
func Unmarshal(b []byte, val interface{}) (rest []byte, err error)

The Marshal function converts a data value into a serialized byte array, and the Unmarshal function 
converts a byte array back into a local variable. The second argument of Unmarshal function deserves 
further examination. Given a variable of any type, we can marshal it by just passing its value to Marshal. To 
unmarshal it, we need a variable of a named type that will match the serialized data. The precise details of 
this are discussed later. But we also need to make sure that the variable is allocated to memory for that type 
so that there is actually existing memory for the unmarshalling to write values into.

We illustrate with an almost trivial example in asn1.go of marshalling and unmarshalling an integer. We 
can pass an integer value to marshal to return a byte array and unmarshal the array into an integer variable, 
as in this program in file asn1.go:

ch4$ vi asn1.go

/* ASN1 example
*/
package main

import (
        "encoding/asn1"
        "fmt"
)

func thirteen() {
        val := 13
        mdata, _ := asn1.Marshal(val)
        var n int
        asn1.Unmarshal(mdata, &n)
        fmt.Printf("Before marshal: %v, After unmarshal: %v\n", val, n)
}
func main() {
        thirteen()
}

Execute the program as follows:

ch4$ go run asn1.go

Before marshal: 13, After unmarshal: 13

Chapter 4 ■ Data Serialization



76

As expected, the marshalled to unmarshalled cycle results in 13.
Once we move beyond this, things get harder. In order to manage more complex data types, we have to 

look more closely at the data structures supported by ASN.1 and how ASN.1 support is done in Go.
Any serialization method will be able to handle certain data types and not handle some others. So in 

order to determine the suitability of any serialization such as ASN.1, you have to look at the possible data 
types supported vs. those you want to use in your application. The following ASN.1 types are taken from 
http://www.obj-sys.com/asn1tutorial/node4.html.

The simple types are as follows:

•	 BOOLEAN: Two-state variable values

•	 INTEGER: Models integer variable values

•	 BIT STRING: Models binary data of arbitrary length

•	 OCTET STRING: Models binary data whose length is a multiple of eight

•	 NULL: Indicates effective absence of a sequence element

•	 OBJECT IDENTIFIER: Names information objects

•	 REAL: Models real variable values

•	 ENUMERATED: Models values of variables with at least three states

•	 CHARACTER STRING: Models values that are strings of characters from a specified 
character set

Character strings can be from certain character sets:

•	 NumericString: 0,1,2,3,4,5,6,7,8,9, and space.

•	 PrintableString: Upper- and lowercase letters, digits, space, apostrophe, left/right 
parenthesis, plus sign, comma, hyphen, full stop, solidus, colon, equal sign, and 
question mark.

•	 TeletexString (T61String): The Teletex character set in CCITT’s T61, space, 
and delete.

•	 VideotexString: The Videotex character set in CCITT’s T.100 and T.101, space, 
and delete.

•	 VisibleString (ISO646String): Printing character sets of international ASCII 
and space.

•	 IA5String: International Alphabet 5 (International ASCII).

•	 GraphicString 25: All registered G sets and space GraphicString.

•	 There are additional string types as well as these, notably UTF8String.

And finally, there are the structured types:

•	 SEQUENCE: Models an ordered collection of variables of different types

•	 SEQUENCE OF: Models an ordered collection of variables of the same type

•	 SET: Models an unordered collection of variables of different types

•	 SET OF: Models an unordered collection of variables of the same type

•	 CHOICE: Specifies a collection of distinct types from which to choose one type

Chapter 4 ■ Data Serialization

http://www.obj-sys.com/asn1tutorial/node4.html


77

•	 SELECTION: Selects a component type from a specified CHOICE type

•	 ANY: Enables an application to specify the type

■■ Note  ANY is a deprecated ASN.1 Structured Type. It has been replaced with X.680 Open Type.

Not all of these are supported by Go. Not all possible values are supported by Go. The rules, as given by 
"go doc encoding/asn1.Unmarshal", are as follows:

•	 An ASN.1 INTEGER can be written to an int, int32, int64, or *big.Int (from the math/
big package). If the encoded value does not fit in the Go type, Unmarshal returns a 
parse error.

•	 An ASN.1 BIT STRING can be written to a BitString.

•	 An ASN.1 OCTET STRING can be written to a []byte.

•	 An ASN.1 OBJECT IDENTIFIER can be written to an ObjectIdentifier.

•	 An ASN.1 ENUMERATED can be written to an Enumerated.

•	 An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.

•	 An ASN.1 PrintableString, IA5String, or NumericString can be written to a string.

•	 Any of the preceding ASN.1 values can be written to an interface{}. The value 
stored in the interface has the corresponding Go type. For integers, that type 
is int64.

•	 An ASN.1 SEQUENCE OF x or SET OF x can be written to a slice if an x can be written 
to the slice’s element type.

•	 An ASN.1 SEQUENCE or SET can be written to a struct if each of the elements in the 
sequence can be written to the corresponding element in the struct.

Go places real restrictions on ASN.1. For example, ASN.1 allows integers of any size (per ASN.1 – “Type 
INTEGER takes any of the infinite set of integer values”), while the Go implementation will only allow up 
to limit of big.Int (which is larger than int64 but not infinite). On the other hand, Go distinguishes between 
signed and unsigned types, while ASN.1 doesn't. So, for example, transmitting a value of uint64 may fail if it 
is too large for int64.

In a similar vein, ASN.1 allows several different character sets, while the Go package states that it 
supports PrintableString, IA5String (ASCII), NumericString, and utf8.

We have seen that a value such as an integer can be easily marshalled and unmarshalled. Other basic 
types such as booleans and reals can be similarly dealt with. Strings composed entirely of ASCII characters 
or UTF8 characters can be marshalled and unmarshalled. This code works as long as the string is composed 
only of ASCII or UTF8 characters:

func ascii() {
        s := "hello"
        mdata, _ := asn1.Marshal(s)
        var newstr string
        _,_ =asn1.Unmarshal(mdata, &newstr)
        fmt.Printf("Before marshal: %v, After unmarshal%v\n", s, newstr)
}

Chapter 4 ■ Data Serialization



78

Update asn1.go to include the preceding function, and call it from main.

ch4$ vi asn1.go

... prior code ...

func ascii() {
        s := "hello"
        mdata, _ := asn1.Marshal(s)
        var newstr string
        _,_ =asn1.Unmarshal(mdata, &newstr)
        fmt.Printf("Before marshal: %v, After unmarshal: %v\n", s, newstr)
}

func main() {
        thirteen()
        ascii() // call new function
}

ch4$ go run asn1.go

Before marshal: 13, After unmarshal: 13
Before marshal: hello, After unmarshal: hello

ASN.1 also includes some “useful types” not in this list, such as UTC time. Go supports this UTC time 
type. This means that you can pass time values in a way that is not possible for other data values. ASN.1 
does not support pointers, but Go has special code to manage pointers to time values. The function Now() 
returns time.Time. The special code marshals this, and it can be unmarshalled into a pointer variable to a 
time.Time object. Add the following code to asn1.go and trigger from main:

ch4$ vi asn1.go

... prior code ...

func myTime() {
        t := time.Now()
        mdata, _ := asn1.Marshal(t)
        var newtime = new(time.Time)
        _, _ = asn1.Unmarshal(mdata, newtime)
        fmt.Printf("Before marshal: %v, After unmarshal: %v\n", t, newtime)
}

func main() {
        thirteen()
        ascii()
        myTime() // call new function
}

ch4$ go run asn1.go

Chapter 4 ■ Data Serialization



79

Before marshal: 13, After unmarshal: 13
Before marshal: hello, After unmarshal: hello
Before marshal: 2022-01-03 21:02:19.134959 -0500 EST m=+0.000178450, After unmarshal: 
2022-01-03 21:02:19 -0500 EST

In general, value types are preferred over pointers. One reason to use pointers (i.e., *time.Time or 
new(time.Time)) is serialization may not ignore zero values when using tags (like the json package).

Here, we show a time value restored to time pointer; Go looks after this special case. Additionally, we 
see a string with a Unicode sequence. The program asn1basic.go illustrates these:

ch4$ vi asn1basic.go

/* ASN.1 Basic
 */

package main

import (
        "encoding/asn1"
        "fmt"
        "time"
)

func main() {
        // time pointer to time value
        t := time.Now()
        fmt.Println("Before marshalling: ", t.String())
        mdata, _ := asn1.Marshal(t)
        var newtime = new(time.Time)
        asn1.Unmarshal(mdata, newtime)
        fmt.Println("After marshal/unmarshal: ", newtime.String())

        // vulgar fraction, string to string
        s := "hello \u00bc"
        fmt.Println("Before marshalling: ", s)
        mdata2, _ := asn1.Marshal(s)
        var newstr string
        asn1.Unmarshal(mdata2, &newstr)
        fmt.Println("After marshal/unmarshal: ", newstr)
}

When it runs as follows:

ch4$ go run asn1basic.go

Before marshalling:  2022-01-03 21:02:50.268961 -0500 EST m=+0.000121092
After marshal/unmarshal:  2022-01-03 21:02:50 -0500 EST
Before marshalling:  hello ¼
After marshal/unmarshal:  hello ¼

Review go doc time.Time; the first couple of paragraphs mention considerations when using time.
Time and pointers.

Chapter 4 ■ Data Serialization



80

In general, you will probably want to marshal and unmarshal structures. Apart from the special case 
of time, Go will happily deal with structures, but not with pointers to structures. Operations such as new 
create pointers, so you have to dereference them before marshalling/unmarshalling them. Go normally 
dereferences pointers for you when needed, but not in this case, so you have to dereference them explicitly. 
These both work for a type T, create asn1pointers.go:

ch4$ vi asn1pointers.go

package main

import (
        "encoding/asn1"
        "fmt"
)

type T struct {
        S string
        I int
}

func main() {
        // using variables
        t1 := T{"ok", 1}
        mdata1, _ := asn1.Marshal(t1)
        var newT1 T
        asn1.Unmarshal(mdata1, &newT1)
        fmt.Printf("Before marshal: %v, after unmarshal: %v\n", t1, newT1)

        // using pointers
        var t2 = new(T)
        t2.S = "still ok"
        t2.I = 2
        mdata2, _ := asn1.Marshal(*t2)
        var newT2 = new(T)
        asn1.Unmarshal(mdata2, newT2)
        fmt.Printf("Before marshal: %v, after unmarshal: %v\n", t2, newT2)
}

ch4$ go run asn1pointers.go

Before marshal: {ok 1}, after unmarshal: {ok 1}
Before marshal: &{still ok 2}, after unmarshal: &{still ok 2}

Any suitable mix of pointers and variables will work as well.
The fields of a structure must all be exportable, that is, field names must begin with an uppercase letter. 

Go uses the reflect package to marshal/unmarshal structures, so it must be able to examine all fields. This 
type cannot be marshalled:

type T struct {
    Field1 int
    field2 int // not exportable
}

Chapter 4 ■ Data Serialization



81

Both Marshal and Unmarshal produce related errors for the prior condition. We next create an example 
showing this condition; first, create driver.go.

ch4$ vi driver.go

/* driver.go
 */
package main

import (
        "encoding/asn1"
        "fmt"
        "badtype"
)

func main() {
        // using variables
        t1 := p.T{F:1}
        mdata1, err := asn1.Marshal(t1)
        fmt.Println(err)
        var newT1 p.T
        _, err = asn1.Unmarshal(mdata1, &newT1)
        fmt.Println(err)
}

Next, we create our malformed struct in a package called badtype; create the badtype directory and the 
file mytype.go.

ch4$ mkdir badtype
ch4$ vi ./badtype/mytype.go

/* ./badtype/mytype.go
 */
package p

type T struct {
        f int
        F int
}

ch4$ cd badtype
badtype$ go mod init badtype
badtype$ cd ..

If you run the preceding code as follows, you will see the related errors:

ch4$ go mod init example.com
ch4$ go mod edit -replace badtype=$(pwd)/badtype
ch4$ go mod tidy

Chapter 4 ■ Data Serialization



82

ch4$ go run driver.go

asn1: structure error: struct contains unexported fields
asn1: syntax error: sequence truncated

While we are using the command line, most IDEs will handle dependencies (e.g., replace) for you.

Next, we show some (in)flexibility of ASN coding. ASN.1 only deals with the data’s types. It does not 
consider the data’s names (i.e., the structure field names). So the following type T1 can be marshalled/
unmarshalled into type T2 as the corresponding fields are the same types.

Not only must the types of each field match, but the number must match as well. Here, we demo both 
types of errors:

* asn1.SyntaxError – missing fields

* asn1.StructuralError – incorrect type

Place the following code in asn1fields.go; notice the structs and how they differ.

ch4$ vi asn1fields.go

package main

import (
        "encoding/asn1"
        "fmt"
        "log"
)

type MyType struct {
        F1 rune
        F2 int
}

type YourType struct {
        F3 rune
}

type TheirType struct {
        F4 byte
}

func main() {
        // this first example works
        t1 := MyType{'ロ', 1}
        mdata1, _ := asn1.Marshal(t1)

        t2 := new(YourType)
        _, err := asn1.Unmarshal(mdata1, t2)
        fmt.Printf("Before marshal: %v, after unmarshal: %v\n", t1, t2)
        checkError(err)

        // syntax error (fails to fill all fields)
        y := YourType{'ロ'}

Chapter 4 ■ Data Serialization



83

        mdata2, _ := asn1.Marshal(y)
        z := new(MyType)
        _, err = asn1.Unmarshal(mdata2, z)
        fmt.Printf("Before marshal: %v, after unmarshal: %v\n", y, z)
        checkError(err)

        // structural error (incorrect Go type byte != rune)
        t3 := new(TheirType)
        _, err = asn1.Unmarshal(mdata1, t3)
        fmt.Printf("Before marshal: %v, after unmarshal: %v\n", t1, t3)
        checkError(err)
}

func checkError(err error) {
        if err != nil {
                log.Println(err.Error()) // prevent early termination
        }
}

As we run, take note of the outcome and associated errors.

ch4$ go run asn1fields.go

Before marshal: {12525 1}, after unmarshal: &{12525}
Before marshal: {12525}, after unmarshal: &{12525 0}
2022/03/29 21:33:20 asn1: syntax error: sequence truncated
Before marshal: {12525 1}, after unmarshal: &{0}
2022/03/29 21:33:20 asn1: structure error: unknown Go type: uint8

Review the related error documentation to confirm.

ch4$ go doc asn1.SyntaxError

package asn1 // import "encoding/asn1"

type SyntaxError struct {
    Msg string
}
    A SyntaxError suggests that the ASN.1 data is invalid.

func (e SyntaxError) Error() string

ch4$ go doc asn1.StructuralError

package asn1 // import "encoding/asn1"

type StructuralError struct {
    Msg string
}
    A StructuralError suggests that the ASN.1 data is valid, but the Go type
    which is receiving it doesn't match.

func (e StructuralError) Error() string

Chapter 4 ■ Data Serialization



84

ASN.1 illustrates many of the choices that can be made by those implementing a serialization method. 
Pointers could have been given special treatment by using more code, such as the enforcement of name 
matches. The order and number of strings will depend on the details of the serialization specification, 
the flexibility it allows, and the coding effort needed to exploit that flexibility. It is worth noting that other 
serialization formats will make different choices, and implementations in different languages will also 
enforce different rules.

�ASN.1 Daytime Client and Server
Now (finally) let’s turn to using ASN.1 to transport data across the network.

We can write a TCP server that delivers the current time as an ASN.1 Time type using the techniques of 
the last chapter.

ch4$ vi asndaytimeserver.go

/* ASN1 DaytimeServer
 */
package main

import (
        "encoding/asn1"
        "log"
        "net"
        "time"
)

func main() {
        service := ":1200"
        tcpAddr, err := net.ResolveTCPAddr("tcp", service)
        checkError(err)
        listener, err := net.ListenTCP("tcp", tcpAddr)
        checkError(err)
        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }
                daytime := time.Now()
                // ignore returned errors
                mdata, _ := asn1.Marshal(daytime)
                conn.Write(mdata)
                conn.Close() // we're finished
        }
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error: %s", err.Error())
        }
}

Chapter 4 ■ Data Serialization



85

This can be compiled to an executable such as ASN1DaytimeServer and run with no arguments. It will 
wait for connections and then send the time as an ASN.1 string to the client.

Store our client in asndaytimeclient.go:

ch4$ vi asndaytimeclient.go

/* ASN.1 DaytimeClient
 */
package main

import (
        "bytes"
        "encoding/asn1"
        "fmt"
        "io"
        "log"
        "net"
        "os"
        "time"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: %s host:port", os.Args[0])
        }
        service := os.Args[1]
        conn, err := net.Dial("tcp", service)
        checkError(err)
        result, err := readFully(conn)
        checkError(err)
        var newtime time.Time
        _, err1 := asn1.Unmarshal(result, &newtime)
        checkError(err1)
        fmt.Println("After marshal/unmarshal: ", newtime.String())
}

func readFully(conn net.Conn) ([]byte, error) {
        defer conn.Close()
        result := bytes.NewBuffer(nil)
        var buf [512]byte
        for {
                n, err := conn.Read(buf[0:])
                result.Write(buf[0:n])
                if err != nil {
                        if err == io.EOF {
                                break
                        }
                        return nil, err
                }
        }
        return result.Bytes(), nil
}

Chapter 4 ■ Data Serialization



86

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error: %s", err.Error())
        }
}

In one terminal, run the server.

ch4$ go run asndaytimeserver.go

In a second terminal, run the client.

ch4$ go run asndaytimeclient.go localhost:1200

After marshal/unmarshal:  2022-01-03 21:11:32 -0500 EST

This connects to the service given in a form such as localhost:1200, reads the TCP packet, and decodes 
the ASN.1 content back into a string, which it prints.

Note that neither of these two – the client or the server – is compatible with the text-based clients and 
servers of the last chapter. This client and server are exchanging ASN.1 encoded data values, not textual strings.

�JSON
JSON3 stands for JavaScript Object Notation. It was designed to be a lightweight means of passing data 
between JavaScript systems (i.e., browser/web server). It uses a text-based format and is sufficiently general 
that it has become used as a general-purpose serialization method for many programming languages.

JSON serializes objects, arrays, and basic values. The basic values include string, number, boolean 
values, and the null value. Arrays are a comma-separated list of values that can represent arrays, vectors, 
lists, or sequences of various programming languages. They are delimited by square brackets [ ... ]. 
Objects are represented by a list of “field: value” pairs enclosed in curly braces { ... }.

For example, the table of employees given earlier could be written as an array of employee objects:

[
   {"Name": "fred", "Occupation": "programmer"},
   {"Name": "liping", "Occupation": "analyst"},
   {"Name": "sureerat", "Occupation": "manager"}
]

There is no special support for complex data types such as dates, no distinction between number 
types, no recursive types, etc. JSON is a very simple format but nevertheless can be quite useful. Its text-
based format makes it easy to use and debug, even though it has the overheads of string handling. Go’s 
implementation is based on https://www.rfc-editor.org/rfc/rfc7159.html.

From the Go encoding/json package documentation, marshalling uses the following type-dependent 
default encodings:

•	 Boolean values encode as JSON Booleans.

•	 Floating point, integer, and Number values encode as JSON numbers.

3 “Introducing JSON” (https://www.json.org/json-en.html) and RFC 7159 (https://www.rfc-
editor.org/rfc/rfc7159.html)

Chapter 4 ■ Data Serialization

https://www.rfc-editor.org/rfc/rfc7159.html
http://www.json.org/json-en.html
http://www.rfc-editor.org/rfc/rfc7159.html
http://www.rfc-editor.org/rfc/rfc7159.html


87

•	 String values encode as JSON strings coerced to valid UTF-8, where each invalid 
UTF-8 sequence is replaced by the encoding of the Unicode replacement character 
U+FFFD (potentially rendered as ).

•	 Disable HTML tag encoding via SetEscapeHTML(false).

•	 Array and slice values encode as JSON arrays, except that []byte encodes as a 
base64-encoded string.

•	 Struct values encode as JSON objects. Each struct field becomes a member of 
the object. By default, the object’s key name is the struct field name converted to 
lowercase.

•	 If the struct field has a tag, that tag will be used as the name instead.

•	 Map values encode as JSON objects. The map’s key type must be string; the object 
keys are used directly as map keys.

•	 Pointer values encode as the value pointed to. (Note: This allows trees but not 
graphs!). A nil pointer encodes as the null JSON object.

•	 Interface values encode as the value contained in the interface. A nil interface value 
encodes as the null JSON object.

•	 Channel, complex, and function values cannot be encoded in JSON. Attempting to 
encode such a value causes Marshal to return json.UnsupportedTypeError.

•	 JSON cannot represent cyclic data structures, and Marshal does not handle them. 
Passing cyclic structures to Marshal will result in an infinite recursion.

A program to store JSON serialized data into the file person.json is savejson.go:

ch4$ vi savejson.go

/* SaveJSON
 */
package main

import (
        "encoding/json"
        "log"
        "os"
)

type Person struct {
        Name  Name
        Email []Email
}

type Name struct {
        Family   string
        Personal string
}

type Email struct {
        Kind    string

Chapter 4 ■ Data Serialization



88

        Address string
}

func main() {
        person := Person{
                Name: Name{Family: "Newmarch", Personal: "Jan"},
                Email: []Email{
                        Email{Kind: "home", Address: "jan@newmarch.name"},
                        Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},
                },
        }
        saveJSON("person.json", person)
}

func saveJSON(fileName string, key interface{}) {
        data, err := json.Marshal(key)
        checkError(err)
        err = os.WriteFile(fileName, data, 0600)
        checkError(err)
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

After running the preceding program, we can view the serialized results.

ch4$ go run savejson.go

ch4$ cat person.json

{"Name":{"Family":"Newmarch","Personal":"Jan"},"Email":[{"Kind":"home","Address":"jan@
newmarch.name"},{"Kind":"work","Address":"j.newmarch@boxhill.edu.au"}]}

Here, we used the “cat” utility to view.
To load it back into memory, use loadjson.go:

ch4$ vi loadjson.go

/* LoadJSON
 */
package main

import (
        "encoding/json"
        "fmt"
        "log"
        "os"
)

Chapter 4 ■ Data Serialization



89

type Person struct {
        Name  Name
        Email []Email
}

type Name struct {
        Family   string
        Personal string
}

type Email struct {
        Kind    string
        Address string
}

func main() {
        var person Person
        loadJSON("person.json", &person)
        fmt.Printf("%v\n", person)
}

func loadJSON(fileName string, key interface{}) {

        data, err := os.ReadFile(fileName)
        checkError(err)
        err = json.Unmarshal(data, key)
        checkError(err)
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Running our loader, the serialized form is

ch4$ go run loadjson.go

{{Newmarch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}

The output is the rendering of a Go struct, not pure JSON. The json package provides a related function 
to pretty print. If you wish to pretty print, copy savejson.go to prettyjson.go and modify saveJSON as follows:

ch4$ vi prettyjson.go

...

func main() {
        person := Person{
                Name: Name{Family: "Newmarch", Personal: "Jan"},
                Email: []Email{

Chapter 4 ■ Data Serialization



90

                        Email{Kind: "home", Address: "jan@newmarch.name"},
                        Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},
                },
                }
        saveJSON("pretty_person.json", person)
}
func saveJSON(fileName string, key interface{}) {
        data, err := json.MarshalIndent(key, "  ", "    ")
        checkError(err)
        err = os.WriteFile(fileName, data, 0600)
        checkError(err)
}
...

If we run the preceding code, our output is much prettier.

ch4$ go run prettyjson.go

ch4$ cat pretty_person.json
{
      "Name": {
          "Family": "Newmarch",
          "Personal": "Jan"
      },
      "Email": [
          {
              "Kind": "home",
              "Address": "jan@newmarch.name"
          },
          {
              "Kind": "work",
              "Address": "j.newmarch@boxhill.edu.au"
          }
      ]
  }

If you update loadjson.go to read this file (pretty_json.json), you will see it is still valid JSON.

�A Client and A Server
We now send JSON for a round trip. A client to send a person's data and read it back ten times is 
jsonechoclient.go:

ch4$ vi jsonechoclient.go

/* JSON EchoClient
 */
package main

import (
        "bytes"

Chapter 4 ■ Data Serialization



91

        "encoding/json"
        "fmt"
        "io"
        "log"
        "net"
        "os"
)

type Person struct {
        Name  Name
        Email []Email
}

type Name struct {
        Family   string
        Personal string
}

type Email struct {
        Kind    string
        Address string
}

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "host:port")
        }
        person := Person{
                Name: Name{Family: "Newmarch", Personal: "Jan"},
                Email: []Email{
                        Email{Kind: "home", Address: "jan@newmarch.name"},
                        Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},
                },
        }
        service := os.Args[1]
        conn, err := net.Dial("tcp", service)
        checkError(err)
        defer conn.Close()
        for n := 0; n < 10; n++ {
                data, _ := json.Marshal(person)
                conn.Write(data)

                var newPerson Person
                buf, _ := readFully(conn)
                err = json.Unmarshal(buf, &newPerson)
                fmt.Println(newPerson)
        }
}

func readFully(conn net.Conn) ([]byte, error) {
        result := bytes.NewBuffer(nil)
        var buf [512]byte
        for {

Chapter 4 ■ Data Serialization



92

                n, err := conn.Read(buf[0:])
                result.Write(buf[0:n])

                if err != nil {
                        if err == io.EOF {
                                break
                        }
                        return nil, err
                }
                if n < 512 {
                        break
                }
        }
        return result.Bytes(), nil
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The corresponding server is jsonechoserver.go:

ch4$ vi jsonechoserver.go
/* JSON EchoServer
 */
package main

import (
        "bytes"
        "encoding/json"
        "fmt"
        "io"
        "net"
        "log"
)

type Person struct {
        Name  Name
        Email []Email
}

type Name struct {
        Family   string
        Personal string
}

type Email struct {
        Kind    string
        Address string
}

Chapter 4 ■ Data Serialization



93

func main() {
        service := "0.0.0.0:1200"
        tcpAddr, err := net.ResolveTCPAddr("tcp", service)
        checkError(err)
        listener, err := net.ListenTCP("tcp", tcpAddr)
        checkError(err)
        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }
                for n := 0; n < 10; n++ {
                        var person Person
                        buf, _ := readFully(conn)
                        err = json.Unmarshal(buf, &person)

                        fmt.Println(person)

                        data, _ := json.Marshal(person)
                        conn.Write(data)
                }
                conn.Close() // we're finished
        }
}

func readFully(conn net.Conn) ([]byte, error) {
        result := bytes.NewBuffer(nil)
        var buf [512]byte
        for {
                n, err := conn.Read(buf[0:])
                result.Write(buf[0:n])

                if err != nil {
                        if err == io.EOF {
                                break
                        }
                        return nil, err
                }
                if n < 512 {
                        break
                }
        }
        return result.Bytes(), nil
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Chapter 4 ■ Data Serialization



94

In one terminal, we run the server:

ch4$ go run jsonechoserver.go
<waits for connections>

In a second terminal, we run the client:

ch4$ go run jsonechoclient.go localhost:1200
{{Newmarch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}
... (8 more duplicated lines) ...
{{Newmarch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}

Here is what is happening:

•	 On the server, the inner loop creates a new Person, waiting for a serialized instance.

•	 On the client, a single instance of Person is created:

•	 Enter a loop that does the following:

•	 Serializes and sends Person to server

•	 Creates a new Person and waits for server

•	 Back on server:

•	 The data is consumed and deserialized, populating a new Person instance.

•	 Printed.

•	 The Person is again serialized and sent back.

This process repeats ten times until the client loop finishes, while the server remains waiting with outer loop.
There is more to consider when parsing JSON. Go even provides additional APIs including one to 

tokenize a JSON stream. We cover JSON in more detail in later sections.

�The Gob Package
Gob is a serialization technique specific to Go. It is designed to encode Go data types specifically and does 
not at present have substantial support for or by any other languages. It supports all Go data types except for 
channels, functions, and interfaces. It supports integers of all types and sizes, strings and Booleans, structs, 
arrays, and slices. At present, it has some problems with circular structures such as rings, but that will 
improve over time. The purpose was to allow pure Go client and servers to work together without the need of 
a third-party package.

Gob encodes type information into its serialized forms. This is far more extensive than the type 
information in, say, an X.509 serialization but far more efficient than the type information contained in an 
XML document. Type information is only included once for each piece of data but includes, for example, the 
names of struct fields.

This inclusion of type information makes Gob marshalling and unmarshalling fairly robust to changes 
or differences between the marshaller and unmarshaller. For example, this struct

 struct T {
     a int
     b int
}

Chapter 4 ■ Data Serialization



95

Can be marshalled and then unmarshalled into a different struct, where the order of fields has changed:

 struct T {
     b int
     a int
}

It can also cope with missing fields (the values are ignored) or extra fields (the fields are left 
unchanged). It can cope with pointer types so that the previous struct could be unmarshalled into this one:

 struct T {
     *a int
     **b int
}

To some extent, it can cope with type coercions so that an int field can be broadened/widened into an 
int64, but not incompatible types such as int to uint.

To use Gob to marshal a data value, you first need to create an Encoder. This takes an io.Writer as a 
parameter, and marshalling will be done to this writable stream. The encoder has a method called Encode, 
which marshals the value to the stream. This method can be called multiple times on multiple pieces of data. 
Type information for each data type is only written once, though.

You use a Decoder to unmarshal the serialized data stream. This takes an io.Reader, and each read 
returns an unmarshalled data value.

A program to store Gob serialized data into the file person.gob is savegob.go:

ch4$ vi savegob.go

/* SaveGob
 */
package main

import (
        "encoding/gob"
        "os"
        "log"
)

type Person struct {
        Name  Name
        Email []Email
}

type Name struct {
        Family   string
        Personal string
}

type Email struct {
        Kind    string
        Address string
}

Chapter 4 ■ Data Serialization



96

func main() {
        person := Person{
                Name: Name{Family: "Newmarch", Personal: "Jan"},
                Email: []Email{
                        Email{Kind: "home", Address: "jan@newmarch.name"},
                        Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},
                },
        }
        saveGob("person.gob", person)
}

func saveGob(fileName string, key interface{}) {
        outFile, err := os.Create(fileName)
        checkError(err)
        encoder := gob.NewEncoder(outFile)
        err = encoder.Encode(key)
        checkError(err)
        outFile.Close()
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

By running our savegob.go code, we see a serialized version of our Person stored in person.gob 
on disk.

ch4$ go run savegob.go

ch4$ cat -t person.gob

)?M-^A^C^A^A^FPerson^A?M-^B^@^A^B^A^DName^A?M-^D^@^A^EEmail^A?M-^H^@^@^@*?M-
^C^C^A^A^DName^A?M-^D^@^A^B^A^FFamily^A^L^@^A^HPersonal^A^L^@^@^@^[?M-^G^B^A^A^L[]main.
Email^A?M-^H^@^A?M-^F^@^@(?M-^E^C^A^A^EEmail^A?M-^F^@^A^B^A^DKind^A^L^@^A^GAddress^A^L^@^@
^@R?M-^B^A^A^HNewmarch^A^CJan^@^A^B^A^Dhome^A^Qjan@newmarch.name^@^A^Dwork^A^Yj.newmarch@
boxhill.edu.au^@^@%

In the aforementioned, we used the “cat” command-line tool to show our Gob serialized output. Better 
tools exist, including “xxd” to “dump” and review, but are lesser known.

To load it back into memory, use loadgob.go:

ch4$ vi loadgob.go

/* LoadGob
 */
package main

Chapter 4 ■ Data Serialization



97

import (
        "encoding/gob"
        "fmt"
        "log"
        "os"
)

type Person struct {
        Name  Name
        Email []Email
}

type Name struct {
        Family   string
        Personal string
}

type Email struct {
        Kind    string
        Address string
}

func main() {
        var person Person
        loadGob("person.gob", &person)
        fmt.Println(person)
}

func loadGob(fileName string, key interface{}) {
        inFile, err := os.Open(fileName)
        checkError(err)
        decoder := gob.NewDecoder(inFile)
        err = decoder.Decode(key)
        checkError(err)
        inFile.Close()
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Running loadgob.go shows the deserialized Person from person.gob.

ch4$ go run loadgob.go

{{Newmarch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}

Chapter 4 ■ Data Serialization



98

�A Client and A Server
Next, we place our Gob serialization on the network. A client to send a person’s data and read it back ten 
times is gobechoclient.go:

ch4$ vi gobechoclient.go

/* Gob EchoClient
 */
package main

import (
        "encoding/gob"
        "log"
        "net"
        "os"
)

type Person struct {
        Name  Name
        Email []Email
}

type Name struct {
        Family   string
        Personal string
}

type Email struct {
        Kind    string
        Address string
}

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "host:port")
        }
        person := Person{
                Name: Name{Family: "Newmarch", Personal: "Jan"},
                Email: []Email{
                        Email{Kind: "home", Address: "jan@newmarch.name"},
                        Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},
                },
        }
        service := os.Args[1]
        conn, err := net.Dial("tcp", service)
        checkError(err)
        encoder := gob.NewEncoder(conn)
        decoder := gob.NewDecoder(conn)
        for n := 0; n < 10; n++ {
                encoder.Encode(person)

Chapter 4 ■ Data Serialization



99

                var newPerson Person
                decoder.Decode(&newPerson)

        }
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The corresponding server is gobechoserver.go:

ch4$ vi gobechoserver.go

/* Gob EchoServer
 */
package main

import (
        "encoding/gob"
        "fmt"
        "log"
        "net"
)

type Person struct {
        Name  Name
        Email []Email
}

type Name struct {
        Family   string
        Personal string
}
type Email struct {
        Kind    string
        Address string
}

func main() {
        service := "0.0.0.0:1200"
        tcpAddr, err := net.ResolveTCPAddr("tcp", service)
        checkError(err)
        listener, err := net.ListenTCP("tcp", tcpAddr)
        checkError(err)
        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }

Chapter 4 ■ Data Serialization



100

                encoder := gob.NewEncoder(conn)
                decoder := gob.NewDecoder(conn)
                for n := 0; n < 10; n++ {
                        var person Person
                        decoder.Decode(&person)
                        fmt.Println(person)
                        encoder.Encode(person)
                }
                conn.Close() // we're finished
        }
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Similar to our JSON example, we serialize data back and forth, starting from the client to the server.
Launch the server in one terminal.

ch4$ go run gobechoserver.go

<waits for client connection>

Launch the client in the second terminal.

ch4$ go run gobechoclient.go localhost:1200

{{Newmarch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}

... (8 more duplicate lines) ...

{{Newmarch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}

Like the json package, the Gob package provides an interface (i.e., GobEncoder) allowing you to 
customize the Gob serialization process.

Many serialization libraries exist (e.g., json package). Why have gob? In Rob Pike's blog post, "Gobs of 
data",4 the gob package presented an opportunity to have a Go specific library, one that in theory has less 
complications and more optimizations for Go-only use cases compared to other serialization libraries.

�Encoding Binary Data As Strings
Once upon a time, transmitting 8-bit data was problematic. It was often transmitted over noisy serial lines and 
could easily become corrupted. Seven-bit data, on the other hand, could be transmitted more reliably because 
the 8th bit could be used as check digit. For example, in an “even parity” scheme, the check digit would be set 
to one or zero to make an even number of 1s in a byte. This allows detection of errors of a single bit in each byte.

4 Gobs of data – https://go.dev/blog/gob

Chapter 4 ■ Data Serialization

https://go.dev/blog/gob


101

ASCII is a 7-bit character set. A number of schemes have been developed that are more sophisticated 
than simple parity checking but which involve translating 8-bit binary data into a 7-bit ASCII format. 
Essentially, the 8-bit data is stretched out in some way over the 7-bit bytes.

Binary data transmitted in HTTP responses and requests is often translated into an ASCII form. This 
makes it easy to inspect the HTTP messages with a simple text reader without worrying about what strange 
8-bit bytes might do to your display!

One common format is Base64 (go doc base64). Go has support for many binary-to-text formats, 
including Base64, via the encoding/base64 package. This package is based on the RFC “The Base16, Base32, 
and Base64 Data Encodings.”5

There are two principal functions to use for Base64 encoding and decoding:

ch4$ go doc encoding/base64 NewEncoder

package base64 // import "encoding/base64"

func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser
    NewEncoder returns a new base64 stream encoder. Data written to the returned
    writer will be encoded using enc and then written to w. Base64 encodings
    operate in 4-byte blocks; when finished writing, the caller must Close the
    returned encoder to flush any partially written blocks.

ch4$ go doc encoding/base64 NewDecoder

package base64 // import "encoding/base64"

func NewDecoder(enc *Encoding, r io.Reader) io.Reader
    NewDecoder constructs a new base64 stream decoder.

A simple program just to encode and decode a set of eight binary digits is base64.go:

ch4$ vi base64.go

/*
  Base64
*/
package main

import (
        "encoding/base64"
        "fmt"
)

func main() {
        eightBitData := []byte{1, 2, 3, 4, 5, 6, 7, 8}
        enc := base64.StdEncoding.EncodeToString(eightBitData)
        dec, _ := base64.StdEncoding.DecodeString(enc)
        fmt.Println("Original data ", eightBitData)
        fmt.Println("Encoded string ", enc)

5 The Base16, Base32, and Base64 Data Encodings – https://datatracker.ietf.org/doc/
html/rfc4648

Chapter 4 ■ Data Serialization

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648


102

        fmt.Println("Decoded data ", dec)
}

ch4$ go run base64.go

Original data  [1 2 3 4 5 6 7 8]
Encoded string  AQIDBAUGBwg=
Decoded data  [1 2 3 4 5 6 7 8]

The = character is used as an optional padding. Base64 encoding is a gold standard in data encoding. 
Variants of Base64 include Base58 (used by Bitcoin). Base64 encoding/decoding is used by Go’s built-in http 
networking code; see “GOROOT/src/net/http/client.go” for an example.

The preceding example shows a typical usage of the base64 interface. The next example shows using the 
aforementioned builders NewDecoder and NewEncoder. Things to consider when using these functions (for 
any encoding/decoding) include how much memory is used and which interface your code expects, like an 
io.Reader.

Save the following as newbase64coders.go.

ch4$ vi newbase64coders.go

package main

import (
        "bytes"
        "encoding/base64"
        "fmt"
        "io"
)

var (
        enc   *base64.Encoding = base64.StdEncoding.WithPadding('|')
        input []byte           = []byte("∞a∞\x02ab")
        w     bytes.Buffer
)

func restoreViaDecoder() {
        var buf *bytes.Buffer = bytes.NewBuffer(w.Bytes())
        var ior io.Reader = base64.NewDecoder(enc, buf)
        l := len(input)

        // adjust for unknown padding
        if l > 3 && l%3 != 0 {
                l = l + 2
        }

        restored := make([]byte, l)
        ior.Read(restored)
        fmt.Printf("%11s: %s %v\n", "viaDecoder", string(restored), restored)
}

func restoreViaEncoding() {
        var dst []byte = make([]byte, len(input))

Chapter 4 ■ Data Serialization



103

        enc.Decode(dst, w.Bytes())
        fmt.Printf("%11s: %s %v\n", "viaEncoding", string(dst), dst)
}

func main() {
        fmt.Printf("%11s: %s %v\n", "input", string(input), input)

        var wc io.WriteCloser = base64.NewEncoder(enc, &w)

        wc.Write(input)
        wc.Close()

        fmt.Printf("%11s: %s %v\n", "ecoded", string(w.Bytes()), w.Bytes())

        restoreViaDecoder()
        restoreViaEncoding()
}

The code uses the same encoder but decodes in two styles; again choose which based on your needs.

ch4$ go run newbase64coders.go
      input: ∞a∞ab [226 136 158 97 226 136 158 2 97 98]
    encoded: 4oieYeKIngJhYg|| [52 111 105 101 89 101 75 73 110 103 74 104 89 103 124 124]
 viaDecoder: ∞a∞ab [226 136 158 97 226 136 158 2 97 98 0 0]
viaEncoding: ∞a∞ab [226 136 158 97 226 136 158 2 97 98]

�Protocol Buffers
The serialization methods considered so far fall into various types:

•	 ASN.1 encodes the different types using binary tags in the data. In that sense, an 
ASN.1 encoded data structure is a self-describing structure.

•	 JSON similarly is a self-describing format using the rules of JavaScript data 
structures: lists, dictionaries, etc.

•	 Gob similarly encodes type information into its encoded form. This is far more 
detailed than the JSON format.

A separate class of serialization techniques rely on an external specification of the data type to be 
encoded. There are several major ones, such as the encoding used by ONC RPC.

ONC RPC is an old encoding, targeted toward the C language. A recent one is from Google, known as 
protocol buffers. This is not supported in the Go Standard Libraries but is supported by the Google Protocol 
Buffers developer group (https://developers.google.com/protocol-buffers/) and is apparently very 
popular within Google. For that reason, we include a section on protocol buffers, although in the rest of the 
book, we typically deal with the Go Standard Libraries.

Protocol buffers are a binary encoding of data intended to support the data types of a large variety 
of languages. They rely on an external specification of a data structure, which is used to encode data (in a 
source language) and also to decode the encoded data back into a target language. (Note: Protocol buffers 

Chapter 4 ■ Data Serialization

https://developers.google.com/protocol-buffers/


104

transitioned to version 3 in July 2016. It is not compatible with version 2. Version 2 will be supported for a 
long time but will eventually be obsoleted. See Protocol Buffers v3.0.0 at (https://github.com/google/
protobuf/releases/tag/v3.0.0).

The data structure to be serialized is known as a message. The data types supported in each 
message include

•	 Numbers (integers or floats)

•	 Booleans

•	 Strings (in UTF-8)

•	 Raw bytes

•	 Maps

•	 Other messages, allowing complex data structures to be built

The fields of a message are all optional (this is a change from proto2 where fields were required or 
optional). A field can stand for a list or array by the keyword repeated or a map using the keyword map. 
Each field has a type, followed by a name, followed by a tag index value. The full language guide is called the 
“Protocol Buffers Language Guide” (see https://developers.google.com/protocol-buffers/docs/proto).

Messages are defined independent of the possible target language. A version of the Person type in the 
syntax of Protocol Buffers version 3 is personv3.proto. Note that the file includes specific tags (1, 2) on 
each type.

ch4$ vi personv3.proto

syntax = "proto3";

option go_package = "/protos";

package person;

message Person {
        message Name {
                string family = 1;
                string personal = 2;
        }
        message Email {
                string kind = 1;
                string address = 2;
        }
        Name  name = 1;
        repeated Email email = 2;
}

Chapter 4 ■ Data Serialization

https://github.com/google/protobuf/releases/tag/v3.0.0
https://github.com/google/protobuf/releases/tag/v3.0.0
https://developers.google.com/protocol-buffers/docs/proto


105

�Installing and Compiling Protocol Buffers
Protocol buffers are compiled using a program called protoc. This is unlikely to be installed on your system.

Install the latest version from the Protocol Buffers v3 page. For 64-bit Linux, for example, download 
protoc-3.19.4-linux-x86_64.zip (or later) from GitHub and unzip it to a suitable place (it includes the binary 
bin/protoc, which should be placed somewhere in your PATH). You can find the compiler here: https://
github.com/protocolbuffers/protobuf/releases/latest.

After, install the “protoc” binary. You also need the “back end” to generate Go files. To do this, fetch it 
from GitHub:

ch4$ go install google.golang.org/protobuf/cmd/protoc-gen-go@latest

This will install protoc-gen-go into $GOPATH/bin, so make sure your path is set up to use it. Each 
language has a specific "back end" that works with protoc. Other tools can ease the installation like a 
package manager.

You are nearly ready to compile a .proto file. The previous example of personv3.proto declares the 
package person. In your GOPATH, you should have a directory called src. Create a subdirectory called 
src/person.

Then compile the personv3.proto as follows:

ch4$ mkdir myapp
ch4$ protoc --go_out=./myapp ./personv3.proto

This should create the ./myapp/protos/personv3.pb.go file.

�The Generated personv3.pb.go File
The compiled file will declare a number of types and methods on these types. The types are as follows:

type Person struct {
        ...

        Name  *Person_Name    `protobuf:"bytes,1,opt,name=name,proto3" 
json:"name,omitempty"`
        Email []*Person_Email `protobuf:"bytes,2,rep,name=email,proto3" 
json:"email,omitempty"`
}

type Person_Name struct {
        ...

        Family   string `protobuf:"bytes,1,opt,name=family,proto3" json:"family,omitempty"`
        Personal string `protobuf:"bytes,2,opt,name=personal,proto3" 
json:"personal,omitempty"`
}

type Person_Email struct {
        ...

Chapter 4 ■ Data Serialization

https://github.com/protocolbuffers/protobuf/releases/latest
https://github.com/protocolbuffers/protobuf/releases/latest


106

        Kind    string `protobuf:"bytes,1,opt,name=kind,proto3" json:"kind,omitempty"`
        Address string `protobuf:"bytes,2,opt,name=address,proto3" json:"address,omitempty"`
}

They are in the package called person. (Note: Simple types such as strings are encoded directly. In 
Protocol Buffers v2, a pointer was used. For compound types, a pointer is required, as in v2.)

�Using the Generated Code
There is essentially no difference between the coding used in the JSON example and this one. A simple 
program just to marshal and unmarshal a Person follows. We create an app called protocolbuffer.go. This 
app will be in a module, which in turn houses the generated protobuf package.

ch4$ cd myapp
ch4/myapp$

Create the following file: protocolbuffer.go.

ch4/myapp$ vi protocolbuffer.go

/* ProtocolBuffer
 */

package main

import (
    "myapp/protos"

    "google.golang.org/protobuf/proto"

    "fmt"
)

func main() {
    name := protos.Person_Name{
        Family:   "newmarch",
        Personal: "jan",
    }
    email1 := protos.Person_Email{
        Kind:    "home",
        Address: "jan@newmarch.name",
    }
    email2 := protos.Person_Email{
        Kind:    "work",
        Address: "j.newmarch@boxhill.edu.au",
    }
    emails := []*protos.Person_Email{&email1, &email2}
    p := protos.Person{
        Name:  &name,
        Email: emails,
    }

Chapter 4 ■ Data Serialization



107

    fmt.Println(p)

    data, _ := proto.Marshal(&p)

    newP := protos.Person{}

    proto.Unmarshal(data, &newP)

    fmt.Printf("%v\n", newP)

    �if p.Name.Personal == newP.Name.Personal && p.Email[0].Address == newP.Email[0].
Address {

        fmt.Println("same")
    }
}

With the generated code inside of ./myapp/protos/personv3.pb.go and the above main application 
protocolbuffer.go, we can retrieve the remaining dependencies using Go modules. In the myapp directory, 
create the following go.mod:

ch4/myapp$ go mod init myapp

ch4/myapp$ go mod edit -replace myapp=./protos
ch4/myapp$ go mod tidy

The output should be a Person before and after marshalling and should be the same by running the 
following:

ch4/myapp$ go run protocolbuffer.go

{{{} [] [] <nil>} 0 [] family:"newmarch"  personal:"jan" [kind:"home"  address:"jan@
newmarch.name" kind:"work"  address:"j.newmarch@boxhill.edu.au"]}
{{{} [] [] 0xc00012a000} 0 [] family:"newmarch"  personal:"jan" [kind:"home"  address:"jan@
newmarch.name" kind:"work"  address:"j.newmarch@boxhill.edu.au"]}
same

While not pretty to look at, the content is the same. The comparison at the end is a warning that you 
can't simply compare two structs. Here, we simply compared a couple of fields. Pretty printing is available, 
for example, via protojson: https://pkg.go.dev/google.golang.org/protobuf/encoding/protojson.

We haven't done much with the marshalled object. However, it could be saved to a file or sent across the 
network and unmarshalled by any of the supported languages: C++, C#, Java, Python, as well as Go.

�Conclusion
This chapter discussed the general properties of serializing data types and showed a number of common 
encodings. There are many more, including XML (included in the Go libraries), CBOR (a binary form of 
JSON), and YAML (similar to XML), as well as many language-specific ones such as Java Object Serialization 
and Python's Pickle. Those not in the Go standard packages may often be found on GitHub.

Chapter 4 ■ Data Serialization

https://pkg.go.dev/google.golang.org/protobuf/encoding/protojson


109
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_5

CHAPTER 5

Application-Level Protocols

A client and a server need to exchange information via messages. TCP and UDP provide the transport 
mechanisms to do this. The two processes also need to have a protocol in place so that message exchange 
can take place meaningfully. A protocol defines what type of conversation can take place between two 
components of a distributed application by specifying messages and data types, encoding formats, and 
so on. This chapter looks at some of the issues involved in this process and gives a complete example of a 
simple client-server application.

�Protocol Design
There are many possibilities and issues to be decided on when designing a protocol. Some of the issues 
include the following:

•	 Is it to be broadcast or point to point? Broadcast can be UDP, local multicast, or the 
more experimental MBONE. Point to point could be either TCP or UDP. In general, 
at the IP level, often, we consider the following topologies; unicast, multicast, 
broadcast, and anycast.

•	 Is it to be stateful or stateless? Is it reasonable for one side to maintain state about the 
other side? It is often simpler for one side to maintain state about the other, but what 
happens if something crashes?

•	 Is the transport protocol reliable or unreliable? Reliable is often slower, but then you 
don’t have to worry so much about lost messages. For example, decisions around 
reliability have influenced HTTP’s evolution.

•	 Are replies needed? If a reply is needed, how do you handle a lost reply? Timeouts 
may be used. RPC functions that return void are an example of this.

•	 What data format do you want? Several possibilities were discussed in the last 
chapter.

•	 Is your communication bursty or steady stream? Ethernet and the Internet are best at 
bursty traffic. Steady stream is needed for video streams and particularly for voice. If 
required, how do you manage Quality of Service (QoS)?

•	 Are there multiple streams with synchronization required? Does the data need to be 
synchronized with anything, such as video and voice?

•	 Are you building a stand-alone application or a library to be used by others? The 
standards of documentation required might vary.

https://doi.org/10.1007/978-1-4842-8095-9_5#DOI


110

�Why Should You Worry?
Jeff Bezos, the CEO of Amazon, reportedly made the following statements in 2002:

•	 All teams will henceforth expose their data and functionality through service 
interfaces.

•	 Teams must communicate with each other through these interfaces.

•	 There will be no other form of interprocess communication allowed: no direct 
linking, no direct reads of another team’s data store, no shared-memory model, no 
backdoors whatsoever. The only communication allowed is via service interface calls 
over the network.

•	 It doesn’t matter what technology they use. HTTP, Corba, Pubsub, custom  
protocols – it doesn’t matter. Bezos doesn’t care.

•	 All service interfaces, without exception, must be designed from the ground up to be 
externalizable. That is to say, the team must plan and design to be able to expose the 
interface to developers on the outside world. No exceptions.

•	 Anyone who doesn’t do this will be fired.

(Source: Repost of Steve Yegge’s posting at https://gist.github.com/chitchcock/1281611)
What Bezos was doing was orienting one of the world’s most successful Internet companies around 

service architectures, and interfaces must be clear enough that all communication must be through those 
interfaces alone – without confusion or errors.

�Version Control
A protocol used in a client-server system will evolve over time, changing as the system expands. This raises 
compatibility problems: A version 2 client will make requests that a version 1 server doesn’t understand, 
whereas a version 2 server will send replies that a version 1 client won’t understand.

Each side should ideally be able to understand messages from its own version and all earlier ones. It 
should be able to write replies to old-style queries in old-style response formats. See Figure 5-1.

Chapter 5 ■ Application-Level Protocols

https://gist.github.com/chitchcock/1281611


111

client v1
v1 protocol

v1 protocol

v1 protocol

v2 protocol

server v1

server v1

server v2

server v2

client v2

client v2

client v1

Figure 5-1.  Compatibility vs. version control

The ability to talk earlier version formats may be lost if the protocol changes too much. In this case, you 
need to be able to ensure that no copies of the earlier version still exist, which is generally impossible.

Preferences can change with experience regarding versioning. For example, Protocol buffers dropped 
the required syntax from the v3 release to favor simplicity.1

Part of the protocol setup often involves version information. Versioning a protocol (or API) is a 
mechanism that lets clients and servers agree on a set of endpoints, requests, and responses (or messages). 
Overt versioning maybe clear but often can limit interaction between components as the protocol changes. 
Alternatives exist including versionless APIs (sometimes called open APIs), where the goal is to maintain 
backward and forward compatibility. Protocols such as HTTP have evolved in their use (and not so much 
in their design) in these regards. Recently, GraphQL and similar tools show promise in the versionless 
space. One final point, versionless, doesn’t mean there is no versioning at all; it just implies there is more 
compatibility over the various releases of a protocol.

�The Web
The Web is a good example of a system that has been through multiple different versions. The underlying 
HTTP protocol manages version control in an excellent manner, even though it has been through multiple 
versions. Most servers/browsers support the HTTP/3 version but also support the earlier versions. Version 
HTTP/2 appears to account for just over 60% of web traffic in 2021, HTTP/3 (QUIC) is around 5%, and 
HTTP/1.1 accounts for almost all the rest. We can see one type of change over the HTTP versions pertaining 
to the GET requests:

1 “why messge type remove ‘required,optional’?” – https://github.com/protocolbuffers/protobuf/
issues/2497

Chapter 5 ■ Application-Level Protocols

https://github.com/protocolbuffers/protobuf/issues/2497
https://github.com/protocolbuffers/protobuf/issues/2497


112

Request Version

GET / Pre 1.0

GET / HTTP/1.0 HTTP 1.0

GET / HTTP/1.1 HTTP 1.1

GET / HTTP/1.1 Connection: Upgrade, 
HTTP2-Settings Upgrade: h2c

HTTP 2

QUIC version 1Alt-Svc: h3=":50123" HTTP 3

HTTP/2 is a binary format and is not compatible with earlier versions. Nevertheless, there is a 
negotiation mechanism of sending an HTTP/1.1 request with upgrade fields to HTTP/2. If the client accepts 
it, the upgrade can be made. If the client doesn’t understand the upgrade parameters, the connection 
continues with HTTP/1.1.

HTTP/3 is also a binary format, one that replaces the TCP transport with UDP. Additional 
improvements include secure by default. While not 100% finished, HTTP/3 is in the final stages of becoming 
the new HTTP standard.2

While originally designed for HTML, HTTP can carry any content. If we just look at HTML, this has been 
through a large number of versions with, at times, little attempt to ensure compatibility between versions:

•	 HTML5, which has abandoned any version signaling between dot revisions.

•	 HTML versions 1–4 (all different), with versions in the “browser wars” particularly 
problematic.

•	 Nonstandard tags recognized by different browsers.

•	 Non-HTML documents often require content handlers that may not be present. 
Does your browser have a handler for Flash?

•	 Inconsistent treatment of document content (e.g., some stylesheet content will crash 
some browsers).

•	 Different support for JavaScript (and different versions of JavaScript).

•	 Different runtime engines for Java.

•	 Many pages do not conform to any HTML versions (e.g., with syntax errors).

HTML5 (and indeed many earlier versions) is an excellent example of how not to do version control. 
The latest revision at the time of writing is Revision 5. “In this version, new features are introduced to 
help web application authors, new elements are introduced based on research into prevailing authoring 
practices,….” Not only are some new features added, but some older ones (which should not be in 
much use anymore) have also been removed and no longer work. There is no means for an HTML5 
document to signal which revision it uses. For more on this topic, check out the “HTML – Living Standard” 
(https://html.spec.whatwg.org/).

2 “Last Call: <draft-ietf-quic-transport-32.txt> (QUIC: A UDP-Based Multiplexed and Secure Transport) to Proposed 
Standard” – https://mailarchive.ietf.org/arch/msg/quic/ye1LeRl7oEz898RxjE6D3koWhn0/

Chapter 5 ■ Application-Level Protocols

https://html.spec.whatwg.org/
https://mailarchive.ietf.org/arch/msg/quic/ye1LeRl7oEz898RxjE6D3koWhn0/


113

�Message Format
In the last chapter, we discussed some possibilities for representing data to be sent across the wire. Now we 
look one level up, to the messages that may contain such data.

•	 The client and server will exchange messages with different meanings:

•	 Login request.

•	 Login reply.

•	 Get record request.

•	 Record data reply.

•	 The client will prepare a request, which must be understood by the server.

•	 The server will prepare a reply, which must be understood by the client.

Commonly, the first part of the message will be a message type.

•	 Client to server:

LOGIN <name> <passwd>
GET <subject> grade

•	 Server to client:

LOGIN succeeded
GRADE <subject> <grade>

The message types can be strings or integers. For example, HTTP uses integers such as 404 to mean “not 
found” (although these integers are written as strings). The messages from client to server and vice versa are 
disjoint. The LOGIN message from the client to the server is a different message than the LOGIN message from 
the server to the client, and they will probably play complementary roles in the protocol.

�Data Format
There are two main format choices for messages: byte encoded or character encoded.

�Byte Format
In the byte format:

•	 The first part of the message is typically a byte to distinguish between message types.

•	 The message handler examines this first byte to distinguish the message type and 
then performs a switch to select the appropriate handler for that type.

•	 Further bytes in the message contain message content according to a predefined 
format (as discussed in the previous chapter).

Chapter 5 ■ Application-Level Protocols



114

The advantages are compactness and hence speed. The disadvantages are caused by the opaqueness of 
the data: it may be harder to spot errors, harder to debug, and require special purpose decoding functions. 
There are many examples of byte-encoded formats, including major protocols such as DNS and NFS, up to 
recent ones such as Skype. Of course, if your protocol is not publicly specified, then a byte format can also 
make it harder for others to reverse-engineer it!

Pseudocode for a byte-format server is as follows:

handleClient(conn) {
    while (true) {
        byte b = conn.readByte()
        switch (b) {
            case MSG_1: ...
            case MSG_2: ...
            ...
        }
    }
}

Go net package has basic support for managing byte streams. The interface net.Conn includes the 
following methods among others:

Read(b []byte) (n int, err error)
Write(b []byte) (n int, err error)

These methods are implemented by net.TCPConn and net.UDPConn.

�Character Format
In this mode, everything is sent as characters if possible. For example, an integer 234 would be sent as, say, 
the three characters 2, 3, and 4 instead of as the one byte 234. Data that is inherently binary may be Base64 
encoded to change it into a 7-bit format and then sent as ASCII characters, as discussed in the previous 
chapter.

In character format:

•	 A message is a sequence of one or more lines. The start of the first line of the message 
is typically a word that represents the message type.

•	 String-handling functions may be used to decode the message type and data.

•	 The rest of the first line and successive lines contain the data.

•	 Line-oriented functions and line-oriented conventions are used to manage this.

The pseudocode is as follows:

handleClient() {
    line = conn.readLine()
    if (line.startsWith(...) {
        ...
    } else if (line.startsWith(...) {
        ...
    }
}

Chapter 5 ■ Application-Level Protocols



115

Character formats are easier to set up and easier to debug. For example, you can use telnet to connect 
to a server on any port and send client requests to that server. There isn’t a simple tool like telnet to send 
server responses to a client, but you can use tools like tcpdump or wireshark to snoop on TCP traffic and see 
immediately what clients are sending to, and receiving from, the servers.

There is not the same level of support in Go for managing character streams. There are significant issues 
with character sets and character encodings, and we will explore these issues in a later chapter.

If we just pretend everything is ASCII, like it was once upon a time, then character formats are quite 
straightforward to deal with. The principal complication at this level is the varying status of “newline” across 
different operating systems. UNIX uses the single character \n. Windows and others (more correctly) use 
the pair \r\n. On the Internet, the pair \r\n is most common. UNIX systems just need to take care that they 
don’t assume \n.

�A Simple Example
This example deals with a directory browsing protocol, which is basically a stripped-down version of FTP, 
but without even the file transfer part. We only consider listing a directory name, listing the contents of a 
directory, and changing the current directory – all on the server side, of course. This is a complete worked 
example of creating all components of a client-server application. It is a simple program that includes 
messages in both directions, as well as a design of messaging protocol.

�A Stand-Alone Application
Look at a simple non-client-server program that allows you to list files in a directory and change and print 
the name of the directory on the server. We omit copying files, as that adds to the length of the program 
without introducing important concepts. For simplicity, all file names will be assumed to be in 7-bit ASCII. If 
we just looked at a stand-alone application first, it would look like Figure 5-2.

UI
File
system
access

Figure 5-2.  The stand-alone application

The pseudocode would be as follows:

read line from user
while not eof do
  if line == dir
    list directory // local function call
  else
  if line == cd <directory>
    change directory // local function call

Chapter 5 ■ Application-Level Protocols



116

  else
  if line == pwd
    print directory // local function call
  else
  if line == quit
    quit
  else
    complain
  read line from user

A nondistributed application would simply link the UI and file access code by local function calls.

�The Client-Server Application
In a client-server situation, the client would be at the user end, talking to a server somewhere else. Aspects 
of this program belong solely at the presentation end, such as getting the commands from the user. Some are 
messages from the client to the server; some are solely at the server end. See Figure 5-3.

UI

network

Client Server

client

I/O

server

I/O

File
system
access

Figure 5-3.  The client-server situation

�The Client Side
For a simple directory browser, assume that all directories and files are at the server end and we are 
transferring file information only from the server to the client. The client side (including presentation 
aspects) will become

read line from user
while not eof do
  if line == dir
    list directory // network call to server
  else
  if line == cd <directory>
    change directory // network call to server
  else

Chapter 5 ■ Application-Level Protocols



117

  if line == pwd
    print directory // network call to server
  else
  if line == quit
    quit
  else
    complain
  read line from user

where the calls list directory, change directory, and print directory now all involve network 
calls to the server. The details are not shown yet and will be discussed later.

�Alternative Presentation Aspects
A GUI program would allow directory contents to be displayed as lists, for files to be selected and actions 
such as change directory to be performed on them. The client would be controlled by actions associated 
with various events that take place on graphical objects. The pseudocode might look like this:

change dir button:
  if there is a selected file
    change directory // remote call to server
  if successful
    update directory label
    list directory // remote call to server
    update directory list

The functions called from the different UIs should be the same – changing the presentation should not 
change the networking code.

�The Server Side
The server side is independent of whatever presentation is used by the client. It is the same for all clients:

while read command from client
  if command == dir
    send list directory // local call on server
  else
  if command == cd <directory>
    change directory // local call on server
  else
  if command == pwd
    send print directory // local call on server
  else

Chapter 5 ■ Application-Level Protocols



118

�Protocol: Informal

Client Request Server Response

dir Send list of files

cd <directory> Change dir
Send an error if failed
Send ok if succeed

pwd Send current directory

quit Quit

�Text Protocol
This is a simple protocol. The most complicated data structure that we need to send is an array of strings for 
a directory listing. In this case, we don’t need the heavy-duty serialization techniques of the last chapter. In 
this case, we can use a simple text format.

But even if we make the protocol simple, we still have to specify it in detail. We choose the following 
message format:

•	 All messages are in 7-bit US-ASCII.

•	 The messages are case-sensitive.

•	 Each message consists of a sequence of lines.

•	 The first word on the first line of each message describes the message type. All other 
words are message data.

•	 All words are separated by exactly one space character.

•	 Each line is terminated by CR-LF.

Some of the choices made previously are weaker in real-life protocols. For example:

•	 Message types could be case-insensitive. This just requires mapping message type 
strings down to lowercase before decoding.

•	 An arbitrary amount of whitespace could be left between words. This just adds a little 
more complication, compressing whitespace.

•	 Continuation characters such as \ can be used to break long lines over several lines. 
This starts to make processing more complex.

•	 Just a \n could be used as line terminator, \r\n can too. This makes recognizing the 
end of line a bit harder.

All of these variations exist in real protocols. Cumulatively, they make string processing more complex 
than in this case.

Chapter 5 ■ Application-Level Protocols



119

Client Request Server Response

send "DIR" Send list of files, one per line, terminated by a blank line

send "CD <directory>" Change dir
Send "ERROR" if failed
Send "OK" if succeeded

send "PWD" Send current working directory

We should also specify the transport:

•	 All messages are sent over a TCP connection established from the client to the server.

�Server Code
The server is ftpserver.go:

$ mkdir ch5
$ cd ch5
ch5$ vi ftpserver.go

/* FTP Server
 */
package main

import (
        "log"
        "net"
        "os"
        "strings"
)
const (
        DIR = "DIR"
        CD  = "CD"
        PWD = "PWD"
)

func main() {
        service := "0.0.0.0:1202"
        tcpAddr, err := net.ResolveTCPAddr("tcp", service)
        checkError(err)
        listener, err := net.ListenTCP("tcp", tcpAddr)
        checkError(err)
        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }
                go handleClient(conn)
        }
}

Chapter 5 ■ Application-Level Protocols



120

func handleClient(conn net.Conn) {
        defer conn.Close()
        var buf [512]byte
        for {
                n, err := conn.Read(buf[0:])
                if err != nil {
                        conn.Close()
                        return
                }
                s := strings.Split(string(buf[0:n]), " ")
log.Println(s)
                // decode request
                switch s[0] {
                case CD:
                        chdir(conn, s[1])
                case DIR:
                        dirList(conn)
                case PWD:
                        pwd(conn)
                default:
                        log.Println("Unknown command ", s)
                }
        }
}

func chdir(conn net.Conn, s string) {
        if os.Chdir(s) == nil {
                conn.Write([]byte("OK"))
        } else {
                conn.Write([]byte("ERROR"))
        }
}
func pwd(conn net.Conn) {
        s, err := os.Getwd()
        if err != nil {
                conn.Write([]byte(""))
                return
        }
        conn.Write([]byte(s))
}

func dirList(conn net.Conn) {
        // send a blank line on termination
        defer conn.Write([]byte("\r\n"))
        dir, err := os.Open(".")
        if err != nil {
                return
        }
        names, err := dir.Readdirnames(-1)
        if err != nil {
                return
        }

Chapter 5 ■ Application-Level Protocols



121

        for _, nm := range names {
                conn.Write([]byte(nm + "\r\n"))
        }
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

�Client Code
A command-line client is ftpclient.go:

ch5$ vi ftpclient.go

/* FTPClient
 */
package main

import (
        "bufio"
        "bytes"
        "fmt"
        "log"
        "net"
        "os"
        "strings"
)

// strings used by the user interface
const (
        uiDir  = "dir"
        uiCd   = "cd"
        uiPwd  = "pwd"
        uiQuit = "quit"
)

// strings used across the network
const (
        DIR = "DIR"
        CD  = "CD"
        PWD = "PWD"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "host")
        }

Chapter 5 ■ Application-Level Protocols



122

        host := os.Args[1]
        conn, err := net.Dial("tcp", host+":1202")
        checkError(err)
        reader := bufio.NewReader(os.Stdin)
        for {
                line, err := reader.ReadString('\n')
                // lose trailing whitespace
                line = strings.TrimRight(line, " \t\r\n")
                if err != nil {
                        break
                }
                // split into command + arg
                strs := strings.SplitN(line, " ", 2)
                // decode user request
                switch strs[0] {
                case uiDir:
                        dirRequest(conn)
                case uiCd:
                        if len(strs) != 2 {
                                fmt.Println("cd <dir>")
                                continue
                        }
                        fmt.Println("CD \"", strs[1], "\"")
                        cdRequest(conn, strs[1])
                case uiPwd:
                        pwdRequest(conn)
                case uiQuit:
                        conn.Close()
                        os.Exit(0)
                default:
                        fmt.Println("Unknown command")
                }
        }
}

func dirRequest(conn net.Conn) {
        conn.Write([]byte(DIR + " "))
        var buf [512]byte
        result := bytes.NewBuffer(nil)
        for {
                // read till we hit a blank line
                n, _ := conn.Read(buf[0:])
                result.Write(buf[0:n])
                length := result.Len()
                contents := result.Bytes()
                if string(contents[length-4:]) == "\r\n\r\n" {
                        fmt.Println(string(contents[0 : length-4]))
                        return
                }
        }
}

Chapter 5 ■ Application-Level Protocols



123

func cdRequest(conn net.Conn, dir string) {
        conn.Write([]byte(CD + " " + dir))
        var response [512]byte
        n, _ := conn.Read(response[0:])
        s := string(response[0:n])
        if s != "OK" {
                fmt.Println("Failed to change dir")
        }
}

func pwdRequest(conn net.Conn) {
        conn.Write([]byte(PWD))
        var response [512]byte
        n, _ := conn.Read(response[0:])
        s := string(response[0:n])
        fmt.Println("Current dir \"" + s + "\"")
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

An example session using our FTP server and client; in one terminal, run the server:

ch5$ go run ftpserver.go

In another terminal, run the ftp client.

ch5$ go run ftpclient.go localhost
pwd
Current dir “.../ch5"
dir
ftpserver.go
ftpclient.go

Try other commands such as “cd ..”.

�Textproto Package
The textproto package contains functions designed to simplify the management of text protocols similar to 
HTTP and SNMP.

These formats have some little-known rules with regard to a single logical line continued over 
multiple lines such as the following: “HTTP/1.1 header field values can be folded onto multiple lines if the 
continuation line begins with a space or horizontal tab” (HTTP1.1 specification). Formats allowing lines 
like these can be read using the textproto.Reader.ReadContinuedLine() function, in addition to simpler 
functions like textproto.Reader.ReadLine().

These protocols also signal status values with lines beginning with three-digit codes such as HTTP’s 
404. These can be read using textproto.Reader.ReadCodeLine(). They also have key: value lines such as 
Content-Type: image/gif. Such lines can be read into a map by textproto.Reader.ReadMIMEHeader().

Chapter 5 ■ Application-Level Protocols



124

Here is an example where we leverage an external tool called netcat (i.e., nc). This tool is often used 
when scripting TCP, UDP, or Unix-domain sockets. In this example, we create a client that sends an HTTP 
request message. Listening for the request will be netcat. Once the client executes, you will type the result 
into the netcat terminal (simulating a response). In the client, we only expect a response starting with a 404, 
else we will error out. Create the following client, textprotoclient.go.

ch5$ vi textprotoclient.go

/* textproto
 */

package main

import (
        "fmt"
        "log"
        "net/textproto"
)

func main() {
        conn, e := textproto.Dial("unix", "/tmp/fakewebserver")
        checkerror(e)
        defer conn.Close()
        fmt.Println("Sending request to retrieve /mypage")
        id, e := conn.Cmd("GET /mypage")
        checkerror(e)
        conn.StartResponse(id)
        defer conn.EndResponse(id)
        // fake sending back a 200 via nc or your own server
        code, stringResult, err := conn.ReadCodeLine(200)
        checkerror(err)
        fmt.Println(code, "\n", stringResult, "\n", err)
}

func checkerror(err error) {
        if err != nil {
                log.Fatalln("error: ", err)
        }
}

Here is an example session; in one terminal, run netcat.

ch$ nc -lkU /tmp/fakewebserver

In another terminal, run our client.

ch5$ go run textprotoclient.go

Sending request to retrieve /mypage

Chapter 5 ■ Application-Level Protocols



125

Our netcat server will show:

ch5$ nc -lkU /tmp/fakewebserver

GET /mypage

In the netcat server, type the following (“200 This will work”):

ch5$ nc -lkU /tmp/fakewebserver

GET /mypage
200 This will work

Finally, back in our client, we see:

ch5$ go run textprotoclient.go
Sending request to retrieve /mypage
200
This will work
<nil>

The preceding code shows a response starting with 200; if we try another run and return 400 from the 
server, we receive an error. Do not confuse this for HTTP; many protocols (e.g., SMTP) use numeric codes.

�State Information
Applications often use state information to simplify what is going on. For example:

•	 Keeping file pointers to a current file location

•	 Keeping the current mouse position

•	 Keeping the current customer value

In a distributed system, such state information may be kept in the client, in the server, or in both.
The important point is to whether one process is keeping state information about itself or about the 

other process. One process may keep as much state information about itself as it wants, without causing 
any problems. If it needs to keep information about the state of the other process, then problems arise. The 
process’ actual knowledge of the state of the other may become incorrect. This can be caused by loss of 
messages (in UDP), by failure to update, or by software errors.

An example is reading a file. In single process applications, the file-handling code runs as part of the 
application. It maintains a table of open files and the location in each of them. Each time a read or write is 
done, this file location is updated. In distributed systems, this simple model does not hold. See Figure 5-4.

Chapter 5 ■ Application-Level Protocols



126

DCE File System

client
reading

file

file

server

File table

name
name

file ptr
file ptr

update
file ptr

read n bytes

n bytes

Figure 5-4.  The DCE file system

In the DCE file system shown in Figure 5-4, the file server keeps track of a client’s open files and where 
the client’s file pointer is. If a message could get lost (but DCE uses TCP), these could get out of sync. If the 
client crashes, the server must eventually time out on the client’s file tables and remove them.

client
reading

file

read n bytes from
file at ptr

NFS File System

n bytes

update
file ptr

name
name

file ptr
file ptr

File table

file

server

Figure 5-5.  The NFS file system

Chapter 5 ■ Application-Level Protocols



127

In NFS, the server does not maintain this state. The client does. Each file access from the client that 
reaches the server must open the file at the appropriate point, as given by the client, in order to perform the 
action. See Figure 5-5.

If the server maintains information about the client, it must be able to recover if the client crashes. If 
information is not saved, then on each transaction, the client must transfer sufficient information for the 
server to function.

If the connection is unreliable, additional handling must be in place to ensure that the two do not get 
out of sync. The classic example is of bank account transactions where the messages get lost. A transaction 
server may need to be part of the client-server system.

�Application State Transition Diagram
A state transition diagram keeps track of the current state of an application and the changes that move it to 
new states.

The previous example basically only had one state: file transfer. If we add a login mechanism, that 
would add an extra state called login, and the application would need to change states between login and file 
transfer, as shown in Figure 5-6.

START

LOGIN
failed

LOGIN
succeeded

LOGOUT

Login
File

Transfer

DIR

GET

QUIT

Figure 5-6.  The state-transition diagram

Chapter 5 ■ Application-Level Protocols



128

This state change can also be expressed as a table:

Current State Transition Next State

login login failed login

login succeeded file transfer

file transfer dir file transfer

get file transfer

logout login

quit -

�Client-State Transition Diagrams
The client state diagram must follow the application diagram. It has more detail though: it writes and 
then reads.

Current State Write Read Next State

login LOGIN name password FAILED Login

OK file transfer

file transfer CD dir OK file transfer

FAILED file transfer

GET filename #lines + contents file transfer

FAILED file transfer

DIR File names + blank line file transfer

blank line (Error) file transfer

quit none Quit

�Server-State Transition Diagrams
The server state diagram must also follow the application diagram. It also has more detail: it reads and 
then writes.

Chapter 5 ■ Application-Level Protocols



129

Current State Read Write Next State

login LOGIN name password FAILED Login

OK file transfer

file transfer CD dir SUCCEEDED file transfer

FAILED file transfer

GET filename #lines + contents file transfer

FAILED file transfer

DIR filenames + blank line file transfer

blank line (failed) file transfer

quit none Login

�Server Pseudocode
Here is the server pseudocode:

state = login
while true
    read line
    switch (state)
        case login:
            get NAME from line
            get PASSWORD from line
            if NAME and PASSWORD verified
                write SUCCEEDED
                state = file_transfer
            else
                write FAILED
                state = login
        case file_transfer:
            if line.startsWith CD
                get DIR from line
                if chdir DIR okay
                    write SUCCEEDED
                    state = file_transfer
                else
                    write FAILED
                    state = file_transfer
            ...

We don’t give the actual code for this server or client since it is pretty straightforward.

Chapter 5 ■ Application-Level Protocols



130

�Conclusion
Building any application requires design decisions before you start writing code. With distributed 
applications, you have a wider range of decisions to make compared to stand-alone systems. This chapter 
considered some of those aspects and demonstrated what the resultant code might look like. We only 
touched on the elements of protocol design. There are many formal and informal models. The IETF (Internet 
Engineering Task Force) created a standard format for its protocol specifications in its RFCs (Requests for 
Comments), and sooner or later, every network engineer will need to work with RFCs.

Chapter 5 ■ Application-Level Protocols



131
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_6

CHAPTER 6

Managing Character Sets 
and Encodings

Once upon a time, there were EBCDIC and ASCII. Actually, it was never that simple and has just become 
more complex over time. There is light on the horizon, but some estimates are that it may be 50 years before 
we all live in the daylight on this!

Early computers were developed in the English-speaking countries of the United States, the UK, and 
Australia. As a result of this, assumptions were made about the language and character sets in use. Basically, 
the Latin alphabet was used, plus numerals, punctuation characters, and a few others. These were then 
encoded into bytes using ASCII or EBCDIC.

The character-handling mechanisms were based on this: text files and I/O consisted of a sequence 
of bytes, with each byte representing a single character. String comparison could be done by matching 
corresponding bytes; conversions from upper- to lowercase could be done by mapping individual bytes 
and so on.

There are about 6,500 spoken languages in the world (850 of them in Papua New Guinea!). A few 
languages use the “English” characters, but most do not. The Romanic languages such as French have 
adornments on various characters, so you can write “j’ai arrêté” with two differently accented vowels. 
Similarly, the Germanic languages have extra characters such as “ß”. Even UK English has characters not in 
the standard ASCII set: the pound symbol “£” and recently the euro “€”.

But the world is not restricted to variations on the Latin alphabet. Thailand has its own alphabet, with 
words looking like this: “ภาษาไทย”. There are many other alphabets, and Japan even has two: Hiragana and 
Katakana.

There are also the hierographic languages such as Chinese where you can write “百度一下, 你就知道”.
It would be nice from a technical viewpoint if the world just used ASCII. However, the trend is in the 

opposite direction, with more and more users demanding that software use the language that they are 
familiar with. If you build an application that can be run in different countries, then users will demand that 
it uses their own language. In a distributed system, different components of the system may be used by users 
expecting different languages and characters.

Internationalization (i18n) is how you write your applications so that they can handle the variety of 
languages and cultures. Localization (l10n) is the process of customizing your internationalized application 
to a particular cultural group.

i18n and l10n are big topics in themselves. For example, they cover issues such as colors: while white 
means “purity” in Western cultures, it means “death” to the Chinese and “joy” to Egyptians. In this chapter, 
we just look at issues of character handling.

https://doi.org/10.1007/978-1-4842-8095-9_6#DOI


132

�Definitions
It is important to be careful about exactly what part of a text-handling system you are talking about. Here is a 
set of definitions that have proven useful.

�Character
A character is a “unit of information that roughly corresponds to a grapheme (written symbol) of a natural 
language, such as a letter, numeral, or punctuation mark” (Wikipedia). A character is “the smallest 
component of written language that has a semantic value” (Unicode). This includes letters such as “a” 
and “À” (or letters in any other language), digits such as “2”, punctuation characters such as “,” and various 
symbols such as the English pound currency symbol “£”.

A character is some sort of abstraction of any actual symbol: the character “a” is to any written “a” as a 
Platonic circle is to any actual circle. The concept of character also includes control characters, which do 
not correspond to natural language symbols but to other bits of information used to process texts of the 
language.

A character does not have any particular appearance, although we use the appearance to help recognize 
the character. However, even the appearance may have to be understood in a context: in mathematics, if 
you see the symbol π (pi), it is the character for the ratio of circumference to radius of a circle, while if you 
are reading Greek text, it is the sixteenth letter of the alphabet: “πρoσ” is the Greek word for “with” and has 
nothing to do with 3.14159.

�Character Repertoire/Character Set
A character repertoire is a set of distinct characters, such as the Latin alphabet. No particular ordering is 
assumed. In English, although we say that “a” is earlier in the alphabet than “z”, we wouldn’t say that “a” 
is less than “z”. The “phone book" ordering that puts “McPhee” before “MacRea” shows that “alphabetic 
ordering” isn’t critical to the characters.

A repertoire specifies the names of the characters and often a sample of how the characters might look. 
For example, the letter “a” might look like “a”, “a”, or “a”. But it doesn’t force them to look like that – they 
are just samples. The repertoire may make distinctions such as upper- and lowercase so that “a” and “A” 
are different. But it may regard them as the same, just with different sample appearances (just like some 
programming languages treat upper- and lowercase as different, Go, but some don’t, Basic). On the other 
hand, a repertoire might contain different characters with the same sample appearance: the repertoire for a 
Greek mathematician would have two different characters with appearance π. This is also called a noncoded 
character set.

�Character Code
A character code is a mapping from characters to integers. The mapping for a character set is also called a 
coded character set or code set. The value of each character in this mapping is often called a code point. 
ASCII is a code set. The code point for “a” is 97, and for “A”, it is 65 (decimal).

The character code is still an abstraction. It isn’t yet what we will see in text files, or in TCP packets. 
However, it is getting close, as it supplies the mapping from human-oriented concepts into numerical ones.

Chapter 6 ■ Managing Character Sets and Encodings



133

�Character Encoding
To communicate or store a character, you need to encode it in some way. To transmit a string, you need to 
encode all characters in the string. There are many possible encodings for any code set.

For example, 7-bit ASCII code points can be encoded as themselves into 8-bit bytes (an octet). So ASCII 
“A” (with code point 65) is encoded as the 8-bit octet 01000001. However, a different encoding would be to 
use the top bit for parity checking. For example, with odd parity, ASCII “A” would be the octet 11000001. 
Some protocols such as Sun’s XDR use 32-bit word-length encoding. ASCII “A” would be encoded as 
00000000 00000000 0000000 01000001.

The character encoding is where we function at the programming level. Our programs deal with 
encoded characters. It obviously makes a difference whether we are dealing with 8-bit characters with or 
without parity checking, or with 32-bit characters.

The encoding extends to strings of characters. A word-length even parity encoding of “ABC” might be 
10000000 (parity bit in high byte) 0100000011 (C) 01000010 (B) 01000001 (A in low byte). The comments 
about the importance of an encoding apply equally strongly to strings, where the rules may be different.

�Transport Encoding
A character encoding will suffice for handling characters within a single application. However, once you start 
sending text between applications, then there is the further issue of how the bytes, shorts, or words are put on 
the wire. An encoding can be based on space- and hence bandwidth-saving techniques such as zipping the 
text. Or it could be reduced to a 7-bit format to allow a parity checking bit, such as base64.

If we do know the character and transport encoding, then it is a matter of programming to manage 
characters and strings. If we don’t know the character or transport encoding, then it is a matter of guesswork 
as to what to do with any particular string. There is no convention for files to signal the character encoding.

There is, however, a convention for signaling encoding in text transmitted across the Internet. It is simple: 
the header of a text message contains information about the encoding. For example, an HTTP header can 
contain lines such as the following:

Content-Type: text/html; charset=ISO-8859-4
Content-Encoding: gzip

This says that the character set is ISO 8859-4 (corresponding to certain countries in Europe) with the 
default encoding, but then gziped. The second part – the content encoding – is what we are referring to as 
“transfer encoding” (IETF RFC 2130).

But how do you read this information? Isn’t it encoded? Don’t we have a chicken and egg situation? 
Well, no. The convention is that such information is given in ASCII (to be precise, US ASCII) so that a 
program can read the headers and then adjust its encoding for the rest of the document.

�ASCII
ASCII has the repertoire of the English characters plus digits, punctuation, and some control characters. The 
code points for ASCII are given by this familiar table:

Oct   Dec   Hex   Char           Oct   Dec   Hex   Char
------------------------------------------------------------
000   0     00    NUL '¥0'       100   64    40    @
001   1     01    SOH            101   65    41    A
002   2     02    STX            102   66    42    B

Chapter 6 ■ Managing Character Sets and Encodings



134

003   3     03    ETX            103   67    43    C
004   4     04    EOT            104   68    44    D
005   5     05    ENQ            105   69    45    E
006   6     06    ACK            106   70    46    F
007   7     07    BEL '\a'       107   71    47    G
010   8     08    BS  '\b'       110   72    48    H
011   9     09    HT  '\t'       111   73    49    I
012   10    0A    LF  '\n'       112   74    4A    J
013   11    0B    VT  '\v'       113   75    4B    K
014   12    0C    FF  '\f'       114   76    4C    L
015   13    0D    CR  '\r'       115   77    4D    M
016   14    0E    SO             116   78    4E    N
017   15    0F    SI             117   79    4F    O
020   16    10    DLE            120   80    50    P
021   17    11    DC1            121   81    51    Q
022   18    12    DC2            122   82    52    R
023   19    13    DC3            123   83    53    S
024   20    14    DC4            124   84    54    T
025   21    15    NAK            125   85    55    U
026   22    16    SYN            126   86    56    V
027   23    17    ETB            127   87    57    W
030   24    18    CAN            130   88    58    X
031   25    19    EM             131   89    59    Y
032   26    1A    SUB            132   90    5A    Z
033   27    1B    ESC            133   91    5B    [
034   28    1C    FS             134   92    5C    \
035   29    1D    GS             135   93    5D    ]
036   30    1E    RS             136   94    5E    ^
037   31    1F    US             137   95    5F    _
040   32    20    SPACE          140   96    60    `
041   33    21    !              141   97    61    a
042   34    22    "              142   98    62    b
043   35    23    #              143   99    63    c
044   36    24    $              144   100   64    d
045   37    25    %              145   101   65    e
046   38    26    &              146   102   66    f
047   39    27    '              147   103   67    g
050   40    28    (              150   104   68    h
051   41    29    )              151   105   69    i
052   42    2A    *              152   106   6A    j
053   43    2B    +              153   107   6B    k
054   44    2C    ,              154   108   6C    l
055   45    2D    -              155   109   6D    m
056   46    2E    .              156   110   6E    n
057   47    2F    /              157   111   6F    o
060   48    30    0              160   112   70    p
061   49    31    1              161   113   71    q
062   50    32    2              162   114   72    r
063   51    33    3              163   115   73    s
064   52    34    4              164   116   74    t
065   53    35    5              165   117   75    u

Chapter 6 ■ Managing Character Sets and Encodings



135

066   54    36    6              166   118   76    v
067   55    37    7              167   119   77    w
070   56    38    8              170   120   78    x
071   57    39    9              171   121   79    y
072   58    3A    :              172   122   7A    z
073   59    3B    ;              173   123   7B    {
074   60    3C    <              174   124   7C    |
075   61    3D    =              175   125   7D    }
076   62    3E    >              176   126   7E    ~
077   63    3F    ?              177   127   7F    DEL

(An interesting four-column version is at Robbie’s Garbage, Four Column ASCII at 
https://garbagecollected.org/2017/01/31/four-column-ascii/.)

The most common encoding for ASCII uses the code points as 7-bit bytes, so the encoding of “A”, for 
example, is 65.

This set is actually US ASCII. Due to European desires for accented characters, some punctuation 
characters are omitted to form a minimal set, ISO 646, while there are “national variants” with suitable 
European characters. The website (https://jkorpela.fi/chars.html) by Jukka Korpela has more 
information for those interested. You don’t need these variants for the work in this book, though.

�ISO 8859
Octets are now the standard size for bytes. This allows 128 extra code points for extensions to ASCII. A 
number of different code sets to capture the repertoires of various subsets of European languages are the ISO 
8859 series. ISO 8859-1 is also known as Latin-1 and covers many languages in western Europe, while others 
in this series cover the rest of Europe and even Hebrew, Arabic, and Thai. For example, ISO 8859-5 includes 
the Cyrillic characters of countries such as Russia, while ISO 8859-8 includes the Hebrew alphabet.

The standard encoding for these character sets is to use their code point as an 8-bit value. For example, 
the character “Á” in ISO 8859-1 has the code point 193 and is encoded as 193. All of the ISO 8859 series have 
the bottom 128 values identical to ASCII, so the ASCII characters are the same in all of these sets.

The HTML specifications used to recommend the ISO 8859-1 character set. HTML 3.2 was the last one 
to do so, and after that, HTML 4.0 recommended Unicode. In 2008, Google made an estimate that of the 
pages it sees, about 20% were still in ISO 8859 format while 20% were still in ASCII (see “Unicode nearing 
50% of the web” at http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html). See 
also http://pinyin.info/news/2015/utf-8-unicode-vs-other-encodings-over-time/ and https://
w3techs.com/technologies/history_overview/character_encoding for more background information.

�Unicode
Neither ASCII nor ISO 8859 covers the languages based on hieroglyphs. Chinese is estimated to have about 
20,000 separate characters, with about 5,000 in common use. These need more than a byte, and typically, 
two bytes have been used. There have been many of these two-byte character sets: Big5, EUC-TW, GB2312, 
and GBK/GBX for Chinese; JIS X 0208 for Japanese; and so on. These encodings are generally not mutually 
compatible.

Unicode is an embracing standard character set intended to cover all major character sets in use. It 
includes European, Asian, Indian, and many more. It is now up to version 14.0 and has 144,697 assigned 
characters. The number of code points is 1,114,112 (65,536 code points across 17 planes). That is more than 
2^16. This has implications for character encodings.

Chapter 6 ■ Managing Character Sets and Encodings

https://garbagecollected.org/2017/01/31/four-column-ascii/
https://jkorpela.fi/chars.html
http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html
http://pinyin.info/news/2015/utf-8-unicode-vs-other-encodings-over-time/
https://w3techs.com/technologies/history_overview/character_encoding
https://w3techs.com/technologies/history_overview/character_encoding


136

The first 256 code points correspond to ISO 8859-1, with US ASCII as the first 128. There is thus a 
backward compatibility with these major character sets, as the code points for ISO 8859-1 and ASCII are 
exactly the same in Unicode. The same is not true for other character sets: for example, while most of the 
Big5 characters are also in Unicode, the code points are not the same. The website http://moztw.org/
docs/big5/table/unicode1.1-obsolete.txt contains one example of a (large) table mapping from Big5 to 
Unicode.

To represent Unicode characters in a computer system, an encoding must be used. The encoding UCS 
is a two-byte encoding using the code point values of the Unicode characters. However, since there are now 
too many characters in Unicode to fit them all into 2 bytes, this encoding is obsolete and no longer used. 
Instead, there are the following:

•	 UTF-32 is a 4-byte encoding but is not commonly used, and HTML5 warns explicitly 
against using it.

•	 UTF-16 encodes the most common characters into 2 bytes with a further 2 bytes for 
the “overflow,” with ASCII and ISO 8859-1 having the usual values.

•	 UTF-8 uses between 1 and 4 bytes per character, with ASCII having the usual values 
(but not ISO 8859-1).

•	 Per the Unicode specification, UTF-8, UTF-16, and UTF-32 are fully interoperable 
with each other.

•	 UTF-7 is used sometimes but is not common.

Some considerations when selecting a particular UTF encoding1 include the following:

•	 Desire fixed width and single code unit access; use UTF-32.

•	 Space concerns, use UTF-16.

•	 Serialization is inherent with UTF-8.

�UTF-8, Go, and Runes
UTF-8 is the most commonly used encoding. Google estimated that in 2008, 50% of the pages that it sees are 
encoded in UTF-8 and that proportion is increasing. The ASCII set has the same encoding values in UTF-8, 
so a UTF-8 reader can read text consisting of just ASCII characters as well as text from the full Unicode set.

Go uses UTF-8 encoded characters in its strings. Each character is of type rune. This is an alias for 
int32. A Unicode character can be up to 4 bytes in UTF-8 encoding, so 4 bytes are needed to represent all 
characters. In terms of characters, a string is an array of runes using 1, 2, or 4 bytes per rune.

A string is also an array of bytes, but you have to be careful: only for the ASCII subset is a byte equal to 
a character. All other characters occupy 2, 3, or 4 bytes. This means that the length of a string in characters 
(runes) is generally not the same as the length of its byte array. They are equal only when the string consists 
of ASCII characters only.

The following program fragment illustrates this. If you take a UTF-8 string and test its length, you get 
the length of the underlying byte array. But if you cast the string to an array of runes []rune, then you get an 
array of the Unicode code points, which is generally the number of characters:

$ mkdir ch6
$ cd ch6
$ vi runeprint.go

1 The Unicode Standard – https://www.unicode.org/versions/Unicode14.0.0/
UnicodeStandard-14.0.pdf

Chapter 6 ■ Managing Character Sets and Encodings

http://moztw.org/docs/big5/table/unicode1.1-obsolete.txt
http://moztw.org/docs/big5/table/unicode1.1-obsolete.txt
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf


137

package main

import "fmt"

func main() {
        str := "百度一下, 你就知道"
        fmt.Println("String length: ", len([]rune(str)))
        fmt.Println("Byte length: ", len(str))
}

ch6$ go run runeprint.go

String length:  10
Byte length:  26

A more detailed explanation of strings and runes is given by The Go Blog (see 
https://go.dev/blog/strings).

�UTF-8 Client and Server
Possibly surprisingly, you need to do nothing special to handle UTF-8 text in either the client or the server. 
The underlying data type for a UTF-8 string in Go is a byte array, and as we just saw, Go looks after encoding 
the string into 1, 2, 3, or 4 bytes as needed. The length of the string is the length of the byte array, so you write 
any UTF-8 string by writing the byte array.

Similarly, to read a string, you just read into a byte array and then cast the array to a string using 
string([]byte). If Go cannot properly decode bytes into Unicode characters, then it gives the Unicode 
Replacement Character \uFFFD. The length of the resulting byte array is the length of the legal portion of 
the string.

So the clients and servers given in earlier chapters work perfectly well with UTF-8 encoded text.

�ASCII Client and Server
The ASCII characters have the same encoding in ASCII and in UTF-8. So ordinary UTF-8 character handling 
works fine for ASCII characters. No special handling needs to be done.

�UTF-16 and Go
UTF-16 deals with arrays of short 16-bit unsigned integers. The package utf16 is designed to manage such 
arrays. To convert a normal Go string, which is a UTF-8 string, into UTF-16, you first extract the code points 
by coercing it into a []rune and then use utf16.Encode to produce an array of type uint16.

Similarly, to decode an array of unsigned short UTF-16 values into a Go string, you use utf16.Decode to 
convert it into code points as type []rune and then to a string. The following code fragment illustrates this:

ch6$ vi utf16encodedecode.go

package main

import (
        "unicode/utf16"

Chapter 6 ■ Managing Character Sets and Encodings

https://go.dev/blog/strings


138

        "fmt"
)

func main() {
        str := "百度一下, 你就知道"
        fmt.Println("Before encoding:", str)

        runes := utf16.Encode([]rune(str))
        ints := utf16.Decode(runes)

        str = string(ints)
        fmt.Println("After encoding:", str)
}

ch6$ go run utf16encodedecode.go
Before encoding: 百度一下, 你就知道
After encoding: 百度一下, 你就知道

These type conversions need to be applied by clients or servers as appropriate, to read and write 16-bit 
short integers, as shown next.

�Little-Endian and Big-Endian
Unfortunately, there is a little devil lurking behind UTF-16. It is basically an encoding of characters into 
16-bit short integers. The big question is the following: For each short, how is it written as two bytes? The 
top one first, or the top one second? Either way is fine, as long as the receiver uses the same convention as 
the sender.

Unicode has addressed this with a special character known as the BOM (byte order marker). This is a 
zero-width nonprinting character, so you never see it in text. But its value (e.g., 0xfffe) is chosen so that you 
can tell the byte order:

•	 In a big-endian system, it is FF FE.

•	 In a little-endian system, it is FE FF.

Text will sometimes place the BOM as the first character in the text. The reader can then examine these 
two bytes to determine what endian-ness has been used.

�UTF-16 Client and Server
Using the BOM convention, you can write a server that prepends a BOM and writes a string in UTF-16 as 
utf16server.go:

ch6$ vi utf16server.go

/* UTF16 Server
 */
package main

import (
    "log"

Chapter 6 ■ Managing Character Sets and Encodings



139

    "net"
    "unicode/utf16"
)

// warning, our server currently only supports big endian
const BOM = '\ufffe'

func main() {
    service := "0.0.0.0:1210"
    tcpAddr, err := net.ResolveTCPAddr("tcp", service)
    checkError(err)
    listener, err := net.ListenTCP("tcp", tcpAddr)
    checkError(err)
    for {
        conn, err := listener.Accept()
        if err != nil {
            continue
        }
        // eg. Ŵ  is 0x0174, Ã is 0x00c3
        str := "Ŵj'ai arrÃªtÃ©"
        shorts := utf16.Encode([]rune(str))
        writeShorts(conn, shorts)
        conn.Close()
    }
}
func writeShorts(conn net.Conn, shorts []uint16) {
    var bytes [2]byte
    // send the BOM as first two bytes
    bytes[0] = BOM >> 8             // taking ff from BOM
    bytes[1] = BOM & 255            // taking fe from BOM
    _, err := conn.Write(bytes[0:]) // send BOM
    checkError(err)
    for _, v := range shorts {
        // breakup the unit16 into two bytes, then send
        bytes[0] = byte(v >> 8)
        bytes[1] = byte(v & 255)
        _, err = conn.Write(bytes[0:])
        if err != nil {
            return
        }
    }
}
func checkError(err error) {
    if err != nil {
        log.Fatalln("Fatal error ", err.Error())
    }
}

Chapter 6 ■ Managing Character Sets and Encodings



140

A client that reads a byte stream, extracts and examines the BOM, and then decodes the rest of the 
stream is utf16client.go:

ch6$ vi utf16client.go

/* UTF16 Client
 */
package main

import (
    "fmt"
    "log"
    "net"
    "os"
    "unicode/utf16"
)

const BOM = '\ufffe'

func main() {
    if len(os.Args) != 2 {
        log.Fatalln("Usage: ", os.Args[0], "host:port")
    }
    service := os.Args[1]
    conn, err := net.Dial("tcp", service)
    checkError(err)
    shorts := readShorts(conn)
    ints := utf16.Decode(shorts)
    str := string(ints)
    fmt.Println(str)
}
func readShorts(conn net.Conn) []uint16 {
    var buf [512]byte
    // read everything into the buffer
    n, err := conn.Read(buf[0:2]) // start with BOM
    for {
        m, err := conn.Read(buf[n:]) // read remaining byte pairs (originally unit16)
        if m == 0 || err != nil {
            break
        }
        n += m
    }
    checkError(err)
    var shorts []uint16
    shorts = make([]uint16, n/2)

    // We are checking for endianess
    // first - big endian 0xfffe
    // second - little endian 0xfeff
    // else - unknown
    // the inner loops are reading one byte per iteration
    // depending on endianess, places in the correct byte order

Chapter 6 ■ Managing Character Sets and Encodings



141

    // *warning* our server only supports big-endian
    if buf[0] == 0xff && buf[1] == 0xfe {
        for i := 2; i < n; i += 2 {
            shorts[i/2] = uint16(buf[i])<<8 + uint16(buf[i+1])
        }
    } else if buf[0] == 0xfe && buf[1] == 0xff {
        for i := 2; i < n; i += 2 {
            shorts[i/2] = uint16(buf[i+1])<<8 + uint16(buf[i])
        }
    } else {
        // unknown byte order
        fmt.Println("Unknown order")
    }
    return shorts
}
func checkError(err error) {
    if err != nil {
        log.Fatalln("Fatal error ", err.Error())
    }
}

Run the server and client in separate terminals:

ch6$ go run utf16server.go

ch6$ go run utf16client.go localhost:1210
Ŵj'ai arrÃªtÃ©

We see the client, based on the first two bytes, confirms if the data is big- or little-endian and decodes as 
necessary.

If you feel adventurous, change the server BOM to little-endian; you will see the following on the client 
(which does the right thing thinking its little-endian). This is because the server currently only generates as 
big-endian.

琁樀✀愀椀 愀爀爀쌀▯琀쌀▯

�Unicode Gotchas
This book is not about i18n issues. In particular, we don’t want to delve into the arcane areas of Unicode. 
But you should know that Unicode is not a simple encoding and there are many complexities. For example, 
some earlier character sets used nonspacing characters, particularly for accents. This was brought into 
Unicode, so you can produce accented characters in two ways: as a single Unicode character or as a pair of 
nonspacing accent plus non-accented character. For example, U+04D6, “Cyrillic capital letter ie with breve,” 
is a single character. It is equivalent to U+0415, “Cyrillic capital letter ie” combined with the breve accent 
U+0306 “combining breve.” This makes string comparison difficult on occasions. This could potentially be 
the cause of some very obscure errors.

There is a package called golang.org/x/text/unicode/norm in the Go experimental tree that can 
normalize Unicode strings. It can be installed into your Go package tree:

go get golang.org/x/text/unicode/norm

Chapter 6 ■ Managing Character Sets and Encodings



142

Note that it is a package in the “subrepositories” Go Project tree and may not be stable.
There are actually four standard Unicode forms. The most common is NFC. A string can be converted 

to NFC form by norm.NFC.String(str). The following program called norm.go forms strings in two ways, as 
a single character and as a composed character, and prints the strings, their bytes, and then the normalized 
form and its bytes. Create the following file, utfnorm.go:

ch6$ vi utfnorm.go

/* UTFNorm
 */
package main

import (
        "fmt"
        "golang.org/x/text/unicode/norm"
)

func main() {
        str1 := "\u04d6"
        str2 := "\u0415\u0306"
        norm_str2 := norm.NFC.String(str2)
        bytes1 := []byte(str1)
        bytes2 := []byte(str2)
        norm_bytes2 := []byte(norm_str2)
        fmt.Println("Single char ", str1, " bytes ", bytes1)
        fmt.Println("Composed char ", str2, " bytes ", bytes2)
        fmt.Println("Normalized char", norm_str2, " bytes ",
                norm_bytes2)
}

ch6$ go mod init example.com/user/utfnorm
ch6$ go mod tidy
ch6$ go run utfnorm.go

Single char  Ӗ  bytes  [211 150]
Composed char  Ӗ  bytes  [208 149 204 134]
Normalized char Ӗ  bytes  [211 150]

�ISO 8859 and Go
The ISO 8859 series are 8-bit character sets for different parts of Europe and some other areas. They all 
have the ASCII set common in the low part but differ in the top part. According to Google, ISO 8859 codes 
accounted for about 20% of the web pages it saw, but that has now dropped.

The fourth code, ISO 8859-4 or Latin-4, has the first 256 characters in common with Unicode. The 
encoded value of the Latin-4 characters is the same in UTF-16 and in the default ISO 8859-4 encoding. But 
this doesn’t really help much, as UTF-16 is a 16-bit encoding and ISO 8859-4 is an 8-bit encoding. UTF-8 is 
an 8-bit encoding, but it uses the top bit to signal extra bytes, so only the ASCII subset overlaps for UTF-8 
and ISO 8859-4. So UTF-8 doesn’t help much either. This is true for all 8859-n/Latin-n to Unicode encodings.

But the ISO 8859 series don’t have any complex issues. Each character in each set corresponds 
to a unique Unicode character. For example, in ISO 8859-4, the character “Latin capital letter I with 

Chapter 6 ■ Managing Character Sets and Encodings



143

ogonek” has ISO 8859-4 code point 0xc7 (in hexadecimal) and corresponding Unicode code point of 
U+012E. Transforming either way between an ISO 8859 set and the corresponding Unicode characters is 
essentially just a table lookup.

A map from ISO 8859 code points to the Unicode code points and could be done as an array of 256 
integers. But many of these will have the same value as the index. So we just use a map of the different ones, 
and those not in the map take the index value. Here is an example program that does that.

ch6$ vi isotounicode.go

package main

import (
        "fmt"
        "unicode/utf8"
)

func str2int(str string) []int {
        r := []rune(str)
        b := make([]int, utf8.RuneCountInString(str))
        for i, v := range r {
                b[i] = int(v)
        }
        return b
}

//unicode to 8859-4
var unicodeToISOMap = map[int]uint8{
        // example match ascii 0x0021: 0x21, // !
        0x012e: 0xc7, // Į
        0x010c: 0xc8, // Č
        0x0112: 0xaa, // Ē
        0x0118: 0xca, // Ę
        // example match 0x00c9: 0xc9, // É
        // plus more
}

/* Turn a UTF-8 string into an ISO 8859 encoded byte array
 */
func unicodeStrToISO(str string) []byte {
        // get the unicode code points
        codePoints := str2int(str) //[]int(str)
        // create a byte array of the same length
        bytes := make([]byte, len(codePoints))
        for n, v := range codePoints {
                // see if the point is in the exception map
                iso, ok := unicodeToISOMap[v]
                if !ok {
                        // just use the value
                        iso = uint8(v)
                }
                bytes[n] = iso

Chapter 6 ■ Managing Character Sets and Encodings



144

        }
        return bytes
}

// inverse of unicodeToISOMap
var isoToUnicodeMap = map[uint8]int{
        0xc7: 0x012e,
        0xc8: 0x010c,
        0xaa: 0x0112,
        0xca: 0x0118,
        // and more
}

func isoBytesToUnicode(bytes []byte) string {
        codePoints := make([]int, len(bytes))
        for n, v := range bytes {
                unicode, ok := isoToUnicodeMap[v]
                if !ok {
                        unicode = int(v)
                }
                codePoints[n] = unicode
        }
        return fmt.Sprintf("%q == %U", codePoints, codePoints)
}

func main() {
        x := "ĮĘa!"
        fmt.Printf("UTF-8: %s\n", x)

        fmt.Println("unicode to 8859-4")
        b := unicodeStrToISO(x)
        fmt.Printf("8859-4(hex): %x\n\n", b)

        fmt.Println("8859-4 to Unicode")
        fmt.Printf("Unicode: %v\n", isoBytesToUnicode(b))
}

These functions can be used to read and write UTF-8 strings as ISO 8859-4 bytes. By changing the 
mapping table, you can cover the other ISO 8859 codes. Latin-1, or ISO 8859-1, is a special case – the 
exception map is empty as the code points for Latin-1 are the same in Unicode. You could also use the same 
technique for other character sets based on a table mapping, such as Windows 1252.

In the preceding code, we use a sample input, ĮĘa!, where the first two characters are in our 
exception map and the last two are not (as they are the same values in Unicode and 8859-n). We did use 
RuneCountInString to help count the correct rune count. Strings in Go are byte arrays; we need to decode 
properly and use our mappings.

ch6$ go run isotounicode.go

UTF-8: ĮĘa!
unicode to 8859-4
8859-4(hex): c7ca6121

Chapter 6 ■ Managing Character Sets and Encodings



145

8859-4 to Unicode
Unicode: ['Į' 'Ę' 'a' '!'] == [U+012E U+0118 U+0061 U+0021]

�Other Character Sets and Go
There are very, very many character set encodings. According to Google, these generally only have a small 
use in web documents, which will hopefully decrease even further with time. But if your software wants to 
capture all markets, then you may need to handle them.

In the simplest cases, a lookup table will suffice. But that doesn’t always work. The character coding ISO 
2022 minimized character set sizes by using a finite state machine to swap code pages in and out. This was 
borrowed by some of the Japanese encodings and makes things very complex.

Go presently only gives package support for any of these other character sets in the “subrepositories” 
package tree. For example, the package golang.org/x/text/encoding/japanese handles EUC-JP and 
Shift JIS.

�Conclusion
There hasn’t been much code in this chapter. Instead, there have been some of the concepts of a very 
complex area. It’s up to you: if you want to assume everyone speaks US English, then the world is simple. 
But if you want your applications to be usable by the rest of the world, you need to pay attention to these 
complexities.

Chapter 6 ■ Managing Character Sets and Encodings



147
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_7

CHAPTER 7

Security

Although the Internet was originally designed as a system to withstand attacks by hostile agents, it developed 
into a cooperative environment of relatively trusted entities. Alas, those days are long gone. Spam mail, 
denial of service (DoS) attacks, phishing attempts, and so on are indicative that anyone using the Internet 
does so at their own risk.

Applications have to be built to work correctly in hostile situations. “Correctly” no longer means just 
getting the functional aspects of the program correct but also means ensuring privacy and integrity of data 
transferred, access only to legitimate users, and other security issues.

This of course makes your programs much more complex. There are difficult and subtle computing 
problems involved in making applications secure. Attempts to do it yourself (such as making up your own 
encryption libraries) are usually doomed to failure. Instead, you need to use the libraries designed by 
security professionals.

Why should you bother if it makes things harder? Almost every day there are reports of leaked credit 
card details and of private servers being run by government officials and being hacked and reports of 
systems being brought down by denial of service attacks. Many of these attacks are possible by coding 
errors in network-facing applications, such as buffer overflows, cross-site scripting, and SQL injection. But 
a large number of errors can be traced to poor network handling: passwords passed in plain text, security 
credentials requested and then not checked, and just trusting the environment you are in. For example, a 
colleague recently purchased a home IoT (Internet of Things) device. He used Wireshark to see what it was 
doing on his network and discovered it was sending RTMP messages with authentication token admin.
admin. An easy attack vector, without even having to crack passwords! Drones made by one well-known 
company use encryption with known flaws and can be “stolen” by other drones. An increasingly common 
method of stealing data is to act as a “rogue” wireless access point, pretending to be a legitimate access point 
in a local coffee shop, but monitoring everything that passes through, including your bank account details. 
These are “low hanging fruit.” The scope of data breaches is shown by “World's Biggest Data Breaches” at 
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/.

This chapter addresses the basic cryptographic tools given by Go that you can build into your 
applications. If you don’t and your company loses a million dollars – or worse, your customers lose a million 
dollars – then the blame comes back to you.

�ISO Security Architecture
The ISO OSI (Open Systems Interconnect) seven-layer model of distributed systems is well known and is 
repeated in Figure 7-1.

https://doi.org/10.1007/978-1-4842-8095-9_7#DOI
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/


148

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 7-1.  The OSI seven-layer model of distributed systems

What is less well known is that ISO built a whole series of documents upon this architecture. For 
our purposes here, the most important is the ISO Security Architecture model, ISO 7498-2. This requires 
purchase, but the ITU has produced a document technically aligned with this, which is available from ITU at 
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.800-199103-I!!PDF-E&type=items.

�Functions and Levels
The principal functions required of a security system are as follows:

•	 Authentication: Proof of identity.

•	 Data integrity: Data is not tampered with.

•	 Confidentiality: Data is not exposed to others.

•	 Notarization/signature: Registration of data with a trusted third party for later 
assurance.

•	 Access control: Protection against unauthorized access of resources.

•	 Availability: Accessibility on demand from authorized entity.

These are required at the following levels of the OSI stack:

•	 Peer entity authentication (3, 4, 7)

•	 Data origin authentication (3, 4, 7)

•	 Access control service (3, 4, 7)

•	 Connection confidentiality (1, 2, 3, 4, 6, 7)

•	 Connectionless confidentiality (1, 2, 3, 4, 6, 7)

•	 Selective field confidentiality (6, 7)

•	 Traffic flow confidentiality (1, 3, 7)

Chapter 7 ■ Security

http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.800-199103-I!!PDF-E&type=items


149

•	 Connection integrity with recovery (4, 7)

•	 Connection integrity without recovery (3, 4, 7)

•	 Connection integrity selective field (7)

•	 Connectionless integrity selective field (7)

•	 Nonrepudiation at origin (7)

•	 Nonrepudiation of delivery (7)

�Mechanisms
The mechanisms to achieve this level of security are as follows:

•	 Peer entity authentication

•	 Encryption

•	 Digital signature

•	 Authentication exchange

•	 Data origin authentication

•	 Encryption

•	 Digital signature

•	 Access control service

•	 Access control lists

•	 Passwords

•	 Capabilities lists

•	 Labels

•	 Connection confidentiality

•	 Encryption

•	 Routing control

•	 Connectionless confidentiality

•	 Encryption

•	 Routing control

•	 Selective field confidentiality

•	 Encryption

•	 Traffic flow confidentiality

•	 Encryption

•	 Traffic padding

•	 Routing control

Chapter 7 ■ Security



150

•	 Connection integrity with recovery

•	 Encryption

•	 Data integrity

•	 Connection integrity without recovery

•	 Encryption

•	 Data integrity

•	 Connection integrity selective field

•	 Encryption

•	 Data integrity

•	 Connectionless integrity

•	 Encryption

•	 Digital signature

•	 Data integrity

•	 Connectionless integrity selective field

•	 Encryption

•	 Digital signature

•	 Data integrity

•	 Nonrepudiation at origin

•	 Digital signature

•	 Data integrity

•	 Notarization

•	 Nonrepudiation of delivery

•	 Digital signature

•	 Data integrity

•	 Notarization

�Data Integrity
Ensuring data integrity means supplying a means of testing that the data has not been tampered with. 
Usually, this is done by forming a simple number out of the bytes in the data. This process is called hashing, 
and the resulting number is called a hash or hash value.

A naive hashing algorithm is just to sum up all the bytes in the data. However, this still allows almost any 
amount of changing the data around and still preserving the hash values. For example, an attacker could just 
swap two bytes. This preserves the hash value but could end up with you owing someone $65,536 instead 
of $256.

Hashing algorithms used for security purposes have to be “strong” so that it is very difficult for an 
attacker to find a different sequence of bytes with the same hash value. This makes it hard to modify the 

Chapter 7 ■ Security



151

data to the attacker’s purposes. Security researchers are constantly testing hash algorithms to see if they can 
break them – that is, find a simple way of coming up with byte sequences to match a hash value. They have 
devised a series of cryptographic hashing algorithms that are believed to be strong.

Go has support for several hashing algorithms, including MD4, MD5, RIPEMD-160, SHA1, SHA224, 
SHA256, SHA384, and SHA512. They all follow the same pattern as far as the Go programmer is concerned: 
a function New (or similar) in the appropriate package returns a Hash object from the hash package. Using the 
go list command, we can see this and related packages:

$ mkdir ch7
$ cd ch7

ch7$ go list crypto/...

crypto
crypto/aes
crypto/cipher
crypto/des
crypto/dsa
crypto/ecdsa
crypto/ed25519
crypto/ed25519/internal/edwards25519
crypto/ed25519/internal/edwards25519/field
crypto/elliptic
crypto/elliptic/internal/fiat
crypto/hmac
crypto/internal/randutil
crypto/internal/subtle
crypto/md5
crypto/rand
crypto/rc4
crypto/rsa
crypto/sha1
crypto/sha256
crypto/sha512
crypto/subtle
crypto/tls
crypto/x509
crypto/x509/internal/macos
crypto/x509/pkix

A hash has an io.Writer, and you write the data to be hashed to this writer. You can query the number of 
bytes in the hash value by Size and the hash value by Sum.

A typical use case is MD5 hashing (warning insecure). This uses the md5 package. The hash value is a 
16-byte array. This is typically printed out in ASCII form as four hexadecimal numbers, each made of four 
bytes. A simple program is md5hash.go:

ch7$ vi md5hash.go

/* MD5Hash
 */
package main

Chapter 7 ■ Security



152

import (
        "crypto/md5"
        "fmt"
)

func main() {
        hash := md5.New()
        bytes := []byte("hello\n")
        hash.Write(bytes) // add data to running hash
        hashValue := hash.Sum(nil) // retrieve the hashed data
        hashSize := hash.Size() // how many bytes Sum returns
        // for every 4 bytes of hashValue
        // we stuff into an byte of val by shifting
        // val[first_byte] = hashValue[n] after shifting 24
        // second and third byte position after 16 and 8...
        // val[fourth_byte] = hashValue[n+3]
        // in the end, we have unint32 value that we print
        for n := 0; n < hashSize; n += 4 {
                var val uint32
                val = uint32(hashValue[n])<<24 +
                        uint32(hashValue[n+1])<<16 +
                        uint32(hashValue[n+2])<<8 +
                        uint32(hashValue[n+3])
                fmt.Printf("%x ", val)
        }
        fmt.Println()
}

ch7$ go run md5hash.go

b1946ac9 2492d234 7c6235b4 d2611184

If you make a small variation, say, o becomes 0, you will see a new hash.

ch$ go run md5hash.go // after changing hello to hell0

cd6fcbf3 8d05a093 9006387 f0446665

While md5 provides some protection (i.e., file integrity), it doesn’t say who created or provided the file. 
HMAC provides not only integrity (e.g., via md5) but also authentication. A consumer must have the same 
key and input in order to reconstruct the HMAC.

The aforementioned focuses on mechanics; md5 is not considered best in class for hashing functions. 
In general, you should select an improved function such as sha256 instead of md5.

// add "crypto/sha256" to import
hash := hmac.New(sha256.New, []byte(“secret”))

Chapter 7 ■ Security



153

Changing our prior code to use sha256 (with a hard-coded secret) generates the following output (e.g., 
using “hello” for the input):

171b5670 f7b4037f b90bef77 3b022130 e48100fd d40ea023 730097da 9a68f4ff

Considerations beyond hashing algorithm selection include quality of key (e.g., size and randomness). 
HMAC is not encryption, even though a key is used. Meaning it lives in parallel to the original (i.e., 
unencrypted data).

md5 provides integrity, but collisions mean another file (preimage) can produce the same hash; 
hence, authenticity of message is lacking. HMAC provides authenticity with addition of the key; however, 
maintaining the key authenticity is the source of additional issues.

�Symmetric Key Encryption
There are two major mechanisms used for encrypting data. Symmetric key encryption uses a single key that 
is the same for both encryption and decryption. This key needs to be known to both the encrypting and the 
decrypting agents. How this key is transmitted between the agents is not discussed (e.g., HMAC).

As with hashing, there are many encryption algorithms. Many are now known to have weaknesses, 
and in general, algorithms become weaker over time as computers get faster. Go has support for several 
symmetric key algorithms such as AES and DES.

The algorithms are block algorithms. That is, they work on blocks of data. If your data is not aligned to 
the block size, you will have to pad it with extra blanks at the end.

Each algorithm is represented by a Cipher object. This is created by NewCipher in the appropriate 
package and takes the symmetric key as parameter.

Once you have a cipher, you can use it to encrypt and decrypt blocks of data. We use AES-128, which 
has a key size of 128 bits (16 bytes) and a block size of 128 bits. The size of the key determines which version 
of AES is used. A program to illustrate this is aes.go:

ch7$ vi aes.go

/* Aes
 */
package main

import (
        "bytes"
        "crypto/aes"
        "fmt"
)

func main() {
        key := []byte("my key, len 16 b")
        cipher, err := aes.NewCipher(key)
        if err != nil {
                fmt.Println(err.Error())
        }
        src := []byte("hello 16 b block")
        var enc [16]byte
        cipher.Encrypt(enc[0:], src)
        var decrypt [16]byte

Chapter 7 ■ Security



154

        cipher.Decrypt(decrypt[0:], enc[0:])
        result := bytes.NewBuffer(nil)
        result.Write(decrypt[0:])
        fmt.Println(string(result.Bytes()))
}

ch7$ go run aes.go

hello 16 b block

This encrypts and decrypts the 16-byte block "hello 16 b block" using the shared 16-byte key "my 
key, len 16 b".

While we are not detailing how hashing/authenticating works, there are considerations, such as our key 
must have a length of 16, 24, or 32 bytes, which in turn used to select related AES-128, AES-192, or AES-256 
algorithm. If you don’t use the correct key size, you will see a crypto.KeySizeError, and upon failure to not 
deal with that error, a panic will occur during coding operations (e.g., encoding). See go doc crypto/aes.
NewCipher and go doc crypto/aes.KeySizeError for more.

Here are some very popular software that uses hashing at their core. In this URL, we see a detailed 
history on the need to change from sha-1 to sha-256 in Git:

https://git-scm.com/docs/hash-function-transition/#_choice_of_hash

Bitcoin is also known for leveraging hashing along the blockchain. Here is an example code using 
hashing:

https://github.com/bitcoin/bitcoin/blob/master/src/merkleblock.cpp

Furthermore, both are using a technique called Merkle trees, where a Git commit is the tree top and 
a group of transactions in Bitcoin is represented as the tree top as well. You can learn more about this 
interesting technique here: https://en.wikipedia.org/wiki/Merkle_tree.

�Public Key Encryption
The other major type of encryption is public key encryption. Public key encryption and decryption require 
two keys: one to encrypt and a second one to decrypt. The encryption key is usually made public in some 
way so that anyone can encrypt messages to you. The decryption key must stay private; otherwise, everyone 
would be able to decrypt those messages! Public key systems are asymmetric, with different keys for 
different uses.

Some examples of software systems that leverage PK-related technology include SSH (where you hold 
a private key and both the client and the server have a public key) and Secure Websites (where a public key 
is embedded in the cert you download and the server has the private key). These asymmetric public keys 
are used to generate symmetric key pairs used during a brief session. Keys are just one part of Public Key 
Infrastructure (e.g., certificate management coupled with keys), which is a large interesting topic.

There are many public key encryption systems supported by Go. A typical one is the RSA scheme.
A program generating RSA private and public keys from a random number is genrsakeys.go:

ch7$ vi genrsakeys.go

/* GenRSAKeys
 */
package main

Chapter 7 ■ Security

https://git-scm.com/docs/hash-function-transition/#_choice_of_hash
https://github.com/bitcoin/bitcoin/blob/master/src/merkleblock.cpp
https://en.wikipedia.org/wiki/Merkle_tree


155

import (
        "crypto/rand"
        "crypto/rsa"
        "crypto/x509"
        "encoding/gob"
        "encoding/pem"
        "fmt"
        "log"
        "os"
)

func main() {
        reader := rand.Reader
        bitSize := 2048
        key, err := rsa.GenerateKey(reader, bitSize)
        checkError(err)
        fmt.Printf("Private key primes:\n[0]:%s\n[1]:%s\n", key.Primes[0].String(),
                key.Primes[1].String())
        fmt.Println("Private key exponent:\n", key.D.String())
        publicKey := key.PublicKey
        fmt.Println("Public key modulus:\n", publicKey.N.String())
        fmt.Println("Public key exponent:\n", publicKey.E)
        saveGobKey("private.key", key)
        saveGobKey("public.key", publicKey)
        savePEMKey("private.pem", key)
}
func saveGobKey(fileName string, key interface{}) {
        outFile, err := os.Create(fileName)
        checkError(err)
        encoder := gob.NewEncoder(outFile)
        err = encoder.Encode(key)
        checkError(err)
        outFile.Close()
}
func savePEMKey(fileName string, key *rsa.PrivateKey) {
        outFile, err := os.Create(fileName)
        checkError(err)
        var privateKey = &pem.Block{Type: "RSA PRIVATE KEY",
                Bytes: x509.MarshalPKCS1PrivateKey(key)}
        pem.Encode(outFile, privateKey)
        outFile.Close()
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The program saves the keys and related certificate (via pem) using gob serialization. They can be read 
back by the loadrsakeys.go program:

ch7$ vi loadrsakeys.go

Chapter 7 ■ Security



156

/* LoadRSAKeys
 */
package main

import (
        "crypto/rsa"
        "encoding/gob"
        "fmt"
        "log"
        "os"
)

func main() {
        var key rsa.PrivateKey
        loadKey("private.key", &key)
        fmt.Printf("Private key primes:\n[0]:%s\n[1]:%s\n", key.Primes[0].String(),
                key.Primes[1].String())
        fmt.Println("Private key exponent:\n", key.D.String())
        var publicKey rsa.PublicKey
        loadKey("public.key", &publicKey)
        fmt.Println("Public key modulus:\n", publicKey.N.String())
        fmt.Println("Public key exponent:\n", publicKey.E)
}
func loadKey(fileName string, key interface{}) {
        inFile, err := os.Open(fileName)
        checkError(err)
        decoder := gob.NewDecoder(inFile)
        err = decoder.Decode(key)
        checkError(err)
        inFile.Close()
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

As we execute the create and load programs, we see the following:

ch7$ go run genrsakeys.go

Private key primes:
[0]:1554 ... 3581
[1]:1759 ... 6267
Private key exponent:
 1034 ... 7793
Public key modulus:
 2735 ... 2127
Public key exponent:
 65537

Chapter 7 ■ Security



157

ch7$ go run loadrsakeys.go

Private key primes:
[0]:1554 ... 3581
[1]:1759 ... 6267
Private key exponent:
 1034 ... 7793
Public key modulus:
 2735 ... 2127
Public key exponent:
 65537

The preceding output is abbreviated due to the length. The key thing to note is they generated 
output (keys) matching the loaded versions after the encoding process. We have not transmitted any 
encrypted data, just preparing for that eventuality.

�X.509 Certificates
A Public Key Infrastructure (PKI) is a framework for a collection of public keys, along with additional 
information such as owner name and location and links between them giving some sort of approval 
mechanism.

The principal PKI in use today is based on X.509 certificates. For example, web browsers use them to 
verify the identity of websites.

An example program to generate a self-signed X.509 certificate for my website and store it in a .cer file 
is genx509cert.go:

ch7$ vi genx509cert.go

/* GenX509Cert
 */
package main

import (
        "crypto/rand"
        "crypto/rsa"
        "crypto/x509"
        "crypto/x509/pkix"
        "encoding/gob"
        "encoding/pem"
        "fmt"
        "math/big"
        "os"
        "time"
)

func main() {
        random := rand.Reader
        var key rsa.PrivateKey
        loadKey("private.key", &key)
        now := time.Now()

Chapter 7 ■ Security



158

        then := now.Add(60 * 60 * 24 * 365 * 1000 * 1000 * 1000)
        // one year
        template := x509.Certificate{
                SerialNumber: big.NewInt(1),
                Subject: pkix.Name{
                        CommonName:   "jan.newmarch.name",
                        Organization: []string{"Jan Newmarch"},
                },
                NotBefore:    now,
                NotAfter:     then,
                SubjectKeyId: []byte{1, 2, 3, 4},
                KeyUsage: x509.KeyUsageCertSign |
                        x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
                BasicConstraintsValid: true,
                IsCA:                  true,
                DNSNames: []string{"jan.newmarch.name",
                        "localhost"},
        }
        derBytes, err := x509.CreateCertificate(random, &template,
                &template, &key.PublicKey, &key)
        checkError(err)
        certCerFile, err := os.Create("jan.newmarch.name.cer")
        checkError(err)
        certCerFile.Write(derBytes)
        certCerFile.Close()
        certPEMFile, err := os.Create("jan.newmarch.name.pem")
        checkError(err)
        pem.Encode(certPEMFile, &pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
        certPEMFile.Close()
        keyPEMFile, err := os.Create("private.pem")
        checkError(err)
        pem.Encode(keyPEMFile, &pem.Block{Type: "RSA PRIVATE KEY",
                Bytes: x509.MarshalPKCS1PrivateKey(&key)})
        keyPEMFile.Close()
}
func loadKey(fileName string, key interface{}) {
        inFile, err := os.Open(fileName)
        checkError(err)
        decoder := gob.NewDecoder(inFile)
        err = decoder.Decode(key)
        checkError(err)
        inFile.Close()
}
func checkError(err error) {
        if err != nil {
                fmt.Println("Fatal error ", err.Error())
                os.Exit(1)
        }
}

Chapter 7 ■ Security



159

We next load the crypto assests we just generated and provide basic checks for correctness, create 
loadx509cert.go:

ch7$ vi loadx509cert.go

/* LoadX509Cert
 */
package main

import (
    "crypto/rsa"
    "crypto/x509"
    "encoding/gob"
    "fmt"
    "log"
    "os"
)

func main() {
    // load certificate so we can access embedded public key
    certCerFile, err := os.Open("jan.newmarch.name.cer")
    checkError(err)
    derBytes := make([]byte, 1000) // bigger than the file
    count, err := certCerFile.Read(derBytes)
    checkError(err)
    certCerFile.Close()
    // trim the bytes to actual length in call
    cert, err := x509.ParseCertificate(derBytes[0:count])
    checkError(err)
    fmt.Printf("Name %s\n", cert.Subject.CommonName)
    fmt.Printf("Not before %s\n", cert.NotBefore.String())
    fmt.Printf("Not after %s\n", cert.NotAfter.String())

    // load non-emdedded public key
    // should be the same as above embedded key
    pub, err := os.Open("public.key")
    checkError(err)
    dec := gob.NewDecoder(pub)
    publicKey := new(rsa.PrivateKey)
    err = dec.Decode(publicKey)
    checkError(err)
    pub.Close()

    // genx509cert.go created a public key and certificate
    // certificates also embed the public key
    // we are comparing the public key and the embedded public key fields
    // see go doc crypto/rsa.PublicKey for more
    if cert.PublicKey.(*rsa.PublicKey).N.Cmp(publicKey.N) == 0 {
        if publicKey.E == cert.PublicKey.(*rsa.PublicKey).E {
            fmt.Println("Same public key")
            return
        }
    }

Chapter 7 ■ Security



160

    fmt.Println("Different public key")
}
func checkError(err error) {
    if err != nil {
        log.Fatalln("Fatal error ", err.Error())
    }
}

Here, we can see the round trip creation and confirmation of the certificate.

ch7$ go run genx509cert.go

Note the creation of the certificate and pem files.

ch7$ go run loadx509cert.go

Name jan.newmarch.name
Not before 2021-12-26 22:51:42 +0000 UTC
Not after 2022-12-26 22:51:42 +0000 UTC
Same public key

�TLS
Encryption/decryption schemes are of limited use if you have to do all the heavy lifting yourself. The 
most popular mechanism on the Internet to give support for encrypted message passing is currently TLS 
(Transport Layer Security), which was formerly SSL (Secure Sockets Layer).

In TLS, a client and a server negotiate identity using X.509 certificates. Once this is complete, a secret 
key is invented between them, and all encryption/decryption is done using this key. The negotiation is 
relatively slow, but once it’s complete, the faster secret key mechanism is used. The server is required to have 
a certificate; the client may have one if needed.

�A Basic Client
We first illustrate connecting to a server that has a certificate signed by a “well-known” certificate 
authority (CA) such as RSA. The program to get HEAD information from a web server can be adapted to 
get HEAD information from a TLS web server. The program is tlsgethead.go. We are illustrating TLS.Dial 
here and will discuss HTTPS in a later chapter.

ch7$ vi tlsgethead.go

/* TLSGetHead
 */
package main

import (
        "crypto/tls"
        "fmt"
        "io/ioutil"

Chapter 7 ■ Security



161

        "log"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "host:port")
        }
        service := os.Args[1]
        // Dial over secure channel
        conn, err := tls.Dial("tcp", service, nil)
        checkError(err)
        _, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
        checkError(err)
        result, err := ioutil.ReadAll(conn)
        checkError(err)
        fmt.Println(string(result))
        conn.Close()
        os.Exit(0)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

When we run the tlsgethead.go client against an appropriate site such as google.com we see the HTTP  
HEAD request results:

ch7$ go run tlsgethead.go google.com:443

HTTP/1.0 200 OK
Content-Type: text/html; charset=ISO-8859-1
P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."
Date: Sun, 26 Dec 2021 23:10:40 GMT
Server: gws
X-XSS-Protection: 0
X-Frame-Options: SAMEORIGIN
Expires: Sun, 26 Dec 2021 23:10:40 GMT
Cache-Control: private
Set-Cookie: 1P_JAR=2021-12-26-23; expires=Tue, 25-Jan-2022 23:10:40 GMT; path=/; domain=.
google.com; Secure
Set-Cookie: NID=511=KAxTu1K-XmrjU5Pml-zP015rWWWWafskpa1bdm4Kcn96qPutrX_Ezc8-gSprT5Xo3fjkxwR
dB0Am5E7LqAlQJn61VABmytAfahOauqempNg8egIAus5Ch7ypME8dnJ7VRh7Hd0F6XSViYsyHAWDcauelaxMCGRtW5R
SU_Nef3UQ; expires=Mon, 27-Jun-2022 23:10:40 GMT; path=/; domain=.google.com; HttpOnly
Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000,h3-Q050=":443"; 
ma=2592000,h3-Q046=":443"; ma=2592000,h3-Q043=":443"; ma=2592000,quic=":443"; ma=2592000; 
v="46,43"

Other sites may produce other responses, but this client is still happy to have set up the TLS session with 
a properly authenticating server.

Chapter 7 ■ Security



162

It’s interesting to run this against the site gooogle.com (note the extra “o”!):

ch7$ go run tlsgethead.go gooogle.com:443

This site actually belongs to Google, as they have probably bought it to reduce fraud risk. The program 
throws a fatal error, as the site certificate is not for gooogle with three “o”s:

Fatal error  x509: certificate is valid for www.google.com, not gooogle.com
exit status 1

In the past, browsers would error on such types, now they redirect to the proper domain (sometimes).

�Server Using a Self-Signed Certificate
If the server uses a self-signed certificate, as might be used internally in an organization or when 
experimenting, the Go package will generate an error: "x509: certificate signed by unknown 
authority". Either the certificate must be installed into the client's operating system (which will be O/S 
dependent), or the client must install the certificate as a root CA. We will show this second way.

An echo server using TLS with any certificate is tlsechoserver.go:

ch7$ vi tlsechoserver.go

/* TLSEchoServer
 */
package main

import (
        "crypto/tls"
        "fmt"
        "log"
        "net"
)

func main() {
        cert, err := tls.LoadX509KeyPair("jan.newmarch.name.pem",
                "private.pem")
        checkError(err)
        config := tls.Config{Certificates: []tls.Certificate{cert}}
        service := "0.0.0.0:1200"
        listener, err := tls.Listen("tcp", service, &config)
        checkError(err)
        fmt.Println("Listening")
        for {
                conn, err := listener.Accept()
                if err != nil {
                        fmt.Println(err.Error())
                        continue
                }
                fmt.Println("Accepted")
                go handleClient(conn)

Chapter 7 ■ Security



163

        }
}
func handleClient(conn net.Conn) {
        defer conn.Close()
        var buf [512]byte
        for {
                fmt.Println("Trying to read")
                n, err := conn.Read(buf[0:])
                if err != nil {
                        fmt.Println(err)
                        return
                }
                fmt.Println(string(buf[0:]))
                _, err = conn.Write(buf[0:n])
                if err != nil {
                        return
                }
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

A simple TLS client won't work with this server if the certificate is self-signed, which it is here. We 
need to set a configuration as the third parameter to TLS.Dial, which has our certificate installed as a root 
certificate. Thanks to Josh Bleecher Snyder in “Getting x509: Certificate Signed by Unknown Authority” 
(https://groups.google.com/forum/#!topic/golang-nuts/v5ShM8R7Tdc) for showing how to do this. The 
server then works with the tlsechoclient.go client.

ch7$ vi tlsechoclient.go

package main

import (
        "crypto/tls"
        "crypto/x509"
        "fmt"
        "os"
)

func main() {
        rootPEM, err := os.ReadFile("jan.newmarch.name.pem")
        // First, create the set of root certificates. For this example we only
        // have one. It's also possible to omit this in order to use the
        // default root set of the current operating system.
        roots := x509.NewCertPool()
        if ok := roots.AppendCertsFromPEM(rootPEM); !ok {
                panic("failed to parse root certificate")
        }

Chapter 7 ■ Security

https://groups.google.com/forum/#!topic/golang-nuts/v5ShM8R7Tdc


164

        conn, err := tls.Dial("tcp", "localhost:1200", &tls.Config{
                RootCAs: roots,
        })
        if err != nil {
                panic("failed to connect: " + err.Error())
        }

        // Now write and read lots
        for n := 0; n < 10; n++ {
                fmt.Println("Writing...")
                conn.Write([]byte("Hello " + string(n+48)))
                var buf [512]byte
                n, _ := conn.Read(buf[0:])
                fmt.Println(string(buf[0:n]))
        }

        conn.Close()
}

Running the server in one terminal.

ch7$ go run tlsechoserver.go

... listening ...

In another terminal, run the client.

ch7$ go run tlsechoclient.go localhost:1200

Writing...
Hello 0
Writing...
Hello 1
...
Writing...
Hello 9

Back on the server, we see the following:

Accepted
Trying to read
Hello 0
Trying to read
Hello 1
...
EOF

Chapter 7 ■ Security



165

We can also change the client and prevent it from accepting a self-signed certificate. By changing to the 
following code, the outcome will differ.

        conn, err := tls.Dial("tcp", "localhost:1200", &tls.Config{
//                RootCAs: roots,
                InsecureSkipVerify: false,
        })

// assuming the server is running with valid root certificate

ch7$ go run tlsechoclient.go localhost:1200

panic: failed to connect: x509: "jan.newmarch.name" certificate is not trusted

goroutine 1 [running]:
main.main()
        �/Users/ronaldpetty/github.com/apress/network-prog-with-go-2e/ch7/tlsechoclient.

go:25 +0x2bb
exit status 2

On the server, we see the following error:

Trying to read
remote error: tls: bad certificate

�Conclusion
Security is a huge area in itself, and this chapter barely touches on it. However, the major concepts have been 
covered. What has not been stressed is how much security needs to be built into the design phase: security 
as an afterthought is nearly always a failure.

Chapter 7 ■ Security



167
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_8

CHAPTER 8

HTTP

The World Wide Web is a major distributed system, with millions of users. A site may become a web host by 
running an HTTP server. While web clients are typically users with a browser, there are many other “user 
agents” such as web spiders, web application clients, and so on.

The Web is built on top of the HTTP (Hypertext Transfer Protocol), which is typically layered on top of a 
socket (e.g., TCP). HTTP has been through four publicly available versions. Version 1.1 (the third version) is 
the most recognized (by developers). A behind-the-scene transition to HTTP/2 has captured over 60% of the 
current HTTP traffic. HTTP/3 is the latest update; a transition to this new version continues to increase due 
to performance benefits.

This chapter is an overview of HTTP, followed by the Go APIs to manage HTTP connections.

�URLs and Resources
URLs specify the location of a resource. A resource is often a static file, such as an HTML document, an 
image, or a sound file. But increasingly, it may be a dynamically generated object, perhaps based on 
information stored in a database.

When a user agent requests a resource, what is returned is not the resource itself, but some 
representation of that resource. For example, if the resource is a static file, then what is sent to the user agent 
is a copy of the file.

Multiple URLs may point to the same resource, and an HTTP server will return appropriate 
representations of the resource for each URL. For example, a company might make product information 
available both internally and externally using different URLs for the same product. The internal 
representation of the product might include information such as internal contact officers for the product, 
while the external representation might include the location of stores selling the product.

This view of resources means that the HTTP protocol can be fairly simple and straightforward, while an 
HTTP server can be arbitrarily complex. HTTP has to deliver requests from user agents to servers and return 
a byte stream, while a server might have to do any amount of processing of the request.

�i18n
There are complications arising from the increasing internationalization (i18n) of the Internet. Hostnames 
may be given in an internationalized form known as IDN (Internationalized Domain Name). In order to 
preserve compatibility with legacy implementations that do not understand Unicode (such as older email 
servers), non-ASCII domain names are mapped into an ASCII representation known as punycode. For 
example, the domain name 日本語.jp has the punycode value xn—wgv71a119e.jp. For example, we can use 
telnet to view the translation.

https://doi.org/10.1007/978-1-4842-8095-9_8#DOI


168

$ mkdir ch8
$ ch ch8

ch8$ telnet 日本語.jp 80

Trying 2001:218:3001:7::110...
Connected to xn--wgv71a119e.jp.
Escape character is '^]'.
^]
telnet> quit
Connection closed.

The translation from a non-ASCII domain to a punycode value is not performed automatically by the 
Go net libraries, but there is an extension package called golang.org/x/net/idna that will convert between 
Unicode and its punycode value. There is an ongoing discussion at “Figure Out IDNA Punycode Story” 
(https://github.com/golang/go/issues/13835) about this topic.

We can try the IDNs package against the aforementioned domain, 日本語.jp; create the file 
punycode.go.

ch8$ vi punycode.go

package main

import (
        "fmt"
        "golang.org/x/net/idna"
        "net/url"
)

func main() {
        s := "https://日本語.jp:8443"
        r1, _ := idna.ToASCII(s)
        r2, _ := idna.ToUnicode(r1)

        fmt.Println(r1)
        fmt.Println(r2)
        fmt.Println(url.QueryEscape(s))
}

ch8$ go mod init example.com/user/punycode
ch8$ go mod tidy

ch8$ go run punycode.go

xn--https://-5y4qg6h355l.jp:8443
https://日本語.jp:8443
https%3A%2F%2F%E6%97%A5%E6%9C%AC%E8%AA%9E.jp%3A8443

Chapter 8 ■ HTTP

https://github.com/golang/go/issues/13835


169

Internationalized domain names open up the possibility of what are called homograph attacks. Many 
Unicode characters have a similar appearance, such as the Russian o (U+043E), the Greek o (U+03BF), and 
the English o (U+006F). A domain name using a homograph such as google.com (with two Russian o’s) 
could cause havoc. A variety of defenses are known, such as always displaying the punycode  
(here xn—ggle-55da.com, using the Punycode converter).

The path in a URI/URL is more complex to handle, as it refers to a path relative to an HTTP server that 
may be running in a particular localized environment. The encoding may not be UTF-8, or even Unicode. 
The IRI (Internationalized Resource Identifier) manages this by first converting any localized string to UTF-8 
and then percent-escaping any non-ASCII bytes. The W3C page entitled “An Introduction to Multilingual 
Web Addresses” (https://www.w3.org/International/articles/idn-and-iri/) has more information. 
Converting from other encodings to UTF-8 was covered in Chapter 6, while Go has the functions in net/url 
of QueryEscape/QueryUnescape and in Go 1.8 of PathEscape/PathUnescape to do the percent conversions.

�HTTP Characteristics
HTTP is a stateless, connectionless, reliable protocol. In the simplest form, each request from a user agent is 
handled reliably, and then the connection is broken.

In the earliest version of HTTP, each request involved a separate TCP connection, so if many resources 
were required (such as images embedded in an HTML page), then many TCP connections had to be set up 
and torn down in a short space of time.

HTTP 1.1 added many optimizations in HTTP, which added complexity to the simple structure but 
created a more efficient and reliable protocol. HTTP/2 has adopted a binary form for further efficient 
gains. HTTP/3 goes one step further by replacing the typical TCP socket with UDP along with other related 
improvements (e.g., built-in security via TLS).

�Versions
There are four versions of HTTP:

•	 Version 0.9 (1991): Totally obsolete

•	 Version 1.0 (1996): Almost obsolete

•	 Version 1.1 (1999): The most popular version at present

•	 Version 2 (2015): The latest version

•	 Version 3 (~2022): In final steps of formal approval, already in production use

Each version must understand the requests and responses of earlier versions.

�HTTP/0.9
HTTP/0.9 was the original HTTP defined in 1991 by Tim Berners-Lee. You can find the specification here: 
https://www.w3.org/Protocols/HTTP/AsImplemented.html.

Request format:Request = Simple-Request
Simple-Request = "GET" SP Request-URI CRLF

Chapter 8 ■ HTTP

https://www.w3.org/International/articles/idn-and-iri/
https://doi.org/10.1007/978-1-4842-8095-9_6
https://www.w3.org/Protocols/HTTP/AsImplemented.html


170

�Response Format

A response is of the following form:Response = Simple-Response
Simple-Response = [Entity-Body]

The aforementioned only provides a glimpse into HTTP/0.9 (e.g., SP means “space”). Since it is no 
longer used, we won’t spend more time on it.

�HTTP/1.0
This version added much more information to the requests and responses. Rather than “growing” the 0.9 
format, it was just left alongside the new version. At this point, the W3C and IETF organizations were much 
more involved. The HTTP/1.0 specification can be found here: https://datatracker.ietf.org/doc/html/
rfc1945.

Of note, Prof. Roy Fielding during this period became known for his 
development of REST. His dissertation containing much of REST can be found here: 
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

�Request Format
The format of requests from client to server is

Request = Simple-Request | Full-Request
Simple-Request = "GET" SP Request-URI CRLF
Full-Request = Request-Line
                       *(General-Header
                          | Request-Header
                          | Entity-Header)
                      CRLF
                       [Entity-Body]

A Simple-Request is an HTTP/0.9 request and must be replied to by a Simple-Response.
A Request-Line has this format:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

where

Method = "GET" | "HEAD" | POST |
         extension-method

Here’s an example:

GET http://jan.newmarch.name/index.html HTTP/1.0

Chapter 8 ■ HTTP

https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc1945
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm


171

�Response Format
A response is of the following form:

Response = Simple-Response | Full-Response
Simple-Response = [Entity-Body]
Full-Response = Status-Line
                *(General-Header
                   | Response-Header
                   | Entity-Header)
                CRLF
                [Entity-Body]

The Status-Line gives information about the fate of the request:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

Here’s an example:

HTTP/1.0 200 OK

The status codes in the status line are as follows:

Status-Code =     "200" ; OK
                | "201" ; Created
                | "202" ; Accepted
                | "204" ; No Content
                | "301" ; Moved permanently
                | "302" ; Moved temporarily
                | "304" ; Not modified
                | "400" ; Bad request
                | "401" ; Unauthorized
                | "403" ; Forbidden
                | "404" ; Not found
                | "500" ; Internal server error
                | "501" ; Not implemented
                | "502" ; Bad gateway
                | "503" | Service unavailable
                | extension-code

Some codes were not defined at the time of the HTTP/1.0 standard. For example, 203 “Non-
Authoritative Information” and 303 “See Other” are defined in HTTP/1.1.

The General-Header is typically the date, whereas the Response-Header is the location, the server, or an 
authentication field.

The Entity-Header contains useful information about the Entity-Body to follow:

Entity-Header = Allow
                | Content-Encoding
                | Content-Length
                | Content-Type
                | Expires
                | Last-Modified
                | extension-header

Chapter 8 ■ HTTP



172

For example (where the types of field are given after a //):

HTTP/1.1 200 OK                             // status line
Date: Fri, 29 Aug 2003 00:59:56 GMT         // general header
Server: Apache/2.0.40 (Unix)                // response header
Content-Length: 1595                        // entity header
Content-Type: text/html; charset=ISO-8859-1 // entity header

�HTTP 1.1
HTTP 1.1 fixes many problems with HTTP 1.0 but is more complex because of it. This version is done by 
extending or refining the options available to HTTP 1.0. For example:

•	 There are more commands such as TRACE and CONNECT.

•	 HTTP 1.1 tightened up the rules for the request URLs to allow proxy handling. If the 
request is directed through a proxy, the URL should be an absolute URL, as in

GET http://www.w3.org/index.html HTTP/1.1

Otherwise, an absolute path should be used and should include a Host header 
field, as in

GET /index.html HTTP/1.1
Host: www.w3.org

•	 There are more attributes such as If-Modified-Since, also for use by proxies.

The changes include

•	 Hostname identification (which allows virtual hosts)

•	 Content negotiation (multiple languages)

•	 Persistent connections (which reduce TCP overheads; this is very complex)

•	 Chunked transfers

•	 Byte ranges (request parts of documents)

•	 Proxy support

Thanks to the popularity of the Web, HTTP continues to be improved. HTTP/1.1 initial development 
started in 1997 continuing until 2014. You can find more about HTTP/1.1, including the original 
specification and the later more detailed documents redocumenting it.

•	 Single document (original format):

•	 Original (1997) – https://datatracker.ietf.org/doc/html/rfc2068

•	 Update (1999) – https://datatracker.ietf.org/doc/html/rfc2616

•	 Detailed series (all in 2014):

•	 Message Syntax and Routing – https://datatracker.ietf.org/doc/
html/rfc7230

Chapter 8 ■ HTTP

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230


173

•	 Semantics and Context – https://datatracker.ietf.org/doc/html/rfc7231

•	 Conditional Requests – https://datatracker.ietf.org/doc/html/rfc7232

•	 Range Requests – https://datatracker.ietf.org/doc/html/rfc7233

•	 Caching – https://datatracker.ietf.org/doc/html/rfc7234

•	 Authentication - https://datatracker.ietf.org/doc/html/rfc7235

�HTTP Major Upgrades
The HTTP/0.9 protocol took one page. The HTTP/1.0 protocol was described in about 20 pages and 
included the HTTP/0.9 protocol. The HTTP/1.1 protocol takes 120 pages and is a substantial extension 
to HTTP/1.0, whereas HTTP/2 takes about 96 pages. The HTTP/2 specification just adds to the HTTP/1.1 
specification. Nearing completion, the HTTP/3 specification is around 75 pages, adding more features and 
improvements around transport.

�HTTP/2
All the earlier versions of HTTP are text based. The most significant departure for HTTP/2 is that it is a binary 
format. In order to ensure backward compatibility, this can’t be managed by sending a binary message to an 
older server to see what it does. Instead, an HTTP 1.1 message is sent with extra attributes, essentially asking 
if the server wants to switch to HTTP/2. If it doesn’t understand the extra fields, it replies with a normal 
HTTP 1.1 response, and the session continues with HTTP 1.1.

Otherwise, the server can respond that it is willing to change, and the session can continue 
with HTTP/2.

�HTTP/3
HTTP/3 further improves upon ideas begun in HTTP/2 including:

•	 Stream multiplexing

•	 Per-stream flow control

•	 Low-latency connection establishment

A new transport mechanism was created to allow HTTP transport to perform even better.
To simply compare the various major protocols:

•	 HTTP/1.1 is used over a variety of transport and session layers.

•	 HTTP/2 is used primarily with TLS over TCP.

•	 HTTP/3 uses the same semantics over a new transport protocol called QUIC.

HTTP/2 improved upon HTTP over TCP flaws yet didn’t fully integrate with TCP (e.g., no 
comanagement of congestion controls across connections). HTTP/3 combines much of the HTTP/2 controls 
with TLS into a new protocol called QUIC. QUIC in a sense merges layers 4 and 5 yet runs on top of UDP 
(layer 4). Using UDP, allows HTTP/3 to ride on top of existing networks (some concern remains with TCP 
traffic often optimized and UDP less so on intermediate routers).

Even with the preceding improvements, a web engineer often is still working in the realm of HTTP/1.1. 
Creators of browsers and servers (e.g., proxies) will need to learn even more, including HTTP/2 and HTTP/3.

Chapter 8 ■ HTTP

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235


174

You can learn about QUIC transport here: https://datatracker.ietf.org/doc/html/draft-ietf-
quic-transport.

You can learn about HTTP and QUIC here: https://datatracker.ietf.org/doc/html/draft-ietf-
quic-http.

�Simple User Agents
User agents such as browsers make requests and get responses. Go provides a set of request and response 
types in the net/http package. First, we take a look at net/http.Response.

�The Response Type
The response type is as follows:

type Response struct {
    Status     string // e.g. "200 OK"
    StatusCode int    // e.g. 200
    Proto      string // e.g. "HTTP/1.0"
    ProtoMajor int    // e.g. 1
    ProtoMinor int    // e.g. 0
    Header Header
    Body io.ReadCloser
    ContentLength int64
    TransferEncoding []string
    Close bool
    Uncompressed bool
    Trailer Header
    Request *Request
    TLS *tls.ConnectionState
}

with the following helper methods:

func (r *Response) Cookies() []*Cookie
func (r *Response) Location() (*url.URL, error)
func (r *Response) ProtoAtLeast(major, minor int) bool
func (r *Response) Write(w io.Writer) error

Some methods are for convenience such as Cookies and Location; others are to assist with connection 
management like ProtoAtLeast and Write.

See the documentation for exact details (e.g., go doc -short net/http.Response.Body).
We started with Response because Go provides helper functions to make requests; later, we investigate 

the Request type.

Chapter 8 ■ HTTP

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http


175

�The HEAD Method
We examine this data structure through examples. Each HTTP request type has its own Go function in the 
net/http package. The simplest request is from a user agent called HEAD, which asks for information about a 
resource and its HTTP server. This function can be used to make the query:

func Head(url string) (r *Response, err error)

The status of the response is in the response field Status, while the field Header is a map of the header 
fields in the HTTP response. A program called head.go to make this request and display the results is as 
follows:

ch8$ vi head.go

/* Head
 */
package main

import (
        "fmt"
        "log"
        "net/http"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "host:port")
        }
        url := os.Args[1]
        response, err := http.Head(url)
        if err != nil {
                log.Fatalln(err)
        }
        fmt.Println(response.Status)
        for k, v := range response.Header {
                fmt.Println(k+":", v)
        }
}

When run against go.dev, we see

ch8$ go run head.go https://go.dev

200 OK
Content-Security-Policy: [connect-src 'self' www.google-analytics.com stats.g.doubleclick.
net ; default-src 'self' ; font-src 'self' fonts.googleapis.com fonts.gstatic.com data: ; 
frame-ancestors 'self' ; frame-src 'self' www.google.com feedback.googleusercontent.com www.
googletagmanager.com scone-pa.clients6.google.com www.youtube.com player.vimeo.com ; img-
src 'self' www.google.com www.google-analytics.com ssl.gstatic.com www.gstatic.com gstatic.
com data: * ; object-src 'none' ; script-src 'self' 'sha256-n6OdwTrm52KqKm6aHYgD0TFUdMgww4a

Chapter 8 ■ HTTP



176

0GQlIAVrMzck=' 'sha256-4ryYrf7Y5daLOBv0CpYtyBIcJPZkRD2eBPdfqsN3r1M=' 'sha256-sVKX08+SqOmnWh
iySYk3xC7RDUgKyAkmbXV2GWts4fo=' www.google.com apis.google.com www.gstatic.com gstatic.com 
support.google.com www.googletagmanager.com www.google-analytics.com ssl.google-analytics.
com tagmanager.google.com ; style-src 'self' 'unsafe-inline' fonts.googleapis.com feedback.
googleusercontent.com www.gstatic.com gstatic.com tagmanager.google.com ;]
Strict-Transport-Security: [max-age=31536000; includeSubDomains; preload]
X-Cloud-Trace-Context: [7ba1cc2dfaeebe50e11befbb48523327]
Date: [Thu, 31 Mar 2022 23:19:03 GMT]
Server: [Google Frontend]
Content-Type: [text/html; charset=utf-8]
Vary: [Accept-Encoding]

The response comes from a server out of our control, and it may pass through other servers on the 
way. The fields displayed may be different, and certainly, the values of the fields will differ. Here is a brief 
description of some of the response headers:

•	 Vary: Tells an origin server which fields to use aside from “method“, “Host”, and 
request target when selecting a representation of a resource

•	 Vary is part of HTTP/1.1 – https://datatracker.ietf.org/doc/html/
rfc7231#section-7.1.4

•	 Strict-Transport-Security: Used by the server to tell a browser (client) to use HTTPS 
instead of HTTP

•	 Also known as HSTS, an added policy to HTTP – 
https://www.rfc-editor.org/rfc/rfc6797

•	 X-Cloud-Trace-Context: Is a tracing header used by Google Cloud Platform

•	 Date: When the origin server generated the response

•	 Server: Used to identify the response generating software

•	 Server is part of HTTP/1.1 – https://datatracker.ietf.org/doc/html/
rfc2616#section-14.38

•	 Alt-Svc: Stands for Alternative Services, allows origin’s resources to be authoritatively 
available at a separate location and even different protocol

•	 The proposal can be found here: https://datatracker.ietf.org/doc/
html/rfc7838

•	 The proposal explains that Alt-Svc was added to clarify the location of a resource 
vs. the identification of the resource. Here, we see it used to explain we can 
modify our request to h3 (HTTP/3) and even QUIC!

•	 “ma” stands for max-age for availability of resource at this location/protocol.

•	 “v” is used to indicate the version of protocol used, part of earlier QUIC-
HTTP drafts still used by some.

•	 Content-Type: Used to parse response body

While this book is not focused on any particular aspect of networking and its main focus is Go’s network 
abilities; we find it instructive to explain related items such as the aforementioned headers.

These convenience functions such as Head have unspoken complexity behind them. Take a peek at 
Head’s documentation.

Chapter 8 ■ HTTP

https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4
https://www.rfc-editor.org/rfc/rfc6797
https://datatracker.ietf.org/doc/html/rfc2616#section-14.38
https://datatracker.ietf.org/doc/html/rfc2616#section-14.38
https://datatracker.ietf.org/doc/html/rfc7838
https://datatracker.ietf.org/doc/html/rfc7838


177

ch8$ go doc net/http.Head

package http // import "net/http"

func Head(url string) (resp *Response, err error)
    Head issues a HEAD to the specified URL. If the response is one of the
    following redirect codes, Head follows the redirect, up to a maximum of 10
    redirects:

        301 (Moved Permanently)
        302 (Found)
        303 (See Other)
        307 (Temporary Redirect)
        308 (Permanent Redirect)

    Head is a wrapper around DefaultClient.Head

    To make a request with a specified context.Context, use
    NewRequestWithContext and DefaultClient.Do.

The following are a couple of critical items to consider:

•	 30z causes a redirect (a.k.a. another request).

•	 A default client exists:

ch8$ go doc net/http.DefaultClient

package http // import "net/http"

var DefaultClient = &Client{}
    DefaultClient is the default Client and is used by Get, Head, and Post.

We will learn more about this client including its related Do method.

�The GET Method
Usually, we want to retrieve a representation of a resource rather than just getting information about it. The 
GET request will do this and can be done using the following:

func Get(url string) (r *Response, finalURL string, err error)

The content of the response is in the response field Body, which is of type io.ReadCloser. We can print 
the content to the screen with the program get.go:

ch8$ vi get.go

/* Get
 */
package main

Chapter 8 ■ HTTP



178

import (
        "fmt"
        "io"
        "log"
        "net/http"
        "net/http/httputil"
        "os"
        "strings"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "host:port")
        }
        url := os.Args[1]
        response, err := http.Get(url)
        checkError(err)
        if response.StatusCode != http.StatusOK {
                log.Fatalln(response.StatusCode)
        }
        fmt.Println("The response header is")
        b, _ := httputil.DumpResponse(response, false)
        fmt.Print(string(b))
        contentTypes := response.Header["Content-Type"]
        if !acceptableCharset(contentTypes) {
                log.Fatalln("Cannot handle", contentTypes)
        }
        fmt.Println("The response body is")
        var buf [512]byte
        reader := response.Body
        for {
                n, err := reader.Read(buf[0:])
                if err != nil {
                        if err == io.EOF {
                                fmt.Print(string(buf[0:n]))
                                reader.Close()
                                break
                        }
                        checkError(err)
                }
                fmt.Print(string(buf[0:n]))
        }
}
func acceptableCharset(contentTypes []string) bool {
        // each type is like [text/html; charset=utf-8]
        // we want the UTF-8 only
        for _, cType := range contentTypes {
                if strings.Index(cType, "utf-8") != -1 {

Chapter 8 ■ HTTP



179

                        return true
                }
        }
        return false
}

func checkError(err error) {
        if err != nil {
                log.Fatalln(err)
        }
}

When the get.go client run against the Go website we see the following.

ch8$ go run get.go https://go.dev

The response header is
HTTP/2.0 200 OK
Cache-Control: private
Content-Security-Policy: connect-src 'self' www.google-analytics.com stats.g.doubleclick.
net ; default-src 'self' ; font-src 'self' fonts.googleapis.com fonts.gstatic.com data: ; 
frame-ancestors 'self' ; frame-src 'self' www.google.com feedback.googleusercontent.com www.
googletagmanager.com scone-pa.clients6.google.com www.youtube.com player.vimeo.com ; img-
src 'self' www.google.com www.google-analytics.com ssl.gstatic.com www.gstatic.com gstatic.
com data: * ; object-src 'none' ; script-src 'self' 'sha256-n6OdwTrm52KqKm6aHYgD0TFUdMgww4a
0GQlIAVrMzck=' 'sha256-4ryYrf7Y5daLOBv0CpYtyBIcJPZkRD2eBPdfqsN3r1M=' 'sha256-sVKX08+SqOmnWh
iySYk3xC7RDUgKyAkmbXV2GWts4fo=' www.google.com apis.google.com www.gstatic.com gstatic.com 
support.google.com www.googletagmanager.com www.google-analytics.com ssl.google-analytics.
com tagmanager.google.com ; style-src 'self' 'unsafe-inline' fonts.googleapis.com feedback.
googleusercontent.com www.gstatic.com gstatic.com tagmanager.google.com ;
Content-Type: text/html; charset=utf-8
Date: Thu, 31 Mar 2022 23:33:22 GMT
Server: Google Frontend
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Vary: Accept-Encoding
X-Cloud-Trace-Context: d6e6efc338f0723fe7550203794db95c

The response body is
<!DOCTYPE html>
<html lang="en" data-theme="light">
<head>

<link rel="preconnect" href="https://www.googletagmanager.com">
<script >(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
  new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
  j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
  'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
  })(window,document,'script','dataLayer','GTM-W8MVQXG');</script>

<meta charset="utf-8">

Chapter 8 ■ HTTP



180

<meta name="description" content="Go is an open source programming language that makes it 
easy to build simple, reliable, and efficient software.">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="theme-color" content="#00add8">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Material+Icons">
<link rel="stylesheet" href="/css/styles.css">

  <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
  new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
  j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
  'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
  })(window,document,'script','dataLayer','GTM-W8MVQXG');</script>

<script src="/js/site.js"></script>
<title>The Go Programming Language</title>
</head>
<body class="Site">
...

This request been sent with HTTP/2. The Go library has performed the version negotiation for you. 
Based on TLS handshake and other information, Go upgrades to HTTP/2. Again, these convenience 
functions and related client make it easy to start using HTTP with Go. If you want to keep with HTTP/1.1, 
you can try the following override:

GODEBUG=http2client=0 go run get.go https://go.dev

The related code is documented as follows:

ch8$ go doc -u net/http onceSetNextProtoDefaults

package http // import "net/http"

func (srv *Server) onceSetNextProtoDefaults()
    onceSetNextProtoDefaults configures HTTP/2, if the user hasn't configured
    otherwise. (by setting srv.TLSNextProto non-nil) It must only be called via
    srv.nextProtoOnce (use srv.setupHTTP2_*).

func (t *Transport) onceSetNextProtoDefaults()
    onceSetNextProtoDefaults initializes TLSNextProto. It must be called via
    t.nextProtoOnce.Do.

Later, we look at customizing the client behavior.
There are important character set issues of the type discussed in the previous chapter. The server will 

deliver the content using some character set encoding and possibly some transfer encoding. Usually, this is 
a matter of negotiation between user agent and server, but the simple GET command that we used does not 
include the user agent component of the negotiation. So the server can send whatever character encoding 
it wants.

At the time of first writing, I (Jan) was in China (and Google could be accessed). When I tried this 
program on www.google.com, Google’s server tried to be helpful by guessing my location and sending me 
the text in the Chinese character set Big5! How to tell the server what character encoding is okay for me is 
discussed later.

Chapter 8 ■ HTTP

http://www.google.com


181

�Configuring HTTP Requests
Go also supplies a lower-level interface for user agents to communicate with HTTP servers. As you might 
expect, not only does it give you more control over the client requests, but it also requires you to spend more 
effort in building the requests. However, there is only a small increase in complexity.

The data type used to build requests is the type Request; have a look at the documentation.

type Request struct {
    Method string
    URL *url.URL
    Proto      string // "HTTP/1.0"
    ProtoMajor int    // 1
    ProtoMinor int    // 0
    Header Header
    Body io.ReadCloser
    GetBody func() (io.ReadCloser, error)
    ContentLength int64
    TransferEncoding []string
    Close bool
    Host string
    Form url.Values
    PostForm url.Values
    MultipartForm *multipart.Form
    Trailer Header
    RemoteAddr string
    RequestURI string
    TLS *tls.ConnectionState
    Cancel <-chan struct{}
    Response *Response
}

Here are the related methods:

func (r *Request) AddCookie(c *Cookie)
func (r *Request) BasicAuth() (username, password string, ok bool)
func (r *Request) Clone(ctx context.Context) *Request
func (r *Request) Context() context.Context
func (r *Request) Cookie(name string) (*Cookie, error)
func (r *Request) Cookies() []*Cookie
func (r *Request) FormFile(key string) (multipart.File, *multipart.FileHeader, error)
func (r *Request) FormValue(key string) string
func (r *Request) MultipartReader() (*multipart.Reader, error)
func (r *Request) ParseForm() error
func (r *Request) ParseMultipartForm(maxMemory int64) error
func (r *Request) PostFormValue(key string) string
func (r *Request) ProtoAtLeast(major, minor int) bool
func (r *Request) Referer() string
func (r *Request) SetBasicAuth(username, password string)
func (r *Request) UserAgent() string
func (r *Request) WithContext(ctx context.Context) *Request
func (r *Request) Write(w io.Writer) error
func (r *Request) WriteProxy(w io.Writer) error

Chapter 8 ■ HTTP



182

Some methods of Request are used during client setup; others are used by the server to retrieve 
information.

There is a lot of information that can be stored in a request. You do not need to fill in all the fields, only 
those of interest. The simplest way to create a request with default values is using this, for example:

request, err := http.NewRequest("GET", url.String(), nil)

Once a request has been created, you can modify the fields. For example, to specify that you want to 
receive only UTF-8, add an Accept-Charset field to a request as follows:

request.Header.Add("Accept-Charset", "UTF-8;q=1, ISO-8859-1;q=0")

(Note that the default set ISO-8859-1 always gets a value of 1 unless mentioned explicitly in the list, as 
we do. The HTTP 1.1 specification dates back to 1999!)

A client setting a charset request is simple. But there is some confusion about what happens with the 
server’s return value of a charset. The returned resource should have a Content-Type that will specify the 
media type of the content such as text/html. If appropriate, the media type should state the charset, such as 
text/html; charset=UTF-8. If there is no charset specification, then according to the HTTP specification, 
it should be treated as the default ISO-8859-1 charset. But the HTML4 specification states that since many 
servers don’t conform to this, you can’t make any assumptions.

If there is a charset specified in the server’s Content-Type, then assume it is correct. If there is none 
specified, since more than 50% of pages are in UTF-8 and some are in ASCII, it is safe to assume UTF-8. 
Fewer than 10% of pages may be wrong :-(.

�The Client Object
To send a request to a server and get a reply, the convenience object Client is the easiest way. This 
object can manage multiple requests and will look after issues such as whether the server keeps the TCP 
connection alive and so on.

This is illustrated in the following program: clientget.go.
The program shows how to add HTTP headers, as we add the header Accept-Charset to only accept 

UTF-8. There is a little hiccup here, caused by a bug in Go, which has only been fixed in Go 1.8. The Client.
Do function will automatically do a redirect if it gets a 301, 302, 303, or 307 response. Prior to Go 1.8, it didn’t 
copy across the HTTP headers in this redirect.

If you try against a site such as http://www.google.com, then it will redirect to a site such as  
http://www.google.com.au but will lose the Accept-Charset header and return ISO-8859-1 (as it should 
do according to the 1999 HTTP 1.1 specification). With that proviso – that the program may not give correct 
results on versions prior to Go 1.8 – the program is as follows:

ch8$ vi clientget.go

/* ClientGet
 */
package main

import (
        "io"
        "fmt"
        "log"
        "net/http"

Chapter 8 ■ HTTP

http://www.google.com
http://www.google.com.au


183

                "net/http/httputil"
        "net/url"
        "os"
        "strings"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "http://host:port/page")
        }
        url, err := url.Parse(os.Args[1])
        checkError(err)
        client := &http.Client{}
        request, err := http.NewRequest("HEAD", url.String(), nil)
        // only accept UTF-8
        request.Header.Add("Accept-Charset", "utf-8;q=1,ISO-8859-1;q=0")
        checkError(err)
        response, err := client.Do(request)
        checkError(err)
        if response.StatusCode != http.StatusOK {
                log.Fatalln(response.Status)
        }
        fmt.Println("The response header is")
        b, _ := httputil.DumpResponse(response, false)
        fmt.Print(string(b))
        chSet := getCharset(response)
        if chSet != "utf-8" {
                log.Fatalln("Cannot handle", chSet)
        }
        var buf [512]byte
        reader := response.Body
        fmt.Println("got body")
        for {
                n, err := reader.Read(buf[0:])
                if err != nil {
                        if err == io.EOF {
                                fmt.Print(string(buf[0:n]))
                                break
                        }
                        checkError(err)
                }
                fmt.Print(string(buf[0:n]))
        }
}
func getCharset(response *http.Response) string {
        contentType := response.Header.Get("Content-Type")
        if contentType == "" {
                // guess
                return "utf-8"
        }
        idx := strings.Index(contentType, "charset=")

Chapter 8 ■ HTTP



184

        if idx == -1 {
                // guess
                return "utf-8"
        }
        // we found charset now remove it
        chSet := strings.Trim(contentType[idx+8:], " ")
        return strings.ToLower(chSet)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The program is run as follows, for example:

ch8$ go run clientget.go https://go.dev

The response header is
HTTP/2.0 200 OK
Connection: close
Content-Security-Policy: connect-src 'self' www.google-analytics.com stats.g.doubleclick.
net ; default-src 'self' ; font-src 'self' fonts.googleapis.com fonts.gstatic.com data: ; 
frame-ancestors 'self' ; frame-src 'self' www.google.com feedback.googleusercontent.com www.
googletagmanager.com scone-pa.clients6.google.com www.youtube.com player.vimeo.com ; img-
src 'self' www.google.com www.google-analytics.com ssl.gstatic.com www.gstatic.com gstatic.
com data: * ; object-src 'none' ; script-src 'self' 'sha256-n6OdwTrm52KqKm6aHYgD0TFUdMgww4a
0GQlIAVrMzck=' 'sha256-4ryYrf7Y5daLOBv0CpYtyBIcJPZkRD2eBPdfqsN3r1M=' 'sha256-sVKX08+SqOmnWh
iySYk3xC7RDUgKyAkmbXV2GWts4fo=' www.google.com apis.google.com www.gstatic.com gstatic.com 
support.google.com www.googletagmanager.com www.google-analytics.com ssl.google-analytics.
com tagmanager.google.com ; style-src 'self' 'unsafe-inline' fonts.googleapis.com feedback.
googleusercontent.com www.gstatic.com gstatic.com tagmanager.google.com ;
Content-Type: text/html; charset=utf-8
Date: Thu, 31 Mar 2022 23:45:09 GMT
Server: Google Frontend
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Vary: Accept-Encoding
X-Cloud-Trace-Context: 9caa17c0647c300f6e52d795661bf512

got body

�Proxy Handling
It is very common now for HTTP requests to pass through specific HTTP proxies. This is in addition to the 
servers that form the TCP connection and act at the application layer. Companies use proxies to limit what 
their own staff can see, while many organizations use proxy services such as Cloudflare to act as caches, 
reducing the load on the organization’s own servers. Accessing websites through proxies requires additional 
handling by the client.

Chapter 8 ■ HTTP



185

�Simple Proxy
HTTP 1.1 laid out how HTTP should work through a proxy. A GET request should be made to a proxy. 
However, the URL requested should be the full URL of the destination. In addition, the HTTP header should 
contain a Host field, set to the proxy. As long as the proxy is configured to pass such requests through, then 
that is all that needs to be done.

Go considers this to be part of the HTTP transport layer. To manage this, it has a class Transport. This 
contains a field that can be set to a function that returns a URL for a proxy. If we have a URL as a string for the 
proxy, the appropriate transport object is created and then given to a client object as follows:

// prepare for transport
proxyURL, err := url.Parse(proxyString)

// RoundTripper implementation that supports HTTP proxies
// see go doc net/http.RoundTripper
transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}

// used to send our HTTP quest
client := &http.Client{Transport: transport}

The client can then continue as before.
The following program proxyget.go illustrates this.

ch8$ vi proxyget.go

/* ProxyGet
 */
package main

import (
        "fmt"
        "io"
        "log"
        "net/http"
        "net/url"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "http://host:port/page")
        }
        rawURL := os.Args[1]
        url, err := url.Parse(rawURL)
        checkError(err)

        response, err := http.Get(url.String())

        checkError(err)
        fmt.Println("Read ok")

        if response.StatusCode != http.StatusOK {

Chapter 8 ■ HTTP



186

                log.Fatalln(response.StatusCode)
        }
        fmt.Println("Response ok")

        var buf [512]byte
        reader := response.Body
        for {
                n, err := reader.Read(buf[0:])
                if err != nil {
                        if err == io.EOF {
                                fmt.Print(string(buf[0:n]))
                                reader.Close()
                                break
                        }
                        checkError(err)
                }
                fmt.Print(string(buf[0:n]))
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

If you have a proxy at, say, XYZ.com on port 8080, you can test this as follows:

ch8$ go run proxyget.go http://XYZ.com:8080 https://www.google.com

If you don’t have a suitable proxy to test this, then download and install the Squid proxy (http://www.
squid-cache.org/) to your own computer. For example, on a Mac with Homebrew installed:

ch8$ brew install squid       // install via Homebrew
ch8$ brew service start squid // run Squid on port 3128

You can now run the client against this locally running proxy.

ch8$ HTTP_PROXY=localhost:3128 go run proxyget.go https://www.google.com

Read ok
Response ok
<!doctype html><html itemscope=""...

This program used our proxy passed (via HTTP_PROXY) as an environment variable to the program. 
There are many ways that proxies can be made known to applications. Most browsers have a configuration 
menu in which you can enter proxy information; such information is not available to a Go application. Some 
applications may get proxy information using the Web Proxy Autodiscovery Protocol (WPAD – https://
en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol) via a file often known as proxy.pac 
somewhere in your network. Go does not (yet) know how to parse these JavaScript files and so cannot use 

Chapter 8 ■ HTTP

http://www.squid-cache.org/
http://www.squid-cache.org/
https://en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol
https://en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol


187

them. Particular operating systems may have system-specific means of specifying proxies. Go cannot access 
these. But it can find proxy information if it is set in operating system environment variables such as HTTP_
PROXY or http_proxy using this function:

func ProxyFromEnvironment(req *Request) (*url.URL, error)

If your programs are running in such an environment, you can use this function instead of having to 
explicitly know the proxy parameters. See go doc net/http ProxyFromEnvironment for more.

�Authenticating Proxy
Some proxies will require authentication by a username and password in order to pass requests. A common 
scheme is “basic authentication” in which the username and password are concatenated into a string 
"user:password" and then Base64 encoded. This is then given to the proxy by the HTTP request header 
"Proxy-Authorization" with the flag that it is the basic authentication.

The following program proxyauthget.go illustrates this, adding the Proxy-Authentication header to 
the previous proxy program:

ch8$ vi proxyauthget.go

/* ProxyAuthGet
 */
package main

import (
        "encoding/base64"
        "fmt"
        "io"
        "net/http"
        "net/http/httputil"
        "net/url"
        "os"
)

const auth = "jannewmarch:mypassword"

func main() {
        if len(os.Args) != 3 {

                �fmt.Println("Usage: ", os.Args[0], "http://proxy-host:port http://
host:port/page")

                os.Exit(1)
        }
        proxy := os.Args[1]
        proxyURL, err := url.Parse(proxy)
        checkError(err)
        rawURL := os.Args[2]
        url, err := url.Parse(rawURL)
        checkError(err)

        // encode the auth

Chapter 8 ■ HTTP



188

        basic := "Basic " +
                base64.StdEncoding.EncodeToString([]byte(auth))

        transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}
        client := &http.Client{Transport: transport}

        request, err := http.NewRequest("GET", url.String(), nil)

        request.Header.Add("Proxy-Authorization", basic)
        dump, _ := httputil.DumpRequest(request, false)
        fmt.Println(string(dump))

        // send the request
        response, err := client.Do(request)

        checkError(err)
        fmt.Println("Read ok")
        if response.Status != "200 OK" {
                fmt.Println(response.Status)
                os.Exit(2)
        }
        fmt.Println("Response ok")

        var buf [512]byte
        reader := response.Body
        for {
                n, err := reader.Read(buf[0:])
                if err != nil {
                        os.Exit(0)
                }
                fmt.Print(string(buf[0:n]))
        }
        os.Exit(0)
}
func checkError(err error) {
        if err != nil {
                if err == io.EOF {
                        return
                }
                fmt.Println("Fatal error ", err.Error())
                os.Exit(1)
        }
}

There doesn’t seem to be a publicly available test site for this type of program. I tested it at work 
where an authenticating proxy is used. Setting up such a proxy is beyond the scope of this book. There is 
a discussion on how to do this called “How to Set Up a Squid Proxy with Basic Username and Password 
Authentication” (see http://stackoverflow.com/questions/3297196/how-to-set-up-a-squid-proxy-
with-basic-username-and-password-authentication).

The code currently hard-codes the username and password. If you fail to use the correct login, you may 
get an error such as

Chapter 8 ■ HTTP

http://stackoverflow.com/questions/3297196/how-to-set-up-a-squid-proxy-with-basic-username-and-password-authentication
http://stackoverflow.com/questions/3297196/how-to-set-up-a-squid-proxy-with-basic-username-and-password-authentication


189

ch8$ go run proxyauthget.go http://localhost:3128/ http://www.google.com

GET / HTTP/1.1
Host: www.google.com
Proxy-Authorization: Basic amphbm5ld21hcmNoOm15cGFzc3dvcmQ=

Read ok
407 Proxy Authentication Required
exit status 2

If it works, you will receive similar results as with the unauthenticated proxy.

ch8$ go run proxyauthget.go http://localhost:3128/ http://www.google.com

GET / HTTP/1.1
Host: www.google.com
Proxy-Authorization: Basic amFubmV3bWFyY2g6bXlwYXNzd29yZA==

Read ok
Response ok
<!doctype html><html...

�HTTPS Connections by Clients
For secure, encrypted connections, HTTP uses TLS, which is described in Chapter 7. The protocol of 
HTTP+TLS is called HTTPS and uses https:// URLs instead of http:// URLs.

Servers are required to return valid X.509 certificates before a client will accept data from them. If the 
certificate is valid, then Go handles everything under the hood, and the clients given previously run okay 
with https URLs. That is, programs such as the earlier clientget.go run unchanged – you just give them an 
HTTPS URL.

Many sites have invalid certificates. They may have expired, they may be self-signed instead of by a 
recognized certificate authority, or they may just have errors (such as having an incorrect server name). 
Browsers such as Firefox put a big warning notice with a “Get me out of here!” button, but you can carry on 
at your risk, which many people do.

Go presently bails out when it encounters certificate errors. However, you can configure a client to 
ignore certificate errors. This is, of course, not advisable – sites with misconfigured certificates may have 
other problems.

In Chapter 7, we generated self-signed X.509 certificates. Later in this chapter, we will give an HTTPS 
server using X.509 certificates, and if the self-signed certificates are used, then clientget.go will generate 
this error:

 x509: certificate signed by unknown authority

A client that removes these errors and continues does so by turning on the Transport configuration flag 
InsecureSkipVerify. The unsafe program is tlsunsafeclientget.go:

ch8$ vi tlsunsafeclientget.go

Chapter 8 ■ HTTP

https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_7


190

/* TLSUnsafeClientGet
 */
package main

import (
        "crypto/tls"
        "fmt"
        "log"
        "net/http"
        "net/url"
        "os"
        "strings"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "https://host:port/page")
        }
        url, err := url.Parse(os.Args[1])
        checkError(err)
        if url.Scheme != "https" {
                log.Fatalln("Not https scheme ", url.Scheme)
        }

        transport := &http.Transport{}
        transport.TLSClientConfig = &tls.Config{InsecureSkipVerify: false}
        client := &http.Client{Transport: transport}

        request, err := http.NewRequest("GET", url.String(), nil)
        // only accept UTF-8
        checkError(err)

        response, err := client.Do(request)
        checkError(err)

        if response.StatusCode != http.StatusOK {
                log.Fatalln(response.Status)
        }
        fmt.Println("get a response")

        chSet := getCharset(response)
        fmt.Printf("got charset %s\n", chSet)
        if chSet != "UTF-8" {
                log.Fatalln("Cannot handle", chSet)
        }

        var buf [512]byte
        reader := response.Body
        fmt.Println("got body")
        for {
                n, err := reader.Read(buf[0:])

Chapter 8 ■ HTTP



191

                checkError(err)
                fmt.Print(string(buf[0:n]))
        }
}
func getCharset(response *http.Response) string {
        contentType := response.Header.Get("Content-Type")
        if contentType == "" {
                // guess
                return "UTF-8"
        }
        idx := strings.Index(contentType, "charset:")
        if idx == -1 {
                // guess
                return "UTF-8"
        }
        return strings.Trim(contentType[idx:], " ")
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Until we create the server side, let’s try against https://gooogle.com (notice three “o”s), probably 
not valid.

ch8$ go run tlsunsafeclientget.go https://gooogle.com

Fatal error  Get "https://gooogle.com": x509: certificate is valid for www.google.com, not 
gooogle.com
exit status 1

�Servers
The other side to building a client is a web server handling HTTP requests. The simplest – and earliest – 
servers just returned copies of files. However, any URL can now trigger an arbitrary computation in current 
servers.

�File Server
We start with a basic file server. Go supplies a multiplexer, that is, an object that will read and interpret 
requests. It hands out requests to handlers, which run in their own thread. Thus, much of the work 
of reading HTTP requests, decoding them, and branching to suitable functions in their own thread is 
done for us.

For a file server, Go also gives a FileServer object, which knows how to deliver files from the local file 
system. It takes a “root” directory, which is the top of a file tree in the local system, and a pattern to match 
URLs against. The simplest pattern is /, which is the top of any URL. This will match all URLs.

Chapter 8 ■ HTTP

https://gooogle.com


192

An HTTP server delivering files from the local file system is almost embarrassingly trivial given these 
objects. It is fileserver.go:

ch8$ vi fileserver.go

/* File Server
 */
package main

import (
        "log"
        "net/http"
)

func main() {
        // deliver files from the directory /tmp/www
        fileServer := http.FileServer(http.Dir("/tmp/www"))

        // register the handler and deliver requests to it
        err := http.ListenAndServe(":8000", fileServer)
        if err != nil {
                log.Fatalln(err)
        }
        // That's it!
}

This server even delivers "404 not found" messages for requests for file resources that don’t exist! 
If the file requested is a directory, it returns a list wrapped in <pre> ... </pre> tags with no other HTML 
headers or markup. If Wireshark or a simple telnet client is used, directories are sent as text/html, HTML 
files as text/html, Perl files as text/x-perl, Java files as text/x-java, and so on. The FileServer employs 
some type recognition and includes that in the HTTP request, but it does not give the control over markup 
that a server such as Apache does.

The server and a curl client run as follows:

ch8$ go run FileServer.go

ch8$ curl localhost:8000

404 page not found

ch8$ mkdir -p /tmp/www/

ch8$ echo hi > /tmp/www/hi.txt

ch8$ curl localhost:8000/

<pre>
<a href="hi.txt">hi.txt</a>
</pre>

Chapter 8 ■ HTTP



193

ch8$ curl localhost:8000/hi.txt

hi

�Handler Functions
In this last program, the handler was given in the second argument to ListenAndServe. Any number of 
handlers can be registered first by calls to Handle or HandleFunc, with these signatures:

func Handle(pattern string, handler Handler)
func HandleFunc(pattern string, handler func(ResponseWriter, *Request))

The second argument to ListenAndServe could be nil, and then calls are dispatched to all registered 
handlers. Each handler should have a different URL pattern. For example, the file handler might have URL 
pattern /, while a function handler might have URL pattern /cgi-bin (we used /tmp/www). A more specific 
pattern takes precedence over a more general pattern.

Common CGI programs are test-cgi (written in the shell) and printenv (written in Perl), which 
print the values of the environment variables. A handler can be written to work in a similar manner as 
printenv.go.

ch8$ vi printenv.go

/* Print Env
 */
package main

import (
        "fmt"
        "net/http"
        "os"
)

func main() {
        // file handler for most files
        fileServer := http.FileServer(http.Dir("/tmp/www"))
        http.Handle("/", fileServer)
        // function handler for /cgi-bin/printenv
        http.HandleFunc("/cgi-bin/printenv", printEnv)

        // deliver requests to the handlers
        err := http.ListenAndServe(":8000", nil)
        checkError(err)
        // That's it!
}
func printEnv(writer http.ResponseWriter, req *http.Request) {
        env := os.Environ()
        writer.Write([]byte("<h1>Environment</h1><pre>"))
        for _, v := range env {
                writer.Write([]byte(v + "\n"))
        }

Chapter 8 ■ HTTP



194

        writer.Write([]byte("</pre>"))
}
func checkError(err error) {
        if err != nil {
                fmt.Println("Fatal error ", err.Error())
                os.Exit(1)
        }
}

Run the server as follows:

ch8$ go run printenv.go

Now we run a curl client as follows:

ch8$ curl localhost:8000/cgi-bin/printenv

<h1>Environment</h1><pre>TERM_PROGRAM=Apple_Terminal
SHELL=/bin/zsh
TERM=xterm-256color
TMPDIR=/var/folders/c5/l52zshy12q1bsfhp_sbdtg5r0000gn/T/
TERM_PROGRAM_VERSION=444
TERM_SESSION_ID=803B4A5C-F403-40E8-97CC-0EC807C35D77
USER=ronaldpetty
SSH_AUTH_SOCK=/private/tmp/com.apple.launchd.vj8cVxhj0c/Listeners

Using the cgi-bin directory in this program is a bit cheeky: it doesn’t call an external program like CGI 
scripts do. It just calls the Go function printEnv. Go does have the ability to call external programs using os.
ForkExec but does not yet have support for dynamically linkable modules like Apache’s mod_perl. You most 
likely want to wrap the results as proper HTML in this case.

�Bypassing the Default Multiplexer
HTTP requests received by a Go server are usually handled by a multiplexer, which examines the path in the 
HTTP request and calls the appropriate file handler, etc. You can define your own handlers. These can be 
registered with the default multiplexer by calling http.HandleFunc, which takes a pattern and a function. 
The functions such as ListenAndServe then take a nil handler function. This was done in the last example.

However, if you want to take over the multiplexer role, then you can give a non-nil function as the 
handler function to ListenAndServe. This function will then be responsible for managing the requests and 
responses.

The following example is trivial but illustrates the use of this. The multiplexer function simply returns a 
"204 No content" for all requests to serverhandler.go:

ch8$ vi serverhandler.go

/* ServerHandler
 */

package main

Chapter 8 ■ HTTP



195

import (
        "net/http"
)

func main() {
        myHandler := http.HandlerFunc(func(rw http.ResponseWriter,
                request *http.Request) {

                // Just return no content - arbitrary headers can be set, arbitrary body
                rw.WriteHeader(http.StatusNoContent)
        })

        http.ListenAndServe(":8080", myHandler)
}

The server may be tested by running telnet against it to give output such as this:

ch8$ curl -v localhost:8080

*   Trying 127.0.0.1:8080...
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET / HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.79.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 204 No Content
< Date: Fri, 01 Apr 2022 03:21:41 GMT
<
* Connection #0 to host localhost left intact

�HTTPS
For secure, encrypted connections, HTTP uses TLS, which is described in Chapter 7. The protocol of 
HTTP+TLS is called HTTPS and uses https:// URLs instead of http:// URLs.

For a server to use HTTPS, it needs an X.509 certificate and a private key file for that certificate. Go at 
present requires that these be PEM-encoded as used in Chapter 7. Then the HTTP function ListenAndServe 
is replaced with the HTTPS (HTTP+TLS) function ListenAndServeTLS.

The file server program given earlier can be written as an HTTPS server as httpsfileserver.go:

ch8$ vi httpsfileserver.go

/* HTTPSFileServer
 */
package main

Chapter 8 ■ HTTP

https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_7


196

import (
        "net/http"
        "log"
)

func main() {
        // deliver files from the directory /tmp/www
        fileServer := http.FileServer(http.Dir("/tmp/www"))
        // register the handler and deliver requests to it
        err := http.ListenAndServeTLS(":8000", "jan.newmarch.name.pem",
                "private.pem", fileServer)
        if err != nil {
                log.Fatalln(err)
        }
}

This server is accessed by https://localhost:8000/index.html, for example. If the certificate is a self-
signed certificate, an unsafe client will be needed to access the server contents. For example:

ch8$ go run httpsfileserver.go

ch8$ curl -i https://localhost:8000

curl: (60) SSL certificate problem: self signed certificate
More details here: https://curl.se/docs/sslcerts.html

curl failed to verify the legitimacy of the server and therefore could not
establish a secure connection to it. To learn more about this situation and
how to fix it, please visit the web page mentioned above.

We can instruct the curl client to be insecure via the “-k” flag.

ch8$ curl -ik https://localhost:8000

HTTP/2 200
content-type: text/html; charset=utf-8
last-modified: Mon, 27 Dec 2021 04:30:01 GMT
content-length: 41
date: Mon, 27 Dec 2021 04:46:56 GMT

<pre>
<a href="hi.txt">hi.txt</a>
</pre>

We can also do that with our Go client code (tlsunsafeclientget.go).
With InsecureSkipVerify set to true:

ch8$ go run tlsunsafeclientget.go https://localhost:8000

get a response
got charset UTF-8
got body

Chapter 8 ■ HTTP



197

With InsecureSkipVerify set to false:

ch8$ go run tlsunsafeclientget.go https://localhost:8000

Fatal error  Get "https://localhost:8000": x509: certificate signed by unknown authority
exit status 1

If you want a server that supports both HTTP and HTTPs, run each listener in its own go routine.

�Conclusion
Go has extensive support for HTTP. This is not surprising, since Go was partly invented to fill a need by 
Google for their own servers. This chapter discussed the various levels of support given by Go for HTTP and 
HTTPS. In the chapter about Gorilla, we will talk in more detail about Go multiplex requests (path -> code).

Chapter 8 ■ HTTP



199
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_9

CHAPTER 9

Templates

Most server-side languages have a mechanism for taking predominantly static pages and inserting a 
dynamically generated component, such as a list of items. Typical examples are scripts in Java Server Pages, 
PHP scripting, and many others. Go has adopted a relatively simple scripting language in the template 
package.

The package is designed to take text as input and output different text, based on transforming the 
original text using the values of an object. Unlike JSP or similar, it is not restricted to HTML files, but it is 
likely to find greatest use there. We first describe the text/template package and later the html/template 
package.

The original source is called a template and will consist of text that is transmitted unchanged and 
embedded commands that can act on and change text. The commands are delimited by {{ ... }} , similar 
to the JSP commands <%= ... =%> and PHP’s <?php ... ?>. In Go’s template module, commands are also 
known as actions.

�Inserting Object Values
A template is applied to a Go object. Fields from that Go object can be inserted into the template, and you 
can “dig” into the object to find subfields, etc. The current object is represented as the cursor, so to insert the 
value of the current object as a string, you use {{.}}. The package uses the fmt package by default to work 
out the string used as inserted values.

To insert the value of a field of the current cursor object, you use the field name prefixed by .. For 
example, if the current cursor object is of type

type Person struct {
        Name      string
        Age       int
        Emails    []string
        Jobs      []*Job
}

you insert the values of Name and Age as follows:

The name is {{.Name}}.
The age is {{.Age}}.

https://doi.org/10.1007/978-1-4842-8095-9_9#DOI


200

You can loop over the elements of an array or other lists using the range command. So to access the 
contents of the Emails array, you use this:

{{range .Emails}}
        The email is {{.}}
{{end}}

During the loop over emails, the cursor . is set to each email in turn. On conclusion of the loop, the 
cursor reverts to the person. If Job is defined as follows:

type Job struct {
    Employer string
    Role     string
}

and we want to access the fields of a person's jobs, we can do it as before with a {{range .Jobs}}. 
An alternative is to switch the current object to the Jobs field. This is done using the {{with ...}} ... 
{{end}} construction, where now {{.}} is the Jobs field, which is an array:

{{with .Jobs}}
    {{range .}}
        An employer is {{.Employer}}
        and the role is {{.Role}}
    {{end}}
{{end}}

You can use this with any field, not just an array.

�Using Templates
Once you have a template, you can apply it to an object to generate a new string using the object to fill in 
the template values. This is a two-step process that involves parsing the template and then applying it to an 
object. The result is output to a Writer, as in

t := template.New("Person template")
t, err := t.Parse(templ)
if err == nil {
        buff := bytes.NewBufferString("")
        t.Execute(buff, person)
}

An example program to apply a template to an object and print to standard output is printperson.go:

$ mkdir ch9
ch9$ cd ch9

ch9$ vi printperson.go

/* PrintPerson
 */
package main

Chapter 9 ■ Templates



201

import (
        "log"
        "os"
        "text/template"
)

type Person struct {
        Name   string
        Age    int
        Emails []string
        Jobs   []Job
}
type Job struct {
        Employer string
        Role     string
}

const templ = `The name is {{.Name}}.
The age is {{.Age}}.
{{range .Emails}}
        An email is {{.}}
{{end}}
{{with .Jobs}}
    {{range .}}
        An employer is {{.Employer}}
        and the role is {{.Role}}
    {{end}}
{{end}}
`

func main() {
        job1 := Job{Employer: "Box Hill Institute", Role: "Director, Commerce and ICT"}
        job2 := Job{Employer: "Canberra University", Role: "Adjunct Professor"}
        person := Person{
                Name: "jan",
                Age:  66,
                Emails: []string{"jan@newmarch.name",
                        "jan.newmarch@gmail.com"},
                Jobs: []Job{job1, job2},
        }
        t := template.New("Person template")
        t, err := t.Parse(templ)
        checkError(err)
        err = t.Execute(os.Stdout, person)
        checkError(err)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Chapter 9 ■ Templates



202

The output from this is as follows:

ch9$ go run printperson.go

The name is jan.
The age is 66.

        An email is jan@newmarch.name

        An email is jan.newmarch@gmail.com

        An employer is Box Hill Institute
        and the role is Director, Commerce and ICT

        An employer is Canberra University
        and the role is Adjunct Professor

Note that there is plenty of whitespace as newlines in this printout. This is due to the whitespace we 
have in our template. If you want to reduce this whitespace, eliminate the newlines in the template as 
follows:

{{range .Emails}} An email is {{.}} {{end}}

An alternative is to use the command delimiters "{{- " and " -}}" to eliminate all trailing whitespace 
from the immediately preceding text and all leading whitespace from the immediately following text, 
respectively.

In the example, we used a string in the program as the template. You can also load templates from a 
file using the template.ParseFiles() function. For some reason that I don’t understand (and which wasn’t 
required in earlier versions), the name assigned to the template must be the same as the basename of the 
first file in the list of files. Is this a bug?

�Pipelines
The preceding transformations insert pieces of text into a template. Those pieces of text are essentially 
arbitrary, whatever the string values of the fields are. If we want them to appear as part of an HTML 
document (or other specialized form), we will have to escape particular sequences of characters. For 
example, to display arbitrary text in an HTML document, we have to change < to <. The Go templates have 
a number of built-in functions, and one of these is html(). These functions act in a similar manner to UNIX 
pipelines, reading from standard input and writing to standard output.

To take the value of the current object . and apply HTML escapes to it, you write a “pipeline” in the 
template:

{{. | html}}

Here is another example, where we add a pipelined formatted message stating how many jobs a 
person has.

const templ = `The name is {{.Name}}.
The age is {{.Age}}.
{{range .Emails}}

Chapter 9 ■ Templates



203

        An email is {{.}}
{{end}}
{{with .Jobs}}
    {{range .}}
        An employer is {{.Employer}}
        and the role is {{.Role}}
    {{end}}
    {{ . | len | printf "%d jobs total" }}
{{end}}
`

Running the modified prior example, we now see a new line of output:

go run printperson.go

...
2 jobs total

And do similarly for other functions. There are additional considerations when pipelining including 
how arguments are passed in. You can learn more about pipelining in your templates here: https://pkg.
go.dev/text/template#hdr-Pipelines.

�Defining Functions
The templates use the string representation of an object to insert values using the fmt package to convert 
the object to a string. Sometimes, this isn’t what is needed. For example, to avoid spammers getting hold of 
email addresses, it is quite common to see the symbol @ replaced by the word “at,” as in “jan at newmarch.
name”. If we want to use a template to display email addresses in that form, we have to build a custom 
function to do this transformation.

Each template function has a name that is used in the templates themselves and an associated Go 
function. These are linked by this type:

type FuncMap map[string]interface{}

For example, if we want our template function to be emailExpand, which is linked to the Go function 
EmailExpander, we add this to the functions in a template as follows:

t = t.Funcs(template.FuncMap{"emailExpand": EmailExpander})

The signature for EmailExpander is typically this:

func EmailExpander(args ...interface{}) string

Chapter 9 ■ Templates

https://pkg.go.dev/text/template#hdr-Pipelines
https://pkg.go.dev/text/template#hdr-Pipelines


204

For the use we are interested in, there should be only one argument to the function, which will be a 
string. Existing functions in the Go template library have some initial code to handle nonconforming cases, 
so we just copy that. Then it is just simple string manipulation to change the format of the email address. A 
program is printemails.go:

ch9$ vi printemails.go

/* PrintEmails
 */
package main

import (
        "log"
        "os"
        "strings"
        "text/template"
)

type Person struct {
        Name   string
        Emails []string
}

const templ = `The name is {{.Name}}.
{{range .Emails}}
An email is "{{. | emailExpand}}"
{{end}}`

func main() {
        person := Person{
                Name: "jan",
                Emails: []string{"jan@newmarch.name",
                        "jan.newmarch@gmail.com"},
        }
        t, err := template.New("Person template").Funcs(
                template.FuncMap{
                        "emailExpand": func(emailAddress string) string {
                                return strings.Replace(emailAddress, "@", " at ", -1)
                        },
                },
        ).Parse(templ)

        err = t.Execute(os.Stdout, person)
        checkError(err)
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Chapter 9 ■ Templates



205

The output is as follows:

ch9$ go run printemails.go

The name is jan.

An email is "jan at newmarch.name"

An email is "jan.newmarch at gmail.com"

�Variables
The template package allows you to define and use variables. As motivation for this, consider how we might 
print each person’s email address prefixed by their name. The type we use is again this one:

type Person struct {
        Name      string
        Emails    []string
}

To access the email strings, we use a range statement such as this:

{{range .Emails}}
    {{.}}
{{end}}

But at that point, we cannot access the Name field, as . is now traversing the array elements and Name 
is outside of this scope. The solution is to save the value of the Name field in a variable that can be accessed 
anywhere in its scope. We also apply the same idea with loop variables. Variables in templates are prefixed 
by $. So we write this:

{{$name := .Name}}
{{range $idx, $email := .Emails}}
    Name is {{$name}}, email is {{$email}}
{{end}}

The program is printnameemails.go:

ch9$ vi printnameemails.go

/**
 * PrintNameEmails
 */
package main

import (
        "log"
        "os"
        "text/template"
)

Chapter 9 ■ Templates



206

type Person struct {
        Name   string
        Emails []string
}

const templ = `{{$name := .Name}}
{{ $numEmails := .Emails | len -}}
{{range $idx, $email := .Emails -}}
Name is {{$name}}, email {{$email}} is {{ $idx | increment }} of {{ $numEmails }}
{{end}}
`

func main() {
        person := Person{
                Name: "jan",
                Emails: []string{"jan@newmarch.name",
                        "jan.newmarch@gmail.com"},
        }
        t, err := template.New("Person template").Funcs(
                template.FuncMap{
                        "increment": func(val int) int {
                                return val + 1
                        },
                },
        ).Parse(templ)
        checkError(err)
        err = t.Execute(os.Stdout, person)
        checkError(err)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Here is the output:

ch9$ go run printnameemails.go

Name is jan, email jan@newmarch.name is 1 of 2
Name is jan, email jan.newmarch@gmail.com is 2 of 2

�Conditional Statements
Continuing with the Person example, suppose you just want to print out the list of emails, without digging 
into it. You can do that with a template:

Name is {{.Name}}
Emails are {{.Emails}}

Chapter 9 ■ Templates



207

This will print the following:

Name is jan
Emails are [jan@newmarch.name jan.newmarch@gmail.com]

because this is how the fmt package will display a list.
In many circumstances, that may be fine, if that is what you want. Let’s consider a case where it is almost 

right, but not quite. There is a JSON package to serialize objects, which we looked at in Chapter 4. This would 
produce the following:

{"Name": "jan",
 "Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com"]
}

The JSON package is the one you use in practice, but let’s see if we can produce JSON output using 
templates. We can do something similar just by the templates we have. This is almost right as a JSON 
serializer:

{"Name": "{{.Name}}",
 "Emails": {{.Emails}}
}

It will produce this:{"Name": "jan",
 "Emails": [jan@newmarch.name jan.newmarch@gmail.com]
}

This has two problems: the addresses aren’t in quotes, and the list elements should be , separated.
How about this – look at the array elements, put them in quotes, and add commas?

{"Name": {{.Name}},
  "Emails": [
   {{range .Emails}}
      "{{.}}",
   {{end}}
  ]
}

This will produce{"Name": "jan",
 "Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com",]
}

(plus some whitespace).
Again, it’s almost correct, but if you look carefully, you will see a trailing , after the last list element. 

According to the JSON syntax (see http://www.json.org/), this trailing , is not allowed. Implementations 
may vary in how they deal with this.

What we want is to print every element followed by a , except for the last one. This is actually a bit 
hard to do, so a better way is to print every element preceded by a , except for the first one (I got this tip from 
“brianb” at Stack Overflow – http://stackoverflow.com/questions/201782/can-you-use-a-trailing-
comma-in-a-json-object). This is easier because the first element has index zero and many programming 
languages, including the Go template language, treat zero as a Boolean false.

Chapter 9 ■ Templates

https://doi.org/10.1007/978-1-4842-8095-9_4
http://www.json.org/
http://stackoverflow.com/questions/201782/can-you-use-a-trailing-comma-in-a-json-object
http://stackoverflow.com/questions/201782/can-you-use-a-trailing-comma-in-a-json-object


208

One form of the conditional statement is {{if pipeline}} T1 {{else}} T0 {{end}}. We need the 
pipeline to be the index into the array of emails. Fortunately, a variation on the range statement gives us 
this. There are two forms that introduce variables:

{{range $elmt := array}}
{{range $index, $elmt := array}}

So we set up a loop through the array, and if the index is false (0), we just print the element. Otherwise, 
we print it preceded by a ,. The template is as follows:

{"Name": "{{.Name}}",
 "Emails": [
 {{range $index, $elmt := .Emails}}
    {{if $index}}
        , "{{$elmt}}"
    {{else}}
         "{{$elmt}}"
    {{end}}
 {{end}}
 ]
}

The full program is printjsonemails.go:

ch9$ vi printjsonemails.go

/**
 * PrintJSONEmails
 */
package main

import (
        "bytes"
        "encoding/json"
        "fmt"
        "log"
        "os"
        "text/template"
)

type Person struct {
        Name   string
        Emails []string
}

const templ = `{"Name": "{{- .Name -}}", "Emails": [
{{- range $index, $elmt := .Emails -}}
    {{- if $index -}}
        , "{{- $elmt -}}"
    {{- else -}}
         "{{- $elmt -}}"

Chapter 9 ■ Templates



209

    {{- end -}}
{{- end -}}
] }`

func main() {
        person := Person{
                Name: "jan",
                Emails: []string{"jan@newmarch.name",
                        "jan.newmarch@gmail.com"},
        }
        t := template.New("Person template")
        t, err := t.Parse(templ)
        checkError(err)
        err = t.Execute(os.Stdout, person)
        checkError(err)

        // check via validity json package
        var b bytes.Buffer
        err = t.Execute(&b, person)
        checkError(err)
        if json.Valid(b.Bytes()) {
                fmt.Println("\nvalid json")
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

This gives the correct JSON output, it also runs json.Valid() checker function to validate for proper JSON.

ch9$
go run printjsonemails.go

{"Name": "jan", "Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com"] }
valid json

Before leaving this section, note that the problem of formatting a list with comma separators can be 
approached by defining suitable functions in Go that are made available as template functions. To reuse 
a well-known saying from another programming language, “There’s more than one way to do it!” The 
following program was sent to me by Roger Peppe as sequence.go:

ch9$ vi sequence.go

/* Sequence.go
 * Copyright Roger Peppe
 */
package main

import (

Chapter 9 ■ Templates



210

        "errors"
        "fmt"
        "os"
        "text/template"
)

var tmpl = `{{$comma := sequence "" ", "}}
{{range $}}{{$comma.Next}}{{.}}{{end}}
{{$comma := sequence "" ", "}}
{{$colour := cycle "black" "white" "red"}}
{{range $}}{{$comma.Next}}{{.}} in {{$colour.Next}}{{end}}
`
var fmap = template.FuncMap{
        "sequence": sequenceFunc,
        "cycle":    cycleFunc,
}

func main() {
        t, err := template.New("").Funcs(fmap).Parse(tmpl)
        if err != nil {
                fmt.Printf("parse error: %vn", err)
                return
        }
        err = t.Execute(os.Stdout, []string{"a", "b", "c",
                "d", "e", "f"})
        if err != nil {
                fmt.Printf("exec error: %vn", err)
        }
}

type generator struct {
        ss []string
        i  int
        f  func(s []string, i int) string
}

func (seq *generator) Next() string {
        s := seq.f(seq.ss, seq.i)
        seq.i++
        return s
}
func sequenceGen(ss []string, i int) string {
        if i >= len(ss) {
                return ss[len(ss)-1]
        }
        return ss[i]
}
func cycleGen(ss []string, i int) string {
        return ss[i%len(ss)]
}
func sequenceFunc(ss ...string) (*generator, error) {

Chapter 9 ■ Templates



211

        if len(ss) == 0 {
                return nil, errors.New("sequence must have at least one element")
        }
        return &generator{ss, 0, sequenceGen}, nil
}
func cycleFunc(ss ...string) (*generator, error) {
        if len(ss) == 0 {
                return nil, errors.New("cycle must have at least one element")
        }
        return &generator{ss, 0, cycleGen}, nil
}

Here is the output:

ch9$ go run sequence.go

a, b, c, d, e, f

a in black, b in white, c in red, d in black, e in white, f in red

�The html/template Package
The preceding programs all dealt with the text/template package. This applies transformations without 
regard to any context in which the text might be used. For example, if the text in PrintPerson.go changes to

job1 := Job{Employer: "<script>alert('Could be nasty!')</script>", Role: "Director, Commerce and ICT"}

the program will generate this text:

An employer is <script>alert('Could be nasty!')</script>

This will cause an unexpected effect if downloaded to a browser.
The use of the html command in a pipeline can reduce this, as in {{. | html}}, and will produce the following:

An employer is &lt;script&gt;alert(&#39;Could be nasty!&#39;)&lt;/script&gt

Applying this filter to all expressions will become tedious. In addition, it may not catch potentially 
dangerous JavaScript, CSS, or URI expressions.

The html/template package is designed to overcome these issues. By the simple step of replacing 
text/template with html/template, the appropriate transformations will be applied to the resultant text, 
sanitizing it so that it is suitable for web contexts.

When using “go doc” for either template package, be sure to note which one you are looking at. “go doc 
template” is actually “go doc html/template” and “go doc text/template” for the non-HTML package.

�Conclusion
The Go template package is useful for certain kinds of text transformations involving inserting values of 
objects. It does not have the power of regular expressions, for example, but it is faster and, in many cases, will 
be easier to use than regular expressions.

Chapter 9 ■ Templates



213
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_10

CHAPTER 10

A Complete Web Server

This chapter is principally an illustration of the HTTP chapter, building a complete website hosted 
via standard Go. It also shows how to use templates in order to use expressions in text files to 
insert variable values and to generate repeated sections. It deals with serialized data and Unicode 
character sets. The programs in this chapter are sufficiently long and complex, so they are not 
always given in their entirety but can be downloaded from the book’s GitHub website, which is 
https://github.com/Apress/network-prog-with-go-2e.

Jan is learning Chinese. Rather, after many years of trying, he is still attempting to learn Chinese. Of 
course, rather than buckling down and getting on with it, he has tried all sorts of technical aids. He tried 
textbooks, videos, and many other teaching aids. Eventually he realized that the reason for his poor progress 
was that there wasn’t a good computer program for Chinese flashcards, and so in the interests of learning, he 
needed to build one.

He found a program in Python to do some of the task. But sad to say, it wasn’t well written, and after a 
few attempts at turning it upside down and inside out, he came to the conclusion that it was better to start 
from scratch. Of course, a web solution would be far better than a stand-alone one because then all the other 
people in his Chinese class could share it, as well as any other learners out there. And of course, the server 
would be written in Go.

He used the vocabulary from the lessons in the book Intensive Spoken Chinese by Zhang Pengpeng 
(Sinolingua, 2007, ISBN 978-7-80052577-3), but the program is applicable to any vocabulary sets.

�Browser Site Diagram
The resultant program as viewed in the browser has three types of pages, illustrated in Figure 10-1.

Home page
List of Flashcard

sets

Flashcard set
words one at

a time

Flashcard set
all words

Figure 10-1.  Browser pages

https://doi.org/10.1007/978-1-4842-8095-9_10#DOI
https://github.com/Apress/network-prog-with-go-2e


214

The home page shows a list of flashcard sets (see Figure 10-2). It consists of a list of flashcard sets 
currently available, how you want a set displayed (random card order, Chinese or English shown first, or 
random), and whether to display a set of cards or just the words in a set.

Figure 10-2.  The home page of the website

The flashcard set shows a flashcard, one at a time. One looks like Figure 10-3.

Chapter 10 ■ A Complete Web Server



215

Figure 10-3.  Typical flashcard showing all the components

The set of words for a flashcard set looks like Figure 10-4.

Figure 10-4.  The list of words in a flashcard set

Chapter 10 ■ A Complete Web Server



216

�Browser Files
The browser side has HTML, CSS, and JavaScript files along with our Go code that is hosting them. Logical 
paths and related files are as follows:

•	 Home page paths include (/ and /flashcards.html):

•	 css/listflashcardsstylesheet.css

•	 Flashcard set path (showflashcards.html):

•	 css/cardstylesheet.css

•	 jscript/jquery.js

•	 jscript/slideviewer.js

•	 Flashcard set words path (listwords.html):

•	 css/listflashcardsstylesheet.css

•	 jscript/sortable.js

The overall project looks as follows:

$ mkdir ch10
$ cd ch10
ch10$ tree .
.
├── cedict_ts.u8
├── css
│   ├── cardstylesheet.css
│   └── listflashcardsstylesheet.css
├── dictionary.go
├── flashcards.go
├── flashcardsets
│   ├── common_words
│   ├── lesson_04_surname_first_name
│   ├── lesson_05_country_nationality
│   └── lesson_06_city_native_place
├── html
│   ├── listflashcards.html
│   ├── listwords.html
│   └── showflashcards.html
├── jscript
│   ├── jquery.js
│   ├── slideviewer.js
│   └── sorttable.js
├── pinyinformatter.go
└── server.go
4 directories, 17 files

Chapter 10 ■ A Complete Web Server



217

�Basic Server
The server is an HTTP server as discussed in the previous chapter. It has a number of functions to handle 
different URLs. The functions are outlined here:

Path Function HTML Delivered

/ listFlashCards html/listflashcards.html

/flashcards.html listFlashCards html/listflashcards.html

/flashcardSets manageFlashCards html/showflashcards.html

/flashcardSets manageFlashCards html/listwords.html

/jscript/* fileServer Files from directory /jscript

/html/*

/css/*

fileserver

fileserver

Files from directory /html

Files from directory /css

The server is server.go under ch10 of https://github.com/Apress/network-prog-with-go-2e.

ch10$ cat server.go

/* Server
 */

package main

import (
        "fmt"
        "html/template"
        "log"
        "net/http"
        "os"
)

const (
        DefaultSet           = "common_words"
        DefaultAmount        = "Random"
        ActionShow           = "Show cards in set"
        ActionList           = "List words in set"
        ActionUnknown        = "Unknown action"
        URLFlashCardSetsPath = "flashcardSets"
        FlashCardPage        = "flashcards.html"
        ListFlashCardPage    = "list" + FlashCardPage
        ShowFlashCardPage    = "show" + FlashCardPage
        ListWordsPage        = "listwords.html"
        CardOrderSequential  = "Sequential"
        CardOrderRandom      = "Random"
)

Chapter 10 ■ A Complete Web Server

https://github.com/Apress/network-prog-with-go-2e


218

var showHalf = map[string]string{
        "Random":  "RANDOM_HALF",
        "English": "ENGLISH_HALF",
        "Chinese": "CHINESE_HALF",
}

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], ":port")
        }
        port := os.Args[1]

        http.HandleFunc("/", listFlashCards)
        fileServer := http.StripPrefix("/jscript/", http.FileServer(http.Dir("jscript")))
        http.Handle("/jscript/", fileServer)
        fileServer = http.StripPrefix("/html/", http.FileServer(http.Dir("html")))
        http.Handle("/html/", fileServer)
        fileServer = http.StripPrefix("/css/", http.FileServer(http.Dir("css")))
        http.Handle("/css/", fileServer)

        http.HandleFunc("/"+FlashCardPage, listFlashCards)
        http.HandleFunc("/"+URLFlashCardSetsPath, manageFlashCards)

        // deliver requests to the handlers
        err := http.ListenAndServe(port, nil)
        checkError(err)
}

func listFlashCards(rw http.ResponseWriter, req *http.Request) {

...

}

/*
 * Called from listflashcards.html on form submission
 */
func manageFlashCards(rw http.ResponseWriter, req *http.Request) {

...

}

func showFlashCards(rw http.ResponseWriter, cardname, order, half string) {

...

}

func listWords(rw http.ResponseWriter, cardname string) {

...

}

Chapter 10 ■ A Complete Web Server



219

func httpErrorHandler(rw http.ResponseWriter, err error) {
        http.Error(rw, err.Error(), http.StatusInternalServerError)
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

We now turn to the discussion of the individual functions.

�The listFlashCards Function
The listFlashCards function is called to create HTML for the top-level page. The list of flashcard names is 
extensible and is the set of file entries in the directory flashcardSets. This list is used to create the table in 
the top-level page and is best done using the template package:

<table id="sets">
        <tr>
                <th colspan="2">
                        Flashcard Sets
                </th>
        </tr>
        {{range $i, $e := .}}
        <tr>
                <td>
                        {{$e}}
                </td>
                <td>
<input type="radio" name="flashcardSets" value="{{$e}}" {{if eq $i 0}}checked{{end}} />
                </td>
        </tr>
        {{end}}
</table>

where the range is over the list of names. The file html/listflashcards.html contains this template 
as well as the HTML for the side lists of card order, half card display, and the form buttons at the bottom. 
Omitting the side lists and the submit buttons, the HTML is as follows:

ch10$ cat html/listflashcards.html

<html>

<head>
    <title>
        Flashcards
    </title>

Chapter 10 ■ A Complete Web Server



220

    <link type="text/css" rel="stylesheet" href="/css/listflashcardsstylesheet.css">
    </link>

</head>

<body>
    <h1>
        Flashcards
    </h1>
    <p>

    <div id="choose">
        <form method="GET" action="http:flashcardSets">

            <table id="sets">
                <tr>
                    <th colspan="2">
                        Flashcard Sets
                    </th>
                </tr>
                {{range $i, $e := .}}
                <tr>
                    <td>
                        {{$e}}
                    </td>
                    <td>
                        �<input type="radio" name="flashcardSets" value="{{$e}}" {{if eq $i 

0}}checked{{end}} />
                    </td>
                </tr>
                {{end}}
            </table>
            <br />
            <div id="options">
                <table id="order">
                    <tr>
                        <th colspan="3">
                            Card order
                        </th>
                    </tr>
                    <tr>
                        <td>
                            �Random <input type="radio" name="order" value="Random" 

checked="true" />
                        </td>
                        <td>
                            �Sequential <input type="radio" name="order" 

value="Sequential" />
                        </td>
                    </tr>
                </table>

Chapter 10 ■ A Complete Web Server



221

                <br />
                <table id="half">
                    <tr>
                        <th colspan="3">
                            Half card display
                        </th>
                    </tr>
                    <tr>
                        <td>
                            �Random <input type="radio" name="half" value="Random" 

checked="true" />
                        </td>
                        <td>
                            English <input type="radio" name="half" value="English" />
                        </td>
                        <td>
                            Chinese <input type="radio" name="half" value="Chinese" />
                        </td>
                    </tr>
                </table>
            </div>

            <br />
            <div id="submit">
                <button type="submit" name="submit" value="Show cards in set">
                    Show cards in set
                </button>
                <button type="submit" name="submit" value="List words in set">
                    List words in set
                </button>
            </div>
        </form>
    </div>
    </p>

</body>

</html>

From server.go, the function listFlashCards, which applies the template to this, is as follows:

func listFlashCards(rw http.ResponseWriter, req *http.Request) {
        flashCardsNames := ListFlashCardsNames()
        t, err := template.ParseFiles("html/" + ListFlashCardPage)

        if err != nil {
                httpErrorHandler(rw, err)
                return
        }

        t.Execute(rw, flashCardsNames)
}

Chapter 10 ■ A Complete Web Server



222

From flashcards.go, the function ListFlashCardsNames() just iterates through the flashcards 
directory, returning an array of strings (the file names of each flashcard set):

func ListFlashCardsNames() []string {
    flashcardsDir, err := os.Open("flashcardsets")
    if err != nil {
        return nil
    }
    files, err := flashcardsDir.Readdir(-1)

    fileNames := make([]string, len(files))
    for n, f := range files {
        fileNames[n] = f.Name()
    }
    sort.Strings(fileNames)
    return fileNames
}

�The manageFlashCards Function
From server.go, the manageFlashCards function is called to manage the form submission on pressing the 
“Show Cards in Set” button or the “List Words in Set” button. It extracts values from the form request and 
then chooses between showFlashCards and listWords:

/*
 * Called from listflashcards.html on form submission
 */
func manageFlashCards(rw http.ResponseWriter, req *http.Request) {
        set := req.FormValue("flashcardSets")
        order := req.FormValue("order")
        action := req.FormValue("submit")
        half := req.FormValue("half")

        //if unset
        //http://localhost:8000/flashcardSets?flashcardSets=common_words&order=Random&half= 
Random&submit=Show+cards+in+set
        if len(set) == 0 {
                set = DefaultSet
                order = DefaultAmount
                action = ActionShow
                half = DefaultAmount
        }

        cardname := URLFlashCardSetsPath + "/" + set

        fmt.Printf("Set %s, order %s, action %s, half %s, cardname %s\n", set, order, 
action, half, cardname)

Chapter 10 ■ A Complete Web Server



223

        switch action {
        case ActionShow:
                showFlashCards(rw, cardname, order, half)
        case ActionList:
                listWords(rw, cardname)
        default:
                fmt.Println(ActionUnknown)
        }
}

�The Chinese Dictionary
The previous code was fairly generic: it delivers static files using a FileServer, creates HTML tables using 
templates based on a listing of files in a directory, and processes information from an HTML form. To 
proceed further by looking at what is displayed in each card, we have to get into the application-specific 
detail, and that means looking at the source of words (a dictionary), how to represent it and the cards, and 
how to send flashcard data to the browser. First, the dictionary.

Chinese is a complex language – aren’t they all :-(. The written form is hieroglyphic, that is, 
“pictograms,” instead of using an alphabet. But this written form has evolved over time and even recently 
split into two forms: “traditional” Chinese as used in Taiwan and Hong Kong and “simplified” Chinese 
as used in mainland China. While most of the characters are the same, about 1,000 are different. Thus, a 
Chinese dictionary will often have two written forms of the same character.
Most Westerners like me can’t understand these characters. So there is a “Latinized” form called Pinyin, 
which writes the characters in a phonetic alphabet based on the Latin alphabet. It isn’t quite the Latin 
alphabet because Chinese is a tonal language, and the Pinyin form has to show the tones (much like accents 
in French and other European languages). So a typical dictionary has to show four things: the traditional 
form, the simplified form, the Pinyin, and the English. In addition (just like in English), a word may have 
multiple meanings. For example, there is a free Chinese/English dictionary at http://www.mandarintools.
com/worddict.html, and even better, you can download it as a UTF-8 file. In it, the word 好 has this entry:

Traditional Simplified Pinyin English Meanings

好 好 hǎo good /good/well/proper/good to/easy to/very/so/
(suffix indicating completion or readiness)/

There is a little complication in this dictionary. Most keyboards are not good at representing accents 
such as the caron in ǎ. So while the Chinese characters are written in Unicode, the Pinyin characters are 
not. Although there are Unicode characters for letters such as ǎ, many dictionaries including this one use 
the Latin a and place the tone at the end of the word. Here, it is the third tone, so hǎo is written as hao3. This 
makes it easier for those who only have US keyboards and no Unicode editor to still communicate in Pinyin. 
A copy of the dictionary as used by the web server is cedict_ts.u8.

This data format mismatch is not a big deal. Just that somewhere along the line, between the original 
text dictionary and the display in the browser, a data massage has to be performed. Go templates allow this 
to be done by defining a custom template, so I chose that route. Alternative approaches include doing this as 
the dictionary is read in, or in the JavaScript to display the final characters.

Chapter 10 ■ A Complete Web Server

http://www.mandarintools.com/worddict.html
http://www.mandarintools.com/worddict.html


224

�The Dictionary Type
From dictionary.go, we use a DictionaryEntry to hold the basic information about one word:

type DictionaryEntry struct {
        Traditional  string
        Simplified   string
        Pinyin       string
        Translations []string
}

The preceding word would be represented by the following:

DictionaryEntry {Traditional: 好,
          Simplified: 好,
          Pinyin: `hao3`
          Translations: []string{`good`, `well`,`proper`,
                                 `good to`, `easy to`, `very`, `so`,
                                 `(suffix indicating completion or readiness)`}
}

The dictionary itself is just an array of these entries:

type Dictionary struct {
        Entries []*DictionaryEntry
}

�Flashcard Sets
A single flashcard is meant to represent a Chinese word and the English translation of that word. We have 
already seen that a single Chinese word can have many possible English meanings. But this dictionary also 
sometimes has multiple occurrences of a Chinese word. For example, 好 occurs at least twice, once with the 
meaning we have already seen, but also with another meaning, “to be fond of.” It turned out to be overkill, 
but to allow for this, each flashcard is given a full dictionary of words. Typically, there is only one entry in 
the dictionary! The rest of a flashcard is just the simplified and English words to act as possible keys, from 
flashcards.go:

type FlashCard struct {
        Simplified string
        English    string
        Dictionary *Dictionary
}

The set of flashcards is an array of these, plus the name of the set and information that will be sent to the 
browser for presentation of the set: random or fixed order, showing the top or bottom of each card first, or 
random, from flashcards.go.

type FlashCards struct {
        Name      string

Chapter 10 ■ A Complete Web Server



225

        CardOrder string
        ShowHalf  string
        Cards     []*FlashCard
}

We have shown one function for this type already, ListFlashCardsNames(). There is one other 
function of interest for this type to load a JSON file for a flashcard set. This uses the techniques mentioned in 
Chapter 4, in flashcards.go.

func LoadJSON(r io.Reader, key any) {
        decoder := json.NewDecoder(r)
        err := decoder.Decode(key)
        checkError(err)
}

A typical flashcard set is of common words. When the JSON file is pretty printed (e.g., jq), part of it looks 
like this:

{
    "ShowHalf":"",
    "Cards":[
        {
            "Simplified":"\u4f60\u597d",
            "Dictionary":{
                "Entries":[
                    {
                        "Traditional":"\u4f60\u597d",
                        "Pinyin":"ni3 hao3",
                        "Translations":[
                            "hello",
                            "hi",
                            "how are you?"
                        ],
                        "Simplified":"\u4f60\u597d"
                    }
                ]
            },
            "English":"hello"
        },
        {
            "Simplified":"\u5582",
            "Dictionary":{
                "Entries":[
                    {
                        "Traditional":"\u5582",
                        "Pinyin":"wei4",
                        "Translations":[
                            "hello (interj., esp. on telephone)",
                            "hey",
                            "to feed (sb or some animal)"
                        ],

Chapter 10 ■ A Complete Web Server

https://doi.org/10.1007/978-1-4842-8095-9_4


226

                        "Simplified":"\u5582"
                    }
                ]
            },
            "English":"hello (interj., esp. on telephone)"
        },
    ],
    "CardOrder":"",
    "Name":"Common Words"
}

�Fixing Accents
There is one last major task before we can complete the code for the server. The accents as given in the 
dictionaries place the accent at the end of the Pinyin word, as in hao3 for hǎo. The translation to Unicode 
can be performed by a custom template, as discussed in Chapter 9.

The code for the Pinyin formatter is given here. Don’t bother reading it unless you are really interested 
in knowing the rules for Pinyin formatting. The program is pinyinformatter.go:

ch10$ cat pinyinformatter.go

package main

import (
        "fmt"
        "strings"
)

func PinyinFormatter(args ...interface{}) string {
        ok := false
        var s string
        if len(args) == 1 {
                s, ok = args[0].(string)
        }
        if !ok {
                s = fmt.Sprint(args...)
        }
        fmt.Println("Formatting func " + s)
        // the string may consist of several pinyin words
        // each one needs to be changed separately and then
        // added back together
        words := strings.Fields(s)

        for n, word := range words {
                // convert "u:" to "ü" if present
                uColon := strings.Index(word, "u:")
                if uColon != -1 {
                        parts := strings.SplitN(word, "u:", 2)
                        word = parts[0] + "ü" + parts[1]
                }

Chapter 10 ■ A Complete Web Server

https://doi.org/10.1007/978-1-4842-8095-9_9


227

                println(word)
                // get last character, will be the tone if present
                chars := []rune(word)
                tone := chars[len(chars)-1]
                if tone == '5' {
                        // there is no accent for tone 5
                        words[n] = string(chars[0 : len(chars)-1])
                        println("lost accent on", words[n])
                        continue
                }
                if tone < '1' || tone > '4' {
                        // not a tone value
                        continue
                }
                words[n] = addAccent(word, int(tone))
        }
        s = strings.Join(words, ` `)
        return s
}

var (
        // maps 'a1' to '\u0101' etc
        aAccent = map[int]rune{
                '1': '\u0101',
                '2': '\u00e1',
                '3': '\u01ce',
                '4': '\u00e0'}
        eAccent = map[int]rune{
                '1': '\u0113',
                '2': '\u00e9',
                '3': '\u011b',
                '4': '\u00e8'}
        iAccent = map[int]rune{
                '1': '\u012b',
                '2': '\u00ed',
                '3': '\u01d0',
                '4': '\u00ec'}
        oAccent = map[int]rune{
                '1': '\u014d',
                '2': '\u00f3',
                '3': '\u01d2',
                '4': '\u00f2'}
        uAccent = map[int]rune{
                '1': '\u016b',
                '2': '\u00fa',
                '3': '\u01d4',
                '4': '\u00f9'}
        üAccent = map[int]rune{
                '1': 'ǖ',
                '2': 'ǘ',
                '3': 'ǚ',

Chapter 10 ■ A Complete Web Server



228

                '4': 'ǜ'}
)

func addAccent(word string, tone int) string {
        /*
         * Based on "Where do the tone marks go?"
         * at http://www.pinyin.info/rules/where.html
         */

        n := strings.Index(word, "a")
        if n != -1 {
                aAcc := aAccent[tone]
                // replace 'a' with its tone version
                word = word[0:n] + string(aAcc) + word[(n+1):len(word)-1]
        } else {
                n := strings.Index(word, "e")
                if n != -1 {
                        eAcc := eAccent[tone]
                        word = word[0:n] + string(eAcc) +
                                word[(n+1):len(word)-1]
                } else {
                        n = strings.Index(word, "ou")
                        if n != -1 {
                                oAcc := oAccent[tone]
                                word = word[0:n] + string(oAcc) + "u" +
                                        word[(n+2):len(word)-1]
                        } else {
                                chars := []rune(word)
                                length := len(chars)
                                // put tone onthe last vowel
                        L:
                                for n, _ := range chars {
                                        m := length - n - 1
                                        switch chars[m] {
                                        case 'i':
                                                chars[m] = iAccent[tone]
                                                break L
                                        case 'o':
                                                chars[m] = oAccent[tone]
                                                break L
                                        case 'u':
                                                chars[m] = uAccent[tone]
                                                break L
                                        case 'ü':
                                                chars[m] = üAccent[tone]
                                                break L
                                        default:
                                        }
                                }
                                word = string(chars[0 : len(chars)-1])
                        }

Chapter 10 ■ A Complete Web Server



229

                }
        }
        return word
}

�The ListWords Function
We can now return to the outstanding functions of the server. One was to list the words in a flashcard set. 
This populates an HTML table using a template for a flashcard set. The HTML for this uses the template 
package to walk over a FlashCards struct and insert the fields from that struct:

ch10$ cat html/listwords.html

<html>

<head>
        <title>
                Words for {{.Name}}
        </title>

        <script type="text/javascript" language="JavaScript1.2" src="/jscript/sorttable.js">
                < !--empty -->
        </script>

        <link type="text/css" rel="stylesheet" href="/css/listflashcardsstylesheet.css">
        </link>
</head>

<body>
        <h1>
                Words for {{.Name}}
        </h1>
        <p>
        <table border="1" class="sortable">
                <tr>
                        <th> English </th>
                        <th> Pinyin </th>
                        <th> Traditional </th>
                        <th> Simplified </th>
                </tr>
                {{range .Cards}}
                <div class="card">
                        <tr>
                                <div class="english">
                                        <div class="vcenter">
                                                <td>
                                                        {{.English}}
                                                </td>
                                        </div>
                                </div>

Chapter 10 ■ A Complete Web Server



230

                                {{with .Dictionary}}
                                {{range .Entries}}
                                <div class="pinyin">
                                        <div class="vcenter">
                                                <td>
                                                        {{.Pinyin|pinyin}}
                                                </td>
                                        </div>
                                </div>

                                <div class="traditional">
                                        <div class="vcenter">
                                                <td>
                                                        {{.Traditional}}
                                                </td>
                                        </div>
                                </div>

                                <div class="simplified">
                                        <div class="vcenter">
                                                <td>
                                                        {{.Simplified}}
                                                </td>
                                        </div>
                                </div>

                                {{end}}
                                {{end}}
                        </tr>
                </div>
                {{end}}
        </table>
        </p>
        <p class="return">
                <a href="http:/flashcards.html"> Return to Flash Cards list</a>
        </p>
</body>

</html>

The Go function in server.go to do this uses the PinyinFormatter discussed in the last section:

func listWords(rw http.ResponseWriter, cardname string) {
    fmt.Println("Loading card name", cardname)
    cards := new(FlashCards)
    LoadJSON(cardname, cards)
    fmt.Println("loaded cards", len(cards.Cards))
    fmt.Println("Card name", cards.Name)

    t := template.New("listwords.html")

Chapter 10 ■ A Complete Web Server



231

    t = t.Funcs(template.FuncMap{"pinyin": PinyinFormatter})
    t, err := t.ParseFiles("html/listwords.html")

    if err != nil {
        fmt.Println("Parse error " + err.Error())
        http.Error(rw, err.Error(), http.StatusInternalServerError)
        return
    }
    err = t.Execute(rw, cards)
    if err != nil {
        fmt.Println("Execute error " + err.Error())
        http.Error(rw, err.Error(), http.StatusInternalServerError)
        return
    }
}

This sends the populated table to the browser, as shown in Figure 10-4.

�The showFlashCards Function
The final function to complete the server is showFlashCards. This changes the default values of CardOrder 
and ShowHalf in the flashcard set based on the form submitted from the browser. It then applies the 
PinyinFormatter and sends the resulting document to the browser. I captured the output of a command-
line session using the UNIX command script and then ran the command:

GET /flashcardSets?flashcardSets=Common+Words&order=Random&half=Chinese&submit=Show+cards+ 
in+set HTTP/1.0

Part of the result is as follows:

ch10$ cat ./html/showflashcards.html

<html>

<head>
  <title>
    Flashcards for {{.Name}}
  </title>

  <link type="text/css" rel="stylesheet" href="/css/cardstylesheet.css">
  </link>

  <script type="text/javascript" language="JavaScript1.2" src="/jscript/jquery.js">
      < !--empty -->
  </script>

  <script type="text/javascript" language="JavaScript1.2" src="/jscript/slideviewer.js">
      < !--empty -->
  </script>

Chapter 10 ■ A Complete Web Server



232

  <script type="text/javascript" language="JavaScript1.2">
      cardOrder = {{- .CardOrder }};
    showHalfCard = {{- .ShowHalf }};
  </script>
</head>

<body onload="showSlides();">
  <!-- <body> -->
  <h1>
    Flashcards for {{.Name}}
  </h1>
  <p>

    {{range .Cards}}
  <div class="card">
    <div class="english">
      <div class="vcenter">
        English: {{.English}}
      </div>
    </div>

    {{with .Dictionary}}
    {{range .Entries}}
    <div class="pinyin">
      <div class="vcenter">
        Pinyin: {{.Pinyin|pinyin}}
      </div>
    </div>

    <div class="traditional">
      <div class="vcenter">
        Traditional: {{.Traditional}}
      </div>
    </div>

    <div class="simplified">
      <div class="vcenter">
        Simplified: {{.Simplified}}
      </div>
    </div>

    <div class="translations">
      <div class="vcenter">
        Translations:<br />
        {{range .Translations}}
        {{.}} <br />
        {{end}}
      </div>
    </div>
    {{end}}
    {{end}}
  </div>

Chapter 10 ■ A Complete Web Server



233

  {{end}}
  </p>
  <div style="position: absolute; bottom: 0px">
    <p class="return">
      Press &lt;Space&gt; or Tap to continue
      <br />
      <a href="http:/flashcards.html"> Return to Flash Cards list</a>
    </p>
  </div>

</body>

</html>

The actual function is shown in the following. We see the card set, presentation order, and rendering, 
very similar to prior functions.

func showFlashCards(rw http.ResponseWriter, cardname, order, half string) {
        cards := new(FlashCards)
        content, err := os.Open(cardname)
        checkError(err)
        LoadJSON(content, &cards)

        switch order {
        case CardOrderSequential:
                cards.CardOrder = "SEQUENTIAL"
        default:
                cards.CardOrder = "RANDOM"
        }

        if v, ok := showHalf[half]; ok {
                cards.ShowHalf = v
        } else {
                cards.ShowHalf = showHalf["Chinese"]
        }

        fmt.Printf("Loading card %s, half %s, loaded # of %d, card name %s\n", cardname, 
half, len(cards.Cards), cards.Name)

        t, err := template.New(ShowFlashCardPage).Funcs(template.FuncMap{"pinyin": 
PinyinFormatter}).ParseFiles("html/" + ShowFlashCardPage)

        if err != nil {
                httpErrorHandler(rw, err)
                return
        }

        err = t.Execute(rw, cards)

Chapter 10 ■ A Complete Web Server



234

        if err != nil {
                httpErrorHandler(rw, err)
                return
        }
}

Aside rendering, we have basic error handling: “checkError” for exceptional errors (enough to shut 
down) and httpErrorHandler used when we wish to indicate an HTTP 500 status.

�Presentation on the Browser
The final part of this system is how this HTML is shown in the browser. Figure 10-3 shows a screen of 
four parts displaying the English, the simplified Chinese, the alternative translations, and the traditional/
simplified pair. How this is done is by the JavaScript program downloaded to the server (this takes place 
using the FileServer Go object). The JavaScript slideviewer.js file is actually pretty long and is omitted 
from the text. It is included in the program files at https://github.com/Apress/network-prog-with-go-2e.

�Running the Server
The server can then be run on port 8000 (or other port) using a command such as this:

ch10$ go run *.go :8000

or

ch10$ go run server.go pinyinformatter.go flashCards.go dictionary.go :8000

�Conclusion
This chapter has considered a relatively simple but complete web server using static and dynamic web pages 
with form handling and using templates for simplifying coding.

Chapter 10 ■ A Complete Web Server

https://github.com/Apress/network-prog-with-go-2e


235
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_11

CHAPTER 11

HTML

The Web was originally created to serve HTML documents. Now it is used to serve all sorts of documents as 
well as data of different kinds. Nevertheless, HTML is still the main document type delivered over the Web.

HTML has been through a large number of versions, with the current version being HTML5. There have 
also been many “vendor” versions of HTML, introducing tags that never made it into the standards.

HTML is simple enough to be edited by hand. Consequently, many HTML documents are “ill formed,” 
which means they don’t follow the syntax of the language. HTML parsers generally are not very strict and 
will accept many “illegal” documents.

The HTML package itself only has two functions: EscapeString and UnescapeString. These properly 
handle characters such as <, converting them to < and back again.

A principal use of this might be to escape the markup in an HTML document so that if it is displayed 
in a browser, it will show all the markup (much like Ctrl+U in Chrome on Linux or Option+Cmd+U on Mac 
Chrome).

I’m more likely to use this to show the text of a program as a web page. Most programming languages 
have the < symbol, and many have &. These mess up an HTML viewer unless escaped properly. I like to show 
program text directly out of the file system rather than copying and pasting it into a document, to avoid 
getting out of sync.

The following program escapestring.go is a web server that shows its URL in preformatted code, 
having escaped the troublesome characters:

$ mkdir ch11
$ cd ch11
ch11$ vi escapestring.go

/*
 * This program serves a file in preformatted, code layout
 * Useful for showing program text, properly escaping special
 * characters like '<', '>' and '&'
 */

package main

import (
        "fmt"
        "html"
        "log"
        "net/http"
        "os"
)

https://doi.org/10.1007/978-1-4842-8095-9_11#DOI


236

func main() {
        http.HandleFunc("/", escapeString)
        err := http.ListenAndServe(":8080", nil)
        checkError(err)
}
func escapeString(rw http.ResponseWriter, req *http.Request) {
        fmt.Println(req.URL.Path)
        bytes, err := os.ReadFile("." + req.URL.Path)
        if err != nil {
                rw.WriteHeader(http.StatusNotFound)
                return
        }
        escapedStr := html.EscapeString(string(bytes))
        htmlText := "<html><body><pre><code>" +
                escapedStr +
                " </code></pre></body></html>"
        rw.Write([]byte(htmlText))
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Error ", err.Error())
        }
}

When it runs, serving files from the directory including the escapestring.go program, a browser will 
display it correctly using the URL localhost:8080/escapestring.go.

Run the server with this command:

ch11$ go run escapestring.go

Run a client with this command, as an example (or in a browser):

ch11$ curl localhost:8080/escapestring.go
<html><body><pre><code>/*
 * This program serves a file in preformatted, code layout
...
}
 </code></pre></body></html>

In both cases, the result is our original code (wrapped in a pre/code block)! If you typo the name, you 
will receive an HTTP 404.

�The html/template Package
There are many attacks that can be made on web servers, the most notable being SQL injection, where 
a user-agent enters data into a web form deliberately designed to be passed into a database and wreaks 
havoc there. Go does not have any particular support to avoid this, since there are many variances among 
databases as to the SQL injection techniques that can succeed. The SQL Injection Prevention Cheat Sheet 
(see https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.
html) summarizes the defenses against such attacks. The principal one is to avoid such attacks by using SQL 
prepared statements, which can be done using the Prepare function in the database/sql package.

Chapter 11 ■ HTML

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html


237

More subtle attacks are based on XSS – cross-site scripting. This is where an attacker is not trying to 
attack the website itself but stores malicious code on the server to attack any of the clients of that website.

These attacks are based on inserting data into the database strings that, when delivered to a browser, for 
example, will attack the browser and, through it, attack the client of the website. (There are several variants 
of this, discussed at “OWASP: Types of XSS” – https://owasp.org/www-community/Types_of_Cross-Site_
Scripting.)

For example, JavaScript may be inserted where a blog comment was requested to redirect a browser to 
an attacker’s site:

<script>
   window.location='http://attacker/'
</script>

The Go html/template package is designed on top of the text/template package. The assumption 
is made that whereas the template will be trusted, the data that it deals with may not. What html/
template adds is suitable escaping of the data to try to eliminate the possibility of XSS. It is based on the 
document called “Using Type Inference to Make Web Templates Robust Against XSS” by Mike Samuel and 
Prateek Saxena. Read that paper at https://rawgit.com/mikesamuel/sanitized-jquery-templates/
trunk/safetemplate.html#problem_definition for the theory behind the package and the package 
documentation itself.

In short, prepare templates as per the text/template package and use the html/template package if 
the resultant text is delivered to an HTML agent.

�Tokenizing HTML
The package golang.org/x/net/html in the Go subrepositories contains a tokenizer for HTML. This allows 
you to build a parse tree of HTML tokens. It is compliant with HTML5.

Here is an example program using this package in readhtml.go.

ch11$ vi readhtml.go

/* Read HTML
 */
package main

import (
        "fmt"
        "golang.org/x/net/html"
        "io"
        "log"
        "os"
        "strings"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "file")
        }
        file := os.Args[1]
        bytes, err := os.ReadFile(file)

Chapter 11 ■ HTML

https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://rawgit.com/mikesamuel/sanitized-jquery-templates/trunk/safetemplate.html#problem_definition
https://rawgit.com/mikesamuel/sanitized-jquery-templates/trunk/safetemplate.html#problem_definition


238

        checkError(err)
        r := strings.NewReader(string(bytes))
        z := html.NewTokenizer(r)
        depth := 0
        for {
                tt := z.Next()
                for n := 0; n < depth; n++ {
                        fmt.Print(" ")
                }
                switch tt {
                case html.ErrorToken:
                        if z.Err() == io.EOF {
                                fmt.Println("EOF")
                        } else {
                                fmt.Println("Error ", z.Err().Error())
                        }
                        os.Exit(0)
                case html.TextToken:
                        fmt.Println("Text: \"" + z.Token().String() + "\"")
                case html.StartTagToken, html.EndTagToken:
                        fmt.Println("Tag: \"" + z.Token().String() + "\"")
                        if tt == html.StartTagToken {
                                depth++
                        } else {
                                depth--
                        }
                }
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

When we run readhtml.go on a simple HTML document such as this, sample.html:

ch11$ vi sample.html

<html>
  <head>
    <title> Test HTML </title>
  </head>
  <body>
    <h1> Header one </h1>
    <p>
      Test para
    </p>
  </body>
</html>

Chapter 11 ■ HTML



239

After setting up the dependencies, it produces the following output:

$ go mod init example.com/user/readhtml
$ go mod tidy
$ go run readhtml.go sample.html

Tag: "<html>"
 Text: "
  "
 Tag: "<head>"
  Text: "
    "
  Tag: "<title>"
   Text: " Test HTML "
   Tag: "</title>"
  Text: "
  "
  Tag: "</head>"
 Text: "
  "
 Tag: "<body>"
  Text: "
    "
  Tag: "<h1>"
   Text: " Header one "
   Tag: "</h1>"
  Text: "
    "
  Tag: "<p>"
   Text: "
      Test para
    "
   Tag: "</p>"
  Text: "
  "
  Tag: "</body>"
 Text: "
"
 Tag: "</html>"
Text: "
"
EOF

(All the whitespace it produces is correct.)

Chapter 11 ■ HTML



240

�XHTML/HTML
There is also limited support for XHTML/HTML in the XML package, discussed in the next chapter.

�JSON
There is good support for JSON, as discussed in Chapter 4.

�Conclusion
There isn’t much to this package. The subpackage html/template was discussed in Chapter 9 on templates.

Chapter 11 ■ HTML

https://doi.org/10.1007/978-1-4842-8095-9_4
https://doi.org/10.1007/978-1-4842-8095-9_9


241
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_12

CHAPTER 12

XML

XML is a significant markup language mainly intended as a means of representing structured data using 
a text format. In the language we used in Chapter 4, it can be considered as a means of serializing data 
structures as a text document. It is used to describe documents such as DocBook and XHTML. It is used in 
specialized markup languages such as MathML and CML (Chemical Markup Language). It is used to encode 
data as SOAP messages for Web Services, and the Web Service can be specified using WSDL (Web Services 
Description Language).

At the simplest level, XML allows you to define your own tags for use in text documents. Tags can be 
nested and can be interspersed with text. Each tag can also contain attributes with values. For example, the 
file person.xml may contain

$ mkdir ch12
$ cd ch12
ch12$ vi person.xml

<person>
  <name>
    <family> Newmarch </family>
    <personal> Jan </personal>
  </name>
  <email type="personal">
    jan@newmarch.name
  </email>
  <email type="work">
    j.newmarch@boxhill.edu.au
  </email>
</person>

The structure of any XML document can be described in a number of ways:

•	 A document type definition (DTD) is good for describing structure.

•	 XML schema are good for describing the data types used by an XML document.

•	 RELAX NG is proposed as an alternative to both.

There is argument over the relative value of each way of defining the structure of an XML document. 
We won’t buy into that, as Go does not support any of them. Go cannot check for validity of any document 
against a schema, but only for well-formedness. Even well-formedness is an important characteristic of 
XML documents and is often a problem with HTML documents in practice. That makes XML suitable for 
representation of even very complex data, while HTML is not.

https://doi.org/10.1007/978-1-4842-8095-9_12#DOI
https://doi.org/10.1007/978-1-4842-8095-9_4


242

Four topics are discussed in this chapter: marshalling and unmarshalling Go data into XML, parsing an 
XML stream, and XHTML.

�Unmarshalling XML
Go provides a function called Unmarshal to unmarshal XML into Go data structures. The unmarshalling is 
not perfect: Go and XML are different languages.

We consider a simple example before looking at the details. First, consider the XML document given 
earlier (person.xml):

<person>
  <name>
    <family> Newmarch </family>
    <personal> Jan </personal>
  </name>
  <email type="personal">
    jan@newmarch.name
  </email>
  <email type="work">
    j.newmarch@boxhill.edu.au
  </email>
</person>

We would like to map this onto the Go structures:

type Person struct {
        Name Name
        Email []Email
}
type Name struct {
        Family string
        Personal string
}
type Email struct {
        Type string
        Address string
}

This requires several comments:

•	 Unmarshalling uses the Go reflection package. This requires that all fields be 
exported; that is, start with a capital letter. Earlier versions of Go used case-
insensitive matching to match fields such as the XML string “name” to the field Name. 
Now, though, case-sensitive matching is used. To perform a match, the structure 
fields must be tagged to show the XML string that will be matched against. This 
changes Person to the following:

type Person struct {
            Name Name `xml:"name"`
            Email []Email `xml:"email"`
}

Chapter 12 ■ XML



243

•	 While tagging of fields can attach XML strings to fields, it can't do so with the names 
of the structures. An additional field is required, with the field name XMLName. This 
only affects the top-level struct, Person:

type Person struct {
            XMLName Name `xml:"person"`
            Name Name `xml:"name"`
            Email []Email `xml:"email"`
}

•	 Repeated tags map to a slice in Go.

•	 Attributes within tags will match to fields in a structure only if the Go field has the tag 
,attr. This occurs with the field Type of Email, where matching the attribute type of 
the email tag requires xml:"type,attr".

•	 If an XML tag has no attributes and only has character data, then it matches a string 
field by the same name (case-sensitive, though). So the tag xml:"family" with 
character data Newmarch maps to the string field Family.

•	 But if the tag has attributes, then it must map to a structure. Go assigns the character 
data to the field with tag ,chardata. This occurs with the email data and the field 
Address with tag ,chardata.

A program to unmarshal the preceding document is unmarshal.go:

ch12$ vi unmarshal.go

/* Unmarshal
 */
package main

import (
        "encoding/xml"
        "fmt"
        "log"
)

type Person struct {
        XMLName Name    `xml:"person"`
        Name    Name    `xml:"name"`
        Email   []Email `xml:"email"`
}

type Name struct {
        Family   string `xml:"family"`
        Personal string `xml:"personal"`
}

type Email struct {
        Type    string `xml:"type,attr"`
        Address string `xml:",chardata"`
}

Chapter 12 ■ XML



244

func main() {
        str := `<?xml version="1.0" encoding="utf-8"?>
<person>
  <name>
    <family> Newmarch </family>
    <personal> Jan </personal>
  </name>
  <email type="personal">
    jan@newmarch.name
  </email>
  <email type="work">
    j.newmarch@boxhill.edu.au
  </email>
</person>`
        var person Person
        err := xml.Unmarshal([]byte(str), &person)
        checkError(err)
        // now use the person structure e.g.
        fmt.Println("Family name: \"" + person.Name.Family + "\"")
        for _, email := range person.Email {
                fmt.Println(email)
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

ch12$ go run unmarshal.go

Family name: " Newmarch "
{personal
    jan@newmarch.name
  }
{work
    j.newmarch@boxhill.edu.au
  }

(Note that the spaces are correct.) The strict rules are given in the package specification; see go  
doc -all encoding/xml.

�Marshalling XML
Go also has support for marshalling data structures into an XML document. The function is

func Marshal(v interface}{) ([]byte, error)

Chapter 12 ■ XML



245

A program to marshal a simple structure is marshal.go:

ch12$ vi marshal.go

/* Marshal
 */
package main

import (
        "encoding/xml"
        "fmt"
)

type Person struct {
        XMLName xml.Name `xml:"person"`
        Name    Name     `xml:"name"`
        Email   []Email  `xml:"email"`
}
type Name struct {
        Family   string `xml:"family"`
        Personal string `xml:"personal"`
}
type Email struct {
        Kind    string "attr"
        Address string "chardata"
}

func main() {
        person := Person{
                Name: Name{Family: "Newmarch", Personal: "Jan"},
                Email: []Email{Email{Kind: "home", Address: "jan"},
                        Email{Kind: "work", Address: "jan"}}}
        buff, _ := xml.Marshal(person)
        fmt.Println(string(buff))
}

It produces the text with no whitespace.

ch12$ go run marshal.go

<Person><Name><Family>Newmarch</Family><Personal>Jan</Personal></Name><Email><Kind>home 
</Kind><Address>jan</Address></Email><Email><Kind>work</Kind><Address>jan</Address> 
</Email></Person>

�Parsing XML
Go has an XML parser that’s created using NewDecoder from the encoding/xml package. This takes an io.
Reader as a parameter and returns a pointer to Decoder. The main method of this type is Token, which 
returns the next token in the input stream. The token is one of these types: StartElement, EndElement, 
CharData, Comment, ProcInst, or Directive.

Chapter 12 ■ XML



246

The XML types are StartElement, EndElement, CharData, Comment, ProcInst, and Directive. They are 
described next.

�The StartElement Type
The type StartElement is a structure with two field types:

type StartElement struct {
    Name Name
    Attr []Attr
}

wheretype Attr struct {
    Name  Name
    Value string
}

�The EndElement Type
This is also a structure as follows:

type EndElement struct {
    Name Name
}

�The CharData Type
This type represents the text content enclosed by a tag and is a simple type:

type CharData []byte

�The Comment Type
Similarly, for comments this type is similar to CharData’s type:

type Comment []byte

�The ProcInst Type
A ProcInst represents an XML processing instruction of the form <?target inst?>:

type ProcInst struct {
    Target string
    Inst   []byte
}

Chapter 12 ■ XML



247

�The Directive Type
A Directive represents an XML directive of the form <!text>. The bytes do not include the <! and > 
markers.

type Directive []byte

A program to print out the tree structure of an XML document is parsexml.go:

ch12$ vi parsexml.go

/* Parse XML
 */
package main

import (
        "encoding/xml"
        "fmt"
        "io/ioutil"
        "log"
        "os"
        "strings"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "file")
        }
        file := os.Args[1]
        bytes, err := ioutil.ReadFile(file)
        checkError(err)
        r := strings.NewReader(string(bytes))
        parser := xml.NewDecoder(r)
        depth := 0
        for {
                token, err := parser.Token()
                if err != nil {
                        break
                }
                switch elmt := token.(type) {
                case xml.StartElement:
                        name := elmt.Name.Local
                        printElmt(name+":start", depth)
                        depth++
                case xml.EndElement:
                        depth--
                        name := elmt.Name.Local
                        printElmt(name+":end", depth)
                case xml.CharData:
                        printElmt(string([]byte(elmt)), depth)
                case xml.Comment:

Chapter 12 ■ XML



248

                        printElmt("Comment", depth)
                case xml.ProcInst:
                        printElmt("ProcInst", depth)
                case xml.Directive:
                        printElmt("Directive", depth)
                default:
                        fmt.Println("Unknown")
                }
        }
}
func printElmt(s string, depth int) {
        slimS := strings.TrimSpace(s)
        if len(slimS) == 0 {
                return
        }
        for n := 0; n < depth; n++ {
                fmt.Print("  ")
        }
        fmt.Println(slimS)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Note that the parser includes all CharData, including the whitespace between the tags.
If we run the parsexml.go program against the person data structure given earlier, as follows:

ch12$ go run parsexml.go person.xml

person:start
  name:start
    family:start
      Newmarch
    family:end
    personal:start
      Jan
    personal:end
  name:end
  email:start
    jan@newmarch.name
  email:end
  email:start
    j.newmarch@boxhill.edu.au
  email:end
person:end

Note that as no DTD or other XML specification has been used, the tokenizer correctly prints out all the 
whitespace (a DTD may specify that the whitespace can be ignored, but without it, that assumption cannot 
be made). To make things prettier, we removed extra space via Trim.

Chapter 12 ■ XML



249

There is a potential trap in using this parser. It reuses space for strings, so once you see a token, you 
need to copy its value if you want to refer to it later. Go has methods such as func (c CharData) Copy() 
CharData to make a copy of data; see go doc encoding.xml.Copy.

�XHTML
HTML does not conform to XML syntax. It has unterminated tags such as <br>. XHTML is a cleanup of 
HTML to make it compliant with XML. Documents in XHTML can be managed using the techniques 
mentioned before for XML. XHTML does not appear to be as widely used as originally expected. My own 
suspicion is that an HTML parser is usually tolerant of errors and, when used in a browser, generally makes 
a reasonable job of rendering a document; XHTML parsers even in a browser tend to be more strict and 
often fail to render anything upon encountering even a single XML error. This is not a generally appropriate 
behavior for user-facing software.

�HTML
There is some support in the XML package to handle HTML documents even though they may not be XML 
compliant. The XML parser discussed earlier can handle many HTML documents if it is modified by turning 
off strict parse checking.

parser := xml.NewDecoder(r)
parser.Strict = false
parser.AutoClose = xml.HTMLAutoClose
parser.Entity = xml.HTMLEntity

�Conclusion
Go has basic support for dealing with XML strings. It does not as yet have mechanisms for dealing with XML 
specification languages such as XML Schema or Relax NG.

Chapter 12 ■ XML



251
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_13

CHAPTER 13

Remote Procedure Call

Socket and HTTP programming both use a message-passing paradigm. A client sends a message to a 
server, which usually sends a message back. Both sides are responsible for creating messages in a format 
understood by both sides and reading the data out of those messages.

However, most stand-alone applications do not use message-passing techniques much. Generally, the 
preferred mechanism is that of the function (or method or procedure) call. In this style, a program will call 
a function with a list of parameters and, on completion of the function call, will have a set of return values. 
These values may be the function value, or if addresses have been passed as parameters, then the contents of 
those addresses might have been changed.

The remote procedure call is an attempt to bring this style of programming into the network world. 
Thus, a client will make what looks to it like a normal procedure call. The client side will package this into a 
network message and transfer it to the server. The server will unpack this and turn it back into a procedure 
call on the server side. The results of this call will be packaged up for return to the client.

Diagrammatically, it looks like Figure 13-1.

Client
program

Server
procedure

implementations

Server
procedure
stubs

Client
procedure
stubs

Network
routines

Network
routines

1 10 5

4 7

6

2 9

3

8

Figure 13-1.  The remote procedure call steps

https://doi.org/10.1007/978-1-4842-8095-9_13#DOI


252

The steps are as follows:

	 1.	 The client calls the client procedure stubs. The stub packages the parameters 
into a network message. This is called marshalling.

	 2.	 Networking routines in the O/S kernel are called by the stub to send the message.

	 3.	 The kernel sends the message(s) to the remote system. This may be connection 
oriented or connectionless.

	 4.	 The server procedure stubs unmarshal the arguments from the network message.

	 5.	 The server procedure stubs execute server procedure implementations.

	 6.	 The procedures complete, returning execution to the server procedure stubs.

	 7.	 The server stubs marshal the return values into a network message.

	 8.	 The return messages are sent back.

	 9.	 The client procedure stubs read the messages using the network routines.

	 10.	 The message is unmarshalled, and the return values are set on the stack for the 
client program.

There are two common styles for implementing RPC. The first is typified by Sun’s ONC/RPC and 
by CORBA. In this, a specification of the service is given in some abstract language such as CORBA IDL 
(interface definition language). This is then compiled into code for the client and for the server. The client 
then writes a normal program containing calls to a procedure/function/method, which is linked to the 
generated client-side code. The server-side code is actually a server itself, which is linked to the procedure 
implementation that you write.

In this first way, the client-side code is almost identical in appearance to a normal procedure call. 
Generally, there is a little extra code to locate the server. In Sun’s ONC, the address of the server must be 
known; in CORBA, a naming service is called to find the address of the server; in Java RMI, the IDL is Java 
itself, and a naming service is used to find the address of the service.

In the second style, you have to use a special client API. You hand the function name and its parameters 
to this library on the client side. On the server side, you have to explicitly write the server yourself, as well as 
the remote procedure implementation.

This second approach is used by many RPC systems, such as Web Services. It is also the approach used 
by Go’s RPC.

�Go’s RPC
Go's RPC is so far unique to Go. It is different than the other RPC systems, so a Go client will only talk to a 
Go server. It uses the Gob serialization system discussed in Chapter 4, which defines the data types that can 
be used.

RPC systems generally make some restrictions on the functions that can be called across the network. 
This is so that the RPC system can properly determine which value arguments are sent, which reference 
arguments receive answers, and how to signal errors.

In Go, the restriction is that

•	 The method's type is exported (it begins with a capital letter).

•	 The method is exported.

•	 The method has two arguments, both exported (or built-in) types. The first is for data 
passed into the method; the second is for returned results.

Chapter 13 ■ Remote Procedure Call

https://doi.org/10.1007/978-1-4842-8095-9_4


253

•	 The method’s second argument is a pointer.

•	 It has a return value of type error.

For example, here is a valid function:

F(T1, &T2) error

The restriction on arguments means that you typically have to define a structure type. Go’s RPC uses the 
gob package for marshalling and unmarshalling data, so the argument types have to follow the rules of Gob 
as discussed in an earlier chapter.

We will follow the example given in the Go documentation, as it illustrates the important points. The 
server performs two trivial operations – they do not require the “grunt” of RPC but are simple to understand. 
The two operations are to multiply two integers and to find the quotient and remainder after dividing the 
first by the second.

The two values to be manipulated are given in a structure:

type Values struct {
    A, B int
}

The product is just an int, while the quotient/remainder is another structure:

type Quotient struct {
    Quo, Rem int
}

We will have two functions, multiply and divide, to be callable on the RPC server. These functions 
need to be registered with the RPC system. The Register function takes a single parameter, which is an 
interface. So we need a type with these two functions:

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
        *reply = args.A * args.B
        return nil
}

func (t *Arith) Divide(args *Args, quo *Quotient) error {
        if args.B == 0 {
                return errors.New("divide by zero")
        }
        quo.Quo = args.A / args.B
        quo.Rem = args.A % args.B
        return nil
}

The underlying type of Arith is given as int. That doesn’t matter – any type will suffice.
An object of this type can now be registered using Register, and then it’s methods can be called by the 

RPC system.

Chapter 13 ■ Remote Procedure Call



254

�HTTP RPC Server
Any RPC needs a transport mechanism to get messages across the network. Go can use HTTP or TCP. The 
advantage of the HTTP mechanism is that it can leverage the HTTP support library. You need to add an RPC 
handler to the HTTP layer, which is done using HandleHTTP, and then start an HTTP server. The complete 
code is arithserver.go:

$ mkdir ch13
$ cd ch13
ch13$ vi arithserver.go

/* ArithServer
 */
package main

import (
        "errors"
        "fmt"
        "net/http"
        "net/rpc"
)

type Values struct {
        A, B int
}
type Quotient struct {
        Quo, Rem int
}
type Arith int

func (t *Arith) Multiply(args *Values, reply *int) error {
        *reply = args.A * args.B
        return nil
}
func (t *Arith) Divide(args *Values, quo *Quotient) error {
        if args.B == 0 {
                return errors.New("divide by zero")
        }
        quo.Quo = args.A / args.B
        quo.Rem = args.A % args.B
        return nil
}
func main() {
        arith := new(Arith)
        rpc.Register(arith)
        rpc.HandleHTTP()
        err := http.ListenAndServe(":1234", nil)
        if err != nil {
                fmt.Println(err.Error())
        }
}

Chapter 13 ■ Remote Procedure Call



255

and it is run by

ch13$ go run arithserver.go

Let the server run. Next, we look at the user of the RPC service, the RPC client.

�HTTP RPC Client
The client needs to set up an HTTP connection to the RPC server. It needs to prepare a structure with the 
values to be sent and the address of a variable in which to store the results. Then it can make a Call with 
these arguments:

•	 The name of the remote function to execute

•	 The values to be sent

•	 The address of a variable in which to store the result

A client that calls both functions of the arithmetic server is arithclient.go:

ch13$ vi arithclient.go

/* ArithClient
 */
package main

import (
        "fmt"
        "log"
        "net/rpc"
        "os"
)

type Args struct {
        A, B int
}
type Quotient struct {
        Quo, Rem int
}

func main() {
        if len(os.Args) != 2 {
                fmt.Println("Usage: ", os.Args[0], "server")
                os.Exit(1)
        }
        serverAddress := os.Args[1]
        client, err := rpc.DialHTTP("tcp", serverAddress+":1234")
        if err != nil {
                log.Fatal("dialing:", err)
        }
        // Synchronous call
        args := Args{17, 8}
        var reply int

Chapter 13 ■ Remote Procedure Call



256

        err = client.Call("Arith.Multiply", args, &reply)
        if err != nil {
                log.Fatal("arith error:", err)
        }
        fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)
        var quot Quotient
        err = client.Call("Arith.Divide", args, &quot)
        if err != nil {
                log.Fatal("arith error:", err)
        }
        fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B,
                quot.Quo, quot.Rem)
}

When it runs, we see the following output:

ch13$ go run arithclient.go localhost

Arith: 17*8=136
Arith: 17/8=2 remainder 1

�TCP RPC Server
A version of the server that uses TCP sockets is tcparithserver.go:

ch13$ vi tcparithserver.go

/* TCPArithServer
 */
package main

import (
        "errors"
        "log"
        "net"
        "net/rpc"
)

type Args struct {
        A, B int
}
type Quotient struct {
        Quo, Rem int
}
type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
        *reply = args.A * args.B
        return nil
}

Chapter 13 ■ Remote Procedure Call



257

func (t *Arith) Divide(args *Args, quo *Quotient) error {
        if args.B == 0 {
                return errors.New("divide by zero")
        }
        quo.Quo = args.A / args.B
        quo.Rem = args.A % args.B
        return nil
}
func main() {
        arith := new(Arith)
        rpc.Register(arith)
        tcpAddr, err := net.ResolveTCPAddr("tcp", ":1234")
        checkError(err)
        listener, err := net.ListenTCP("tcp", tcpAddr)
        checkError(err)
        /* This works:
           rpc.Accept(listener)
        */
        /* and so does this:
         */
        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }
                rpc.ServeConn(conn)
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Note that the call to Accept is blocking and just handles client connections. If the server wants to do 
other work as well, it should call this in a go routine.

Launch the server as follows:

ch13$ go run tcparithserver.go

As before, we now look at the related client.

�TCP RPC Client
A client that uses the TCP server and calls both functions of the arithmetic server is tcparithclient.go:

ch13$ vi tcparithclient.go

/* TCPArithClient
 */
package main

Chapter 13 ■ Remote Procedure Call



258

import (
        "fmt"
        "log"
        "net/rpc"
        "os"
)

type Args struct {
        A, B int
}
type Quotient struct {
        Quo, Rem int
}

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "server:port")
        }
        service := os.Args[1]
        client, err := rpc.Dial("tcp", service)
        if err != nil {
                log.Fatalln("dialing:", err)
        }
        // Synchronous call
        args := Args{17, 8}
        var reply int
        err = client.Call("Arith.Multiply", args, &reply)
        if err != nil {
                log.Fatalln("arith error:", err)
        }
        fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)
        var quot Quotient
        err = client.Call("Arith.Divide", args, &quot)
        if err != nil {
                log.Fatalln("arith error:", err)
        }
        fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B,
                quot.Quo, quot.Rem)
}

When it’s run, we see the following:

ch13$ go run tcparithclient.go localhost:1234

Arith: 17*8=136
Arith: 17/8=2 remainder 1

When choosing to use rpc.HandleHTTP vs. rpc.ServeConn, it’s more about control and speed. The TCP 
server gives us more control as it sits below HTTP. If that is unimportant, then the former arithserver.go may 
be the way.

Chapter 13 ■ Remote Procedure Call



259

�Matching Values
You may have noticed that the types of the value arguments are not the same on the HTTP client and HTTP 
server. In the server, we used Values, while in the client, we used Args. That doesn’t matter, as we are 
following the rules of Gob serialization, and the names and types of the two structures’ fields match. Better 
programming practice would say that the names should be the same, of course!

However, this does point out a possible trap in using Go RPC. If we change the structure in the server to 
be this:

type Values struct {
        C, B int
}

then Gob has no problems. On the client side, the unmarshalling will ignore the value of C given by the 
server and use the default zero value for A. This could cause problems if, say, a divide by A (zero) was done.

Using Go RPC will require a rigid enforcement of the stability of field names and types by the 
programmer. We note that there is no version control mechanism to do this and no mechanism in Gob to 
signal any possible mismatches. There is also no required external representation to act as a reference. If you 
are just adding fields, then it may be okay, but it will still need control. Perhaps adding a version field to the 
data structure would help.

�JSON
This section adds nothing new to the earlier concepts. It just uses a different “wire” format for the data, 
JSON instead of Gob. As such, clients or servers could be written in other languages that understand sockets 
and JSON.

�JSON RPC Server
A version of the server that uses JSON encoding is jsonarithserver.go:

ch13$ vi jsonarithserver.go

/* JSONArithServer
 */
package main

import (
        "errors"
        "log"
        "net"
        "net/rpc"
        "net/rpc/jsonrpc"
)

type Args struct {
        A, B int
}

Chapter 13 ■ Remote Procedure Call



260

type Quotient struct {
        Quo, Rem int
}
type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
        *reply = args.A * args.B
        return nil
}
func (t *Arith) Divide(args *Args, quo *Quotient) error {
        if args.B == 0 {
                return errors.New("divide by zero")
        }
        quo.Quo = args.A / args.B
        quo.Rem = args.A % args.B
        return nil
}
func main() {
        arith := new(Arith)
        rpc.Register(arith)
        tcpAddr, err := net.ResolveTCPAddr("tcp", ":1234")
        checkError(err)
        listener, err := net.ListenTCP("tcp", tcpAddr)
        checkError(err)
        /* This works:
           rpc.Accept(listener)
        */
        /* and so does this:
         */
        for {
                conn, err := listener.Accept()
                if err != nil {
                        continue
                }
                jsonrpc.ServeConn(conn)
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

running as follows:

ch13$ go run jsonarithserver.go

Again, we look at the related client next.

Chapter 13 ■ Remote Procedure Call



261

�JSON RPC Client
A client that calls both functions of the arithmetic server is jsonarithclient.go:

ch13$ vi jsonarithclient.go

/* JSONArithCLient
 */
package main

import (
        "fmt"
        "log"
        "net/rpc/jsonrpc"
        "os"
)

type Args struct {
        A, B int
}
type Quotient struct {
        Quo, Rem int
}
func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "server:port")
        }
        service := os.Args[1]
        client, err := jsonrpc.Dial("tcp", service)
        if err != nil {
                log.Fatalln("dialing:", err)
        }
        // Synchronous call
        args := Args{17, 8}
        var reply int
        err = client.Call("Arith.Multiply", args, &reply)
        if err != nil {
                log.Fatalln("arith error:", err)
        }
        fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)
        var quot Quotient
        err = client.Call("Arith.Divide", args, &quot)
        if err != nil {
                log.Fatalln("arith error:", err)
        }
        fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B,
                quot.Quo, quot.Rem)
}

Chapter 13 ■ Remote Procedure Call



262

It’s run as follows:

ch13$ go run jsonarithclient.go localhost:1234

Arith: 17*8=136
Arith: 17/8=2 remainder 1

While not obvious (aside from the jsonrpc.Dial), the request and response are encoded and decoded 
via the encoding/json package. Take a look at related docs such as go doc -u jsonrpc.WriteRequest or the 
source itself here: /usr/local/go/src/net/rpc/jsonrpc/client.go.

�Conclusion
RPC is a popular means of distributing applications. Several ways of doing it have been presented here, 
based on the Gob or JSON serialization techniques and using HTTP and TCP for transport.

Chapter 13 ■ Remote Procedure Call



263
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_14

CHAPTER 14

REST

In previous chapters, we looked at HTTP and gave an example of a web system. However, we didn’t give any 
particular structure to the system, just what was simple enough for the problem. There is an architectural 
style developed by one of the key authors of HTTP 1.1 (Roy Fielding) called REST (REpresentational State 
Transfer). In this chapter, we look at the REST style and what it means for building web applications. We 
have to go back to fundamentals for this.

REST has many components that have to be followed if the term REST can be properly applied. 
Unfortunately, it has become a buzzword, and many applications have “bits” of REST but not the full thing. We 
discuss the Richardson Maturity Model, which says how far along the path to RESTful-ness an API has gone.

In the last chapter, we looked at RPCs (remote procedure calls). This is a completely different style than 
REST. We also compare the two styles, looking at when it is appropriate to use each style.

�URIs and Resources
Resources are the “things” that we want to interact with on a network or the Internet. I like to think of them 
as objects, but there is no requirement that their implementation should be object based – they should just 
“look like” a thing, possibly with components.

Each resource has one or more addresses known as URIs (uniform resource identifiers).

■■ Note  The internationalized form is IRIs – internationalized resource identifiers.

These have this generic form:

scheme:[//[user:password@]host[:port]][/]path[?query][#fragment]

Typical examples are URLs (uniform resource locator), where the scheme is http or https, and the host 
refers to a computer by its IP address or DNS name, as follows:

https://jan.newmarch.name/IoT/index.html

There are non-HTTP URL schemes such as telnet, news, and IPP (Internet Printing Protocol). These also 
contain a location component. There are also others, such as URNs (uniform resource names), which are often 
wrappers around other identification systems, and they do not contain location information. For example, the 
IETF has a standard URN scheme for books identified by their ISBN, such as the ISBN for this book:

urn:ISBN:978-1-4842-2692-6

https://doi.org/10.1007/978-1-4842-8095-9_14#DOI


264

These URNs tend not to be widely used but still exist. A list is given by IANA Uniform Resource Names 
(URN) Namespaces at https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml. The 
original schemes, such as ISBN, are still in wider use.

A formal definition of a resource may be hard to pin down. For example, http://www.google.com 
represents Google in some sense (it is the scheme and the host part of a URL), but the host certainly isn’t 
some fixed computer somewhere. Similarly, the ISBN for this book represents something about this book, 
but certainly not any extant copies (at the time this chapter was written, no copies existed even though the 
ISBN did).

Nevertheless, we take the concept of resource as primitive, and URIs are identifiers for these resources. 
The IETF at Uniform Resource Identifier (URI): Generic Syntax (https://www.ietf.org/rfc/rfc3986.txt) 
is similarly vague: “the term “resource” is used in a general sense for whatever might be identified by a URI.”

A resource may have more than one URI. As a person, I have a number of different identifiers: my tax 
file number refers to one aspect of me, my financial affairs; my Medicare number refers to me as a recipient 
of health treatments; my name (fairly unique) is often used to refer to different aspects of me. My URL of 
https://jan.newmarch.name refers to those aspects of me that I chose to reveal on my website. And Google, 
LinkedIn, Facebook, Twitter, etc., also presumably have URIs of some kind that label those aspects of me that 
they have chosen to save.

What is agreed upon is that resources are nouns and not verbs or adjectives. A URL for a bank account 
that says http://mybank/myaccount/withdraw is not counted as a resource as it contains the verb withdraw. 
Similarly, http://amazon.com/buy/book-id would not label a resource as it contains the verb buy (Amazon 
does not have such a URL).

This is the first key to REST for HTTP: identify the resources in your information system and assign 
URLs to them. There are conventions in this, the most common one being that if there is a hierarchical 
structure, then that should be reflected in the URL path. However, that isn’t necessary as the information 
should be given in other ways as well.

The REST approach to designing URIs is still a bit of an art form. Legal (and perfectly legitimate) URIs 
are not necessarily “good” REST URIs, and many examples of so-called RESTful APIs have URIs that are 
not very RESTful at all. 2PartsMagic in RESTful URI design (http://blog.2partsmagic.com/restful-uri-
design/) offers good advice on designing appropriate URIs.

The REST approach to designing URIs is still a bit of an art form. Legal (and perfectly legitimate) URIs 
are not necessarily “good” REST URIs, and many examples of so-called RESTful APIS have URIs that are not 
very RESTful at all. The Golang developers blog provides a brief overview of some of the concepts of REST: 
https://go.dev/doc/tutorial/web-service-gin. Beyond examples, OpenAPI is a standard to help us with 
design and tooling around “http apis”: https://spec.openapis.org/oas/latest.html.

�Representations
A representation of a resource is something that captures some information about a resource in some 
form. For example, a representation of me from my Tax Office URI might be my tax returns in Australia. A 
representation of me from my local pizza cafe would be a record of pizza purchases. A representation of me 
from my website would be an HTML document.

This is one of the keys to REST: URIs identify resources, and requests for that resource return a 
representation of that resource. The resource itself remains on the server and is not sent to the client at all. 
In fact, the resource might not even exist at all in any concrete form. For example, a representation might be 
generated from the results of an SQL query that’s triggered by making a request to that URI.

REST does not particularly talk about possibilities for negotiating the representation of a resource. 
HTTP 1.1 has an extensive section on how to do this, considering server, client, and transparent negotiation. 
The Accept headers can be used by a client to specify, for example:

Chapter 14 ■ REST

https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml
http://www.google.com
https://www.ietf.org/rfc/rfc3986.txt
https://jan.newmarch.name
http://amazon.com/buy/book-id
http://blog.2partsmagic.com/restful-uri-design/
http://blog.2partsmagic.com/restful-uri-design/
https://go.dev/doc/tutorial/web-service-gin
https://spec.openapis.org/oas/latest.html


265

Accept: application/xml; q=1.0, application/json; q=0.5
Accept-Language: fr
Accept-Charset: utf8

This states that it would prefer the application/xml format but will accept application/json. The 
server can either accept one of these or reply with the formats it will accept.

�REST Verbs
You can make certain requests to a URI. If you are making an HTTP request to a URL, HTTP defines the 
requests that can be made: GET, PUT, POST, DELETE, HEAD, OPTIONS, TRACE, and CONNECT, as well as extensions 
such as PATCH. There is only a limited number of these! This is very different than what we have come to 
expect from O/O programming. For example, the Java JLabel has about 250 methods, such as getText and 
setHorizontalAlignment. To some degree, we could map these OO to/from REST/HTTP; an instance of a 
JLabel is a resource, and we can “get” it via “getText”. While that is easy in some minor cases, it’s not so clear 
how to map all 250 methods, or should we.

REST is now commonly interpreted as taking just four verbs from HTTP: GET, PUT, POST, and 
DELETE. GET roughly corresponds to the getter-methods of OO languages, while PUT roughly corresponds to 
the setter methods of OOP languages. If a JLabel were a REST resource (which it isn’t), how would one single 
GET verb make up for the hundred or so getter methods of JLabel?

The answer lies in the PATH component of URIs. A label has the properties of text, alignment, and so on. 
These are really subresources of the label and could be written as sub-URIs of the label. So if the label had a 
URI of http://jan.newmarch.name/my_label, then the subresources could have (example) URIs:

http://jan.newmarch.name/my_label/text
http://jan.newmarch.name/my_label/horizontalAlignment

If you want to manipulate just the text of the label, you can use the URI of the text resource, not getter/
setter methods on the label itself.

�The GET Verb
To retrieve a representation of a resource, you GET the resource. This will return some representation of the 
resource. There may be innumerable possibilities to this choice. For example, a request for this book’s index 
might return a representation of the index in French, using the UTF-8 character set, as an XML document, or 
many other possibilities. The client and the server can negotiate these possibilities.

The GET verb is required to be idempotent. That is, repeated requests should return the same results (to 
within representation type). For example, multiple requests for the temperature of a sensor should return 
the same result (unless of course the temperature has changed).

Idempotency by default allows for caching. This is useful for reducing traffic on the Web and may save 
battery power for sensors. Caching cannot always be guaranteed: a resource that returns the number of 
times it has been accessed will give a different result each time it is accessed. This is an unusual behavior 
and would be signaled using the HTTP Cache-Control header.

Chapter 14 ■ REST

http://jan.newmarch.name/my_label


266

�The PUT Verb
If you want to change the state of a resource, you can PUT new values. There are two principal 
limitations to PUT:

•	 You can only change the state of a resource whose URI you know.

•	 The representation you send must cover all components of the resource.

For example, if you only want to change the text in a label, you send the PUT message to the URL 
http://jan.newmarch.name/my_label/text, not to http://jan.newmarch.name/my_label. Sending to the 
label would require all of the hundred or so fields to be sent.

PUT is idempotent but is not safe. That is, it changes the state of the resource, but repeated calls change it 
to the same state.

PUT and DELETE are not part of HTML, and most browsers do not support them directly. They 
can be called in browsers with Ajax support. There are several discussions as to why they are not 
included. See, for example, “Why are there no PUT and DELETE methods on HTML forms?” at http://
softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-
methods-on-html-forms.

�The DELETE Verb
This deletes the resource. It is idempotent but not safe.

Safe methods (e.g., GET) are ones that have no unexpected side effects. Unsafe methods (e.g., PUT) 
can be potentially unsafe. Not having the ability to undo a change is something that is unsafe. Ideally, GET 
returns a version of a resource, and that’s all. PUT will overlay a resource, and if you didn’t retrieve the prior 
version, it may be gone for good.

Idempotent methods are ones that produce the same side effect for the same request no matter how 
many times you run it. DELETE will remove a resource, and if you call it the second time, the “outcome” is 
the same; the resource is either deleted (if it is created again) or remains nonexisting.

For more on the concepts of “idempotent” and “safe,” see https://www.w3.org/Protocols/ 
rfc2616/rfc2616-sec9.html.

�The POST Verb
POST is the do-everything-else verb to deal with situations not covered by the other verbs. There is agreement 
about two uses of POST:

•	 If you want to create a new resource and you don’t know its URI, then POST a 
representation of the resource to a URI that knows how to create the resource. 
The returned representation should contain the URI of the new resource. This is 
important. To interact with a new resource, you must know its URI, and the return 
from POST tells you that.

•	 If a resource has many attributes and you only want to change one or a few of them, 
then POST a representation with the changed values only.

There is intense argument about the respective roles of PUT and POST in edge cases. If you want to create 
a new resource and do know the URI it will have, then you could use either PUT or POST. Which one you 
choose seems to depend on other factors.

Chapter 14 ■ REST

http://jan.newmarch.name/my_label/text
http://jan.newmarch.name/my_label
http://softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms
http://softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms
http://softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html


267

SOAP was designed as an RPC system on top of HTTP. It uses POST for everything. HTML continues to 
use POST in forms when it should have the option of using PUT. For these reasons, I do not use POST unless 
I absolutely have to. I suppose others have their own principled reasons for using POST instead of PUT, but I 
have no idea what they might be :-).

Due to its open-ended scope, POST could be used for almost anything. Many of these uses could be 
against the REST model, as is amply illustrated by SOAP. But some of these uses could be legitimate. POST 
is usually non-idempotent and not safe, although particular cases could be either. The following Stack 
Overflow post contains a thoughtful discussion on PUT vs. PATCH vs. POST: https://stackoverflow.com/
questions/28459418/use-of-put-vs-patch-methods-in-rest-api-real-life-scenarios.

�No Maintained State (That Is, Stateless)
Let’s establish this up front: cookies are out. Cookies are often used to track the state of a user through an 
interaction with a server, with a typical example being a shopping cart. A structure is created on the server 
side, and a cookie is returned to be used to signal that this is the shopping cart to be used.

REST made the decision not to maintain any client state on the server. This simplifies interactions 
and also sidesteps the tricky issues of how to restore consistency after the client or server has crashed. If 
the server doesn’t need to maintain any state, then it leads to a more robust server model. Often, security-
related items are set in a cookie. A REST endpoint should return representations of those resources. An 
authentication-related cookie often transcends those resources, hence not RESTful. More on this topic can 
be found here: https://www.ics.uci.edu/~fielding/pubs/dissertation/evaluation.htm#sec_6_3_4_2.

If you can’t use cookies, what do you do? It’s actually trivial: a cart is created on the server. Under REST, 
that can only happen in response to a POST request, which returns a new URI for the new resource. So that is 
what you use – the new URI. You can GET, PUT, POST, and DELETE to this URI, to do all things you want to do 
directly on the resource without having to do workarounds with cookies.

�HATEOAS
HATEOAS stands for “Hypermedia as the Engine of Application State.” It is generally recognized as an awful 
acronym, but it has stuck. The basic principle is that navigating from one URI to another, which is related 
in some way, should not be done by any out-of-band mechanism but that the new link must be embedded 
in some way as a hyperlink within the representation of the first URI. This is a key feature of REST, often 
not done.

REST does not state the format of the links. They could be given using the HTML link tag, by URLs 
embedded in a PDF document, or by links given in an XML document. Formats that do not have simple 
representations for URLs are not considered as hypermedia languages and are not contained in REST.

Also, REST also does not explicitly state the meanings of the links nor how to extract 
the appropriate links. Fielding states in his blog “REST APIs must be hypertext-driven” at 
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven:

A REST API should be entered with no prior knowledge beyond the initial URI 
(bookmark) and set of standardized media types that are appropriate for the 
intended audience (i.e., expected to be understood by any client that might use 
the API). From that point on, all application state transitions must be driven 
by client selection of server-provided choices that are present in the received 
representations or implied by the user’s manipulation of those representations.

IANA maintains a registry of relation types (IANA: Link Relations at http://www.iana.org/
assignments/link-relations/link-relations.xhtml) that can be used. The Web Linking RFC 5988 
describes the web linking registry (https://datatracker.ietf.org/doc/html/rfc5988). The HTML5 

Chapter 14 ■ REST

https://stackoverflow.com/questions/28459418/use-of-put-vs-patch-methods-in-rest-api-real-life-scenarios
https://stackoverflow.com/questions/28459418/use-of-put-vs-patch-methods-in-rest-api-real-life-scenarios
https://www.ics.uci.edu/~fielding/pubs/dissertation/evaluation.htm#sec_6_3_4_2
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
https://datatracker.ietf.org/doc/html/rfc5988


268

specification has a small number of defined relations and points to Microformats rel values at http://
microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions for a larger list. These 
documents, while helpful, are not immediately actionable. We will look at an example in a moment.

Mechanisms such as cookies, or external API specifications such as WSDL for SOAP, are effectively 
excluded by REST. They are not hyperlinks contained in the representation of a resource. HATEOAS will 
decouple the client from the server by allowing dynamic discovery beyond a well-known URI; allowing us to 
independently evolve the API. This is unlike RPCs where the IDL drives the interface.

�Representing Links
Links are standardized in HTML documents. The Link tag defines an HTML element that can only appear in 
an HTML header section. For example, a book with chapters, etc., might look like this if the links were given 
as HTML link elements:

<html>
  <head>
   <link rel= "author" title="Jan Newmarch" href="https://jan.newmarch.name">
   <link rel="chapter" title="Introduction" href="Introduction/">
    ...

Link relations in HTML are of two types: those that are needed for the current document such as CSS 
files and those that point to related resources, as before. The first type is generally downloaded invisibly to 
the user. The second type is generally not shown by browsers, but user agents following HATEOAS principles 
will use them.

XML has a variety of link specifications. These include XLink and Atom . Atom seems to be more 
popular.

Links based on XLink would appear as follows:

<People xmlns:xlink="http://www.w3.org/1999/xlink">
 <Person xlink:type="simple" xlink:href="http://...">
   ...
 </Person>
   ...
</People>

Links based on Atom would appear as follows:

<People xmlns:atom="http://www.w3.org/2005/Atom">
 <Person>
   <link  atom:href="http://..."/>
   ...
 </Person>
 ...
</People>

For JSON, the format is not normalized. The REST cookbook (http://restcookbook.com/Mediatypes/
json/) notes the lack of standardization and points to the W3C specification JSON-LD 1.0: "A JSON-based 
Serialization for Linked Data" and to the HAL (Hypertext Application Language). Bodies such as the Open 
Connectivity Foundation seem to use their own home-grown format, but that is for CoAP, another REST-
based system.

Chapter 14 ■ REST

http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
http://restcookbook.com/Mediatypes/json/
http://restcookbook.com/Mediatypes/json/


269

JSON-LD uses the term @id to signal a URL, as in

{
  "name": Jan Newmarch:,
  "homepage": {"@id": "https://jan.newmarch.name/"}
}

It is worth noting in this regard that the W3C also has a specification of an HTTP Link header at 
https://www.w3.org/wiki/LinkHeader, which may be returned by a server to a client. This is used by 
JSON-LD, for example, to point to a specification of the JSON document contained in the body of an HTTP 
response. Also of interest, some implementations treat the HTML Link or HTTP Header in the same way.

This can affect the serialization method in passing link information from servers to user agents. The 
user agent and server must agree on the format to be used. For HTML (or XHTML), this is standardized. For 
XML, a reference can be made in the document to the linking system. For JSON-LD, this can be signaled in 
the Accept HTTP header as application/ld+json.

�Transactions with REST
How does REST handle transactions and indeed any other types of processes? They were not discussed in 
the original thesis by Fielding.

The Wikipedia entry for HATEOAS gives a poor example of managing transactions. It starts from an 
HTTP request like this.

GET /accounts/12345 HTTP/1.1
Host: bank.example.org
Accept: application/json
 ...

Which returns a JSON document as a representation of the account as follows.

HTTP/1.1 200 OK

{
    "account": {
        "account_number": 12345,
        "balance": {
            "currency": "usd",
            "value": 100.00
        },
        "links": {
            "deposits": "/accounts/12345/deposits",
            "withdrawals": "/accounts/12345/withdrawals",
            "transfers": "/accounts/12345/transfers",
            "close-requests": "/accounts/12345/close-requests"
        }
    }
}

Chapter 14 ■ REST

https://www.w3.org/wiki/LinkHeader


270

If we asked for xml, we would see the following.

Content-Type: application/xml
Content-Length: ...
<?xml version="1.0"?>
<account>
    <account_number>12345</account_number>
    <balance currency="usd">100.00</balance>
    <link rel="deposit" href="http://bank.example.org/account/12345/deposit" />
    <link rel="withdraw" href="http://bank.example.org/account/12345/withdraw" />
    <link rel="transfer" href="http://somebank.org/account/12345/transfer" />
    <link rel="close" href="http://bank.example.org/account/12345/close" />
</account>

This gives the URIs of the related resources deposit, withdraw, transfer, and close. However, the 
resources are verbs, not nouns, and that is not good at all. How do they interact with the HTTP verbs? Do 
you GET a withdraw? POST it? PUT it? What happens if you DELETE a withdraw – is that supposed to roll back a 
transaction or what? In REST, we try to avoid using verbs as a resource; however, in RPC, it is not disallowed 
to have verbs as an endpoint/procedure call.

The better way, as discussed in, for example, the Stack Overflow post “Transactions in REST?” (see 
http://stackoverflow.com/questions/147207/transactions-in-rest) is to POST to the account asking 
for a new transaction to be created:

POST /account/12345/transaction HTTP/1.1

This will return the URL of a new transaction:

http://bank.example.org/account/12345/txn123

Interactions are now carried out with this transaction URL, such as by PUTing a new value that performs 
and commits the transaction. Here, we use XML.

PUT /account/12345/txn123
<transaction>
  <from>/account/56789</from>
  <amount>100</amount>
</transaction>

A more detailed discussion of transactions and REST is given by Mihindukulasooriya et al. in “Seven 
Challenges for RESTful Transaction Models” (see http://ws-rest.org/2014/sites/default/files/
wsrest2014_submission_4.pdf). Similar models are proposed for managing processes that aren’t just single 
step. From the preceding PDF, we can get an idea of the types of things to consider when designing our 
RESTful APIs to provide transaction abilities.

Chapter 14 ■ REST

http://stackoverflow.com/questions/147207/transactions-in-rest
http://ws-rest.org/2014/sites/default/files/wsrest2014_submission_4.pdf
http://ws-rest.org/2014/sites/default/files/wsrest2014_submission_4.pdf


271

Table 14-1.  RESTful transaction models

Key Year Transaction Model

1 ~2000 Batched transactions with overloaded POST

2 2007 Transaction as resources

3 2009 Optimistic technique for transactions using REST

4 2009 A consistent and recoverable RESTful transaction model

5 2010 Timestamp-based two-phase commit protocol for RESTful services

6 2011 Try-Cancel/Confirm Pattern

7 2012 Atomic REST batched transactions

Table 14-2.  Analysis of existing RESTful transaction models

Property Transaction models

1 2 3 4 5 6 7

Transaction properties

Atomicity T T T1 T T T T

Isolation T T2 F T F F T

REST constraints

Uniform interfaces T F T T T T T

Statelessness T T3 F T3 F T T

HATEOAS F F F T F T F

HTTP-related properties

Semantics not violated T T T T F T T

Common verbs supported T T F F T T T

Low overhead T T T F F T T

Miscellaneous properties

Optionality T ? ? T ? ? F

Discoverable ? ? ? T ? ? T

Distributed transactions X X T ? T T ?

Theoretical proofs ? ? ? T T T ?

Implementation available T ? ? T ? T T

Performance evaluation ? ? ? ? ? T ?

Legend -  T True / F False / ? Unknown or not defined in the model

 1 – Given the actions can be compensated
 2 – Possible lost update problem
 3 – See Section 3.3

Chapter 14 ■ REST



272

�The Richardson Maturity Model
Many systems claim to be RESTful. Most are not. We even came across one that claimed that SOAP was 
RESTful, a clear case of a warped mental state. Martin Fowler discusses the Richardson Maturity Model, 
which classifies systems according to their conformance to REST. (See https://martinfowler.com/
articles/richardsonMaturityModel.html.)

Level 0

The starting point for the model is using HTTP as a transport system for remote 
interactions, but without using any of the mechanisms of the Web. Essentially what 
you are doing here is using HTTP as a tunneling mechanism for your own remote 
interaction mechanism, usually based on Remote Procedure Invocation.

Level 1: Resources

The first step toward the Glory of Rest in the RMM is to introduce resources. So now 
rather than making all our requests to a singular service endpoint, we now start 
talking to individual resources.

Level 2: HTTP Verbs

I’ve used HTTP POST verbs for all my interactions here in levels 0 and 1, but some 
people use GETs instead or in addition. At these levels, it doesn’t make much 
difference, they are both being used as tunneling mechanisms allowing you to 
tunnel your interactions through HTTP. Level 2 moves away from this, using the 
HTTP verbs as closely as possible to how they are used in HTTP itself.

Level 3: Hypermedia Controls

The final level introduces something that you often hear referred to under the ugly 
acronym of HATEOAS (Hypertext As The Engine Of Application State). It addresses 
the question of how to get from a list of open slots to knowing what to do to book 
an appointment.

�Flashcards Revisited
In Chapter 10, we considered a web system consisting of a server and HTML pages rendered in a browser, 
using JavaScript and CSS to control the browser-side interaction. There was no attempt to do anything 
particularly structured, rather just as a traditional web system.

■■ Recap  The web system of Chapter 10 was used to demonstrate language learning using so-called 
flashcards. The user is presented with a set of cards one at a time, showing a word in one language, and then 
hopes to remember the translation, which is shown by “turning over” the card. The system presented a list of 
different card sets and then showed the cards one at a time in the selected set.

Chapter 14 ■ REST

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://doi.org/10.1007/978-1-4842-8095-9_10
https://doi.org/10.1007/978-1-4842-8095-9_10


273

We now approach the same situation as an HTTP client-server system built using the REST approach. 
We will make a number of changes:

•	 URLs will be given appropriate to the situation. These will include the “root” URL / 
as well as URLs for each flashcard set and, in addition, a URL for each flashcard.

•	 All user interaction code (HTML, JavaScript, and CSS) is omitted. The server will be 
talking to an arbitrary user agent, and many will not understand the UI code.

•	 The server will not maintain or manage any client state. In the web example, form 
data was sent from the browser to the server, which promptly returned it in a slightly 
different form. A client that wants to maintain state should do so itself.

•	 The server will be set up to manage a number of different serialization formats and 
will deliver as appropriate after client-server negotiation.

•	 Heavy use will be made of HTTP mechanisms, particularly for error handling and 
content negotiation.

�URLs
The URLs for this system and the actions that can be performed are as follows:

URL Action Effect

/ GET Gets a list of flashcard sets

POST Creates a new flashcard set

/flashcardSets/<set> GET Gets a list of cards in the set

POST Creates a new card for the set

DELETE Deletes the flashcard set if empty

/flashcardSets/<set>/<card> GET Gets the contents of the card

DELETE Deletes the card from the set

This differs a little from the system described in Chapter 10. The main structural difference is that each 
card is given its own URL as a member of a flashcard set.

Example URLs that will be handled by the server include these:

Root URL URL for Flashcard Set URL for One Flashcard

/ /flashcardSet/CommonWords /flashcardSet/CommonWords/你好

�ServeMux (The Demultiplexer)
REST is based on a small number of actions applied to URLs. A system that attempts to use REST principles 
must be URL based.

A server mux will examine URLs requested by clients and call handlers based on the URL pattern. The 
standard Go demuxer net/http.ServeMux uses a particular pattern-matching mechanism: if a URL ends in 
/, it denotes a subtree of URLs rooted at that URL. If it ends without a /, it represents that URL only. A URL is 
matched against the handler with the longest pattern match. A URL can even include a domain as a qualifier.

Chapter 14 ■ REST



274

We need a handler for the root URL /. That will also match any URL such as /passwords unless another 
handler catches it. In this system, no other handler will, so in the handler for /, we need to return errors for 
such attempts.

A tricky part occurs because we used a hierarchical structure to our URLs. One particular flashcard set 
will be /flashcardSets/CommonWords. This will actually be a directory of the cards for that particular set. 
We have to register two handlers: one for the URL /flashcardSets/CommonWords, which is the flashcard set 
resource, and one for /flashcardSets/CommonWords/ (note the trailing /), which is the subtree containing 
the individual cards and their URLs.

The code in the main function to register these is as follows:

http.HandleFunc(`/`, handleFlashCardSets)
files, err := ioutil.ReadDir(`flashcardsets`)
checkError(err)
for _, file := range files {
        fmt.Println(file.Name())
        cardset_url := `/flashcardSets/` + url.QueryEscape(file.Name())
        http.HandleFunc(cardset_url, handleOneFlashCardSet)
        http.HandleFunc(cardset_url + `/`, handleOneFlashCard)
}

Note that we have the function QueryEscape. This is to escape any special characters that might occur 
in URLs. For example, a $ in a file name should be encoded as %44;. We do need to use such a function: our 
URLs will include Chinese characters, which need to be escape-encoded to be represented in URLs. This 
is done by QueryEscape, with one exception: a space in a path should be encoded as %20 but in form data 
should be encoded as +. The PathEscape function does this correctly. We will remove spaces from URLs to 
avoid this issue.

�Content Negotiation
Any web user agent can try to talk to any web server. The typical case of a browser talking to an HTML server 
is what we are used to on the Web, but many will be familiar with using other user agents such as curl, wget, 
and even telnet! The browser and other tools will use the Content-Type in HTTP replies to work out what to 
do with content supplied.

With a Web application, the user agent must be able to understand what the server is delivering because 
it is trying to play a part in an interaction that probably doesn’t have a user to help. RPC systems often use an 
external specification that the client and server conform to. That is not the case here.

The solution is that both parties must agree on a content format. This is done at the HTTP level. A client 
will state that it will accept a range of formats. If the server agrees, then they carry on. If not, the server will 
tell the client which formats it can accept, and the client can start afresh if possible.

The negotiation uses MIME types. There are hundreds of standard ones: text/html, application/pdf, 
application/xml, etc. A browser can render any HTML document it receives. An HTTP-aware music player 
such as VLC can play any MP3 file it receives. But for the flashcard application, it can’t handle any general 
format, only messages that conform to an expected structure. These aren’t any standard MIME types that 
would be suitable for negotiating a specialized protocol for this flashcard application. So we make up our 
own. The client and the server have to know that they are dealing with a shared MIME type, or they can’t talk 
properly.

There are rules from IANA for making up your own MIME types. I use the type application/x.
flashcards. The server will be able to deliver JSON and XML, so the two acceptable MIME types are 
application/x.flashcards+xml and application/x.flashcards+json.

Chapter 14 ■ REST



275

HTTP content negotiation says that the user agent can suggest a list of acceptable formats, weighted 
between zero and one, as follows:

Accept: application/x.flashcards+xml; q=0.8,
        application/x.flashcards+json; q=0.4

The server can examine the request and decide if it can handle the format. We use the following code in 
the server to determine for any type if the user agent has requested it and with what weighting (zero means 
not requested):

const flashcard_xml string = "application/x.flashcards+xml"
const flashcard_json string = "application/x.flashcards+json"

type ValueQuality struct {
        Value   string
        Quality float64
}

/* Based on https://siongui.github.io/2015/02/22/go-parse-accept-language/ */
func parseValueQuality(s string) []ValueQuality {
        var vqs []ValueQuality
        strs := strings.Split(s, `,`)
        for _, str := range strs {
                trimmedStr := strings.Trim(str, ` `)
                valQ := strings.Split(trimmedStr, `;`)
                if len(valQ) == 1 {
                        vq := ValueQuality{valQ[0], 1}
                        vqs = append(vqs, vq)
                } else {
                        qp := strings.Split(valQ[1], `=`)
                        q, err := strconv.ParseFloat(qp[1], 64)
                        if err != nil {
                                q = 0
                        }

                        vq := ValueQuality{valQ[0], q}
                        vqs = append(vqs, vq)
                }
        }
        return vqs
}

func qualityOfValue(value string, vqs []ValueQuality) float64 {
        for _, vq := range vqs {
                if value == vq.Value {
                        return vq.Quality
                }
        }
        // not found
        return 0
}

Chapter 14 ■ REST



276

If the server does not accept any of the types requested by the user agent, it returns an HTTP code of 
406 "Not acceptable" and supplies a list of accepted formats. The code segment to do this in the server is as 
follows:

func handleFlashCardSets(rw http.ResponseWriter, req *http.Request) {
        ...
        if req.Method == "GET" {
                acceptTypes := parseValueQuality(req.Header.Get("Accept"))
                q_xml := qualityOfValue(flashcard_xml, acceptTypes)
                q_json := qualityOfValue(flashcard_json, acceptTypes)
                if q_xml == 0 && q_json == 0 {
                        // can't find XML or JSON in Accept header
                        rw.Header().Set("Content-Type", "flashcards+xml, flashcards+json")
                        rw.WriteHeader(http.StatusNotAcceptable)
                        return
                }
                ...

This illustrates a common REST pattern for HTTP servers: given an HTTP request, examine it to see if 
the server can manage it. If not, return an HTTP error. If okay, attempt to handle it. If the attempt fails, return 
an HTTP error. On success, return an appropriate HTTP success code and the results.

�GET /
The flashcard sets are all stored in the directory flashcardsets. The GET / request needs to list all those 
files and prepare them in a suitable format for the client. The format is a list of flashcard set names and their 
URLs. The URLs are required by HATEOAS: the list of names tells us what the sets are, but the client will 
need their URLs in order to move to the stage of interacting with one of them.

The struct type for each FlashcardSet in the server contains the name of the set and its URL (as a 
string):

type FlashcardSet struct {
        Name string
        Link string
}

The set of flashcard sets on the server can be built from the directory of flashcard sets. The ioutil.
ReadDir() will create an array of os.FileInfo. This needs to be converted to a list of file names as follows:

files, err := ioutil.ReadDir(`flashcardsets`)
checkError(err)
numfiles := len(files)
cardSets := make([]FlashcardSet, numfiles, numfiles)
for n, file := range files {
        fmt.Println(file.Name())
        cardSets[n].Name = file.Name()
        // should be PathEscape, not in go 1.6
        cardSets[n].Link = `/flashcardSets/` + url.QueryEscape(file.Name())
}

Chapter 14 ■ REST



277

This creates an array of file names and relative links to the resource on the server as /<name>. For the 
CommonWords set, the relative link URL would be /flashcardSets/CommonWords. The scheme (http or https) 
and the host (e.g., "localhost") are left up to the client to work out.

Unfortunately, the file name may contain characters not legal in URL path names. The function url.
PathEscape escapes them all correctly. The function url.QueryEscape gets everything right except for 
spaces in the file name, which it replaces with + instead of %20;.

Finally, the server figures out if JSON or XML is preferred and runs it through a template to generate the 
right output to the client. For XML, the template code is as follows:

...
if q_xml >= q_json {
        // XML preferred
        t, err := template.ParseFiles("xml/ListFlashcardSets.xml")
        if err != nil {
                fmt.Println("Template error")
                http.Error(rw, err.Error(), http.StatusInternalServerError)
                return
        }
        rw.Header().Set("Content-Type", flashcard_xml)
        t.Execute(rw, cardSets)
} else {
// JSON preferred
...

The XML template is as follows:

ch14 % cat xml/ListFlashcardSets.xml

<?xml version="1.0" encoding="UTF-8"?>

<cardsets xmlns="http://www.w3.org/2005/Atom">
  {{range .}}
  <cardset href="{{.Link}}">
    <name>
      {{.Name}}
    </name>
  </cardset>
  {{end}}
</cardsets>

For a listing of only two sets, CommonWords and Lesson04, the content sent to the client is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<cardsets xmlns="http://www.w3.org/2005/Atom">
  <cardset href="/CommonWords">
    <name>
      Common Words
    </name>
  </cardset>

Chapter 14 ■ REST



278

  <cardset href="/Lesson04">
    <name>
      Lesson04
    </name>
  </cardset>
</cardsets>

�POST /
Here, a client is asking for a new flashcard set to be created. The expectation is that the client will supply the 
name of the flashcard set. We make it look like form submission data:

name=<new flashcard set name>

This is much simpler than GET in this case. Get the value out of the request as form data. Then check 
that the requested name doesn’t have nasties in it like calling the flashcard set /etc/passwd. If it does, return 
403 "Forbidden". If it appears to be okay, create a directory with that name. Return a 403 again if it fails (the 
directory may already exist). Otherwise, return 201 "Created" and the new relative URL:

...
} else if req.Method == "POST" {
        name := req.FormValue(`name`)
        if hasIllegalChars(name) {
                rw.WriteHeader(http.StatusForbidden)
                return
        }
        // lose all spaces as they are a nuisance
        name = strings.Replace(name, ` `, ``, -1)
        err := os.Mkdir(`flashcardsets/`+name,
                (os.ModeDir | os.ModePerm))
        if err != nil {
                rw.WriteHeader(http.StatusForbidden)
                return
        }
        rw.WriteHeader(http.StatusCreated)
        base_url := req.URL.String()
        new_url := base_url + `flashcardSets/` + name + `/`
        rw.Write([]byte(new_url))
} else {
        rw.WriteHeader(http.StatusMethodNotAllowed)
}
...

�Handling Other URLs
We discussed the code for the server handling the / URL with GET and POST requests. There are two other 
types of URL for this application – handling the cards in a set and handling each individual card. In terms of 
the coding, though, this presents no new ideas.

Chapter 14 ■ REST



279

•	 Getting a list of cards in a set is another directory listing.

•	 Posting a new card to a set means creating a file in the appropriate directory with 
content from the client.

•	 Deleting a set means removing a directory. This is okay if the directory is empty; 
otherwise, it creates an error.

•	 Getting a card means reading the card file and sending its contents.

•	 Deleting a card means removing a file.

There is nothing particularly new about any of these. We have not completed the code for some 
operations such as DELETE: these return the HTTP code 501 'Not implemented'. We also return the contents 
of individual cards as text/plain: they have a complex JSON/Go structure as used in Chapter 10, but that is 
not needed for the discussion of the REST aspects of this system.

�The Complete Server
The complete server to handle requests to / and from there to other URLs follows. It requires the flashcard 
sets and individual cards in order to run, and these are in the ch14 folder here https://github.com/Apress/
network-prog-with-go-2e.

ch14$ vi server.go

/* Server
 */

package main

import (
        "fmt"
        "html/template"
        "log"
        "net/http"
        "net/url"
        "os"
        "regexp"
        "strconv"
        "strings"
)

type FlashcardSet struct {
        Name string
        Link string
}

type Flashcard struct {
        Name string
        Link string
}

Chapter 14 ■ REST

https://doi.org/10.1007/978-1-4842-8095-9_10
https://github.com/Apress/network-prog-with-go-2e
https://github.com/Apress/network-prog-with-go-2e


280

const flashcard_xml string = "application/x.flashcards+xml"
const flashcard_json string = "application/x.flashcards+json"

type ValueQuality struct {
        Value   string
        Quality float64
}

/* Based on https://siongui.github.io/2015/02/22/go-parse-accept-language/ */
func parseValueQuality(s string) []ValueQuality {
        var vqs []ValueQuality

        strs := strings.Split(s, `,`)
        for _, str := range strs {
                trimmedStr := strings.Trim(str, ` `)
                valQ := strings.Split(trimmedStr, `;`)
                if len(valQ) == 1 {
                        vq := ValueQuality{valQ[0], 1}
                        vqs = append(vqs, vq)
                } else {
                        qp := strings.Split(valQ[1], `=`)
                        q, err := strconv.ParseFloat(qp[1], 64)
                        if err != nil {
                                q = 0
                        }
                        vq := ValueQuality{valQ[0], q}
                        vqs = append(vqs, vq)
                }
        }
        return vqs
}

func qualityOfValue(value string, vqs []ValueQuality) float64 {
        for _, vq := range vqs {
                if value == vq.Value {
                        return vq.Quality
                }
        }
        return 0
}

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], ":port\n")
        }
        port := os.Args[1]

        http.HandleFunc(`/`, handleFlashCardSets)
        files, err := os.ReadDir(`flashcardsets`)
        checkError(err)

Chapter 14 ■ REST



281

        for _, file := range files {
                fmt.Println(file.Name())
                cardset_url := `/flashcardSets/` + url.QueryEscape(file.Name())
                fmt.Println("Adding handlers for ", cardset_url)
                http.HandleFunc(cardset_url, handleOneFlashCardSet)
                http.HandleFunc(cardset_url+`/`, handleOneFlashCard)
        }

        // deliver requests to the handlers
        err = http.ListenAndServe(port, nil)
        checkError(err)
}

func hasIllegalChars(s string) bool {
        // check against chars to break out of current dir
        b, err := regexp.Match("[/$~]", []byte(s))
        if err != nil {
                fmt.Println(err)
                return true
        }
        if b {
                return true
        }
        return false
}

func handleOneFlashCard(rw http.ResponseWriter, req *http.Request) {
        // should be PathUnescape
        path, _ := url.QueryUnescape(req.URL.String())
        // lose intial '/'
        path = path[1:]
        if req.Method == http.MethodGet {
                fmt.Println("Handling card: ", path)
                json_contents, err := os.ReadFile(path)
                if err != nil {
                        rw.WriteHeader(http.StatusNotFound)
                        rw.Write([]byte(`Resource not found`))
                        return
                }
                // Be lazy here, just return the content as text/plain
                rw.Write(json_contents)
                return
        } else if req.Method == http.MethodDelete {
                rw.WriteHeader(http.StatusNotImplemented)
        } else {
                rw.WriteHeader(http.StatusMethodNotAllowed)
        }
        return
}

Chapter 14 ■ REST



282

func handleFlashCardSets(rw http.ResponseWriter, req *http.Request) {
        if req.URL.String() != `/` {
                // this function only handles '/'
                rw.WriteHeader(http.StatusNotFound)
                rw.Write([]byte("Resource not found\n"))
                return
        }
        if req.Method == "GET" {
                acceptTypes := parseValueQuality(req.Header.Get("Accept"))
                fmt.Println(acceptTypes)

                q_xml := qualityOfValue(flashcard_xml, acceptTypes)
                q_json := qualityOfValue(flashcard_json, acceptTypes)
                if q_xml == 0 && q_json == 0 {
                        // can't find XML or JSON in Accept header
                        rw.Header().Set("Content-Type", "flashcards+xml, flashcards+json")
                        rw.WriteHeader(http.StatusNotAcceptable)
                        return
                }

                files, err := os.ReadDir(`flashcardsets`)
                checkError(err)
                numfiles := len(files)
                cardSets := make([]FlashcardSet, numfiles, numfiles)
                for n, file := range files {
                        fmt.Println(file.Name())
                        cardSets[n].Name = file.Name()
                        // should be PathEscape, not in go 1.6
                        cardSets[n].Link = `/flashcardSets/` + url.QueryEscape(file.Name())
                }
                parseFile := "xml/ListFlashcardSets.xml"
                flashcardType := flashcard_xml
                if q_xml < q_json {
                        parseFile = "json/ListFlashcardSets.json"
                        flashcardType = flashcard_json
                }
                t, err := template.ParseFiles(parseFile)
                if err != nil {
                        fmt.Println("Template error")
                        http.Error(rw, err.Error(), http.StatusInternalServerError)
                        return
                }
                rw.Header().Set("Content-Type", flashcardType)
                t.Execute(rw, cardSets)
        } else if req.Method == "POST" {
                name := req.FormValue(`name`)
                if hasIllegalChars(name) {
                        rw.WriteHeader(http.StatusForbidden)
                        return
                }

Chapter 14 ■ REST



283

                // lose all spaces as they are a nuisance
                name = strings.Replace(name, ` `, ``, -1)
                err := os.Mkdir(`flashcardsets/`+name,
                        (os.ModeDir | os.ModePerm))
                if err != nil {
                        rw.WriteHeader(http.StatusForbidden)
                        return
                }
                rw.WriteHeader(http.StatusCreated)
                base_url := req.URL.String()
                new_url := base_url + `flashcardSets/` + name + `/`
                rw.Write([]byte(new_url))
        } else {
                rw.WriteHeader(http.StatusMethodNotAllowed)
        }
        return
}

func handleOneFlashCardSet(rw http.ResponseWriter, req *http.Request) {
        cooked_url, _ := url.QueryUnescape(req.URL.String())
        fmt.Println("Handling one set for: ", cooked_url)

        if req.Method == http.MethodGet {
                acceptTypes := parseValueQuality(req.Header.Get("Accept"))
                fmt.Println(acceptTypes)

                q_xml := qualityOfValue(flashcard_xml, acceptTypes)
                q_json := qualityOfValue(flashcard_json, acceptTypes)
                if q_xml == 0 && q_json == 0 {
                        // can't find XML or JSON in Accept header
                        rw.Header().Set("Content-Type", "flashcards+xml, flashcards+json")
                        rw.WriteHeader(http.StatusNotAcceptable)
                        return
                }

                path := req.URL.String()
                // lose leading /
                relative_path := path[1:]
                files, err := os.ReadDir(relative_path)
                checkError(err)
                numfiles := len(files)
                cards := make([]Flashcard, numfiles, numfiles)
                for n, file := range files {
                        fmt.Println(file.Name())
                        cards[n].Name = file.Name()
                        // should be PathEscape, not in go 1.6
                        cards[n].Link = path + `/` + url.QueryEscape(file.Name())
                }

Chapter 14 ■ REST



284

                if q_xml >= q_json {
                        // XML preferred
                        t, err := template.ParseFiles("xml/ListOneFlashcardSet.xml")
                        if err != nil {
                                fmt.Println("Template error")
                                http.Error(rw, err.Error(), http.StatusInternalServerError)
                                return
                        }
                        rw.Header().Set("Content-Type", flashcard_xml)
                        t.Execute(os.Stdout, cards)
                        t.Execute(rw, cards)
                } else {
                        // JSON preferred
                        t, err := template.ParseFiles("json/ListOneFlashcardSet.json")
                        if err != nil {
                                fmt.Println("Template error", err)
                                http.Error(rw, err.Error(), http.StatusInternalServerError)
                                return
                        }
                        rw.Header().Set("Content-Type", flashcard_json)
                        t.Execute(rw, cards)

                }
        } else if req.Method == http.MethodPost {
                name := req.FormValue(`name`)
                if hasIllegalChars(name) {
                        rw.WriteHeader(http.StatusForbidden)
                        return
                }
                err := os.Mkdir(`flashcardsets/`+name,
                        (os.ModeDir | os.ModePerm))
                if err != nil {
                        rw.WriteHeader(http.StatusForbidden)
                        return
                }
                rw.WriteHeader(http.StatusCreated)
                base_url := req.URL.String()
                new_url := base_url + `flashcardSets/` + name
                _, _ = rw.Write([]byte(new_url))
        } else if req.Method == http.MethodDelete {
                rw.WriteHeader(http.StatusNotImplemented)
        } else {
                rw.WriteHeader(http.StatusMethodNotAllowed)
        }
        return
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Chapter 14 ■ REST



285

It is run as follows:

ch14$ go run server.go :8000

�Client
The client is relatively straightforward, offering nothing really new. This client asks for the content only in 
XML format. A new part is that the content for the flashcard sets includes links as hypertext attributes within 
a cardset tag. This may be turned into a field of a struct by the tag label xml:"href,attr" in the Card struct.

This client gets the list of flashcard sets and their URLs in the getFlashcardSets() function (step 
1). This returns a FlashcardSets struct. This can be used to present a list to a user, say, for selection of a 
particular set. Once selected, the URL of that set can be used to interact with the resource.

This client then creates a new flashcard set with name NewSet in the createFlashcardSet() function 
(step 2). The first time the client runs, it will create the set, and the URL for that set will be returned. The 
second time it is run, it will get an error from the server as a prohibited operation, since the set already exists.

This client then takes the first set of flashcards from the URLs given by the server and asks for the set of 
cards it holds (step 3). It then picks the first card from the set and gets its content (step 4).

The client is client.go:

ch14$ vi client.go

/* Client
 */

package main

import (
        "encoding/xml"
        "fmt"
        "io"
        "log"
        "net/http"
        "net/http/httputil"
        "net/url"
        "os"
        "strings"
)

const flashcard_xml string = "application/x.flashcards+xml"
const flashcard_json string = "application/x.flashcards+json"

type FlashcardSets struct {
        XMLName string    `xml:"cardsets"`
        CardSet []CardSet `xml:"cardset"`
}

Chapter 14 ■ REST



286

type CardSet struct {
        XMLName string `xml:"cardset"`
        Name    string `xml:"name"`
        Link    string `xml:"href,attr"`
        Cards   []Card `xml:"card"`
}

type Card struct {
        Name string `xml:"name"`
        Link string `xml:"href,attr"`
}

func getter(url *url.URL, client *http.Client, acceptType string) *http.Response {
        request, err := http.NewRequest("GET", url.String(), nil)
        checkError(err)

        if acceptType != "" {
                request.Header.Add("Accept", flashcard_xml)
        }
        response, err := client.Do(request)
        checkError(err)
        if response.StatusCode != http.StatusOK {
                log.Fatalln(err, response)
        }

        fmt.Println("The response header is")
        b, _ := httputil.DumpResponse(response, false)
        fmt.Print(string(b))
        return response
}

func getOneFlashcard(url *url.URL, client *http.Client) string {
        // Get the card as a string, don't do anything with it
        response := getter(url, client, "")

        body, err := io.ReadAll(response.Body)
        checkError(err)
        content := string(body[:])
        //fmt.Printf("Body is %s", content)

        return content
}

func getOneFlashcardSet(url *url.URL, client *http.Client) CardSet {
        // Get one set of cards
        response := getter(url, client, flashcard_xml)

        body, err := io.ReadAll(response.Body)
        content := string(body[:])
        fmt.Printf("Body is %s", content)

Chapter 14 ■ REST



287

        var sets CardSet
        contentType := getContentType(response)
        if contentType == "XML" {

                err = xml.Unmarshal(body, &sets)
                checkError(err)
                fmt.Println("XML: ", sets)
                return sets
        }
        /* else if contentType == "JSON" {
                var sets FlashcardSetsJson
                err = json.Unmarshal(body, &sets)
                checkError(err)
                fmt.Println("JSON: ", sets)
        }
        */
        return sets
}

func getFlashcardSets(url *url.URL, client *http.Client) FlashcardSets {
        // Get the toplevel /
        response := getter(url, client, flashcard_xml)

        body, err := io.ReadAll(response.Body)
        content := string(body[:])
        fmt.Printf("Body is %s", content)

        var sets FlashcardSets
        contentType := getContentType(response)
        if contentType == "XML" {
                err = xml.Unmarshal(body, &sets)
                checkError(err)
                fmt.Println("XML: ", sets)
                return sets
        }
        return sets
}

func createFlashcardSet(url1 *url.URL, client *http.Client, name string) string {
        data := make(url.Values)
        data[`name`] = []string{name}
        response, err := client.PostForm(url1.String(), data)
        checkError(err)
        if response.StatusCode != http.StatusCreated {
                fmt.Println(`Error: `, response.Status)
                return ``
        }
        body, err := io.ReadAll(response.Body)
        content := string(body[:])
        return content
}

Chapter 14 ■ REST



288

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "http://host:port/page")
        }
        url, err := url.Parse(os.Args[1])
        checkError(err)

        client := &http.Client{}

        // Step 1: get a list of flashcard sets
        flashcardSets := getFlashcardSets(url, client)
        fmt.Println("Step 1: ", flashcardSets)

        // Step 2: try to create a new flashcard set
        new_url := createFlashcardSet(url, client, `NewSet`)
        fmt.Println("Step 2: New flashcard set has URL: ", new_url)

        // Step 3: using the first flashcard set,
        //         get the list of cards in it
        set_url, _ := url.Parse(os.Args[1] + flashcardSets.CardSet[0].Link)

        fmt.Println("Asking for flashcard set URL: ", set_url.String())
        oneFlashcardSet := getOneFlashcardSet(set_url, client)
        fmt.Println("Step 3:", oneFlashcardSet)

        // Step 4: get the contents of one flashcard
        //         be lazy, just get as text/plain and
        //         don't do anything with it
        card_url, _ := url.Parse(os.Args[1] + oneFlashcardSet.Cards[0].Link)
        fmt.Println("Asking for URL: ", card_url.String())
        oneFlashcard := getOneFlashcard(card_url, client)
        fmt.Println("Step 4", oneFlashcard)
}

func getContentType(response *http.Response) string {
        contentType := response.Header.Get("Content-Type")
        if strings.Contains(contentType, flashcard_xml) {
                return "XML"
        }
        if strings.Contains(contentType, flashcard_json) {
                return "JSON"
        }
        return ""
}

func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Chapter 14 ■ REST



289

It is run as follows:

ch14$ go run client.go http://localhost:8000/

... (all about flashcards) ...

�Using REST or RPC
The primary difference between REST and RPC is the interaction style. In RPC, you are calling functions, 
passing objects or primitive types as arguments, and getting objects or primitive types in return. The 
functions are verbs: do this to that. REST, on the other hand, is about interacting with objects, asking them to 
show their state or to change it in some way.

The difference is shown by the Go RPC mechanism discussed in the last chapter and the REST 
mechanism of this chapter. In Go RPC over HTTP, the server registers functions, while in REST, the server 
registers handlers for URLs.

Which is better? Neither. Which is faster? Neither. Which is better for a controlled environment? 
Possibly RPC. Which is better for an open environment? Possibly REST.

You will see arguments based on speed and resource allocation. RPC based on binary systems will 
probably be faster than text-based HTTP systems. But SOAP is a text-based RPC system using HTTP and is 
probably slower than REST. HTTP2 uses a binary format and, when conveying binary data such as BSON, 
will probably be equivalent in speed to other binary systems. Just to confuse things further, the Apache Thrift 
RPC allows a choice of data formats (binary, compact binary, JSON, and text) and transports (sockets, files, 
and shared memory). One system demonstrates all options!

A more important factor might be how tightly controlled the operational environment is. RPC systems 
are tightly coupled, and a failure in one component could bring an entire system down. When there are a 
single administrative authority, a limited set of hardware and software configurations, and a clear channel 
for fixing problems, then an RPC system can work well.

On the other side, the Web is uncontrolled. There is no single authority – even such "universal" services 
such as DNS are highly distributed. There is a huge variety of hardware, operating systems, and software; 
there will be little prospect of enforcing any policies; and if something breaks, then there is often no one who 
can be pointed at to fix it. In such a case, a loosely coupled system may be better.

REST over HTTP is a good match for this. HATEOAS allows servers to be reconfigured on the fly, 
changing URLs as needed (even pointing to different servers!). HTTP is designed to cache results when it 
can. Firewalls are usually configured to allow HTTP traffic and block most other. REST is a good choice here.

It should be noted that REST is not the only HTTP-based system possible. SOAP has already been 
mentioned. There are many commercial and highly successful systems that are "almost" REST – Richardson 
levels 1 and 2. They do not enjoy the full benefits of the REST/HTTP match but still work.

No doubt in the future, other models will arise. In the IoT space, CoAP is popular for low-power wireless 
systems. It is also REST based, but in a slightly different way than HTTP-REST.

�Conclusion
REST is the architectural model of the Web. It can be applied in many different ways, particularly as HTTP 
and CoAP (e.g., low power, lossy network protocol). This chapter illustrated REST as applied to HTTP.

Chapter 14 ■ REST



291
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_15

CHAPTER 15

WebSockets

The standard model of interaction between a web user agent such as a browser and a web server such as 
Apache is that the user agent makes HTTP requests and the server makes a single reply to each one. In the 
case of a browser, the request is made by clicking on a link, entering a URL into the address bar, clicking on 
the forward or back buttons, etc. The response is treated as a new page and is loaded into a browser window.

This traditional model has many drawbacks. The first is that each request opens and closes a new TCP 
connection. HTTP 1.1 solved this by allowing persistent connections so that a connection could be held 
open for a short period to allow for multiple requests (e.g., for images) to be made on the same server.

While HTTP 1.1 persistent connections alleviate the problem of slow loading of a page with many 
graphics, it does not improve the interaction model. Even with forms, the model is still that of submitting the 
form and displaying the response as a new page. JavaScript helps in allowing error checking to be performed 
on form data before submission but does not change the model.

AJAX (Asynchronous JavaScript and XML) made a significant advance to the user interaction model. 
This allows a browser to make a request and just use the response to update the display in place using the 
HTML Document Object Model (DOM). But again, the interaction model is the same. AJAX just affects 
how the browser manages the returned pages. There is no explicit extra support in Go for AJAX, as none is 
needed: the HTTP server just sees an ordinary HTTP POST request with possibly some XML or JSON data, 
and this can be dealt with using techniques already discussed.

All of these are still browser (or user agent)-to-server communication. What is missing is server-to-
browser communications where a browser has set up a TCP connection to a server and reads messages from 
the server. This can be filled by WebSockets: the browser (or any user agent) keeps open a long-lived TCP 
connection to a WebSockets server. The TCP connection allows either side to send arbitrary packets, so any 
application protocol can be used on a WebSocket.

How a WebSocket is started is by the user agent sending a special HTTP request that says “switch to 
WebSockets.” The TCP connection underlying the HTTP request is kept open, but both user agent and server 
switch to using the WebSockets protocol instead of getting an HTTP response and closing the socket.

Note that it is still the browser or user agent that initiates the WebSockets connection. The browser 
does not run a TCP server of its own. While the specification as IETF RFC 6455 is complex (see https://
tools.ietf.org/html/rfc6455), the protocol is designed to be fairly easy to use. The client opens an HTTP 
connection and then replaces the HTTP protocol with its own WS protocol, reusing the same TCP or a new 
connection.

Go has some support for WebSockets in a subrepository but actually recommends a third-party 
package. This chapter considers both packages.

https://doi.org/10.1007/978-1-4842-8095-9_15#DOI
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455


292

�WebSockets Server
A WebSockets server starts off by being an HTTP server, accepting TCP connections and handling the 
HTTP requests on the TCP connection. When a request comes in that switches that connection to being a 
WebSockets connection, the protocol handler is changed from an HTTP handler to a WebSocket handler. So 
it is only that TCP connection that gets its role changed; the server continues to be an HTTP server for other 
requests, while the TCP socket underlying that one connection is used as a WebSocket.

One of the simple servers discussed in Chapter 8, HTTP, registered various handlers such as a file 
handler or a function handler. To handle WebSockets requests, we simply register a different type of handler – a 
WebSockets handler. Which handler the server uses is based on the URL pattern. For example, a file handler 
might be registered for /, a function handler for /cgi-bin/..., and a WebSockets handler for /ws.

An HTTP server that is only expecting to be used for WebSockets might run as follows:

func main() {
        http.Handle("/", websocket.Handler(WSHandler))
        err := http.ListenAndServe(":12345", nil)
        checkError(err)
}

A more complex server might handle both HTTP and WebSockets requests simply by adding more handlers.
We have a variety of options when it comes to implementation, including manually managing the 

original HTTP connection (TCP hijacking) and the use of the x package WebSocket implementation or even 
well-known third-party packages.

�The golang.org/x/net/websocket Package
Go has the subrepository package called golang.org/x/net/websocket.

The package documentation states the following:

This package currently lacks some features found in an alternative and more 
actively maintained WebSockets package: https://pkg.go.dev/github.com/
gorilla/websocket. Unfortunately, even the Gorilla WebSocket package is 
looking for an active lead maintainer. Still, it remains a leading implementation.

This suggests that you might be better off using the alternative package. Nevertheless, we consider this 
package here in keeping with the rest of this book of using the packages from the Go team. A later section 
looks at the alternative package.

�The Message Object
HTTP is a stream protocol. WebSockets are frame based. You prepare a block of data (of any size) and send it 
as a set of frames. Frames can contain strings in UTF-8 encoding or a sequence of bytes.

The simplest way of using WebSockets is just to prepare a block of data and ask the Go WebSockets 
library to package it as a set of frame data, send it across the wire, and receive it as the same block. The 
websocket package contains a convenience object called Message to do just that. The Message object has two 

Chapter 15 ■ WebSockets

https://doi.org/10.1007/978-1-4842-8095-9_8
https://pkg.go.dev/github.com/gorilla/websocket
https://pkg.go.dev/github.com/gorilla/websocket


293

methods – Send and Receive – that take a WebSocket as the first parameter. The second parameter is either 
the address of a variable to store data in or the data to be sent. Code to send string data looks like this:

msgToSend := "Hello"
err := websocket.Message.Send(ws, msgToSend)
var msgToReceive string
err := websocket.Message.Receive(conn, &msgToReceive)

Code to send byte data looks like this:

 dataToSend := []byte{0, 1, 2}
 err := websocket.Message.Send(ws, dataToSend)
 var dataToReceive []byte
 err := websocket.Message.Receive(conn, &dataToReceive)

An echo server to send and receive string data is given next. Note that in WebSockets, either side 
can initiate sending of messages, and in this server, we send messages from the server to a client when it 
connects (send/receive) instead of the more normal receive/send server. The server is echoserver.go:

$ mkdir ch15
$ cd ch15
$ vi echoserver.go

/* EchoServer
 */
package main

import (
        "fmt"
        "golang.org/x/net/websocket"
        "log"
        "net/http"
)

func Echo(ws *websocket.Conn) {
        fmt.Println("Echoing")
        for n := 0; n < 10; n++ {
                msg := "Hello  " + string(n+48)
                fmt.Println("Sending to client: " + msg)
                err := websocket.Message.Send(ws, msg)
                if err != nil {
                        fmt.Println("Can't send")
                        break
                }
                var reply string
                err = websocket.Message.Receive(ws, &reply)
                if err != nil {
                        fmt.Println("Can't receive")
                        break
                }

Chapter 15 ■ WebSockets



294

                fmt.Println("Received back from client: " + reply)
        }
}
func main() {
        http.Handle("/", websocket.Handler(Echo))
        err := http.ListenAndServe(":12345", nil)
        checkError(err)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

It is run as follows:

ch15$ go mod init example.com/user/echoserver
ch15$ go mod tidy

ch15$ go run echoserver.go

A client that talks to this server is echoclient.go:

ch15$ vi echoclient.go

/* EchoClient
 */
package main

import (
        "fmt"
        "golang.org/x/net/websocket"
        "io"
        "os"
        "log"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "ws://host:port")
        }
        service := os.Args[1]
        conn, err := websocket.Dial(service, "",
                "http://localhost:12345")
        checkError(err)
        var msg string
        for {
                err := websocket.Message.Receive(conn, &msg)
                if err != nil {
                        if err == io.EOF {
                                // graceful shutdown by server

Chapter 15 ■ WebSockets



295

                                break
                        }
                        fmt.Println("Couldn't receive msg " +
                                err.Error())
                        break
                }
                fmt.Println("Received from server: " + msg)
                // return the msg
                err = websocket.Message.Send(conn, msg)
                if err != nil {
                        fmt.Println("Couldn't return msg")
                        break
                }
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

It is run as follows:

ch15$ go run echoclient.go ws://localhost:12345

The output on the client side is what is sent by the server:

Received from server: Hello  0
...
Received from server: Hello  9

Back on the server, we see the following:

Echoing
Sending to client: Hello  0
Received back from client: Hello  0
...
Sending to client: Hello  9
Received back from client: Hello  9

The preceding session provides evidence we are able to send data to and from via a WebSocket. Take 
note of the Message object and its usage in the preceding server and client code. Per the documentation:

ch15$ go doc golang.org/x/net/websocket.Message

package websocket // import "golang.org/x/net/websocket"

var Message = Codec{marshal, unmarshal}
    Message is a codec to send/receive text/binary data in a frame on WebSocket
    connection. To send/receive text frame, use string type. To send/receive
    binary frame, use []byte type.

Chapter 15 ■ WebSockets



296

    Trivial usage:

        import "websocket"

        // receive text frame
        var message string
        websocket.Message.Receive(ws, &message)

        // send text frame
        message = "hello"
        websocket.Message.Send(ws, message)

        // receive binary frame
        var data []byte
        websocket.Message.Receive(ws, &data)

        // send binary frame
        data = []byte{0, 1, 2}
        websocket.Message.Send(ws, data)

�The JSON Object
It is expected that many WebSockets clients and servers will exchange data in JSON format. For Go 
programs, this means that a Go object will be marshalled into the JSON format, as described in Chapter 4, 
and then sent as UTF-8 strings, while the receiver will read this string and unmarshal it back into a Go object.

The websocket convenience object called JSON will do this for you. It has Send and Receive methods for 
sending and receiving data, just like the Message object.

We consider a case where a client sends a Person object to a server using WebSockets (which can send 
messages both ways). A server that reads the message from the client and prints it to the server’s standard 
output is personserverjson.go:

ch15$ vi personserverjson.go

/* PersonServerJSON
 */
package main

import (
        "fmt"
        "golang.org/x/net/websocket"
        "log"
        "net/http"
)

type Person struct {
        Name   string
        Emails []string
}

Chapter 15 ■ WebSockets

https://doi.org/10.1007/978-1-4842-8095-9_4


297

func ReceivePerson(ws *websocket.Conn) {
        var person Person
        err := websocket.JSON.Receive(ws, &person)
        if err != nil {
                fmt.Println("Can't receive")
        } else {
                fmt.Println("Name: " + person.Name)
                for _, e := range person.Emails {
                        fmt.Println("An email: " + e)
                }
        }
}
func main() {
        http.Handle("/", websocket.Handler(ReceivePerson))
        err := http.ListenAndServe(":12345", nil)
        checkError(err)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

A client that sends a Person object in JSON format is personclientjson.go:

ch15$ vi personclientjson.go

/* PersonClientJSON
 */
package main

import (
        "fmt"
        "golang.org/x/net/websocket"
        "log"
        "os"
)

type Person struct {
        Name   string
        Emails []string
}

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "ws://host:port")
        }
        service := os.Args[1]
        conn, err := websocket.Dial(service, "",
                "http://localhost")
        checkError(err)

Chapter 15 ■ WebSockets



298

        person := Person{Name: "Jan",
                Emails: []string{"ja@newmarch.name",
                        "jan.newmarch@gmail.com"},
        }
        err = websocket.JSON.Send(conn, person)
        if err != nil {
                fmt.Println("Couldn't send msg " + err.Error())
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The server is run as follows:

ch15$ go run personserverjson.go

The client is run as follows:

ch15$ go run personclientjson.go ws://localhost:12345

The output on the server side is what is sent by the client:

Name: Jan
An email: ja@newmarch.name
An email: jan.newmarch@gmail.com

As before, review the related JSON object documentation.

ch15$ go doc golang.org/x/net/websocket.JSON

package websocket // import "golang.org/x/net/websocket"

var JSON = Codec{jsonMarshal, jsonUnmarshal}
    JSON is a codec to send/receive JSON data in a frame from a WebSocket
    connection.

    Trivial usage:

        import "websocket"

        type T struct {
                Msg string
                Count int
        }

        // receive JSON type T
        var data T
        websocket.JSON.Receive(ws, &data)

Chapter 15 ■ WebSockets



299

        // send JSON type T
        websocket.JSON.Send(ws, data)

�The Codec Type
The Message and JSON objects are both instances of the type Codec. This type is defined as follows:

type Codec struct {
    Marshal   func(v interface{}) (data []byte, payloadType byte, err error)
    Unmarshal func(data []byte, payloadType byte, v interface{}) (err error)
}

The Codec type implements the Send and Receive methods used earlier. See more on this type with

ch15$ go doc golang.org/x/net/websocket.Codec

It is likely that WebSockets will also be used to exchange XML data. We can build an XML Codec 
object by wrapping the XML marshal and unmarshal methods discussed in Chapter 12 to give a suitable 
Codec object.

We can create an XMLCodec package in this way, called xmlcodec.go:

ch15$ vi xmlcodec.go

/* XMLCodec
 */
package main

import (
        "encoding/xml"
        "golang.org/x/net/websocket"
)

func xmlMarshal(v interface{}) (msg []byte, payloadType byte, err error) {
        msg, err = xml.Marshal(v)
        return msg, websocket.TextFrame, nil
}
func xmlUnmarshal(msg []byte, payloadType byte, v interface{}) (err error) {
        err = xml.Unmarshal(msg, v)
        return err
}

var XMLCodec = websocket.Codec{xmlMarshal, xmlUnmarshal}

Chapter 15 ■ WebSockets

https://doi.org/10.1007/978-1-4842-8095-9_12


300

We can then serialize Go objects such as a Person into an XML document and send them from 
a client to a server. The server to receive the document and print it to standard output is as follows, 
personserverxml.go:

ch15$ vi personserverxml.go

/* PersonServerXML
 */
package main

import (
        "fmt"
        "golang.org/x/net/websocket"
        "log"
        "net/http"
)

type Person struct {
        Name   string
        Emails []string
}

func ReceivePerson(ws *websocket.Conn) {
        var person Person
        err := XMLCodec.Receive(ws, &person)
        if err != nil {
                fmt.Println("Can't receive")
        } else {
                fmt.Println("Name: " + person.Name)
                for _, e := range person.Emails {
                        fmt.Println("An email: " + e)
                }
        }
}
func main() {
        http.Handle("/", websocket.Handler(ReceivePerson))
        err := http.ListenAndServe(":12345", nil)
        checkError(err)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The client sending the Person object in XML form is personclientxml.go:

ch15$ vi personclientxml.go

/* PersonClientXML
 */
package main

Chapter 15 ■ WebSockets



301

import (
        "fmt"
        "golang.org/x/net/websocket"
        "log"
        "os"
)

type Person struct {
        Name   string
        Emails []string
}

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "ws://host:port")
        }
        service := os.Args[1]
        conn, err := websocket.Dial(service, "", "http://localhost")
        checkError(err)
        person := Person{Name: "Jan",
                Emails: []string{"ja@newmarch.name",
                        "jan.newmarch@gmail.com"},
        }
        err = XMLCodec.Send(conn, person)
        if err != nil {
                fmt.Println("Couldn't send msg " + err.Error())
        }
        os.Exit(0)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The server is run as follows:

ch15$ go run personserverxml.go xmlcodec.go

The client is run as follows:

ch15$ go run personclientxml.go xmlcodec.go ws://localhost:12345

The output on the server side is what is sent by the client:

Name: Jan
An email: ja@newmarch.name
An email: jan.newmarch@gmail.com

As before, review the related codec object documentation (go doc encoding/xml).
A reasonable next step is improve our security; we next upgrade our WebSocket to use TLS.

Chapter 15 ■ WebSockets



302

�WebSockets over TLS
A WebSocket can be built above a secure TLS socket. We discussed in Chapter 8 how to use a TLS socket 
using the certificates from Chapter 7. That is used unchanged for WebSockets. That is, we use http.
ListenAndServeTLS instead of http.ListenAndServe.

Here is the echo server using TLS, echoservertls.go.

ch15$ vi echoservertls.go

/* EchoServerTLS
 */
package main

import (
        "log"
        "fmt"
        "golang.org/x/net/websocket"
        "net/http"
)

func Echo(ws *websocket.Conn) {
        fmt.Println("Echoing")
        for n := 0; n < 10; n++ {
                msg := "Hello  " + string(n+48)
                fmt.Println("Sending to client: " + msg)
                err := websocket.Message.Send(ws, msg)
                if err != nil {
                        fmt.Println("Can't send")
                        break
                }
                var reply string
                err = websocket.Message.Receive(ws, &reply)
                if err != nil {
                        fmt.Println("Can't receive")
                        break
                }
                fmt.Println("Received back from client: " + reply)
        }
}
func main() {
        http.Handle("/", websocket.Handler(Echo))
        err := http.ListenAndServeTLS(":12345",
                "jan.newmarch.name.pem",
                "private.pem", nil)
        checkError(err)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Chapter 15 ■ WebSockets

https://doi.org/10.1007/978-1-4842-8095-9_8
https://doi.org/10.1007/978-1-4842-8095-9_7


303

Before running the server, we need our certificate and key, created and used from Chapter 7/8.

ch15$ cp ../ch7/jan.newmarch.name.pem . ; cp ../ch7/private.pem .
ch15$ go run echoservertls.go

The client is the same echo client as before. All that changes is the URL, which uses the wss scheme 
instead of the ws scheme:

ch15$ go run echoclient wss://localhost:12345/

Fatal error  websocket.Dial wss://localhost:12345: x509: certificate signed by unknown 
authority
exit status 1

That will work fine if the TLS certificate offered by the server is valid. The certificate I am using is not: 
it is self-signed, and that is often a signal that you are entering a danger zone. If you want to keep going 
anyway, you need to employ the same “remove the safety check” that we did in Chapter 8 by turning 
on the TLS InsecureSkipVerify flag. That is done by the program echoclienttls.go, which sets up a 
configuration using this flag and then calls DialConfig in place of Dial.

ch15$ vi echoclienttls.go

/* EchoClientTLS
 */
package main

import (
        "crypto/tls"
        "fmt"
        "golang.org/x/net/websocket"
        "io"
        "log"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "wss://host:port")
        }
        config, err := websocket.NewConfig(os.Args[1],
                "http://localhost")
        checkError(err)
        tlsConfig := &tls.Config{InsecureSkipVerify: true}
        config.TlsConfig = tlsConfig
        conn, err := websocket.DialConfig(config)
        checkError(err)
        var msg string
        for {
                err := websocket.Message.Receive(conn, &msg)
                if err != nil {
                        if err == io.EOF {

Chapter 15 ■ WebSockets

https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_8


304

                                // graceful shutdown by server
                                break
                        }
                        fmt.Println("Couldn't receive msg " +
                                err.Error())
                        break
                }
                fmt.Println("Received from server: " + msg)
                // return the msg
                err = websocket.Message.Send(conn, msg)
                if err != nil {
                        fmt.Println("Couldn't return msg")
                        break
                }
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

Run the client as follows (assuming echoservertls.go is running):

ch15$ go run echoclienttls.go wss://localhost:12345

Received from server: Hello  0
...
Received from server: Hello  9

Back on the server, we see the following:

Echoing
Sending to client: Hello  0
Received back from client: Hello  0
...
Sending to client: Hello  9
Received back from client: Hello  9

�WebSockets in an HTML Page
The original driver for WebSockets was to allow full duplex interaction between an HTTP user agent such 
as a browser and a server. The typical use case is expected to involve a JavaScript program in a browser 
interacting with a server. In this section, we build a web/WebSockets server that delivers an HTML page 
that sets up a WebSocket and displays information from that server using WebSockets. We are looking at the 
situation illustrated in Figure 15-1.

Chapter 15 ■ WebSockets



305

Browser

GET page

JS
Listening

For
onmessage

Display
Msg message

message

message

Display
Msg

Display
Msg

Page containing
JavaScript

Server

Figure 15-1.  Full duplex interaction situation

The age of the Internet of Things (IoT) is upon us. Consequently, we can expect data from sensors and 
sensor networks to be used to drive actuators and to display information about an IoT network in browsers. 
There are innumerable books about using Raspberry Pis and Arduinos for building sensor networks, but we 
will drastically simplify the situation by showing the CPU temperatures on a “sensor,” updating in a web page 
every few seconds.

The Linux sensors command from the Debian package lm-sensors writes to standard output the 
values of sensors it knows about. The command sensors on my desktop machine produces output such as 
the following:

acpitz-virtual-0
Adapter: Virtual device
temp1:        +27.8°C  (crit = +105.0°C)
temp2:        +29.8°C  (crit = +105.0°C)

coretemp-isa-0000
Adapter: ISA adapter
Physical id 0:  +58.0°C  (high = +105.0°C, crit = +105.0°C)
Core 0:         +57.0°C  (high = +105.0°C, crit = +105.0°C)
Core 1:         +58.0°C  (high = +105.0°C, crit = +105.0°C)

Chapter 15 ■ WebSockets



306

On refresh, typically, the temperature on Core 0 and Core 1 may change.
On Windows, a command to do the same is this:

wmic /namespace:\\root\wmi PATH MSAcpi_ThermalZoneTemperature get CurrentTemperature

When this runs, it has output such as

42.4° C

On the Mac, use the command osx-cpu-temp from https://github.com/lavoiesl/osx-cpu-temp.
If you don’t want to go through these steps, just substitute a more mundane program such as the date.
We provide a Go program to deliver HTML documents from the ROOT_DIR directory and to then set up 

a WebSocket from the URL GetTemp. The WebSocket on the server side gets the output from sensors every 
two seconds and sends it to the client end of the socket. The web/WebSockets server runs on port 12345 for 
no particular reason. Substitute any other interesting system call for the exec.Command call. Here, we use the 
simple “sensors.sh” as our temperature program (random number between 1 and 100).

ch15$ vi sensors.sh

#!/bin/sh
echo $(( ( RANDOM % 100 )  + 1 ))

Be sure to make it executable: chmod 700 sensors.sh.
The server is temperatureserver.go:

ch15$ vi temperatureserver.go

/* TemperatureServer
 */
package main

import (
        "fmt"
        "golang.org/x/net/websocket"
        "log"
        "net/http"
        "os/exec"
        "time"
)

var ROOT_DIR = "."

func GetTemp(ws *websocket.Conn) {
        for {
                msg, err := exec.Command(ROOT_DIR + "/sensors.sh").CombinedOutput()
                checkError(err)
                fmt.Println("Sending to client: " + string(msg[:]))
                err = websocket.Message.Send(ws, string(msg[:]))
                if err != nil {
                        fmt.Println("Can't send")
                        break
                }

Chapter 15 ■ WebSockets

https://github.com/lavoiesl/osx-cpu-temp


307

                time.Sleep(time.Duration(2) * time.Second)
                var reply string
                err = websocket.Message.Receive(ws, &reply)
                if err != nil {
                        fmt.Println("Can't receive")
                        break
                }
                fmt.Println("Received back from client: " + reply)
        }
}
func main() {
        fileServer := http.FileServer(http.Dir(ROOT_DIR))
        http.Handle("/GetTemp", websocket.Handler(GetTemp))
        http.Handle("/", fileServer)
        err := http.ListenAndServe(":12345", nil)
        checkError(err)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

It is run as follows:

ch15$ go run temperatureserver.go

The top-level HTML file to kick this off is websocket.html; be sure to copy this to the ROOT_DIR.

<!DOCTYPE HTML>
<html>
  <head>
    <script type="text/javascript">
      function WebSocketTest()
      {
        if ("WebSocket" in window)
        {
          alert("WebSocket is supported by your Browser!");
          // Let us open a web socket
          var ws = new WebSocket("ws://localhost:12345/GetTemp");
          ws.onopen = function()
          {
            alert("WS is opened...");
          };
          ws.onmessage = function (evt)
          {
            var received_msg = evt.data;
            // uncomment next line if you want to get alerts on each message
            //alert("Message is received..." + received_msg);
            document.getElementById("temp").innerHTML = "<pre>" + received_msg + "</pre>"
            ws.send("Message received")
          };

Chapter 15 ■ WebSockets



308

          ws.onclose = function()
          {
            // websocket is closed.
            alert("Connection is closed...");
          };
        }
        else
        {
          // The browser doesn't support WebSocket
          alert("WebSocket NOT supported by your Browser!");
        }
      }
    </script>
  </head>
  <body>
    <div id="temp">
      <a href="javascript:WebSocketTest()">Run temperature sensor</a>
    </div>
  </body>
</html>

In a browser, visit http://localhost:12345/websocket.html; click “Run temperature sensor” to see 
the temperature relayed.

The program uses JavaScript to open a WebSockets connection and to handle the onopen, 
onmessage, and onclose events. It reads and writes using evt.data and the send function. 
It presents the data in a preformatted element, exactly as the data before. It is refreshed 
every two seconds. The structure of the HTML document is based on HTML5 - WebSockets: 
https://www.tutorialspoint.com/html5/html5_websocket.htm.

�The github.com/gorilla/websocket Package
The alternative package for WebSockets functionality is the github.com/gorilla/websocket package.

�Echo Server
The echo server using this package is echoservergorilla.go. It makes the HTTP-to-WebSockets transition 
more explicit by introducing a call to a websocket.Upgrader object. It also more clearly distinguishes 
between sending text and binary messages.

ch15$ vi echoservergorilla.go

/* EchoServerGorilla
 */
package main

import (
        "fmt"
        "github.com/gorilla/websocket"
        "log"
        "net/http"

Chapter 15 ■ WebSockets

https://www.tutorialspoint.com/html5/html5_websocket.htm


309

)

var upgrader = websocket.Upgrader{
        ReadBufferSize:  1024,
        WriteBufferSize: 1024,
}

func Handler(w http.ResponseWriter, r *http.Request) {
        fmt.Println("Handling /")
        conn, err := upgrader.Upgrade(w, r, nil)
        if err != nil {
                fmt.Println(err)
                return
        }
        for n := 0; n < 10; n++ {
                msg := "Hello  " + string(n+48)
                fmt.Println("Sending to client: " + msg)
                err = conn.WriteMessage(websocket.TextMessage,
                        []byte(msg))
                _, reply, err := conn.ReadMessage()
                if err != nil {
                        fmt.Println("Can't receive")
                        break
                }
                fmt.Println("Received back from client: " +
                        string(reply[:]))
        }
        conn.Close()
}
func main() {
        http.HandleFunc("/", Handler)
        err := http.ListenAndServe("localhost:12345", nil)
        checkError(err)
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The server is run as follows:

ch15$ go mod init example.com/user/echoservergorilla # or skip and use existing module name
ch15$ go mod tidy
ch15$ go run echoservergorilla.go

Chapter 15 ■ WebSockets



310

�Echo Client
The echo client using this package is echoclientgorilla.go:

ch15% vi echoclientgorilla.go

/* EchoClientGorilla
 */
package main

import (
        "fmt"
        "github.com/gorilla/websocket"
        "io"
        "log"
        "net/http"
        "os"
)

func main() {
        if len(os.Args) != 2 {
                log.Fatalln("Usage: ", os.Args[0], "ws://host:port")
        }
        service := os.Args[1]
        header := make(http.Header)
        header.Add("Origin", "http://localhost:12345")
        conn, _, err := websocket.DefaultDialer.Dial(service, header)
        checkError(err)
        for {
                _, reply, err := conn.ReadMessage()
                if err != nil {
                        if err == io.EOF {
                                // graceful shutdown by server
                                fmt.Println(`EOF from server`)
                                break
                        }
                        if websocket.IsCloseError(err,
                                websocket.CloseAbnormalClosure) {
                                fmt.Println(`Close from server`)
                                break
                        }
                        fmt.Println("Couldn't receive msg " +
                                err.Error())
                        break
                }
                fmt.Println("Received from server: " +
                        string(reply[:]))
                // return the msg
                err = conn.WriteMessage(websocket.TextMessage, reply)
                if err != nil {

Chapter 15 ■ WebSockets



311

                        fmt.Println("Couldn't return msg")
                        break
                }
        }
}
func checkError(err error) {
        if err != nil {
                log.Fatalln("Fatal error ", err.Error())
        }
}

The client is run as follows:

ch15$ go run echoclientgorilla.go ws://localhost:12345

Received from server: Hello  0
...
Received from server: Hello  9
Close from server

Back on the server, we see

Handling /
Sending to client: Hello  0
Received back from client: Hello  0
Sending to client: Hello  1
...
Sending to client: Hello  9
Received back from client: Hello  9

�Conclusion
The WebSockets standard is an IETF RFC, so no major changes are anticipated. This will allow HTTP user 
agents and servers to set up bidirectional socket connections and should make certain interaction styles 
much easier. Go has support from these and additional WebSocket packages, such as https://pkg.go.dev/
nhooyr.io/websocket.

Chapter 15 ■ WebSockets

https://pkg.go.dev/nhooyr.io/websocket
https://pkg.go.dev/nhooyr.io/websocket


313
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_16

CHAPTER 16

Gorilla

The Go standard library and related “x” packages offer a lot of functionality that we can leverage to build a 
website. Go trends toward simpler coding styles if possible; simple doesn’t always mean easy though. Until 
you have enough experience in the domain (web development) and the implementation stack (Go/Web), 
it might be easier and/or better to use a toolkit that provides additional ease-of-use features. Gorilla is one 
such toolkit. We have already touched upon Gorilla with WebSockets; now we take a more focused look at its 
major offerings and in the end see what it did for us vs. a pure Go implementation.

Per the Gorilla website (https://www.gorillatoolkit.org/), these are the current packages. We will 
learn how to use some of them and explore how they integrate and extend the standard library.

•	 mux: Is a powerful URL router and dispatcher that is fully compatible with the 
default http.ServeMux

•	 reverse: Produces reversible regular expressions for regexp-based muxes

•	 rpc: Implements RPC over HTTP with codec for JSON-RPC

•	 schema: Converts form values to a struct

•	 securecookie: Encodes and decodes authenticated and optionally encrypted 
cookie values

•	 sessions: Saves cookie and filesystem sessions and allows custom session back ends

•	 websocket: Implements the WebSocket protocol defined in RFC 6455

•	 csrf: Provides Cross-Site Request Forgery (CSRF) prevention middleware

•	 handlers: Is a collection of useful handlers for Go’s net/http package

You may notice this is a top tool choice due to its well-thought-out architecture. Next, we discuss 
around the middleware pattern, which will guide how we integrate Gorilla.

�Middleware Pattern
Middleware is described as “software glue” per https://en.wikipedia.org/wiki/Middleware. Middleware 
for a web service allows us to wrap functionality around our application-specific code. These wrappers, in 
turn, can be chained. We do this to add functionality like logging and/or authentication instead of polluting 
our business logic. For example, there is no need to “log” an HTTP request in our client handling logic; it can 
(and should) be done outside of it (in another wrapper).

The basic middleware pattern looks like this:router -> middleware -> application

https://doi.org/10.1007/978-1-4842-8095-9_16#DOI
https://www.gorillatoolkit.org/
https://en.wikipedia.org/wiki/Middleware


314

We begin with a brief example and review of some of the built-in web functionality of Go. This will 
help us to understand how Gorilla integrates with our code (and Go stdlib) and what it offers beyond the 
standard library.

Go provides an HTTP client and server implementation via the net/http package. The package 
provides a “type Server” that works with a lower-level connection object and deserializes an HTTP request 
or serializes an HTTP response. That request is then handed to a type ServeMux. A ServeMux in turn does 
the routing for us (i.e., multiplexing). A default ServeMux is provided called DefaultServeMux. An interface 
called net.Handler is provided, this handler provides the methods used in dealing with the HTTP requests. 
As mentioned before, we can have more than one handler and chain these handlers together. It turns out 
that the ServeMux is also a Handler, meaning we can chain them as well.

We can now imagine a little deeper how Go itself is using the middleware pattern.

connection <-> Server <-> ServeMux <-> handler(s) <-> application functions

Let’s review the primary documentation going backward from Handler.

$ go doc http.Handler
package http // import "net/http"

type Handler interface {
    ServeHTTP(ResponseWriter, *Request)
}
    A Handler responds to an HTTP request.

    ServeHTTP should write reply headers and data to the ResponseWriter and then
    return. Returning signals that the request is finished; it is not valid to
    use the ResponseWriter or read from the Request.Body after or concurrently
    with the completion of the ServeHTTP call.

    Depending on the HTTP client software, HTTP protocol version, and any
    intermediaries between the client and the Go server, it may not be possible
    to read from the Request.Body after writing to the ResponseWriter. Cautious
    handlers should read the Request.Body first, and then reply.

    Except for reading the body, handlers should not modify the provided
    Request.

    If ServeHTTP panics, the server (the caller of ServeHTTP) assumes that the
    effect of the panic was isolated to the active request. It recovers the
    panic, logs a stack trace to the server error log, and either closes the
    network connection or sends an HTTP/2 RST_STREAM, depending on the HTTP
    protocol. To abort a handler so the client sees an interrupted response but
    the server doesn't log an error, panic with the value ErrAbortHandler.

func AllowQuerySemicolons(h Handler) Handler
func FileServer(root FileSystem) Handler
func MaxBytesHandler(h Handler, n int64) Handler
func NotFoundHandler() Handler
func RedirectHandler(url string, code int) Handler
func StripPrefix(prefix string, h Handler) Handler
func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler

Chapter 16 ■ Gorilla



315

For now, the critical parts revolve around Handler.ServeHTTP. This is where the request is passed into 
and ultimately responded to. Next, review the details of ServeMux and the relation to Handler.

$ go doc net/http ServeMux
package http // import "net/http"

type ServeMux struct {
    // Has unexported fields.
}
    ServeMux is an HTTP request multiplexer. It matches the URL of each incoming
    request against a list of registered patterns and calls the handler for the
    pattern that most closely matches the URL.

    Patterns name fixed, rooted paths, like "/favicon.ico", or rooted subtrees,
    like "/images/" (note the trailing slash). Longer patterns take precedence
    over shorter ones, so that if there are handlers registered for both
    "/images/" and "/images/thumbnails/", the latter handler will be called for
    paths beginning "/images/thumbnails/" and the former will receive requests
    for any other paths in the "/images/" subtree.

    Note that since a pattern ending in a slash names a rooted subtree, the
    pattern "/" matches all paths not matched by other registered patterns, not
    just the URL with Path == "/".

    If a subtree has been registered and a request is received naming the
    subtree root without its trailing slash, ServeMux redirects that request to
    the subtree root (adding the trailing slash). This behavior can be
    overridden with a separate registration for the path without the trailing
    slash. For example, registering "/images/" causes ServeMux to redirect a
    request for "/images" to "/images/", unless "/images" has been registered
    separately.

    Patterns may optionally begin with a host name, restricting matches to URLs
    on that host only. Host-specific patterns take precedence over general
    patterns, so that a handler might register for the two patterns
    "/codesearch" and "codesearch.google.com/" without also taking over requests
    for "http://www.google.com/".

    ServeMux also takes care of sanitizing the URL request path and the Host
    header, stripping the port number and redirecting any request containing .
    or .. elements or repeated slashes to an equivalent, cleaner URL.

func NewServeMux() *ServeMux
func (mux *ServeMux) Handle(pattern string, handler Handler)
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request))
func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string)
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request)

As you can see, ServeMux matches a given pattern and passes to the configured Handler, which in turn 
calls our business logic. Continuing to the left, let’s look at the abbreviated Server documentation.

Chapter 16 ■ Gorilla



316

$ go doc net/http.Server
package http // import "net/http"

type Server struct {
    // Addr optionally specifies the TCP address for the server to listen on,
    // in the form "host:port". If empty, ":http" (port 80) is used.
    // The service names are defined in RFC 6335 and assigned by IANA.
    // See net.Dial for details of the address format.
    Addr string

    Handler Handler // handler to invoke, http.DefaultServeMux if nil
...

While truncated, we can see right at the start, a Server holds a Handler, and based on the comment, it 
seems we have an instance of ServeMux called DefaultServeMux.

With the wiring in mind, we now look at some examples.

�Standard Library ServeMux Examples
Here, we demo potentially the simplest web service Go provides (at least in net/http package) and one that 
demonstrates the middleware pattern a little more clearly.

$ mkdir ch16
$ ch16
ch16$ vi simple.go

package main

import (
    "net/http"
    "fmt"
)

func main() {
    err := http.ListenAndServe(":8080",nil)
    fmt.Println(err)
}

Running the server “go run simple.go”, access via any method/path to localhost:8080 returns a 404.

ch16$ curl -v --head localhost:8080

*   Trying ::1:8080...
* Connected to localhost (::1) port 8080 (#0)
> HEAD / HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.77.0
> Accept: */*
>
* Mark bundle as not supporting multiuse

Chapter 16 ■ Gorilla



317

< HTTP/1.1 404 Not Found
HTTP/1.1 404 Not Found
< Content-Type: text/plain; charset=utf-8
Content-Type: text/plain; charset=utf-8
< X-Content-Type-Options: nosniff
X-Content-Type-Options: nosniff
< Date: Mon, 31 Jan 2022 00:43:57 GMT
Date: Mon, 31 Jan 2022 00:43:57 GMT
< Content-Length: 19
Content-Length: 19

<
* Connection #0 to host localhost left intact

What this implies is there is a default handler, returning a 404. Next, we try a GET request.

ch16$ curl -X GET localhost:8080/didthiswork

404 page not found

It turns out, under the hood, we already have a chain of handlers. The Server is calling the ServeMux 
ServeHTTP, which then calls NotFoundHandler. ServeMux supports the Handler interface via the 
ServeHTTP method. As an eagle eye observer, you may have noticed that in the preceding Handler 
documentation, NotFoundHandler is listed.

ch16$ go doc net/http NotFoundHandler

package http // import "net/http"

func NotFoundHandler() Handler
    NotFoundHandler returns a simple request handler that replies to each
    request with a "404 page not found" reply.

If you are adventurous, you can peek at the code to start to see how these are wired up.

ch16$ vi /usr/local/go/src/net/http/server.go

...
// NotFound replies to the request with an HTTP 404 not found error.
func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", 
StatusNotFound) }

// NotFoundHandler returns a simple request handler
// that replies to each request with a ``404 page not found'' reply.
func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
...

As you can see, the “NotFound” function is casted to a HandlerFunc (which proxies the ServeHTTP call 
to NotFound in our case). HandlerFunc is known as a function adapter in Go.

Chapter 16 ■ Gorilla



318

�Customizing Muxes
Our last example focusing on the standard library will show us how to manage multiple ServeMux instances. 
The goal in this example is to show how “registering” a new ServeMux can handle a subset of routes. Here, 
we have the “default” (DefaultServeMux) handling the route “/outermux”, while our new “inner” ServeMux 
will handle the deeper nested routes (e.g., “/outermux/innermux”).

ch16$ vi complex.go

package main

import (
    "net/http"
)

func main() {
    http.Handle("/outermux", http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        w.Write([]byte("/outermux"))
    }))

    inner := http.NewServeMux()

    �inner.Handle("/innermux/", http.HandlerFunc(func(w http.ResponseWriter, r *http.
Request) {

        w.Write([]byte("../innermux"))
    }))

    http.Handle("/outermux/innermux/", http.StripPrefix("/outermux", inner))

    http.ListenAndServe(":8080", nil)
}

As we exercise our tests in the following, take note of the requested path and the log generated. Per 
the preceding ServeMux documentation, take extra note on how you end the paths, with a trailing slash 
“/” or not.

ch16$ curl localhost:8080/outermux

/outermux

ch16$ curl localhost:8080/outermux/

404 page not found

ch16$ curl localhost:8080/outermux/innermux

<a href="/outermux/innermux/">Moved Permanently</a>.

ch16$ curl -iL localhost:8080/outermux/innermux

HTTP/1.1 301 Moved Permanently

Chapter 16 ■ Gorilla



319

Content-Type: text/html; charset=utf-8
Location: /outermux/innermux/
Date: Mon, 31 Jan 2022 01:16:24 GMT
Content-Length: 54

HTTP/1.1 200 OK
Date: Mon, 31 Jan 2022 01:16:24 GMT
Content-Length: 11
Content-Type: text/plain; charset=utf-8

../innermux

ch16$ curl -iL localhost:8080/outermux/innermux/

HTTP/1.1 200 OK
Date: Mon, 31 Jan 2022 01:16:28 GMT
Content-Length: 11
Content-Type: text/plain; charset=utf-8

../innermux

You may wonder what the final line is doing (http.ListenAndServe(":8080", nil)).
Specifically, what is “nil” doing? This is where we can override the default ServeMux. When you pass 

in nil, the “first” mux remains the precreated instance called DefaultServeMux used by type Serve. You can 
confirm these relations by reviewing the code here “GOROOT/src/net/http/server.go”.

�gorilla/mux
We begin our learning of Gorilla by looking at the mux package. The “mux” package is designed to work with 
the existing type Serve of the standard library.

ch16$ vi gmux.go

package main

import (
    "net/http"
    "github.com/gorilla/mux"
)

func buildHandler(message string) func(http.ResponseWriter, *http.Request) {
    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        w.Write([]byte(message))
    })
}

func main() {
    r := mux.NewRouter()
    r.HandleFunc("/", buildHandler("HomeHandler"))
    r.HandleFunc("/products", buildHandler("ProductsHandler"))

Chapter 16 ■ Gorilla



320

    r.HandleFunc("/articles", buildHandler("ArticlesHandler"))
    http.ListenAndServe(":8080", r)
}

Based on what we know, by overwriting the last parameter of ListenAndServe, we are setting 
overwriting the default ServeMux with our own (call Router in mux speak).

ch16$ go mod init ch16.example.com
ch16$ go mod tidy
ch16$ go run gmux.go

The tests that follow hopefully show not much has changed.

ch16$ curl localhost:8080/articles

ArticlesHandler

ch16$ curl localhost:8080/

HomeHandler

If we review the Router code, specifically its ServerHTTP method, we can confirm our route mapping is 
now handled by Gorilla mux.

~/ch16$ go doc --src mux Router.ServeHTTP

package mux // import "github.com/gorilla/mux"

// ServeHTTP dispatches the handler registered in the matched route.
//
// When there is a match, the route variables can be retrieved calling
// mux.Vars(request).
func (r *Router) ServeHTTP(w http.ResponseWriter, req *http.Request) {
    if !r.skipClean {
        path := req.URL.Path
        if r.useEncodedPath {
            path = req.URL.EscapedPath()
        }
        // Clean path to canonical form and redirect.
        if p := cleanPath(path); p != path {

            �// Added 3 lines (Philip Schlump) - It was dropping the query string and 
#whatever from query.

            // This matches with fix in go 1.2 r.c. 4 for same problem.  Go Issue:
            // http://code.google.com/p/go/issues/detail?id=5252
            url := *req.URL
            url.Path = p
            p = url.String()

            w.Header().Set("Location", p)
            w.WriteHeader(http.StatusMovedPermanently)

Chapter 16 ■ Gorilla



321

            return
        }
    }
    var match RouteMatch
    var handler http.Handler
    if r.Match(req, &match) {
        handler = match.Handler
        req = requestWithVars(req, match.Vars)
        req = requestWithRoute(req, match.Route)
    }

    if handler == nil && match.MatchErr == ErrMethodMismatch {
        handler = methodNotAllowedHandler()
    }

    if handler == nil {
        handler = http.NotFoundHandler()
    }

    handler.ServeHTTP(w, req)
}

�Why Should We Care
So far, it doesn’t seem we have added any value to the already-provided DefaultServeMux. Looks are 
deceiving though. Based on ServeMux documentation, we only seem to be provided with ways to easily 
parse the “path” to make a routing decision. Can we match a request based on other criteria (aside path), 
such as query parameters or HTTP headers? We have access to such things without Gorilla; what we don’t 
have is a structured way of using them

Requests can be matched based on the following criteria:

•	 URL host (example.com)

•	 Path (/about)

•	 Path prefix (/animals/cats)

•	 Schema (posted form values)

•	 HTTP headers (Content-Type: text/html; charset=UTF-8)

•	 Query values (?key=value&dog=cat)

•	 HTTP methods (GET /search?q=test HTTP/2)

•	 Custom matchers (a custom function)

One nice feature of Gorilla is the use of chaining to have several matching elements related. Here is an 
example of that, modifying our prior example using various matchers.

Chapter 16 ■ Gorilla



322

~/ch16$ vi gmux.go

package main

import (
        "github.com/gorilla/mux"
        "net/http"
)

func buildHandler(message string) func(http.ResponseWriter, *http.Request) {
        return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
                w.Write([]byte(message))
        })
}

func main() {
        r := mux.NewRouter()
        r.HandleFunc("/", buildHandler("HomeHandler"))
        r.HandleFunc("/products", buildHandler("ProductsHandler"))
        r.HandleFunc("/articles", buildHandler("ArticlesHandler")).Host("example.com").
Methods("GET").Schemes("http")
        http.ListenAndServe(":8080", r)
}

Run the server.~/ch16$ go run gmux.go

Now we exercise our new and existing routes; notice “/articles” is not limited to a particular domain, 
method, and scheme.

~/ch16$ curl --resolve example.com:8080:127.0.0.1 -IX GET http://example.com:8080/articles

HTTP/1.1 200 OK
Date: Mon, 07 Mar 2022 18:40:46 GMT
Content-Length: 15
Content-Type: text/plain; charset=utf-8

~/ch16$ curl --resolve example.com:8080:127.0.0.1 -IX POST http://example.com:8080/articles

HTTP/1.1 405 Method Not Allowed
Date: Mon, 07 Mar 2022 18:40:54 GMT
Content-Length: 0

~/ch16$ curl 127.0.0.1:8080/articles

404 page not found

~/ch16$

Chapter 16 ■ Gorilla



323

Here are examples from the official documentation:

•	 r.PathPrefix(“/products/”)

•	 r.Methods(“GET”, “POST”)

•	 r.Schemes(“https”)

•	 r.Headers(“X-Requested-With”, “XMLHttpRequest”)

•	 r.Queries(“key”, “value”)

•	 r.MatcherFunc(func(r *http.Request, rm *RouteMatch) bool { return 
r.ProtoMajor == 0 })

Again, we can accomplish all of this with the standard library (which many developers think you 
should), yet having a toolkit at the ready makes it an easy choice. There is much more to Gorilla mux. Our 
goal is to highlight the relation to the standard library and how it extends (additional functionality). You can 
learn more here: https://github.com/gorilla/mux.

�Gorilla Handlers
Gorilla provides a set of handlers in the “handlers” package. Sticking with the theme, ease of use, it includes 
the following handlers for us to use in our middleware chain.

Here are the official descriptions:

•	 LoggingHandler: For logging HTTP requests in the Apache Common Log Format

•	 CombinedLoggingHandler: For logging HTTP requests in the Apache Combined Log 
Format commonly used by both Apache and Nginx

•	 CompressHandler: For gzipping responses

•	 ContentTypeHandler: For validating requests against a list of accepted content types

•	 MethodHandler: For matching HTTP methods against handlers in a 
map[string]http.Handler

•	 ProxyHeaders: For populating r.RemoteAddr and r.URL.Scheme based on the 
X-Forwarded-For, X-Real-IP, X-Forwarded-Proto, and RFC7239 Forwarded headers 
when running a Go server behind an HTTP reverse proxy

•	 CanonicalHost: For redirecting to the preferred host when handling multiple 
domains (i.e., multiple CNAME aliases)

•	 RecoveryHandler: For recovering from unexpected panics

Let’s take a look at a couple of these, starting with the LoggingHandlers.

~/ch16$ go get github.com/gorilla/handlers

~/ch16$ go doc handlers.LoggingHandler

package handlers // import "github.com/gorilla/handlers"

func LoggingHandler(out io.Writer, h http.Handler) http.Handler
    LoggingHandler return a http.Handler that wraps h and logs requests to out
    in Apache Common Log Format (CLF).

Chapter 16 ■ Gorilla

https://github.com/gorilla/mux


324

    See http://httpd.apache.org/docs/2.2/logs.html#common for a description of
    this format.

    LoggingHandler always sets the ident field of the log to -

    Example:

        r := mux.NewRouter()
        r.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
            w.Write([]byte("This is a catch-all route"))
        })
        loggedRouter := handlers.LoggingHandler(os.Stdout, r)
        http.ListenAndServe(":1123", loggedRouter)

Let’s copy our original example adding this middleware.

~/ch16$ cat logging.go

package main

import (
        "github.com/gorilla/mux"
        "github.com/gorilla/handlers"
        "os"
        "net/http"
)

func buildHandler(message string) func(http.ResponseWriter, *http.Request) {
        return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
                w.Write([]byte(message))
        })
}

func main() {
        r := mux.NewRouter()
        r.HandleFunc("/", buildHandler("HomeHandler"))
        r.HandleFunc("/products", buildHandler("ProductsHandler"))
        �r.HandleFunc("/articles", buildHandler("ArticlesHandler")).Host("example.com").

Methods("GET").Schemes("http")
        loggedRouter := handlers.LoggingHandler(os.Stdout, r)
        http.ListenAndServe(":8080", loggedRouter)
}

Notice the chaining in the preceding code. Instead of passing the router object to ListenAndServe, 
we pass it to LoggingHandler, which chains it. We then use its result, a ServeMux satisfying object to 
ListenAndServe.

Chapter 16 ■ Gorilla



325

If you run the server and access from another terminal, you will see a request and response 
information logged.

~/ch16$ go run logging.go

~/ch16$ curl --resolve example.com:8080:127.0.0.1 -IX GET http://example.com:8080/articles

HTTP/1.1 200 OK
Date: Sun, 03 Apr 2022 04:38:07 GMT
Content-Length: 15
Content-Type: text/plain; charset=utf-8

Back on the server, we see127.0.0.1 - - [07/Mar/2022:19:04:20 +0000] "GET /articles 
HTTP/1.1" 200 15

This format is defined here: http://httpd.apache.org/docs/2.2/logs.html#common. You will notice 
we have another handler called CombinedLoggingHandler; this format is defined here: http://httpd.
apache.org/docs/2.2/logs.html#combined. Here is a brief comparison of the formats.

•	 Common – "%h %l %u %t \"%r\" %>s %b"

•	 Combined – "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-
agent}i\""

We now try an example of the ContentTypeHandler handler.

~/ch16$ go doc handlers.ContentTypeHandler

package handlers // import "github.com/gorilla/handlers"

func ContentTypeHandler(h http.Handler, contentTypes ...string) http.Handler
    ContentTypeHandler wraps and returns a http.Handler, validating the request
    content type is compatible with the contentTypes list. It writes a HTTP 415
    error if that fails.

    Only PUT, POST, and PATCH requests are considered.

Take note, it only works for a subset of HTTP methods (ones that create/update); others are 
passed through silently.~/ch16$ cat contenttype.go

package main

import (
        "github.com/gorilla/handlers"
        "github.com/gorilla/mux"
        "net/http"
)

func buildHandler(message string) func(http.ResponseWriter, *http.Request) {
        return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
                w.Write([]byte(message))
        })
}

Chapter 16 ■ Gorilla

http://httpd.apache.org/docs/2.2/logs.html#common
http://httpd.apache.org/docs/2.2/logs.html#combined
http://httpd.apache.org/docs/2.2/logs.html#combined


326

func main() {
        r := mux.NewRouter()
        r.HandleFunc("/", buildHandler("HomeHandler"))
        r.HandleFunc("/products", buildHandler("ProductsHandler"))
        �l := handlers.ContentTypeHandler(http.HandlerFunc(func(w http.ResponseWriter,  

r *http.Request) {
                w.Write([]byte("json articles only"))
        }), "application/json")
        r.Handle("/articles", l)
        http.ListenAndServe(":8080", r)
}

We can see for the “/articles” route, we want to make sure any data being uploaded has a json 
content type.

~/ch16$ go run contenttype.go

Here, we exercise the expected catching (validate “application/json” on POST) and where we ignore it.

~/ch16$ curl -IX POST -H 'Content-Type: application/json' 127.0.0.1:8080/articles

HTTP/1.1 200 OK
Date: Mon, 07 Mar 2022 19:28:04 GMT
Content-Length: 18
Content-Type: text/plain; charset=utf-8

~/ch16$ curl -IX POST -H 'Content-Type: application/xml' 127.0.0.1:8080/articles

HTTP/1.1 415 Unsupported Media Type
Content-Type: text/plain; charset=utf-8
X-Content-Type-Options: nosniff
Date: Mon, 07 Mar 2022 19:28:11 GMT
Content-Length: 81

~/ch16$ curl -IX GET -H 'Content-Type: application/xml' 127.0.0.1:8080/articles

HTTP/1.1 200 OK
Date: Mon, 07 Mar 2022 19:28:20 GMT
Content-Length: 18
Content-Type: text/plain; charset=utf-8

The handlers can be used per route, or all routes. Other handlers are available; review the 
documentation to see them: “go doc gorilla/handlers | grep ^func”.

�Additional Gorilla Examples
What remains is a sampling of Gorilla packages demoing their primary mechanics. For our purpose, we try 
to focus on how it compares or contrasts to the standard library offerings.

Chapter 16 ■ Gorilla



327

�gorilla/rpc
The json package of Gorilla provides us similar capabilites as what we learned in Chapter 13 about rpc 
leveraging JSON. We register our service, which in turn receives the HTTP request.

ch16$ vi rpc.go

package main

import (
    "github.com/gorilla/rpc"
    "github.com/gorilla/rpc/json"
    "net/http"
)

type HelloArgs struct {
    Who string
}

type HelloReply struct {
    Message string
}

type HelloService struct{}

func (h *HelloService) Say(r *http.Request, args *HelloArgs, reply *HelloReply) error {
    reply.Message = "Hello, " + args.Who + "!"
    return nil
}

func main() {
    s := rpc.NewServer()
    s.RegisterCodec(json.NewCodec(), "application/json")
    s.RegisterService(new(HelloService), "")
    http.Handle("/rpc", s)
    http.ListenAndServe(":8080", nil)
}

We launch the server.~/ch16$ go mod tidy
~/ch16$ go run rpc.go

From the client, we send our json-based payload to the proper endpoint.

~/ch16$ curl -X POST -H "Content-Type: application/json" \
-d '{"method":"HelloService.Say","params":[{"Who":"Test"}], "id":"1"}' \
http://localhost:8080/rpc

{"result":{"Message":"Hello, Test!"},"error":null,"id":"1"}

Chapter 16 ■ Gorilla

https://doi.org/10.1007/978-1-4842-8095-9_13


328

The Gorilla rpc package derives from the net/rpc package, with the noted differences.

~/ch16$ go doc gorilla/rpc

package rpc // import "github.com/gorilla/rpc"

Package gorilla/rpc is a foundation for RPC over HTTP services, providing
access to the exported methods of an object through HTTP requests.

This package derives from the standard net/rpc package but uses a single
HTTP request per call instead of persistent connections. Other differences
compared to net/rpc:

    - Multiple codecs can be registered in the same server.
    - A codec is chosen based on the "Content-Type" header from the request.
    - Service methods also receive http.Request as parameter.
    - This package can be used on Google App Engine.
...

While not in the documentation example, “other” codecs for XML, for example, have been created by 
third parties that leverage the Gorilla rpc package interface.

�gorilla/schema
The Gorilla schema package makes it easy to unmarshal fields from form into our struct. Here, we create a 
Person struct with two fields. Ultimately, we “submit” a form that contains those and fills them.

~/ch16$ cat schema.go

package main

import (
    "fmt"
    "github.com/gorilla/schema"
    "net/http"
)

var decoder = schema.NewDecoder()

type Person struct {
    Name  string
    Phone string
}

func main() {
    http.HandleFunc("/schema", func(res http.ResponseWriter, req *http.Request) {
        req.ParseMultipartForm(0)
        var person Person
        decoder.Decode(&person, req.PostForm)
        message := fmt.Sprintf("Hello %v from area %v", person.Name, person.Phone)

Chapter 16 ■ Gorilla



329

        res.Write([]byte(message))
    })

    http.ListenAndServe(":8080", nil)
}

Launch the server.~/ch16$ go mod tidy
~/ch16$ go run schema.go

Notice how curl fills in the Content-Type for us, “multipart/form-data” (HTML forms in a browser will 
fill the Content-Type as well).

~/ch16$ curl -sF "Name=Ron" -F "Phone=312" -v localhost:8080/schema && echo

*   Trying 127.0.0.1:8080...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> POST /schema HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.68.0
> Accept: */*
> Content-Length: 239
> Content-Type: multipart/form-data; boundary=------------------------0458a5d725c3c300
>
* We are completely uploaded and fine
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Date: Mon, 07 Mar 2022 21:57:45 GMT
< Content-Length: 23
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host localhost left intact
Hello Ron from area 312

�gorilla/securecookie
The securecookie documentation starts as follows:

~/ch16$ go doc securecookie

package securecookie // import "github.com/gorilla/securecookie"

Package securecookie encodes and decodes authenticated and optionally
encrypted cookie values.

Secure cookies can't be forged, because their values are validated using
HMAC. When encrypted, the content is also inaccessible to malicious eyes.
...

Chapter 16 ■ Gorilla



330

While debate rages on about the use of cookies, we simply show the creation and round trip back to the 
server. We do not concern ourselves about local storage (client side).

AES encryption is used under the hood; standard length block keys are supported (16, 24, 32 bytes). In 
our example, we set to nil; thus, we are not using encryption.

~/ch16$ cat securecookie.go

package main

import (
    "fmt"
    "github.com/gorilla/securecookie"
    "net/http"
)

var hashKey = []byte("very-secret")
var s = securecookie.New(hashKey, nil)

func SetCookieHandler(w http.ResponseWriter, r *http.Request) {
    value := map[string]string{
        "foo": "bar",
    }
    if encoded, err := s.Encode("cookie-name", value); err == nil {
        cookie := &http.Cookie{
            Name:  "cookie-name",
            Value: encoded,
            Path:  "/",
        }
        http.SetCookie(w, cookie)

        fmt.Println(cookie)
    }
}

func ReadCookieHandler(w http.ResponseWriter, r *http.Request) {
    if cookie, err := r.Cookie("cookie-name"); err == nil {
        value := make(map[string]string)
        fmt.Println(cookie.Value)
        if err = s.Decode("cookie-name", cookie.Value, &value); err == nil {
            fmt.Fprintf(w, "The value of foo is %q", value["foo"])
        }

        fmt.Println(cookie, err)
    }

}

func main() {
    http.HandleFunc("/set", SetCookieHandler)
    http.HandleFunc("/read", ReadCookieHandler)
    http.ListenAndServe(":8080", nil)
}

Chapter 16 ■ Gorilla



331

Launch the server.~/ch16$ go mod tidy
~/ch16$ go run securecookie.go

The "/set" endpoint will simply create our cookie.~/ch16$ curl -I localhost:8080/set

HTTP/1.1 200 OK
Set-Cookie: cookie-name=MTY0NjY5MDU3MXxEdi1CQkFFQ180SUFBUXdCREFBQURQLUNBQUVEWm05dkEySmhjZz09
fMds29irowo8h_9MByVigjT1qh0t7hnvAHprwtX9nc1h; Path=/
Date: Mon, 07 Mar 2022 22:02:51 GMT

To confirm it was received, we send back our encoded cookie (be sure to use yours previously).

~/ch16$ curl -b "cookie-name=MTY0NjY5MDU3MXxEdi1CQkFFQ180SUFBUXdCREFBQURQLUNBQUVEWm05dkEyS
mhjZz09fMds29irowo8h_9MByVigjT1qh0t7hnvAHprwtX9nc1h" localhost:8080/read && echo
The value of foo is "bar"

�Conclusion
The name “Gorilla” starts with Go and brings attention to endangered primates. As time goes on, Gorilla is 
not the only toolkit in the jungle, yet it remains in the conversation. We did not cover all the packages here, 
but hopefully this gives you some insight into how the standard library is extended.

Chapter 16 ■ Gorilla



333
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9_17

CHAPTER 17

Testing

In this chapter, we will look at ways and examples of testing network-related code. Using unit and integration 
testing techniques, we strive to capture the known and expected behavior. A unit test should ideally avoid all 
external factors. For example, a test that leverages the network is most accurately described as an integration 
test. The network (being external) to our code may exert undo influence such as delays or limiting payload 
size. It is not always easy to know how to design a test, much less how to separate and reduce outside 
influences. Having many unknown or controlled internal mechanisms can lead to flaky tests, ones that 
randomly seem to fail.

This chapter is not about learning the basics of Go test tooling. Excellent resources for the basics exist, 
for example:

•	 https://pkg.go.dev/testing

•	 https://quii.gitbook.io/learn-go-with-tests/

•	 go doc testing

Our goal is to learn some techniques that help us design and manage network-related tests.

�Simple and Broken
We begin with a simple set of tests, where both tests are sending a request and then confirming we get a 
response. The only difference is one test has a client that times out and the other does not. In both tests, the 
server fakes work by sleeping for five seconds in both tests. We will run each test individually, then as a suite, 
reviewing the results.

$ mkdir ch17
$ cd ch17

ch17$ vi basic_http_test.go

package ch17

import (
    "net/http"
    "testing"
    "time"
)

https://doi.org/10.1007/978-1-4842-8095-9_17#DOI
https://pkg.go.dev/testing
https://quii.gitbook.io/learn-go-with-tests/


334

func TestHTTPRoundTrip(t *testing.T) {
    path := "/"
    c := make(chan struct{})
    //server
    go func() {
        http.HandleFunc(path, func(w http.ResponseWriter, req *http.Request) {
            time.Sleep(5 * time.Second) // holding connection
        })
        http.ListenAndServe(":8080", nil)
    }()

    //client
    go func() {
        resp, err := http.Get("http://localhost:8080" + path)
        if err != nil {
            t.Error(err)
        } else {
            if resp == nil || resp.StatusCode != http.StatusOK {
                t.Error(resp)
            }
        }

        defer func() {
            c <- struct{}{}
        }()
    }()
    <-c
}

func TestHTTPRoundTripTimeout(t *testing.T) {
    path := "/"
    c := make(chan struct{})
    //server
    go func() {
        http.HandleFunc(path, func(w http.ResponseWriter, req *http.Request) {
            time.Sleep(5 * time.Second) // holding connection
        })
        http.ListenAndServe(":8080", nil)
    }()

    //client
    go func() {
        var client = &http.Client{
            Timeout: time.Second * 2,
        }
        resp, err := client.Get("http://localhost:8080" + path)
        if err != nil {
            t.Error(err)
        } else {
            if resp == nil || resp.StatusCode != http.StatusOK {

Chapter 17 ■ Testing



335

                t.Error(resp)
            }
        }

        defer func() {
            c <- struct{}{}
        }()
    }()
    <-c
}

We begin by running the first test:

ch17$ go test -test.run "TestHTTPRoundTrip$" basic_http_test.go

=== RUN   TestHTTPRoundTrip
--- PASS: TestHTTPRoundTrip (5.00s)
PASS
ok      command-line-arguments  5.132s

and now the second test:

ch17$ go test -test.run "TestHTTPRoundTripTimeout$" basic_http_test.go

--- FAIL: TestHTTPRoundTripTimeout (2.00s)
    basic_http_test.go:56: Get "http://localhost:8080/": context deadline exceeded (Client.
Timeout exceeded while awaiting headers)
FAIL
FAIL    command-line-arguments  2.131s
FAIL

Upon reading the tests, it may seem obvious that the second test was going to fail. The client is set to 
expire after two seconds where the server is taking five seconds to process. An untrained eye might miss 
the reason for these related tests. The default HTTP client has an unlimited timeout. In our case, the server 
in the first test could take double the time and the test would still pass. This is not specific to Go, but it is 
specific to this implementation of the Go HTTP client. What happens if we simply run both tests.

ch17$ go test basic_http_test.go

panic: http: multiple registrations for /

goroutine 31 [running]:
net/http.(*ServeMux).Handle(0x1529fa0, {0x137fe80, 0x1}, {0x1381c00?, 0x132fee0})
    /usr/local/go/src/net/http/server.go:2478 +0x226
net/http.(*ServeMux).HandleFunc(...)
    /usr/local/go/src/net/http/server.go:2515
net/http.HandleFunc(...)
    /usr/local/go/src/net/http/server.go:2527
command-line-arguments.TestHTTPRoundTripTimeout.func1()
    /Users/ronaldpetty/github.com/apress/network-prog-with-go-2e/ch17/basic_http_test.
go:43 +0x37

Chapter 17 ■ Testing



336

created by command-line-arguments.TestHTTPRoundTripTimeout
    /Users/ronaldpetty/github.com/apress/network-prog-with-go-2e/ch17/basic_http_test.
go:42 +0x5e
FAIL    command-line-arguments  5.225s
FAIL

This error is exposing a test antipattern, where the tests are not independent of each other. Like the 
prior run, this also exposes some of the implementation details. The default ServeMux has a default handler; 
per code at server.go:2478, we are not allowed to remap the path.

We can see there a few things to consider including the following:

•	 What are we actually trying to test?

•	 Are we adhering to good testing practices (i.e., test independence)?

•	 Are we correct and performant?

How can we solve the preceding issue? As we saw in an earlier chapter, we could make a new "mux" 
per test. Another approach could be to set up all the test routes before the running of the tests. More 
fundamentally though, we should consider what exactly are we testing. For example, are we testing that the 
server listens? Or are we testing that our Handler provides the correct response based on a provided request? 
After all, if we consider the OSI model of thinking, HTTP is where our request/response protocol lives (L7), 
where TCP/IP maintains our connection (L4 and below). Since the layers can be decoupled, we should be 
able to decouple our tests. Even with this separation in mind, it’s not immediately clear where the pieces will 
be tested (i.e., unit or integration). Thinking about the handler mappings, are those something you unit test, 
or is that something worthy of an integration test? After all, the handler isn't even triggered unless the given 
path was used.

As you can see, how we think about the network components can lead to potentially different testing 
arrangements. We should also remember that tests run out of order. While it seems tests run top to bottom, 
that is an implementation side effect and not a specified behavior in the testing package.

As we refactor, we will first look at what Go provides regarding testing helpers.

�httptest Package
The httptest package provides functions and types to assist with HTTP focused testing.

ch17$ go doc httptest

package httptest // import "net/http/httptest"

Package httptest provides utilities for HTTP testing.

const DefaultRemoteAddr = "1.2.3.4"
func NewRequest(method, target string, body io.Reader) *http.Request
type ResponseRecorder struct{ ... }
    func NewRecorder() *ResponseRecorder
type Server struct{ ... }
    func NewServer(handler http.Handler) *Server
    func NewTLSServer(handler http.Handler) *Server
    func NewUnstartedServer(handler http.Handler) *Server

Chapter 17 ■ Testing



337

Let’s create a new test, one that is similar to our prior ones yet does not actually connect to a server. To 
save room, we will not list the existing tests.
ch17$ vi basic_http_test.go
package ch17

import (
        "net/http"
        "net/http/httptest"
        "testing"
        "time"
)

func TestHTTPRoundTripNoConnection(t *testing.T) {
        path := "/"
        req := httptest.NewRequest("GET", path, nil)
        res := httptest.NewRecorder()

        f := func(w http.ResponseWriter, req *http.Request) {
                time.Sleep(5 * time.Second) // holding connection
        }

        f(res, req)

        if res == nil || res.Result().StatusCode != http.StatusOK {
                t.Error(res)
        }
}

func TestHTTPRoundTrip(t *testing.T) {
    ...

func TestHTTPRoundTripTimeout(t *testing.T) {
    ...

We have made a few changes but capture our request, response, and the related assertion. Things to 
notice: we have removed the server (i.e., http.ListenAndServe); the path to handler mapping remains, but it 
is explicit inside httptest.NewRequest vs. http.HandleFunc. Since we are using a new package (i.e., httptest), 
we had to modify the result check in order to more closely match an actual response.

Our call to httptest.NewRecorder returns a new httptest.ResponseRecorder type, which in turn 
implements the http.ResponseWriter interface. This allows an http.Response to be indirectly populated. The 
result though is not fit for a deep comparison (i.e., reflect.DeepEqual).

Beyond a handler, how can we test the client and a mocked back end? The httptest package provides the 
ability to also create a test server endpoint.

ch17$ vi basic_http_test.go

... other tests and imports

func TestHTTPTestRoundTripTimeout(t *testing.T) {
        ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, req *http.
Request) {

Chapter 17 ■ Testing



338

                time.Sleep(5 * time.Second) // holding connection
        }))
        defer ts.Close()

        var c = &http.Client{
                Timeout: time.Second * 2,
        }
        req, _ := http.NewRequest("GET", ts.URL, nil)
        res, err := c.Do(req)
        if err != nil {
                t.Fatal(err)
        }

        err = res.Body.Close()
        if err != nil {
                t.Fatal(err)
        }

}

We can run this test as follows:

ch17$ go test -test.run "TestHTTPTestRoundTripTimeout$" -v basic_http_test.go

=== RUN   TestHTTPTestRoundTripTimeout
    basic_http_test.go:68: Get "http://127.0.0.1:50866": context deadline exceeded (Client.
Timeout exceeded while awaiting headers)
--- FAIL: TestHTTPTestRoundTripTimeout (5.00s)
FAIL
FAIL    command-line-arguments  5.155s
FAIL

In these particular examples, you would not want the actual tests to fail. You would want to fix the 
pathing (to be unique) and the timeouts to only trigger an error if it was unexpected.

�Below HTTP
The preceding tooling focused on HTTP. Is there a more general technique? Included in the net package is 
type Pipe.

ch17$ go doc net.Pipe

package net // import "net"

func Pipe() (Conn, Conn)
    Pipe creates a synchronous, in-memory, full duplex network connection; both
    ends implement the Conn interface. Reads on one end are matched with writes
    on the other, copying data directly between the two; there is no internal
    buffering.

Chapter 17 ■ Testing



339

As is mentioned, we are provided connection objects that act like a more general client and server.
... prior tests and imports

func TestPipe(t *testing.T) {
        c := make(chan struct{})
        server, client := net.Pipe()
        go func() {
                time.Sleep(2 * time.Second)
                req := make([]byte, 15)
                server.SetDeadline(time.Now().Add(1 * time.Second))
                _, err := server.Read(req)
                t.Log(string(req))
                if err != nil {
                        t.Error(err)
                }
                defer func() {
                        server.Close()
                        c <- struct{}{}
                }()
        }()
        client.SetDeadline(time.Now().Add(1 * time.Second))
        _, err := client.Write([]byte("my http request"))
        if err != nil {
                t.Error(err)
        }
        defer func() {
                client.Close()
        }()
        <-c
}

In the preceding example, we are trying to emulate some of the failure behavior we saw with 
HTTP-related timeouts.ch17$ go test -test.run "TestPipe$" -v basic_http_test.go

=== RUN   TestPipe
    basic_http_test.go:131: write pipe: i/o timeout
    basic_http_test.go:119:
    basic_http_test.go:121: read pipe: i/o timeout
--- FAIL: TestPipe (3.00s)
FAIL
FAIL    command-line-arguments  3.137s
FAIL

Take note, we are operating at a lower layer than HTTP (i.e., L7). For the most part, this implies we will 
need to take care of our request and responses vs. leveraging existing higher-level types like http.Request or 
http.Response.

Chapter 17 ■ Testing



340

�Leveraging the Standard Library
The Internet is full of examples, and so is the Go standard library. In this section, we will look at a couple of 
existing tests, with the intent to focus on the style and (required) complexity.

ch17$ go test -test.count=1 -v -test.list ".*" $(go env GOROOT)/src/net/...  | head

TestSortByRFC6724
TestRFC6724PolicyTableClassify
TestRFC6724ClassifyScope
TestRFC6724CommonPrefixLength
TestCgoLookupIP
TestCgoLookupIPWithCancel
TestCgoLookupPort
TestCgoLookupPortWithCancel
TestCgoLookupPTR
TestCgoLookupPTRWithCancel

There are several thousand tests, most with no documentation. We first take a look at

$(go env GOROOT)/src/net/http/requestwrite_test.go

Let’s attempt to run the related tests (start with TestRequestWrite).

ch17$ cd $(go env GOROOT)/src/net/http
http$ go test -test.count=1 -v -test.run "TestRequestWrite*"

=== RUN   TestRequestWrite
--- PASS: TestRequestWrite (0.00s)
=== RUN   TestRequestWriteTransport
=== PAUSE TestRequestWriteTransport
=== RUN   TestRequestWriteClosesBody
--- PASS: TestRequestWriteClosesBody (0.00s)
=== RUN   TestRequestWriteError
--- PASS: TestRequestWriteError (0.00s)
=== RUN   TestRequestWriteBufferedWriter
--- PASS: TestRequestWriteBufferedWriter (0.00s)
=== CONT  TestRequestWriteTransport
--- PASS: TestRequestWriteTransport (0.20s)
PASS
ok      net/http    0.363s

It’s nice that we can run the provided tests and even modify them to test things out (but be careful, 
make backups).

If you open requestwrite_test.go (e.g., sudo vi $(go env GOROOT)/src/net/http/requestwrite_test.go), 
notice the structure of the test table; here, we list the first entry.

// from requestwrite_test.go
...
type reqWriteTest struct {
        Req  Request

Chapter 17 ■ Testing



341

        Body any // optional []byte or func() io.ReadCloser to populate Req.Body

        // Any of these three may be empty to skip that test.
        WantWrite string // Request.Write
        WantProxy string // Request.WriteProxy

        WantError error // wanted error from Request.Write
}

var reqWriteTests = []reqWriteTest{
        // HTTP/1.1 => chunked coding; no body; no trailer
        0: {
                Req: Request{
                        Method: "GET",
                        URL: &url.URL{
                                Scheme: "http",
                                Host:   "www.techcrunch.com",
                                Path:   "/",
                        },
                        Proto:      "HTTP/1.1",
                        ProtoMajor: 1,
                        ProtoMinor: 1,
                        Header: Header{
                                �"Accept":           {"text/html,application/

xhtml+xml,application/xml;q=0.9,*/*;q=0.8"},
                                "Accept-Charset":   {"ISO-8859-1,utf-8;q=0.7,*;q=0.7"},
                                "Accept-Encoding":  {"gzip,deflate"},
                                "Accept-Language":  {"en-us,en;q=0.5"},
                                "Keep-Alive":       {"300"},
                                "Proxy-Connection": {"keep-alive"},
                                "User-Agent":       {"Fake"},
                        },
                        Body:  nil,
                        Close: false,
                        Host:  "www.techcrunch.com",
                        Form:  map[string][]string{},
                },

                WantWrite: "GET / HTTP/1.1\r\n" +
                        "Host: www.techcrunch.com\r\n" +
                        "User-Agent: Fake\r\n" +
                        �"Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8\r\n" +
                        "Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n" +
                        "Accept-Encoding: gzip,deflate\r\n" +
                        "Accept-Language: en-us,en;q=0.5\r\n" +
                        "Keep-Alive: 300\r\n" +
                        "Proxy-Connection: keep-alive\r\n\r\n",
                
                WantProxy: "GET http://www.techcrunch.com/ HTTP/1.1\r\n" +
                        "Host: www.techcrunch.com\r\n" +

Chapter 17 ■ Testing



342

                        "User-Agent: Fake\r\n" +
                        �"Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8\r\n" +
                        "Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n" +
                        "Accept-Encoding: gzip,deflate\r\n" +
                        "Accept-Language: en-us,en;q=0.5\r\n" +
                        "Keep-Alive: 300\r\n" +
                        "Proxy-Connection: keep-alive\r\n\r\n",
        },
        // HTTP/1.1 => chunked coding; body; empty trailer
        1: {
...            

As with many tests in Go, we see a very long testing table. We have a Request instance (Req) along with 
a very similar stringified result (WantWrite and WantProxy). Before we dive in, let’s review one of the tests.

// from requestwrite_test.go
...
func TestRequestWrite(t *testing.T) {
        for i := range reqWriteTests {
                tt := &reqWriteTests[i]

                setBody := func() {
                        if tt.Body == nil {
                                return
                        }
                        switch b := tt.Body.(type) {
                        case []byte:
                                tt.Req.Body = io.NopCloser(bytes.NewReader(b))
                        case func() io.ReadCloser:
                                tt.Req.Body = b()
                        }
                }
                setBody()
                if tt.Req.Header == nil {
                        tt.Req.Header = make(Header)
                }

                var braw bytes.Buffer
                err := tt.Req.Write(&braw)
                if g, e := fmt.Sprintf("%v", err), fmt.Sprintf("%v", tt.WantError); g != e {
                        t.Errorf("writing #%d, err = %q, want %q", i, g, e)
                        continue
                }
                if err != nil {
                        continue
                }

                if tt.WantWrite != "" {
                        sraw := braw.String()
                        if sraw != tt.WantWrite {

Chapter 17 ■ Testing



343

                                �t.Errorf("Test %d, expecting:\n%s\nGot:\n%s\n", i, 
tt.WantWrite, sraw)

                                continue
                        }
                }

                if tt.WantProxy != "" {
                        setBody()
                        var praw bytes.Buffer
                        err = tt.Req.WriteProxy(&praw)
                        if err != nil {
                                t.Errorf("WriteProxy #%d: %s", i, err)
                                continue
                        }
                        sraw := praw.String()
                        if sraw != tt.WantProxy {
                                �t.Errorf("Test Proxy %d, expecting:\n%s\nGot:\n%s\n", i, 

tt.WantProxy, sraw)
                                continue
                        }
                }
        }
}
...

That is a fair bit of code. What is it doing? Here is a list of activities:

•	 Enumerate the test table (reqWriteTests).

•	 Set up a real Request object with headers and body.

•	 Serialize the Request object (sraw) and compare with WantWrite or WantProxy.

Some additional items to note are

•	 io.NopCloser

The NopCloser is an example of a function that reduces functionality, in this case, prevent the closing of 
a resource.

http$ go doc -u -all io.nopCloser

package io // import "io"

func NopCloser(r Reader) ReadCloser
    NopCloser returns a ReadCloser with a no-op Close method wrapping the
    provided Reader r.

type nopCloser struct {
    Reader
}

func (nopCloser) Close() error

Chapter 17 ■ Testing



344

•	 tt.Req.Write and tt.Req.WriteProxy

If we review the related documentation for these methods:

http$ go doc net/http.Request.Write

package http // import "net/http"

func (r *Request) Write(w io.Writer) error
    Write writes an HTTP/1.1 request, which is the header and body, in wire
    format. This method consults the following fields of the request:

        Host
        URL
        Method (defaults to "GET")
        Header
        ContentLength
        TransferEncoding
        Body

    If Body is present, Content-Length is <= 0 and TransferEncoding hasn't been
    set to "identity", Write adds "Transfer-Encoding: chunked" to the header.
    Body is closed after it is sent.

http$ go doc net/http.Request.WriteProxy

package http // import "net/http"

func (r *Request) WriteProxy(w io.Writer) error
    WriteProxy is like Write but writes the request in the form expected by an
    HTTP proxy. In particular, WriteProxy writes the initial Request-URI line of
    the request with an absolute URI, per section 5.3 of RFC 7230, including the
    scheme and host. In either case, WriteProxy also writes a Host header, using
    either r.Host or r.URL.Host.

We see both methods take a Writer, and both serialize the Request object in slightly different ways based 
on their utility. We won't inspect the differences here, but it gives us an idea on how to approach our own 
testing.

We next review the test in the net package: TestTCPConnSpecificMethods.

// from protoconn_test.go
...
func TestTCPConnSpecificMethods(t *testing.T) {
        la, err := ResolveTCPAddr("tcp4", "127.0.0.1:0")
        if err != nil {
                t.Fatal(err)
        }
        ln, err := ListenTCP("tcp4", la)
        if err != nil {
                t.Fatal(err)
        }
        ch := make(chan error, 1)

Chapter 17 ■ Testing



345

        handler := func(ls *localServer, ln Listener) { ls.transponder(ls.Listener, ch) }
        ls := (&streamListener{Listener: ln}).newLocalServer()
        defer ls.teardown()
        if err := ls.buildup(handler); err != nil {
                t.Fatal(err)
        }

        ra, err := ResolveTCPAddr("tcp4", ls.Listener.Addr().String())
        if err != nil {
                t.Fatal(err)
        }
        c, err := DialTCP("tcp4", nil, ra)
        if err != nil {
                t.Fatal(err)
        }
        defer c.Close()
        c.SetKeepAlive(false)
        c.SetKeepAlivePeriod(3 * time.Second)
        c.SetLinger(0)
        c.SetNoDelay(false)
        c.LocalAddr()
        c.RemoteAddr()
        c.SetDeadline(time.Now().Add(someTimeout))
        c.SetReadDeadline(time.Now().Add(someTimeout))
        c.SetWriteDeadline(time.Now().Add(someTimeout))
        if _, err := c.Write([]byte("TCPCONN TEST")); err != nil {
                t.Fatal(err)
        }
        rb := make([]byte, 128)
        if _, err := c.Read(rb); err != nil {
                t.Fatal(err)
        }

        for err := range ch {
                t.Error(err)
        }
}
...

The test itself is focused on setting a variety of client connection-related options, then uses the client, 
and in turn hopes nothing goes wrong. From our point of view, we are interested in how they wrote the test 
itself. We are down in the L3/L4 layers of the stack. At a high level, here is what is happening:

•	 Preparing and validating a known IP Address (i.e., 127.0.0.1) and port (:0)

•	 Create a TCP-based Listener.

•	 Launch the server (more to follow).

•	 Retrieve the IP and assigned port of the server.

•	 Create a client using the remote address.

Chapter 17 ■ Testing



346

•	 Configure client.

•	 Write data from client to server and then read the result.

Running the TestTCPConnSpecificMethods test, we see the following:

net$ go test -test.count=1 -v -test.run "TestTCPConnSpecificMethods$"

=== RUN   TestTCPConnSpecificMethods
--- PASS: TestTCPConnSpecificMethods (0.00s)
PASS
Socket statistical information:
(inet4, stream, default): opened=2 connected=1 listened=1 accepted=1 closed=3 openfailed=0 
connectfailed=1 listenfailed=0 acceptfailed=1 closefailed=0

ok      net 0.210s

The middle of the test looks more complicated than what we have seen before.

        ch := make(chan error, 1)
        handler := func(ls *localServer, ln Listener) { ls.transponder(ls.Listener, ch) }
        ls := (&streamListener{Listener: ln}).newLocalServer()
        defer ls.teardown()
        if err := ls.buildup(handler); err != nil {
                t.Fatal(err)
        }

The preceding code is defined elsewhere: mockserver_test.go. The call to buildup runs the handler code 
in a Go routine. At a high level, Accept is run in the transponder, so why not just a “nonmock” setup? Upon 
further review, you see "someTimeout" being applied to most timeout-related settings (i.e., SetDeadline). 
Interesting enough, since the code lives in a file ending with "_test.go", we cannot review it via “go doc”.

Review $(go env GOROOT)/src/net/mockserver_test.go for more details.

�Conclusion
This chapter was intended to get you thinking about the techniques and layers involved when testing 
network related code. Additional concepts and tooling are needed to become expert network test 
developers. For example, how can fuzzing or generics help secure and streamline our code. What should we 
consider when integration tests get more complicated, for example where we chain several network services 
together, even when the protocol changes along the way.

Chapter 17 ■ Testing



347
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9

�APPENDIX A

Fuzzing

Fuzzing is a technique where one automatically generates inputs, which in turn causes the receiving 
program to respond in some unexpected way. How a fuzzing program manipulates inputs is often classified 
from simple to complex. For example, the inputs could simply be randomly generated, or you can provide an 
initial set of values, or even more complex fuzzing systems can be rule driven (including deriving new rules 
that generate potential values). Due to time constraints, sometimes lack of creativity, it’s hard to know how 
our code will fail; letting the computer (fuzzer) drive this testing process allows us to find new ways to break 
our code (bugs, vulnerabilities).

Wikipedia offers a nice introduction on the topic (https://en.wikipedia.org/wiki/Fuzzing).

�Fuzzing in Go
Third-party fuzzing software has been around for a long time (even for Go), but in Go 1.18, the technique 
was integrated into the testing package. You can read the original (draft) proposal here:

•	 https://go.googlesource.com/proposal/+/master/design/draft-fuzzing.md

and more in-depth conversation here:

•	 https://github.com/golang/go/issues/44551

The goal for us is to learn the basic mechanics of using Go’s fuzzing functionality and tie it back to a 
networking test example.

Before we look at code, take some time to review the initial documentation via “go doc testing.F”. Our 
first example leverages the documentation example. As you read through the example:

•	 Note how testing.F is used along with testing.T.

•	 Note the use of seed data (more on this later).

•	 Think about the actual test, is it a regular looking unit test (yes!).

Before creating the first example, consider what fuzzing in Go requires us to do.

•	 A fuzz test must be named like FuzzXxx and only accepts *testing.F, no return value.

•	 Fuzz tests must be in files named *_test.go, like any test in Go.

•	 A fuzz target must be a method call to (*testing.F).Fuzz, which accepts a *testing.T as 
the first parameter, followed by the fuzzing arguments. There is no return value.

•	 There must be exactly one fuzz target per fuzz test.

https://doi.org/10.1007/978-1-4842-8095-9#DOI
https://en.wikipedia.org/wiki/Fuzzing
https://go.googlesource.com/proposal/+/master/design/draft-fuzzing.md
https://github.com/golang/go/issues/44551


348

•	 All seed corpus entries must have types that are identical to the arguments being 
fuzzed, in the same order. This is true for calls to (*testing.F).Add and any corpus files 
in the testdata/fuzz directory of the fuzz test.

•	 The fuzzing arguments can only be the following types:

•	 string, []byte

•	 int, int8, int16, int32/rune, int64

•	 uint, uint8/byte, uint16, uint32, uint64

•	 float32, float64

•	 bool

$ mkdir appx-fuzzing
$ cd appx-fuzzing

appx-fuzzing$ vi fuzzing_test.go

package main

import (
    "bytes"
    "encoding/hex"
    "testing"
)

func FuzzMe(f *testing.F) {
    for _, seed := range [][]byte{{}, {0}, {9}, {0xa}, {0xf}, {1, 2, 3, 4}} {
        f.Add(seed)
    }

        // the fuzz runner f leverages the test runner t,
        // this is so the fuzzer can manage the tests, it generates (or uses seed) inputs
    // calling the passed in test
    f.Fuzz(func(t *testing.T, in []byte) {
        enc := hex.EncodeToString(in)
        out, err := hex.DecodeString(enc)
        if err != nil {
            t.Fatalf("%v: decode: %v", in, err)
        }
        if !bytes.Equal(in, out) {
            t.Fatalf("%v: not equal after round trip: %v", in, out)
        }
    })
}

Appendix A ■ Fuzzing



349

To run the embedded seed corpus we simply use the regular test runner.

appx-fuzzing$ go test fuzzing_test.go

ok      command-line-arguments        0.103s

To see more details, use -v.

appx-fuzzing$ go test -v fuzzing_test.go

=== RUN   FuzzMe
=== RUN   FuzzMe/seed#0
=== RUN   FuzzMe/seed#1
=== RUN   FuzzMe/seed#2
=== RUN   FuzzMe/seed#3
=== RUN   FuzzMe/seed#4
=== RUN   FuzzMe/seed#5
--- PASS: FuzzMe (0.00s)
    --- PASS: FuzzMe/seed#0 (0.00s)
    --- PASS: FuzzMe/seed#1 (0.00s)
    --- PASS: FuzzMe/seed#2 (0.00s)
    --- PASS: FuzzMe/seed#3 (0.00s)
    --- PASS: FuzzMe/seed#4 (0.00s)
    --- PASS: FuzzMe/seed#5 (0.00s)
PASS
ok      command-line-arguments  0.105s

As you can see, we have six runs executed; this maps to the number of seeds included via “f.Add(seed)”. 
By including seeds, we are afforded the opportunity to have regression protection, just like a typical unit test. 
The mode of execution happened because it did not specify the test to fuzz. An alternative way to execute the 
same thing (using seeded vs. generated data) is “go test -v --test.run “FuzzMe” fuzzing_test.go”.

While regression protection is important, we haven’t actually fuzzed anything, simply ran our basic 
comparisons. To Fuzz, we need to specify our test. To generate new results (a.k.a. bad inputs caught by 
fuzzing), specify the test (grab a drink; it’s going to be a long time – if ever – to complete). When you are tired 
of waiting, hit control c.

appx-fuzzing$ go test -fuzz=FuzzMe fuzzing_test.go

=== FUZZ  FuzzMe
fuzz: elapsed: 0s, gathering baseline coverage: 0/29 completed
fuzz: elapsed: 0s, gathering baseline coverage: 29/29 completed, now fuzzing with 12 workers
fuzz: elapsed: 3s, execs: 780426 (260128/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 6s, execs: 1577625 (265663/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 9s, execs: 2369952 (264185/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 12s, execs: 3024147 (218055/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 15s, execs: 3759791 (245166/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 18s, execs: 4470924 (237062/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 21s, execs: 5178109 (235752/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 24s, execs: 5898784 (240167/sec), new interesting: 0 (total: 29)
^C

Appendix A ■ Fuzzing



350

fuzz: elapsed: 25s, execs: 6211453 (222820/sec), new interesting: 0 (total: 29)
--- PASS: FuzzMe (25.41s)
PASS
ok      command-line-arguments  25.545s

The immediate change is we specify a test to fuzz via --test.fuzz “FuzzMe”. Instead of just running the 
embedded seeds, we are now generating new inputs and testing them. This process will continue for a very 
long time, hence the need to stop it. The reason it takes (hours, days, more!) is because the range of inputs 
can be huge (just a single integer has billions of potential values). We do have some additional controls 
though, vs. waiting forever.

•	 Fuzzing stops when a test fails.

•	 Limit time to fuzz via -fuzztime (e.g., -fuzztime 30s).

•	 Hit control^c or send SIGINT (e.g., using a signal in your CI pipeline).

�Fuzzing Failures
In our prior example, we did not see a failure; however, we only ran for under a minute; it could take days 
to maybe find invalid input. Let’s create a bad test to highlight the process and what we can do with fuzzing 
generated test inputs.

The following test will error if the value is greater than 100 or less than 1000.

func FuzzBad(f *testing.F) {
    f.Fuzz(func(t *testing.T, i int) {
        if i > 100 && i < 1000 {
            t.Fatalf("want: 101-999, got: %v", i)
        }
    })
}

Running the fuzzing directly against this test produces the following:

appx-fuzzing$ go test -fuzz=FuzzBad fuzzing_test.go

=== RUN   FuzzMe
=== RUN   FuzzMe/seed#0
=== RUN   FuzzMe/seed#1
=== RUN   FuzzMe/seed#2
=== RUN   FuzzMe/seed#3
=== RUN   FuzzMe/seed#4
=== RUN   FuzzMe/seed#5
--- PASS: FuzzMe (0.00s)
    --- PASS: FuzzMe/seed#0 (0.00s)
    --- PASS: FuzzMe/seed#1 (0.00s)
    --- PASS: FuzzMe/seed#2 (0.00s)
    --- PASS: FuzzMe/seed#3 (0.00s)
    --- PASS: FuzzMe/seed#4 (0.00s)
    --- PASS: FuzzMe/seed#5 (0.00s)
=== FUZZ  FuzzBad
fuzz: elapsed: 0s, gathering baseline coverage: 0/1 completed
fuzz: elapsed: 0s, gathering baseline coverage: 1/1 completed, now fuzzing with 12 workers

Appendix A ■ Fuzzing



351

fuzz: elapsed: 0s, execs: 9 (530/sec), new interesting: 0 (total: 1)
--- FAIL: FuzzBad (0.02s)
    --- FAIL: FuzzBad (0.00s)
        fuzzing_test.go:28: want: 101-999, got: 174

    Failing input written to testdata/fuzz/FuzzBad/
daef2fa4fc63690477c788772f4488eb55a67946e4bed16916b63688c2c99935
    To re-run:
    go test -run=FuzzBad/daef2fa4fc63690477c788772f4488eb55a67946e4bed16916b63688c2c99935
FAIL
exit status 1
FAIL    command-line-arguments  0.151s

We see the original test still runs over the provided seeds. This is by design meant to run the seeds as 
a regression protective measure. If no seeds were available, the test would not run without using direct 
invocation via --test.fuzz.

More importantly, we see a failing set of input(s) was identified. In the example, the value 174 was 
attempted and failed. The result is stored in a directory called testdata. This directory will in turn be used as 
the “seed” for future regression runs.

We see the directory structure as follows.

appx-fuzzing$ tree testdata

testdata
└── fuzz
    └── FuzzBad
        └── daef2fa4fc63690477c788772f4488eb55a67946e4bed16916b63688c2c99935

2 directories, 1 file

Reviewing the auto-generated file, we see the encoded bad input.

appx-fuzzing$ cat testdata/fuzz/FuzzBad/
daef2fa4fc63690477c788772f4488eb55a67946e4bed16916b63688c2c99935

go test fuzz v1
int(174)

In our result, it is simply an int, but for more complex results, we will see more complex encodings.
If you run the test again, it simply fails again, treating the testdata now as a seed.

appx-fuzzing$ go test -fuzz=FuzzBad fuzzing_test.go

fuzz: elapsed: 0s, gathering baseline coverage: 0/2 completed
failure while testing seed corpus entry: FuzzBad/
daef2fa4fc63690477c788772f4488eb55a67946e4bed16916b63688c2c99935
fuzz: elapsed: 0s, gathering baseline coverage: 0/2 completed
--- FAIL: FuzzBad (0.02s)
    --- FAIL: FuzzBad (0.00s)
        fuzzing_test.go:28: want: 101-999, got: 174

Appendix A ■ Fuzzing



352

FAIL
exit status 1
FAIL    command-line-arguments  0.126s

Let’s almost fix this; let’s simply reduce from 1000 to 150, shrinking our error range.

func FuzzBad(f *testing.F) {
        f.Fuzz(func(t *testing.T, i int) {
                if i > 100 && i < 150 {
                        t.Fatalf("want: 101-150, got: %v", i)
                }
        })
}

Running once more:

appx-fuzzing$ go test --test.fuzz "FuzzBad" fuzzing_test.go

fuzz: elapsed: 0s, gathering baseline coverage: 0/2 completed
fuzz: elapsed: 0s, gathering baseline coverage: 2/2 completed, now fuzzing with 12 workers
fuzz: elapsed: 0s, execs: 4 (205/sec), new interesting: 0 (total: 2)
--- FAIL: FuzzBad (0.02s)
    --- FAIL: FuzzBad (0.00s)
        fuzzing_test.go:28: want: 101-150, got: 117

    Failing input written to testdata/fuzz/FuzzBad/7bd545fe2a8997effdf791253ba576f785189c9
2f46c205024dc835aa7f63b27
    To re-run:
    go test -run=FuzzBad/7bd545fe2a8997effdf791253ba576f785189c92f46c205024dc835aa7f63b27
FAIL
exit status 1
FAIL    command-line-arguments  0.234s

Reviewing the new failure:

appx-fuzzing$ tree testdata

testdata
└── fuzz
    └── FuzzBad
        ├── 7bd545fe2a8997effdf791253ba576f785189c92f46c205024dc835aa7f63b27
        └── daef2fa4fc63690477c788772f4488eb55a67946e4bed16916b63688c2c99935

2 directories, 2 files

appx-fuzzing$ cat testdata/fuzz/FuzzBad/7bd545fe2a8997effdf791253ba576f785189c92f46c205024
dc835aa7f63b27

go test fuzz v1
int(117)

Appendix A ■ Fuzzing



353

As expected, a new failing case was identified and stored. If we removed the failing logic, can we fuzz?

appx-fuzzing$ vi fuzzing_test.go

...

func FuzzBad(f *testing.F) {
        f.Fuzz(func(t *testing.T, i int) {
                # hope this never fails
                if i != i {
                        t.Fatalf("want: %v, got: %v", i, i)
                }
        })
}

Running with a ten-second fuzzing time:

appx-fuzzing$ go test -fuzz=FuzzBad fuzzing_test.go --test.fuzztime 10s

fuzz: elapsed: 0s, gathering baseline coverage: 0/3 completed
fuzz: elapsed: 0s, gathering baseline coverage: 3/3 completed, now fuzzing with 12 workers
fuzz: elapsed: 3s, execs: 794663 (264831/sec), new interesting: 0 (total: 3)
fuzz: elapsed: 6s, execs: 1608866 (271422/sec), new interesting: 0 (total: 3)
fuzz: elapsed: 9s, execs: 2400547 (263916/sec), new interesting: 0 (total: 3)
fuzz: elapsed: 10s, execs: 2642809 (217213/sec), new interesting: 0 (total: 3)
PASS
ok      command-line-arguments  10.273s

We still see the seeds (from previous failures) are executed, and we fuzz for an additional ten seconds.

�Fuzzing Network-Related Artifacts
Now that we have some of the basics of fuzzing, how might this help us with networking? Fuzzing is often 
associated with security. The original fuzzing project found security issues in dozens of programs including 
standard tools that are included with modern operating systems.

For simplicity, we will keep our example as part of our test file.

appx-fuzzing$ vi fuzzing_test.go

package main

import (
    "bytes"
    "encoding/base64"
    "encoding/hex"
    "net/http"
    "net/http/httptest"
    "testing"
)

Appendix A ■ Fuzzing



354

... prior tests ...

func FuzzHandler(f *testing.F) {
    f.Fuzz(func(t *testing.T, data string) {
        v := base64.StdEncoding.EncodeToString([]byte(data))
        req := httptest.NewRequest("GET", "/?q="+v, nil)
        res := httptest.NewRecorder()

        f := func(w http.ResponseWriter, req *http.Request) {
            keys, ok := req.URL.Query()["q"]

            if !ok || len(keys) != 1 {
                t.Log(keys)
                t.Fatal("q param missing or more than one instance")
            }

            val := keys[0]

            if len(val) > 16384 {
                w.WriteHeader(http.StatusNotAcceptable)
            } else {
                w.WriteHeader(http.StatusOK)
            }
        }

        f(res, req)

        if res == nil || res.Result().StatusCode != http.StatusOK {
            t.Fatal(res)
        }
    })
}

This time, we explicitly fuzz the FuzzHandler test, with no runtime limit. Depending on your computer 
and luck, this will take a few minutes to execute (hopefully).

appx-fuzzing$ go test -v -fuzz=FuzzHandler fuzzing_test.go

...
=== FUZZ  FuzzHandler
fuzz: elapsed: 0s, gathering baseline coverage: 0/1 completed
fuzz: elapsed: 0s, gathering baseline coverage: 1/1 completed, now fuzzing with 12 workers
fuzz: elapsed: 3s, execs: 63259 (21080/sec), new interesting: 21 (total: 22)
fuzz: elapsed: 6s, execs: 161593 (32777/sec), new interesting: 23 (total: 24)
fuzz: elapsed: 9s, execs: 458132 (98870/sec), new interesting: 26 (total: 27)
fuzz: elapsed: 12s, execs: 1136629 (226110/sec), new interesting: 31 (total: 32)
fuzz: elapsed: 15s, execs: 1199874 (21082/sec), new interesting: 32 (total: 33)
fuzz: elapsed: 18s, execs: 1199874 (0/sec), new interesting: 32 (total: 33)
fuzz: elapsed: 21s, execs: 1352204 (50777/sec), new interesting: 32 (total: 33)
...
fuzz: elapsed: 3m3s, execs: 6601424 (50515/sec), new interesting: 35 (total: 36)

Appendix A ■ Fuzzing



355

fuzz: minimizing 29399-byte failing input file
fuzz: elapsed: 3m6s, minimizing
...
fuzz: elapsed: 4m3s, minimizing
--- FAIL: FuzzHandler (243.19s)
    --- FAIL: FuzzHandler (0.00s)
        fuzzing_test.go:63: &{406 map[]  false 0xc0094c46c0 map[] true}

    Failing input written to testdata/fuzz/FuzzHandler/54a3e656e9424c2d80e33168b673d2688831f
8b0dc685dc545594a76752dcc85
    To re-run:
    go test -run=FuzzHandler/54a3e656e9424c2d80e33168b673d2688831f8b0dc685dc545594
a76752dcc85
FAIL
exit status 1
FAIL    command-line-arguments  243.458s

As you can see, it took just over four minutes to find an error. What caused the error?

appx-fuzzing$ ls -lh \
testdata/fuzz/FuzzHandler/54a3e656e9424c2d80e33168b673d2688831f8b0dc685dc545594a76752dcc85

-rw-r--r--  1 ronaldpetty  staff    29K Mar 23 12:19 testdata/fuzz/FuzzHandler/54a3e656e942
4c2d80e33168b673d2688831f8b0dc685dc545594a76752dcc85

Take note of the size of the result, 29 kilobytes. Our code errored at anything over 16KB. In this 
straightforward test, we are limiting the query search (q) params to be under a set length. Your own tests can 
have much more involved checks.

As the fuzzing ran, we see things such as

•	 “fuzz: elapsed: 3s, execs: 63259 (21080/sec), new interesting: 21 (total: 22)”

•	 “fuzz: elapsed: 3m6s, minimizing”

An “interesting” input is one that expands the test corpus to cover code it couldn’t before with existing 
examples. Per the documentation, many interesting inputs are generated early and taper off as all the code 
is being covered (fuzzing instruments our code upon running; hence, we know what is covered or not). 
Ultimately, we don’t want to store just any input; we want the input that fails, which we stopped when we got 
our input that was over 16KB.

�Conclusion
While the fuzzing technique is not new, its arrival in Go 1.18 means it will be some time before we see more 
intersting examples. More about fuzzing in Go can be learned from here: https://go.dev/doc/tutorial/
fuzz. Fuzzing is not enough to prove program correctness; for that, formal methods must be used. Features 
of Go itself are derived from work relating to formal methods. Channels (a key feature of Go) are derived 
from communicating sequential processes (CSP). CSP is a formal language describing concurrent systems 
(e.g., using channels between Go routines).

Appendix A ■ Fuzzing

https://go.dev/doc/tutorial/fuzz
https://go.dev/doc/tutorial/fuzz


357
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9

�APPENDIX B

Generics

Generics are a programming mechanism where data types are abstracted from algorithms. In a 
programming language where generics are not available, you often have to duplicate code when using the 
same code with differing types.

Some languages, including Go, do not allow function overloading. This very issue is addressed in the Go 
FAQ located here: https://go.dev/doc/faq#overloading.

Why does Go not support overloading of methods and operators?

Method dispatch is simplified if it doesn't need to do type matching as well. Experience 
with other languages told us that having a variety of methods with the same name but 
different signatures was occasionally useful but that it could also be confusing and fragile 
in practice. Matching only by name and requiring consistency in the types was a major 
simplifying decision in Go's type system.

Regarding operator overloading, it seems more a convenience than an absolute 
requirement. Again, things are simpler without it.

Go produces the following error if overloading is attempted:

# sample Go code
func Identity(a int64) int64 { return a }
func Identity(a float64) float64 { return a}

# go run code.go
# command-line-arguments
./g.go:5:6: Identity redeclared in this block
    ./g.go:6:6: other declaration of Identity

A simple solution is to change the second function name to “IdentityFloat”. A less simple solution would 
be to abstract the parameter (e.g., using any type as an example) and have one function (e.g., casting as 
needed from “any”, or using reflection).

Generics have a long and interesting history; you can learn more here: https://en.wikipedia.org/
wiki/Generic_programming.

https://doi.org/10.1007/978-1-4842-8095-9#DOI
https://go.dev/doc/faq#overloading
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Generic_programming


358

�A Filtering Function Without Generics
Here, we show an example where we have two filter functions, each taking a particular type array. In Go 
prior to 1.18, we are required to have two functions unless we leverage the empty interface.

$ mkdir appx-generics
$ cd appx-generics

appx-generics$ vi no_generics.go

package main

import (
        "fmt"
)

func FilterInt(s []int, f func(int) bool) []int {
        var r []int
        for _, v := range s {
                if f(v) {
                        r = append(r, v)
                }
        }

        return r
}

func FilterString(s []string, f func(string) bool) []string {
        var r []string
        for _, v := range s {
                if f(v) {
                        r = append(r, v)
                }
        }

        return r
}

func main() {
        evens := FilterInt([]int{1, 2, 3, 4, 5}, func(i int) bool { return i%2 == 0 })
        fmt.Printf("%v\n", evens)

        �shortStrings := FilterString([]string{"ok", "notok", "maybe", "maybe not"},  
func(s string) bool { return len(s) < 3 })

        fmt.Printf("%v\n", shortStrings)
}

Appendix B ■ Generics



359

The example simply creates two lists and in turn filters them by a function we provide.

appx-generics$ go run no_generics.go

[2 4]
[ok]

While not the end of the world, our code is duplicated. Code duplication is the source of many copy-
paste bugs. Ideally, we would like to avoid those bugs. Bugs aside, we might start thinking about local 
optimizations based on types. While this may benefit some types, in our example, probably, no unique 
optimizations are needed.

�Refactor Using Generics
With Go 1.18, initial support for generics arrived. We will not discuss the pros or cons any further, but if you 
are interested, take a look at the original proposal and related follow-up:

•	 https://github.com/golang/go/issues/43651

•	 https://go.dev/blog/generics-proposal

Next, we combine our two filter functions into a single function. Generics allow type parameters being 
used as constraints. Formerly, we could only use methods in an interface, but now types provide additional 
compile time checks.

In our generic filter function, we abstract the type information with the constraint “[T any]”. T is an 
example type parameter; type parameter list looks like an ordinary function parameter list except they are in 
square brackets. “any” is the same as “interface{}” in prior editions of Go. This tells the compiler what types 
are allowed and in turn generates the required variant(s) of the code.

In the parameter list for Filter, we are limited to slice of type T; elements of type T are passed into a 
function we provide, ultimately yielding a slice with elements of type T.

appx-generics$ vi with_generics.go

package main

import (
        "fmt"
)

func Filter[T any](s []T, f func(T) bool) []T {
        var r []T
        for _, v := range s {
                if f(v) {
                        r = append(r, v)
                }
        }

        return r
}

func main() {
        evens := Filter([]int{1, 2, 3, 4, 5}, func(i int) bool { return i%2 == 0 })
        fmt.Printf("%v\n", evens)

Appendix B ■ Generics

https://github.com/golang/go/issues/43651
https://go.dev/blog/generics-proposal


360

        �shortStrings := Filter([]string{"ok", "notok", "maybe", "maybe not"}, func(s string) 
bool { return len(s) < 3 })

        fmt.Printf("%v\n", shortStrings)
}

Running yields the same results as our prior version.

appx-generics$ go run with_generics.go

[2 4]
[ok]

While we are sticking to examples, its worth thinking about the impact of generics on our code.

•	 Line count: 35 vs. 24

•	 Binary size: Both around 1.8MB (using go build)

•	 Speed: Same (using time command)

Less code is typically considered a good thing. However, like any feature, even generics syntax can make 
code confusing.

There is more than one way to implement something like generics. One way is that the compiler could 
just make copies of the code and change the data types and function names; another way is a singular 
implementation with metadata holding various types of information to help guide the execution of a generic 
function. One generics proposal is to have multiple functions and a second proposal having a singular 
generic function with a dictionary containing the various types of information. Ultimately, these two 
competing proposals have merged into one:

https://github.com/golang/proposal/blob/master/design/generics-implementation-
dictionaries-go1.18.md

Further work on generics not covered by this proposal includes recursive functions.

�Custom Constraints
In this example, we look at a function (SoundOff) where the parameter is limited to the custom constraint 
called Hybrid. The Hybrid constraint ultimately is limited to the interface Animal. Our function SoundOff 
not only accepts all Animals, it retrieves the value type in order to do something specific. This isn't unique 
to generics, we have to do this with interfaces if you want access to the value type. Take note that we cast our 
input parameter to the empty interface (any) in order to retrieve the concrete type. This casting is required as 
an interface is expected in the type switch, not a concrete type H.

appx-generics$ vi simple_generics.go

package main

import (
        "fmt"
)

Appendix B ■ Generics

https://github.com/golang/proposal/blob/master/design/generics-implementation-dictionaries-go1.18.md
https://github.com/golang/proposal/blob/master/design/generics-implementation-dictionaries-go1.18.md


361

type Animal interface {
        Sound()
}

type Cat struct{}

func (c Cat) Sound() { fmt.Println("Meow") }

func (c Cat) SpecialToCat() { fmt.Println("Cat special") }

type Dog struct{}

func (d Dog) Sound() { fmt.Println("Woof") }

func (c Dog) UniqueToDog() { fmt.Println("Dog unique") }

type Domesticated interface {
        Cat | Dog // Not Owls
        Animal
}

// An Owl is an “wild” animal,
// Thus not in the above union of cats and dogs
type Owl struct{}

func (Owl) Sound() { fmt.Println("Owl hoo") }

// Here we limit ourselves to  domesticated animals
// If you passed in a 'wild' animal, it would not work
func SoundOff[H Domesticated](animal H) H {
        animal.Sound()

        switch a := any(animal).(type) {
        case Dog:
                a.UniqueToDog()
        case Cat:
                a.SpecialToCat()
        default:
                fmt.Println("Then hoo?")
        }
        return animal
}

func main() {
        var c Cat = SoundOff(Cat{})
        d := SoundOff(Dog{})

        c.Sound()
        c.SpecialToCat()
        d.Sound()
        d.UniqueToDog()

Appendix B ■ Generics



362

//        SoundOff(Owl{})
}

Sit back and listen to our zoo.

appx-generics$ go run simple_generics.go

Meow
Cat special
Woof
Dog unique
Meow
Cat special
Woof
Dog unique

If you uncomment the owl, it will not compile.

appx-generics$ go build simple_generics.go

# command-line-arguments
./simple_generics.go:59:10: Owl does not implement Domesticated

Per one of the lead developers, Ian Lance Taylor, here are guidelines when using generics.
When to use generics:

•	 Functions that work on slices, maps, and channels of any element type and have no 
assumptions about a particular element type are used.

•	 General purpose data structures, that is, linked list, b-tree.

•	 Prefer functions vs. methods (allows the data structure to remain agnostic to 
the type).

•	 When elements have a common method with the same implementation 
(Read(network) and Read(file) have different implementations, so don't use 
generics).

When to not use generics:

•	 When just calling a method on the argument (use interfaces)

•	 When implementation of a common method differs

•	 When an operation differs per type (use reflection instead)

�Using Generics on Collections
Collections such as arrays of “any” where we operate the same way on each item are prime targets for 
generics. In this example, we use a channel and our own linked list to show how we can generify our 
iteration code. Unlike prior examples, we have two constraints: “MustBe” (our input) and “Result” (our 
output). Notice they do not have to match.

Appendix B ■ Generics



363

In the following example, we create our own linked list and a channel instance, hydrating and iterating 
over each instance. Notice our Iterate function takes either type, channel or linked list as both satisfy the 
MustBe constraint.

appx-generics$ cat iterate.go

package main

import (
        "fmt"
        "sync"
        "time"
)

// Our LinkedList code
type LL struct {
        N    *LL
        data string
}

// Retreive the next node in the linkedlist
func (l LL) Next() *LL { return l.N }

// Here we use a union of types “|”
// Meaning our arguments must be of these types
// Either channel  or the above linkedlist type
type MustBe interface {
        chan string | LL
}

// We use the union technique once more on the return types
// Notice these can differ than the above "MustBe" types
type Result interface {
        string | LL
}

// This is the function we wish to make generic
// We are iterating over a instance of MustBe (either channel string or LL)
// Notice the return type must be a Result type (either string or LL)
func Iterate[M MustBe, R Result](o M, iter func(M) R) (r R) {
        return iter(o)
}

func main() {
        // Create channel for strings
        c := make(chan string, 5)
        c <- "ok"
        c <- "ok2"

        //This function is what we will pass into the above Iterate
        //Notice Iterate's first parameter is the same as the following

Appendix B ■ Generics



364

        //lambdas parameter
        citer := func(c chan string) string {
                select {
                case msg1 := <-c:
                        return msg1
                case <-time.After(1 * time.Second):
                        return "nothing"
                }
        }

        // Here we "Iterate" through the channel
        var wg sync.WaitGroup
        wg.Add(2)
        go func(f func(chan string) string) {
                for {
                        fmt.Println(Iterate(c, f))
                        wg.Done()
                }
        }(citer)
        wg.Wait() // wait for iteration to finish

        // The remaining example shows passing a custom Linked List
        // iteration function

        // First we build a simple list
        n1 := LL{data: "n1"}
        n2 := LL{data: "n2"}
        n3 := LL{data: "n3"}
        n1.N = &n2
        n2.N = &n3

        // Like the above citer, the parameter type will match
        // the first parameter of Iterate above
        liter := func(l LL) LL {
                var zero LL

                if l.N != zero.N {
                        return *l.N
                } else {
                        return zero
                }
        }

        // We walk through the linked list
        n := n1
        for n.N != nil {
                fmt.Printf("node:%s\n",n.data)
                n = Iterate(n, liter)
        }
}

Appendix B ■ Generics



365

When we launch, the channel is consumed first; then we work through the linked list.

appx-generics$ go run iterate.go

ok
ok2
node:n1
node:n2

With generics, we are able to use a single function to handle multiple input types. The use of a function 
to retrieve the next element means we don't have to support a common interface with these types. This 
means in theory we can use other types as well.

�How Not to Use Generics?
We show a counterexample, one where we see some issues using generics.

Here, we are going to convert an existing function and see if we can rewrite it leveraging generics. In this 
case, it’s not about deduping a complete algorithm; its about potentially streamlining a switch statement 
(not recommended per the preceding text!).

The following code can be found in GOROOT/src/net/http/httptest/httptest.go. Take a moment to 
review, noting the use of a type switch in the middle of the function.

appx-generics$ go doc -src http/httptest.NewRequest

package httptest // import "net/http/httptest"

// NewRequest returns a new incoming server Request, suitable
// for passing to an http.Handler for testing.
//
// The target is the RFC 7230 "request-target": it may be either a
// path or an absolute URL. If target is an absolute URL, the host name
// from the URL is used. Otherwise, "example.com" is used.
//
// The TLS field is set to a non-nil dummy value if target has scheme
// "https".
//
// The Request.Proto is always HTTP/1.1.
//
// An empty method means "GET".
//
// The provided body may be nil. If the body is of type *bytes.Reader,
// *strings.Reader, or *bytes.Buffer, the Request.ContentLength is
// set.
//
// NewRequest panics on error for ease of use in testing, where a
// panic is acceptable.
//
// To generate a client HTTP request instead of a server request, see
// the NewRequest function in the net/http package.
func NewRequest(method, target string, body io.Reader) *http.Request {

Appendix B ■ Generics



366

    if method == "" {
        method = "GET"
    }
    �req, err := http.ReadRequest(bufio.NewReader(strings.NewReader(method + " " + target + " 

HTTP/1.0\r\n\r\n")))
    if err != nil {
        panic("invalid NewRequest arguments; " + err.Error())
    }

    // HTTP/1.0 was used above to avoid needing a Host field. Change it to 1.1 here.
    req.Proto = "HTTP/1.1"
    req.ProtoMinor = 1
    req.Close = false

    if body != nil {
        switch v := body.(type) {
        case *bytes.Buffer:
            req.ContentLength = int64(v.Len())
        case *bytes.Reader:
            req.ContentLength = int64(v.Len())
        case *strings.Reader:
            req.ContentLength = int64(v.Len())
        default:
            req.ContentLength = -1
        }
        if rc, ok := body.(io.ReadCloser); ok {
            req.Body = rc
        } else {
            req.Body = io.NopCloser(body)
        }
    }

    // 192.0.2.0/24 is "TEST-NET" in RFC 5737 for use solely in
    // documentation and example source code and should not be
    // used publicly.
    req.RemoteAddr = "192.0.2.1:1234"

    if req.Host == "" {
        req.Host = "example.com"
    }

    if strings.HasPrefix(target, "https://") {
        req.TLS = &tls.ConnectionState{
            Version:           tls.VersionTLS12,
            HandshakeComplete: true,
            ServerName:        req.Host,
        }
    }

    return req
}

Appendix B ■ Generics



367

We can see that the same line of code is used in three cases and different in a fourth case. Can we dedup 
this code? A starter question could be the following: Why is it triplicated? Some potential reasoning includes 
the following:

•	 bytes.Buffer, bytes.Reader, and strings.Reader are the only types (and are io.Readers) 
where we care about the Len.

•	 Len() is not in a shared interface (not in io.Reader).

If you look at each types documentation, all of them have a Len method implemented. If you look 
deeper, you see a variety of interfaces are implemented, yet none of those include “Len() int”. In fact, if you 
look around, we can almost be certain that is correct; hardly anyone implements an interface containing 
Len(). They do seem to implement the method Len though.

Here, we search for Len as part of an interface.appx-generics$ grep -nr "interface {" -A 10 
$(go env GOROOT)/src | grep -E " Len\(\) int"

$GOROOT/src/net/http/h2_bundle.go-3549-func (s *http2sorter) Len() int { return len(s.v) }
$GOROOT/src/encoding/asn1/marshal.go-33-func (c byteEncoder) Len() int {

Here are the interfaces we found before; neither is used by our type switch value 
types.GOROOT/src/net/http/h2_bundle.go
type http2pipeBuffer interface {
        Len() int
        io.Writer
        io.Reader
}

GOROOT/src/encoding/asn1/marshal.go
// encoder represents an ASN.1 element that is waiting to be marshaled.
type encoder interface {
        // Len returns the number of bytes needed to marshal this element.
        Len() int
        // Encode encodes this element by writing Len() bytes to dst.
        Encode(dst []byte)
}

Can we use generics to limit which types our function accepts? In turn, can we collapse the type switch 
to only our generic parameter type?

We can begin by trying to use generics to remove the triplicated check via the following 
constraint:type MyType interface {
    bytes.Buffer | bytes.Reader | strings.Reader
}

We then change the signature to the following:

func NewRequest[M MyType](method, target string, body M) *http.Request {

Appendix B ■ Generics



368

This is a start, but we are missing the following:

•	 We are unable to simply check for nil (before the switch, we see “if body != nil”) with 
generics.

•	 The compiler will tell us Len() is missing (since it’s not part of our composition of 
types in our constraint).

We can address the first issue with checking a related zero value instead of nil. The original nil check 
becomes the following. Remember, generics will identify the arguments (and the actual types) to fill in what 
M should be.

...
    var zero M
    if body != zero {
...

This still leaves us with the case of the missing Len(). Originally, the parameter was an interface, “io.
Reader”, which doesn't have a Len() method. This drove the original need to use a switch statement to access 
the value types, which did each implement a Len() method. We could, for example, make a new interface, 
one that combines Reader and Len().

type LenReader interface {
        io.Reader
        Len() int
}

This, however, doesn't do the job; we are still exposed to any type that implements that interface (not 
limited at compiler time).

In the following code, we take the NewRequest function (borrowed from httptest.go) and refactor it.

appx-generics$ vi complex_generics.go

package main

import (
        "bufio"
        "bytes"
        "crypto/tls"
        "fmt"
        "io"
        "net/http"
        "strings"
)

type myStruct struct {
        s *strings.Reader
}

func (m myStruct) Len() int {
        return m.s.Len()
}

Appendix B ■ Generics



369

func (m myStruct) Read(b []byte) (int, error) {
        return m.s.Read(b)
}

type MyType interface {
        *bytes.Buffer | *bytes.Reader | *strings.Reader | myStruct

        Len() int
        io.Reader
        comparable
}

type Lener interface {
        Len() int
}

// ./http/httptest/httptest.go
func NewRequest[M MyType](method, target string, body M) *http.Request {
        if method == "" {
                method = "GET"
        }
        req, err := http.ReadRequest(bufio.NewReader(strings.NewReader(method + " " + target 
+ " HTTP/1.0\r\n\r\n")))
        if err != nil {
                panic("invalid NewRequest arguments; " + err.Error())
        }

        // HTTP/1.0 was used above to avoid needing a Host field. Change it to 1.1 here.
        req.Proto = "HTTP/1.1"
        req.ProtoMinor = 1
        req.Close = false

        var zero M
        if body != zero {
                switch i := any(body).(type) {
                case Lener, io.ReadCloser:
                        if b, ok := i.(Lener); ok {
                                req.ContentLength = int64(b.Len())
                        }
                        if rc, ok := i.(io.ReadCloser); ok {
                                req.Body = rc
                        }
                default:
                        req.Body = io.NopCloser(body)
                }
        } else {
                req.ContentLength = -1
        }

        // 192.0.2.0/24 is "TEST-NET" in RFC 5737 for use solely in
        // documentation and example source code and should not be

Appendix B ■ Generics



370

        // used publicly.
        req.RemoteAddr = "192.0.2.1:1234"

        if req.Host == "" {
                req.Host = "example.com"
        }

        if strings.HasPrefix(target, "https://") {
                req.TLS = &tls.ConnectionState{
                        Version:           tls.VersionTLS12,
                        HandshakeComplete: true,
                        ServerName:        req.Host,
                }
        }

        return req
}

func main() {
        fmt.Println(NewRequest("GET", "/", myStruct{strings.NewReader("")}).ContentLength)
        fmt.Println(NewRequest("GET", "/", myStruct{}).ContentLength)
        fmt.Println(NewRequest("GET", "/", strings.NewReader("")).ContentLength)
        fmt.Println(NewRequest("GET", "/", &bytes.Buffer{}).ContentLength)
        fmt.Println(NewRequest("GET", "/", bytes.NewReader([]byte("read me"))).
ContentLength)
}

Running the example works (output is not the important part here).

appx-generics$ go run complex_generics.go

0
-1
0
0
7

By moving our types and method requirements to our MyType constraint, we are now limited to a 
subset of types vs. all types that implement io.Reader.

I think most would argue this code is less readable than before. Should generics be used in this case? 
Based on other examples, it most likely should remain using io.Reader and a type switch. One could use the 
following alternative to manage Len calls:

...
    if body != nil {
        if b, ok := body.(interface{ Len() int }); ok {
            req.ContentLength = int64(b.Len())
        }
        if rc, ok := body.(io.ReadCloser); ok {
            req.Body = rc
        } else {

Appendix B ■ Generics



371

            req.Body = io.NopCloser(body)
        }
    } else {
        req.ContentLength = -1
    }
...

In the preceding code, the evil type is an example where MyType is not implemented. If you 
uncomment the call in main, you will see the following error:

# command-line-arguments
./complex_generics.go:101:24: evil does not implement MyType

�Conclusion
Generics are here and will only improve future Go programs. What we have in Go 1.18 is not even the 
final take; new generic functions are to be included in the standard library along with potential other 
improvements. Until then, keep an eye on the official blog(s) such as this one: https://go.dev/blog/why-
generics.

Appendix B ■ Generics

https://go.dev/blog/why-generics
https://go.dev/blog/why-generics


373
© Jan Newmarch and Ronald Petty 2022 
J. Newmarch and R. Petty, Network Programming with Go Language,  
https://doi.org/10.1007/978-1-4842-8095-9

Index

�       � A
Abstract Syntax Notation One (ASN.1), 74

ASCII/UTF8 characters, 77
badtype directory, 81
character strings, 76
daytime client/server, 84–86
encoding rules, 74
error documentation, 83
error messages, 81
interface source code, 74
json package, 79
marshal/unmarshal function, 75, 80
outcome/associated errors, 83
source code, 82
structured types, 76
types, 76, 82
unicode sequence, 79
UTC time type, 78

American Standard Code for Information 
Interchange (ASCII), 133–135

Application-level protocols
byte format server, 113
character format server, 114
client-server situation, 116
command-line client, 121–123
data format, 113
directory browser, 116
informal protocol, 118
message format, 113
possibilities and issues, 109
presentation aspects, 117
processes, 109
protocol design, 109
real-life protocols, 118
server side, 117
source code, 119, 120
stand-alone application, 115, 116
state information

client state diagram, 128
DCE file system, 126

distributed system, 125
file-handling code, 125
NFS file system, 126
pseudocode, 129
server diagram, 128, 129
transition diagram, 127, 128

statements, 110
string processing, 118
text format, 118, 119
textproto package, 123–125
version control, 110–112

Architectural layers
acceptance factors, 18, 19
administrators, 22
application logic, 12
asynchronous communication, 11
client-server system, 9, 10
client-server vs. peer-to-peer system, 8
communication models, 6–8
connectionless system, 5
connection models, 5, 6
continuum processing, 17
data access component, 12
distributed system, 1
fallacies, 20–22
fat vs. thin, 15
gartner classification, 12
gateways, 4
homogenous, 22
host-level networking, 4
latency, 21
middleware model, 15–17
networking, 3
packet encapsulation, 4
points failure, 18
presentation component, 12
protocol layers, 1–3
publish/subscribe systems, 11
reliable network, 21
remote procedure call, 8, 9

https://doi.org/10.1007/978-1-4842-8095-9#DOI


374

secure, 22
server system, 10, 11
streaming communication, 11
synchronous communication, 11
three-tier possibilities, 14, 15
topology, 22
transparency (see Transparency)
transport cost, 22

Asynchronous JavaScript and XML (AJAX), 291

�       � B
Body area networks (BANs), 3

�       � C
Character sets and encodings

ASCII code, 133–135
ASCII set, 131
character, 132
code set, 132
definitions, 132
encodings, 133
gotchas, unicode, 141, 142
hierographic languages, 131
ISO 8859/Go series, 142–144
noncoded character set, 132
repertoire/set, 132
transport encoding, 133
Unicode characters, 135, 136
UTF-8/Go/runes

ASCII characters, 137
clients and servers, 137
description, 136
strings, 137

UTF-16/Go
byte stream/extracts/examines, 140, 141
client/server, 138, 139
fragment code, 137, 138
little-endian/big-endian, 138

Chinese dictionary
dictionary type, 224
Pinyin, 223
traditional forms, 223

Client-server system
applications, 9
architectural layers, 9, 10
peer-to-peer system, 8, 9
user’s view, 10

Connection-oriented transports, 5
Content negotiation

GET / request, 276, 277
MIME types, 274
POST / request, 278

server code segment, 276
source code, 275
web server, 274

�       � D
Data serialization

ASN.1 (see Abstract Syntax Notation One 
(ASN.1))

encoding package, 72–74
Gob packages, 94–100
JSON serialization, 86–94
mutual agreement, 71
nonlinear structures, 69
protocol buffers

code generation, 106, 107
data types, 104
personv3.pb.go file, 105
protoc, 105
serialization methods, 103

self-describing data, 71
structured data, 69, 70

Distributed systems, 1, 125, 131, 147, 148, 167

�       � E, F
Event-driven systems act, 7
Extensible markup language (XML)

command/CharData type, 246
definition, 241
Directive, 247–249
EndElement type, 246
HTML documents, 249
marshalling data structures, 244, 245
parsing data, 245
ProcInst type, 246
StartElement type, 246
structure, 241
unmarshalling structure, 242–244
XHTML, 249

EXternal data representation (XDR), 71

�       � G
Gartner classification

distributed database, 12
models, 12
network file service, 13
secure shell presentation, 14
terminal emulation, 14
web transaction, 13

Gob serialization
binary data, 101–104
client/server, 98–100
command-line tool, 96

Architectural layers (cont.)

■ INDEX



375

marshaling/unmarshalling structure, 94
person.gob file, 95

Go programming languages
description, 25
error values, 34
functions, 29
GOPATH, 33
higher-order functions, 31
maps, 28
methods, 30, 31
modules, 32
multi-threading, 31
packages, 31
pointers, 28
remote procedure call, 252–259
running program, 33
slices/arrays, 26–28
standard libraries, 33
statements, 33
structures, 29
type conversion, 32
types, 26
website, 25

Gorilla toolkit
criteria, 321–323
gorilla/mux, 319–321
handlers, 323–326
matching elements, 321
middleware pattern, 313–316
muxes customization, 318, 319
package information, 313
rpc package, 327, 328
schema package, 328, 329
securecookie documentation, 329–331
ServeMux, 316, 317

�       � H
Hypermedia as the Engine of Application State 

(HATEOAS), 267, 268
Hypertext Markup Language (HTML)

description, 235
html/template package, 236, 237
JSON, 240
source code, 235, 236
tokenization, 237–239
XHTML/HTML, 240
WebSockets server, 304–308

Hypertext Transfer Protocol (HTTP)
benefits, 167
client object, 182–184
configuration requests, 181, 182
encrypted connections, 189–191
HTTPS server, 195–197
proxy handling, 184

authentication, 187–189
transport object, 185–187

server
curl client, 192
file server, 191–193
handler functions, 193, 194
multiplexer role, 194, 195

testing package, 336–338
URLs (see Uniform Resource Locator (URLs))
user agents

GET request, 177–180
HEAD method, 175–177
requests/get responses, 174
response type, 174

�       � I
Interface definition language (IDL), 252
Internationalization (i18n), 131, 167–169
IPv4/IPv6 addresses, 37, 38

�       � J, K
JavaScript Object Notation (JSON)

client/server, 90–94
employee objects, 86
Hypertext Markup Language (HTML), 240
loadjson.go, 88
objects/arrays/basic values, 86
person.json file, 87, 88
remote procedure call

client, 261, 262
server, 259, 260

serialized results, 88
source code, 89
type-dependent encodings, 86, 87
WebSockets server, 296–299

�       � L
Local area network (LAN), 3

�       � M, N
Message passing, 6–8
Metropolitan area networks (MANs), 3
Middleware model

components, 15
functions, 17
libraries, 16

�       � O
Open Network Computing (ONC), 71
Open Systems Interconnect (OSI), 1, 2, 147

■ INDEX



376

�       � P, Q
Peer-to-peer vs. Client-server systems, 8, 9
Personal area networks (PANs), 3
Protocol layers

definition, 1
ISO OSI protocol, 1
network communications, 1
OSI layers, 2
TCP/IP protocols, 2, 3

Public Key Infrastructure (PKI),  
154, 157–160

�       � R
Remote procedure call (RPC), 8, 9

client-side code, 252
Go language

client/TCP, 257, 258
HTTP client, 255, 256
matching values, 259
quotient/remainder, 253
restrictions, 252, 253
server HTTP, 254, 255
TCP sockets, 256, 257

JSON encoding, 259–262
message-passing paradigm, 251
steps, 251

REpresentational State Transfer (REST)
client, 285–289
complete server, 279–285
components, 263
content negotiation, 274–278
createFlashcardSet() function, 285
flashcards, 272, 273
handling request, 278
HATEOAS, 267, 268
link specifications, 268, 269
remote procedure call, 289
representation, 264
RESTful transaction models, 271
Richardson Maturity Model, 272
ServeMux, 273, 274
stateless, 267
transactions, 269–271
URIs/Resources, 263, 264
verbs

DELETE, 266
GET request, 265
HTTP request, 265
PATH component, 265
POST, 266
PUT request, 266

Richardson Maturity  
Model, 263, 272

�       � S
Security system

cryptographic tools, 147
data integrity, 150–153
difficult/subtle computing problems, 147
functions/levels, 148, 149
hashing algorithm, 150
hexadecimal numbers, 151
mechanisms, 149, 150
network-facing applications, 147
OSI seven-layer model, 148, 149
public key encryption, 154–157
symmetric key encryption, 153, 154
transport layer security, 160–165
X.509 certificates, 157–160

Server distribution, 10, 11
Socket-level programming

addressing internet, 37–39
connections, 59
Conn/PacketConn/listener types, 63–66
documentation

Go test commands, 42
host name/addresses lookup, 49–51
IPAddr type, 48, 49
masking operations (IPMask type), 43–46
methods, 41
net package, 40–43
routing, 46, 47

features, 35
IP address type, 39, 40
raw sockets/IPConn type, 66–68
server ports, 63
services

ports, 51, 52
request/responds, 51
TCPAddr type, 52

sockets, 53–59
TCP/IP protocol, 35–37
UDP datagrams, 60–62

�       � T
Template module, 199

conditional statements, 206–211
function definition, 203–205
html/template package, 211
inserting object values, 199, 200
pipelines, 202, 203
printperson.go, 200–202
two-step process, 200
variables, 205, 206

Testing
Go standard library

activities, 343

■ INDEX



377

client connection, 345, 346
methods, 344
requestwrite_test.go, 340–343
test package, 340
TestTCPConnSpecificMethods, 344, 345

httptest package, 336–338
Pipe type, 338, 339
simple set/broken, 333–336
tooling package, 333

Transmission control protocol/Internet protocol 
(TCP/IP)

client, 53–55, 60
connection-oriented protocol, 37
daytime service, 56, 57
deadlines and keepalive, 60
error checking, 55
IP datagrams, 36
multithreaded server, 57–59
OSI stack, 35
sockets, 53–59
timeout, 60
user datagram protocol, 36

Transparency
access, 19
concurrency/scalability, 20
location, 19
migration/replication, 19
performance/failure, 20

Transport Layer Security (TLS), 302–304
certificate authority (CA), 160
client, 160–162
encryption/decryption schemes, 160
self-signed certificate, 162–165

Trivial File Transfer Protocol (TFTP), 5, 6

�       � U
Uniform Resource Locator (URLs)

appropriate representations, 167
characteristics, 169
HTTP/0.9, 169, 173
HTTP/1.0, 170–172

request format, 170
response format, 171, 172

HTTP 1.1, 172, 173
HTTP/2, 173
HTTP/3, 173
internationalization (i18n), 167–169
punycode value, 167, 168
resources, 167
response format, 169
REST, 263

transport mechanism, 173
versions, 169

User Datagram Protocol (UDP)
connectionless protocol, 36
datagrams, 60–62
services, 51
TCP/IP, 36

�       � V
Version control

compatibility, 111
GET request, 111
HTML5, 112
protocol setup, 111
web, 111, 112

�       � W, X, Y, Z
Web server

browser site diagram
files, 216
flashcard components, 214, 215
home page, 214
pages, 213
word lists, 215

Chinese (see Chinese dictionary)
fixing accents, 226–229
flashcard sets, 224–226
listFlashCards function, 219–222
ListWords function, 229–231
manageFlashCards function, 222, 223
presentation, 234
server, 217–219, 234
showFlashCards function, 231–234

WebSockets server
browser/web server, 291
client package, 310, 311
echo server, 308, 309
github.com/gorilla/websocket  

package, 308
golang.org/x/net/websocket

Codec type, 299–301
HTML page, 304–308
JSON object, 296–299
message object, 292–296
package documentation, 292
TLS socket, 302–304
XMLCodec package, 299

HTTP server, 292
sending text and binary messages, 308

Wide area network (WAN), 3, 35

■ INDEX


	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface to the Second Edition
	Preface to the First Edition
	Chapter 1: Architectural Layers
	Protocol Layers
	ISO OSI Protocol
	OSI Layers
	TCP/IP Protocol
	Some Alternative Protocols

	Networking
	Gateways
	Host-Level Networking
	Packet Encapsulation
	Connection Models
	Connection Oriented
	Connectionless

	Communications Models
	Message Passing
	Remote Procedure Call

	Distributed Computing Models
	Client-Server System
	Client-Server Application
	Server Distribution
	Communication Flows
	Synchronous Communication
	Asynchronous Communication
	Streaming Communication
	Publish/Subscribe

	Component Distribution
	Gartner Classification
	Example: Distributed Database
	Example: Network File Service
	Example: Web
	Example: Terminal Emulation
	Example: Secure Shell

	Three-Tier Models
	Fat vs. Thin

	Middleware Model
	Middleware Examples
	Middleware Functions

	Continuum of Processing
	Points of Failure
	Acceptance Factors
	Thoughts on Distributed Computing
	Transparency
	Access Transparency
	Location Transparency
	Migration Transparency
	Replication Transparency
	Concurrency Transparency
	Scalability Transparency
	Performance Transparency
	Failure Transparency

	Eight Fallacies of Distributed Computing
	Fallacy: The Network Is Reliable
	Fallacy: Latency Is Zero
	Fallacy: Bandwidth Is Infinite
	Fallacy: The Network Is Secure
	Fallacy: Topology Doesn’t Change
	Fallacy: There Is One Administrator
	Fallacy: Transport Cost Is Zero
	Fallacy: The Network Is Homogeneous

	Conclusion

	Chapter 2: Overview of the Go Language
	Types
	Slices and Arrays
	Maps
	Pointers
	Functions
	Structures
	Methods

	Multithreading
	Packages
	Modules
	Type Conversion
	Statements
	GOPATH
	Running Go Programs
	Standard Libraries
	Error Values
	Conclusion

	Chapter 3: Socket-Level Programming
	The TCP/IP Stack
	IP Datagrams
	UDP
	TCP

	Internet Addresses
	IPv4 Addresses
	IPv6 Addresses

	IP Address Type
	Using Available Documentation and Examples
	The IPMask Type
	Basic Routing
	The IPAddr Type
	Host Canonical Name and Addresses Lookup

	Services
	Ports
	The TCPAddr Type

	TCP Sockets
	TCP Client
	A Daytime Server
	Multithreaded Server

	Controlling TCP Connections
	Timeout
	Staying Alive

	UDP Datagrams
	Server Listening on Multiple Sockets
	The Conn, PacketConn, and Listener Types
	Raw Sockets and the IPConn Type
	Conclusion

	Chapter 4: Data Serialization
	Structured Data
	Mutual Agreement
	Self-Describing Data
	Encoding Packages
	ASN.1
	ASN.1 Daytime Client and Server

	JSON
	A Client and A Server

	The Gob Package
	A Client and A Server

	Encoding Binary Data As Strings
	Protocol Buffers
	Installing and Compiling Protocol Buffers
	The Generated personv3.pb.go File
	Using the Generated Code

	Conclusion

	Chapter 5: Application-Level Protocols
	Protocol Design
	Why Should You Worry?
	Version Control
	The Web

	Message Format
	Data Format
	Byte Format
	Character Format

	A Simple Example
	A Stand-Alone Application
	The Client-Server Application
	The Client Side
	Alternative Presentation Aspects
	The Server Side
	Protocol: Informal
	Text Protocol
	Server Code
	Client Code
	Textproto Package

	State Information
	Application State Transition Diagram
	Client-State Transition Diagrams
	Server-State Transition Diagrams
	Server Pseudocode

	Conclusion

	Chapter 6: Managing Character Sets and Encodings
	Definitions
	Character
	Character Repertoire/Character Set
	Character Code
	Character Encoding
	Transport Encoding

	ASCII
	ISO 8859
	Unicode
	UTF-8, Go, and Runes
	UTF-8 Client and Server
	ASCII Client and Server

	UTF-16 and Go
	Little-Endian and Big-Endian
	UTF-16 Client and Server

	Unicode Gotchas
	ISO 8859 and Go
	Other Character Sets and Go
	Conclusion

	Chapter 7: Security
	ISO Security Architecture
	Functions and Levels
	Mechanisms

	Data Integrity
	Symmetric Key Encryption
	Public Key Encryption
	X.509 Certificates
	TLS
	A Basic Client
	Server Using a Self-Signed Certificate

	Conclusion

	Chapter 8: HTTP
	URLs and Resources
	i18n
	HTTP Characteristics
	Versions
	HTTP/0.9
	Response Format

	HTTP/1.0
	Request Format
	Response Format

	HTTP 1.1
	HTTP Major Upgrades
	HTTP/2
	HTTP/3

	Simple User Agents
	The Response Type
	The HEAD Method
	The GET Method

	Configuring HTTP Requests
	The Client Object
	Proxy Handling
	Simple Proxy
	Authenticating Proxy

	HTTPS Connections by Clients
	Servers
	File Server
	Handler Functions
	Bypassing the Default Multiplexer

	HTTPS
	Conclusion

	Chapter 9: Templates
	Inserting Object Values
	Using Templates

	Pipelines
	Defining Functions
	Variables
	Conditional Statements
	The html/template Package
	Conclusion

	Chapter 10: A Complete Web Server
	Browser Site Diagram
	Browser Files
	Basic Server
	The listFlashCards Function
	The manageFlashCards Function
	The Chinese Dictionary
	The Dictionary Type

	Flashcard Sets
	Fixing Accents
	The ListWords Function
	The showFlashCards Function
	Presentation on the Browser
	Running the Server
	Conclusion

	Chapter 11: HTML
	The html/template Package
	Tokenizing HTML
	XHTML/HTML
	JSON
	Conclusion

	Chapter 12: XML
	Unmarshalling XML
	Marshalling XML
	Parsing XML
	The StartElement Type
	The EndElement Type
	The CharData Type
	The Comment Type
	The ProcInst Type
	The Directive Type

	XHTML
	HTML
	Conclusion

	Chapter 13: Remote Procedure Call
	Go’s RPC
	HTTP RPC Server
	HTTP RPC Client
	TCP RPC Server
	TCP RPC Client
	Matching Values

	JSON
	JSON RPC Server
	JSON RPC Client

	Conclusion

	Chapter 14: REST
	URIs and Resources
	Representations
	REST Verbs
	The GET Verb
	The PUT Verb
	The DELETE Verb
	The POST Verb

	No Maintained State (That Is, Stateless)
	HATEOAS
	Representing Links
	Transactions with REST
	The Richardson Maturity Model
	Flashcards Revisited
	URLs

	ServeMux (The Demultiplexer)
	Content Negotiation
	GET /
	POST /

	Handling Other URLs
	The Complete Server
	Client
	Using REST or RPC
	Conclusion

	Chapter 15: WebSockets
	WebSockets Server
	The golang.org/x/net/websocket Package
	The Message Object
	The JSON Object
	The Codec Type
	WebSockets over TLS
	WebSockets in an HTML Page

	The github.com/gorilla/websocket Package
	Echo Server
	Echo Client

	Conclusion

	Chapter 16: Gorilla
	Middleware Pattern
	Standard Library ServeMux Examples
	Customizing Muxes
	gorilla/mux
	Why Should We Care
	Gorilla Handlers
	Additional Gorilla Examples
	gorilla/rpc
	gorilla/schema
	gorilla/securecookie
	Conclusion

	Chapter 17: Testing
	Simple and Broken
	httptest Package
	Below HTTP
	Leveraging the Standard Library
	Conclusion

	Appendix A:
Fuzzing
	Fuzzing in Go
	Fuzzing Failures
	Fuzzing Network-Related Artifacts
	Conclusion

	Appendix B:
Generics
	A Filtering Function Without Generics
	Refactor Using Generics
	Custom Constraints
	Using Generics on Collections
	How Not to Use Generics?
	Conclusion

	Index


