Network Programming
with Go Language

Essential Skills for Programming, Using
and Securing Networks with Open Source
Google Golang

Second Edition

Dr. Jan Newmarch
Ronald Petty

Apress®

Network Programming with Go Language: Essential Skills for Programming, Using
and Securing Networks with Open Source Google Golang

Dr. Jan Newmarch Ronald Petty
Oakleigh, VIC, Australia San Francisco, CA, USA
ISBN-13 (pbk): 978-1-4842-8094-2 ISBN-13 (electronic): 978-1-4842-8095-9

https://doi.org/10.1007/978-1-4842-8095-9
Copyright © 2022 by Jan Newmarch and Ronald Petty

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: James Markham

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Pat Kay on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on
GitHub. For more detailed information, please visit https://github.com/Apress/network-prog-with-go-2e.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8095-9
http://www.unsplash.com
http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://booktranslations@springernature.com
http://bookpermissions@springernature.com
http://www.apress.com/bulk-sales
https://github.com/Apress/network-prog-with-go-2e

I dedicate this to my family.

Table of Contents

About the AUtROKS.......couusmmmssnnmssssnsssssnssssanssssanssssanssssansssssnsssssnsssssnsssssnnssssnnsnssnnnsss Xvii
About the Technical REVIEWEYcuurusssmenmmssssssnsssssssnssssssssssssssssnssnsssssnnnnsssssnnnnssssnnns Xix
AckNOWIedgmEeNTSccuuuiiummnmmsssnnnmmsssssnnnmssssssnsessssssnnessssansssssssnnnnsssssnnnnsssssnnnnssssnnns XXi
Preface to the Second Editionccccsmsssmmmsssnnmsssnsmssssnssssnsssssssssssssssssnsssssnsssssnnss Xxiii
Preface to the First Eition.........ccccccvnmmmnssemmnsssmmmsssssmsssssmssssssssssssssssssssssssssssnssssnnss XXV
Chapter 1: Architectural Layers......ccccusemmmmmssssssnmssssssnssssssssssssssssssssssssssssssssssnnssssss 1
ProtOCOI LAYEIS.cocererererires sttt sn s s sn s sn s n s nn e e nn e nn e nn s n e n s 1
S O 0 I (0] (0o OO 1

O T LAYETS. ...ecveeererreueresessesesesesssssesesssss e sesssss e e ssssa s st ssssesesessssese e s s s ase e s ssase e e s e eRe e e s nse e ne s nsennnnnsnsnsnaes 2
B0 () (0 OO 2
Some ARErnative ProtoCOISccoievicricrescse ettt a e e s a e ae s 3
0T 0T (T4 S 3
GALEWAYS....coveeeeeircrre e s s s et a e e e e R e R e R e R e e Re R e e Re e aeas 4
Host-Level NetWOTrKIiNg........ccucverceriererersen s se s sn s sr s snssnssns s 4
Packet ENCAPSUIALION........ccccevveeriiree s sse e sae s e sn e s e sae s e snesnesassnesae s 4
ConNECtion MOMEIS.......ccceerierrerererersere e a s se s e nn e ne e 5
CoNNECLION OFIENTEMcoveecrececc e s r e r e e e p e p e ne e nnas 5
CONNECLIONIESScueeveererie e a e b e R e R e e R b e e R e e R e e e aeer e e R e e nnenrnnis 5
Communications MOAEIS........c.coeeeeeeerece e e sn e n s 6
MESSAQE PASSING.......covrerreueererrrueeresseseesessssesesesesse e e e e e e e ss s e s ssse et ssass e e s s se e ne s sse e e ssssanssnsnsnsnnes 6
Remote ProCedure Call............ocererercre e s sa s s s st a e ne e s 7

https://doi.org/10.1007/978-1-4842-8095-9_1
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec15

TABLE OF CONTENTS

Distributed Computing MOGEIS.........ccorereerierrrcrr e e 8
Client-Server SYSIBM ... 9
Client-Server APPliICAION.........ccccviiriererree e n e s sn e s n e ae s nne s 9
Server DISTDULION ... e 10
CommUNICALION FIOWS ... 11
Synchronous COMMUNICALION............cociriieerireree e 1
Asynchronous COMMUNICALIONc..ouceeerireieecririre e 1
Streaming COMMUNICALIONcouiuiuiiriricccresee e e 1
PUBIISH/SUDSCIIDE. ...t 11
Component DiStribDULION.......cccvveiirre e s e e s n e sn e snenne s 12
Gartner ClassSifiCation ... ——————— 12
THIEE-TIier MOUEIScccoiirirriinsrniis s 14
Fat VS. TRIN oot 15
MiddIeWare MOEL...........cccoiiierrire e s 15
MiddIeware EXAMPIESccevereririririene e sse s sse s sae s s s s s s s e sae st e saesas st e saesaesaesaesassessasssnnsnns 16
Middleware FUNCHONSccouiiiiicene e 17
ContinUuM Of ProCESSINGcoeeueeeerrerreirersessessessessessessessesnesnessesasssssnsssesnssnsssssnssssssnssnsnes 17
POINES Of FAIIUIE ... s 18
ACCEPIANCE FACKOIS......cecceeeeeeeeererreere e e e sa e sse s sesaesnesresnesnesnesnennnnnnnnnnnns 18
Thoughts on Distributed COMPULING.........cccverierirrrrr e 19
TrANSPAIEINCY ...c..eeeeeieerirsee s s e s s e e s s s s s ae s e e ae s r e s s s n e e ae s sn e e ae s neeae s nneeaesnneeannnnnnaes 19
ACCESS TrANSPAIEINCY ...vuvvuressesseessessessessesssessessesssssssssesssssessssssesssssessssssesssssssssessssssssessssssssssssessssssssssssesans 19
LOCALION TFrANSPAIEINCYvvuvsessesessessessessessessesssessessessssssessesssssssssessesssssessssssessssssssssssesssssssssssssssssssssseas 19
Migration TFANSPAIENCYcceeeeeererererereererseserserersesessessssessesessesessessssessssessesesssssssessssessssessesessessssssansens 19
Replication TrANSPAIENCY........ccceerererererererrerersererseresessssessesessesessessssessssessesesssssssessssessssessesessessssssansens 20
CONCUITENCY TFANSPATENCY ..vuvvuverressessesessessessesssessessessssssessesssssssssessesssssessssssessssssssssssesssssssssessesssssssaneas 20
SCalability TrANSPAIENCYc.eeererererrererresererereressersesessesessesessessssessesessessssessssessssesssssssessssessssersensssenssses 20
Performance TrANSPAIEINCYcueueeseesressessessesssessessessesssessessesssssssssesssssessssssessssssssssssesssssssssesssssssssssneas 20
FRIIUFE TFANSPATENCYcuvverersessesessesseessessessessesssessesssssssssessessssssssssssesssssessssssessssssssssssessssssssssssssssssssaneas 20

vi

https://doi.org/10.1007/978-1-4842-8095-9_1#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec24
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec25
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec26
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec32
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec33
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec34
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec35
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec36
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec37
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec38
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec39
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec40
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec41
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec42
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec43
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec44
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec45
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec46
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec47
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec48
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec49

TABLE OF CONTENTS

Eight Fallacies of Distributed Computingccocoeererniniccnse e 20
Fallacy: The Network IS Relidble..........ccoveiececeerecsess e 21
Fallacy: LAtENCY IS ZEI0coeceerecererire s s sss s se s ss e ss s s s s s sesesnssesnsnsnneas 21
Fallacy: Bandwidth IS INfiNite.........ccccerierniererresre e 21
Fallacy: The NETWOIK IS SECUIEccveevererrcrerirre s s 22
Fallacy: Topology DOESNt CRANGEcceerrrererinrneeririss e sss e ss s ses s ss s ns 22
Fallacy: There Is One AdminIStratorccoveerinirccrns e sa s s 22
Fallacy: TranSPOrt COSL IS ZEI0.......cvuiererrrreirerisise s a s se s sa s e sn s s 22
Fallacy: The Network IS HOMOGENEOUS.........cccereeererererrssesresessesessssss e sssessssesssssssessssessssessssesssssssssssnens 22

0] 3T 1T 23

Chapter 2: Overview of the Go Languageccusemssssssmsssmssssssssssssssssssssssssnsnas 25

] L3RRS 26
SHCES ANU AITAYScveveueerereeieesisie e e e e e s e se e s R e e e e s b e e e e s b e Re e b s b e Re e e e s R e e e e npenn s 26
1= 1RSSR 28
POINTEIS .. 28
FUNCHIONS ...t 29
R (0T 10 = 29
MEBENOGS ... ——————————— 30

T g LT Lo Lo S 31

PACKAGESouceeceicte s 31

MOQUIES ...t 32

7L 00 01T £ (0] SRS 32

SHALBMENTS ...t —————— 33

60 I OSSR 33

RUNNING GO Programs ..o sssssssnss 33

Standard LiDraries.... ... 33

EITOr VAIUBS ..ottt e e s sn e s n e sne s s sne s sne e nne s e e nne e 34

CONCIUSION.....cvieeccccie e s 34

vii

https://doi.org/10.1007/978-1-4842-8095-9_1#Sec50
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec51
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec52
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec53
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec54
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec55
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec56
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec57
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec58
https://doi.org/10.1007/978-1-4842-8095-9_1#Sec59
https://doi.org/10.1007/978-1-4842-8095-9_2
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_2#Sec17

TABLE OF CONTENTS

Chapter 3: Socket-Level Programming........cccusssmsssssmsssnsssssssssssnsssssssssssnsssssnnssssns 35
THE TCP/IP STACKeeueercreesir ettt ra s sa s s a s s s 35
1D L (o] 2 L0 1TSS 36
UDPoooeeeeeevuseessseessasesssssessasssssssss s ss s s s s s RS ReesbaesRes R R R R R e 36
TOP ceeeeetereesteeessssesssssessases s s s s s bR b AR R SRR AR SRR RS R AR AR R 37
INTEINEL AAUIESSES ... reerse e sse e sse e se e ssssaessesae s e saesassnesansesnnenennensnnnes 37
IPUZA AQUIESSES w.vvvvrvessresssressseessseesssesssssssssessssssssssessssesssssessssesssssessssssssssessssasssssessssasssssessssssssssesssssnssans 37
IPVG AGUIESSES w.vvvveersresseesssresssessssessssessssessssssssssessssesssssessssesssssessssesssssessssasssssessssasssssessssesssssesssssnssans 38
IP AQUIESS TYPE ..eeveeeererrerrersessessessessessessessessesssssessessessessessssssssesssssnssssssssessesssssnssnssnssnsens 39
Using Available Documentation and EXamplesccccoeeeeecenececessssscesses e 40
THE IPMASK TYPE ...t e e bbb e bbb e e e nnans 43
BaSIC ROULING......coviueeerieiecis ittt p s 46
LTI LV o T /o TS 48
Host Canonical Name and AddreSSES LOOKUPcoceurueueerererencririreesesessse e ses e sssesssne s 49
SBIVICES. .. ereuerresrsserreesse e s e sse e s e s s s se e s s e se e s eae e s ae e e e Re e e R e e e Re e e e Re e e Re R e e nRennnnnan 51
POIES .vuvvvveseeesssessseesssessssnessssnsssssessssessssnessssnessseessssessssesssssesssseessssesssseessssessssenssssessssnsssssessssesssssesssssnssans 51
THE TCPAUAN TYPE «..veeeeereeereereraeresaeree e seesesaesesaesessesas e sae e sae e saesesaesassesassesaesesassessessssesassessssersenessensnaes 52
LI S 10T] PSR S 53
L S 03T OO 53
A DAYLIME SEIVELveueertiereriris s e e e e e AR E R e bRt e b e e n s 56
MURIENIEAAEM SEIVENviveecrerteccrir et e et e b e p s 57
Controlling TCP CONNECLIONScceeeereerernesressessessessessessesssssessessssssssssssssesssssssssssssssssssens 60
LT 10 OO 60
STAYING ALIVE ...ttt E e R e e e e b e Re e e e s R e e e e e R e 60
UDP Datagramscccceecerreeririeessisssesesssessee e sssessessssssesssessessnsssesssssssssnsssnsssssnsssssnensess 60
Server Listening on Multiple SOCKELS..........ccoceeriererriernr e 63
The Conn, PacketConn, and Listener TYPES.......ccccrrrrrrnnersersessesses s ses s sessessesssssssnnnns 63
Raw Sockets and the IPCONN TYPEcecevververrerrerierrerer e ses e s s sss s e sssees 66
00 o (1 0 o RSP RR 68

viii

https://doi.org/10.1007/978-1-4842-8095-9_3
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec24
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec25
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec26
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec27
https://doi.org/10.1007/978-1-4842-8095-9_3#Sec28

TABLE OF CONTENTS

Chapter 4: Data Serialization..........ccccussemmmmnsssnnnmmsssssnmmmssssnmmsssssss——— 69
STrUCTUrEd DALceieceiireire e 69
Mutual AGre@mMENT..........co e ne e ne e ne s nenne e 7
Self-Describing Datacoecieeriiesnser e e 4
ENCOUING PACKAQEScocevererirerir st sn s sn s nnan 72
] T TP 74
ASN.1 Daytime CleNt @Nd SEIVENccceerererererererereree e reeressesesseressesssessesessesessesessessssessssesssesssnsnaes 84
USON. ..ttt R e R R e R 86
A CHENE @NU A SEIVET ... se e e sesesesesesesesesesssesesesesssesesssessessssssssnesenenenes 90
The GOD PACKAQE........cecvererirereririr s sn s sr e n e nn e sn e n e nnnnnnnn 94
A ClENt ANU A SEIVE ...ttt b s e b s e b e se e e e s e e e e nnans 98
Encoding Binary Data As STriNgS.........ccvvrvrreniniennis s ses e sessesnens 100
ProtoCol BUFEIS........ccociiirciret s 103
Installing and Compiling ProtoCol BUFFEISccecevererererereniereesersesessesessessssesssessesessssessssassessssessesenns 105
The Generated personV3.ph.go FilE ... vrereiererere e s sa e sas e sae e s sasaesa s e saesesaesesaes 105
USing the GENErated COUEccvvereerererererte e rerre e ree e a e sre e s e saesasae e s e s ae e sae e sae e saesaenesaenenes 106
0] T (1 [0 o S 107
Chapter 5: Application-Level Protocolsccccmusammmsssnsmsssnsssssnssssssssssssnssssnnsnss 109
ProtoCOl DESIGNcccererererirser s se s sr s nr e sn e sn s snesn e nn e nnennennnnan 109
Why Should YOU WOITY ..ottt st sn s sn s s s s e e snssassns s 110
VEISION CONIOL......covieeceereece s sa s e srn s 110
THE WD c.vvvvereeessssreessssseesssssssessessssssssssssssessssssssssssssssssssssssssssesssans 11
MeSSage FOrMAL..........ccccocerieriircir e s sn e sn e nnennnnan 113
Data FOrmat.........ccovinini i ————— 113
BYLE FOTMIAL.....cvvvvesseeeesssssseessssssesessssssessesssssssssssssssssssssssessssssssssssssssssesssssssesssssssssssssssssssssssssssssssss 113
0T T T 1T 01 114
A SIMPIE EXAMPIEovreeeirerer e n s n s 115
A Stand-Alone APPlICALIONccecerrerererere e ae e e sae e sae e aesasae s e e sae e saenenaen 115
The Client-Server APPHCALIONcvcveveerrere s sae s e sa e sa e e ne e nnen 116

ix

https://doi.org/10.1007/978-1-4842-8095-9_4
https://doi.org/10.1007/978-1-4842-8095-9_4
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_4#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_5
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec11

TABLE OF CONTENTS

THE ClIENT SIUE......ccriireicisrrisisi bbb bbb 116
Alternative Presentation ASPECTS........cuvviiveririenrr st sa e n e n s 117
L TeT T o 117
Protocol: INFOrMAl ..o —————————— 118
TEXE PrOTOCOLcciiiiiiinisisis it 118
o] T g 0 L 119
ClENT COUEcvverercerrerecssss e bbb bbb 121
TeXIPrOt0 PACKAGEccveereeererirc e e n e r e a e sp e n e n e nennnns 123
State INFOrmation ..o 125
Application State TransSition DIAgramccccoreierrneienrrse e 127
Client-State Transition DIagrams..........cccceuruirererreresereree s 128
Server-State Transition DIagrams..........ccccocerreiererncerr e s 128
SEIVEI PSBUUOCOUE.vvriiicisisssissssss bbb bbb en s 129
CONCIUSION....ccvecccit e 130
Chapter 6: Managing Character Sets and ENncodingscccesveessssssssnssnnssssssssnns 131
DEFINItIONS ... ——————————— 132
1 T T T 132
Character Repertoire/CharacCter SBt.........ccovvverrerererrererreree e ree s e sesseseseras e ssesessesesassessesassesssnenes 132
Character COUR ... bbb 132
Character ENCOUINGccceurereeereerereerereseresesessesersesessssessessssessssessesessesesssssssessssessenessesssssassessssesseneres 133
TranSPOrt ENCOUING......ccoeuererererertereresereres e sessersesesaesessesessessssessesessssessesassesassesssssssessssessssessenesseenaes 133
ASCIL....ee ettt e R e AR E e Re e na e nnn 133
IS0 B85Y.....ceeceeeeeerrerrerre e a e n e a e AR R e R e R e nenn e R e nnennnnan 135
UNICOE ... 135
UTF-8, GO, @N0 RUNESceceeiirieisiecii s sssssssss s ssssssssssssssssesnssssssssssssnsssnssssssnssnenns 136
UTF-8 ClIeNt @nd SEIVE ... bbb 137
LT T o T 137
LU0 LT o o S 137
Little-Endian and Big-ENdian...........c.cecoririiiennrceseireee e 138
UTF-16 ClIent @nd SEIVET ... 138

UNICOTE GOTCNAS ...eeerveeireeerrnerssseessssresssesssseessssessssesssssesssnssssssesssnsessssessasesssnsesssnessns 141

https://doi.org/10.1007/978-1-4842-8095-9_5#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec24
https://doi.org/10.1007/978-1-4842-8095-9_5#Sec25
https://doi.org/10.1007/978-1-4842-8095-9_6
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec16

TABLE OF CONTENTS

ISO 8859 ANU GO......coveereerererierirerre s sa s se s e r s s n e ae e n e e s nen e s 142
Other Character Sets and GO..........cccevererereresese e sre e sresnesnssnesnesnanns 145
00] T (1 [0 o RSO TR T STS 145
Chapter 7: SeCUritY.....cccciruissmmmmmsssssnnmmssssnnnmmssssnsnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnss 147
ISO Security ArChItECIUIEceeeeeereerereree e sr e sa e sa e e saesa e e sa e snesaenens 147
FUNCHIONS AN LBVEIS ..o 148
L= Ti T 1 149
DL W LT SRR 150
Symmetric Key ENCIYPHiON ..ottt sn s 153
Public KeY ENCryplion........cocvcriririersinenesses et se e se e s e s s sas s s snsnnns 154
X.509 CertifiCales.......ccocvierrrirerrsere s e 157
OO 160
A BASIC CHENL.......c.covieieciierere st d e e bbb e e e p e e ae e nnis 160
Server Using a Self-Signed CertifiCate ... sasaens 162
00] T (1 [0 o RS TRTS RS 165
Chapter 8: HTTPccciceeeeemnininnsssssssssssnnssssssssssssssssssssssssssssssnnnnssesssssssnsnnnnnnssensssnns 167
URLS and RESOUICEScooereereerrerrersersessessessessessnsnns 167
T18IN . vuuueesseessseessseeesssnesssnessseessseesssseesssesssssnssssesssssnsssseessssnssssnsssssessssesssssessssesssssnssssmesssnssssmssssessssnnees 167
oI 0 P 2T [169
VEISIONScecececececeresesesesese e sese s e e s e e e e e e e ne e e e e e e e e e e e e s e e ne e e nenene e e neneneneneneres 169
HTTP/0.9 c.ooeeeeeeseeessseessssessssssssessssssssssessssssssssnssssssssssnsssssessssesssssessssnsssssnssssesssssnssssmssssnssssssssasessssnnees 169
HTTP/1.0 c.oveeveeeesseeessseessssessssssssessssssssssesssssssssesssssnssssessssssssssnsssssessssessssnssssmsssssmssssmessssessssnsssssessssnnees 170
HTTP 1.1 cooeeteeeeeeeessesssssesssessssessssssssssesssssessssessssssssssessssssssssnsssssessssnsssssessssesssssessssmsssssessssnsssasessssnnees 172
HTTP MajOr UPGratESccceceeeeereeereeereererseresessesersssessssessessssessssessesesssssssessssessssessesesssssssnsssessssessenerns 173
HTTP/2 .coooeeeteeeesesesssessssssssssssssssssssssssssessssssssssesssssnssssesssssnssssesssssnssssesssssessssesssssnssssmessssessssnsssssessssnnses 173
HTTP/3 c.eoeoeeeeeeesesssssessssssssssssssesssssessssessssssssssesssssessssessssssssssesssssnssssesssssessssesssssessssmessssnssssnssssnessssnnees 173
SIMPIE USEI AQENTSceeeeercercee ettt se s e sa e e sa e s e sa s sn e sn e sn e sn e sn e nnenan 174
THe RESPONSE TYPEciveereerererisesse s sese e sss s e e s ss s s s e e s e s e r e e na e e s Re e e aenn e e nre e nnenrnnas 174
THE HEAD MEENOM..........oreeueeeeuseresseessssssssssssssesssssssssssssssssssssesssessssssssans 175
THE GET METNOU «...ovvvveererseerssesssseesssesssssessssessssssssssesssessssssssasesssssnssans 177

xi

https://doi.org/10.1007/978-1-4842-8095-9_6#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_6#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_7#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_8
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec17

TABLE OF CONTENTS

Configuring HTTP REQUESTS.......cccererererrire s sss s sns s e s 181
The Client ODJECTccecrcrcrr e e 182
ProxXy Handlingccecvverieriinienirsensis st se s ses e sns e se s e s e s snsssssnsssssesnnns 184

SIMIPIE PrOXY...eeiveeeceererertereseesereses e sesesse e seesesaesesaesassesae e sa e e saesessesessesaesesaesenaesssansesserssnesssnsssssnsesansens 185

AUNENTICALING PrOXYveeceeeererererte et re s ae e sae e e s e s e e aesa s sa s sae e sae e saenesae e e e nae e naeenans 187
HTTPS Connections by CHENtS...........cccoceerierenrenncreses e sns e 189
R3] 1T £ R 191

FIlB SEIVEN ...ttt A e e e b b s Re e e s e s R e e e e e ba e e e 191

HANAIBE FUNCHIONS......cciieicieeteeir et 193

Bypassing the Default MUIIDIEXETcco i 194
HTTPS ...t ne s nn e e 195
(003 T 110 S 197
Chapter 9: Templates......cccocunmmmmnmmnnmmmmmmmsssss s ———————————————— 199
Inserting ODJECE VAIUES........ccoeeerereeirerir e n s s 199

LR T [=]] 0] LSS 200
PIPEIINES ... e e n e nn e n e n e nn e nn e nennenan 202
Defining FUNCHIONScocviririerer ettt 203
VariaDIES.......ce i ——————————— 205
Conditional Statements ..o 206
The html/template Packagecccvvvververririnsirsirerer s e 211
(003 T 110 S 211
Chapter 10: A Complete Web Server......ccommmmmmmmmmmmmmssssssnnsmsssssssssssssssssnns 213
Browser Site Diagramccoeererniiesnscss e 213
BrOWSEK FIlEScecerceeiicisirie st s 216
BASIC SBIVEN ... 217
The listFIashCards FUNCHONccoioceereicnirncse e 219
The manageFlashCards FUNCLION..........c.ccocvvrcercrcncr e 222
The Chinese DICLIONAIYc.cceeerrerrerrirsirserser s s e e sn e 223

THE DICHIONAIY TYPE «..eeeveereerereererereerereeseraesessesas e ssesesaesessesassesssessesessssessssassessssesssssssssssessssessenssssnenaes 224

xii

https://doi.org/10.1007/978-1-4842-8095-9_8#Sec18
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec24
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec25
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec26
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec27
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec28
https://doi.org/10.1007/978-1-4842-8095-9_8#Sec29
https://doi.org/10.1007/978-1-4842-8095-9_9
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_9#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_10
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec7

TABLE OF CONTENTS

FIASNCAIT SELS.......covieererecreree e 224
FiXiNG ACCENESccueiirirer sttt e sn e sn s sr e s sn e n e nn s nn e nn e nnnn 226
The LiStWOords FUNCLION.........cccoiicrerrce s 229
The showFIashCards FUNCLIONcccceiicrrsicne e 231
Presentation on the BrowSer ... 234
RUNNING The SEIVEL ..ottt sn e sn s s sn e sn e 234
(003 T 11T TS 234
Chapter 11: HTML ...cccceeeeiiininimisssnnnnnssssnsssnns 235
The html/template PaCKagecccccvveeriererericne e ses s 236
TOKENIZING HTIMIL ..ottt sn s s s 237
XHTML/HTIML ..o e s nesansn s 240
USON et E AR nE e R 240
0] T (1 [0 o S 240
Chapter 12: XMLccocccmmrmmmssnnmmmsssssnmmssssssssesssssssssssssnsnsssssssssssssssnnssssssnnnssssssnnnnss 241
UNMarshalling XMLcouo oo sne s sne s s snesns s snssnesnesnssnesnesnnnns 242
Marshalling XML.........ccocrvriririerirer st se e s s sn s sn s sn e sn s sa e sn e sn e 244
Parsing XIMLcooieriressesessessesse s s e e se e se s se e sn s e s s e s nnssnssns e s snssnsnnssnnssnnsnnsnns 245

The SEArtEIEMENT TYPE.....coeeeeeeeeererererererere e es 246

The ENAEIEMENT TYPE ...veeeeeeereeircrre e s s s sn e s s n e sr e np s nn e n e ne e nnas 246

The CharData TYPE.......ccereuerererrrreererise s a s e e st e b s e A e b b e e ne b e n s 246

The COMMENT TYPE ...cueerriccreriee s e bbb A ne e bbb e e p s 246

THE PrOCINST TYPE ...t s p e s r e n e s np e n e n e nenrnnis 246

LTI LT =TH (A=] o 247
XHTIVIL ...ttt et p s 249
HTIVIL <.t ne s 249
(003 T 110 O 249

xiii

https://doi.org/10.1007/978-1-4842-8095-9_10#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_10#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_11
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_11#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_12
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_12#Sec12

TABLE OF CONTENTS

Chapter 13: Remote Procedure Call............cccussemmmssansmsssnsmsssssssssnssssssssssssnssssansns 251
6100630 o 252
HTTP RPC SEBIVE ...ttt b e b b se e b s e e e se e e e 254
HTTP RPC ClIENE...vvvuoevevvesseeeessssssessssssssssssssssssssssssssssssssssessnssssssns 255
L S 31 o T - SO RS 256
TOP RPC ClIENE..vvvovrvvvusseeeessesssssssssessnssssssssnns 257
MAECHING VAIUES ...t 259
B] TR 259
JSON RPC SEIVEeeeeeeceeeeeeeenesesessssnsssassssssssnnns 259
JSON RPC ClIBINEoovvevessseeeeeessseeeessssssessssssssesssssssssssssssesssnns 261
(003 T 110 S 262
Chapter 14: RESTccccccemmimmmmmnmssssssssnsssnnnnnssssnssnnns 263
URIS @Nd RESOUICEScouiireerirneisesess s s s s s s 263
RepresSentationsc.cvcercriernensessis s se s s sn s sn s sn e e sn e n s nn s nn e nn e nnenn 264
REST VEIDS ... s s s s s s n 265
THE GET VEID ovvvvvoeeeeesssneeesssssseessssssssesssssssesssssssssssssssssssssssssesssnns 265
THE PUT VEID ovvvvvoeeeeesssneeesssssseessssssssessnns 266
TN DELETE VEID.....vvveesseeeeesssseeessssssssesssssssessnns 266
THE POST VEID ..ovvovveeersseeeessssseesssssssessssssesessnns 266
No Maintained State (That Is, Stateless)cccevrvrerricrnr i 267
HATEQAS ...ttt ss e sa e et ne e ne e e 267
RepresSenting LiNKS.........cccvvvierieniiniensissesses e e e s e sessessesses s sssssssnsssssssssssssssssssnsnns 268
Transactions With REST ..o e e sens 269
The Richardson Maturity Model ... s 272
Flashcards ReVISITEd ..o 272
URLS .vvv1ueeeeeessseeeesssssnseesssssssesssssssssssssssessesssssessesssssssssssssssssssssssssssssssssesssssssesssssssssssssssssssssssssssnsessss 273
ServeMux (The DemUIIPIEXEN)c.covveeeererercre e 273
Content Negotiation...........cceeeeeeececesece e sn e sr e sn e snssnesnesnenns 274
BET / wovuueeeeeesssseesesssssessssssssssssssssssssssssssesssssssssessssssss s 276
POST /eevvvsssseesessssssssssssssssssssssssessssssssesssssssssssssssssessssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssnssssns 278

xiv

https://doi.org/10.1007/978-1-4842-8095-9_13
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_13#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_14
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec12
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec13
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec14
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec15
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec16
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec17
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec18

TABLE OF CONTENTS

Handling Other URLSccovreererecse e sss s s sss s s snsssssesnssssnns 278
The COMPIELE SEIVE........cocierrrr st n s 279
] | 285
USING REST OF RPC ... sn s s 289
010 T [T 0 o S 289
Chapter 15: WebhS0CKetS......ccuimmrmsmnmmssnnssssanssssanssssansssssnsssssnsssssnsssssnnssssnnssssnnsss 291
WEDSOCKELS SEIVEN ...ttt 292
The golang.org/x/net/websocket PAackage..........cccvverververseriensensessesses s e senas 292

The MeSSAQGE ODJECTcceeererereree s rererer e ree e rae e aesesae e s e ae e sseseraesessesassesaesesaesesaesesaesassesaenesannenaes 292

THE JSON OBJECE....vvverrsereeessssseeesssssseesssssssesssssssessssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssans 296

L 0 L= T /o O 299

WEDSOCKELS OVEI TLS ... neenes 302

WebS0CKets in @n HTIVIL PAJEcocoeeererererererereresenes 304
The github.com/gorilla/websocket Packageccceerevereriernsesesnsese e sessenesnens 308

o OIS 1T 308

o 10 I 0 L 310
0] T (1 [0 o S 31
Chapter 16: Gorilla..........ccooscemmrinssnnnnmnsssnsnmnssssssnsesssssssssssssssssssssssnssssssnnnnsssssnnnnss 313
Middleware Pattern...........cocucreeiiennnriessesssn s 313
Standard Library ServeMuX EXamPpIEScccevvvrrerrrnennensesses s ses s sesssssesssssesssssens 316
CUSTOMIZING MUXEScuereeerereeir e e s sa s s n e e s 318
(010 L VA T SRS 319
Why ShOUIA WE CarEccocererierirsersiresses s se s sn e se e s s s s sns s s s s 321
GOFilla HANGIGTS........coereecerecrerieere e 323
Additional Gorilla EXamMPIES.......cceeeeerereirerresiessesse e e e ssessessesnssssssssnsssssessnsssssssssnses 326
(010 L T oY 327
QOTlla/SCREMA.........eeeeereeer e e r e n e n e e n s 328
QOrilla/SECUIBCOOKIE.....ccverrerrerrerrerrersessessessessessessessessessessessessessessessessessesnesnessssnassessansans 329
60 3T 1] o] 331

XV

https://doi.org/10.1007/978-1-4842-8095-9_14#Sec19
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec20
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec21
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec22
https://doi.org/10.1007/978-1-4842-8095-9_14#Sec23
https://doi.org/10.1007/978-1-4842-8095-9_15
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_15#Sec11
https://doi.org/10.1007/978-1-4842-8095-9_16
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec5
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec6
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec7
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec8
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec9
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec10
https://doi.org/10.1007/978-1-4842-8095-9_16#Sec11

TABLE OF CONTENTS

Chapter 17: TeStiNG..uucccurrmsssnnmmsssssnnmmssssssnsessssssnssssssssnssssssnsnssssssnnnsssssnnnnsssssnnnnss 333
Simple and BroKEN.........cccoeeeeeceecee et sn s sn s sr e sn s sn e sn s sn e sn e nn e nnnan 333
httptest PACKAQEcceeceeeecercc ettt sn e s ne 336
BEIOW HTTP ...t se e 338
Leveraging the Standard LiDrary..........ccoeeececece s s s e e s snsnens 340
603 T 1] 346
ApPendiX A: FUZZING .uuueiimmmssssssssmmmmmssssssssssssssssssssssssssssssnssssssssssssssnsnnnssssssssssnnnnns 347
U741 0 I oSSR 347
FUZZING FAIUESeeceeererircerer st sn s sn s sn s nnnnnnnn 350
Fuzzing Network-Related Artifacts.........c.ccocvervrirsssscs s 353
603 T 1] 355
AppendiX B: GENEIICS .uuuiseemrrssssnnnmsssssnnnssssssnnnssssssnnsssssssnnnssssssnnnnsssssnnnssssssnnnnsssss 357
A Filtering Function Without GENENICSccccvevererrresree s sns e 358
Refactor USING GENENICS........cueeererrrererinesse s ses e sss s sn s s s s e sns e snes 359
CuSTOM CONSTIAINTSccreiiieircrer s e 360
Using Generics 0N COlIECHIONS........ccccvererererere e ss e sa e sassaesaese e snesae e 362
HOW NOt t0 USE GENEIICS?......ceceeereecrerecrese e se s e s se s snsssness 365
010 T (1 0 o S 37
1T - 373

xvi

https://doi.org/10.1007/978-1-4842-8095-9_17
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec1
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec2
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec3
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec4
https://doi.org/10.1007/978-1-4842-8095-9_17#Sec5

About the Authors

Dr. Jan Newmarch was head of ICT (higher education) at Box Hill Institute
before retiring, and still is adjunct professor at Canberra University, and
adjunct lecturer in the School of Information Technology, Computing and
Mathematics at Charles Sturt University. He is interested in more aspects
of computing than he has time to pursue, but the major thrust over the last
few years has developed from user interfaces under UNIX into Java, the
Web, and then into general distributed systems. Jan developed a number
of publicly available software systems in these areas. For the last few years,
he had been looking at sound for Linux systems and programming the
Raspberry Pi’s GPU. He is now exploring aspects of the IoT and Cyber
Security. He lives in Melbourne, Australia, and enjoys the food and culture
there, but is not so impressed by the weather.

Ronald Petty, M.B.A., M.S,, is a principal consultant at RX-M and founder
of Minimum Distance LLC. He is interested in many aspects of computing
including distributed systems and machine learning. Kubernetes and

Go have occupied much of his time in recent years, including presenting
at KubeCon. He hopes his own experiences help the next generation of
developers.

xvii

About the Technical Reviewer

Eldon Alameda is a web developer who currently resides in the harsh climates of Kansas. He works as a
regional webmaster for the US National Weather Service. Prior to this, he did development for a variety
of companies including local startups, advertising firms, Sprint PCS, and IBM. During the 1990s, he also
acquired a nice stack of worthless stock options from working for dot-com companies.

Xix

Acknowledgments

I want to share my appreciation for Jan Newmarch for collaborating on this book. This project has offered
me a tremendous sense of achievement and allowed me to cross a much-anticipated item off my bucket list.
I'would also like to thank Eldon Alameda for his thoughtful approach at letting me know when I am off the
mark and for providing me with solid advice.

Additionally, I owe gratitude to my partners at Apress, both Steve Anglin for the opportunity and Mark
Powers for the guidance to help see this through. Thank you to my colleagues at RX-M, including Randy
Abernethy, Christopher Hanson, Andrew Bassett, and Anita Wu. Our work over the years has allowed for my
participation in a project such as this book.

Finally, I want to thank my wife Julie and daughter Charlotte. Julie’s capacity to manage the world while
I hide out on a computer is unmatched and most appreciated. Charlotte’s energy, abilities, and creativity
inspire me to become better every day.

—Ronald Petty

xxi

Preface to the Second Edition

While an age has passed in Internet years, Go remains a primary destination for programmers. Go
conquered the container technology space. It continues to find affection in Cloud Native development. Go
strives to remain true to itself, backward compatible, yet adding new language features like Generics. Tooling
improvements such as Fuzzing allow for more secure application development.

Go has changed, and so has this book. The first edition used Go 1.8; we are now on Go 1.18. The code
has been updated to reflect this new reality. The examples have been largely developed to show a particular
feature of Go networking without forcing complexity like managing several projects or packages scattered
across the book; the associated repository can be found here https://github.com/Apress/network-prog-
with-go-2e.

The first version of this book assumed familiarity with Go, and that remains in this edition. We expand
slightly what we are willing to discuss in this book with the inclusion of more third-party modules, tools, and
techniques. Jan was correct to keep the focus on Go and not to be distracted with the ecosystem at large.

If you desire to learn about implementing networking concepts with Go, I hope this book serves
you well.

As a point of comparison, what follows is Jan’s original preface, reflecting Go in 2017.

xxiii

https://github.com/Apress/network-prog-with-go-2e
https://github.com/Apress/network-prog-with-go-2e

Preface to the First Edition

It's always fun to learn a new programming language, especially when it turns out to be a major one. Prior
to the release of Go in 2009, I was teaching a Master’s level subject in network programming at Monash
University. It's good to have a goal when learning a new language, but this time, instead of building yet
another wine cellar program, I decided to orient my lecture notes around Go instead of my (then) standard
delivery vehicle of Java.

The experiment worked well: apart from the richness of the Java libraries that Go was yet to match, all
the programming examples transferred remarkably well, and in many cases were more elegant than the
original Java programs.

This book is the result. have updated it as Go has evolved and as new technologies such as HTTP/2
have arisen. But if it reads like a textbook, well, that is because it is one. There is a large body of theoretical
and practical concepts involved in network programming and this book covers some of these as well as the
practicalities of building systems in Go.

In terms of language popularity, Go is clearly rising. It has climbed to 16th in the TIOBE index, is 18th
in the PYPL (Popularity of Programming Language), and is 15th in the RedMonk Programming Language
rankings. It is generally rated as one of the fastest growing languages.

There is a growing community of developers both of the core language and libraries and of the
independent projects. I have tried to limit the scope of this book to the standard libraries only and to the
“sub-repositories” of the Go tree. While this eliminates many excellent projects that no doubt make many
programming tasks easier, restricting the book to the official Go libraries provides a clear bound.

This book assumes a basic knowledge of Go. The focus is on using Go to build network applications,
not on the basics of the language. Network applications are different than command-line applications,
are different than applications with a graphical user interface, and so on. So the first chapter discusses
architectural aspects of network programs. The second chapter is an overview of the features of Go that
we use in this book. The third chapter on sockets covers the Go version of the basics underlying all TCP/
IP systems. Chapters 4, 5, and 6 are more unusual in network programming books. They cover the topics
of what representations of data will be used, how a network interaction will proceed, and for text, which
language formats are used. Then in Chapter 7, we look at the increasingly important topic of security. In
Chapter 8, we look at one of the most common application layer protocols in use, HTTP. The next four
chapters are about topics related to HTTP and common data formats carried above HTTP - HTML and
XML. In Chapter 13, we look at an alternative approach to network programming, remote procedure calls.
Chapters 14 and 15 consider further aspects of network programming using HTTP.

XXV

https://doi.org/10.1007/978-1-4842-8095-9_4
https://doi.org/10.1007/978-1-4842-8095-9_5
https://doi.org/10.1007/978-1-4842-8095-9_6
https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_8
https://doi.org/10.1007/978-1-4842-8095-9_13
https://doi.org/10.1007/978-1-4842-8095-9_14
https://doi.org/10.1007/978-1-4842-8095-9_15

CHAPTER 1

Architectural Layers

This chapter covers the major architectural features of distributed systems. A distributed system is a
collection of components interacting over a network. You can’t build a system without some idea of what you
want to build. And you can'’t build it if you don't know the environment in which it will work. GUI programs
are different than batch processing programs; games programs are different than business programs; and
distributed programs are different than stand-alone programs. They each have their approaches, their
common patterns, the problems that typically arise, and the solutions that are often used.

This chapter covers the high-level architectural aspects of distributed systems. There are many ways
of looking at such systems, and many of these are dealt with. We begin with a layering model to help us
understand component boundaries, discuss network implementation details, and consider how our
components message each other, wrapping up with error conditions and how to think about them.

Protocol Layers

Distributed systems are hard. There are multiple computers involved, which have to be connected in some
way. Programs have to be written to run on each computer in the system, and they all have to cooperate to
get a distributed task done.

The common way to deal with complexity is to break it down into smaller and simpler parts. These
parts have their own structure, but they also have defined means of communicating with other related parts.
In distributed systems, the parts are called protocol layers, and they have clearly defined functions. They
form a stack, with each layer communicating with the layer above and the layer below. The communication
between layers is defined by protocols.

Network communications require protocols to cover high-level application communication all the way
down to wire communication and the complexity handled by encapsulation in protocol layers.

ISO OSI Protocol

Although it was never properly implemented, the OSI (Open Systems Interconnect) protocols have been a
major influence in ways of talking about and influencing distributed systems design. It is commonly given as
shown in Figure 1-1.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 1
https://doi.org/10.1007/978-1-4842-8095-9_1

https://doi.org/10.1007/978-1-4842-8095-9_1#DOI

CHAPTER 1 © ARCHITECTURAL LAYERS

Application Application

Presentation Presentation
Session Session
Transport Transport
Network Network

Data Link Data Link
Physical Physical

—_—

Figure 1-1. The Open Systems Interconnect protocol

OSI Layers

The function of each layer from bottom to top is as follows:

e The Physical layer conveys the bit stream using electrical, optical, or radio
technologies.

e The Data Link layer puts the information packets into network frames for
transmission across the Physical layer and back into information packets.

e The Network layer provides switching and routing technologies.

e The Transport layer provides transparent transfer of data between end systems and
is responsible for end-to-end error recovery and flow control.

e The Session layer establishes, manages, and terminates connections between
applications.

e The Presentation layer provides independence from differences in data
representation (e.g., encryption).

e The Application layer supports application and end-user processes.

A layer in the OSI model often maps to a modern protocol; for example, the IP from TCP/IP maps to the
Network layer, also known as layer 3 (Physical is layer 1). The Application layer, layer 7, maps to HTTP. Some
protocols like HTTPS seem to blend layers, 5 (Session) and 6 (Presentation). No model is perfect;
alternatives exist to the OSI model that maps closer to a given reality, such as the TCP/IP protocol model.

TCP/IP Protocol

While the OSI model was being argued, debated, partly implemented, and fought over, the DARPA Internet
research project was busy building the TCP/IP protocols. These have been immensely successful and have
led to The Internet (with capitals). This is a much simpler stack, as shown in Figure 1-2.

CHAPTER 1 * ARCHITECTURAL LAYERS

application || application | 0SI 5-7

A A
\ 4 Y
TCP UDP 0Sl 4
A A
Y Y
IP 0SI 3
A
Y
h/w interface 0SI1-2

Figure 1-2. The TCP/IP protocols

Some Alternative Protocols

Although it almost seems like it, the TCP/IP protocols are not the only ones in existence and in the long run
may not even be the most successful. Wikipedia’s list of network protocols (see https://en.wikipedia.org/
wiki/List of network protocols (0SI model)) has a huge number more, at each of the OSIISO layers.
Many of these are obsolete or of little use, but due to advances in technology in all sorts of areas - such as the
Internet in Space and the Internet of Things - there will always be room for new protocols.

The primary focus in this book is on OSI layers 3 and 4 (TCP/IP, including UDP), but you should be
aware that there are other ones.

Networking

A network is a communications system for connecting end systems called hosts. The mechanisms of
connection might be copper wire, Ethernet, fiber optic, or wireless, but that won’t concern us here. A local
area network (LAN) connects computers that are close together, typically belonging to a home, small
organization, or part of a larger organization.

A wide area network (WAN) connects computers across a larger physical area, such as between cities.
There are other types as well, such as MANs (metropolitan area networks), PANs (personal area networks),
and even BANs (body area networks).

An internet is a connection of two or more distinct networks, typically LANs or WANSs. An intranet is an
Internet with all networks belonging to a single organization.

There are significant differences between an internet and an intranet. Typically, an intranet will be
under a single administrative control, which will impose a single set of coherent policies. An internet, on the
other hand, will not be under the control of a single body, and the controls exercised over different parts may
not even be compatible.

A trivial example of such differences is that an intranet will often be restricted to computers by a small
number of vendors running a standardized version of a particular operating system. On the other hand, an
internet will often have a smorgasbord of different computers and operating systems.

https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)

CHAPTER 1 © ARCHITECTURAL LAYERS

The techniques of this book are applicable to internets. They are also valid with intranets, but there you
will also find specialized, nonportable systems.

And then there is the “mother” of all internets: The Internet. This is just a very, very large internet that
connects us to Google, my computer to your computer, and so on.

Gateways

A gateway is a generic term for an entity used to connect two or more networks. A repeater operates at

the Physical level and copies information from one subnet to another. A bridge operates at the Data Link
layer level and copies frames between networks. A router operates at the Network level and not only moves
information between networks but also decides on the route.

Host-Level Networking

On a single host, we have additional concerns when designing, debugging, or deploying network-based
software. Some of these items include the following:

e DNS (domain name system, i.e., human-friendly naming)
e Firewalls (e.g., blocking inbound or outbound traffic)

e Routing (e.g., figuring out which network to place a packet)
e Host Identity management (e.g., [P address)

e Performance controls (e.g., traffic shaping or retries)

e Connection issues (e.g., missing network adapter, intramachine process
communication)

Through examples, we will see how a host misconfiguration might manifest in our software.

Packet Encapsulation

The communication between layers in either the OSI or the TCP/IP stacks is done by sending packets of data
from one layer to the next and then eventually across the network. Each layer has administrative information
that it has to keep about its own layer. It does this by adding header information to the packet it receives from
the layer above, as the packet passes down. On the receiving side, these headers are removed as the packet
moves up.

For example, the TFTP (Trivial File Transfer Protocol) moves files from one computer to another. It uses
the UDP protocol on top of the IP protocol, which may be sent over ethernet. This looks like the diagram
shown in Figure 1-3.

CHAPTER 1 * ARCHITECTURAL LAYERS

data

TFTP

header data

UDP TFTP

header header data

IP UDP TFTP

header header header data

ethernet IP UDP TFTP

header header header header data

Figure 1-3. The TFTP (Trivial File Transfer Protocol)

Connection Models

In order for two computers to communicate, they must set up a path whereby they can send at least one
message in a session. There are two major models for this:

e Connection oriented

e Connectionless

Connection Oriented

A single connection is established for the session. Two-way communications flow along the connection.
When the session is over, the connection is broken. The analogy is to a phone conversation. An
example is TCP.

Connectionless

In a connectionless system, messages are sent independent of each other. Ordinary mail is the analogy.

Connectionless messages may arrive out of order. Messages do not have an impact on each other. An

example is the IP protocol. UDP is a connectionless protocol above IP and is often used as an alternative to

TCP, as it is much lighter weight. Connectionless is also known as unconnected or stateless.
Connection-oriented transports may be established on top of connectionless ones - TCP over

IP. Connectionless transports may be established on top of connection-oriented ones - HTTP over

TCP. Messages over a connection-oriented transport protocol have some kind of relation, for example, a

sequence number used to keep order. Having state allows for functionality and optimizations; it also has an

associated cost of storage and computing.

CHAPTER 1 © ARCHITECTURAL LAYERS

There can be variations on these. For example, a session might enforce messages arriving but might not
guarantee that they arrive in the order sent. However, these two are the most common.

Connection models are not the only way a protocol can vary. One often desired feature is reliability;
this is where the protocol has logic to fix some types of errors; for example, TCP resends a missing packet.
It's pretty common to assume connection-oriented protocols are reliable; this is not always the case (e.g.,
MPLS). Additional features of a network protocol could include message boundary management, delivery
ordering, error checking, flow control, etc. These features can exist in one protocol layer and not another,
partly why there are so many network protocol stacks.

Sometimes, these features are reworked throughout the protocol stack. An example of this kind of
feature rework is with HTTP/3. In HTTP/2, reliability is provided using TCP at layer 4. In HTTP/3, TCP is
being replaced with UDP, which is not reliable. Instead, reliability will be provided with another protocol
known as QUIC. While QUIC is considered a Transport layer, like TCP or UDDP, it works on top of UDP. As you
can see, the layer model is not an exact science.

Communications Models

In a distributed system, there will be many components (i.e., processes) running that have to communicate
with each other. There are two primary models for this, message passing and remote procedure calls. In
the context of networking, these models allow interprocess (and/or thread) communication with intent to
invoke behavior on the remote process.

Message Passing

Some languages are built on the principle of message passing. Concurrent languages (and tools) often use
such a mechanism, and the most well-known example is probably the UNIX pipeline. The UNIX pipeline
is a pipeline of bytes, but this is not an inherent limitation: Microsoft’s PowerShell can send objects along
its pipelines, and concurrent languages such as Parlog can send arbitrary logic data structures in messages
between concurrent processes. Recent languages such as Go have mechanisms for message passing
(between threads).

Message passing is a primitive mechanism for distributed systems. Set up a connection and pump some
data down it. At the other end, figure out what the message was and respond to it, possibly sending messages
back. This is illustrated in Figure 1-4.

CHAPTER 1 * ARCHITECTURAL LAYERS

Requestor Responder

Send(Msg, Responder)

Receive(Msg, Requestor)

Send(Reply, Requestor)

Receive(Reply, Responder)

Figure 1-4. The message passing communications model

Event-driven systems act in a similar manner. At a low level, the programming language node. js runs
an event loop waiting for I/O events, dispatching handlers for these events and responding. At a higher level,
most user interface systems use an event loop waiting for user input, while in the networking world, Ajax
uses the XMLHttpRequest to send and receive requests.

Remote Procedure Call

In any system, there is a transfer of information and flow control from one part of the system to another. In
procedural languages, this may consist of the procedure call, where information is placed on a call stack and
then control flow is transferred to another part of the program.

Even with procedure calls, there are variations. The code may be statically linked so that control transfers
from one part of the program’s executable code to another part. Due to the increasing use of library routines,
it has become commonplace to have such code in shared objects (.so) or dynamic link libraries (.dll), where
control transfers to an independent piece of code.

Libraries run in the same machine as the calling code. it is a simple (conceptual) step to transfer control
to a procedure running in a different machine (i.e., remote library). The mechanics of this are not so simple!
However, this model of control has given rise to the remote procedure call (RPC), which is discussed in
much detail in a later chapter. This is illustrated in Figure 1-5.

CHAPTER 1 © ARCHITECTURAL LAYERS

Client Process

main()

{

» rpc(a, b, c) -
Server Process

Ly receive(x, y)
A4

\

send(x=a, y=b) — EPC(X, ¥,2)

receive(c=2)
\\ }
v

™ send(z)

Figure 1-5. The remote procedure call communications model

There are many examples of this: some based on particular programming languages such as the Go
rpc package (discussed in Chapter 13) or RPC systems covering multiple languages such as SOAP and
Google’s gRPC.

It may not be clear how message passing and RPC differ. At one level, they both are involved with
invoking behavior “somewhere else.” Generally speaking, RPC tends to be less abstract (i.e., looks and feels
like regular procedure calls) compared to message passing where we could be calling remote queueing
system. Under the hood though, RPC will be passing messages.

Distributed Computing Models

At the highest level, we could consider the equivalence or the nonequivalence of components of a
distributed system. The most common occurrence is an asymmetric one: a client sends requests to a server,
and the server responds. This is a client-server system.

If both components are equivalent, both able to initiate and to respond to messages, then we have a
peer-to-peer system. Note that this is a logical classification: one peer may be a 16,000-core supercomputer;
the other might be a mobile phone. But if both can act similarly, then they are peers.

These are illustrated in Figure 1-6.

client-server A

—>
<«

peer-to-peer A |« A

Figure 1-6. Client-server vs. peer-to-peer systems

8

https://doi.org/10.1007/978-1-4842-8095-9_13

CHAPTER 1 * ARCHITECTURAL LAYERS

An example of a client-server is a browser talking to a web server. An example of a peer-to-peer system
could be database system where data is replicated and available on both peers.

Combinations of these systems result in what is known as multitier architectures, where three-tier
architecture is one of the most common (i.e., presentation -> application -> data or browser -> web server ->
database).

Client-Server System

Another view of a client-server system is shown in Figure 1-7.

User Client Server
request
Client —> | Server
process | «———| process
response
System System
hardware hardware

Figure 1-7. The client-server system

This view may be held by a developer who needs to know the components of a system. It is also the view
that may be held by a user: a user of a browser knows it is running on their system but is communicating
with servers elsewhere.

The prior diagram looks similar to the OSI model we discussed earlier. Layers in Figure 1-7 are also
optional; for example, we can have both the client and server process on a single piece of hardware. Being
located on the same machine means we can potentially remove some layers of the OSI model including
layer 1 (Physical), layer 2 (Data Link), and layer 3 (Network). We say potentially because these layers still may
be desired for various reasons including tooling homogeneity or security.

Client-Server Application

Some applications may be seamlessly distributed, with the user unaware that it is distributed. Users will see
their view of the system, as shown in Figure 1-8.

CHAPTER 1 © ARCHITECTURAL LAYERS

Client Server
Clie Application

proc S
System System
hardware hardware

Figure 1-8. The user’s view of the system

In order to function, both components must be installed, how seamless this complexity will vary by
application (and its usage).

Server Distribution

A client-server system need not be simple. The basic model is a single client, single server system, as shown
in Figure 1-9.

Client Server

Figure 1-9. The single-client, single-server system

However, you can also have multiple clients, single server, as illustrated in Figure 1-10.

Client ——>»{ Master [€«— Client

/\

Slave Slave

Figure 1-10. The multiple-clients, single-server system

In this system, the master receives requests, and instead of handling them one at a time itself, it passes
them to other servers to handle. This is a common model when concurrent clients are possible.
There are also single client, multiple servers, as shown in Figure 1-11.

. —> —_—>
Client Server Server
< <«

Figure 1-11. The single-client, multiple-servers system

10

CHAPTER 1 * ARCHITECTURAL LAYERS

This type of system occurs frequently when a server needs to act as a client to other servers, such as
a business logic server getting information from a database server. And of course, there could be multiple
clients with multiple servers.

Again, these components may or may not be on the same physical hardware.

Communication Flows

The previous diagrams have shown the connection views between high-level components of a system. Data
will flow between these components, and it can do so in multiple ways, discussed in the following sections.

Synchronous Communication

In a synchronous communication, one party will send a message and block, waiting for a reply. This is often
the simplest model to implement and just relies on blocking I/0. However, there may need to be a timeout
mechanism in case some error means that no reply will ever be sent.

Asynchronous Communication

In asynchronous communication, one party sends a message and, instead of waiting for a reply, carries
on with other work. When a reply eventually comes, it is handled. This may be in another thread or by
interrupting the current thread. Such applications are harder to build but are much more flexible to use.
When thinking of these protocol layers and related implementations, it’s not always obvious how you
describe communication flow. For example, TCP, is it synchronous or asynchronous? When designing
network applications, communication flow is used to describe the applications logic (Are you waiting for a
response or are you not waiting for a response?). When we provide the Transport layer (TCP) data, we don’t
wait for it to send and respond, our application keeps moving. In that light, we say TCP is asynchronous.

Streaming Communication

In streaming communication, one party sends a continuous stream of messages. Online video is a good
example. The streaming may need to be handled in real time, may or may not tolerate losses, and can be
one-way or allow reverse communication as in control messages. This is why TCP is often used over UDP,
even if that ordering comes at a cost.

Publish/Subscribe

In pub/sub systems, parties subscribe to topics, and others post to them. This can be on a small or massive
scale, as demonstrated by services like Twitter and software like Kafka. Designing a multitier system to
include pub/sub allows producer and consumers to be decoupled. Decoupling allows us to become more
fault tolerant and generally improves the ability to grow the system (e.g., more producers and consumers).
Storage of messages on a third party (i.e., remote queue) provides this ability. How the queue performs and
grows is its own area of study and distributed computing (and storage).

11

CHAPTER 1 © ARCHITECTURAL LAYERS

Component Distribution

A simple but effective way of decomposing many applications is to consider them as made up of three parts:
e Presentation component
e Application logic
e Dataaccess

The presentation component is responsible for interactions with the user, both displaying data and
gathering input. It may be a modern GUI interface with buttons, lists, menus, etc., or an older command-line
style interface, asking questions and getting answers. It could also encompass wider interaction styles, such
as the interaction with physical devices such as a cash register and ATM. It could also cover the interaction
with a nonhuman user, as in a machine-to-machine system. The details are not important at this level.

The application logic is responsible for interpreting the users’ responses, for applying business rules, for
preparing queries, and for managing responses from the third component.

The data access component is responsible for storing and retrieving data. This will often be through a
database, but not necessarily.

Gartner Classification

Based on this threefold decomposition of applications, Gartner considered how the components might be
distributed in a client-server system. They came up with five models, shown in Figure 1-12. These models
conceptualize various purposes on the client or server. While high level, they still enumerate numerous
possibilities regarding placement of functionality.

presentation presentation presentation | | presentation presentation
logic . logic
logic - -
resentation
data logic p
logic data logic
data data data data
distributed remote distributed remote distributed
data data transaction presentation presentation

Figure 1-12. Gartner’s five models

Example: Distributed Database

Gartner model - distributed data (see Figure 1-13)

12

CHAPTER 1 * ARCHITECTURAL LAYERS

presentation

logic

data

Figure 1-13. Gartner model - distributed data

Modern mobile phones make good examples of this. Due to limited memory, they may store a small
part of a database locally so that they can usually respond quickly. However, if data is required that is not
held locally, then a request may be made to a remote database for that additional data.

Google Maps is another good example. All of the maps reside on Google’s servers. When one is
requested by a user, the “nearby” maps are also downloaded into a small database in the browser. When the
user moves the map a little bit, the extra bits required are already in the local store for quick response.

Example: Network File Service

Gartner model - remote data (see Figure 1-14)

presentation

logic

Figure 1-14. Gartner model - remote data

This classification allows remote clients access to a shared file system. There are many examples of such
systems: NFS, DCE, etc.

Example: Web

Gartner classification - distributed transaction (see Figure 1-15)

presentation

logic

logic

data

Figure 1-15. Gartner model - distributed transaction

13

CHAPTER 1 © ARCHITECTURAL LAYERS

On the Web the client may have logic in JavaScript (in the past Java Applets or even Adobe Flash) while
the server has logic in CGI scripts or similar (Ruby on Rails, etc). This is a distributed hypertext system, with
many additional mechanisms.

Example: Terminal Emulation

Gartner classification - remote presentation (see Figure 1-16)

presentation

logic
data

Figure 1-16. Gartner model - remote presentation

Terminal emulation allows a remote system to act as a normal terminal on a local system. Telnet is the
most common example of this.

Example: Secure Shell

Gartner classification - distributed presentation (see Figure 1-17)

presentation

logic
data

Figure 1-17. Gartner model - distributed presentation

The secure shell on UNIX allows you to connect to a remote system, run a command there, and display
the presentation locally. The presentation is prepared on the remote machine and displayed locally. Under
Windows, remote desktop behaves similarly.

Three-Tier Models

Of course, if you have two tiers, then you can have three, four, or more. Some of the three-tier possibilities are
shown in Figure 1-18.

14

ARCHITECTURAL LAYERS

presentation presentation presentation presentation
logic logic
i data
logic logic logic logic .
middle agent
data
1 :
\ 4
logic logic
data data data data data server

Figure 1-18. Three-tier models

The modern Web is a good example of the rightmost of these. The back end is made up of a database,
often running stored procedures to hold some of the database logic. The middle tier is an HTTP server such
as Apache running PHP scripts (or Ruby on Rails, or JSP pages, Go net/http package, etc.). This will manage
some of the logic and will have data such as HTML pages stored locally. The front end is a browser to display
the pages, under the control of some JavaScript. In HTMLS5, the front end may also have a local database.

Fat vs. Thin

A common labeling of components is “fat” or “thin.” Fat components take up a lot of memory and do
complex processing. Thin components, on the other hand, do little of either. There don't seem to be any
“normal” size components, only fat or thin!

Fatness or thinness is a relative concept. Browsers are often labeled as thin because all they do is display
web pages. However, Firefox on my Linux box takes nearly half a gigabyte of memory, which I don't regard as
small at all!

Middleware Model

Middleware is the “glue” connecting components of a distributed system. These components are things in
addition to what the operating system offers. The middleware model is shown in Figure 1-19.

15

CHAPTER 1 © ARCHITECTURAL LAYERS

Client processes Server processes
Client Server
middleware Exchange middleware
protocol
Logal Nerwork Local Network
services services services services
0/S and h/w 0/S and h/w

network protocol

Figure 1-19. The middleware model

Components of middleware include the following:

e The middleware layer is an application-independent software using the network
services.

e Ability to normalize access and/or actions across differing applications.
e Configuration (e.g., security profiles).

TCP/IP is an example of a service normally provided by the operating system.

Middleware Examples

Examples of middleware include the following:
e Primitive services such as file transfer or email
e Basic services such as RPC (e.g., Apache Thrift or gRPC)
e Object services such as RMI and Jini

e Integrated services such as DCE (Distributed Computing Environment - DNS, time,
and more)

e Distributed object services such as CORBA and OLE/ActiveX (i.e., discovery)
e The World Wide Web
e Enterprise Service Buses

We use middleware libraries to minimize the need to develop custom solutions, like any shared library
but with a focus on network-based services.

16

CHAPTER 1 * ARCHITECTURAL LAYERS

Middleware Functions

The functions of middleware can include these:
e Initiation of processes at different computers
e Session management
e Directory services to allow clients to locate servers
e Remote data access (e.g., encoding/decoding)
e Concurrency control to allow servers to handle multiple clients
e Security and integrity
e Monitoring
e Termination of processes, both local and remote

The term “middleware” is also used when building custom web servers. For example, if you want to log
each request and/or response to a local file, you can add functions (known as middleware) into a stack of
operations. When your function happens to leverage a network service as we mention before, we simple call
it middleware.

Continuum of Processing

The Gartner model is based on a breakdown of an application into the components of presentation,
application logic, and data handling. A finer-grained breakdown is illustrated in Figure 1-20.

TYPE ACTIVITY DIVISION
— [keyboard/mouse input (Client)
handii _ Host
Interactive i screen hanaling application
processing graphics/sound/video control _
— ___ Intelligent
command/menu/dialog interpretation terminal
help pr in
¢lp processing __ GUIfront ene
input validati application
Application _| data input validation pp
processing application logic
error recovery Client/server
transaction construction - transactllon
. L processing
transaction validation
Database o __ Networked SQL
— database access
processing data base
data management and storage — Files haring
application
(Server)

Figure 1-20. Breakdown of an application into its components of presentation

17

CHAPTER 1 © ARCHITECTURAL LAYERS

Points of Failure

Distributed applications run in a complex environment. This makes them much more prone to failure than
stand-alone applications on a single computer. The points of failure include the following:

e Client-side errors
e The client side of the application could crash (out of memory, divide by zero).
e The client system may have hardware problems (trip on powercord).
e The client’s network card could fail.

e Network errors

e Network contention could cause timeouts (server is slow to respond, including
routers).

e There may be network address conflicts (routing to wrong host if one even
is found).

e Network elements such as routers could fail.
e Transmission errors may lose messages.
e Misconfigured DNS.

e C(lient-server errors

e The client and server versions may be incompatible (API changes - HTTP path,
default port configuration, etc.).

e Server errors
e The server system may have hardware problems (including network card).
e The server software may crash (out of memory, divide by zero).

e The server’s database may become corrupted (deduplication process fails
midway).

Applications have to be designed with these possible failures in mind. Any action performed by one
component must be recoverable if failure occurs in some other part of the system. Techniques such as
transactions and continuous error checking need to be employed to avoid errors. It should be noted that
while a stand-alone application may have a lot of control over the errors that can occur, that is not the case
with distributed systems. For example, the server has no control over network or client errors and can only
be prepared to handle them. In many cases, the cause of an error may not be available: Did the client crash
or did the network go down? Very often, the most complicated development work around has a stable and
predictable distributed system.

Acceptance Factors

The acceptance factors of a distributed system are similar to those of a stand-alone system. They include the
following:

e Reliability (it doesn’t crash or corrupt)

e Performance (how fast an action is performed internally)

18

CHAPTER 1 * ARCHITECTURAL LAYERS

e Responsiveness (how fast an action seems to you)

e Scalability (Can we increase capacity with more instances?)
e Capacity (how much can we keep asking of the software)

e Security (operations are authenticated)

Currently, users often tolerate worse behavior than from a stand-alone system. “Oh, the network is
slow” seems to be an acceptable excuse. Well, it isn’t really, and developers should not get into the mindset
of assuming that factors under their control can have ignorable effects.

Another point of comparison, distributed systems are often designed to scale in a more intelligent
way vs. simply running a stand-alone program more than once and figuring out how to split the input
across them.

Thoughts on Distributed Computing

What follows are considerations when constructing distributed systems, whether its software, hardware,
or both.

Transparency

The notion of transparency means the details are hidden from us. Implementing solutions to these concepts
is not trivial, still a reasonable design goal. The “holy grails” of distributed systems are to provide the
following:

e Access transparency

e Location transparency

e Migration transparency

e Replication transparency

e Concurrency transparency
e Scalability transparency

e Performance transparency

e Failure transparency

Access Transparency

The user should not know (or need to know) if access to all or parts of the system is local or remote.

Location Transparency

The location of a service should not matter.

Migration Transparency

If part of the system moves to another location, it should make no difference to a user.

19

CHAPTER 1 © ARCHITECTURAL LAYERS

Replication Transparency

It should not matter if one or multiple copies of the system are running.

Concurrency Transparency

There should be no interference between parts of the system running concurrently. For example, if I am
accessing the database, then you should not know about it.

Scalability Transparency

It shouldn’t matter if one or a million users are on the system.

Performance Transparency

Performance should not be affected by any of the system or network characteristics.

Failure Transparency

The system should not fail. If parts of it fail, the system should recover without the user knowing the failure
occurred.

Most of these transparency factors are observed more in the breach than in the observance. There are
notable cases where they are almost met. For example, when you connect to Google, you don’t know (or
care) where the servers are. Systems using Amazon Web Services are able to scale up or down in response
to demand. Netflix has what almost seems cruel testing strategies, regularly and deliberately breaking large
sections of its system to ensure that the whole still works.

Eight Fallacies of Distributed Computing

Sun Microsystems was a company that performed much of the early work in distributed systems and even
had a mantra: “The network is the computer” Based on their experience over many years, a number of the
scientists at Sun came up with the following list of fallacies commonly assumed:

1. The network is reliable.
Latency is zero.
Bandwidth is infinite.

The network is secure.
Topology doesn't change.
There is one administrator.

Transport cost is zero.

© N o a s~ w0 Db

The network is homogeneous.

20

CHAPTER 1 * ARCHITECTURAL LAYERS

Fallacy: The Network Is Reliable

A paper by Bailis and Kingsbury entitled “The Network is Reliable” (see https://queue.acm.org/detail.
cfm?id=2655736) examines this fallacy. It finds many instances, such as Microsoft reporting on their data
centers giving 5.2 device failures per day and 40.8 link failures per day.

The Chinese government uses “DNS poisoning” as one of its techniques to censor what it considers to
be undesirable websites. China also runs one of the DNS root servers. In 2010, this server was misconfigured
and poisoned the DNS servers of many other countries. This made many non-Chinese websites inaccessible
outside of China as well as inside (see http://www.pcworld.com/article/192658/article.html).

There are many other possible cases, such as DDoS (distributed denial of service) attacks making
websites unavailable. At Box Hill Institute, a contractor once put a backhoe through the fiber cable
connecting our DHCP server to the rest of the network, and so we went home for the rest of the day.

The network is not reliable. The implications are that any networked program must be prepared to deal
with failure. This led to the design choices of Java's RMI and most later frameworks, with application design
allowing for each network call possibly failing.

Fallacy: Latency Is Zero

Latency is the delay between sending a signal and getting a reply. In a single-process system, latency can
depend on the amount of computation performed in a function call before it can return, but on the network,
it is usually caused by simply having to traverse transports and be processed by all sorts of nodes such as
routers on the way.

The ping command is a good way of showing latency. A ping to Google’s Australia server takes about 20
milliseconds from Melbourne. A ping to Baidu's Chinese servers takes about 200 msecs.!

By contrast, Williams (see http://www.eetimes.com/document.asp?doc_id=1200916)
discusses the latency of the Linux scheduler and comes up with a mean latency of 88 microseconds.
The latency of network calls is thousands of times greater. Additional popular paper includes
“numbers to know,” by P. Norvig, showing where latency happens and how components affect it (see
https://norvig.com/21-days.html#answers).

Latency can greatly affect distributed computing design and functionality. An example is computing
scheduling decisions; if data is too slow to gather, incorrect decisions can happen.

Fallacy: Bandwidth Is Infinite

Everyone who goes to make a cup of tea or coffee while a download takes place knows this is a fallacy. I run
my own web server and on ADSL2 get an upload speed of 800 Kbps. I am unfortunate enough to have HFC
to my home, and the disastrous Australian National Broadband Network will upgrade this to 1000 Kbps
perhaps - in three years’ time, by 2020.

In the meantime, I use a local wireless connection to give me 75 Mbps up and down, and it still isn’t
fast enough!

In the revised edition, in 2021, Ron is getting 400 Mbps down and 12 Mbps up via a cable modem in
San Francisco. In the future, we will update with Starlink (or the dominant satellite provider); as of 2022, it is
supposedly providing 200 Mbps down and 20 Mbps up.

'From my Melbourne, Australia, location, I see the ping time by

$ ping www.google.com.au

PING google.com.au (216.58.203.99) 56(84) bytes of data.

64 bytes from syd09s15-in-f3.1e100.net (216.58.203.99): icmp_seq=1 ttl=50 time=27.1 ms
64 bytes from syd09s15-in-f3.1e100.net (216.58.203.99): icmp_seq=2 ttl=50 time=19.7 ms

21

https://queue.acm.org/detail.cfm?id=2655736
https://queue.acm.org/detail.cfm?id=2655736
http://www.pcworld.com/article/192658/article.html
http://www.eetimes.com/document.asp?doc_id=1200916
https://norvig.com/21-days.html#answers
http://www.google.com.au

CHAPTER 1 © ARCHITECTURAL LAYERS

Fallacy: The Network Is Secure

There is a strong push by technology companies for strong crypto to be used for all network communications
and an equally strong push by governments all over the world for weaker systems or for backdoors “only for
particular governments.” This seems to apply equally well to demoncratic (my accidental misspelling may be
accurate!) as well as totalitarian governments.

In addition, of course, there are the general “baddies,” stealing and selling credit card numbers and
passwords by the millions.

Fallacy: Topology Doesn’t Change

Well it does. Generally, this may affect latency and bandwidth. But the more hard-coding of routes or of IP
addresses, the more prone to failure network applications will become. Not uncommon today, moving to the
cloud or even cloud native is causing many changes in how network applications integrate.

Fallacy: There Is One Administrator

So what? No problem when everything is working fine. It’s when it goes wrong that problems start - who to
blame, who to fix it?

A major research topic for years was grid computing, which distributed computing tasks across typically
many university and research organizations to solve huge scientific problems. This had to resolve many
complex issues due to not only multiple administrators but also different access and security problems,
different maintenance schedules, and so on. The advent of cloud computing has solved many of these issues,
reducing the number of administrators and systems, so cloud computing is more resilient than many grid
systems.

Fallacy: Transport Cost Is Zero

Once I've bought my PC, the transport cost from CPU to monitor is zero (well, minor electricity!). But we all
pay our IP providers money each month because they have to build server rooms, lay cables, and so on. It's
just a cost that has to be factored in (e.g., paying monthly or forced to watch advertisements).

Fallacy: The Network Is Homogeneous

The network isn't homogenous, and neither are the endpoints - for example, your and my PCs, iPads,
Android devices, and mobile phones - let alone with the IoT bringing a myriad of connected devices into
the picture. There are continual attempts by vendors for product lockin and continually restrictive work
environments trying to simplify their control systems, which succeed to some extent. But when they fail,
systems dependent on homogeneity fail too.

As we build our applications and learn the techniques, it pays to remember the layering models we
discussed earlier. It will help us categorize purposes and activities. Clients and servers may not be the same
hardware or software, but we can model them, which helps us understand and make sense of it all.

22

CHAPTER 1 * ARCHITECTURAL LAYERS

Conclusion

This chapter has tried to emphasize that distributed computing has its own unique features compared to
other styles of computing. Ignoring these features can only lead to failure of the resultant systems. There are
continual attempts to simplify the architectural model, with the latest being “microservices” and “serverless”
computing, but in the end, the complexities still remain.

These have to be addressed using any programming language, and subsequent chapters consider how
Go manages them.

23

CHAPTER 2

Overview of the Go Language W,

There is a continual stream of programming languages being invented. Some are highly specialized; others
are quite generic, while a third group is designed to fill broad but to some extent niche areas. Go was created
in 2007 and released publicly in 2009. It was intended to be a systems programming language, augmenting
(or replacing) C++ and other statically compiled languages for production network and multiprocessing
systems.

Go joins a group of modern languages including Rust, Swift, Julia, and several others. Go’s particular
features are a simple syntax, fast compilation of multiple program units based on “structural” typing, and of
course the benefit of lessons learned from large-scale programs in C, C++, and Java.

The language popularity listings in Q1 2022 such as TIOBE (see http://www.tiobe.com/tiobe-index/)
rank Go as currently the 13th most popular language. PYPL (see http://pypl.github.io/PYPL.html)
places it also at number 13. This is alongside the 20+-year-old languages of Java, Python, C, C++, JavaScript,
and more.

This book assumes you are an experienced programmer with some or extensive knowledge of Go at
some level. This could be by an introductory text such as Introducing Go by Caleb Doxsey (O’Reilly) or The
Little Go Book by Karl Seguin or by reading the more formal documentation such as The Go Programming
Language Specification at https://go.dev/ref/spec.

If you are an experienced programmer, you can skip this chapter. If not, this chapter points out the bits
of Go that are used in this book, but you should go elsewhere to get the necessary background. There are
several tutorials on the Go website at https://go.dev such as the following:

e Getting started - https://go.dev/learn/

e Atutorial for the Go programming language - https://go.dev/doc/tutorial/
getting-started

e Online and interactive tutorial - https://go.dev/tour/list
e Effective Go - https://go.dev/doc/effective go

Installing Go is best done from the Go programing language website. Examples in this book will run
using Go 1.18. The first edition of this book used 1.8. The core language and libraries have largely remained
the same. The package management and tooling though continues to improve. The primary goal of this book
is to implement networking concepts in your program and less about “perfect” Go. We will desire to keep up
with the time and make sure you have the knowledge to not only create but also inspect other code.

You don’t actually need to install Go to test the programs. Go has a “playground” accessible from the
main page that can be used to run code (https://go.dev/play/). There are also several REPL (Read-Eval-
Print Loop) environments, but these are third party. However, you will not be able to run network-related
code typically. This is for safety reasons; the playground limits what you can do. It still is valuable for
learning nonnetwork code and better still sharing code.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 25
https://doi.org/10.1007/978-1-4842-8095-9_2

https://doi.org/10.1007/978-1-4842-8095-9_2#DOI
http://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
https://go.dev/ref/spec
https://go.dev
https://go.dev/learn/
https://go.dev/doc/tutorial/getting-started
https://go.dev/doc/tutorial/getting-started
https://go.dev/tour/list
https://go.dev/doc/effective_go
https://go.dev/play/

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

The book predominantly uses libraries and packages from the Go Standard Library (https://pkg.
go.dev/std). The Go team also built a further set of packages as “subrepositories,” which often do not have
the same support as the Standard Library. These are occasionally used. They will need to be installed using
the go get command. These have package names including an “x,” such as golang.org/x/net/ipv4.

In this revised edition, we will expand upon the related network ecosystem where Go is heavily used;

examples include common Go networking middleware and microservice tooling (e.g., gRPC).

Types

There are predefined types of Boolean, numeric, and string types. The numeric types include uint32, int32,
float32, and other sized numbers, as well as bytes (uint8) and runes. Runes (alias for int32) and strings
are dealt with extensively in Chapter 6, as issues of internationalization can be significant in distributed
programs.

There are more complex types, discussed next.

Slices and Arrays
Arrays are sequences of elements of a single type. Slices are segments of an underlying array. Slices are
often more convenient to deal with in Go. Slices allow a developer to create many views of an array in theory
saving memory.
An array can be created statically:
var x [128]int
or dynamically as a pointer:
xp := new([128]int)
A slice may be created along with its underlying array:
x := make([]int, 50, 100)
or

x := new([100]int)[0:50]

These last two are both of type []int (as shown by reflect.TypeOf(x)), capacity of 100, length of 50.
Elements of an array or slice are accessed by their index:

x[1]
The indices are from 0 to 1en(x)-1.

A slice may be taken of an array or slice by using the lower (inclusive) and upper (exclusive) indices of
the array or slice:

a := [5]int{-1, -2, -3, -4, -5}
a[1:4] // s is now [-2, -3, -4]

Slices are struct like object that has three key pieces of information contained in them.

26

https://pkg.go.dev/std
https://pkg.go.dev/std
https://doi.org/10.1007/978-1-4842-8095-9_6

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

e Reference to the underlying array
e Length of your slices view into the array
e Capacity field that controls how much more we can see of the underlying array

In the preceding example, s is a slice, while a is an array. Arrays have fixed type and size, and those
aspects cannot change. So a is of type [5]int, and s is []int. While we see the type with slice s, we do not see
the length. To retrieve the length or capacity, we have the following built-in functions.

$ go doc builtin.len
package builtin // import "builtin"

func len(v Type) int
The len built-in function returns the length of v, according to its type:

Array: the number of elements in v.

Pointer to array: the number of elements in *v (even if v is nil).

Slice, or map: the number of elements in v; if v is nil, len(v) is zero.

String: the number of bytes in v.

Channel: the number of elements queued (unread) in the channel buffer;
if v is nil, len(v) is zero.

For some arguments, such as a string literal or a simple array expression,
the result can be a constant. See the Go language specification's "Length
and capacity" section for details.

$ go doc builtin.cap
package builtin // import "builtin"

func cap(v Type) int
The cap built-in function returns the capacity of v, according to its type:

Array: the number of elements in v (same as len(v)).

Pointer to array: the number of elements in *v (same as len(v)).
Slice: the maximum length the slice can reach when resliced;

if v is nil, cap(v) is zero.

Channel: the channel buffer capacity, in units of elements;

if v is nil, cap(v) is zero.

For some arguments, such as a simple array expression, the result can be a
constant. See the Go language specification's "Length and capacity" section
for details.

We can now see the length and capacity of each. Other types are mentioned, but we are focusing on
array and slice here.

fmt.Println(len(a), cap(a)) // 55
fmt.Println(len(s), cap(s)) // 3 4

27

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

A goal of slices is we can have many different views into the same array data. For example, a[2:] creates
a slice where the length is 3 and the capacity is also 3. When the length and the capacity are equal, it means
the slice cannot grow without modifying the underlying data structure. For example, if we append() to a
slice, it inserts to the underlying array in the relative position. If cap() - len() == 0, then the underlying array
would need to be increased in size. This increase does happen in such a case but can be unexpected. There
is more to learn about this process and how slices share the array (or not if append is too large). More details
about the relation of slices/arrays including memory details can be found here: https://go.dev/blog/
slices-intro.

Maps

A map is an unordered group of elements of one type, indexed by a key of another type. We do not use maps
much in this book, although one place is in Chapter 10, where the values of fields of an HTTP request may be
accessed through a map using the field name as key.

myval := 10
x := map[string]int{"mykey": myval}
The preceding assignment has a few items worth discussing.
e mapl[stringlint is declaring our maps type.
e {“mykey”: myval} is using literal syntax to initialize our typed map.
e Ultimately assigning to x.

Per the prior section, we can retrieve the number of keys via the len built-in function.
len(x) // 1

Looping over a map (e.g., print out keys and values) in key sorted order is possible since 1.12.
Deleting a map key can be accomplished via another built-in function called delete.

delete(x, "mykey")

A map of length 0 is not the same thing as a nil map.

Pointers

Pointers behave similarly to pointers in other languages. The * operator dereferences a pointer, while the
& operator takes the address of a variable. Go simplifies the use of pointers so that most of the time you

don’t have to worry about them. The most we do in this book is check if a pointer value is nil, which will
usually signify an error, or conversely, if a possible error value is not nil, as described in the next section.

// returns new pointer to an address that holds an int zero value
X := new(int)

// sets integer value at pointed address location
*x = 10

28

https://go.dev/blog/slices-intro
https://go.dev/blog/slices-intro
https://doi.org/10.1007/978-1-4842-8095-9_10

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

// pointing to, address of the pointer, value where we are pointing to
fmt.Println(x, 8x, *x)
// 0xc000094010 0xc000096018 10

//every variable has an address, the value
y = 12

fmt.Println(8y, y)

// 0xc000094018 12

Something to note, when declaring function parameters, pointers and arrays are not the same thing. If
you intend to pass an array, normally, you want to pass the address; this is because Go is pass by value.

Functions

Functions are defined using a notation unique to Go. Why the familiar C syntax (or any other for that matter)
is not used is explained in the Go’s Declaration Syntax blog (see https://go.dev/blog/declaration-
syntax). We leave it to the textbooks to explain the details of the syntax.

Every Go program must have a main function declared as follows:

func main() { ... }
We will frequently use a function checkError defined as follows:

func checkError(err error) {
if err != nil {
fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error())
os.Exit(1)

It takes one parameter and has no return value. It starts with a lowercase letter, so it is local to the
package in which it is declared.

Functions that return values will often return an error status as well as a substantive value, as in this
function from Chapter 3:

func readFully(conn net.Conn) ([]byte, error) { ... }
It takes net.Conn as a parameter and returns an array of bytes and an error status (nil if no error

occurred).
In this book, no more complex definitions than this are used.

Structures

Structures are similar to those in other languages. In Chapter 4, we consider serialization of data and use the
example of the following structs:

type Name struct {

Family string
Personal string

29

https://go.dev/blog/declaration-syntax
https://go.dev/blog/declaration-syntax
https://doi.org/10.1007/978-1-4842-8095-9_3
https://doi.org/10.1007/978-1-4842-8095-9_4

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

type Email struct {
Kind string
Address string

}

type Person struct {
Name Name
Email []Email

}

A compound struct can be declared as follows:

person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

Methods

Go does not have classes in the sense that languages like Java do. However, fypes can have methods
associated with them, and these act similar to methods of more standard O/O languages.

We will make heavy use of the methods defined for the various networking types. This will happen from
the very first programs of the next chapter. For example, the type IPMask is defined as an array of bytes:

type IPMask []byte

A number of functions are defined on this type, such as
func (m IPMask) Size() (ones, bits int)

A variable of type IPMask can have the method Size() applied, as follows:
var m IPMask
ones, bits := m.Size()

Learning how to use the methods of the network-related types is the principal aim of this book.

We won't be defining our own methods much in this book. That’s because to illustrate the Go libraries,
we don’t need many of our own complex types. A typical use will be pretty-printing a type like the Person
type defined previously:
func (p Person) String() string {

s := p.Name.Personal + " "
for , v := range p.Email {

s += "\n" + v.Kind +
}

return s

+ p.Name.Family

+ v.Address

30

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

More specifically, triggering the preceding method would look as follows:

p := Person{}
details := p.String() // String is a method
len(details) // len is a function

There is more extensive use in Chapter 10, where a number of types and methods on these types are
used. This is because we do need our own types when we are building more realistic systems.

Go also supports first class and higher-order functions. First class functions imply we can store a
reference to a function (or method) in a variable. Higher-order functions imply that function (or method)
can accept or return a function. Here is an example of first-class functions.

m := p.String
m() // triggers the p.String() method

Here is an example of a higher-order function.
package main

import (
n _Fmt n
)

func f1(f func(string) int, data string) {
fmt.Println(f(data))
}

func main() {
f1(func(s string) int { return len(s) }, "testing")
}

$ go run prog.go
7

Multithreading

Go has a simple mechanism for starting additional threads using the go command. In this book, that is all we
will need. Complex tasks such as synchronizing multiple threads are not needed here.

Packages

Go programs are built from linked packages. The packages used by any block of code have to be imported by
an import statement at the head of the code file. Our own programs are declared to be in package main.

Apart from Chapter 10 again, nearly all of the programs in this book are in the main package.

Most packages are imported from the Standard Library. Some are imported from the subrepositories
such as golang.org/x/net/ipva.

The visibility of a structure’s fields is controlled by the case of the first character of the field’s name. If
itis uppercase, it is visible outside of the package it is declared in; if it is lowercase, it is not. In the previous
example, all the fields of all the structures are visible.

31

https://doi.org/10.1007/978-1-4842-8095-9_10
https://doi.org/10.1007/978-1-4842-8095-9_10

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

Modules

Go modules track packages and their versions. Modules allow the tracking of direct and indirect
dependencies.

While modules are the proper way to group and share code (packages) in Go, users still often use a
package-only approach.

We will use modules when a singular package will not do. Even were modules are used, the intent is
to keep the examples focused on the networking code. In this example, a file called “go.mod” is generated,
which is used by Go tooling to manage our dependencies.

//example

$ mkdir myapp; cd myapp

$ go mod init example.com

$ // create program

$ go mod tidy

$ go run prog.go

You can learn more about modules here: https://go.dev/blog/using-go-modules

In Go 1.18, a new feature is included to help manage local development across modules; this feature

is called workspace. We do not leverage this feature in this book, but you can find out more about it here:
https://go.dev/doc/tutorial/workspaces.

Type Conversion

The first one we need to worry about in this book is conversion of strings to byte arrays and vice versa. To
convert a string to a byte array, you do

var b []byte
b = []byte("string")

To convert the whole of an array/slice to a string, use this:

var s string
s = string(b[:])

The second casting we need to note is called a function adapter, most often in the following form:
http.Handle("/", http.HandlerFunc(func (w ResponseWriter, r *Request) {fmt.
Fprintf(w,"hi")}))
$ go doc --src http.HandlerFunc
package http // import "net/http"

// The HandlerFunc type is an adapter to allow the use of

// ordinary functions as HTTP handlers. If f is a function
// with the appropriate signature, HandlerFunc(f) is a

32

https://go.dev/blog/using-go-modules
https://go.dev/doc/tutorial/workspaces

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

// Handler that calls f.
type HandlerFunc func(ResponseWriter, *Request)

func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request)

By using this type, a call to HandlerFunc.ServeHTTP will now trigger our passed-in function.

Statements

A function or method will be composed of a set of statements. These include assignments, if and switch
statements, for and while loops, and several others.

Apart from syntax, these have essentially the same meaning as in other programming languages. Nearly
all of the statements types will be used in later chapters.

GOPATH

There are two ways of organizing workspaces for projects: put every project in a shared workspace or have a
separate workspace for each project.

Either way is supported in the go tool by the environment variable GOPATH. This can be set to a list of
directories (a ' : ' separated list in Linux/UNIX a ' ; ' separated list on Windows, and a list on Plan9). It
defaults to the directory go in the user’s home directory if it's unset.

For each directory in GOPATH, there will be three subdirectories - src, pkg, and bin. The directory src
will typically contain one directory per package name and under that will be the source files for that package.
For example, in Chapter 10, we have a complete web server that uses packages we define of dictionary and
flashcards. The src/flashcards directory contains the file FlashCards.go.

GOPATH is used as the central location for downloading dependencies, even when using modules.
There are reasons to set GOPATH to alternative locations, but much of those reasons were prior to Modules
and Workspaces existing.

Running Go Programs

A Go program must have a file defining the package main. Most of the programs in this book are defined
in a single file, such as the program IP.go in Chapter 3. The simplest way to run it is from the directory
containing the file:

go run IP.go <IP address»

Alternatively, you can build an executable and then run it:

go build IP.go
./IP <IP address>

Standard Libraries

Go has an extensive set of Standard Libraries. Not as large as C, Java, or C++, for example, but those languages
have been around for a long time. The Go packages are documented at https://pkg.go.dev/std. We will
use these extensively in this book, particularly the net, crypto, and encoding packages.

33

https://doi.org/10.1007/978-1-4842-8095-9_10
https://doi.org/10.1007/978-1-4842-8095-9_3
https://pkg.go.dev/std

CHAPTER 2 © OVERVIEW OF THE GO LANGUAGE

In addition, there is a subrepositories group of packages available from the same page. These are less
stable but sometimes have useful packages, which we will use occasionally.

In addition to these, there is a large set of user-contributed packages. They will not be used in the body
of this book, which deals with principles, but in practice, you may find many of them very useful. Some are
discussed in the concluding chapter.

Error Values

We discussed in the last chapter that a major difference between distributed and local programming is the
greatly increased likelihood of errors occurring during execution. A local function call may fail because of
simple programming errors such as divide by zero; more subtle errors may occur such as out-of-memory
errors, but their possible occurrences are generally predictable.

On the other hand, almost any function that utilizes the network can fail for reasons beyond the
application’s control. Networking programs are consequently riddled with error checks. This is tedious, but
necessary. Just like operating system kernel code is always error checking - errors need to be managed.

In this book, we generally exit a program with errors with appropriate messages on the client side, and
for servers, attempt to recover by dropping the offending connection and carrying on.

Languages like C generally signal errors by returning “illegal” values such as negative integers and null
pointers or by raising a signal. Languages like Java raise exceptions, which can lead to messy code and are
often slow. The standard Go functions give an error in an extra parameter return from a function call.

For example, in the next chapter, we discuss the function in the net package:

func ResolveIPAddr(net, addr string) (*IPAddr, error)
The typical code to manage this is

addr, err := net.ResolveIPAddr("ip", name)
if err 1= nil {

}

Conclusion

This book assumes a knowledge of the Go programming language. This chapter just highlighted those parts
that will be needed for later chapters.

34

CHAPTER 3

Socket-Level Programming

A socket is an abstract representation of a network endpoint. Depending on the operating system, we

can construct sockets based on the following features: domain, type, and protocol. A “domain“ typically
represents either a remote network connection (e.g., via IPv4 or IPv6) or a local connection (e.g., via
filesystem). Various optimizations can be acquired when we don’t have to concern ourselves crossing many
networks. A “type” selects a connection-oriented or connectionless pairing of sockets. Sockets provide the
necessary abstraction to set up point-to-point communication.

There are many kinds of networks in the world. These range from the very old networks, such as serial
links, to wide area networks made from copper and fiber, to wireless networks of various kinds, both for
computers and for telecommunications devices such as phones. These networks obviously differ at the
physical link layer, but in many cases, they also differ at higher layers of the OSI stack.

Over the years, there has been a convergence to the “Internet stack” of IP and TCP/UDP. For example,
Bluetooth defines physical layers and protocol layers, but on top of that, it has an IP stack, so the same
Internet programming techniques can be employed on many Bluetooth devices. Similarly, developing
Internet of Things (IoT) wireless technologies such as LoRaWAN and 6LoWPAN includes an IP stack.

While IP provides the networking layer 3 of the OSI stack, TCP and UDP deal with layer 4. These are
not the final word, even in the Internet world: SCTP (Stream Control Transmission Protocol) has come
from the telecommunications world to challenge both TCP and UDP, while to provide Internet services in
interplanetary space requires new, under-development protocols such as DTN (Delay-Tolerant Networking).
Nevertheless, IP, TCP, and UDP hold sway as principal networking technologies now and at least for a
considerable time into the future. Go has full support for this style of programming.

This chapter shows how to do TCP and UDP programming using Go and how to use a raw socket for
other protocols.

The TCP/IP Stack

The OSI model (ISO/IEC 7498) was devised using a committee process wherein the standard was set up and
then implemented. Some parts of the OSI standard are obscure, some parts cannot easily be implemented,
and some parts have not been implemented.

The TCP/IP protocol was devised through a long-running DARPA project. This worked by
implementation followed by RFCs (Request for Comments). TCP/IP is the principal UNIX networking
protocol. TCP/IP stands for Transmission Control Protocol/Internet Protocol (RFC 793/RFC 791).

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 35
https://doi.org/10.1007/978-1-4842-8095-9_3

https://doi.org/10.1007/978-1-4842-8095-9_3#DOI

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

The TCP/IP stack is shorter than the OSI one, as shown in Figure 3-1.

application || application 0Sl 5-7

A A
Y Y
TCP UDP 0S| 4
IP 0SI 3
Y
h/w interface 0SI 1-2

Figure 3-1. TCP/IP stack vs. the OSI

TCP is a connection-oriented protocol, whereas UDP (User Datagram Protocol) is a connectionless
protocol.
We next discuss the layers above the point-to-point communication (Physical/Data Link) layers.

IP Datagrams

The IP layer provides a connectionless and unreliable delivery system. It considers each datagram
independently of the others. Any association between datagrams must be supplied by the higher layers.
The datagram itself is a well-defined format; at a high level, it includes a header and a payload. Fields of
importance include address information and higher layer protocol choice.

The IP layer supplies a checksum of its own header. The IP protocol defaults any error correction
to other layers. The header includes the source and destination addresses. The IP layer handles routing
through an Internet. It is also responsible for breaking up large datagrams into smaller ones for transmission
and reassembling them at the other end. Combining the prior statements, each router verifies IP packet
correctness via its checksum. Additionally, a router will modify the IP packet header (e.g., modified TTL)
triggering it to recalculate and replace the header.

Above the networking layer, we have the following transport layer options.

UDP

UDP is also connectionless and unreliable. What it adds to IP is a checksum for the contents of the datagram
and port numbers. These are used to give a client-server model, which you'll see later. Think of ports as
apartment numbers, and an IP address is an apartment street number.

36

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

TCP

TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that
two processes can use to communicate. It also uses port numbers to identify services on a host. With TCP,
the two sockets used in the client-server connection over TCP represent a virtual circuit. While it feels like a
dedicated physical connection, many virtual circuits can run over the same physical connection(s).

We briefly touched the networking (IP) and transport (UDP/TCP) layers, there is much more to learn.
For example, IP fragmentation and TCP segmentation allow each layer to control the size of each packet
it passes to the next layer. It may sound similar, but in this example, TCP segments include sequence
information to keep packets in order (reliability), and IP fragmentation is focused on optimizing passing
data to the layers below it (which have their own maximum size).

Itis the IP address that is key for the usage of sockets.

Internet Addresses

In order to use a service, you must be able to find it. The Internet uses an address scheme for devices such as
computers so that they can be located. This addressing scheme was originally devised when there were only
a handful of connected computers and very generously allowed up to 2/32 addresses using a 32-bit unsigned
integer. These are the so-called [Pv4 addresses. In recent years, the number of connected (or at least directly
addressable) devices has threatened to exceed this number, and there is a progressive transition to IPv6. The
transition is patchy and shown, for example, in the graph by Google (https://www.google.com/int1l/en/
ipv6/statistics.html -~37% as of January 2022).Sadly - from Jan’s viewpoint - few of the Australian

IP providers support IPv6 (~30% as of 2022). In the United States (for Ron), it’s a little higher at ~50%. These
numbers are based on observed incoming traffic and related records.

IPv4 Addresses

The address is a 32-bit integer that gives the IP address. This addresses down to a network interface card
on a single device. The address is usually written as four bytes in decimal with a dot between them, as in
127.0.0.10r 66.102.11.104. This dotted-decimal format captures multiple pieces of information in a
human-friendly way.

The IP address of any device is generally composed of two parts: the address of the network in which the
device resides and the address of the device within that network. Once upon a time, the split between network
address and internal address was simple and was based on the bytes (between dots) used in the IP address.

e Inaclass A network, the first byte identifies the network, while the last three identify
the device. There are only 128 class A networks, owned by the very early players in the
Internet space such as IBM, General Electric Company, and MIT.! Example: 3.x.y.z.

e Class B networks use the first two bytes to identify the network and the last two
to identify devices within the subnet. This allows up to 2716 (65,536) devices on a
subnet. Example: 142.90.y.z.

e C(lass C networks use the first three bytes to identify the network and the last one to
identify devices within that network. This allows up to 228 (actually 254, not 256, as
the bottom and top addresses are reserved) devices. Example: 192.168.123.z.

'Recently, MIT have returned their class A network to the pool. http://www.iana.org/
assignments/ipv4-address-space/ipv4-address-space.xml. Amazon purchased 3.0.0.0/8 from
General Electric Company in 2018.

37

https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

There are classes defined beyond class C (D and E). We stop here as it becomes more of historical study
than useful knowledge when discussing networking today.

This scheme doesn’t work well if you want, say, 400 computers on a network. 254 is too small (class C),
while 65,536 (-2) is too large (class B). In binary arithmetic terms, you want about 512 (-2). This can be
achieved by using a 23-bit network address and 9 bits for the device addresses. Similarly, if you want up to
1024 (-2) devices, you use a 22-bit network address and a 10-bit device address. A newer scheme was created
to replace class-based addressing, known as Classless Inter-Domain Routing (a.k.a. CIDR), allowing for the
scenario we are describing.

Given an IP address of a device and knowing how many bits N are used for the network address gives
a relatively straightforward process for extracting the network address and the device address within that
network. Form a “network mask” (also called a subnet mask), which is a 32-bit binary number with all ones
in the first N places and all zeroes in the remaining ones. For example, if 16 bits are used for the network
address, the mask is 11111111111111110000000000000000. It’s a little inconvenient using binary, so decimal
bytes are usually used. The netmask for 16-bit network addresses is 255.255.0.0; for 24-bit network
addresses, it is 255.255.255.0; for 23-bit addresses, it would be 255.255.254.0; and for 22-bit addresses, it
would be 255.255.252.0. This network mask is a generalization for the class-based addressing. Shorthand
for a 24-bit network is /24; for a 22-bit address, it is /22.

So to find the network address of a device, bit-wise AND its IP address with the network mask,
while the device address within the subnet is found with bit-wise AND of the one’s complement
of the mask with the IP address. For example, the binary value of the IP address 192.168.1.3 is
11000000101010000000000100000011 (using the IP Address Subnet Mask Calculator). If a 16-bit netmask is
used, the network is 1100000010101000 0000000000000000 (or 192.168.0.0), while the device address is
0000000000000000 0000000100000011 (or 0.0.1.3).

A network mask is provided when a network provider gives you a network. For example, a local ISP
provides your office a w.x.y.z/29 (six host addresses). An ISP gets a block (large number of hosts) from a RIR
(Regional Internet Registry)/IANA (Internet Assigned Numbers Authority). In general, each reduction of the
network subnet number results in doubling the number of hosts (power of 2).

IPv6 Addresses

The Internet has grown vastly beyond original expectations. The initially generous 32-bit addressing
scheme is on the verge of running out. There are unpleasant workarounds such as NAT (Network Address
Translation) addressing, but eventually we will have to switch to a wider address space. IPv6 uses 128-bit
addresses. Even bytes become cumbersome to express such addresses, so hexadecimal digits are used,
grouped into four digits and separated by a colon. A typical address might be FE80:CD00:0000:0CDE: 1257
:0000:211E:729C.

These addresses are not easy to remember! DNS will become even more important. There are tricks
to reducing some addresses, such as leading zeroes and repeated digits. For example, “localhost” is
0:0:0:0:0:0:0:1, which can be shortened to : : 1.

Each address is divided into three components. The first is the network address used for Internet
routing and is the first 64 bits of the address. The next part is 16 bits for the netmask. This is used to divide
the network into subnets. It can give anything from one subnet only (all zeroes) to 65,535 subnets (all 1s).
The last part is the device component, of 48 bits. The preceding address would be FE80: CD00: 0000 : 0CDE for
the network, 1257 for the subnet, and 0000:211E:729C for the device.

Some points of comparison between IPv6 and IPv4:

e IPv6 has no checksum header (it assumes other layers perform verification).

e Many fields in header are optional in IPv6.

38

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

e While larger in general, overall packet header structure is quicker to parse

(simplifying router processing).

e IPv6reduces fragmentation compared to IPv4 due to larger datagram sizing and

reduced router reconstructing (moving to edge nodes).

IP Address Type

Finally, we can start using some of the Go language network packages. The package net defines many types,
functions, and methods of use in Go network programming. The type IP is defined as an array of bytes:

type IP []byte

There are several functions to manipulate a variable of type IP, but you are likely to use only some of
them in practice. For example, the function ParseIP(String) will take a dotted IPv4 address or a colon IPv6

address, while the IP method String() will return a string. Note that you
with: the string form 0f 0:0:0:0:0:0:0:11s : : 1.
A program that illustrates this process is ip.go:

$ mkdir ch3

$ cd ch3

ch3$ vi ip.go

/* IP

*/

package main

import (
"t
"log"
"net"
llosll

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: %s ip-addr\n", os.Args[0])
}

name := os.Args[1]
addr := net.ParseIP(name)
if addr == nil {
fmt.Println("Invalid address")
} else {
fmt.Println("The address is ", addr.String())
}

may not get back what you started

39

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

This can be run, for example, as follows:
ch3$ go run ip.go 127.0.0.1
Here is the response:
The address is 127.0.0.1
Or it could be run as
ch3$ go run IP.go 0:0:0:0:0:0:0:1
with this response:
The address is ::1

If you are unfamiliar, the colon addresses are IPv6, including the ::1, which is the IPv6 version of
127.0.0.1 (in IPv4).

The backing store for the IP type is a byte array. As hinted in the preceding example, we can store both
IPv4 and IPv6 addresses in the same type. Some purposes for ParseIP (and ultimate storage into IP) are
for serialization purposes, ease of access of related octets (e.g., class A would be myip|[0] - first byte), and
general normalization of various input forms (e.g., 127.000.000.001 -> 127.0.0.1).

Of potential interest, ParseIP doesn’t necessarily normalize all forms; these nonstandard forms are
called “Rare IP Address Formats.” As example of a rare ip, some tools expand 127.1 to 127.0.0.1; net.ParseIP
does not. Like all programming environments, it’s hard to capture all the planned or unplanned standards
or de facto standards. We can see an ongoing discussion about this very issue on the Golang project tracker
(“net: should expand IP address 1.1 to 1.0.0.1 #36822", https://github.com/golang/go/issues/36822).

Using Available Documentation and Examples

As you proceed with the examples in this book, you use the built-in examples and documentation to dig
deeper into the standard library. For example, show the alias type known as IP in the net package along with
functions and methods that use it.

ch3$ go doc net.IP
package net // import "net"

type IP []byte
An IP is a single IP address, a slice of bytes. Functions in this package
accept either 4-byte (IPv4) or 16-byte (IPv6) slices as input.

Note that in this documentation, referring to an IP address as an IPv4
address or an IPv6 address is a semantic property of the address, not just
the length of the byte slice: a 16-byte slice can still be an IPv4 address.

func IPv4(a, b, c, d byte) IP
func ParseIP(s string) IP

func (ip IP) DefaultMask() IPMask
func (ip IP) Equal(x IP) bool

40

https://github.com/golang/go/issues/36822

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

func (ip IP) IsGlobalUnicast() bool

func (ip IP) IsInterfacelocalMulticast() bool
func (ip IP) IslLinkLocalMulticast() bool

func (ip IP) IsLinkLocalUnicast() bool

func (ip IP) IsLoopback() bool

func (ip IP) IsMulticast() bool

func (ip IP) IsUnspecified() bool

func (ip IP) MarshalText() ([]byte, error)
func (ip IP) Mask(mask IPMask) IP

func (ip IP) String() string

func (ip IP) To16() IP

func (ip IP) Toa() IP

func (ip *IP) UnmarshalText(text []byte) error

Notice some functions return IP; others are methods that use it. Most of the methods appear to be
property checks; for example, is the IP the loopback IP?
Next, let’s drill down into net.ParseIP.

ch3$ go doc net.ParseIP
package net // import "net"

func ParseIP(s string) IP
ParseIP parses s as an IP address, returning the result. The string s can be
in IPv4 dotted decimal ("192.0.2.1"), IPv6 ("2001:db8::68"), or IPv4-mapped
IPv6 ("::ffff:192.0.2.1") form. If s is not a valid textual representation
of an IP address, ParseIP returns nil.

Eventually, you will want to find examples of usage of given function or type. Your Go distribution will
normally include examples, either via a test function or internal usage. We can find tests related to ParseIP
(in a Unix-based system) as follows:

ch3$ go test -list ".*ParseIP.*" $(go env GOROOT)/src/net

TestParseIP

BenchmarkParseIP
ExampleParseIP

ok net 0.106s

Here is an example of running the related test and benchmark from before, focused on net.ParseIP.
ch3$ go test -run ParseIP -bench ParseIP -count=1 $(go env GOROOT)/src/net

goos: darwin
goarch: amd64

pkg: net

cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
BenchmarkParseIP-12 934454 1309 ns/op
PASS

ok net 2.295s

41

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

There are a couple of items to note regarding these prior commands. “go env GOROOT” will produce
where the Go standard library is installed; the $() is for UNIX subshell execution (on Windows, you can just
run go env GOROOT and copy/paste). Assuming standard package layout, we know the net package would
be located in “$(go env GOROOT)/src/net” The remaining commands are standard Go test commands:

e -list regex // finds test/bench/example that matches regex.
e -runregex// runs Testregex.

e -bench regex // runs Benchregex.

e -count=1// prevents tests from caching results.

Running a test example is a start; reviewing the code will provide more in-depth knowledge. In the case
of ParseIP, once we locate the test source, we can review it (your output may differ):

ch3$ grep -1 TestParseIP -nr $(go env GOROOT)/src/net

/usr/local/go/src/net/ip_test.go
/usr/local/go/src/net/netip/netip pkg test.go (netip package has a 'smaller' ip type)

If you review the related test and its input inside ip_test.go, we can get a feel for the types of input
ParselP expects and its related output.

var parseIPTests = []struct {
in string
out IP

H
{"127.0.1.2", IPv4(127, 0, 1, 2)},
{"127.0.0.1", IPv4(127, 0, 0, 1)},
{"127.001.002.003", IPv4(127, 1, 2, 3)},
{"::ffff:227.1.2.3", IPva(127, 1, 2, 3)},
{"::Ffff:127.001.002.003", IPv4(127, 1, 2, 3)},
{"::ffff:7f01:0203", IPv4(127, 1, 2, 3)},
{"0:0:0:0:0000: ffff:127.1.2.3", IPv4(127, 1, 2, 3)},
{"0:0:0:0:000000: ffff:127.1.2.3", IPv4(127, 1, 2, 3)},
{"0:0:0:0::ffff:127.1.2.3", IPv4(127, 1, 2, 3)},

{"2001:4860:0:2001::68", IP{0x20, 0x01, 0x48, 0x60, 0, 0, 0x20, 0x01, O, O, O, O, O,
0, 0x00, 0x68}},

{"2001:4860:0000:2001:0000:0000:0000:0068", IP{0x20, 0x01, 0x48, 0x60, 0, 0, 0x20,
oxo1, 0, 0, 0, 0, 0, 0, Ox00, Ox68}},

{"-0.0.0.0", nil},
{"0.-1.0.0", nil},
{"0.0.-2.0", nil},
{"0.0.0.-3", nil},
{"127.0.0.256", nil},
{"abc", nil},
{"123:", nil},
{"fe80::1%100", nil},
{"fe80::1%911", nil},
{"", nil},

42

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

{"a1:a2:a3:a4::b1:b2:b3:b4", nil}, // Issue 6628
}

func TestParseIP(t *testing.T) {
for , tt := range parselPTests {
if out := ParseIP(tt.in); !reflect.DeepEqual(out, tt.out) {
t.Errorf("ParseIP(%q) = %v, want %v", tt.in, out, tt.out)

}

if tt.in == "" {
// Tested in TestMarshalEmptyIP below.
continue

}

var out IP

if err := out.UnmarshalText([]byte(tt.in)); !reflect.DeepEqual(out, tt.out)
|| (tt.out == nil) != (err != nil) {

t.Errorf("IP.UnmarshalText(%q) = %v, %v, want %v", tt.in, out,

err, tt.out)

Hopefully, this convinces you to review the available documentation and examples. Maybe it will
convince you to also create good documentation and examples for your own code. We shouldn’t just stop at
the examples or tests. One often overlooked feature of Go is Go is written in Go. This means it’s pretty easy to
follow. Since the test is located in test_ip.go, it’s safe to assume the actual code to ParseIP (and in this case,
IP) is in ip.go.

Beyond this section, we assume you are finding and reviewing related examples in the standard library.

The IPMask Type

An IP address is typically divided into the components of a network address, a subnet, and a device portion.
The network address and subnet form a prefix to the device portion. The mask is an IP address of all binary
ones to match the prefix length, followed by all zeroes.

In order to handle masking operations, you use this type:
type IPMask []byte

The simplest function to create a netmask uses the CIDR notation of ones followed by zeroes up to the
number of bits:

func CIDRMask(ones, bits int) IPMask
A mask can then be used by a method of an IP address to find the network for that IP address:

func (ip IP) Mask(mask IPMask) IP

43

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

An example of the use of this is the following program called mask.go:

ch3$ vi mask.go

/* Mask

*/

package main

import (
"t
"log"
"net”
"os"
"strconv"

)

func main() {
if len(os.Args) != 4 {
log.Fatalln("Usage: %s dotted-ip-addr ones bits\n", os.Args[0])

}

dotAddr := os.Args[1]

ones, _ := strconv.Atoi(os.Args[2])
bits, := strconv.Atoi(os.Args[3])

addr := net.ParseIP(dotAddr)
if addr == nil {

log.Fatalln("nil Invalid address")
}

mask := net.CIDRMask(ones, bits)
computedOnes, computedBits := mask.Size()
network := addr.Mask(mask)
fmt.Println("Address is ", addr.String(),
"\nMask length is ", computedBits,
"\nLeading ones count is ", computedOnes,
"\nMask is (hex) ", mask.String(),
"\nNetwork is ", network.String())
This can be compiled (go build mask.go) to mask and run as follows:
ch3$ mask <ip-address> <ones> <zeroes>
Or it can be run directly as follows:
ch3$ go run mask.go <ip-address> <ones> <zeroes>
For an IPv4 address of 103.232.159.187 on a /24 network, we get the following:

ch3$ go run mask.go 103.232.159.187 24 32

Address is 103.232.159.187
Mask length is 32

44

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

Leading ones count is 24
Mask is (hex) ffffffoo
Network is 103.232.159.0

For an IPv6 address fda3:97c:1eb: fff0:5444:903a:33f0:3a6b where the network component is
fda3:97c:1eb, the subnet is {0, and the device part is 5444:903a:33f0:3a6b, we get the following:

ch3$ go run mask.go fda3:97c:1eb:fff0:5444:903a:33f0:3a6b 52 128

Address is fda3:97c:1eb:fff0:5444:903a:33f0:3a6b
Mask length is 128

Leading ones count is 52

Mask is (hex) fffffffffffff0000000000000000000
Network is fda3:97c:1eb:f000::

When you review the documentation of a function, take note of the result and related error checks. In
the prior example, if we pass in a “bits” value that doesn’t match the width of IPv4 or IPv6 addresses, it will
cause CIDRMask to return nil. The nil mask value passed into addr.Mask will then in turn return nil. We can
debate if the preceding example is too simple to handle errors (probably); it’s also simply good to note what
the library is returning (even if it doesn’t explain why, e.g., why nil and not an error string).

ch3$ go run mask.go 103.232.159.187 24 44 # 44 != 32 nor 128

Address is 103.232.159.187
Mask length is 0

Leading ones count is 0
Mask is (hex) <nil>
Network is <nil>

IPv4 netmasks are often given in the 4-byte dotted notation such as 255.255.255.0 for a /24 network.
There is a function to create a mask from such a 4-byte IPv4 address:

func IPv4Mask(a, b, c, d byte) IPMask
Also, there is a method of IP that returns the default mask for [Pv4 (only):
func (ip IP) DefaultMask() IPMask

Note that the string form of a mask is a hex number, such as ffffff00 for a /24 mask.
The following program called ipv4mask.go illustrates these:

ch3$ vi ipv4mask.go
/* IPv4Mask

*/
package main

import (
"fmt"
n 10g n
"net"
"os™
)

45

CHAPTER 3

SOCKET-LEVEL PROGRAMMING

func main() {

if len(os.Args) != 2 {
log.Fatalln("Usage: %s dotted-ip-addr\n", os.Args[0])
}

dotAddr := os.Args[1]
addr := net.ParseIP(dotAddr)
if addr == nil {
log.Fatalln("nil Invalid address")
}

mask := addr.DefaultMask()
network := addr.Mask(mask)
ones, bits := mask.Size()
fmt.Println("Address is ", addr.String(),
"\nDefault mask length is ", bits,
"\nLeading ones count is ", ones,
"\nMask is (hex) ", mask.String(),
"\nNetwork is ", network.String())
derivedMask := net.IPv4Mask(255, 255, 0, 0) // working on mask
fmt.Printf("Network using %s: %s\n", derivedMask, addr.Mask(derivedMask))

For example, running this

ch3$ go

run ipv4mask.go 192.168.1.3

in my home network gives the following result:

Address
Default
Leading
Mask is
Network
Network

is 192.168.1.3

mask length is 32

ones count is 24

(hex) ffffffoo

is 192.168.1.0

using ffff0000: 192.168.0.0

Basic Routing

Now that

we see how you can take an IP address and add (binary) to a subnet mask to reveal the network

IP, what do we use it for? The primary purpose is in routing, where a router needs to figure out the next hop
(where to send this packet). Since computers are usually more than one hop away, we use a series of routers
to move traffic around. Each router has a lookup table and decides where to forward traffic. It would be very
ineffective to map every destination IP to a specific next hop, so instead, we route many IPs to a specific next
hop. In other words, a subnet goes to a specific next hop. Here is an example for routing packets to particular

destinations.

ch3$ vi

ipv4router.go

/* IPv4Router

*/
package

import (

46

main

n 'Fmt n
net"

)

func main() {

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

routingTable := []struct {

subnetmask net.IP
network net.IP
nextHop net.IP

H
{net.IP{255, 255, 255, 240}, net.IP{192, 17, 7, 208}, net.IP{192, 12,
7, 15}},
{net.IP{255, 255, 255, 240}, net.IP{192, 17, 7, 144}, net.IP{192, 12,
7, 671},
{net.IP{255, 255, 255, 0}, net.IP{192, 17, 7, 0}, net.IP{192, 12, 7, 251}},
{net.I1P{0, 0, 0, 0}, net.IP{0, 0, 0, 0}, net.IP{10, 10, 10, 10}},
}
incomingPacketsToRoute := []struct {
sourceAddr net.IP
destinationAddr net.IP
data string
H
{net.IP{1, 2, 3, 4}, net.IP{2, 3, 4, 5}, "who knows, send to 0.0.0.0"},
{net.IP{2, 2, 3, 4}, net.IP{192, 17, 7, 20}, "better be 192.17.7.251"},
}

for _, packetToRoute := range incomingPacketsToRoute {

}

for _, routingEntry := range routingTable {
r := packetToRoute.destinationAddr.Mask(net.IPMask(routingEntry.
subnetmask))
if r.Equal(routingEntry.network) {
fmt.Printf("For destination %s nexthop is %s\n",
packetToRoute.destinationAddr, routingEntry.nextHop)
break //check remaining ips

ch3$ go run IPv4Router.go

For destination 2.3.4.5 nexthop is 10.10.10.10
For destination 192.17.7.20 nexthop is 192.12.7.251

As we see in the prior output, the first packet had a destination of 2.3.4.5, and our routing table didn’t
find a match. The last entry in routing tends to be the catch-all route. Our table defaults to the next hop of
10.10.10.10. The second packet destination for 192.17.7.20 matched the network IP of 192.17.7.0, which has
the next hop 0f 192.12.7.251.

47

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

The IPAddr Type

Many of the other functions and methods in the net package return a pointer to an IPAddr. This is simply a
structure containing an IP (and a zone which may be needed for IPv6 addresses). The zone may be needed
for ambiguous IPv6 addresses with multiple network interfaces. You can learn about zones (IPv6 scoped
addresses) here: https://datatracker.ietf.org/doc/html/xrfc4007.

type IPAddr {
IP IP
Zone string
The primary use of this type is to perform DNS lookups on IP hostnames.
func ResolveIPAddr(net, addr string) (*IPAddr, error)
where net is one of ip, ip4, or ip6. This is shown in the program called resolveip.go:
ch3$ vi resolveip.go
/* ResolveIP

*/
package main

import (
"fmt"
"log"
"net"
"OS"
)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: %s hostname\n", os.Args[0])
}
name := os.Args[1]
addr, err := net.ResolveIPAddr("ip", name)
if err != nil {
log.Fatalln("Resolution error", err.Error())
}

fmt.Println("Resolved address is ", addr.String())

Running this
ch3$ go run resolveip.go www.google.com
returns the following:

Resolved address is 142.250.64.22

48

https://datatracker.ietf.org/doc/html/rfc4007

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

If the first parameter to ResolveIPAddr () for the net type is given as ip6 instead of ip, I get this result:
Resolved address is 2404:6800:4006:801::2004

You may get different results, depending on where Google appears to live from your address’s
perspective.
Per the documentation of ResolveIPAddr, arguments are documented under Dial (go doc net.Dial).

The network parameter must belong to the IP family, either “ip’, “ip4’, or “ip6” Optionally appended to the
network parameter is a protocol such as “icmp” or its protocol number, “1”.

addr, err := net.ResolveIPAddr("ip4:icmp", name)

The usage of the netfwork parameter and optional protocol allows us to verify that the name can be used
for that given purpose. For example, if we use an IPv6 address with “ip4:icmp’, it will fail. A starting point to
learn more is following the internal documentation, go doc -u net.protocols. “-u” is needed because the
“var protocols” are not exported.

The preceding code uses the variable called name. The official documentation calls the parameter
address. We use name to show it’s not just an IP address that can be passed in. In general, you should not use
ResolvelPAddr if your IP end point (name/address) can resolve to more than one IP address. The following
functions will be more helpful when there is more than a single result.

Host Canonical Name and Addresses Lookup

The ResolveIPAddr function will perform a DNS lookup on a hostname and return a single IP address. How
it does this depends on the operating system and its configuration. For example, a Linux/UNIX system may
use /etc/resolv.conf or /etc/hosts with the order of the search setin /etc/nsswitch.conf

Many hosts can have more than one name (e.g., www.myserver.com -> myserver.com); these CNAME
records (canonical name) eventual resolve to an A record (e.g., myserver.com -> IP). If you want to find the
canonical name, use LookupCNAME:

func LookupCNAME(name string) (cname string, err error).

Some hosts may have multiple IP addresses, usually from multiple network interface cards. They may
also have multiple hostnames, acting as aliases. The LookupHost function will return a slice of addresses.

func LookupHost(name string) (cname string, addrs []string, err error)
Both are shown in the following program called lookuphost.go:
ch3$ vi lookuphost.go

/* LookupHost
*/
package main

import (
"fmt"
"log"
"net"

0s

49

http://www.myserver.com

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: %s hostname\n", os.Args[0])

}
name := os.Args[1]
cname, _ := net.LookupCNAME (name)

fmt.Println(cname)
addrs, err := net.LookupHost(cname)
if err 1= nil {
log.Fatalln("Error:
}

for , addr := range addrs {
fmt.Println(addr)
}

, err.Error())

We first normalize the hostname by looking for the canonical name. Then we see if that resulting
name has one or more IPs. Note that this function returns strings, not IP address values. When you run the
preceding program:

ch3$ go run lookuphost.go go.dev
it prints something similar to this:

2001:4860:4802:32::15
2001:4860:4802:36::15
2001:4860:4802:38::15
2001:4860:4802:34::15
216.239.32.21
216.239.36.21
216.239.38.21
216.239.34.21

If you are on a UNIX platform, you can compare these results via the dig command.

ch3$ ch3 % dig go.dev A go.dev AAAA +short
216.239.34.21

216.239.38.21

216.239.32.21

216.239.36.21

2001:4860:4802:38::15
2001:4860:4802:34::15
2001:4860:4802:36::15
2001:4860:4802:32::15

There are many additional Lookup functions to learn.
go doc net | grep Lookup

like Dial or directly with functions like LookupHost and LookupAddr, varies
func LookupAddr(addr string) (names []string, err error)

50

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

func LookupCNAME(host string) (cname string, err error)

func LookupHost(host string) (addrs []string, err error)

func LookupIP(host string) ([]IP, error)

func LookupMX(name string) ([]*MX, error)

func LookupNS(name string) ([]*NS, error)

func LookupPort(network, service string) (port int, err error)

func LookupSRV(service, proto, name string) (cname string, addrs []*SRV, err error)
func LookupTXT(name string) ([]string, error)

Some are related to email, including MX and TXT, others for general resource identification such as
CNAME, Host, and NS.

Services

Services run on host machines. They are typically long lived and are designed to wait for requests and
respond to them. There are many types of services, and there are many ways in which they can offer their
services to clients. The Internet world bases many of these services on two methods of communication -
TCP and UDP - although there are other communication protocols such as SCTP waiting in the wings to take
over. Many other types of service, such as peer to peer, remote procedure calls, communicating agents, and
many others, are built on top of TCP and UDP.

Ports

Services live on host machines. We can locate a host using an IP address. But on each computer, there may
be many services, and a simple way is needed to distinguish between them. The method used by TCP, UDP,
SCTP, and others is to use a port number. This is an unsigned integer between 1 and 65,535, and each service
will associate itself with one or more of these port numbers.

There are many “standard” ports. Telnet typically uses port 23 with the TCP protocol. DNS uses port 53,
either with TCP or with UDP. FTP uses ports 21 and 20, one for commands and the other for data transfer.
HTTP usually uses port 80, but it often uses ports 8000, 8080, and 8088, all with TCP. The X Window System
often takes ports 6000-6007, both on TCP and UDP.

On a UNIX system, the commonly used ports are listed in the file /etc/services. Go has a function to
look up ports on all systems:

func LookupPort(network, service string) (port int, err error)
The network argument is a string such as "tcp" or "udp", while the service is a string such as "telnet"
or "domain" (for DNS).
A program using this is lookupport.go:
ch3$ vi lookupport.go
/* LookupPort
*/
package main
import (

“'Fmt“
||1Og||

51

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

llnetll

0s

)

func main() {
if len(os.Args) != 3 {
log.Fatalln("Usage: %s network-type service\n", os.Args[0])
}

networkType := os.Args[1]
service := o0s.Args[2]
port, err := net.LookupPort(networkType, service)
if err != nil {
log.Fatalln("Error: ", err.Error())
}

fmt.Println("Service port ", port)

For example:
ch3$ go run lookupport.go tcp telnet
Service port 23
ch3$ go run lookupport.go udp quake
Service port 26000

There is more to port management than using a default service mapping (e.g., SSH to 22). One
idea is called ephemeral ports; these ports range typically from 32768 to 60999 (they can vary by OS).
Ephemeral ports are used by services to move per-client traffic to a temporary (i.e., ephemeral) port; at
the communication session conclusion, the port is released. As an additional concern, various software
platforms also use ranges of ports for predefined purposes; for example, Kubernetes uses the range 32000
to 32768 by default for exposing services on its internal network. There is no central management for port
usage, and collisions can occur. Verification and recovery logic is the best practice when dealing with ports.

The TCPAddr Type

The TCPAddr type is a structure containing an IP, a port, and a zone. The zone is required to distinguish
between possible ambiguous IPv6 link-local and site-local addresses, as different network interface cards
(NICs) may have the same IPv6 address.

type TCPAddr struct {
Ip 1IP
Port int
Zone string

52

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

The function to create a TCPAddr is ResolveTCPAddr:
func ResolveTCPAddr(net, addr string) (*TCPAddr, error)

where net is one of tcp, tcp4, or tcp6b and the addr is a string composed of a hostname or IP address,
followed by the port number after a :, such as www.google.com:80 or 127.0.0.1:ssh. If the address is an
IPv6 address, which already has colons in it, then the host part must be enclosed in square brackets, such as
[::1]:23. Another special case is often used for servers, where the host address is zero, so the TCP address is
really just the port name, as in : 80 for an HTTP server.

Similar to IPAddr, resolving to TCPAddr (or UDPAddr - will see later) allows us to verify and normalize
our network end points.

TCP Sockets

When you know how to reach a service via its network and port IDs, what then? If you are a client, you need
an API that will allow you to connect to a service and then to send messages to that service and read replies
back from the service.

If you are a server, you need to be able to bind to a port and listen at it. When a message comes in, you
need to be able to read it and write back to the client.

The net.TCPConn is the Go type that allows full duplex communication between the client and the
server. Two major methods of interest are as follows:

func (c *TCPConn) Write(b []byte) (n int, err error)
func (c *TCPConn) Read(b []byte) (n int, err error)

A TCPConn is used by both a client and a server to read and write messages.
Note that a TCPConn implements the io.Reader and io.Writer interfaces so that any method using a
reader or writer can be applied to a TCPConn.

TCP Client

Once a client has established a TCP address for a service, it “dials” the service. If successful, the dial returns
a TCPConn for communication. The client and the server exchange messages on this. Typically, a client writes
arequest to the server using the TCPConn and reads a response from the TCPConn. This continues until either
(or both) side closes the connection. A TCP connection is established by the client using this function:

func DialTCP(net string, laddr, raddr *TCPAddr) (*TCPConn, error)

where laddr is the local address (client side), which is usually set to nil, and raddr is the remote
address of the service (server side). The net string is one of "tcp4", "tcp6", or "tcp", depending on whether
you want a TCPv4 connection or a TCPv6 connection or don'’t care.

A simple example can be provided by a client to a web (HTTP) server. We will deal in substantially more
detail with HTTP clients and servers in a later chapter, so for now, we will keep it simple.

One of the possible messages that a client can send is the HEAD message. This queries a server for
information about the server and a document on that server. The server returns information but does not

return the document itself. The request sent to query an HTTP server could be as follows:

"HEAD / HTTP/1.0\r\n\r\n"

53

http://www.google.com

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

This asks for information about the root document and the server. A typical response might be

HTTP/1.0 200 OK

Content-Type: text/html; charset=IS0-8859-1

P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."

Date: Mon, 02 Aug 2021 21:56:38 GMT

Server: gws

X-XSS-Protection: 0

X-Frame-Options: SAMEORIGIN

Expires: Mon, 02 Aug 2021 21:56:38 GMT

Cache-Control: private

Set-Cookie: 1P_JAR=2021-08-02-21; expires=Wed, 01-Sep-2021 21:56:38 GMT; path=/; domain=.
google.com; Secure

Set-Cookie: NID=220=U9k4rAwVrhFaS20KHOOFfOEQv6ZxzK 3zgVT1f3uBLP16G1PZ_040Kz
6SpQvCha7aA9bZo3bKbKadUCN9EQNNPMUIh11QLUsnYeMoS1i0C70Za-eKDCheZcywo nMt
KcKHLIUIc6BUFEIAayyEala5qb4d7YanhTrKPOsEqaA; expires=Tue, 01-Feb-2022 21:56:38 GMT; path=/;
domain=.google.com; HttpOnly

We first give the program (getheadinfo.go) to establish the connection for a TCP address, send the
request string, and then read and print the response. The program is getheadinfo.go:

ch3$ vi getheadinfo.go
/* GetHeadInfo

*/
package main

import (
"fmt"
"io/ioutil"
lllogll
"net"
"osh

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: %s host:port ", os.Args[0])
}

service := os.Args[1]

tcpAddr, err := net.ResolveTCPAddr("tcpa", service)
checkError(err)

conn, err := net.DialTCP("tcp", nil, tcpAddr)
checkError(err)

_, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
checkError(err)

result, err := ioutil.ReadAll(conn)

checkError(err)

fmt.Println(string(result))

54

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error: %s", err.Error())
}

}

ch3$ go run getheadinfo.go golang.org:80

HTTP/1.0 200 OK

Content-Type: text/html; charset=IS0-8859-1

P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."

Date: Mon, 03 Jan 2022 23:37:35 GMT

Server: gws

X-XSS-Protection: 0

X-Frame-Options: SAMEORIGIN

Expires: Mon, 03 Jan 2022 23:37:35 GMT

Cache-Control: private

Set-Cookie: 1P_JAR=2022-01-03-23; expires=Wed, 02-Feb-2022 23:37:35 GMT; path=/; domain=.
google.com; Secure

Set-Cookie: NID=511=iZvpsJc91iI44GOwWANIFCMUc5Xgko8dCWw90Q2 L4QwwizOtxQ3my4Uk8MFjPs
YbOXCsGEntPRPnyHSJoE3UfPqO6WH3akir2iks2GzKZYv-58SFCx2qN7hFIXalS2nLT5V7X4EBHIwAkzo
dE-5sEcv6gDvuOfALiFXxnuFAFHdw; expires=Tue, 05-Jul-2022 23:37:35 GMT; path=/; domain=.
google.com; HttpOnly

The first point to note is the almost excessive amount of error checking that is going on. This is normal
for networking programs (and Golang): the opportunities for failure are substantially greater than for stand-
alone programs. Hardware may fail on the client, the server, or on any of the routers and switches in the
middle; communication may be blocked by a firewall; timeouts may occur due to network load; the server
may crash while the client is talking to it. The following checks are performed:

e There may be syntax errors in the address specified. An example is an
unspecified port.

e The attempt to connect to the remote service may fail. For example, the service
requested might not be running, or there may be no such host connected to the
network. An example is a typo in the hostname.

e Although a connection has been established, writes to the service might fail if the
connection has died suddenly, or if the network times out.

e Similarly, the reads might fail as above.

Reading from the server requires a comment. In this case, we read essentially a single response from
the server. This will be terminated by end of file on the connection. However, it may consist of several TCP
packets, so we need to keep reading until the end of file. The io/ioutil function ReadAll will look after
these issues and return the complete response. (Thanks to Roger Peppe on the golang-nuts mailing list.)

There are some language issues involved. First, most of the functions return a dual value, with the
possible error as second value. If no error occurs, then this will be nil. In C, the same behavior is gained by
special values such as NULL, or -1, or zero being returned - if that is possible. In Java, the same error checking
is managed by throwing and catching exceptions, which can make the code look very messy.

55

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

A Daytime Server

The simplest service that we can build is the daytime service. This is a standard Internet service, defined
by RFC 867, with a default port of 13 on both TCP and UDP. Unfortunately, with the (justified) increase
in paranoia over security, hardly any sites run a daytime server anymore. Never mind; we can build our
own. (For those interested, if you install inetd/systemd on your system, you usually get a daytime server
thrown in.)

A server registers itself on a port and listens on that port. Then it blocks on an “accept” operation,
waiting for clients to connect. When a client connects, the accept call returns, with a connection object.
The daytime service is very simple and just writes the current time to the client, closes the connection, and
resumes waiting for the next client.

The relevant calls are as follows:

func ListenTCP(network string, laddr *TCPAddr) (*TCPListener, error)
func (1 *TCPListener) Accept() (Conn, error)

The argument net can be set to one of the strings: "tcp", "tcp4"”, or "tcp6". The IP address should be
set to zero if you want to listen on all network interfaces, or to the IP address of a single network interface
if you only want to listen on that interface. If the port is set to zero, then the O/S will choose a port for you.
Otherwise, you can choose your own. Note that on a UNIX system, you cannot listen on a port below 1024
unless you are the system supervisor, root, and ports below 128 are standardized by the IETE. The example
program chooses port 1200 for no particular reason. The TCP address is given as :1200 - all interfaces, port
1200. The program is daytimeserver.go:

ch3$ vi daytimeserver.go

/* DaytimeServer
*/
package main

import (
"log"
"net"
"time"

)

func main() {

service := ":1200"
tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)
listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)
for {

conn, err := listener.Accept()

if err != nil {

continue
}

daytime := time.Now().String()

conn.Write([]byte(daytime)) // don't care about return value
conn.Close() // we're finished with this client

56

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error: %s", err.Error())
}

If you run this server, it will just wait there, not doing much. When a client connects to it, it will respond
by sending the daytime string to it and then return to waiting for the next client.

ch3$ go run daytimeserver.go

Note the changed error handling in the server as compared to a client. The server should run forever
so that if any error occurs with a client, the server just ignores that client and carries on. A client could
otherwise try to mess up the connection with the server and bring it down!

We haven't built a client. That is easy, just changing the previous client to omit the initial write.
Alternatively, just open a telnet connection to that host:

ch3$ telnet localhost 1200

This will produce output such as the following:

Connected to localhost.

Escape character is '~]'.
2022-01-03 18:40:16.602125 -0500 EST m=+2.486360923Connection closed by foreign host.

where the date is the output from the server.

Multithreaded Server

echo is another simple IETF service. The simpleechoserver.go program just reads what the client types and
sends it back:

ch3$ vi simpleechoserver.go

/* SimpleEchoServer
*/
package main

import (
"fmt"
"log"
"net"

)

func main() {
service := ":1201"
tcpAddr, err := net.ResolveTCPAddr("tcpa", service)
checkError(err)
listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

57

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

for {
conn, err := listener.Accept()
if err 1= nil {
continue
handleClient(conn)
conn.Close() // we're finished
}

}

func handleClient(conn net.Conn) {
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
checkError(err)
fmt.Println(string(buf[o0:]))
_, err = conn.Write(buf[o:n])
checkError(err)

}

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error: %s", err.Error())
}

}
ch3$ go run simpleechoserver.go
But if you open two more terminals and try to telnet both to the echo service like so, the second will fail:

ch3$ telnet localhost 1201 # in one terminal
// type hello

ch3$ telnet localhost 1201 # in second terminal, blocked by the first telnet client

While it works, there is a significant issue with this server: it is single threaded (just like our daytime
service). While a client has a connection open to it, no other client can fully connect. Other clients are
blocked and will probably time out. Fortunately, this is easily fixed by making the client handler a goroutine.
We have also moved closing the connection into the handler, as it now belongs there. The program is called
threadedechoserver.go

ch3$ vi threadedechoserver.go
/* ThreadedEchoServer

*/
package main

import (
"fmt"
"log"
"net"
)

58

func main() {

}

service := ":1201"

tcpAddr, err := net.ResolveTCPAddr("tcpa", service)
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

for {
conn, err := listener.Accept()
if err 1= nil {
continue
}
// run as a goroutine
go handleClient(conn)
}

func handleClient(conn net.Conn) {

}

// close connection on exit

defer conn.Close()

var buf [512]byte

for {
// read up to 512 bytes
n, err := conn.Read(buf[0:])
checkError(err)
fmt.Println(string(buf[o:]))
// write the n bytes read
_, err = conn.Write(buf[o:n])
checkError(err)

}

func checkError(err error) {

if err 1= nil {
log.Fatal("Fatal error: %s", err.Error())
}

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

This simple refactoring moves us to a much more interesting world. This book assumes knowledge of

basic Go; it would still be remiss to not highlight areas to consider. After moving to a concurrent world, we
should think of state management (if our applications require it), cross thread security, resource exhaustion,
and more. No details are provided here, but something for your future consideration.

either client can talk on demand.

If you run the same scenario as the prior single-threaded version (server, two telnet clients), you will see

59

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

Controlling TCP Connections

Timeout

The server may want to time out a client if it does not respond quickly enough; that is, it does not write a
request to the server in time. This should be a long period (several minutes) because the users may be taking
their time. Conversely, the client may want to time out the server (after a much shorter time). Both do this as
follows:

func (c *IPConn) SetDeadline(t time.Time) error

This is done before any reads or writes on the socket.

Staying Alive
A client may want to stay connected to a server even if it has nothing to send. It can use this:

func (c *TCPConn) SetKeepAlive(keepalive bool) error

There are several other connection control methods, which are documented in the net package.
To learn more about deadlines and keepalive, review the existing tests, and run them:

ch3$ go test -test.v -run "Timeout|KeepAlive" -count=1 $(go env GOROOT)/src/net
=== RUN TestDialerKeepAlive
--- PASS: TestDialerKeepAlive (0.00s)
=== RUN TestRetryTimeout

dnsclient_unix test.go:985: 192.0.2.1:53 {{16532 false 0 false false true false
RCodeSuccess} [{www.golang.org. TypeTXT ClassINET}] [] [] []} 2022-01-03 18:49:
09.787565 -0500 EST m=+5.003120852

dnsclient unix test.go:985: 192.0.2.2:53 {{25591 false 0 false false true false
RCodeSuccess} [{www.golang.org. TypeTXT ClassINET}] [] [] []} 2022-01-03 18:49:
09.79893 -0500 EST m=+5.014486668
--- PASS: TestRetryTimeout (0.01s)
=== RUN TestDNSTimeout
--- PASS: TestDNSTimeout (0.00s)

ch3$ go test -list "Timeout|KeepAlive" $(go env GOROOT)/src/net
TestDialerKeepAlive

TestRetryTimeout

TestDNSTimeout

UDP Datagrams

In a connectionless protocol, each message contains information about its origin and destination. There is
no “session” established using a long-lived socket. UDP clients and servers make use of datagrams, which
are individual messages containing source and destination information. There is no state maintained by
these messages, unless the client or server does so. The messages are not guaranteed to arrive or may arrive
out of order.

60

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

The most common situation for a client is to send a message and hope that a reply arrives. The most
common situation for a server is to receive a message and then send one or more replies back to that client.

In a peer-to-peer situation, though, the server may just forward messages to other peers.

The major difference between TCP and UDP handling for Go is how to deal with packets arriving from
multiple clients, without the cushion of a TCP session to manage things. The major calls needed are as

follows:

func ResolveUDPAddr(network, address string) (*UDPAddr, error)
func DialUDP(network string, laddr, raddr *UDPAddr) (*UDPConn, error)
func ListenUDP(network string, laddr *UDPAddr) (*UDPConn, error)

func (c *UDPConn) ReadFromUDP(b []byte) (n int, addr *UDPAddr, err error

func (c *UDPConn) WriteToUDP(b []byte, addr *UDPAddr) (int, error)

The client for a UDP time service doesn’t need to make many changes; just change the . .

to...UDP... callsin the program udpdaytimeclient.go:
ch3$ vi udpdaytimeclient.go
/* UDPDaytimeClient

*/
package main

import (
"fmt"
“]_Og“
"net"
"os™
)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: %s host:port", os.Args[0])
}

service := os.Args[1]
udpAddr, err := net.ResolveUDPAddr("udp", service)
checkError(err)
conn, err := net.DialUDP("udp", nil, udpAddr)
checkError(err)
_, err = conn.Write([]byte("anything"))
checkError(err)
var buf [512]byte
n, err := conn.Read(buf[0:])
checkError(err)
fmt.Println(string(buf[0:n]))
}
func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

.TCP... calls

61

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

The server has to make a few more changes in the program udpdaytimeserver.go:
ch3$ vi udpdaytimeserver.go
/* UDPDaytimeServer

*/
package main

import (
"log"
"net"
"time"
)
func main() {
service := ":1200"
udpAddr, err := net.ResolveUDPAddr("udp", service)
checkError(err)
conn, err := net.ListenUDP("udp", udpAddr)
checkError(err)
for {
handleClient(conn)
}

func handleClient(conn *net.UDPConn) {
var buf [512]byte
_, addr, err := conn.ReadFromUDP(buf[0:])
checkError(err)
daytime := time.Now().String()
conn.WriteToUDP ([]byte(daytime), addr)

}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

The server is run as follows:
ch3$ go run udpdaytimeserver.go

A client on the same host is run as follows:
ch3$ go run udpdaytimeclient.go :1200

The client output will be something like this:

2022-01-03 18:57:00.616532 -0500 EST m=+8.044046910

62

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

Server Listening on Multiple Sockets

A server may be attempting to listen to multiple clients not just on one port, but on many. In this case, it has
to use some sort of polling mechanism between the ports.

In C, the select() call lets the kernel do this work. The call takes a number of file descriptors. The
process is suspended. When I/0 is ready on one of these, a wakeup is done, and the process can continue.
This is cheaper than busy polling. In Go, you can accomplish the same by using a different go routine for
each port. A thread will become runnable when the lower-level select() discovers that I/O is ready for
this thread.

The Conn, PacketConn, and Listener Types

So far, we have differentiated between the API for TCP and the API for UDP using, for example, DialTCP
and DialUDP returning TCPConn and UDPConn, respectively. The Conn type is an interface, and both TCPConn
and UDPConn implement this interface. To a large extent, you can deal with this interface rather than the
two types.

Instead of separate dial functions for TCP and UDP, you can use a single function:

func Dial(network, address string) (Conn, error)
func DialIP(network string, laddr, raddr *IPAddr) (*IPConn, error)

The network can be any of tcp, tcpa (IPv4-only), tcp6 (IPv6-only), udp, udp4 (IPv4-only), udp6 (IPv6-
only), ip, ip4 (IPv4-only), and ip6 (IPv6-only) and several UNIX-specific ones such as unix for UNIX
sockets. It will return an appropriate implementation of the Conn interface. Note that this function takes a
string rather than address as the (r)addr argument so that programs using this can avoid working out the
address type first.

Using this function makes minor changes to the programs. For example, the earlier program to get HEAD
information from a web page can be rewritten as ipgetheadinfo.go:

ch3$ vi ipgetheadinfo.go

/* IPGetHeadInfo
*/
package main

import (
"bytes"
"fmt"
"io"
"log"
"net"

0s

)
func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: %s host:port", os.Args[0])
}

service := os.Args[1]
conn, err := net.Dial("tcp", service)

63

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

checkError(err)
_, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
checkError(err)
result, err := readFully(conn)
checkError(err)
fmt.Println(string(result))

}

func readFully(conn net.Conn) ([]byte, error) {
defer conn.Close()
result := bytes.NewBuffer(nil)
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
result.Write(buf[0:n])
if err 1= nil {
if err == io.EOF {
break
}
return nil, err
}
}

return result.Bytes(), nil

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error: %s", err.Error())
}

This can be run on my own machine as follows:
ch3$ go run ipgetheadinfo.go yahoo.com:80 # can't use go.dev as its on 443 w/TLS
It prints the following about the server running on port 80:

HTTP/1.0 200 OK

Date: Tue, 04 Jan 2022 00:02:13 GMT

Server: ATS

Cache-Control: no-store, no-cache, max-age=0, private
Content-Type: text/html

Content-Language: en

Expires: -1

X-Frame-Options: SAMEORIGIN

Content-Length: 12

Writing a server can be similarly simplified using this function:

func Listen(network, address string) (Listener, error)

64

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

This returns an object implementing the Listener interface. This interface has a method Accept:

type Listener interface {
// Accept waits for and returns the next connection to the listener.
Accept() (Conn, error)

// Close closes the listener.
// Any blocked Accept operations will be unblocked and return errors.
Close() error

// Addr returns the listener's network address.
Addr() Addr
This will allow a server to be built. Using this, the multithreaded Echo server given earlier becomes
threadedipechoserver.go:
ch3$ vi threadedipechoserver.go
/* ThreadedIPEchoServer

*/
package main

import (
"log"
"net"
)
func main() {
service := ":1200"
listener, err := net.Listen("tcp", service)
checkError(err)
for {
conn, err := listener.Accept()
if err 1= nil {
continue
}
go handleClient(conn)
}
}

func handleClient(conn net.Conn) {
defer conn.Close()
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
checkError(err)
_, err = conn.Write(buf[o:n])
checkError(err)

}

65

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error: %s", err.Error())
}

If you want to write a UDP server, there is an interface called PacketConn and a method to return an
implementation of this:

func ListenPacket(network, address string) (PacketConn, error)

This interface has the primary methods ReadFrom and WriteTo that handle packet reads and writes.

The Go net package recommends using these interface types rather than the concrete ones. But by
using them, you lose specific methods such as SetKeepAlive of TCPConn and SetReadBuffer of UDPConn,
unless you do a type cast. It is your choice.

Raw Sockets and the IPConn Type

This section covers advanced material that most programmers are unlikely to need. It deals with raw sockets,
which allow programmers to build their own IP protocols or use protocols other than TCP or UDP.

TCP and UDP are not the only protocols built above the IP layer. The website (http://www.iana.org/
assignments/protocol-numbers) lists about 140 of them (this list is often available on UNIX systems in the
file /etc/protocols). TCP and UDP are only numbers 6 and 17, respectively, on this list.

Go allows you to build so-called raw sockets, to enable you to communicate using one of these other
protocols, or even to build your own. But it gives minimal support: it will connect hosts and write and read
packets between the hosts. In a later chapter, we look at designing and implementing your own protocols
above TCP; this section considers the same type of problem, but at the IP layer.

To keep things simple, we use almost the simplest possible example: how to send an IPv4 ping message
to a host. Ping uses the echo command from the ICMP protocol. This is a byte-oriented protocol, in which
the client sends a stream of bytes to another host and the host replies. The format of the ICMP packet
payload is as follows:

e The first byte is 8, standing for the echo message.

e The second byte is zero.

e The third and fourth bytes are a checksum on the entire message.
e The fifth and sixth bytes are an arbitrary identifier.

e The seventh and eight bytes are an arbitrary sequence number.

e Therest of the packet is user data.

The packet can be sent using the Conn.Write method, which prepares the packet with this payload.
The replies received include the IPv4 header, which takes 20 bytes. (See, e.g., the Wikipedia article on the
Internet Control Message Protocol, ICMP.)

66

http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

The following program called ping.go will prepare an IP connection, send a ping request to a host, and
get a reply. You may need root access in order to run it successfully:

ch3$ vi ping.go

/* Ping
*/
package main

import (
"fmt"
"log"
"net"

0s

)

// change this to your own IP address or leave set to 0.0.0.0
const myIPAddress = "0.0.0.0"
const ipv4HeaderSize = 20

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage:
}

localAddr, err := net.ResolveIPAddr("ip4", myIPAddress)
checkError(err)

, 0s.Args[0], "host")

remoteAddr, err := net.ResolveIPAddr("ip4", os.Args[1])
checkError(err)

conn, err := net.DialIP("ip4:icmp", localAddr, remoteAddr)

checkError(err)

var msg [512]byte

msg[0] = 8 // echo

msg[1] = 0 // code 0

msg[2] = 0 // checksum, fix later
msg[3] = 0 // checksum, fix later
msg[4] = 0 // identifier[o]

msg[5] = 13 // identifier[1] (arbitrary)
msg[6] = 0 // sequence[0]

msg[7] = 37 // sequence[1] (arbitrary)
len :=

o)

// now fix checksum bytes
check := checkSum(msg[0:1en])
msg[2] = byte(check >> 8)
msg[3] = byte(check & 255)

// send the message
_, err = conn.Write(msg[o0:1len])

67

CHAPTER 3 © SOCKET-LEVEL PROGRAMMING

checkError(err)
fmt.Print("Message sent: ")
for n := 0; n < 8; n++ {

fmt.Print(" ", msg[n])
}

fmt.Println()

// receive a reply
size, err2 := conn.Read(msg[o0:])

checkError(err2)
fmt.Print("Message received:")
for n := ipv4HeaderSize; n < size; n++ {
fmt.Print(" ", msg[n])
}
fmt.Println()
}
func checkSum(msg []byte) uint16 {
sum := 0
// assume even for now
for n := 0; n < len(msg); n += 2 {
sum += int(msg[n])*256 + int(msg[n+1])
}
sum = (sum >> 16) + (sum & Oxffff)
sum += (sum >> 16)
var answer uint16 = uint16("sum)
return answer
}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error: %s", err.Error())
}

It is run using the destination address as an argument. The received message should differ from the sent
message in only the first type byte and the third and fourth checksum bytes, as follows:

ch3$ sudo env "PATH=$PATH" go run ping.go google.com

Message sent: 8 0 247 205 0 13 0 37
Message received: 0 0 255 205 0 13 0 37

Notice we are using “sudo” (on Linux) since being root is required to use ICMP, as set in DialIP.

Conclusion

This chapter considered programming at the IP, TCP, and UDP levels. This is often necessary if you want to
implement your own protocol or build a client or server for an existing protocol.

68

CHAPTER 4

Data Serialization

A client and a server need to exchange information via messages. TCP and UDP provide the transport
mechanisms to do this. The two processes also need to have a protocol in place so that message exchange
can take place meaningfully.

Messages are sent across the network as a sequence of bytes, which has no structure except as a linear
stream of bytes. We address the various possibilities for messages and the protocols that define them in the
next chapter. In this chapter, we concentrate on a component of messages - the data that is transferred.

A program will typically build complex data structures to hold the current program state. In conversing
with a remote client or service, the program will be attempting to transfer such data structures across the
network - that is, outside of the application’s own address space.

Structured Data

Programming languages use structured data such as the following:

e Records/structures: A collection of fields of possibly different data types where the
type is fixed, also known as a composition.

e Variantrecords: A record that contains a value potentially of differing types.
e Array: Fixed size or varying, also known as an aggregation.
e String: Fixed size or varying.
e Tables: Arrays of records; in data storage terms, a record is a row.
e Nonlinear structures such as
e Circular linked lists
e Binary trees
e Objects with references to other objects

For our purpose, a composition is a data structure where nested elements do not exist without the
parent. In aggregation, the stored/nested elements can potentially exist on their own.

None of the IP, TCP, or UDP packets know the meaning of any of these data types. All that they (packets)
can contain is a sequence of bytes. Thus, an application has to serialize any data into a stream of bytes in

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 69
https://doi.org/10.1007/978-1-4842-8095-9_4

https://doi.org/10.1007/978-1-4842-8095-9_4#DOI

CHAPTER 4 DATA SERIALIZATION

order to write it and deserialize the stream of bytes back into suitable data structures on reading it. These two
operations are known as marshalling and unmarshalling, respectively.'

For example, consider sending the following variable length table of two columns of variable length
strings:

fred programmer
liping analyst
sureerat manager

This could be done in various ways. For example, suppose that it is known that the data will be an
unknown number of rows in a two-column table. Then a marshalled form could be

3 // 3 rows, 2 columns (assumed from above table)
4 fred // 4 char string, col 1

10 programmer // 10 char string, col 2

6 liping // 6 char string, col 1

7 analyst // 7 char string, col 2

8 sureerat // 8 char string, col 1

7 manager // 7 char string, col 2

Variable length things can alternatively have their length indicated by terminating them with an
“illegal” value, such as \0 for strings. The previous table could also be written with the number of rows again,
but each string terminated by \0 (the newlines are for readability, not part of the serialization):

3

fred\o
programmer\0
liping\o
analyst\o
sureerat\o
manager\0

Alternatively, it may be known that the data is a three-row fixed table of two columns of strings of length
8 and 10, respectively. Then a serialization of the table could be (again, the newlines are not part of the
serialization)

fred\0\0\0\0
programmer
liping\o\o
analyst\o\o\o
sureerat
manager\0\0\0

Any of these formats (and others) is okay, but the message exchange protocol must specify which one is
used or allow it to be determined at runtime.

'T'm treating serialization and marshalling as synonymous. There are a variety of opinions on
this, some more language specific than others. See, search for example, “What is the difference
between Serialization and Marshaling?” on Stack Overflow or Google.

70

CHAPTER 4 * DATA SERIALIZATION

Mutual Agreement

The previous section gave an overview of the issue of data serialization. In practice, the details can be
considerably more complex. For example, consider the first possibility, marshalling a table into the
byte stream:

3

4 fred

10 programmer
6 liping

7 analyst

8 sureerat

7 manager

Many questions arise. For example, how many rows are possible for the table - that is, how big an
integer do we need to describe the row size? If it is 255 or less, then a single byte will do, but if it is more,
then a short, integer, or long may be needed. A similar problem occurs for the length of each string. With the
characters themselves, to which character set do they belong? 7-bit ASCII? 16-bit Unicode? The question of
character sets is discussed at length in a later chapter.

This serialization is opaque or implicit. If data is marshalled using this format, then there is nothing in
the serialized data to say how it should be unmarshalled. The unmarshalling side has to know exactly how
the data is serialized in order to unmarshal it correctly. For example, if the number of rows is marshalled as
an 8-bit integer but unmarshalled as a 16-bit integer, then an incorrect result will occur as the receiver tries
to unmarshal 3 and 4 as a 16-bit integer, and the receiving program will almost certainly fail later.

An early well-known serialization method is XDR (external data representation) used by Sun’s RPC,
later known as ONC (Open Network Computing). XDR is defined by RFC 1832, and it is instructive to see
how precise this specification is. Even so, XDR is inherently type unsafe as serialized data contains no type
information. The correctness of its use in ONC is ensured primarily by compilers generating code for both
marshalling and unmarshalling.

Go contains no explicit support for marshalling or unmarshalling opaque serialized data. The RPC
package in Go does not use XDR but instead uses Gob serialization (also part of Go), described later in this
chapter.

Self-Describing Data

Self-describing data carries type information along with the data. For example, the previous data might get
encoded as follows:

table
uint8 3
uint 2
string
uint8 4
[]byte fred
string
uint8 10
[]byte programmer
string
uint8 6
[]byte liping

71

CHAPTER 4 DATA SERIALIZATION

string

uint8 7

[]byte analyst
string

uint8 8

[]byte sureerat
string

uint8 7

[]byte manager

Of course, a real encoding would not normally be as cumbersome and verbose as in the example:
Small integers would be used as type markers, and the whole data would be packed in as small a byte array
as possible (XML provides a counterexample, though). However, the principle is that the marshaller will
generate such type information in the serialized data. The unmarshaller will know the type-generation rules
and will be able to use them to reconstruct the correct data structure.

Encoding Packages

As mentioned earlier, there is more than one way to encode/decode data. Go provides high level interfaces
in the “encoding” package. Additionally, Go includes several specialized packages for well-known data
formats including JSON and XML in subpackages. Take a moment to review the “encoding” package
documentation; we will cross these and related interfaces throughout this chapter.

$ mkdir ch4
$ cd cha
ch4$ go doc -all encoding

package encoding // import "encoding"

Package encoding defines interfaces shared by other packages that convert
data to and from byte-level and textual representations. Packages that check
for these interfaces include encoding/gob, encoding/json, and encoding/xml.
As a result, implementing an interface once can make a type useful in
multiple encodings. Standard types that implement these interfaces include
time.Time and net.IP. The interfaces come in pairs that produce and consume
encoded data.

TYPES

type BinaryMarshaler interface {
MarshalBinary() (data []byte, err error)
}

BinaryMarshaler is the interface implemented by an object that can marshal
itself into a binary form.

MarshalBinary encodes the receiver into a binary form and returns the
result.

type BinaryUnmarshaler interface {
UnmarshalBinary(data []byte) error
}

72

CHAPTER 4 * DATA SERIALIZATION

BinaryUnmarshaler is the interface implemented by an object that can
unmarshal a binary representation of itself.

UnmarshalBinary must be able to decode the form generated by MarshalBinary.
UnmarshalBinary must copy the data if it wishes to retain the data after
returning.

type TextMarshaler interface {
MarshalText() (text []byte, err error)
}

TextMarshaler is the interface implemented by an object that can marshal
itself into a textual form.

MarshalText encodes the receiver into UTF-8-encoded text and returns the
result.

type TextUnmarshaler interface {
UnmarshalText(text []byte) error
}

TextUnmarshaler is the interface implemented by an object that can unmarshal
a textual representation of itself.

UnmarshalText must be able to decode the form generated by MarshalText.
UnmarshalText must copy the text if it wishes to retain the text after
returning.

As mentioned in the above documentation, we can confirm the usage of these interfaces by reviewing
the mentioned samples.

ch4$ go doc net.IP.MarshalText

package net // import "net

func (ip IP) MarshalText() ([]byte, error)
MarshalText implements the encoding.TextMarshaler interface. The encoding is
the same as returned by String, with one exception: When len(ip) is zero, it
returns an empty slice.

You can do the same to read about the UnmarshalText implementation. Unlike net.IP, time.Time does
use the binary marshaller interface. “go doc” provides an easy and powerful way to learn how Go'’s network
related interfaces are defined and consumed.

You can list the available encoding packages as follows:

ch4$ go list encoding/...

encoding
encoding/ascii8s
encoding/asn1
encoding/base32
encoding/base64
encoding/binary
encoding/csv

73

CHAPTER 4 DATA SERIALIZATION

encoding/gob
encoding/hex
encoding/json
encoding/pem
encoding/xml

ASN.1

Abstract Syntax Notation One (ASN.1) was originally designed in 1984 for the telecommunications industry.
ASN.1 is a complex standard, and a subset of it is supported by Go in the package asn1. It builds self-
describing serialized data from complex data structures. Its primary use in current networking systems is as
the encoding for X.509 certificates, which are heavily used in authentication systems. The support in Go is
based on what is needed to read and write X.509 certificates.

Structured data in ASN has similar purpose but differing names; for example, a struct is called a "SET"
in ASN, a "SEQUENCE OF" is an array, and a "CHOICE" is like a variant. ASN has sets encoding rules that
provide various levels of complexity vs. performance (i.e., size), including

e Basic Encoding Rules (BER)

e Distinguished Encoding Rules (DER)
e Basic XML Encoding Rules (XER)

e And others

ASN.1 support in Go is based on what is needed to read and write X.509 certificates. X.509 uses the DER
encoding rules, which in turn are a subset of BER.? A value can often be encoded in more than one way with
BER, where in DER, it can only have a single encoding. DER offers less chances of misencoding a value, a
feature good for security.

The documentation not only highlights the interface used but also includes links to learn more about
the encoding.

ch4$ go doc encoding/asni
package asn1l // import "encoding/asn1"

Package asn1l implements parsing of DER-encoded ASN.1 data structures, as
defined in ITU-T Rec X.690.

See also “A Layman's Guide to a Subset of ASN.1, BER, and DER,”
http://luca.ntop.org/Teaching/Appunti/asni.html.

const TagBoolean = 1 .

const ClassUniversal =0 ...

var NullBytes = []byte{ ... }

var NullRawValue = RawValue{ ... }

func Marshal(val interface{}) ([]byte, error)

func MarshalWithParams(val interface{}, params string) ([]byte, error)

func Unmarshal(b []byte, val interface{}) (rest []byte, err error)

func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error)

2You can review the ASN.1 encoding rules for BEE, CER, and DER in document X.690-202102 -
https://www.itu.int/rec/T-REC-X.690-202102-I/en

74

http://www.itu.int/rec/T-REC-X.690-202102-I/en

CHAPTER 4 * DATA SERIALIZATION

type BitString struct{ ... }

type Enumerated int

type Flag bool

type ObjectIdentifier []int

type RawContent []byte

type RawValue struct{ ... }

type StructuralError struct{ ... }
type SyntaxError struct{ ... }

As with other encoding packages, there are functions that allow us to marshal and unmarshal data:

func Marshal(val interface{}) ([]byte, error)
func Unmarshal(b []byte, val interface{}) (rest []byte, err error)

The Marshal function converts a data value into a serialized byte array, and the Unmarshal function
converts a byte array back into a local variable. The second argument of Unmarshal function deserves
further examination. Given a variable of any type, we can marshal it by just passing its value to Marshal. To
unmarshal it, we need a variable of a named type that will match the serialized data. The precise details of
this are discussed later. But we also need to make sure that the variable is allocated to memory for that type
so that there is actually existing memory for the unmarshalling to write values into.

We illustrate with an almost trivial example in asn1.go of marshalling and unmarshalling an integer. We
can pass an integer value to marshal to return a byte array and unmarshal the array into an integer variable,
as in this program in file asnl.go:

ch4$ vi asni.go
/* ASN1 example

*/
package main

import (
"encoding/asn1"
"fmt"
)
func thirteen() {
val := 13
mdata, _ := asnil.Marshal(val)
var n int

asni.Unmarshal(mdata, &n)
fmt.Printf("Before marshal: %v, After unmarshal: %v\n", val, n)

}

func main() {
thirteen()

}

Execute the program as follows:
ch4$ go run asni.go

Before marshal: 13, After unmarshal: 13

75

CHAPTER 4 DATA SERIALIZATION

As expected, the marshalled to unmarshalled cycle results in 13.

Once we move beyond this, things get harder. In order to manage more complex data types, we have to

look more closely at the data structures supported by ASN.1 and how ASN.1 support is done in Go.

Any serialization method will be able to handle certain data types and not handle some others. So in
order to determine the suitability of any serialization such as ASN.1, you have to look at the possible data
types supported vs. those you want to use in your application. The following ASN.1 types are taken from

http://www.obj-sys.com/asnitutorial/node4.html.
The simple types are as follows:

e BOOLEAN: Two-state variable values

e INTEGER: Models integer variable values

e BIT STRING: Models binary data of arbitrary length

e OCTET STRING: Models binary data whose length is a multiple of eight
e NULL: Indicates effective absence of a sequence element

e OBJECT IDENTIFIER: Names information objects

e REAL: Models real variable values

e ENUMERATED: Models values of variables with at least three states

e CHARACTER STRING: Models values that are strings of characters from a specified
character set

Character strings can be from certain character sets:
e NumericString:0,1,2,3,4,5,6,7,8,9, and space.

e PrintableString: Upper- and lowercase letters, digits, space, apostrophe, left/right
parenthesis, plus sign, comma, hyphen, full stop, solidus, colon, equal sign, and
question mark.

e TeletexString (T61String): The Teletex character set in CCITT’s T61, space,
and delete.

e VideotexString: The Videotex character set in CCITT’s T.100 and T.101, space,
and delete.

e VisibleString (ISO646String): Printing character sets of international ASCII
and space.

e IA5String: International Alphabet 5 (International ASCII).

e GraphicString 25: All registered G sets and space GraphicString.

e There are additional string types as well as these, notably UTF8String.
And finally, there are the structured types:

e SEQUENCE: Models an ordered collection of variables of different types

e SEQUENCE OF: Models an ordered collection of variables of the same type

e SET: Models an unordered collection of variables of different types

e SET OF:Models an unordered collection of variables of the same type

e CHOICE: Specifies a collection of distinct types from which to choose one type

76

http://www.obj-sys.com/asn1tutorial/node4.html

CHAPTER 4 * DATA SERIALIZATION

SELECTION: Selects a component type from a specified CHOICE type
ANY: Enables an application to specify the type

Note ANY is a deprecated ASN.1 Structured Type. It has been replaced with X.680 Open Type.

Not all of these are supported by Go. Not all possible values are supported by Go. The rules, as given by
"go doc encoding/asnl.Unmarshal", are as follows:

An ASN.1 INTEGER can be written to an int, int32, int64, or *big.Int (from the math/
big package). If the encoded value does not fit in the Go type, Unmarshal returns a
parse error.

An ASN.1 BIT STRING can be written to a BitString.

An ASN.1 0CTET STRING can be written to a []byte.

An ASN.1 OBJECT IDENTIFIER can be written to anObjectIdentifier.

An ASN.1 ENUMERATED can be written to an Enumerated.

An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.

An ASN.1 PrintableString, IA5String, or NumericString can be written to a string.

Any of the preceding ASN.1 values can be written to an interface{}. The value
stored in the interface has the corresponding Go type. For integers, that type
is int64.

An ASN.1 SEQUENCE OF x or SET OF x can be written to a slice if an x can be written
to the slice’s element type.

An ASN.1 SEQUENCE or SET can be written to a struct if each of the elements in the
sequence can be written to the corresponding element in the struct.

Go places real restrictions on ASN.1. For example, ASN.1 allows integers of any size (per ASN.1 - “Type
INTEGER takes any of the infinite set of integer values”), while the Go implementation will only allow up
to limit of big.Int (which is larger than int64 but not infinite). On the other hand, Go distinguishes between
signed and unsigned types, while ASN.1 doesn't. So, for example, transmitting a value of uint64 may fail if it
is too large for int64.

In a similar vein, ASN.1 allows several different character sets, while the Go package states that it
supports PrintableString, [A5String (ASCII), NumericString, and utf8.

We have seen that a value such as an integer can be easily marshalled and unmarshalled. Other basic
types such as booleans and reals can be similarly dealt with. Strings composed entirely of ASCII characters
or UTF8 characters can be marshalled and unmarshalled. This code works as long as the string is composed
only of ASCII or UTF8 characters:

func ascii() {

S

:= "hello"

mdata, _ := asnil.Marshal(s)
var newstr string

)

=asni.Unmarshal(mdata, &newstr)

?mt.Print'F("Be'Fore marshal: %v, After unmarshal%v\n", s, newstr)

7

CHAPTER 4 DATA SERIALIZATION

Update asnl.go to include the preceding function, and call it from main.
ch4$ vi asni.go
... prior code ...

func ascii() {
s := "hello"
mdata, _ := asnil.Marshal(s)
var newstr string
, =asnl.Unmarshal(mdata, 8newstr)
fmt.Printf("Before marshal: %v, After unmarshal: %v\n", s, newstr)

}

func main() {
thirteen()
ascii() // call new function

}
ch4$ go run asnil.go

Before marshal: 13, After unmarshal: 13
Before marshal: hello, After unmarshal: hello

ASN.1 also includes some “useful types” not in this list, such as UTC time. Go supports this UTC time
type. This means that you can pass time values in a way that is not possible for other data values. ASN.1
does not support pointers, but Go has special code to manage pointers to time values. The function Now()
returns time.Time. The special code marshals this, and it can be unmarshalled into a pointer variable to a
time.Time object. Add the following code to asnl.go and trigger from main:

ch4$ vi asni.go
... prior code ...

func myTime() {
t := time.Now()

mdata, _ := asni.Marshal(t)

var newtime = new(time.Time)

_, _ = asni.Unmarshal(mdata, newtime)

fmt.Printf("Before marshal: %v, After unmarshal: %v\n", t, newtime)
}
func main() {

thirteen()

ascii()

myTime() // call new function

}

ch4$ go run asnil.go

78

CHAPTER 4 * DATA SERIALIZATION

Before marshal: 13, After unmarshal: 13

Before marshal: hello, After unmarshal: hello

Before marshal: 2022-01-03 21:02:19.134959 -0500 EST m=+0.000178450, After unmarshal:
2022-01-03 21:02:19 -0500 EST

In general, value types are preferred over pointers. One reason to use pointers (i.e., *time.Time or
new(time.Time)) is serialization may not ignore zero values when using tags (like the json package).

Here, we show a time value restored to time pointer; Go looks after this special case. Additionally, we
see a string with a Unicode sequence. The program asnlbasic.go illustrates these:

ch4$ vi asnibasic.go

/* ASN.1 Basic
*/

package main

import (
"encoding/asn1"
"fmt"
"time"

)

func main() {
// time pointer to time value
t := time.Now()
fmt.Println("Before marshalling: ", t.String())
mdata, _ := asni.Marshal(t)
var newtime = new(time.Time)
asnil.Unmarshal(mdata, newtime)
fmt.Println("After marshal/unmarshal: ", newtime.String())

// vulgar fraction, string to string

s := "hello \uoobc"
fmt.Println("Before marshalling: ", s)
mdata2, _ := asnil.Marshal(s)

var newstr string
asnil.Unmarshal(mdata2, &newstr)
fmt.Println("After marshal/unmarshal: ", newstr)

When it runs as follows:
ch4a$ go run asnibasic.go
Before marshalling: 2022-01-03 21:02:50.268961 -0500 EST m=+0.000121092
After marshal/unmarshal: 2022-01-03 21:02:50 -0500 EST
Before marshalling: hello %

After marshal/unmarshal: hello %

Review go doc time.Time; the first couple of paragraphs mention considerations when using time.
Time and pointers.

79

CHAPTER 4 DATA SERIALIZATION

In general, you will probably want to marshal and unmarshal structures. Apart from the special case
of time, Go will happily deal with structures, but not with pointers to structures. Operations such as new
create pointers, so you have to dereference them before marshalling/unmarshalling them. Go normally
dereferences pointers for you when needed, but not in this case, so you have to dereference them explicitly.
These both work for a type T, create asnlpointers.go:

ch4$ vi asnipointers.go
package main

import (
"encoding/asn1"
"t

)

type T struct {
S string
I int

}

func main() {
// using variables
t1 := T{"ok", 1}
mdatal, _ := asnl.Marshal(t1)
var newll T
asni.Unmarshal(mdatal, &newT1)
fmt.Printf("Before marshal: %v, after unmarshal: %v\n", t1, newT1)

// using pointers

var t2 = new(T)

t2.5 = "still ok"

t2.I = 2

mdata2, _ := asnil.Marshal(*t2)

var newT2 = new(T)

asnl.Unmarshal(mdata2, newT2)

fmt.Printf("Before marshal: %v, after unmarshal: %v\n", t2, newT2)

}

ch4$ go run asnipointers.go

Before marshal: {ok 1}, after unmarshal: {ok 1}
Before marshal: &{still ok 2}, after unmarshal: &{still ok 2}

Any suitable mix of pointers and variables will work as well.

The fields of a structure must all be exportable, that is, field names must begin with an uppercase letter.
Go uses the reflect package to marshal/unmarshal structures, so it must be able to examine all fields. This
type cannot be marshalled:

type T struct {

Field1l int
field2 int // not exportable

80

CHAPTER 4 * DATA SERIALIZATION

Both Marshal and Unmarshal produce related errors for the prior condition. We next create an example
showing this condition; first, create driver.go.

ch4$ vi driver.go
/* driver.go

*/
package main

import (
"encoding/asn1"
"fmt"
"badtype"

)

func main() {
// using variables
t1 := p.T{F:1}
mdatal, err := asni.Marshal(t1)
fmt.Println(err)
var newl1 p.T
_, err = asni.Unmarshal(mdatai, 8newT1)
fmt.Println(err)

Next, we create our malformed struct in a package called badtype; create the badtype directory and the
file mytype.go.

ch4a$ mkdir badtype
ch4$ vi ./badtype/mytype.go

/* ./badtype/mytype.go

*/

package p

type T struct {
f int
F int

}
ch4$ cd badtype
badtype$ go mod init badtype
badtype$ cd ..
If you run the preceding code as follows, you will see the related errors:
ch4$ go mod init example.com

cha$ go mod edit -replace badtype=$(pwd)/badtype
ch4$ go mod tidy

81

CHAPTER 4 DATA SERIALIZATION

ch4$ go run driver.go

asnl: structure error: struct contains unexported fields
asnl: syntax error: sequence truncated

While we are using the command line, most IDEs will handle dependencies (e.g., replace) for you.

Next, we show some (in)flexibility of ASN coding. ASN.1 only deals with the data’s types. It does not
consider the data’s names (i.e., the structure field names). So the following type T1 can be marshalled/
unmarshalled into type T2 as the corresponding fields are the same types.

Not only must the types of each field match, but the number must match as well. Here, we demo both
types of errors:

* asnl.SyntaxError - missing fields
*asnl.StructuralError - incorrect type

Place the following code in asn1fields.go; notice the structs and how they differ.
ch4$ vi asnifields.go

package main

import (
"encoding/asn1"
"fmt"
"log"

)

type MyType struct {
F1 rune
F2 int

}

type YourType struct {
F3 rune

}

type TheirType struct {
F4 byte

}

func main() {
// this first example works
t1 = MyType{'B", 1}
mdatal, _ := asnl.Marshal(t1)

t2 := new(YourType)

_, err := asni.Unmarshal(mdatai, t2)

fmt.Printf("Before marshal: %v, after unmarshal: %v\n", t1, t2)
checkError(err)

// syntax error (fails to fill all fields)
y := YourType{' A"}

82

CHAPTER 4

mdata2, _ := asni.Marshal(y)

z := new(MyType)

_, err = asnl.Unmarshal(mdata2, z)

fmt.Printf("Before marshal: %v, after unmarshal: %v\n", y, z)
checkError(err)

// structural error (incorrect Go type byte != rune)
t3 := new(TheirType)
_, err = asnl.Unmarshal(mdatal, t3)

fmt.Printf("Before marshal: %v, after unmarshal: %v\n", t1, t3)
checkError(err)

}

func checkError(err error) {
if err 1= nil {
log.Println(err.Error()) // prevent early termination
}

As we run, take note of the outcome and associated errors.

ch4$ go run asnifields.go

Before marshal: {12525 1}, after unmarshal: &{12525}

Before marshal: {12525}, after unmarshal: &{12525 o0}

2022/03/29 21:33:20 asnl: syntax error: sequence truncated

Before marshal: {12525 1}, after unmarshal: &{0}

2022/03/29 21:33:20 asni: structure error: unknown Go type: uint8
Review the related error documentation to confirm.

ch4$ go doc asni.SyntaxError

package asni // import "encoding/asni"

type SyntaxError struct {
Msg string
}

A SyntaxError suggests that the ASN.1 data is invalid.
func (e SyntaxError) Error() string
ch4$ go doc asni.StructuralError
package asni // import "encoding/asni"

type StructuralError struct {
Msg string
}

A StructuralError suggests that the ASN.1 data is valid, but the Go type
which is receiving it doesn't match.

func (e StructuralError) Error() string

DATA SERIALIZATION

83

CHAPTER 4 DATA SERIALIZATION

ASN.1 illustrates many of the choices that can be made by those implementing a serialization method.
Pointers could have been given special treatment by using more code, such as the enforcement of name
matches. The order and number of strings will depend on the details of the serialization specification,
the flexibility it allows, and the coding effort needed to exploit that flexibility. It is worth noting that other
serialization formats will make different choices, and implementations in different languages will also
enforce different rules.

ASN.1 Daytime Client and Server

Now (finally) let’s turn to using ASN.1 to transport data across the network.
We can write a TCP server that delivers the current time as an ASN.1 Time type using the techniques of
the last chapter.

ch4$ vi asndaytimeserver.go

/* ASN1 DaytimeServer
*/
package main

import (
"encoding/asn1"

)

func main() {

service := ":1200"
tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)
listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)
for {

conn, err := listener.Accept()

if err != nil {

continue
}

daytime := time.Now()

// ignore returned errors

mdata, _ := asni.Marshal(daytime)
conn.Write(mdata)

conn.Close() // we're finished

}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error: %s", err.Error())
}

84

CHAPTER 4 * DATA SERIALIZATION

This can be compiled to an executable such as ASN1DaytimeServer and run with no arguments. It will
wait for connections and then send the time as an ASN.1 string to the client.
Store our client in asndaytimeclient.go:

ch4$ vi asndaytimeclient.go

/* ASN.1 DaytimeClient
*/
package main

import (

"bytes"
"encoding/asn1"
"fmt"

|Iioll

lllogll

"net"

"os"

"time"

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: %s host:port", os.Args[0])
}

service := os.Args[1]

conn, err := net.Dial("tcp", service)

checkError(err)

result, err := readFully(conn)

checkError(err)

var newtime time.Time

_, errl := asnil.Unmarshal(result, &newtime)
checkError(err1)

fmt.Println("After marshal/unmarshal: ", newtime.String())

}

func readFully(conn net.Conn) ([]byte, error) {
defer conn.Close()
result := bytes.NewBuffer(nil)
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
result.Write(buf[0:n])
if err != nil {
if err == io.EOF {
break
}
return nil, err
}
}

return result.Bytes(), nil

85

CHAPTER 4 DATA SERIALIZATION

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error: %s", err.Error())
}

In one terminal, run the server.
ch4$ go run asndaytimeserver.go
In a second terminal, run the client.
ch4$ go run asndaytimeclient.go localhost:1200
After marshal/unmarshal: 2022-01-03 21:11:32 -0500 EST

This connects to the service given in a form such as localhost:1200, reads the TCP packet, and decodes
the ASN.1 content back into a string, which it prints.

Note that neither of these two - the client or the server - is compatible with the text-based clients and
servers of the last chapter. This client and server are exchanging ASN.1 encoded data values, not textual strings.

JSON

JSON? stands for JavaScript Object Notation. It was designed to be a lightweight means of passing data
between JavaScript systems (i.e., browser/web server). It uses a text-based format and is sufficiently general
that it has become used as a general-purpose serialization method for many programming languages.

JSON serializes objects, arrays, and basic values. The basic values include string, number, boolean
values, and the null value. Arrays are a comma-separated list of values that can represent arrays, vectors,
lists, or sequences of various programming languages. They are delimited by square brackets [...].
Objects are represented by a list of “field: value” pairs enclosed in curly braces { ... }.

For example, the table of employees given earlier could be written as an array of employee objects:

{"Name": "fred", "Occupation": "programmer"},
{"Name": "liping", "Occupation": "analyst"},
{"Name": "sureerat", "Occupation": "manager"}

]

There is no special support for complex data types such as dates, no distinction between number
types, no recursive types, etc. JSON is a very simple format but nevertheless can be quite useful. Its text-
based format makes it easy to use and debug, even though it has the overheads of string handling. Go’s
implementation is based on https://www.rfc-editor.org/rfc/rfc7159.html.

From the Go encoding/json package documentation, marshalling uses the following type-dependent
default encodings:

e Boolean values encode as JSON Booleans.

e Floating point, integer, and Number values encode as JSON numbers.

3“Introducing JSON” (https://www.json.org/json-en.html) and RFC 7159 (https://www.rfc-
editor.org/rfc/rfc7159.html)

86

https://www.rfc-editor.org/rfc/rfc7159.html
http://www.json.org/json-en.html
http://www.rfc-editor.org/rfc/rfc7159.html
http://www.rfc-editor.org/rfc/rfc7159.html

CHAPTER 4 * DATA SERIALIZATION

e Stringvalues encode as JSON strings coerced to valid UTF-8, where each invalid
UTF-8 sequence is replaced by the encoding of the Unicode replacement character
U+FFED (potentially rendered as 0).

e Disable HTML tag encoding via SetEscapeHTML(false).

e Array and slice values encode as JSON arrays, except that []byte encodes as a
base64-encoded string.

e Structvalues encode as JSON objects. Each struct field becomes a member of
the object. By default, the object’s key name is the struct field name converted to
lowercase.

e Ifthe struct field has a tag, that tag will be used as the name instead.

e Map values encode as JSON objects. The map’s key type must be string; the object
keys are used directly as map keys.

e Pointer values encode as the value pointed to. (Note: This allows trees but not
graphs!). A nil pointer encodes as the null JSON object.

e Interface values encode as the value contained in the interface. A nil interface value
encodes as the null JSON object.

e Channel, complex, and function values cannot be encoded in JSON. Attempting to
encode such a value causes Marshal to return json.UnsupportedTypeError.

e JSON cannot represent cyclic data structures, and Marshal does not handle them.
Passing cyclic structures to Marshal will result in an infinite recursion.

A program to store JSON serialized data into the file person. json is savejson.go:
ch4$ vi savejson.go
/* SaveJSON

*/
package main

import (
"encoding/json"
"log"
IIOSII

)

type Person struct {
Name Name
Email []Email

}

type Name struct {
Family string
Personal string

}

type Email struct {
Kind string

87

CHAPTER 4 DATA SERIALIZATION

Address string

}

func main() {
person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{
Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},
b
}
saveJSON("person.json", person)

}

func savelSON(fileName string, key interface{}) {
data, err := json.Marshal(key)
checkError(err)
err = os.WriteFile(fileName, data, 0600)
checkError(err)

}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

After running the preceding program, we can view the serialized results.
ch4$ go run savejson.go

ch4a$ cat person.json

{"Name" : {"Family": "Newmarch","Personal”:"Jan"},"Email":[{"Kind":"home","Address" :"jan@
newmarch.name"},{"Kind": "work", "Address":"j.newmarch@boxhill.edu.au"}]}

Here, we used the “cat” utility to view.
To load it back into memory, use loadjson.go:

ch4$ vi loadjson.go
/* LoadJSON

*/
package main

import (
"encoding/json"
ll_Fmtll
n 10g n
"ogh

)

88

CHAPTER 4 * DATA SERIALIZATION

type Person struct {
Name Name
Email []Email

type Name struct {
Family string
Personal string

type Email struct {
Kind string
Address string

func main() {
var person Person
loadJSON("person.json", &person)
fmt.Printf("%v\n", person)

}

func loadJSON(fileName string, key interface{}) {

data, err := os.ReadFile(fileName)
checkError(err)

err = json.Unmarshal(data, key)
checkError(err)

}
func checkError(err error) {

if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

Running our loader, the serialized form is
ch4a$ go run loadjson.go
{{Newmarch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}

The output is the rendering of a Go struct, not pure JSON. The json package provides a related function
to pretty print. If you wish to pretty print, copy savejson.go to prettyjson.go and modify saveJSON as follows:

ch4$ vi prettyjson.go

func main() {
person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{

89

CHAPTER 4 DATA SERIALIZATION

Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},

}
}
saveJSON("pretty person.json", person)
}
func saveJSON(fileName string, key interface{}) {
data, err := json.MarshalIndent(key, " ", " ")
checkError(err)
err = os.WriteFile(fileName, data, 0600)
checkError(err)

If we run the preceding code, our output is much prettier.
ch4$ go run prettyjson.go

ch4$ cat pretty person.json

{
"Name": {
"Family": "Newmarch",
"Personal”: "Jan"
1
"Email": [
{
"Kind": "home",
"Address": "jan@newmarch.name"
1
{
"Kind": "work",
"Address": "j.newmarch@boxhill.edu.au"
}
]
}
If you update loadjson.go to read this file (pretty_json.json), you will see it is still valid JSON.
A Client and A Server

We now send JSON for a round trip. A client to send a person's data and read it back ten times is
jsonechoclient.go:

ch4$ vi jsonechoclient.go
/* JSON EchoClient
*/

package main

import (
n bytes n

90

CHAPTER 4 * DATA SERIALIZATION

"encoding/json"
"fmt"

"io"

"log"

"net"

0s

)

type Person struct {
Name Name
Email []Email

}

type Name struct {
Family string
Personal string

}

type Email struct {
Kind string
Address string

}

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "host:port")
}

person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{
Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},

1
}
service := os.Args[1]
conn, err := net.Dial("tcp", service)
checkError(err)
defer conn.Close()
for n := 0; n < 10; n++ {
data, _ := json.Marshal(person)
conn.Write(data)

var newPerson Person

buf, _ := readFully(conn)

err = json.Unmarshal(buf, &newPerson)
fmt.Println(newPerson)

}

func readFully(conn net.Conn) ([]byte, error) {
result := bytes.NewBuffer(nil)
var buf [512]byte

for {
91

CHAPTER 4 DATA SERIALIZATION

n, err := conn.Read(buf[0:])
result.Write(buf[0:n])

if err 1= nil {
if err == io.EOF {

break
}
return nil, err
}
if n < 512 {
break
}

}

return result.Bytes(), nil

}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

The corresponding server is jsonechoserver.go:

ch4$ vi jsonechoserver.go
/* JSON EchoServer

*/

package main

import (
"bytes"
"encoding/json"
"fmt"
"io"
"net"
lllogll

)

type Person struct {
Name Name
Email []Email

}

type Name struct {
Family string
Personal string

}

type Email struct {
Kind string
Address string

92

func main() {

}

}

service := "0.0.0.0:1200"

tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

for {
conn, err := listener.Accept()
if err 1= nil {
continue
}
for n := 0; n < 10; n++ {
var person Person
buf, _ := readFully(conn)
err = json.Unmarshal(buf, &person)
fmt.Println(person)
data, _ := json.Marshal(person)
conn.Write(data)
}
conn.Close() // we're finished
}

func readFully(conn net.Conn) ([]byte, error) {

result := bytes.NewBuffer(nil)
var buf [512]byte

for {
n, err := conn.Read(buf[0:])
result.Write(buf[o:n])
if err 1= nil {
if err == io.EOF {
break
}
return nil, err
}
if n < 512 {
break
}
}

return result.Bytes(), nil

func checkError(err error) {

if err != nil {
log.Fatalln("Fatal error ", err.Error())
}

CHAPTER 4

DATA SERIALIZATION

93

CHAPTER 4 DATA SERIALIZATION

In one terminal, we run the server:

ch4$ go run jsonechoserver.go
<waits for connections>

In a second terminal, we run the client:

ch4$ go run jsonechoclient.go localhost:1200

{{Newmaxrch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}
... (8 more duplicated lines) ...

{{Newmarch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}

Here is what is happening:
e Onthe server, the inner loop creates a new Person, waiting for a serialized instance.
e Onthe client, a single instance of Person is created:
e Enter aloop that does the following:
e Serializes and sends Person to server
e Creates a new Person and waits for server
e Backon server:
e The data is consumed and deserialized, populating a new Person instance.
e Printed.
e The Person is again serialized and sent back.

This process repeats ten times until the client loop finishes, while the server remains waiting with outer loop.
There is more to consider when parsing JSON. Go even provides additional APIs including one to
tokenize a JSON stream. We cover JSON in more detail in later sections.

The Gob Package

Gob is a serialization technique specific to Go. It is designed to encode Go data types specifically and does
not at present have substantial support for or by any other languages. It supports all Go data types except for
channels, functions, and interfaces. It supports integers of all types and sizes, strings and Booleans, structs,
arrays, and slices. At present, it has some problems with circular structures such as rings, but that will
improve over time. The purpose was to allow pure Go client and servers to work together without the need of
a third-party package.

Gob encodes type information into its serialized forms. This is far more extensive than the type
information in, say, an X.509 serialization but far more efficient than the type information contained in an
XML document. Type information is only included once for each piece of data but includes, for example, the
names of struct fields.

This inclusion of type information makes Gob marshalling and unmarshalling fairly robust to changes
or differences between the marshaller and unmarshaller. For example, this struct

struct T {

a int
b int

94

CHAPTER 4 * DATA SERIALIZATION

Can be marshalled and then unmarshalled into a different struct, where the order of fields has changed:

struct T {
b int
a int

It can also cope with missing fields (the values are ignored) or extra fields (the fields are left
unchanged). It can cope with pointer types so that the previous struct could be unmarshalled into this one:

struct T {
*a int
*kph int

To some extent, it can cope with type coercions so that an int field can be broadened/widened into an
int64, but not incompatible types such as int to uint.

To use Gob to marshal a data value, you first need to create an Encoder. This takes an io.Writer as a
parameter, and marshalling will be done to this writable stream. The encoder has a method called Encode,
which marshals the value to the stream. This method can be called multiple times on multiple pieces of data.
Type information for each data type is only written once, though.

You use a Decoder to unmarshal the serialized data stream. This takes an io.Reader, and each read
returns an unmarshalled data value.

A program to store Gob serialized data into the file person.gob is savegob.go:

ch4$ vi savegob.go

/* SaveGob
*/

package main

import (
"encoding/gob"
“OS"
"log"

)

type Person struct {
Name Name

Email []Email
}

type Name struct {
Family string
Personal string

}

type Email struct {
Kind string
Address string

95

CHAPTER 4 DATA SERIALIZATION

func main() {
person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{
Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},
b
}

saveGob("person.gob", person)

}

func saveGob(fileName string, key interface{}) {
outFile, err := os.Create(fileName)
checkError(err)
encoder := gob.NewEncoder (outFile)
err = encoder.Encode(key)
checkError(err)
outFile.Close()

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

By running our savegob.go code, we see a serialized version of our Person stored in person.gob
on disk.

ch4$ go run savegob.go
ch4$ cat -t person.gob

) ?2M-~AACAANANFPerson A?M-~BA@"A*B*A“DName A?M- D@ A*EEmail A?M-"H @ @ @* ?M-
~CMCMAMA“DName”A?M-~D"@"A"B"A"FFamily~A*L"@"A"HPersonal*A*L"@"@"@" [?M-~AGABAAMANL[Jmain.
Email*A?M-AHA@MAZM-AFA@ @(?M-~EAC AMANEEMA11 AZM-AFA@MAMBAANDKiNd AN L @ ANGAddTeSSPANL @M@
~@R?M-"B*A"A"HNewmarch"A*CJan"@"A"B*A"Dhome"A"Qjan@newmarch.name"@"A"Dwork"A"Yj.newmarch@
boxhill.edu.au”@"@%

In the aforementioned, we used the “cat” command-line tool to show our Gob serialized output. Better
tools exist, including “xxd” to “dump” and review, but are lesser known.

To load it back into memory, use loadgob.go:
ch4a$ vi loadgob.go
/* LoadGob

*/
package main

96

CHAPTER 4 * DATA SERIALIZATION

import (
"encoding/gob"
"fmt"
"log"
"osh

)

type Person struct {
Name Name
Email []Email

type Name struct {
Family string
Personal string

type Email struct {
Kind string
Address string

func main() {
var person Person
loadGob("person.gob", &person)
fmt.Println(person)

}

func loadGob(fileName string, key interface{}) {
inFile, err := os.Open(fileName)
checkError(err)
decoder := gob.NewDecoder(inFile)
err = decoder.Decode(key)
checkError(err)
inFile.Close()

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())
Running loadgob.go shows the deserialized Person from person.gob.

cha$ go run loadgob.go

{{Newmaxrch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}

97

CHAPTER 4 DATA SERIALIZATION

A Client and A Server

Next, we place our Gob serialization on the network. A client to send a person’s data and read it back ten
times is gobechoclient.go:

ch4$ vi gobechoclient.go
/* Gob EchoClient

*/
package main

import (
"encoding/gob"
"log"
"net"
"os"

)

type Person struct {
Name Name
Email []Email

}

type Name struct {
Family string
Personal string

}

type Email struct {
Kind string
Address string

}

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "host:port")
}

person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{
Email{Kind: "home", Address: "jan@newmarch.name"},
Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"},
b
}
service := os.Args[1]
conn, err := net.Dial("tcp", service)
checkError(err)
encoder := gob.NewEncoder(conn)
decoder := gob.NewDecoder(conn)
for n := 0; n < 10; n++ {
encoder.Encode(person)

98

var newPerson Person
decoder.Decode(&newPerson)

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

The corresponding server is gobechoserver.go:
ch4$ vi gobechoserver.go
/* Gob EchoServer

*/
package main

import (
"encoding/gob"
"fmt"
lllogll
"net"

)

type Person struct {
Name Name

Email []Email
}

type Name struct {
Family string
Personal string

}

type Email struct {
Kind string
Address string

}

func main() {
service := "0.0.0.0:1200"
tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)
listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)
for {

conn, err := listener.Accept()
if err 1= nil {

continue
}

CHAPTER 4

DATA SERIALIZATION

99

CHAPTER 4 DATA SERIALIZATION

encoder := gob.NewEncoder(conn)
decoder := gob.NewDecoder(conn)
for n := 0; n < 10; n++ {
var person Person
decoder.Decode(8person)
fmt.Println(person)
encoder . Encode(person)

}

conn.Close() // we're finished

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

Similar to our JSON example, we serialize data back and forth, starting from the client to the server.
Launch the server in one terminal.

cha$ go run gobechoserver.go
<waits for client connection>
Launch the client in the second terminal.
ch4$ go run gobechoclient.go localhost:1200
{{Newmaxrch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}
... (8 more duplicate lines) ...
{{Newmarch Jan} [{home jan@newmarch.name} {work j.newmarch@boxhill.edu.au}]}
Like the json package, the Gob package provides an interface (i.e., GobEncoder) allowing you to
customize the Gob serialization process.
Many serialization libraries exist (e.g., json package). Why have gob? In Rob Pike's blog post, "Gobs of

data",* the gob package presented an opportunity to have a Go specific library, one that in theory has less
complications and more optimizations for Go-only use cases compared to other serialization libraries.

Encoding Binary Data As Strings

Once upon a time, transmitting 8-bit data was problematic. It was often transmitted over noisy serial lines and
could easily become corrupted. Seven-bit data, on the other hand, could be transmitted more reliably because
the 8th bit could be used as check digit. For example, in an “even parity” scheme, the check digit would be set
to one or zero to make an even number of 1s in a byte. This allows detection of errors of a single bit in each byte.

*Gobs of data - https://go.dev/blog/gob

100

https://go.dev/blog/gob

CHAPTER 4 * DATA SERIALIZATION

ASCIlI is a 7-bit character set. A number of schemes have been developed that are more sophisticated
than simple parity checking but which involve translating 8-bit binary data into a 7-bit ASCII format.
Essentially, the 8-bit data is stretched out in some way over the 7-bit bytes.

Binary data transmitted in HTTP responses and requests is often translated into an ASCII form. This
makes it easy to inspect the HTTP messages with a simple text reader without worrying about what strange
8-bit bytes might do to your display!

One common format is Base64 (go doc base64). Go has support for many binary-to-text formats,
including Base64, via the encoding/base64 package. This package is based on the RFC “The Basel6, Base32,
and Base64 Data Encodings.”

There are two principal functions to use for Base64 encoding and decoding:

ch4$ go doc encoding/base64 NewEncoder
package base64 // import "encoding/base64"

func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser
NewEncoder returns a new base64 stream encoder. Data written to the returned
writer will be encoded using enc and then written to w. Base64 encodings
operate in 4-byte blocks; when finished writing, the caller must Close the
returned encoder to flush any partially written blocks.

ch4$ go doc encoding/base64 NewDecoder
package base64 // import "encoding/base64"

func NewDecoder(enc *Encoding, r io.Reader) io.Reader
NewDecoder constructs a new base64 stream decoder.

A simple program just to encode and decode a set of eight binary digits is base64.go:
ch4$ vi base64.go

/*
Base64
*/
package main

import (
"encoding/base64"
n _Fmt n

)

func main() {
eightBitData := []byte{1, 2, 3, 4, 5, 6, 7, 8}
enc := base64.StdEncoding.EncodeToString(eightBitData)
dec, _ := base64.StdEncoding.DecodeString(enc)
fmt.Println("Original data ", eightBitData)
fmt.Println("Encoded string ", enc)

*The Basel6, Base32, and Base64 Data Encodings - https://datatracker.ietf.org/doc/
html/rfc4648

101

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

CHAPTER 4 DATA SERIALIZATION

fmt.Println("Decoded data ", dec)
}

cha$ go run base64.go

Original data [1 23456 7 8]
Encoded string AQIDBAUGBwg=
Decoded data [1 23456 7 8]

The = character is used as an optional padding. Base64 encoding is a gold standard in data encoding.
Variants of Base64 include Base58 (used by Bitcoin). Base64 encoding/decoding is used by Go’s built-in http
networking code; see “GOROOT/src/net/http/client.go” for an example.

The preceding example shows a typical usage of the base64 interface. The next example shows using the
aforementioned builders NewDecoder and NewEncoder. Things to consider when using these functions (for
any encoding/decoding) include how much memory is used and which interface your code expects, like an
io.Reader.

Save the following as newbase64coders.go.

ch4$ vi newbase64coders.go

package main

import (
"bytes"
"encoding/base64"
"fmt"
"io"

)

var (

enc *baseb4.Encoding = base64.StdEncoding.WithPadding('|")
input []byte [Ibyte("wax\x02ab")
W bytes.Buffer

)

func restoreViaDecoder() {
var buf *bytes.Buffer = bytes.NewBuffer(w.Bytes())
var ior io.Reader = base64.NewDecoder(enc, buf)
1 := len(input)

// adjust for unknown padding
if 1>38% 1% 1=0 {

1=1+2
}
restored := make([]byte, 1)
ior.Read(restored)

fmt.Printf("%11s: %s %v\n", "viaDecoder", string(restored), restored)

}

func restoreViaEncoding() {
var dst []byte = make([]byte, len(input))

102

CHAPTER 4 * DATA SERIALIZATION

enc.Decode(dst, w.Bytes())
fmt.Printf("%11s: %s %v\n", "viaEncoding", string(dst), dst)

}

func main() {
fmt.Printf("%11s: %s %v\n", "input", string(input), input)

var wc io.WriteCloser = base64.NewEncoder(enc, &w)

wc.Write(input)
wc.Close()

fmt.Printf("%11s: %s %v\n", "ecoded", string(w.Bytes()), w.Bytes())

restoreViaDecoder ()
restoreViaEncoding()

The code uses the same encoder but decodes in two styles; again choose which based on your needs.

ch4a$ go run newbase64coders.go
input: wawab [226 136 158 97 226 136 158 2 97 98]
encoded: 4oieYeKInglhYg|| [52 111 105 101 89 101 75 73 110 103 74 104 89 103 124 124]
viaDecoder: wacab [226 136 158 97 226 136 158 2 97 98 0 0]
viaEncoding: ~axab [226 136 158 97 226 136 158 2 97 98]

Protocol Buffers

The serialization methods considered so far fall into various types:

e ASN.1 encodes the different types using binary tags in the data. In that sense, an
ASN.1 encoded data structure is a self-describing structure.

e JSON similarly is a self-describing format using the rules of JavaScript data
structures: lists, dictionaries, etc.

e Gob similarly encodes type information into its encoded form. This is far more
detailed than the JSON format.

A separate class of serialization techniques rely on an external specification of the data type to be
encoded. There are several major ones, such as the encoding used by ONC RPC.

ONC RPC is an old encoding, targeted toward the C language. A recent one is from Google, known as
protocol buffers. This is not supported in the Go Standard Libraries but is supported by the Google Protocol
Buffers developer group (https://developers.google.com/protocol-buffers/) and is apparently very
popular within Google. For that reason, we include a section on protocol buffers, although in the rest of the
book, we typically deal with the Go Standard Libraries.

Protocol buffers are a binary encoding of data intended to support the data types of a large variety
of languages. They rely on an external specification of a data structure, which is used to encode data (in a
source language) and also to decode the encoded data back into a target language. (Note: Protocol buffers

103

https://developers.google.com/protocol-buffers/

CHAPTER 4 DATA SERIALIZATION

transitioned to version 3 in July 2016. It is not compatible with version 2. Version 2 will be supported for a
long time but will eventually be obsoleted. See Protocol Buffers v3.0.0 at (https://github.com/google/
protobuf/releases/tag/v3.0.0).

The data structure to be serialized is known as a message. The data types supported in each
message include

e Numbers (integers or floats)

e Booleans

e Strings (in UTF-8)

e Raw bytes

e Maps

e Other messages, allowing complex data structures to be built

The fields of a message are all optional (this is a change from proto2 where fields were required or
optional). A field can stand for a list or array by the keyword repeated or a map using the keyword map.
Each field has a type, followed by a name, followed by a tag index value. The full language guide is called the
“Protocol Buffers Language Guide” (see https://developers.google.com/protocol-buffers/docs/proto).
Messages are defined independent of the possible target language. A version of the Person type in the
syntax of Protocol Buffers version 3 is personv3.proto. Note that the file includes specific tags (1, 2) on
each type.

ch4$ vi personv3.proto

syntax = "proto3";

option go _package = "/protos";
package person;

message Person {
message Name {
string family

= 1;
string personal =

25
}
message Email {
string kind = 1;
string address = 2;
}
Name name = 1;
repeated Email email = 2;

104

https://github.com/google/protobuf/releases/tag/v3.0.0
https://github.com/google/protobuf/releases/tag/v3.0.0
https://developers.google.com/protocol-buffers/docs/proto

CHAPTER 4 * DATA SERIALIZATION

Installing and Compiling Protocol Buffers

Protocol buffers are compiled using a program called protoc. This is unlikely to be installed on your system.
Install the latest version from the Protocol Buffers v3 page. For 64-bit Linux, for example, download
protoc-3.19.4-linux-x86_64.zip (or later) from GitHub and unzip it to a suitable place (it includes the binary
bin/protoc, which should be placed somewhere in your PATH). You can find the compiler here: https://
github.com/protocolbuffers/protobuf/releases/latest.
After, install the “protoc” binary. You also need the “back end” to generate Go files. To do this, fetch it
from GitHub:

ch4$ go install google.golang.org/protobuf/cmd/protoc-gen-go@latest

This will install protoc-gen-go into $§GOPATH/bin, so make sure your path is set up to use it. Each
language has a specific "back end" that works with protoc. Other tools can ease the installation like a
package manager.

You are nearly ready to compile a .proto file. The previous example of personv3.proto declares the
package person. In your GOPATH, you should have a directory called src. Create a subdirectory called
src/person.

Then compile the personv3.proto as follows:

ch4$ mkdir myapp
ch4$ protoc --go_out=./myapp ./personv3.proto

This should create the ./myapp/protos/personv3.pb.go file.

The Generated personv3.pb.go File

The compiled file will declare a number of types and methods on these types. The types are as follows:

type Person struct {

Name *Person_Name “protobuf:"bytes,1,opt,name=name,proto3"
json:"name,omitempty"”

Email []*Person_Email “protobuf:"bytes,2,rep,name=email,proto3”
json:"email,omitempty"”

type Person_Name struct {

Family string “protobuf:"bytes,1,opt,name=family,proto3" json:"family,omitempty""
Personal string “protobuf:"bytes,2,opt,name=personal,proto3”
json:"personal,omitempty"”

type Person_Email struct {

105

https://github.com/protocolbuffers/protobuf/releases/latest
https://github.com/protocolbuffers/protobuf/releases/latest

CHAPTER 4 DATA SERIALIZATION

Kind string “protobuf:"bytes,1,opt,name=kind,proto3” json:"kind,omitempty
Address string “protobuf:"bytes,2,opt,name=address,proto3” json:"address,omitempty

They are in the package called person. (Note: Simple types such as strings are encoded directly. In
Protocol Buffers v2, a pointer was used. For compound types, a pointer is required, as in v2.)

Using the Generated Code

There is essentially no difference between the coding used in the JSON example and this one. A simple
program just to marshal and unmarshal a Person follows. We create an app called protocolbuffer.go. This
app will be in a module, which in turn houses the generated protobuf package.

ch4$ cd myapp
ch4/myapp$

Create the following file: protocolbuffer.go.
ch4/myapp$ vi protocolbuffer.go

/* ProtocolBuffer
*/

package main

import (
"myapp/protos”

"google.golang.org/protobuf/proto”

p—
)

func main() {
name := protos.Person Name{
Family: "newmarch",
Personal: "jan",

}
emaill := protos.Person Email{
Kind: "home",
Address: "jan@newmarch.name",
}
email2 := protos.Person Email{
Kind: "work",
Address: "j.newmarch@boxhill.edu.au",
}
emails := []*protos.Person Email{8email1, &email2}

p := protos.Person{
Name: &name,
Email: emails,

106

CHAPTER 4 * DATA SERIALIZATION

fmt.Println(p)

data, _ := proto.Marshal(8p)
newP := protos.Person{}
proto.Unmarshal(data, &newP)
fmt.Printf("%v\n", newP)

if p.Name.Personal == newP.Name.Personal 8& p.Email[0].Address == newP.Email[0].
Address {

fmt.Println("same")
}

With the generated code inside of . /myapp/protos/personv3.pb.go and the above main application
protocolbuffer.go, we can retrieve the remaining dependencies using Go modules. In the myapp directory,
create the following go.mod:

ch4/myapp$ go mod init myapp

ch4/myapp$ go mod edit -replace myapp=./protos
ch4/myapp$ go mod tidy

The output should be a Person before and after marshalling and should be the same by running the
following:

ch4/myapp$ go run protocolbuffer.go

{{{} [1[] <nil>} o [] family:"newmarch" personal:"jan" [kind:"home" address:"jan@
newmarch.name" kind:"work" address:"7j.newmarch@boxhill.edu.au"]}

{{{} [] [] oxco0012a000} 0 [] family:"newmarch"” personal:"jan" [kind:"home" address:"jan@
newmarch.name" kind:"work" address:"7j.newmarch@boxhill.edu.au"]}

same

While not pretty to look at, the content is the same. The comparison at the end is a warning that you
can't simply compare two structs. Here, we simply compared a couple of fields. Pretty printing is available,
for example, via protojson: https://pkg.go.dev/google.golang.org/protobuf/encoding/protojson.

We haven't done much with the marshalled object. However, it could be saved to a file or sent across the
network and unmarshalled by any of the supported languages: C++, C#, Java, Python, as well as Go.

Conclusion

This chapter discussed the general properties of serializing data types and showed a number of common
encodings. There are many more, including XML (included in the Go libraries), CBOR (a binary form of
JSON), and YAML (similar to XML), as well as many language-specific ones such as Java Object Serialization
and Python's Pickle. Those not in the Go standard packages may often be found on GitHub.

107

https://pkg.go.dev/google.golang.org/protobuf/encoding/protojson

CHAPTER 5

Application-Level Protocols

A client and a server need to exchange information via messages. TCP and UDP provide the transport
mechanisms to do this. The two processes also need to have a protocol in place so that message exchange
can take place meaningfully. A protocol defines what type of conversation can take place between two
components of a distributed application by specifying messages and data types, encoding formats, and
so on. This chapter looks at some of the issues involved in this process and gives a complete example of a
simple client-server application.

Protocol Design

There are many possibilities and issues to be decided on when designing a protocol. Some of the issues
include the following:

e Isitto be broadcast or point to point? Broadcast can be UDP, local multicast, or the
more experimental MBONE. Point to point could be either TCP or UDP. In general,
at the IP level, often, we consider the following topologies; unicast, multicast,
broadcast, and anycast.

e Isitto be stateful or stateless? Is it reasonable for one side to maintain state about the
other side? It is often simpler for one side to maintain state about the other, but what
happens if something crashes?

e Isthe transport protocol reliable or unreliable? Reliable is often slower, but then you
don’t have to worry so much about lost messages. For example, decisions around
reliability have influenced HTTP’s evolution.

e Arereplies needed? If a reply is needed, how do you handle a lost reply? Timeouts
may be used. RPC functions that return void are an example of this.

e What data format do you want? Several possibilities were discussed in the last
chapter.

e Isyour communication bursty or steady stream? Ethernet and the Internet are best at
bursty traffic. Steady stream is needed for video streams and particularly for voice. If
required, how do you manage Quality of Service (QoS)?

e Are there multiple streams with synchronization required? Does the data need to be
synchronized with anything, such as video and voice?

e Areyou building a stand-alone application or a library to be used by others? The
standards of documentation required might vary.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 109
https://doi.org/10.1007/978-1-4842-8095-9_5

https://doi.org/10.1007/978-1-4842-8095-9_5#DOI

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Why Should You Worry?

Jeff Bezos, the CEO of Amazon, reportedly made the following statements in 2002:

e All teams will henceforth expose their data and functionality through service
interfaces.

e Teams must communicate with each other through these interfaces.

e There will be no other form of interprocess communication allowed: no direct
linking, no direct reads of another team’s data store, no shared-memory model, no
backdoors whatsoever. The only communication allowed is via service interface calls
over the network.

e Itdoesn’t matter what technology they use. HTTP, Corba, Pubsub, custom
protocols - it doesn’t matter. Bezos doesn’t care.

e Allservice interfaces, without exception, must be designed from the ground up to be
externalizable. That is to say, the team must plan and design to be able to expose the
interface to developers on the outside world. No exceptions.

e Anyone who doesn’t do this will be fired.

(Source: Repost of Steve Yegge’s posting at https://gist.github.com/chitchcock/1281611)

What Bezos was doing was orienting one of the world’s most successful Internet companies around
service architectures, and interfaces must be clear enough that all communication must be through those
interfaces alone - without confusion or errors.

Version Control

A protocol used in a client-server system will evolve over time, changing as the system expands. This raises
compatibility problems: A version 2 client will make requests that a version 1 server doesn’t understand,
whereas a version 2 server will send replies that a version 1 client won’t understand.

Each side should ideally be able to understand messages from its own version and all earlier ones. It
should be able to write replies to old-style queries in old-style response formats. See Figure 5-1.

110

https://gist.github.com/chitchcock/1281611

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

client v1 v protocol server vi
client v2 v2 protocol server v2
— —
client v1 v protocol server v2
- -
— —
client v2 vi protocol server vi
- -

Figure 5-1. Compatibility vs. version control

The ability to talk earlier version formats may be lost if the protocol changes too much. In this case, you
need to be able to ensure that no copies of the earlier version still exist, which is generally impossible.

Preferences can change with experience regarding versioning. For example, Protocol buffers dropped
the required syntax from the v3 release to favor simplicity.’

Part of the protocol setup often involves version information. Versioning a protocol (or API) is a
mechanism that lets clients and servers agree on a set of endpoints, requests, and responses (or messages).
Overt versioning maybe clear but often can limit interaction between components as the protocol changes.
Alternatives exist including versionless APIs (sometimes called open APIs), where the goal is to maintain
backward and forward compatibility. Protocols such as HTTP have evolved in their use (and not so much
in their design) in these regards. Recently, GraphQL and similar tools show promise in the versionless
space. One final point, versionless, doesn’t mean there is no versioning at all; it just implies there is more
compatibility over the various releases of a protocol.

The Web

The Web is a good example of a system that has been through multiple different versions. The underlying
HTTP protocol manages version control in an excellent manner, even though it has been through multiple
versions. Most servers/browsers support the HTTP/3 version but also support the earlier versions. Version
HTTP/2 appears to account for just over 60% of web traffic in 2021, HTTP/3 (QUIC) is around 5%, and
HTTP/1.1 accounts for almost all the rest. We can see one type of change over the HTTP versions pertaining
to the GET requests:

1«

why messge type remove ‘required,optional’?” - https://github.com/protocolbuffers/protobuf/
issues/2497

111

https://github.com/protocolbuffers/protobuf/issues/2497
https://github.com/protocolbuffers/protobuf/issues/2497

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Request Version
GET / Pre 1.0
GET / HTTP/1.0 HTTP 1.0
GET / HTTP/1.1 HTTP 1.1

GET / HTTP/1.1 Connection: Upgrade, HTTP 2
HTTP2-Settings Upgrade: h2c

QUIC version 1Alt-Svc: h3=":50123" HTTP 3

HTTP/2 is a binary format and is not compatible with earlier versions. Nevertheless, there is a
negotiation mechanism of sending an HTTP/1.1 request with upgrade fields to HTTP/2. If the client accepts
it, the upgrade can be made. If the client doesn’t understand the upgrade parameters, the connection
continues with HTTP/1.1.

HTTP/3 is also a binary format, one that replaces the TCP transport with UDP. Additional
improvements include secure by default. While not 100% finished, HTTP/3 is in the final stages of becoming
the new HTTP standard.?

While originally designed for HTML, HTTP can carry any content. If we just look at HTML, this has been
through a large number of versions with, at times, little attempt to ensure compatibility between versions:

e HTML5, which has abandoned any version signaling between dot revisions.

e HTML versions 1-4 (all different), with versions in the “browser wars” particularly
problematic.

e Nonstandard tags recognized by different browsers.

e Non-HTML documents often require content handlers that may not be present.
Does your browser have a handler for Flash?

e Inconsistent treatment of document content (e.g., some stylesheet content will crash
some browsers).

e Different support for JavaScript (and different versions of JavaScript).
e Different runtime engines for Java.
e Many pages do not conform to any HTML versions (e.g., with syntax errors).

HTMLS5 (and indeed many earlier versions) is an excellent example of how not to do version control.
The latest revision at the time of writing is Revision 5. “In this version, new features are introduced to
help web application authors, new elements are introduced based on research into prevailing authoring
practices,...” Not only are some new features added, but some older ones (which should not be in
much use anymore) have also been removed and no longer work. There is no means for an HTML5
document to signal which revision it uses. For more on this topic, check out the “HTML - Living Standard”
(https://html.spec.whatwg.org/).

2“Last Call: <draft-ietf-quic-transport-32.txt> (QUIC: A UDP-Based Multiplexed and Secure Transport) to Proposed
Standard” - https://mailarchive.ietf.org/arch/msg/quic/yeileR170Ez898RxjE6D3koWhno/

112

https://html.spec.whatwg.org/
https://mailarchive.ietf.org/arch/msg/quic/ye1LeRl7oEz898RxjE6D3koWhn0/

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Message Format

In the last chapter, we discussed some possibilities for representing data to be sent across the wire. Now we
look one level up, to the messages that may contain such data.

The client and server will exchange messages with different meanings:

e Loginrequest.

e Loginreply.

e Getrecord request.

e Record data reply.

The client will prepare a request, which must be understood by the server.

The server will prepare a reply, which must be understood by the client.

Commonly, the first part of the message will be a message type.

Client to server:

LOGIN <name> <passwd>
GET <subject> grade

Server to client:

LOGIN succeeded
GRADE <subject> <grade>

The message types can be strings or integers. For example, HTTP uses integers such as 404 to mean “not
found” (although these integers are written as strings). The messages from client to server and vice versa are
disjoint. The LOGIN message from the client to the server is a different message than the LOGIN message from
the server to the client, and they will probably play complementary roles in the protocol.

Data Format

There are two main format choices for messages: byte encoded or character encoded.

Byte Format

In the byte format:

The first part of the message is typically a byte to distinguish between message types.

The message handler examines this first byte to distinguish the message type and
then performs a switch to select the appropriate handler for that type.

Further bytes in the message contain message content according to a predefined
format (as discussed in the previous chapter).

113

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

The advantages are compactness and hence speed. The disadvantages are caused by the opaqueness of
the data: it may be harder to spot errors, harder to debug, and require special purpose decoding functions.
There are many examples of byte-encoded formats, including major protocols such as DNS and NFES, up to
recent ones such as Skype. Of course, if your protocol is not publicly specified, then a byte format can also
make it harder for others to reverse-engineer it!

Pseudocode for a byte-format server is as follows:

handleClient(conn) {
while (true) {
byte b = conn.readByte()
switch (b) {
case MSG 1: ..
case MSG 2: ..

Go net package has basic support for managing byte streams. The interface net.Conn includes the
following methods among others:

Read(b []byte) (n int, err error)
Write(b []byte) (n int, err error)

These methods are implemented by net.TCPConn and net.UDPConn.

Character Format

In this mode, everything is sent as characters if possible. For example, an integer 234 would be sent as, say,
the three characters 2, 3, and 4 instead of as the one byte 234. Data that is inherently binary may be Base64
encoded to change it into a 7-bit format and then sent as ASCII characters, as discussed in the previous
chapter.

In character format:

e Amessage is a sequence of one or more lines. The start of the first line of the message
is typically a word that represents the message type.

e String-handling functions may be used to decode the message type and data.
e Therest of the first line and successive lines contain the data.
e Line-oriented functions and line-oriented conventions are used to manage this.
The pseudocode is as follows:
handleClient() {
line = conn.readlLine()
if (line.startsWith(...) {
} else if (line.startsWith(...) {

}

114

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Character formats are easier to set up and easier to debug. For example, you can use telnet to connect
to a server on any port and send client requests to that server. There isn’t a simple tool like telnet to send
server responses to a client, but you can use tools like tcpdump or wireshark to snoop on TCP traffic and see
immediately what clients are sending to, and receiving from, the servers.

There is not the same level of support in Go for managing character streams. There are significant issues
with character sets and character encodings, and we will explore these issues in a later chapter.

If we just pretend everything is ASCI], like it was once upon a time, then character formats are quite
straightforward to deal with. The principal complication at this level is the varying status of “newline” across
different operating systems. UNIX uses the single character \n. Windows and others (more correctly) use
the pair \r\n. On the Internet, the pair \r\n is most common. UNIX systems just need to take care that they
don’t assume \n.

A Simple Example

This example deals with a directory browsing protocol, which is basically a stripped-down version of FTP,
but without even the file transfer part. We only consider listing a directory name, listing the contents of a
directory, and changing the current directory - all on the server side, of course. This is a complete worked
example of creating all components of a client-server application. It is a simple program that includes
messages in both directions, as well as a design of messaging protocol.

A Stand-Alone Application

Look at a simple non-client-server program that allows you to list files in a directory and change and print
the name of the directory on the server. We omit copying files, as that adds to the length of the program
without introducing important concepts. For simplicity, all file names will be assumed to be in 7-bit ASCII. If
we just looked at a stand-alone application first, it would look like Figure 5-2.

File
Ul system
access

Figure 5-2. The stand-alone application

The pseudocode would be as follows:

read line from user
while not eof do
if line == dir
list directory // local function call
else
if line == cd <directory>
change directory // local function call

115

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

else
if line == pwd
print directory // local function call
else
if line == quit
quit
else
complain
read line from user

A nondistributed application would simply link the UI and file access code by local function calls.

The Client-Server Application

In a client-server situation, the client would be at the user end, talking to a server somewhere else. Aspects
of this program belong solely at the presentation end, such as getting the commands from the user. Some are

messages from the client to the server; some are solely at the server end. See Figure 5-3.

Client

client network

A

ul /0

Figure 5-3. The client-server situation

The Client Side

For a simple directory browser, assume that all directories and files are at the server end and we are
transferring file information only from the server to the client. The client side (including presentation

aspects) will become

read line from user
while not eof do
if line == dir
list directory // network call to server
else
if line == cd <directory>
change directory // network call to server
else

116

Y

server
1/0

Server

File
system
access

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

if line == pwd
print directory // network call to server
else
if line == quit
quit
else
complain
read line from user

where the calls 1ist directory, change directory, and print directory now all involve network
calls to the server. The details are not shown yet and will be discussed later.

Alternative Presentation Aspects

A GUI program would allow directory contents to be displayed as lists, for files to be selected and actions
such as change directory to be performed on them. The client would be controlled by actions associated
with various events that take place on graphical objects. The pseudocode might look like this:

change dir button:
if there is a selected file
change directory // remote call to server
if successful
update directory label
list directory // remote call to server
update directory list

The functions called from the different Uls should be the same - changing the presentation should not
change the networking code.

The Server Side

The server side is independent of whatever presentation is used by the client. It is the same for all clients:

while read command from client

if command == dir

send 1list directory // local call on server
else
if command == cd <directory>

change directory // local call on server
else
if command == pwd

send print directory // local call on server
else

117

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Protocol: Informal

Client Request Server Response

dir Send list of files

cd <directory> Change dir
Send an error if failed
Send ok if succeed

pwd Send current directory
quit Quit
Text Protocol

This is a simple protocol. The most complicated data structure that we need to send is an array of strings for
a directory listing. In this case, we don’t need the heavy-duty serialization techniques of the last chapter. In
this case, we can use a simple text format.

But even if we make the protocol simple, we still have to specify it in detail. We choose the following
message format:

e All messages are in 7-bit US-ASCII.
e The messages are case-sensitive.
e Each message consists of a sequence of lines.

e The first word on the first line of each message describes the message type. All other
words are message data.

e Allwords are separated by exactly one space character.
e Eachlineis terminated by CR-LE
Some of the choices made previously are weaker in real-life protocols. For example:

e Message types could be case-insensitive. This just requires mapping message type
strings down to lowercase before decoding.

e Anarbitrary amount of whitespace could be left between words. This just adds a little
more complication, compressing whitespace.

e Continuation characters such as \ can be used to break long lines over several lines.
This starts to make processing more complex.

e Justa \n could be used as line terminator, \1\n can too. This makes recognizing the
end of line a bit harder.

All of these variations exist in real protocols. Cumulatively, they make string processing more complex
than in this case.

118

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Client Request Server Response
send "DIR" Send list of files, one per line, terminated by a blank line
send "CD <directory>" Change dir

Send "ERROR" if failed
Send "0K" if succeeded

send "PWD" Send current working directory

We should also specify the transport:

e All messages are sent over a TCP connection established from the client to the server.

Server Code

The server is ftpserver.go:

$ mkdir chs
$ cd chs
chs$ vi ftpserver.go

/* FTP Server
*/
package main

import (
"log"
"net"
"ogh
"strings"
)
const (
DIR = "DIR"
¢ = "cp"
PWD = "PWD"
)
func main() {
service := "0.0.0.0:1202"
tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)
listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)
for {

conn, err := listener.Accept()
if err 1= nil {

continue
}

go handleClient(conn)

119

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

func handleClient(conn net.Conn) {
defer conn.Close()
var buf [512]byte
for {
n, err := conn.Read(buf[0:])
if err != nil {
conn.Close()
return
}
s := strings.Split(string(buf[o0:n]), " ")
log.Println(s)
// decode request
switch s[o] {
case (D:
chdir(conn, s[1])
case DIR:
dirList(conn)
case PWD:
pwd(conn)
default:
log.Println("Unknown command ", s)
}

}

func chdir(conn net.Conn, s string) {
if os.Chdir(s) == nil {
conn.Write([]byte("0K"))
} else {
conn.Write([]byte("ERROR"))
}

}

func pwd(conn net.Conn) {
s, err := os.Getwd()
if err 1= nil {
conn.Write([]byte(""))
return

conn.Write([]byte(s))
}

func dirList(conn net.Conn) {
// send a blank line on termination
defer conn.Write([]byte("\r\n"))
dir, err := os.Open(".")
if err != nil {
return
}

names, err := dir.Readdirnames(-1)

if err != nil {
return
}

120

CHAPTER 5

for _, nm := range names {
conn.Write([]byte(nm + "\r\n"))
}

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

Client Code

A command-line client is ftpclient.go:
chs$ vi ftpclient.go
/* FTPClient

*/
package main

import (
"bufio"
"bytes"
"fmt"
"log"
"net"
"os"
"strings"
)
// strings used by the user interface
const (
uiDir = "dir"
uiCd = "cd"
uiPwd = "pwd"
uiQuit = "quit"
)
// strings used across the network
const (
DIR = "DIR"
b = "CD"
PWD = "PWD"
)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "host")
}

APPLICATION-LEVEL PROTOCOLS

121

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

host := os.Args[1]
conn, err := net.Dial("tcp", host+":1202")

checkError(err)
reader := bufio.NewReader(os.Stdin)
for {

line, err := reader.ReadString('\n")
// lose trailing whitespace
line = strings.TrimRight(line, " \t\r\n")
if err 1= nil {
break
}

// split into command + arg
strs := strings.SplitN(line, " ", 2)
// decode user request
switch strs[o] {
case uiDir:
dirRequest(conn)
case uiCd:
if len(strs) != 2 {
fmt.Println("cd <dir>")
continue
}
fmt.Println("CD \"", strs[1], "\"")
cdRequest(conn, strs[1])
case uiPwd:
pwdRequest(conn)
case uiQuit:
conn.Close()
os.Exit(0)
default:
fmt.Println("Unknown command")
}

}

func dirRequest(conn net.Conn) {
conn.Write([]byte(DIR + " "))
var buf [512]byte
result := bytes.NewBuffer(nil)
for {
// read till we hit a blank line
n, _ := conn.Read(buf[0:])
result.Write(buf[0:n])
length := result.Len()
contents := result.Bytes()
if string(contents[length-4:]) == "\r\n\r\n" {
fmt.Println(string(contents[o : length-4]))
return

122

func cdRequest(conn net.Conn, dir string) {
conn.Write([]byte(CD + " " + dir))
var response [512]byte

n, _ := conn.Read(response[0:])
s := string(response[0:n])
if s 1= "0K" {

fmt.Println("Failed to change dir")
}
}

func pwdRequest(conn net.Conn) {
conn.Write([]Jbyte(PWD))
var response [512]byte
n, _ := conn.Read(response[0:])
s := string(response[0:n])
fmt.Println("Current dir \"" + s + "\"")

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

An example session using our FTP server and client; in one terminal, run the server:

ch5$ go run ftpserver.go
In another terminal, run the ftp client.

ch5$ go run ftpclient.go localhost
pwd

Current dir “.../chs"

dir

ftpserver.go

ftpclient.go

Try other commands such as “cd ..”

Textproto Package

The textproto package contains functions designed to simplify the management of text protocols similar to

HTTP and SNMP.

These formats have some little-known rules with regard to a single logical line continued over
multiple lines such as the following: “HTTP/1.1 header field values can be folded onto multiple lines if the
continuation line begins with a space or horizontal tab” (HTTP1.1 specification). Formats allowing lines
like these can be read using the textproto.Reader.ReadContinuedLine() function, in addition to simpler

functions like textproto.Reader.ReadLine().

These protocols also signal status values with lines beginning with three-digit codes such as HTTP’s
404. These can be read using textproto.Reader.ReadCodelLine(). They also have key: value lines such as
Content-Type: image/gif.Such lines can be read into a map by textproto.Reader.ReadMIMEHeadex ().

123

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Here is an example where we leverage an external tool called netcat (i.e., nc). This tool is often used
when scripting TCP, UDP, or Unix-domain sockets. In this example, we create a client that sends an HTTP
request message. Listening for the request will be netcat. Once the client executes, you will type the result
into the netcat terminal (simulating a response). In the client, we only expect a response starting with a 404,
else we will error out. Create the following client, textprotoclient.go.

chs$ vi textprotoclient.go

/* textproto
*/

package main

import (
"fmt"
"log"
"net/textproto”
)

func main() {
conn, e := textproto.Dial("unix", "/tmp/fakewebserver")
checkerror(e)
defer conn.Close()
fmt.Println("Sending request to retrieve /mypage")
id, e := conn.Cmd("GET /mypage")
checkerror(e)
conn.StartResponse(id)
defer conn.EndResponse(id)
// fake sending back a 200 via nc or your own server
code, stringResult, err := conn.ReadCodeline(200)
checkerror(err)
fmt.Println(code, "\n", stringResult, "\n", err)

}

func checkerror(err error) {
if err != nil {
log.Fatalln("error:
}

, err)

Here is an example session; in one terminal, run netcat.
ch$ nc -1kU /tmp/fakewebserver

In another terminal, run our client.
chs5$ go run textprotoclient.go

Sending request to retrieve /mypage

124

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Our netcat server will show:
ch5$ nc -1kU /tmp/fakewebserver
GET /mypage

In the netcat server, type the following (“200 This will work”):
ch5$ nc -1kU /tmp/fakewebserver

GET /mypage
200 This will work

Finally, back in our client, we see:

ch5$ go run textprotoclient.go
Sending request to retrieve /mypage
200

This will work

<nil>

The preceding code shows a response starting with 200; if we try another run and return 400 from the
server, we receive an error. Do not confuse this for HTTP; many protocols (e.g., SMTP) use numeric codes.

State Information

Applications often use state information to simplify what is going on. For example:
e Keeping file pointers to a current file location
e Keeping the current mouse position
e Keeping the current customer value

In a distributed system, such state information may be kept in the client, in the server, or in both.

The important point is to whether one process is keeping state information about itself or about the
other process. One process may keep as much state information about itself as it wants, without causing
any problems. If it needs to keep information about the state of the other process, then problems arise. The
process’ actual knowledge of the state of the other may become incorrect. This can be caused by loss of
messages (in UDP), by failure to update, or by software errors.

An example is reading a file. In single process applications, the file-handling code runs as part of the
application. It maintains a table of open files and the location in each of them. Each time a read or write is
done, this file location is updated. In distributed systems, this simple model does not hold. See Figure 5-4.

125

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

client

DCE File System

read n bytes

reading

A

file

Figure 5-4. The DCE file system

n bytes

update
file ptr

File table

name | file ptr
name | file ptr

In the DCE file system shown in Figure 5-4, the file server keeps track of a client’s open files and where
the client’s file pointer is. If a message could get lost (but DCE uses TCP), these could get out of sync. If the
client crashes, the server must eventually time out on the client’s file tables and remove them.

update
file ptr

client

NFS File System

read n bytes from

file at ptr

File table

name | file ptr
name | file ptr

Figure 5-5. The NFS file system

126

file

server

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

In NFS, the server does not maintain this state. The client does. Each file access from the client that
reaches the server must open the file at the appropriate point, as given by the client, in order to perform the
action. See Figure 5-5.

If the server maintains information about the client, it must be able to recover if the client crashes. If
information is not saved, then on each transaction, the client must transfer sufficient information for the
server to function.

If the connection is unreliable, additional handling must be in place to ensure that the two do not get
out of sync. The classic example is of bank account transactions where the messages get lost. A transaction
server may need to be part of the client-server system.

Application State Transition Diagram

A state transition diagram keeps track of the current state of an application and the changes that move it to
new states.

The previous example basically only had one state: file transfer. If we add a login mechanism, that
would add an extra state called login, and the application would need to change states between login and file
transfer, as shown in Figure 5-6.

LOGIN
failed

GET

START

File
Transfer

Login LOGIN >

succeeded

LOGOUT

DIR

Figure 5-6. The state-transition diagram

127

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

This state change can also be expressed as a table:

Current State

Transition

Next State

login

file transfer

login failed
login succeeded
dir

get

logout

quit

login
file transfer
file transfer
file transfer
login

Client-State Transition Diagrams

The client state diagram must follow the application diagram. It has more detail though: it writes and

then reads.
Current State Write Read Next State
login LOGIN name password FAILED Login
0K file transfer
file transfer (D dir 0K file transfer
FAILED file transfer

GET filename

DIR

quit

#lines + contents
FAILED

File names + blank line
blank line (Error)

none

file transfer
file transfer
file transfer
file transfer

Quit

Server-State Transition Diagrams

The server state diagram must also follow the application diagram. It also has more detail: it reads and

then writes.

128

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Current State Read Write Next State
login LOGIN name password FAILED Login
0K file transfer
file transfer (D dir SUCCEEDED file transfer
FAILED file transfer
GET filename #lines + contents file transfer
FAILED file transfer
DIR filenames + blank line file transfer

blank line (failed)

quit none

file transfer

Login

Server Pseudocode

Here is the server pseudocode:

state = login
while true
read line
switch (state)
case login:
get NAME from line
get PASSWORD from line
if NAME and PASSWORD verified
write SUCCEEDED
state = file_transfer
else
write FAILED
state = login
case file transfer:
if line.startsWith CD
get DIR from line
if chdir DIR okay
write SUCCEEDED
state = file_transfer
else
write FAILED
state = file_transfer

We don't give the actual code for this server or client since it is pretty straightforward.

CHAPTER 5 * APPLICATION-LEVEL PROTOCOLS

Conclusion

Building any application requires design decisions before you start writing code. With distributed
applications, you have a wider range of decisions to make compared to stand-alone systems. This chapter
considered some of those aspects and demonstrated what the resultant code might look like. We only
touched on the elements of protocol design. There are many formal and informal models. The IETF (Internet
Engineering Task Force) created a standard format for its protocol specifications in its RFCs (Requests for
Comments), and sooner or later, every network engineer will need to work with RFCs.

130

CHAPTER 6

Managing Character Sets
and Encodings

Once upon a time, there were EBCDIC and ASCII. Actually, it was never that simple and has just become
more complex over time. There is light on the horizon, but some estimates are that it may be 50 years before
we all live in the daylight on this!

Early computers were developed in the English-speaking countries of the United States, the UK, and
Australia. As a result of this, assumptions were made about the language and character sets in use. Basically,
the Latin alphabet was used, plus numerals, punctuation characters, and a few others. These were then
encoded into bytes using ASCII or EBCDIC.

The character-handling mechanisms were based on this: text files and I/O consisted of a sequence
of bytes, with each byte representing a single character. String comparison could be done by matching
corresponding bytes; conversions from upper- to lowercase could be done by mapping individual bytes
and so on.

There are about 6,500 spoken languages in the world (850 of them in Papua New Guinea!). A few
languages use the “English” characters, but most do not. The Romanic languages such as French have
adornments on various characters, so you can write “j’ai arrété” with two differently accented vowels.
Similarly, the Germanic languages have extra characters such as “f3”. Even UK English has characters not in
the standard ASCII set: the pound symbol “£” and recently the euro “€”.

But the world is not restricted to variations on the Latin alphabet. Thailand has its own alphabet, with
words looking like this: “n1 Ing”. There are many other alphabets, and Japan even has two: Hiragana and
Katakana.

There are also the hierographic languages such as Chinese where you can write “ [J&—~, Rl &11E”

It would be nice from a technical viewpoint if the world just used ASCII. However, the trend is in the
opposite direction, with more and more users demanding that software use the language that they are
familiar with. If you build an application that can be run in different countries, then users will demand that
it uses their own language. In a distributed system, different components of the system may be used by users
expecting different languages and characters.

Internationalization (118n) is how you write your applications so that they can handle the variety of
languages and cultures. Localization (110n) is the process of customizing your internationalized application
to a particular cultural group.

i18n and 110n are big topics in themselves. For example, they cover issues such as colors: while white
means “purity” in Western cultures, it means “death” to the Chinese and “joy” to Egyptians. In this chapter,
we just look at issues of character handling.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 131
https://doi.org/10.1007/978-1-4842-8095-9_6

https://doi.org/10.1007/978-1-4842-8095-9_6#DOI

CHAPTER 6 = MANAGING CHARACTER SETS AND ENCODINGS

Definitions

It is important to be careful about exactly what part of a text-handling system you are talking about. Here is a
set of definitions that have proven useful.

Character

A character is a “unit of information that roughly corresponds to a grapheme (written symbol) of a natural
language, such as a letter, numeral, or punctuation mark” (Wikipedia). A character is “the smallest
component of written language that has a semantic value” (Unicode). This includes letters such as “a”
and “A” (or letters in any other language), digits such as “2’, punctuation characters such as %y’ and various
symbols such as the English pound currency symbol “£”".

A character is some sort of abstraction of any actual symbol: the character “a” is to any written “a” as a
Platonic circle is to any actual circle. The concept of character also includes control characters, which do
not correspond to natural language symbols but to other bits of information used to process texts of the
language.

A character does not have any particular appearance, although we use the appearance to help recognize
the character. However, even the appearance may have to be understood in a context: in mathematics, if
you see the symbol it (pi), it is the character for the ratio of circumference to radius of a circle, while if you
are reading Greek text, it is the sixteenth letter of the alphabet: “npoc” is the Greek word for “with” and has
nothing to do with 3.14159.

Character Repertoire/Character Set

A character repertoire is a set of distinct characters, such as the Latin alphabet. No particular ordering is
assumed. In English, although we say that “a” is earlier in the alphabet than “z’, we wouldn'’t say that “a”
is less than “z”. The “phone book" ordering that puts “McPhee” before “MacRea” shows that “alphabetic
ordering” isn’t critical to the characters.

A repertoire specifies the names of the characters and often a sample of how the characters might look.
For example, the letter “a” might look like “a’} “a’, or “a”. But it doesn’t force them to look like that - they
are just samples. The repertoire may make distinctions such as upper- and lowercase so that “a” and “A”
are different. But it may regard them as the same, just with different sample appearances (just like some
programming languages treat upper- and lowercase as different, Go, but some don’t, Basic). On the other
hand, a repertoire might contain different characters with the same sample appearance: the repertoire for a
Greek mathematician would have two different characters with appearance . This is also called a noncoded
character set.

Character Code

A character code is a mapping from characters to integers. The mapping for a character set is also called a
coded character set or code set. The value of each character in this mapping is often called a code point.
ASClIlL s a code set. The code point for “a” is 97, and for “A’ it is 65 (decimal).

The character code is still an abstraction. It isn’t yet what we will see in text files, or in TCP packets.
However, it is getting close, as it supplies the mapping from human-oriented concepts into numerical ones.

132

CHAPTER 6 © MANAGING CHARACTER SETS AND ENCODINGS

Character Encoding

To communicate or store a character, you need to encode it in some way. To transmit a string, you need to
encode all characters in the string. There are many possible encodings for any code set.

For example, 7-bit ASCII code points can be encoded as themselves into 8-bit bytes (an octet). So ASCII
“A” (with code point 65) is encoded as the 8-bit octet 01000001. However, a different encoding would be to
use the top bit for parity checking. For example, with odd parity, ASCII “A” would be the octet 11000001.
Some protocols such as Sun’s XDR use 32-bit word-length encoding. ASCII “A” would be encoded as
00000000 00000000 0000000 01000001.

The character encoding is where we function at the programming level. Our programs deal with
encoded characters. It obviously makes a difference whether we are dealing with 8-bit characters with or
without parity checking, or with 32-bit characters.

The encoding extends to strings of characters. A word-length even parity encoding of “ABC” might be
10000000 (parity bit in high byte) 0100000011 (C) 01000010 (B) 01000001 (A in low byte). The comments
about the importance of an encoding apply equally strongly to strings, where the rules may be different.

Transport Encoding

A character encoding will suffice for handling characters within a single application. However, once you start
sending text between applications, then there is the further issue of how the bytes, shorts, or words are put on
the wire. An encoding can be based on space- and hence bandwidth-saving techniques such as zipping the
text. Or it could be reduced to a 7-bit format to allow a parity checking bit, such as base64.

If we do know the character and transport encoding, then it is a matter of programming to manage
characters and strings. If we don’t know the character or transport encoding, then it is a matter of guesswork
as to what to do with any particular string. There is no convention for files to signal the character encoding.

There is, however, a convention for signaling encoding in text transmitted across the Internet. It is simple:
the header of a text message contains information about the encoding. For example, an HTTP header can
contain lines such as the following:

Content-Type: text/html; charset=IS0-8859-4
Content-Encoding: gzip

This says that the character set is ISO 8859-4 (corresponding to certain countries in Europe) with the
default encoding, but then gziped. The second part - the content encoding - is what we are referring to as
“transfer encoding” (IETF RFC 2130).

But how do you read this information? Isn’t it encoded? Don’t we have a chicken and egg situation?
Well, no. The convention is that such information is given in ASCII (to be precise, US ASCII) so that a
program can read the headers and then adjust its encoding for the rest of the document.

ASCII

ASCII has the repertoire of the English characters plus digits, punctuation, and some control characters. The
code points for ASCII are given by this familiar table:

Oct Dec Hex Char Oct Dec Hex Char
000 O 00 NUL '¥o' 100 64 40 @
001 1 01 SOH 101 65 41 A
002 2 02 STX 102 66 42 B

133

CHAPTER 6

003 3
004 4

005 5

006 6

007 7

010 8

011 9

012 10
013 11
014 12
015 13
016 14
017 15
020 16
021 17
022 18
023 19
024 20
025 21
026 22
027 23
030 24
031 25
032 26
033 27
034 28
035 29
036 30
037 31
040 32
041 33
042 34
043 35
044 36
045 37
046 38
047 39
050 40
051 41
052 42
053 43
054 44
055 45
056 46
057 47
060 48
061 49
062 50
063 51
064 52
065 53

134

MANAGING CHARACTER SETS AND ENCODINGS

03
04
05
06
07
08
09
0A
0B
oC
oD
OF
OF
10
11
12
13
14
15
16
17
18
19
1A
18
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
28
2C
20
2F
2F
30
31
32
33
34
35

ETX

EOT

ENQ

ACK

BEL '\a'
BS '\b'
HT '\t'
LF "\n'
VT "\v'
FF "\f'
CR "\r'
SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

Uil W N R O N

103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

43
44
45
46
47
48
49
4A
4B
4C
4D
4F
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73

75

S s MmN << X =EZE<CHUDLVMWAOX$®O TO=Z2=2ErA"AUWUHIO™TMON

g

S +t0H OTOS SHAWEH SO DO QN O QW

CHAPTER 6 © MANAGING CHARACTER SETS AND ENCODINGS

066 54 36 6 166 118 76 v
067 55 37 7 167 119 77 W
070 56 38 8 170 120 78 X
071 57 39 9 171 121 79 y
072 58 3A : 172 122 7A z
073 59 3B 173 123 7B {
074 60 3C < 174 124 7C |
075 61 3D = 175 125 7D }
076 62 3E > 176 126 7E ~
077 63 3F ? 177 127 7F DEL

(An interesting four-column version is at Robbie’s Garbage, Four Column ASCII at
https://garbagecollected.org/2017/01/31/four-column-ascii/.)

The most common encoding for ASCII uses the code points as 7-bit bytes, so the encoding of “A’, for
example, is 65.

This set is actually US ASCII. Due to European desires for accented characters, some punctuation
characters are omitted to form a minimal set, ISO 646, while there are “national variants” with suitable
European characters. The website (https://jkorpela.fi/chars.html) by Jukka Korpela has more
information for those interested. You don’t need these variants for the work in this book, though.

ISO 88359

Octets are now the standard size for bytes. This allows 128 extra code points for extensions to ASCII. A
number of different code sets to capture the repertoires of various subsets of European languages are the ISO
8859 series. ISO 8859-1 is also known as Latin-1 and covers many languages in western Europe, while others
in this series cover the rest of Europe and even Hebrew, Arabic, and Thai. For example, ISO 8859-5 includes
the Cyrillic characters of countries such as Russia, while ISO 8859-8 includes the Hebrew alphabet.

The standard encoding for these character sets is to use their code point as an 8-bit value. For example,
the character “A” in ISO 8859-1 has the code point 193 and is encoded as 193. All of the ISO 8859 series have
the bottom 128 values identical to ASCII, so the ASCII characters are the same in all of these sets.

The HTML specifications used to recommend the ISO 8859-1 character set. HTML 3.2 was the last one
to do so, and after that, HTML 4.0 recommended Unicode. In 2008, Google made an estimate that of the
pages it sees, about 20% were still in ISO 8859 format while 20% were still in ASCII (see “Unicode nearing
50% of the web” at http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html). See
also http://pinyin.info/news/2015/utf-8-unicode-vs-other-encodings-over-time/ and https://
w3techs.com/technologies/history overview/character_encoding for more background information.

Unicode

Neither ASCII nor ISO 8859 covers the languages based on hieroglyphs. Chinese is estimated to have about
20,000 separate characters, with about 5,000 in common use. These need more than a byte, and typically,
two bytes have been used. There have been many of these two-byte character sets: Big5, EUC-TW, GB2312,
and GBK/GBX for Chinese; JIS X 0208 for Japanese; and so on. These encodings are generally not mutually
compatible.

Unicode is an embracing standard character set intended to cover all major character sets in use. It
includes European, Asian, Indian, and many more. It is now up to version 14.0 and has 144,697 assigned
characters. The number of code points is 1,114,112 (65,536 code points across 17 planes). That is more than
2716. This has implications for character encodings.

135

https://garbagecollected.org/2017/01/31/four-column-ascii/
https://jkorpela.fi/chars.html
http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html
http://pinyin.info/news/2015/utf-8-unicode-vs-other-encodings-over-time/
https://w3techs.com/technologies/history_overview/character_encoding
https://w3techs.com/technologies/history_overview/character_encoding

CHAPTER 6 = MANAGING CHARACTER SETS AND ENCODINGS

The first 256 code points correspond to ISO 8859-1, with US ASCII as the first 128. There is thus a
backward compatibility with these major character sets, as the code points for ISO 8859-1 and ASCII are
exactly the same in Unicode. The same is not true for other character sets: for example, while most of the
Big5 characters are also in Unicode, the code points are not the same. The website http://moztw.org/
docs/big5/table/unicodel.1-obsolete.txt contains one example of a (large) table mapping from Big5 to
Unicode.

To represent Unicode characters in a computer system, an encoding must be used. The encoding UCS
is a two-byte encoding using the code point values of the Unicode characters. However, since there are now
too many characters in Unicode to fit them all into 2 bytes, this encoding is obsolete and no longer used.
Instead, there are the following:

e UTF-32is a 4-byte encoding but is not commonly used, and HTML5 warns explicitly
against using it.

e UTF-16 encodes the most common characters into 2 bytes with a further 2 bytes for
the “overflow,” with ASCII and ISO 8859-1 having the usual values.

e UTF-8 uses between 1 and 4 bytes per character, with ASCII having the usual values
(but not ISO 8859-1).

e Per the Unicode specification, UTF-8, UTF-16, and UTF-32 are fully interoperable
with each other.

e UTF-7is used sometimes but is not common.

Some considerations when selecting a particular UTF encoding' include the following:
e Desire fixed width and single code unit access; use UTF-32.
e Space concerns, use UTF-16.

e Serialization is inherent with UTF-8.

UTF-8, Go, and Runes

UTF-8 is the most commonly used encoding. Google estimated that in 2008, 50% of the pages that it sees are
encoded in UTF-8 and that proportion is increasing. The ASCII set has the same encoding values in UTF-8,
so a UTF-8 reader can read text consisting of just ASCII characters as well as text from the full Unicode set.

Go uses UTF-8 encoded characters in its strings. Each character is of type rune. This is an alias for
int32. A Unicode character can be up to 4 bytes in UTF-8 encoding, so 4 bytes are needed to represent all
characters. In terms of characters, a string is an array of runes using 1, 2, or 4 bytes per rune.

A string is also an array of bytes, but you have to be careful: only for the ASCII subset is a byte equal to
a character. All other characters occupy 2, 3, or 4 bytes. This means that the length of a string in characters
(runes) is generally not the same as the length of its byte array. They are equal only when the string consists
of ASCII characters only.

The following program fragment illustrates this. If you take a UTF-8 string and test its length, you get
the length of the underlying byte array. But if you cast the string to an array of runes [Jrune, then you get an
array of the Unicode code points, which is generally the number of characters:

$ mkdir ché
$ cd ché
$ vi runeprint.go

'The Unicode Standard - https://www.unicode.org/versions/Unicode14.0.0/
UnicodeStandard-14.0.pdf

136

http://moztw.org/docs/big5/table/unicode1.1-obsolete.txt
http://moztw.org/docs/big5/table/unicode1.1-obsolete.txt
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf
https://www.unicode.org/versions/Unicode14.0.0/UnicodeStandard-14.0.pdf

CHAPTER 6 © MANAGING CHARACTER SETS AND ENCODINGS

package main
import "fmt"

func main() {
stro:= "PJEN, fRatanE”
fmt.Println("String length: ", len([]rune(str)))
fmt.Println("Byte length: ", len(str))

}

ch6$ go run runeprint.go

String length: 10
Byte length: 26

A more detailed explanation of strings and runes is given by The Go Blog (see
https://go.dev/blog/strings).

UTEF-8 Client and Server

Possibly surprisingly, you need to do nothing special to handle UTF-8 text in either the client or the server.
The underlying data type for a UTF-8 string in Go is a byte array, and as we just saw, Go looks after encoding
the string into 1, 2, 3, or 4 bytes as needed. The length of the string is the length of the byte array, so you write
any UTF-8 string by writing the byte array.

Similarly, to read a string, you just read into a byte array and then cast the array to a string using
string([]byte). If Go cannot properly decode bytes into Unicode characters, then it gives the Unicode
Replacement Character \uFFFD. The length of the resulting byte array is the length of the legal portion of
the string.

So the clients and servers given in earlier chapters work perfectly well with UTF-8 encoded text.

ASCII Client and Server

The ASCII characters have the same encoding in ASCII and in UTF-8. So ordinary UTF-8 character handling
works fine for ASCII characters. No special handling needs to be done.

UTF-16 and Go

UTF-16 deals with arrays of short 16-bit unsigned integers. The package utfl16 is designed to manage such
arrays. To convert a normal Go string, which is a UTF-8 string, into UTF-16, you first extract the code points
by coercing it into a [Jrune and then use utf16.Encode to produce an array of type uint16.

Similarly, to decode an array of unsigned short UTF-16 values into a Go string, you use utf16.Decode to
convert it into code points as type [Jrune and then to a string. The following code fragment illustrates this:

ch6$ vi utfi6encodedecode.go
package main

import (
"unicode/utf16"

137

https://go.dev/blog/strings

CHAPTER 6 = MANAGING CHARACTER SETS AND ENCODINGS

“'Fmt“
)

func main() {
str = "HE—T, REtHaE"
fmt.Println("Before encoding:", str)

runes := utf16.Encode([]rune(str))
ints := utf16.Decode(runes)

str = string(ints)
fmt.Println("After encoding:", str)
}

ch6$ go run utfiéencodedecode.go
Before encoding: FIfE—F, VRmtHNIE
After encoding: FE—F, fRulsniE

These type conversions need to be applied by clients or servers as appropriate, to read and write 16-bit
short integers, as shown next.

Little-Endian and Big-Endian

Unfortunately, there is a little devil lurking behind UTF-16. It is basically an encoding of characters into
16-bit short integers. The big question is the following: For each short, how is it written as two bytes? The
top one first, or the top one second? Either way is fine, as long as the receiver uses the same convention as
the sender.

Unicode has addressed this with a special character known as the BOM (byte order marker). This is a
zero-width nonprinting character, so you never see it in text. But its value (e.g., 0xfffe) is chosen so that you
can tell the byte order:

e Inabig-endian system, it is FF FE.
e Inalittle-endian system, it is FE FE

Text will sometimes place the BOM as the first character in the text. The reader can then examine these
two bytes to determine what endian-ness has been used.

UTF-16 Client and Server

Using the BOM convention, you can write a server that prepends a BOM and writes a string in UTF-16 as
utfi6server.go:

ch6$ vi utfibserver.go
/* UTF16 Server
*/

package main

import (
"log"

138

CHAPTER 6 © MANAGING CHARACTER SETS AND ENCODINGS

net
"unicode/utf16"

)

// warning, our server currently only supports big endian
const BOM = "\ufffe'

func main() {

service := "0.0.0.0:1210"

tcpAddr, err := net.ResolveTCPAddr("tcp", service)
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

for {

conn, err := listener.Accept()
if err != nil {

continue
}

// eg. W is 0x0174, A is 0x00c3
str := "Wj'ai arrA2tAo"
shorts := utf16.Encode([]rune(str))
writeShorts(conn, shorts)
conn.Close()
}
}

func writeShorts(conn net.Conn, shorts [Juint16) {
var bytes [2]byte
// send the BOM as first two bytes

bytes[0] = BOM >> 8 // taking ff from BOM
bytes[1] = BOM & 255 // taking fe from BOM
_, err := conn.Write(bytes[0:]) // send BOM
checkError(err)

for _, v := range shorts {
// breakup the unit16 into two bytes, then send
bytes[0] = byte(v >> 8)
bytes[1] = byte(v & 255)
_, err = conn.Write(bytes[0:])
if err 1= nil {
return
}

}
}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

139

CHAPTER 6 = MANAGING CHARACTER SETS AND ENCODINGS

A client that reads a byte stream, extracts and examines the BOM, and then decodes the rest of the
stream is utf16client.go

ch6$ vi utfiéclient.go

/* UTF16 Client
*/
package main

import (
"fmt"
"log"
"net"
lIOSII
"unicode/utf16"

)

const BOM = "\ufffe'

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "host:port")

service := os.Args[1]
conn, err := net.Dial("tcp", service)
checkError(err)
shorts := readShorts(conn)
ints := utf16.Decode(shorts)
str := string(ints)
fmt.Println(str)
}
func readShorts(conn net.Conn) [Juinti16 {
var buf [512]byte
// read everything into the buffer
n, err := conn.Read(buf[0:2]) // start with BOM
for {
m, err := conn.Read(buf[n:]) // read remaining byte pairs (originally unit16)
if m==0 || err != nil {
break

n+=m

checkError(err)
var shorts [Juinti6
shorts = make([]Juint16, n/2)

// We are checking for endianess

// first - big endian oxfffe

// second - little endian oxfeff

// else - unknown

// the inner loops are reading one byte per iteration

// depending on endianess, places in the correct byte order

140

CHAPTER 6 © MANAGING CHARACTER SETS AND ENCODINGS

// *warning* our server only supports big-endian
if buf[0] == oxff && buf[1] == oxfe {
for i :=2;i<n;i+=2{
shorts[i/2] = uint16(buf[i])<<8 + uint16(buf[i+1])

}
} else if buf[0] == oxfe 8& buf[1] == oxff {
for i :=2; i<n; 1i+=2{
shorts[i/2] = uint16(buf[i+1])<<8 + uint16(buf[i])

}
} else {
// unknown byte order
fmt.Println("Unknown order")
}
return shorts
}
func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

Run the server and client in separate terminals:
ch6$ go run utfibserver.go

ch6$ go run utfiéeclient.go localhost:1210
Wj'ai arrA2tAe

We see the client, based on the first two bytes, confirms if the data is big- or little-endian and decodes as
necessary.

If you feel adventurous, change the server BOM to little-endian; you will see the following on the client
(which does the right thing thinking its little-endian). This is because the server currently only generates as
big-endian.

Vetme<tBbn it a s &

Unicode Gotchas

This book is not about i18n issues. In particular, we don’t want to delve into the arcane areas of Unicode.
But you should know that Unicode is not a simple encoding and there are many complexities. For example,
some earlier character sets used nonspacing characters, particularly for accents. This was brought into
Unicode, so you can produce accented characters in two ways: as a single Unicode character or as a pair of
nonspacing accent plus non-accented character. For example, U+04D6, “Cyrillic capital letter ie with breve,”
is a single character. It is equivalent to U+0415, “Cyrillic capital letter ie” combined with the breve accent
U+0306 “combining breve.” This makes string comparison difficult on occasions. This could potentially be
the cause of some very obscure errors.

There is a package called golang.org/x/text/unicode/normin the Go experimental tree that can
normalize Unicode strings. It can be installed into your Go package tree:

go get golang.org/x/text/unicode/norm

141

CHAPTER 6 = MANAGING CHARACTER SETS AND ENCODINGS

Note that it is a package in the “subrepositories” Go Project tree and may not be stable.

There are actually four standard Unicode forms. The most common is NFC. A string can be converted
to NFC form by norm.NFC.String(str). The following program called norm. go forms strings in two ways, as
a single character and as a composed character, and prints the strings, their bytes, and then the normalized

form and its bytes. Create the following file, utfnorm.go:

ch6$ vi utfnorm.go

/* UTFNorm
*/
package main

import (
n _Fmt n
"golang.org/x/text/unicode/norm"

)

func main() {
strl := "\u0o4d6"
str2 := "\u0415\u0306"
norm_str2 := norm.NFC.String(str2)
bytes1 := []byte(str1)
bytes2 := []byte(str2)
norm bytes2 := []byte(norm str2)

fmt.Println("Single char ", stri, " bytes

", bytes1)

fmt.Println("Composed char ", str2, " bytes ", bytes2)

fmt.Println("Normalized char", norm str2, " bytes ",

norm_bytes2)

}

ch6$ go mod init example.com/user/utfnorm
ch6$ go mod tidy
ch6$ go run utfnorm.go

Single char E bytes [211 150]

Composed char E bytes [208 149 204 134]
Normalized char E bytes [211 150]

ISO 8859 and Go

The ISO 8859 series are 8-bit character sets for different parts of Europe and some other areas. They all
have the ASCII set common in the low part but differ in the top part. According to Google, ISO 8859 codes
accounted for about 20% of the web pages it saw, but that has now dropped.

The fourth code, ISO 8859-4 or Latin-4, has the first 256 characters in common with Unicode. The
encoded value of the Latin-4 characters is the same in UTF-16 and in the default ISO 8859-4 encoding. But
this doesn’t really help much, as UTF-16 is a 16-bit encoding and ISO 8859-4 is an 8-bit encoding. UTF-8 is
an 8-bit encoding, but it uses the top bit to signal extra bytes, so only the ASCII subset overlaps for UTF-8
and ISO 8859-4. So UTF-8 doesn’t help much either. This is true for all 8859-n/Latin-n to Unicode encodings.

But the ISO 8859 series don’t have any complex issues. Each character in each set corresponds
to a unique Unicode character. For example, in ISO 8859-4, the character “Latin capital letter I with

142

CHAPTER 6 © MANAGING CHARACTER SETS AND ENCODINGS

ogonek” has ISO 8859-4 code point 0xc7 (in hexadecimal) and corresponding Unicode code point of
U+012E. Transforming either way between an ISO 8859 set and the corresponding Unicode characters is
essentially just a table lookup.

A map from ISO 8859 code points to the Unicode code points and could be done as an array of 256
integers. But many of these will have the same value as the index. So we just use a map of the different ones,
and those not in the map take the index value. Here is an example program that does that.

ch6$ vi isotounicode.go
package main

import (
-
"unicode/utf8"

)

func str2int(str string) []int {
r := []rune(str)
b := make([]int, utf8.RuneCountInString(str))
for i, v := range r {
b[i] = int(v)
}

return b

}

//unicode to 8859-4
var unicodeToISOMap = map[int]uint8{
// example match ascii 0x0021: ox21, // !
0x012e: Oxc7, // 1
0x010c: oxc8, // C
0x0112: Oxaa, // E
0x0118: Oxca, // E
// example match 0x00c9: 0xc9, // E
// plus more

}

/* Turn a UTF-8 string into an ISO 8859 encoded byte array
*/
func unicodeStrToISO(str string) []byte {
// get the unicode code points
codePoints := str2int(str) //[]int(str)
// create a byte array of the same length
bytes := make([]byte, len(codePoints))
for n, v := range codePoints {
// see if the point is in the exception map
iso, ok := unicodeToISOMap[v]
if lok {
// just use the value
iso = uint8(v)
}
bytes[n] = iso

143

CHAPTER 6 = MANAGING CHARACTER SETS AND ENCODINGS

}

return bytes

}

// inverse of unicodeToISOMap
var isoToUnicodeMap = map[uint8]int{
0xc7: 0x012e,
0xc8: 0x010c,
Oxaa: 0x0112,
Oxca: 0x0118,
// and more

}

func isoBytesToUnicode(bytes []byte) string {
codePoints := make([]int, len(bytes))
for n, v := range bytes {
unicode, ok := isoToUnicodeMap[v]
if lok {
unicode = int(v)

codePoints[n] = unicode
}
return fmt.Sprintf("%q == %U", codePoints, codePoints)
}

func main() {

x := "[Eal"
fmt.Printf("UTF-8: %s\n", x)

fmt.Println("unicode to 8859-4")
b := unicodeStrToISO(x)
fmt.Printf("8859-4(hex): %x\n\n", b)

fmt.Println("8859-4 to Unicode")
fmt.Printf("Unicode: %v\n", isoBytesToUnicode(b))

These functions can be used to read and write UTF-8 strings as ISO 8859-4 bytes. By changing the
mapping table, you can cover the other ISO 8859 codes. Latin-1, or ISO 8859-1, is a special case - the
exception map is empty as the code points for Latin-1 are the same in Unicode. You could also use the same
technique for other character sets based on a table mapping, such as Windows 1252.

In the preceding code, we use a sample input, [Ea!, where the first two characters are in our
exception map and the last two are not (as they are the same values in Unicode and 8859-n). We did use
RuneCountInString to help count the correct rune count. Strings in Go are byte arrays; we need to decode
properly and use our mappings.

ch6$ go run isotounicode.go
UTF-8:]Ea!

unicode to 8859-4
8859-4(hex): c7cab121

144

CHAPTER 6 © MANAGING CHARACTER SETS AND ENCODINGS

8859-4 to Unicode
Unicode: [']" '"E" "a" "I'"] == [U+012E U+0118 U+0061 U+0021]

Other Character Sets and Go

There are very, very many character set encodings. According to Google, these generally only have a small
use in web documents, which will hopefully decrease even further with time. But if your software wants to
capture all markets, then you may need to handle them.

In the simplest cases, a lookup table will suffice. But that doesn’t always work. The character coding ISO
2022 minimized character set sizes by using a finite state machine to swap code pages in and out. This was
borrowed by some of the Japanese encodings and makes things very complex.

Go presently only gives package support for any of these other character sets in the “subrepositories”
package tree. For example, the package golang.org/x/text/encoding/japanese handles EUC-JP and
Shift JIS.

Conclusion

There hasn’t been much code in this chapter. Instead, there have been some of the concepts of a very
complex area. It's up to you: if you want to assume everyone speaks US English, then the world is simple.
But if you want your applications to be usable by the rest of the world, you need to pay attention to these
complexities.

145

CHAPTER 7

Security

Although the Internet was originally designed as a system to withstand attacks by hostile agents, it developed
into a cooperative environment of relatively trusted entities. Alas, those days are long gone. Spam mail,
denial of service (DoS) attacks, phishing attempts, and so on are indicative that anyone using the Internet
does so at their own risk.

Applications have to be built to work correctly in hostile situations. “Correctly” no longer means just
getting the functional aspects of the program correct but also means ensuring privacy and integrity of data
transferred, access only to legitimate users, and other security issues.

This of course makes your programs much more complex. There are difficult and subtle computing
problems involved in making applications secure. Attempts to do it yourself (such as making up your own
encryption libraries) are usually doomed to failure. Instead, you need to use the libraries designed by
security professionals.

Why should you bother if it makes things harder? Almost every day there are reports of leaked credit
card details and of private servers being run by government officials and being hacked and reports of
systems being brought down by denial of service attacks. Many of these attacks are possible by coding
errors in network-facing applications, such as buffer overflows, cross-site scripting, and SQL injection. But
a large number of errors can be traced to poor network handling: passwords passed in plain text, security
credentials requested and then not checked, and just trusting the environment you are in. For example, a
colleague recently purchased a home IoT (Internet of Things) device. He used Wireshark to see what it was
doing on his network and discovered it was sending RTMP messages with authentication token admin.
admin. An easy attack vector, without even having to crack passwords! Drones made by one well-known
company use encryption with known flaws and can be “stolen” by other drones. An increasingly common
method of stealing data is to act as a “rogue” wireless access point, pretending to be a legitimate access point
in a local coffee shop, but monitoring everything that passes through, including your bank account details.
These are “low hanging fruit.” The scope of data breaches is shown by “World's Biggest Data Breaches” at
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/.

This chapter addresses the basic cryptographic tools given by Go that you can build into your
applications. If you don’t and your company loses a million dollars - or worse, your customers lose a million
dollars - then the blame comes back to you.

ISO Security Architecture

The ISO OSI (Open Systems Interconnect) seven-layer model of distributed systems is well known and is
repeated in Figure 7-1.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 147
https://doi.org/10.1007/978-1-4842-8095-9_7

https://doi.org/10.1007/978-1-4842-8095-9_7#DOI
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

CHAPTER 7 © SECURITY

Application Application

Presentation Presentation
Session Session
Transport Transport
Network Network

Data Link Data Link

Physical Physical
#

Figure 7-1. The OSI seven-layer model of distributed systems

What is less well known is that ISO built a whole series of documents upon this architecture. For
our purposes here, the most important is the ISO Security Architecture model, ISO 7498-2. This requires
purchase, but the ITU has produced a document technically aligned with this, which is available from ITU at
https://www.itu.int/rec/dologin_pub.asp?lang=e8id=T-REC-X.800-199103-I!!PDF-E&type=items.

Functions and Levels

The principal functions required of a security system are as follows:
e Authentication: Proof of identity.
e Data integrity: Data is not tampered with.
e Confidentiality: Data is not exposed to others.

e Notarization/signature: Registration of data with a trusted third party for later
assurance.

e Access control: Protection against unauthorized access of resources.
e Availability: Accessibility on demand from authorized entity.
These are required at the following levels of the OSI stack:
e Peer entity authentication (3, 4, 7)
e Data origin authentication (3, 4, 7)
e Access control service (3, 4, 7)
e Connection confidentiality (1, 2, 3, 4, 6, 7)
e Connectionless confidentiality (1, 2, 3, 4, 6, 7)
e Selective field confidentiality (6, 7)
e Traffic flow confidentiality (1, 3, 7)

148

http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.800-199103-I!!PDF-E&type=items

Connection integrity with recovery (4, 7)
Connection integrity without recovery (3, 4, 7)
Connection integrity selective field (7)

Connectionless integrity selective field (7)

Nonrepudiation at origin (7)

Nonrepudiation of delivery (7)

Mechanisms

The mechanisms to achieve this level of security are as follows:

Peer entity authentication

e Encryption

e Digital signature

e Authentication exchange
Data origin authentication

e Encryption

e Digital signature

Access control service

e Access control lists

e Passwords

e (Capabilities lists

e Labels

Connection confidentiality

e Encryption

e Routing control
Connectionless confidentiality
e Encryption

e Routing control
Selective field confidentiality
e Encryption

Traffic flow confidentiality

e Encryption

e Traffic padding

e Routing control

CHAPTER 7 © SECURITY

149

CHAPTER 7

SECURITY

Connection integrity with recovery
e Encryption

e Dataintegrity

Connection integrity without recovery
e Encryption

e Data integrity

Connection integrity selective field
e Encryption

e Dataintegrity

Connectionless integrity

e Encryption

e Digital signature

e Dataintegrity

Connectionless integrity selective field
e Encryption

e Digital signature

e Data integrity

Nonrepudiation at origin

e Digital signature

e Dataintegrity

e Notarization

Nonrepudiation of delivery

e Digital signature

e Data integrity

e Notarization

Data Integrity

Ensuring data integrity means supplying a means of testing that the data has not been tampered with.
Usually, this is done by forming a simple number out of the bytes in the data. This process is called hashing,
and the resulting number is called a hash or hash value.

A naive hashing algorithm is just to sum up all the bytes in the data. However, this still allows almost any
amount of changing the data around and still preserving the hash values. For example, an attacker could just
swap two bytes. This preserves the hash value but could end up with you owing someone $65,536 instead

of $256.

Hashing algorithms used for security purposes have to be “strong” so that it is very difficult for an
attacker to find a different sequence of bytes with the same hash value. This makes it hard to modify the

150

CHAPTER 7 © SECURITY

data to the attacker’s purposes. Security researchers are constantly testing hash algorithms to see if they can
break them - that is, find a simple way of coming up with byte sequences to match a hash value. They have
devised a series of cryptographic hashing algorithms that are believed to be strong.

Go has support for several hashing algorithms, including MD4, MD5, RIPEMD-160, SHA1, SHA224,
SHA256, SHA384, and SHA512. They all follow the same pattern as far as the Go programmer is concerned:
a function New (or similar) in the appropriate package returns a Hash object from the hash package. Using the
go list command, we can see this and related packages:

$ mkdir ch7z
$ cd ch7

ch7$ go list crypto/...

crypto

crypto/aes

crypto/cipher

crypto/des

crypto/dsa

crypto/ecdsa

crypto/ed25519
crypto/ed25519/internal/edwards25519
crypto/ed25519/internal/edwards25519/field
crypto/elliptic
crypto/elliptic/internal/fiat
crypto/hmac
crypto/internal/randutil
crypto/internal/subtle
crypto/mds

crypto/rand

crypto/rca

crypto/rsa

crypto/shal

crypto/sha256

crypto/shas12

crypto/subtle

crypto/tls

crypto/x509
crypto/x509/internal/macos
crypto/x509/pkix

A hash has an io.Writer, and you write the data to be hashed to this writer. You can query the number of
bytes in the hash value by Size and the hash value by Sum.

A typical use case is MD5 hashing (warning insecure). This uses the md5 package. The hash value is a
16-byte array. This is typically printed out in ASCII form as four hexadecimal numbers, each made of four
bytes. A simple program is md5hash.go:

ch7$ vi mdshash.go
/* MD5Hash

*/
package main

151

CHAPTER 7 © SECURITY

import (
"crypto/md5"
"t

)

func main() {
hash := md5.New()
bytes := []byte("hello\n")
hash.Write(bytes) // add data to running hash
hashValue := hash.Sum(nil) // retrieve the hashed data
hashSize := hash.Size() // how many bytes Sum returns
// for every 4 bytes of hashValue
// we stuff into an byte of val by shifting
// val[first byte] = hashValue[n] after shifting 24
// second and third byte position after 16 and 8...
// val[fourth byte] = hashValue[n+3]
// in the end, we have unint32 value that we print
for n := 0; n < hashSize; n += 4 {
var val uint32
val = uint32(hashValue[n])<<24 +
uint32(hashvValue[n+1])<<16 +
uint32(hashvValue[n+2])<<8 +
uint32(hashvalue[n+3])
fmt.Printf("%x ", val)
}
fmt.Println()

}
ch7$ go run mdshash.go
b1946ac9 2492d234 7c6235b4 d2611184
If you make a small variation, say, o becomes 0, you will see a new hash.
ch$ go run mdshash.go // after changing hello to hello
cd6fcbf3 8d05a093 9006387 0446665
While md5 provides some protection (i.e., file integrity), it doesn’t say who created or provided the file.
HMAC provides not only integrity (e.g., via md5) but also authentication. A consumer must have the same
key and input in order to reconstruct the HMAC.
The aforementioned focuses on mechanics; md5 is not considered best in class for hashing functions.

In general, you should select an improved function such as sha256 instead of md5.

// add "crypto/sha256" to import
hash := hmac.New(sha256.New, []byte(“secret))

152

CHAPTER 7 © SECURITY

Changing our prior code to use sha256 (with a hard-coded secret) generates the following output (e.g.,
using “hello” for the input):

171b5670 f7b4037f b9obef77 3b022130 e48100fd d40ea023 730097da 9a68f4ff

Considerations beyond hashing algorithm selection include quality of key (e.g., size and randomness).
HMAC is not encryption, even though a key is used. Meaning it lives in parallel to the original (i.e.,
unencrypted data).

md5 provides integrity, but collisions mean another file (preimage) can produce the same hash;
hence, authenticity of message is lacking. HMAC provides authenticity with addition of the key; however,
maintaining the key authenticity is the source of additional issues.

Symmetric Key Encryption

There are two major mechanisms used for encrypting data. Symmetric key encryption uses a single key that
is the same for both encryption and decryption. This key needs to be known to both the encrypting and the
decrypting agents. How this key is transmitted between the agents is not discussed (e.g., HMAC).

As with hashing, there are many encryption algorithms. Many are now known to have weaknesses,
and in general, algorithms become weaker over time as computers get faster. Go has support for several
symmetric key algorithms such as AES and DES.

The algorithms are block algorithms. That is, they work on blocks of data. If your data is not aligned to
the block size, you will have to pad it with extra blanks at the end.

Each algorithm is represented by a Cipher object. This is created by NewCipher in the appropriate
package and takes the symmetric key as parameter.

Once you have a cipher, you can use it to encrypt and decrypt blocks of data. We use AES-128, which
has a key size of 128 bits (16 bytes) and a block size of 128 bits. The size of the key determines which version
of AES is used. A program to illustrate this is aes. go:

ch7$ vi aes.go

/* Aes

*/

package main

import (
"bytes"
"crypto/aes”
n _Fmt n

)

func main() {
key := []byte("my key, len 16 b")
cipher, err := aes.NewCipher(key)
if err 1= nil {
fmt.Println(err.Error())
}

src := []byte("hello 16 b block")
var enc [16]byte
cipher.Encrypt(enc[0:], src)

var decrypt [16]byte

153

CHAPTER 7 © SECURITY

cipher.Decrypt(decrypt[0:], enc[0:])
result := bytes.NewBuffer(nil)
result.Write(decrypt[o0:])
fmt.Println(string(result.Bytes()))

}

ch7$ go run aes.go
hello 16 b block

This encrypts and decrypts the 16-byte block "hello 16 b block" using the shared 16-byte key "my
key, len 16 b".

While we are not detailing how hashing/authenticating works, there are considerations, such as our key
must have a length of 16, 24, or 32 bytes, which in turn used to select related AES-128, AES-192, or AES-256
algorithm. If you don’t use the correct key size, you will see a crypto.KeySizeError, and upon failure to not
deal with that error, a panic will occur during coding operations (e.g., encoding). See go doc crypto/aes.
NewCipher and go doc crypto/aes.KeySizeError for more.

Here are some very popular software that uses hashing at their core. In this URL, we see a detailed
history on the need to change from sha-1 to sha-256 in Git:

https://git-scm.com/docs/hash-function-transition/#_choice_of_hash

Bitcoin is also known for leveraging hashing along the blockchain. Here is an example code using
hashing:

https://github.com/bitcoin/bitcoin/blob/master/src/merkleblock.cpp

Furthermore, both are using a technique called Merkle trees, where a Git commit is the tree top and
a group of transactions in Bitcoin is represented as the tree top as well. You can learn more about this
interesting technique here: https://en.wikipedia.org/wiki/Merkle_tree.

Public Key Encryption

The other major type of encryption is public key encryption. Public key encryption and decryption require
two keys: one to encrypt and a second one to decrypt. The encryption key is usually made public in some
way so that anyone can encrypt messages to you. The decryption key must stay private; otherwise, everyone
would be able to decrypt those messages! Public key systems are asymmetric, with different keys for
different uses.

Some examples of software systems that leverage PK-related technology include SSH (where you hold
a private key and both the client and the server have a public key) and Secure Websites (where a public key
is embedded in the cert you download and the server has the private key). These asymmetric public keys
are used to generate symmetric key pairs used during a brief session. Keys are just one part of Public Key
Infrastructure (e.g., certificate management coupled with keys), which is a large interesting topic.

There are many public key encryption systems supported by Go. A typical one is the RSA scheme.

A program generating RSA private and public keys from a random number is genrsakeys.go:

ch7$ vi genrsakeys.go

/* GenRSAKeys
*/
package main

154

https://git-scm.com/docs/hash-function-transition/#_choice_of_hash
https://github.com/bitcoin/bitcoin/blob/master/src/merkleblock.cpp
https://en.wikipedia.org/wiki/Merkle_tree

CHAPTER 7 © SECURITY

import (

"crypto/rand"
"crypto/rsa”
"crypto/x509"
"encoding/gob"
"encoding/pem"
"fmt"

"log"

0s

)

func main() {
reader := rand.Reader
bitSize := 2048
key, err := rsa.GenerateKey(reader, bitSize)
checkError(err)
fmt.Printf("Private key primes:\n[0]:%s\n[1]:%s\n", key.Primes[0].String(),
key.Primes[1].String())
fmt.Println("Private key exponent:\n", key.D.String())
publicKey := key.PublicKey
fmt.Println("Public key modulus:\n", publicKey.N.String())
fmt.PrintIn("Public key exponent:\n", publicKey.E)
saveGobKey ("private.key", key)
saveGobKey("public.key", publicKey)
savePEMKey ("private.pem”, key)
}
func saveGobKey(fileName string, key interface{}) {
outFile, err := os.Create(fileName)
checkError(err)
encoder := gob.NewEncoder(outFile)
err = encoder.Encode(key)
checkError(err)
outFile.Close()
}
func savePEMKey(fileName string, key *rsa.PrivateKey) {
outFile, err := os.Create(fileName)
checkError(err)
var privateKey = &pem.Block{Type: "RSA PRIVATE KEY",
Bytes: x509.MarshalPKCS1iPrivateKey(key)}
pem.Encode(outFile, privateKey)
outFile.Close()
}
func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

The program saves the keys and related certificate (via pem) using gob serialization. They can be read
back by the loadrsakeys.go program:

ch7$ vi loadrsakeys.go
155

CHAPTER 7 © SECURITY

/* LoadRSAKeys
*/
package main

import (
"crypto/rsa”
"encoding/gob"
"fmt"
"log"
"osh

)

func main() {
var key rsa.PrivateKey
loadKey("private.key", &key)
fmt.Printf("Private key primes:\n[0]:%s\n[1]:%s\n", key.Primes[0].String(),
key.Primes[1].String())
fmt.Println("Private key exponent:\n", key.D.String())
var publicKey rsa.PublicKey
loadKey("public.key", &publicKey)
fmt.Println("Public key modulus:\n", publicKey.N.String())
fmt.PrintIn("Public key exponent:\n", publicKey.E)
}
func loadKey(fileName string, key interface{}) {
inFile, err := os.Open(fileName)
checkError(err)
decoder := gob.NewDecoder(inFile)
err = decoder.Decode(key)
checkError(err)
inFile.Close()
}
func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

As we execute the create and load programs, we see the following:
ch7$ go run genrsakeys.go

Private key primes:
[0]:1554 ... 3581
[1]:1759 ... 6267
Private key exponent:
1034 ... 7793
Public key modulus:
2735 ... 2127
Public key exponent:
65537

156

ch7$ go run loadrsakeys.go

Private key primes:
[0]:1554 ... 3581
[1]:1759 ... 6267
Private key exponent:
1034 ... 7793

Public key modulus:
2735 ... 2127

Public key exponent:
65537

CHAPTER 7 © SECURITY

The preceding output is abbreviated due to the length. The key thing to note is they generated
output (keys) matching the loaded versions after the encoding process. We have not transmitted any

encrypted data, just preparing for that eventuality.

X.509 Certificates

A Public Key Infrastructure (PKI) is a framework for a collection of public keys, along with additional
information such as owner name and location and links between them giving some sort of approval

mechanism.

The principal PKI in use today is based on X.509 certificates. For example, web browsers use them to

verify the identity of websites.

An example program to generate a self-signed X.509 certificate for my website and store itin a . cer file

is genx509cert.go:
ch7$ vi genx509cert.go

/* GenX509Cert
*/
package main

import (
"crypto/rand"
"crypto/rsa”
"crypto/x509"
"crypto/x509/pkix"
"encoding/gob"
"encoding/pem"
"fmt"
"math/big"
IIOSII
"time"

)

func main() {

random := rand.Reader

var key rsa.PrivateKey
loadKey("private.key", &key)
now := time.Now()

157

CHAPTER 7 © SECURITY

then := now.Add(60 * 60 * 24 * 365 * 1000 * 1000 * 1000)
// one year
template := x509.Certificate{
SerialNumber: big.NewInt(1),
Subject: pkix.Name{
CommonName: "jan.newmarch.name",
Organization: []string{"Jan Newmarch"},

b
NotBefore: now,
NotAfter: then,

SubjectKeyId: []byte{1, 2, 3, 4},
KeyUsage: x509.KeyUsageCertSign |
X509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
BasicConstraintsValid: true,
IsCA: true,
DNSNames: []string{"jan.newmarch.name",
"localhost"},
}
derBytes, err := x509.CreateCertificate(random, &template,
&template, 8key.PublicKey, &key)
checkError(err)
certCerFile, err := os.Create("jan.newmarch.name.cer")
checkError(err)
certCerFile.Write(derBytes)
certCerFile.Close()
certPEMFile, err := os.Create("jan.newmarch.name.pem")
checkError(err)
pem.Encode(certPEMFile, 8pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
certPEMFile.Close()
keyPEMFile, err := os.Create("private.pem")
checkError(err)
pem.Encode(keyPEMFile, &pem.Block{Type: "RSA PRIVATE KEY",
Bytes: x509.MarshalPKCS1iPrivateKey(&key)})
keyPEMFile.Close()
}
func loadKey(fileName string, key interface{}) {
inFile, err := os.Open(fileName)
checkError(err)
decoder := gob.NewDecoder(inFile)
err = decoder.Decode(key)
checkError(err)
inFile.Close()
}
func checkError(err error) {
if err != nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

158

CHAPTER 7 © SECURITY

We next load the crypto assests we just generated and provide basic checks for correctness, create
loadx509cert.go:

ch7$ vi loadx509cert.go

/* LoadX509Cert

package main

import (

)

"crypto/rsa”
"crypto/x509"
"encoding/gob"
"fmt"

"log"

0s

func main() {

// load certificate so we can access embedded public key

certCerFile, err := os.Open("jan.newmarch.name.cer")
checkError(err)

derBytes := make([]byte, 1000) // bigger than the file
count, err := certCerFile.Read(derBytes)
checkError(err)

certCerFile.Close()

// trim the bytes to actual length in call

cert, err := x509.ParseCertificate(derBytes[0:count])
checkError(err)

fmt.Printf("Name %s\n", cert.Subject.CommonName)
fmt.Printf("Not before %s\n", cert.NotBefore.String())
fmt.Printf("Not after %s\n", cert.NotAfter.String())

// load non-emdedded public key

// should be the same as above embedded key
pub, err := os.Open("public.key")
checkError(err)

dec := gob.NewDecoder (pub)

publicKey := new(rsa.PrivateKey)

err = dec.Decode(publicKey)

checkError(err)

pub.Close()

// genx509cert.go created a public key and certificate
// certificates also embed the public key

// we are comparing the public key and the embedded public key fields

// see go doc crypto/rsa.PublicKey for more

if cert.PublicKey. (*rsa.PublicKey).N.Cmp(publicKey.N) == 0 {
if publicKey.E == cert.PublicKey.(*rsa.PublicKey).E {

fmt.Println("Same public key")
return

159

CHAPTER 7 © SECURITY

fmt.Println("Different public key")
}
func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

Here, we can see the round trip creation and confirmation of the certificate.
ch7$ go run genx509cert.go

Note the creation of the certificate and pem files.
ch7$ go run loadx509cert.go

Name jan.newmarch.name

Not before 2021-12-26 22:51:42 +0000 UTC
Not after 2022-12-26 22:51:42 +0000 UTC
Same public key

TLS

Encryption/decryption schemes are of limited use if you have to do all the heavy lifting yourself. The
most popular mechanism on the Internet to give support for encrypted message passing is currently TLS
(Transport Layer Security), which was formerly SSL (Secure Sockets Layer).

In TLS, a client and a server negotiate identity using X.509 certificates. Once this is complete, a secret
key is invented between them, and all encryption/decryption is done using this key. The negotiation is
relatively slow, but once it’s complete, the faster secret key mechanism is used. The server is required to have
a certificate; the client may have one if needed.

A Basic Client

We first illustrate connecting to a server that has a certificate signed by a “well-known” certificate
authority (CA) such as RSA. The program to get HEAD information from a web server can be adapted to
get HEAD information from a TLS web server. The program is tlsgethead.go. We are illustrating TLS.Dial
here and will discuss HTTPS in a later chapter.

ch7$ vi tlsgethead.go

/* TLSGetHead
*/
package main

import (
"crypto/tls"
"fmt"
"io/ioutil"

160

CHAPTER 7 © SECURITY

lllogll

0s

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage:
}

service := os.Args[1]

// Dial over secure channel

conn, err := tls.Dial("tcp", service, nil)
checkError(err)

_, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n"))
checkError(err)

result, err := ioutil.ReadAll(conn)
checkError(err)
fmt.Println(string(result))

conn.Close()

0s.Exit(0)

, 0s.Args[0], "host:port")

}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

When we run the tlsgethead.go client against an appropriate site such as google.com we see the HTTP
HEAD request results:

ch7$ go run tlsgethead.go google.com:443

HTTP/1.0 200 OK

Content-Type: text/html; charset=IS0-8859-1

P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."

Date: Sun, 26 Dec 2021 23:10:40 GMT

Server: gws

X-XSS-Protection: 0

X-Frame-Options: SAMEORIGIN

Expires: Sun, 26 Dec 2021 23:10:40 GMT

Cache-Control: private

Set-Cookie: 1P_JAR=2021-12-26-23; expires=Tue, 25-Jan-2022 23:10:40 GMT; path=/; domain=.
google.com; Secure

Set-Cookie: NID=511=KAxTulK-XmrjU5Pml-zPo15rWWWWafskpalbdmaKcn96qPutrX Ezc8-gSprT5Xo3fjkxwR
dBOAm5E7LqA10In61VABmytAfahOaugempNg8egIAus5Ch7ypME8dn]7VRh7HAOF6XSViYsyHAWDcauelaxMCGREWSR
SU_Nef3UQ; expires=Mon, 27-Jun-2022 23:10:40 GMT; path=/; domain=.google.com; HttpOnly
Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000,h3-0050=":443";
ma=2592000,h3-0046=":443"; ma=2592000,h3-0043=":443"; ma=2592000,quic=":443"; ma=2592000;
v="46,43"

Other sites may produce other responses, but this client is still happy to have set up the TLS session with
a properly authenticating server.

161

CHAPTER 7 © SECURITY

It's interesting to run this against the site gooogle. com (note the extra “0™):
ch7$ go run tlsgethead.go gooogle.com:443

This site actually belongs to Google, as they have probably bought it to reduce fraud risk. The program

. n»

throws a fatal error, as the site certificate is not for gooogle with three “0”s:

Fatal error x509: certificate is valid for www.google.com, not gooogle.com
exit status 1

In the past, browsers would error on such types, now they redirect to the proper domain (sometimes).

Server Using a Self-Signed Certificate

If the server uses a self-signed certificate, as might be used internally in an organization or when
experimenting, the Go package will generate an error: "x509: certificate signed by unknown
authority". Either the certificate must be installed into the client's operating system (which will be O/S
dependent), or the client must install the certificate as a root CA. We will show this second way.

An echo server using TLS with any certificate is t1sechoserver. go:

ch7$ vi tlsechoserver.go
/* TLSEchoServer

*/
package main

import (
"crypto/tls"
"fmt"
"log"
n net n

)

func main() {
cert, err := tls.LoadX509KeyPair("jan.newmarch.name.pem",
"private.pem")

checkError(err)

config := tls.Config{Certificates: []tls.Certificate{cert}}
service := "0.0.0.0:1200"

listener, err := tls.Listen("tcp", service, &config)
checkError(err)

fmt.PrintIn("Listening")

for {

conn, err := listener.Accept()

if err 1= nil {
fmt.Println(err.Error())
continue

}

fmt.Println("Accepted")

go handleClient(conn)

162

CHAPTER 7 © SECURITY

}

func handleClient(conn net.Conn) {
defer conn.Close()
var buf [512]byte

for {
fmt.Println("Trying to read")
n, err := conn.Read(buf[0:])
if err 1= nil {
fmt.Println(err)
return
}
fmt.Println(string(buf[o:]))
_, err = conn.Write(buf[o:n])
if err 1= nil {
return
}
}

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

A simple TLS client won't work with this server if the certificate is self-signed, which it is here. We
need to set a configuration as the third parameter to TLS.Dial, which has our certificate installed as a root
certificate. Thanks to Josh Bleecher Snyder in “Getting x509: Certificate Signed by Unknown Authority”
(https://groups.google.com/forum/#!topic/golang-nuts/v5ShM8R7Tdc) for showing how to do this. The
server then works with the t1sechoclient.go client.

ch7$ vi tlsechoclient.go

package main

import (
"crypto/tls”
"crypto/x509"
"fmt"
lIOSII

)

func main() {
rootPEM, err := os.ReadFile("jan.newmarch.name.pem")
// First, create the set of root certificates. For this example we only
// have one. It's also possible to omit this in order to use the
// default root set of the current operating system.
roots := x509.NewCertPool()
if ok := roots.AppendCertsFromPEM(rootPEM); !ok {
panic("failed to parse root certificate")
}

163

https://groups.google.com/forum/#!topic/golang-nuts/v5ShM8R7Tdc

CHAPTER 7 © SECURITY

conn, err := tls.Dial("tcp", "localhost:1200", &tls.Config{
RootCAs: roots,
1))

if err 1= nil {
panic("failed to connect:
}

+ err.Error())

// Now write and read lots

for n := 0; n < 10; n++ {
fmt.Println("Writing...")
conn.Write([]byte("Hello " + string(n+48)))
var buf [512]byte
n, _ := conn.Read(buf[0:])
fmt.Println(string(buf[0:n]))

}

conn.Close()

Running the server in one terminal.
ch7$ go run tlsechoserver.go
... listening ...
In another terminal, run the client.
ch7$ go run tlsechoclient.go localhost:1200
Writing...
Hello 0
Writing...
Hello 1

Writing...
Hello 9
Back on the server, we see the following:

Accepted

Trying to read

Hello 0

Trying to read

Hello 1

EOF

164

CHAPTER 7 © SECURITY

We can also change the client and prevent it from accepting a self-signed certificate. By changing to the
following code, the outcome will differ.

conn, err := tls.Dial("tcp", "localhost:1200", &tls.Config{
// RootCAs: roots,
InsecureSkipVerify: false,
1)
// assuming the server is running with valid root certificate
ch7$ go run tlsechoclient.go localhost:1200
panic: failed to connect: x509: "jan.newmarch.name" certificate is not trusted
goroutine 1 [running]:
main.main()
/Users/ronaldpetty/github.com/apress/network-prog-with-go-2e/ch7/tlsechoclient.
g0:25 +0x2bb
exit status 2

On the server, we see the following error:

Trying to read
remote error: tls: bad certificate

Conclusion

Security is a huge area in itself, and this chapter barely touches on it. However, the major concepts have been
covered. What has not been stressed is how much security needs to be built into the design phase: security
as an afterthought is nearly always a failure.

165

CHAPTER 8

HTTP

The World Wide Web is a major distributed system, with millions of users. A site may become a web host by
running an HTTP server. While web clients are typically users with a browser, there are many other “user
agents” such as web spiders, web application clients, and so on.

The Web is built on top of the HTTP (Hypertext Transfer Protocol), which is typically layered on top of a
socket (e.g., TCP). HTTP has been through four publicly available versions. Version 1.1 (the third version) is
the most recognized (by developers). A behind-the-scene transition to HTTP/2 has captured over 60% of the
current HTTP traffic. HTTP/3 is the latest update; a transition to this new version continues to increase due
to performance benefits.

This chapter is an overview of HTTP, followed by the Go APIs to manage HTTP connections.

URLs and Resources

URLSs specify the location of a resource. A resource is often a static file, such as an HTML document, an
image, or a sound file. But increasingly, it may be a dynamically generated object, perhaps based on
information stored in a database.

When a user agent requests a resource, what is returned is not the resource itself, but some
representation of that resource. For example, if the resource is a static file, then what is sent to the user agent
is a copy of the file.

Multiple URLs may point to the same resource, and an HTTP server will return appropriate
representations of the resource for each URL. For example, a company might make product information
available both internally and externally using different URLs for the same product. The internal
representation of the product might include information such as internal contact officers for the product,
while the external representation might include the location of stores selling the product.

This view of resources means that the HTTP protocol can be fairly simple and straightforward, while an
HTTP server can be arbitrarily complex. HTTP has to deliver requests from user agents to servers and return
a byte stream, while a server might have to do any amount of processing of the request.

i18n

There are complications arising from the increasing internationalization (i18n) of the Internet. Hostnames
may be given in an internationalized form known as IDN (Internationalized Domain Name). In order to
preserve compatibility with legacy implementations that do not understand Unicode (such as older email
servers), non-ASCII domain names are mapped into an ASCII representation known as punycode. For
example, the domain name H 7KFE.jp has the punycode value xn—wgv71a119e. jp. For example, we can use
telnet to view the translation.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 167
https://doi.org/10.1007/978-1-4842-8095-9_8

https://doi.org/10.1007/978-1-4842-8095-9_8#DOI

CHAPTER 8 © HTTP

$ mkdir ch8
$ ch ch8

ch8$ telnet HAGE.jp 80

Trying 2001:218:3001:7::110...
Connected to xn--wgv71allge.jp.
Escape character is '~]'.

*]

telnet> quit

Connection closed.

The translation from a non-ASCII domain to a punycode value is not performed automatically by the
Go net libraries, but there is an extension package called golang.org/x/net/idna that will convert between
Unicode and its punycode value. There is an ongoing discussion at “Figure Out IDNA Punycode Story”
(https://github.com/golang/go/issues/13835) about this topic.

We can try the IDNs package against the aforementioned domain, H A5 jp; create the file
punycode.go.

ch8$ vi punycode.go

package main

import (
"fmt"
"golang.org/x/net/idna"
"net/url"

)

func main() {
s := "https://HAGE . jp:8443"
rl, := idna.ToASCII(s)
r2, _ := idna.ToUnicode(r1)

fmt.Println(r1)
fmt.Println(r2)
fmt.Println(url.QueryEscape(s))

}

ch8% go mod init example.com/user/punycode
ch8% go mod tidy

ch8% go run punycode.go
xn--https://-5y4qg6h3551. jp:8443

https:// 1A% . jp:8443
https%3A%2F%2F%E6%97%ASKE6%ICHACKEBSAA%IE . jp%3A8443

168

https://github.com/golang/go/issues/13835

CHAPTER 8 © HTTP

Internationalized domain names open up the possibility of what are called homograph attacks. Many
Unicode characters have a similar appearance, such as the Russian o (U+043E), the Greek o (U+03BF), and
the English o (U+006F). A domain name using a homograph such as google.com (with two Russian o’s)
could cause havoc. A variety of defenses are known, such as always displaying the punycode
(here xn—ggle-55da. com, using the Punycode converter).

The path in a URI/URL is more complex to handle, as it refers to a path relative to an HTTP server that
may be running in a particular localized environment. The encoding may not be UTF-8, or even Unicode.
The IRI (Internationalized Resource Identifier) manages this by first converting any localized string to UTF-8
and then percent-escaping any non-ASCII bytes. The W3C page entitled “An Introduction to Multilingual
Web Addresses” (https://www.w3.org/International/articles/idn-and-iri/) has more information.
Converting from other encodings to UTF-8 was covered in Chapter 6, while Go has the functions in net/url
of QueryEscape/QueryUnescape and in Go 1.8 of PathEscape/PathUnescape to do the percent conversions.

HTTP Characteristics

HTTP is a stateless, connectionless, reliable protocol. In the simplest form, each request from a user agent is
handled reliably, and then the connection is broken.

In the earliest version of HTTP, each request involved a separate TCP connection, so if many resources
were required (such as images embedded in an HTML page), then many TCP connections had to be set up
and torn down in a short space of time.

HTTP 1.1 added many optimizations in HTTP, which added complexity to the simple structure but
created a more efficient and reliable protocol. HTTP/2 has adopted a binary form for further efficient
gains. HTTP/3 goes one step further by replacing the typical TCP socket with UDP along with other related
improvements (e.g., built-in security via TLS).

Versions
There are four versions of HTTP:
e Version 0.9 (1991): Totally obsolete
e Version 1.0 (1996): Almost obsolete
e Version 1.1 (1999): The most popular version at present
e Version 2 (2015): The latest version
e Version 3 (~2022): In final steps of formal approval, already in production use

Each version must understand the requests and responses of earlier versions.

HTTP/0.9

HTTP/0.9 was the original HTTP defined in 1991 by Tim Berners-Lee. You can find the specification here:
https://www.w3.org/Protocols/HTTP/AsImplemented. html.

Request format:Request = Simple-Request
Simple-Request = "GET" SP Request-URI CRLF

169

https://www.w3.org/International/articles/idn-and-iri/
https://doi.org/10.1007/978-1-4842-8095-9_6
https://www.w3.org/Protocols/HTTP/AsImplemented.html

CHAPTER 8 © HTTP

Response Format

A response is of the following form:Response = Simple-Response
Simple-Response = [Entity-Body]

The aforementioned only provides a glimpse into HTTP/0.9 (e.g., SP means “space”). Since it is no
longer used, we won’t spend more time on it.

HTTP/1.0

This version added much more information to the requests and responses. Rather than “growing” the 0.9
format, it was just left alongside the new version. At this point, the W3C and IETF organizations were much
more involved. The HTTP/1.0 specification can be found here: https://datatracker.ietf.org/doc/html/
rfc1945.

Of note, Prof. Roy Fielding during this period became known for his
development of REST. His dissertation containing much of REST can be found here:
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Request Format

The format of requests from client to server is

Request = Simple-Request | Full-Request
Simple-Request = "GET" SP Request-URI CRLF
Full-Request = Request-Line
*(General-Header
| Request-Header
| Entity-Header)
CRLF
[Entity-Body]

A Simple-Request is an HTTP/0.9 request and must be replied to by a Simple-Response.
A Request-Line has this format:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF
where

Method = "GET" | "HEAD" | POST |
extension-method

Here’s an example:

GET http://jan.newmarch.name/index.html HTTP/1.0

170

https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc1945
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Response Format

A response is of the following form:

Response = Simple-Response | Full-Response
Simple-Response = [Entity-Body]
Full-Response = Status-Line
*(General-Header
| Response-Header
| Entity-Header)

CRLF

[Entity-Body]

The Status-Line gives information about the fate of the request:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

Here’s an example:

HTTP/1.0 200 OK

The status codes in the status line are as follows:

Status-Code = 200"

n202n

"403" ;
"404" ;
"500" ;
"501" ;
"502" ;

"503"

; OK
n201u .

Created

; Accepted
"204" ;
"301" ;
"302" ;
"304" ;
"400" ;

No Content

Moved permanently
Moved temporarily
Not modified

Bad request
Unauthorized
Forbidden

Not found
Internal server error
Not implemented
Bad gateway

| Service unavailable

extension-code

|
|
|
|
|
|
| "401" ;
I
|
|
|
|
|

CHAPTER 8 © HTTP

Some codes were not defined at the time of the HTTP/1.0 standard. For example, 203 “Non-
Authoritative Information” and 303 “See Other” are defined in HTTP/1.1.
The General-Header is typically the date, whereas the Response-Header is the location, the server, or an

authentication field.

The Entity-Header contains useful information about the Entity-Body to follow:

Entity-Header = Allow

_—— >

Content-Encoding
Content-Length
Content-Type
Expires
Last-Modified
extension-header

171

CHAPTER 8 © HTTP

For example (where the types of field are given after a //):

HTTP/1.1 200 OK // status line
Date: Fri, 29 Aug 2003 00:59:56 GMT // general header
Server: Apache/2.0.40 (Unix) // response header
Content-Length: 1595 // entity header

Content-Type: text/html; charset=IS0-8859-1 // entity header

HTTP 1.1

HTTP 1.1 fixes many problems with HTTP 1.0 but is more complex because of it. This version is done by
extending or refining the options available to HTTP 1.0. For example:

There are more commands such as TRACE and CONNECT.

HTTP 1.1 tightened up the rules for the request URLs to allow proxy handling. If the
request is directed through a proxy, the URL should be an absolute URL, as in

GET http://www.w3.org/index.html HTTP/1.1

Otherwise, an absolute path should be used and should include a Host header
field, as in

GET /index.html HTTP/1.1
Host: www.w3.org

There are more attributes such as If-Modified-Since, also for use by proxies.

The changes include

Hostname identification (which allows virtual hosts)

Content negotiation (multiple languages)

Persistent connections (which reduce TCP overheads; this is very complex)
Chunked transfers

Byte ranges (request parts of documents)

Proxy support

Thanks to the popularity of the Web, HTTP continues to be improved. HTTP/1.1 initial development
started in 1997 continuing until 2014. You can find more about HTTP/1.1, including the original
specification and the later more detailed documents redocumenting it.

172

Single document (original format):

e Original (1997) - https://datatracker.ietf.org/doc/html/rfc2068
e Update (1999) - https://datatracker.ietf.org/doc/html/rfc2616
Detailed series (all in 2014):

e Message Syntax and Routing - https://datatracker.ietf.org/doc/
html/rfc7230

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230

CHAPTER 8 © HTTP

e Semantics and Context - https://datatracker.ietf.org/doc/html/rfc7231
e Conditional Requests - https://datatracker.ietf.org/doc/html/rfc7232
e Range Requests - https://datatracker.ietf.org/doc/html/rfc7233

e Caching- https://datatracker.ietf.org/doc/html/rfc7234

e Authentication - https://datatracker.ietf.org/doc/html/xrfc7235

HTTP Major Upgrades

The HTTP/0.9 protocol took one page. The HTTP/1.0 protocol was described in about 20 pages and
included the HTTP/0.9 protocol. The HTTP/1.1 protocol takes 120 pages and is a substantial extension

to HTTP/1.0, whereas HTTP/2 takes about 96 pages. The HTTP/2 specification just adds to the HTTP/1.1
specification. Nearing completion, the HTTP/3 specification is around 75 pages, adding more features and
improvements around transport.

HTTP/2

All the earlier versions of HTTP are text based. The most significant departure for HTTP/2 is that it is a binary
format. In order to ensure backward compatibility, this can’t be managed by sending a binary message to an
older server to see what it does. Instead, an HTTP 1.1 message is sent with extra attributes, essentially asking
if the server wants to switch to HTTP/2. If it doesn’t understand the extra fields, it replies with a normal
HTTP 1.1 response, and the session continues with HTTP 1.1.

Otherwise, the server can respond that it is willing to change, and the session can continue
with HTTP/2.

HTTP/3

HTTP/3 further improves upon ideas begun in HTTP/2 including:
e Stream multiplexing
e Per-stream flow control
e Low-latency connection establishment

A new transport mechanism was created to allow HTTP transport to perform even better.
To simply compare the various major protocols:

e HTTP/1.1is used over a variety of transport and session layers.
e HTTP/2is used primarily with TLS over TCP.
e HTTP/3 uses the same semantics over a new transport protocol called QUIC.

HTTP/2 improved upon HTTP over TCP flaws yet didn’t fully integrate with TCP (e.g., no
comanagement of congestion controls across connections). HTTP/3 combines much of the HTTP/2 controls
with TLS into a new protocol called QUIC. QUIC in a sense merges layers 4 and 5 yet runs on top of UDP
(layer 4). Using UDP, allows HTTP/3 to ride on top of existing networks (some concern remains with TCP
traffic often optimized and UDP less so on intermediate routers).

Even with the preceding improvements, a web engineer often is still working in the realm of HTTP/1.1.
Creators of browsers and servers (e.g., proxies) will need to learn even more, including HTTP/2 and HTTP/3.

173

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235

CHAPTER 8 © HTTP

You can learn about QUIC transport here: https://datatracker.ietf.org/doc/html/draft-ietf-
quic-transport.

You can learn about HTTP and QUIC here: https://datatracker.ietf.org/doc/html/draft-ietf-
quic-http.

Simple User Agents

User agents such as browsers make requests and get responses. Go provides a set of request and response
types in the net/http package. First, we take a look at net/http.Response.

The Response Type

The response type is as follows:

type Response struct {

Status string // e.g. "200 OK"
StatusCode int // e.g. 200

Proto string // e.g. "HTTP/1.0"
ProtoMajor int // e.g. 1
ProtoMinor int // e.g. 0

Header Header

Body io.ReadCloser

Contentlength int64

TransferEncoding []string

Close bool

Uncompressed bool

Trailer Header

Request *Request

TLS *tls.ConnectionState
}

with the following helper methods:

func (r *Response) Cookies() []*Cookie

func (r *Response) Location() (*url.URL, error)

func (r *Response) ProtoAtLeast(major, minor int) bool
func (r *Response) Write(w io.Writer) error

Some methods are for convenience such as Cookies and Location; others are to assist with connection
management like ProtoAtLeast and Write.

See the documentation for exact details (e.g., go doc -short net/http.Response.Body).

We started with Response because Go provides helper functions to make requests; later, we investigate
the Request type.

174

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http

CHAPTER 8 © HTTP

The HEAD Method

We examine this data structure through examples. Each HTTP request type has its own Go function in the
net/http package. The simplest request is from a user agent called HEAD, which asks for information about a
resource and its HTTP server. This function can be used to make the query:

func Head(url string) (r *Response, err error)
The status of the response is in the response field Status, while the field Header is a map of the header
fields in the HTTP response. A program called head. go to make this request and display the results is as

follows:

ch8$ vi head.go

/* Head

*/

package main

import (
"t
"log"
"net/http"
“OS"

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage:
}

url := os.Args[1]

response, err := http.Head(url)

if err 1= nil {
log.Fatalln(err)

}

fmt.Println(response.Status)

for k, v := range response.Header {
fmt.PrintIn(k+":", v)

}

, 0s.Args[0], "host:port")

When run against go.dev, we see
ch8% go run head.go https://go.dev

200 OK

Content-Security-Policy: [connect-src 'self' www.google-analytics.com stats.g.doubleclick.
net ; default-src 'self' ; font-src 'self' fonts.googleapis.com fonts.gstatic.com data: ;
frame-ancestors 'self' ; frame-src 'self' www.google.com feedback.googleusercontent.com www.
googletagmanager.com scone-pa.clients6.google.com www.youtube.com player.vimeo.com ; img-
src 'self' www.google.com www.google-analytics.com ssl.gstatic.com www.gstatic.com gstatic.
com data: * ; object-src 'none' ; script-src 'self' 'sha256-n60dwTrm52KqKmé6aHYgDOTFUdMgww4a

175

CHAPTER 8 © HTTP

0GQ1IAVrMzck=" 'sha256-4ryYrf7Y5daLOBvOCpYtyBIcIPZkRD2eBPdfqsN3riM=" "sha256-sVKX08+SqOmnih
1ySYk3xC7RDUgKyAkmbXV2GWts4fo=" www.google.com apis.google.com www.gstatic.com gstatic.com
support.google.com www.googletagmanager.com www.google-analytics.com ssl.google-analytics.
com tagmanager.google.com ; style-src 'self' 'unsafe-inline' fonts.googleapis.com feedback.
googleusercontent.com www.gstatic.com gstatic.com tagmanager.google.com ;]
Strict-Transport-Security: [max-age=31536000; includeSubDomains; preload]
X-Cloud-Trace-Context: [7balcc2dfaeebe50e11befbb48523327]

Date: [Thu, 31 Mar 2022 23:19:03 GMT]

Server: [Google Frontend]

Content-Type: [text/html; charset=utf-8]

Vary: [Accept-Encoding]

The response comes from a server out of our control, and it may pass through other servers on the
way. The fields displayed may be different, and certainly, the values of the fields will differ. Here is a brief
description of some of the response headers:

e Vary: Tells an origin server which fields to use aside from “method’, “Host’, and
request target when selecting a representation of a resource

e Varyis part of HTTP/1.1 - https://datatracker.ietf.org/doc/html/
rfc7231#section-7.1.4

e Strict-Transport-Security: Used by the server to tell a browser (client) to use HTTPS
instead of HTTP

e Also known as HSTS, an added policy to HTTP -
https://www.rfc-editor.org/rfc/rfc6797

e X-Cloud-Trace-Context: Is a tracing header used by Google Cloud Platform
e Date: When the origin server generated the response
e Server: Used to identify the response generating software

e Serveris part of HTTP/1.1 - https://datatracker.ietf.org/doc/html/
rfc2616dfsection-14.38

e Alt-Svc: Stands for Alternative Services, allows origin’s resources to be authoritatively
available at a separate location and even different protocol

e The proposal can be found here: https://datatracker.ietf.org/doc/
html/rfc7838

e The proposal explains that Alt-Svc was added to clarify the location of a resource
vs. the identification of the resource. Here, we see it used to explain we can
modify our request to h3 (HTTP/3) and even QUIC!

e “ma” stands for max-age for availability of resource at this location/protocol.

u_n

e “v”isused to indicate the version of protocol used, part of earlier QUIC-
HTTP drafts still used by some.

e Content-Type: Used to parse response body

While this book is not focused on any particular aspect of networking and its main focus is Go’s network
abilities; we find it instructive to explain related items such as the aforementioned headers.

These convenience functions such as Head have unspoken complexity behind them. Take a peek at
Head’s documentation.

176

https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4
https://www.rfc-editor.org/rfc/rfc6797
https://datatracker.ietf.org/doc/html/rfc2616#section-14.38
https://datatracker.ietf.org/doc/html/rfc2616#section-14.38
https://datatracker.ietf.org/doc/html/rfc7838
https://datatracker.ietf.org/doc/html/rfc7838

CHAPTER 8 © HTTP

ch8% go doc net/http.Head
package http // import "net/http"
func Head(url string) (resp *Response, err error)
Head issues a HEAD to the specified URL. If the response is one of the

following redirect codes, Head follows the redirect, up to a maximum of 10
redirects:

301 (Moved Permanently)
302 (Found)
303 (See Other)
307 (Temporary Redirect)
308 (Permanent Redirect)
Head is a wrapper around DefaultClient.Head

To make a request with a specified context.Context, use
NewRequestWithContext and DefaultClient.Do.

The following are a couple of critical items to consider:
e 30z causes a redirect (a.k.a. another request).

e Adefault client exists:
ch8$ go doc net/http.DefaultClient
package http // import "net/http"

var DefaultClient = &Client{}
DefaultClient is the default Client and is used by Get, Head, and Post.

We will learn more about this client including its related Do method.

The GET Method

Usually, we want to retrieve a representation of a resource rather than just getting information about it. The
GET request will do this and can be done using the following:

func Get(url string) (r *Response, finalURL string, err error)

The content of the response is in the response field Body, which is of type io.ReadCloser. We can print
the content to the screen with the program get.go:

ch8% vi get.go
/* Get

*/
package main

177

CHAPTER 8 © HTTP

import (

"fmt"

"io"

"log"

"net/http"
"net/http/httputil”
"os"

"strings"

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "host:port")
}

url := os.Args[1]

response, err := http.Get(url)

checkError(err)

if response.StatusCode != http.StatusOK {
log.Fatalln(response.StatusCode)

}

fmt.Println("The response header is")

b, _ := httputil.DumpResponse(response, false)

fmt.Print(string(b))

contentTypes := response.Header["Content-Type"]

if lacceptableCharset(contentTypes) {
log.Fatalln("Cannot handle", contentTypes)

}

fmt.Println("The response body is")
var buf [512]byte
reader := response.Body

for {
n, err := reader.Read(buf[0:])
if err != nil {
if err == io.EOF {
fmt.Print(string(buf[0:n]))
reader.Close()
break
checkError(err)
}
fmt.Print(string(buf[0:n]))
}

}
func acceptableCharset(contentTypes []string) bool {

// each type is like [text/html; charset=utf-8]
// we want the UTF-8 only
for _, cType := range contentTypes {

if strings.Index(cType, "utf-8") != -1 {

178

CHAPTER 8 © HTTP

return true

}
}

return false

}

func checkError(err error) {
if err 1= nil {
log.Fatalln(err)
}

When the get.go client run against the Go website we see the following.
ch8% go run get.go https://go.dev

The response header is

HTTP/2.0 200 OK

Cache-Control: private

Content-Security-Policy: connect-src 'self' www.google-analytics.com stats.g.doubleclick.
net ; default-src 'self' ; font-src 'self' fonts.googleapis.com fonts.gstatic.com data: ;
frame-ancestors 'self' ; frame-src 'self' www.google.com feedback.googleusercontent.com www.
googletagmanager.com scone-pa.clients6.google.com www.youtube.com player.vimeo.com ; img-
src 'self' www.google.com www.google-analytics.com ssl.gstatic.com www.gstatic.com gstatic.
com data: * ; object-src 'none' ; script-src 'self' 'sha256-n60dwTrm52KqKm6aHYgDOTFUdMgww4a
0GQ1IAVrMzck=" 'sha256-4ryYrf7Y5dalLOBvOCpYtyBIcIPZkRD2eBPdfqsN3riM=" "sha256-sVKX08+SqOmnih
1ySYk3xC7RDUgKyAkmbXV2GWts4fo=" www.google.com apis.google.com www.gstatic.com gstatic.com
support.google.com www.googletagmanager.com www.google-analytics.com ssl.google-analytics.
com tagmanager.google.com ; style-src 'self' 'unsafe-inline' fonts.googleapis.com feedback.
googleusercontent.com www.gstatic.com gstatic.com tagmanager.google.com ;

Content-Type: text/html; charset=utf-8

Date: Thu, 31 Mar 2022 23:33:22 GMT

Server: Google Frontend

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload

Vary: Accept-Encoding

X-Cloud-Trace-Context: dée6efc338f0723fe7550203794db95c

The response body is

<!DOCTYPE html>

<html lang="en" data-theme="light">
<head>

<link rel="preconnect" href="https://www.googletagmanager.com">

<script >(function(w,d,s,1,i){w[1]=w[1]||[];w[1].push({'gtm.start":
new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
j=d.createElement(s),dl=1!="datalayer'?'&l="+1:"";j.async=true;j.src=
"https://www.googletagmanager.com/gtm.js?id="+i+dl;f.parentNode.insertBefore(j,f);
})(window,document, 'script', 'datalayer’, 'GTM-W8MVQXG');</script>

<meta charset="utf-8">

179

CHAPTER 8 © HTTP

<meta name="description" content="Go is an open source programming language that makes it
easy to build simple, reliable, and efficient software.">

<meta name="viewport" content="width=device-width, initial-scale=1"»

<meta name="theme-color" content="#00add8">

<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Material+Icons">
<link rel="stylesheet" href="/css/styles.css">

<script>(function(w,d,s,1,i){w[1]=w[1]||[];w[1].push({ gtm.start":

new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
j=d.createElement(s),dl=1!="datalayer'?'&l="+1:"";j.async=true;j.src=
"https://www.googletagmanager.com/gtm.js?id="+i+dl;f.parentNode.insertBefore(j,f);
}) (window,document, 'script', 'datalayer’, 'GTM-W8MVOXG');</script>

<script src="/js/site.js"></script>
<title>The Go Programming Language</title>
</head>

<body class="Site">

This request been sent with HTTP/2. The Go library has performed the version negotiation for you.
Based on TLS handshake and other information, Go upgrades to HTTP/2. Again, these convenience
functions and related client make it easy to start using HTTP with Go. If you want to keep with HTTP/1.1,
you can try the following override:

GODEBUG=http2client=0 go run get.go https://go.dev
The related code is documented as follows:

ch8% go doc -u net/http onceSetNextProtoDefaults

package http // import "net/http"

func (srv *Server) onceSetNextProtoDefaults()
onceSetNextProtoDefaults configures HTTP/2, if the user hasn't configured
otherwise. (by setting srv.TLSNextProto non-nil) It must only be called via
srv.nextProtoOnce (use srv.setupHTTP2 *).

func (t *Transport) onceSetNextProtoDefaults()
onceSetNextProtoDefaults initializes TLSNextProto. It must be called via
t.nextProtoOnce.Do.

Later, we look at customizing the client behavior.

There are important character set issues of the type discussed in the previous chapter. The server will
deliver the content using some character set encoding and possibly some transfer encoding. Usually, this is
a matter of negotiation between user agent and server, but the simple GET command that we used does not
include the user agent component of the negotiation. So the server can send whatever character encoding
it wants.

At the time of first writing, I (Jan) was in China (and Google could be accessed). When I tried this
program on www.google.com, Google’s server tried to be helpful by guessing my location and sending me
the text in the Chinese character set Bigs! How to tell the server what character encoding is okay for me is
discussed later.

180

http://www.google.com

CHAPTER 8 © HTTP

Configuring HTTP Requests

Go also supplies a lower-level interface for user agents to communicate with HTTP servers. As you might
expect, not only does it give you more control over the client requests, but it also requires you to spend more
effort in building the requests. However, there is only a small increase in complexity.

The data type used to build requests is the type Request; have a look at the documentation.

type Request struct {
Method string
URL *url.URL
Proto string // "HTTP/1.0"
ProtoMajor int /71
ProtoMinor int /10
Header Header
Body io.ReadCloser
GetBody func() (io.ReadCloser, error)
Contentlength int64
TransferEncoding []string
Close bool
Host string
Form url.Values
PostForm url.Values
MultipartForm *multipart.Form
Trailer Header
RemoteAddr string
RequestURI string
TLS *tls.ConnectionState
Cancel <-chan struct{}
Response *Response

Here are the related methods:

func (r *Request) AddCookie(c *Cookie)

func (r *Request) BasicAuth() (username, password string, ok bool)
func (r *Request) Clone(ctx context.Context) *Request

func (r *Request) Context() context.Context

func (r *Request) Cookie(name string) (*Cookie, error)

func (r *Request) Cookies() []*Cookie

func (r *Request) FormFile(key string) (multipart.File, *multipart.FileHeader, error)
func (r *Request) FormValue(key string) string

func (r *Request) MultipartReader() (*multipart.Reader, error)
func (r *Request) ParseForm() error

func (r *Request) ParseMultipartForm(maxMemory int64) error

func (r *Request) PostFormValue(key string) string

func (r *Request) ProtoAtlLeast(major, minor int) bool

func (r *Request) Referer() string

func (r *Request) SetBasicAuth(username, password string)

func (r *Request) UserAgent() string

func (r *Request) WithContext(ctx context.Context) *Request

func (r *Request) Write(w io.Writer) error

func (r *Request) WriteProxy(w io.Writer) error

181

CHAPTER 8 © HTTP

Some methods of Request are used during client setup; others are used by the server to retrieve
information.

There is a lot of information that can be stored in a request. You do not need to fill in all the fields, only
those of interest. The simplest way to create a request with default values is using this, for example:

request, err := http.NewRequest("GET", url.String(), nil)

Once a request has been created, you can modify the fields. For example, to specify that you want to
receive only UTF-8, add an Accept-Charset field to a request as follows:

request.Header.Add("Accept-Charset”, "UTF-8;q=1, IS0-8859-1;q=0")

(Note that the default set ISO-8859-1 always gets a value of 1 unless mentioned explicitly in the list, as
we do. The HTTP 1.1 specification dates back to 1999!)

A client setting a charset request is simple. But there is some confusion about what happens with the
server’s return value of a charset. The returned resource should have a Content-Type that will specify the
media type of the content such as text/html. If appropriate, the media type should state the charset, such as
text/html; charset=UTF-8.If there is no charset specification, then according to the HTTP specification,
it should be treated as the default ISO-8859-1 charset. But the HTML4 specification states that since many
servers don’t conform to this, you can’t make any assumptions.

If there is a charset specified in the server’s Content-Type, then assume it is correct. If there is none
specified, since more than 50% of pages are in UTF-8 and some are in ASCI], it is safe to assume UTF-8.
Fewer than 10% of pages may be wrong :-(.

The Client Object

To send a request to a server and get a reply, the convenience object Client is the easiest way. This
object can manage multiple requests and will look after issues such as whether the server keeps the TCP
connection alive and so on.

This is illustrated in the following program: clientget.go.

The program shows how to add HTTP headers, as we add the header Accept-Charset to only accept
UTEF-8. There is a little hiccup here, caused by a bug in Go, which has only been fixed in Go 1.8. The Client.
Do function will automatically do a redirect if it gets a 301, 302, 303, or 307 response. Prior to Go 1.8, it didn’t
copy across the HTTP headers in this redirect.

If you try against a site such as http://www.google.com, then it will redirect to a site such as
http://www.google.com.au but will lose the Accept-Charset header and return ISO-8859-1 (as it should
do according to the 1999 HTTP 1.1 specification). With that proviso - that the program may not give correct
results on versions prior to Go 1.8 - the program is as follows:

ch8$ vi clientget.go

/* ClientGet
*/
package main

import (
"o
"fmt"
n 1og n
"net/http"

182

http://www.google.com
http://www.google.com.au

CHAPTER 8 © HTTP

"net/http/httputil”
"net/url"
"os"
"strings"

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "http://host:port/page")

}
url, err := url.Parse(os.Args[1])
checkError(err)

client := 8http.Client{}

request, err := http.NewRequest("HEAD", url.String(), nil)

// only accept UTF-8

request.Header.Add("Accept-Charset", "utf-8;q=1,150-8859-1;9=0")

checkError(err)

response, err := client.Do(request)

checkError(err)

if response.StatusCode != http.StatusOK {
log.Fatalln(response.Status)

}
fmt.Println("The response header is")
b, := httputil.DumpResponse(response, false)

fmt.Print(string(b))
chSet := getCharset(response)
if chSet != "utf-8" {
log.Fatalln("Cannot handle", chSet)
}

var buf [512]byte
reader := response.Body
fmt.Println("got body")

for {
n, err := reader.Read(buf[0:])
if err 1= nil {
if err == io.EOF {
fmt.Print(string(buf[0:n]))
break
}
checkError(err)
}
fmt.Print(string(buf[0:n]))
}

}
func getCharset(response *http.Response) string {
contentType := response.Header.Get("Content-Type")
if contentType == "" {
// guess
return "utf-8"

}

idx := strings.Index(contentType, "charset=")

183

CHAPTER 8 © HTTP

if idx == -1 {
// guess
return "utf-8"
}
// we found charset now remove it
chSet := strings.Trim(contentType[idx+8:], " ")
return strings.TolLower(chSet)
}
func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

The program is run as follows, for example:
ch8% go run clientget.go https://go.dev

The response header is

HTTP/2.0 200 OK

Connection: close

Content-Security-Policy: connect-src 'self' www.google-analytics.com stats.g.doubleclick.
net ; default-src 'self' ; font-src 'self' fonts.googleapis.com fonts.gstatic.com data: ;
frame-ancestors 'self' ; frame-src 'self' www.google.com feedback.googleusercontent.com www.
googletagmanager.com scone-pa.clients6.google.com www.youtube.com player.vimeo.com ; img-
src 'self' www.google.com www.google-analytics.com ssl.gstatic.com www.gstatic.com gstatic.
com data: * ; object-src 'none' ; script-src 'self' 'sha256-n60dwTrm52KqKm6aHYgDOTFUdMgww4a
0GQ1IAVrMzck=" 'sha256-4ryYrf7Y5dalLOBvOCpYtyBIcIPZkRD2eBPdfqsN3riM=" "'sha256-sVKX08+SqOmnih
1ySYk3xC7RDUgKyAkmbXV2GWts4fo=" www.google.com apis.google.com www.gstatic.com gstatic.com
support.google.com www.googletagmanager.com www.google-analytics.com ssl.google-analytics.
com tagmanager.google.com ; style-src 'self' 'unsafe-inline' fonts.googleapis.com feedback.
googleusercontent.com www.gstatic.com gstatic.com tagmanager.google.com ;

Content-Type: text/html; charset=utf-8

Date: Thu, 31 Mar 2022 23:45:09 GMT

Server: Google Frontend

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload

Vary: Accept-Encoding

X-Cloud-Trace-Context: 9caal7c0647c300f6e52d795661bf512

got body

Proxy Handling

It is very common now for HTTP requests to pass through specific HTTP proxies. This is in addition to the
servers that form the TCP connection and act at the application layer. Companies use proxies to limit what
their own staff can see, while many organizations use proxy services such as Cloudflare to act as caches,
reducing the load on the organization’s own servers. Accessing websites through proxies requires additional
handling by the client.

184

CHAPTER 8 © HTTP

Simple Proxy

HTTP 1.1 laid out how HTTP should work through a proxy. A GET request should be made to a proxy.
However, the URL requested should be the full URL of the destination. In addition, the HTTP header should
contain a Host field, set to the proxy. As long as the proxy is configured to pass such requests through, then
that is all that needs to be done.

Go considers this to be part of the HTTP transport layer. To manage this, it has a class Transport. This
contains a field that can be set to a function that returns a URL for a proxy. If we have a URL as a string for the
proxy, the appropriate transport object is created and then given to a client object as follows:

// prepare for transport
proxyURL, err := url.Parse(proxyString)

// RoundTripper implementation that supports HTTP proxies
// see go doc net/http.RoundTripper
transport := 8http.Transport{Proxy: http.ProxyURL(proxyURL)}

// used to send our HTTP quest
client := 8http.Client{Transport: transport}

The client can then continue as before.
The following program proxyget.go illustrates this.

ch8$ vi proxyget.go

/* ProxyGet
*/
package main

import (
"fmt"
"io"
Illogll
"net/http"
"net/url"

0s

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "http://host:port/page")
}
rawlRL := os.Args[1]
url, err := url.Parse(rawURL)
checkError(err)

response, err := http.Get(url.String())

checkError(err)
fmt.Println("Read ok")

if response.StatusCode != http.StatusOK {

185

CHAPTER 8 © HTTP

log.Fatalln(response.StatusCode)

}
fmt.Println("Response ok")

var buf [512]byte
reader := response.Body

for {
n, err := reader.Read(buf[0:])
if err 1= nil {
if err == io.EOF {
fmt.Print(string(buf[0:n]))
reader.Close()
break
}
checkError(err)
}
fmt.Print(string(buf[0:n]))
}

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

If you have a proxy at, say, XYZ.com on port 8080, you can test this as follows:
ch8$ go run proxyget.go http://XYZ.com:8080 https://www.google.com

If you don’t have a suitable proxy to test this, then download and install the Squid proxy (http://www.
squid-cache.org/) to your own computer. For example, on a Mac with Homebrew installed:

ch8$ brew install squid // install via Homebrew
ch8% brew service start squid // run Squid on port 3128

You can now run the client against this locally running proxy.
ch8% HTTP_PROXY=1localhost:3128 go run proxyget.go https://www.google.com

Read ok
Response ok
<!doctype html><html itemscope=""...

This program used our proxy passed (via HTTP_PROXY) as an environment variable to the program.
There are many ways that proxies can be made known to applications. Most browsers have a configuration
menu in which you can enter proxy information; such information is not available to a Go application. Some
applications may get proxy information using the Web Proxy Autodiscovery Protocol (WPAD - https://
en.wikipedia.org/wiki/Web_Proxy Autodiscovery Protocol)via afile often known as proxy.pac
somewhere in your network. Go does not (yet) know how to parse these JavaScript files and so cannot use

186

http://www.squid-cache.org/
http://www.squid-cache.org/
https://en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol
https://en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol

CHAPTER 8 © HTTP

them. Particular operating systems may have system-specific means of specifying proxies. Go cannot access
these. But it can find proxy information if it is set in operating system environment variables such as HTTP_
PROXY or http_proxy using this function:

func ProxyFromEnvironment(req *Request) (*url.URL, error)

If your programs are running in such an environment, you can use this function instead of having to
explicitly know the proxy parameters. See go doc net/http ProxyFromEnvironment for more.

Authenticating Proxy

Some proxies will require authentication by a username and password in order to pass requests. A common
scheme is “basic authentication” in which the username and password are concatenated into a string
"user:password" and then Base64 encoded. This is then given to the proxy by the HTTP request header
"Proxy-Authorization" with the flag that it is the basic authentication.

The following program proxyauthget.go illustrates this, adding the Proxy-Authentication header to
the previous proxy program:

ch8$ vi proxyauthget.go

/* ProxyAuthGet
*/
package main

import (
"encoding/base64"
"fmt"
n ioll
"net/http"
"net/http/httputil”
"net/url"

0s

)

const auth = "jannewmarch:mypassword"

func main() {
if len(os.Args) != 3 {

fmt.Println("Usage: ", os.Args[0], "http://proxy-host:port http://
host:port/page")
os.Exit(1)

}

proxy := os.Args[1]

proxyURL, err := url.Parse(proxy)

checkError(err)

rawURL := os.Args[2]

url, err := url.Parse(rawURL)

checkError(err)

// encode the auth

187

CHAPTER 8 © HTTP

basic := "Basic " +
base64.StdEncoding.EncodeToString([Jbyte(auth))

transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}
client := 8http.Client{Transport: transport}

request, err := http.NewRequest("GET", url.String(), nil)
request.Header.Add("Proxy-Authorization", basic)

dump, _ := httputil.DumpRequest(request, false)
fmt.Println(string(dump))

// send the request
response, err := client.Do(request)

checkError(err)

fmt.Println("Read ok")

if response.Status != "200 OK" {
fmt.Println(response.Status)
0s.Exit(2)

}

fmt.Println("Response ok")

var buf [512]byte
reader := response.Body

for {
n, err := reader.Read(buf[0:])
if err != nil {
os.Exit(0)
}
fmt.Print(string(buf[0:n]))
}
o0s.Exit(0)

}

func checkError(err error) {
if err 1= nil {
if err == io.EOF {
return
}

fmt.Println("Fatal error ", err.Error())
os.Exit(1)

There doesn’t seem to be a publicly available test site for this type of program. I tested it at work
where an authenticating proxy is used. Setting up such a proxy is beyond the scope of this book. There is
a discussion on how to do this called “How to Set Up a Squid Proxy with Basic Username and Password
Authentication” (see http://stackoverflow.com/questions/3297196/how-to-set-up-a-squid-proxy-
with-basic-username-and-password-authentication).

The code currently hard-codes the username and password. If you fail to use the correct login, you may
get an error such as

188

http://stackoverflow.com/questions/3297196/how-to-set-up-a-squid-proxy-with-basic-username-and-password-authentication
http://stackoverflow.com/questions/3297196/how-to-set-up-a-squid-proxy-with-basic-username-and-password-authentication

CHAPTER 8 © HTTP

ch8$ go run proxyauthget.go http://localhost:3128/ http://www.google.com

GET / HTTP/1.1
Host: www.google.com
Proxy-Authorization: Basic amphbm5ld21hcmNoOm15cGFzc3dvemQ=

Read ok
407 Proxy Authentication Required
exit status 2

If it works, you will receive similar results as with the unauthenticated proxy.
ch8% go run proxyauthget.go http://localhost:3128/ http://www.google.com

GET / HTTP/1.1
Host: www.google.com
Proxy-Authorization: Basic amFubmV3bWFyY2g6bX1wYXNzd29yZA==

Read ok
Response ok
<!doctype html><html...

HTTPS Connections by Clients

For secure, encrypted connections, HTTP uses TLS, which is described in Chapter 7. The protocol of
HTTP+TLS is called HTTPS and uses https:// URLs instead of http:// URLs.

Servers are required to return valid X.509 certificates before a client will accept data from them. If the
certificate is valid, then Go handles everything under the hood, and the clients given previously run okay
with https URLs. That is, programs such as the earlier clientget.go run unchanged - you just give them an
HTTPS URL.

Many sites have invalid certificates. They may have expired, they may be self-signed instead of by a
recognized certificate authority, or they may just have errors (such as having an incorrect server name).
Browsers such as Firefox put a big warning notice with a “Get me out of here!” button, but you can carry on
atyour risk, which many people do.

Go presently bails out when it encounters certificate errors. However, you can configure a client to
ignore certificate errors. This is, of course, not advisable - sites with misconfigured certificates may have
other problems.

In Chapter 7, we generated self-signed X.509 certificates. Later in this chapter, we will give an HTTPS
server using X.509 certificates, and if the self-signed certificates are used, then clientget.go will generate
this error:

x509: certificate signed by unknown authority

A client that removes these errors and continues does so by turning on the Transport configuration flag
InsecureSkipVerify. The unsafe program is tlsunsafeclientget. go:

ch8$% vi tlsunsafeclientget.go

189

https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_7

CHAPTER 8 © HTTP

/* TLSUnsafeClientGet
*/
package main

import (
"crypto/tls”
n _Fmt n
"log"
"net/http"
"net/url”
"os"
"strings"

)

func main() {
if len(os.Args) != 2 {

log.Fatalln("Usage: ", os.Args[0], "https://host:port/page")

}
url, err := url.Parse(os.Args[1])
checkError(err)

if url.Scheme != "https" {
log.Fatalln("Not https scheme ", url.Scheme)
}

transport := 8http.Transport{}

transport.TLSClientConfig = &tls.Config{InsecureSkipVerify: false}

client := 8http.Client{Transport: transport}

request, err := http.NewRequest("GET", url.String(), nil)
// only accept UTF-8
checkError(err)

response, err := client.Do(request)
checkError(err)

if response.StatusCode != http.StatusOK {
log.Fatalln(response.Status)
}

fmt.Println("get a response")

chSet := getCharset(response)
fmt.Printf("got charset %s\n", chSet)
if chSet != "UTF-8" {

log.Fatalln("Cannot handle", chSet)
}

var buf [512]byte
reader := response.Body
fmt.Println("got body")
for {
n, err := reader.Read(buf[0:])

190

CHAPTER 8 © HTTP

checkError(err)
fmt.Print(string(buf[0:n]))
}
}

func getCharset(response *http.Response) string {
contentType := response.Header.Get("Content-Type")

if contentType == "" {
// guess
return "UTF-8"
}
idx := strings.Index(contentType, "charset:")
if idx == -1 {
// guess
return "UTF-8"
}
return strings.Trim(contentType[idx:], " ")

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

Until we create the server side, let’s try against https://gooogle.com (notice three “0”s), probably
not valid.

ch8% go run tlsunsafeclientget.go https://gooogle.com

Fatal error Get "https://gooogle.com": x509: certificate is valid for www.google.com, not
gooogle.com
exit status 1

Servers

The other side to building a client is a web server handling HTTP requests. The simplest - and earliest -
servers just returned copies of files. However, any URL can now trigger an arbitrary computation in current
servers.

File Server

We start with a basic file server. Go supplies a multiplexer, that is, an object that will read and interpret
requests. It hands out requests to handlers, which run in their own thread. Thus, much of the work
of reading HTTP requests, decoding them, and branching to suitable functions in their own thread is
done for us.

For a file server, Go also gives a FileServer object, which knows how to deliver files from the local file
system. It takes a “root” directory, which is the top of a file tree in the local system, and a pattern to match
URLs against. The simplest pattern is /, which is the top of any URL. This will match all URLSs.

191

https://gooogle.com

CHAPTER 8 © HTTP

An HTTP server delivering files from the local file system is almost embarrassingly trivial given these
objects. Itis fileserver.go:

ch8$ vi fileserver.go

/* File Server
*/
package main

import (
"log"
"net/http"
)

func main() {
// deliver files from the directory /tmp/www
fileServer := http.FileServer(http.Dir("/tmp/www"))

// register the handler and deliver requests to it
err := http.ListenAndServe(":8000", fileServer)
if err 1= nil {
log.Fatalln(err)
}

// That's it!

This server even delivers "404 not found" messages for requests for file resources that don't exist!
If the file requested is a directory, it returns a list wrapped in <pre> ... </pre> tags with no other HTML
headers or markup. If Wireshark or a simple telnet client is used, directories are sent as text/html, HTML
files as text/html, Perl files as text/x-perl, Java files as text/x-java, and so on. The FileServer employs
some type recognition and includes that in the HTTP request, but it does not give the control over markup
that a server such as Apache does.

The server and a curl client run as follows:
ch8$ go run FileServer.go
ch8$ curl localhost:8000
404 page not found
ch8$ mkdir -p /tmp/www/
ch8$ echo hi > /tmp/www/hi.txt
ch8$ curl localhost:8000/
<pre>

hi.txt
</pre>

192

CHAPTER 8 © HTTP

ch8$ curl localhost:8000/hi.txt

hi

Handler Functions

In this last program, the handler was given in the second argument to ListenAndServe. Any number of
handlers can be registered first by calls to Handle or HandleFunc, with these signatures:

func Handle(pattern string, handler Handler)
func HandleFunc(pattern string, handler func(ResponseWriter, *Request))

The second argument to ListenAndServe could be nil, and then calls are dispatched to all registered
handlers. Each handler should have a different URL pattern. For example, the file handler might have URL
pattern /, while a function handler might have URL pattern /cgi-bin (we used /tmp/www).A more specific
pattern takes precedence over a more general pattern.

Common CGI programs are test-cgi (written in the shell) and printenv (written in Perl), which
print the values of the environment variables. A handler can be written to work in a similar manner as
printenv.go

ch8$ vi printenv.go
/* Print Env

*/
package main

import (
"fmt"
"net/http"
"osh

)

func main() {
// file handler for most files
fileServer := http.FileServer(http.Dir("/tmp/www"))
http.Handle("/", fileServer)
// function handler for /cgi-bin/printenv
http.HandleFunc("/cgi-bin/printenv", printEnv)

// deliver requests to the handlers
err := http.ListenAndServe(":8000", nil)
checkError(err)
// That's it!

}

func printEnv(writer http.ResponseWriter, req *http.Request) {
env := os.Environ()
writer.Write([]byte("<h1>Environment</hi><pre>"))
for , v := range env {

writer.Write([]byte(v + "\n"))

}

193

CHAPTER 8 © HTTP

writer.Write([]byte("</pre>"))
}
func checkError(err error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())
os.Exit(1)

Run the server as follows:
ch8% go run printenv.go
Now we run a curl client as follows:
ch8$ curl localhost:8000/cgi-bin/printenv

<h1>Environment</h1><pre>TERM_PROGRAM=Apple Terminal
SHELL=/bin/zsh

TERM=xterm-256color
TMPDIR=/var/folders/c5/152zshy12q1ibsthp_sbdtg5roooogn/T/
TERM_PROGRAM_VERSION=444
TERM_SESSION_ID=803B4A5C-F403-40E8-97CC-0EC807C35D77
USER=ronaldpetty
SSH_AUTH_SOCK=/private/tmp/com.apple.launchd.vj8cVxhjoc/Listeners

Using the cgi-bin directory in this program is a bit cheeky: it doesn’t call an external program like CGI
scripts do. It just calls the Go function printEnv. Go does have the ability to call external programs using o0s.
ForkExec but does not yet have support for dynamically linkable modules like Apache’s mod_perl. You most
likely want to wrap the results as proper HTML in this case.

Bypassing the Default Multiplexer

HTTP requests received by a Go server are usually handled by a multiplexer, which examines the path in the
HTTP request and calls the appropriate file handler, etc. You can define your own handlers. These can be
registered with the default multiplexer by calling http.HandleFunc, which takes a pattern and a function.
The functions such as ListenAndServe then take a nil handler function. This was done in the last example.

However, if you want to take over the multiplexer role, then you can give a non-nil function as the
handler function to ListenAndServe. This function will then be responsible for managing the requests and
responses.

The following example is trivial but illustrates the use of this. The multiplexer function simply returns a
"204 No content" for all requests to serverhandler.go:

ch8$ vi serverhandler.go

/* ServerHandler
*/

package main

194

CHAPTER 8 © HTTP

import (
"net/http"
)

func main() {
myHandler := http.HandlerFunc(func(rw http.Responselriter,
request *http.Request) {

// Just return no content - arbitrary headers can be set, arbitrary body
rw.WriteHeader(http.StatusNoContent)

1)

http.ListenAndServe(":8080", myHandler)

The server may be tested by running telnet against it to give output such as this:
ch8$ curl -v localhost:8080

Trying 127.0.0.1:8080...
Connected to localhost (127.0.0.1) port 8080 (#0)
GET / HTTP/1.1
Host: localhost:8080
User-Agent: curl/7.79.1
Accept: */*

*
*
>
>
>
>
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 204 No Content

< Date: Fri, 01 Apr 2022 03:21:41 GMT

<
*

Connection #0 to host localhost left intact

HTTPS

For secure, encrypted connections, HTTP uses TLS, which is described in Chapter 7. The protocol of
HTTP+TLS is called HTTPS and uses https:// URLs instead of http:// URLs.

For a server to use HTTPS, it needs an X.509 certificate and a private key file for that certificate. Go at
present requires that these be PEM-encoded as used in Chapter 7. Then the HTTP function ListenAndServe
is replaced with the HTTPS (HTTP+TLS) function ListenAndServeTLS.

The file server program given earlier can be written as an HTTPS server as httpsfileserver. go:

ch8$ vi httpsfileserver.go
/* HTTPSFileServer

*/
package main

195

https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_7

CHAPTER 8 © HTTP

import (
"net/http"
"log"

)

func main() {

// deliver files from the directory /tmp/www

fileServer := http.FileServer(http.Dir("/tmp/www"))

// register the handler and deliver requests to it

err := http.ListenAndServeTLS(":8000", "jan.newmarch.name.pem",
"private.pem", fileServer)

if err != nil {
log.Fatalln(err)

}

This server is accessed by https://localhost:8000/index.html, for example. If the certificate is a self-
signed certificate, an unsafe client will be needed to access the server contents. For example:

ch8% go run httpsfileserver.go
ch8% curl -i https://localhost:8000

curl: (60) SSL certificate problem: self signed certificate
More details here: https://curl.se/docs/sslcerts.html

curl failed to verify the legitimacy of the server and therefore could not
establish a secure connection to it. To learn more about this situation and
how to fix it, please visit the web page mentioned above.

We can instruct the curl client to be insecure via the “-k” flag.
ch8% curl -ik https://localhost:8000

HTTP/2 200

content-type: text/html; charset=utf-8
last-modified: Mon, 27 Dec 2021 04:30:01 GMT
content-length: 41

date: Mon, 27 Dec 2021 04:46:56 GMT

<pre>
hi.txt
</pre>

We can also do that with our Go client code (tlsunsafeclientget.go).
With InsecureSkipVerify set to true:

ch8$ go run tlsunsafeclientget.go https://localhost:8000
get a response

got charset UTF-8

got body

196

CHAPTER 8 © HTTP

With InsecureSkipVerify set to false:
ch8% go run tlsunsafeclientget.go https://localhost:8000

Fatal error Get "https://localhost:8000": x509: certificate signed by unknown authority
exit status 1

If you want a server that supports both HTTP and HTTPs, run each listener in its own go routine.

Conclusion

Go has extensive support for HTTP. This is not surprising, since Go was partly invented to fill a need by
Google for their own servers. This chapter discussed the various levels of support given by Go for HTTP and
HTTPS. In the chapter about Gorilla, we will talk in more detail about Go multiplex requests (path -> code).

197

CHAPTER 9

Templates

Most server-side languages have a mechanism for taking predominantly static pages and inserting a
dynamically generated component, such as a list of items. Typical examples are scripts in Java Server Pages,
PHP scripting, and many others. Go has adopted a relatively simple scripting language in the template
package.

The package is designed to take text as input and output different text, based on transforming the
original text using the values of an object. Unlike JSP or similar, it is not restricted to HTML files, but it is
likely to find greatest use there. We first describe the text/template package and later the html/template
package.

The original source is called a template and will consist of text that is transmitted unchanged and
embedded commands that can act on and change text. The commands are delimited by {{ ... }}, similar
to the JSP commands <%= ... =%>and PHP’s<?php ... ?>.In Go’s template module, commands are also
known as actions.

Inserting Object Values

A template is applied to a Go object. Fields from that Go object can be inserted into the template, and you
can “dig” into the object to find subfields, etc. The current object is represented as the cursor, so to insert the
value of the current object as a string, you use {{ . } }. The package uses the fmt package by default to work
out the string used as inserted values.

To insert the value of a field of the current cursor object, you use the field name prefixed by .. For
example, if the current cursor object is of type

type Person struct {

Name string
Age int
Emails [Istring
Jobs [1*Job

}

you insert the values of Name and Age as follows:

The name is {{.Name}}.
The age is {{.Age}}.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 199
https://doi.org/10.1007/978-1-4842-8095-9_9

https://doi.org/10.1007/978-1-4842-8095-9_9#DOI

CHAPTER 9 * TEMPLATES

You can loop over the elements of an array or other lists using the range command. So to access the
contents of the Emails array, you use this:

{{range .Emails}}
The email is {{.}}
{{end}}

During the loop over emails, the cursor . is set to each email in turn. On conclusion of the loop, the
cursor reverts to the person. If Job is defined as follows:

type Job struct {
Employer string
Role string

and we want to access the fields of a person's jobs, we can do it as before with a {{range .Jobs}}.
An alternative is to switch the current object to the Jobs field. This is done using the {{with ...}} ...
{{end}} construction, where now {{. }} is the Jobs field, which is an array:

{{with .Jobs}}

{{range .}}
An employer is {{.Employer}}
and the role is {{.Role}}

{{end}}
{{end}}

You can use this with any field, not just an array.

Using Templates

Once you have a template, you can apply it to an object to generate a new string using the object to fill in
the template values. This is a two-step process that involves parsing the template and then applying it to an
object. The result is output to a Writer, asin

t := template.New("Person template")

t, err := t.Parse(templ)

if err == nil {
buff := bytes.NewBufferString("")
t.Execute(buff, person)

An example program to apply a template to an object and print to standard output is printperson.go:

$ mkdir ch9
ch9$ cd ch9

ch9$ vi printperson.go
/* PrintPerson
*/

package main

200

import (
"log"
"osh
"text/template"
)

type Person struct {
Name string

Age int
Emails []string
Jobs []Job

}
type Job struct {

Employer string
Role string

}

const templ = “The name is {{.Name}}.

The age is {{.Age}}.
{{range .Emails}}
An email is {{.}}

{{end}}
{{with .Jobs}}
{{range .}}

An employer is {{.Employer}}
and the role is {{.Role}}
{{end}}
f{end}}

func main() {

CHAPTER 9 © TEMPLATES

job1l := Job{Employer: "Box Hill Institute", Role: "Director, Commerce and ICT"}

job2 := Job{Employer: "Canberra University", Role:

person := Person{
Name: "jan",
Age: 66,

Emails: []string{"jan@newmarch.name",
"jan.newmarch@gmail.com"},
Jobs: []Job{job1, job2},

}

t := template.New("Person template")

t, err := t.Parse(templ)
checkError(err)

err = t.Execute(os.Stdout, person)

checkError(err)

}

func checkError(err error) {
if err 1= nil {

}

log.Fatalln("Fatal error ", err.Error())

"Adjunct Professor"}

201

CHAPTER 9 * TEMPLATES

The output from this is as follows:
ch9$ go run printperson.go

The name is jan.
The age is 66.

An email is jan@newmarch.name
An email is jan.newmarch@gmail.com

An employer is Box Hill Institute
and the role is Director, Commerce and ICT

An employer is Canberra University
and the role is Adjunct Professor

Note that there is plenty of whitespace as newlines in this printout. This is due to the whitespace we
have in our template. If you want to reduce this whitespace, eliminate the newlines in the template as
follows:

{{range .Emails}} An email is {{.}} {{end}}

An alternative is to use the command delimiters "{{- " and " -}}" to eliminate all trailing whitespace
from the immediately preceding text and all leading whitespace from the immediately following text,
respectively.

In the example, we used a string in the program as the template. You can also load templates from a
file using the template.ParseFiles() function. For some reason that I don’t understand (and which wasn’t
required in earlier versions), the name assigned to the template must be the same as the basename of the
first file in the list of files. Is this a bug?

Pipelines

The preceding transformations insert pieces of text into a template. Those pieces of text are essentially
arbitrary, whatever the string values of the fields are. If we want them to appear as part of an HTML
document (or other specialized form), we will have to escape particular sequences of characters. For
example, to display arbitrary text in an HTML document, we have to change < to <. The Go templates have
a number of built-in functions, and one of these is htm1(). These functions act in a similar manner to UNIX
pipelines, reading from standard input and writing to standard output.

To take the value of the current object . and apply HTML escapes to it, you write a “pipeline” in the
template:

{{. | html}}

Here is another example, where we add a pipelined formatted message stating how many jobs a
person has.

const templ = “The name is {{.Name}}.

The age is {{.Age}}.
{{range .Emails}}

202

CHAPTER 9 © TEMPLATES

An email is {{.}}

{{end}}
{{with .Jobs}}
{{range .}}

An employer is {{.Employer}}
and the role is {{.Role}}

{{end}}
{{ . | len | printf "%d jobs total" }}

{{end}}

Running the modified prior example, we now see a new line of output:

go run printperson.go

2 jobs total

And do similarly for other functions. There are additional considerations when pipelining including
how arguments are passed in. You can learn more about pipelining in your templates here: https://pkg.
go.dev/text/template#thdr-Pipelines.

Defining Functions

The templates use the string representation of an object to insert values using the fmt package to convert
the object to a string. Sometimes, this isn’t what is needed. For example, to avoid spammers getting hold of
email addresses, it is quite common to see the symbol @ replaced by the word “at,” as in “jan at newmarch.
name”. If we want to use a template to display email addresses in that form, we have to build a custom
function to do this transformation.

Each template function has a name that is used in the templates themselves and an associated Go
function. These are linked by this type:

type FuncMap map[string]interface{}

For example, if we want our template function to be emailExpand, which is linked to the Go function
EmailExpander, we add this to the functions in a template as follows:

t = t.Funcs(template.FuncMap{"emailExpand": EmailExpander})
The signature for EmailExpander is typically this:

func EmailExpander(args ...interface{}) string

203

https://pkg.go.dev/text/template#hdr-Pipelines
https://pkg.go.dev/text/template#hdr-Pipelines

CHAPTER 9 * TEMPLATES

For the use we are interested in, there should be only one argument to the function, which will be a
string. Existing functions in the Go template library have some initial code to handle nonconforming cases,
so we just copy that. Then it is just simple string manipulation to change the format of the email address. A
program is printemails.go:

ch9$ vi printemails.go
/* PrintEmails

*/
package main

import (
"log"
"os"
"strings"
"text/template"”
)

type Person struct {
Name string
Emails []string

}

const templ = “The name is {{.Name}}.
{{range .Emails}}

An email is "{{. | emailExpand}}"
{{end}}’

func main() {
person := Person{
Name: "jan",
Emails: []string{"jan@newmarch.name",
"jan.newmarch@gmail.com"},
}
t, err := template.New("Person template").Funcs(
template.FuncMap{
"emailExpand": func(emailAddress string) string {
return strings.Replace(emailAddress, "@", " at ", -1)
b
b
) .Parse(templ)

err = t.Execute(os.Stdout, person)
checkError(err)

}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

204

CHAPTER 9 © TEMPLATES

The output is as follows:
ch9$ go run printemails.go
The name is jan.
An email is "jan at newmarch.name"

An email is "jan.newmarch at gmail.com"

Variables

The template package allows you to define and use variables. As motivation for this, consider how we might
print each person’s email address prefixed by their name. The type we use is again this one:

type Person struct {
Name string
Emails [Istring

To access the email strings, we use a range statement such as this:

{{range .Emails}}

But at that point, we cannot access the Name field, as . is now traversing the array elements and Name
is outside of this scope. The solution is to save the value of the Name field in a variable that can be accessed
anywhere in its scope. We also apply the same idea with loop variables. Variables in templates are prefixed
by $. So we write this:

{{$name := .Name}}
{{range $idx, $email := .Emails}}

Name is {{$name}}, email is {{$email}}
{{end}}

The program is printnameemails.go:

cho$ vi printnameemails.go

Vs
* PrintNameEmails
*/

package main

import (
"log"
"os"
"text/template”
)

205

CHAPTER 9 * TEMPLATES

type Person struct {
Name string
Emails []string

}

const templ = “{{$name := .Name}}

{{ $numEmails := .Emails | len -}}

{{range $idx, $email := .Emails -}}

Name is {{$name}}, email {{$email}} is {{ $idx | increment }} of {{ $numEmails }}
{{end}}

func main() {
person := Person{
Name: "jan",
Emails: []string{"jan@newmarch.name",
"jan.newmarch@gmail.com"},
}
t, err := template.New("Person template").Funcs(
template.FuncMap{
"increment": func(val int) int {
return val + 1
}

b
).Parse(templ)

checkError(err)
err = t.Execute(os.Stdout, person)
checkError(err)

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

Here is the output:
ch9$ go run printnameemails.go

Name is jan, email jan@newmarch.name is 1 of 2
Name is jan, email jan.newmarch@gmail.com is 2 of 2

Conditional Statements

Continuing with the Person example, suppose you just want to print out the list of emails, without digging
into it. You can do that with a template:

Name is {{.Name}}
Emails are {{.Emails}}

206

CHAPTER 9 © TEMPLATES

This will print the following:

Name is jan
Emails are [jan@newmarch.name jan.newmarch@gmail.com]

because this is how the fmt package will display a list.

In many circumstances, that may be fine, if that is what you want. Let’s consider a case where it is almost
right, but not quite. There is a JSON package to serialize objects, which we looked at in Chapter 4. This would
produce the following:

{"Name": lljanll’
"Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com"]

}

The JSON package is the one you use in practice, but let’s see if we can produce JSON output using
templates. We can do something similar just by the templates we have. This is almost right as a JSON
serializer:

{"Name": "{{.Name}}",
"Emails": {{.Emails}}

}

It will produce this:{"Name": "jan",
"Emails": [jan@newmarch.name jan.newmarch@gmail.com]

}

This has two problems: the addresses aren’t in quotes, and the list elements should be , separated.
How about this - look at the array elements, put them in quotes, and add commas?

{"Name": {{.Name}},
"Emails": [
{{range .Emails}}
RN IA
]{{end}}
}

This will produce{"Name": "jan",
"Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com",]

}

(plus some whitespace).

Again, it's almost correct, but if you look carefully, you will see a trailing , after the last list element.
According to the JSON syntax (see http://www.json.org/), this trailing , is not allowed. Implementations
may vary in how they deal with this.

What we want is to print every element followed by a , except for the last one. This is actually a bit
hard to do, so a better way is to print every element preceded by a , except for the first one (I got this tip from
“brianb” at Stack Overflow - http://stackoverflow.com/questions/201782/can-you-use-a-trailing-
comma-in-a-json-object). This is easier because the first element has index zero and many programming
languages, including the Go template language, treat zero as a Boolean false.

207

https://doi.org/10.1007/978-1-4842-8095-9_4
http://www.json.org/
http://stackoverflow.com/questions/201782/can-you-use-a-trailing-comma-in-a-json-object
http://stackoverflow.com/questions/201782/can-you-use-a-trailing-comma-in-a-json-object

CHAPTER 9 * TEMPLATES

One form of the conditional statement is {{if pipeline}} T1 {{else}} To {{end}}. We need the
pipeline to be the index into the array of emails. Fortunately, a variation on the range statement gives us
this. There are two forms that introduce variables:

{{range $elmt := array}}
{{range $index, $elmt := array}}

So we set up a loop through the array, and if the index is false (0), we just print the element. Otherwise,
we print it preceded by a ,. The template is as follows:

{"Name": "{{.Name}}",
"Emails": [
{{range $index, $elmt := .Emails}}
{{if $index}}
, "{{$elmt}}"

{{else}}
"{{$elmt}}"
{{end}}
{{end}}
]
}

The full program is printjsonemails.go:

ch9$ vi printjsonemails.go

/**

* PrintJSONEmails

*/

package main

import (
"bytes"
"encoding/json"
"t
"log"
“OS"
"text/template"”

)

type Person struct {
Name string
Emails []string

}

const templ = “{"Name": "{{- .Name -}}", "Emails": [
{{- range $index, $elmt := .Emails -}}
{{- if $index -}}
> "{{- selmt -}}"
{{- else -}}
"{{- $elmt -}}"

208

CHAPTER 9 © TEMPLATES

{{- end -}}
{{- end -}}
1Y

func main() {
person := Person{
Name: "jan",
Emails: []string{"jan@newmarch.name",
"jan.newmarch@gmail.com"},
}
t := template.New("Person template")
t, err := t.Parse(templ)
checkError(err)
err = t.Execute(os.Stdout, person)
checkError(err)

// check via validity json package

var b bytes.Buffer

err = t.Execute(&b, person)

checkError(err)

if json.Valid(b.Bytes()) {
fmt.Println("\nvalid json")

}

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

This gives the correct JSON output, it also runs jsonValid() checker function to validate for proper JSON.

ch9$
go run printjsonemails.go

{"Name": "jan", "Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com"] }
valid json

Before leaving this section, note that the problem of formatting a list with comma separators can be
approached by defining suitable functions in Go that are made available as template functions. To reuse
a well-known saying from another programming language, “There’s more than one way to do it!” The
following program was sent to me by Roger Peppe as sequence.go:

ch9$ vi sequence.go

/* Sequence.go

* Copyright Roger Peppe
*/

package main

import (

209

CHAPTER 9 * TEMPLATES

"errors”

"fmt"

"os"

"text/template”
)
var tmpl = “{{$comma := sequence "" ", "}}
{{range $}}{{$comma.Next}}{{.}}{{end}}
{{$comma := sequence "" ", "

{{$colour := cycle "black" "white" "red"}}
{{range $}}{{$comma.Next}}{{.}} in {{$colour.Next}}{{end}}

var fmap = template.FuncMap{
"sequence": sequenceFunc,
"cycle": cycleFunc,

}

func main() {
t, err := template.New("").Funcs(fmap).Parse(tmpl)
if err 1= nil {
fmt.Printf("parse error: %vn", err)

return

}

err = t.Execute(os.Stdout, []string{"a", "b", "c",
lldll’ lIeIlJ Ilfll})

if err 1= nil {
fmt.Printf("exec error: %vn", err)
}

}

type generator struct {

ss []string

i int

f func(s []string, i int) string
}

func (seq *generator) Next() string {
s := seq.f(seq.ss, seq.i)
seq.i++
return s
}
func sequenceGen(ss []string, i int) string {
if 1 >= len(ss) {
return ss[len(ss)-1]
}
return ss[i]
}
func cycleGen(ss []string, i int) string {
return ss[i%len(ss)]
}

func sequenceFunc(ss ...string) (*generator, error) {

210

CHAPTER 9 © TEMPLATES

if len(ss) == 0 {
return nil, errors.New("sequence must have at least one element")
}

return &generator{ss, 0, sequenceGen}, nil

}

func cycleFunc(ss ...string) (*generator, error) {
if len(ss) == 0 {
return nil, errors.New("cycle must have at least one element")
}

return &generator{ss, 0, cycleGen}, nil

Here is the output:
cho$ go run sequence.go
a, b, c,d, e, f

a in black, b in white, c in red, d in black, e in white, f in red

The html/template Package

The preceding programs all dealt with the text/template package. This applies transformations without
regard to any context in which the text might be used. For example, if the text in PrintPerson.go changes to

job1 := Job{Employer: "<script>alert('Could be nasty!')</script>", Role: "Director, Commerce and ICT"}
the program will generate this text:
An employer is <script>alert('Could be nasty!')</script>

This will cause an unexpected effect if downloaded to a browser.
The use of the html command in a pipeline can reduce this, asin {{. | html}}, and will produce the following:

An employer is <script8gt;alert('Could be nasty!8#39;)8&1t;/scriptdgt

Applying this filter to all expressions will become tedious. In addition, it may not catch potentially
dangerous JavaScript, CSS, or URI expressions.

The html/template package is designed to overcome these issues. By the simple step of replacing
text/template with html/template, the appropriate transformations will be applied to the resultant text,
sanitizing it so that it is suitable for web contexts.

When using “go doc” for either template package, be sure to note which one you are looking at. “go doc
template” is actually “go doc html/template” and “go doc text/template” for the non-HTML package.

Conclusion

The Go template package is useful for certain kinds of text transformations involving inserting values of
objects. It does not have the power of regular expressions, for example, but it is faster and, in many cases, will
be easier to use than regular expressions.

211

CHAPTER 10

A Complete Web Server

This chapter is principally an illustration of the HTTP chapter, building a complete website hosted
via standard Go. It also shows how to use templates in order to use expressions in text files to
insert variable values and to generate repeated sections. It deals with serialized data and Unicode
character sets. The programs in this chapter are sufficiently long and complex, so they are not
always given in their entirety but can be downloaded from the book’s GitHub website, which is
https://github.com/Apress/network-prog-with-go-2e.

Jan is learning Chinese. Rather, after many years of trying, he is still attempting to learn Chinese. Of
course, rather than buckling down and getting on with it, he has tried all sorts of technical aids. He tried
textbooks, videos, and many other teaching aids. Eventually he realized that the reason for his poor progress
was that there wasn’t a good computer program for Chinese flashcards, and so in the interests of learning, he
needed to build one.

He found a program in Python to do some of the task. But sad to say, it wasn’t well written, and after a
few attempts at turning it upside down and inside out, he came to the conclusion that it was better to start
from scratch. Of course, a web solution would be far better than a stand-alone one because then all the other
people in his Chinese class could share it, as well as any other learners out there. And of course, the server
would be written in Go.

He used the vocabulary from the lessons in the book Intensive Spoken Chinese by Zhang Pengpeng
(Sinolingua, 2007, ISBN 978-7-80052577-3), but the program is applicable to any vocabulary sets.

Browser Site Diagram

The resultant program as viewed in the browser has three types of pages, illustrated in Figure 10-1.

Home page Flashcard set
List of Flashcard words one at
sets atime

Flashcard set
all words

Figure 10-1. Browser pages

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 213
https://doi.org/10.1007/978-1-4842-8095-9_10

https://doi.org/10.1007/978-1-4842-8095-9_10#DOI
https://github.com/Apress/network-prog-with-go-2e

CHAPTER 10 © A COMPLETE WEB SERVER

The home page shows a list of flashcard sets (see Figure 10-2). It consists of a list of flashcard sets
currently available, how you want a set displayed (random card order, Chinese or English shown first, or
random), and whether to display a set of cards or just the words in a set.

Flashcards

[Show cards in set][List words in set]

Figure 10-2. The home page of the website

The flashcard set shows a flashcard, one at a time. One looks like Figure 10-3.

214

Flashcards for Common Words

Translations:
hello

hi

how are you?

Press <Space> or Tap to continue
Return to Flash Cards list

Figure 10-3. Typical flashcard showing all the components

The set of words for a flashcard set looks like Figure 10-4.

Words for Common Words

Figure 10-4. The list of words in a flashcard set

CHAPTER 10 © A COMPLETE WEB SERVER

215

CHAPTER 10 © A COMPLETE WEB SERVER

Browser Files

The browser side has HTML, CSS, and JavaScript files along with our Go code that is hosting them. Logical
paths and related files are as follows:

e Home page paths include (/ and /flashcards.html):
e css/listflashcardsstylesheet.css
e Flashcard set path (showflashcards.html):
e css/cardstylesheet.css
e jscript/jquery.js
e jscript/slideviewer.js
e TFlashcard set words path (1istwords.html):
e css/listflashcardsstylesheet.css
e jscript/sortable.js

The overall project looks as follows:

$ mkdir chio
$ cd ch1o
ch10$ tree .

F—— cedict_ts.u8

F—— css

| —— cardstylesheet.css

| L—— listflashcardsstylesheet.css
—— dictionary.go

—— flashcards.go

F—— flashcardsets

| —— common_words

| F—— lesson_04 surname_first name
| F—— lesson_05_country nationality
| L—— lesson 06 city native place
F—— html

| —— listflashcards. html

| F—— listwords.html

| L—— showflashcards.html

F—— jscript

| F—— jquery.js

| F—— slideviewer.js

| L—— sorttable. js

—— pinyinformatter.go

L—— server.go

4 directories, 17 files

216

CHAPTER 10 © A COMPLETE WEB SERVER

Basic Server

The server is an HTTP server as discussed in the previous chapter. It has a number of functions to handle
different URLs. The functions are outlined here:

Path Function HTML Delivered

/ listFlashCards html/listflashcards.html
/flashcards.html listFlashCards html/listflashcards.html
/flashcardSets manageFlashCards html/showflashcards.html
/flashcardSets manageFlashCards html/listwords.html
/jscript/* fileServer Files from directory /jscript
/html/* fileserver Files from directory /html
/css/* fileserver Files from directory /css

The server is server.go under ch10 of https://github.com/Apress/network-prog-with-go-2e
ch10$ cat server.go

/* Server
*/

package main

import (
"fmt"
"html/template"
"log"
"net/http"
"osh

)

const (
DefaultSet = "common_words"
DefaultAmount = "Random"
ActionShow = "Show cards in set"
Actionlist = "List words in set"
ActionUnknown = "Unknown action"
URLFlashCardSetsPath = "flashcardSets"
FlashCardPage = "flashcards.html"
ListFlashCardPage = "list" + FlashCardPage
ShowFlashCardPage = "show" + FlashCardPage
ListWordsPage = "listwords.html"
CardOrderSequential = "Sequential”
CardOrderRandom = "Random"

)

217

https://github.com/Apress/network-prog-with-go-2e

CHAPTER 10 © A COMPLETE WEB SERVER

var showHalf = map[string]string{
"Random": "RANDOM_HALF",
"English": "ENGLISH_HALF",
"Chinese": "CHINESE_HALF",

}

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], ":port")
}

port := os.Args[1]

http.HandleFunc("/", listFlashCards)

fileServer := http.StripPrefix("/jscript/", http.FileServer(http.Dir("jscript")))
http.Handle("/jscript/", fileServer)

fileServer = http.StripPrefix("/html/", http.FileServer(http.Dir("html")))
http.Handle("/html/", fileServer)

fileServer = http.StripPrefix("/css/", http.FileServer(http.Dir("css")))
http.Handle("/css/", fileServer)

http.HandleFunc("/"+FlashCardPage, listFlashCards)
http.HandleFunc("/"+URLFlashCardSetsPath, manageFlashCards)

// deliver requests to the handlers
err := http.ListenAndServe(port, nil)
checkError(err)

}
func listFlashCards(rw http.ResponseWriter, req *http.Request) {

}

/*
* Called from listflashcards.html on form submission
*/
func manageFlashCards(rw http.ResponseWriter, req *http.Request) {

}

func showFlashCards(rw http.ResponseWriter, cardname, order, half string) {

}

func listWords(rw http.Responselriter, cardname string) {

218

CHAPTER 10 © A COMPLETE WEB SERVER

func httpErrorHandler(rw http.ResponseWriter, err error) {
http.Error(rw, err.Error(), http.StatusInternalServerError)
}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

We now turn to the discussion of the individual functions.

The listFlashCards Function

The 1istFlashCards function is called to create HTML for the top-level page. The list of flashcard names is
extensible and is the set of file entries in the directory flashcardSets. This list is used to create the table in
the top-level page and is best done using the template package:

<table id="sets">

<tr>
<th colspan="2">
Flashcard Sets
</th>
</tr>
{{range $i, $e := .}}
<tr>
<td>
{{se}}
</td>
<td>
<input type="radio" name="flashcardSets" value="{{$e}}" {{if eq $i 0}}checked{{end}} />
</td>
</tr>
{{end}}
</table>

where the range is over the list of names. The file html/1listflashcards.html contains this template
as well as the HTML for the side lists of card order, half card display, and the form buttons at the bottom.
Omitting the side lists and the submit buttons, the HTML is as follows:

ch10$ cat html/listflashcards.html
<html>
<head>

<title>

Flashcards
</title>

219

CHAPTER 10 © A COMPLETE WEB SERVER

<link type="text/css" rel="stylesheet" href="/css/listflashcardsstylesheet.css">
</link>

</head>

<body>
<h1>
Flashcards
</h1>
<p>

<div id="choose">
<form method="GET" action="http:flashcardSets">

<table id="sets">
<tr>
<th colspan="2">
Flashcard Sets
</th>
</tr>
{{range $i, $e := .}}
<tr>
<td>
{{se}}
</td>
<td>
<input type="radio" name="flashcardSets" value="{{$e}}" {{if eq $i
0}}checked{{end}} />
</td>
</tr>
{{end}}
</table>

<div id="options">
<table id="order">

<tr>
<th colspan="3">
Card order
</th>
</tr>
<tr>
<td>
Random <input type="radio" name="order" value="Random"
checked="true" />
</td>
<td>
Sequential <input type="radio" name="order"
value="Sequential" />
</td>
</tr>
</table>

220

CHAPTER 10 © A COMPLETE WEB SERVER

<table id="half">
<tr>
<th colspan="3">
Half card display
</th>
</tr>
<tr>
<td>
Random <input type="radio" name="half" value="Random"
checked="true" />

</td>
<td>
English <input type="radio" name="half" value="English" />
</td>
<td>
Chinese <input type="radio" name="half" value="Chinese" />
</td>
</tr>
</table>
</div>

<div id="submit">
<button type="submit" name="submit" value="Show cards in set">
Show cards in set
</button>
<button type="submit" name="submit" value="List words in set">
List words in set
</button>
</div>
</form>
</div>
</p>

</body>
</html>
From server.go, the function listFlashCards, which applies the template to this, is as follows:
func listFlashCards(rw http.ResponseWriter, req *http.Request) {
flashCardsNames := ListFlashCardsNames()
t, err := template.ParseFiles("html/" + ListFlashCardPage)
if err != nil {

httpErrorHandler(rw, err)
return

}

t.Execute(rw, flashCardsNames)

221

CHAPTER 10 © A COMPLETE WEB SERVER

From flashcards.go, the function ListFlashCardsNames () just iterates through the flashcards
directory, returning an array of strings (the file names of each flashcard set):

func ListFlashCardsNames() []string {
flashcardsDir, err := os.Open("flashcardsets")
if err != nil {
return nil
}

files, err := flashcardsDir.Readdir(-1)

fileNames := make([]string, len(files))
for n, f := range files {

fileNames[n] = f.Name()
}

sort.Strings(fileNames)
return fileNames

The manageFlashCards Function

From server.go, the manageFlashCards function is called to manage the form submission on pressing the
“Show Cards in Set” button or the “List Words in Set” button. It extracts values from the form request and
then chooses between showFlashCards and 1istWords:

/*
* Called from listflashcards.html on form submission
*/
func manageFlashCards(rw http.ResponseWriter, req *http.Request) {
set := req.FormValue("flashcardSets")
order := req.FormValue("order")
action := req.FormValue("submit")
half := req.FormValue("half")

//if unset
//http://localhost:8000/flashcardSets?flashcardSets=common words&order=Random&half=
Random&submit=Show+cards+in+set
if len(set) == 0 {
set = DefaultSet
order = DefaultAmount
action = ActionShow
half = DefaultAmount

}

cardname := URLFlashCardSetsPath + "/" + set

fmt.Printf("Set %s, order %s, action %s, half %s, cardname %s\n", set, order,
action, half, cardname)

222

CHAPTER 10 © A COMPLETE WEB SERVER

switch action {
case ActionShow:
showFlashCards(xw, cardname, order, half)
case ActionList:
listWords(rw, cardname)
default:
fmt.Println(ActionUnknown)
}

The Chinese Dictionary

The previous code was fairly generic: it delivers static files using a FileServer, creates HTML tables using
templates based on a listing of files in a directory, and processes information from an HTML form. To
proceed further by looking at what is displayed in each card, we have to get into the application-specific
detail, and that means looking at the source of words (a dictionary), how to represent it and the cards, and
how to send flashcard data to the browser. First, the dictionary.

Chinese is a complex language - aren’t they all :-(. The written form is hieroglyphic, that is,
“pictograms,” instead of using an alphabet. But this written form has evolved over time and even recently
split into two forms: “traditional” Chinese as used in Taiwan and Hong Kong and “simplified” Chinese
as used in mainland China. While most of the characters are the same, about 1,000 are different. Thus, a
Chinese dictionary will often have two written forms of the same character.

Most Westerners like me can’t understand these characters. So there is a “Latinized” form called Pinyin,
which writes the characters in a phonetic alphabet based on the Latin alphabet. It isn’t quite the Latin
alphabet because Chinese is a tonal language, and the Pinyin form has to show the tones (much like accents
in French and other European languages). So a typical dictionary has to show four things: the traditional
form, the simplified form, the Pinyin, and the English. In addition (just like in English), a word may have
multiple meanings. For example, there is a free Chinese/English dictionary at http://www.mandarintools.
com/worddict.html, and even better, you can download it as a UTE-8 file. In it, the word %f has this entry:

Traditional Simplified Pinyin English Meanings

I I hao good /good/well/proper/good to/easy to/very/so/
(suffix indicating completion or readiness)/

There is a little complication in this dictionary. Most keyboards are not good at representing accents
such as the caron in &. So while the Chinese characters are written in Unicode, the Pinyin characters are
not. Although there are Unicode characters for letters such as 8, many dictionaries including this one use
the Latin a and place the tone at the end of the word. Here, it is the third tone, so hdo is written as hao3. This
makes it easier for those who only have US keyboards and no Unicode editor to still communicate in Pinyin.
A copy of the dictionary as used by the web server is cedict_ts.u8.

This data format mismatch is not a big deal. Just that somewhere along the line, between the original
text dictionary and the display in the browser, a data massage has to be performed. Go templates allow this
to be done by defining a custom template, so I chose that route. Alternative approaches include doing this as
the dictionary is read in, or in the JavaScript to display the final characters.

223

http://www.mandarintools.com/worddict.html
http://www.mandarintools.com/worddict.html

CHAPTER 10 © A COMPLETE WEB SERVER

The Dictionary Type

From dictionary.go, we use a DictionaryEntry to hold the basic information about one word:

type DictionaryEntry struct {
Traditional string
Simplified string
Pinyin string
Translations []string

The preceding word would be represented by the following:

DictionaryEntry {Traditional: %4,
Simplified: uf,
Pinyin: “hao3”
Translations: []string{ good™, “well", proper-,
“good to, “easy to’, “very’, “so’,
" (suffix indicating completion or readiness)”}

The dictionary itself is just an array of these entries:

type Dictionary struct {
Entries []*DictionaryEntry
}

Flashcard Sets

A single flashcard is meant to represent a Chinese word and the English translation of that word. We have
already seen that a single Chinese word can have many possible English meanings. But this dictionary also
sometimes has multiple occurrences of a Chinese word. For example, 4 occurs at least twice, once with the
meaning we have already seen, but also with another meaning, “to be fond of”” It turned out to be overkill,
but to allow for this, each flashcard is given a full dictionary of words. Typically, there is only one entry in
the dictionary! The rest of a flashcard is just the simplified and English words to act as possible keys, from
flashcards.go:

type FlashCard struct {
Simplified string
English string
Dictionary *Dictionary

The set of flashcards is an array of these, plus the name of the set and information that will be sent to the
browser for presentation of the set: random or fixed order, showing the top or bottom of each card first, or
random, from flashcards.go.

type FlashCards struct {
Name string

224

CHAPTER 10 © A COMPLETE WEB SERVER

CardOrder string
ShowHalf string
Cards [1*FlashCard

We have shown one function for this type already, ListFlashCardsNames (). There is one other
function of interest for this type to load a JSON file for a flashcard set. This uses the techniques mentioned in
Chapter 4, in flashcards. go.

func LoadJSON(r io.Reader, key any) {
decoder := json.NewDecoder(r)
err := decoder.Decode(key)
checkError(err)

A typical flashcard set is of common words. When the JSON file is pretty printed (e.g., jq), part of it looks
like this:

{
"ShowHalf":"",
"Cards": [
{

"Simplified":"\u4f60\u597d",
"Dictionary":{
"Entries":[
{
"Traditional":"\u4f60\u597d",
"Pinyin":"ni3 hao3",
"Translations":[

"hello",
"hi",
"how are you?"
1,
"Simplified":"\u4f60\u597d"
}
]
}5
"English":"hello"
1
{

"Simplified":"\u5582",
"Dictionary":{
"Entries":[
{
"Traditional":"\u5582",
"Pinyin":"wei4",
"Translations":|
"hello (interj., esp. on telephone)",
"hey",
"to feed (sb or some animal)"

1

225

https://doi.org/10.1007/978-1-4842-8095-9_4

CHAPTER 10 © A COMPLETE WEB SERVER

"Simplified":"\u5582"

]

}5
"English":"hello (interj., esp. on telephone)"

b
1,

"CardOrder":"",

"Name" : "Common Words

Fixing Accents

There is one last major task before we can complete the code for the server. The accents as given in the
dictionaries place the accent at the end of the Pinyin word, as in hao3 for hdo. The translation to Unicode
can be performed by a custom template, as discussed in Chapter 9.

The code for the Pinyin formatter is given here. Don’t bother reading it unless you are really interested
in knowing the rules for Pinyin formatting. The program is pinyinformatter.go:

ch10$ cat pinyinformatter.go

package main

"strings"

)

func PinyinFormatter(args ...interface{}) string {
ok := false
var s string
if len(args) == 1 {
s, ok = args[o].(string)

}
if lok {

s = fmt.Sprint(args...)
}

fmt.Println("Formatting func " + s)

// the string may consist of several pinyin words
// each one needs to be changed separately and then
// added back together

words := strings.Fields(s)

for n, word := range words {
// convert "u:" to "U" if present
uColon := strings.Index(word, "u:")
if uColon != -1 {
parts := strings.SplitN(word, "u:", 2)

word = parts[0] + "U" + parts[1]

226

https://doi.org/10.1007/978-1-4842-8095-9_9

CHAPTER 10 © A COMPLETE WEB SERVER

println(word)
// get last character, will be the tone if present
chars := []rune(word)
tone := chars[len(chars)-1]
if tone == '5' {
// there is no accent for tone 5
words[n] = string(chars[0 : len(chars)-1])
println("lost accent on", words[n])

continue
}
if tone < '1' || tone > '4' {
// not a tone value
continue
}
words[n] = addAccent(word, int(tone))
i = strings.Join(words, =)
return s
}
var (

// maps 'al' to '\u0101' etc
aAccent = map[int]rune{

'1': "\uoio1',
2
'3
4

"\uoice',

"\u0oe0'}

eAccent = map[int]rune{
'1': '"\u0113',

¢ "\uooel1',

1°:
2': "\uooe9',
"3': "\uo11b',
"4": "\u00e8'}
iAccent = map[int]rune{
'1': "\uo12b',
2': "\uooed',
'3': "\uoado',
"4": "\uooec'}
oAccent = map[int]rune{
"1': "\uoi4d',
2': "\uoof3',
'3': "\uo1d2',
"4": '"\uoof2'}
uAccent = map[int]rune{
'1': "\uo16b',
2': "\uoofa',
'3': "\uo1d4’',
"4': '"\uoof9'}
iAccent = map[int]rune{
1t]
2"
30

'ﬁl
'ﬁl

227

CHAPTER 10 © A COMPLETE WEB SERVER

"4 0"}

)

func addAccent(word string, tone int) string {
/*
* Based on "Where do the tone marks go?"
* at http://www.pinyin.info/rules/where.html
*/

n := strings.Index(word, "a")
ifnl=-1{
aAcc := aAccent[tone]
// replace 'a' with its tone version
word = word[0:n] + string(aAcc) + word[(n+1):len(word)-1]

} else {
n := strings.Index(word, "e")
ifnl=-1{
eAcc := eAccent[tone]
word = word[0:n] + string(eAcc) +
word[(n+1):1len(word)-1]
} else {
n = strings.Index(word, "ou")
ifnl=-1{

oAcc := oAccent[tone]
word = word[0:n] + string(oAcc) + "u" +
word[(n+2):1len(word)-1]
} else {
chars := []rune(word)
length := len(chars)
// put tone onthe last vowel

L:
for n, _ := range chars {
m := length - n - 1
switch chars[m] {
case 'i':
chars[m] = iAccent[tone]
break L
case 'o':
chars[m] = oAccent[tone]
break L
case 'u':
chars[m] = uAccent[tone]
break L
case 'i':
chars[m] = lAccent[tone]
break L
default:
}
}
word = string(chars[0 : len(chars)-1])
}

228

CHAPTER 10 © A COMPLETE WEB SERVER

}
}

return word

The ListWords Function

We can now return to the outstanding functions of the server. One was to list the words in a flashcard set.
This populates an HTML table using a template for a flashcard set. The HTML for this uses the template
package to walk over a FlashCards struct and insert the fields from that struct:

ch10$ cat html/listwords.html
<html>

<head>
<title>
Words for {{.Name}}
</title>

<script type="text/javascript" language="JavaScript1.2" src="/jscript/sorttable.js">
< I--empty -->
</script>

<link type="text/css" rel="stylesheet" href="/css/listflashcardsstylesheet.css">
</link>
</head>

<body>
<h1>
Words for {{.Name}}
</h1>
<p>
<table border="1" class="sortable">
<tr>
<th> English </th>
<th> Pinyin </th>
<th> Traditional </th>
<th> Simplified </th>
</tr>
{{range .Cards}}
<div class="card">
<tr>
<div class="english">
<div class="vcenter"s
<td>
{{.English}}
</td>
</div>
</div>

229

CHAPTER 10 © A COMPLETE WEB SERVER

{{with .Dictionary}}
{{range .Entries}}
<div class="pinyin">
<div class="vcenter">
<td>
{{.Pinyin|pinyin}}
</td>
</div>
</div>

<div class="traditional">
<div class="vcenter">
<td>
{{.Traditional}}
</td>
</divy>
</div>

<div class="simplified">
<div class="vcenter">

<td>
{{.Simplified}}
</td>
</div>
</div>
{{end}}
{{end}}
</tr>
</div>
{{end}}
</table>

</p>
<p class="return">
 Return to Flash Cards list
</p>
</body>

</html>
The Go function in server.go to do this uses the PinyinFormatter discussed in the last section:

func listWords(rw http.ResponseWriter, cardname string) {
fmt.Println("Loading card name", cardname)
cards := new(FlashCards)
LoadJSON(cardname, cards)
fmt.Println("loaded cards", len(cards.Cards))
fmt.Println("Card name", cards.Name)

t := template.New("listwords.html")

230

CHAPTER 10 © A COMPLETE WEB SERVER

t = t.Funcs(template.FuncMap{"pinyin": PinyinFormatter})
t, err := t.ParseFiles("html/listwords.html")

if err 1= nil {
fmt.Println("Parse error " + err.Error())
http.Error(rw, err.Error(), http.StatusInternalServerError)
return

}

err = t.Execute(rw, cards)

if err != nil {
fmt.Println("Execute error " + err.Error())
http.Error(rw, err.Error(), http.StatusInternalServerError)
return

This sends the populated table to the browser, as shown in Figure 10-4.

The showFlashCards Function

The final function to complete the server is showFlashCards. This changes the default values of CardOrder
and ShowHalf in the flashcard set based on the form submitted from the browser. It then applies the
PinyinFormatter and sends the resulting document to the browser. I captured the output of a command-
line session using the UNIX command script and then ran the command:

GET /flashcardSets?flashcardSets=Common+Words&order=Random&half=Chinese&submit=Show+cards+
in+set HTTP/1.0

Part of the result is as follows:
ch10$ cat ./html/showflashcards.html
<html>
<head>
<title>
Flashcards for {{.Name}}
</title>

<link type="text/css" rel="stylesheet" href="/css/cardstylesheet.css">
</link>

<script type="text/javascript" language="JavaScript1.2" src="/jscript/jquery.js">
< l--empty -->
</script>

<script type="text/javascript" language="JavaScripti1.2" src="/jscript/slideviewer.js">

< !--empty -->
</script>

231

CHAPTER 10 © A COMPLETE WEB SERVER

<script type="text/javascript" language="JavaScript1.2">
cardorder = {{- .CardOrder }};
showHalfCard = {{- .ShowHalf }};
</script>
</head>

<body onload="showSlides();">
<!l-- <body> -->
<h1>
Flashcards for {{.Name}}
</h1>
<p>

{{range .Cards}}
<div class="card">
<div class="english">
<div class="vcenter">
English: {{.English}}
</div>
</div>

{{with .Dictionary}}
{{range .Entries}}
<div class="pinyin">
<div class="vcenter">
Pinyin: {{.Pinyin|pinyin}}
</div>
</div>

<div class="traditional">
<div class="vcenter">
Traditional: {{.Traditional}}
</div>
</div>

<div class="simplified">
<div class="vcenter">
Simplified: {{.Simplified}}
</div>
</div>

<div class="translations">
<div class="vcenter">
Translations:

{{range .Translations}}
{{.}}

{{end}}
</div>
</div>
{{end}}
{{end}}

</div>

232

CHAPTER 10 © A COMPLETE WEB SERVER

{{end}}
</p>
<div style="position: absolute; bottom: opx">
<p class="return">
Press &1t;Space8gt; or Tap to continue

 Return to Flash Cards list
</p>
</div>

</body>

</html>

The actual function is shown in the following. We see the card set, presentation order, and rendering,
very similar to prior functions.

func showFlashCards(rw http.ResponseWriter, cardname, order, half string) {
cards := new(FlashCards)
content, err := os.Open(cardname)
checkError(err)
LoadJSON(content, &cards)

switch order {
case CardOrderSequential:
cards.CardOrder = "SEQUENTIAL"
default:
cards.CardOrder
}

if v, ok := showHalf[half]; ok {
cards.ShowHalf = v
} else {
cards.ShowHalf = showHalf["Chinese"]
}

"RANDOM"

fmt.Printf("Loading card %s, half %s, loaded # of %d, card name %s\n", cardname,
half, len(cards.Cards), cards.Name)

t, err := template.New(ShowFlashCardPage).Funcs(template.FuncMap{"pinyin":
PinyinFormatter}).ParseFiles("html/" + ShowFlashCardPage)

if err 1= nil {

httpErrorHandler(rw, err)
return

}

err = t.Execute(rw, cards)

233

CHAPTER 10 © A COMPLETE WEB SERVER

if err 1= nil {
httpErrorHandler(rw, err)
return

Aside rendering, we have basic error handling: “checkError” for exceptional errors (enough to shut
down) and httpErrorHandler used when we wish to indicate an HTTP 500 status.

Presentation on the Browser

The final part of this system is how this HTML is shown in the browser. Figure 10-3 shows a screen of

four parts displaying the English, the simplified Chinese, the alternative translations, and the traditional/
simplified pair. How this is done is by the JavaScript program downloaded to the server (this takes place
using the FileServer Go object). The JavaScript slideviewer. js file is actually pretty long and is omitted
from the text. It is included in the program files at https://github.com/Apress/network-prog-with-go-2e.

Running the Server

The server can then be run on port 8000 (or other port) using a command such as this:
ch10$ go run *.go :8000
or

ch10$ go run server.go pinyinformatter.go flashCards.go dictionary.go :8000

Conclusion

This chapter has considered a relatively simple but complete web server using static and dynamic web pages
with form handling and using templates for simplifying coding.

234

https://github.com/Apress/network-prog-with-go-2e

CHAPTER 11

HTML

The Web was originally created to serve HTML documents. Now it is used to serve all sorts of documents as
well as data of different kinds. Nevertheless, HTML is still the main document type delivered over the Web.

HTML has been through a large number of versions, with the current version being HTML5. There have
also been many “vendor” versions of HTML, introducing tags that never made it into the standards.

HTML is simple enough to be edited by hand. Consequently, many HTML documents are “ill formed,”
which means they don’t follow the syntax of the language. HTML parsers generally are not very strict and
will accept many “illegal” documents.

The HTML package itself only has two functions: EscapeString and UnescapeString. These properly
handle characters such as <, converting them to < and back again.

A principal use of this might be to escape the markup in an HTML document so that if it is displayed
in a browser, it will show all the markup (much like Ctrl+U in Chrome on Linux or Option+Cmd+U on Mac
Chrome).

I'm more likely to use this to show the text of a program as a web page. Most programming languages
have the < symbol, and many have 8. These mess up an HTML viewer unless escaped properly. I like to show
program text directly out of the file system rather than copying and pasting it into a document, to avoid
getting out of sync.

The following program escapestring.go is a web server that shows its URL in preformatted code,
having escaped the troublesome characters:

$ mkdir ch11
$ cd ch11
ch11$ vi escapestring.go

/*

* This program serves a file in preformatted, code layout

* Useful for showing program text, properly escaping special
* characters like '<', '>' and '&'

*/

package main

import (
"fmt"
"html"
n 10g n
"net/http"

0s

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 235
https://doi.org/10.1007/978-1-4842-8095-9_11

https://doi.org/10.1007/978-1-4842-8095-9_11#DOI

CHAPTER 11 = HTML

func main() {
http.HandleFunc("/", escapeString)
err := http.ListenAndServe(":8080", nil)
checkError(err)
}
func escapeString(rw http.Responselriter, req *http.Request) {
fmt.Println(req.URL.Path)
bytes, err := os.ReadFile("." + req.URL.Path)
if err 1= nil {
rw.WriteHeader(http.StatusNotFound)

return
}
escapedStr := html.EscapeString(string(bytes))
htmlText := "<html><body><pre><code>" +

escapedStr +
" </code></pre></body></html>"
rw.Write([]byte(htmlText))
}
func checkError(err error) {
if err 1= nil {
log.Fatalln("Error ", err.Error())
}

When it runs, serving files from the directory including the escapestring.go program, a browser will
display it correctly using the URL localhost:8080/escapestring.go.
Run the server with this command:

ch11$ go run escapestring.go
Run a client with this command, as an example (or in a browser):

ch11$ curl localhost:8080/escapestring.go
<html><body><pre><code>/*
* This program serves a file in preformatted, code layout

}
</code></pre></body></html>

In both cases, the result is our original code (wrapped in a pre/code block)! If you typo the name, you
will receive an HTTP 404.

The html/template Package

There are many attacks that can be made on web servers, the most notable being SQL injection, where

a user-agent enters data into a web form deliberately designed to be passed into a database and wreaks
havoc there. Go does not have any particular support to avoid this, since there are many variances among
databases as to the SQL injection techniques that can succeed. The SQL Injection Prevention Cheat Sheet
(see https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection Prevention Cheat Sheet.
html) summarizes the defenses against such attacks. The principal one is to avoid such attacks by using SQL
prepared statements, which can be done using the Prepare function in the database/sql package.

236

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

CHAPTER 11 = HTML

More subtle attacks are based on XSS - cross-site scripting. This is where an attacker is not trying to
attack the website itself but stores malicious code on the server to attack any of the clients of that website.

These attacks are based on inserting data into the database strings that, when delivered to a browser, for
example, will attack the browser and, through it, attack the client of the website. (There are several variants
of this, discussed at “OWASP: Types of XSS” - https://owasp.org/www-community/Types of Cross-Site_
Scripting.)

For example, JavaScript may be inserted where a blog comment was requested to redirect a browser to
an attacker’s site:

<script>
window.location="http://attacker/’
</script>

The Go html/template package is designed on top of the text/template package. The assumption
is made that whereas the template will be trusted, the data that it deals with may not. What htm1/
template adds is suitable escaping of the data to try to eliminate the possibility of XSS. It is based on the
document called “Using Type Inference to Make Web Templates Robust Against XSS” by Mike Samuel and
Prateek Saxena. Read that paper at https://rawgit.com/mikesamuel/sanitized-jquery-templates/
trunk/safetemplate.html#problem definition for the theory behind the package and the package
documentation itself.

In short, prepare templates as per the text/template package and use the html/template package if
the resultant text is delivered to an HTML agent.

Tokenizing HTML

The package golang.org/x/net/html in the Go subrepositories contains a tokenizer for HTML. This allows
you to build a parse tree of HTML tokens. It is compliant with HTML5.
Here is an example program using this package in readhtml.go.

ch11$ vi readhtml.go

/* Read HTML
*/
package main

import (
"fmt"
"golang.org/x/net/html"
"o
"log"
"os
"strings"
)
func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[o0], "file")
}
file := os.Args[1]
bytes, err := os.ReadFile(file)

237

https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://rawgit.com/mikesamuel/sanitized-jquery-templates/trunk/safetemplate.html#problem_definition
https://rawgit.com/mikesamuel/sanitized-jquery-templates/trunk/safetemplate.html#problem_definition

CHAPTER 11 = HTML

checkError(err)
r := strings.NewReader(string(bytes))
z := html.NewTokenizer(r)
depth := 0
for {
tt := z.Next()
for n := 0; n < depth; n++ {
fmt.Print(" ")
}

switch tt {
case html.ErrorToken:
if z.Err() == io.EOF {
fmt.Println("EOF")
} else {
fmt.PrintIn("Error ", z.Err().Error())
}

os.Exit(0)
case html.TextToken:
fmt.PrintIn("Text: \"" + z.Token().String() + "\"")
case html.StartTagToken, html.EndTagToken:
fmt.Println("Tag: \"" + z.Token().String() + "\"")
if tt == html.StartTagToken {
depth++
} else {
depth--
}

}
}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

When we run readhtml.go on a simple HTML document such as this, sample.html:
ch11$ vi sample.html

<html>
<head>
<title> Test HTML </title>
</head>
<body>
<h1> Header one </h1>
<p>
Test para
</p>
</body>
</html>

238

After setting up the dependencies, it produces the following output:

$ go mod init example.com/user/readhtml
$ go mod tidy
$ go run readhtml.go sample.html

Tag: "<html>"

Text: "

Tag: "<head>"
Text: "
Tag: "<title>"
Text: " Test HTML "
Tag: "</title>"
Text: "

Tag: "</head>"

Text: "
Tag: "<body>"

Text: "

Tag: "<h1>"
Text: " Header one "
Tag: "</h1>"

Text: "

Tag: "<p>"
Text: "

Test para
Tag: "</p>"
Text: "

Tag: "</body>"
Text: "

Tag: "</html>"
Text: "

EOF

(All the whitespace it produces is correct.)

CHAPTER 11

HTML

239

CHAPTER 11 = HTML

XHTML/HTML

There is also limited support for XHTML/HTML in the XML package, discussed in the next chapter.

JSON

There is good support for JSON, as discussed in Chapter 4.

Conclusion

There isn’t much to this package. The subpackage html/template was discussed in Chapter 9 on templates.

240

https://doi.org/10.1007/978-1-4842-8095-9_4
https://doi.org/10.1007/978-1-4842-8095-9_9

CHAPTER 12

XML

XML is a significant markup language mainly intended as a means of representing structured data using
a text format. In the language we used in Chapter 4, it can be considered as a means of serializing data
structures as a text document. It is used to describe documents such as DocBook and XHTML. It is used in
specialized markup languages such as MathML and CML (Chemical Markup Language). It is used to encode
data as SOAP messages for Web Services, and the Web Service can be specified using WSDL (Web Services
Description Language).

At the simplest level, XML allows you to define your own tags for use in text documents. Tags can be
nested and can be interspersed with text. Each tag can also contain attributes with values. For example, the
file person.xml may contain

$ mkdir chi12
$ cd ch12
ch12$ vi person.xml

<person>
<name>
<family> Newmarch </family>
<personal> Jan </personal>
</name>
<email type="personal">
jan@newmarch.name
</email>
<email type="work">
j.newmarch@boxhill.edu.au
</email>
</person>

The structure of any XML document can be described in a number of ways:
e A document type definition (DTD) is good for describing structure.
e XML schema are good for describing the data types used by an XML document.
e RELAXNG is proposed as an alternative to both.

There is argument over the relative value of each way of defining the structure of an XML document.
We won'’t buy into that, as Go does not support any of them. Go cannot check for validity of any document
against a schema, but only for well-formedness. Even well-formedness is an important characteristic of
XML documents and is often a problem with HTML documents in practice. That makes XML suitable for
representation of even very complex data, while HTML is not.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 241
https://doi.org/10.1007/978-1-4842-8095-9_12

https://doi.org/10.1007/978-1-4842-8095-9_12#DOI
https://doi.org/10.1007/978-1-4842-8095-9_4

CHAPTER 12 © XML

Four topics are discussed in this chapter: marshalling and unmarshalling Go data into XML, parsing an
XML stream, and XHTML.

Unmarshalling XML

Go provides a function called Unmarshal to unmarshal XML into Go data structures. The unmarshalling is
not perfect: Go and XML are different languages.

We consider a simple example before looking at the details. First, consider the XML document given
earlier (person.xml):

<person>
<name>
<family> Newmarch </family>
<personal> Jan </personal>
</name>
<email type="personal">
jan@newmarch.name
</email>
<email type="work">
j.newmarch@boxhill.edu.au
</email>
</person>

We would like to map this onto the Go structures:

type Person struct {
Name Name
Email []Email

}

type Name struct {
Family string
Personal string

}

type Email struct {
Type string
Address string

This requires several comments:

e Unmarshalling uses the Go reflection package. This requires that all fields be
exported; that is, start with a capital letter. Earlier versions of Go used case-
insensitive matching to match fields such as the XML string “name” to the field Name.
Now, though, case-sensitive matching is used. To perform a match, the structure
fields must be tagged to show the XML string that will be matched against. This
changes Person to the following:

type Person struct {

Name Name “xml:"name""
Email []Email “xml:"email""

242

CHAPTER 12 © XML

e While tagging of fields can attach XML strings to fields, it can't do so with the names
of the structures. An additional field is required, with the field name XMLName. This
only affects the top-level struct, Person:

type Person struct {
XMLName Name ~xml:"person""
Name Name ~xml:"name"’
Email []Email ~xml:"email""

}

e Repeated tags map to a slice in Go.

e Attributes within tags will match to fields in a structure only if the Go field has the tag
,attr. This occurs with the field Type of Email, where matching the attribute type of
the email tag requires xml: "type,attr".

e Ifan XML tag has no attributes and only has character data, then it matches a string
field by the same name (case-sensitive, though). So the tag xml:"family" with
character data Newmaxrch maps to the string field Family.

e Butif the tag has attributes, then it must map to a structure. Go assigns the character
data to the field with tag ,chardata. This occurs with the email data and the field
Address with tag ,chardata.

A program to unmarshal the preceding document is unmarshal.go:
ch12$ vi unmarshal.go
/* Unmarshal

*/
package main

import (
"encoding/xml"
"fmt"
lllogll

)

type Person struct {
XMLName Name “xml:"person"”
Name Name “xml:"name"”
Email []Email “xml:"email""

}

type Name struct {
Family string “xml:"family""
Personal string “xml:"personal""

}

type Email struct {
Type string “xml:"type,attr""
Address string “xml:",chardata"’

243

CHAPTER 12 © XML

func main() {
str := “<?xml version="1.0" encoding="utf-8"?>
<person>
<name>
<family> Newmarch </family>
<personal> Jan </personal>
</name>
<email type="personal">
jan@newmarch.name
</email>
<email type="work">
j.newmarch@boxhill.edu.au
</email>
</person>”
var person Person
err := xml.Unmarshal([]byte(str), &person)
checkError(err)
// now use the person structure e.g.
fmt.Println("Family name: \"" + person.Name.Family + "\"")
for , email := range person.Email {
fmt.Println(email)
}

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

}

ch12$ go run unmarshal.go

Family name: " Newmarch "
{personal
jan@newmarch.name

}
{work
j.newmarch@boxhill.edu.au

}

(Note that the spaces are correct.) The strict rules are given in the package specification; see go
doc -all encoding/xml

Marshalling XML

Go also has support for marshalling data structures into an XML document. The function is

func Marshal(v interface}{) ([]byte, error)

244

A program to marshal a simple structure is marshal.go:
ch12$ vi marshal.go

/* Marshal
*/
package main

import (
"encoding/xml"
"t

)

type Person struct {
XMLName xml.Name ~xml:"person”
Name Name “xml:"name"”
Email []Email “xml:"email""

}
type Name struct {

Family string “xml:"family""
Personal string “xml:"personal""
}
type Email struct {
Kind string "attr"
Address string "chardata"

}

func main() {
person := Person{
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: []Email{Email{Kind: "home", Address: "jan"},
Email{Kind: "work", Address: "jan"}}}
buff, _ := xml.Marshal(person)
fmt.Println(string(buff))

It produces the text with no whitespace.

ch12$ go run marshal.go

CHAPTER 12 © XML

<Person><Name><Family>Newmarch</Family><Personal>Jan</Personal></Name><Email><Kind>home
</Kind><Address>jan</Address></Email><Email><Kind>work</Kind><Address>jan</Address>

</Email></Person>

Parsing XML

Go has an XML parser that’s created using NewDecoder from the encoding/xml package. This takes an io.
Reader as a parameter and returns a pointer to Decoder. The main method of this type is Token, which
returns the next token in the input stream. The token is one of these types: StartElement, EndElement,

CharData, Comment, ProcInst, or Directive.

245

CHAPTER 12 © XML

The XML types are StartElement, EndElement, CharData, Comment, ProcInst, and Directive. They are
described next.

The StartElement Type

The type StartElement is a structure with two field types:
type StartElement struct {
Name Name

Attr []Attr
}

wheretype Attr struct {
Name Name
Value string

The EndElement Type

This is also a structure as follows:

type EndElement struct {
Name Name
}

The CharData Type

This type represents the text content enclosed by a tag and is a simple type:

type CharData []byte

The Comment Type

Similarly, for comments this type is similar to CharData’s type:

type Comment []byte

The Proclnst Type
A ProcInst represents an XML processing instruction of the form <?target inst?>:
type ProcInst struct {

Target string
Inst []byte

246

The Directive Type

A Directive represents an XML directive of the form <!text>. The bytes do not include the <! and >

markers.
type Directive []byte

A program to print out the tree structure of an XML document is parsexml.go:
ch12$ vi parsexml.go

/* Parse XML
*/
package main

import (
"encoding/xml"
n .Fmt n
"io/ioutil”
"log"
"osh
"strings"

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[o0], "file")
}

file := os.Args[1]
bytes, err := ioutil.ReadFile(file)
checkError(err)
r := strings.NewReader(string(bytes))
parser := xml.NewDecoder(r)
depth := 0
for {
token, err := parser.Token()
if err 1= nil {
break
}

switch elmt := token.(type) {
case xml.StartElement:
name := elmt.Name.local
printElmt(name+":start", depth)
depth++
case xml.EndElement:
depth--
name := elmt.Name.local
printElmt(name+":end", depth)
case xml.CharData:
printElmt(string([]byte(elmt)), depth)
case xml.Comment:

XML

247

CHAPTER 12 © XML

printElmt("Comment", depth)
case xml.ProcInst:
printElmt("ProcInst”, depth)
case xml.Directive:
printElmt("Directive”, depth)
default:
fmt.Println("Unknown™)
}

}

}

func printElmt(s string, depth int) {
slimS := strings.TrimSpace(s)

if len(slimS) == 0 {
return
}

for n := 0; n < depth; n++ {
fmt.Print(" ")
}

fmt.Println(slimS)
}
func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

Note that the parser includes all CharData, including the whitespace between the tags.
If we run the parsexml.go program against the person data structure given earlier, as follows:

ch12$ go run parsexml.go person.xml

person:start
name:start
family:start
Newmarch
family:end
personal:start
Jan
personal:end
name:end
email:start
jan@newmarch.name
email:end
email:start
j.newmarch@boxhill.edu.au
email:end
person:end

Note that as no DTD or other XML specification has been used, the tokenizer correctly prints out all the

whitespace (a DTD may specify that the whitespace can be ignored, but without it, that assumption cannot
be made). To make things prettier, we removed extra space via Trim.

248

CHAPTER 12 © XML

There is a potential trap in using this parser. It reuses space for strings, so once you see a token, you
need to copy its value if you want to refer to it later. Go has methods such as func (¢ CharData) Copy()
CharData to make a copy of data; see go doc encoding.xml.Copy.

XHTML

HTML does not conform to XML syntax. It has unterminated tags such as
. XHTML is a cleanup of
HTML to make it compliant with XML. Documents in XHTML can be managed using the techniques
mentioned before for XML. XHTML does not appear to be as widely used as originally expected. My own
suspicion is that an HTML parser is usually tolerant of errors and, when used in a browser, generally makes
areasonable job of rendering a document; XHTML parsers even in a browser tend to be more strict and
often fail to render anything upon encountering even a single XML error. This is not a generally appropriate
behavior for user-facing software.

HTML

There is some support in the XML package to handle HTML documents even though they may not be XML
compliant. The XML parser discussed earlier can handle many HTML documents if it is modified by turning
off strict parse checking.

parser := xml.NewDecoder(r)
parser.Strict = false
parser.AutoClose = xml.HTMLAutoClose
parser.Entity = xml.HTMLEntity

Conclusion

Go has basic support for dealing with XML strings. It does not as yet have mechanisms for dealing with XML
specification languages such as XML Schema or Relax NG.

249

CHAPTER 13

Remote Procedure Call

Socket and HTTP programming both use a message-passing paradigm. A client sends a message to a
server, which usually sends a message back. Both sides are responsible for creating messages in a format
understood by both sides and reading the data out of those messages.

However, most stand-alone applications do not use message-passing techniques much. Generally, the
preferred mechanism is that of the function (or method or procedure) call. In this style, a program will call
a function with a list of parameters and, on completion of the function call, will have a set of return values.
These values may be the function value, or if addresses have been passed as parameters, then the contents of
those addresses might have been changed.

The remote procedure call is an attempt to bring this style of programming into the network world.
Thus, a client will make what looks to it like a normal procedure call. The client side will package this into a
network message and transfer it to the server. The server will unpack this and turn it back into a procedure
call on the server side. The results of this call will be packaged up for return to the client.

Diagrammatically, it looks like Figure 13-1.

Server
procedure
implementations

Client
program

1 10 5 6

Client Server
procedure procedure
stubs stubs

A

Network > Network

routines » - routines

Figure 13-1. The remote procedure call steps

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 251
https://doi.org/10.1007/978-1-4842-8095-9_13

https://doi.org/10.1007/978-1-4842-8095-9_13#DOI

CHAPTER 13 © REMOTE PROCEDURE CALL

The steps are as follows:

1. The client calls the client procedure stubs. The stub packages the parameters
into a network message. This is called marshalling.

2. Networking routines in the O/S kernel are called by the stub to send the message.

Cd

The kernel sends the message(s) to the remote system. This may be connection
oriented or connectionless.

The server procedure stubs unmarshal the arguments from the network message.
The server procedure stubs execute server procedure implementations.

The procedures complete, returning execution to the server procedure stubs.

The server stubs marshal the return values into a network message.

The return messages are sent back.

The client procedure stubs read the messages using the network routines.

e © ® N o g

The message is unmarshalled, and the return values are set on the stack for the
client program.

There are two common styles for implementing RPC. The first is typified by Sun’s ONC/RPC and
by CORBA. In this, a specification of the service is given in some abstract language such as CORBA IDL
(interface definition language). This is then compiled into code for the client and for the server. The client
then writes a normal program containing calls to a procedure/function/method, which is linked to the
generated client-side code. The server-side code is actually a server itself, which is linked to the procedure
implementation that you write.

In this first way, the client-side code is almost identical in appearance to a normal procedure call.
Generally, there is a little extra code to locate the server. In Sun’s ONC, the address of the server must be
known; in CORBA, a naming service is called to find the address of the server; in Java RMI, the IDL is Java
itself, and a naming service is used to find the address of the service.

In the second style, you have to use a special client API. You hand the function name and its parameters
to this library on the client side. On the server side, you have to explicitly write the server yourself, as well as
the remote procedure implementation.

This second approach is used by many RPC systems, such as Web Services. It is also the approach used
by Go’s RPC.

Go’s RPC

Go's RPC is so far unique to Go. It is different than the other RPC systems, so a Go client will only talk to a
Go server. It uses the Gob serialization system discussed in Chapter 4, which defines the data types that can
be used.

RPC systems generally make some restrictions on the functions that can be called across the network.
This is so that the RPC system can properly determine which value arguments are sent, which reference
arguments receive answers, and how to signal errors.

In Go, the restriction is that

e The method's type is exported (it begins with a capital letter).
e The method is exported.
e The method has two arguments, both exported (or built-in) types. The first is for data

passed into the method; the second is for returned results.

252

https://doi.org/10.1007/978-1-4842-8095-9_4

CHAPTER 13 © REMOTE PROCEDURE CALL

e The method’s second argument is a pointer.
e Ithasareturn value of type error.

For example, here is a valid function:
F(T1, &T2) error

The restriction on arguments means that you typically have to define a structure type. Go’s RPC uses the
gob package for marshalling and unmarshalling data, so the argument types have to follow the rules of Gob
as discussed in an earlier chapter.

We will follow the example given in the Go documentation, as it illustrates the important points. The
server performs two trivial operations - they do not require the “grunt” of RPC but are simple to understand.
The two operations are to multiply two integers and to find the quotient and remainder after dividing the
first by the second.

The two values to be manipulated are given in a structure:

type Values struct {
A, B int
}

The product is just an int, while the quotient/remainder is another structure:

type Quotient struct {
Quo, Rem int
}

We will have two functions, multiply and divide, to be callable on the RPC server. These functions
need to be registered with the RPC system. The Register function takes a single parameter, which is an
interface. So we need a type with these two functions:

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
*reply = args.A * args.B
return nil

func (t *Arith) Divide(args *Args, quo *Quotient) error {
if args.B == 0 {
return errors.New("divide by zero")
}

quo.Quo = args.A / args.B
quo.Rem = args.A % args.B
return nil

The underlying type of Arith is given as int. That doesn’t matter - any type will suffice.
An object of this type can now be registered using Register, and then it's methods can be called by the
RPC system.

253

CHAPTER 13 © REMOTE PROCEDURE CALL

HTTP RPC Server

Any RPC needs a transport mechanism to get messages across the network. Go can use HTTP or TCP. The
advantage of the HTTP mechanism is that it can leverage the HTTP support library. You need to add an RPC
handler to the HTTP layer, which is done using Hand1eHTTP, and then start an HTTP server. The complete
codeis arithserver.go:

$ mkdir chi13
$ cd ch13
ch13$ vi arithserver.go

/* ArithServer
*/
package main

import (
"errors”
"fmt"
"net/http"
"net/rpc"

)

type Values struct {
A, B int

}

type Quotient struct {
Quo, Rem int

type Arith int

func (t *Arith) Multiply(args *Values, reply *int) error {
*reply = args.A * args.B
return nil

func (t *Arith) Divide(args *Values, quo *Quotient) error {
if args.B == 0 {
return errors.New("divide by zero")
}

quo.Quo = args.A / args.B
quo.Rem = args.A % args.B
return nil

}

func main() {
arith := new(Arith)
rpc.Register(arith)
rpc.HandleHTTP()
err := http.ListenAndServe(":1234", nil)
if err 1= nil {

fmt.Println(err.Error())

}

254

CHAPTER 13 © REMOTE PROCEDURE CALL

and it is run by
ch13$ go run arithserver.go

Let the server run. Next, we look at the user of the RPC service, the RPC client.

HTTP RPC Client

The client needs to set up an HTTP connection to the RPC server. It needs to prepare a structure with the
values to be sent and the address of a variable in which to store the results. Then it can make a Call with
these arguments:

e The name of the remote function to execute
e The values to be sent
e The address of a variable in which to store the result
A client that calls both functions of the arithmetic server is arithclient.go:
ch13$ vi arithclient.go
/* ArithClient

*/
package main

import (
"fmt"
"log"
"net/rpc"
"os"

)

type Args struct {
A, B int
}

type Quotient struct {
Quo, Rem int
}

func main() {

if len(os.Args) != 2 {
fmt.Println("Usage: ", os.Args[0], "server"
os.Exit(1)

}

serverAddress := o0s.Args[1]

client, err := rpc.DialHTTP("tcp", serverAddress+":1234")

if err != nil {
log.Fatal("dialing:", err)

}

// Synchronous call
args := Args{17, 8}
var reply int

255

CHAPTER 13 © REMOTE PROCEDURE CALL

err = client.Call("Arith.Multiply", args, &reply)
if err 1= nil {
log.Fatal("arith error:", err)
}
fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)
var quot Quotient
err = client.Call("Arith.Divide", args, ")
if err 1= nil {
log.Fatal("arith error:", err)
}

fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B,
quot.Quo, quot.Rem)
When it runs, we see the following output:
ch13$ go run arithclient.go localhost

Arith: 17*8=136
Arith: 17/8=2 remainder 1

TCP RPC Server

A version of the server that uses TCP sockets is tcparithserver.go:
ch13$ vi tcparithserver.go
/* TCPArithServer

*/
package main

import (
"errors"
"log"
"net"
"net/rpc"

)

type Args struct {
A, B int

}

type Quotient struct {
Quo, Rem int
}

type Arith int
func (t *Arith) Multiply(args *Args, reply *int) error {

*reply = args.A * args.B
return nil

256

CHAPTER 13 © REMOTE PROCEDURE CALL

func (t *Arith) Divide(args *Args, quo *Quotient) error {
if args.B == 0 {
return errors.New("divide by zero")
}

quo.Quo = args.A / args.B
quo.Rem = args.A % args.B
return nil

}

func main() {
arith := new(Arith)

rpc.Register(arith)
tcpAddr, err := net.ResolveTCPAddr("tcp", ":1234")
checkError(err)

listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)

/* This works:

rpc.Accept(listener)

*/

/* and so does this:

*/
for {

conn, err := listener.Accept()
if err != nil {

continue
}

rpc. ServeConn(conn)

}
}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

Note that the call to Accept is blocking and just handles client connections. If the server wants to do
other work as well, it should call this in a go routine.
Launch the server as follows:

ch13$ go run tcparithserver.go

As before, we now look at the related client.

TCP RPC Client

A client that uses the TCP server and calls both functions of the arithmetic server is tcparithclient.go:
ch13$ vi tcparithclient.go

/* TCPArithClient

*/

package main

257

CHAPTER 13 © REMOTE PROCEDURE CALL

import (
"t
"log"
"net/rpc"

0s

)

type Args struct {
A, B int
}

type Quotient struct {
Quo, Rem int
}

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "server:port")
}

service := os.Args[1]
client, err := rpc.Dial("tcp", service)
if err 1= nil {
log.Fatalln("dialing:", err)
}

// Synchronous call
args := Args{17, 8}
var reply int
err = client.Call("Arith.Multiply", args, &reply)
if err != nil {
log.Fatalln("arith error:", err)
}

fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)
var quot Quotient
err = client.Call("Arith.Divide", args, ")
if err != nil {
log.Fatalln("arith error:", err)
}

fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B,
quot.Quo, quot.Rem)
When it’s run, we see the following:
ch13$ go run tcparithclient.go localhost:1234

Arith: 17*8=136
Arith: 17/8=2 remainder 1

When choosing to use rpc.HandleHTTP vs. rpc.ServeConn, it's more about control and speed. The TCP

server gives us more control as it sits below HTTP. If that is unimportant, then the former arithserver.go may
be the way.

258

CHAPTER 13 © REMOTE PROCEDURE CALL

Matching Values

You may have noticed that the types of the value arguments are not the same on the HTTP client and HTTP
server. In the server, we used Values, while in the client, we used Args. That doesn’t matter, as we are
following the rules of Gob serialization, and the names and types of the two structures’ fields match. Better
programming practice would say that the names should be the same, of course!

However, this does point out a possible trap in using Go RPC. If we change the structure in the server to
be this:

type Values struct {
C, B int
}

then Gob has no problems. On the client side, the unmarshalling will ignore the value of C given by the
server and use the default zero value for A. This could cause problems if, say, a divide by A (zero) was done.

Using Go RPC will require a rigid enforcement of the stability of field names and types by the
programmer. We note that there is no version control mechanism to do this and no mechanism in Gob to
signal any possible mismatches. There is also no required external representation to act as a reference. If you
are just adding fields, then it may be okay, but it will still need control. Perhaps adding a version field to the
data structure would help.

JSON

This section adds nothing new to the earlier concepts. It just uses a different “wire” format for the data,
JSON instead of Gob. As such, clients or servers could be written in other languages that understand sockets
and JSON.

JSON RPC Server

A version of the server that uses JSON encoding is jsonarithserver. go:
ch13$ vi jsonarithserver.go
/* JSONArithServer

*/
package main

import (
"errors"
"log"
"net"
"net/rpc"
"net/rpc/jsonrpc”
)

type Args struct {
A, B int
}

259

CHAPTER 13 © REMOTE PROCEDURE CALL

type Quotient struct {
Quo, Rem int
}

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) error {
*reply = args.A * args.B
return nil

func (t *Arith) Divide(args *Args, quo *Quotient) error {
if args.B == 0 {
return errors.New("divide by zero")
}

quo.Quo = args.A / args.B
quo.Rem = args.A % args.B
return nil

func main() {
arith := new(Arith)
rpc.Register(arith)
tcpAddr, err := net.ResolveTCPAddr("tcp", ":1234")
checkError(err)
listener, err := net.ListenTCP("tcp", tcpAddr)
checkError(err)
/* This works:
rpc.Accept(listener)

*/
/* and so does this:
*/
for {
conn, err := listener.Accept()
if err 1= nil {
continue
}
jsonrpc.ServeConn(conn)
}

}
func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())
running as follows:

ch13$ go run jsonarithserver.go

Again, we look at the related client next.

260

CHAPTER 13 © REMOTE PROCEDURE CALL

JSON RPC Client

A client that calls both functions of the arithmetic server is jsonarithclient.go:
ch13$ vi jsonarithclient.go
/* JSONArithCLient

*/
package main

import (
"fmt"
"log"
"net/rpc/jsonrpc”
"os"

)

type Args struct {
A, B int
}

type Quotient struct {
Quo, Rem int
}

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage:
}

service := os.Args[1]
client, err := jsonrpc.Dial("tcp", service)
if err 1= nil {
log.Fatalln("dialing:", err)
}

// Synchronous call
args := Args{17, 8}
var reply int
err = client.Call("Arith.Multiply", args, &reply)
if err 1= nil {
log.Fatalln("arith error:", err)
}

fmt.Printf("Arith: %d*%d=%d\n", args.A, args.B, reply)
var quot Quotient
err = client.Call("Arith.Divide", args, ")
if err 1= nil {
log.Fatalln("arith error:", err)
}

fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B,
quot.Quo, quot.Rem)

, 0s.Args[0], "server:port")

261

CHAPTER 13 © REMOTE PROCEDURE CALL

It's run as follows:
ch13$ go run jsonarithclient.go localhost:1234

Arith: 17*8=136
Arith: 17/8=2 remainder 1

While not obvious (aside from the jsonrpc.Dial), the request and response are encoded and decoded

via the encoding/json package. Take a look at related docs such as go doc -u jsonrpc.WriteRequest or the
source itself here: /usr/local/go/src/net/rpc/jsonrpc/client.go.

Conclusion

RPC is a popular means of distributing applications. Several ways of doing it have been presented here,
based on the Gob or JSON serialization techniques and using HTTP and TCP for transport.

262

CHAPTER 14

REST

In previous chapters, we looked at HTTP and gave an example of a web system. However, we didn’t give any
particular structure to the system, just what was simple enough for the problem. There is an architectural
style developed by one of the key authors of HTTP 1.1 (Roy Fielding) called REST (REpresentational State
Transfer). In this chapter, we look at the REST style and what it means for building web applications. We
have to go back to fundamentals for this.

REST has many components that have to be followed if the term REST can be properly applied.
Unfortunately, it has become a buzzword, and many applications have “bits” of REST but not the full thing. We
discuss the Richardson Maturity Model, which says how far along the path to RESTful-ness an API has gone.

In the last chapter, we looked at RPCs (remote procedure calls). This is a completely different style than
REST. We also compare the two styles, looking at when it is appropriate to use each style.

URIs and Resources

Resources are the “things” that we want to interact with on a network or the Internet. I like to think of them
as objects, but there is no requirement that their implementation should be object based - they should just
“look like” a thing, possibly with components.

Each resource has one or more addresses known as URIs (uniform resource identifiers).

Note The internationalized form is IRls — internationalized resource identifiers.

These have this generic form:
scheme:[//[user:password@]host[:port]][/]path[?query][#fragment]

Typical examples are URLs (uniform resource locator), where the scheme is http or https, and the host
refers to a computer by its IP address or DNS name, as follows:

https://jan.newmarch.name/IoT/index.html

There are non-HTTP URL schemes such as telnet, news, and IPP (Internet Printing Protocol). These also
contain a location component. There are also others, such as URNs (uniform resource names), which are often
wrappers around other identification systems, and they do not contain location information. For example, the
IETF has a standard URN scheme for books identified by their ISBN, such as the ISBN for this book:

urn:ISBN:978-1-4842-2692-6

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 263
https://doi.org/10.1007/978-1-4842-8095-9_14

https://doi.org/10.1007/978-1-4842-8095-9_14#DOI

CHAPTER 14 = REST

These URNs tend not to be widely used but still exist. A list is given by IANA Uniform Resource Names
(URN) Namespaces at https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml. The
original schemes, such as ISBN, are still in wider use.

A formal definition of a resource may be hard to pin down. For example, http://www.google.com
represents Google in some sense (it is the scheme and the host part of a URL), but the host certainly isn’t
some fixed computer somewhere. Similarly, the ISBN for this book represents something about this book,
but certainly not any extant copies (at the time this chapter was written, no copies existed even though the
ISBN did).

Nevertheless, we take the concept of resource as primitive, and URIs are identifiers for these resources.
The IETF at Uniform Resource Identifier (URI): Generic Syntax (https://www.ietf.org/rfc/rfc3986.txt)
is similarly vague: “the term “resource” is used in a general sense for whatever might be identified by a URIL”

A resource may have more than one URI. As a person, [have a number of different identifiers: my tax
file number refers to one aspect of me, my financial affairs; my Medicare number refers to me as a recipient
of health treatments; my name (fairly unique) is often used to refer to different aspects of me. My URL of
https://jan.newmarch.name refers to those aspects of me that I chose to reveal on my website. And Google,
LinkedIn, Facebook, Twitter, etc., also presumably have URIs of some kind that label those aspects of me that
they have chosen to save.

What is agreed upon is that resources are nouns and not verbs or adjectives. A URL for a bank account
that says http://mybank/myaccount/withdraw is not counted as a resource as it contains the verb withdraw.
Similarly, http://amazon.com/buy/book-id would not label a resource as it contains the verb buy (Amazon
does not have such a URL).

This is the first key to REST for HTTP: identify the resources in your information system and assign
URLs to them. There are conventions in this, the most common one being that if there is a hierarchical
structure, then that should be reflected in the URL path. However, that isn’t necessary as the information
should be given in other ways as well.

The REST approach to designing URIs is still a bit of an art form. Legal (and perfectly legitimate) URIs
are not necessarily “good” REST URIs, and many examples of so-called RESTful APIs have URIs that are
not very RESTful at all. 2PartsMagic in RESTful URI design (http://blog.2partsmagic.com/restful-uri-
design/) offers good advice on designing appropriate URIs.

The REST approach to designing URIs is still a bit of an art form. Legal (and perfectly legitimate) URIs
are not necessarily “good” REST URIs, and many examples of so-called RESTful APIS have URIs that are not
very RESTful at all. The Golang developers blog provides a brief overview of some of the concepts of REST:
https://go.dev/doc/tutorial/web-service-gin. Beyond examples, OpenAPI is a standard to help us with
design and tooling around “http apis”: https://spec.openapis.org/oas/latest.html.

Representations

A representation of a resource is something that captures some information about a resource in some
form. For example, a representation of me from my Tax Office URI might be my tax returns in Australia. A
representation of me from my local pizza cafe would be a record of pizza purchases. A representation of me
from my website would be an HTML document.

This is one of the keys to REST: URIs identify resources, and requests for that resource return a
representation of that resource. The resource itself remains on the server and is not sent to the client at all.
In fact, the resource might not even exist at all in any concrete form. For example, a representation might be
generated from the results of an SQL query that’s triggered by making a request to that URL

REST does not particularly talk about possibilities for negotiating the representation of a resource.
HTTP 1.1 has an extensive section on how to do this, considering server, client, and transparent negotiation.
The Accept headers can be used by a client to specify, for example:

264

https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xhtml
http://www.google.com
https://www.ietf.org/rfc/rfc3986.txt
https://jan.newmarch.name
http://amazon.com/buy/book-id
http://blog.2partsmagic.com/restful-uri-design/
http://blog.2partsmagic.com/restful-uri-design/
https://go.dev/doc/tutorial/web-service-gin
https://spec.openapis.org/oas/latest.html

CHAPTER 14 REST

Accept: application/xml; q=1.0, application/json; q=0.5
Accept-Language: fr
Accept-Charset: utf8

This states that it would prefer the application/xml format but will accept application/json. The
server can either accept one of these or reply with the formats it will accept.

REST Verbs

You can make certain requests to a URI. If you are making an HTTP request to a URL, HTTP defines the
requests that can be made: GET, PUT, POST, DELETE, HEAD, OPTIONS, TRACE, and CONNECT, as well as extensions
such as PATCH. There is only a limited number of these! This is very different than what we have come to
expect from O/0O programming. For example, the Java JLabel has about 250 methods, such as getText and
setHorizontalAlignment. To some degree, we could map these OO to/from REST/HTTP; an instance of a
JLabel is a resource, and we can “get” it via “getText” While that is easy in some minor cases, it’s not so clear
how to map all 250 methods, or should we.

REST is now commonly interpreted as taking just four verbs from HTTP: GET, PUT, POST, and
DELETE. GET roughly corresponds to the getter-methods of OO languages, while PUT roughly corresponds to
the setter methods of OOP languages. If a JLabel were a REST resource (which it isn’t), how would one single
GET verb make up for the hundred or so getter methods of JLabel?

The answer lies in the PATH component of URIs. A label has the properties of text, alignment, and so on.
These are really subresources of the label and could be written as sub-URIs of the label. So if the label had a
URI of http://jan.newmarch.name/my_label, then the subresources could have (example) URIs:

http://jan.newmarch.name/my label/text
http://jan.newmarch.name/my_label/horizontalAlignment

If you want to manipulate just the text of the label, you can use the URI of the text resource, not getter/
setter methods on the label itself.

The GET Verb

To retrieve a representation of a resource, you GET the resource. This will return some representation of the
resource. There may be innumerable possibilities to this choice. For example, a request for this book’s index
might return a representation of the index in French, using the UTF-8 character set, as an XML document, or
many other possibilities. The client and the server can negotiate these possibilities.

The GET verb is required to be idempotent. That is, repeated requests should return the same results (to
within representation type). For example, multiple requests for the temperature of a sensor should return
the same result (unless of course the temperature has changed).

Idempotency by default allows for caching. This is useful for reducing traffic on the Web and may save
battery power for sensors. Caching cannot always be guaranteed: a resource that returns the number of
times it has been accessed will give a different result each time it is accessed. This is an unusual behavior
and would be signaled using the HTTP Cache-Control header.

265

http://jan.newmarch.name/my_label

CHAPTER 14 = REST

The PUT Verb

If you want to change the state of a resource, you can PUT new values. There are two principal
limitations to PUT:

e You can only change the state of a resource whose URI you know.
e Therepresentation you send must cover all components of the resource.

For example, if you only want to change the text in a label, you send the PUT message to the URL
http://jan.newmarch.name/my_label/text, notto http://jan.newmarch.name/my_label. Sending to the
label would require all of the hundred or so fields to be sent.

PUT is idempotent but is not safe. That is, it changes the state of the resource, but repeated calls change it
to the same state.

PUT and DELETE are not part of HTML, and most browsers do not support them directly. They
can be called in browsers with Ajax support. There are several discussions as to why they are not
included. See, for example, “Why are there no PUT and DELETE methods on HTML forms?” at http://
softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-
methods-on-html-forms.

The DELETE Verb

This deletes the resource. It is idempotent but not safe.

Safe methods (e.g., GET) are ones that have no unexpected side effects. Unsafe methods (e.g., PUT)
can be potentially unsafe. Not having the ability to undo a change is something that is unsafe. Ideally, GET
returns a version of a resource, and that’s all. PUT will overlay a resource, and if you didn’t retrieve the prior
version, it may be gone for good.

Idempotent methods are ones that produce the same side effect for the same request no matter how
many times you run it. DELETE will remove a resource, and if you call it the second time, the “outcome” is
the same; the resource is either deleted (if it is created again) or remains nonexisting.

For more on the concepts of “idempotent” and “safe,” see https://www.w3.0rg/Protocols/
rfc2616/rfc2616-sec9.html.

The POST Verb

POST is the do-everything-else verb to deal with situations not covered by the other verbs. There is agreement
about two uses of POST:

e Ifyouwant to create a new resource and you don’t know its URI, then POST a
representation of the resource to a URI that knows how to create the resource.
The returned representation should contain the URI of the new resource. This is
important. To interact with a new resource, you must know its URI, and the return
from POST tells you that.

e Ifaresource has many attributes and you only want to change one or a few of them,
then POST a representation with the changed values only.

There is intense argument about the respective roles of PUT and POST in edge cases. If you want to create
a new resource and do know the URI it will have, then you could use either PUT or POST. Which one you
choose seems to depend on other factors.

266

http://jan.newmarch.name/my_label/text
http://jan.newmarch.name/my_label
http://softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms
http://softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms
http://softwareengineering.stackexchange.com/questions/114156/why-are-there-are-no-put-and-delete-methods-on-html-forms
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

CHAPTER 14 REST

SOAP was designed as an RPC system on top of HTTP. It uses POST for everything. HTML continues to
use POST in forms when it should have the option of using PUT. For these reasons, I do not use POST unless
I absolutely have to. I suppose others have their own principled reasons for using POST instead of PUT, but I
have no idea what they might be :-).

Due to its open-ended scope, POST could be used for almost anything. Many of these uses could be
against the REST model, as is amply illustrated by SOAP. But some of these uses could be legitimate. POST
is usually non-idempotent and not safe, although particular cases could be either. The following Stack
Overflow post contains a thoughtful discussion on PUT vs. PATCH vs. POST: https://stackoverflow.com/
questions/28459418/use-of-put-vs-patch-methods-in-rest-api-real-life-scenarios.

No Maintained State (That Is, Stateless)

Let’s establish this up front: cookies are out. Cookies are often used to track the state of a user through an
interaction with a server, with a typical example being a shopping cart. A structure is created on the server
side, and a cookie is returned to be used to signal that this is the shopping cart to be used.
REST made the decision not to maintain any client state on the server. This simplifies interactions
and also sidesteps the tricky issues of how to restore consistency after the client or server has crashed. If
the server doesn’t need to maintain any state, then it leads to a more robust server model. Often, security-
related items are set in a cookie. A REST endpoint should return representations of those resources. An
authentication-related cookie often transcends those resources, hence not RESTful. More on this topic can
be found here: https://www.ics.uci.edu/~fielding/pubs/dissertation/evaluation.htmi#sec_6 3 4 2.
If you can’t use cookies, what do you do? It’s actually trivial: a cart is created on the server. Under REST,
that can only happen in response to a POST request, which returns a new URI for the new resource. So that is
what you use - the new URI. You can GET, PUT, POST, and DELETE to this URI, to do all things you want to do
directly on the resource without having to do workarounds with cookies.

HATEOAS

HATEOAS stands for “Hypermedia as the Engine of Application State.” It is generally recognized as an awful
acronym, but it has stuck. The basic principle is that navigating from one URI to another, which is related
in some way, should not be done by any out-of-band mechanism but that the new link must be embedded
in some way as a hyperlink within the representation of the first URI. This is a key feature of REST, often
not done.

REST does not state the format of the links. They could be given using the HTML link tag, by URLs
embedded in a PDF document, or by links given in an XML document. Formats that do not have simple
representations for URLSs are not considered as hypermedia languages and are not contained in REST.

Also, REST also does not explicitly state the meanings of the links nor how to extract
the appropriate links. Fielding states in his blog “REST APIs must be hypertext-driven” at
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven:

A REST API should be entered with no prior knowledge beyond the initial URI
(bookmark) and set of standardized media types that are appropriate for the
intended audience (i.e., expected to be understood by any client that might use
the API). From that point on, all application state transitions must be driven

by client selection of server-provided choices that are present in the received
representations or implied by the user’s manipulation of those representations.

IANA maintains a registry of relation types (IANA: Link Relations at http://www.iana.org/
assignments/link-relations/link-relations.xhtml) that can be used. The Web Linking RFC 5988
describes the web linking registry (https://datatracker.ietf.org/doc/html/rfc5988). The HTML5

267

https://stackoverflow.com/questions/28459418/use-of-put-vs-patch-methods-in-rest-api-real-life-scenarios
https://stackoverflow.com/questions/28459418/use-of-put-vs-patch-methods-in-rest-api-real-life-scenarios
https://www.ics.uci.edu/~fielding/pubs/dissertation/evaluation.htm#sec_6_3_4_2
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
https://datatracker.ietf.org/doc/html/rfc5988

CHAPTER 14 = REST

specification has a small number of defined relations and points to Microformats rel values at http://
microformats.org/wiki/existing-rel-values#HTML5 link_type extensions for alarger list. These
documents, while helpful, are not immediately actionable. We will look at an example in a moment.

Mechanisms such as cookies, or external API specifications such as WSDL for SOAP, are effectively
excluded by REST. They are not hyperlinks contained in the representation of a resource. HATEOAS will
decouple the client from the server by allowing dynamic discovery beyond a well-known URI; allowing us to
independently evolve the API. This is unlike RPCs where the IDL drives the interface.

Representing Links

Links are standardized in HTML documents. The Link tag defines an HTML element that can only appear in
an HTML header section. For example, a book with chapters, etc., might look like this if the links were given
as HTML link elements:

<html>
<head>
<link rel= "author" title="Jan Newmarch" href="https://jan.newmarch.name">
<link rel="chapter" title="Introduction" href="Introduction/">

Link relations in HTML are of two types: those that are needed for the current document such as CSS
files and those that point to related resources, as before. The first type is generally downloaded invisibly to
the user. The second type is generally not shown by browsers, but user agents following HATEOAS principles
will use them.

XML has a variety of link specifications. These include XLink and Atom . Atom seems to be more
popular.

Links based on XLink would appear as follows:

<People xmlns:xlink="http://www.w3.0rg/1999/xlink">
<Person xlink:type="simple" xlink:href="http://...">

</Person>
</People>
Links based on Atom would appear as follows:
<People xmlns:atom="http://www.w3.0rg/2005/Atom">
<Person>
<link atom:href="http://..."/>
</Person>
</People>
For JSON, the format is not normalized. The REST cookbook (http://restcookbook.com/Mediatypes/
json/) notes the lack of standardization and points to the W3C specification JSON-LD 1.0: "A JSON-based
Serialization for Linked Data" and to the HAL (Hypertext Application Language). Bodies such as the Open

Connectivity Foundation seem to use their own home-grown format, but that is for CoAP, another REST-
based system.

268

http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
http://restcookbook.com/Mediatypes/json/
http://restcookbook.com/Mediatypes/json/

CHAPTER 14 REST

JSON-LD uses the term @id to signal a URL, as in

{

“name": Jan Newmarch:,
"homepage": {"@id": "https://jan.newmarch.name/"}

}

It is worth noting in this regard that the W3C also has a specification of an HTTP Link header at
https://www.w3.org/wiki/LinkHeader, which may be returned by a server to a client. This is used by
JSON-LD, for example, to point to a specification of the JSON document contained in the body of an HTTP
response. Also of interest, some implementations treat the HTML Link or HTTP Header in the same way.

This can affect the serialization method in passing link information from servers to user agents. The
user agent and server must agree on the format to be used. For HTML (or XHTML), this is standardized. For
XML, areference can be made in the document to the linking system. For JSON-LD, this can be signaled in
the Accept HTTP header as application/ld+json.

Transactions with REST

How does REST handle transactions and indeed any other types of processes? They were not discussed in
the original thesis by Fielding.

The Wikipedia entry for HATEOAS gives a poor example of managing transactions. It starts from an
HTTP request like this.

GET /accounts/12345 HTTP/1.1
Host: bank.example.org
Accept: application/json
Which returns a JSON document as a representation of the account as follows.

HTTP/1.1 200 OK

{
"account": {
"account_number": 12345,
"balance": {
"currency": "usd",
"value": 100.00
1
"links": {
"deposits": "/accounts/12345/deposits”,
"withdrawals": "/accounts/12345/withdrawals",
"transfers": "/accounts/12345/transfers",
"close-requests": "/accounts/12345/close-requests”
}
}
}

269

https://www.w3.org/wiki/LinkHeader

CHAPTER 14 = REST

If we asked for xml, we would see the following.

Content-Type: application/xml
Content-Length: ...
<?xml version="1.0"?>
<account>
<account_number>12345</account_number>
<balance currency="usd">100.00</balance>
<link rel="deposit" href="http://bank.example.org/account/12345/deposit" />
<link rel="withdraw" href="http://bank.example.org/account/12345/withdraw" />
<link rel="transfer" href="http://somebank.org/account/12345/transfer" />
<link rel="close" href="http://bank.example.org/account/12345/close" />
</account>

This gives the URIs of the related resources deposit, withdraw, transfer, and close. However, the
resources are verbs, not nouns, and that is not good at all. How do they interact with the HTTP verbs? Do
you GET a withdraw? POST it? PUT it? What happens if you DELETE a withdraw - is that supposed to roll back a
transaction or what? In REST, we try to avoid using verbs as a resource; however, in RPC, it is not disallowed
to have verbs as an endpoint/procedure call.

The better way, as discussed in, for example, the Stack Overflow post “Transactions in REST?” (see
http://stackoverflow.com/questions/147207/transactions-in-rest)is to POST to the account asking
for a new transaction to be created:

POST /account/12345/transaction HTTP/1.1
This will return the URL of a new transaction:
http://bank.example.org/account/12345/txn123

Interactions are now carried out with this transaction URL, such as by PUTing a new value that performs
and commits the transaction. Here, we use XML.

PUT /account/12345/txn123
<transaction>
<from>/account/56789</from>
<amount>100</amount>
</transaction>

A more detailed discussion of transactions and REST is given by Mihindukulasooriya et al. in “Seven
Challenges for RESTful Transaction Models” (see http://ws-rest.org/2014/sites/default/files/
wsrest2014_submission_4.pdf). Similar models are proposed for managing processes that aren’t just single
step. From the preceding PDF, we can get an idea of the types of things to consider when designing our
RESTful APIs to provide transaction abilities.

270

http://stackoverflow.com/questions/147207/transactions-in-rest
http://ws-rest.org/2014/sites/default/files/wsrest2014_submission_4.pdf
http://ws-rest.org/2014/sites/default/files/wsrest2014_submission_4.pdf

CHAPTER 14 REST

Table 14-1. RESTful transaction models

Key Year Transaction Model

1 ~2000 Batched transactions with overloaded POST

2 2007 Transaction as resources

3 2009 Optimistic technique for transactions using REST

4 2009 A consistent and recoverable RESTful transaction model

5 2010 Timestamp-based two-phase commit protocol for RESTful services
6 2011 Try-Cancel/Confirm Pattern

7 2012 Atomic REST batched transactions

Table 14-2. Analysis of existing RESTful transaction models

Property Transaction models
1 2 3 4 5 6 7

Transaction properties
Atomicity T T T T T T
Isolation T T2 F

REST constraints

Uniform interfaces T F T T T
Statelessness T T F T8
HATEOAS F F F T F

HTTP-related properties

Semantics not violated T T T T

Common verbs supported T F T

Low overhead T T T F

Miscellaneous properties

Optionality T ? ? T ? ? F
Discoverable ? ? ? T ? ? T
Distributed transactions X X T ? T T ?
Theoretical proofs ? ? ? T T T ?
Implementation available T ? ? T ? T T
Performance evaluation ? ? ? ? ? T ?

Legend - T True / F False / ? Unknown or not defined in the model

1 - Given the actions can be compensated
2 - Possible lost update problem
3 - See Section 3.3

271

CHAPTER 14 = REST

The Richardson Maturity Model

Many systems claim to be RESTful. Most are not. We even came across one that claimed that SOAP was
RESTful, a clear case of a warped mental state. Martin Fowler discusses the Richardson Maturity Model,
which classifies systems according to their conformance to REST. (See https://martinfowler.com/
articles/richardsonMaturityModel.html.)

Level 0

The starting point for the model is using HI'TP as a transport system for remote
interactions, but without using any of the mechanisms of the Web. Essentially what
you are doing here is using HT'TP as a tunneling mechanism for your own remote
interaction mechanism, usually based on Remote Procedure Invocation.

Level 1: Resources

The first step toward the Glory of Rest in the RMM is to introduce resources. So now
rather than making all our requests to a singular service endpoint, we now start
talking to individual resources.

Level 2: HTTP Verbs

I've used HTTP POST verbs for all my interactions here in levels 0 and 1, but some
people use GETs instead or in addition. At these levels, it doesn’t make much
difference, they are both being used as tunneling mechanisms allowing you to
tunnel your interactions through HTTP. Level 2 moves away from this, using the
HTTP verbs as closely as possible to how they are used in HTTP itself.

Level 3: Hypermedia Controls

The final level introduces something that you often hear referred to under the ugly
acronym of HATEOAS (Hypertext As The Engine Of Application State). It addresses
the question of how to get from a list of open slots to knowing what to do to book
an appointment.

Flashcards Revisited

In Chapter 10, we considered a web system consisting of a server and HTML pages rendered in a browser,
using JavaScript and CSS to control the browser-side interaction. There was no attempt to do anything
particularly structured, rather just as a traditional web system.

Recap The web system of Chapter 10 was used to demonstrate language learning using so-called
flashcards. The user is presented with a set of cards one at a time, showing a word in one language, and then
hopes to remember the translation, which is shown by “turning over” the card. The system presented a list of
different card sets and then showed the cards one at a time in the selected set.

272

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://doi.org/10.1007/978-1-4842-8095-9_10
https://doi.org/10.1007/978-1-4842-8095-9_10

CHAPTER 14 REST

We now approach the same situation as an HTTP client-server system built using the REST approach.
We will make a number of changes:

e URLs will be given appropriate to the situation. These will include the “root” URL /
as well as URLSs for each flashcard set and, in addition, a URL for each flashcard.

e Alluser interaction code (HTML, JavaScript, and CSS) is omitted. The server will be
talking to an arbitrary user agent, and many will not understand the UI code.

e The server will not maintain or manage any client state. In the web example, form
data was sent from the browser to the server, which promptly returned it in a slightly
different form. A client that wants to maintain state should do so itself.

e The server will be set up to manage a number of different serialization formats and
will deliver as appropriate after client-server negotiation.

e Heavy use will be made of HTTP mechanisms, particularly for error handling and
content negotiation.

URLSs

The URLSs for this system and the actions that can be performed are as follows:

URL Action Effect

/ GET Gets a list of flashcard sets
POST Creates a new flashcard set

/flashcardSets/<set> GET Gets a list of cards in the set
POST Creates a new card for the set
DELETE Deletes the flashcard set if empty

/flashcardSets/<set>/<card> GET Gets the contents of the card
DELETE Deletes the card from the set

This differs a little from the system described in Chapter 10. The main structural difference is that each
card is given its own URL as a member of a flashcard set.
Example URLs that will be handled by the server include these:

Root URL URL for Flashcard Set URL for One Flashcard
/ /flashcardSet/CommonWords /flashcardSet/CommonWords /¥R &F

ServeMux (The Demultiplexer)

REST is based on a small number of actions applied to URLs. A system that attempts to use REST principles
must be URL based.

A server mux will examine URLSs requested by clients and call handlers based on the URL pattern. The
standard Go demuxer net/http.ServeMux uses a particular pattern-matching mechanism: if a URL ends in
/, it denotes a subtree of URLs rooted at that URL. If it ends without a /, it represents that URL only. A URL is
matched against the handler with the longest pattern match. A URL can even include a domain as a qualifier.

273

CHAPTER 14 = REST

We need a handler for the root URL /. That will also match any URL such as /passwords unless another
handler catches it. In this system, no other handler will, so in the handler for /, we need to return errors for
such attempts.

A tricky part occurs because we used a hierarchical structure to our URLs. One particular flashcard set
will be /flashcardSets/CommonWoxrds. This will actually be a directory of the cards for that particular set.
We have to register fwo handlers: one for the URL /flashcardSets/CommonWords, which is the flashcard set
resource, and one for /flashcardSets/CommonWords/ (note the trailing /), which is the subtree containing
the individual cards and their URLs.

The code in the main function to register these is as follows:

http.HandleFunc(" /", handleFlashCardSets)

files, err := ioutil.ReadDir("flashcardsets™)

checkError(err)

for , file := range files {
fmt.Println(file.Name())
cardset url := “/flashcardSets/™ + url.QueryEscape(file.Name())
http.HandleFunc(cardset_url, handleOneFlashCardSet)
http.HandleFunc(cardset url + */°, handleOneFlashCard)

Note that we have the function QueryEscape. This is to escape any special characters that might occur
in URLSs. For example, a $ in a file name should be encoded as %44 ;. We do need to use such a function: our
URLs will include Chinese characters, which need to be escape-encoded to be represented in URLs. This
is done by QueryEscape, with one exception: a space in a path should be encoded as %20 but in form data
should be encoded as +. The PathEscape function does this correctly. We will remove spaces from URLSs to
avoid this issue.

Content Negotiation

Any web user agent can try to talk to any web server. The typical case of a browser talking to an HTML server
is what we are used to on the Web, but many will be familiar with using other user agents such as curl, wget,
and even telnet! The browser and other tools will use the Content-Type in HTTP replies to work out what to
do with content supplied.

With a Web application, the user agent must be able to understand what the server is delivering because
itis trying to play a part in an interaction that probably doesn’t have a user to help. RPC systems often use an
external specification that the client and server conform to. That is not the case here.

The solution is that both parties must agree on a content format. This is done at the HTTP level. A client
will state that it will accept a range of formats. If the server agrees, then they carry on. If not, the server will
tell the client which formats it can accept, and the client can start afresh if possible.

The negotiation uses MIME types. There are hundreds of standard ones: text/html, application/pdf,
application/xml, etc. A browser can render any HTML document it receives. An HTTP-aware music player
such as VLC can play any MP3 file it receives. But for the flashcard application, it can’t handle any general
format, only messages that conform to an expected structure. These aren’t any standard MIME types that
would be suitable for negotiating a specialized protocol for this flashcard application. So we make up our
own. The client and the server have to know that they are dealing with a shared MIME type, or they can’t talk
properly.

There are rules from IANA for making up your own MIME types. I use the type application/x.
flashcards. The server will be able to deliver JSON and XML, so the two acceptable MIME types are
application/x.flashcards+xml and application/x.flashcards+json.

274

CHAPTER 14 REST

HTTP content negotiation says that the user agent can suggest a list of acceptable formats, weighted
between zero and one, as follows:

Accept: application/x.flashcards+xml; ¢=0.8,
application/x.flashcards+json; q=0.4

The server can examine the request and decide if it can handle the format. We use the following code in
the server to determine for any type if the user agent has requested it and with what weighting (zero means
not requested):

const flashcard_xml string = "application/x.flashcards+xml"
const flashcard_json string = "application/x.flashcards+json”

type ValueQuality struct {
Value string
Quality float64

}

/* Based on https://siongui.github.io/2015/02/22/go-parse-accept-language/ */
func parseValueQuality(s string) []ValueQuality {
var vqs []ValueQuality
strs := strings.Split(s, 7,7)
for , str := range strs {
trimmedStr := strings.Trim(str, ~ °)
valQ := strings.Split(trimmedStr, ;")
if len(valQ) == 1 {
vq := ValueQuality{valQ[o], 1}
vgs = append(vgs, vq)
} else {
gp := strings.Split(valo[1], “=")
g, err := strconv.ParseFloat(qp[1], 64)
if err 1= nil {

q=20
}
vq := ValueQuality{valQ[0], q}
vgs = append(vgs, vq)
}
}
return vgs

}

func qualityOfValue(value string, vgs []ValueQuality) float64 {
for , vq := range vgs {
if value == vq.Value {
return vq.Quality
}
}

// not found
return 0

275

CHAPTER 14 = REST

If the server does not accept any of the types requested by the user agent, it returns an HTTP code of
406 "Not acceptable" and supplies a list of accepted formats. The code segment to do this in the server is as
follows:

func handleFlashCardSets(rw http.ResponselWriter, req *http.Request) {

if req.Method == "GET" {

acceptTypes := parseValueQuality(req.Header.Get("Accept"))

q_xml := qualityOfValue(flashcard xml, acceptTypes)

q_json := qualityOfValue(flashcard json, acceptTypes)

if g xml == 0 & q_json == 0 {
// can't find XML or JSON in Accept header
rw.Header().Set("Content-Type", "flashcards+xml, flashcards+json")
rw.WriteHeader(http.StatusNotAcceptable)
return

This illustrates a common REST pattern for HTTP servers: given an HTTP request, examine it to see if
the server can manage it. If not, return an HTTP error. If okay, attempt to handle it. If the attempt fails, return
an HTTP error. On success, return an appropriate HTTP success code and the results.

GET/

The flashcard sets are all stored in the directory flashcardsets. The GET / request needs to list all those
files and prepare them in a suitable format for the client. The format is a list of flashcard set names and their
URLs. The URLs are required by HATEOAS: the list of names tells us what the sets are, but the client will
need their URLs in order to move to the stage of interacting with one of them.

The struct type for each FlashcardSet in the server contains the name of the set and its URL (as a
string):

type FlashcardSet struct {
Name string
Link string

The set of flashcard sets on the server can be built from the directory of flashcard sets. The ioutil.
ReadDir () will create an array of os.FileInfo. This needs to be converted to a list of file names as follows:

files, err := ioutil.ReadDir("flashcardsets™)
checkError(err)
numfiles := len(files)
cardSets := make([]FlashcardSet, numfiles, numfiles)
for n, file := range files {
fmt.Println(file.Name())
cardSets[n].Name = file.Name()
// should be PathEscape, not in go 1.6
cardSets[n].Link = */flashcardSets/" + url.QueryEscape(file.Name())

276

CHAPTER 14 REST

This creates an array of file names and relative links to the resource on the server as /<name>. For the
CommonWozds set, the relative link URL would be /flashcardSets/CommonhWords. The scheme (http or https)
and the host (e.g., "localhost") are left up to the client to work out.

Unfortunately, the file name may contain characters not legal in URL path names. The function url.
PathEscape escapes them all correctly. The function url.QueryEscape gets everything right except for
spaces in the file name, which it replaces with + instead of %20;.

Finally, the server figures out if JSON or XML is preferred and runs it through a template to generate the
right output to the client. For XML, the template code is as follows:

if gq_xml >= q_json {
// XML preferred
t, err := template.ParseFiles("xml/ListFlashcardSets.xml")
if err != nil {
fmt.Println("Template error")
http.Error(rw, err.Error(), http.StatusInternalServerError)
return
}
rw.Header().Set("Content-Type", flashcard xml)
t.Execute(rw, cardSets)
} else {
// JSON preferred

The XML template is as follows:
ch14 % cat xml/ListFlashcardSets.xml
<?xml version="1.0" encoding="UTF-8"?>

<cardsets xmlns="http://www.w3.0rg/2005/Atom">
{{range .}}
<cardset href="{{.Link}}">
<name>
{{.Name}}
</name>
</cardset>

{{end}}

</cardsets>
For a listing of only two sets, CommonWords and Lesson04, the content sent to the client is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<cardsets xmlns="http://www.w3.0rg/2005/Atom">
<cardset href="/CommonWords">
<name>
Common Words
</name>
</cardset>

277

CHAPTER 14 = REST

<cardset href="/Lesson04">
<name>
Lesson04
</name>
</cardset>
</cardsets>

POST /

Here, a client is asking for a new flashcard set to be created. The expectation is that the client will supply the
name of the flashcard set. We make it look like form submission data:

name=<new flashcard set name>

This is much simpler than GET in this case. Get the value out of the request as form data. Then check
that the requested name doesn’t have nasties in it like calling the flashcard set /etc/passwd. If it does, return
403 "Forbidden". If it appears to be okay, create a directory with that name. Return a 403 again if it fails (the
directory may already exist). Otherwise, return 201 "Created" and the new relative URL:

} else if req.Method == "POST" {
name := req.FormValue(name™)
if hasIllegalChars(name) {
rw.WriteHeader(http.StatusForbidden)

return
}
// lose all spaces as they are a nuisance
name = strings.Replace(name, ~ ~, *7, -1)

err := os.Mkdir("flashcardsets/" +name,
(os.ModeDir | os.ModePerm))
if err 1= nil {
rw.WriteHeader (http.StatusForbidden)
return
}
rw.WriteHeader(http.StatusCreated)
base url := req.URL.String()
new url := base url + “flashcardSets/" + name + */°
rw.Write([]byte(new_url))
} else {
rw.WriteHeader(http.StatusMethodNotAllowed)
}

Handling Other URLs

We discussed the code for the server handling the / URL with GET and POST requests. There are two other
types of URL for this application - handling the cards in a set and handling each individual card. In terms of
the coding, though, this presents no new ideas.

278

CHAPTER 14 REST

e Getting a list of cards in a set is another directory listing.

e Posting a new card to a set means creating a file in the appropriate directory with
content from the client.

e Deleting a set means removing a directory. This is okay if the directory is empty;
otherwise, it creates an error.

e Getting a card means reading the card file and sending its contents.
e Deleting a card means removing a file.

There is nothing particularly new about any of these. We have not completed the code for some
operations such as DELETE: these return the HTTP code 501 'Not implemented'. We also return the contents
of individual cards as text/plain: they have a complex JSON/Go structure as used in Chapter 10, but that is
not needed for the discussion of the REST aspects of this system.

The Complete Server

The complete server to handle requests to / and from there to other URLs follows. It requires the flashcard
sets and individual cards in order to run, and these are in the ch14 folder here https://github.com/Apress/
network-prog-with-go-2e.

ch14$ vi server.go

/* Server
*/

package main

import (
"fmt"
"html/template"”
"log"
"net/http"
"net/url"
"os"
"regexp"
"strconv"
"strings"

)

type FlashcardSet struct {
Name string
Link string

}

type Flashcard struct {
Name string
Link string

279

https://doi.org/10.1007/978-1-4842-8095-9_10
https://github.com/Apress/network-prog-with-go-2e
https://github.com/Apress/network-prog-with-go-2e

CHAPTER 14 = REST

const flashcard xml string = "application/x.flashcards+xml"
const flashcard_json string = "application/x.flashcards+json"

type ValueQuality struct {
Value string
Quality float64

}

/* Based on https://siongui.github.io/2015/02/22/go-parse-accept-language/ */
func parseValueQuality(s string) []ValueQuality {
var vgs []ValueQuality

strs := strings.Split(s, *,")
for , str := range strs {
trimmedStr := strings.Trim(str, ~ °)
valQ := strings.Split(trimmedStr, ;")
if len(valQ) == 1 {
vq := ValueQuality{valQ[o], 1}
vgs = append(vgs, vq)
} else {
gp := strings.Split(valQ[1], “=")
g, err := strconv.ParseFloat(qp[1], 64)
if err != nil {

q=0
}
vq := ValueQuality{valQ[o0], q}
vgs = append(vgs, vq)
}
}
return vgs

}

func qualityOfValue(value string, vgs []ValueQuality) float64 {
for _, vq := range vgs {
if value == vq.Value {
return vq.Quality
}

}

return 0

}
func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage:
}

port := os.Args[1]

, 0s.Args[0], ":port\n")

http.HandleFunc("/", handleFlashCardSets)
files, err := os.ReadDir(" flashcardsets™)
checkError(err)

280

CHAPTER 14 REST

for _, file := range files {
fmt.Println(file.Name())
cardset_url := "/flashcardSets/~ + url.QueryEscape(file.Name())
fmt.Println("Adding handlers for ", cardset url)
http.HandleFunc(cardset_url, handleOneFlashCardSet)
http.HandleFunc(cardset url+ /", handleOneFlashCard)

}

// deliver requests to the handlers
err = http.ListenAndServe(port, nil)
checkError(err)

}

func hasIllegalChars(s string) bool {
// check against chars to break out of current dir
b, err := regexp.Match("[/$~]", []Ibyte(s))
if err != nil {
fmt.Println(err)
return true

}
if b {

return true
}

return false

}

func handleOneFlashCard(xw http.ResponseWriter, req *http.Request) {
// should be PathUnescape
path, _ := url.QueryUnescape(req.URL.String())
// lose intial '/'
path = path[1:]
if req.Method == http.MethodCet {
fmt.Println("Handling card: ", path)
json_contents, err := os.ReadFile(path)
if err 1= nil {
rw.WriteHeader (http.StatusNotFound)
rw.Write([]byte(Resource not found™))
return
}
// Be lazy here, just return the content as text/plain
rw.Write(json_contents)
return
} else if req.Method == http.MethodDelete {
rw.WriteHeader(http.StatusNotImplemented)
} else {
rw.WriteHeader (http.StatusMethodNotAllowed)
}

return

281

CHAPTER 14 = REST

func handleFlashCardSets(rw http.ResponseWriter, req *http.Request) {

if req.URL.String() != */° {
// this function only handles '/’
rw.WriteHeader(http.StatusNotFound)
rw.Write([]byte("Resource not found\n"))
return

}

if req.Method == "GET" {
acceptTypes := parseValueQuality(req.Header.Get("Accept"))
fmt.Println(acceptTypes)

q_xml := qualityOfValue(flashcard xml, acceptTypes)

g_json := qualityOfValue(flashcard json, acceptTypes)

if g xml == 0 & q_json == 0 {
// can't find XML or JSON in Accept header
rw.Header().Set("Content-Type", "flashcards+xml, flashcards+json")
rw.WriteHeader(http.StatusNotAcceptable)
return

}

files, err := os.ReadDir(" flashcardsets™)
checkError(err)
numfiles := len(files)
cardSets := make([]FlashcardSet, numfiles, numfiles)
for n, file := range files {
fmt.Println(file.Name())
cardSets[n].Name = file.Name()
// should be PathEscape, not in go 1.6
cardSets[n].Link = “/flashcardSets/" + url.QueryEscape(file.Name())
}
parseFile := "xml/ListFlashcardSets.xml"
flashcardType := flashcard_xml
if q_xml < g_json {
parseFile = "json/ListFlashcardSets.json"
flashcardType = flashcard json
}
t, err := template.ParseFiles(parseFile)
if err 1= nil {
fmt.Println("Template error")
http.Error(rw, err.Error(), http.StatusInternalServerError)
return

rw.Header().Set("Content-Type", flashcardType)
t.Execute(rw, cardSets)
} else if req.Method == "POST" {
name := req.FormValue(name™)
if hasIllegalChars(name) {
1w.WriteHeader (http.StatusForbidden)
return

282

CHAPTER 14 REST

// lose all spaces as they are a nuisance

name =
err :

if err

}

strings.Replace(name, - °, °7, -1)
o0s.Mkdir (" flashcardsets/ +name,
(0s.ModeDir | os.ModePerm))

1= nil {

rw.WriteHeader (http.StatusForbidden)
return

rw.WriteHeader(http.StatusCreated)
base_url := req.URL.String()

new_ur

1 := base url + “flashcardSets/™ + name + ~/°

rw.Write([]byte(new url))

} else {

rw.WriteHeader (http.StatusMethodNotAllowed)

}

return

}

func handleOneFlashCardSet(rw http.ResponseWriter, req *http.Request) {

cooked url, _
fmt.PrintIn("H

if req.Method
accept
fmt.Pr

q_xml
q_json
if q x

}

path :
// los
relati
files,
checkE
numfil
cards

for n,

:= url.QueryUnescape(req.URL.String())
andling one set for: ", cooked url)

== http.MethodCet {
Types := parseValueQuality(req.Header.Get("Accept"))
intln(acceptTypes)

1= qualityOfValue(flashcard xml, acceptTypes)
:= qualityOfValue(flashcard json, acceptTypes)
ml == 0 & q_json == 0 {
// can't find XML or JSON in Accept header

rw.Header().Set("Content-Type", "flashcards+xml, flashcards+json")

rw.WriteHeader(http.StatusNotAcceptable)
return

= req.URL.String()
e leading /
ve_path := path[1:]

err := os.ReadDir(relative path)
rror(err)
es := len(files)

:= make([]Flashcard, numfiles, numfiles)
file := range files {

fmt.Println(file.Name())

cards[n].Name = file.Name()

// should be PathEscape, not in go 1.6
cards[n].Link = path + */° + url.QueryEscape(file.Name())

283

CHAPTER 14 = REST

if g xml >= q_json {
// XML preferred
t, err := template.ParseFiles("xml/ListOneFlashcardSet.xml")
if err 1= nil {
fmt.Println("Template error")
http.Error(rw, err.Error(), http.StatusInternalServerError)
return
}
rw.Header().Set("Content-Type", flashcard xml)
t.Execute(os.Stdout, cards)
t.Execute(rw, cards)
} else {
// JSON preferred
t, err := template.ParseFiles("json/ListOneFlashcardSet.json")
if err 1= nil {
fmt.PrintIn("Template error", err)
http.Error(rw, err.Error(), http.StatusInternalServerError)
return
}
rw.Header().Set("Content-Type", flashcard json)
t.Execute(xw, cards)

} else if req.Method == http.MethodPost {
name := req.FormValue(name™)
if hasIllegalChars(name) {
rw.WriteHeader(http.StatusForbidden)
return
}
err := os.Mkdir("flashcardsets/" +name,
(os.ModeDir | os.ModePerm))
if err 1= nil {
rw.WriteHeader(http.StatusForbidden)
return
}
rw.WriteHeader (http.StatusCreated)
base url := req.URL.String()
new url := base url + “flashcardSets/" + name
_, _ = rw.Write([]byte(new_url))
} else if req.Method == http.MethodDelete {
1w.WriteHeader (http.StatusNotImplemented)
} else {
rw.WriteHeader(http.StatusMethodNotAllowed)
}

return

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

284

CHAPTER 14 REST

Itis run as follows:

ch14$ go run server.go :8000

Client

The client is relatively straightforward, offering nothing really new. This client asks for the content only in
XML format. A new part is that the content for the flashcard sets includes links as hypertext attributes within
a cardset tag. This may be turned into a field of a struct by the taglabel xml: "href,attr" in the Card struct.

This client gets the list of flashcard sets and their URLSs in the getFlashcardSets() function (step
1). This returns a FlashcardSets struct. This can be used to present a list to a user, say, for selection of a
particular set. Once selected, the URL of that set can be used to interact with the resource.

This client then creates a new flashcard set with name NewSet in the createFlashcardSet() function
(step 2). The first time the client runs, it will create the set, and the URL for that set will be returned. The
second time it is run, it will get an error from the server as a prohibited operation, since the set already exists.

This client then takes the first set of flashcards from the URLs given by the server and asks for the set of
cards it holds (step 3). It then picks the first card from the set and gets its content (step 4).

The clientis client.go

ch14$ vi client.go

/* Client
*/

package main

import (
"encoding/xml"
"fmt"
"io"
"log"
"net/http"
"net/http/httputil”
"net/url"
"os"
"strings"

)

const flashcard_xml string = "application/x.flashcards+xml"
const flashcard_json string = "application/x.flashcards+json”
type FlashcardSets struct {

XMLName string “xml:"cardsets"”

CardSet []CardSet ~xml:"cardset""

285

CHAPTER 14 = REST

type CardSet struct {
XMLName string “xml:"cardset""
Name string “xml:"name""
Link string “xml:"href,attr""
Cards []Card “xml:"card""

}

type Card struct {
Name string “xml:"name"’
Link string “xml:"href,attr""

}

func getter(url *url.URL, client *http.Client, acceptType string) *http.Response {
request, err := http.NewRequest("GET", url.String(), nil)

checkError(err)
if acceptType != "" {
request.Header.Add("Accept”, flashcard xml)
}
response, err := client.Do(request)
checkError(err)

if response.StatusCode != http.StatusOK {
log.Fatalln(err, response)
}

fmt.Println("The response header is")

b, _ := httputil.DumpResponse(response, false)
fmt.Print(string(b))

return response

}

func getOneFlashcard(url *url.URL, client *http.Client) string {
// Get the card as a string, don't do anything with it
response := getter(url, client, "")

body, err := io.ReadAll(response.Body)
checkError(err)

content := string(body[:])
//fmt.Printf("Body is %s", content)

return content

}

func getOneFlashcardSet(url *url.URL, client *http.Client) CardSet {
// Get one set of cards
response := getter(url, client, flashcard xml)

body, err := io.ReadAll(response.Body)

content := string(body[:])
fmt.Printf("Body is %s", content)

286

}

CHAPTER 14 REST

var sets CardSet
contentType := getContentType(response)
if contentType == "XML" {

err = xml.Unmarshal(body, &sets)
checkError(err)
fmt.Println("XML: ", sets)
return sets

/* else if contentType == "JSON" {
var sets FlashcardSetsJson
err = json.Unmarshal(body, &sets)
checkError(err)
fmt.PrintIn("JSON: ", sets)

}

*/

return sets

func getFlashcardSets(url *url.URL, client *http.Client) FlashcardSets {

}

// Get the toplevel /
response := getter(url, client, flashcard xml)

body, err := io.ReadAll(response.Body)
content := string(body[:])
fmt.Printf("Body is %s", content)

var sets FlashcardSets

contentType := getContentType(response)

if contentType == "XML" {
err = xml.Unmarshal(body, &sets)
checkError(err)
fmt.PrintIn("XML: ", sets)
return sets

}

return sets

func createFlashcardSet(urll *url.URL, client *http.Client, name string) string {

data := make(url.values)

data[name’] = []string{name}

response, err := client.PostForm(urli.String(), data)

checkError(err)

if response.StatusCode != http.StatusCreated {
fmt.Println(Error: °, response.Status)
return

}

body, err := io.ReadAll(response.Body)

content := string(body[:])

return content

287

CHAPTER 14 = REST

func main() {

}

if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "http://host:port/page")

}
url, err := url.Parse(os.Args[1])
checkError(err)

client := 8http.Client{}

// Step 1: get a list of flashcard sets
flashcardSets := getFlashcardSets(url, client)
fmt.Println("Step 1: ", flashcardSets)

// Step 2: try to create a new flashcard set
new url := createFlashcardSet(url, client, “NewSet™)
fmt.Println("Step 2: New flashcard set has URL: ", new url)

// Step 3: using the first flashcard set,
// get the list of cards in it
set url, := url.Parse(os.Args[1] + flashcardSets.CardSet[0].Link)

fmt.Println("Asking for flashcard set URL: ", set url.String())
oneFlashcardSet := getOneFlashcardSet(set url, client)
fmt.Println("Step 3:", oneFlashcardSet)

// Step 4: get the contents of one flashcard

// be lazy, just get as text/plain and
// don't do anything with it
card url, := url.Parse(os.Args[1] + oneFlashcardSet.Cards[0].Link)

fmt.Println("Asking for URL: ", card url.String())
oneFlashcard := getOneFlashcard(card url, client)
fmt.Println("Step 4", oneFlashcard)

func getContentType(response *http.Response) string {

}

contentType := response.Header.Get("Content-Type")

if strings.Contains(contentType, flashcard xml) {
return "XML"

}

if strings.Contains(contentType, flashcard_json) {
return "JSON"
}

return

func checkError(err error) {

288

if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

CHAPTER 14 REST

It is run as follows:
ch14$ go run client.go http://localhost:8000/

... (all about flashcards) ...

Using REST or RPC

The primary difference between REST and RPC is the interaction style. In RPC, you are calling functions,
passing objects or primitive types as arguments, and getting objects or primitive types in return. The
functions are verbs: do this to that. REST, on the other hand, is about interacting with objects, asking them to
show their state or to change it in some way.

The difference is shown by the Go RPC mechanism discussed in the last chapter and the REST
mechanism of this chapter. In Go RPC over HTTP, the server registers functions, while in REST, the server
registers handlers for URLs.

Which is better? Neither. Which is faster? Neither. Which is better for a controlled environment?
Possibly RPC. Which is better for an open environment? Possibly REST.

You will see arguments based on speed and resource allocation. RPC based on binary systems will
probably be faster than text-based HTTP systems. But SOAP is a text-based RPC system using HTTP and is
probably slower than REST. HTTP2 uses a binary format and, when conveying binary data such as BSON,
will probably be equivalent in speed to other binary systems. Just to confuse things further, the Apache Thrift
RPC allows a choice of data formats (binary, compact binary, JSON, and text) and transports (sockets, files,
and shared memory). One system demonstrates all options!

A more important factor might be how tightly controlled the operational environment is. RPC systems
are tightly coupled, and a failure in one component could bring an entire system down. When there are a
single administrative authority, a limited set of hardware and software configurations, and a clear channel
for fixing problems, then an RPC system can work well.

On the other side, the Web is uncontrolled. There is no single authority - even such "universal” services
such as DNS are highly distributed. There is a huge variety of hardware, operating systems, and software;
there will be little prospect of enforcing any policies; and if something breaks, then there is often no one who
can be pointed at to fix it. In such a case, a loosely coupled system may be better.

REST over HTTP is a good match for this. HATEOAS allows servers to be reconfigured on the fly,
changing URLs as needed (even pointing to different servers!). HTTP is designed to cache results when it
can. Firewalls are usually configured to allow HTTP traffic and block most other. REST is a good choice here.

It should be noted that REST is not the only HTTP-based system possible. SOAP has already been
mentioned. There are many commercial and highly successful systems that are "almost" REST - Richardson
levels 1 and 2. They do not enjoy the full benefits of the REST/HTTP match but still work.

No doubt in the future, other models will arise. In the IoT space, CoAP is popular for low-power wireless
systems. It is also REST based, but in a slightly different way than HTTP-REST.

Conclusion

REST is the architectural model of the Web. It can be applied in many different ways, particularly as HTTP
and CoAP (e.g., low power, lossy network protocol). This chapter illustrated REST as applied to HTTP.

289

CHAPTER 15

WebSockets

The standard model of interaction between a web user agent such as a browser and a web server such as
Apache is that the user agent makes HTTP requests and the server makes a single reply to each one. In the
case of a browser, the request is made by clicking on a link, entering a URL into the address bar, clicking on
the forward or back buttons, etc. The response is treated as a new page and is loaded into a browser window.

This traditional model has many drawbacks. The first is that each request opens and closes a new TCP
connection. HTTP 1.1 solved this by allowing persistent connections so that a connection could be held
open for a short period to allow for multiple requests (e.g., for images) to be made on the same server.

While HTTP 1.1 persistent connections alleviate the problem of slow loading of a page with many
graphics, it does not improve the interaction model. Even with forms, the model is still that of submitting the
form and displaying the response as a new page. JavaScript helps in allowing error checking to be performed
on form data before submission but does not change the model.

AJAX (Asynchronous JavaScript and XML) made a significant advance to the user interaction model.
This allows a browser to make a request and just use the response to update the display in place using the
HTML Document Object Model (DOM). But again, the interaction model is the same. AJAX just affects
how the browser manages the returned pages. There is no explicit extra support in Go for AJAX, as none is
needed: the HTTP server just sees an ordinary HTTP POST request with possibly some XML or JSON data,
and this can be dealt with using techniques already discussed.

All of these are still browser (or user agent)-to-server communication. What is missing is server-to-
browser communications where a browser has set up a TCP connection to a server and reads messages from
the server. This can be filled by WebSockets: the browser (or any user agent) keeps open a long-lived TCP
connection to a WebSockets server. The TCP connection allows either side to send arbitrary packets, so any
application protocol can be used on a WebSocket.

How a WebSocket is started is by the user agent sending a special HTTP request that says “switch to
WebSockets.” The TCP connection underlying the HTTP request is kept open, but both user agent and server
switch to using the WebSockets protocol instead of getting an HTTP response and closing the socket.

Note that it is still the browser or user agent that initiates the WebSockets connection. The browser
does not run a TCP server of its own. While the specification as IETF RFC 6455 is complex (see https://
tools.ietf.org/html/rfc6455), the protocol is designed to be fairly easy to use. The client opens an HTTP
connection and then replaces the HTTP protocol with its own WS protocol, reusing the same TCP or a new
connection.

Go has some support for WebSockets in a subrepository but actually recommends a third-party
package. This chapter considers both packages.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 291
https://doi.org/10.1007/978-1-4842-8095-9_15

https://doi.org/10.1007/978-1-4842-8095-9_15#DOI
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

CHAPTER 15 © WEBSOCKETS

WebSockets Server

A WebSockets server starts off by being an HTTP server, accepting TCP connections and handling the

HTTP requests on the TCP connection. When a request comes in that switches that connection to being a
WebSockets connection, the protocol handler is changed from an HTTP handler to a WebSocket handler. So
itis only that TCP connection that gets its role changed; the server continues to be an HTTP server for other
requests, while the TCP socket underlying that one connection is used as a WebSocket.

One of the simple servers discussed in Chapter 8, HTTP, registered various handlers such as a file
handler or a function handler. To handle WebSockets requests, we simply register a different type of handler - a
WebSockets handler. Which handler the server uses is based on the URL pattern. For example, a file handler
might be registered for /, a function handler for /cgi-bin/..., and a WebSockets handler for /ws.

An HTTP server that is only expecting to be used for WebSockets might run as follows:

func main() {
http.Handle("/", websocket.Handler(WSHandler))
err := http.ListenAndServe(":12345", nil)
checkError(err)

A more complex server might handle both HTTP and WebSockets requests simply by adding more handlers.

We have a variety of options when it comes to implementation, including manually managing the
original HTTP connection (TCP hijacking) and the use of the x package WebSocket implementation or even
well-known third-party packages.

The golang.org/x/net/websocket Package

Go has the subrepository package called golang.org/x/net/websocket.
The package documentation states the following:

This package currently lacks some features found in an alternative and more
actively maintained WebSockets package: https://pkg.go.dev/github.com/
gorilla/websocket. Unfortunately, even the Gorilla WebSocket package is
looking for an active lead maintainer. Still, it remains a leading implementation.

This suggests that you might be better off using the alternative package. Nevertheless, we consider this
package here in keeping with the rest of this book of using the packages from the Go team. A later section
looks at the alternative package.

The Message Object

HTTP is a stream protocol. WebSockets are frame based. You prepare a block of data (of any size) and send it
as a set of frames. Frames can contain strings in UTF-8 encoding or a sequence of bytes.

The simplest way of using WebSockets is just to prepare a block of data and ask the Go WebSockets
library to package it as a set of frame data, send it across the wire, and receive it as the same block. The
websocket package contains a convenience object called Message to do just that. The Message object has two

292

https://doi.org/10.1007/978-1-4842-8095-9_8
https://pkg.go.dev/github.com/gorilla/websocket
https://pkg.go.dev/github.com/gorilla/websocket

CHAPTER 15 © WEBSOCKETS

methods - Send and Receive - that take a WebSocket as the first parameter. The second parameter is either
the address of a variable to store data in or the data to be sent. Code to send string data looks like this:

msgToSend := "Hello"

err := websocket.Message.Send(ws, msgToSend)

var msgToReceive string

err := websocket.Message.Receive(conn, &msgToReceive)

Code to send byte data looks like this:

dataToSend := []byte{o, 1, 2}

err := websocket.Message.Send(ws, dataToSend)

var dataToReceive []byte

err := websocket.Message.Receive(conn, &dataToReceive)

An echo server to send and receive string data is given next. Note that in WebSockets, either side
can initiate sending of messages, and in this server, we send messages from the server to a client when it
connects (send/receive) instead of the more normal receive/send server. The server is echoserver.go:

$ mkdir chi1s
$ cd chis
$ vi echoserver.go

/* EchoServer
*/
package main

import (
"fmt"
"golang.org/x/net/websocket"
"Tog"
"net/http"

)

func Echo(ws *websocket.Conn) {
fmt.Println("Echoing")
for n := 0; n < 10; n++ {
msg := "Hello " + string(n+48)
fmt.Println("Sending to client: " + msg)
err := websocket.Message.Send(ws, msg)
if err 1= nil {
fmt.Println("Can't send")
break
}
var reply string
err = websocket.Message.Receive(ws, &reply)
if err 1= nil {
fmt.Println("Can't receive")
break

293

CHAPTER 15 © WEBSOCKETS

fmt.Println("Received back from client: " + reply)

}
}

func main() {
http.Handle("/", websocket.Handler(Echo))
err := http.ListenAndServe(":12345", nil)
checkError(err)
}
func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

It is run as follows:

ch15% go mod init example.com/user/echoserver
ch15% go mod tidy

ch15$ go run echoserver.go

A client that talks to this server is echoclient.go:
ch15% vi echoclient.go
/* EchoClient

*/
package main

import (
"fmt"
"golang.org/x/net/websocket"
"io"
IIOSII
lllogll

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage:
}

service := os.Args[1]

conn, err := websocket.Dial(service, "",
"http://localhost:12345")

checkError(err)

var msg string

for {

, 0s.Args[0], "ws://host:port")

err := websocket.Message.Receive(conn, 8msg)
if err 1= nil {
if err == io.EOF {
// graceful shutdown by server

294

CHAPTER 15 © WEBSOCKETS

break

}

fmt.Println("Couldn't receive msg " +
err.Error())

break

}

fmt.Println("Received from server:
// return the msg
err = websocket.Message.Send(conn, msg)
if err != nil {
fmt.Println("Couldn't return msg")
break

+ msg)

}
}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

It is run as follows:
ch15$ go run echoclient.go ws://localhost:12345
The output on the client side is what is sent by the server:
Received from server: Hello 0
éé;eived from server: Hello 9
Back on the server, we see the following:
Echoing
Sending to client: Hello 0

Received back from client: Hello 0

Sending to client: Hello 9
Received back from client: Hello 9

The preceding session provides evidence we are able to send data to and from via a WebSocket. Take
note of the Message object and its usage in the preceding server and client code. Per the documentation:

ch15% go doc golang.org/x/net/websocket.Message
package websocket // import "golang.org/x/net/websocket”
var Message = Codec{marshal, unmarshal}
Message is a codec to send/receive text/binary data in a frame on WebSocket

connection. To send/receive text frame, use string type. To send/receive
binary frame, use []byte type.

295

CHAPTER 15 © WEBSOCKETS

Trivial usage:
import "websocket"

// receive text frame
var message string
websocket.Message.Receive(ws, 8message)

// send text frame
message = "hello"
websocket.Message.Send(ws, message)

// receive binary frame
var data []byte
websocket.Message.Receive(ws, 8data)

// send binary frame
data = []byte{o, 1, 2}
websocket.Message.Send(ws, data)

The JSON Object

It is expected that many WebSockets clients and servers will exchange data in JSON format. For Go
programs, this means that a Go object will be marshalled into the JSON format, as described in Chapter 4,
and then sent as UTF-8 strings, while the receiver will read this string and unmarshal it back into a Go object.

The websocket convenience object called JSON will do this for you. It has Send and Receive methods for
sending and receiving data, just like the Message object.

We consider a case where a client sends a Person object to a server using WebSockets (which can send
messages both ways). A server that reads the message from the client and prints it to the server’s standard
output is personserverjson.go

ch15% vi personserverjson.go
/* PersonServerJSON

*/
package main

import (
"fmt"
"golang.org/x/net/websocket"
"Tog"
"net/http"

)

type Person struct {
Name string
Emails []string

296

https://doi.org/10.1007/978-1-4842-8095-9_4

CHAPTER 15 © WEBSOCKETS

func ReceivePerson(ws *websocket.Conn) {

var person Person

err := websocket.JSON.Receive(ws, &person)

if err 1= nil {
fmt.Println("Can't receive")

} else {
fmt.Println("Name: " + person.Name)
for , e := range person.Emails {

fmt.PrintIn("An email: " + e)

}

}
}

func main() {
http.Handle("/", websocket.Handler(ReceivePerson))
err := http.ListenAndServe(":12345", nil)
checkError(err)
}
func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

A client that sends a Person object in JSON format is personclientjson.go:
ch15$ vi personclientjson.go
/* PersonClientJSON

*/
package main

import (
"fmt"
"golang.org/x/net/websocket"
"Tog"
"osh

)

type Person struct {
Name string
Emails []string

}

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "ws://host:port")
}

service := os.Args[1]

conn, err := websocket.Dial(service, "",
"http://localhost")

checkError(err)

297

CHAPTER 15 © WEBSOCKETS

person := Person{Name: "Jan",
Emails: []string{"ja@newmarch.name",
"jan.newmarch@gmail.com"},

}

err = websocket.JSON.Send(conn, person)
if err != nil {

fmt.Println("Couldn't send msg " + err.Error())
}

}

func checkError(err error) {
if err != nil {
log.Fatalln("Fatal error
}

, err.Error())

The server is run as follows:
ch15% go run personserverjson.go
The client is run as follows:
ch15$% go run personclientjson.go ws://localhost:12345
The output on the server side is what is sent by the client:
Name: Jan
An email: ja@newmarch.name
An email: jan.newmarch@gmail.com
As before, review the related JSON object documentation.
ch15% go doc golang.org/x/net/websocket.JSON
package websocket // import "golang.org/x/net/websocket"”
var JSON = Codec{jsonMarshal, jsonUnmarshal}
JSON is a codec to send/receive JSON data in a frame from a WebSocket
connection.
Trivial usage:
import "websocket"
type T struct {
Msg string

Count int

}

// receive JSON type T
var data T
websocket.JSON.Receive(ws, &data)

298

CHAPTER 15 © WEBSOCKETS

// send JSON type T
websocket.JSON.Send(ws, data)

The Codec Type

The Message and JSON objects are both instances of the type Codec. This type is defined as follows:

type Codec struct {
Marshal func(v interface{}) (data []byte, payloadType byte, err error)
Unmarshal func(data []byte, payloadType byte, v interface{}) (err error)

The Codec type implements the Send and Receive methods used earlier. See more on this type with
ch15% go doc golang.org/x/net/websocket.Codec

It is likely that WebSockets will also be used to exchange XML data. We can build an XML Codec
object by wrapping the XML marshal and unmarshal methods discussed in Chapter 12 to give a suitable
Codec object.

We can create an XMLCodec package in this way, called xmlcodec. go:

ch15$% vi xmlcodec.go

/* XMLCodec
*/
package main

import (
"encoding/xml"
"golang.org/x/net/websocket"

)

func xmlMarshal(v interface{}) (msg []byte, payloadType byte, err error) {
msg, err = xml.Marshal(v)
return msg, websocket.TextFrame, nil

}

func xmlUnmarshal(msg []byte, payloadType byte, v interface{}) (err error) {
err = xml.Unmarshal(msg, v)
return err

}

var XMLCodec = websocket.Codec{xmlMarshal, xmlUnmarshal}

299

https://doi.org/10.1007/978-1-4842-8095-9_12

CHAPTER 15 © WEBSOCKETS

We can then serialize Go objects such as a Person into an XML document and send them from
a client to a server. The server to receive the document and print it to standard output is as follows,
personserverxml.go:

ch15% vi personserverxml.go
/* PersonServerXML

*/
package main

import (
"fmt"
"golang.org/x/net/websocket"
"Tog"
"net/http"

)

type Person struct {
Name string
Emails []string

}

func ReceivePerson(ws *websocket.Conn) {

var person Person

err := XMLCodec.Receive(ws, 8person)

if err 1= nil {
fmt.Println("Can't receive")

} else {
fmt.Println("Name: " + person.Name)
for , e := range person.Emails {

fmt.PrintIn("An email: " + e)

}

}
}

func main() {
http.Handle("/", websocket.Handler(ReceivePerson))
err := http.ListenAndServe(":12345", nil)
checkError(err)

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

The client sending the Person object in XML form is personclientxml.go:
ch15$ vi personclientxml.go

/* PersonClientXML
*/
package main

300

CHAPTER 15 © WEBSOCKETS

import (
"fmt"
"golang.org/x/net/websocket"
"Tog"
"osh

)

type Person struct {
Name string
Emails []string

}

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage:
}

service := os.Args[1]
conn, err := websocket.Dial(service, "", "http://localhost")
checkError(err)
person := Person{Name: "Jan",
Emails: []string{"ja@newmarch.name",
"jan.newmarch@gmail.com"},

, 0s.Args[0], "ws://host:port")

}

err = XMLCodec.Send(conn, person)
if err 1= nil {
fmt.Println("Couldn't send msg " + err.Error())
}
os.Exit(0)

}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

The server is run as follows:

ch15$% go run personserverxml.go xmlcodec.go
The client is run as follows:

ch15% go run personclientxml.go xmlcodec.go ws://localhost:12345
The output on the server side is what is sent by the client:

Name: Jan

An email: ja@newmarch.name

An email: jan.newmarch@gmail.com

As before, review the related codec object documentation (go doc encoding/xml).

A reasonable next step is improve our security; we next upgrade our WebSocket to use TLS.

301

CHAPTER 15 © WEBSOCKETS

WebSockets over TLS

A WebSocket can be built above a secure TLS socket. We discussed in Chapter 8 how to use a TLS socket
using the certificates from Chapter 7. That is used unchanged for WebSockets. That is, we use http.
ListenAndServeTLS instead of http.ListenAndServe.

Here is the echo server using TLS, echoservertls.go.

ch15$ vi echoservertls.go
/* EchoServerTLS

*/
package main

import (
"log"
"fmt"
"golang.org/x/net/websocket"
"net/http"

)

func Echo(ws *websocket.Conn) {
fmt.Println("Echoing")
for n := 0; n < 10; n++ {
msg := "Hello " + string(n+48)
fmt.Println("Sending to client: " + msg)
err := websocket.Message.Send(ws, msg)
if err != nil {
fmt.Println("Can't send")
break
}
var reply string
err = websocket.Message.Receive(ws, &reply)
if err != nil {
fmt.Println("Can't receive")
break
}
fmt.Println("Received back from client: " + reply)
}
}

func main() {
http.Handle("/", websocket.Handler(Echo))
err := http.ListenAndServeTLS(":12345",
"jan.newmarch.name.pem",
"private.pem”, nil)
checkError(err)
}
func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error
}

, err.Error())

302

https://doi.org/10.1007/978-1-4842-8095-9_8
https://doi.org/10.1007/978-1-4842-8095-9_7

CHAPTER 15 © WEBSOCKETS

Before running the server, we need our certificate and key, created and used from Chapter 7/8.

ch15% cp ../ch7/jan.newmarch.name.pem . ; cp ../ch7/private.pem .
ch15% go run echoservertls.go

The client is the same echo client as before. All that changes is the URL, which uses the wss scheme
instead of the ws scheme:

ch15$ go run echoclient wss://localhost:12345/

Fatal error websocket.Dial wss://localhost:12345: x509: certificate signed by unknown
authority
exit status 1

That will work fine if the TLS certificate offered by the server is valid. The certificate I am using is not:
itis self-signed, and that is often a signal that you are entering a danger zone. If you want to keep going
anyway, you need to employ the same “remove the safety check” that we did in Chapter 8 by turning
on the TLS InsecureSkipVerify flag. That is done by the program echoclienttls.go, which sets up a
configuration using this flag and then calls DialConfig in place of Dial.

ch15% vi echoclienttls.go

/* EchoClientTLS
*/
package main

import (
"crypto/tls”
"fmt"
"golang.org/x/net/websocket"
n ioll
lllogll

0s

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "wss://host:port")
}

config, err := websocket.NewConfig(os.Args[1],
"http://localhost")
checkError(err)
tlsConfig := &tls.Config{InsecureSkipVerify: true}
config.TlsConfig = tlsConfig
conn, err := websocket.DialConfig(config)
checkError(err)
var msg string
for {
err := websocket.Message.Receive(conn, &msg)
if err 1= nil {
if err == io.EOF {

303

https://doi.org/10.1007/978-1-4842-8095-9_7
https://doi.org/10.1007/978-1-4842-8095-9_8

CHAPTER 15 © WEBSOCKETS

// graceful shutdown by server

break

}

fmt.Println("Couldn't receive msg " +
err.Error())

break

}

fmt.Println("Received from server: " + msg)
// return the msg
err = websocket.Message.Send(conn, msg)
if err != nil {
fmt.Println("Couldn't return msg")
break

}
}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

Run the client as follows (assuming echoservertls.go is running):
ch15% go run echoclienttls.go wss://localhost:12345
Received from server: Hello 0
éé;eived from server: Hello 9

Back on the server, we see the following:

Echoing
Sending to client: Hello 0

Received back from client: Hello 0

Sending to client: Hello 9
Received back from client: Hello 9

WebSockets in an HTML Page

The original driver for WebSockets was to allow full duplex interaction between an HTTP user agent such
as a browser and a server. The typical use case is expected to involve a JavaScript program in a browser
interacting with a server. In this section, we build a web/WebSockets server that delivers an HTML page
that sets up a WebSocket and displays information from that server using WebSockets. We are looking at the
situation illustrated in Figure 15-1.

304

“—Fags comaming

JS JavaScript
Listening
For
onmessage
Display M
Msg message
Display
Msg message
Display
Msg Y message

Figure 15-1. Full duplex interaction situation

CHAPTER 15 © WEBSOCKETS

The age of the Internet of Things (I0T) is upon us. Consequently, we can expect data from sensors and
sensor networks to be used to drive actuators and to display information about an IoT network in browsers.
There are innumerable books about using Raspberry Pis and Arduinos for building sensor networks, but we
will drastically simplify the situation by showing the CPU temperatures on a “sensor,” updating in a web page

every few seconds.

The Linux sensors command from the Debian package 1m-sensors writes to standard output the
values of sensors it knows about. The command sensors on my desktop machine produces output such as

the following:

acpitz-virtual-o

Adapter: Virtual device

templ: +27.8°C (crit =
temp2: +29.8°C (crit =

coretemp-isa-0000

Adapter: ISA adapter

Physical id 0: +58.0°C (high
Core 0: +57.0°C (high
Core 1: +58.0°C (high

+105.0°C)
+105.0°C)

= +105.0°C, crit
= +105.0°C, crit
= +105.0°C, crit

+105.0°C)
+105.0°C)
+105.0°C)

305

CHAPTER 15 © WEBSOCKETS

On refresh, typically, the temperature on Core 0and Core 1 may change.
On Windows, a command to do the same is this:

wmic /namespace:\\root\wmi PATH MSAcpi_ThermalZoneTemperature get CurrentTemperature
When this runs, it has output such as
42.4° C

On the Mac, use the command osx-cpu-temp from https://github.com/lavoiesl/osx-cpu-temp.

If you don’t want to go through these steps, just substitute a more mundane program such as the date.

We provide a Go program to deliver HTML documents from the ROOT_DIR directory and to then set up
a WebSocket from the URL GetTemp. The WebSocket on the server side gets the output from sensors every
two seconds and sends it to the client end of the socket. The web/WebSockets server runs on port 12345 for
no particular reason. Substitute any other interesting system call for the exec.Command call. Here, we use the
simple “sensors.sh” as our temperature program (random number between 1 and 100).

ch15$ vi sensors.sh

#1/bin/sh
echo $(((RANDOM % 100) + 1))

Be sure to make it executable: chmod 700 sensors.sh
The server is temperatureserver.go:

ch15$ vi temperatureserver.go

/* TemperatureServer
*/
package main

import (
"fmt"
"golang.org/x/net/websocket"
lllogll
"net/http"
"os/exec"
"time"

)

var ROOT DIR = "."

func GetTemp(ws *websocket.Conn) {
for {
msg, err := exec.Command(ROOT DIR + "/sensors.sh").CombinedOutput()
checkError(err)
fmt.Println("Sending to client: " + string(msg[:]))
err = websocket.Message.Send(ws, string(msg[:]))
if err 1= nil {
fmt.Println("Can't send")
break

306

https://github.com/lavoiesl/osx-cpu-temp

time.Sleep(time.Duration(2) * time.Second)
var reply string
err = websocket.Message.Receive(ws, &reply)
if err 1= nil {
fmt.Println("Can't receive")
break
}
fmt.Println("Received back from client: " + reply)
}
}

func main() {
fileServer := http.FileServer(http.Dir(ROOT DIR))
http.Handle("/GetTemp", websocket.Handler(GetTemp))
http.Handle("/", fileServer)
err := http.ListenAndServe(":12345", nil)
checkError(err)

}

func checkError(err error) {
if err 1= nil {

log.Fatalln("Fatal error ", err.Error())

}

It is run as follows:

ch15$ go run temperatureserver.go

CHAPTER 15 © WEBSOCKETS

The top-level HTML file to kick this off is websocket . html; be sure to copy this to the ROOT_DIR.

<!DOCTYPE HTML>
<html>
<head>
<script type="text/javascript">
function WebSocketTest()

if ("WebSocket" in window)
{
alert("WebSocket is supported by your Browser!");
// Let us open a web socket
var ws = new WebSocket("ws://localhost:12345/GetTemp");
ws.onopen = function()

{

alert("WS is opened...");
b
ws.onmessage = function (evt)
{

var received msg = evt.data;

// uncomment next line if you want to get alerts on each message

//alert("Message is received..." + received msg);

document.getElementById("temp").innerHTML = "<pre>" + received msg + "</pre>"

ws.send("Message received")

s

307

CHAPTER 15 © WEBSOCKETS

ws.onclose = function()
{
// websocket is closed.
alert("Connection is closed...");
};
}
else
{
// The browser doesn't support WebSocket
alert("WebSocket NOT supported by your Browser!");
}
}

</script>

</head>

<body>
<div id="temp">

Run temperature sensor

</div>

</body>

</html>

In a browser, visit http://localhost:12345/websocket.html; click “Run temperature sensor” to see
the temperature relayed.

The program uses JavaScript to open a WebSockets connection and to handle the onopen,
onmessage, and onclose events. It reads and writes using evt.data and the send function.
It presents the data in a preformatted element, exactly as the data before. It is refreshed
every two seconds. The structure of the HTML document is based on HTML5 - WebSockets:
https://www.tutorialspoint.com/html5/html5_websocket.htm.

The github.com/gorilla/websocket Package

The alternative package for WebSockets functionality is the github.com/gorilla/websocket package.

Echo Server

The echo server using this package is echoservergorilla.go. It makes the HTTP-to-WebSockets transition
more explicit by introducing a call to a websocket.Upgrader object. It also more clearly distinguishes
between sending text and binary messages.

ch15$ vi echoservergorilla.go

/* EchoServerGorilla
*/
package main

import (
"fmt"
"github.com/gorilla/websocket”
"Tog"
"net/http"

308

https://www.tutorialspoint.com/html5/html5_websocket.htm

)

var upgrader = websocket.Upgrader{
ReadBufferSize: 1024,
WriteBufferSize: 1024,

}

func Handler(w http.ResponseWriter, r *http.Request) {
fmt.Println("Handling /")
conn, err := upgrader.Upgrade(w, r, nil)
if err != nil {
fmt.Println(err)

return
}
for n := 0; n < 10; n++ {
msg := "Hello " + string(n+48)

fmt.Println("Sending to client: " + msg)

err = conn.WriteMessage(websocket.TextMessage,
[1byte(msg))

_, reply, err := conn.ReadMessage()

if err 1= nil {
fmt.Println("Can't receive")
break

}

fmt.Println("Received back from client: " +
string(reply[:]))

conn.Close()
}
func main() {
http.HandleFunc("/", Handler)
err := http.ListenAndServe("localhost:12345", nil)
checkError(err)
}
func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

The server is run as follows:

CHAPTER 15 © WEBSOCKETS

ch15% go mod init example.com/user/echoservergorilla # or skip and use existing module name

ch15$ go mod tidy
ch15$% go run echoservergorilla.go

309

CHAPTER 15 © WEBSOCKETS

Echo Client

The echo client using this package is echoclientgorilla.go:
ch15% vi echoclientgorilla.go

/* EchoClientGorilla
*/
package main

import (
"fmt"
"github.com/gorilla/websocket"
"io"
"log"
"net/http"

0s

)

func main() {
if len(os.Args) != 2 {
log.Fatalln("Usage: ", os.Args[0], "ws://host:port")
}

service := os.Args[1]
header := make(http.Header)
header.Add("Origin", "http://localhost:12345")
conn, _, err := websocket.DefaultDialer.Dial(service, header)
checkError(err)
for {
_, reply, err := conn.ReadMessage()
if err 1= nil {
if err == io.EOF {
// graceful shutdown by server
fmt.Println(EOF from server™)
break
}
if websocket.IsCloseError(err,
websocket.CloseAbnormalClosure) {
fmt.Println("Close from server™)

break

}

fmt.Println("Couldn't receive msg " +
err.Error())

break

}

fmt.Println("Received from server: " +
string(reply[:]))

// return the msg

err = conn.WriteMessage(websocket.TextMessage, reply)

if err != nil {

310

fmt.Println("Couldn't return msg")

break

}
}

func checkError(err error) {
if err 1= nil {
log.Fatalln("Fatal error ", err.Error())
}

The client is run as follows:
ch15% go run echoclientgorilla.go ws://localhost:12345
Received from server: Hello 0

Received from server: Hello 9
Close from server

Back on the server, we see
Handling /
Sending to client: Hello 0
Received back from client: Hello o0

Sending to client: Hello 1

Sending to client: Hello 9
Received back from client: Hello 9

Conclusion

CHAPTER 15 © WEBSOCKETS

The WebSockets standard is an IETF RFC, so no major changes are anticipated. This will allow HTTP user
agents and servers to set up bidirectional socket connections and should make certain interaction styles
much easier. Go has support from these and additional WebSocket packages, such as https://pkg.go.dev/

nhooyr.io/websocket.

311

https://pkg.go.dev/nhooyr.io/websocket
https://pkg.go.dev/nhooyr.io/websocket

CHAPTER 16

Gorilla

The Go standard library and related “x” packages offer a lot of functionality that we can leverage to build a
website. Go trends toward simpler coding styles if possible; simple doesn’t always mean easy though. Until
you have enough experience in the domain (web development) and the implementation stack (Go/Web),
it might be easier and/or better to use a toolkit that provides additional ease-of-use features. Gorilla is one
such toolkit. We have already touched upon Gorilla with WebSockets; now we take a more focused look at its
major offerings and in the end see what it did for us vs. a pure Go implementation.

Per the Gorilla website (https://www.gorillatoolkit.org/), these are the current packages. We will
learn how to use some of them and explore how they integrate and extend the standard library.

e mux: Is a powerful URL router and dispatcher that is fully compatible with the
default http.ServeMux

e reverse: Produces reversible regular expressions for regexp-based muxes
e rpc: Implements RPC over HTTP with codec for JSON-RPC
e schema: Converts form values to a struct

e securecookie: Encodes and decodes authenticated and optionally encrypted
cookie values

e sessions: Saves cookie and filesystem sessions and allows custom session back ends
e websocket: Implements the WebSocket protocol defined in RFC 6455

e csrf: Provides Cross-Site Request Forgery (CSRF) prevention middleware

e handlers: Is a collection of useful handlers for Go’s net/http package

You may notice this is a top tool choice due to its well-thought-out architecture. Next, we discuss
around the middleware pattern, which will guide how we integrate Gorilla.

Middleware Pattern

Middleware is described as “software glue” per https://en.wikipedia.org/wiki/Middleware. Middleware
for a web service allows us to wrap functionality around our application-specific code. These wrappers, in
turn, can be chained. We do this to add functionality like logging and/or authentication instead of polluting
our business logic. For example, there is no need to “log” an HTTP request in our client handling logic; it can
(and should) be done outside of it (in another wrapper).

The basic middleware pattern looks like this:router -> middleware -> application
© Jan Newmarch and Ronald Petty 2022

J. Newmarch and R. Petty, Network Programming with Go Language, 313
https://doi.org/10.1007/978-1-4842-8095-9_16

https://doi.org/10.1007/978-1-4842-8095-9_16#DOI
https://www.gorillatoolkit.org/
https://en.wikipedia.org/wiki/Middleware

CHAPTER 16 = GORILLA

We begin with a brief example and review of some of the built-in web functionality of Go. This will
help us to understand how Gorilla integrates with our code (and Go stdlib) and what it offers beyond the
standard library.

Go provides an HTTP client and server implementation via the net/http package. The package
provides a “type Server” that works with a lower-level connection object and deserializes an HTTP request
or serializes an HTTP response. That request is then handed to a type ServeMux. A ServeMux in turn does
the routing for us (i.e., multiplexing). A default ServeMux is provided called DefaultServeMux. An interface
called net.Handler is provided, this handler provides the methods used in dealing with the HTTP requests.
As mentioned before, we can have more than one handler and chain these handlers together. It turns out
that the ServeMux is also a Handler, meaning we can chain them as well.

We can now imagine a little deeper how Go itself is using the middleware pattern.

connection <-> Server <-> ServeMux <-> handler(s) <-> application functions
Let’s review the primary documentation going backward from Handler.

$ go doc http.Handler
package http // import "net/http"

type Handler interface {
ServeHTTP(Responselriter, *Request)
}

A Handler responds to an HTTP request.

ServeHTTP should write reply headers and data to the Responselriter and then
return. Returning signals that the request is finished; it is not valid to
use the Responselriter or read from the Request.Body after or concurrently
with the completion of the ServeHTTP call.

Depending on the HTTP client software, HTTP protocol version, and any
intermediaries between the client and the Go server, it may not be possible
to read from the Request.Body after writing to the ResponseWriter. Cautious
handlers should read the Request.Body first, and then reply.

Except for reading the body, handlers should not modify the provided
Request.

If ServeHTTP panics, the server (the caller of ServeHTTP) assumes that the
effect of the panic was isolated to the active request. It recovers the
panic, logs a stack trace to the server error log, and either closes the
network connection or sends an HTTP/2 RST_STREAM, depending on the HTTP
protocol. To abort a handler so the client sees an interrupted response but
the server doesn't log an error, panic with the value ErrAbortHandler.

func AllowQuerySemicolons(h Handler) Handler

func FileServer(root FileSystem) Handler

func MaxBytesHandler(h Handler, n int64) Handler

func NotFoundHandler() Handler

func RedirectHandler(url string, code int) Handler

func StripPrefix(prefix string, h Handler) Handler

func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler

314

CHAPTER 16 * GORILLA

For now, the critical parts revolve around Handler.ServeHTTP. This is where the request is passed into

and ultimately responded to. Next, review the details of ServeMux and the relation to Handler.

$ go
pack

type
}

func
func
func
func
func

calls

doc net/http ServeMux
age http // import "net/http"

ServeMux struct {
// Has unexported fields.

ServeMux is an HTTP request multiplexer. It matches the URL of each incoming
request against a list of registered patterns and calls the handler for the
pattern that most closely matches the URL.

Patterns name fixed, rooted paths, like "/favicon.ico", or rooted subtrees,
like "/images/" (note the trailing slash). Longer patterns take precedence
over shorter ones, so that if there are handlers registered for both
"/images/" and "/images/thumbnails/", the latter handler will be called for
paths beginning "/images/thumbnails/" and the former will receive requests
for any other paths in the "/images/" subtree.

Note that since a pattern ending in a slash names a rooted subtree, the
pattern "/" matches all paths not matched by other registered patterns, not
just the URL with Path == "/".

If a subtree has been registered and a request is received naming the
subtree root without its trailing slash, ServeMux redirects that request to
the subtree root (adding the trailing slash). This behavior can be
overridden with a separate registration for the path without the trailing
slash. For example, registering "/images/" causes ServeMux to redirect a
request for "/images" to "/images/", unless "/images" has been registered
separately.

Patterns may optionally begin with a host name, restricting matches to URLs
on that host only. Host-specific patterns take precedence over general
patterns, so that a handler might register for the two patterns
"/codesearch" and "codesearch.google.com/" without also taking over requests
for "http://www.google.com/".

ServeMux also takes care of sanitizing the URL request path and the Host
header, stripping the port number and redirecting any request containing .
or .. elements or repeated slashes to an equivalent, cleaner URL.

NewServeMux() *ServeMux

(mux *ServeMux) Handle(pattern string, handler Handler)

(mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request))
(mux *ServeMux) Handler(r *Request) (h Handler, pattern string)

(mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request)

Asyou can see, ServeMux matches a given pattern and passes to the configured Handler, which in turn
our business logic. Continuing to the left, let’s look at the abbreviated Server documentation.

315

CHAPTER 16 = GORILLA

$ go doc net/http.Server
package http // import "net/http"

type Server struct {
// Addr optionally specifies the TCP address for the server to listen on,
// in the form "host:port". If empty, ":http" (port 80) is used.
// The service names are defined in RFC 6335 and assigned by IANA.
// See net.Dial for details of the address format.
Addr string

Handler Handler // handler to invoke, http.DefaultServeMux if nil

While truncated, we can see right at the start, a Server holds a Handler, and based on the comment, it
seems we have an instance of ServeMux called DefaultServeMux.
With the wiring in mind, we now look at some examples.

Standard Library ServeMux Examples

Here, we demo potentially the simplest web service Go provides (at least in net/http package) and one that
demonstrates the middleware pattern a little more clearly.

$ mkdir chi16
$ chi6
ch16$ vi simple.go

package main

import (
"net/http"
"fmt"

)

func main() {
err := http.ListenAndServe(":8080",nil)
fmt.Println(err)

Running the server “go run simple.go’, access via any method/path to localhost:8080 returns a 404.
ch16$ curl -v --head localhost:8080

* Trying ::1:8080...

* Connected to localhost (::1) port 8080 (#0)
> HEAD / HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.77.0

> Accept: */*

>

*

Mark bundle as not supporting multiuse

316

CHAPTER 16 * GORILLA

< HTTP/1.1 404 Not Found

HTTP/1.1 404 Not Found

< Content-Type: text/plain; charset=utf-8
Content-Type: text/plain; charset=utf-8

< X-Content-Type-Options: nosniff
X-Content-Type-Options: nosniff

< Date: Mon, 31 Jan 2022 00:43:57 GMT
Date: Mon, 31 Jan 2022 00:43:57 GMT

< Content-Length: 19

Content-Length: 19

<
* Connection #0 to host localhost left intact

What this implies is there is a default handler, returning a 404. Next, we try a GET request.
ch16$ curl -X GET localhost:8080/didthiswork
404 page not found

It turns out, under the hood, we already have a chain of handlers. The Server is calling the ServeMux
ServeHTTP, which then calls NotFoundHandler. ServeMux supports the Handler interface via the
ServeHTTP method. As an eagle eye observer, you may have noticed that in the preceding Handler
documentation, NotFoundHandler is listed.
ch16$ go doc net/http NotFoundHandler
package http // import "net/http"
func NotFoundHandler() Handler

NotFoundHandler returns a simple request handler that replies to each

request with a "404 page not found" reply.

If you are adventurous, you can peek at the code to start to see how these are wired up.
ch16$ vi /usr/local/go/src/net/http/server.go
// NotFound replies to the request with an HTTP 404 not found error.
func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found",
StatusNotFound) }
// NotFoundHandler returns a simple request handler

// that replies to each request with a ~"404 page not found'' reply.
func NotFoundHandler() Handler { return HandlerFunc(NotFound) }

As you can see, the “NotFound” function is casted to a HandlerFunc (which proxies the ServeHTTP call
to NotFound in our case). HandlerFunc is known as a function adapter in Go.

317

CHAPTER 16 = GORILLA

Customizing Muxes

Our last example focusing on the standard library will show us how to manage multiple ServeMux instances.
The goal in this example is to show how “registering” a new ServeMux can handle a subset of routes. Here,
we have the “default” (DefaultServeMux) handling the route “/outermux’, while our new “inner” ServeMux
will handle the deeper nested routes (e.g., “/outermux/innermux”).

ch16$ vi complex.go

package main

import (

"net/http"
)

func main() {

http.Handle("/outermux", http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

w.Write([]byte("/outermux"))

H)

inner := http.NewServeMux()

inner.Handle("/innermux/", http.HandlerFunc(func(w http.ResponseWriter, r *http.

Request) {

w.Write([]byte("../innermux"))

H)

http.Handle("/outermux/innermux/", http.StripPrefix("/outermux", inner))

http.ListenAndServe(":8080", nil)

As we exercise our tests in the following, take note of the requested path and the log generated. Per
the preceding ServeMux documentation, take extra note on how you end the paths, with a trailing slash
“/” or not.
ch16$ curl localhost:8080/outermux
/outermux
ch16$ curl localhost:8080/outermux/

404 page not found
ch16$ curl localhost:8080/outermux/innermux
Moved Permanently.

ch16$ curl -il localhost:8080/outermux/innermux

HTTP/1.1 301 Moved Permanently

318

CHAPTER 16 * GORILLA

Content-Type: text/html; charset=utf-8
Location: /outermux/innermux/

Date: Mon, 31 Jan 2022 01:16:24 GMT
Content-Length: 54

HTTP/1.1 200 OK

Date: Mon, 31 Jan 2022 01:16:24 GMT
Content-Length: 11

Content-Type: text/plain; charset=utf-8

. ./innermux
ch16$ curl -ilL localhost:8080/outermux/innermux/

HTTP/1.1 200 OK

Date: Mon, 31 Jan 2022 01:16:28 CGMT
Content-Length: 11

Content-Type: text/plain; charset=utf-8

. ./innermux

You may wonder what the final line is doing (http.ListenAndServe(":8080", nil)).

Specifically, what is “nil” doing? This is where we can override the default ServeMux. When you pass
in nil, the “first” mux remains the precreated instance called DefaultServeMux used by type Serve. You can
confirm these relations by reviewing the code here “GOROOT/src/net/http/server.go”.

gorilla/mux

We begin our learning of Gorilla by looking at the mux package. The “mux” package is designed to work with
the existing type Serve of the standard library.

ch16$ vi gmux.go
package main

import (
"net/http"
"github.com/gorilla/mux"

)

func buildHandler(message string) func(http.ResponseWriter, *http.Request) {
return http.HandlerFunc(func(w http.Responselriter, r *http.Request) {
w.Write([]byte(message))
1

}

func main() {
T := mux.NewRouter()
r.HandleFunc("/", buildHandler("HomeHandler"))
r.HandleFunc("/products”, buildHandler("ProductsHandler"))

319

CHAPTER 16 = GORILLA

r.HandleFunc("/articles", buildHandler("ArticlesHandler"))
http.ListenAndServe(":8080", r)

Based on what we know, by overwriting the last parameter of ListenAndServe, we are setting
overwriting the default ServeMux with our own (call Router in mux speak).

ch16$ go mod init ch16.example.com
ch16$ go mod tidy
ch16$ go run gmux.go

The tests that follow hopefully show not much has changed.
ch16$ curl localhost:8080/articles
ArticlesHandler
ch16$ curl localhost:8080/
HomeHandler

If we review the Router code, specifically its ServerHTTP method, we can confirm our route mapping is
now handled by Gorilla mux.

~/ch16$ go doc --src mux Router.ServeHTTP
package mux // import "github.com/gorilla/mux"

// ServeHTTP dispatches the handler registered in the matched route.
//
// When there is a match, the route variables can be retrieved calling
// mux.Vars(request).
func (r *Router) ServeHTTP(w http.ResponselWriter, req *http.Request) {
if lr.skipClean {
path := req.URL.Path
if r.useEncodedPath {
path = req.URL.EscapedPath()
}

// Clean path to canonical form and redirect.
if p := cleanPath(path); p != path {

// Added 3 lines (Philip Schlump) - It was dropping the query string and
#whatever from query.

// This matches with fix in go 1.2 r.c. 4 for same problem. Go Issue:
// http://code.google.com/p/go/issues/detail?id=5252

url := *req.URL

url.Path = p

p = url.String()

w.Header().Set("Location", p)
w.WriteHeader (http.StatusMovedPermanently)

320

CHAPTER 16 * GORILLA

return

}
}

var match RouteMatch

var handler http.Handler

if r.Match(req, 8match) {
handler = match.Handler
req = requestWithVars(req, match.Vars)
req = requestWithRoute(req, match.Route)

}

if handler == nil 8& match.MatchErr == ErrMethodMismatch {
handler = methodNotAllowedHandler()
}

if handler == nil {
handler = http.NotFoundHandler()
}

handler.ServeHTTP(w, req)

Why Should We Care

So far, it doesn’t seem we have added any value to the already-provided DefaultServeMux. Looks are
deceiving though. Based on ServeMux documentation, we only seem to be provided with ways to easily
parse the “path” to make a routing decision. Can we match a request based on other criteria (aside path),
such as query parameters or HTTP headers? We have access to such things without Gorilla; what we don’t
have is a structured way of using them

Requests can be matched based on the following criteria:
e URL host (example.com)
e Path (/about)
e Path prefix (/animals/cats)
e Schema (posted form values)
e HTTP headers (Content-Type: text/html; charset=UTF-8)
e Query values (?key=value&dog=cat)
e HTTP methods (GET /search?q=test HTTP/2)
e Custom matchers (a custom function)

One nice feature of Gorilla is the use of chaining to have several matching elements related. Here is an

example of that, modifying our prior example using various matchers.

321

CHAPTER 16 = GORILLA

~/ch16$ vi gmux.go
package main
import (

"github.com/gorilla/mux’
"net/http"

)

func buildHandler(message string) func(http.ResponseWriter, *http.Request) {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte(message))
1))

}

func main() {
T := mux.NewRouter()
r.HandleFunc("/", buildHandler("HomeHandler"))
r.HandleFunc("/products”, buildHandler("ProductsHandler"))
r.HandleFunc("/articles", buildHandler("ArticlesHandler")).Host("example.com").
Methods ("GET").Schemes ("http")
http.ListenAndServe(":8080", r)
}

Run the server.~/ch16$ go run gmux.go

Now we exercise our new and existing routes; notice “/articles” is not limited to a particular domain,
method, and scheme.

~/ch16$ curl --resolve example.com:8080:127.0.0.1 -IX GET http://example.com:8080/articles
HTTP/1.1 200 OK

Date: Mon, 07 Mar 2022 18:40:46 GMT

Content-Length: 15

Content-Type: text/plain; charset=utf-8

~/ch16$ curl --resolve example.com:8080:127.0.0.1 -IX POST http://example.com:8080/articles
HTTP/1.1 405 Method Not Allowed

Date: Mon, 07 Mar 2022 18:40:54 GMT

Content-Length: 0

~/ch16$ curl 127.0.0.1:8080/articles

404 page not found

~/ch16%

322

CHAPTER 16 * GORILLA

Here are examples from the official documentation:
e r.PathPrefix(“/products/”)
e r.Methods(“GET’, “POST”)
e r.Schemes(“https”)
e r.Headers(“X-Requested-With’, “XMLHttpRequest”)

e r.Queries(“key’, “value”)

e r.MatcherFunc(func(r *http.Request, rm *RouteMatch) bool { return
r.ProtoMajor == 0 })

Again, we can accomplish all of this with the standard library (which many developers think you
should), yet having a toolkit at the ready makes it an easy choice. There is much more to Gorilla mux. Our
goal is to highlight the relation to the standard library and how it extends (additional functionality). You can
learn more here: https://github.com/gorilla/mux.

Gorilla Handlers

Gorilla provides a set of handlers in the “handlers” package. Sticking with the theme, ease of use, it includes
the following handlers for us to use in our middleware chain.
Here are the official descriptions:

e LoggingHandler: For logging HTTP requests in the Apache Common Log Format

e CombinedLoggingHandler: For logging HTTP requests in the Apache Combined Log
Format commonly used by both Apache and Nginx

e CompressHandler: For gzipping responses
e ContentTypeHandler: For validating requests against a list of accepted content types

e MethodHandler: For matching HTTP methods against handlers in a
map(string]http.Handler

e ProxyHeaders: For populating r.RemoteAddr and r.URL.Scheme based on the
X-Forwarded-For, X-Real-IP, X-Forwarded-Proto, and RFC7239 Forwarded headers
when running a Go server behind an HTTP reverse proxy

e CanonicalHost: For redirecting to the preferred host when handling multiple
domains (i.e., multiple CNAME aliases)

e RecoveryHandler: For recovering from unexpected panics

Let’s take a look at a couple of these, starting with the LoggingHandlers.

~/ch16$ go get github.com/gorilla/handlers

~/ch16$ go doc handlers.loggingHandler

package handlers // import "github.com/gorilla/handlers"

func LoggingHandler(out io.Writer, h http.Handler) http.Handler
LoggingHandler return a http.Handler that wraps h and logs requests to out
in Apache Common Log Format (CLF).

323

https://github.com/gorilla/mux

CHAPTER 16 = GORILLA

See http://httpd.apache.org/docs/2.2/1logs.html#common for a description of
this format.

LoggingHandler always sets the ident field of the log to -
Example:

T := mux.NewRouter()

r.HandleFunc("/", func(w http.Responselriter, r *http.Request) {
w.Write([]byte("This is a catch-all route"))

1}

loggedRouter := handlers.loggingHandler(os.Stdout, 1)
http.ListenAndServe(":1123", loggedRouter)

Let’s copy our original example adding this middleware.
~/ch16$ cat logging.go
package main

import (
"github.com/gorilla/mux"
"github.com/gorilla/handlers"
“OS"
"net/http"

)

func buildHandler(message string) func(http.ResponseWriter, *http.Request) {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte(message))
1))

}

func main() {
T := mux.NewRouter()
r.HandleFunc("/", buildHandler("HomeHandler"))
r.HandleFunc("/products”, buildHandler("ProductsHandler"))
r.HandleFunc("/articles", buildHandler("ArticlesHandler")).Host("example.com").
Methods("GET").Schemes("http")
loggedRouter := handlers.loggingHandler(os.Stdout, 1)
http.ListenAndServe(":8080", loggedRouter)

Notice the chaining in the preceding code. Instead of passing the router object to ListenAndServe,
we pass it to LoggingHandler, which chains it. We then use its result, a ServeMux satisfying object to
ListenAndServe.

324

CHAPTER 16 * GORILLA

If you run the server and access from another terminal, you will see a request and response
information logged.

~/ch16$ go run logging.go
~/ch16% curl --resolve example.com:8080:127.0.0.1 -IX GET http://example.com:8080/articles

HTTP/1.1 200 OK

Date: Sun, 03 Apr 2022 04:38:07 GMT
Content-Length: 15

Content-Type: text/plain; charset=utf-8

Back on the server, we see127.0.0.1 - - [07/Mar/2022:19:04:20 +0000] "GET /articles
HTTP/1.1" 200 15

This format is defined here: http://httpd.apache.org/docs/2.2/logs.html#common. You will notice
we have another handler called CombinedLoggingHandler; this format is defined here: http://httpd.
apache.org/docs/2.2/1logs . htmli#combined. Here is a brief comparison of the formats.

e Common- "%h %1 %u %t \"%r\" %>s %b"

e Combined - "%h %1 %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-
agent}i\""

We now try an example of the ContentTypeHandler handler.
~/ch16$ go doc handlers.ContentTypeHandler
package handlers // import "github.com/gorilla/handlers”

func ContentTypeHandler(h http.Handler, contentTypes ...string) http.Handler
ContentTypeHandler wraps and returns a http.Handler, validating the request
content type is compatible with the contentTypes list. It writes a HTTP 415
error if that fails.

Only PUT, POST, and PATCH requests are considered.

Take note, it only works for a subset of HTTP methods (ones that create/update); others are
passed through silently.~/ch16$ cat contenttype.go

package main

import (
"github.com/gorilla/handlers”
"github.com/gorilla/mux"
"net/http"

)

func buildHandler(message string) func(http.ResponseWriter, *http.Request) {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte(message))
1))

325

http://httpd.apache.org/docs/2.2/logs.html#common
http://httpd.apache.org/docs/2.2/logs.html#combined
http://httpd.apache.org/docs/2.2/logs.html#combined

CHAPTER 16 = GORILLA

func main() {
T := mux.NewRouter()
r.HandleFunc("/", buildHandler("HomeHandler"))
r.HandleFunc("/products”, buildHandler("ProductsHandler"))
1 := handlers.ContentTypeHandler(http.HandlerFunc(func(w http.Responselriter,
T *http.Request) {
w.Write([]byte("json articles only"))
}), "application/json")
r.Handle("/articles", 1)
http.ListenAndServe(":8080", r)

We can see for the “/articles” route, we want to make sure any data being uploaded has a json
content type.

~/ch16% go run contenttype.go
Here, we exercise the expected catching (validate “application/json” on POST) and where we ignore it.
~/ch16$ curl -IX POST -H 'Content-Type: application/json' 127.0.0.1:8080/articles

HTTP/1.1 200 OK

Date: Mon, 07 Mar 2022 19:28:04 GMT
Content-Length: 18

Content-Type: text/plain; charset=utf-8

~/ch16% curl -IX POST -H 'Content-Type: application/xml' 127.0.0.1:8080/articles

HTTP/1.1 415 Unsupported Media Type
Content-Type: text/plain; charset=utf-8
X-Content-Type-Options: nosniff

Date: Mon, 07 Mar 2022 19:28:11 GMT
Content-Length: 81

~/ch16$ curl -IX GET -H 'Content-Type: application/xml' 127.0.0.1:8080/articles
HTTP/1.1 200 OK

Date: Mon, 07 Mar 2022 19:28:20 GMT

Content-Length: 18

Content-Type: text/plain; charset=utf-8

The handlers can be used per route, or all routes. Other handlers are available; review the
documentation to see them: “go doc gorilla/handlers | grep “func”

Additional Gorilla Examples

What remains is a sampling of Gorilla packages demoing their primary mechanics. For our purpose, we try
to focus on how it compares or contrasts to the standard library offerings.

326

CHAPTER 16 * GORILLA

gorilla/rpc

The json package of Gorilla provides us similar capabilites as what we learned in Chapter 13 about rpc
leveraging JSON. We register our service, which in turn receives the HTTP request.

ch16$ vi rpc.go
package main
import (

"github.com/gorilla/rpc"
"github.com/gorilla/xrpc/json"

"net/http"

)

type HelloArgs struct {
Who string

}

type HelloReply struct {
Message string
}

type HelloService struct{}

func (h *HelloService) Say(r *http.Request, args *HelloArgs, reply *HelloReply) error {
reply.Message = "Hello, " + args.Who + "!"
return nil

}

func main() {
s := rpc.NewServer()
s.RegisterCodec(json.NewCodec(), "application/json")
s.RegisterService(new(HelloService), "")
http.Handle("/rpc", s)
http.ListenAndServe(":8080", nil)

}

We launch the server.~/ch16$ go mod tidy
~/ch16$ go run rpc.go

From the client, we send our json-based payload to the proper endpoint.
~/ch16% curl -X POST -H "Content-Type: application/json" \
-d '{"method":"HelloService.Say","params":[{"Who":"Test"}], "id":"1"}" \
http://localhost:8080/1pc

{"result":{"Message":"Hello, Test!"},"error":null,"id":"1"}

327

https://doi.org/10.1007/978-1-4842-8095-9_13

CHAPTER 16 = GORILLA

The Gorilla rpc package derives from the net/rpc package, with the noted differences.
~/ch16$ go doc gorilla/rpc
package rpc // import "github.com/gorilla/rpc"

Package gorilla/rpc is a foundation for RPC over HTTP services, providing
access to the exported methods of an object through HTTP requests.

This package derives from the standard net/rpc package but uses a single
HTTP request per call instead of persistent connections. Other differences
compared to net/rpc:

- Multiple codecs can be registered in the same server.

A codec is chosen based on the "Content-Type" header from the request.
- Service methods also receive http.Request as parameter.

- This package can be used on Google App Engine.

While not in the documentation example, “other” codecs for XML, for example, have been created by
third parties that leverage the Gorilla rpc package interface.

gorilla/schema

The Gorilla schema package makes it easy to unmarshal fields from form into our struct. Here, we create a
Person struct with two fields. Ultimately, we “submit” a form that contains those and fills them.

~/ch16$ cat schema.go

package main

import (
"fmt"
"github.com/gorilla/schema"”
"net/http"

)

var decoder = schema.NewDecoder ()

type Person struct {
Name string
Phone string

}

func main() {
http.HandleFunc("/schema", func(res http.ResponseWriter, req *http.Request) {
req.ParseMultipartForm(0)
var person Person
decoder.Decode(8person, req.PostForm)
message := fmt.Sprintf("Hello %v from area %v", person.Name, person.Phone)

328

}

res.Write([]byte(message))
H

http.ListenAndServe(":8080", nil)

Launch the server.~/ch16$ go mod tidy
~/ch16$ go run schema.go

CHAPTER 16 * GORILLA

Notice how curl fills in the Content-Type for us, “multipart/form-data” (HTML forms in a browser will
fill the Content-Type as well).

~/ch16$ curl -sF "Name=Ron" -F "Phone=312" -v localhost:8080/schema && echo

*
*
*
>
>
>
>
>
>
>
*
*
<
<
<
<
<
*

Trying 127.0.0.1:8080...
TCP_NODELAY set
Connected to localhost (127.0.0.1) port 8080
POST /schema HTTP/1.1
Host: localhost:8080
User-Agent: curl/7.68.0
Accept: */*
Content-Length: 239
Content-Type: multipart/form-data; boundary=

We are completely uploaded and fine
Mark bundle as not supporting multiuse
HTTP/1.1 200 OK

Date: Mon, 07 Mar 2022 21:57:45 GMT
Content-Length: 23

Content-Type: text/plain; charset=utf-8

Connection #0 to host localhost left intact

Hello Ron from area 312

gorilla/securecookie

The securecookie documentation starts as follows:

~/ch16$ go doc securecookie

(#0)

package securecookie // import "github.com/gorilla/securecookie"

Package securecookie encodes and decodes authenticated and optionally
encrypted cookie values.

0458a5d725c3¢300

Secure cookies can't be forged, because their values are validated using
HMAC. When encrypted, the content is also inaccessible to malicious eyes.

329

CHAPTER 16 = GORILLA

While debate rages on about the use of cookies, we simply show the creation and round trip back to the
server. We do not concern ourselves about local storage (client side).

AES encryption is used under the hood; standard length block keys are supported (16, 24, 32 bytes). In
our example, we set to nil; thus, we are not using encryption.

~/ch16$% cat securecookie.go

package main

import (
"fmt"
"github.com/gorilla/securecookie"
"net/http"

)

var hashKey = []byte("very-secret")
var s = securecookie.New(hashKey, nil)

func SetCookieHandler(w http.ResponseWriter, r *http.Request) {
value := map[string]string{
||_Foo||: Ilbarll,
}

if encoded, err := s.Encode("cookie-name", value); err == nil {
cookie := &http.Cookie{
Name: "cookie-name",
Value: encoded,
Path: "/",

}
http.SetCookie(w, cookie)

fmt.Println(cookie)

}

func ReadCookieHandler(w http.ResponseWriter, r *http.Request) {
if cookie, err := r.Cookie("cookie-name"); err == nil {
value := make(map[string]string)
fmt.Println(cookie.Value)
if err = s.Decode("cookie-name", cookie.Value, &value); err == nil {
fmt.Fprintf(w, "The value of foo is %q", value["foo"])
}

fmt.Println(cookie, err)

}

func main() {
http.HandleFunc("/set", SetCookieHandler)
http.HandleFunc("/read", ReadCookieHandler)
http.ListenAndServe(":8080", nil)

330

CHAPTER 16 * GORILLA

Launch the server.~/ch16$ go mod tidy
~/ch16$ go run securecookie.go

The "/set" endpoint will simply create our cookie.~/ch16$% curl -I localhost:8080/set

HTTP/1.1 200 OK

Set-Cookie: cookie-name=MTYONJjY5MDU3MXxEdi1CQkFFQ180SUFBUXdCREFBQURQLUNBQUVEWMO5dkEySmhjzZz09
fMds29irowo8h_9MByVigjTighot7hnvAHprwtX9ncih; Path=/

Date: Mon, 07 Mar 2022 22:02:51 GMT

To confirm it was received, we send back our encoded cookie (be sure to use yours previously).
~/ch16$% curl -b "cookie-name=MTYONjY5MDU3MXxEdi1CQkFFQ180SUFBUXdCREFBQURQLUNBQUVEWMOS5dKEYS

mhjZz09fMds29irowo8h_9MByVigjTighot7hnvAHprwtX9nc1h" localhost:8080/read && echo
The value of foo is "bar"

Conclusion

The name “Gorilla” starts with Go and brings attention to endangered primates. As time goes on, Gorilla is
not the only toolkit in the jungle, yet it remains in the conversation. We did not cover all the packages here,
but hopefully this gives you some insight into how the standard library is extended.

331

CHAPTER 17

Testing

In this chapter, we will look at ways and examples of testing network-related code. Using unit and integration
testing techniques, we strive to capture the known and expected behavior. A unit test should ideally avoid all
external factors. For example, a test that leverages the network is most accurately described as an integration
test. The network (being external) to our code may exert undo influence such as delays or limiting payload
size. It is not always easy to know how to design a test, much less how to separate and reduce outside
influences. Having many unknown or controlled internal mechanisms can lead to flaky tests, ones that
randomly seem to fail.

This chapter is not about learning the basics of Go test tooling. Excellent resources for the basics exist,
for example:

e https://pkg.go.dev/testing
e https://quii.gitbook.io/learn-go-with-tests/
e godoctesting

Our goal is to learn some techniques that help us design and manage network-related tests.

Simple and Broken

We begin with a simple set of tests, where both tests are sending a request and then confirming we get a
response. The only difference is one test has a client that times out and the other does not. In both tests, the
server fakes work by sleeping for five seconds in both tests. We will run each test individually, then as a suite,
reviewing the results.

$ mkdir ch17
$ cd cha7

ch17$ vi basic_http test.go

package ch17

import (
"net/http"
"testing"
"time"

)

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 333
https://doi.org/10.1007/978-1-4842-8095-9_17

https://doi.org/10.1007/978-1-4842-8095-9_17#DOI
https://pkg.go.dev/testing
https://quii.gitbook.io/learn-go-with-tests/

CHAPTER 17 © TESTING

func TestHTTPRoundTrip(t *testing.T) {
path := "/"
¢ := make(chan struct{})
//server
go func() {
http.HandleFunc(path, func(w http.ResponseWriter, req *http.Request) {
time.Sleep(5 * time.Second) // holding connection
1))

http.ListenAndServe(":8080", nil)
O

//client
go func() {
resp, err := http.Get("http://localhost:8080" + path)
if err 1= nil {
t.Error(err)
} else {
if resp == nil || resp.StatusCode != http.StatusOK {
t.Error(resp)
}

}

defer func() {
c <- struct{}{}

func TestHTTPRoundTripTimeout(t *testing.T) {
path := "/"
c := make(chan struct{})
//server
go func() {
http.HandleFunc(path, func(w http.ResponseWriter, req *http.Request) {
time.Sleep(5 * time.Second) // holding connection
1)

http.ListenAndServe(":8080", nil)
O

//client

go func() {
var client = 8http.Client{

Timeout: time.Second * 2,
}

resp, err := client.Get("http://localhost:8080" + path)
if err 1= nil {

t.Error(err)
} else {

if resp == nil || resp.StatusCode != http.StatusOK {

334

CHAPTER 17 - TESTING

t.Error(resp)

}

defer func() {
¢ <- struct{}{}
10
10

<-C

We begin by running the first test:
ch17$ go test -test.run "TestHTTPRoundTrip$" basic_http test.go

=== RUN TestHTTPRoundTrip

--- PASS: TestHTTPRoundTrip (5.00s)
PASS

ok command-line-arguments 5.132s

and now the second test:
ch17$ go test -test.run "TestHTTPRoundTripTimeout$" basic_http test.go

--- FAIL: TestHTTPRoundTripTimeout (2.00s)
basic_http test.go:56: Get "http://localhost:8080/": context deadline exceeded (Client.
Timeout exceeded while awaiting headers)
FAIL
FAIL command-line-arguments 2.131s
FAIL

Upon reading the tests, it may seem obvious that the second test was going to fail. The client is set to
expire after two seconds where the server is taking five seconds to process. An untrained eye might miss
the reason for these related tests. The default HTTP client has an unlimited timeout. In our case, the server
in the first test could take double the time and the test would still pass. This is not specific to Go, but it is
specific to this implementation of the Go HTTP client. What happens if we simply run both tests.

ch17$ go test basic_http_test.go
panic: http: multiple registrations for /

goroutine 31 [running]:
net/http. (*ServeMux).Handle(0x1529fa0, {0x137fe80, 0x1}, {0x1381c00?, 0x132fee0})
/usr/local/go/src/net/http/server.go:2478 +0x226
net/http. (*ServeMux).HandleFunc(...)
/usr/local/go/src/net/http/server.go:2515
net/http.HandleFunc(...)
/usr/local/go/src/net/http/server.go:2527
command-1line-arguments.TestHTTPRoundTripTimeout.func1()
/Users/ronaldpetty/github.com/apress/network-prog-with-go-2e/ch17/basic_http test.
g0:43 +0x37

335

CHAPTER 17 © TESTING

created by command-line-arguments.TestHTTPRoundTripTimeout
/Users/ronaldpetty/github.com/apress/network-prog-with-go-2e/chi7/basic_http test.

g0:42 +0x5e
FAIL command-line-arguments 5.225s
FAIL

This error is exposing a test antipattern, where the tests are not independent of each other. Like the
prior run, this also exposes some of the implementation details. The default ServeMux has a default handler;
per code at server.go:2478, we are not allowed to remap the path.

We can see there a few things to consider including the following:

e What are we actually trying to test?
e Arewe adhering to good testing practices (i.e., test independence)?
e Arewe correct and performant?

How can we solve the preceding issue? As we saw in an earlier chapter, we could make a new "mux"
per test. Another approach could be to set up all the test routes before the running of the tests. More
fundamentally though, we should consider what exactly are we testing. For example, are we testing that the
server listens? Or are we testing that our Handler provides the correct response based on a provided request?
After all, if we consider the OSI model of thinking, HTTP is where our request/response protocol lives (L7),
where TCP/IP maintains our connection (L4 and below). Since the layers can be decoupled, we should be
able to decouple our tests. Even with this separation in mind, it’s not immediately clear where the pieces will
be tested (i.e., unit or integration). Thinking about the handler mappings, are those something you unit test,
or is that something worthy of an integration test? After all, the handler isn't even triggered unless the given
path was used.

Asyou can see, how we think about the network components can lead to potentially different testing
arrangements. We should also remember that tests run out of order. While it seems tests run top to bottom,
that is an implementation side effect and not a specified behavior in the testing package.

As we refactor, we will first look at what Go provides regarding testing helpers.

httptest Package

The httptest package provides functions and types to assist with HTTP focused testing.
ch17$ go doc httptest

package httptest // import "net/http/httptest”

Package httptest provides utilities for HTTP testing.

const DefaultRemoteAddr = "1.2.3.4"
func NewRequest(method, target string, body io.Reader) *http.Request
type ResponseRecorder struct{ ... }
func NewRecorder() *ResponseRecorder
type Server struct{ ... }
func NewServer(handler http.Handler) *Server
func NewTLSServer(handler http.Handler) *Server
func NewUnstartedServer(handler http.Handler) *Server

336

CHAPTER 17 - TESTING

Let’s create a new test, one that is similar to our prior ones yet does not actually connect to a server. To
save room, we will not list the existing tests.
ch17$ vi basic_http test.go
package ch17

import (
"net/http"
"net/http/httptest”
"testing"
"time"

)

func TestHTTPRoundTripNoConnection(t *testing.T) {
path := "/"
req := httptest.NewRequest("GET", path, nil)
res httptest.NewRecorder()

f := func(w http.Responselriter, req *http.Request) {
time.Sleep(5 * time.Second) // holding connection
}

f(res, req)

if res == nil || res.Result().StatusCode != http.StatusOK {
t.Error(res)
}

}

func TestHTTPRoundTrip(t *testing.T) {
func TestHTTPRoundTripTimeout(t *testing.T) {

We have made a few changes but capture our request, response, and the related assertion. Things to
notice: we have removed the server (i.e., http.ListenAndServe); the path to handler mapping remains, but it
is explicit inside httptest. NewRequest vs. http.HandleFunc. Since we are using a new package (i.e., httptest),
we had to modify the result check in order to more closely match an actual response.

Our call to httptest. NewRecorder returns a new httptest.ResponseRecorder type, which in turn
implements the http.ResponseWriter interface. This allows an http.Response to be indirectly populated. The
result though is not fit for a deep comparison (i.e., reflect. DeepEqual).

Beyond a handler, how can we test the client and a mocked back end? The httptest package provides the
ability to also create a test server endpoint.

ch17$ vi basic_http_test.go
.. other tests and imports
func TestHTTPTestRoundTripTimeout(t *testing.T) {

ts := httptest.NewServer(http.HandlerFunc(func(w http.Responselriter, req *http.
Request) {

337

CHAPTER 17 © TESTING

time.Sleep(5 * time.Second) // holding connection

1)
defer ts.Close()

var ¢ = &http.Client{
Timeout: time.Second * 2,
}

req, _ := http.NewRequest("GET", ts.URL, nil)
res, err := c.Do(req)
if err != nil {

t.Fatal(err)
}

err = res.Body.Close()

if err 1= nil {
t.Fatal(err)

}

We can run this test as follows:
ch17$ go test -test.run "TestHTTPTestRoundTripTimeout$" -v basic_http_test.go

=== RUN TestHTTPTestRoundTripTimeout
basic_http test.go:68: Get "http://127.0.0.1:50866": context deadline exceeded (Client.
Timeout exceeded while awaiting headers)
--- FAIL: TestHTTPTestRoundTripTimeout (5.00s)
FAIL
FAIL command-1line-arguments 5.155s
FAIL

In these particular examples, you would not want the actual tests to fail. You would want to fix the
pathing (to be unique) and the timeouts to only trigger an error if it was unexpected.

Below HTTP

The preceding tooling focused on HTTP. Is there a more general technique? Included in the net package is
type Pipe.
ch17$ go doc net.Pipe
package net // import "net"
func Pipe() (Conn, Conn)
Pipe creates a synchronous, in-memory, full duplex network connection; both
ends implement the Conn interface. Reads on one end are matched with writes

on the other, copying data directly between the two; there is no internal
buffering.

338

CHAPTER 17 - TESTING

As is mentioned, we are provided connection objects that act like a more general client and server.
... prior tests and imports

func TestPipe(t *testing.T) {

¢ := make(chan struct{})

server, client := net.Pipe()

go func() {
time.Sleep(2 * time.Second)
req := make([]byte, 15)
server.SetDeadline(time.Now().Add(1 * time.Second))
_, err := server.Read(req)
t.Log(string(req))
if err != nil {

t.Error(err)

}

defer func() {
server.Close()
c <- struct{}{}

10
10

client.SetDeadline(time.Now().Add(1 * time.Second))
_, err := client.Write([]byte("my http request"))
if err 1= nil {

t.Error(err)

}

defer func() {
client.Close()

H0

<-C

}

In the preceding example, we are trying to emulate some of the failure behavior we saw with
HTTP-related timeouts.ch17$ go test -test.run "TestPipe$" -v basic_http test.go

=== RUN TestPipe
basic_http test.go:131: write pipe: i/o timeout
basic_http test.go:119:
basic_http test.go:121: read pipe: i/o timeout
--- FAIL: TestPipe (3.00s)
FAIL
FAIL command-line-arguments 3.137s
FAIL

Take note, we are operating at a lower layer than HTTP (i.e., L7). For the most part, this implies we will

need to take care of our request and responses vs. leveraging existing higher-level types like http.Request or
http.Response.

339

CHAPTER 17 © TESTING

Leveraging the Standard Library

The Internet is full of examples, and so is the Go standard library. In this section, we will look at a couple of
existing tests, with the intent to focus on the style and (required) complexity.

ch17$ go test -test.count=1 -v -test.list ".*" $(go env GOROOT)/src/net/... | head

TestSortByRFC6724
TestRFC6724PolicyTableClassify
TestRFC6724ClassifyScope
TestRFC6724CommonPrefixLength
TestCgoLookupIP
TestCgoLookupIPWithCancel
TestCgoLookupPort
TestCgoLookupPortWithCancel
TestCgoLookupPTR
TestCgoLookupPTRWithCancel

There are several thousand tests, most with no documentation. We first take a look at
$(go env GOROOT)/src/net/http/requestwrite test.go
Let’s attempt to run the related tests (start with TestRequestWrite).

ch17$ cd $(go env GOROOT)/src/net/http
http$ go test -test.count=1 -v -test.run "TestRequestWrite*"

=== RUN TestRequestWrite

--- PASS: TestRequestWrite (0.00s)

=== RUN TestRequestWriteTransport

=== PAUSE TestRequestWriteTransport

=== RUN TestRequestWriteClosesBody

--- PASS: TestRequestWriteClosesBody (0.00s)
=== RUN TestRequestWriteError

--- PASS: TestRequestWriteError (0.00s)

=== RUN TestRequestWriteBufferedWriter

--- PASS: TestRequestWriteBufferedWriter (0.00s)
=== CONT TestRequestWriteTransport

--- PASS: TestRequestWriteTransport (0.20s)

ok net/http 0.363s

It's nice that we can run the provided tests and even modify them to test things out (but be careful,
make backups).

If you open requestwrite_test.go (e.g., sudo vi $(go env GOROOT)/src/net/http/requestwrite_test.go),
notice the structure of the test table; here, we list the first entry.

// from requestwrite test.go

type reqWriteTest struct {
Req Request

340

CHAPTER 17 - TESTING

Body any // optional []byte or func() io.ReadCloser to populate Req.Body

// Any of these three may be empty to skip that test.
WantWrite string // Request.Write
WantProxy string // Request.WriteProxy

WantError error // wanted error from Request.Write

}

var regWriteTests = []regWriteTest{
// HTTP/1.1 => chunked coding; no body; no trailer
0: {
Req: Request{
Method: "GET",
URL: &url.URL{
Scheme: "http",

Host: "www.techcrunch.com",
Path: "/",

b

Proto: "HTTP/1.1",

ProtoMajor: 1,

ProtoMinor: 1,

Header: Header{
"Accept": {"text/html,application/
xhtml+xml,application/xml;q=0.9,%*/*;q=0.8"},
"Accept-Charset": {"IS0-8859-1,utf-8;9=0.7,%;9=0.7"},
"Accept-Encoding": {"gzip,deflate"},
"Accept-Language": {"en-us,en;q=0.5"},

"Keep-Alive": {"300"},
"Proxy-Connection": {"keep-alive"},
"User-Agent": {"Fake"},

b

Body: nil,

Close: false,
Host: "www.techcrunch.com",
Form: map[string][]string{},

1

WantWrite: "GET / HTTP/1.1\r\n" +
"Host: www.techcrunch.com\r\n" +
"User-Agent: Fake\r\n" +
"Accept: text/html,application/xhtml+xml,application/
xml;g=0.9,*/%;q=0.8\r\n" +
"Accept-Charset: IS0-8859-1,utf-8;9=0.7,%;9=0.7\r\n" +
"Accept-Encoding: gzip,deflate\r\n" +
"Accept-Language: en-us,en;q=0.5\r\n" +
"Keep-Alive: 300\r\n" +
"Proxy-Connection: keep-alive\r\n\r\n",

WantProxy: "GET http://www.techcrunch.com/ HTTP/1.1\r\n" +
"Host: www.techcrunch.com\r\n" +

341

CHAPTER 17 © TESTING

"User-Agent: Fake\r\n" +
"Accept: text/html,application/xhtml+xml,application/
xml;g=0.9,*/%;g=0.8\r\n" +
"Accept-Charset: IS0-8859-1,utf-8;9=0.7,%;9=0.7\r\n" +
"Accept-Encoding: gzip,deflate\r\n" +
"Accept-Language: en-us,en;q=0.5\r\n" +
"Keep-Alive: 300\r\n" +
"Proxy-Connection: keep-alive\r\n\r\n",

1

// HTTP/1.1 => chunked coding; body; empty trailer

1: {

As with many tests in Go, we see a very long testing table. We have a Request instance (Req) along with
a very similar stringified result (WantWrite and WantProxy). Before we dive in, let’s review one of the tests.

// from requestwrite test.go

func TestRequestWrite(t *testing.T) {
for i := range reqWriteTests {
tt := ®WriteTests[i]

setBody := func() {
if tt.Body == nil {
return
}

switch b := tt.Body.(type) {
case []byte:
tt.Req.Body = io.NopCloser(bytes.NewReader(b))
case func() io.ReadCloser:
tt.Req.Body = b()
}
}

setBody()

if tt.Req.Header == nil {
tt.Req.Header = make(Header)

}

var braw bytes.Buffer

err := tt.Req.Write(8braw)

if g, e := fmt.Sprintf("%v", err), fmt.Sprintf("%v", tt.WantError); g != e {
t.Errorf("writing #%d, err = %q, want %q", i, g, e)

continue

}

if err != nil {
continue

}

if tt.WantWrite != "" {

sraw := braw.String()
if sraw != tt.WantWrite {

342

CHAPTER 17 - TESTING

t.Errorf("Test %d, expecting:\n%s\nGot:\n%s\n", i,
tt.WantWrite, sraw)

continue
}
}
if tt.WantProxy != "" {
setBody()
var praw bytes.Buffer
err = tt.Req.WriteProxy(8praw)
if err != nil {
t.Errorf("WriteProxy #%d: %s", i, err)
continue
}
sraw := praw.String()
if sraw != tt.WantProxy {
t.Errorf("Test Proxy %d, expecting:\n%s\nGot:\n%s\n", i,
tt.WantProxy, sraw)
continue
}
}

That is a fair bit of code. What is it doing? Here is a list of activities:

e Enumerate the test table (reqWriteTests).

e Setup areal Request object with headers and body.

e Serialize the Request object (sraw) and compare with WantWrite or WantProxy.
Some additional items to note are

e io.NopCloser

The NopCloser is an example of a function that reduces functionality, in this case, prevent the closing of

aresource.

http$ go doc -u -all io.nopCloser

package io // import "io"

func NopCloser(r Reader) ReadCloser

NopCloser returns a ReadCloser with a no-op Close method wrapping the
provided Reader r.

type nopCloser struct {

Reader

func (nopCloser) Close() error

343

CHAPTER 17 © TESTING

e tt.Req.Write and tt.Req.WriteProxy

If we review the related documentation for these methods:
http$ go doc net/http.Request.Write
package http // import "net/http"

func (r *Request) Write(w io.Writer) error
Write writes an HTTP/1.1 request, which is the header and body, in wire
format. This method consults the following fields of the request:

Host

URL

Method (defaults to "GET")
Header

ContentLength
TransferEncoding

Body

If Body is present, Content-Length is <= 0 and TransferEncoding hasn't been
set to "identity", Write adds "Transfer-Encoding: chunked" to the header.
Body is closed after it is sent.

http$ go doc net/http.Request.WriteProxy
package http // import "net/http"

func (r *Request) WriteProxy(w io.Writer) error
WriteProxy is like Write but writes the request in the form expected by an
HTTP proxy. In particular, WriteProxy writes the initial Request-URI line of
the request with an absolute URI, per section 5.3 of RFC 7230, including the
scheme and host. In either case, WriteProxy also writes a Host header, using
either r.Host or r.URL.Host.

We see both methods take a Writer, and both serialize the Request object in slightly different ways based
on their utility. We won't inspect the differences here, but it gives us an idea on how to approach our own
testing.

We next review the test in the net package: TestTCPConnSpecificMethods.

// from protoconn_test.go
func TestTCPConnSpecificMethods(t *testing.T) {
la, err := ResolveTCPAddr("tcps", "127.0.0.1:0")
if err 1= nil {
t.Fatal(err)
}
1n, err := ListenTCP("tcp4", la)
if err != nil {

t.Fatal(err)
}

ch := make(chan error, 1)

344

CHAPTER 17 - TESTING

handler := func(ls *localServer, 1n Listener) { ls.transponder(ls.Listener, ch) }

1s := (&streamListener{Listener: 1n}).newLocalServer()

defer 1s.teardown()

if err := 1s.buildup(handler); err != nil {
t.Fatal(err)

}

ra, err := ResolveTCPAddr("tcp4", ls.Listener.Addr().String())
if err 1= nil {

t.Fatal(err)
}

¢, err := DialTCP("tcp4", nil, ra)
if err 1= nil {
t.Fatal(err)

}

defer c.Close()

.SetKeepAlive(false)

.SetKeepAlivePeriod(3 * time.Second)

.SetlLinger(0)

.SetNoDelay(false)

.LocalAddr ()

.RemoteAddr ()

.SetDeadline(time.Now().Add(someTimeout))

.SetReadDeadline(time.Now().Add(someTimeout))

.SetWriteDeadline(time.Now().Add(someTimeout))

if , err := c.Write([]byte("TCPCONN TEST")); err != nil {
t.Fatal(err)

O NN NN NN NN

rb := make([]byte, 128)

if , err := c.Read(rb); err != nil {
t.Fatal(err)

}

for err := range ch {
t.Error(err)
}

The test itself is focused on setting a variety of client connection-related options, then uses the client,
and in turn hopes nothing goes wrong. From our point of view, we are interested in how they wrote the test
itself. We are down in the L3/L4 layers of the stack. At a high level, here is what is happening:

Preparing and validating a known IP Address (i.e., 127.0.0.1) and port (:0)

Create a TCP-based Listener.
Launch the server (more to follow).
Retrieve the IP and assigned port of the server.

Create a client using the remote address.

345

CHAPTER 17 © TESTING

e Configure client.
e Write data from client to server and then read the result.

Running the TestTCPConnSpecificMethods test, we see the following:
net$ go test -test.count=1 -v -test.run "TestTCPConnSpecificMethods$"

=== RUN TestTCPConnSpecificMethods

--- PASS: TestTCPConnSpecificMethods (0.00s)

PASS

Socket statistical information:

(inet4, stream, default): opened=2 connected=1 listened=1 accepted=1 closed=3 openfailed=0
connectfailed=1 listenfailed=0 acceptfailed=1 closefailed=0

ok net 0.210s
The middle of the test looks more complicated than what we have seen before.

ch := make(chan error, 1)
handler := func(ls *localServer, 1ln Listener) { ls.transponder(ls.Listener, ch) }
1s := (&streamListener{Listener: 1n}).newLocalServer()
defer 1s.teardown()
if err := ls.buildup(handler); err != nil {
t.Fatal(err)
}

The preceding code is defined elsewhere: mockserver_test.go. The call to buildup runs the handler code
in a Go routine. At a high level, Accept is run in the transponder, so why not just a “nonmock” setup? Upon
further review, you see "someTimeout" being applied to most timeout-related settings (i.e., SetDeadline).
Interesting enough, since the code lives in a file ending with "_test.go", we cannot review it via “go doc”.

Review $(go env GOROOT)/src/net/mockserver_test.go for more details.

Conclusion

This chapter was intended to get you thinking about the techniques and layers involved when testing
network related code. Additional concepts and tooling are needed to become expert network test
developers. For example, how can fuzzing or generics help secure and streamline our code. What should we
consider when integration tests get more complicated, for example where we chain several network services
together, even when the protocol changes along the way.

346

APPENDIX A

Fuzzing

Fuzzing is a technique where one automatically generates inputs, which in turn causes the receiving
program to respond in some unexpected way. How a fuzzing program manipulates inputs is often classified
from simple to complex. For example, the inputs could simply be randomly generated, or you can provide an
initial set of values, or even more complex fuzzing systems can be rule driven (including deriving new rules
that generate potential values). Due to time constraints, sometimes lack of creativity, it’s hard to know how
our code will fail; letting the computer (fuzzer) drive this testing process allows us to find new ways to break
our code (bugs, vulnerabilities).

Wikipedia offers a nice introduction on the topic (https://en.wikipedia.org/wiki/Fuzzing).

Fuzzing in Go

Third-party fuzzing software has been around for a long time (even for Go), but in Go 1.18, the technique
was integrated into the testing package. You can read the original (draft) proposal here:

e https://go.googlesource.com/proposal/+/master/design/draft-fuzzing.md
and more in-depth conversation here:
e https://github.com/golang/go/issues/44551

The goal for us is to learn the basic mechanics of using Go’s fuzzing functionality and tie it back to a
networking test example.

Before we look at code, take some time to review the initial documentation via “go doc testing.F” Our
first example leverages the documentation example. As you read through the example:

e Note how testing.F is used along with testing.T.
e Note the use of seed data (more on this later).
e Think about the actual test, is it a regular looking unit test (yes!).
Before creating the first example, consider what fuzzing in Go requires us to do.
e A fuzztest must be named like FuzzXxx and only accepts *testing.F, no return value.
e Fuzz tests must be in files named *_test.go, like any test in Go.

e Afuzztarget must be a method call to (*testing.F).Fuzz, which accepts a *testing T as
the first parameter, followed by the fuzzing arguments. There is no return value.

e There must be exactly one fuzz target per fuzz test.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 347
https://doi.org/10.1007/978-1-4842-8095-9

https://doi.org/10.1007/978-1-4842-8095-9#DOI
https://en.wikipedia.org/wiki/Fuzzing
https://go.googlesource.com/proposal/+/master/design/draft-fuzzing.md
https://github.com/golang/go/issues/44551

APPENDIXA © FUZZING

e Allseed corpus entries must have types that are identical to the arguments being
fuzzed, in the same order. This is true for calls to (*testing.F).Add and any corpus files
in the testdata/fuzz directory of the fuzz test.

e The fuzzing arguments can only be the following types:

string, [|byte

e int, int8, intl6, int32/rune, int64

e uint, uint8/byte, uintl6, uint32, uint64
e float32, float64

e bool

$ mkdir appx-fuzzing
$ cd appx-fuzzing

appx-fuzzing$ vi fuzzing test.go

package main

import (
"bytes"
"encoding/hex"
"testing"

)

func FuzzMe(f *testing.F) {

for _, seed := range [][]byte{{}, {0}, {9}, {oxa}, {oxf}, {1, 2, 3, 4}} {
f.Add(seed)
}

// the fuzz runner f leverages the test runner t,

// this is so the fuzzer can manage the tests, it generates (or uses seed) inputs
// calling the passed in test
f.Fuzz(func(t *testing.T, in []byte) {

enc := hex.EncodeToString(in)

out, err := hex.DecodeString(enc)

if err 1= nil {

t.Fatalf("%v: decode: %v", in, err)
}

if !bytes.Equal(in, out) {
t.Fatalf("%v: not equal after round trip: %v", in, out)
}

1)

348

APPENDIXA © FUZZING

To run the embedded seed corpus we simply use the regular test runner.
appx-fuzzing$ go test fuzzing test.go
ok command-line-arguments 0.103s
To see more details, use -v.
appx-fuzzing$ go test -v fuzzing test.go

RUN FuzzMe

RUN FuzzMe/seed#0

RUN FuzzMe/seed#1

RUN FuzzMe/seed#2

RUN FuzzMe/seed#3

RUN FuzzMe/seed#4

RUN FuzzMe/seed#5

PASS: FuzzMe (0.00s)

--- PASS: FuzzMe/seed#0 (0.00s)
--- PASS: FuzzMe/seed#1 (0.00s)
--- PASS: FuzzMe/seed#2 (0.00s)
--- PASS: FuzzMe/seed#3 (0.00s)
--- PASS: FuzzMe/seed#4 (0.00s)
--- PASS: FuzzMe/seed#5 (0.00s)
PASS

ok command-line-arguments 0.105s

As you can see, we have six runs executed; this maps to the number of seeds included via “f.Add(seed)”.
By including seeds, we are afforded the opportunity to have regression protection, just like a typical unit test.
The mode of execution happened because it did not specify the test to fuzz. An alternative way to execute the
same thing (using seeded vs. generated data) is “go test -v --test.run “FuzzMe” fuzzing_test.go"

While regression protection is important, we haven'’t actually fuzzed anything, simply ran our basic
comparisons. To Fuzz, we need to specify our test. To generate new results (a.k.a. bad inputs caught by
fuzzing), specify the test (grab a drink; it’s going to be a long time - if ever - to complete). When you are tired
of waiting, hit control c.

appx-fuzzing$ go test -fuzz=FuzzMe fuzzing test.go

=== FUZZ FuzzMe

fuzz: elapsed: 0s, gathering baseline coverage: 0/29 completed

fuzz: elapsed: 0s, gathering baseline coverage: 29/29 completed, now fuzzing with 12 workers
fuzz: elapsed: 3s, execs: 780426 (260128/sec), new interesting: 0 (total: 29)

fuzz: elapsed: 6s, execs: 1577625 (265663/sec), new interesting: 0 (total: 29)

fuzz: elapsed: 9s, execs: 2369952 (264185/sec), new interesting: 0 (total: 29)

fuzz: elapsed: 12s, execs: 3024147 (218055/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 15s, execs: 3759791 (245166/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 18s, execs: 4470924 (237062/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 21s, execs: 5178109 (235752/sec), new interesting: 0 (total: 29)
fuzz: elapsed: 24s, execs: 5898784 (240167/sec), new interesting: 0 (total: 29)

~C

349

APPENDIXA © FUZZING

fuzz: elapsed: 25s, execs: 6211453 (222820/sec), new interesting: 0 (total: 29)
--- PASS: FuzzMe (25.41s)

PASS

ok command-line-arguments 25.545s

The immediate change is we specify a test to fuzz via --test.fuzz “FuzzMe’”. Instead of just running the
embedded seeds, we are now generating new inputs and testing them. This process will continue for a very
long time, hence the need to stop it. The reason it takes (hours, days, more!) is because the range of inputs
can be huge (just a single integer has billions of potential values). We do have some additional controls
though, vs. waiting forever.

e Fuzzing stops when a test fails.
e Limit time to fuzz via -fuzztime (e.g., -fuzztime 30s).

e Hit control~c or send SIGINT (e.g., using a signal in your CI pipeline).

Fuzzing Failures

In our prior example, we did not see a failure; however, we only ran for under a minute; it could take days
to maybe find invalid input. Let’s create a bad test to highlight the process and what we can do with fuzzing
generated test inputs.

The following test will error if the value is greater than 100 or less than 1000.

func FuzzBad(f *testing.F) {
f.Fuzz(func(t *testing.T, i int) {
if i > 100 && i < 1000 {
t.Fatalf("want: 101-999, got: %v", i)
}

1)

Running the fuzzing directly against this test produces the following:
appx-fuzzing$ go test -fuzz=FuzzBad fuzzing test.go

RUN FuzzMe

RUN FuzzMe/seed#0

RUN FuzzMe/seed#1

RUN FuzzMe/seed#2

RUN FuzzMe/seed#3

RUN FuzzMe/seed#4

RUN FuzzMe/seed#5

PASS: FuzzMe (0.00s)

--- PASS: FuzzMe/seed#0 (0.00s)

--- PASS: FuzzMe/seed#1 (0.00s)

--- PASS: FuzzMe/seed#2 (0.00s)

--- PASS: FuzzMe/seed#3 (0.00s)

--- PASS: FuzzMe/seed#4 (0.00s)

--- PASS: FuzzMe/seed#5 (0.00s)

=== FUZZ FuzzBad

fuzz: elapsed: 0s, gathering baseline coverage: 0/1 completed
fuzz: elapsed: Os, gathering baseline coverage: 1/1 completed, now fuzzing with 12 workers

350

APPENDIXA © FUZZING

fuzz: elapsed: 0s, execs: 9 (530/sec), new interesting: 0 (total: 1)
--- FAIL: FuzzBad (0.02s)
--- FAIL: FuzzBad (0.00s)
fuzzing test.go:28: want: 101-999, got: 174

Failing input written to testdata/fuzz/FuzzBad/
daef2fa4fc63690477c78877214488eb55a67946e4bed16916b63688c2c99935

To re-run:

go test -run=FuzzBad/daef2fa4fc63690477c788772f4488eb55a67946e4bed16916b63688c2c99935
FAIL
exit status 1
FAIL command-line-arguments 0.151s

We see the original test still runs over the provided seeds. This is by design meant to run the seeds as
aregression protective measure. If no seeds were available, the test would not run without using direct
invocation via --test.fuzz.

More importantly, we see a failing set of input(s) was identified. In the example, the value 174 was
attempted and failed. The result is stored in a directory called testdata. This directory will in turn be used as
the “seed” for future regression runs.

We see the directory structure as follows.

appx-fuzzing$ tree testdata

testdata
L— fuzz

L— FuzzBad
L daef2fa4fc63690477c78877214488eb55a67946e4bed16916b63688c2c99935

2 directories, 1 file
Reviewing the auto-generated file, we see the encoded bad input.

appx-fuzzing$ cat testdata/fuzz/FuzzBad/
daef2fa4fc63690477c78877214488eb55a67946e4bed16916b63688c2c99935

go test fuzz vi
int(174)

In our result, it is simply an int, but for more complex results, we will see more complex encodings.
If you run the test again, it simply fails again, treating the testdata now as a seed.

appx-fuzzing$ go test -fuzz=FuzzBad fuzzing test.go

fuzz: elapsed: 0s, gathering baseline coverage: 0/2 completed
failure while testing seed corpus entry: FuzzBad/
daef2fa4fc63690477c78877214488eb55a67946e4bed16916b63688c2c99935
fuzz: elapsed: 0s, gathering baseline coverage: 0/2 completed
--- FAIL: FuzzBad (0.02s)
--- FAIL: FuzzBad (0.00s)
fuzzing test.go:28: want: 101-999, got: 174

351

APPENDIXA © FUZZING

FAIL
exit status 1
FAIL command-line-arguments 0.126s

Let’s almost fix this; let’s simply reduce from 1000 to 150, shrinking our error range.

func FuzzBad(f *testing.F) {
f.Fuzz(func(t *testing.T, i int) {
if i > 100 &% i < 150 {
t.Fatalf("want: 101-150, got: %v", i)
}

1)

Running once more:
appx-fuzzing$ go test --test.fuzz "FuzzBad" fuzzing test.go

fuzz: elapsed: 0s, gathering baseline coverage: 0/2 completed
fuzz: elapsed: 0s, gathering baseline coverage: 2/2 completed, now fuzzing with 12 workers
fuzz: elapsed: 0s, execs: 4 (205/sec), new interesting: 0 (total: 2)
--- FAIL: FuzzBad (0.02s)
--- FAIL: FuzzBad (0.00s)
fuzzing_test.go:28: want: 101-150, got: 117

Failing input written to testdata/fuzz/FuzzBad/7bd545fe2a8997effdf791253ba5761785189c9
2f46c205024dc835aa7f63b27

To re-run:

go test -run=FuzzBad/7bd545fe2a8997effdf791253ba5761785189c92146c205024dc835aa7163b27
FAIL
exit status 1
FAIL command-line-arguments 0.234s

Reviewing the new failure:
appx-fuzzing$ tree testdata
testdata

L— fuzz
L— FuzzBad

7bd545fe2a8997effdf791253ba576f785189c92146c205024dc835aa7f63b27
daef2fa4fc63690477c78877214488eb55a67946e4bed16916b63688c2c99935
2 directories, 2 files

appx-fuzzing$ cat testdata/fuzz/FuzzBad/7bd545fe2a8997effdf791253ba5767785189c92f46c205024
dc835aa7f63b27

go test fuzz vi
int(117)

352

APPENDIXA © FUZZING

As expected, a new failing case was identified and stored. If we removed the failing logic, can we fuzz?

appx-fuzzing$ vi fuzzing test.go

func FuzzBad(f *testing.F) {
f.Fuzz(func(t *testing.T, i int) {
hope this never fails
ifil=1{
t.Fatalf("want: %v, got: %v", i, i)
}

1)

Running with a ten-second fuzzing time:
appx-fuzzing$ go test -fuzz=FuzzBad fuzzing test.go --test.fuzztime 10s

fuzz: elapsed: 0s, gathering baseline coverage: 0/3 completed

fuzz: elapsed: 0s, gathering baseline coverage: 3/3 completed, now fuzzing with 12 workers
fuzz: elapsed: 3s, execs: 794663 (264831/sec), new interesting: 0 (total: 3)

fuzz: elapsed: 6s, execs: 1608866 (271422/sec), new interesting: 0 (total: 3)

fuzz: elapsed: 9s, execs: 2400547 (263916/sec), new interesting: 0 (total: 3)

fuzz: elapsed: 10s, execs: 2642809 (217213/sec), new interesting: 0 (total: 3)

PASS

ok command-line-arguments 10.273s

We still see the seeds (from previous failures) are executed, and we fuzz for an additional ten seconds.

Fuzzing Network-Related Artifacts

Now that we have some of the basics of fuzzing, how might this help us with networking? Fuzzing is often
associated with security. The original fuzzing project found security issues in dozens of programs including
standard tools that are included with modern operating systems.

For simplicity, we will keep our example as part of our test file.

appx-fuzzing$ vi fuzzing test.go
package main

import (
"bytes"
"encoding/base64"
"encoding/hex"
"net/http"
"net/http/httptest”
"testing"

353

APPENDIXA © FUZZING

... prior tests ...

func FuzzHandler(f *testing.F) {
f.Fuzz(func(t *testing.T, data string) {
v := base64.StdEncoding.EncodeToString([]byte(data))
req := httptest.NewRequest("GET", "/?g="+v, nil)
res := httptest.NewRecorder()

f := func(w http.Responselriter, req *http.Request) {
keys, ok := req.URL.Query()["q"]

if lok || len(keys) != 1 {
t.Log(keys)
t.Fatal("q param missing or more than one instance")

}
val := keys[0]

if len(val) > 16384 {

w.WriteHeader (http.StatusNotAcceptable)
} else {

w.WriteHeader (http.StatusOK)
}

}
f(res, req)

if res == nil || res.Result().StatusCode != http.StatusOK {
t.Fatal(res)
}

H

This time, we explicitly fuzz the FuzzHandler test, with no runtime limit. Depending on your computer
and luck, this will take a few minutes to execute (hopefully).

appx-fuzzing$ go test -v -fuzz=FuzzHandler fuzzing test.go

.o

=== FUZZ FuzzHandler

fuzz: elapsed: 0s, gathering baseline coverage: 0/1 completed

fuzz: elapsed: 0s, gathering baseline coverage: 1/1 completed, now fuzzing with 12 workers
fuzz: elapsed: 3s, execs: 63259 (21080/sec), new interesting: 21 (total: 22)

fuzz: elapsed: 6s, execs: 161593 (32777/sec), new interesting: 23 (total: 24)

fuzz: elapsed: 9s, execs: 458132 (98870/sec), new interesting: 26 (total: 27)

fuzz: elapsed: 12s, execs: 1136629 (226110/sec), new interesting: 31 (total: 32)

fuzz: elapsed: 15s, execs: 1199874 (21082/sec), new interesting: 32 (total: 33)

fuzz: elapsed: 18s, execs: 1199874 (0/sec), new interesting: 32 (total: 33)

fuzz: elapsed: 21s, execs: 1352204 (50777/sec), new interesting: 32 (total: 33)

fuzz: elapsed: 3m3s, execs: 6601424 (50515/sec), new interesting: 35 (total: 36)

354

APPENDIXA © FUZZING

fuzz: minimizing 29399-byte failing input file
fuzz: elapsed: 3m6s, minimizing

fuzz: elapsed: 4m3s, minimizing
--- FAIL: FuzzHandler (243.19s)
--- FAIL: FuzzHandler (0.00s)
fuzzing test.go:63: 8{406 map[] false 0xc0094c46c0 map[] true}

Failing input written to testdata/fuzz/FuzzHandler/54a3e656e9424c2d80e33168b673d2688831f
8b0dc685dc545594a76752dcc85

To re-run:

go test -run=FuzzHandler/54a3e656e9424c2d80e33168b673d268883118b0dc685dc545594
a76752dcc85
FAIL
exit status 1
FAIL command-line-arguments 243.458s

Asyou can see, it took just over four minutes to find an error. What caused the error?

appx-fuzzing$ 1s -1h \
testdata/fuzz/FuzzHandler/54a3e656e9424c2d80e33168b673d2688831f8b0dc685dc545594a76752dcc85

-Iw-1--r-- 1 ronaldpetty staff 29K Mar 23 12:19 testdata/fuzz/FuzzHandler/54a3e656e942
4c2d80e33168b673d268883118b0dc685dc545594a76752dcc85

Take note of the size of the result, 29 kilobytes. Our code errored at anything over 16KB. In this
straightforward test, we are limiting the query search (q) params to be under a set length. Your own tests can
have much more involved checks.

As the fuzzing ran, we see things such as

e “fuzz:elapsed: 3s, execs: 63259 (21080/sec), new interesting: 21 (total: 22)”
e “fuzz:elapsed: 3m6s, minimizing”

An “interesting” input is one that expands the test corpus to cover code it couldn’t before with existing
examples. Per the documentation, many interesting inputs are generated early and taper off as all the code
is being covered (fuzzing instruments our code upon running; hence, we know what is covered or not).
Ultimately, we don’t want to store just any input; we want the input that fails, which we stopped when we got
our input that was over 16KB.

Conclusion

While the fuzzing technique is not new, its arrival in Go 1.18 means it will be some time before we see more
intersting examples. More about fuzzing in Go can be learned from here: https://go.dev/doc/tutorial/
fuzz. Fuzzing is not enough to prove program correctness; for that, formal methods must be used. Features
of Go itself are derived from work relating to formal methods. Channels (a key feature of Go) are derived
from communicating sequential processes (CSP). CSP is a formal language describing concurrent systems
(e.g., using channels between Go routines).

355

https://go.dev/doc/tutorial/fuzz
https://go.dev/doc/tutorial/fuzz

APPENDIX B

Generics

Generics are a programming mechanism where data types are abstracted from algorithms. In a
programming language where generics are not available, you often have to duplicate code when using the
same code with differing types.

Some languages, including Go, do not allow function overloading. This very issue is addressed in the Go
FAQ located here: https://go.dev/doc/fag#overloading.

Why does Go not support overloading of methods and operators?

Method dispatch is simplified if it doesn't need to do type matching as well. Experience
with other languages told us that having a variety of methods with the same name but
different signatures was occasionally useful but that it could also be confusing and fragile
in practice. Matching only by name and requiring consistency in the types was a major
simplifying decision in Go's type system.

Regarding operator overloading, it seems more a convenience than an absolute
requirement. Again, things are simpler without it.

Go produces the following error if overloading is attempted:

sample Go code
func Identity(a int64) int64 { return a }
func Identity(a float64) floaté4 { return a}

go run code.go

command-line-arguments

./g.go:5:6: Identity redeclared in this block
./g.g0:6:6: other declaration of Identity

A simple solution is to change the second function name to “IdentityFloat”. A less simple solution would
be to abstract the parameter (e.g., using any type as an example) and have one function (e.g., casting as
needed from “any’, or using reflection).

Generics have a long and interesting history; you can learn more here: https://en.wikipedia.org/
wiki/Generic_programming.

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 357
https://doi.org/10.1007/978-1-4842-8095-9

https://doi.org/10.1007/978-1-4842-8095-9#DOI
https://go.dev/doc/faq#overloading
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Generic_programming

APPENDIX B * GENERICS

A Filtering Function Without Generics

Here, we show an example where we have two filter functions, each taking a particular type array. In Go
prior to 1.18, we are required to have two functions unless we leverage the empty interface.

$ mkdir appx-generics
$ cd appx-generics

appx-generics$ vi no_generics.go
package main

import (
-
)

func FilterInt(s []int, f func(int) bool) []int {
var r []int
for , v := range s {
if f(v) {
r = append(r, v)
}

}

return r

}

func FilterString(s []string, f func(string) bool) []string {
var r []string
for , v := range s {
if f(v) {
r = append(r, v)
}

}

return r

}

func main() {
evens := FilterInt([]int{1, 2, 3, 4, 5}, func(i int) bool { return i%2 == 0 })
fmt.Printf("%v\n", evens)

shortStrings := FilterString([]string{"ok", "notok", "maybe", "maybe not"},

func(s string) bool { return len(s) < 3 })
fmt.Printf("%v\n", shortStrings)

358

APPENDIX B * GENERICS

The example simply creates two lists and in turn filters them by a function we provide.
appx-generics$ go run no_generics.go

[2 4]
[ok]

While not the end of the world, our code is duplicated. Code duplication is the source of many copy-
paste bugs. Ideally, we would like to avoid those bugs. Bugs aside, we might start thinking about local
optimizations based on types. While this may benefit some types, in our example, probably, no unique
optimizations are needed.

Refactor Using Generics

With Go 1.18, initial support for generics arrived. We will not discuss the pros or cons any further, but if you
are interested, take a look at the original proposal and related follow-up:

e https://github.com/golang/go/issues/43651
e https://go.dev/blog/generics-proposal

Next, we combine our two filter functions into a single function. Generics allow type parameters being
used as constraints. Formerly, we could only use methods in an interface, but now types provide additional
compile time checks.

In our generic filter function, we abstract the type information with the constraint “[T any]” T is an
example type parameter; type parameter list looks like an ordinary function parameter list except they are in
square brackets. “any” is the same as “interface{}” in prior editions of Go. This tells the compiler what types
are allowed and in turn generates the required variant(s) of the code.

In the parameter list for Filter, we are limited to slice of type T; elements of type T are passed into a
function we provide, ultimately yielding a slice with elements of type T.

appx-generics$ vi with_generics.go
package main
import (

"fmt"
)

func Filter[T any](s []T, f func(T) bool) []T {

var ¥ []T
for , v := range s {
if f(v) {
r = append(r, v)
}
}
return r

}

func main() {
evens := Filter([]int{1, 2, 3, 4, 5}, func(i int) bool { return i%2 == 0 })
fmt.Printf("%v\n", evens)

359

https://github.com/golang/go/issues/43651
https://go.dev/blog/generics-proposal

APPENDIX B * GENERICS

shortStrings := Filter([]string{"ok", "notok", "maybe", "maybe not"}, func(s string)
bool { return len(s) < 3 })
fmt.Printf("%v\n", shortStrings)

Running yields the same results as our prior version.
appx-generics$ go run with_generics.go

[2 4]
[ok]

While we are sticking to examples, its worth thinking about the impact of generics on our code.
e Line count: 35vs. 24
e Binary size: Both around 1.8MB (using go build)
e Speed: Same (using time command)

Less code is typically considered a good thing. However, like any feature, even generics syntax can make
code confusing.

There is more than one way to implement something like generics. One way is that the compiler could
just make copies of the code and change the data types and function names; another way is a singular
implementation with metadata holding various types of information to help guide the execution of a generic
function. One generics proposal is to have multiple functions and a second proposal having a singular
generic function with a dictionary containing the various types of information. Ultimately, these two
competing proposals have merged into one:

https://github.com/golang/proposal/blob/master/design/generics-implementation-
dictionaries-go1.18.md

Further work on generics not covered by this proposal includes recursive functions.

Custom Constraints

In this example, we look at a function (SoundOff) where the parameter is limited to the custom constraint
called Hybrid. The Hybrid constraint ultimately is limited to the interface Animal. Our function SoundOff
not only accepts all Animals, it retrieves the value type in order to do something specific. This isn't unique

to generics, we have to do this with interfaces if you want access to the value type. Take note that we cast our
input parameter to the empty interface (any) in order to retrieve the concrete type. This casting is required as
an interface is expected in the type switch, not a concrete type H.

appx-generics$ vi simple generics.go
package main

import (
"t
)

360

https://github.com/golang/proposal/blob/master/design/generics-implementation-dictionaries-go1.18.md
https://github.com/golang/proposal/blob/master/design/generics-implementation-dictionaries-go1.18.md

type Animal interface {
Sound()

type Cat struct{}

func (c Cat) Sound() { fmt.Println("Meow") }

func (c Cat) SpecialToCat() { fmt.Println("Cat special") }
type Dog struct{}

func (d Dog) Sound() { fmt.Println("Woof") }

func (c Dog) UniqueToDog() { fmt.Println("Dog unique") }

type Domesticated interface {
Cat | Dog // Not Owls
Animal

}

// An Owl is an “wild” animal,
// Thus not in the above union of cats and dogs
type Owl struct{}

func (Owl) Sound() { fmt.Println("Owl hoo") }

// Here we limit ourselves to domesticated animals

// If you passed in a 'wild' animal, it would not work

func SoundOff[H Domesticated](animal H) H {
animal.Sound()

switch a := any(animal).(type) {
case Dog:

a.UniqueToDog()
case Cat:

a.SpecialToCat()
default:

fmt.Println("Then hoo?")
}

return animal

}

func main() {
var ¢ Cat = SoundOff(Cat{})
d := SoundOff(Dog{})

c.Sound()
c.SpecialToCat()
d.Sound()
d.UniqueToDog()

APPENDIX B * GENERICS

361

APPENDIX B * GENERICS

// SoundOff(Owl{})
}

Sit back and listen to our zoo.
appx-generics$ go run simple generics.go

Meow
Cat special
Woof
Dog unique
Meow
Cat special
Woof
Dog unique

If you uncomment the owl, it will not compile.
appx-generics$ go build simple generics.go

command-line-arguments
./simple generics.go:59:10: Owl does not implement Domesticated

Per one of the lead developers, Ian Lance Taylor, here are guidelines when using generics.
When to use generics:

e Functions that work on slices, maps, and channels of any element type and have no
assumptions about a particular element type are used.

e General purpose data structures, that is, linked list, b-tree.

e Prefer functions vs. methods (allows the data structure to remain agnostic to
the type).

e When elements have a common method with the same implementation
(Read(network) and Read(file) have different implementations, so don't use
generics).

When to not use generics:
e When just calling a method on the argument (use interfaces)
e When implementation of a common method differs

e When an operation differs per type (use reflection instead)

Using Generics on Collections

Collections such as arrays of “any” where we operate the same way on each item are prime targets for
generics. In this example, we use a channel and our own linked list to show how we can generify our
iteration code. Unlike prior examples, we have two constraints: “MustBe” (our input) and “Result” (our
output). Notice they do not have to match.

362

APPENDIX B * GENERICS

In the following example, we create our own linked list and a channel instance, hydrating and iterating
over each instance. Notice our Iterate function takes either type, channel or linked list as both satisfy the
MustBe constraint.

appx-generics$ cat iterate.go

package main

import (
"fmt"
"sync"
"time"
)

// Our LinkedlList code
type LL struct {

N *LL

data string
}

// Retreive the next node in the linkedlist
func (1 LL) Next() *LL { return 1.N }
// Here we use a union of types “|”
// Meaning our arguments must be of these types
// Either channel or the above linkedlist type
type MustBe interface {

chan string | LL
}

// We use the union technique once more on the return types
// Notice these can differ than the above "MustBe" types
type Result interface {

string | LL
}

// This is the function we wish to make generic
// We are iterating over a instance of MustBe (either channel string or LL)
// Notice the return type must be a Result type (either string or LL)
func Iterate[M MustBe, R Result](o M, iter func(M) R) (r R) {
return iter(o)
}

func main() {
// Create channel for strings
c := make(chan string, 5)
c <- "ok"
c <- "ok2"

//This function is what we will pass into the above Iterate
//Notice Iterate's first parameter is the same as the following

363

APPENDIX B * GENERICS

//lambdas parameter
citer := func(c chan string) string {
select {
case msgl := <-C:
return msgi
case <-time.After(1 * time.Second):
return "nothing"
}

}

// Here we "Iterate" through the channel
var wg sync.WaitGroup

wg.Add(2)
go func(f func(chan string) string) {
for {
fmt.Println(Iterate(c, f))
wg.Done()
}
}(citer)

wg.Wait() // wait for iteration to finish

// The remaining example shows passing a custom Linked List
// iteration function

// First we build a simple list
nl := LL{data: "n1"}

n2 := LL{data: "n2"}

n3 := LL{data: "n3"}

n1.N = &n2

n2.N = &n3

// Like the above citer, the parameter type will match
// the first parameter of Iterate above
liter := func(l LL) LL {

var zero LL

if 1.N != zero.N {

return *1.N
} else {
return zero
}
}
// We walk through the linked list
n:=ni

for n.N != nil {
fmt.Printf("node:%s\n",n.data)
n = Iterate(n, liter)

364

APPENDIX B * GENERICS

When we launch, the channel is consumed first; then we work through the linked list.
appx-generics$ go run iterate.go

ok

ok2
node:nl
node:n2

With generics, we are able to use a single function to handle multiple input types. The use of a function
to retrieve the next element means we don't have to support a common interface with these types. This
means in theory we can use other types as well.

How Not to Use Generics?

We show a counterexample, one where we see some issues using generics.

Here, we are going to convert an existing function and see if we can rewrite it leveraging generics. In this
case, it’s not about deduping a complete algorithm; its about potentially streamlining a switch statement
(not recommended per the preceding text!).

The following code can be found in GOROOT/src/net/http/httptest/httptest.go. Take a moment to
review, noting the use of a type switch in the middle of the function.

appx-generics$ go doc -src http/httptest.NewRequest
package httptest // import "net/http/httptest”

// NewRequest returns a new incoming server Request, suitable

// for passing to an http.Handler for testing.

//

// The target is the RFC 7230 "request-target": it may be either a

// path or an absolute URL. If target is an absolute URL, the host name
// from the URL is used. Otherwise, "example.com" is used.

//

// The TLS field is set to a non-nil dummy value if target has scheme
// "https".

/7

// The Request.Proto is always HTTP/1.1.

//

// An empty method means "GET".

//

// The provided body may be nil. If the body is of type *bytes.Reader,
// *strings.Reader, or *bytes.Buffer, the Request.ContentlLength is

// set.

//

// NewRequest panics on error for ease of use in testing, where a

// panic is acceptable.

/1

// To generate a client HTTP request instead of a server request, see
// the NewRequest function in the net/http package.

func NewRequest(method, target string, body io.Reader) *http.Request {

365

APPENDIX B * GENERICS

if method == "" {
method = "GET"
}

req, err := http.ReadRequest(bufio.NewReader(strings.NewReader(method +
HTTP/1.0\r\n\r\n")))
if err != nil {
panic("invalid NewRequest arguments;
}

+ target + "

+ err.Error())

// HTTP/1.0 was used above to avoid needing a Host field. Change it to 1.1 here.
req.Proto = "HTTP/1.1"

req.ProtoMinor = 1

req.Close = false

if body != nil {
switch v := body. (type) {
case *bytes.Buffer:
req.ContentLength = int64(v.Len())
case *bytes.Reader:
req.ContentLength = int64(v.Len())
case *strings.Reader:
req.ContentLength = int64(v.Len())
default:
req.ContentlLength
}

if rc, ok := body.(io.ReadCloser); ok {
req.Body = 1c

} else {
req.Body = io.NopCloser(body)

-1

}

// 192.0.2.0/24 is "TEST-NET" in RFC 5737 for use solely in
// documentation and example source code and should not be
// used publicly.

req.RemoteAddr = "192.0.2.1:1234"

if req.Host == "" {

req.Host = "example.com"
}

if strings.HasPrefix(target, "https://") {
req.TLS = &tls.ConnectionState{

Version: tls.VersionTLS12,
HandshakeComplete: true,
ServerName: req.Host,
}
}
return req

366

APPENDIX B * GENERICS

We can see that the same line of code is used in three cases and different in a fourth case. Can we dedup
this code? A starter question could be the following: Why is it triplicated? Some potential reasoning includes
the following:

e Dbytes.Buffer, bytes.Reader, and strings.Reader are the only types (and are io.Readers)
where we care about the Len.

e Len()is notin a shared interface (not in io.Reader).

If you look at each types documentation, all of them have a Len method implemented. If you look
deeper, you see a variety of interfaces are implemented, yet none of those include “Len() int”. In fact, if you
look around, we can almost be certain that is correct; hardly anyone implements an interface containing
Len(). They do seem to implement the method Len though.

Here, we search for Len as part of an interface.appx-generics$ grep -nr "interface {" -A 10
$(go env GOROOT)/src | grep -E " Len\(\) int"

$GORO0T/src/net/http/h2_bundle.go-3549-func (s *http2sorter) Len() int { return len(s.v) }
$GORO0OT/src/encoding/asn1/marshal.go-33-func (c byteEncoder) Len() int {

Here are the interfaces we found before; neither is used by our type switch value
types.GOROOT/sxrc/net/http/h2_bundle.go
type http2pipeBuffer interface {

Len() int

io.Writer

io.Reader

}

GOROOT/src/encoding/asn1/marshal.go
// encoder represents an ASN.1 element that is waiting to be marshaled.
type encoder interface {
// Len returns the number of bytes needed to marshal this element.
Len() int
// Encode encodes this element by writing Len() bytes to dst.
Encode(dst []byte)

Can we use generics to limit which types our function accepts? In turn, can we collapse the type switch
to only our generic parameter type?
We can begin by trying to use generics to remove the triplicated check via the following
constraint:type MyType interface {

bytes.Buffer | bytes.Reader | strings.Reader
}

We then change the signature to the following:

func NewRequest[M MyType](method, target string, body M) *http.Request {

367

APPENDIX B * GENERICS

This is a start, but we are missing the following:

e We are unable to simply check for nil (before the switch, we see “if body != nil”) with
generics.

e The compiler will tell us Len() is missing (since it’s not part of our composition of
types in our constraint).

We can address the first issue with checking a related zero value instead of nil. The original nil check
becomes the following. Remember, generics will identify the arguments (and the actual types) to fill in what
M should be.

var zero M
if body != zero {

This still leaves us with the case of the missing Len(). Originally, the parameter was an interface, “io.
Reader’, which doesn't have a Len() method. This drove the original need to use a switch statement to access
the value types, which did each implement a Len() method. We could, for example, make a new interface,
one that combines Reader and Len().

type LenReader interface {
io.Reader
Len() int

This, however, doesn't do the job; we are still exposed to any type that implements that interface (not
limited at compiler time).
In the following code, we take the NewRequest function (borrowed from httptest.go) and refactor it.

appx-generics$ vi complex generics.go
package main

import (
"bufio”
"bytes"
"crypto/tls"
ll_Fmt n
n io "
"net/http"
"strings"

)

type myStruct struct {
s *strings.Reader
}

func (m myStruct) Len() int {
return m.s.Len()
}

368

APPENDIX B * GENERICS

func (m myStruct) Read(b []byte) (int, error) {

}

return m.s.Read(b)

type MyType interface {

}

*pbytes.Buffer | *bytes.Reader | *strings.Reader | myStruct

Len() int
io.Reader
comparable

type Lener interface {

}

Len() int

// ./http/httptest/httptest.go
func NewRequest[M MyType](method, target string, body M) *http.Request {

if method == "" {
method = "GET"
}

req, err := http.ReadRequest(bufio.NewReader(strings.NewReader(method +

+ target

+ " HTTP/12.0\r\n\r\n")))

if err 1= nil {
panic("invalid NewRequest arguments;
}

// HTTP/1.0 was used above to avoid needing a Host field. Change it to 1.1 here.
req.Proto = "HTTP/1.1"

req.ProtoMinor = 1

req.Close = false

+ err.Error())

var zero M
if body != zero {
switch i := any(body). (type) {
case Lener, io.ReadCloser:
if b, ok := i.(Lener); ok {
req.ContentLength = int64(b.Len())

}
if rc, ok := i.(io.ReadCloser); ok {
req.Body = rc

}

default:
req.Body = io.NopCloser(body)

}

} else {

req.Contentlength = -1
}

// 192.0.2.0/24 is "TEST-NET" in RFC 5737 for use solely in
// documentation and example source code and should not be

369

APPENDIX B * GENERICS

}

// used publicly.
req.RemoteAddr = "192.0.2.1:1234"

if req.Host == "" {

req.Host = "example.com"
}

if strings.HasPrefix(target, "https://") {
req.TLS = &tls.ConnectionState{

Version: tls.VersionTLS12,
HandshakeComplete: true,
ServerName: req.Host,
}
}
return req

func main() {

fmt.Println(NewRequest("GET", "
fmt.Println(NewRequest("GET", "

fmt.Println(NewRequest("GET", "
fmt.Println(NewRequest("GET", "

ContentLength)

Running the example works (output is not the important part here).

appx-generics$ go run complex_generics.go

~N O O

By moving our types and method requirements to our MyType constraint, we are now limited to a

subset of types vs. all types that implement io.Reader.

I think most would argue this code is less readable than before. Should generics be used in this case?
Based on other examples, it most likely should remain using io.Reader and a type switch. One could use the

following alternative to manage Len calls:

if body != nil {

370

if b, ok := body.(interface{ Len() int }); ok {
req.ContentLength = int64(b.Len())
}

if rc, ok := body.(io.ReadCloser); ok {
req.Body = rc
} else {

/", myStruct{strings.NewReader("")}).ContentLength)

/", myStruct{}).ContentLength)
fmt.Println(NewRequest("GET", "/", strings.NewReader("")).ContentLength)

/", 8bytes.Buffer{}).ContentlLength)

/", bytes.NewReader([]byte("read me"))).

APPENDIX B * GENERICS

req.Body = io.NopCloser(body)

}
} else {

req.Contentlength = -1
}

In the preceding code, the evil type is an example where MyType is not implemented. If you
uncomment the call in main, you will see the following error:

command-line-arguments
./complex_generics.go:101:24: evil does not implement MyType

Conclusion

Generics are here and will only improve future Go programs. What we have in Go 1.18 is not even the

final take; new generic functions are to be included in the standard library along with potential other
improvements. Until then, keep an eye on the official blog(s) such as this one: https://go.dev/blog/why-
generics.

371

https://go.dev/blog/why-generics
https://go.dev/blog/why-generics

Index

A distributed system, 125

) file-handling code, 125

Abstract Syntax Notation One (ASN.1), 74 NFS file system, 126

ASCII/UTEF8 characters, 77 pseudocode, 129
badtype dlre.ctory, 81 server diagram, 128, 129
character strings, 76 transition diagram, 127, 128
daytime client/server, 84-86 statements, 110
encoding rules, 74 string processing, 118
error documentation, 83 text format, 118, 119
error messages, 81 textproto package, 123-125
interface source code, 74

version control, 110-112

json package, 79) Architectural layers
marshal/unmarshal function, 75, 80 acceptance factors, 18, 19

outcome/associated errors, 83 administrators, 22

source code, 82 application logic, 12

structured types, 76 asynchronous communication, 11
types, 76, 82 client-server system, 9, 10

unlche sequence, 79 client-server vs. peer-to-peer system, 8
UTC time type, 78 communication models, 6-8

American Standard Code for Information
Interchange (ASCII), 133-135
Application-level protocols
byte format server, 113
character format server, 114

connectionless system, 5
connection models, 5, 6
continuum processing, 17
data access component, 12
distributed system, 1

client-server situation, 116 fallacies, 20-22
command-line client, 121-123 fat vs. thin, 15
data format, 113 gartner classification, 12

directory browser, 116
informal protocol, 118
message format, 113

possibilities and issues, 109 latency, 21

presentatiolr;) SSPECTS, 117 middleware model, 15-17
processes, networking, 3

proltcl)_(;ol deslgn,lloi)l8 packet encapsulation, 4
real-lite protocols, points failure, 18

server side, 117 presentation component, 12
source code, 119,120 protocol layers, 1-3
stand-alone application, 115, 116 publish/subscribe systems, 11
state information reliable network, 21

client .state diagram, 128 remote procedure call, 8,9
DCE file system, 126

gateways, 4
homogenous, 22
host-level networking, 4

© Jan Newmarch and Ronald Petty 2022
J. Newmarch and R. Petty, Network Programming with Go Language, 373
https://doi.org/10.1007/978-1-4842-8095-9

https://doi.org/10.1007/978-1-4842-8095-9#DOI

INDEX

Architectural layers (cont.)
secure, 22
server system, 10, 11
streaming communication, 11
synchronous communication, 11
three-tier possibilities, 14, 15
topology, 22
transparency (see Transparency)
transport cost, 22

Asynchronous JavaScript and XML (AJAX), 291

B

Body area networks (BANSs), 3

C

Character sets and encodings
ASCII code, 133-135
ASCII set, 131
character, 132
code set, 132
definitions, 132
encodings, 133
gotchas, unicode, 141, 142
hierographic languages, 131
ISO 8859/Go series, 142-144
noncoded character set, 132
repertoire/set, 132
transport encoding, 133
Unicode characters, 135, 136
UTF-8/Go/runes
ASCII characters, 137
clients and servers, 137
description, 136
strings, 137
UTF-16/Go

byte stream/extracts/examines, 140, 141

client/server, 138, 139
fragment code, 137, 138
little-endian/big-endian, 138
Chinese dictionary
dictionary type, 224
Pinyin, 223
traditional forms, 223
Client-server system
applications, 9
architectural layers, 9, 10
peer-to-peer system, 8, 9
user’s view, 10
Connection-oriented transports, 5
Content negotiation
GET / request, 276, 277
MIME types, 274
POST / request, 278

374

server code segment, 276
source code, 275
web server, 274

D

Data serialization

ASN.1 (see Abstract Syntax Notation One
(ASN.1))
encoding package, 72-74
Gob packages, 94-100
JSON serialization, 86-94
mutual agreement, 71
nonlinear structures, 69
protocol buffers
code generation, 106, 107
data types, 104
personv3.pb.go file, 105
protoc, 105
serialization methods, 103
self-describing data, 71
structured data, 69, 70

Distributed systems, 1, 125, 131, 147, 148, 167

E,F

Event-driven systems act, 7
Extensible markup language (XML)

command/CharData type, 246
definition, 241

Directive, 247-249

EndElement type, 246

HTML documents, 249
marshalling data structures, 244, 245
parsing data, 245

Proclnst type, 246

StartElement type, 246

structure, 241

unmarshalling structure, 242-244
XHTML, 249

EXternal data representation (XDR), 71

G

Gartner classification

distributed database, 12
models, 12

network file service, 13
secure shell presentation, 14
terminal emulation, 14

web transaction, 13

Gob serialization

binary data, 101-104
client/server, 98-100
command-line tool, 96

marshaling/unmarshalling structure, 94
person.gob file, 95

Go programming languages

description, 25

error values, 34

functions, 29

GOPATH, 33

higher-order functions, 31
maps, 28

methods, 30, 31

modules, 32
multi-threading, 31
packages, 31

pointers, 28

remote procedure call, 252-259
running program, 33
slices/arrays, 26-28
standard libraries, 33
statements, 33

structures, 29

type conversion, 32

types, 26

website, 25

Gorilla toolkit

criteria, 321-323

gorilla/mux, 319-321
handlers, 323-326

matching elements, 321
middleware pattern, 313-316
muxes customization, 318, 319
package information, 313

rpc package, 327, 328

schema package, 328, 329
securecookie documentation, 329-331
ServeMux, 316, 317

H

Hypermedia as the Engine of Application State

(HATEOAS), 267, 268

Hypertext Markup Language (HTML)

description, 235

html/template package, 236, 237
JSON, 240

source code, 235, 236
tokenization, 237-239
XHTML/HTML, 240
WebSockets server, 304-308

Hypertext Transfer Protocol (HTTP)

benefits, 167

client object, 182-184
configuration requests, 181, 182
encrypted connections, 189-191
HTTPS server, 195-197

proxy handling, 184

authentication, 187-189

transport object, 185-187
server

curl client, 192

file server, 191-193

handler functions, 193, 194

multiplexer role, 194, 195
testing package, 336-338

INDEX

URLS (see Uniform Resource Locator (URLs))

user agents
GET request, 177-180
HEAD method, 175-177
requests/get responses, 174
response type, 174

Interface definition language (IDL), 252
Internationalization (i18n), 131, 167-169
IPv4/IPv6 addresses, 37, 38

J,K
JavaScript Object Notation (JSON)

client/server, 90-94
employee objects, 86
Hypertext Markup Language (HTML), 240
loadjson.go, 88
objects/arrays/basic values, 86
person.json file, 87, 88
remote procedure call

client, 261, 262

server, 259, 260
serialized results, 88
source code, 89
type-dependent encodings, 86, 87
WebSockets server, 296-299

L

Local area network (LAN), 3

M, N

Message passing, 6-8
Metropolitan area networks (MANs), 3
Middleware model

components, 15

functions, 17

libraries, 16

O

Open Network Computing (ONC), 71
Open Systems Interconnect (OSI), 1, 2, 147

375

INDEX

P, Q S

Peer-to-peer vs. Client-server systems, 8, 9 Security system
Personal area networks (PANs), 3 cryptographic tools, 147
Protocol layers data integrity, 150-153
definition, 1 difficult/subtle computing problems, 147
ISO OSI protocol, 1 functions/levels, 148, 149
network communications, 1 hashing algorithm, 150
OSlI layers, 2 hexadecimal numbers, 151
TCP/IP protocols, 2, 3 mechanisms, 149, 150
Public Key Infrastructure (PKI), network-facing applications, 147
154, 157-160 OSI seven-layer model, 148, 149
public key encryption, 154-157
R symmetric key encryption, 153, 154
transport layer security, 160-165
Remote procedure call (RPC), 8, 9 X.509 certificates, 157-160
client-side code, 252 Server distribution, 10, 11
Go language Socket-level programming
client/TCP, 257, 258 addressing internet, 37-39
HTTP client, 255, 256 connections, 59
matching values, 259 Conn/PacketConn/listener types, 63-66
quotient/remainder, 253 documentation
restrictions, 252, 253 Go test commands, 42
server HTTP, 254, 255 host name/addresses lookup, 49-51
TCP sockets, 256, 257 IPAddr type, 48, 49
JSON encoding, 259-262 masking operations (IPMask type), 43-46
message-passing paradigm, 251 methods, 41
steps, 251 net package, 40-43
REpresentational State Transfer (REST) routing, 46, 47
client, 285-289 features, 35
complete server, 279-285 IP address type, 39, 40
components, 263 raw sockets/IPConn type, 66-68
content negotiation, 274-278 server ports, 63
createFlashcardSet() function, 285 services
flashcards, 272, 273 ports, 51, 52
handling request, 278 request/responds, 51
HATEOAS, 267, 268 TCPAddr type, 52
link specifications, 268, 269 sockets, 53-59
remote procedure call, 289 TCP/IP protocol, 35-37
representation, 264 UDP datagrams, 60-62
RESTf{ul transaction models, 271
Richardson Maturity Model, 272 T
ServeMux, 273, 274
stateless, 267 Template module, 199
transactions, 269-271 conditional statements, 206-211
URIs/Resources, 263, 264 function definition, 203-205
verbs html/template package, 211
DELETE, 266 inserting object values, 199, 200
GET request, 265 pipelines, 202, 203
HTTP request, 265 printperson.go, 200-202
PATH component, 265 two-step process, 200
POST, 266 variables, 205, 206
PUT request, 266 Testing
Richardson Maturity Go standard library
Model, 263, 272 activities, 343

376

client connection, 345, 346
methods, 344
requestwrite_test.go, 340-343
test package, 340
TestTCPConnSpecificMethods, 344, 345
httptest package, 336-338
Pipe type, 338, 339
simple set/broken, 333-336
tooling package, 333
Transmission control protocol/Internet protocol
(TCP/1P)
client, 53-55, 60
connection-oriented protocol, 37
daytime service, 56, 57
deadlines and keepalive, 60
error checking, 55
IP datagrams, 36
multithreaded server, 57-59
OSI stack, 35
sockets, 53-59
timeout, 60
user datagram protocol, 36
Transparency
access, 19
concurrency/scalability, 20
location, 19
migration/replication, 19
performance/failure, 20
Transport Layer Security (TLS), 302-304
certificate authority (CA), 160
client, 160-162
encryption/decryption schemes, 160
self-signed certificate, 162-165
Trivial File Transfer Protocol (TFTP), 5, 6

U

Uniform Resource Locator (URLSs)
appropriate representations, 167
characteristics, 169
HTTP/0.9, 169, 173
HTTP/1.0, 170-172

request format, 170

response format, 171, 172
HTTP1.1,172,173
HTTP/2,173
HTTP/3,173
internationalization (i18n), 167-169
punycode value, 167, 168
resources, 167
response format, 169
REST, 263

INDEX

transport mechanism, 173
versions, 169

User Datagram Protocol (UDP)

connectionless protocol, 36
datagrams, 60-62

services, 51

TCP/IP, 36

\Y

Version control

compatibility, 111
GET request, 111
HTMLS5, 112
protocol setup, 111
web, 111, 112

W, X, Y, Z

Web server

browser site diagram

files, 216

flashcard components, 214, 215

home page, 214

pages, 213

word lists, 215
Chinese (see Chinese dictionary)
fixing accents, 226-229
flashcard sets, 224-226
listFlashCards function, 219-222
ListWords function, 229-231
manageFlashCards function, 222, 223
presentation, 234
server, 217-219, 234
showFlashCards function, 231-234

WebSockets server

browser/web server, 291
client package, 310, 311
echo server, 308, 309
github.com/gorilla/websocket
package, 308
golang.org/x/net/websocket
Codec type, 299-301
HTML page, 304-308
JSON object, 296-299
message object, 292-296
package documentation, 292
TLS socket, 302-304
XMLCodec package, 299
HTTP server, 292
sending text and binary messages, 308

Wide area network (WAN), 3, 35

377

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface to the Second Edition
	Preface to the First Edition
	Chapter 1: Architectural Layers
	Protocol Layers
	ISO OSI Protocol
	OSI Layers
	TCP/IP Protocol
	Some Alternative Protocols

	Networking
	Gateways
	Host-Level Networking
	Packet Encapsulation
	Connection Models
	Connection Oriented
	Connectionless

	Communications Models
	Message Passing
	Remote Procedure Call

	Distributed Computing Models
	Client-Server System
	Client-Server Application
	Server Distribution
	Communication Flows
	Synchronous Communication
	Asynchronous Communication
	Streaming Communication
	Publish/Subscribe

	Component Distribution
	Gartner Classification
	Example: Distributed Database
	Example: Network File Service
	Example: Web
	Example: Terminal Emulation
	Example: Secure Shell

	Three-Tier Models
	Fat vs. Thin

	Middleware Model
	Middleware Examples
	Middleware Functions

	Continuum of Processing
	Points of Failure
	Acceptance Factors
	Thoughts on Distributed Computing
	Transparency
	Access Transparency
	Location Transparency
	Migration Transparency
	Replication Transparency
	Concurrency Transparency
	Scalability Transparency
	Performance Transparency
	Failure Transparency

	Eight Fallacies of Distributed Computing
	Fallacy: The Network Is Reliable
	Fallacy: Latency Is Zero
	Fallacy: Bandwidth Is Infinite
	Fallacy: The Network Is Secure
	Fallacy: Topology Doesn’t Change
	Fallacy: There Is One Administrator
	Fallacy: Transport Cost Is Zero
	Fallacy: The Network Is Homogeneous

	Conclusion

	Chapter 2: Overview of the Go Language
	Types
	Slices and Arrays
	Maps
	Pointers
	Functions
	Structures
	Methods

	Multithreading
	Packages
	Modules
	Type Conversion
	Statements
	GOPATH
	Running Go Programs
	Standard Libraries
	Error Values
	Conclusion

	Chapter 3: Socket-Level Programming
	The TCP/IP Stack
	IP Datagrams
	UDP
	TCP

	Internet Addresses
	IPv4 Addresses
	IPv6 Addresses

	IP Address Type
	Using Available Documentation and Examples
	The IPMask Type
	Basic Routing
	The IPAddr Type
	Host Canonical Name and Addresses Lookup

	Services
	Ports
	The TCPAddr Type

	TCP Sockets
	TCP Client
	A Daytime Server
	Multithreaded Server

	Controlling TCP Connections
	Timeout
	Staying Alive

	UDP Datagrams
	Server Listening on Multiple Sockets
	The Conn, PacketConn, and Listener Types
	Raw Sockets and the IPConn Type
	Conclusion

	Chapter 4: Data Serialization
	Structured Data
	Mutual Agreement
	Self-Describing Data
	Encoding Packages
	ASN.1
	ASN.1 Daytime Client and Server

	JSON
	A Client and A Server

	The Gob Package
	A Client and A Server

	Encoding Binary Data As Strings
	Protocol Buffers
	Installing and Compiling Protocol Buffers
	The Generated personv3.pb.go File
	Using the Generated Code

	Conclusion

	Chapter 5: Application-Level Protocols
	Protocol Design
	Why Should You Worry?
	Version Control
	The Web

	Message Format
	Data Format
	Byte Format
	Character Format

	A Simple Example
	A Stand-Alone Application
	The Client-Server Application
	The Client Side
	Alternative Presentation Aspects
	The Server Side
	Protocol: Informal
	Text Protocol
	Server Code
	Client Code
	Textproto Package

	State Information
	Application State Transition Diagram
	Client-State Transition Diagrams
	Server-State Transition Diagrams
	Server Pseudocode

	Conclusion

	Chapter 6: Managing Character Sets and Encodings
	Definitions
	Character
	Character Repertoire/Character Set
	Character Code
	Character Encoding
	Transport Encoding

	ASCII
	ISO 8859
	Unicode
	UTF-8, Go, and Runes
	UTF-8 Client and Server
	ASCII Client and Server

	UTF-16 and Go
	Little-Endian and Big-Endian
	UTF-16 Client and Server

	Unicode Gotchas
	ISO 8859 and Go
	Other Character Sets and Go
	Conclusion

	Chapter 7: Security
	ISO Security Architecture
	Functions and Levels
	Mechanisms

	Data Integrity
	Symmetric Key Encryption
	Public Key Encryption
	X.509 Certificates
	TLS
	A Basic Client
	Server Using a Self-Signed Certificate

	Conclusion

	Chapter 8: HTTP
	URLs and Resources
	i18n
	HTTP Characteristics
	Versions
	HTTP/0.9
	Response Format

	HTTP/1.0
	Request Format
	Response Format

	HTTP 1.1
	HTTP Major Upgrades
	HTTP/2
	HTTP/3

	Simple User Agents
	The Response Type
	The HEAD Method
	The GET Method

	Configuring HTTP Requests
	The Client Object
	Proxy Handling
	Simple Proxy
	Authenticating Proxy

	HTTPS Connections by Clients
	Servers
	File Server
	Handler Functions
	Bypassing the Default Multiplexer

	HTTPS
	Conclusion

	Chapter 9: Templates
	Inserting Object Values
	Using Templates

	Pipelines
	Defining Functions
	Variables
	Conditional Statements
	The html/template Package
	Conclusion

	Chapter 10: A Complete Web Server
	Browser Site Diagram
	Browser Files
	Basic Server
	The listFlashCards Function
	The manageFlashCards Function
	The Chinese Dictionary
	The Dictionary Type

	Flashcard Sets
	Fixing Accents
	The ListWords Function
	The showFlashCards Function
	Presentation on the Browser
	Running the Server
	Conclusion

	Chapter 11: HTML
	The html/template Package
	Tokenizing HTML
	XHTML/HTML
	JSON
	Conclusion

	Chapter 12: XML
	Unmarshalling XML
	Marshalling XML
	Parsing XML
	The StartElement Type
	The EndElement Type
	The CharData Type
	The Comment Type
	The ProcInst Type
	The Directive Type

	XHTML
	HTML
	Conclusion

	Chapter 13: Remote Procedure Call
	Go’s RPC
	HTTP RPC Server
	HTTP RPC Client
	TCP RPC Server
	TCP RPC Client
	Matching Values

	JSON
	JSON RPC Server
	JSON RPC Client

	Conclusion

	Chapter 14: REST
	URIs and Resources
	Representations
	REST Verbs
	The GET Verb
	The PUT Verb
	The DELETE Verb
	The POST Verb

	No Maintained State (That Is, Stateless)
	HATEOAS
	Representing Links
	Transactions with REST
	The Richardson Maturity Model
	Flashcards Revisited
	URLs

	ServeMux (The Demultiplexer)
	Content Negotiation
	GET /
	POST /

	Handling Other URLs
	The Complete Server
	Client
	Using REST or RPC
	Conclusion

	Chapter 15: WebSockets
	WebSockets Server
	The golang.org/x/net/websocket Package
	The Message Object
	The JSON Object
	The Codec Type
	WebSockets over TLS
	WebSockets in an HTML Page

	The github.com/gorilla/websocket Package
	Echo Server
	Echo Client

	Conclusion

	Chapter 16: Gorilla
	Middleware Pattern
	Standard Library ServeMux Examples
	Customizing Muxes
	gorilla/mux
	Why Should We Care
	Gorilla Handlers
	Additional Gorilla Examples
	gorilla/rpc
	gorilla/schema
	gorilla/securecookie
	Conclusion

	Chapter 17: Testing
	Simple and Broken
	httptest Package
	Below HTTP
	Leveraging the Standard Library
	Conclusion

	Appendix A:
Fuzzing
	Fuzzing in Go
	Fuzzing Failures
	Fuzzing Network-Related Artifacts
	Conclusion

	Appendix B:
Generics
	A Filtering Function Without Generics
	Refactor Using Generics
	Custom Constraints
	Using Generics on Collections
	How Not to Use Generics?
	Conclusion

	Index

