

Network Automation with Go

Learn how to automate network operations and build
applications using the Go programming language

Nicolas Leiva

Michael Kashin

BIRMINGHAM—MUMBAI

Network Automation with Go
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Associate Group Product Manager: Mohd Riyan Khan

Publishing Product Manager: Mohd Riyan Khan

Content Development Editor: Nihar Kapadia

Technical Editor: Rajat Sharma

Copy Editor: Safis Editing

Project Coordinator: Manisha Singh

Proofreader: Safis Editing

Indexer: Hemangini Bari

Production Designer: Roshan Kawale

Marketing Coordinator: Nimisha Dua

First published: November 2022

Production reference: 1021222

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80056-092-5

www.packt.com

http://www.packt.com

For my wife Catalina and daughter Renata, whose constant support and encouragement made this
book possible.

– Nicolas Leiva

To the memory of my Mother, for her love, support and inspiration.

– Michael Kashin

Contributors

About the authors
Nicolas Leiva is a staff solutions architect at Red Hat. In his role, he helps customers of all business
sizes to automate the provisioning and operation of IT infrastructure, services, and applications.
Prior to that, he worked in the networking industry for 15 years, becoming a Cisco Certified Design
Expert (CCDE) and Cisco Certified Internetwork Expert (CCIE). He is passionate about writing
open source software in Go with a keen interest in cloud technologies.

I want to thank my parents, Rafael and Maria Estela, for guiding me in the right direction to get here
and be the person I am today.

Michael Kashin is a cloud infrastructure solutions architect, currently working in the networking
business unit of NVIDIA. Throughout his career, he held multiple roles ranging from network operations,
through software development, to systems architecture and design. He enjoys breaking the boundaries
between different disciplines and coming up with creative solutions to satisfy business needs and solve
technical problems in the most optimal way. He is a prolific open source contributor and writer, with
much of his work focused on cloud-native infrastructure, automation, and orchestration.

I want to thank my wife for putting up with me spending endless hours writing this book, and for
looking after the kids all this time.

About the reviewers
John McGovern holds a first-class Honours Bachelor of Science degree (BSc Hons) in cybersecurity
and networking from Glasgow Caledonian University. He is a technical instructor for CBT Nuggets
and has developed a wide library of training around network automation, with a focus on Python
programming, including Python-based libraries such as Nornir, Scrapli, and NAPALM. John is also a
regular panelist on the Network Automation Hangout podcast and an active contributor to the Cisco
DevNet Code Exchange program.

I would like to primarily thank the authors, Nicolas and Michael, for all of their great work in
creating this fantastic learning resource. You both are incredible. I would also like to thank Stephen
Hendry and Kamil Stachura for all of the help, guidance, and camaraderie over these last few years
automating networks. And lastly, to Carl Montanari, Dmitry Figol, and Roman Dodin – you guys are
the best; thank you for everything you do.

Chris Luke has been engineering networks since the early days of the dial-up internet, using home-
grown software development as a tool to improve the reliability of those services. Chris is currently at
Comcast, modernizing the configuration management and automation practices of the core network.
He also leads a program teaching network engineers how to bring code to the day job.

Chris is currently a maintainer for the OpenConfig project and a committer for the FD.io VPP project.
He has previously been the chairperson of the OpenDaylight Advisory Group and has contributed
networking code to FreeBSD and Linux, as well as to the Bird and Quagga routing daemons and many
other open source projects.

Preface� xiii

Part 1: The Go Programming Language�

1
Introduction� 3

Technical requirements� 4
Networking and Go� 4
Why Go?� 5
Non-technical reasons� 5

The future of Go� 8
Technical reasons� 8
Go for networking� 13

Go versus Python� 16
Code execution� 16
Type system� 17
Performance� 17

Ease of use� 17
Memory management� 18
Syntax� 18
Failure handling� 18
Concurrency� 19
Community � 19

Installing Go on your computer� 20
Windows� 20
Mac� 20
Linux� 21

Summary� 21
Further reading� 21

2
Go Basics� 25

Technical requirements� 26
What is Go?� 26
Go Proverbs� 29
Go source code files� 30

Packages� 31
Go modules� 32
Importing packages� 33
Comments� 34
Names� 36

Table of Contents

Table of Contentsviii

Executing your Go code� 37

Running Go programs online� 38
The Go Playground� 38
The Go Play Space� 40
A look into the Future� 42

The Go tool� 43
Build� 44
Run� 46

Mod� 46
Get� 49
Install� 49
Fmt� 50
Test� 50
Env� 52

Summary� 53
Further reading� 53

3
Getting Started with Go� 55

Technical requirements� 55
Go’s type system� 56
Basic types� 57
Container types� 63
User-defined types� 69

Arithmetic, comparison, and logical
operators� 71
Arithmetic operators� 71
Logical operators� 77
Comparison operators� 78

Control flow� 79
for loops� 79
Conditional statements� 81
goto statements� 83

Functions� 85
Function arguments� 86
Error handling� 90
Methods� 91
Variadic functions� 92
Closures� 93
Defer� 94

Interfaces� 95
Network automation example� 96
Standard library example� 98
Interfaces as contracts� 100

Input and output operations� 101
The io.Reader interface� 101
The io.Writer interface� 102
The io.Copy function� 104
Composition� 106

Decoding and encoding� 107
Decoding� 107
Encoding� 114

Concurrency� 115
Goroutines� 116
Channels� 122
Channels and Timers� 124
Shared data access� 126
Concurrency caveats� 130

Summary� 130
Further reading� 131

Table of Contents ix

4
Networking (TCP/IP) with Go� 135

Technical requirements� 136
The link layer� 136
Network interfaces� 136
Ethernet� 139

The internet layer� 143
The net package� 143
The New netip package� 146
Working with IP addresses� 149
Route lookups� 150

The transport layer� 155
UDP ping application� 156

The application layer� 161
Working with an HTTP client� 162
Working with an HTTP (server)� 165

Summary� 169
Further reading� 169

Part 2: Common Tools and Frameworks�

5
Network Automation� 173

Technical requirements� 173
What is network automation?� 174
Why network automation exists� 174
Bottom-up view� 175
Top-down view� 176

Automating network operation tasks� 177
Configuration management� 177

Network state analysis� 179
Network audits and reporting� 181

Systems approach� 182
Closed-loop automation� 182
Demo application� 183

Summary� 188
Further reading� 188

6
Configuration Management� 189

Technical requirements� 190
Environment setup� 190
Creating the topology� 190

Interacting with network devices via
SSH� 192
Describing the network device configurations� 193
Using Go’s SSH package to access network

Table of Contentsx

devices� 195
Automating routine SSH tasks� 200

Interacting with network devices via
HTTP� 202
Using Go’s HTTP package to access network
devices� 202
Getting config inputs from other systems via

HTTP� 206

State validation� 210
Checking routing information� 210
Validating end-to-end reachability� 217

Summary� 218
Further reading� 218

7
Automation Frameworks� 221

Technical requirements� 221
Ansible� 222
Overview of Ansible components� 222
Working with Ansible modules� 224
Developing an Ansible module� 226
Running the playbook� 230

Terraform� 230
Overview of Terraform components� 231
Working with Terraform� 232

Developing a Terraform provider� 235
Networking providers� 242

Other automation frameworks� 242
Gornir� 243
Consul-Terraform-Sync� 243
mgmt� 243
Looking into the future� 244

Summary� 244
Further reading� 245

Part 3: Interacting with APIs�

8
Network APIs� 249

Technical requirements� 250
API data modeling� 250
OpenAPI� 252
Data modeling� 253
Data input� 255
Device configuration� 256

JSON-RPC� 259
Code generation� 260

Building configuration� 261
Device configuration� 264

RESTCONF� 266
Code generation� 266
Building configuration� 268
Device configuration� 270

State validation� 271
Operational state modeling� 272

Table of Contents xi

Operational state processing� 272

gRPC� 275
Protobuf� 275
gRPC transport� 278
Defining gRPC services� 278

Configuring network devices with gRPC� 280
Streaming telemetry from a network device
with gRPC� 284

Summary� 290
Further reading� 290

9
OpenConfig� 293

Technical requirements� 294
Device provisioning� 294
Set RPC� 295
Using gNMI to configure network interfaces� 297

Streaming telemetry� 302
Subscribe RPC� 304
Streaming telemetry processing pipelines
with gNMI� 306

Event-manager sample program� 306
Visualizing the data� 311

Network operations� 314
Traceroute RPC� 316
Path verifier application� 317

Summary� 325
Further reading� 325

10
Network Monitoring� 327

Technical requirements� 328
Data plane telemetry processing� 328
Packet capturing� 328
Packet filtering� 330
Packet processing� 331
Generating traffic� 333

Debugging Go programs� 334
Debugging from an IDE� 336

Data plane telemetry aggregation� 338
Top talkers� 339
Testing Go programs� 344

Measuring control plane performance�348
Measuring BGP Update propagation
time� 350
Event-driven BGP state machine� 351
Encoding and decoding BGP messages� 356
Collecting and exposing metrics� 357
Storing and visualizing metrics� 358

Developing distributed applications� 359
Summary� 360
Further reading� 360

Table of Contentsxii

11
Expert Insights� 363

David Barroso� 363
Stuart Clark� 364
Claudia de Luna� 365
Alexis de Talhouët� 368
John Doak� 370
Roman Dodin� 371
David Gee� 373
Daniel Hertzberg� 381

Marcus Hines� 382
Sneha Inguva� 385
Antonio Ojea� 386
Carl Montanari� 387
Brent Salisbury� 389
Maximilian Wilhelm� 390
Matt Oswalt� 392
Further reading� 394

12
Appendix : Building a Testing Environment� 395

What is a testing environment?� 395
Step 1 – building a testing environment� 396
Step 2 – uploading container images� 401
Step 3 – iInteracting with the testing
environment� 402

Launching a virtual network topology�404

Connecting to the devices� 405
Destroying the network topology� 406
Step 4 – cleaning up of the cloud-hosted
environment� 406

Further reading� 407

Index� 409

Other Books You May Enjoy� 420

Preface

This book explores network automation, a discipline that aims to generate consistent and repeatable
processes to increase efficiency and reliability in network operations. As you progress through the
chapters, you’ll learn the Go language basics and put it into practice by coding common day-to-day
network processes to jumpstart your network automation journey.

Who this book is for
This book is designed for all network engineers, administrators, and other network practitioners
looking to understand what network automation is and how the Go programming language can help us
develop network automation solutions. Since the first part of the book offers a comprehensive overview
of Go’s main features, this book is suitable for beginners with a solid grasp of programming basics.

What this book covers
Chapter 1, Introduction, explores networking and Go, the benefits of Go, and how it contrasts with Python.

Chapter 2, Go Basics, defines Go and talks about its guiding principles. It presents the Go source code
file structure and shows how to compile Go programs.

Chapter 3, Getting Started with Go, covers different characteristics of Go that are relevant for network
automation such as control flow, input and output operations, decoding and encoding, and concurrency.

Chapter 4, Networking (TCP/IP) with Go, focuses on practical use cases with Go for each layer of the
TCP/IP model.

Chapter 5, Network Automation, discusses what network automation is, its impact on network
operations, and its benefits for the business. It also talks about scaling individual use cases into a
network automation system.

Chapter 6, Configuration Management, walks us through practical examples using Go to interact with
network devices from different networking vendors via SSH and HTTP to configure and collect their
operational state to verify any changes.

Chapter 7, Automation Frameworks, describes how some automation frameworks can integrate with
Go with an emphasis on Ansible and Terraform.

Chapter 8, Network APIs, takes a look at machine-to-machine interfaces to manage network devices
that enable network automation. From RESTCONF and OpenAPI to gRPC.

Prefacexiv

Chapter 9, OpenConfig, examines how to perform common operational tasks with OpenConfig gRPC
services, such as provisioning a device, subscribing to a telemetry stream, and executing an action
such as traceroute.

Chapter 10, Network Monitoring, dives into the world of network monitoring from different angles with
Go; capturing network packets, processing data plane telemetry, running active probes to measure
network performance, and visualizing metrics.

Chapter 11, Expert Insights, consists of people who have real-world hands-on experience with network
automation and/or are using Go for network-related tasks and activities sharing their perspectives
with us.

Chapter 12, Appendix: Building a Testing Environment, documents the process of building a testing
environment that includes the compatible version of Containerlab and other related dependencies, to
make sure you get a seamless experience running examples from any chapter of this book.

To get the most out of this book
This book assumes a basic understanding of networking and programming fundamentals. You need to
be familiar with the Linux OS to be able to install software packages and run and interpret the results
of provided commands. Most hands-on exercises are executed within a container environment, so a
basic understanding of containers will help you explore and modify example programs.

Examples included in this book can be reproduced in most Linux environments. All software
requirements and dependencies are covered in detail in the Appendix.

Software/hardware covered
in the book Operating system requirements

Go 1.18.1 Linux (Ubuntu 22.04, Fedora 35), Windows
Subsystem for Linux (WSL2) or macOS

Containerlab 0.28.1 Linux (Ubuntu 22.04, Fedora 35), Windows
Subsystem for Linux (WSL2) or macOS

Docker 20.10.14 Linux (Ubuntu 22.04, Fedora 35), Windows
Subsystem for Linux (WSL2) or macOS

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Network-Automation-with-Go. If there’s an update to the code, it
will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xv

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/hOgov.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “You can
test this code from ch03/type-definition/main.go.”

A block of code is set as follows:

func main() {

	 a := -1

	 var b uint32

	 b = 4294967295

	 var c float32 = 42.1

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

func main() {

    a := 4294967295

    b := uint32(a)

    c := float32(b)

}

Tips or important notes
Appear like this.

https://packt.link/hOgov

Prefacexvi

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xvii

Share Your Thoughts
Once you’ve read Network Automation with Go, we’d love to hear your thoughts! Please click here to
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1-800-56092-3
https://packt.link/r/1-800-56092-3

Prefacexviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don't stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80056-092-5

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

Part 1:
The Go Programming Language

This part provides an introduction to the book, the topics we will cover, and how to run the code
examples provided throughout the course of the book. You can choose to use your personal computer
or a virtual machine for this purpose.

Also, it provides a solid foundation for Go. By the end, you will be able to install and run Go programs.
You will also learn how to manipulate network data with Go, such as IP addresses and XML/YAML/
JSON documents, and use Go to run network transactions/protocols.

This part of the book comprises the following chapters:

•	 Chapter 1, Introduction

•	 Chapter 2, Go Basics

•	 Chapter 3, Getting Started with Go

•	 Chapter 4, Networking (TCP/IP) with Go

1
Introduction

Go has emerged as one of the top three most wanted programming languages according to the Stack
Overflow Developer Survey 2021 (Further reading), and it has become the preferred choice for writing
cloud-native applications such as Kubernetes, Docker, Istio, Prometheus, and Grafana.

Despite this, we still don't see this trend manifest in the network engineering community, where fewer
than 20% of network engineers saying they currently use Go for their network automation projects,
according to the NetDevOps 2020 survey (Further reading), even though 41% of Go developers say
they use Go for network programming in Go Developer Survey 2020 Results (Further reading).

This book strives to address this disparity by offering a practical introduction to Go and network
automation for network engineers who want to evolve network management and operation using Go,
and software engineers wanting to get into network infrastructure automation. We also hope that this
book may be useful to network automation engineers who know and use Python today but want to
expand their skill set with a different programming language.

We start by discussing the benefits of Go from different angles and how they apply to the
networking field. By the end of this chapter, you should have a good understanding of the
main aspects of Go and how to get Go installed on your computer to follow along with
the code examples.

In this first chapter, we cover the following topics:

•	 Networking and Go

•	 Why Go?

•	 The future of Go

•	 Go versus Python

•	 Installing Go on your computer

Introduction4

Technical requirements
We assume basic familiarity with the command line, Git, and GitHub. You can find the code examples
for this chapter in the book's GitHub repository (https://github.com/PacktPublishing/
Network-Automation-with-Go), under the ch01 folder.

To run the examples, proceed as follows:

1.	 Install Go 1.17 or later for your operating system. You can follow the instructions in the Installing
Go on your computer section of this chapter or go to https://go.dev/doc/install.

2.	 Clone the book's GitHub repository with git clone https://github.com/
PacktPublishing/Network-Automation-with-Go.git.

3.	 Change the directory to an example's folder with cd Network-Automation-with-Go/
ch01/concurrency.

4.	 Execute go run main.go.

Networking and Go
Go is widely used in generic infrastructure software—from workload orchestration (Docker and
Kubernetes), through telemetry and monitoring (Prometheus and Grafana), all the way to automation
tooling (Terraform and Vagrant).

Networking is not the exception—some notable networking projects using Go include Container
Network Interface (CNI) plugins such as Cilium or Calico, routing protocol daemons such as GoBGP
and Bio-RD, virtual private network (VPN) software such as Tailscale, and most of OpenConfig's
ecosystem, including projects such as gRPC Network Management Interface (gNMI) and goyang.

Other use cases include cloud and network services, command-line interfaces (CLIs), web development,
development-operations (DevOps), and site reliability.

Go is a programming language the Go founders created to address modern challenges such as multi-
core processing, distributed systems, and large-scale software development from day one.

Go's built-in first-class concurrency mechanisms make it an ideal choice for long-lived low-bandwidth
input/output (I/O) operations, which are typical requirements of network automation and network
operations applications.

What makes the Go language so appealing to software developers? Why, out of all the
programming languages out there, should you invest time in learning Go? This is what
we address in the next section.

Why Go? 5

Why Go?
When choosing which programming language to learn next, most people focus mainly on technical
reasons. We believe that the choice can be a bit more nuanced, so we try to approach this question from
different angles. We start with non-technical arguments, something that's often overlooked but that
we believe is important and can have a major impact on both the learning process and day-to-day use.
Following that, we cover generic technical arguments that help Go stand out in the very competitive
landscape of modern programming languages. We close out this section by exploring different facets
of Go that can benefit people, specifically in the fields of networking and network automation.

Non-technical reasons

Whether you are new to the language or have some experience with it, you can access more experienced
Go developers in the community who are willing to help you learn more about the language. We
include some pointers to community resources and go through the adoption and popularity of Go.

Last but not least, we want to address the maturity of the language, whether it's still in development,
and where Go is headed in the future.

Community

A healthy community is almost always an attribute of a successful project. The Go programming
language is no exception, with its welcoming and growing community of Go developers—Gophers,
with about 2 million of them in the world, according to Russ Cox's article, How Many Go Developers
Are There? (Further reading). You can see Renée French's Go Gopher mascot here:

Figure 1.1 – Go Gopher, by Renée French

Introduction6

The Go user community has several places where newcomers can ask questions and get help from
more experienced Go developers, as listed here:

•	 golang-nuts mailing list (Further reading)—Google Groups mailing list for any generic
language discussions

•	 Go Forum (Further reading)—a standalone forum for technical discussions, release announcements,
and community updates

•	 Go Language Collective (Further reading)—the official question-and-answer (Q&A) channel
on Stack Overflow

•	 Gophers Slack channel (Further reading)—a place for generic and topic-specific discussions,
including a dedicated networking channel

If you want more live interactions, there are some options available as well, as
outlined here:

•	 A good deal of in-person meetups are available via the Go Developers Network (GDN)
(Further reading).

•	 One of the principal events in the Go community is GopherCon, held regularly in different
parts of the world.

•	 The official Go wiki page hosted on GitHub keeps track of all future and past
Go conferences and major events (Further reading).

Popularity

Ever since its foundation in the late 2000s, Go has gained a lot of interest from the developer community,
not least because of who was behind it. Developed by a group of some of the best computer scientists
employed by Google to solve the problems of C/C++, Go is a language that's both simple to understand
and nearly as efficient as its predecessors. It took a few years to mature, but it had soon become
the new hot start up language, and many up-and-coming software companies such as Docker and
HashiCorp adopted it.

Most recently, the Stack Overflow Developer Survey 2021 (Further reading) recognized Go
as one of the top three most wanted programming languages by developers. Continuous
support from its mothership, and the success of Kubernetes, have made it a de facto
standard language to write cloud-native applications with such notable projects as Istio,
CoreDNS, Prometheus, and Grafana. As more and more users adopt these applications,
it's hard to imagine Go's popularity waning in the future.

Here are a few extra data points in support of Go's rising popularity that are worth mentioning:

•	 225 out of 291 Cloud Native Computing Foundation (CNCF) projects use Go,
as reported in the CNCF DevStats toolset (Further reading).

Why Go? 7

•	 Go ranks third as the language with the most stars on GitHub, according to
GitHut 2.0 (Further reading).

•	 Go is behind three out of the four most popular development tools (Docker, Kubernetes, and
Terraform) (Further reading).

•	 Go is in the top 10 of the Stack Overflow Developer Survey 2021's top-paying technologies
ranking (Further reading).

Maturity

While the Go team released Go (version 1) not too long ago (March 2012), Go has been
getting minor changes ever since. The language designers assume a strict position against
adding unnecessary features that may result in feature creep. At GopherCon 2014's opening
keynote, Rob Pike made this comment explicitly: "The language is done." Russ Cox also
mentioned this in his article Go, Open Source, Community (Further reading), referring
to Go 1 specifically.

This doesn't mean Go does not have its fair share of pain points. For example, dependency management
has been a problem the Go team addressed fairly recently with the introduction of Go modules to
better group Go packages you release together. There was also a lack of generics support, a feature
that the Go team is now introducing in Go 1.18, probably the most significant change since the release
of Go (version 1). Now, users can represent functions and data structures with generic types, which
enables code reuse. This addresses one of the primary requests from the community, as Go Developer
Survey 2020 Results shows (Further reading).

Despite that, these few changes are very selective and designed to dramatically improve developer
productivity. It's safe to assume that we won't see a situation where you have to learn new language
concepts and idioms every year and have to rewrite your code to maintain forward compatibility. The Go
1 compatibility guarantee in Go 1 and the Future of Go Programs (Further reading) states the following:

It is intended that programs written to the Go 1 specification will
continue to compile and run correctly, unchanged, over the lifetime

of that specification. ...code that runs under Go 1.2 should be
compatible with Go 1.2.1, Go 1.3, Go 1.4, and so on.

Go benefits from the lessons learned from other programming languages. Pascal, Oberon, C, and
Newsqueak are among the languages that influenced Go. We explore their impact in Chapter 2, Go Basics.

Go follows a 6-month release cycle (Further reading). In the Go release notes for each version (Further
reading), there is a section at the top that describes changes to the language, which in general is very
brief or empty. Over the last couple of years, they reported only four small enhancements to the
language, which is a good sign of maturity.

How much Go will change in the future is something we discuss in the next section.

Introduction8

The future of Go
The success of Go version 1 has attracted a lot of developers, most of them with prior experience in
other languages that helped shape their mindset and expectations of what a programming language
should deliver. The Go team has defined a process to propose, document, and implement changes to
Go (Further reading), to give a way for these new contributors to voice their opinions and influence
the design of the language. They would label any proposals that break the language-compatibility
guarantee, described in the preceding section, as Go 2.

The Go team announced the start of the process of developing Go version 2 at GopherCon 2017 and
with the blog post Go 2, here we come! (Further reading). The intention is to ensure the language
continues to enable programmers to develop large-scale systems, and to scale to a sizable code base
that big teams work on simultaneously. In Toward Go 2 (Further reading), Russ Cox said the following:

Our goal for Go 2 is to fix the most significant ways Go fails to scale.

Any language change proposal needs to follow the Go 2 language change template (Further reading).
They are shipping all Go 2 features that are backward-compatible incrementally in Go 1. After that is
complete, they can introduce backward-incompatible changes (see Go 2 proposals: Further reading), in
case they offer a significant benefit, into Go 2.0.

Support for generic data types is part of the Go 2 draft designs document (Further
reading), along with improved error handling, and error-value semantics. The first
implementation of generics has already made it into Go 1. The other items in the list
are still under evaluation, pushing the release of 2.0 further into the future.

Technical reasons

Go's build speed is a top-of-the-chart aspect of Go that Go developers are more satisfied with,
according to Go Developer Survey 2020 Results (Further reading). It's followed very closely by Go's
reliability, in second place.

The list of technical aspects we could highlight is large, but aside from build speed and reliability, we
cover performance, cross-compiling, readability, and Go's tooling.

Type safety

Most programming languages can be broadly categorized as either statically typed
when variable types are checked at compile time or dynamically typed when this check
happens during the program execution (runtime). Go belongs to the first category and
requires programs to declare all variable types explicitly. Some beginners or people with
a background in dynamically typed languages might see this as a detractor.

Type declarations increase the amount of code that you need to write, but in return, you not only
get performance benefits but also protection from type errors occurring at runtime, which can be a

The future of Go 9

source of many subtle and hard-to-troubleshoot bugs. For example, consider the program in the next
code example at https://github.com/PacktPublishing/Network-Automation-
with-Go/blob/main/ch01/type-safety/main.go:

func process(s string) string {

 return "Hello " + s

}

func main() {

 result := process(42)

}

A process function takes a string data type as input and returns another string that concatenates
Hello and the value of the input string. A dynamically typed program can crash if this function
receives a value of a type different from string, such as an integer, for example.

These errors are very common, especially when dealing with complex data structures
that can represent a network configuration or state. Go's static type checking prevents
the compiler from producing a working binary generating the following error:

cannot use 42 (type untyped int) as type string in argument to
process

Readability also improves with Go's static typing. A developer might be able to keep the entire data
model in mind when writing code from scratch, but as new users come into a project, code readability
becomes critical to help them understand the logic to make their required code changes. No longer do
they need to guess which value type a variable stores—everything is explicitly defined by the program.
This feature is so valuable that some dynamically typed languages forgo the benefit of their brevity to
introduce the support for type annotations (such as Python typing: Further reading), with the only goal
to help integrated development environments (IDEs) and static linters catch obvious type errors.

Go builds are fast

Go is a compiled language that creates small binary files in seconds or a couple of minutes tops. Initial
build time may be a bit longer, mostly because of the time it takes to download dependencies, generate
extra code, and do other household activities. Subsequent builds run in a fraction of that time. For
example, the next capture shows that it takes no more than 10 seconds to rebuild a 120-megabytes
(MB) Kubernetes application programming interface (API) server binary:

$ time make kube-apiserver

+++ [0914 21:46:32] Building go targets for linux/amd64:

 cmd/kube-apiserver

Introduction10

> static build CGO_ENABLED=0: k8s.io/kubernetes/cmd/kube-
apiserver

make kube-apiserver 10.26s user 2.25s system 155% cpu 8.041
total

This allows you to iterate quickly through the development process and to keep focus, without spending
minutes waiting for code to recompile. Some developer productivity tools, such as Tilt, take further
actions to optimize the development workflow so that it takes seconds for changes to propagate from a
developer's IDE to their local staging environment.

Reliability

Let's define this term as a set of properties of a programming language that help developers write programs
that are less likely to fail because of bugs and other failure conditions, as Jiantao Pan from Carnegie
Mellon University (CMU) describes in Software Reliability (Further reading). This is one of Go's core
tenets, as its website (Further reading) highlights:

Build fast, reliable, and efficient software at scale.

Go developers also say reliability is the second aspect of Go they are most satisfied with, only behind
build speed, based on Go Developer Survey 2020 Results (Further reading).

A more reliable software means less time spent chasing bugs and more time invested in the design and
development of extra features. We've tried to put together a set of features that we think contribute
to increased program reliability. This is not a definitive list, though, as interpretation and attribution
of such features can be very subjective. Here are the features we've included:

•	 Code complexity—Go is a minimalistic language by design. This translates into simpler and
less error-prone code.

•	 Language stability—Go comes with strong compatibility guarantees, and the design team tries
to limit the number and impact of newly added features.

•	 Memory safety—Go prevents unsafe memory access, which is a common source of bugs and
exploits in languages with pointer arithmetic, such as C and C++.

•	 Static typing—Compile-time type-safety checks catch many common bugs that would otherwise
go unnoticed in dynamically typed languages.

•	 Static analysis—An automatic way to analyze and report several errors, such as unused variables
or unreachable code paths, comes built into the language tooling with go vet.

Performance

Go is a highly performant language. The Computer Language Benchmarks Game (Further reading)
shows that its performance is in the vein of languages with manual memory management, such as C/

The future of Go 11

C++ and Rust, and that it offers considerably better performance than dynamic type languages such
as Python and Ruby.

It has native support for multi-core multithreaded central processing unit (CPU)
architectures, allowing it to scale beyond a single thread and to optimize the use
of CPU caches.

Go's built-in garbage collector helps you keep the memory footprint of your program
low, and Go's explicit type declaration optimizes memory management and storage
of values.

The Go runtime gives you profiling data, which you can visualize with pprof to help you hunt
for memory leaks or spot bottlenecks in your program and fine-tune your code to achieve better
performance and optimize resource utilization.

For more details on this subject, we recommend checking out Dave Cheney's Five things that make
Go fast blog post (Further reading).

Cross-platform compiling

Go can natively produce binaries for different target architectures and operating
systems. At the time of writing, the go tool dist list command returns 45
unique combinations with operating systems ranging from Android to Windows and
instruction sets that go from PowerPC to ARM. You can change the default values inherited
from the underlying operating system and architecture with GOOS and GOARCH environment variables.

You can build an operating system-native version of your favorite tool written in Go, regardless of
which operating system you are currently on, as illustrated in the following code snippet:

ch01/hello-world$ GOOS=windows GOARCH=amd64 go build

ch01/hello-world$ ls hello-world*

hello-world.exe

The preceding output shows an example to create a Windows executable on a Linux machine.

Readability

This is, arguably, one of the best qualities of Go when compared to other high-performance languages
such as C or C++. The Go programming language specification (Further reading) is relatively short,
with around 90 pages (when other language specifications can span over 1,000 pages). It includes only
25 keywords, with only one for loop (for). The number of features is intentionally low to aid code
clarity and to prevent people from developing too many language idioms or best practices.

Introduction12

Code formatting is an active battleground in other languages, while Go prevented this problem early
on by shipping automatic opinionated formatting as part of the go command. A single run of go fmt
on any unformatted (but syntactically correct) code updates the source file with the right amount of
indentation and line breaks. This way, all Go programs have a similar look, which improves readability
by reducing the number of personal style preferences in code.

Some might say that explicit type declarations alone improve code readability, but Go takes this a
step further by making comments an integral part of the code documentation. All commented lines
preceding any function, type, or variable declaration gets parsed by the go doc tool website (Further
reading) or an IDE to autogenerate code documentation, as the following screenshot shows:

Figure 1.2 – Automatic code documentation

Most modern IDEs have plugins that support not only documentation but automatic code formatting
with go fmt, code linting and autocompletion, debugging, and a language server—a tool that allows
developers to navigate through the code by going back and forth between type, variable, and function
declarations and their references (gopls, the Go language server: Further reading). This last feature not
only allows you to navigate code bases of any complexity without having to resolve import statements
manually or search for string patterns in text, but also highlights any type inconsistencies on the fly before
you compile a program.

Tooling

When setting up a new environment, one of the first things a typical developer would do is download
and install a set of their favorite language tools and libraries to help with testing, formatting, dependency
management, and so on. Go comes with all these utilities included by default, which are part of the
go command. The following table summarizes some Go built-in tools and their purpose:

The future of Go 13

​Table 1.1 – Go tools

​These are just a few of the most popular tools that get shipped together with the Go binary. This
certainly reduces the room for creativity in the tooling ecosystem by giving developers a default
choice that is good enough for most average use cases. Another benefit of this artificial scarcity is not
having to reinstall and relearn a new set of tools every time you switch between different Go projects.

Go for networking

Some network automation processes can trigger hundreds—if not thousands—of simultaneous
connections to network devices. Being able to orchestrate this at scale is one of the things that Go
enables us to do.

You can see Egon Elbre's Network Gopher mascot in the following screenshot:

Figure 1.3 – Network Gopher, by Egon Elbre

Introduction14

Go comes with a strong networking package that offers you all the constructs to create network
connections, packages to encode and decode data from popular formats, and primitives to work with
bits and bytes.

Concurrency

Go has first-class support for concurrency with the help of lightweight threads managed by the Go
runtime, called goroutines. This language construct makes it possible to embed asynchronous functions
into an otherwise sequential program.

Any function call that you prepend with the go keyword runs in a separate goroutine—different from
the main application goroutine—that does not block execution of the calling program.

Channels are another language feature that allows communication between goroutines. You can think
of it as a first-in, first-out (FIFO) queue with sending and receiving ends existing in two different
goroutines.

Together, these two powerful language constructs offer a way to write concurrent code in a safe and
uniform way that allows you to connect to various networking devices simultaneously, without paying the
tax of running an operating system thread for each one. For example, consider the following program in
the next code example (https://github.com/PacktPublishing/Network-Automation-
with-Go/blob/main/ch01/concurrency/main.go) that simulates interaction with remote
network devices:

func main() {

 devices := []string{"leaf01", "leaf02", "spine01"}

 resultCh := make(chan string, len(devices))

 go connect(devices, resultCh)

 fmt.Println("Continuing execution")

 for msg := range resultCh {

 fmt.Println(msg)

 }

}

Connecting to remote devices can take a long time, and it would normally block the execution of
the rest of the program. With the connect function running in a goroutine, as illustrated in the
following code snippet, our program can continue its execution, and we can come back and collect
the responses at any point in the future:

ch01/concurrency$ go run main.go

Continuing execution

The future of Go 15

Connected to device "leaf01"

Connected to device "spine01"

Connected to device "leaf02"

As the remote devices process the requests and return a response, our program starts printing the
responses in the order it receives them.

Strong standard library

Go has a versatile standard library that covers different areas that may be applicable
to networking—from cryptography to data encoding, from string manipulation to
regular expressions (regexes) and templating. Standard library packages such as net
and encoding offer interfaces for both client- and server-side network interactions,
including the following:

•	 Internet Protocol (IP) prefix parsing and comparison functions

•	 Client and server implementations for IP, Transmission Control Protocol/User Datagram
Protocol (TCP/UDP), and HyperText Transfer Protocol (HTTP) connections

•	 Domain Name System (DNS) lookup functions

•	 Uniform Resource Locator (URL) parsing and manipulations

•	 Serializing data formats such as Extensible Markup Language (XML), binary,
and JavaScript Object Notation (JSON) for storage or transmission

Unless you have unique performance requirements, for example, most Go developers recommend
against using external libraries for logic that can otherwise be implemented natively with the standard
library. All standard packages are thoroughly tested with each release and used extensively in several
large-scale projects. All this creates a better learning experience for newcomers because most-often-
used data structures and functions are there already.

Data streaming

Network services are I/O-bound in general—they read or write bytes from or to the
network. This mode of operation is how data streaming works in Go, which makes
it appealing to network engineers who are familiar with byte processing for network
protocol parsing, for example.

I/O operations in Go follow a model where a Reader reads data from a source, which can stream as
an array of bytes to a Writer that writes that data to a destination. The following diagram should give
you a clearer picture of what this means:

Introduction16

​

Figure 1.4 – Streaming from a network connection to a file example

​A Reader is an interface that can read from a file, a cipher, a shell command, or a network connection,
for example. You can then stream the data you capture to a Writer interface, which could also be a
file or most of the other Reader examples.

The Go standard library offers these streaming interfaces, such as net.Conn, that, in this case, allow
you to read and write from a network connection, transfer data between interfaces, and transform
this data if needed. We cover this topic in much more detail in Chapter 3, Getting Started with Go.

While there are other variables to consider when selecting a programming language to work with,
such as which one your company is currently using or which one you feel more comfortable with,
our goal is to equip you with all the resources to understand what makes Go so appealing to large-
scale system developers. If you want to begin in familiar territory, we compare and contrast Go with
Python next. Python is the most popular programming language used for network automation today.

Go versus Python
The topic of comparing programming languages can very quickly turn into a heated debate. We believe
all languages have their merits and we don't want to advocate for one being better than the other. Still,
we do acknowledge that most people with a network automation background would know and use
Python, so it would make sense to present some form of comparison between the two languages and
highlight some of their most salient points.

Code execution

One of the biggest differences that affect the developer experience is how you distribute and execute
your code.

Python programs require an interpreter to run on a target machine and access to all library dependencies.
While there are projects such as Nuitka to compile Python, you need commercial support to obfuscate

Go versus Python 17

your source code, for example. Having all source code available allows you to make changes and iterate
quickly when developing a feature or troubleshooting a bug.

Go programs do not require an interpreter, as you distribute them as a compiled binary
file. Compiling to machine code may seem like an unnecessary hurdle, but compilation
takes only a few seconds, and the resulting binary has all its required dependencies,
so it's the only file that needs to exist on the target system.

Type system

Go requires all variable types to be statically defined, with type inference allowed only during initial
variable declaration.

Although generics are making their way into Go, they do not allow the same amount of freedom as a
Python type system. A lack of explicit type declaration makes Python a more approachable language
for beginners and for use cases where development speed is more important than code robustness.
However, as Python projects become more mature, they must make up for these initial gains by
putting more focus on testing.

Performance

Go programs perform better when compared to Python across a wide range of use cases (see The
Computer Language Benchmarks Game: Further reading). This is, in part, an outcome of the points
we already mentioned in this section, but it's also the result of the effort the Go team has put into
optimizing the language.

While things such as goroutines and type definition give Go developers enough tools to write high-
performance code, each Go release brings new improvements in memory management and compiler
optimizations that make code execution faster in the background.

Ease of use

Python is a language designed to be used for teaching and prototyping. At the same time, it's versatile
and powerful enough to write complex programs such as web servers (Flask, Django), machine
learning (ML) frameworks (PyTorch, TensorFlow), and infrastructure software (RabbitMQ, Ansible).

As the number of Python projects you work on grows, maintaining different virtual
environments for dependency and environment management might become a hassle.
This is an area where Go shines, with its self-hosted dependency manager and statically linked binaries.

Despite that, Python continues to hold its dominant position as the most approachable
language with a large open source community and is unlikely to relinquish it any
time soon.

Introduction18

Memory management

Both languages use dynamic memory management with automatic garbage collection. Most of the
time, you wouldn't need to and are not advised to change any of the default settings, although both
languages expose a few threshold variables that can be fine-tuned if needed.

The biggest difference comes from the fact that Go allocates memory based on a more precise set of
data types and that it does static memory allocation at compile time in the stack for goroutines and
functions, and only a subset of variables escape to the heap. In contrast, Python treats everything as
an object, so even the most primitive types, such as int or string, are considerably larger, and
they are dynamically allocated memory at runtime (in the heap).

Access to memory in the heap is not only slower but also needs to be garbage-collected, which adds
an overhead to the program execution.

Syntax

Python has a very lightweight syntax and uses indentation to separate different blocks of code. The
lack of trailing semicolons and excessive curly braces make it comprehensible, but writing it without
an IDE—which would automatically manage the indentation—can be a challenge.

Go never considered white space for indentation, as the language designers don't believe having your
semantics depend on invisible characters is a good idea. This, of course, comes down to personal
preferences; formats such as YAML Ain't Markup Language (YAML), for example, also use spaces
to structure data.

Go benefits from its built-in formatting tool that auto-indents the code and makes it look neat by
automatically inserting blank lines in certain places. Also, Go developers use blank lines to split
logically separate a set of lines in a function that makes the final program less dense and easier to read.

Failure handling

Another big difference is in error handling. Python uses implicit error handling as a convention by
relying on exceptions that can be carefully caught in parts of code where you expect them to happen.
This keeps in line with Python's readability and ease-of-use nature. Go uses explicit error checks, and
most functions have errors as the last positional return value. This often results in the code looking
like this:

config, err := buildConfig(deviceName)

if err != nil {

 return err

}

Go versus Python 19

d, err := connect(deviceName)

if err != nil {

 return err

}

if err := configure(d, config); err != nil {

 return err

}

Although this makes a program more robust by forcing the developers to always think about the returned
error and act on it as soon as it happens, this does create a lot of visual noise that human brains quickly
learn to ignore. This is a recurrent topic in the Go community and one of the areas that Go version 2 is
putting a focus on. The Go 2 draft design document for error handling covers the problem and proposal
in detail (Further reading).

Concurrency

Concurrency has not only been a feature of Go since day one but also one of the key drivers behind the
creation of Go in the first place. Go has enough first-class language constructs to deal with most common
concurrency challenges, such as communication between processes and access to shared resources.

By contrast, you cannot run more than two or more Python threads at the same time because the
Global Interpreter Lock (GIL) prevents it, which the Python language designers made part of the
language early on. This is unless you architect your program to use the threading library. The GIL
has performance benefits for single-threaded programs, and removing it from the language has been
a recurrent topic in the Python community.

To implement concurrency, Python makes you run multiple processes to leverage all the CPUs that
you have at your disposal (multiprocessing or concurrency pools). Over time, different libraries have
attempted to improve the performance and user experience (UX) of concurrency in Python, with
the most popular one being asyncio.

Despite that, better concurrency and parallelism are in the top three most desired features to
add to Python, according to Python Developers Survey 2020 Results (Further reading).
Most Python developers don't like the current implementation, as writing concurrent
code in Python can be challenging and requires the use of compatible libraries.

Community

Being the more popular language of the two, Python has a larger community with a huge
number of open source libraries and frameworks. Although its major use cases are data
analysis, web development, and ML (Python Developers Survey 2020 Results: Further

Introduction20

reading), today you can find libraries that deal with anything from game development
to desktop plugins.

Most importantly, Python is the most popular language for network automation and has amassed many
libraries and frameworks to work with network devices. Go has been more systems- and performance-
centric, so we don't see as many network libraries and tools. Still, one heavy user of Go in the network
engineering community has been the OpenConfig ecosystem, which today includes almost a dozen
different projects written in Go.

Go is being rapidly adopted by web-scale companies, which means we are likely to see more network-
related projects appearing in the future.

We hope this gives you a perspective and appreciation of the Go language features. The next step is
to install Go on your computer.

Installing Go on your computer
The Go download and install instructions (https://golang.org/doc/
install#install) require you to download a file from https://go.dev/ and
follow a couple of instructions. We include here the steps for Go version 17.7, which
is the latest version available at the time of writing. Newer versions of Go 1 should continue to work.

Windows

To install Go on Windows, follow these steps:

1.	 Download https://golang.org/dl/go1.17.7.windows-amd64.msi.

2.	 Execute the go1.17.7.windows-amd64.msi file and follow the instructions.

3.	 Open the Command Prompt window (cmd) and run go version to verify
the installation.

Mac

If you have Homebrew installed, you can run brew install go. Otherwise, you can follow
these steps:

1.	 Download https://golang.org/dl/go1.17.7.darwin-amd64.pkg.

2.	 Execute the go1.17.7.darwin-amd64.pkg file and follow the instructions.

3.	 Open a Terminal and run go version to verify the installation.

Summary 21

Linux

Go is typically available as a system package in a Linux distribution, but is often an older version.
Follow these steps to install a more recent release:

1.	 Download https://golang.org/dl/go1.17.7.linux-amd64.tar.gz.

2.	 Remove any existing Go installation with rm -rf /usr/local/go.

3.	 Extract the archive you downloaded into /usr/local with tar -C /usr/local
-xzf go1.17.7.linux-amd64.tar.gz.

4.	 Add /usr/local/go/bin to the PATH environment variable with export PATH=$PATH:/
usr/local/go/bin. To make this persistent, add this line as well in $HOME/.bash_
profile. This last part is valid for bash, but you might want to do something similar if you
use a different shell.

5.	 Run go version to verify the installation

There you go! You can now download and install Go in your system without any hassle.
To install a different version, just replace 17.7 in the instructions with a target version
of your choice.

Summary
In this chapter, we reviewed why Go is relevant for networking and network automation. We looked
at the various aspects of Go that make it the preferred choice for millions of developers. We also
explored how you can install it on your computer. In the next chapter, we will dive deeper into the
Go programming language, its source files, and its tools.

Further reading
You can refer to these resources for further reading:

•	 Stack Overflow Developer Survey 2021: https://insights.stackoverflow.com/
survey/2021#most-loved-dreaded-and-wanted-language-want

•	 NetDevOps 2020 survey: https://dgarros.github.io/netdevops-survey/
reports/2020

•	 Go Developer Survey 2020 Results: https://go.dev/blog/survey2020-results

•	 How Many Go Developers Are There?: https://research.swtch.com/gophercount

•	 golang-nuts: https://groups.google.com/forum/#!forum/golang-nuts

•	 Go Forum: https://forum.golangbridge.org/

•	 Go Language Collective: https://stackoverflow.com/collectives/go

Introduction22

•	 Gophers Slack channel: https://invite.slack.golangbridge.org/

•	 Go Developers Network (GDN): https://www.meetup.com/pro/go

•	 CNCF DevStats toolset: https://k8s.devstats.cncf.io/d/67/licenses-and-
programming-languages?orgId=1

•	 https://madnight.github.io/githut/#/stars/2021/2

•	 Go 6-month release cycle: https://github.com/golang/go/wiki/Go-Release-
Cycle

•	 Go release notes: https://golang.org/doc/devel/release

•	 https://github.com/golang/proposal#proposing-changes-to-go

•	 Toward Go 2: https://go.dev/blog/toward-go2

•	 Go 2 language change template: https://github.com/golang/proposal/blob/
master/go2-language-changes.md

•	 Go 2 proposals: https://github.com/golang/go/issues?utf8=%E2%
9C%93&q=is%3Aissue+is%3Aopen+label%3AGo2+label%3AProposal

•	 Go 2 draft design document: https://go.googlesource.com/proposal/+/
master/design/go2draft.md

•	 Python typing: https://docs.python.org/3/library/typing.html

•	 go doc tool website: https://pkg.go.dev/

•	 Go language server: https://go.googlesource.com/tools/+/refs/heads/
master/gopls/README.md#editors

•	 Go 2 draft design document: https://go.googlesource.com/proposal/+/master/
design/go2draft-error-handling-overview.md

•	 Go Conferences and Major Events: https://github.com/golang/go/wiki/
Conferences#go-conferences-and-major-events

•	 Popular development tools: https://insights.stackoverflow.com/
survey/2021#most-loved-dreaded-and-wanted-tools-tech-love-dread

•	 Top-paying technologies ranking: https://insights.stackoverflow.com/
survey/2021#technology-top-paying-technologieshttps://insights.
stackoverflow.com/survey/2021#technology-top-paying-technologies

•	 Go version 1: https://go.dev/blog/go1

•	 Why does Go not have feature X?: https://golang.org/doc/faq#Why_doesnt_
Go_have_feature_Xhttps://golang.org/doc/faq#Why_doesnt_Go_have_
feature_X

Further reading 23

•	 Go, Open Source, Community: https://go.dev/blog/open-source

•	 Go 1 and the Future of Go Programs: https://golang.org/doc/go1compat

•	 Go 2, here we come!: https://go.dev/blog/go2-here-we-come

•	 Software Reliability: https://users.ece.cmu.edu/~koopman/des_s99/sw_
reliability/

•	 The Computer Language Benchmarks Game: https://benchmarksgame-team.pages.
debian.net/benchmarksgame/fastest/go-gpp.html

•	 Five things that make Go fast: https://dave.cheney.net/2014/06/07/five-
things-that-make-go-fast

•	 The Go Programming Language Specification: https://golang.org/ref/spec

•	 Python Developers Survey 2020 Results: https://www.jetbrains.com/lp/python-
developers-survey-2020/

2
Go Basics

With so many programming languages out there, it’s fair to wonder why anyone would have to invent
yet another one. What the background is of the people behind Go and what the problems are they are
trying to solve with this new language are some of the items we will address in this chapter.

These topics give us some perspective on the challenges large-scale software development presents
to software developers today and why modern technologies such as programming languages are
constantly evolving.

By the end of this chapter, you should have a better understanding of where Go comes
from and its role in developing distributed systems running on multi-core processors,
as well as be familiar with Go’s source code structure as we go through the following areas:

•	 What is Go?

•	 Go’s guiding principles

•	 Go source code file structure

•	 Go packages and modules

•	 Compiling Go programs

•	 Running Go programs online

•	 Exploring the Go tool to manage Go source code

Go Basics26

Technical requirements
We assume that you have basic familiarity with the command line, Git, and GitHub.
You can find the code examples for this chapter in the book’s GitHub repository, https://github.
com/PacktPublishing/Network-Automation-with-Go, in the ch02 folder.

To run the examples, follow these steps:

1.	 Install Go 1.17 or later for your operating system. You can follow the instructions in Chapter 1,
Introduction, in the Installing Go on your computer section, or go to https://go.dev/
doc/install.

2.	 Clone the book’s GitHub repository with git clone at https://github.com/
PacktPublishing/Network-Automation-with-Go.git.

3.	 Change the directory to an example’s folder – cd Network-Automation-with-Go/
ch02/pong.

4.	 Execute go run main.go.

What is Go?
During the second half of 2007, Robert Griesemer, Rob Pike, and Ken Thompson started discussing
the design of a new programming language that would solve some problems they were experiencing
when writing software at Google, such as the increased complexity to use some languages, long code
compilation times, and not being able to program efficiently on multiprocessor computers.

Rob Pike was trying to take some concurrency and communicating channels ideas into C++, based
on his earlier work on the Newsqueak language in 1988, as he describes in Go: Ten years and climbing
(Further reading) and Less is exponentially more (Further reading). This turned out to be too hard to
implement. He would work out of the same office with Robert Griesemer and Ken Thompson. Ken had
worked together with Rob Pike in the past to create the character-encoding UTF-8, while Ken Thompson
had designed and implemented the Unix operating system and invented the B programming language
(the predecessor to the C programming language).

They chose the name Go for this new programming language because it’s short, but the DNS entry
for go.com wasn’t available, so Go’s website ended up at golang.org. And so, golang became
a nickname for Go. While golang is convenient for search queries, it’s not the name of the language
(which is Go):

What is Go? 27

Figure 2.1 – The initial Go discussion email thread

Though they initially thought of C/C++ to be the starting point, they ended up starting from scratch
to define a more expressive language, despite a large number of simplifications when compared to its
predecessors. Go inherits some things from C, such as, but not limited to, basic data types, expression
syntax, pointers, and compilation to machine code, but it doesn’t have things such as the following:

•	 Header files

•	 Exceptions

•	 Pointer arithmetic

•	 Subtype inheritance (no subclasses)

•	 this in methods

•	 Promotion to a superclass (it uses embedding instead)

•	 Circular dependencies

Pascal, Oberon, and Newsqueak are among the programming languages that have influenced Go. In
particular, its concurrency model comes from Tony Hoare’s Communicating Sequential Processes
(CSPs) (Further reading) white paper, and CSP’s implementations in Rob Pike’s interpreted language
Newsqueak and, later, Phil Winterbottom’s C-like compiled version, Alef. The next figure shows Go’s
family tree:

Go Basics28

Figure 2.2 – The Go ancestors

The number of C++ programmers that come to Go is just a few compared to what the Go founders
expected. Most Go programmers actually come from languages such as Python and Ruby.

Go became an open source project on November 10, 2009. They host Go’s source code at https://
go.googlesource.com/go and keep a mirror of the code at https://github.com/
golang/go where you can submit pull requests. While Go is an open source programming language,
it’s actually supported by Google.

They wrote the f irst Go compiler in C, but they later converted it to Go. Russ
Cox describes this in detail in Go 1.3+ Compiler Overhaul (Further reading). As
mind-blowing as it may sound, the Go source code of today is written in Go.

They released Go 1 on March 28, 2012. We highlight some notable changes to the language since then
in the summarized version of Go’s timeline in the next figure:

Go Proverbs 29

Figure 2.3 – Go’s brief timeline

Go is a stable language, and the semantics should not change unless Go 2 happens. The only change
that the Go team has confirmed at this point is the addition of generic programming using type
parameters in early 2022 (Go 1.18), as described in the Type Parameters Proposal (Further reading).

Go is a programming language that attempts to combine the ease of programming of a
dynamically typed language with the efficiency and safety of a statically typed language.
It builds executable files in seconds, and with Go’s first-class support for concurrency,
we can take full advantage of multi-core CPUs.

Before we dive into Go code, we cover some guiding principles that make Go unique through the
Go proverbs.

Go Proverbs
Rob Pike introduced the Go language proverbs at Gopherfest in 2015 to explain or teach
Go philosophically. These are general guidelines that Go developers tend to adhere
to. Most of these proverbs are good practices – but optional – that convey the spirit of
the language.

We only include our favorite proverbs here. You can check out the full list at Go Proverbs (Further reading):

•	 Gofmt’s style is no one’s favorite, yet gofmt is everyone’s favorite. When you write code in Go,
you don’t have to worry about the debate of white spaces versus tabs, or where you put braces
or curly brackets. Gofmt (gofmt) formats your code with a prescriptive style guide, so all Go
code looks the same. This way, you don’t have to think about it when you write or read Go code:

Go Basics30

•	 Clear is better than clever: Go favors clear code over clever code that is difficult
to analyze or describe. Write code other people can read and with behavior they
can understand.

•	 Errors are values: An error in Go is not an exception. It’s a value you can use in your program
logic – as a variable, for example.

•	 Don’t just check errors; handle them gracefully: Go encourages you to think about whether
you should do something with an error, instead of just returning it and forgetting about it.
Depending on the error, maybe you can trigger a different execution path, add more info to
it, or save it for later.

•	 A little copying is better than a little dependency: If you only need a few lines from a library,
maybe you can just copy those lines instead of importing the entire library to keep your
dependency tree under control and make your code more compact. This way, your program
not only compiles faster but is also more manageable and simpler to understand.

•	 Don’t communicate by sharing memory; share memory by communicating: This describes how
concurrent processes in Go can coordinate between each other. In other languages, concurrent
processes communicate by sharing memory, which you have to protect with locks to prevent
a data race condition when these processes try to access a memory location concurrently. Go,
in contrast, uses channels instead to pass references to data between processes, so only one
process has access to the data at a time.

•	 Concurrency is not parallelism: Concurrency is structuring the execution
of independent processes, whose instructions are not necessarily executed in
sequence. Whether these instructions run in parallel depends on the availability of
different CPU cores or hardware threads. Rob Pike’s Concurrency is not Parallelism
(Further reading) talk is a must for Go developers.

The Go proverbs cover different aspects of Go, from formatting your Go code to how Go
achieves concurrency.

Now, it’s time to roll up our sleeves as we start looking into Go source code files.

Go source code files
While there isn’t a filename convention for Go source code files, their filenames are typically one-word,
all lowercase, and include an underscore if it has more than one word. It ends with the .go suffix.

Each file has three parts:

•	 Package clause: This defines the name of the package a file belongs to.

•	 Import declaration: This is a list of packages that you need to import.

Go source code files 31

•	 Top-level declaration: This is constant, variable, type, function, and method declarations with
a package scope. Every declaration here starts with a keyword (const, var, type, or func):

// package clause

package main

// import declaration

import "fmt"

// top level declaration

const s = "Hello, 世界"

func main() {

    fmt.Println(s)

}

The code example shows the package declaration for the main package at the top.
It follows the import declaration, where we specify that we use the fmt package in
this file. Then, we include all declarations in the code – in this case, an s constant
and the main function.

Packages

A package is one or more .go files in the same folder that declares the related constants, types, variables,
and functions. These declarations are accessible to every file in the same package, so breaking down the
code into different files is optional. It’s more of a personal preference on how to better organize code.

In the standard library, they divide the code into separate files for larger packages. The encoding/
base64 package has one .go file (other than the test and example files), such as the following:

$ ls -1 /usr/local/go/src/encoding/base64/ | grep -v _test.go

base64.go

By contrast, the encoding/json package has nine .go source code files:

$ ls -1 /usr/local/go/src/encoding/json/ | grep -v _test.go

decode.go

encode.go

fold.go

fuzz.go

indent.go

scanner.go

Go Basics32

stream.go

tables.go

tags.go

Package names are short and meaningful (no underscore). Users of a package refer to the package
name when importing something from it – for example, the Decode method exists in the json and
xml packages. Users can call these methods with json.Decode and xml.Decode, respectively.

One special package is main. This is the entry point for any program that imports other packages.
This package must have a main function that takes no arguments and returns no value, such as the
code example at the beginning of this section.

Go modules

Go modules became the default way to release packages in Go 1.16. They were first introduced in Go
1.11, back in 2018, to improve dependency management in Go. It allows you to define an import path
and the dependencies for a package or collection of packages.

Let’s define a small package called ping, with a Send function that returns a string with the word pong:

package ping

func Send() string {

    return "pong"

}

This is the https://github.com/PacktPublishing/Network-Automation-with-Go/
blob/main/ch02/ping/code.go file in the book’s GitHub repository. You can create a module
for this package with the go mod init command at the root folder of this example (ch02/ping).
The argument for this command should be the module location, where users can get access to it. The
result is a go.mod file with the import path and a list of external package dependencies in it:

ch02/ping$ go mod init github.com/PacktPublishing/Network-
Automation-with-Go/ch02/ping

go: creating new go.mod: module github.com/PacktPublishing/
Network-Automation-with-Go/ch02/ping

With this, anyone can now import this package. The following program imports this package to the
pong output:

package main

import (

Go source code files 33

    "fmt"

    "github.com/PacktPublishing/Network-Automation-with-Go/
ch02/ping"

)

func main() {

    s := ping.Send()

    fmt.Println(s)

}

You can run this program from the Go Playground (Further reading), which imports the module we
just created. This is also a great segue into the next section on packet importing and a sneak peek into
the Go Playground section that we will cover in just a few more pages.

Importing packages

The import keyword lists the packages to import in a source file. The import path is the module
path, followed by the folder where the package is within the module, unless the package is in the
standard library, in which case you only need to reference the directory. Let’s examine an example
of each scenario.

To give an example, the google.golang.org/grpc module has a package in the credentials
folder. You would import it with google.golang.org/grpc/credentials. The last part of the
path is how you prefix the package types and functions, credentials.TransportCredentials
and credentials.NewClientTLSFromFile, respectively, in the next code sample.

Go’s standard library (Further reading) at go/src is a collection of packages of the std module.
The fmt folder hosts the package that implements functions to format input and output. The path to
import this package is just fmt:

package xrgrpc

import (

    "fmt"

    /* ... <omitted for brevity > ... */

    "google.golang.org/grpc/credentials"

)

func newClientTLS(c client) (credentials.TransportCredentials,
error) {

    if c.Cert != "" {

Go Basics34

                return credentials.NewClientTLSFromFile(...)

    }

    /* ... <omitted for brevity > ... */

    fmt.Printf("%s", 'test')

    /* ... <omitted for brevity > ... */

}

Packages do not live in a central repository such as maven, pip, or npm. You can share your code by
upstreaming it to a version control system and distribute it by sharing its location. Users can download
it with the go command (go install or go get).

For developing and testing purposes, you can reference local packages by pointing to their local path
in the go.mod file:

module github.com/PacktPublishing/Network-Automation-with-Go/
ch02/pong

go 1.17

require github.com/PacktPublishing/Network-Automation-with-Go/
ch02/ping v0.0.0-20220223180011-2e4e63479343

replace github.com/PacktPublishing/Network-Automation-with-Go/
ch02/ping v1.0.0 => ../ping

In the ch02/pong example, the Go tool automatically created the first three lines of
the go.mod file for us, referencing the ping module from the book’s GitHub repository
(Further reading). We later added a fourth line to replace that module, with the contents
of the local version of it (../ping).

Comments

Code comments in Go play a key role, as they become your package documentation. The
go doc tool takes the comments preceding a type, constant, function, or method that
you export in a package as a document string for that declaration, producing an HTML file that the
tool presents as a web page.

To give an example, all public Go packages (Further reading) display this autogenerated documentation.

Go source code files 35

Go offers two ways to create comments:

•	 C++-style // line comments, which is the most common form:

// IsPrivate reports whether ip is a private address,
according to

// RFC 1918 (IPv4 addresses) and RFC 4193 (IPv6
addresses).

func (ip IP) IsPrivate() bool {

    if ip4 := ip.To4(); ip4 != nil {

        return ip4[0] == 10 ||

            (ip4[0] == 172 && ip4[1]&0xf0 == 16) ||

            (ip4[0] == 192 && ip4[1] == 168)

    }

    return len(ip) == IPv6len && ip[0]&0xfe == 0xfc

}

•	 C-style /* */ block comments, which are primarily for package descriptions or large blocks
of formatted/indented code:

/*

Copyright 2014 The Kubernetes Authors.

Licensed under the Apache License, Version 2.0 (the
"License");

...

See the License for the specific language governing
permissions and

limitations under the License.

*/

package kubectl

Dave Cheney in Practical Go: Real-world advice for writing maintainable Go programs (Further reading)
suggests that a code comment should explain one – and only one – of these three things:

•	 What it does

•	 How something does what it does

•	 Why something is why it is

A good practice is to make comments on variables that describe their contents, rather than their purpose.
You could use the name of the variable to describe its purpose. This brings us to the naming style.

Go Basics36

Names

The convention for declaring names in Go is to use camel case (MixedCaps or mixedCaps) instead
of, for example, dashes or underscores when you use more than one word for the name of a function
or variable. The exception to the rule are acronyms that have a consistent case, such as ServeHTTP
and not ServeHttp:

package net

// IsMulticast reports whether ip is a multicast address.

func (ip IP) IsMulticast() bool {

     if ip4 := ip.To4(); ip4 != nil {

         return ip4[0]&0xf0 == 0xe0

     }

     return len(ip) == IPv6len && ip[0] == 0xff

}

The first letter of the name determines whether the package exports this top-level declaration. Packages
export names that start with a capital letter. These names are the only ones an external user of the
package can reference when importing the package – for example, you can reference IsMulticast
in the preceding code sample from another package as net.IsMulticast:

package net

func allFF(b []byte) bool {

     for _, c := range b {

          if c != 0xff {

                 return false

          }

     }

     return true

}

If the first letter is lowercase, no other package has access to this resource. Packages can have declarations
that are only for internal consumption. The allFF function in the last code example comes from the
net package. This means only functions in the net package can call the allFF function.

Go source code files 37

Languages such as Java and C++ have explicit keywords such as public and private
to control access to types and methods. Python follows the convention of naming variables
or methods for internal use with a single underscore prefix. In Go, you can access any
variable or method that starts with a lowercase letter from any source code file within
the package, but not from another package.

Executing your Go code

The Go compiler translates Go programs into machine code, producing a binary file.
Aside from your program, the binary includes the Go runtime, which offers services
such as garbage collection and concurrency. Having access to binary files that work
for different platforms makes Go programs very portable.

Let’s compile the https://github.com/PacktPublishing/Network-Automation-
with-Go/blob/main/ch02/pong/code.go file of the book’s GitHub repository with the go
build command. You can also time this operation with the time command to see how fast Go builds
really are:

ch02/pong$ time go build

real  0m0.154s

user  0m0.190s

sys   0m0.070s

Now, you can execute the binary file. The default filename is the package name, pong. You can change
the filename with the -o option of the go build command. There will be more on this in the Go
tool section:

ch02/pong$./pong

pong

If you don’t want to generate a binary or executable file and only run the code, you can use the go
run command instead:

ch02/pong$ go run main.go

pong

Go Basics38

Either option is fine, and it probably comes down to a matter of personal preference or whether you
intend to share the compiled artifact with others or deploy it to servers.

Go files have three main parts and they are organized into packages and modules.

You can run all the examples on your computer after installing Go, or you can run them online, as
we discuss in the next section.

Running Go programs online
Sometimes, you need to test some code quickly or just want to share a code example with someone
who might not have Go installed on their computer. In those situations, there are at least three websites
where you can run and share Go code for free:

•	 The Go Playground

•	 The Go Play Space

•	 The Gotip Playground

They all share the backend infrastructure, but with subtle differences.

The Go Playground

The Go team runs the Go Playground (https://play.golang.org/) on golang.org’s
servers. They shared some insights and its architecture in the article Inside the Go Playground (Further
reading), but more recently, Brad Fitzpatrick shared the history and the implementation details of the
latest incarnation of the Go Playground (Further reading).

This service receives your program, runs it on a sandbox, and returns its output. This is
very convenient if you are on your mobile phone, for example, and you want to verify
the syntax of a function or something else.

Running Go programs online 39

Figure 2.4 – The Go Playground

If you are curious about how they built this service or you want to run it locally in your environment,
make sure you check out the Playground source code (Further reading).

Go Basics40

The Go Play Space

If you can’t live without syntax highlighting, go to the Go Play Space (Further reading). This is an
experimental alternative Go Playground frontend. They proxy the code execution to the official
Go Playground so that programs work the same. They also store shared snippets on the golang.
org servers:

Figure 2.5 – The Go Play Space

Figure 2.5 shows some extra features that the Go Play Space includes besides syntax
highlighting, such as auto-closing braces, access to documentation, and different
UI themes.

Running Go programs online 41

Figure 2.6 – Building a house in the Go Play Space

We could not pass over the fact that it also has a Turtle graphics mode to help you visualize algorithms
for fun, such as having a gopher build a house, as shown in Figure 2.6.

Go Basics42

A look into the Future

The Gotip Playground runs on golang.org’s servers as well. This instance of the Go playground runs the latest
development branch of Go. You can use it to test upcoming features that are in active development, such as the
syntax described in the Type Parameters Proposal (Further reading) or the new net/netip package, without
having to install more than one Go version on your system if you don’t want to.

Figure 2.7 – The Gotip Playground

You can access the Gotip Playground via https://gotipplay.golang.org/ or by selecting
the Go dev branch dropdown at https://go.dev/play/.

These are all great options to run Go programs online that are available to you at no cost. In the
next section, we go back to working on the command line as we explore the Go tool to manage Go
source code.

The Go tool 43

The Go tool
One of the convenient things about Go – as a programming language – is that a single tool handles
all interactions with, and operations on, the source code. When installing Go, make sure that the
go tool is in the searchable OS path so that you can invoke it from any command-line terminal. The
user experience, regardless of the OS or platform architecture, is uniform and doesn’t require any
customization when moving from one machine to another.

IDEs also use the go tool to build and run code, report errors, and automatically format Go source
code. The go executable accepts a verb as the first argument that determines what go tool function
to apply to Go source files:

$ go

Go is a tool for managing Go source code.

Usage:

     go <command> [arguments]

The commands are:

     bug         start a bug report

     build       compile packages and dependencies

     ...       

     mod         module maintenance

     run         compile and run Go program

     test        test packages

     tool        run specified go tool

     version     print Go version

     vet         report likely mistakes in packages

We’re only exploring a subset of the functions of the Go tool in this section. You can find the full list
and every detail of each one in the Go cmd documentation (Further reading). The commands we’re
covering are as follows:

•	 build

•	 run

•	 mod

Go Basics44

•	 get

•	 install

•	 fmt

•	 test

•	 env

These help you build and run your Go programs, manage their dependencies, and format and test
your code.

Build

We use the go build command to compile a Go program and generate an executable binary. If
you are not using Go modules yet, the command expects a list of Go source files to compile as an
argument. It generates a binary file as a result, with the same name as the first source file (without the
.go suffix). In the ch02/hello folder of the book’s GitHub repository (Further reading), we have
the main.go and vars.go files.

You can build an executable file for the program in these files with the go build command:

ch02/hello$ go build *.go

ch02/hello$./main

Hello World

Packaging compiled binaries is a common way of distributing Go programs, since it allows users of a
program to skip the compilation stage and reduce the installation procedure to just a few commands
(download and unzip). But you can only run this binary file on a machine with the same architecture
and OS. To produce binary files for other systems, you can cross-compile to a wide range of OSs and
CPU architectures. For example, the following table shows some target CPU instruction sets that
are supported:

Table 2.1 – Some supported CPU architectures

Out of a long list of supported operating systems, the next table shows the most
popular options:

The Go tool 45

Table 2.2 – Some supported OSs

The GOOS and GOARCH environment variables allow you to generate cross-compiled binaries for
any other supported system. If you are on a Windows machine, you can generate a binary for macOS
running on a 64-bit Intel processor with the following command:

ch02/hello$ GOOS=darwin GOARCH=amd64 go build *.go

The go tool dist list command shows a complete set of unique combinations of OSs and
architectures that the Go compiler supports:

$ go tool dist list

...

darwin/amd64

darwin/arm64

...

linux/386

linux/amd64

linux/arm

linux/arm64

...

windows/386

windows/amd64

The go build command supports different flags to change its default behavior. Two of the most
popular flags are -o and -ldflags.

You can use -o to override the default binary name with a name of your preference. In the example,
we’ve selected another_name:

ch02/hello$ go build -o another_name *.go

ch02/hello$./another_name

Hello World

Go Basics46

To inject environment data at compile time into your program, use -ldflags with a reference to a
variable and its value. This way, you can have access to build information during the program execution,
such as the date you compiled the program or the version of the source code (git commit) you
compiled it from:

ch02/hello$ go build -ldflags='-X main.Version=1.0 -X main.
GitCommit=600a82c442' *.go

ch02/hello$./main

Version: "1.0"

Git Commit: "600a82c442"

Hello World

The last example is a very common way of version-tagging a Go binary. The benefit of this approach
is that it doesn’t require any changes to the source code, and you can automate the entire process in
a continuous delivery pipeline.

Run

Another way to run a Go program is by using the go run command. It accepts the same flags as go
build with two differences:

•	 It doesn’t produce a binary.

•	 It runs the program right after compilation.

The most common use case for go run is local debugging and troubleshooting, where
a single command combines the processes of compilation and execution:

ch02/hello$ go run {main,vars}.go

Hello World

In the example, we run the program in the main.go and vars.go files, which produces the Hello
World output.

Mod

With the introduction of Go modules, the go tool got an extra command to work with them – go
mod. To describe its functionally, let’s review a typical Go program development workflow:

1.	 You create a new project in a folder and initialize Go modules with the go mod init command,
with a reference to the module name – go mod init example.com/my-project. This
creates a pair of files, go.mod and go.sum, that keep track of your project’s dependencies.

The Go tool 47

The next output shows the size of these two files of a real-life project. go.mod lists all the
dependencies and is relatively small in size compared to go.sum, which has the checksum
for all the dependencies:

$ ls -1hs go.*

4.0K go.mod

 92K go.sum

If you plan to share this project with others, the name of the module should be a path that is
reachable on the internet. It normally points to your source code repository – for example,
github.com/username/my-project. A real-life example is github.com/gohugoio/
hugo/.

2.	 As you develop your code and add more and more dependencies, the go tool updates the go.mod
and go.sum files automatically whenever you run the go build or go run commands.

3.	 When you add a dependency, the go tool locks its version in the go.mod file to prevent
accidental code breakages. If you decide you want to update to a newer minor version, you
can use the go get -u package@version command.

4.	 If you remove a dependency, you can run go mod tidy to clean up the
go.mod file.

5.	 The two go.* files contain a full list of dependencies, including the ones that are not directly
referenced in your code, that are indirect or chained/transitive dependencies. If you want to
find out why a particular dependency is present in your go.mod file, you can use the go mod
why package or go mod graph commands to print the dependency tree on the screen:

hugo$ go mod why go.opencensus.io/internal

go.opencensus.io/internal

github.com/gohugoio/hugo/deploy

gocloud.dev/blob

gocloud.dev/internal/oc

go.opencensus.io/trace

go.opencensus.io/internal

The go list command can also be of help. It lists all the module dependencies:

hugo$ go list -m all | grep ^go.opencensus.io

go.opencensus.io v0.23.0

It also lists the actual package dependencies:

hugo$ go list all | grep ^go.opencensus.io

go.opencensus.io

Go Basics48

go.opencensus.io/internal

go.opencensus.io/internal/tagencoding

go.opencensus.io/metric/metricdata

go.opencensus.io/metric/metricproducer

go.opencensus.io/plugin/ocgrpc

...

go.opencensus.io/trace/propagation

go.opencensus.io/trace/tracestate

If you prefer a visual representation, there are projects such as Spaghetti (Further reading), a dependency
analysis tool for Go packages, that can present this information with a user-friendly interface, as
shown in Figure 2.8:

Figure 2.8 – Hugo dependency analysis

The Go tool 49

One thing that is important to mention is that Go modules use semantic versioning. If you need to
import a package that is part of a module at major version 2 or higher, you need to include that major
version suffix in their import path (github.com/username/my-project/v2 v2.0.0,
for example).

Before we move to the next command, let’s create a go.mod file for the example in the ch02/hello
folder of the book’s GitHub repository (Further reading):

ch02/hello$ go mod init hello

go: creating new go.mod: module hello

go: to add module requirements and sums:

go mod tidy

ch02/hello$ go mod tidy

ch02/hello$ go build

ch02/hello$./hello

Hello World

Now, you can build a binary file for the program with go build without having to reference all the
Go files in the folder (*.go).

Get

Before the Go 1.11 release, you could use the go get command to download and install Go programs.
This legacy behavior is being completely deprecated, starting from Go 1.17, so we won’t cover it here.
From now on, the sole role of this command is the management of dependencies in the go.mod file
to update them to a newer minor version.

Install

The easiest way to compile and install a Go binary without explicitly downloading the source code is
to use the go install [packages] command. In the background, the go tool still downloads
the code if necessary, runs go build, and copies the binary into the GOBIN directory, but the go
tool hides all this from the end user:

$ go install example.com/cmd@v1.2.3

$ go install example.com/cmd@latest

Go Basics50

The go install command accepts an optional version suffix – for example, @latest – and
falls back to the local go.mod file if the version is missing. Thus, when running go install,
it’s recommended to always specify a version tag to avoid errors if the go tool cannot find a local
go.mod file.

Fmt

Go takes much of the code formatting out of developers’ hands by shipping an
opinionated formatting tool that you can invoke with the go fmt command pointing
to your Go source code – for example, go fmt source.go.

Chapter 1, Introduction, covers how this improves code readability by making all Go code look similar.
Most IDEs with plugins for Go automatically format your code every time you save it, making it one
less problem to worry about for developers.

Test

Go is also opinionated when it comes to testing. It makes a few decisions on behalf of developers
about the best way to organize code testing to unify the user experience and discourage the use of
third-party frameworks:

1.	 It automatically executes all files with the _test.go suffix in their filenames when you run
the go test command. This command accepts an optional argument that specifies which
package, path, or source file to test.

2.	 The Go standard library includes a special testing package that works with the go test
command. Aside from unit test support, this package offers comprehensive coverage reports
and benchmarks.

To put this into practice, we include a test program for the ping package that we described in the Go
modules section. The ping package has a Send function, which returns the pong string when called.
The test we perform should verify this. In the test program, we start by defining a string with the value
we expect (pong) and then compare it to the result of the ping function. The code_test.go file
(https://github.com/PacktPublishing/Network-Automation-with-Go/blob/
main/ch02/ping/code_test.go) in the same folder as ping represents this in Go code:

package ping_test

import (

    "github.com/PacktPublishing/Network-Automation-with-Go/
ch02/ping"

    "testing"

)

The Go tool 51

func TestSend(t *testing.T) {

    want := "pong"

    result := ping.Send()

    if result != want {

        t.Fatalf("[%s] is incorrect, we want [%s]", result,
want)

    }

}

All test functions have a TestXxx(t *testing.T) signature, and whether they have access to any
other functions and variables defined in the same package depends on how you name the package:

•	 ping: This gives you access to everything in the package.

•	 ping_test: This is a package type (the _test suffix) that can live in the same folder
as the package you are testing, but it does not have access to the original package
variables and methods, so you must import it as any other user would do it. It’s an
effective way to document how to use the package while testing it. In the example,
we use the ping.Send function instead of Send directly, as we are importing
the package.

This is an assurance that the Send function always does the same even if they must optimize the
code later. Now, every time you change the code, you can run the go test command to verify that
the code still behaves the way you expect. By default, when you run go test, it prints the results
of every test function it finds along with the time to execute them:

ch02/ping$ go test

PASS

ok github.com/PacktPublishing/Network-Automation-with-Go/ch02/
ping 0.001s

If someone makes a change in the code that modifies the behavior of the program so that it can no
longer pass the test cases, we are in the presence of a potential bug. You can proactively identify
software issues with the go test command. Let’s say they change the return value of the Send
function to p1ong:

func Send() string {

    return "p1ong"

}

Go Basics52

The go test command then generates an error the next time your continuous integration pipeline
runs the test cases:

ch02/ping$ go test

--- FAIL: TestSend (0.00s)

 code_test.go:12: [p1ong] is incorrect, we want [pong]

FAIL

exit status 1

FAIL github.com/PacktPublishing/Network-Automation-with-Go/
ch02/ping 0.001s

Now, you know you can’t promote this code to production. The benefit of testing is that
you reduce the number of software bugs your users might run into, as you can catch
them beforehand.

Env

The go env command displays the environment variables that the go command uses for configuration.
The go tool can print these variables as flat text or in the JSON format with the -json flag:

$ go env -json

{

    ...

    "GOPROXY": "https://proxy.golang.org,direct",

    "GOROOT": "/usr/local/go",

    ...

    "GOVERSION": "go1.17",

    "PKG_CONFIG": "pkg-config"

}

You can change the value of a variable with go env -w <NAME>=<VALUE>. The next table
describes some of these configuration environment variables:

Table 2.3 – Some configuration environment variables

Summary 53

When you change a variable, the go tool stores its new value in the path specified by the GOENV
variable, which defaults to ~/.config/go:

$ go env -w GOBIN=$(go env GOPATH)/bin

$ cat ~/.config/go/env

GOBIN=/home/username/go/bin

The preceding output example shows how to set the GOBIN directory explicitly and how to verify it.

Go offers a command-line utility that helps you manage your source code, from formatting your code
to performing dependency management.

Summary
In this chapter, we reviewed Go’s origins and its guiding principles, and how you should structure Go
source code files and work with dependencies to run your Go programs.

In the next chapter, we will drill down into the semantics of the Go language, the variable types, math
logic, control flow, functions, and, of course, concurrency.

Further reading
•	 Less is exponentially more: https://commandcenter.blogspot.com/2012/06/

less-is-exponentially-more.html?m=1

•	 Go: Ten years and climbing: https://commandcenter.blogspot.com/2017/09/
go-ten-years-and-climbing.html

•	 Communicating Sequential Processes: https://www.cs.cmu.edu/~crary/819-f09/
Hoare78.pdf

•	 Go 1.3+ Compiler Overhaul: https://golang.org/s/go13compiler

•	 Type Parameters Proposal: https://go.googlesource.com/proposal/+/refs/
heads/master/design/43651-type-parameters.md

•	 Go Proverbs: https://go-proverbs.github.io/

•	 Concurrency is not Parallelism: https://www.youtube.com/watch?v=oV9rvDllKEg

•	 The book’s GitHub repository: https://github.com/PacktPublishing/Network-
Automation-with-Go

•	 Go Playground: https://go.dev/play/p/ndfJcayqaGV

•	 Playground source code: https://go.googlesource.com/playground

Go Basics54

•	 Go Play Space: https://goplay.space/

•	 Go’s standard library: https://github.com/golang/go/tree/master/src

•	 Practical Go: Real-world advice for writing maintainable Go programs: https://dave.
cheney.net/practical-go/presentations/qcon-china.html#_comments

•	 The latest incarnation of the Go Playground: https://talks.golang.org/2019/
playground-v3/playground-v3.slide#1

•	 Inside the Go Playground: https://go.dev/blog/playground

•	 Cmd documentation: https://pkg.go.dev/cmd/go#pkg-overview

•	 Spaghetti: https://github.com/adonovan/spaghetti

•	 Deprecation of ’go get’ for installing executables: https://golang.org/doc/go-get-
install-deprecation

3
Getting Started with Go

In this chapter, we dive into the Go basics and the characteristics that make it comparable to a
dynamically typed language, but with the efficiency and safety of a statically typed, compiled language.

We also explore different Go packages to manipulate data in different formats and how to scale
programs with Go’s concurrency model. Being able to manipulate data effectively and take advantage
of all the resources of systems running multi-core processors are key elements to keep in mind when
automating networks.

During this chapter, we cover the following key topics:

•	 Go variable types

•	 Go’s arithmetic, comparison, and logical operators

•	 Control flow

•	 Functions in Go

•	 Interfaces in Go

•	 Input and output operations

•	 Decoding and encoding with Go

•	 Concurrency

Technical requirements
We assume basic familiarity with the command line, Git, and GitHub. You can find the code examples
for this chapter in the book’s GitHub repository at https://github.com/PacktPublishing/
Network-Automation-with-Go, under the ch03 folder.

https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/Network-Automation-with-Go

Getting Started with Go56

To run the examples, perform the following steps:

1.	 Install Go 1.17 or later for your operating system. You can follow the instructions in Chapter 1,
Introduction, in the Installing Go section, or go to https://go.dev/doc/install.

2.	 Clone the book’s GitHub repository with git clone https://github.com/
PacktPublishing/Network-Automation-with-Go.git.

3.	 Change the directory to an example folder:

cd Network-Automation-with-Go/ch03/json.

4.	 Execute go run main.go.

Go’s type system
Go is a statically typed language, which means the compiler must know the types of all variables to
build a program. The compiler looks for a special variable declaration signature and allocates enough
memory to store its value:

func main() {

    var n int

    n = 42

}

By default, Go initializes the memory with the zero value corresponding to its type. In the preceding
example, we declare n, which has an initial value of 0. We later assign a new value of 42:

Table 3.1 – Zero values

As its name suggests, a variable can change its value, but only as long as its type remains the same. If
you try to assign a value with a different type or redeclare a variable, the compiler complains with an
appropriate error message.

https://go.dev/doc/install
https://github.com/PacktPublishing/Network-Automation-with-Go.git
https://github.com/PacktPublishing/Network-Automation-with-Go.git

Go’s type system 57

If we append a line with n = "Hello" to the last code example, the program wouldn’t compile,
and it would return the following error message: cannot use "Hello" (type untyped
string) as type int in assignment.

You can use type inference as a shortcut for variable declarations. In that case, you omit an explicit
type argument in your declaration. Just keep in mind that Go has limited support for type inference
inside of a function.

Instead of explicitly defining a type for each variable, you can use a special short assignment symbol,
:=, and let the compiler guess the variable type based on its value, as in the next example, where the
compiler assumes the variable n is of type int:

func main() {

    n := 42

}

Just like with variables, the compiler can also infer a constant type. The value of constants cannot
change throughout the program and we generally use them to represent real-world values such as the
number π (Pi), static names of objects or places, and so on:

const Book = "Network Automation with Go"

Now, let’s have a closer look at the different types available in Go and their common use cases.

Basic types

According to Go’s language specification, there are four groups of basic or primitive types predeclared
globally and available to all Go programs by default:

•	 Numeric

•	 Strings

•	 Boolean

•	 Error

Numeric

Go defines several numeric types to store integers and real numbers of different sizes. Type names
normally contain information about their sign and the size of the value (in bits). The only notable
exceptions are int and uint types, whose values depend on the machine and normally default to
32 bits for 32-bit CPUs, or 64 bits for 64-bit CPU architectures:

Getting Started with Go58

Table 3.2 – Numeric type variables

Here are some examples of how to instantiate variables of numeric types. These are all valid options,
and you can use whichever is most appropriate for the range of values you need to store or produce.
You can test this code from ch03/type-definition/main.go (in the Further reading section).
Notice we use type inference for a, so its type is int and its size is 8 bytes on a 64-bit machine. The
second variable (b) is an unsigned 32-bit integer (4 bytes). The last variable (c) is a floating-point
number (4 bytes):

func main() {

    a := -1

    var b uint32

    b = 4294967295

    var c float32 = 42.1

}

You can also convert a v value to the T type with the expression T(v), as in the next example. Here,
b results from converting a, an integer, to an unsigned 32-bit integer, and finally, c is a floating-point
number from converting b:

func main() {

    a := 4294967295

Go’s type system 59

    b := uint32(a)

    c := float32(b)

}

Once you have defined a type for a variable, any new operation has to match this type on both sides
of the assignment operator (=). You could not append b = int64(c) at the end of the preceding
example, as b would be of the uint32 type.

Type conversion is always explicit in Go, unlike other programming languages that may do this
implicitly and sometimes call this type casting.

Strings

Go supports two styles of string literals: you can enclose the characters with double-quotes to make
it an interpreted literal, or use back-quotes for raw string literals, as in the next example:

func main() {

    d := "interpreted\nliteral"

    e := `raw

literal`

    fmt.Println(d)

    fmt.Println(e)

}

Notice the escape sequence in d. Go interprets this to generate a new line character within the string.
The following is the output of this program, which you can find at ch03/string-literals/
main.go (in the Further reading section):

ch03/string-literals$ go run main.go

interpreted

literal

raw

literal

Getting Started with Go60

You can compare strings with the == and != operators. You can concatenate strings with the + and
+= operators. The example at ch03/string-concatenate/main.go (in the Further reading
section) shows these operators in action:

func main() {

    s1 := "Net"

    s2 := `work`

    if s1 != s2 {

        fmt.Println(s1 + s2 + " Automation")

    }

}

Until this point, nothing seems to be too different from other programing languages. But in Go, a string
is actually a slice of bytes, or to be more precise, a sequence of UTF-8 Unicode points. In memory, Go
represents this as a two-word structure containing a pointer to the string data and its length.

Let’s define a new string, n, with the Network Automation string literal in ch03/string-
memory/main.go (in the Further reading section). We can store each character as one or more
bytes using the variable-width character encoding UTF-8. For English, we use one byte per character,
so the string literal in this case is 18 bytes long:

func main() {

    n := "Network Automation"

    fmt.Println(len(n))

    w := n[3:7]

    fmt.Println(w)

}

We can define another string as a subset of another. For this, we specify the lower bound in the original
string and the upper bound. The index count starts at zero and the resulting string doesn’t include
the character in the upper bound index. For n[3:7], we set the boundaries at characters “w” and
“ “. The program prints the following:

ch03/string-memory$ go run main.go

18

work

While the n and w variables reference strings of different lengths, the variable size of both is the same,
just like for any other string variable. A string variable is a two-word structure. A word is usually 32 or

Go’s type system 61

64 bits depending on the CPU architecture. Two 64-bit words are 16 bytes (2 x 8-byte), so for 64-bit
platforms, a string is a 16-byte data structure. Out of those 16 bytes, 8 bytes are a pointer to the actual
string data (a slice), and the remaining 8 bytes are to store the length of the string slice. Figure 3.1
shows what this looks like in memory:

Figure 3.1 – What a string looks like in memory

It’s OK that more than one string references the same underlying slice, as this slice is immutable,
meaning that you can’t change its contents. While the slice stores the string data, you can’t change a
character of the string by referencing an index of the slice, because it’s immutable.

By contrast, if you want to change the value of a string variable, let’s say you need to assign a different
text to it, Go points the string data structure to a new underlying slice with the new string content
you supply. All this happens behind the scenes, so you don’t need to worry about this.

Boolean

The bool data type uses one byte of memory, and it stores a value of either true or false. As in
other programming languages, you can use variables of the bool type in conditional statements to
change the control flow of a program. The if conditional explicitly requires a bool type:

func main() {

    condition := true

    if condition {

        fmt.Printf("Type: %T, Value: %t \n",

Getting Started with Go62

                    condition, condition)

    }

}

If you run this program at ch03/boolean/main.go (in the Further reading section), you get
the following output:

ch03/boolean$ go run main.go

Type: bool, Value: true

Because the condition is true, we print the condition variable type and value.

Error

Go has a unique approach to error handling and defines a special error type to represent a failure
condition. You can generate errors, change them, print them on a screen, or use them to change the
control flow of a program. The next code sample shows the two most common ways of generating a
new variable of the Error type:

func main() {

    // Creates a variable of 'error' type

    err1 := errors.New("This is a new error")

    // string formatting when building an error message

    msg := "another error message"

    err2 := fmt.Errorf("This is %s", msg)

}

You can make any user-defined type an error, as long as it implements a special Error() method
that returns a string. We talk more about implementing methods in the Interfaces section later in
this chapter.

One common way of error handling is to allow it to bubble up until a point in a program where you
can decide how to react to it — whether to fail and stop the execution or log and retry. Regardless of
that, the use of errors is pervasive in Go, and all functions that can fail return an error as their last
argument, so the following pattern is very common in Go programs:

func main() {

    result, err := myFunction()

    if err != nil {

        fmt.Printf("Received an error: %s", err)

Go’s type system 63

        return err

    }

}

The myFunction function returns two values. In the outer function in the preceding example, we
store the first return value of myFunction in a variable named result, and the second return
value in the err variable, to store the value of any potential error inside myFunction, which now
surfaces to the calling function.

Depending on the logic of the program, you need to decide how to handle the error. Here, if the error
isn’t null (nil), we print the error message and finish the execution of the function (return). We
could also have just logged it and allowed the program to continue.

Container types

The next level up from the primitive types is a container type. These are still standard types that are
available to any Go program without any explicit import statement. But, they represent more than just
a single value. We use container types in Go to store different values of the same type; these include
the following:

•	 Arrays

•	 Slices

•	 Maps

In the following sections, we discuss the use cases and implementation details of these three types.

Arrays

One of the first things any programmer needs, after they’ve gained the ability to deal with primitive
types, is the ability to store collections of values of these types. For example, a network inventory may
store a list of device hostnames or IP addresses. The most common solution for this problem is a data
structure called an array. Go’s array types have the [n]T signature, where n is the length of the
array and T is the value type you store in the array.

Here is an example of how you can use arrays in Go with strings. We purposely mix different semantic
ways you can define an array, so you can choose the style you prefer. We first define the hostnames
array on a single line and then the ips array on a multiline statement:

func main() {

    hostnames := [2]string{"router1.example.com",

                        "router2.example.com"}

Getting Started with Go64

    ips := [3]string{

        "192.0.2.1/32",

        "198.51.100.1/32",

        "203.0.113.1/32",

    }

    // Prints router2.example.com

    fmt.Println(hostnames[1])

    // Prints 203.0.113.1/32

    fmt.Println(ips[2])

}

This gets even more interesting for network engineers when working with arrays of bytes. Look at the
next example of how Go reads the input decimal number (127 for example), and the binary data is
at your fingertips. Both array examples are available at ch03/arrays/main.go (see the Further
reading section):

func main() {

    // ipv4 is [0000 0000, 0000 0000, 0000 0000, 0000 0000]

    var ipAddr [4]byte

    // ipv4 is [1111 1111, 0000 0000, 0000 0000, 0000 0001]

    var localhost = [4]byte{127, 0, 0, 1}

    // prints 4

    fmt.Println(len(localhost))

    // prints [1111111 0 0 1]

    fmt.Printf("%b\n", localhost)

    // prints false

    fmt.Println(ipAddr == localhost)

}

Go arrays have many benefits. They are very memory efficient, as they store values sequentially and
don’t have any extra metadata overhead. They are also comparable, meaning you can check whether
two arrays are equal, assuming their values have comparable types.

Go’s type system 65

But, because of their fixed size, we rarely use arrays directly in Go. The only exception is when you
know the size of your dataset ahead of time. With that in mind, in networking, we deal with a lot of
fixed-sized datasets; they make up most of the network protocol headers, so arrays can be convenient
for that and things such as IP and MAC addresses, port or sequence numbers, and various VPN labels.

Slices

Arrays have an immutable structure by definition (fixed-size). While you can alter the value within an
array, they cannot grow and shrink as the size of the stored data changes. But, implementation-wise,
this has never been a problem. Many languages implement arrays as dynamic data structures that
change their size behind the scenes.

Of course, there is some performance penalty involved when growing an array, but with some clever
algorithms, it’s possible to reduce the number of changes and make the end user experience as frictionless
as possible. Slices play this role in Go; they are the most widely used array-like data structure in Go.

Providing the length of the slice when creating it is optional. Behind the scenes, Go creates a backing
array that defines the upper bound to what size the slice can grow to. That upper bound is what we
know as the capacity of the slice. In general, the capacity is equal to the length of the slice, but that
is not always the case. If the slice needs to grow beyond its capacity, Go creates a new larger backing
array and copies over the contents of the original array. The next example shows three ways to create
a slice and the values for capacity and length for each slice:

func main() {

    empty := []string{}

    words := []string{"zero", "one", "two", "three",

                    "four", "five", "six"}

    three := make([]string, 3)

    fmt.Printf("empty: length: %d, capacity: %d, %v\n",

                     len(empty), cap(empty), empty)

    fmt.Printf("words: length: %d, capacity: %d, %v\n",

                    len(words), cap(words), words)

    fmt.Printf("three: length: %d, capacity: %d, %v\n",

                    len(three), cap(three), three)

    /* ... <continues next > ... */

}

Getting Started with Go66

This program, which you can find at ch03/slices/main.go (see the Further reading section),
prints the following:

ch03/slices$ go run main.go

empty: length: 0, capacity: 0, []

words: length: 7, capacity: 7, [zero one two three four five
six]

three: length: 3, capacity: 3, [  ]

Just like with strings, you can slice a slice, which creates a new reference to a section of the same
backing array. For example, if you create a new slice based on the slice words from the preceding
example with words[1:3], you end up with a slice that has one and two elements, so the length
of this slice is two. Its capacity is six, though. Why six? The backing array is the same, but the new
slice starts at index one, and the last index of the backing array is seven. Figure 3.2 shows what this
looks like in memory:

Figure 3.2 – What slices look like in memory

To add elements to the end of slice, you can use the built-in append function. Let’s start from the
slice we were just referencing and call it mySlice:

func main() {

    /* ... <continues from before > ... */

Go’s type system 67

    mySlice := words[1:3]

    fmt.Printf(" mySlice: length: %d, capacity: %d, %v\n",

            len(mySlice), cap(mySlice), mySlice)

    mySlice = append(mySlice, "seven")

    fmt.Printf(" mySlice: length: %d, capacity: %d, %v\n",

            len(mySlice), cap(mySlice), mySlice)

    mySlice = append(mySlice, "eight", "nine", "ten",

                    "eleven")

    fmt.Printf(" mySlice: length: %d, capacity: %d, %v\n",

            len(mySlice), cap(mySlice), mySlice)

}

If we run this program from ch03/slices/main.go (see the Further reading section), we can
see how Go allocates a new backing array when it needs extra capacity. When it had three elements
already, and we asked to add another four to a slice with a capacity of six, Go automatically allocated
a new backing array with a capacity of 12 to support the extra elements and future growth:

ch03/slices$ go run main.go

...

 mySlice: length: 2, capacity: 6, [one two]

 mySlice: length: 3, capacity: 6, [one two seven]

 mySlice: length: 7, capacity: 12, [one two seven eight nine
ten eleven]

The bottom line is that while this might sound hard to grasp, it all happens behind the scenes. What
we want to leave you with about slices is that they are a three-word data structure, and are 24 bytes
on most computers nowadays.

Maps

Maps are a container type that makes it possible to store a mapping between one type, for example, a
string or an integer, as the key to another type stored as the value. A map is of the map[KeyType]
ValueType form, where KeyType is any type that is comparable and ValueType may be any
type at all. One example would be map[int]string.

Getting Started with Go68

One way to initialize a map is with the built-in make function as in the next example, where we create a
map of string as key and also with string as value. You can add new values to the map, referencing
the key you want to associate that value with. In the example, we map spine to 192.168.100.1:

func main() {

    dc := make(map[string]string)

    dc["spine"] = "192.168.100.1"

    ip := dc["spine"]

    ip, exists := dc["spine"]

    if exists {

        fmt.Println(ip)

    }

}

To retrieve a value and assign it to a variable, you can reference the key just like when adding values,
but this time, on the right side of the equals sign, as in the preceding example, where we assigned the
value of dc["spine"] to the ip variable.

You can also do membership testing, to check whether a certain key is on the map. A two-value
assignment tests for the existence of a key, as in ip, exists := dc["spine"], where exists
is a Boolean value that is only true if dc["spine"] exists.

Another way to initialize a map is with data, as in the next example. To delete elements, you can use
the built-in delete function:

func main() {

    inv := map[string]string{

        "router1.example.com": "192.0.2.1/32",

        "router2.example.com": "198.51.100.1/32",

    }

    fmt.Printf("inventory: length: %d, %v\n", len(inv),

                inv)

    delete(inv, "router1.example.com")

    fmt.Printf("inventory: length: %d, %v\n", len(inv),

Go’s type system 69

                inv)

}

This program prints the following:

ch03/maps$ go run main.go

inventory: length: 2, map[router1.example.com:192.0.2.1/32
router2.example.com:198.51.100.1/32]

inventory: length: 1, map[router2.example.com:198.51.100.1/32]

The full code for this section is available at ch03/maps/main.go (see the Further reading section).

User-defined types

Unlike the types we discussed before, user-defined types, as the name suggests, are types that you
define. In this category we have the following:

•	 Structs

•	 Interfaces

Interfaces are the only abstract type in Go and define a contract for concrete types, such as structs.
They describe behavior, not implementation details, which helps us break the business logic of our
programs into building blocks with interfaces between them. We cover them in detail in a dedicated
section for interfaces later in this chapter.

Structs

A struct is a data structure that represents a collection of fields with their data types. Structs look a bit
like mappings, except the keys in this case are fixed. They become‌ an extension of the variable name.

Let’s define a router (Router) that has four string fields and one bool field:

type Router struct {

    Hostname  string

    Platform  string

    Username  string

    Password  string

    StrictKey bool

}

Getting Started with Go70

Now, this new type can also be part of another user-defined type, as in the following Inventory
type, which has a slice of these routers we just defined:

type Inventory struct {

    Routers []Router

}

Here are a few examples of how to create an instance of a struct and assign values to its fields:

func main() {

    var r1 Router

    r1.Hostname = "router1.example.com"

    r2 := new(Router)

    r2.Hostname = "router2.example.com"

    r3 := Router{

        Hostname:  "router3.example.com",

        Platform:  "cisco_iosxr",

        Username:  "user",

        Password:  "secret",

        StrictKey: false,

    }

    /* ... <continues next > ... */

}

The caveat is that r2 is now actually a pointer to Router (that’s how new works), but it’s not something
we need to worry about right now. Let’s put all the routers in an Inventory type variable:

func main() {

    /* ... <continues from before > ... */

    inv := Inventory{

        Routers: []Router{r1, *r2, r3},

    }

    fmt.Printf("Inventory: %+v\n", inv)

}

Arithmetic, comparison, and logical operators 71

Now, we have all our routers conveniently in a variable we can use. All the fields we haven’t assigned
a value yet are zero value ("", or empty for strings):

ch03/structs$ go run main.go

Inventory: {Routers:[{Hostname:router1.example.com Platform:
Username: Password: StrictKey:false} {Hostname:router2.
example.com Platform: Username: Password: StrictKey:false}
{Hostname:router3.example.com Platform:cisco_iosxr
Username:user Password:secret StrictKey:false}]}

The code in this example is available at ch03/structs/main.go (see the Further reading section).

Until this point, we have not talked about other variable types such as pointers, channels, and functions.
We cover these in other sections of this chapter. Please bear with us. In the next section, we introduce
some math and logical operators that allow us to execute different actions in our programs.

Arithmetic, comparison, and logical operators
Operators are special symbols that perform specific mathematical, logical, or relational computations
on variables of different types. We cover the following three types of operators in this section:

•	 Arithmetic operators

•	 Logical operators

•	 Comparison operators

While we don’t cover all corner cases and permutations of types, we’d like to focus on a few operators
that might be interesting in the network automation context.

Arithmetic operators

These operators perform mathematical calculations with numeric values. The resulting value depends
on the order and type of the operands:

Getting Started with Go72

Table 3.3 – Arithmetic operators

They follow the standard mathematical logic implemented in most programming languages:

func main() {

    // sum s == 42

    s := 40 + 2

    // difference d == 0.14

    d := 3.14 - 3

    // product p == 9.42

    p := 3 * 3.14

    // quotient q == 0

    q := 3.0 / 5

    // remainder r == 2

    r :=  5 % 3

}

Arithmetic, comparison, and logical operators 73

Strings are the only non-numeric type that can make use of an arithmetic operator. You can use + for
string concatenation, to link together two or more text strings into one string:

func main() {

    // s == "Hello, World"

    s := "Hello" + ", " + "World"

}

One of the most interesting applications of arithmetic operations is interacting with binary data,
something that many network engineers are familiar with.

Network protocols have deterministic structures expressed in a set of headers that contain forwarding
information and facts of the encapsulated payload.

You can use the arithmetic operators bit shift and bitwise (OR, AND, and XOR) to create or extract
data from network headers.

To see this in action, let’s work with a 20-byte long Transmission Control Protocol (TCP) header
that has the following information:

•	 Source port address – 2 bytes

•	 Destination port address – 2 bytes

•	 Sequence number – 4 bytes

•	 Acknowledgment number – 4 bytes

•	 Header length and reserved – 1 byte

•	 Control flags – 1 byte:

	� CWR: Congestion Window Reduced flag

	� ECE: Explicit Congestion Notification (ECN)-echo flag

	� URG: Urgent pointer

	� ACK: Acknowledgment number is valid

	� PSH: Request for push

	� RST: Reset the connection

	� SYN: Synchronize sequence numbers

	� FIN: Terminate the connection

•	 Window size – 2 bytes

•	 Checksum – 2 bytes

•	 Urgent pointer – 2 bytes

Getting Started with Go74

Figure 3.3 shows the TCP header structure including all the mandatory fields we just listed:

Figure 3.3 – TCP header structure

In the next code example, we build a TCP header from an empty slice of bytes. We write its length in
the first four bits of byte 13 and then set the SYN flag in byte 14 of the TCP header.

The header length field of the TCP header represents the number of 32-bit words the TCP header
has. You can see it as the number of rows in it, as Figure 3.3 shows. Here, the length is five words.

The following code snippet (the full version is at ch03/tcp-header/main.go (see the Further
reading section)) shows how to set this length on a TCP header using arithmetic operations:

func main() {

    // Header length (measured in 32-bit words) is 5

    var headerWords uint8 = 5

    // Header length in bytes is 20

    headerLen := headerWords * 32 / 8

    // Build a slice of 20 bytes to store the TCP header

    b := make([]byte, headerLen)

    // Shift header words bits to the left to fit

    // the Header Length field of the TCP header

    s := headerWords << 4

    // OR operation on byte 13 and the store new value

    b[13] = b[13] | s

Arithmetic, comparison, and logical operators 75

    // Print the 13 byte of the TCP header -> [01010000]

    fmt.Printf("%08b\n", b[13])

    /* ... <continues next > ... */

}

Figure 3.4 shows how the headerWords 8-bit unsigned integer variable, which is compatible with
the size of a single byte, got bit-shifted left to fit into its appropriate positions in the header’s field.

The left shift operation moves the original bits, dropping the overflowing bits on the right and replacing
the bits on the left with zeros. The bitwise OR operator combines the resulting value with the existing
byte. This is a common pattern to make sure that none of the bits you configured before get lost since
the bitwise OR operator always keeps the 1 bits if they are present in any of the operands:

Figure 3.4 – Building a TCP header, part one

To set a flag, we can do something similar, where we set one bit and shift it to the left to leave it in the
second position to signal SYN:

func main() {

    /* ... <continues from before > ... */

    // assume that this is the initial TCP SYN message

    var tcpSyn uint8 = 1

    // SYN flag is the second bit from the right so

    // we shift it by 1 position

    f := tcpSyn << 1

    // OR operation on byte 14 and store the new value

    b[14] = b[14] | f

Getting Started with Go76

    // Print the 14 byte of the TCP header -> [00000010]

    fmt.Printf("%08b\n", b[14])

    /* ... <continues next > ... */

}

Figure 3.5 depicts the bit operations in the preceding code example:

Figure 3.5 – Building a TCP header, part two

Now, let’s see how the reverse process of parsing those two bytes on the receiving side can look:

func main() {

    /* ... <continues from before > ... */

    // only interested if a TCP SYN flag has been set

    tcpSynFlag := (b[14] & 0x02) != 0

    // Shift header length right, drop any low-order bits

    parsedHeaderWords := b[13] >> 4

    // prints "TCP Flag is set: true"

    fmt.Printf("TCP Flag is set: %t\n", tcpSynFlag)

    // prints "TCP header words: 5"

    fmt.Printf("TCP header words: %d\n", parsedHeaderWords)

}

Arithmetic, comparison, and logical operators 77

This time, we’re using the opposite set of bit operations. The right shift moves all bits from left to right,
dropping the bits on the right and adding zeros to the left:

Figure 3.6 – Parsing a TCP header, part one

The bitwise AND operator has the same behavior as a network mask. It keeps the bits that are set to 1
and resets everything else to zero, effectively hiding the non-important bits. In our case, we’re using
the 0x02 mask value or 0000 0010 in binary, which hides everything else and only leaves us with
the second bit from the right. We can then shift that bit to the right and check its value:

Figure 3.7 – Parsing a TCP header, part two

Being able to work at the bit and byte level is a powerful programming capability.

Logical operators

Logical operators are a basic set of Boolean operations that follow the rules of Boolean algebra —
conjunction, disjunction, and negation:

Table 3.4 – Logical operators

Getting Started with Go78

There is nothing surprising in Go’s implementation of these logical operators, the only thing worth
remembering is that there is no syntactic sugar for them, so the only acceptable values are && for
AND , || for OR, and ! for NOT.

Comparison operators

We use the equal and not equal (== and !=) operators to compare a pair of comparable values and
return a Boolean (true|false). You can apply greater than and less than operators (<, <=, >, and
>=) to ordered values:

Table 3.5 – Comparison operators

Here’s a brief example of comparison operators in action, with their most common types:

func main() {

    // all strings are comparable

    fmt.Println("hello" == "hello")

    // strings are ordered alphabetically

    fmt.Println("hello" < "world")

    // integers are comparable and ordered

    fmt.Println(1 < 10)

    // floating point numbers are also comparable

Control flow 79

    fmt.Println(10.0 >= 1.1)

}

In the preceding example, all statements evaluate and print true. You can find the complete list of
comparable and ordered properties of other Go types, such as pointers, channels, and arrays, in the
Comparison operators section of the Go language specification (see Further reading).

This concludes this introduction to the Go data types and different operators used to perform day-to-
day operations. Now, it’s time to put together the first building blocks of our programs as we dive into
Go’s control flow and functions.

Control flow
Control flow constructs are a key building block of any computer program, as they allow you to
express complex behaviors with conditions and iteration. Go’s support for control flow reflects its
minimalistic design, which is why you’d mostly see a couple of variations of conditional statements
and one version of loop in the entire language specification. It may seem surprising, but this makes
Go easier to read, as it forces the same design patterns on all programs. Let’s start with the simplest
and the most common control flow blocks.

for loops

In its simplest form, the for loop allows you to iterate over a range of integers while doing some work
in each iteration. For example, this is how you would print all numbers from 0 to 4:

func main() {

    for i := 0; i < 5; i++ {

        fmt.Println(i)

    }

}

The first line has the init statement, i := 0, the condition statement, i < 5, and the post
(each iteration) statement, i++, separated by semicolons (;). The code continues to evaluate the
condition statement and the post statement of the for loop until the condition is no longer true,
that is, until i >= 5.

This loop type (for) has many variations and one of the most common ones is the iteration over a
container type. Here are two examples:

•	 This is an example of iterating over a slice:

func main() {

    slice := []string{"r1", "r2", "r3"}

Getting Started with Go80

    for i, v := range slice {

        fmt.Printf("index %d: value: %s\n", i, v)

    }

}

•	 This is an example of iterating over a map:

func main() {

    hashMap := map[int]string{

        1: "r1",

        2: "r2",

        3: "r3",

    }

    for i, v := range hashMap {

        fmt.Printf("key %d: value: %s\n", i, v)

    }

}

The special range keyword loops through all values of a slice or a map, creating a copy of the current
item on a new pair of key/value variables for each iteration (i and v in the examples). You can also
use range to iterate over arrays and strings. This keyword has special behavior for channels, which
we cover later in the Concurrency section.

Another common variation of this loop construct is the infinite loop. You can use this when you don’t
know the number of iterations ahead of time, but you know when to stop:

func main() {

    for {

        time.Sleep(time.Second)

        break

    }

}

The key distinction here is the absence of any conditions in the loop definition, which is a shorthand
for true; that is, the condition statement always evaluates to true and the loop iterates infinitely.
The only way to stop this kind of loop is to use the break keyword.

Control flow 81

Go doesn’t have a while keyword for loops, which you can find in many other programming languages.
But, you can make Go’s for loop act in the same way as while, by dropping the init and post
statements as the next code example shows:

func main() {

    i := 0

    for i < 5 {

        fmt.Println(i)

        i++

    }

}

Another special keyword worth mentioning in this context is continue, which skips the remainder
of the current iteration of a loop. The following example prints all numbers from 0 to 4, but only if
they are even:

func main() {

    // prints 0 2 4

    for i := 0; i < 5; i++ {

        if i % 2 != 0 {

            continue

        }

        fmt.Println(i)

    }

}

In this example, we skip numbers that have a non-zero remainder when divided by two with the if
i % 2 != 0 clause. This is a conditional statement, which is the topic of the next section.

Conditional statements

Control structures help you define the behavior or direction to follow when a program can follow
different execution paths.

Let’s start with a two-way conditional statement. We try to connect to a website (https://www.
tkng.io/) and then print the response we receive if the connection is successful, or we return the
error message if the HTTP GET operation fails. If the error is not null (err != nil), we return.
Otherwise (else), we print the information (fmt.Printf):

func main() {

    resp, err := http.Get("https://www.tkng.io/")

https://www.tkng.io/
https://www.tkng.io/

Getting Started with Go82

    if err != nil {

            log.Fatalf("Could not connect: %v", err)

    } else {

            fmt.Printf("Received response: %v",

                        resp.Status)

    }

}

One way to improve the readability of the preceding example is to left-align the successful execution
path of the program, meaning that if one of the branches of the if condition ends in a terminating
statement, as in our case with return, you can drop the entire else clause and rewrite the code
as follows:

func main() {

    resp, err := http.Get("https://www.tkng.io/")

    if err != nil {

            log.Fatalf("Could not connect: %v", err)

    }

    fmt.Printf("Received response: %v", resp.Status)

}

Like any typical if-then-else construct, Go’s conditional statements can encode multi-way conditions
with many if-else statements. But, Go developers usually prefer to use a switch statement in this
scenario, because it’s a more concise and readable form of the multi-stage if-then-else.

Consider the following example, which sends an HTTP GET request and prints a message based on
the returned status code. The full code is at ch03/switch/main.go (see Further reading):

func main() {

    resp, err := http.Get("http://httpstat.us/304")

    if err != nil {

        log.Fatalf("Could not connect: %v", err)

    }

    switch {

    case resp.StatusCode >= 600:

        fmt.Println("Unknown")

Control flow 83

    case resp.StatusCode >= 500:

        fmt.Println("Server Error")

    case resp.StatusCode >= 400:

        fmt.Println("Client Error")

    case resp.StatusCode >= 300:

        fmt.Println("Redirect")

    case resp.StatusCode >= 200:

        fmt.Println("Success")

    case resp.StatusCode >= 100:

        fmt.Println("Informational")

    default:

        fmt.Println("Incorrect")

    }

}

You can write this example as a chain of if-then-else statements as well, but using switch makes
your code cleaner, and many Go developers consider it good practice for these situations.

goto statements

Another way you can transfer the control from one part of a program to another is by using a
goto statement.

You can use goto statements to break out of a nested or infinite loop or to implement logic.

Building upon the preceding code example, let’s see how we can use goto statements to implement
various exit points from a function. You can find the full code of the example at ch03/goto/main.
go (see Further reading):

func main() {

    resp, err := http.Get("http://httpstat.us/304")

    if err != nil {

        log.Fatalf("Could not connect: %v", err)

    }

    switch {

    case resp.StatusCode >= 600:

        fmt.Println("Unknown")

        goto exception

    case resp.StatusCode >= 500:

Getting Started with Go84

        fmt.Println("Server Error")

        goto failure

    case resp.StatusCode >= 400:

        fmt.Println("Client Error")

        goto failure

    case resp.StatusCode >= 300:

        fmt.Println("Redirect")

        goto exit

    case resp.StatusCode >= 200:

        fmt.Println("Success")

        goto exit

    case resp.StatusCode >= 100:

        fmt.Println("Informational")

        goto exit

    default:

        fmt.Println("Incorrect")

        goto exception

    }

   exception:

    panic("Unexpected response")

   failure:

    log.Fatalf("Failed to connect: %v", err)

   exit:

    fmt.Println("Connection successful")

}

The goto statements have a somewhat evil reputation in most programming languages because of
their power to break the flow of a program, often making it harder to read, with many prominent
computer scientists warning against their inconsiderate use. Still, these statements do have their place
and you can find them in many projects and even in the Go standard library.

Loops, conditional statements, and things like goto help you define the control flow of your Go
programs. We still haven’t covered some extra control flow constructs and corner cases used together
with channel types. We cover them later in the Concurrency section of this chapter, but before we get
there, we first need to talk about another important area of code organization: functions.

Functions 85

Functions
On the surface, a Go function is exactly the same as in any other programming language: a section
of code designed to perform a certain task grouped into a reusable container. Thanks to the static
nature of the language, all functions have a signature that defines the number and types of acceptable
input arguments and output values.

Consider the following function (generateName), which generates a new name based on a pair
of input strings (base and suffix). You can find the full code of the next example at ch03/
functions1/main.go (see Further reading):

func generateName(base string, suffix string) string {

    parts := []string{base, suffix}

    return strings.Join(parts, "-")

}

func main() {

    s := generateName("device", "01")

    // prints "device-01"

    fmt.Println(s)

}

This function’s signature is func (string, string) string, meaning that it accepts two
arguments of the string type and returns another string. You can assign the returned value to a
variable or pass it as an argument directly to another function.

Go’s functions are values, which means you can pass them as an input argument and even return them
as the output from another function.

To illustrate this, we define a new function named processDevice, which takes two parameters,
a function with a func (string, string) string signature, and a string. In the body
of this function, two relevant strings are in play: base, which is statically set to device, and ip,
which is the string the function receives as the second argument:

func processDevice(getName func (string, string) string, ip
string) {

    base := "device"

    name := getName(base, ip)

    fmt.Println(name)

}

Getting Started with Go86

The most interesting part of this function is on the second line of its body, where it calls the getName
function. This function is what processDevice received as an argument, which could be any
function as long as it takes two strings as arguments and returns just one string. That’s the case
with the generateName function we defined for an earlier example, which means we can pass
generateName as an argument to processDevice to build a unique device name. Let’s see
what this would look like. The code of this example is available at ch03/functions1/main.go
(see Further reading):

func main() {

    // prints "device-192.0.2.1"

    processDevice(generateName, "192.0.2.1")

}

The benefit of this approach is the pluggable nature of the first argument. If we decide at any point that
another function (for example, generateName2) is a better fit because it uses a different format to
join the strings or something else, or maybe you want to make a change to create the device names
differently but don’t want to alter the generateName function in case you need to roll back your
changes quickly, then you can use a temporary clone function with a different name where you
make the adjustments.

Function arguments

In Go, we pass the function arguments by value, meaning that Go creates a copy of every input variable
and passes that copy to the called function. Go saves the new function-scoped variables in the stack
memory, as long as the compiler knows their lifetime and memory footprint at compile time. The
stack is a very efficient region in memory designed to store variables that don’t need to be garbage
collected, as it allocates or de-allocates memory automatically when the function returns. Memory
that needs to be garbage collected goes to another location in memory known as the heap.

Consider the following example of a function attempting to mutate an input string. You can access
the code for the next example at ch03/functions2/main.go (see Further reading):

type Device struct {

    name string

}

func mutate(input Device) {

    input.name += "-suffix"

}

func main() {

Functions 87

    d := Device{name: "myname"}

    mutate(d)

    // prints "myname"

    fmt.Println(d.name)

}

Since Go creates a copy of the input Device when passing it as a value to the mutate function, any
changes that happen to that Device inside the body of this function are not visible outside of it, hence it
doesn’t affect the original variable, d. That is why d.name prints myname and not myname-suffix.

In Go, we have two types of data we can work with: values and the memory addresses of those values
(pointers). With this in mind, there are two ways to implement the desired (mutating) behavior when
passing values to a function:

•	 Change the function to return the mutated value and assign it to a variable. Still, this does not
really mutate the original value but actually generates a new one instead.

Change the function to accept a pointer to a variable that stores a Device. This is what our
program would look like in this case:

type Device struct {

    name string

}

func mutate(input *Device) {

    input.name += "-suffix"

}

func main() {

    d := Device{name: "myname"}

    mutate(&d)

    // prints "myname-suffix"

    fmt.Println(d.name)

}

Getting Started with Go88

Pointers are a common way of sharing data across program boundaries in Go, such as function calls.
In this case, we still pass the input argument by value (&d), but this time, the value we copy and pass
is a pointer to a memory address, instead of the actual content of the d variable. Now, when you
change what that memory address is pointing to, you are mutating the value of the original d variable:

Figure 3.8 – Values and pointers

Go pointers are a powerful idea. The key operations you need to be aware of are as follows:

•	 Taking an address of a variable using the & operator

•	 Dereferencing a pointer, that is, getting the address of the referenced value using the * operator

Whenever you need to change the value of a variable, or when a variable is big enough to make copying
it inefficient, you need to make sure that you pass it by a pointer. This rule applies to all the primitive
types — integer, string, boolean, and so on.

Functions 89

A couple of types in Go do not hold the actual value but point to its memory address instead. While
these are internal implementation details, it’s something worth keeping in mind. For example, channels
and maps are two types that are actually pointers to internal data structures (runtime types). This
means that even if you pass them around by value, you end up mutating the contents of the channel
or map. The same, by the way, applies to functions.

See the following example where we pass a map (m) by value to a function (fn). This function adds a
new key-value pair to the map, a value that the outer function (main) can access as well:

func fn(m map[int]int) {

    m[1] = 11

}

func main() {

    m := make(map[int]int)

    fn(m)

    // prints 11

    fmt.Println(m[1])

}

In the Go’s type system section in this chapter, we learned that a slice is a type in Go that stores
metadata about the underlying data along with a pointer to it. It may be tempting to assume that you
can pass around this data type as a value and be able to mutate it. But, while this data structure has a
pointer in it, you also create a copy of the rest of the metadata values (length and capacity), creating
a disconnection between the slice in the called and calling functions.

For this reason, mutations in slices may have an unpredictable result. In-place changes may be visible
but appends may not. This is why they always recommend passing them as pointers to avoid subtle
bugs such as the following one:

func mutateV(input []string) {

    input [0] = "r03"

    input  = append(input , "r04")

}

func main() {

    d1 := []string{"r01", "r02"}

    mutateV(d1)

Getting Started with Go90

    // prints "[r03 r02]"

    fmt.Printf("%v\n", d1)

}

You can avoid this bug if you use a pointer instead, in which case, all changes to the underlying slice
are reflected in the outer context:

func mutateP(input *[]string) {

    (*input)[0] = "r03"

    *input = append(*input, "r04")

}

func main() {

    d2 := []string{"r01", "r02"}

    mutateP(&d2)

    // prints "[r03 r02 r04]"

    fmt.Printf("%v\n", d2)

}

The full code for both of these examples is at ch03/mutate-slice/main.go (see Further reading).

Error handling

In Go, errors are not exceptions that you have to handle somewhere else in the code. We handle them
as they come along. An error might require you to immediately stop the execution of a program, or
maybe you could continue to run the program and propagate the error to another part of the program
or the user so they can make an informed decision about what to do with this error. Remember, don’t
just check errors, handle them gracefully.

When it comes to writing functions, the rule of thumb is that if a function is likely to run into an
error, it must return it to the caller:

func makeCall(url string) (*http.Response, error) {

    resp, err := http.Get("example.com")

    if err != nil {

        return nil, fmt.Errorf("error in makeCall: %w",

                                err)

    }

Functions 91

    return resp, nil

}

The error message should be meaningful and offer enough context to the user to be able to identify
the cause of the error and the place in the code where it happened. It’s up to the caller of this function
to decide what to do with this error from the following possible actions:

•	 Log it and continue.

•	 Ignore it.

•	 Interrupt execution and panic.

•	 Pass it up to the outer function.

Methods

Methods are a way of adding behavior to user-defined types, which, by default, can only store values.
If you want those types to act, you can add a special function that would contain the name of the
associated data type (method receiver) between the func keyword and the function name, such as
GetFullName in the next example:

type Device struct {

    name string

}

func (d Device) GetFullName() string {

    return d.name

}

func main() {

    d1 := Device{name: "r1"}

    // prints "r1"

    fmt.Println(d1.GetFullName())

}

In all aspects, methods are just like functions — they accept zero or more arguments and return zero
or more values. The biggest difference is that methods also have access to their receiver and can at the
very least read its fields, as you’ve seen in the preceding example.

Getting Started with Go92

It’s also possible to create a method that mutates the receiving type by defining it on a pointer:

type Device struct {

    name string

}

func (d *Device) GenerateName() {

    d.name = "device-" + d.name

}

func (d Device) GetFullName() string {

    return d.name

}

func main() {

    d2 := Device{name: "r2"}

    d2.GenerateName()

    // prints "device-r2"

    fmt.Println(d2.GetFullName())

}

In this case, we define the GenerateName method on a pointer receiver and, thus, can safely set,
delete or change its values — all these changes are visible in the outer scope.

The full code for the method code examples is available at ch03/methods/main.go (see
Further reading).

Variadic functions

So far, we’ve only seen examples with functions that take a strictly pre-defined number of arguments.
But, that’s not the only option in Go; you can actually pass an arbitrary number of arguments to a
function as long as you meet the following conditions:

•	 All extra arguments are of the same type.

•	 They are always the last arguments to a function.

Functions 93

The function signature looks slightly different. All extra arguments are automatically grouped into a
slice and you denote them with three dots (...) before their type:

func printOctets(octets ...string) {

    fmt.Println(strings.Join(octets, "."))

}

func main() {

    // prints "127.1"

    printOctets("127", "1")

    ip := []string{"192", "0", "2", "1"}

    // prints "192.0.2.1"

    printOctets(ip...)

}

One benefit of variadic arguments, compared to declaring them as a slice argument instead, is the
flexibility; you don’t have to create a slice before calling a function, and you can completely omit any
trailing arguments if they are not needed and still satisfy the function’s signature.

The full code for the variadic code example is available at ch03/variadic/main.go (see
Further reading).

Closures

Functions in Go have different properties. They are values, so a function can accept another one as
its argument.

Another interesting property is that when one function (outer) returns another function (inner), the
inner function remembers and it has complete access to all variables that you defined in the scope
of the outer function.

This is what’s called a function closure, and here’s a canonical example of how you can use it to generate
a sequence of numbers. Here, the inner anonymous function with the func() string signature
mutates the i variable defined in the suffixGenerator outer function every time it’s called:

func suffixGenerator() func() string {

    i := 0

    return func() string {

        i++

Getting Started with Go94

        return fmt.Sprintf("%02d", i)

    }

}

func main() {

    generator1 := suffixGenerator()

    // prints "device-01"

    fmt.Printf("%s-%s\n", "device", generator1())

    // prints "device-02"

    fmt.Printf("%s-%s\n", "device", generator1())

    generator2 := suffixGenerator()

    // prints "device-01"

    fmt.Printf("%s-%s\n", "device", generator2())

}

Every time we call suffixGenerator, we assign a new instance of the anonymous function it
returns to a variable. generator1 and generator2 are now functions that keep track of the
number of times we call each one.

Closures are a popular technique to create a surrounding context (environment). For example, API
call functions in middleware software use closures to perform logging and telemetry data collection
on every call, without the API caller needing to care about those details.

Defer

When writing a program that opens remote network connections or local files, it’s important to
promptly close these as soon as you no longer need them to prevent resource leaks — all operating
systems have limitations on the number of open files or connections.

Go’s idiomatic way of dealing with this class of problems is to address them as early in the code as
possible with the help of the defer statement. You should place this statement right next to the open/
connect function call. Go only evaluates this statement when the function returns.

Interfaces 95

In the following example, the two defer statements run only after the final statement of the function:

func main() {

    resp, err := http.Get("http://example.com")

    if err != nil {

        panic(err)

    }

    defer resp.Body.Close()

    defer fmt.Println("Deferred cleanup")

    fmt.Println("Response status:", resp.Status)

}

You can stack together many defer statements to perform staged cleanup. They execute in last-in-
first-out order – Println("Deferred cleanup") runs before resp.Body.Close(). This
is what you see when you run this program:

ch03/defer$ go run main.go

Response status: 200 OK

Deferred cleanup

The full code for this code example is available at ch03/defer/main.go (see Further reading).

Now that we’ve covered the Go functions fundamentals, it’s time to move onto the next level of
abstraction that describes object behaviors through a unique set of methods: interfaces.

Interfaces
Interfaces are one of the most powerful constructs in Go, so it’s very important to understand what they
do and when you can use them. From a purely theoretical point of view, interfaces are an abstract type.
They do not contain implementation details but define a set of behaviors through method signatures.

If a Go type defines all method signatures declared by an interface, this Go type implements that interface
implicitly, with no explicit declaration. This is how Go deals with common behaviors exhibited by
more than one type, and what other languages often express through object inheritance.

Getting Started with Go96

Network automation example

To introduce the idea, we use a contrived network automation example. Let’s say we are developing a Go
package to deal with common tasks across different network devices. We model a Cisco IOS XE device
as a CiscoIOS type with two fields — one that identifies the hostname of a device (Hostname) and
another that identifies the underlying hardware platform (Platform). For this CiscoIOS type, we
define a method that gets us the uptime of a device (getUptime) as an integer. Finally, we define a
function to compare two devices and find out which one has been running longer without a reboot:

type CiscoIOS struct {

    Hostname string

    Platform string

}

func (r CiscoIOS) getUptime() int {

    /* ... <omitted for brevity > ... */

}

func LastToReboot(r1, r2 CiscoIOS) bool {

    return r1.getUptime() < r2.getUptime()

}

Everything works fine until we add another platform to the mix. Let’s say we now also have a
CiscoNXOS type and it has Hostname and Platform fields, but it also has a Boolean ACI field
to show whether this switch is ACI-enabled. As with the CiscoIOS type, we define a method that
returns the uptime of a CiscoNXOS device:

type CiscoNXOS struct {

    Hostname string

    Platform string

    ACI      bool

}

func (s CiscoNXOS) getUptime() int {

    /* ... <omitted for brevity > ... */

}

The challenge now is to compare the uptime of a CiscoNXOS device type with the uptime of a
CiscoIOS device type. The LastToReboot function signature tells us it only accepts variables
of a CiscoIOS type as an argument, so we cannot pass an element of a CiscoNXOS type to it.

Interfaces 97

You can fix this by creating an interface. By doing this, you abstract away the implementation details of
the device and only focus on the need to present the device uptime as an integer via the getUptime
function. Let’s call this interface NetworkDevice:

type NetworkDevice interface {

    getUptime() int

}

The next step is to change the LastToReboot function to accept a NetworkDevice type instead
of CiscoIOS, as in the next code snippet:

func LastToReboot(r1, r2 NetworkDevice) bool {

    return r1.getUptime() < r2.getUptime()

}

Because both CiscoIOS and CiscoNXOS have a getUptime() int method, they implicitly
satisfy the NetworkDevice interface, hence you can pass either one of them as a parameter to the
LastToReboot function. A sample program (see Further reading) that uses these definitions to
compare the uptime of these two device types would look as follows:

func main() {

    ios := CiscoIOS{}

    nexus := CiscoNXOS{}

    if LastToReboot(ios, nexus) {

        fmt.Println("IOS-XE has been running for less time, so
it was the last to be rebooted")

        os.Exit(0)

    }

    fmt.Println("NXOS was the last one to reboot")

}

Interfaces can help you scale your programs. The interface NetworkDevice enables us to add
any number of device types. It’s not only a great resource for good code design but also to set clear
expectations of what the data should do in an API, regardless of what the data is. In the example, we
don’t care what operating system the device is running, only that we have a method available to get
its uptime as an integer.

Getting Started with Go98

Standard library example

For a more real-world example, let’s turn our attention to the net package in the standard library,
which has an interface that represents a network connection (Conn). Interface fields are often verbs
that describe behavior and not state (for example, SetDeadline for the Conn interface). By contrast,
a more descriptive name for the RemoteAddr method might have been getRemoteAddr:

// src/net/net.go

// Conn is a generic stream-oriented network connection.

type Conn interface {

    /* ... <omitted for brevity > ... */

    // LocalAddr returns the local network address.

    LocalAddr() Addr

    // RemoteAddr returns the remote network address.

    RemoteAddr() Addr

    SetDeadline(t time.Time) error

    SetReadDeadline(t time.Time) error

    SetWriteDeadline(t time.Time) error

}

The standard library includes several implementations of this interface. One of them is in the crypto/
ssh library, through the chanConn concrete type. A concrete type is any non-interface type that
stores its own data and, in this case, chanConn stores values for local (laddr) and remote (raddr)
addresses of a Secure Shell Protocol (SSH) connection.

This type also defines methods, such as L o c a l A d d r () n e t . A d d r and
SetReadDeadline(deadline time.Time) error. In fact, it has all methods of the net.
Conn interface, hence it satisfies the interface:

// ssh/tcpip.go

// chanConn fulfills the net.Conn interface without

// the tcpChan having to hold laddr or raddr directly.

type chanConn struct {

    /* ... <omitted for brevity > ... */

    laddr, raddr net.Addr

}

Interfaces 99

// LocalAddr returns the local network address.

func (t *chanConn) LocalAddr() net.Addr {

    return t.laddr

}

// RemoteAddr returns the remote network address.

func (t *chanConn) RemoteAddr() net.Addr {

    return t.raddr

}

func (t *chanConn) SetDeadline(deadline time.Time) error {

    if err := t.SetReadDeadline(deadline); err != nil {

        return err

    }

    return t.SetWriteDeadline(deadline)

}

func (t *chanConn) SetReadDeadline(deadline time.Time) error {

    return errors.New("ssh: tcpChan: deadline not supported")

}

func (t *chanConn) SetWriteDeadline(deadline time.Time) error {

    return errors.New("ssh: tcpChan: deadline not supported")

}

Now, any function that accepts net.Conn as input can take chanConn as well. Or vice versa, if a
function returns net.Conn, it can also return chanConn, as in the next example from the same
source code file:

// ssh/tcpip.go

// Dial initiates a conn to the addr from remote host.

// Resulting conn has a zero LocalAddr() and RemoteAddr().

func (c *Client) Dial(n, addr string) (net.Conn, error) {

    var ch Channel

    switch n {

    case "tcp", "tcp4", "tcp6":

    // Parse the address into host and numeric port.

Getting Started with Go100

    host, portString, err := net.SplitHostPort(addr)

    if err != nil {

        return nil, err

    }

    /* ... <omitted for brevity > ... */

    return &chanConn{

        Channel: ch,

        laddr:   zeroAddr,

        raddr:   zeroAddr,

    }, nil

    /* ... <omitted for brevity > ... */

}

Don’t worry if these code snippets look daunting to you. These come from the actual SSH package of
the Go standard library, so this is as complex as it gets.

Interfaces as contracts

Interfaces are a valueless type; they only define method signatures. You can define a variable of an
interface type, but you can only assign a concrete implementation of this interface as the value of
this variable.

In the next code example, the r variable is of the io.Reader type, which is an interface. At that
point, we know nothing about this variable but we do know that whatever value we assign to this
variable must satisfy the io.Reader interface in order for the compiler to accept it.

In this case, we’re using strings.NewReader("text"), which implements the io.Reader
interface to read from a string value that gets passed as an argument:

func main() {

    var r io.Reader

    r = strings.NewReader("a random text")

    io.Copy(os.Stdout, r)

}

The last line of code copies what we read to standard output (Stdout) or the user’s screen. The
io.Copy function copies from io.Reader (r) to io.Writer (os.Stdout satisfies this
interface), so we can copy from the string to the terminal.

Input and output operations 101

While this looks a bit more complicated than just printing the string with fmt.Println, interfaces
make our code more versatile, allowing you to replace either the source or destination of the data in the
example without too much effort. This is possible because the io.Reader and io.Writer interfaces
serve as a contract between both the io.Copy() consumer and the strings.NewReader and
os.Stdout providers, ensuring they both conform to the rules defined by this interface.

Interfaces allow you to define a clear division between different modules of a program and offer an
API where users can define the implementation details. In the next section, we examine in detail the
io.Reader and io.Writer interfaces and their role in input/output (I/O) operations.

Input and output operations
A common operation in a program is to move data around and reformat it. For example, you can open
a file, load its content in memory, encode it to a different format, maybe jpeg, and then write it to
a file on the disk. This is where the io.Reader and io.Writer interfaces play a key role in Go’s
I/O model, as they allow you to stream data from a source to a destination via a transfer buffer. This
means you don’t need to load the entire file in memory to encode it and write it to the destination,
making the process more efficient.

The io.Reader interface

The io package in the standard library defines one of the most popular interfaces in Go, the io.Reader
interface, which can read a stream of bytes (p). It returns the number of bytes read (n) and any error
encountered (err):

type Reader interface {

    Read(p []byte) (n int, err error)

}

Any concrete type that has a Read with this signature implements the io.Reader interface. You
don’t need to do anything else:

Figure 3.9 – The io.Reader interface

The strings.Reader type (in the strings package of the standard library) has a method with
the Read(p []byte) (n int, err error) signature, hence it satisfies the io.Reader

Getting Started with Go102

interface. The strings package also provides a convenient NewReader function that returns a
pointer to a new instance of the strings.Reader type. The following is an actual snippet from
the strings package source code:

// src/strings/reader.go

// A Reader implements the io.Reader, ...

// from a string.

type Reader struct {

    s        string

    i        int64 // current reading index

    prevRune int   // index of previous rune; or < 0

}

// Read implements the io.Reader interface.

func (r *Reader) Read(b []byte) (n int, err error) {

    if r.i >= int64(len(r.s)) {

        return 0, io.EOF

    }

    r.prevRune = -1

    n = copy(b, r.s[r.i:])

    r.i += int64(n)

    return

}

// NewReader returns a new Reader reading from s.

func NewReader(s string) *Reader { return &Reader{s, 0, -1} }

The preceding code also shows a concrete Reader implementation (with data fields) that has a
Read method.

The io.Writer interface

The io package also specifies the io.Reader interface, which can write len(p) bytes to the
underlying data stream. It returns the number of bytes written (n) and any error encountered that
caused the write to stop early (err):

type Writer interface {

    Write(p []byte) (n int, err error)

}

Input and output operations 103

Any concrete type that has a Write method with this signature implements the io.Writer interface:

Figure 3.10 – The io.Writer interface

One example is os.File in the os package of the standard library. It has a method with the Write(p
[]byte) (n int, err error) signature, hence it satisfies the io.Writer interface:

// src/os/types.go

// File represents an open file descriptor.

type File struct {

    *file // os specific

}

// Read reads up to len(b) bytes from the File.

// It returns the number of bytes read and any error.

// At end of file, Read returns 0, io.EOF.

func (f *File) Read(b []byte) (n int, err error) {

    if err := f.checkValid("read"); err != nil {

        return 0, err

    }

    n, e := f.read(b)

    return n, f.wrapErr("read", e)

}

func Create(name string) (*File, error) {

    return OpenFile(name, O_RDWR|O_CREATE|O_TRUNC, 0666)

}

The os package also offers a convenient Create function that returns a pointer to an os.File
from a file location. The preceding is an actual snippet from the os package source code.

Getting Started with Go104

The io.Copy function

The io.Copy function allows you to copy data from a source to a destination, as we discussed at
the end of the Interfaces section. Even though you pass concrete type data to this function, io.Copy
actually doesn’t care what the data is, as it takes interface types as an argument, so it’s interested in
what the data can do instead. It needs a readable source and a writable destination:

// src/io/io.go

// Copy copies from src to dst until either EOF is reached

// on src or an error occurs.

func Copy(dst Writer, src Reader) (written int64, err error) {

    return copyBuffer(dst, src, nil)

}

As Figure 3.11 shows, io.Copy uses a 32 KB transfer buffer to stream the data from the source to
the destination:

Figure 3.11 – The io.Copy function

Let’s test this. We can get an io.Reader from a string built with strings.NewReader, and
os.Create gives us an io.Writer, which writes to a file on the disk. You can follow along with
the code at ch03/io-interface1/main.go (see Further reading):

func main() {

    src := strings.NewReader("The text")

    dst, err := os.Create("./file.txt")

    if err != nil {

        panic(err)

    }

    defer dst.Close()

Input and output operations 105

    io.Copy(dst, src)

}

While, in this case, we select a string and a file combination, you can use the same io.Copy function
to read from the network and print to the terminal, for example. For now, let’s inspect the file we
just produced:

ch03/io-interface1$ go run main.go

ch03/io-interface1$ cat file.txt

The text

Let’s examine a network-related example. The net/http package has the Get function that takes a
URL (string) and returns a pointer to a http.Response, which has a field (Body) that satisfies
the io.Reader interface, and the os.Stdout terminal satisfies the io.Writer interface. This
gives us another combination to try out. Let’s see it in action. The code is very close to what we ran
before, and is available at ch03/io-interface2/main.go (see Further reading):

func main() {

    res, err := http.Get("https://www.tkng.io/")

    if err != nil {

        panic(err)

    }

    src := res.Body

    defer src.Close()

    dst := os.Stdout

    io.Copy(dst, src)

}

The same io.Copy function now allows us to take the content from a URL and print it to the terminal:

ch03/io-interface2$ go run main.go

<!doctype html><html lang=en class="js
csstransforms3d"><head><meta charset=utf-8><meta name=viewport
content="width=device-width,initial-scale=1"><meta
name=generator content="Hugo 0.74.3"><meta name=description
content="The Kubernetes Networking Guide">...

With io.Copy, we move data from one point to another. Now, we need to add another piece to the
puzzle to transform the data as we stream it.

Getting Started with Go106

Composition

One way to transform the data as we stream it is by embedding one struct type into another, which
we know as composition. This way, we can chain together several io.Reader or io.Writer
interfaces to perform one or more operations and not just copy the data from source to destination.

The benefit of following this pattern is to write reusable segments of code, which you can use for any
io.Reader or io.Writer interface in this case. Let’s look at the example at ch03/reader/
main.go (see Further reading):

type myReader struct {

    src io.Reader

}

func (r *myReader) Read(buf []byte) (int, error) {

    tmp := make([]byte, len(buf))

    n, err := r.src.Read(tmp)

    copy(buf[:n], bytes.Title(tmp[:n]))

    return n, err

}

func NewMyReader(r io.Reader) io.Reader {

    return &myReader{src: r}

}

We define a new myReader type with a single src field of the io.Reader type. In Go, when we
embed a type, the methods of that type become methods of the outer type, so myReader has a Read
method from src now.

But, we want to change the behavior and do something with the data. Hence, we define a new Read
method that takes precedence over any other more deeply nested method part of the type.

In this Read method, we read from the buffer and convert it to title case with bytes.Title,
assuming we are working with strings. Last but not least, NewMyReader is what glues together an
existing reader with this new one, connecting the dots between two pieces of code. Let’s see it in action:

func main() {

    r1 := strings.NewReader("network automation with go")

    r2 := NewMyReader(r1)

Decoding and encoding 107

    io.Copy(os.Stdout, r2)

}

We create a reader from a string in r1 and then use that as the input for myReader in r2:

ch03/reader$ go run main.go

Network Automation With Go

When we now copy from r2 to os.Stdout, we read from the string and also change the content
to title case before writing it to the terminal.

Input and output primitives are present in almost every Go library. The next section is no exception.
Encoding and decoding in Go take full advantage of the io.Reader and io.Writer interfaces.

Decoding and encoding
One of the most common network automation tasks is the ingesting and processing of structured data.
You can retrieve data from or send it to a remote location or even store it on a local disk. Regardless
of its location, you have to convert this data into an appropriate format. Encoding, or marshaling, is
the process of transforming bytes from a Go data structure into a structured textual representation.
Decoding, or unmarshalling, is the reverse process of populating Go values with externally sourced data.

Some examples of structured data encoding schemes are YAML, JSON, XML, and Protocol Buffers.
Go’s standard library includes packages that implement encoding and decoding for most of these
popular formats, and they all leverage the io.Reader and io.Writer interface primitives that
we learned about in the last section.

In this section, we go through how Go deals with the following tasks:

•	 Using tags to annotate Go structs to help libraries encode and decode structured data

•	 Parsing of structured data using the empty interface

•	 Performing deeply nested set and lookup operations using third-party libraries

Decoding

We start our overview with decoding, as this is usually one of the first steps in a network automation
pipeline. Let’s assume that we’re building a program that needs to interact with various remote network
devices. We store the information of these devices in an inventory file we save on a local disk.

Getting Started with Go108

Decoding JSON

In the first example, we see how to deal with a JSON inventory (input.json). All outputs of this
part are available in the ch03/json folder of the book’s repository (see Further reading):

{

  "router": [

    {

      "hostname": "router1.example.com",

      "ip": "192.0.2.1",

      "asn": 64512

    },

    {

      "hostname": "router2.example.com",

      "ip": "198.51.100.1",

      "asn": 65535

    }

  ]

}

In the first code example in ch03/json/main.go (see Further reading), we define a couple of Go
structs that can hold the JSON input data from the preceding output in memory. We call the first type
Router, which has Hostname, IP, and ASN fields. The other type is Inventory, which stores
a list of routers. The fields in the Router type have optional tags such as json:"key" to denote
alternative key names in the original JSON structure:

type Router struct {

    Hostname string `json:"hostname"`

    IP       string `json:"ip"`

    ASN      uint16 `json:"asn"`

}

type Inventory struct {

    Routers []Router `json:"router"`

}

To read from a file, we create an io.Reader type (file) from the input file with os.Open:

func main() {

    file, err := os.Open("input.json")

Decoding and encoding 109

    // process error

    defer file.Close()

    /* ... <continues next > ... */

}

Now, the json library, as well as any other encoding library, has a function that allows you to pass
an io.Reader type as an argument to extract data from it. This means it can decode from a file, a
string, a network connection, or anything else that implements the io.Reader interface with the
same function call:

func main() {

    /* ... <continues from before > ... */

    d := json.NewDecoder(file)

    /* ... <continues next > ... */

}

Once you’ve created a decoder, you can use the Decode method to read and parse the contents of
the JSON file into a variable (inv) of the Inventory type. Remember, to mutate the data struct,
you need to pass it as a pointer:

func main() {

    /* ... <continues from before > ... */

    var inv Inventory

    err = d.Decode(&inv)

    // process error

    fmt.Printf("%+v\n", inv)

}

If you print the inv variable now, you would see it populate with data from the inventory JSON file:

ch03/json$ go run main.go

{Routers:[{Hostname:router1.example.com IP:192.0.2.1 ASN:64512}
{Hostname:router2.example.com IP:198.51.100.1 ASN:65535}]}

Decoding into an empty interface

The field tags we’ve just seen are a very convenient way to map data during encoding and decoding.
The condition to have all Go types predefined ahead of time offers type safety, but at the same time,

Getting Started with Go110

you can see it as a major detractor if you are coming from another language where the decoding
process does not need this.

But, you can also skip this in Go, with a few caveats that we discuss later. To show you how it works, we
use a slightly different version of an earlier example. This new version is available in the ch03/json-
interface folder (see Further reading). Instead of defining all Go structs, we use a special variable
of the map[string]interface{} type and pass it as an argument to the Decode method call:

func main() {

    /* ... <omitted for brevity > ... */

    var empty map[string]interface{}

    err = d.Decode(&empty)

    // process error

    // prints map[router:[map[asn:64512 hostname:router1.
example.com

    // ip:192.0.2.1] map[asn:65535 hostname:router2.example.com

    // ip:198.51.100.1]]]

    fmt.Printf("%v\n", empty)

    /* ... <continues next > ... */

}

An empty interface, or interface{}, doesn’t define any methods, which means it can hold any
value — integer, string, float, or user-defined. The only caveat is that, since Go is a statically
typed language, those values remain an empty interface until we do an explicit type conversion, that
is, until we tell Go what type we expect to see.

From the output of the empty variable of the map[string]interface{} type, where we decoded
the JSON content in the preceding example, we see that the value of the map we print is an array. To
parse these values and print them individually, we’d have to tell Go to treat them as a slice of unknown
values, which you can express as []interface{}:

func main() {

    /* ... <continues from before > ... */

    for _, r := range empty["router"].([]interface{}) {

        fmt.Printf("%v\n", r)

    }

}

Decoding and encoding 111

The output of these print statements is the string representation of two map[string]interface{}
maps, which means we’ve only parsed the keys (as strings), but the values are still undefined:

ch03/json-interface $ go run main.go

...

map[asn:64512 hostname:router1.example.com ip:192.0.2.1]

map[asn:65535 hostname:router2.example.com ip:198.51.100.1]

We could continue this process until we find the right type for all values of this object, but this
process is obviously quite tedious. This is why we mainly see this approach in encoding libraries or as
a troubleshooting step to take a quick glance at the structure of the potentially unknown input data.

Another option for quick operations with JSON data is external Go packages, which you can use to
perform deep JSON lookup (GJSON) and set (SJSON) operations without having to build structs
for the entire object. In both cases, the parsing still happens behind the scenes, but the user is only
presented with their data or an error if the key doesn’t exist. We use GJSON (see Further reading) in
a gRPC example in Chapter 8, Network APIs.

Decoding XML

While the XML input file looks different, the data is the same and the Go program doesn’t change
much. The next example is in the ch03/xml folder of the book’s repository (see Further reading):

<?xml version="1.0" encoding="UTF-8" ?>

<routers>

  <router>

    <hostname>router1.example.com</hostname>

    <ip>192.0.2.1</ip>

    <asn>64512</asn>

  </router>

  <router>

    <hostname>router2.example.com</hostname>

    <ip>198.51.100.1</ip>

    <asn>65535</asn>

  </router>

</routers>

If we compared the final program with the one we did for JSON, we would notice four changes:

•	 We import encoding/xml instead of encoding/json.

•	 We use XML tags xml:"hostname" instead of the JSON equivalents for struct fields.

Getting Started with Go112

•	 The input file is a .xml file.

•	 We use the NewDecoder function from the xml library instead.

The rest of the code remains exactly the same. The next code output highlights the actual lines that
change; we omitted the rest of the lines as they are the same as in the JSON example:

package main

import (

    "os"

    "encoding/xml"

)

type Router struct {

    Hostname string `xml:"hostname"`

    IP       string `xml:"ip"`

    ASN      uint16 `xml:"asn"`

}

type Inventory struct {

    Routers []Router `xml:"router"`

}

func main() {

    file, err := os.Open("input.xml")

    /* ... <omitted for brevity > ... */

    d := xml.NewDecoder(file)

    /* ... <omitted for brevity > ... */

}

Just like JSON, XML has its own external libraries that can help you deal with complex input data
without having to build the hierarchy of Go types. One of them is the xmlquery package (see Further
reading), which lets you make XML Path Language (XPath) queries from Go.

Decoding and encoding 113

YAML

Now, let’s look at how we would parse a YAML inventory. You can find this example in the ch03/
yaml directory of the book’s repository (see Further reading):

router:

  - hostname: "router1.example.com"

    ip: "192.0.2.1"

    asn: 64512

  - hostname: "router2.example.com"

    ip: "198.51.100.1"

    asn: 65535

By now, you would probably already have guessed that the number and nature of things that change
from the JSON example are the same as for XML, which is to say, not much. The following code
snippet highlights only the changed lines of code, and you can find the full code example at ch03/
yaml/main.go (see Further reading):

package main

import (

    "os"

    "gopkg.in/yaml.v2"

)

type Router struct {

    Hostname string `yaml:"hostname"`

    IP       string `yaml:"ip"`

    ASN      uint16 `yaml:"asn"`

}

type Inventory struct {

    Routers []Router `yaml:"router"`

}

func main() {

    /* ... <omitted for brevity > ... */

    d := yaml.NewDecoder(file)

    /* ... <omitted for brevity > ... */

}

Getting Started with Go114

This Go program produces the same result as both the JSON and XML examples, but before we can
run it, we need to go get the external YAML library dependency first (gopkg.in/yaml.v2):

ch03/yaml$ go get gopkg.in/yaml.v2

go get: added gopkg.in/yaml.v2 v2.4.0

ch03/yaml$ go run main.go

{Routers:[{Hostname:router1.example.com IP:192.0.2.1 ASN:64512}
{Hostname:router2.example.com IP:198.51.100.1 ASN:65535}]}

It’s also possible to parse and query YAML documents without having to predefine data structures. One
tool that does that is yq (see Further reading), which implements a shell CLI tool in Go in the style
of jq (the sed for JSON data). You can use yq in your Go program via its built-in yqlib package.

Encoding

Just as important as being able to decode data from a source is processing the data in the opposite
direction, ‌producing a structured data document based on an in-memory data model. In the next
example, we pick up where we left off in the Decoding section and take the in-memory data we got
from a JSON input file to output a corresponding XML document.

One of the first things we have to do in the code is to update the struct tags with an extra key-value
pair for XML. Although this is not strictly necessary, as the XML library can fall back to using field
names instead, it’s generally considered a best practice to annotate explicitly all relevant fields that
you encode:

type Router struct {

    Hostname string `json:"hostname" xml:"hostname"`

    IP       string `json:"ip" xml:"ip"`

    ASN      uint16 `json:"asn" xml:"asn"`

}

type Inventory struct {

    Routers []Router `json:"router" xml:"router"`

}

The full code of this example is available in the ch03/json-xml directory (see Further reading) of
the book’s repository, so for the sake of brevity, we only include the extra code that we add to encode
the inv variable into an XML document:

func main() {

    /* ... <omitted for brevity > ... */

Concurrency 115

    var dest strings.Builder

    e := xml.NewEncoder(&dest)

    err = e.Encode(&inv)

    // process error

    fmt.Printf("%+v\n", dest.String())

}

To produce a string output, we’re using the strings.Builder type, which implements the
io.Writer interface required by the Encode method. This highlights the power of interfaces, as
we could have passed in a network connection and sent the XML data to a remote host instead, with
almost the same program. The next snippet shows the output of the program:

ch03/json-xml$ go run main.go

<Inventory><router><hostname>router1.example.com</
hostname><ip>192.0.2.1</ip><asn>64512</asn></
router><router><hostname>router2.example.com</
hostname><ip>198.51.100.1</ip><asn>65535</asn></router></
Inventory>

One encoding format we haven’t covered yet is Protocol Buffers, which is part of the gRPC section
of Chapter 8.

At this point, we’ve covered enough Go language theory to write effective programs to interact with
and automate a network device. The only bit that we have left, which is also one of the most salient
features of the language, is concurrency.

Concurrency
If there was one feature that would characterize Go amongst other popular programming languages, it
would be concurrency. Go’s built-in concurrency primitives (goroutines and channels) are one of the
best abstractions we know for writing efficient code that can run more than one task simultaneously.

Your program starts in the main goroutine, but at any point, you can spawn other concurrent goroutines
and create communication channels between them. You can do this with considerably less effort and
less code compared to other programming languages, which improves the developing experience
and your code’s support:

Getting Started with Go116

Figure 3.12 – Go’s concurrency

In this section, we cover the following concurrency primitives:

•	 Goroutines and the use of the sync package for their coordination

•	 How we use channels to send and receive data between goroutines

•	 The use of mutexes with data shared between different goroutines

Goroutines

One way to think of Goroutines is as user-space threads that the Go runtime manages. They are
computationally cheap to spawn and manage, so they can scale to hundreds of thousands, even on
an average machine, with memory being the primary limiting factor.

It’s typical to create goroutines for tasks that may block the execution of the main function. You can
imagine why this would be particularly helpful in a network automation context, where we have to
deal with remote network calls and wait for network devices to execute the commands.

We introduce the basic goroutine theory by building another network automation example. In the
preceding section, we learned how to load and parse a device inventory. In this section, we pick up
where we left off and see how to interact with these network devices.

To start off, we use an inventory file (input.yml) with a single device. This file is in the ch03/
single folder (see Further reading) of the book’s repository:

router:

- hostname: sandbox-iosxe-latest-1.cisco.com

  platform: cisco_iosxe

  strictkey: false

  username: developer

  password: C1sco12345

Concurrency 117

To store this inventory, we define a type hierarchy like the one we had in the encoding/decoding
section. The code example output only shows some fields for brevity:

type Router struct {

    Hostname  string `yaml:"hostname"`

    /* ... <omitted for brevity > ... */

}

type Inventory struct {

    Routers []Router `yaml:"router"`

}

We define another function called getVersion that accepts an argument of the Router type,
connects and retrieves the software and hardware version information, and prints it on a screen. The
exact implementation of this function is not important and we don’t focus on it in this chapter yet,
but you can see the full code example at ch03/single/main.go (see Further reading):

func getVersion(r Router) {

    /* ... <omitted for brevity > ... */

}

func main() {

    src, err := os.Open("input.yml")

    //process error

    defer src.Close()

    d := yaml.NewDecoder(src)

    var inv Inventory

    err = d.Decode(&inv)

    // process error

    getVersion(inv.Routers[0])

}

Getting Started with Go118

Since we only have one device in the inventory, we can access it directly using a slice index. The
execution of this program takes a little under 2 seconds:

ch03/single$ go run main.go

Hostname: sandbox-iosxe-latest-1.cisco.com

Hardware: [CSR1000V]

SW Version: 17.3.1a

Uptime: 5 hours, 1 minute

This process took 1.779684183s

Now, let’s look at a similar example, stored in the ch03/sequential directory (see Further reading),
where we’ve added two extra devices to the inventory:

router:

- hostname: sandbox-iosxe-latest-1.cisco.com

  platform: cisco_iosxe

  ...

- hostname: sandbox-nxos-1.cisco.com

  platform: cisco_nxos

  ...

- hostname: sandbox-iosxr-1.cisco.com

  platform: cisco_iosxr

  ...

As we discussed in the Control flow section, we can iterate over arrays and slices with the range form
of a for loop. Here, we iterate over each Router in inv.Routers, assigning it to the v variable
in each iteration. We ignore the value of the index by assigning it to the blank identifier written as _
(underscore). Finally, we call the getVersion function for the v router:

func main() {

    /* ... <omitted for brevity > ... */

    for _, r := range inv.Routers {

        getVersion(v)

    }

}

Concurrency 119

It takes around 7 seconds to execute as it connects to one device after another:

ch03/sequential$ go run main.go

Hostname: sandbox-iosxe-latest-1.cisco.com

Hardware: [CSR1000V]

SW Version: 17.3.1a

Uptime: 5 hours, 25 minutes

Hostname: sandbox-nxos-1.cisco.com

Hardware: C9300v

SW Version: 9.3(3)

Uptime: 0 day(s), 3 hour(s), 2 minute(s), 18 second(s)

Hostname: sandbox-iosxr-1.cisco.com

Hardware: IOS-XRv 9000

SW Version: 6.5.3

Uptime: 2 weeks 8 hours 23 minutes

This process took 6.984502353s

This is a prime example of code that we could optimize through the use of goroutines. All we need to
do initially is to add a go keyword before the statement that we need to run in a goroutine:

func main() {

    /* ... <omitted for brevity > ... */

    for _, r := range inv.Routers {

        go getVersion(v)

    }

}

In the code example, we spawn a separate goroutine for each invocation of the getVersion
(v) statement. Everything happens in the background; any blocking statement inside a spawned
goroutine does not affect the other goroutines, so all three function calls, plus the main goroutine,
now run concurrently.

The default behavior of these spawned goroutines is to release control immediately, so in this example,
the code iterates over all three devices and then returns. It doesn’t actually wait for the spawned
goroutines to complete.

Getting Started with Go120

But, in our case, we’d like to see the result of all three function calls before we exit the program. This
is where we can use a special sync.WaitGroup type, which blocks the main goroutine until all
spawned goroutines complete. It does this by keeping a counter that tracks all currently active goroutines
and blocks until that counter goes down to zero.

This is what we do to introduce this idea in the code example we are working with:

•	 We create a new wg variable of the sync.WaitGroup type.

•	 While iterating through our inventory, we increase the WaitGroup counter by one
with wg.Add(1).

•	 Each spawned goroutine consists of an anonymous function that runs getVersion, but
also calls wg.Done at the very end to decrement the WaitGroup counter by one with a
defer statement.

•	 The main goroutine blocks on wg.Wait until the WaitGroup counter becomes zero. This
happens after all the spawned instances of the getVersion functions return.

You can find the full code of this example at ch03/concurrency/main.go (see Further reading):

func main() {

    /* ... <omitted for brevity > ... */

    var wg sync.WaitGroup

    for _, v := range inv.Routers {

        wg.Add(1)

        go func(r Router) {

            defer wg.Done()

            getVersion(r)

        }(v)

    }

    wg.Wait()

}

Now, let’s see what effect these changes have on the execution time of the program:

ch03/concurrency$ go run main.go

Hostname: sandbox-iosxe-latest-1.cisco.com

Hardware: [CSR1000V]

Concurrency 121

SW Version: 17.3.1a

Uptime: 5 hours, 26 minutes

Hostname: sandbox-iosxr-1.cisco.com

Hardware: IOS-XRv 9000

SW Version: 6.5.3

Uptime: 2 weeks 8 hours 25 minutes

Hostname: sandbox-nxos-1.cisco.com

Hardware: C9300v

SW Version: 9.3(3)

Uptime: 0 day(s), 3 hour(s), 4 minute(s), 11 second(s)

This process took 2.746996304s

We’ve gone down to roughly 3 seconds, which is how long it took to communicate with the slowest
device in the inventory. This is a pretty significant win, considering we didn’t have to change any of
the worker functions (getVersion in this case). You might apply the same refactoring to many
other similar programs with minimal changes to their existing code bases.

This approach works well with natively synchronous functions that you can run with or without a
goroutine. But, if we know that a certain function always runs in a goroutine, it’s totally possible to
make it goroutine-aware from the very beginning. For example, this is how we could have refactored
the getVersion function to accept an extra WaitGroup argument and make the wg.Done call
part of the function:

func getVersion(r Router, wg *sync.WaitGroup) {

    defer wg.Done()

    /* ... <omitted for brevity > ... */

}

Having a function like that would simplify the code of the main function since we no longer need to
wrap everything in an anonymous function just to make the wg.Done call:

func main() {

    /* ... <omitted for brevity > ... */

    for _, v := range inv.Routers {

        wg.Add(1)

        go getVersion(v, &wg)

    }

Getting Started with Go122

    wg.Wait()

}

The complete code for this example is available in the ch03/concurrency2 directory (see
Further reading).

Channels

As soon as anyone becomes familiar with goroutines, the next thing they normally want to do is
exchange data between them. Go channels allow goroutines to communicate with each other. A real-
world analogy to describe Go channels are first-in-first-out pipes – they have fixed throughput and
allow you to send data in both directions.

You can use channels for both goroutine synchronization (a form of signaling used for work coordination)
and general-purpose data exchange.

We create channels with the make keyword, which initializes them and makes them ready to use. The
two arguments that make accepts are the channel type, which defines the data type you can exchange
over the channel, and an optional capacity. The channel capacity determines how many unreceived
values it can store before it starts blocking a sender, acting then as a buffer.

The following code snippet shows how we send and receive an integer over a channel. Here, send is
the value we want to send to the ch channel we created. The <- operator lets us send data to a channel.
Next, we declare a receive variable, whose value comes from the ch channel:

func main() {

    ch := make(chan int, 1)

    send := 1

    ch <- send

    receive := <-ch

    // prints 1

    fmt.Println(receive)

}

But, sending and receiving data in a single goroutine is not the goal here. Let’s examine another example
of using channels for communication between different goroutines. We pick up the example we’ve
used in this section so far and introduce another worker function whose job is to print the results
produced by the getVersion function.

Concurrency 123

The new printer function uses a for loop to receive values from an in channel and it prints them
on the terminal:

func printer(in chan data {

    for out := range in {

        fmt.Printf("Hostname: %s\nHW: %s\nSW Version: %s\
nUptime: %s\n\n", out.host, out.hw, out.version, out.uptime)

    }

}

We create the ch channel in the main goroutine before we spawn any of the goroutines. We pass it
as an argument to both getVersion and printer functions. The first extra goroutine we start
is an instance of the printer function that listens for messages coming from the device over the
ch channel:

func main() {

    /* ... <omitted for brevity > ... */

    ch := make(chan data)

    go printer(ch)

    var wg sync.WaitGroup

    for _, v := range inv.Routers {

        wg.Add(1)

        go getVersion(v, ch, &wg)

    }

    wg.Wait()

    close(ch)

}

The next step is to start a goroutine for each network device in the inventory to capture the output
we need and send it over the channel with the getVersion function. After we collect and print the
data, we close the channel and end the program:

ch03/concurrency3$ go run main.go

Hostname: sandbox-iosxe-latest-1.cisco.com

HW: [CSR1000V]

SW Version: 17.3.1a

Uptime: 1 day, 12 hours, 42 minutes

Getting Started with Go124

Hostname: sandbox-iosxr-1.cisco.com

HW: IOS-XRv 9000

SW Version: 7.3.2

Uptime: 1 day 2 hours 57 minutes

Hostname: sandbox-nxos-1.cisco.com

HW: C9300v

SW Version: 9.3(3)

Uptime: 5 day(s), 6 hour(s), 25 minute(s), 44 second(s)

The complete code for this example is available in the ch03/concurrency3 (Further reading) directory.

Channels and Timers

One thing we didn’t consider in the last couple of examples was the scenario where a network device
is not reachable, or the connection to it hangs, or maybe a device takes forever to return the output
we need. In these cases, we need to set up a timeout so we don’t wait forever and we can end the
program gracefully.

You can handle this at the connection level, but also, channels offer you a couple of resources to keep
track of time via these timer types:

•	 Timer — To wait for a certain amount of time

•	 Ticker — To perform an action repeatedly at some interval

Timer

Timer can help you define a timeout for your program. To illustrate this, we can rewrite the example
we have been working with to print all the messages from the ch channel in the main function, instead
of calling a separate function (printer).

A select statement inside an infinite loop handles this as follows. Unlike a switch statement,
we use select with channels when we don’t have to choose an option in order. For each iteration,
we either wait for a message from the ch channel or if 5 seconds have elapsed (time.After(5 *
time.Second)), we close the channel and exit the program:

func main() {

    /* ... <omitted for brevity > ... */

    for {

        select {

Concurrency 125

        case out := <-ch:

            fmt.Printf(

    "Hostname: %s\nHW: %s\nSW Version: %s\nUptime:%s\n\n",

            out.host, out.hw, out.version, out.uptime)

        case <-time.After(5 * time.Second):

            close(ch)

            fmt.Println("Timeout: 5 seconds")

            return

        }

    }

}

This forces the runtime to always be 5 seconds, even if not all the tasks have been completed. This is
not the most efficient way to solve this problem, but it shows how to timeout without introducing the
context package from the standard library that you could also use in this scenario.

The complete code for this example is available in the ch03/concurrency5 directory of the book’s
repository (see Further reading).

Ticker

A common use for a ticker is in cases where you want to execute periodic tasks. In the next code example,
we create a ticker that runs every half second, which we use as a trigger to print out a message to
the terminal. We also create a done channel, just to signal that we want to stop the execution of the
program after 2 seconds and 100 milliseconds:

func main() {

    ticker := time.NewTicker(500 * time.Millisecond)

    done := make(chan bool)

    go repeat(done, ticker.C)

    time.Sleep(2100 * time.Millisecond)

    ticker.Stop()

    done <- true

}

Getting Started with Go126

Tickers from the time package have a C channel that they use to signal every interval. We pass this
channel and the done channel to the repeat function that we execute in a goroutine:

func repeat(d chan bool, c <-chan time.Time) {

    for {

        select {

        case <-d:

            return

        case t := <-c:

            fmt.Println("Run at", t.Local())

        }

    }

}

This function runs an infinite loop that waits for a signal from the ticker or the done channel to
end the execution. This is what the output looks like:

ch03/ticker$ go run main.go

Tick at 2021-11-17 23:19:33.914906389 -0500 EST

Tick at 2021-11-17 23:19:34.414279709 -0500 EST

Tick at 2021-11-17 23:19:34.915058301 -0500 EST

The complete code for this example is available in the ch03/ticker directory (see Further reading).

Shared data access

Channels are thread-safe, so it’s always a good idea to use them as the default option for data
communication between goroutines. But sometimes, you may still need to access and change data
that more than just one goroutine has access to.

The problem with concurrent data access is that it may cause data corruption when many goroutines
try to change the same field or read from a field that someone else might be changing. Go’s sync
package includes three helper types you can use to serialize these kinds of operations:

•	 The sync.Mutex type is a general-purpose mutual exclusion lock that has two states —
locked and unlocked.

•	 The sync.RWMutex type is a special mutex for read-write operations where only write
operations are mutually exclusive but simultaneous read operations are safe.

•	 The sync.Map mutex covers a couple of map corner case scenarios that we don’t delve into
in this book. The sync.Map documentation talks about them (see Further reading).

Concurrency 127

Now, let’s see an example of how you can use sync.RWMutexto to safeguard concurrent map
access. Using the example theme we have used through this section as the baseline, let’s add another
variable that records whether we are able to connect successfully to a remote device. We call this
variable isAlive and pass it to the getVersion function as an argument:

func main() {

    /* ... <omitted for brevity > ... */

    isAlive := make(map[string]bool)

    /* ... <omitted for brevity > ... */

    for _, v := range inv.Routers {

        wg.Add(1)

        go getVersion(v, ch, &wg, isAlive)

    }

    /* ... <omitted for brevity > ... */

}

We define the m mutex as a package-level global variable to make sure all functions are using the same
mutex for synchronization. We lock this mutex just before we change the isAlive map and unlock
it right after we make the change in the getVersion function:

var m sync.RWMutex = sync.RWMutex{}

func getVersion(r Router, out chan data, wg *sync.WaitGroup,
isAlive map[string]bool) {

    defer wg.Done()

    /* ... <omitted for brevity > ... */

    rs, err := d.SendCommand("show version")

    if err != nil {

        fmt.Printf("fail to send cmd for %s: %+v\n",

                    r.Hostname, err)

        m.Lock()

        isAlive[r.Hostname] = false

        m.Unlock()

        return

    }

Getting Started with Go128

    m.Lock()

    isAlive[r.Hostname] = true

    m.Unlock()

}

Finally, we add another mutex for a loop in the main function that uses a read-specific lock while
iterating over a map to prevent it from being accidentally modified in the process:

func main() {

    /* ... <omitted for brevity > ... */

    m.RLock()

    for name, v := range isAlive {

        fmt.Printf("Router %s is alive: %t\n", name, v)

    }

    m.RUnlock()

    /* ... <omitted for brevity > ... */

}

You can check the full code in the ch03/concurrency4 directory (see Further reading). The next
output shows what this program produces:

ch03/concurrency4$ go run main.go

Hostname: sandbox-iosxe-latest-1.cisco.com

Hardware: [CSR1000V]

SW Version: 17.3.1a

Uptime: 8 hours, 27 minutes

Hostname: sandbox-iosxr-1.cisco.com

Hardware: IOS-XRv 9000

SW Version: 7.3.2

Uptime: 1 day 11 hours 43 minutes

Hostname: sandbox-nxos-1.cisco.com

Hardware: C9300v

SW Version: 9.3(3)

Uptime: 5 day(s), 15 hour(s), 11 minute(s), 42 second(s)

Router sandbox-iosxe-latest-1.cisco.com is alive: true

Concurrency 129

Router sandbox-iosxr-1.cisco.com is alive: true

Router sandbox-nxos-1.cisco.com is alive: true

This process took 3.129440011s

Sometimes, you might forget to use mutexes, especially for non-trivial user-defined data types, or
when you accidentally leak a variable between goroutines. In these cases, you can use the data race
detector built into the go tool. Add the -race flag to any of the go test/run/build commands
to check and get a report of any unprotected access requests to shared memory.

To see how it works, let’s focus on the isAlive map we manipulate concurrently on different instances
of the getVersion function. Earlier, we surrounded this with a mutex, which we now remove in
ch03/race/main.go (see Further reading):

func getVersion(r Router, out chan map[string]interface{}, wg
*sync.WaitGroup, isAlive map[string]bool) {

    defer wg.Done()

    /* ... <omitted for brevity > ... */

    // m.Lock()

    isAlive[r.Hostname] = true

    // m.Unlock()

    out <- "test"

}

When you run the program with the extra -race flag, Go highlights the data race condition it detects:

ch03/race$ go run -race main.go

MESSAGE: test

MESSAGE: test

==================

WARNING: DATA RACE

Write at 0x00c00011c6f0 by goroutine 9:

  runtime.mapassign_faststr()

      /usr/local/go/src/runtime/map_faststr.go:202 +0x0

  main.getVersion()

      ~/Network-Automation-with-Go/ch03/race/main.go:35 +0xeb

  main.main·dwrap·5()

      ~/Network-Automation-with-Go/ch03/race/main.go:74 +0x110

Getting Started with Go130

...

==================

MESSAGE: test

Router sandbox-iosxe-latest-1.cisco.com is alive: true

Router sandbox-iosxr-1.cisco.com is alive: true

Router sandbox-nxos-1.cisco.com is alive: true

This process took 1.918348ms

Found 1 data race(s)

exit status 66

Go’s built-in data race detector alleviates the task of debugging data races, which are among the hardest
bugs to debug in concurrent systems.

Concurrency caveats

Concurrency is a powerful tool. You could even envision using goroutines everywhere in your code
and following design patterns such as worker pools to split up your work between different goroutines
to get the initial speed gains for a relatively small price of increased complexity.

But, it’s important to consider that concurrency is not parallelism (see Further reading) and there is
always some overhead involved in the coordination of goroutines and mapping them to OS threads.
We also shouldn’t forget that the underlying hardware resources are finite and so are the concurrency
performance gains, as they inevitably flatten out at a certain point (see Simulating a real-world system
in Go in the Further reading section).

Finally, concurrent programming is hard; it’s hard to write code that’s safe, and hard to reason about
and debug when it breaks. It’s important not to over-engineer your code with goroutines and use them
when and where you truly need them, measure your gains and detect race conditions, avoid memory
sharing if possible, and opt for communicating via channels.

Summary
This chapter concludes the theoretical introduction to Go as a programming language. We went from
Go variable types and performing operations with them, to reviewing the key building blocks of Go
programs, and how to take advantage of some of Go’s most notable packages from its standard library
to help you build scalable applications.

Starting from the next chapter, we turn our attention to network-specific tasks that are more applicable
to real-world scenarios. We still continue introducing some theoretical concepts throughout the book,
but most content is on concrete use cases rather than abstract theory.

Further reading 131

Further reading
•	 ch03/type-definition/main.go: https://github.com/PacktPublishing/

Network-Automation-with-Go/blob/main/ch03/type-definition/main.go

•	 ch03/string-literals/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/string-literals/main.go

•	 ch03/string-concatenate/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/string-concatenate/
main.go

•	 ch03/string-memory/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/string-memory/main.go

•	 ch03/boolean/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/boolean/main.go

•	 ch03/arrays/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/arrays/main.go

•	 ch03/slices/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/slices/main.go

•	 ch03/maps/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/maps/main.go

•	 ch03/structs/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/structs/main.go

•	 ch03/tcp-header/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/tcp-header/main.go

•	 Comparison operators: https://golang.org/ref/spec#Comparison_operators

•	 ch03/switch/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/switch/main.go

•	 ch03/goto/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/goto/main.go

•	 ch03/functions1/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/functions1/main.go

•	 ch03/functions2/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/functions2/main.go

•	 ch03/mutate-slice/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/mutate-slice/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/type-definition/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/type-definition/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/string-literals/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/string-literals/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/string-concatenate/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/string-concatenate/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/string-concatenate/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/string-memory/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/string-memory/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/boolean/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/boolean/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/arrays/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/arrays/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/slices/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/slices/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/maps/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/maps/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/structs/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/structs/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/tcp-header/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/tcp-header/main.go
https://golang.org/ref/spec#Comparison_operators
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/switch/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/switch/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/goto/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/goto/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/functions1/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/functions1/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/functions2/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/functions2/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/mutate-slice/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/mutate-slice/main.go

Getting Started with Go132

•	 ch03/methods/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/methods/main.go

•	 ch03/variadic/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/variadic/main.go

•	 ch03/defer/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/defer/main.go

•	 Sample program: https://github.com/PacktPublishing/Network-Automation-
with-Go/blob/main/ch03/interfaces-sample/main.go

•	 ch03/io-interface1/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/io-interface1/main.go

•	 ch03/io-interface2/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/io-interface2/main.go

•	 ch03/reader/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/reader/main.go

•	 ch03/json: https://github.com/PacktPublishing/Network-Automation-
with-Go/tree/main/ch03/json

•	 Book’s GitHub repository: https://github.com/PacktPublishing/Network-
Automation-with-Go

•	 ch03/json/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/json/main.go

•	 ch03/json-interface: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch03/json-interface

•	 GJSON: https://github.com/tidwall/gjson

•	 SJSON: https://github.com/tidwall/sjson

•	 ch03/xml: https://github.com/PacktPublishing/Network-Automation-
with-Go/tree/main/ch03/xml

•	 xmlquery: https://github.com/antchfx/xmlquery

•	 ch03/yaml: https://github.com/PacktPublishing/Network-Automation-
with-Go/tree/main/ch03/yaml

•	 ch03/yaml/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/yaml/main.go

•	 yq: https://github.com/mikefarah/yq

•	 ch03/json-xml: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch03/json-xml

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/methods/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/methods/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/variadic/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/variadic/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/defer/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/defer/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/interfaces-sample/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/interfaces-sample/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/io-interface1/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/io-interface1/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/io-interface2/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/io-interface2/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/reader/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/reader/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/json

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/json

https://github.com/PacktPublishing/Network-Automation-with-Go

https://github.com/PacktPublishing/Network-Automation-with-Go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/json/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/json/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/json-interface

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/json-interface

https://github.com/tidwall/gjson

https://github.com/tidwall/sjson

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/xml

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/xml

https://github.com/antchfx/xmlquery

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/yaml

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/yaml

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/yaml/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/yaml/main.go
https://github.com/mikefarah/yq
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/json-xml

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/json-xml

Further reading 133

•	 ch03/single: https://github.com/PacktPublishing/Network-Automation-
with-Go/tree/main/ch03/single

•	 ch03/single/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/single/main.go

•	 ch03/sequential: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch03/sequentia

•	 ch03/concurrency/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch03/concurrency/main.go

•	 ch03/concurrency2: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch03/concurrency2

•	 ch03/concurrency3: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch03/concurrency3

•	 ch03/concurrency5: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch03/concurrency5

•	 ch03/ticker: https://github.com/PacktPublishing/Network-Automation-
with-Go/tree/main/ch03/ticker

•	 sync.Map documentation: https://pkg.go.dev/sync#Map

•	 ch03/concurrency4: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch03/concurrency4

•	 ch03/race/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch03/race/main.go

•	 Simulating a real-world system in Go: https://www.youtube.com/watch?v=_
YK0viplIl4

•	 Concurrency is not parallelism: https://blog.golang.org/waza-talk

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/single

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/single

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/single/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/single/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/sequentia

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/sequentia

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/concurrency/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/concurrency/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/concurrency2

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/concurrency2

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/concurrency3

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/concurrency3

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/concurrency5

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/concurrency5

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/ticker

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/ticker

https://pkg.go.dev/sync#Map

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/concurrency4

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch03/concurrency4

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/race/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch03/race/main.go

https://www.youtube.com/watch?v=_YK0viplIl4

https://www.youtube.com/watch?v=_YK0viplIl4

https://blog.golang.org/waza-talk

4
Networking (TCP/IP) with Go

Every network engineer has at some point learned about the seven layers of the Open Systems
Interconnection (OSI) model. A more concise version of it, with only four layers, is the TCP/IP
model, which is the architectural model that governs communications over the internet.

Each layer defines a function, which one data communication protocol per layer performs. These layers
pile one upon another, so we often call this collection of protocols a protocol stack. A data packet
has to go through each of the four layers of the protocol stack before it gets to the destination host.

Go has several packages to work with protocols at each layer of the TCP/IP model. This enables us
to build solutions for an array of use cases – from IP address management to running application
transactions through the network or even implementing network protocols:

Figure 4.1 – TCP/IP model

In this chapter, we focus on use cases for each of the layers of the TCP/IP model:

•	 Link

•	 Internet

Networking (TCP/IP) with Go136

•	 Transport

•	 Application

Technical requirements
We assume basic familiarity with the command line, Git, and GitHub. You can find the code examples
for this chapter in the book’s GitHub repository: https://github.com/PacktPublishing/
Network-Automation-with-Go, under the ch04 folder.

To run the examples, you’ll need to do the following:

1.	 Install Go 1.17 or later for your operating system. You can follow the instructions in Chapter 1,
Introduction, in the section Installing Go, or go to https://go.dev/doc/install. Two
examples in this chapter, specifically those for the net/netip package, require Go 1.18 or later.

2.	 Clone the book’s GitHub repository with git clone https://github.com/
PacktPublishing/Network-Automation-with-Go.git.

3.	 Change the directory to an example folder: cd Network-Automation-with-Go/
ch04/trie.

4.	 Execute go run main.go.

The link layer
We start with the bottom layer of the TCP/IP model that sends and receives link layer data frames.
In this section, we cover the following topics:

•	 Management of network interfaces

•	 Basic operations with Ethernet

Network interfaces

As we see more and more network operating systems based on Linux, it makes sense to understand
how Go can help us interact with network interfaces in this context.

Linux exposes its networking internals through a kernel interface called Netlink. This interface allows
user-space applications such as Go to communicate with the kernel over a standard socket API. Most
commonly, TCP/UDP libraries use Netlink sockets to send and receive data, but they can also work
with most Linux networking constructs, from interfaces to routes and nftables.

Thankfully, you don’t need to learn about or understand the low-level Netlink API, as there are many
Go packages that deliver high-level abstractions, making it much easier to work with. Some notable
Netlink packages include the following:

https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/Network-Automation-with-Go
https://go.dev/doc/install

The link layer 137

•	 The syscall package (Further reading) of the Go standard library, which includes several
low-level primitives typically used by high-level packages.

•	 The vishvananda/netlink (Further reading) third-party Go package is one of the earlier
implementations of a high-level Netlink package, widely used by various open source projects
such as Docker, Istio, and Kubernetes CNI plugins.

•	 The ecosystem of plugins based on the mdlayher/netlink (Further reading) package is
a set of relatively recent projects implemented on a common foundation in a more idiomatic
and maintainable way.

These Netlink packages have varying levels of feature coverage and the one you choose normally depends
on your application requirements. For a demonstration, we show how to toggle the administrative
state of an interface, and to do that, we pick one of the rtnetlink packages from the mdlayher/
netlink ecosystem (Further reading).

Let’s break down and review this example in three stages. First, we import the Netlink package
rtnetlink/rtnl, which is one of the loosely related packages developed around the mdlayher/
netlink package, to establish a connection with a Netlink socket with the Dial method and then
retrieve the list of all local interfaces with the Links method over the connection:

func main() {

    conn, err := rtnl.Dial(nil)

    // process error

    defer conn.Close()

    links, err := conn.Links()

    /* ... <continues next > ... */

}

This preceding code resembles what we do for all remote connections in Go, which is why Go developers
consider this package more idiomatic. Once we have the list of all the interfaces in the variable links,
we can iterate over them to find any interface of interest.

Let’s say we want to toggle the lo interface if it’s present in the system. We loop over all the interfaces
in the variable links, and we print out the data of the lo interface if we find it and store the interface
value in a variable we call loopback, so we can bring this link down with LinkDown and bring it
back up with LinkUp later:

func main() {

    /* ... <continues from before > ... */

    var loopback *net.Interface

    for _, l := range links {

Networking (TCP/IP) with Go138

        if l.Name == "lo" {

            loopback = l

            log.Printf("Name: %s, Flags:%s\n",

                        l.Name, l.Flags)

        }

    }

    /* ... <continues next > ... */

}

After running LinkDown and LinkUp, you can verify that the change had the desired effect by
retrieving the interface settings from Netlink after each change. We update the loopback variable
for a uniform printed statement:

func main() {

    /* ... <continues from before > ... */

    conn.LinkDown(loopback)

    loopback, _ = conn.LinkByIndex(loopback.Index)

    log.Printf("Name: %s, Flags:%s\n",

                loopback.Name, loopback.Flags)

    conn.LinkUp(loopback)

    loopback, _ = conn.LinkByIndex(loopback.Index)

    log.Printf("Name: %s, Flags:%s\n",

                loopback.Name, loopback.Flags)

}

You can find this example in full in ch04/netlink (Further reading) and you must run it with
CAP_NET_ADMIN capabilities (Further reading) or as root:

ch04/netlink $ sudo go run main.go

2021/11/24 20:55:29 Name: lo, Flags:up|loopback

2021/11/24 20:55:29 Name: lo, Flags:loopback

2021/11/24 20:55:29 Name: lo, Flags:up|loopback

We’ve only just scratched the surface of the Netlink API as its abilities extend far beyond the scope of
this book. Today, you can use Netlink for everything from IP route management to access lists and from
Quality of Service (QoS) policies to extended Berkeley Packet Filter (eBPF) program attachments.
Hopefully, this section provides enough information to give you an idea of what’s involved in Netlink
API interactions, as now we have to move on to the next topic and explore how Go deals with the
most widely used link layer protocol today: Ethernet.

The link layer 139

Ethernet

Working with Ethernet may involve a wide range of activities, from low-level protocol decoding,
manipulating, and encoding to interactions with device APIs to collect Ethernet hardware information.
Go has a broad spectrum of packages to help you deal with various Ethernet-related tasks:

•	 One of the most widely used packet processing packages is google/gopacket (Further
reading), which you can use for both packet capturing and protocol decoding. It goes beyond
just Ethernet, and we cover it in more detail in Chapter 10, Network Monitoring.

•	 The Netlink API packages we just covered can query link-layer hardware information for
Linux-based operating systems.

•	 Another Ethernet encoding and decoding package mdlayher/ethernet (Further reading)
allows you to convert frames between binary wire format and a static Go type representation.

In the next example, we cover a basic implementation of a virtual IP (VIP) capability. We loosely
based this implementation on the kube-vip (Further reading) package – a Kubernetes control plane
VIP controller. The way it works is a two-step process:

1.	 It allocates a new VIP to one of the local network interfaces.

2.	 It periodically sends out gratuitous Address Resolution Protocol (ARP) packets to let everyone
in the local broadcast domain know about this VIP.

Let’s review this from the first step and see how we assign a VIP to an interface. We’ll use the same
package to interact with Netlink as we used in the Network interfaces section (rtnetlink/rtnl),
only this time we use the AddrAdd method to assign an IP prefix to the interface we specify.

In the program, we pass the name of the interface we want to assign to this VIP address via the CLI
using the flag package and we store this value in the intfStr variable. With this info, we use
the mdlayher/packet package to send and receive ARP packets over this interface with the
Listen function:

func main() {

    intfStr := flag.String("intf", "", "VIP interface")

    flag.Parse()

    conn, err := rtnl.Dial(nil)

    // process error

    defer conn.Close()

    netIntf, err := net.InterfaceByName(*intfStr)

Networking (TCP/IP) with Go140

    ethSocket, err := packet.Listen(netIntf,

                                packet.Raw, 0, nil)

    // process error

    defer ethSocket.Close()

    /* ... <continues next > ... */

}

To actually assign the VIP address to the interface, we create the vip struct type that lets us hold all
the information we need to pass to AddrAdd to make this happen, as the next output shows:

const VIP1 = "198.51.100.1/32"

type vip struct {

    IP      string

    netlink *rtnl.Conn

    intf    *net.Interface

    l2Sock  *raw.Conn

}

func (c *vip) addVIP() error {

    err := c.netlink.AddrAdd(c.intf,

                        rtnl.MustParseAddr(c.IP))

    // process error

    return nil

}

func main() {

    /* ... <continues from before > ... */

    v := &vip{

        IP:      VIP1,

        intf:    netIntf,

        netlink: rtnl,

        l2Sock:  *packet.Conn,

    }

    err = v.addVIP()

     /* ... <continues next > ... */

}

The link layer 141

Once we have the new VIP assigned, we can start sending out the Gratuitous ARP (GARP) packets.
We do that in a constant for loop, which sleeps for 3 seconds and runs again. In this loop, we include
an if with initialization (err := v.sendGARP()) and conditional (err != nil) statements.
Go executes the initialization statement before evaluating the conditional expression:

func main() {

    /* ... <continues from before > ... */

    for {

        select {

        /* ... <omitted for brevity > ... */

        case <-timer.C:

            if err := v.sendGARP(); err != nil {

                log.Printf("fail send GARP %s",

                                err)

                cancel()

            }

        }

    }

}

Inside the sendGARP method is where we can find most of the Ethernet-related code. Here, we use
two packages to help us build the GARP.

We first need to build the GARP payload and populate it with the MAC address of the local interface and
the IP address of the VIP. For this, we take advantage of the mdlayher/arp (Further reading) package:

func (c *vip) sendGARP() error {

    /* ... <omitted for brevity > ... */

    arpPayload, err := arp.NewPacket(

        arp.OperationReply,  // op

        c.intf.HardwareAddr, // srcHW

        ip,                  // srcIP

        c.intf.HardwareAddr, // dstHW

        ip,                  // dstIP

    )

    // process error

    arpBinary, err := arpPayload.MarshalBinary()

    /* ... <continues next > ... */

}

Networking (TCP/IP) with Go142

Then we need to wrap the GARP payload inside an Ethernet frame and set the right Ethernet headers
using the mdlayher/ethernet (Further reading) package:

func (c *vip) sendGARP() error {

    /* ... <continues from before > ... */

    ethFrame := ðernet.Frame{

        Destination: ethernet.Broadcast,

        Source:      c.intf.HardwareAddr,

        EtherType:   ethernet.EtherTypeARP,

        Payload:     arpBinary,

    }

    return c.emitFrame(ethFrame)

}

The last step is to send a binary frame and to do that, we use the mdlayher/packet (Further reading)
package that implements the Linux packet socket interface that lets us send and receive packets at the
device driver (link-layer) level. We have already opened a raw socket, ethSocket, using Listen
as shown earlier, so now we can write our binary frame into it (field l2Sock of the vip struct):

func (c *vip) emitFrame(frame *ethernet.Frame) error {

    b, err := frame.MarshalBinary()

    // process error

    addr := &packet.Addr{

                HardwareAddr:ethernet.Broadcast}

    if _, err := c.l2Sock.WriteTo(b, addr); err != nil {

        return fmt.Errorf("emitFrame failed: %s", err)

    }

    log.Println("GARP sent")

    return nil

}

You can find the full example at ch04/vip (Further reading). You need to run it with elevated
privileges to be able to make changes to network interfaces. The resulting output would look like this:

ch04/vip $ sudo go run main.go -intf eth0

2021/11/25 18:47:51 GARP sent

The internet layer 143

2021/11/25 18:47:54 GARP sent

^C2021/11/25 18:47:56 Received syscall: interrupt

2021/11/25 18:47:57 Cleanup complete

At this point, any host with an overlapping IP subnet on the local network segment should be able to
ping the 198.51.100.1 address (if they accept GARPs). To end the program, you can press Ctrl
+ C and the program cleans up the VIP from the interface.

It’s rare for a network engineer or a developer to interact with Ethernet directly, but it’s still worth
knowing what it feels like to talk Ethernet using Go. In the next section, we move one layer up and
cover the internet layer packages and examples.

The internet layer
The internet layer or network layer in the OSI model is in charge of transferring variable-length network
packets and routing data from a source to a destination through one or more networks.

The predominant protocol in this layer today is the Internet Protocol (IP) on either of its two versions:
version 4 (IPv4) or version 6 (IPv6). The internet layer also includes diagnostic protocols such as
Internet Control Message Protocol (ICMP), a secure network protocol suite such as Internet Protocol
Security (IPsec), and routing protocols including Open Shortest Path First (OSPF).

The IP exchanges information via IP datagrams built from a header and a payload, which the link layer
then transmits as frames over specific network hardware such as Ethernet. The IP header carries the
IP source and destination addresses of a packet used to route it through the internet.

In this section, we review the following:

•	 How to use the net package to parse and perform common tasks with IP addresses

•	 The new net/netip package and what features it brings to the Go standard library

•	 Examples of real-life Go projects that work with IP addresses

The net package

The net package (Further reading) from the standard library includes a wide range of tools and
resources for network connectivity and, most importantly for this section, defines types and interfaces
to work with IP addresses. One of these types is IP, represented as a slice of bytes. This type is valid
for 4-byte (IPv4) or 16-byte (IPv6) slices:

type IP []byte

Let’s first explore how we can create an IP type variable, from the decimal representation of the IPv4
address 192.0.2.1:

Networking (TCP/IP) with Go144

Figure 4.2 – An IPv4 address

One way to turn an IPv4 address into an IP type is by using the ParseIP function from the net
package, which takes a string as an argument and returns an IP value:

func main() {

    ipv4 := net.ParseIP("192.0.2.1")

    fmt.Println(ipv4)

}

IPv6 addresses are a bit harder for our eyes to process, but to Go they are yet another slice of bits just
like IPv4:

Figure 4.3 – An IPv6 address

The ParseIP function can also parse a string representation of an IPv6 to return the variable of
the IP type:

func main() {

    ipv6 := net.ParseIP("FC02:F00D::1")

    fmt.Println(ipv6)

}

The IP type represents an IP address, so you can use the same IP methods for either IPv4 or IPv6
addresses. Let’s say you want to check whether an IP address is within a private address range.

The internet layer 145

The IsPrivate method from the net package gives you that answer based on RFC 1918 (Address
Allocation for Private Internets) and RFC 4193 (Unique Local IPv6 Unicast Addresses) for both IPv4
and IPv6 automatically:

func main() {

    // prints false

    fmt.Println(ipv4.IsPrivate())

    // prints true

    fmt.Println(ipv6.IsPrivate())

}

Another interesting type is IPNet, which describes an IP prefix or an IP network, so it adds IPMask
to IP to represent its mask:

type IPNet struct {

    IP   IP     // network number

    Mask IPMask // network mask

}

A mask in the net package is also a slice of bytes, which is better explained with the following example
using the CIDRMask function. Both ones and bits arguments are integers as the function signature
indicates. The first argument, ones, is the number of ones in IPMask and the remaining bits are all
set to zero. The total length of the mask is measured in bits:

type IPMask []byte

func CIDRMask(ones, bits int) IPMask

Let’s see an example for IPv4, with a 32-bit mask:

func main() {

    // This mask corresponds to a /31 subnet for IPv4.

    // prints [11111111 11111111 11111111 11111110]

    fmt.Printf("%b\n",net.CIDRMask(31, 32))

}

IPv6 works similarly but expects a mask length of 128:

func main() {

    // This mask corresponds to a /64 subnet for IPv6.

    // prints ffffffffffffffff0000000000000000

Networking (TCP/IP) with Go146

    fmt.Printf("%s\n",net.CIDRMask(64, 128))

}

To parse a prefix or network from a string, you can use the ParseCIDR function from the net package.
You get three values – a network address of the IP type, an IP prefix of the IPnet type, and an error:

func main() {

    ipv4Addr, ipv4Net, err := net.ParseCIDR("192.0.2.1/24")

    // process error

    // prints 192.0.2.1

    fmt.Println(ipv4Addr)

    // prints 192.0.2.0/24

    fmt.Println(ipv4Net)

}

The next example shows ParseCIDR for IPv6 using the same functions as with IPv4:

func main() {

    ipv6Addr, ipv6Net, err :=  net.ParseCIDR(

                                "2001:db8:a0b:12f0::1/32")

    // process error

    // prints 2001:db8:a0b:12f0::1

    fmt.Println(ipv6Addr)

    // prints 2001:db8::/32

    fmt.Println(ipv6Net)

}

The code for these examples is available at ch04/net/main.go (Further reading).

This is the standard way of doing basic operations with IP addresses in Go. Yet not long ago there
was an effort to add a new IP address type to the standard library, via a package that we review next.

The New netip package

With the goal of improving some things that weren’t great about the net.IP data structure for IP
addresses in Go, a group of Go developers came up with a new IP address type. This was an iterative
process that they documented in the blog post netaddr.IP: a new IP address type for Go (Further
reading). This package is now available in Go 1.18 as net/netip.

The internet layer 147

The net/netip package defines a new type, Addr, that stores both IPv4 and IPv6 addresses as a
big-endian 128-bit number. This type also has a special sentinel field z, which can have any of these values:

•	 nil means an invalid IP address (for a zero Addr).

•	 z4 means an IPv4 address.

•	 z6noz means an IPv6 address without a zone.

•	 Otherwise, it’s the IPv6 zone name string.

The data structure in Go looks as follows:

type Addr struct {

    addr uint128

    z *intern.Value

}

This new Addr type has the following major benefits compared to the legacy net.IP:

•	 It takes up less memory.

•	 It’s immutable and, hence, safe to pass around.

•	 It supports == operations and, hence, you can use it as a map key.

Let’s see some examples of how to parse an IP address from a string to get an Addr type and use
it with some methods available in the package. In the first example, we parse an IPv4 address and
check whether it’s within the RFC 1112 224.0.0.0/4 multicast range with the IsMulticast
method. A second example for IPv6 shows how to parse an IP address from a string with the same
function, ParseAddr, and checks whether the IPv6 is a Link-Local address or part of the network
FE80::/10 according to the RFC 4291 with the IsLinkLocalUnicast method:

func main() {

    IPv4, err := netip.ParseAddr("224.0.0.1")

    // process error

    // prints IPv4 address is Multicast

    if IPv4.IsMulticast() {

        fmt.Println("IPv4 address is Multicast")

    }

    IPv6, err := netip.ParseAddr("FE80:F00D::1")

    // process error

Networking (TCP/IP) with Go148

    // prints IPv6 address is Link Local Unicast

    if IPv6.IsLinkLocalUnicast() {

        fmt.Println("IPv6 address is Link Local Unicast")

    }

}

Now, if you have an existing program that uses net.IP, you can use that type as input for netip
as well. For both IPv4 and IPv6, it parses the net.IP type with the function AddrFromSlice.
The method IsX tells us whether this is an IPv4 or IPv6 address:

func main() {

    ipv4 := net.ParseIP("192.0.2.1")

    IPv4s, _ := netip.AddrFromSlice(ipv4)

    fmt.Println(IPv4s.String())

    fmt.Println(IPv4s.Unmap().Is4())

}

The code for this example is available at ch04/parseip (Further reading):

ch04/parseip$ go run main.go

::ffff:192.0.2.1

true

To represent an IP prefix (CIDR), net/netip defines a type called Prefix that has an Addr and
an integer to specify the prefix length (from 0 to 128) in the field bits:

type Prefix struct {

    ip Addr

    bits int16

}

To parse a prefix from a string, you can use the ParsePrefix function or MustParsePrefix,
which calls ParsePrefix and panics on error, which means you don’t have to check the returned
error in your code. Let’s look at a program that uses MustParsePrefix to generate a prefix, and
then checks whether some IP addresses are in the address range of that prefix:

func main() {

    addr1 := "192.0.2.18"

    addr2 := "198.51.100.3"

The internet layer 149

    network4 := "192.0.2.0/24"

    pf := netip.MustParsePrefix(network4)

    fmt.Printf(

        "Prefix address: %v, length: %v\n",

        pf.Addr(), pf.Bits())

    ip1 := netip.MustParseAddr(addr1)

    if pf.Contains(ip1) {

        fmt.Println(addr1, " is in ", network4)

    }

    ip2 := netip.MustParseAddr(addr2)

    if pf.Contains(ip2) {

        fmt.Println(addr2, " is in ", network4)

    }

}

We define the prefix pf from the network4 string 192.0.2.0/24. Then, we check whether
addresses 192.0.2.18 and 198.51.100.3 are in this network by printing a message if they are.
This program prints the following:

ch04/parseprefix$ go run main.go

Prefix address: 192.0.2.0, length: 24

192.0.2.18  is in  192.0.2.0/24

The code for this example is available at ch04/parseprefix (Further reading).

Working with IP addresses

After parsing IP addresses, you are only one step from several real-world applications you can put
into practice. We cover just a few examples here:

•	 Route lookups

•	 Geo IP data

•	 Extra IP address functions

Networking (TCP/IP) with Go150

Route lookups

One way to do a route lookup or find the longest prefix match for an IP address is by using a trie data
structure (prefix tree). Tries are very efficient in both memory and speed, which is why we use them
for IP prefix lookups. To do this in Go, you can use one of the available packages. In this case, we use
cidranger (Further reading).

We start by defining a new path-compressed prefix trie and add a list of parsed IP addresses from
the IPs variable:

func main() {

    ranger := cidranger.NewPCTrieRanger()

    IPs := []string{

        "100.64.0.0/16",

        "127.0.0.0/8",

        "172.16.0.0/16",

        "192.0.2.0/24",

        "192.0.2.0/24",

        "192.0.2.0/25",

        "192.0.2.127/25",

    }

    for _, prefix := range IPs {

        ipv4Addr, ipv4Net, err := net.ParseCIDR(prefix)

        // process error

        ranger.Insert(

                cidranger.NewBasicRangerEntry(*ipv4Net))

    }

    /* ... <continues next > ... */

}

Now we can check whether any IP is within the defined list of IP address ranges. Here, we find that
127.0.0.1 is in at least one IP prefix on the list:

func main() {

    /* ... <continues from before > ... */

    checkIP := "127.0.0.1"

The internet layer 151

    ok, err := ranger.Contains(net.ParseIP(checkIP))

    // process error

    // prints Does the range contain 127.0.0.1?: true

    fmt.Printf("Does the range contain %s?: %v\n",

                    checkIP, ok)

    /* ... <continues next > ... */

}

One other thing you could do is to request a list of networks that contain an IP address, such as
192.0.2.18 in this case:

func main() {

    /* ... <continues from before > ... */

    netIP := "192.0.2.18"

    nets, err := ranger.ContainingNetworks(

                            net.ParseIP(netIP))

    // process error

    fmt.Printf(

    "\nNetworks that contain IP address %s ->\n", netIP)

    for _, e := range nets {

        n := e.Network()

        fmt.Println("\t", n.String())

    }

}

This returns 192.0.2.0/24 and 192.0.2.0/25:

ch04/trie$ go run main.go

Networks that contain IP address 192.0.2.18 ->

     192.0.2.0/24

     192.0.2.0/25

The code of this example is available at ch04/trie/main.go (Further reading).

Networking (TCP/IP) with Go152

Geo IP data

Another interesting use case is to get the geographical location associated with a public IP address.
To make this query, you need access to a database that you can download for free from GeoLite2 Free
Geolocation Data (Further reading) or you can just use the sample file we included in the book’s repo,
which has support for a limited number of IP addresses, but enough to run the examples.

We open the database file, and for each IP address in a slice, we query for any available information,
which we then print to the terminal:

func main() {

    db, err := geoip2.Open("GeoIP2-City-Test.mmdb")

    // process error

    defer db.Close()

    IPs := []string{

        "81.2.69.143",

        /* ... <omitted for brevity > ... */

    }

    fmt.Println("Find information for each prefix:")

    for _, prefix := range IPs {

        ip := net.ParseIP(prefix)

        record, err := db.City(ip)

        // process error

    

        fmt.Printf("\nAddress: %v\n", prefix)

        fmt.Printf("City name: %v\n",

                        record.City.Names["en"])

        /* ... <omitted for brevity > ... */

    }

}

One output example is the following:

ch04/geo$ go run main.go

Find information for each prefix:

...

The internet layer 153

Address: 81.2.69.143

City name: Norwich

Country name: United Kingdom

ISO country code: GB

Time zone: Europe/London

Coordinates: 52.6259, 1.3032

The code for this example is available at ch04/geo/main.go (Further reading).

Extra IP address functions

If you come from another programming language such as Python, you might be familiar with the
ipaddress library to manipulate IP addresses and networks. The iplib package (Further reading)
is an effort to bring those features to Go.

In the next example, we see a function to increment an IP address by one (NextIP) and another
function to increase an IP address by any number (IncrementIPBy). We then compute the difference
between the original IP address and the result after these two increments with the DeltaIP function
to find out the number of IP addresses in between.

The last line of the example compares two IP addresses with the CompareIPs function. If a and b
are the inputs, it returns 0 if a == b, -1 if a < b, and 1 if a > b:

func main() {

    IP := net.ParseIP("192.0.2.1")

    nextIP := iplib.NextIP(IP)

    incrIP := iplib.IncrementIPBy(nextIP, 19)

    // prints 20

    fmt.Println(iplib.DeltaIP(IP, incrIP))

    // prints -1

    fmt.Println(iplib.CompareIPs(IP, incrIP))

}

Because the iplib package allows you to compare IP addresses, it means you can use the sort package
to sort a list of net.IP addresses as the next example shows, using the addresses we just created:

func main() {

    iplist := []net.IP{incrIP, nextIP, IP}

    // prints [192.0.2.21 192.0.2.2 192.0.2.1]

    fmt.Println(iplist)

Networking (TCP/IP) with Go154

    sort.Sort(iplib.ByIP(iplist))

    // prints [192.0.2.1 192.0.2.2 192.0.2.21]

    fmt.Println(iplist)

}

You can also generate an array of IP addresses from a network, starting at any IP address with the
Enumerate method. In the next example, we take the network 198.51.100.0/24, count the
total available addresses in it with Count, to then generate an array of size 3 with Enumerate,
starting from the first available IP address of the network (index 0):

func main() {

    n4 := iplib.NewNet4(net.ParseIP("198.51.100.0"), 24)

    fmt.Println("Total IP addresses: ", n4.Count())

    fmt.Println("First three IPs: ", n4.Enumerate(3, 0))

    fmt.Println("First IP: ", n4.FirstAddress())

    fmt.Println("Last IP: ", n4.LastAddress())

}

This program produces the following output:

ch04/ipaddr$ go run main.go

...

Total IP addresses:  254

First three IPs:  [198.51.100.1 198.51.100.2 198.51.100.3]

First IP:  198.51.100.1

Last IP:  198.51.100.254

The code for this example is available at ch04/ipaddr/main.go (Further reading).

IP is the fundamental protocol on the internet, which has continued to support its evolution over the
last 40 years without major changes, despite the fast pace of technological development in the last few
decades. Along with protocols from the transport layer, IP has allowed the decoupling of applications
from hardware technologies such as coax cable, fiber optics, and Wi-Fi. Speaking of the transport
layer, in the next section, we explore how Go can help you navigate this layer of the TCP/IP model.

The transport layer 155

The transport layer
The transport layer protocols are the next OSI layer on top of IP and offer a communication channel
abstraction. The two most common protocols today are TCP, which offers a connection-oriented
communication channel, and UDP, a connectionless protocol.

In Go, the way you interact with both protocols is similar, even though the underlying packet exchange
may be completely different. At a high level, there are only a few things that you need to keep in mind
when dealing with TCP or UDP:

•	 Each TCP or UDP application works with a corresponding connection represented by a concrete
TCPConn or UDPConn type, respectively.

•	 Go has other connection types with overlapping features such as PacketConn, which
deals with connectionless protocols (UDP and IP); Conn, which covers IP, TCP, and UDP;
and UnixConn for connections to Unix domain sockets. We only focus on TCPConn and
UDPConn in this section.

•	 Clients use net.DialTCP and net.DialUDP to open a socket to a remote address.

•	 Servers use net.ListenUDP and net.ListenTCP to open a listening socket that accepts
connections from different clients.

•	 Clients and servers can Read and Write bytes from and to their respective connections.

•	 When finished, both clients and servers need to close their connections to clean up the
underlying file descriptor.

The following figure illustrates the interactions between different types involved in a typical UDP
client-server communication:

Figure 4.4 – UDP communication in Go

Networking (TCP/IP) with Go156

Figure 4.4 shows a UDP client sending one byte at a time, although in reality, the payload can have
more bytes. This could be a DNS request or an RTP packet. All network connection types implement
io.Reader and io.Writer interfaces, so reading and writing are similar no matter what protocol
you use underneath.

The UDP client creates a UDP connection with net.DialUDP and then writes (Write) a byte to
it, just like when you make a request to the network. On the server side, you read (Read) from the
connection you would have created earlier with net.ListenUDP.

Now, let’s move on to something a bit more concrete and see what a real UDP application may look like.

UDP ping application

Ping is one of the most conventional ways of checking remote connectivity and end-to-end latency.
Just like the traditional ping, UDP ping uses echo replies to calculate latency and packet loss but
encapsulates them in a UDP packet instead of ICMP/NDP. Many monitoring applications use this
approach as it allows them to discover and monitor various equal-cost paths in networks with devices
that perform 5-tuple hashing. One such application is Cloudprober (Further reading), which is the
source of inspiration for the next example, as the authors wrote it in Go.

Let’s walk through the code of a UDP ping application, focusing on connection establishment and
data exchange. You can find the full code in the ch04/udp-ping (Further reading) folder of the
book’s repository (Further reading). At a high level, our UDP ping application consists of two parts:

1.	 The server side listens on a UDP port and mirrors back any packets received from its clients.

2.	 The client that is sending UDP probes to a server receives a stream of mirrored packets coming
back to compute the packet loss and end-to-end latency:

Figure 4.5 – UDP ping application

The transport layer 157

Let’s start the overview of this application with the server side. The program begins by building a
UDPAddr variable that describes a UDP socket. We then pass this variable to net.ListenUDP to
create a UDP socket and start listening for incoming packets. The first argument in the ListenUDP
function is udp, which specifies the dual-stack behavior (RFC6724 and RFC6555). You could also
use udp4 or udp6 to pin the program to either IPv4 or IPv6 respectively:

func main() {

    listenAddr     = "0.0.0.0"

    listenPort     = 32767

    listenSoc := &net.UDPAddr{

        IP:   net.ParseIP(listenAddr),

        Port: listenPort,

    }

    udpConn, err := net.ListenUDP("udp", listenSoc)

    // process error

    defer udpConn.Close()

    /* ... <continues next > ... */

}

Once we have a listening UDP socket, we can start the main processing loop, which reads an
incoming packet into a byte slice with ReadFromUDP and writes the entire packet back to the sender
with WriteToUDP.

Since ReadFromUDP is a blocking function, most server implementations add an extra
SetReadDeadline timeout to make sure the program can be gracefully terminated if needed. In this
case, it leads directly to the next loop iteration thanks to the continue statement after ReadFromUDP:

func main() {

    /* ... <continues from before > ... */

    for {

        maxReadBuffer  = 425984

        bytes := make([]byte, maxReadBuffer)

    

        retryTimeout   = time.Second * 5

        if err := udpConn.SetReadDeadline(

                        time.Now().Add(retryTimeout))

        // process error

Networking (TCP/IP) with Go158

        len, raddr, err := udpConn.ReadFromUDP(bytes)

        if err != nil {

            log.Printf("failed to ReadFromUDP: %s", err)

            continue

        }

        log.Printf("Received a probe from %s:%d",

                        raddr.IP.String(), raddr.Port)

        n, err := udpConn.WriteToUDP(bytes[:len], raddr)

        // process error

    }

}

The client-side implementation starts similarly, by building a UDPAddr variable and passing it to
the net.DialUDP function. In the case of TCP, the net.DialTCP function would trigger a TCP
three-way handshake, but in the case of UDP, the underlying OS opens a network socket without
exchanging any packets:

func main() {

    rAddr := &net.UDPAddr{

        IP:   net.ParseIP("127.0.0.1"),

        Port: "32767",

    }

    udpConn, err := net.DialUDP("udp", nil, rAddr)

    // process error

    defer udpConn.Close()

    /* ... <continues next > ... */

}

At this point, the program branches out in two directions. The logical first step is the packet sending
routine, which in this case runs inside the main goroutine of the program. In the background, we
also fire off a goroutine that runs the receive function, which we discuss a few paragraphs later.

Inside each probe packet we send, we embed a monotonically increasing sequence number and the
value of a current timestamp. We serialize the probe packets into a binary slice, p, and write them
into the UDP connection, udpConn, with the binary.Write function:

func main() {

    /* ... <continues from before > ... */

The transport layer 159

    go receive(*udpConn)

    var seq uint8

    for {

        log.Printf("Sending probe %d", seq)

        p := &probe{

            SeqNum: seq,

            SendTS: time.Now().UnixMilli(),

        }

        if err := binary.Write(udpConn,

                        binary.BigEndian, p)

        // process error

        seq++

    }

}

Now let’s have a closer look at the receive function, which we kickstarted just before the sending
loop in the last code snippet. Inside this function, we have another loop that performs the following
sequence of actions:

1.	 It receives a mirrored packet and deserializes it into the p variable of the probe type using
the binary.Read function.

2.	 It checks the SeqNum sequence number of a received packet to find out whether it’s out of order.

3.	 It calculates the latency by subtracting the current time, time.Now, from the time received
in the SendTS probe.

In Go code, it looks like this:

func receive(udpConn net.UDPConn) {

    var nextSeq uint8

    var lost int

    for {

        p := &probe{}

        if err := binary.Read(&udpConn,

                                binary.BigEndian, p)

        // process error

Networking (TCP/IP) with Go160

        if p.SeqNum < nextSeq {

            log.Printf("Out of order packet seq: %d/%d",

                                p.SeqNum, nextSeq)

            lost -= 1

        } else if p.SeqNum > nextSeq {

            log.Printf("Out of order packet seq: %d/%d",

                                p.SeqNum, nextSeq)

            lost += int(p.SeqNum - nextSeq)

            nextSeq = p.SeqNum

        }

        latency := time.Now().UnixMilli() - p.SendTS

        log.Printf("E2E latency: %d ms", latency)

        log.Printf("Lost packets: %d", lost)

        nextSeq++

    }

}

We’ve used binary.Read and binary.Write in this example to convert between the in-memory
data types and binary slices. This is possible thanks to the fixed size of the probe packets. But, if the
probes had been of variable size, we could’ve only used the same functions to pre-parse the fixed-sized
part of the header and would’ve had to read and parse the variable-sized payload manually.

The actual UDP ping application in ch04/udp-ping (Further reading) has a bit more code to
account for further error conditions and graceful program termination. Let’s see an example of running
the client-side code against a remote UDP ping server, where for each iteration, we can see the total
number of lost packets and the latest calculated latency:

ch04/udp-ping/client$ sudo go run main.go

2021/12/10 15:10:31 Starting UDP ping client

2021/12/10 15:10:31 Starting UDP ping receive loop

2021/12/10 15:10:32 Sending probe 0

2021/12/10 15:10:32 Received probe 0

2021/12/10 15:10:32 E2E latency: 9 ms

2021/12/10 15:10:32 Lost packets: 0

2021/12/10 15:10:33 Sending probe 1

2021/12/10 15:10:33 Received probe 1

2021/12/10 15:10:33 E2E latency: 8 ms

The application layer 161

2021/12/10 15:10:33 Lost packets: 0

2021/12/10 15:10:34 Sending probe 2

2021/12/10 15:10:34 Received probe 2

2021/12/10 15:10:34 E2E latency: 9 ms

2021/12/10 15:10:34 Lost packets: 0

...

The server side does not make any measurements and only logs a client IP address for each received
UDP probe:

ch04/udp-ping/server$ sudo go run main.go

2021/12/10 15:10:28 Starting the UDP ping server

2021/12/10 15:10:32 Received a probe from 198.51.100.173:59761

2021/12/10 15:10:33 Received a probe from 198.51.100.173:59761

2021/12/10 15:10:34 Received a probe from 198.51.100.173:59761

...

You’ve just seen an example of a binary UDP-based protocol that uses a single message to exchange
information and calculate network metrics. Although we think it’s important to understand how to
work with transport-layer protocols in Go, it’s not very common to implement your own application
directly on top of TCP or UDP; the only notable exceptions include high-performance messaging
protocols such as Kafka, NATS, and AMQP. Most communications these days happen over a higher-
level protocol, HTTP. With it, we get wide support for packages and SDKs, a vast ecosystem of
communication standards with REST, GRPC, and GraphQL, and standard support from network
middleware such as proxies and intrusion detection systems. In the following section, we show how
to write a sample HTTP client-server application in Go.

The application layer
In the last section, we explored how to establish a TCP or UDP connection between two nodes to
transfer bytes over the network using the Go low-level network primitives we have learned about so
far. Now we focus on the top layer of the TCP/IP model and go into the application-level constructs
that Go includes in the standard library to implement HTTP clients and servers.

To illustrate this, we go through the steps to build a client-server application that returns the MAC
address vendor, IP address owner, or detailed domain information to the requester. On the client
side, we need to craft an HTTP request that encapsulates the query to the server address. On the
server side, we need to listen for requests and implement the logic to serve them and reply with the
information for the argument received.

Networking (TCP/IP) with Go162

Working with an HTTP client

On the client side, we first need to put together the URL we send the request to. The URL, for our
example, has three components:

•	 The server address (IP address and port)

•	 The lookup type to perform (MAC, IP, or domain)

•	 An argument, which is the value we want to query for

The net/url package helps us in this case, to parse the inputs into a URL structure. We hardcode
values for the example in the book, but you can input any values you want via flags when you run the
code in ch04/http/client/main.go (Further reading).

We use the Parse method from net/url to form the first part of the URL: http://
localhost:8080/lookup. The second part of the example adds the query. We leverage the
Add method for this, which takes a key-value pair as an argument. The lookup variable is the key in
this case and the value comes from the argument variable. The full URL looks like this: http://
localhost:8080/lookup?domain=tkng.io.

func main() {

    server := "localhost:8080"

    // One of: mac, ip, domain

    lookup := "domain"

    // Examples: 68b5.99fc.d1df, 1.1.1.1, tkng.io

    argument := "tkng.io"

    path := "/lookup"

    addr, err := url.Parse("http://" + server + path)

    // process error

    params := url.Values{}

    params.Add(lookup, argument)

    addr.RawQuery = params.Encode()

    /* ... <continues next > ... */

}

To make the actual request to the server, we leverage the net/http package. This package has a
Client type that specifies the mechanism to make an HTTP request. We don’t need to stipulate any
client details for this example, so we show the type just for reference:

The application layer 163

type Client struct {

    Transport RoundTripper

    CheckRedirect func(req *Request, via []*Request) error

    Jar CookieJar

    Timeout time.Duration

}

If you don’t have any preference, you can select a DefaultClient that uses a DefaultTransport.
This client has pre-defined timeouts and proxy settings, which are safe for concurrent use by different
goroutines, so we don’t need to adjust any of the parameters that the following code snippet from the
Go standard library shows, which also depicts the client HTTP transport settings that are available
in case you want to fine-tune the behavior of the connection:

var DefaultTransport RoundTripper = &Transport{

    Proxy: ProxyFromEnvironment,

    DialContext: (&net.Dialer{

        Timeout:   30 * time.Second,

        KeepAlive: 30 * time.Second,

    }).DialContext,

    ForceAttemptHTTP2:     true,

    MaxIdleConns:          100,

    IdleConnTimeout:       90 * time.Second,

    TLSHandshakeTimeout:   10 * time.Second,

    ExpectContinueTimeout: 1 * time.Second,

}

Continuing with the example, DefaultClient allows us to use HTTP GET, HEAD, and POST
methods. Here, we use HTTP GET with the Get method from the net/http package to the addr
address we parsed earlier with Parse:

func main() {

    /* ... <continues from before > ... */

    res, err := http.DefaultClient.Get(addr.String())

    if err != nil {

        log.Fatal(err)

    }

    defer res.Body.Close()

    io.Copy(os.Stdout, res.Body)

}

Networking (TCP/IP) with Go164

The last step is to print out the response we get from the server to the terminal. You can use flags
from the CLI to submit different queries when running the client application to do these operations:

•	 A health check:

ch04/http/client$ go run main.go -check

OK

•	 A MAC address vendor lookup:

ch04/http/client$ go run main.go -lookup mac 68b5.99fc.
d1df

Hewlett Packard

•	 A domain lookup:

ch04/http/client$ go run main.go -lookup domain tkng.io

Domain Name: tkng.io

Registry Domain ID: 5cdbf549b56144f5afe00b62ccd8d6e9-
DONUTS

Registrar WHOIS Server: whois.namecheap.com

Registrar URL: https://www.namecheap.com/

Updated Date: 2021-09-24T20:39:04Z

Creation Date: 2021-07-26T19:08:34Z

Registry Expiry Date: 2022-07-26T19:08:34Z

Registrar: NameCheap, Inc.

Registrar IANA ID: 1068

•	 An IP address lookup:

ch04/http/client$ go run main.go -lookup ip 1.1.1.1

...

inetnum:        1.1.1.0 - 1.1.1.255

netname:        APNIC-LABS

descr:          APNIC and Cloudflare DNS Resolver project

descr:          Routed globally by AS13335/Cloudflare

descr:          Research prefix for APNIC Labs

country:        AU

To get these responses, we need to have a running server first that processes the requests. Let’s build it.

The application layer 165

Working with an HTTP (server)

To handle the requests and responses, the net/http package exposes a Server type and a Handler
interface. Server is the data structure for the parameters to run an HTTP server:

type Server struct {

    Addr string

    Handler Handler

    TLSConfig *tls.Config

    ReadTimeout time.Duration

    ReadHeaderTimeout time.Duration

    /* ... <omitted for brevity > ... */

}

Let’s define a srv variable of the Server type. The zero value for Server is a valid configuration, but
in this case, we denote Addr as 0.0.0.0:8080 to listen on any interface and port 8080 specifically.

The Server type has a ListenAndServe method to listen on the TCP network address, Addr,
of the Server instance (srv.Addr or 0.0.0.0:8080 in the example). It then calls the Serve
method to accept incoming connections and handle the requests. For each request, it creates a new
service goroutine that reads the request and then calls the Server instance, Handler (srv.
Handler or nil in the example), to reply to them:

func main() {

    /* ... <omitted for brevity > ... */

    log.Println("Starting web server at 0.0.0.0:8080")

    srv := http.Server{Addr: "0.0.0.0:8080"}

    // ListenAndServe always returns a non-nil error.

    log.Fatal(srv.ListenAndServe())

}

This brings us to the second type in the net/http package we mentioned initially, the Handler
interface. The role of Handler is to respond to an HTTP request:

type Handler interface {

    ServeHTTP(ResponseWriter, *Request)

}

Networking (TCP/IP) with Go166

Handler responds to HTTP requests via its ServeHTTP method, which takes two arguments:

•	 A ResponseWriter interface, which you can use to craft an HTTP header and payload to
reply to the request and then return:

type ResponseWriter interface {

    Header() Header

    // Write writes the data to the connection

    // as part of an HTTP reply.

    Write([]byte) (int, error)

    // WriteHeader sends an HTTP response header

    // with the provided status code.

    WriteHeader(statusCode int)

}

•	 An HTTP Request, which holds the HTTP request received by the server in this case. It
could also be a request you want to send from a client:

type Request struct {

    // Method specifies the HTTP method

    // (GET, POST, PUT, etc.).

    Method string

    // URL specifies either the URI being requested

    // (for server requests) or the URL to access

    // (for client requests).

    URL *url.URL

    Header Header

    Body io.ReadCloser

    /* ... <omitted for brevity > ... */

}

Now, if we look back at our example, we didn’t specify our Handler, so when we called
ListenAndServe, our handler was actually null (nil). In this scenario, ListenAndServe
defaults a DefaultServeMux to handle the requests that come in. DefaultServeMux is an
HTTP request multiplexer that the net/http package includes. It routes requests to the most
appropriate handler based on a list of registered URL patterns.

The application layer 167

The next step in the example is to register a handler function for a given pattern. We do this
with the HandleFunc function, which takes a string pattern and a handler function with the
func(ResponseWriter, *Request) signature as arguments. Now, when we get an incoming
request that has a URL that matches this pattern, the specified handler generates the response.

Going back to the example, in the first code snippet we showed of the main function, we purposely
omitted the initial two lines of code, which actually register two URL patterns to match, /lookup
and /check:

func main() {

    http.HandleFunc("/lookup", lookup)

    http.HandleFunc("/check", check)

    /* ... <omitted for brevity > ... */

}

Normal queries follow the /lookup route, but we also included a /check option to let us to run a
quick health check and verify the server is responding to requests. Each pattern has a corresponding
handler function with the func(ResponseWriter, *Request) signature as an argument. We
conveniently named these functions lookup and check. Figure 4.6 shows how DefaultServeMux
logically determines the Handler that handles the user request:

Figure 4.6 – Handling HTTP requests

Networking (TCP/IP) with Go168

Now, let’s examine the lookup handler function. A couple of things stand out:

•	 We write the response to the request via the first argument, w, an http.ResponseWriter
that satisfies the io.Writer interface. This means you can use any mechanism that accepts
an io.Writer interface to write to it. Here, we use fmt.Sprintf.

•	 We access the user’s request via the second argument, req. Here, we extract the target URL
from the request to print it out in the example with req.URL.Query. Also, we get the value
of the query to further process the request based on its type, whether this is for a MAC address,
IP address, or a domain:

func lookup(w http.ResponseWriter, req *http.Request) {

    log.Printf("Incoming %+v", req.URL.Query())

    var response string

    for k, v := range req.URL.Query() {

        switch k {

        case "ip":

            response = getWhois(v)

        case "mac":

            response = getMAC(v)

        case "domain":

            response = getWhois(v)

        default:

            response = fmt.Sprintf(

                        "query %q not recognized", k)

        }

    }

    fmt.Fprintf(w, response)

}

When running this on the server side, we need to include all the .go files in the folder, not only
main.go, so you want to run go run *.go to get an output like the one in the next snippet:

ch04/http/server$ go run *.go

2021/12/13 02:02:39 macDB initialized

2021/12/13 02:02:39 Starting web server at 0.0.0.0:8080

2021/12/13 02:02:56 Incoming map[mac:[68b5.99fc.d1df]]

2021/12/13 02:03:19 Incoming map[domain:[tkng.io]]

2021/12/13 02:03:19 whoisLookup tkng.io@whois.iana.org

Summary 169

2021/12/13 02:03:19 whoisLookup tkng.io@whois.nic.io

2021/12/13 02:05:09 Incoming map[ip:[1.1.1.1]]

2021/12/13 02:05:09 whoisLookup 1.1.1.1@whois.iana.org

2021/12/13 02:05:09 whoisLookup 1.1.1.1@whois.apnic.net

To run this example, you need to open two tabs. You first run go run *.go from ch04/http/
server (Further reading) and then from another tab, you can make the client queries from ch04/
http/client (Further reading) with flags as in the outputs in the client part of this section.

Summary
In this chapter, we reviewed the different layers of the TCP/IP model and the applicability of Go to
each one. We went from changing the state of network interfaces on Linux systems to working with
IP addresses, all the way to building a web application prototype.

Now you are ready to embark on the network automation journey and take all these lessons you’ve
learned so far and apply them to make networks more efficient, reliable, and consistent. This is what
we begin to examine in Chapter 5, Network Automation.

Further reading
•	 syscall package: https://pkg.go.dev/syscall

•	 vishvananda/netlink package: https://github.com/vishvananda/netlink

•	 mdlayher/netlink package: https://github.com/mdlayher/netlink

•	 mdlayher/netlink ecosystem: https://github.com/mdlayher/
netlink#ecosystem

•	 ch04/netlink: https://github.com/PacktPublishing/Network-Automation-
with-Go/tree/main/ch04/netlink

•	 CAP_NET_ADMIN capabilities: https://man7.org/linux/man-pages/man7/
capabilities.7.html

•	 google/gopacket package: https://github.com/google/gopacket

•	 mdlayher/ethernet package: https://github.com/mdlayher/ethernet

•	 kube-vip package: https://github.com/kube-vip/kube-vip/tree/main/
pkg/vip

•	 mdlayher/arp package: https://github.com/mdlayher/arp

•	 mdlayher/packet package: https://github.com/mdlayher/packet

https://pkg.go.dev/syscall

https://github.com/vishvananda/netlink

https://github.com/mdlayher/netlink

https://github.com/mdlayher/netlink#ecosystem

https://github.com/mdlayher/netlink#ecosystem

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/netlink

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/netlink

https://man7.org/linux/man-pages/man7/capabilities.7.html

https://man7.org/linux/man-pages/man7/capabilities.7.html

https://github.com/google/gopacket

https://github.com/mdlayher/ethernet

https://github.com/kube-vip/kube-vip/tree/main/pkg/vip

https://github.com/kube-vip/kube-vip/tree/main/pkg/vip

https://github.com/mdlayher/arp

https://github.com/mdlayher/packet

Networking (TCP/IP) with Go170

•	 ch04/vip: https://github.com/PacktPublishing/Network-Automation-
with-Go/tree/main/ch04/vip

•	 net package: https://pkg.go.dev/net

•	 ch04/net/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch04/net/main.go

•	 netaddr.IP: a new IP address type for Go: https://tailscale.com/blog/netaddr-
new-ip-type-for-go/

•	 ch04/parseip: https://github.com/PacktPublishing/Network-Automation-
with-Go/tree/main/ch04/parseip

•	 ch04/parseprefix: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch04/parseprefix

•	 cidranger: https://github.com/yl2chen/cidranger

•	 ch04/trie/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch04/trie/main.go

•	 GeoLite2 Free Geolocation Data: https://dev.maxmind.com/geoip/geolite2-
free-geolocation-data

•	 ch04/geo/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch04/geo/main.go

•	 iplib package: https://github.com/c-robinson/iplib

•	 ch04/ipaddr/main.go: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch04/ipaddr/main.go

•	 cloudprober: https://github.com/cloudprober/cloudprober

•	 ch04/udp-ping: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch04/udp-ping

•	 The book’s GitHub repository: https://github.com/PacktPublishing/Network-
Automation-with-Go

•	 ch04/http/client/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch04/http/client/main.go

•	 ch04/http/server: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch04/http/server

•	 ch04/http/client: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch04/http/client

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/vip

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/vip

https://pkg.go.dev/net

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/net/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/net/main.go

https://tailscale.com/blog/netaddr-new-ip-type-for-go/

https://tailscale.com/blog/netaddr-new-ip-type-for-go/

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/parseip

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/parseip

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/parseprefix

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/parseprefix

https://github.com/yl2chen/cidranger

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/trie/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/trie/main.go

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/geo/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/geo/main.go

https://github.com/c-robinson/iplib

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/ipaddr/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/ipaddr/main.go

https://github.com/cloudprober/cloudprober

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/udp-ping

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch04/udp-ping

https://github.com/PacktPublishing/Network-Automation-with-Go

https://github.com/PacktPublishing/Network-Automation-with-Go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/http/client/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/http/client/main.go

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/http/server

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/http/server

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/http/client
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch04/http/client

Part 2:
Common Tools and Frameworks

This part describes the existing challenges and objectives of network automation. You will learn how
organizations are approaching this major undertaking and where we are headed.

This part of the book comprises the following chapters:

•	 Chapter 5, Network Automation

•	 Chapter 6, Configuration Management

•	 Chapter 7, Automation Frameworks

5
Network Automation

Up until this point, we’ve covered some Go fundamentals required to perform common network-related
activities. Now, it’s time to focus on the principal topic of this book — network automation. Before we
review the solutions, tools, and code libraries, let’s take a step back and look at network automation
as a discipline. In this chapter, we aim to find an answer to the following questions:

•	 What is network automation and why is it often considered a dedicated skill that’s distinct
from, say, network engineering?

•	 What is its impact on network operations and its benefits for the business?

•	 What are some common automation use cases you can tackle individually?

•	 How can you string these individual use cases together into a bigger network automation system
and why would anyone want that?

This chapter is light on code but heavy on words and may contain arguments that not everyone may
agree on. We, as authors of this book, are trying to express our opinions as objectively as possible, but
our views are ultimately based on subjective experiences that we’ve had in our careers. Still, we have
tried our best to steer away from the most controversial topics such as automation reducing the need
for human operators and, where possible, provided evidence to support our arguments.

In this chapter we will cover the following topics:

•	 What is network automation?

•	 Automating network operation tasks

•	 Systems approach

Technical requirements
You can find the code examples for this chapter in this book’s GitHub repository (specified in the
Further reading section), under the ch05 folder.

Network Automation174

What is network automation?
As a relatively new discipline, it’s not uncommon to see a broad spectrum of network automation
definitions that vary in scope and goals. Network automation isn’t about one use case or technology
in particular, but rather what can be of help in your environment and benefit your business.

Some engineers would argue that routing protocols already automate networks and the CLI is the
intent-based API, transforming individual network commands into a dynamic network state. We
don’t try to argue with this point of view, as there are some grains of truth in these statements, but it’s
certainly not the most popular definition in the industry.

Instead, let’s define network automation as a set of processes to automate common manual workflows
performed by a network operator, such as provisioning services, performing software upgrades, or
telemetry processing. This includes tasks that network engineers would otherwise traditionally have
to click their way through, combined with running a set of CLI commands.

More complex network automation solutions may involve reacting to operational events by adjusting
network configuration, applying traffic engineering policies, or even enforcing some design constraints.
One common trait that unites all these activities is the ability to describe the desired behavior in a
concrete sequence of steps that lead to the expected outcome. This may rule out some iterative activities
such as network troubleshooting or creative activities such as network design, although they are making
considerable progress in these areas with static configuration analysis (Batfish: Further reading) and
mathematical network modeling (Forward: Further reading), for example, so we could eventually
borrow concepts from the software world such as test-driven development (TDD) to automate the
development and testing (whole-network quality assurance (QA) and regression) of configuration
templates of a network design.

Why network automation exists

Probably a more interesting question to answer is why network automation exists as a discipline
unlike, say, systems administration, which has evolved into site reliability engineering and now
encompasses not only plain infrastructure provisioning but also observability, automation, and even
systems software development.

The way we run and operate networks has changed very little in the last few decades. Network
management still mainly focuses on executing CLI commands and working with unstructured data,
despite the wide acceptance that CLI-driven operations are error-prone and not scalable. Often, this
leads to a lack of standardization that leaves network engineers with manual processes taking up most
of their workday and making networks difficult to scale, support, and secure.

Network automation has emerged as a response to this to improve efficiency and reduce the overhead
of mundane tasks. The goal is to produce more reliable and repeatable processes, which increases
productivity. This also helps make networks more consistent and simpler to operate, while at the same
time reducing the likelihood of an outage, thus minimizing downtime.

What is network automation? 175

Despite this, not all network engineers have embarked on the journey of network automation. Some
reasons we think this could be the case are as follows:

•	 Lack of standard and vendor-agnostic APIs for network management that return structured
data. Network vendors typically offer proprietary configuration syntax or CLIs designed
primarily for human interaction.

•	 Automation requires a completely new skill set and, since network engineers generally don’t
come from a computer science background, programming remains a big skill gap.

•	 Learning automation requires time and not every employer is happy to dedicate part of their
employees’ time to something with no immediate benefit.

•	 Automation speed can also propagate a failure rapidly, which may not help build trust in automation
early on. It takes time to create systems that are reliable, secure, and offer enough visibility.

•	 Given the large number of network automation tools, libraries, and frameworks with overlapping
scopes, choosing the right one for a particular task can be challenging and introduces the risk
of over-investing in something that may end up being a wrong choice.

•	 Shifting from it’s always been done this way is hard. Sometimes, we follow the path of least
resistance and, thus, are reluctant to change.

Introducing network automation into your environment brings a different set of gains and perils,
depending on your point of view. So, let’s try to unpack what it means to both engineers operating
the network and the upper management operating the business for whom a network can be a cost
or a profit center.

Bottom-up view

Some network operation activities that lend themselves well to automation include configuration
changes, running audits or compliance checks, software and device life cycle management, and more.
Several organizations have playbooks or require change management forms, documenting every
operational step of these processes. Many companies already use a form of automation when a senior
engineer prepares a change that a junior engineer later executes.

These activities usually have a set of very well-defined inputs, such as an inventory of devices, a list of
commands to execute, a set of well-defined outputs, and maybe a filled-out spreadsheet or a new software
version running on a device. These attributes make these activities suitable candidates for automation.

One of the commonly cited benefits of automation is its ability to scale – the relative cost of making
a change to one device is the same as making a change to thousands of devices or making a hundred
changes to hundreds of devices. Although scale and speed are important, they may not be the most
valuable outcomes of process automation.

For some networking teams with relatively small-scale networks or low change rates, network automation
may bring other benefits, such as the following:

Network Automation176

•	 Consistency: Since computers perform these changes, you can expect them to yield the
same result every time. Also, you can enforce the same configurations, templates, or policies
across elements.

•	 Reliability: Instructions are code, which computers interprets unambiguously. You can also
add automatic checks to validate inputs or results.

•	 Visibility: All future and past changes in the network can be viewed by all members of the
team, to embrace peer review and ease troubleshooting.

•	 Ubiquity: The same tools are used across different teams, which simplifies interactions and
improves knowledge sharing.

When introducing network automation to your peers, it’s important to emphasize that this is not a
single product or a solution, but rather a journey – a vector in a new direction with no fixed destination.

Keep in mind that not all manual processes may be completely automatable, and it may take years to
develop new practices and update existing procedures. This is why it’s also very important to get your
organization’s management on board.

Top-down view

Network engineers can understand the preceding technical points and can judge for themselves
whether a network automation project is worth their time and effort to deploy.

By contrast, the same arguments may not be enough to convince management if you don’t look at
the bigger picture (the business). This could be one of the primary reasons a network automation
initiative may fail. If the business benefits are not clear, then management may decide it’s not worth
the investment of time. But the reverse is also true – a network automation initiative is more likely to
succeed when it has support within the organization’s management structure.

Here is a list of business values that you can use as a starting point in discussions with management.
Depending on the company, a network can be a cost center or a profit center, so adjust or re-prioritize
them to fit your circumstances:

•	 Cost management: Generate cost savings through resource optimization. You reduce the
costs of running the network by troubleshooting fewer human errors, not having to manually
compile audit reports, or having to work on overtime changes.

•	 Speed of delivery: Increase the speed to configure and validate changes in the network, allowing
you to deliver customer services faster or even on-demand.

•	 Risk management: Enforce security policies consistently with every operation to reduce risk.
Reduce the number of incidents that impact services and hence your revenue.

Automating network operation tasks 177

•	 Business capabilities: Depending on how your organization defines value, network automation
can help discover opportunities. Increased visibility could help improve capacity planning or
spot unused capacity or hot spots. New services or business capabilities can be an outcome of
streamlined cross-team interactions due to the well-defined interfaces, inputs, and outputs of
an automated system.

Despite the rise of awareness about the benefits of network automation, some people are still hesitant
to embrace it as an internal organizational practice, so getting support from them may require extra
effort. Each situation is unique and, thus, may require a slightly distinct set of arguments. In the end,
network automation is becoming an important part of network engineering and its relevance in the
industry continues to increase.

Now that we’ve defined what network automation is and why we need it, it’s time to dig deeper
and start looking at concrete use cases and areas where you can apply it in the traditional network
engineering discipline.

Automating network operation tasks
This section introduces some common network operation tasks and use cases where you can introduce
automation without causing too much friction with the existing tools and processes. We aim to take
a series of manual steps normally performed by a human operator and explore how you can convert
them into code so that a computer can execute them for you, all while keeping the original inputs and
outputs unchanged. We will divide this section into three categories:

•	 Configuration management

•	 Network state analysis

•	 Network audits and reporting

Let’s get started.

Configuration management

This is the most popular area of the network engineering discipline that spans beyond network
operations and often includes design and architecture stages. Most people see this as the lowest-
hanging fruit to test, or where to start using, network automation. Let’s look at some common use
cases that fall under this category.

Config generation

Before we can make any changes to a network device, we need to craft the desired configuration for
that target device. Traditionally, we would do this manually in a text editor, which involves a lot of
copy/paste and search/replace actions.

Network Automation178

You can use the following Go packages to automate this process and generate a network device
configuration based on a set of inputs:

•	 text/template: A package from the standard library that uses a special Go templating
language to generate an unstructured text document based on the input program variables.
We will use this package in the Interacting with network devices via SSH section in Chapter 6,
Configuration Management.

•	 flosch/pongo2: A Django-syntax-like templating language for those that are more familiar
with Jinja2 (the gonja fork).

•	 encoding: This package includes encoders and decoders for YAML and JSON to parse
and generate documents you can use with structured network APIs (for example, YANG or
OpenAPI). We will use this package in the Getting config inputs from other systems via HTTP
section in Chapter 6, Configuration Management.

•	 regexp: Another standard library package that implements efficient regular expression
pattern matching and string manipulation. We will use this package in the example at the end
of this chapter.

Once you sort out the configuration details, you can send this config to the target device, which brings
us to the next set of use cases.

Configuration changes, backups, and restore

Working with device configuration may involve backing up and replacing the entire device configuration
or making scoped changes to provision new services or update existing configuration snippets. Making
these changes often involves logging into each device individually and executing a set of vendor-
specific commands in a sequence.

The following Go packages can help with the transport abstractions that are common across
different networking vendors to streamline the steps to make changes to, back up, or restore your
network configurations:

•	 crypto/ssh: A standard library package that implements base SSH connectivity. We
will use this package in the Interacting with network devices via SSH section in Chapter 6,
Configuration Management.

•	 scrapli/scrapligo: A third-party package that builds on top of crypto/SSH and offers
various convenient helper functions to work with different CLI prompts and commands from
major networking vendors. You can also use this package as a NETCONF client. We will use this
package in the Automating routine SSH tasks section in Chapter 6, Configuration Management.

Automating network operation tasks 179

•	 net/http: A standard library package that you can use to talk to HTTP-based APIs, such
as RESTCONF or OpenAPI. We will use this package in the Getting config inputs from other
systems via HTTP section in Chapter 6, Configuration Management.

The preceding list is by no means exclusive and several more third-party packages are available,
including some that are specifically designed to work with RESTCONF (Further reading) or NETCONF
(Further reading), but they all vary in their levels of activity or openness to outside contributions.

It always helps to look around, especially when choosing an external package, to make sure it fits your
needs and has a healthy community of contributors.

Configuration diffs and compliance checks

After you have applied the desired configuration, you may need to run periodic compliance checks to
make sure certain invariants remain unchanged or to detect any configuration drift. These use cases
rely on string searching, pattern matching, and computing differences. You can leverage the following
Go packages for this purpose:

•	 strings: A package from the standard library that can offer basic string comparison and
pattern matching with the Compare and Contains functions. We will use this package in
the example at the end of this chapter.

•	 sergi/go-diff: A third-party package that can compare, match, or patch plain text (a Go
port of the google/diff-match-patch package).

•	 homeport/dyff: Another third-party package and a command-line tool you can use to
compare structured documents, such as JSON or YAML.

While keeping your device configuration in check is crucial, you can’t derive everything that happens
in the network from them. That’s why we need to complement our analysis with the operational data
we gather from the network.

Network state analysis

The operational state that results from an applied configuration is often hard to predict. You can spend
a significant amount of time fine-tuning monitoring and collecting information from the network. But
these use cases are often a good first step into network automation because of their low-risk profile,
so they present a very attractive opportunity to start using Go.

Collecting operational state

Depending on the target network operating system (NOS), collecting operational data from a
network device can be a quick API call – for example, an HTTP GET with a URL parameter of
?rev=operational indicates that the returned data should come from the operational data store.

Network Automation180

In contrast, for a human-first NOS, this may require extra steps to parse the CLI output you get from
it. You can do this in Go in a few different ways:

•	 regexp: Using regular expressions is the most battle-tested and well-known way of parsing
unstructured text into variables. Keep in mind that writing robust regular expressions and
troubleshooting them can be a challenge. We will use this package in the example at the end
of this chapter.

•	 sirikothe/gotextfsm: This package offers a higher-level abstraction built on top of the
regexp package, designed to parse semi-formatted text, meaning text with visual structure,
such as tables, but represented as a single string. We will use this package indirectly in the
Checking routing information section in Chapter 6, Configuration Management.

•	 scrapli/scrapligo: This package embeds the textfsm package and allows you to
parse the responses you get from networking devices using the TextFsmParse(template
string) function. We will use this package in the Checking routing information section in
Chapter 6, Configuration Management.

You can get the operational state of the network and parse it into in-memory data structures before
and after a maintenance window, for example, to compare them and vet the success of the work
performed during this time. This is what we’ll discuss next.

State snapshots and validation

Validating the operational state, to make sure that the values we receive are what we expect to see, is
something network engineers do when they configure network devices, run troubleshooting sessions,
provision services, perform software upgrades, and carry out other daily activities as part of their
job assignments.

As we automate the collection of this data and since we can often pre-calculate the intended state,
the next step is to check whether the state is as expected and then make sure that this state persists
over time. For example, BGP neighbors should be in an established state and all connected interfaces
should be up. As we collect new data from the network, we record it in a structured format to compare
it with the intended state and to trigger another action if we find a difference.

Comparing arbitrary data normally requires writing some custom code to traverse these data structures
and look at the values that matter. But there are a few packages that can simplify this task:

•	 reflect.DeepEqual: This package is part of the Go standard library and can use runtime
reflection to compare values that are of the same type.

•	 mitchellh/hashstructure: A third-party package that can calculate a unique hash
from arbitrary Go values that you can use to quickly answer the question if the operational state
matches the one you expect. We will use this package in the example at the end of this chapter.

Automating network operation tasks 181

•	 r3labs/diff: Another third-party package that supports several standard Go types and
relies on runtime reflection to produce a detailed log of all the differences between two Go
structs or values.

We can’t classify all operational states as intended. Some values are more dynamic and their change is
not always actionable. An example of this is MAC and IP address tables – their values fluctuate over
time and long-term churn is normal.

Keeping track of the dynamic state of the network can be helpful during routine maintenance, such
as in software upgrades, where you make snapshots of the network state and can quickly compare
the pre - and post-change values to spot any inconsistencies. Programmatically, this is just like the
generic state validation use case. You use the same set of tools and libraries but save these snapshots
as a structured document on a disk or inside a database over time.

Network audits and reporting

The scope of network audits can vary greatly, from trying to identify obsolete hardware or end-of-
life software to measuring the quality of the service or the rate of control plane updates. Normally,
the goal is to collect and process state information from a large set of devices and produce some
human-readable output.

We discussed state collection and validation tasks in the preceding section, and you can scale this
process to target hundreds or thousands of network devices with goroutines, which we covered in
Chapter 3, Getting Started with Go. The missing part that we haven’t discussed yet is report generation.
Here, Go also offers several resources that you can use to generate human-readable outputs:

•	 text/tabwriter: This is a package from the standard library you should consider if you
want to send information to standard output. You can use this package to print tabbed data.
Other feature-rich options exist outside of the standard library, one of which is the jedib0t/
go-pretty/v6 package, which can you can use to colorize text or print tables, lists, and
progress bars.

•	 unidoc/unioffice: This package or qax-os/excelize are good options if you want
to produce a spreadsheet. You can also use unidoc/unioffice to work with Word, Excel,
or PowerPoint documents.

•	 html/template and text/template: These are the two most common templating
libraries. Hugo, the popular static site generator, uses both the html and text template
packages, for example.

•	 go:embed: This is a Go directive that you could use to allow templates to be embedded inside
a compiled Go binary to simplify code distribution.

The use cases we’ve introduced in this section are all relatively independent. Once you automate them,
they can become so-called automation islands, completely isolated from one another at first, but once

Network Automation182

their number grows, they may merge into more complex multi-stage workflows or even complete
closed-loop systems. This is what we’ll explore in the next section.

Systems approach
As you start automating different tasks with an incremental approach, you may envision a path where
you chain a subset of these automated tasks together to orchestrate a workflow.

You can also look at this from a different angle. You initially break down your existing manual processes
into smaller chunks of work that you can automate independently, so you don’t need to wait until you
get the full end-to-end process automated to start taking advantage of automation, while at the same
time you are mindful of the bigger picture.

In this context, you take the first steps to interconnect different building blocks, which become part of
a larger system that delivers a business outcome with eventually no human intervention that originally
may have involved several teams. That’s what we call a systems approach.

One common example is when you mix the processes of configuring network services and collecting
operational data from the network, which is what we’ll discuss next.

Closed-loop automation

One of the first things every network engineer does after configuring anything on a network device is to
check the status of that service, protocol, or resource configured via a CLI command. If an automated
system performs this configuration, the network engineer still needs to log into a network device or
group of network devices to execute commands, or maybe go to a web portal to check the logs or
graphs that show the statistics for the network devices. This time-consuming, repetitive process that
is error-prone for humans becomes a natural fit for automation as well.

Now, you not only push the configuration or instructions down to the network but also ingest real-
time operational data from the network, which you can process to determine whether it matches the
intended state of the network.

If we abstract away the network device details, a closed-loop application would consume network
intelligence on one interface, and push intent down to the network. We can loosely define these
as follows:

•	 Intent: This would be the declarative definition of the operational state or measurable outcome
you expect in the context of the network (topology, inventory, protocol, and so on) without
requiring you to specify an exact procedure to get to it (those are implementation details).

•	 Network intelligence: This would be telemetry from the network that is actionable after some
level of processing to make it useful. Keep in mind that events, metrics, stats, or alarms do not
necessarily translate into actionable intelligence. Network operators get so many alarms that it’s

Systems approach 183

hard to know what’s real and what’s noise. Hence, network intelligence results from correlating
this data, running analytics, or any other process that helps tie this to the desired intent.

The following is a high-level diagram of a closed-loop application:

Figure 5.1 – Closed-loop automation – 10,000 foot view

The intent translates into configuration syntax or programmatic instructions, which are specific to
the network device. We can adjust these instructions based on the feedback we get from the network,
enabling us to close the loop and automate the life cycle of network services.

You can think of a closed-loop system as a continuous loop that learns from the networks and adapts
to them. This could replace pre - and post-snapshot checks as you would compare the network at
arbitrary times and for arbitrary deltas continuously. But what we see in networks today is somewhat
closer to systems that react to the network feedback only during the time window in which they
provision a service. This is what we will replicate in the following example.

Demo application

For the demo application, we could either build a distributed system where all the different components
communicate and coordinate via messages over the network, or run everything on just one node in
a single application. Because the goal is to illustrate the notion of closed-loop automation and not to
show how distributed systems work, we will keep the application simple and run all the components
as functions of a monolith application, as shown in the following diagram:

Network Automation184

Figure 5.2 – Closed-loop automation sample application

The application starts by reading the input data from the user. It reads the target device information
for this example from a file, input.yml, as shown in the following code snippet. We hard code
the parameters of the service to configure a variable (intent) in the code. The service we want to
configure in this case is gRPC, listening on IPv4 port 57777 with TLS enabled:

input.yml

router:

- hostname: sandbox-iosxr-1.cisco.com

  platform: cisco_iosxr

  strictkey: false

  username: admin

  password: C1sco12345

We encapsulate the service information in a Service definition that acts as a higher layer of
abstraction than what a network device configuration represents, which translates into the intent for
this example. We also compute a hash of this value so that we can compare it later with the operational
information we receive from the network:

func main() {

    /* ... <omitted for brevity > ... */

    intent := Service{

        Name:     "grpc",

        Port:     "57777",

        AF:       "ipv4",

        Insecure: false,

        CLI:      "show grpc status",

Systems approach 185

    }

    intentHash, err := hashstructure.Hash(intent,

        hashstructure.FormatV2, nil)

    /* ... <omitted for brevity > ... */

}

Before the application configures the service, we have the chance to perform a series of pre-maintenance
tasks, such as running a network audit to report whether the service is present already, so you may
not need to configure it. Another good idea is to make a backup of the network device’s configuration
in case we need to roll back the changes.

In this example, we must make a configuration backup of the target device with the getConfig
method and then save it in a folder with the save method:

func main() {

    /* ... <omitted for brevity > ... */

    config, err := iosxr.getConfig()

    // process error

    err = config.save()

    /* ... <omitted for brevity > ... */

}

With the pre-work done, the application enters a continuous enforcement loop that runs, in this
example, every 30 seconds. Inside the loop, the application collects the operational state of the service
with the getOper method. This method sends a CLI command to the target device to gather the
operational details of the service we need:

func (r Router) getOper(s Service) (o DeviceInfo, err error) {

    rs, err := r.Conn.SendCommand(s.CLI)

    // process error

    o = DeviceInfo{

        Device:    r.Hostname,

        Output:    rs.Result,

        Timestamp: time.Now(),

    }

    return o, nil

}

Network Automation186

Once we receive the response, we parse the information with regular expressions while using the
regexp package to generate a new Service value with it that captures whether the service has
TLS enabled, for example, as well as the rest of the Service attributes. Then, we calculate a new
hash for this Service type instance, which we compare with the original hash we have to validate
whether the operational state of the service matches the intent:

    if oprHash == intentHash {

        continue

    }

If these values match, we can proceed to the next iteration (continue). Otherwise, we need to configure
the router to bring the service to the desired state. Then, the loop starts over again. We get the service
configuration in the target device’s syntax by using a template with the genConfig method and the
text/template package, which we then send to the target device with the sendConfig function:

func (r Router) sendConfig(conf string) error {

    c, err := cfg.NewCfgDriver(r.Conn, r.Platform)

    // process error

    err = c.Prepare()

    // process error

    _, err = c.LoadConfig(conf, false)

    // process error

    _, err = c.CommitConfig()

    // process error

    return nil

}

If you want to see this example in action, you can run the code from the ch05/closed-loop
folder. While it’s running, open an SSH session to the target Cisco DevNet device in a separate terminal
window with sshpass -p "C1sco12345" ssh admin@sandbox-iosxr-1.cisco.
com and execute the following to disable TLS:

conf

grpc no-tls

commit

Systems approach 187

In the program’s output, you will see that it eventually catches this discrepancy, so it proceeds to
remediate it by re-configuring TLS. The code for this example is available at ch05/closed-loop/
main.go (Further reading):

ch05/closed-loop$ go run main.go

Entering to continuous loop ====>

 Loop at 15:31:22

  Operational state from device:

   service: grpc

   addr-family: ipv4

   port: 57777

   TLS: true

 Loop at 15:31:52

  Operational state from device:

   service: grpc

   addr-family: ipv4

   port: 57777

   TLS: false

Configuring device ====>

 Loop at 15:32:22

  Operational state from device:

   service: grpc

   addr-family: ipv4

   port: 57777

   TLS: true

...

The intelligence in this scenario only considers a boolean outcome, without a qualitative assessment
of the network situation. You can also explore how to get a more involved assessment of the data you
retrieve from the network to make a decision tree that goes beyond just a simple fix network yes or no.

Likewise, with intent, we only cover a direct predetermined relationship between the intent and the
configuration you require to enable it. Real deployments likely have more moving parts and decisions
on which parts you need.

Network Automation188

Summary
In this chapter, we discussed what network automation is, its impact on network operations, and its
benefits for the business. We talked about different use cases, from configuration management and
network state analysis to running network audits and reporting, to finally look at how to put different
pieces together to create a closed-loop system that can help you enforce the desired intent of the network.

In the next chapter, we’ll examine configuration management in detail, one of the more recurrent
network automation use cases, and navigate through the options that Go presents to us to automate it.

Further reading
For more information about the topics that were covered in this chapter, take a look at the
following resources:

•	 This book’s GitHub repository: https://github.com/PacktPublishing/Network-
Automation-with-Go

•	 Batfish: https://www.batfish.org/

•	 Forward: https://forwardnetworks.com/forward-enterprise/

•	 RESTCONF: https://github.com/freeconf/restconf

•	 NETCONF: https://github.com/Juniper/go-netconf

•	 ch05/closed-loop/main.go: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch05/closed-loop/main.go#L1

https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/Network-Automation-with-Go
https://www.batfish.org/
https://forwardnetworks.com/forward-enterprise/
https://github.com/freeconf/restconf
https://github.com/Juniper/go-netconf
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch05/closed-loop/main.go#L1
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch05/closed-loop/main.go#L1

6
Configuration Management

Configuration management is a process that helps us enforce the desired configuration state on an
IT system. It’s a way to make sure a network device, in our context, performs as expected as we roll
out new settings. As this becomes a mundane task we perform repeatedly, it’s no surprise network
configuration management is the most common network automation use case according to the
NetDevOps 2020 Survey (Further reading).

In the previous chapter, we discussed common configuration management tasks, along with some
helpful tools and libraries that can help you write programs to automate those tasks in Go. In this
chapter, we will focus on a few concrete examples, taking a closer look at how Go can help us connect
and interact with network devices from different networking vendors using standard protocols. We
will cover four areas in this chapter:

•	 Before we introduce any new examples, we will define a three-node multi-vendor virtual network
lab to test the code examples in this chapter and later chapters of this book.

•	 Next, we will explore how we can use Go and SSH to interact with network devices.

•	 Then, we will repeat the exercise following the same program structure as with SSH but using
HTTP to contrast these different options.

•	 Finally, we will extract and parse the resulting operational state to verify that our configuration
changes have been successful.

Note that we have deliberately avoided talking about YANG-based APIs here as we will cover them
extensively in the last few chapters of this book.

In this chapter, we will cover the following topics:

•	 Environment setup

•	 Interacting with network devices via SSH

•	 Interacting with network devices via HTTP

•	 State validation

Configuration Management190

Technical requirements
You can find the code examples for this chapter in the book’s GitHub repository: https://github.
com/PacktPublishing/Network-Automation-with-Go, under the ch06 folder.

Important Note
We recommend that you execute the Go programs in this chapter in a virtual lab environment.
Refer to the Appendix for prerequisites and instructions on how to build it.

Environment setup
One of the easiest and safest ways to learn and experiment with network automation is to build a lab
environment. Thanks to the progress we’ve had in the last decade, today, we have access to virtualized
and containerized network devices from different networking vendors and plenty of tools that can
help us build a virtual topology from them.

In this book, we will use one of those tools: Containerlab. This tool, which is written in Go, allows
you to build arbitrary network topologies from container images. The fact that you can create and
run topologies based on a plain YAML file in a matter of seconds makes it a strong choice to run
quick tests. Please refer to the Appendix for installation instructions and recommendations for host
operating systems.

Creating the topology

Throughout the rest of this book, we will work with a base network topology consisting of three
containerized network devices running different network operating systems (NOSes):

•	 srl: Running Nokia’s Service Router Linux (SR Linux)

•	 cvx: Running NVIDIA’s Cumulus Linux

•	 ceos: Running Arista’s EOS

The following diagram depicts the device interconnections. They all come up with their default
(blank) configuration:

https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/Network-Automation-with-Go

Environment setup 191

Figure 6.1 – Test topology

We can describe this topology with the following YAML file, which is a representation that Containerlab
can interpret and translate into a running topology:

name: netgo

topology:

  nodes:

    srl:

      kind: srl

      image: ghcr.io/nokia/srlinux:21.6.4

    ceos:

      kind: ceos

      image: ceos:4.26.4M

    cvx:

      kind: cvx

      image: networkop/cx:5.0.0

      runtime: docker

  links:

    - endpoints: ["srl:e1-1", "ceos:eth1"]

    - endpoints: ["cvx:swp1", "ceos:eth2"]

Configuration Management192

You can find this YAML file, like the rest of the code examples, in this book’s GitHub repository, specifically
in the topo-base directory. If you go through the Appendix to learn more about Containerlab or
you have it running already, you can bring up the entire lab with the following command:

topo-base$ sudo containerlab deploy -t topo.yml --reconfigure

Once the lab is up, you can access each device by its hostname using the credentials shown in the
following table:

Device Username Password
clab-netgo-srl admin admin
clab-netgo-ceos admin admin
clab-netgo-cvx cumulus cumulus

Table 6.1 – Containerlab access credentials

For example, to access NVIDIA’s device via SSH, you would execute ssh cumulus@clab-netgo-
cvx:

⇨  ssh cumulus@clab-netgo-cvx
cumulus@clab-netgo-cvx's password: cumulus

Linux cvx 5.14.10-300.fc35.x86_64 #1 SMP Thu Oct 7 20:48:44 UTC
2021 x86_64

Welcome to NVIDIA Cumulus (R) Linux (R)

cumulus@cvx:mgmt:~$ exit

If you want to learn more about Containerlab or run this lab setup in the cloud, check out the
instructions in the Appendix of this book.

Interacting with network devices via SSH
Secure Shell (SSH) is the predominant protocol that network engineers use to securely access and
configure network devices via a command-line interface (CLI) that transports unstructured data to
display to end users. This interface simulates a computer terminal, so we’ve used it traditionally for
human interactions.

One of the first steps network engineers take when they embark on the journey of automating mundane
tasks is to create scripts that run a set of CLI commands for them in sequence to achieve an outcome.
Otherwise, they would run the commands themselves interactively via an SSH pseudo-terminal.

Interacting with network devices via SSH 193

While this gives us speed, this is not the only benefit of network automation. As we cover different
technologies through the rest of this book, other benefits, such as reliability, repeatability, and consistency,
to name a few, become a common theme. For now, we will start by crafting an SSH connection to
a network device in Go and send configuration commands line by line, to then take advantage of
a higher-level package in Go that abstracts away the connection details of the different networking
vendors, making the development experience simpler for network engineers.

Describing the network device configurations

The first task we want to do with Go is to configure each of the devices of the three-node topology we
defined in the preceding section. As a learning exercise, we will create three different Go programs
to configure each device independently so that you can contrast the different approaches. While
each program is unique, they all follow the same design structure. One program uses SSH to connect
and configure a device, another one uses Scrapligo, and the last one uses HTTP, as we’ll cover in the
next section.

To make the code examples meaningful, but at the same time not overly complicated, we have limited
the device configurations to apply to the following sections:

•	 A unique IPv4 address on each of the transit links

•	 A Border Gateway Protocol (BGP) peering established between those IPs

•	 A unique loopback address that is also redistributed into BGP

The goal of these settings is to establish reachability between all three loopback interfaces.

In real-life automation systems, developers strive to find a common data model you can use to represent
device configurations for any vendor. The two main examples of this are IETF and OpenConfig YANG
models. We will do the same in this case by defining a standard schema for the input data we will
use for all three network devices but using Go directly to define the data structures instead of the
YANG modeling language. This schema has just enough information to meet the goal of establishing
end-to-end reachability:

type Model struct {

    Uplinks  []Link `yaml:"uplinks"`

    Peers    []Peer `yaml:"peers"`

    ASN      int    `yaml:"asn"`

    Loopback Addr   `yaml:"loopback"`

}

type Link struct {

    Name   string `yaml:"name"`

Configuration Management194

    Prefix string `yaml:"prefix"`

}

type Peer struct {

    IP  string `yaml:"ip"`

    ASN int    `yaml:"asn"`

}

type Addr struct {

    IP string `yaml:"ip"`

}

In each of the programs, we supply the parameters to the data model to generate the device’s configuration
via the input.yml file, which is available in the program’s folder. For the first example, this file
looks as follows:

input.yml

asn: 65000

loopback:

  ip: "198.51.100.0"

uplinks:

  - name: "ethernet-1/1"

    prefix: "192.0.2.0/31"

peers:

  - ip: "192.0.2.1"

    asn: 65001

After we open this file for reading, we deserialize this information into an instance of a Model type
– which represents the data model – with the Decode method. The following output represents
these steps:

func main() {

    src, err := os.Open("input.yml")

    // process error

    defer src.Close()

Interacting with network devices via SSH 195

    d := yaml.NewDecoder(src)

    var input Model

    err = d.Decode(&input)

    // process error

}

Then, we pass the input variable (of the Model type) to a config generator function (devConfig),
which transforms this information into syntax that the target device can understand. The result of
this transformation is a vendor-specific configuration serialized into bytes that you can transfer to
the remote device.

A transport library establishes the connection to the remote device using default credentials, which
you can overwrite via command-line flags. The session we have created has an io.Writer element
that we can use to send the configuration to the remote device:

Figure 6.2 – Program structure

Now that we’re familiar with the structure of the program, let’s explore different implementations
of it to learn more about the Go packages that are available to communicate with network devices,
starting with SSH and Scrapligo.

Using Go’s SSH package to access network devices

The first device from the topology that we are configuring is the containerized Nokia SR Linux.
Although this NOS supports a variety of interfaces, including structured APIs such as gNMI and
NETCONF, in this case, we are configuring it interactively via SSH, using the same commands that
a human operator would use. We will execute these commands as a multi-line string, which we can
craft using Go’s text/template template package.

Configuration Management196

Go’s SSH package, golang.org/x/crypto/ssh, belongs to a set of packages that are still part
of the Go project but developed outside the main Go tree under looser compatibility requirements.
Although this is not the only SSH Go client, other packages tend to reuse parts of this package, so
they become higher-level abstractions.

As described in the general program design, we use the Model data structure to hold the device
configuration inputs and merge them with the srlTemplate template to produce a valid device
configuration as a buffer of bytes:

const srlTemplate = `

enter candidate

{{- range $uplink := .Uplinks }}

set / interface {{ $uplink.Name }} subinterface 0 ipv4 address
{{ $uplink.Prefix }}

set / network-instance default interface {{ $uplink.Name }}.0

{{- end }}

...

`

The srlTemplate constant has a template that starts by looping (using the range keyword) over
the uplinks of a Model instance. For each Link, it takes the Name and Prefix properties of it
to create a couple of CLI commands we can place in a buffer. In the following code, we are running
the Execute method to pass the inputs via the in variable and put the binary representation of
interactive CLI commands on b, which we later expect to send to the remote device (cfg):

func devConfig(in Model)(b bytes.Buffer, err error){

    t, err := template.New("config").Parse(srlTemplate)

    // process error

    err = t.Execute(&b, in)

    // process error

    return b, nil

}

func main() {

    /* ... <omitted for brevity > ... */

    var input Model

    err = d.Decode(&input)

    // process error

Interacting with network devices via SSH 197

    cfg, err := devConfig(input)

    /* ... <continues next > ... */

}

We have hardcoded the authentication credentials to the correct values to fit the lab, but you can
override them if necessary. We use these arguments to establish initial connectivity with the srl
network device:

func main() {

    /* ... <continues from before > ... */

    settings := &ssh.ClientConfig{

        User: *username,

        Auth: []ssh.AuthMethod{

            ssh.Password(*password),

        },

        HostKeyCallback: ssh.InsecureIgnoreHostKey(),

    }

    conn, err := ssh.Dial(

        "tcp",

        fmt.Sprintf("%s:%d", *hostname, sshPort),

        settings,

    )

    // process error

    defer conn.Close()

    /* ... <continues next > ... */

}

If the authentication credentials are correct and there are no connectivity problems, the ssh.Dial
function returns a connection handler (conn), representing a single SSH connection. This connection
acts as a single transport for potentially various channels. One such channel is a pseudo-terminal
session used for interactive communication with the remote device, but it may also include extra
channels that you can use for port forwarding.

The following code snippet spawns a new terminal session and sets the expected terminal parameters,
such as terminal height, width, and TeleTYpe (TTY) speed. The ssh.Session type provides
functions to retrieve standard input and standard output pipes that connect to the remote terminal:

func main() {

    /* ... <continues from before > ... */

    session, err := conn.NewSession()

Configuration Management198

    // process error

    defer session.Close()

    modes := ssh.TerminalModes{

        ssh.ECHO:          1,

        ssh.TTY_OP_ISPEED: 115200,

        ssh.TTY_OP_OSPEED: 115200,

    }

    if err := session.RequestPty("xterm", 40, 80, modes);
err != nil {

        log.Fatal("request for pseudo terminal failed: ", err)

    }

    stdin, err := session.StdinPipe()

    // process error

    stdout, err := session.StdoutPipe()

    // process error

    session.Shell()

    /* ... <continues next > ... */

}

In conformance with the rest of the Go packages, standard input and standard output pipes implement
the io.Writer and io.Reader interfaces, respectively. This means you can use them to write
data in to and read output from the remote network device. We will go back to the cfg buffer with
the CLI config and use the WriteTo method to send this config over to the target node:

func main() {

    /* ... <continues from before > ... */

    log.Print("connected. configuring...")

    cfg.WriteTo(stdin)

}

This is the expected output of this program:

ch06/ssh$ go run main.go

go: downloading golang.org/x/crypto v0.0.0-20220112180741-

Interacting with network devices via SSH 199

5e0467b6c7ce

go: downloading gopkg.in/yaml.v2 v2.4.0

2022/02/07 21:11:44 connected. configuring...

2022/02/07 21:11:44 disconnected. dumping output...

enter candidate

set / interface ethernet-1/1 subinterface 0 ipv4 address
192.0.2.0/31

set / network-instance default interface ethernet-1/1.0

...

set / network-instance default protocols bgp ipv4-unicast
admin-state enable

commit now

quit

Using configuration file(s): []

Welcome to the srlinux CLI.

Type 'help' (and press <ENTER>) if you need any help using
this.

--{ running }--[  ]--   

A:srl#  

--{ running }--[  ]--   

A:srl# enter candidate  

--{ candidate shared default }--[  ]--  

A:srl# set / interface ethernet-1/1 subinterface 0 ipv4 address
192.0.2.0/31    

--{ * candidate shared default }--[  ]--

.......                                

--{ * candidate shared default }--[  ]--  

A:srl# commit now   

All changes have been committed. Leaving candidate mode.

--{ + running }--[  ]--   

A:srl# quit

You can find the complete example in the ch06/ssh folder (Further reading).

Configuration Management200

Automating routine SSH tasks

Common network elements, such as routers and switches, display data for people rather than computers
via the CLI. We rely on screen scraping to let our programs consume this human-readable data. One
popular screen-scraping Python library, whose name comes from scrape cli, is Scrapli.

Scrapli has a version in Go, which we will explore in the following example, called Scrapligo. The goal
of this package is to offer the next layer of abstraction on top of SSH and hide away some transport
complexities while providing several convenient functions and supporting the CLI flavors of different
networking vendors.

To show scrapligo in action, we will configure another network device in the topology: Arista’s
cEOS (ceos). Just like we did with srl, we will use a list of CLI commands to push the desired
network state so that the initial steps of parsing and instantiating a string from a template are the
same. What changes is the template, which uses Arista EOS’s syntax:

const ceosTemplate = `

...

!

router bgp {{ .ASN }}

  router-id {{ .Loopback.IP }}

{{- range $peer := .Peers }}  

  neighbor {{ $peer.IP }} remote-as {{ $peer.ASN }}

{{- end }}

  redistribute connected

!

`

The difference starts when we get to the SSH connection setup. We create a device driver
(GetNetworkDriver) to connect to the remote device with the device hostname and authentication
credentials. The platform definition comes from the platform package of scrapligo. From then
on, it only takes a single method call on this driver to open an SSH connection to the remote device:

func main() {

    /* ... <omitted for brevity > ... */

    conn, err := platform.NewPlatform(

        *nos,

        *hostname,

        options.WithAuthNoStrictKey(),

        options.WithAuthUsername(*username),

        options.WithAuthPassword(*password),

Interacting with network devices via SSH 201

    )

    // process error  

    driver, err := conn.GetNetworkDriver()

    // process error  

    err = driver.Open()

    // process error  

    defer driver.Close()

    /* ... <continues next > ... */

}

One of the extra features that scrapli offers is the cscrapligocfg package, which defines a high-
level API to work with a remote network device’s configuration. This API understands different CLI
flavors, it can sanitize a configuration before sending it to the device, and it can generate configuration
diffs for us. But, most importantly, this package allows for a single function call to load the entire
device configuration as a string, taking care of things such as privilege escalation and configuration
merging or replacement. We will do this here with the LoadConfig method:

func main() {

    /* ... <continues from before > ... */

    conf, err := cfg.NewCfg(driver, *nos)

    // process error

    // sanitize config by removing keywords like "!" and "end"

    err = conf.Prepare()

    // process error

    response, err = conf.LoadConfig(config.String(), false)

    // process error

}

These are all the steps you need to configure the device in this case. After you run the program with
go run, you can ssh to the device to check that the configuration is now there:

ch06/scrapli$ go run main.go

2022/02/14 17:06:16 Generated config:

!

configure

Configuration Management202

!

ip routing

!

interface Ethernet1

  no switchport

  ip address 192.0.2.1/31

!

...

Normally, to get a response coming back from a device, we need to read the response buffer carefully
until we see a command-line prompt, as it normally ends with an end-of-file (EOF). Although we
don’t show it here, scrapligo can do this for us by reading the received buffer and converting the
response into a string.

Another popular Go SSH package that provides a high-level API to execute commands at scale is
yahoo/vssh. We won’t cover it here, but you can find an example in the ch06/vssh directory of
this book’s repository (Further reading) to configure the network devices of the topology.

Interacting with network devices via HTTP
Over the last decade, networking vendors have begun to include application programming interfaces
(APIs) to manage their devices as a supplement to the CLI. It’s not uncommon to find network devices
with a robust RESTful API that gives you read and write access to it.

A RESTful API is a stateless client-server communication architecture that runs over HTTP. The request
and responses generally transport structured data (JSON, XML, and so on), but they might as well carry
plain text. This makes the RESTful API a better-suited interface for machine-to-machine interactions.

Using Go’s HTTP package to access network devices

The remaining device to configure is NVIDIA’s Cumulus Linux (cvx). We will use its OpenAPI-based
RESTful API to configure it. We will encode the configuration in a JSON message and send it over an
HTTP connection with Go’s net/http package.

As in the SSH examples, we normally load the input data and transform it into the shape the target
device expects with the devConfig function, but in this case, it’s a JSON payload. Because of this, we
no longer need templates to build the network device configuration, as we can now use data structures
in Go to encode and decode data from JSON or any other encoding format.

The data structures represent the configuration data model of the target device. Ideally, this data model
would match the one we defined previously, so we don’t need to define anything else. But that’s not
what we see in the field, where all the network vendors have proprietary data models. The good news

Interacting with network devices via HTTP 203

is that both IETF and OpenConfig offer vendor-agnostic models; we’ll explore these later in Chapter 8,
Network APIs. For now, these are some of the data structures we will use for this device’s configuration:

type router struct {

    Bgp

}

type bgp struct {

    ASN      int

    RouterID string

    AF       map[string]addressFamily

    Enabled  string

    Neighbor map[string]neighbor

}

type neighbor struct {

    RemoteAS int

    Type     string

}

Inside the main function, we parse the program flags and use them to store the HTTP connection
settings inside a data structure with all the details required to build an HTTP request, including any
non-default transport settings for an HTTP client. We do this entirely for convenience purposes as
we want to pass these details to different functions:

type cvx struct {

    url   string

    token string

    httpC http.Client

}

func main() {

    /* ... <omitted for brevity > ... */

    device := cvx{

        url:   fmt.Sprintf("https://%s:%d", *hostname,
defaultNVUEPort),

        token: base64.StdEncoding.EncodeToString([]byte(fmt.
Sprintf("%s:%s", *username, *password))),

Configuration Management204

        httpC: http.Client{

            Transport: &http.Transport{

                TLSClientConfig: &tls.
Config{InsecureSkipVerify: true},

            },

        },

    }

    /* ... <continues next > ... */

}

Now, we can send the configuration over and make it a candidate config on the target device. We can
later apply this configuration on the device by referencing the revision ID we associate our desired
configuration with. Let’s look at the steps to do this that showcase different attributes to consider
when working with HTTP.

First, we will create a new revision ID, which we include as a query parameter (?rev=<revisionID>)
in the URL to connect to the device API. Now, the addr is variable the target device URL that contains
device hostname and revisionID:

func main() {

    /* ... <continues from before > ... */

    // create a new candidate configuration revision

    revisionID, err := createRevision(device)

    // process error

    addr, err := url.Parse(device.url + "/nvue_v1/")

    // process error

    params := url.Values{}

    params.Add("rev", revisionID)

    addr.RawQuery = params.Encode()

    /* ... <continues next > ... */

}

With the URL linked to the revision ID, we put together the PATCH request for the configuration
change. This points to addr and cfg, which is the JSON device configuration that the devConfig
function returns. We also add an HTTP Authorization header with the encoded username and
password and signal that the payload is a JSON message:

func main() {

    /* ... <continues from before > ... */

Interacting with network devices via HTTP 205

    req, err := http.NewRequest("PATCH", addr.String(), &cfg)

    // process error

    req.Header.Add("Content-Type", "application/json")

    req.Header.Add("Authorization", "Basic "+device.token)

    /* ... <continues next > ... */

}

Once we have the HTTP request built, we can pass it to the device HTTP client’s method, Do, which
serializes everything into a binary format, sets up a TCP session, and sends the HTTP request over it.

Finally, to apply the candidate configuration changes, we must make another PATCH request inside
the applyRevision function:

func main() {

    /* ... <continues from before > ... */

    res, err := device.httpC.Do(req)

    // process error

    defer res.Body.Close()

    // Apply candidate revision

    if err := applyRevision(device, revisionID); err != nil {

        log.Fatal(err)

    }

}

You can find the code for this example in the ch06/http directory of this book’s GitHub repository
(Further reading). This is what you should see when you run this program:

ch06/http$ go run main.go

2022/02/14 16:42:26 generated config {

 "interface": {

  "lo": {

   "ip": {

    "address": {

     "198.51.100.2/32": {}

...

 "router": {

  "bgp": {

   "autonomous-system": 65002,

Configuration Management206

   "router-id": "198.51.100.2"

  }

 },

 "vrf": {

  "default": {

   "router": {

    "bgp": {

...

     "enable": "on",

     "neighbor": {

      "192.0.2.2": {

       "remote-as": 65001,

       "type": "numbered"

      },

      "203.0.113.4": {

       "remote-as": 65005,

       "type": "numbered"

      }

...

}

2022/02/14 16:42:27 Created revisionID: changeset/
cumulus/2022-02-14_16.42.26_K4FJ

{

  "state": "apply",

  "transition": {

    "issue": {},

    "progress": ""

  }

}

Just like with SSH, we rarely use net/http directly in our programs to interact with a REST API
and normally use a higher-level package instead.

Getting config inputs from other systems via HTTP

Until this point, the data to generate a particular device configuration has come from a static file that
is present in the program’s folder. These values are network device vendor-agnostic.

Interacting with network devices via HTTP 207

In real-world network automation systems, these values can come from other systems. For example, an
IP address management (IPAM) tool can allocate IP addresses dynamically via a REST API call for a
particular device, which you can use to build its configuration. The collection of systems that supply
these parameters becomes what some refer to as the source of truth. Nautobot is an infrastructure
resource modeling application that falls into this category.

This also highlights the fact that to automate networks, we not only need to interact with network
devices but also integrate with other systems such as Nautobot. This is why we are dedicating this
example to exploring how to Go use to interact with a free public instance of Nautobot available for
anyone at https://demo.nautobot.com/.

The Go client package for Nautobot is automatically generated from its OpenAPI specification, which
means its structure might be familiar to you if you have already worked with other OpenAPI-derived
packages, which is an advantage of machine-generated code.

In the following example, we are using the auto-generated Nautobot Go package to define a Nautobot
API client pointing to https://demo.nautobot.com/ with an API token:

func main() {

    token, err := NewSecurityProviderNautobotToken("...")

    // process error

    c, err := nb.NewClientWithResponses(

        "https://demo.nautobot.com/api/",

        nb.WithRequestEditorFn(token.Intercept),

    )

    /* ... <continues next > ... */

}

The c client allows us to interact with the remote Nautobot instance. In this example, we want to
add one of the lab topology nodes (ceos) to the data center infrastructure management (DCIM)
resource collection of the Nautobot instance. The device details are in the device.json file:

{

    "name": "ams01-ceos-02",

    "device_type": {

        "slug": "ceos"

    },

    "device_role": {

        "slug": "router"

    },

https://demo.nautobot.com/
https://demo.nautobot.com/

Configuration Management208

    "site": {

        "slug": "ams01"

    }

}

Before we can add the device to Nautobot, we must make sure the device type, device role, and site we
are referencing in the device.json file exist by name already in Nautobot. The createResources
function takes care of this. Then, we get the IDs of these resources (device type, device role, and site)
with the getDeviceIDs function, to associate the new device with its type, role, and site:

func main() {

    /* ... <continues from before > ... */

    err = createResources(c)

    // process error

    dev, err := os.Open("device.json")

    // process error

    defer dev.Close()

    d := json.NewDecoder(dev)

    var device nb.Device

    err = d.Decode(&device)

    // process error

    found, devWithIDs, err := getDeviceIDs(c, device)

    /* ... <continues next > ... */

}

If the device is not already in Nautobot, we can create it with the auto-generated
DcimDevicesCreateWithResponse function:

func main() {

    /* ... <continues from before > ... */

    created, err := c.DcimDevicesCreateWithResponse(

        context.TODO(),

        nb.DcimDevicesCreateJSONRequestBody(*devWithIDs))

Interacting with network devices via HTTP 209

    check(err)

}

After running the program with go run nautobot from the ch06/nautobot folder, you
should see the following in the Nautobot graphical interface at https://demo.nautobot.com/:

Figure 6.3 – Nautobot screenshot

The data that we pass to these Dcim functions ends up in HTTP requests, just like the ones we built
manually earlier in this chapter. Here, we don’t deal with URL queries, HTTP paths, or JSON payloads

https://demo.nautobot.com/

Configuration Management210

directly as the package abstracts away all that from us. This allows the developers to focus more on
business value and less on implementation details. It makes the API easier to consume.

The focus of this chapter so far has been more on pushing configurations down to network devices
and less on reading the state of the network after this operation. While configuration management’s
primary focus is on producing and deploying configurations in the correct format, state validation
can play a key role in verifying your configuration changes have been successful. In the next section,
we will learn how to retrieve and parse operational data from a remote device.

State validation
The way network devices model and store their state internally is often different from their configuration
data model. Traditional CLI-first network devices display the state in a tabular format to the end
user, making it easier for network operators to interpret and reason about it. In API-enabled network
operating systems, they can present the state in a structured format, making the data friendlier for
automation, but we still need to prepare the right data model for deserialization.

In this section, we will look at three different methods you could use to read the state from a network
device through a code example that gathers operational data from the devices we just configured with
crypto/ssh, net/http, and scrapligo in the preceding sections of this chapter. For each
network device, we will use one of these resources to get the data in the format we need:

•	 RESTful API calls: To retrieve and parse data from an HTTP interface

•	 Regular expressions: To parse plain text received via SSH

•	 TextFSM templates: To simplify parsing tabular data

Checking routing information

At this point, you should have a three-node topology running. Each network device has a loopback
address we redistribute into BGP. Arista cEOS’s loopback address is 198.51.100.1/32, for example.
The goal of the next program is to verify the setup. We retrieve the routing table information from
every device to check whether all three IPv4 loopback addresses are present. This way, we can verify
our configuration intent – established end-to-end reachability between all devices.

The program has two building blocks:

•	 GetRoutes: A method that connects to the network device, gets the information we need,
and puts it in a common format

•	 checkRoutes: A function that reads the routes from GetRoutes and compares them to
the list of loopback addresses we expect to see (expectedRoutes)

One caveat is that the API type a network device supports to access its operational data remotely
may vary, from the transport protocol to the format of the textual representation of the data. In

State validation 211

our example, this translates into different implementation details of GetRoutes per networking
vendor. Here, we take it a bit to the extreme for educational purposes and make the implementation
per vendor completely different from one another to showcase REST APIs, regular expressions, and
TextFSM independently:

Figure 6.4 – Checking routing information

Each network device has its own data structure. For example, we create SRL for SR Linux. The SRL,
CVX, and CEOS types implement the Router interface, as each one has a GetRoutes method that
contains the implementation details for that specific vendor.

In the main program, a user only needs to initialize the devices with the authentication details, so
it creates a variable of the type we created for that device. Then, it can run the route collection tasks
concurrently by firing off a goroutine for each device that runs the device type’s GetRoutes method.
The Router interface successfully hides away the implementation details of a particular vendor from
the user, as the call is always the same router.GetRoutes:

type Router interface {

    GetRoutes(wg *sync.WaitGroup)

}

func main() {

     cvx := CVX{

     Hostname: "clab-netgo-cvx",

      Authentication: Authentication{

      Username: "cumulus",

     Password: "cumulus",

     },

    }

    srl := SRL{

     Hostname: "clab-netgo-srl",

     Authentication: Authentication{

      Username: "admin",

      Password: "admin",

Configuration Management212

     },

    }

    ceos := CEOS{

     Hostname: "clab-netgo-ceos",

     Authentication: Authentication{

      Username: "admin",

      Password: "admin",

     },

    }

    log.Printf("Checking reachability...")

    devices := []Router{cvx, srl, ceos}

    var wg sync.WaitGroup

    for _, router := range devices {

        wg.Add(1)

        go router.GetRoutes(&wg)

    }

    wg.Wait()

}

Because all GetRoutes instances run in the background in their own goroutine, we added a wg
wait group to make sure we don’t finish the main goroutine until we have collected and verified all
the devices. Before the end of each GetRoutes method, we call the expectedRoutes function
to process the routes we get from that device.

We verify the parsed state (routes) by checking that each expectedRoutes, which contains a unique
set of loopback addresses, is present in each device’s routing table. For every IPv4 prefix received, we
check whether it’s present in expectedRoutes and change a boolean flag to signal this. If, by the
end of this, we have prefixes in expectedRoutes with a Boolean value of false, it means they
were not present in the device’s routing table, and we create a log message:

func checkRoutes(device string, in []string, wg *sync.
WaitGroup) {

    defer wg.Done()

    log.Printf("Checking %s routes", device)

    expectedRoutes := map[string]bool{

State validation 213

        "198.51.100.0/32": false,

        "198.51.100.1/32": false,

        "198.51.100.2/32": false,

    }

    for _, route := range in {

        if _, ok := expectedRoutes[route]; ok {

            log.Print("Route ", route,

                        " found on ", device)

            expectedRoutes[route] = true

        }

    }

    for route, found := range expectedRoutes {

        if !found {

            log.Print("! Route ", route,

                        " NOT found on ", device)

        }

    }

}

Following this, we examine each of the GetRoutes method implementations. As with the rest of
the examples, you can find the complete program in the ch06/state folder of this book’s GitHub
repository (Further reading).

Parsing command outputs with regular expressions

We use regular expressions to parse and extract information from unstructured data. The Go standard
library includes the regexp package, which understands the RE2 syntax. This is a regular expression
library designed with safety as one of its primary goals. One of the main consequences of that decision
is the lack of back-references and look-around operations, which are unsafe and can lead to denial
of service exploits.

In this case, the GetRoutes method uses scrapligo to connect and sends a show command
to extract the routing table information from an SRL device type in this case. One way to parse this
information is to iterate over the output line by line while matching expected patterns with regular
expressions, close to what we did for the ch05/closed-loop example (Further reading):

func (r SRL) GetRoutes(wg *sync.WaitGroup) {

    lookupCmd := "show network-instance default route-table

Configuration Management214

ipv4-unicast summary"

    conn, err := platform.NewPlatform(

        "nokia_srl",

        r.Hostname,

        options.WithAuthNoStrictKey(),

        options.WithAuthUsername(r.Username),

        options.WithAuthPassword(r.Password),

        options.WithTermWidth(176),

    )

    // process error

    driver, err := conn.GetNetworkDriver()

    // process error

    err = driver.Open()

    // process error

    defer driver.Close()

    resp, err := driver.SendCommand(lookupCmd)

    // process error

    ipv4Prefix := regexp.

            MustCompile(`(\d{1,3}\.){3}\d{1,3}\/\d{1,2}`)

    out := []string{}

    for _, match := range ipv4Prefix.FindAll(

    resp.RawResult, -1) {

        out = append(out, string(match))

    }

    go checkRoutes(r.Hostname, out, wg)

}

To make things a bit simpler, we assume that anything that matches the IPv4 address pattern in the
entire output is a prefix installed in the routing table. This way, instead of reading and parsing a tabular
data structure, we tell our program to find all text occurrences that match the IPv4 route pattern and
put them on a string slice (out) that we pass to the checkRoutes function for further processing.

State validation 215

Parsing semi-formatted command outputs with templates

Parsing various output formats with regular expressions can be tedious and error-prone. This is why
Google created TextFSM, initially as a Python library, to implement a template-based parsing of
semi-formatted text. They designed it specifically to parse information from network devices and it
has a wide range of community-developed templates maintained in ntc-templates (Further reading).

We will use one of these community templates to parse the ip route command’s output in the
implementation of GetRoutes for Arista cEOS. Scrapligo embeds a Go port of TextFSM and can
conveniently parse the response using the TextFsmParse function:

func (r CEOS) GetRoutes(wg *sync.WaitGroup) {

    template := "https://raw.githubusercontent.com/
networktocode/ntc-templates/master/ntc_templates/templates/
arista_eos_show_ip_route.textfsm"

    lookupCmd := "sh ip route"

    conn, err := core.NewEOSDriver(

        r.Hostname,

        base.WithAuthStrictKey(false),

        base.WithAuthUsername(r.Username),

        base.WithAuthPassword(r.Password),

    )

    // process error

    err = conn.Open()

    // process error

    defer conn.Close()

    resp, err := conn.SendCommand(lookupCmd)

    // process error

    parsed, err := resp.TextFsmParse(template)

    // process error

    out := []string{}

    for _, match := range parsed {

Configuration Management216

        out = append(out, fmt.Sprintf(

                "%s/%s", match["NETWORK"], match["MASK"]))

    }

    go checkRoutes(r.Hostname, out, wg)

}

The parsed variable that stores the parsed data is a slice that contains map[string]interface{}
values, where keys correspond to the TextFSM values defined in a template. Thus, just by looking at the
show ip route template, we can extract the network and mask (prefix length) information and
append it to a string slice (out) that we pass to the checkRoutes function for further processing.

Getting JSON-formatted data with REST API requests

Thus far in this chapter, we’ve seen two different ways of interacting with a REST API – one using the
net/http package and another using an auto-generated high-level package (nautobot). But you
also have other options, such as go-resty, which builds on top of net/http to offer an improved
user experience when interacting with REST API endpoints.

In the following implementation of GetRoutes, we are taking advantage of go-resty to build the
required HTTP headers for authentication, extend the URL with query parameters, and unmarshal
a response into a user-defined data structure (routes):

Code Block 1:

func (r CVX) GetRoutes(wg *sync.WaitGroup) {

	 client := resty.NewWithClient(&http.Client{

		 Transport: &http.Transport{

			 TLSClientConfig: &tls.
Config{InsecureSkipVerify: true},

		 },

	 })

	 client.SetBaseURL("https://" + r.Hostname + ":8765")

	 client.SetBasicAuth(r.Username, r.Password)

	 var routes map[string]interface{}

	 _, err := client.R().

		 SetResult(&routes).

		 SetQueryParams(map[string]string{

			 "rev": "operational",

		 }).

		 Get("/nvue_v1/vrf/default/router/rib/ipv4/route")

State validation 217

	 // process error

	 out := []string{}

	 for route := range routes {

		 out = append(out, route)

	 }

	 go checkRoutes(r.Hostname, out, wg)

}

We have created a REST API client to request the routing table information (...rib/ipv4/route)
from the target device (type CVX). We decoded the JSON payload response with the routing table
prefixes as keys into the routes variable of the map[string]interface{} type. Next, we looped
through routes to append all keys to a string slice (out) we can pass to the checkRoutes function.

Validating end-to-end reachability

You can run this program to check whether all three routers in the topology can reach one another
from the ch06/state folder (Further reading). Make sure all the devices have the configs from the
examples that used crypto/ssh, net/http, and scrapligo to configure them earlier in this
chapter. The expected output should look as follows:

ch06/state$ go run main.go

2022/03/10 17:06:30 Checking reachability...

2022/03/10 17:06:30 Collecting CEOS routes

2022/03/10 17:06:30 Collecting CVX routes

2022/03/10 17:06:30 Collecting SRL routes

2022/03/10 17:06:30 Checking clab-netgo-cvx routes

2022/03/10 17:06:30 Route 198.51.100.0/32 found on clab-netgo-
cvx

2022/03/10 17:06:30 Route 198.51.100.1/32 found on clab-netgo-
cvx

2022/03/10 17:06:30 Route 198.51.100.2/32 found on clab-netgo-
cvx

2022/03/10 17:06:31 Checking clab-netgo-ceos routes

2022/03/10 17:06:31 Route 198.51.100.0/32 found on clab-netgo-
ceos

2022/03/10 17:06:31 Route 198.51.100.1/32 found on clab-netgo-
ceos

Configuration Management218

2022/03/10 17:06:31 Route 198.51.100.2/32 found on clab-netgo-
ceos

2022/03/10 17:06:34 Checking clab-netgo-srl routes

2022/03/10 17:06:34 Route 198.51.100.0/32 found on clab-netgo-
srl

2022/03/10 17:06:34 Route 198.51.100.1/32 found on clab-netgo-
srl

2022/03/10 17:06:34 Route 198.51.100.2/32 found on clab-netgo-
srl

If any of the routes were not present on any of the devices, we would’ve seen messages such as these:

2022/03/10 15:59:55 ! Route 198.51.100.0/32 NOT found on clab-
netgo-cvx

2022/03/10 15:59:55 ! Route 198.51.100.1/32 NOT found on clab-
netgo-cvx

Summary
Configuration generation, deployment, reporting, and compliance remain the most popular network
automation operations. This is where the immediate benefits of introducing automation are greatest and
most visible, making it the first logical step into the world of automation and DevOps. Configuration
management is one of those repetitive tasks network engineers spend most of their time on, so it’s a
natural fit for automation. But sending a new configuration to a device is just part of a broader process
that should consider failure handling, from syntax errors in the configuration to how to recover
properly if the connection to a remote device drops. In this context, you can abstract some repetitive
tasks with reusable code that offers generic functionality to reduce the time and effort to automate
your use cases. This is what automation frameworks offer, which we will discuss in the next chapter.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 NetDevOps 2020 Survey: https://dgarros.github.io/netdevops-survey/
reports/2020

•	 topo directory: https://github.com/PacktPublishing/Network-Automation-
with-Go/blob/main/topo-base/topo.yml

•	 ch06/ssh folder: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch06/ssh

https://dgarros.github.io/netdevops-survey/reports/2020
https://dgarros.github.io/netdevops-survey/reports/2020
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/topo-base/topo.yml
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/topo-base/topo.yml
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch06/ssh
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch06/ssh

Further reading 219

•	 ch06/vssh directory: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch06/vssh

•	 ch06/http directory: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch06/http

•	 demo.nautobot.com: https://demo.nautobot.com/

•	 ch06/state directory: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch06/ssh

•	 ch05/closed-loop example: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch05/closed-loop/main.go#L138

•	 ntc-templates: https://github.com/networktocode/ntc-templates

https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch06/vssh
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch06/vssh
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch06/http
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch06/http
https://demo.nautobot.com/
https://github.com/networktocode/ntc-templates

7
Automation Frameworks

Most engineers start their automation journey by writing small ad hoc scripts. Over time, as these
scripts grow in size and number, we need to think about the operating model for the solutions we
create and how strong the foundations we are building upon are. Ultimately, we have to coordinate
automation practices across different teams to generate business outcomes at scale.

To reduce the time and effort spent automating their use cases, some organizations try to standardize their
tools and reuse generic components in their solutions, which often leads them to automation frameworks.

Automation frameworks allow different teams to come together under the same umbrella, break silos
that may lead to inefficiencies, embrace common practices and code reusability, and enforce policies
across domains to make the developed solutions more secure.

When choosing what best fits your environment and use cases, make sure you evaluate different
automation frameworks. In this chapter, we will review some of them and focus specifically on how
they can integrate with Go. In particular, we will look at the following:

•	 How Go programs can become Ansible modules

•	 The development of a custom Terraform provider

•	 An overview of the rest of the well-known Go-based frameworks

We close this chapter by looking at the current trends in the industry and how the new generation of
automation frameworks may develop in the future.

Technical requirements
You can find the code examples for this chapter in the book’s GitHub repository (see the Further
reading section), in the ch07 folder.

Important Note
We recommend you execute the Go programs in this chapter in a virtual lab environment.
Refer to the appendix for the prerequisites and instructions on how to build it.

Automation Frameworks222

Ansible
Ansible is an open source project, framework, and automation platform. Its descriptive automation
language has captured the attention of many network engineers who see it as an introduction with
minimal friction into the world of network automation and something that can help them become
productive relatively quickly.

Ansible has an agentless push-based architecture. It connects to the hosts it manages via SSH and runs
a series of tasks. These tasks are small programs that we call Ansible modules, which are the units of
code that Ansible abstracts away from the user. A user only has to give the input arguments and can
rely on Ansible modules to do all the heavy work for them. Although the level of abstraction may
vary, Ansible modules allow users to focus more on the desired state of their infrastructure and less
on the individual commands required to achieve that state.

Overview of Ansible components

Playbooks are at the core of Ansible. These text-based declarative YAML files define a set of automation
tasks that you can group in different plays. Each task runs a module that comes from either the Ansible
code base or a third-party content collection:

Figure 7.1 – Ansible high-level diagram

We use an Ansible inventory to describe the hosts or network devices we want to manage with Ansible.
Figure 7.1 provides a high-level overview of these elements.

Ansible 223

Inventory

An inventory is a list of managed hosts you can define statically in a text file or pull dynamically from
an external system. You can manage hosts individually or collectively using groups. The following
code snippet shows an Ansible inventory file:

[eos]

clab-netgo-ceos

[eos:vars]

ansible_user=admin

ansible_password=admin

ansible_connection=ansible.netcommon.network_cli

You can also use inventory to define group- and host-level variables that become available to
Ansible playbooks.

Playbooks, plays, and tasks

Ansible playbooks are files that you write using a YAML-based Domain-Specific Language (DSL).
A playbook can have one or more plays on it. Each Ansible play targets a host or a group of hosts
from an inventory to perform a series of tasks in a specific order. The following code output shows
an example of a playbook with a single play and two tasks:

- name: First Play - Configure Routers

  hosts: routers

  gather_facts: true

  tasks:

    - name: Run Nokia Go module on local system with Go

      go_srl:

        host: "{{ inventory_hostname }}"

        user: "{{ ansible_user }}"

        password: "{{ ansible_password }}"

        input: "{{ hostvars[inventory_hostname] | string |
b64encode }}"

      delegate_to: localhost

      when: ('srl' in group_names)

    - name: Run NVIDIA compiled Go module on remote system

Automation Frameworks224

without Go

      go_cvx:

        host: localhost

        user: "{{ ansible_user }}"

        password: "{{ ansible_password }}"

        input: "{{ hostvars[inventory_hostname] | string |
b64encode }}"

      when: ('cvx' in group_names)

The last example is a snippet from a larger playbook (see Further reading) included in the ch07/
ansible folder of this book’s GitHub repository. That playbook has four tasks spread across two
different plays. We use that playbook to review different concepts throughout this section.

Modules

Each task executes an Ansible module. Although implementations may vary, the goal of an Ansible
module is to be idempotent, so no matter how many times you run it against the same set of hosts,
you always get the same outcome.

Ansible ships with several modules written mostly in Python, but it doesn’t stop you from using
another programming language, which is what we explore in this section.

Working with Ansible modules

The code of an Ansible module can execute either on a remote node, for hosts such as Linux servers,
or locally, on the node running the playbook. The latter is what we typically do when the managed
node is an API service or a network device because they both lack an execution environment with
dependencies such as Linux shell and Python. Luckily, modern network operating systems meet those
requirements, which give us both options of running the code locally or remotely.

If you look at the preceding playbook snippet, you can see how we implemented these two options.
The first task invokes the go_srl module that gets delegated to the localhost. This means it runs
from the machine running Ansible and targets a remote host provided in the host argument. The
second task executes the go_cvx module, which is not delegated and thus runs on a remote node,
targeting its API calls at the localhost.

The rest of the playbook uses a combination of local and remote execution environments, as denoted
by the gear symbols in the following diagram:

Ansible 225

Figure 7.2 – Playbook example

The Ansible playbook first runs an Ansible play to configure each node of the topology with these
high-level objectives:

•	 Configure the SR Linux node (srl) using a compiled Go code we execute locally on the
machine running Ansible

•	 Configure the NVIDIA Cumulus node (cvx) using a compiled Go code we execute on the
remote node

•	 Configure the Arista EOS node (ceos) using a compiled Go code we execute locally on the
machine running Ansible

The choice of local or remote execution environments in the preceding playbook is random and only
serves to show the two different approaches. Since all our lab devices are Linux-based, we can change
this behavior without reworking the Ansible modules we use.

The second play has a single task that verifies the configured state on all three devices using a non-compiled
code we execute using the go run command. We use this last task to show an alternative approach
to concurrency that uses Go native primitives instead of Ansible forks to execute tasks on several
nodes at the same time. We discuss this later in this section.

Automation Frameworks226

Developing an Ansible module

While Ansible developers write most Ansible modules in Python, there are different reasons to write
a module in another programming language:

•	 Your company might use another programming language already.

•	 Maybe you know or feel more comfortable writing in a different language.

•	 The code is already available and there is no business justification to rewrite it in another
programming language.

•	 You want to take advantage of a feature that is not available in Python.

Ansible’s role is not to rip and replace everything that you have, especially if it’s working for you already.
To illustrate this, we will take a set of Go programs from other chapters and turn them into Ansible
modules we can execute in a playbook to configure our lab topology.

Ansible module interface

You can extend Ansible by adding custom modules. Their implementation code should go into the
library folder. When Ansible runs into a task with a module that is not installed in the system, it
looks for a file with the module’s name in the library folder and tries to run it as a module, going
through the following sequence of steps:

1.	 It saves all module arguments in a temporary file, for example, /tmp/foo.

2.	 It executes that module as a child process, passing it the filename as the first and only argument,
for example, ./library/my_module /tmp/foo.

3.	 It waits for the process to complete and expects to receive a structured response in its
standard output.

While Ansible always expects a response in a JSON format, the input file format Ansible passes to
the module depends on whether the module is a script or a binary. All binary modules get their input
arguments as a JSON file, while script modules receive their input arguments as Bash files or just a
list of key-value pairs.

From Go’s code perspective, to make this input behavior uniform, we normalize the input format to
JSON before running any non-compiled Go programs. We do this using a wrapper Bash script that
transforms the Bash input into JSON before calling the go run command, as you can see in the
ch07/ansible/library/go_state file of this book’s GitHub repository (see Further reading).

Adapting your Go code to interact with Ansible

Ultimately, a custom Ansible module can do anything as long as it understands how to parse the
input arguments and knows how to return the expected output. We would need to change the Go

Ansible 227

programs from other chapters to make them an Ansible module. But the amount of changes necessary
is minimal. Let’s examine this.

First, for this example, we need to create a struct to parse the module arguments we receive in the
input JSON file. These arguments include login credentials and the input data model:

// ModuleArgs are the module inputs

type ModuleArgs struct {

  Host     string

  User     string

  Password string

  Input    string

}

func main() {

  if len(os.Args) != 2 {

    // generate error

  }

  argsFile := os.Args[1]

  text, err := os.ReadFile(argsFile)

  // check error

  var moduleArgs ModuleArgs

  err = json.Unmarshal(text, &moduleArgs)

  // check error

  /* ... <continues next > ... */

The input data model we use for Ansible remains the same as the one that we used in other chapters.
This data is in the ch07/ansible/host_vars directory for this example. With Ansible, this
data model becomes just a subset of all variables defined for each host. We pass it, along with the rest
of the host variables, as a base64-encoded string. Inside our module, we decode the input string and
decode it into the same Model struct we used before:

import (

  "encoding/base64"

  "gopkg.in/yaml.v2"

)

Automation Frameworks228

type Model struct {

  Uplinks  []Link `yaml:"uplinks"`

  Peers    []Peer `yaml:"peers"`

  ASN      int    `yaml:"asn"`

  Loopback Addr   `yaml:"loopback"`

}

func main() {

  /* ... <continues from before > ... */

  src, err :=

      base64.StdEncoding.DecodeString(moduleArgs.Input)

  // check error

  reader := bytes.NewReader(src)

  d := yaml.NewDecoder(reader)

  var input Model

  d.Decode(&input)

  /* ... <continues next > ... */

At this point, we’ve parsed enough information for our Go program to configure a network device. This
part of the Go code does not require any modifications. The only thing you need to be mindful of is
that instead of logging to the console, you now need to send any log messages as a response to Ansible.

When all the work is complete, we need to prepare and print the response object for Ansible. The
following code snippet shows the happy path when all changes have gone through:

// Response is the values returned from the module

type Response struct {

  Msg     string `json:"msg"`

  Busy    bool   `json:"busy"`

  Changed bool   `json:"changed"`

  Failed  bool   `json:"failed"`

}

func main() {

  /* ... <continues from before > ... */

  var r Response

  r.Msg = "Device Configured Successfully"

  r.Changed = true

Ansible 229

  r.Failed = false

  response, err = json.Marshal(r)

  // check error

  fmt.Println(string(response))

  os.Exit(0)

}

Using a similar pattern to what we just described, we have created a custom module for each one of the
three lab devices and one module to verify the state of the lab topology as we did in Chapter 6, Configuration
Management. You can find these modules in the ch07/ansible/{srl|cvx|ceos|state}
directories of this book’s GitHub repository (see Further reading).

Before we move on to the execution, we want to show one way we can make use of Go’s built-in features
to speed up and optimize concurrent task execution in Ansible.

Taking advantage of Go’s concurrency

Ansible’s default behavior is to run each task on all hosts before moving on to the next one (linear
strategy). Of course, it doesn’t just run one task on one host at a time; instead, it uses several independent
processes attempting to run simultaneously on as many hosts as the number of forks you define in the
Ansible configuration. Whether these processes run in parallel depends on the hardware resources
available to them.

A less expensive approach from a resource utilization perspective is to leverage Go concurrency. This
is what we do in the go_state Ansible module, where we target a single node from the inventory,
the implicit localhost, and leave the concurrent communication with the remote nodes to Go.

For the following module, we reuse the code example from the State validation section of Chapter 6,
Configuration Management that has the access details embedded in the code already, but you could
also pass these access details as arguments to the module to achieve the same result:

  - name: Run Validate module on Systems with Go installed

    go_state:

      host: "{{ inventory_hostname }}"

The trade - off of this approach is that we gain speed and get more efficient use of resources, but we
lose the inventory management side of Ansible. Be mindful of this when trying to decide whether
this is the right fit for your use case.

Automation Frameworks230

Running the playbook

You can find the complete example involving four Go Ansible modules in the ch07/ansible
directory. To run it, first make sure the lab topology is running from the root folder of the repository
with make lab-up, then run the playbook with the ansible-playbook command:

ch07/ansible$ ansible-playbook playbook.yml

output omitted for brevity.

PLAY RECAP **

clab-netgo-ceos            :
ok=5    changed=0    unreachable=0    failed=0    skipped=4    
rescued=0    ignored=0   

clab-netgo-cvx             :
ok=2    changed=1    unreachable=0    failed=0    skipped=7    
rescued=0    ignored=0   

clab-netgo-srl             :
ok=2    changed=1    unreachable=0    failed=0    skipped=7    
rescued=0    ignored=0   

localhost                  :
ok=1    changed=0    unreachable=0    failed=0    skipped=0    
rescued=0    ignored=0

Now that we’ve covered how Go programs can integrate with Ansible, we will move on to another
popular automation framework: Terraform.

Terraform
Terraform is an open source software solution for declarative infrastructure management. It allows you
to express and manage the desired state of your infrastructure with code. It has gained initial popularity
as a framework to automate public cloud infrastructure but now supports a variety of on-premises
and public cloud resources, platforms, services—almost anything that has an API.

One of the key distinctions of Terraform is the way it manages state. Once it creates a remote resource
initially, it saves the resulting state in a file and relies on that state to be there for its next runs. As you
update and develop your infrastructure code, the state file enables Terraform to manage the entire life
cycle of a remote resource, calculating the precise sequence of API calls to transition between states.
This ability to manage state and the declarative configuration language and the agentless, API-first
architecture allowed Terraform to become deeply entrenched in the cloud infrastructure space and
become a critical part of DevOps and Infrastructure-as-Code toolchains.

If we look at the Terraform registry (see Further reading), we can see over a hundred providers in the
networking category ranging from SDN appliances and firewalls to various cloud services. This number

Terraform 231

is on a rising trend, as more people adopt a declarative approach to manage their infrastructure as
code. This is why we believe it’s important for network automation engineers to know Terraform and
be able to extend its capabilities using Go.

Overview of Terraform components

The entire Terraform ecosystem is a collection of Go packages. They distribute the main CLI tool, often
referred to as Terraform Core, as a statically compiled binary. This binary implements the command-
line interface and can parse and evaluate instructions written in Hashicorp Configuration Language
(HCL). On every invocation, it builds a resource graph and generates an execution plan to reach the
desired state described in the configuration file. The main binary only includes a few plugins but can
discover and download the required dependencies.

Terraform plugins are also distributed as standalone binaries. Terraform Core starts and terminates the
required plugins as child processes and interacts with them using an internal gRPC-based protocol.
Terraform defines two types of plugins:

•	 Providers: Interact with a remote infrastructure provider and implement the required changes

•	 Provisioners: Implement a set of imperative actions, declared as a set of terminal commands,
to bootstrap a resource that a provider created before

The following diagram demonstrates what we have described and shows how different Terraform
components communicate internally and externally:

Figure 7.3 – Terraform high-level diagram

Automation Frameworks232

The vast majority of Terraform plugins are providers as they implement the declarative resource
actuation and communicate with an upstream API. A provider defines two types of objects that you
can use to interact with a remote API:

•	 Resources: Represent the actual managed infrastructure objects, such as virtual machines,
firewall policies, and DNS records

•	 Data Sources: Offer a way to query information that is not managed by Terraform, such as a
list of supported cloud regions, VM images, or Identity and Access Management (IAM) roles

It’s up to the Terraform provider maintainers to decide what resources and data sources to implement,
so the coverage may vary, especially between official and community-supported providers.

Working with Terraform

A typical Terraform workflow involves several stages that need to happen in sequence. We first need
to define a provider that determines what infrastructure we would manage, and then describe the
state of our infrastructure using a combination of resources and data sources. We will walk through
these stages by following a configuration file, ch07/terraform/main.tf, we’ve created in this
book’s GitHub repository (see Further reading).

Defining a provider

Providers define connection details for the upstream API. They can point at the public AWS API URL
or an address of a private vCenter instance. In the next example, we show how to manage the demo
instance of Nautobot running at https://demo.nautobot.com/.

Terraform expects to find a list of required providers, along with their definition, in one file in the
current working directory. For the sake of simplicity, we include those details at the top of the main.
tf file and define credentials in the same file. In production environments, these details may live in a
separate file, and you should source credentials externally, for example, from environment variables:

terraform {

  required_providers {

    nautobot = {

      version = "0.2.4"

      source  = "nleiva/nautobot"

    }

  }

}

provider "nautobot" {

  url = "https://demo.nautobot.com/api/"

https://demo.nautobot.com/

Terraform 233

  token = "aa"

}

With this information defined, we can initialize Terraform. The following command instructs Terraform
to perform plugin discovery and download any dependencies into a local ./terraform directory:

ch07/terraform$ terraform init -upgrade

Initializing the backend...

Initializing provider plugins...

- Finding nleiva/nautobot versions matching "0.2.4"...

- Installing nleiva/nautobot v0.2.4...

- Installed nleiva/nautobot v0.2.4 (self-signed, key ID
A33D26E300F155FF)

At the end of this step, Terraform creates a lock file, .terraform.lock.hcl, to record the provider
selections it just made. Include this file in your version control repository so that Terraform can guarantee
to make the same selections by default when you run terraform init on a different machine.

Creating a resource

To create a resource, we define it in a configuration block with zero or more arguments that assign
values to resource fields. The following resource creates a new Manufacturer object in Nautobot
with the specified name and description:

resource "nautobot_manufacturer" "new" {

  description = "Created with Terraform"

  name        = "New Vendor"

}

Now we can run terraform plan to check whether the current configuration matches the existing
state. If they don’t match, Terraform creates an execution plan with the proposed changes to make the
remote objects match the current configuration. We could skip the terraform plan command and
move straight to terraform apply, which generates the plan and also executes it in a single step:

ch07/terraform$ terraform apply --auto-approve

Terraform used the selected providers to generate the following
execution plan. Resource actions

are indicated with the following symbols:

Automation Frameworks234

  + create

Terraform will perform the following actions:

  # nautobot_manufacturer.new will be created

  + resource "nautobot_manufacturer" "new" {

      + created             = (known after apply)

      + description         = "Created with Terraform"

      + devicetype_count    = (known after apply)

      + display             = (known after apply)

      + id                  = (known after apply)

      + inventoryitem_count = (known after apply)

      + last_updated        = (known after apply)

      + name                = "New Vendor"

      + platform_count      = (known after apply)

      + slug                = (known after apply)

      + url                 = (known after apply)

    }

Plan: 1 to add, 0 to change, 0 to destroy.

You can see the result of running this plan in Nautobot’s web UI at https://demo.nautobot.
com/dcim/manufacturers/new-vendor/, or you can check the resulting state using the
following command:

ch07/terraform$ terraform state show 'nautobot_manufacturer.
new'

nautobot_manufacturer.new:

resource "nautobot_manufacturer" "new" {

    created             = "2022-05-04"

    description         = "Created with Terraform"

    devicetype_count    = 0

    display             = "New Vendor"

    id                  = "09219670-3e28-..."

    inventoryitem_count = 0

    last_updated        = "2022-05-04T18:29:06.241771Z"

    name                = "New Vendor"

    platform_count      = 0

https://demo.nautobot.com/dcim/manufacturers/new-vendor/
https://demo.nautobot.com/dcim/manufacturers/new-vendor/

Terraform 235

    slug                = "new-vendor"

    url                 = "https://demo.nautobot.com/api/dcim/
manufacturers/09219670-3e28-.../"

}

At the time of writing, there was no Terraform provider available for Nautobot, so the last example
used a custom provider we created specifically for this book. Creating a new provider can enable many
new use cases and it involves writing Go code, so this is what we cover next.

Developing a Terraform provider

Eventually, you may come across a provider with limited or missing capabilities, or a provider may
not even exist for a platform that is part of your infrastructure. This is when knowing how to build a
provider can make a difference, to either extend or fix a provider or build a brand new one. The only
prerequisite to get started is the availability of a Go SDK for the target platform. For example, Nautobot
has a Go client package that gets automatically generated from its OpenAPI model, which we used
already in the Getting config inputs from other systems via HTTP section of Chapter 6, Configuration
Management, so we have all we need to develop its Terraform provider.

The recommended way to create a new Terraform provider is to start with the terraform-provider-
scaffolding project (see Further reading). This repository provides enough boilerplate to allow you to
focus on the internal logic while it provides function stubs and implements Remote Procedure Call
(RPC) integration. We used this template to create the Nautobot provider, so you can compare our
final result with the template to see what changes we made.

As a by-product of developing a Terraform provider using the scaffolding project, you can register
your Git repository in the Terraform registry and get the benefit of automatically rendered provider
documentation (see Further reading).

Defining a provider

The provider’s internal code (internal/provider/provider.go (see Further reading)) starts
with a schema definition for the provider itself as well as its managed resources and data sources.
Inside the provider’s schema, we define two input arguments—url and token. You can extend each
schema struct with more constraints, default values, and validation functions:

func New(version string) func() *schema.Provider {

  return func() *schema.Provider {

    p := &schema.Provider{

      Schema: map[string]*schema.Schema{

        "url": {

          Type:         schema.TypeString,

Automation Frameworks236

          Required:     true,

          DefaultFunc:

          schema.EnvDefaultFunc("NAUTOBOT_URL", nil),

          ValidateFunc: validation.IsURLWithHTTPorHTTPS,

          Description:  "Nautobot API URL",

        },

        "token": {

          Type:        schema.TypeString,

          Required:    true,

          Sensitive:   true,

          DefaultFunc:

            schema.EnvDefaultFunc("NAUTOBOT_TOKEN", nil),

          Description: "Admin API token",

        },

      },

      DataSourcesMap: map[string]*schema.Resource{

        "nautobot_manufacturers":

            dataSourceManufacturers(),

      },

      ResourcesMap: map[string]*schema.Resource{

        "nautobot_manufacturer": resourceManufacturer(),

      },

    }

    p.ConfigureContextFunc = configure(version, p)

    return p

  }

}

With login information defined, the provider can initialize an API client for the target platform. This
happens inside a local function where url and token get passed to the Nautobot’s Go SDK, which
creates a fully authenticated HTTP client. We save this client in a special apiClient struct, which
gets passed as an argument to all provider resources, as we show later on:

import nb "github.com/nautobot/go-nautobot"

type apiClient struct {

Terraform 237

  Client *nb.ClientWithResponses

  Server string

}

func configure(

  version string,

  p *schema.Provider,

) func(context.Context, *schema.ResourceData) (interface{},
diag.Diagnostics) {

  return func(ctx context.Context, d *schema.ResourceData)
(interface{}, diag.Diagnostics) {

    serverURL := d.Get("url").(string)

    _, hasToken := d.GetOk("token")

    /* ... <omitted for brevity > ... */

    token, _ :=

        NewSecurityProviderNautobotToken(

          d.Get("token").(string))

    c, err := nb.NewClientWithResponses(

              serverURL,

              nb.WithRequestEditorFn(token.Intercept),

            )

    // process error

    return &apiClient{

      Client: c,

      Server: serverURL,

    }, diags

  }

}

Now that we have prepared a remote API client, we can start writing code for our managed resources.

Defining resources

Just like how we defined a schema for our provider, we now need to define a schema for each managed
resource and data source. For educational purposes, we only implement a single resource type,

Automation Frameworks238

Manufacturer, and a corresponding data source you can use to retrieve the list of all existing
manufacturers in Nautobot.

When we define a schema, our goal is to match the upstream API as closely as possible. This should
reduce the number of required data transformations and make the implementation work much easier.
Let’s look at Nautobot’s Go SDK code:

type Manufacturer struct {

  Created       *openapi_types.Date

    `json:"created,omitempty"`

  CustomFields  *Manufacturer_CustomFields

    `json:"custom_fields,omitempty"`

  Description   *string `json:"description,omitempty"`

  /* ... <omitted for brevity > ... */

  Url           *string `json:"url,omitempty"`

}

type Manufacturer_CustomFields struct {

  AdditionalProperties map[string]interface{} `json:"-"`

}

The schema that we define for the Manufacturer resource in resource_manufacturer.go
closely follows the fields and types defined in the preceding output:

func resourceManufacturer() *schema.Resource {

  return &schema.Resource{

    Description: "This object manages a manufacturer",

    CreateContext: resourceManufacturerCreate,

    ReadContext:   resourceManufacturerRead,

    UpdateContext: resourceManufacturerUpdate,

    DeleteContext: resourceManufacturerDelete,

    Schema: map[string]*schema.Schema{

      "created": {

        Description: "Manufacturer's creation date.",

        Type:        schema.TypeString,

        Computed:    true,

      },

Terraform 239

      "description": {

        Description: "Manufacturer's description.",

        Type:        schema.TypeString,

        Optional:    true,

      },

      "custom_fields": {

        Description: "Manufacturer custom fields.",

        Type:        schema.TypeMap,

        Optional:    true,

      },

      /* ... <omitted for brevity > ... */

      "url": {

        Description: "Manufacturer's URL.",

        Type:        schema.TypeString,

        Optional:    true,

        Computed:    true,

      },

    },

  }

}

Once we have defined all schemas with their constraints, types, and descriptions, we can start
implementing resource operations. The scaffolding project provides stubs for each one of the CRUD
functions, so we only need to fill them out with code.

The create operation

We first look at the resourceManufacturerCreate function, which gets invoked when Terraform
determines that it must create a new object. This function has two very important arguments:

•	 meta: Stores the API client we created earlier

•	 d: Stores all resource arguments defined in the HCL configuration file

We extract the user-defined configuration from d and use it to build a new nb.Manufacturer
object from the Nautobot’s SDK. We can then use the API client to send that object to Nautobot and
save the returned object ID:

func resourceManufacturerCreate(ctx context.Context, d *schema.
ResourceData, meta interface{}) diag.Diagnostics {

    c := meta.(*apiClient).Client

Automation Frameworks240

    var m nb.Manufacturer

    name, ok := d.GetOk("name")

    n := name.(string)

    if ok {

        m.Name = n

    }

    /* ... <omitted for brevity > ... */

    rsp, err := c.DcimManufacturersCreateWithResponse(

        ctx,

        nb.DcimManufacturersCreateJSONRequestBody(m))

    // process error

    // process returned HTTP response

    d.SetId(id.String())

    return resourceManufacturerRead(ctx, d, meta)

}

Typically, we don’t define all optional fields when we create a new object. A remote provider assigns
the unique ID and initializes default values as it creates a new object. Some platforms return the newly
created object back, but there is no guarantee of that. Hence, it’s a common pattern in Terraform
provider implementations to call a read function at the end of the create function to synchronize and
update a local state.

The read operation

The read function updates the local state to reflect the latest state of an upstream resource. We’ve seen
in the preceding example how the create function calls the read at the end of its execution to update
the state of a newly created object.

But the most important use of read is to detect configuration drift. When you do terraform plan
or terraform apply, read is the first thing that Terraform executes and its goal is to retrieve the
current upstream state and compare it with the state file. This allows Terraform to understand whether
users have manually changed a remote object, so it needs to reconcile its state, or whether it’s up to
date and no updates are necessary.

Terraform 241

Read has the same signature as the rest of the CRUD functions, which means it gets the latest version
of a managed resource as *schema.ResourceData and an API client stored in meta. The first
thing we need to do in this function is fetch the upstream object:

import "github.com/deepmap/oapi-codegen/pkg/types"

func resourceManufacturerRead(ctx context.Context, d *schema.
ResourceData, meta interface{}) diag.Diagnostics {

    c := meta.(*apiClient).Client

    id := d.Get("id").(string)

    rsp, err := c.DcimManufacturersListWithResponse(

        ctx,

        &nb.DcimManufacturersListParams{

            IdIe: &[]types.UUID{types.UUID(id)},

        })

  /* ... <continues next > ... */

}

We use the data we get back to update the local Terraform state:

func resourceManufacturerRead(ctx context.Context, d *schema.
ResourceData, meta interface{}) diag.Diagnostics {

    /* ... <continues from before > ... */

    d.Set("name", item["name"].(string))

    d.Set("created", item["created"].(string))

    d.Set("description", item["description"].(string))

    d.Set("display", item["display"].(string))

    /* ... <omitted for brevity > ... */

    return diags

}

At this stage, our local state should be in sync with the upstream and Terraform can decide whether
any changes are necessary as a result.

Automation Frameworks242

Remaining implementations

In this chapter, we only cover a subset of the Nautobot provider code. The remaining sections we need
to implement include the following:

•	 The resource update and delete functions

•	 Data source implementation

For the sake of brevity, we don’t include this code in the book, but the full implementation for the
Manufacturer resource and data source is available in our demo Nautobot provider repository
(see Further reading).

Networking providers

Writing a provider and keeping it up to date is a major undertaking. At the beginning of this section,
we mentioned that Terraform has several providers in the networking category of the Terraform
registry (see Further reading). We invite you to explore them and always check whether there’s an
existing provider before implementing your own.

Terraform’s guarantees of declarative configuration and state management are very appealing to
network engineers trying to adopt DevOps and GitOps practices. As the interest grows, so does the
number of new network-related providers, with the following notable recent additions:

•	 JUNOS Terraform Automation Framework (see Further reading): Allows you to create a
custom JunOS Terraform provider from YANG files

•	 Terraform Provider for Cisco IOS XE (see Further reading): Manages the configuration of
Cisco Catalyst IOS XE devices including switches, routers, and wireless LAN controllers

•	 terraform-provider-junos (see Further reading): An unofficial Terraform provider for Junos
OS devices with the NETCONF protocol

•	 terraform-provider-ciscoasa (see Further reading): DevNet provider to configure Cisco ASA
firewall rules

This completes the overview of Terraform and its network-related use cases. We hope that its adoption
continues to increase and the number of networking providers grows. In the next section, we wrap
up with a brief overview of a few other automation frameworks.

Other automation frameworks
Our industry has many more automation frameworks and solutions that we would have liked to cover
in this chapter. The best we can do is just scratch the surface, leaving much of the exploration up to
you. At the same time, we don’t want to leave you thinking there’s nothing out there besides Ansible

Other automation frameworks 243

and Terraform. This section gives you an overview of other automation frameworks and solutions
that you can use or adapt to use within a networking context.

Gornir

Nornir (see Further reading) is a popular network automation framework for Python that offers a pure
programming experience by ditching DSL in favor of the Python API. It has a pluggable architecture
where you can replace or extend almost any element of the framework, from inventory to device
connections. It also has a flexible way to parallelize groups of tasks without having to deal with Python’s
concurrency primitives directly.

Gornir (see Further reading) is a Nornir implementation in Go. Keeping with the same principles, it
offers things such as inventory management, concurrent execution of tasks, and pluggable connection
drivers. Gornir ships with a minimal set of drivers, but its core provides Go interfaces to improve upon
and extend this feature. If you’re coming to Go from Python and are familiar with Nornir, Gornir may
offer a very smooth transition through a familiar API and workflows.

Consul-Terraform-Sync

In the preceding section, we examined how you can use Terraform to manage resources declaratively
on a remote target, using Nautobot as an example. Hashicorp, the same company behind Terraform,
has developed another automation solution that builds on top of it. It’s called Consul-Terraform-Sync
(see Further reading) and it enables automatic infrastructure management by combining Terraform
with Consul and linking them together with a synchronization agent.

Consul is a distributed key/value store used for service discovery, load balancing, and access control.
It works by setting up a cluster of nodes that use the Raft consensus protocol to have a consistent view
of their internal state. Server nodes communicate with their clients and broadcast relevant updates to
make sure clients have an up-to-date version of the relevant part of the internal state. All this happens
behind the scenes, with minimal configuration, which makes Consul a very popular choice for service
discovery and data storage.

The main idea of the Consul-Terraform-Sync solution is to use Consul as a backend for Terraform
configuration and state. The synchronization agent connects to Consul, waits for updates, and
automatically triggers Terraform reconciliation as it detects any changes.

Consul-Terraform-Sync allows you to automate Terraform deployments for any of these providers and
ensures that your state always matches your intent thanks to the automated reconciliation process.

mgmt

mgmt (see Further reading) is another infrastructure automation and management framework written
completely in Go. It has its own DSL and synchronizes its state using a baked-in etcd cluster. It uses
a few interesting ideas, such as a declarative and functional DSL, resource graphs, and dynamic state

Automation Frameworks244

transitions triggered by closed-loop feedback. Just like Gornir, mgmt ships with a set of plugins that
users can extend, but none of these plugins is specifically for network devices since the main use case
for mgmt is Linux server management.

Looking into the future

In this chapter, we have covered popular network automation frameworks in use today. All these
frameworks are at a different stage of development—some have already reached their peak while others
are still crossing the chasm (see Further reading). But it’s important to remember that automation
frameworks are not a solved problem with well-established projects and well-understood workflows.
This field is constantly developing, and new automation approaches are emerging on the horizon.

These alternative approaches do not resemble what we had seen before. One big trend that we’re seeing
lately is the departure from an imperative automation paradigm, where a human operator manually
triggers actions and tasks. We briefly discussed this trend in Chapter 5, Network Automation, and we
want to revisit it here to show how the closed-loop automation approach changes the landscape of
infrastructure management systems. Most modern automation frameworks develop into systems that
exhibit some or all the following characteristics:

•	 Focus on the complete life cycle management of a system as opposed to individual stages, such
as bootstrapping, provisioning, or decommissioning.

•	 Exclusive use of declarative state definition and automatic reconciliation, or self-healing
implemented internally.

•	 Separation of state definitions from the platform managing this state through practices such
as GitOps.

•	 Offer a cloud-native self-service experience via APIs, reducing the friction in consuming of
these services both manually and programmatically.

We’re currently at a point when these systems and their building blocks are becoming a reality, with
some notable examples including Crossplane, Nokia Edge Network Controller, and Anthos Config
Sync. They build these systems as Kubernetes controllers, leveraging the Operator model, allowing
them to expose their APIs in a standard way, so other systems can talk to them with the same set of
tools. We still don’t know whether these systems could become mainstream and displace the incumbent
frameworks, since they increase the level of complexity and they introduce a steep learning curve.
Regardless of that, it’s an area to explore, like other potential new trends that might develop, since
infrastructure management is far from being a solved problem.

Summary
Whether to choose Ansible, Terraform, or a programming language to solve a particular use case
depends on many variables. But don’t fall into the trap of looking at this as a binary decision. Most

.

Further reading 245

times, different technologies complement each other to offer solutions, as we showed in this chapter.
In the next chapter, we will explore newer and more advanced techniques to interact with networking
devices and Go.

Further reading
•	 This book’s GitHub repository: https://github.com/PacktPublishing/Network-

Automation-with-Go

•	 Playbook: https://github.com/PacktPublishing/Network-Automation-
with-Go/blob/main/ch07/ansible/playbook.yml

•	 Terraform registry: https://registry.terraform.io/browse/
providers?category=networking

•	 terraform-provider-scaffolding project: https://github.com/hashicorp/terraform-
provider-scaffolding

•	 Provider documentation: https://registry.terraform.io/providers/nleiva/
nautobot/latest/docs?pollNotifications=true

•	 Provider’s internal code: https://github.com/nleiva/terraform-provider-
nautobot/blob/main/internal/provider/provider.go

•	 resource_manufacturer.go: https://github.com/nleiva/terraform-
provider-nautobot/blob/main/internal/provider/resource_
manufacturer.go

•	 Nautobot provider repository: https://github.com/nleiva/terraform-provider-
nautobot

•	 JUNOS Terraform Automation Framework: https://github.com/Juniper/junos-
terraform

•	 Terraform Provider for Cisco IOS XE: https://github.com/CiscoDevNet/terraform-
provider-iosxe

•	 terraform-provider-junos: https://github.com/jeremmfr/terraform-provider-
junos

•	 terraform-provider-ciscoasa: https://github.com/CiscoDevNet/terraform-
provider-ciscoasa

•	 Nornir: https://github.com/nornir-automation/nornir/

•	 Gornir: https://github.com/nornir-automation/gornir

https://registry.terraform.io/browse/providers?category=networking
https://registry.terraform.io/browse/providers?category=networking
https://github.com/hashicorp/terraform-provider-scaffolding
https://github.com/hashicorp/terraform-provider-scaffolding
https://registry.terraform.io/providers/nleiva/nautobot/latest/docs?pollNotifications=true
https://registry.terraform.io/providers/nleiva/nautobot/latest/docs?pollNotifications=true
https://github.com/nleiva/terraform-provider-nautobot/blob/main/internal/provider/provider.go
https://github.com/nleiva/terraform-provider-nautobot/blob/main/internal/provider/provider.go
https://github.com/nleiva/terraform-provider-nautobot/blob/main/internal/provider/resource_manufacturer.go
https://github.com/nleiva/terraform-provider-nautobot/blob/main/internal/provider/resource_manufacturer.go
https://github.com/nleiva/terraform-provider-nautobot/blob/main/internal/provider/resource_manufacturer.go
https://github.com/nleiva/terraform-provider-nautobot
https://github.com/nleiva/terraform-provider-nautobot
https://github.com/Juniper/junos-terraform
https://github.com/Juniper/junos-terraform
https://github.com/CiscoDevNet/terraform-provider-iosxe
https://github.com/CiscoDevNet/terraform-provider-iosxe
https://github.com/jeremmfr/terraform-provider-junos
https://github.com/jeremmfr/terraform-provider-junos
https://github.com/nornir-automation/nornir/
https://github.com/nornir-automation/gornir

Automation Frameworks246

•	 Consul-Terraform-Sync: https://learn.hashicorp.com/tutorials/consul/
consul-terraform-sync-intro?in=consul/network-infrastructure-
automation

•	 mgmt: https://github.com/purpleidea/mgmt

•	 https://en.wikipedia.org/wiki/Diffusion_of_innovations

https://learn.hashicorp.com/tutorials/consul/consul-terraform-sync-intro?in=consul/network-infrastructure-automation
https://learn.hashicorp.com/tutorials/consul/consul-terraform-sync-intro?in=consul/network-infrastructure-automation
https://learn.hashicorp.com/tutorials/consul/consul-terraform-sync-intro?in=consul/network-infrastructure-automation
https://github.com/purpleidea/mgmt
https://en.wikipedia.org/wiki/Diffusion_of_innovations

Part 3:
Interacting with APIs

As the way that networks are built, deployed, and operated has evolved, new protocols and interfaces
have emerged to facilitate machine-to-machine communication as an enabler of network automation.
In these chapters, we will navigate through some of these new capabilities and how to take advantage
of them with Go.

This part of the book comprises the following chapters:

•	 Chapter 8, Network APIs

•	 Chapter 9, OpenConfig

•	 Chapter 10, Network Monitoring

•	 Chapter 11, Expert Insights

•	 Chapter 12, Appendix: Building a Testing Environment

8
Network APIs

As the ways we build, deploy, and operate networks evolve, new protocols and interfaces are emerging
to ease machine-to-machine communication—a primary enabler of network automation. In this and
the following chapters, we’ll navigate through some of these new capabilities and explore how to take
advantage of them in the context of the Go programming language.

The network Command-Line Interface (CLI) is what we, network engineers, have used for decades
to operate and manage network devices. As we move toward a more programmatic approach to
managing networks, simply relying on faster CLI command execution might not be enough to deploy
network automation solutions at scale.

Solutions that don’t have a strong foundation are brittle and unstable. Hence, when possible, we prefer
to build network automation projects based on structured data and machine-friendly Application
Programming Interfaces (APIs). The target use case for these interfaces isn’t direct human interaction,
so you can rely on Go to translate between remote API calls and a local, user-facing interface.

When we talk about APIs, we generally refer to different things that make up the API developer
experience, which you need to consider when evaluating an API:

•	 A set of Remote Procedure Calls (RPCs) defining the rules of interaction between a client
and a server—at the very least, this would include a standard set of create, get, update, and
delete operations.

•	 The structure and data type exchanged—product vendors can define this using data model
specification languages such as YANG or OpenAPI.

•	 The underlying protocol that wraps the modeled data, which you can serialize into one of the
standard formats, such as XML or JSON, and transports it between a client and a server—this
could be SSH or, more often these days, HTTP.

In the networking world, we have another dimension in the API landscape that determines the origin
of a model specification document. While every networking vendor is free to write their own data
models, there are two sources of vendor-agnostic models—IETF and OpenConfig—that strive to offer
a vendor-neutral way of configuring and monitoring network devices. Because of this variability in

Network APIs250

the API ecosystem, it’s impossible to cover all protocols and standards, so in this chapter, we’ll only
cover a subset of network APIs, selected based on availability, practicality, and usefulness:

•	 We’ll start by looking at OpenAPI as one of the most prevalent API specification standards in
a wider infrastructure landscape.

•	 We’ll then move on to JSON-RPC, which uses vendor-specific YANG models.

•	 After that, we’ll show an example of an RFC-standard HTTP-based protocol called RESTCONF.

•	 Finally, we’ll look at how you can leverage Protocol Buffers (protobuf) and gRPC to interact
with network devices and stream telemetry.

In this chapter, we’ll focus only on these network APIs, as the others are outside of the scope. The most
notable absentee is the Network Configuration Protocol (NETCONF)—one of the oldest network APIs,
defined originally by IETF in 2006. We’re skipping NETCONF mainly because of the lack of support
for XML in some Go packages we use throughout this chapter. Although NETCONF is in use today
and offers relevant capabilities, such as different configuration datastores, configuration validation,
and network-wide configuration transactions, in the future, it may get displaced by technologies
running over HTTP and TLS, such as RESTCONF, gNMI, and various proprietary network APIs.

Technical requirements
You can find the code examples for this chapter in the book’s GitHub repository (refer to the Further
reading section), under the ch08 folder.

Important Note
We recommend you execute the Go programs in this chapter in a virtual lab environment.
Refer to the appendix for prerequisites and instructions on how to build it.

API data modeling
Before we look at any code, let’s review what data modeling is, what its key components are, and
their relationships. While we focus on the configuration management side of model-driven APIs
for this explanation, similar rules and assumptions apply to workflows involving state data retrieval
and verification.

The main goal of a configuration management workflow is to transform some input into a serialized
data payload whose structure adheres to a data model. This input is usually some user-facing data,
which has its own structure and may contain only a small subset of the total number of configuration
values. But this input has a one-to-one relationship with the resulting configuration, meaning that
rerunning the same workflow should result in the same set of RPCs with the same payloads and the
same configuration state on a network device.

API data modeling 251

At the center of it all is a data model—a text document that describes the hierarchical structure and
types of values of a (configuration) data payload. This document becomes a contract with all potential
clients—as long as they send their data in the right format, a server should be able to understand it
and parse it. This contract works both ways so that when a client requests some information from a
server, it can expect to receive it in a predetermined format.

The following diagram shows the main components of a model-driven configuration management
workflow and their relationships:

Figure 8.1 – Data modeling concepts

Thus far, we’ve discussed a model, its input, and the resulting configuration. The only thing we haven’t
mentioned until now is the bindings. We use this term to refer to a broad set of tools and libraries that
can help us generate the final configuration data payload programmatically, that is, without resorting
to a set of text templates or building these data payloads manually, both of which we consider an anti-
pattern in any network automation workflow. We produce these bindings based on the data model and
they represent a programmatic view of the model. They may also include several helper functions to
serialize and deserialize data structures into one of the expected output formats, for example, JSON
or protobuf. We’ll spend most of this chapter discussing and interacting with bindings as they become
the main interface for a data model inside of the programming language.

Now that we’ve covered some theory, it’s time to put it into practice. In the following section, we’ll
examine OpenAPI models and one way you can instantiate and validate them.

Network APIs252

OpenAPI
Within a greater infrastructure landscape, HTTP and JSON are two commonly used standards for
machine-to-machine communication. Most web-based services, including public and private clouds,
use a combination of these technologies to expose their externally facing APIs.

The OpenAPI Specification allows us to define and consume RESTful APIs. It lets us describe the
enabled HTTP paths, responses, and JSON schemas for the corresponding payloads. It serves as a
contract between an API provider and its clients to allow for a more stable and reliable API consumer
experience and enables API evolution through versioning.

We don’t widely use OpenAPI in networking, arguably for historical reasons. YANG and its ecosystem
of protocols predate OpenAPI and the rate of change in network operating systems is not as fast as you
might expect. But we often find OpenAPI support in network appliances—SDN controllers, monitoring
and provisioning systems or Domain Name System (DNS), Dynamic Host Configuration Protocol
(DHCP), and IP Address Management (IPAM) products. This makes working with OpenAPI a
valuable skill to have for any network automation engineer.

In Chapters 6 and 7, we went through an example of how to interact with Nautobot’s external OpenAPI-
based interface. We used a Go package produced by an open source code generation framework based
on Nautobot’s OpenAPI specification. One thing to be mindful of with automatic code generation
tools is that they rely on a certain version of the OpenAPI Specification. If the version of your API
specification is different (there are nine different OpenAPI versions today; refer to the Further reading
section), the tool may not generate the Go code. Hence, we want to explore an alternative approach.

In this section, we’ll configure NVIDIA’s Cumulus Linux device (cvx), which has an OpenAPI-based
HTTP API, using Configure Unify Execute (CUE; refer to the Further reading section)—an open
source Domain-Specific Language (DSL) designed to define, generate, and validate structured data.

CUE’s primary user-facing interface is CLI, but it also has first-class Go API support, so we’ll focus on
how to interact with it entirely within Go code while providing the corresponding shell commands
where appropriate.

The following figure shows a high-level overview of the Go program we’ll discuss next:

OpenAPI 253

Figure 8.2 – Working with OpenAPI data models

Data modeling

Starting from the top of the diagram, the first thing we need to do is produce the CUE code we can
use to generate the data structures to configure a network device.

Although CUE can import existing structured data and generate CUE code, it may take a few iterations
to get to a point where the code organization is optimal. It turned out to be faster to write this code
from scratch for the example we present here. The result is in the ch08/cue/template.cue file
(refer to the Further reading section).

Important Note
We won’t cover CUE syntax or any of its core concepts and principles in this book but will
instead focus on its Go API. For more details about the language, please refer to CUE’s official
documentation, linked in the Further reading section.

CUE resembles JSON with heavy influences from Go. It allows you to define data structures and
map values between different data structures via references. Data generation in CUE thus becomes
an exercise of data transformation with strict value typing and schema validation. Here’s a snippet

Network APIs254

from the template.cue file mentioned earlier, which defines three top-level objects for interfaces,
routing, and VRF configuration:

package cvx

import "network.automation:input"

interface: _interfaces

router: bgp: {

    _global_bgp

}

vrf: _vrf

_global_bgp: {

    "autonomous-system": input.asn

    enable:              "on"

    "router-id":         input.loopback.ip

}

_interfaces: {

    lo: {

        ip: address: "\(input.LoopbackIP)": {}

        type: "loopback"

    }

    for intf in input.uplinks {

        "\(intf.name)": {

            type: "swp"

            ip: address: "\(intf.prefix)": {}

        }

    }

}

/* ... omitted for brevity ... */

Important Note
You can refer to CUE’s References and Visibility tutorial (linked in the Further reading section)
for explanations about emitted values, references, and the use of underscores.

OpenAPI 255

This file has references to an external CUE package called input, which provides the required input
data for the data model in the preceding output. This separation of data templates and their inputs
allows you to distribute these files separately and potentially have them come from different sources.
CUE provides a guarantee that the result is always the same, no matter the order you follow to assemble
those files.

Data input

Now, let’s see how we define and provide inputs to the preceding data model. We use the same data
structure we used in Chapters 6, Configuration Management, and Chapter 7, Automation Frameworks,
in a YAML file (input.yaml), which for the cvx lab device looks as follows:

input.yaml

asn: 65002

loopback:

  ip: "198.51.100.2"

uplinks:

  - name: "swp1"

    prefix: "192.0.2.3/31"

peers:

  - ip: "192.0.2.2"

    asn: 65001

Using CUE, we can validate that this input data is correct by building a corresponding object and
introducing constraints, for example, a valid ASN range or IPv4 prefix format. CUE allows you to
define extra values directly inside the schema definition, either by hardcoding defaults (input.
VRFs) or referencing other values from the same context (input.LoopbackIP):

package input

import (

    "net"

)

asn: <=65535 & >=64512

loopback: ip: net.IPv4 & string

uplinks: [...{

    name:   string

    prefix: net.IPCIDR & string

Network APIs256

}]

peers: [...{

    ip:  net.IPv4 & string

    asn: <=65535 & >=64512

}]

LoopbackIP: "\(loopback.ip)/32"

VRFs: [{name: "default"}]

In the main function of the example program, we use the importInput helper function to read
the input YAML file and generate a corresponding CUE file:

import "cuelang.org/go/cue/load"

func main() {

    err := importInput()

    /* ... <continues next > ... */

}

The program saves the resulting file as input.cue in the local directory. The implementation details
of this function are not too important as you can perform the same action from the command line
with cue import input.yaml -p input.

At this stage, we can validate that our input conforms to the schema and constraints shown earlier. For
example, if we had set the asn value in input.yaml to something outside of the expected range,
CUE would’ve caught and reported this error:

ch08/cue$ cue eval network.automation:input -c

asn: invalid value 10 (out of bound >=64512):

    ./schema.cue:7:16

    ./input.cue:3:6

Device configuration

Now we have all the pieces in place to configure our network device. We produce the final configuration
instance by compiling the template defined in the cvx package into a concrete CUE value. We do
this in three steps.

OpenAPI 257

First, we load all CUE files from the local directory, specifying the name of the package containing
the template (cvx):

func main() {

    /* ... <continues from before > ... */

    bis := load.Instances([]string{"."}, &load.Config{

        Package: "cvx",

    })

    /* ... <continues next > ... */

}

Second, we compile all loaded files into a CUE value, which resolves all imports and combines the
input with the template:

func main() {

    /* ... <continues from before > ... */

    ctx := cuecontext.New()

    i := ctx.BuildInstance(instances[0])

    if i.Err() != nil {

        msg := errors.Details(i.Err(), nil)

        fmt.Printf("Compile Error:\n%s\n", msg)

    }

    /* ... <continues next > ... */

}

Finally, we validate that we can resolve all references and that the input provides all the required fields:

func main() {

    /* ... <continues from before > ... */

    if err := i.Validate(

        cue.Final(),

        cue.Concrete(true),

    ); err != nil {

        msg := errors.Details(err, nil)

        fmt.Printf("Validate Error:\n%s\n", msg)

    }

    /* ... <continues next > ... */

}

Network APIs258

Once we know the CUE value is concrete, we can safely marshal it into JSON and send it directly to
the cvx device. The body of the sendBytes function implements the three-stage commit process
we discussed in Chapter 6, Configuration Management:

func main() {

    /* ... <continues from before > ... */

    data, err := e.MarshalJSON()

    // check error

    if err := sendBytes(data); err != nil {

        log.Fatal(err)

    }

    log.Printf("Successfully configured the device")

}

You can find the full program in the ch08/cue directory (refer to the Further reading section) of
this book’s GitHub repository (refer to the Further reading section). The same directory includes the
complete version of the CUE files with a data template and input schema and the input YAML file.
Successful execution of this program should produce an output like this:

ch08/cue$ go run main.go

main.go:140: Created revisionID: changeset/
cumulus/2022-05-25_20.56.51_KF9A

{

  "state": "apply",

  "transition": {

    "issue": {},

    "progress": ""

  }

}

main.go:69: Successfully configured the device

JSON-RPC 259

Keep in mind that although we focus on CUE’s Go API in this chapter, you can do the same set of
actions using the CUE CLI (executable binary). This even includes the three-stage commit to submit
and apply the cvx configuration. Using the built-in CUE scripting language, you can define any
sequence of tasks, such as making HTTP calls or checking and parsing responses. You can save these
actions or tasks in a special tool file and they automatically become available in the cue binary. You
can read more about this in the ch08/cue readme document and find example source code in the
ch08/cue/cue_tool.cue file (refer to the Further reading section).

CUE has many use cases outside of what we’ve just described and different open source projects
such as Istio and dagger.io (refer to the Further reading section) have adopted it and use it in their
products. We encourage you to explore other CUE use cases beyond what’s covered in this book, as
well as similar configuration languages such as Jsonnet and Dhall (refer to the Further reading section).

We’ve covered a few different ways of interacting with an OpenAPI provider. For the rest of this
chapter, we’ll focus on YANG-based APIs. The first one we’ll introduce is a JSON-RPC interface
implementation from Nokia.

JSON-RPC
JSON-RPC is a lightweight protocol you can use to exchange structured data between a client and a
server. It can work over different transport protocols, but we’ll focus only on HTTP. Although JSON-
RPC is a standard, it only defines the top-level RPC layer, while payloads and operations remain
specific to each implementation.

In this section, we’ll show how to use Nokia-specific YANG models to configure the srl device from
our lab topology, as SR Linux supports sending and receiving YANG payloads over JSON-RPC (refer
to the Further reading section).

We’ll try to avoid building YANG data payloads manually or relying on traditional text templating
methods. The sheer size of some YANG models, as well as model deviations and augmentations, make
it impossible to build the payloads manually. To do this at scale, we need to rely on a programmatic
approach to build configuration instances and retrieve state data. This is where we use openconfig/
ygot (YANG Go Tools) (refer to the Further reading section)—a set of tools and APIs for automatic
code generation from a collection of YANG models.

At a high level, the structure of the example program is analogous to the one in the OpenAPI section.
Figure 8.3 shows the building blocks of the program we’ll review in this section:

Network APIs260

Figure 8.3 – Working with YANG data models

We’ll start by combining the auto-generated Go bindings with the input data and building a configuration
instance to provision the srl device.

Code generation

Starting from the top of the preceding diagram, the first step is to generate the corresponding Go
code from a set of Nokia’s YANG models (refer to the Further reading section). We’ll only use a subset
of Nokia’s YANG models to generate the bindings to configure what we need, namely L3 interfaces,
BGP, and route redistribution. This way, we keep the size of the generated Go package small and
constrained to our specific use case.

Sadly, there is no universal rule for how to pinpoint the list of models you need apart from reading
and understanding YANG models or reverse-engineering them from an existing configuration.
Thankfully, Nokia has developed a YANG browser (refer to the Further reading section) that includes
a pattern-matching search that highlights the relevant XPaths and can help you find the right set of
YANG models.

Once we’ve identified which models we need, we can use the ygot generator tool to build a Go package
based on them. We won’t describe all the flags of this tool, as ygot’s official documentation (refer to the
Further reading section) covers them. Still, we want to highlight the most important options we’ll use:

•	 generate_fakeroot: This encapsulates all generated Go data structures in a top-level fake
root data structure called Device to join all modules in a common hierarchy. Because there
isn’t a YANG model that defines a universal root top-level container for all devices, network
devices just add the YANG modules they support at the root (/). ygot represents the root
via this fake root container.

JSON-RPC 261

•	 path: This flag helps ygot find and resolve any YANG data model imports.

The complete command to auto-generate the srl package and place it in the ./pkg/srl/ directory
we used is this:

ch08/json-rpc$ go run \

  github.com/openconfig/ygot/generator \

    -path=yang \

    -generate_fakeroot -fakeroot_name=device \

    -output_file=pkg/srl/srl.go \

    -package_name=srl \

    yang/srl_nokia/models/network-instance/srl_nokia-bgp.yang \

    yang/srl_nokia/models/routing-policy/srl_nokia-routing-
policy.yang \

    yang/srl_nokia/models/network-instance/srl_nokia-ip-route-
tables.yang

Since the preceding command has several flags, it may be desirable to remember their exact set to
make the build reproducible in the future. One alternative is to include it in a code build utility, such as
make. Another, more Go-native option is to include it in the source code using the //go:generate
directive, as you can see in the ch08/json-rpc/main.go file (refer to the Further reading section).
Thus, you can generate the same srl repeatedly using this command:

ch08/json-rpc$ go generate ./...

Building configuration

Now that we’ve built a YANG-based Go package, we can create a programmatic instance of our desired
configuration state and populate it. We do all this within Go, with the full flexibility of a general-
purpose programming language at our disposal.

For example, we can design the configuration program as a set of methods, with the input model
being the receiver argument. After we read and decode the input data, we create an empty fake root
device we extend iteratively until we build the complete YANG instance with all the relevant values
we want to configure.

The benefit of using a root device is that we don’t need to worry about individual paths. We can send
our payload to /, assuming that the resulting YANG tree hierarchy starts from the root:

import (

  api "json-rpc/pkg/srl"

)

Network APIs262

// Input Data Model

type Model struct {

  Uplinks  []Link `yaml:"uplinks"`

  Peers    []Peer `yaml:"peers"`

  ASN      int    `yaml:"asn"`

  Loopback Addr   `yaml:"loopback"`

}

func main() {

  /* ... <omitted for brevity > ... */

  var input Model

  d.Decode(&input)

  device := &api.Device{}

  input.buildDefaultPolicy(device)

  input.buildL3Interfaces(device)

  input.buildNetworkInstance(device)

  /* ... <continues next (main) > ... */

}

The preceding code calls three methods on input. Let’s zoom in on buildNetworkInstance,
responsible for L3 routing configuration. This method is where we define a network instance, which
is a commonly used abstraction for VPN Routing and Forwarding (VRF) instances and Virtual
Switch Instances (VSIs). We create a new network instance from the top-level root device to ensure
we attach it to the top of the YANG tree:

func (m *Model) buildNetworkInstance(dev *api.Device) error {

  ni, err := dev.NewNetworkInstance(defaultNetInst)

  /* ... <continues next (buildNetworkInstance) > ... */

}

In the next code snippet, we move all uplinks and a loopback interface into the newly created network
instance by defining each subinterface as a child of the default network instance:

func (m *Model) buildNetworkInstance(dev *api.Device) error {

  // ... <continues from before (buildNetworkInstance) >

  links := m.Uplinks

JSON-RPC 263

  links = append(

    links,

    Link{

      Name:   srlLoopback,

      Prefix: fmt.Sprintf("%s/32", m.Loopback.IP),

    },

  )

  for _, link := range links {

    linkName := fmt.Sprintf("%s.%d", link.Name,

                            defaultSubIdx)

    ni.NewInterface(linkName)

  }

  /* ... <continues next (buildNetworkInstance) > ... */

}

Next, we define the global BGP settings by manually populating the BGP struct and attaching it to
the Protocols.Bgp field of the default network instance:

func (m *Model) buildNetworkInstance(dev *api.Device) error {

  // ... <continues from before (buildNetworkInstance) >

  ni.Protocols =

  &api.SrlNokiaNetworkInstance_NetworkInstance_Protocols{

    Bgp:

    &api.

    SrlNokiaNetworkInstance_NetworkInstance_Protocols_Bgp{

      AutonomousSystem: ygot.Uint32(uint32(m.ASN)),

      RouterId:         ygot.String(m.Loopback.IP),

      Ipv4Unicast:

      &api.

SrlNokiaNetworkInstance_NetworkInstance_Protocols_Bgp_
Ipv4Unicast{

        AdminState: api.SrlNokiaBgp_AdminState_enable,

      },

    },

  }

  /* ... <continues next (buildNetworkInstance) > ... */

}

Network APIs264

The final part of the configuration is BGP neighbors. We iterate over a list of peers defined in the input
data model and add a new entry under the BGP struct we set up earlier:

func (m *Model) buildNetworkInstance(dev *api.Device) error {

  // ... <continues from before (buildNetworkInstance) >

  ni.Protocols.Bgp.NewGroup(defaultBGPGroup)

  for _, peer := range m.Peers {

    n, err := ni.Protocols.Bgp.NewNeighbor(peer.IP)

    // check error

    n.PeerAs = ygot.Uint32(uint32(peer.ASN))

    n.PeerGroup = ygot.String(defaultBGPGroup)

  }

  /* ... <continues next (buildNetworkInstance) > ... */

}

When we finish populating the Go structs, we make sure that all provided values are correct and
match the YANG constraints. We can do this with a single call to the Validate method on the
parent container:

func (m *Model) buildNetworkInstance(dev *api.Device) error {

    /* ... <continues from before (buildNetworkInstance) > ...
*/

    if err := ni.Validate(); err != nil {

        return err

    }

    return nil

}

Device configuration

Once we have populated a YANG model instance with all the input values, the next step is to send it
to the target device. We do this in a few steps:

1.	 We use a ygot helper function to produce a map from the current YANG instance. This map
is ready to be serialized into JSON according to the rules defined in RFC7951.

2.	 We use the standard encoding/json library to build a single JSON-RPC request that updates
the entire YANG tree with our configuration changes.

JSON-RPC 265

3.	 Using the standard net/http package, we send this request to the srl device:

func main() {

    /* ... <continues from before (main) > ... */

    v, err := ygot.ConstructIETFJSON(device, nil)

    // check error

    value, err := json.Marshal(RpcRequest{

        Version: "2.0",

        ID:      0,

        Method:  "set",

        Params: Params{

            Commands: []*Command{

                {

                    Action: "update",

                    Path:   "/",

                    Value:  v,

                },

            },

        },

    })

    // check error

    req, err := http.NewRequest(

        "POST",

        hostname,

        bytes.NewBuffer(value),

    )

    resp, err := client.Do(req)

     // check error

    defer resp.Body.Close()

    if resp.StatusCode != http.StatusOK {

        log.Printf("Status: %s", resp.Status)

    }

Network APIs266

You can find the complete program that configures the srl device in the ch08/json-rpc directory
(refer to the Further reading section) of this book’s GitHub repository. To run it, cd into this folder
and run the following command:

ch08/json-rpc$ go run main.go

2022/04/26 13:09:03 Successfully configured the device

This program only verifies that we executed the RPC successfully; it doesn’t yet check to confirm that it
had the desired effect, which we will discuss later in this chapter. As with most HTTP-based protocols,
a single RPC is a single transaction, so you can assume the target device applied the changes, as long
as you receive a successful response. It’s worth mentioning that some JSON-RPC implementations
have more session control functions that allow multistage commits, rollbacks, and other features.

In the following section, we’ll take a similar approach of configuring a network device based on its
YANG models but introduce a couple of twists to show OpenConfig models and the RESTCONF API.

RESTCONF
The IETF designed RESTCONF as an HTTP-based alternative to NETCONF that offers Create, Read,
Update, and Delete (CRUD) operations on a conceptual datastore containing YANG-modeled data.
It may lack some NETCONF features, such as different datastores, exclusive configuration locking,
and batch and rollback operations, but the exact set of supported and unsupported features depends
on the implementation and network device capabilities. That said, because it uses HTTP methods and
supports JSON encoding, RESTCONF reduces the barrier of entry for external systems to integrate
and inter-operate with a network device.

RESTCONF supports a standard set of CRUD operations through HTTP methods: POST, PUT,
PATCH, GET, and DELETE. RESTCONF builds HTTP messages with the YANG XPath translated into
a REST-like URI and it transports the payload in the message body. Although RESTCONF supports
both XML and JSON encoding, we will only focus on the latter, with the rules of the encoding defined
in RFC7951. We’ll use Arista’s EOS as a test device, which has its RESTCONF API enabled when
launching the lab topology.

The structure of the program we’ll create in this section is the same as for the JSON-RPC example
illustrated in Figure 8.3.

Code generation

The code generation process is almost the same as the one we followed in the JSON-RPC section.
We use openconfig/ygot (refer to the Further reading section) to generate a Go package from a set of
YANG models that EOS supports. But there are a few notable differences that are worth mentioning
before moving forward:

RESTCONF 267

•	 Instead of vendor-specific YANG models, we use vendor-neutral OpenConfig models, which
Arista EOS supports.

•	 When generating Go code with openconfig/ygot (refer to the Further reading section), you
might run into situations when more than one model is defined in the same namespace. In
those cases, you can use the -exclude_modules flag to ignore a certain YANG model
without having to remove its source file from the configured search path.

•	 We enable OpenConfig path compression to optimize the generated Go code by removing the
YANG containers containing list nodes. Refer to the ygen library design documentation
for more details (Further reading).

•	 We also show an alternative approach where we don’t generate a fake root device. As a result,
we can’t apply all the changes in a single RPC. Instead, we have to make more than one HTTP
call, each with its own unique URI path.

Before we can generate the Go code, we need to identify the supported set of Arista YANG models
(refer to the Further reading section) and copy them into the yang directory. We use the following
command to generate the eos Go package from that list of models:

ch08/restconf$ go run github.com/openconfig/ygot/generator \

  -path=yang \

  -output_file=pkg/eos/eos.go \

  -compress_paths=true \

  -exclude_modules=ietf-interfaces \

  -package_name=eos \

  yang/openconfig/public/release/models/bgp/openconfig-bgp.yang
\

  yang/openconfig/public/release/models/interfaces/openconfig-
if-ip.yang \

  yang/openconfig/public/release/models/network-instance/
openconfig-network-instance.yang \

  yang/release/openconfig/models/interfaces/arista-intf-
augments-min.yang

For the same reasons we described in the JSON-RPC section, we can also embed this command into
the Go source code to generate the same Go package using the following command instead:

ch08/restconf$ go generate ./...

Network APIs268

Building configuration

In this example, we won’t apply all changes in a single HTTP call so that we can show you how to
update a specific part of a YANG tree without affecting other, unrelated parts. In the preceding section,
we worked around that by using an Update operation, which merges the configuration we send with
the existing configuration on the device.

But in certain cases, we want to avoid the merge behavior and ensure that only the configuration
we send is present on the device (declarative management). For that, we could’ve imported all
existing configurations and identified the parts that we want to keep or replace before sending a new
configuration version to the target device. Instead, we create a configuration for the specific parts of
a YANG tree via a series of RPCs.

To simplify RESTCONF API calls, we create a special restconfRequest type that holds a URI
path and a corresponding payload to send to the device. The main function starts with parsing the
inputs for the data model and preparing a variable to store a set of RESTCONF RPCs:

type restconfRequest struct {

    path    string

    payload []byte

}

func main() {

    /* ... <omitted for brevity > ... */

    var input Model

    err = d.Decode(&input)

    // check error

    var cmds []*restconfRequest

    /* ... <continues next > ... */

}

As in the JSON-RPC example, we build the desired configuration instance in a series of method
calls. This time, each method returns one restConfRequest that has enough details to build an
HTTP request:

func main() {

    /* ... <continues from before > ... */

    l3Intfs, err := input.buildL3Interfaces()

    // check error

    cmds = append(cmds, l3Intfs...)

RESTCONF 269

    bgp, err := input.buildBGPConfig()

    // check error

    cmds = append(cmds, bgp)

    redistr, err := input.enableRedistribution()

    // check error

    cmds = append(cmds, redistr)

    /* ... <continues next > ... */

}

Let’s examine one of these methods that creates a YANG configuration from our inputs. The
enableRedistribution method generates a configuration to enable redistribution between
a directly connected table and the BGP Routing Information Base (RIB). OpenConfig defines a
special TableConnection struct that uses a pair of YANG enums to identify the redistribution
source and destination:

const defaultNetInst = "default"

func (m *Model) enableRedistribution() (*restconfRequest,
error) {

    netInst := &api.NetworkInstance{

        Name: ygot.String(defaultNetInst),

    }

    _, err := netInst.NewTableConnection(

        api.OpenconfigPolicyTypes_INSTALL_PROTOCOL_TYPE_
DIRECTLY_CONNECTED,

        api.OpenconfigPolicyTypes_INSTALL_PROTOCOL_TYPE_BGP,

        api.OpenconfigTypes_ADDRESS_FAMILY_IPV4,

    )

    

    /* ... <omitted for brevity > ... */

    value, err := ygot.Marshal7951(netInst)

    // check error

    return &restconfRequest{

        path: fmt.Sprintf(

Network APIs270

            "/network-instances/network-instance=%s",

            defaultNetInst,

        ),

        payload: value,

    }, nil

}

The rest of the code in Figure 8.3 shows the building blocks of the program we review in this section.

Device configuration

Once we’ve prepared all the required RESTCONF RPCs, we can send them to the device. We iterate
over each restconfRequest and pass it to a helper function, catching any returned errors.

The restconfPost helper function has just enough code to build an HTTP request using the
net/http package and send it to the ceos device:

const restconfPath = "/restconf/data"

func restconfPost(cmd *restconfRequest) error {

  baseURL, err := url.Parse(

    fmt.Sprintf(

      "https://%s:%d%s",

      ceosHostname,

      defaultRestconfPort,

      restconfPath,

    ),

  )

  // return error if not nil

  baseURL.Path = path.Join(restconfPath, cmd.path)

  req, err := http.NewRequest(

    "POST",

    baseURL.String(),

    bytes.NewBuffer(cmd.payload),

  )

  // return error if not nil

  req.Header.Add("Content-Type", "application/json")

  req.Header.Add(

    "Authorization",

State validation 271

    "Basic "+base64.StdEncoding.EncodeToString(

      []byte(

        fmt.Sprintf("%s:%s", ceosUsername, ceosPassword),

      ),

    ),

  )

  client := &http.Client{Transport: &http.Transport{

        TLSClientConfig:

          &tls.Config{

            InsecureSkipVerify: true

          },

      }

  }

  resp, err := client.Do(req)

  /* ... <omitted for brevity > ... */

}

You can find the complete program in the ch08/restconf directory (refer to the Further reading
section) of this book’s GitHub repository. Running it from a host running the lab topology should
produce a similar output to this:

ch08/restconf$ go run main.go

2022/04/28 20:49:16 Successfully configured the device

At this point, we should have all three nodes of our lab topology fully configured. Still, we haven’t
confirmed that what we’ve done has had the desired effect. In the next section, we’ll go through a
process of state validation and show how you can do it using network APIs.

State validation
In the last three sections of this chapter, we pushed device configs without verifying that the configuration
changes had the desired effect. This is because we need all devices configured before we can validate
the resulting converged operational state. Now, with all the code examples from the OpenAPI, JSON-
RPC, and RESTCONF sections executed against the lab topology, we can verify whether we achieved
our configuration intent—establish end-to-end reachability between loopback IP addresses of all
three devices.

In this section, we’ll use the same protocols and modeling language we used earlier in this chapter
to validate that each lab device can see the loopback IP address of the other two lab devices in its

Network APIs272

Forwarding Information Base (FIB) table. You can find the complete code for this section in the
ch08/state directory (refer to the Further reading section) of this book’s GitHub repository. Next,
we’ll examine a single example of how you can do this with Arista’s cEOS (ceos) lab device.

Operational state modeling

One thing we need to be mindful of when talking about the operational state of a network element
is the difference between the applied and the derived state, as described by the YANG operational
state IETF draft (refer to the Further reading section). The former refers to the currently active device
configuration and should reflect what an operator has already applied. The latter is a set of read-only
values that result from the device’s internal operations, such as CPU or memory utilization, and
interaction with external elements, such as packet counters or BGP neighbor state. Although we aren’t
explicitly mentioning it when we’re talking about an operational state, assume we’re referring to the
derived state unless we state otherwise.

Historically, there’ve been different ways to model the device’s operational state in YANG:

•	 You could either enclose everything in a top-level container or read from a separate
state datastore, completely distinct from the config container/datastore we use for
configuration management.

•	 Another way is to create a separate state container for every YANG sub-tree alongside the
config container. This is what the YANG operational state IETF draft (refer to the Further
reading section) describes.

Depending on which approach you use, you may need to adjust how you construct your RPC request.
For example, the srl device needs an explicit reference to the state datastore. What we show in
the next code example is the alternative approach, where you retrieve a part of the YANG sub-tree
and extract the relevant state information from it.

It’s worth noting that OpenAPI is less strict about the structure and composition of its models and
the state may come from a different part of a tree or require a specific query parameter to reference
the operational datastore, depending on the implementation.

Operational state processing

Configuration management workflows typically involve the processing of some input data to generate
a device-specific configuration. This is a common workflow that we often use to show the capabilities
of an API. But there is an equally important workflow that involves operators retrieving state data from
a network device, which they process and verify. In that case, the information flows in the opposite
direction—from a network device to a client application.

State validation 273

At the beginning of this chapter, we discussed the configuration management workflow, so now we
want to give a high-level overview of the state retrieval workflow:

1.	 We start by querying a remote API endpoint, represented by a set of URL and HTTP
query parameters.

2.	 We receive an HTTP response, which has a binary payload attached to it.

3.	 We unmarshal this payload into a Go struct that follows the device’s data model.

4.	 Inside this struct, we look at the relevant parts of the state we can extract and evaluate.

The following code snippet from the ch08/state program (refer to the Further reading section)
is a concrete example of this workflow. The program structure follows the same pattern we described
in the State validation section of Chapter 6, Configuration Management. Hence, in this chapter, we’ll
only zoom in on the most relevant part—the GetRoutes function, which connects to the ceos
device and retrieves the content of its routing table.

It starts by building an HTTP request with the device-specific login information:

func (r CEOS) GetRoutes(wg *sync.WaitGroup) {

  client := resty.NewWithClient(&http.Client{

    Transport: &http.Transport{

      TLSClientConfig: &tls.Config{

        InsecureSkipVerify: true},

    },

  })

  client.SetBaseURL("https://" + r.Hostname + ":6020")

  client.SetBasicAuth(r.Username, r.Password)

  resp, err := client.R().

    SetHeader("Accept", "application/yang-data+json").

    Get(fmt.Sprintf("/restconf/data/network-instances/network-
instance=%s/afts", "default"))

  /* ... <continues next > ... */

}

The Abstract Forwarding Table (AFT) in the code example is an OpenConfig representation of
the FIB (routing) table and the GET API call retrieves a JSON representation of the default Virtual
Routing and Forwarding (VRF) routing table.

Network APIs274

Next, we create an instance of the Go struct corresponding to the part of the YANG tree we queried
and pass it to the Unmarshal function for deserialization. The resulting Go struct now has one
Ipv4Entry value for each entry in the default FIB and we store that list of prefixes in the out slice:

import eosAPI "restconf/pkg/eos"

func (r CEOS) GetRoutes(wg *sync.WaitGroup) {

  /* ... <continues from before > ... */

  response := &eosAPI.NetworkInstance_Afts{}

  err := eosAPI.Unmarshal(resp.Body(), response)

  // process error

  out := []string{}

  for key := range response.Ipv4Entry {

    out = append(out, key)

  }

  /* ... <omitted for brevity > ... */

  go checkRoutes(r.Hostname, out, expectedRoutes, wg)

}

In this example, we import the eos package (restconf/pkg/eos) we auto-generated in the
RESTCONF section of this chapter, which lives outside the root directory of this program. To do this,
we add the replace restconf => ../restconf/ instruction to this program’s go.mod
file (ch08/state/go.mod; refer to the Further reading section).

For the remaining lab devices, we follow a similar state retrieval workflow. The only difference is in
the YANG paths and the model-based Go structs we use for deserialization. You can find the full
program code in the ch08/state directory (refer to the Further reading section) of this book’s
GitHub repository.

In this chapter, we have covered network APIs based on HTTP version 1.1 that use common encoding
formats, such as JSON. Although HTTP is still very popular and this is unlikely to change soon, it
has its own limitations that may manifest themselves in large-scale deployments. HTTP 1.1 is a text-
based protocol, which means it’s not efficient on the wire and its client-server origins make it difficult
to adapt it for bi-directional streaming. The next version of this protocol, HTTP/2, overcomes these
shortcomings. HTTP/2 is the transport protocol of the gRPC framework, which is what we’ll examine
in the next section.

gRPC 275

gRPC
Network automation opens a door that until recently seemed closed or at least prevented network
engineers from reusing technologies that have had success in other areas, such as microservices or
cloud infrastructure.

One of the most recent advances in network device management is the introduction of gRPC. We can
use this high-performance RPC framework for a wide range of network operations, from configuration
management to state streaming and software management. But performance is not the only thing
that is appealing about gRPC. Just like with YANG and OpenAPI apps, gRPC auto-generates client
and server stubs in different programming languages, which enables us to create an ecosystem of
tools around the API.

In this section, we’ll go over the following topics to help you understand the gRPC API better:

•	 Protobuf

•	 gRPC transport

•	 Defining gRPC services

•	 Configuring network devices with gRPC

•	 Streaming telemetry from a network device with gRPC

Protobuf

gRPC uses protobuf as its Interface Definition Language (IDL) to allow you to share structured
data between remote software components that may be written in different programming languages.

When working with protobuf, one of the first steps is to model the information you’re serializing by
creating a protobuf file. This file has a list of messages defining the structure and type of data to exchange.

If we take the input data model we have been using throughout this book as an example and encode
it in a .proto file, it would look something like this:

message Router {

  repeated Uplink uplinks = 1;

  repeated Peer peers = 2;

  int32 asn = 3;

  Addr loopback = 4;

}

message Uplink {

    string name = 1;

Network APIs276

    string prefix = 2;

}

message Peer {

    string ip = 1;

    int32 asn = 2;

}

message Addr {

  string ip = 1;

}

Each field has an explicit type and a unique sequence number that identifies it within the enclosing message.

The next step in the workflow, just like with OpenAPI or YANG, is to generate bindings for Go (or
any other programming language). For this, we use the protobuf compiler, protoc, which generates
the source code with data structures and methods to access and validate different fields:

ch08/protobuf$ protoc --go_out=. model.proto

The preceding command saves the bindings in a single file, pb/model.pb.go. You can view the
contents of this file to see what structs and functions you can use. For example, we automatically get
this Router struct, which is what we had to define manually before:

type Router struct {

  Uplinks  []*Uplink

  Peers    []*Peer   

  Asn      int32     

  Loopback *Addr

}

Protobuf encodes a series of key-value pairs in a binary format similar to how routing protocols encode
Type-Length-Values (TLVs). But instead of sending the key name and a declared type for each field,
it just sends the field number as the key with its value appended to the end of the byte stream.

As with TLVs, Protobuf needs to know the length of each value to encode and decode a message
successfully. For this, Protobuf encodes a wire type in the 8-bit key field along with the field number
that comes from the .proto file. The following table shows the wire types available:

gRPC 277

Type Meaning Used For
0 Varint int32, int64, uint32, uint64, sint32, sint64, bool, enum
1 64-bit fixed64, sfixed64, double
2 Length-delimited string, bytes, embedded messages, packed repeated fields
5 32-bit fixed32, sfixed32, float

Table 8.1 – Protobuf wire types

This generates a dense message (small output) that a CPU can process faster compared to a JSON-
or XML-encoded message. The downside is the message you generate is not human-readable in its
native format and it’s only meaningful if you have the message definition (proto file) to find out the
name and type for each field.

Protobuf on the wire

One of the easiest ways to see how protobuf looks in a binary format is to save it into a file. In our
book’s GitHub repository, we have an example in the ch08/protobuf/write directory (refer to
the Further reading section) that reads a sample input.yaml file and populates the data structure
generated from the .proto file we discussed earlier. We then serialize and save the result into a file
we name router.data. You can use the following command to execute this example:

ch08/protobuf/write$ go run protobuf

You can see the content of the generated protobuf message by viewing the file with hexdump -C
router.data. If we group some bytes for convenience and refer to the proto definition file, we can
make sense of the data, as shown in the following figure:

Figure 8.4 – Protobuf-encoded message

Network APIs278

To give you an idea of how efficient the protobuf encoding is, we’ve included a couple of JSON files
encoding the same data. The router.json file is a compact (space-free) JSON encoding. The
second version, called router_ident.json, has the same JSON payload indented with extra
spaces, which can happen if you generate JSON from a text template or use pretty print functions
before sending the data over the network:

ch08/protobuf$ ls -ls router* | awk '{print $6, $10}'
108 router.data

454 router_indent.json

220 router.json

The difference between JSON and protobuf is quite stark and can become very important when
transferring and encoding/decoding large datasets.

Now that we know some basics about gRPC data encoding, we can move on to the protocol used to
transfer these messages.

gRPC transport

Besides efficient binary encoding and enabling simpler framing to serialize your data—compared
to newline-delimited plain text—the gRPC framework also attempts to exchange those messages as
efficiently as possible over the network.

While you can only process one request/response message at a time with HTTP/1.1, gRPC makes
use of HTTP/2 to multiplex parallel requests over the same TCP connection. Another benefit of
HTTP/2 is that it supports header compression. Table 8.2 shows the various transport methods used
by different APIs:

API Transport RPC/Methods
NETCONF SSH get-config, edit-config, commit, lock
RESTCONF HTTP GET, POST, DELETE, PUT
gRPC HTTP/2 Unary, server streaming, client streaming, bidirectional streaming

Table 8.2 – API comparative table

Compared to the older network APIs, gRPC not only allows you to make unary or single requests, but
it also supports full-duplex streaming. Both the client and server can stream data simultaneously, so
you no longer need to work around the limitations of the traditional client-server mode of interaction.

Defining gRPC services

gRPC uses Protobuf to define statically typed services and messages in a file that we can use to generate
the code for client and server applications to consume. gRPC abstracts the underlying transport and
serialization details, allowing developers to focus on the business logic of their applications instead.

gRPC 279

A gRPC service is a collection of RPCs that accept and return protobuf messages. In the following
output, you can see a snippet from Cisco IOS XR’s proto file called ems_grpc.proto (refer to the
Further reading section). This file defines a gRPC service called gRPCConfigOper with several
RPCs to perform a standard set of configuration management operations:

syntax = "proto3";

service gRPCConfigOper {

  rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply)
{};

        

  rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

    

  rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

    

  rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

  /* ... <omitted for brevity > ... */

  rpc CreateSubs(CreateSubsArgs) returns(stream
CreateSubsReply) {};

}

As well as the configuration management operations, this Cisco IOS XR protobuf definition includes
a streaming telemetry subscription (CreateSubs) RPC. The message format for the request and
response is also part of the ems_grpc.proto file (refer to the Further reading section). For example,
to invoke the telemetry subscription RPC, the client has to send a ConfigArgs message and the
server (router) should reply with a stream of CreateSubsReply messages.

Unlike with NETCONF, where Request for Comments (RFC) documents predefine all RPCs,
networking vendors didn’t initially push for a standard set of gRPC services. This flexibility comes
with a cost, as any other vendor could define a similar service, but with different names and message
types. Here, you can see a snippet from Juniper’s telemetry protobuf file called telemetry.proto
(refer to the Further reading section):

syntax = "proto3";

service OpenConfigTelemetry {

  rpc telemetrySubscribe(SubscriptionRequest) returns (stream

Network APIs280

OpenConfigData) {}

  /* ... <omitted for brevity > ... */

  rpc getTelemetryOperationalState(GetOperationalStateRequest)
returns(GetOperationalStateReply) {}

  rpc getDataEncodings(DataEncodingRequest) returns
(DataEncodingReply) {}

}

This is something that the OpenConfig community is addressing with the definition of vendor-agnostic
services, such as gNMI (gnmi.proto; refer to the Further reading section), which we will explore
in the next chapter:

service gNMI {

  rpc Capabilities(CapabilityRequest) returns
(CapabilityResponse);

  rpc Get(GetRequest) returns (GetResponse);

  rpc Set(SetRequest) returns (SetResponse);

  rpc Subscribe(stream SubscribeRequest) returns (stream
SubscribeResponse);

}

Now, let’s see how you can use these RPCs with Go.

Configuring network devices with gRPC

In our example program, we configure an IOS XR device with the ReplaceConfig RPC, defined in
a service called gRPCConfigOper. You can find all the source code for this program in the ch08/
grpc directory of this book’s GitHub repository (refer to the Further reading section). You can use
the following command to execute this program against a test device in Cisco’s DevNet sandbox:

ch08/grpc$ go run grpc

gRPC 281

Following the same configuration management workflow we’ve used throughout this chapter, we’ll
start by generating the code for the following gRPC service:

service gRPCConfigOper {

  rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

}

message ConfigArgs {

  int64 ReqId = 1;

  string yangjson = 2;

  bool   Confirmed = 3;

  uint32  ConfirmTimeout = 4;

}

One thing to remember when working with gRPC-based network APIs is that they might not define
the full data tree natively as protobuf schemas. In the preceding example, one field defines a string
called yangjson that expects a YANG-based JSON payload, not exploring any further what might
be inside that “string.” Carrying a YANG-based JSON payload is what we also did in the JSON-RPC
and RESTCONF examples. In a sense, gRPC serves as a thin RPC wrapper in this example, not too
different from JSON-RPC. We are still doing the configuration management work with YANG-based
data structures.

Since we’re now using both gRPC and YANG schemas, we have to use protoc together with ygot
to generate their respective bindings. We run the protoc command to generate the code from the
proto definition in ch08/grpc/proto (refer to the Further reading section) and ygot to generate
code from a set of OpenConfig YANG models. You can find the exact set of commands in the ch08/
grpc/generate_code file (refer to the Further reading section).

Before we can connect to the target device, we need to gather all the information we need to run the
program, so we reuse the data structures from Chapter 6, Configuration Management, to store this data:

type Authentication struct {

  Username string

  Password string

}

type IOSXR struct {

  Hostname string

  Authentication

}

Network APIs282

type xrgrpc struct {

  IOSXR

  conn *grpc.ClientConn

  ctx  context.Context

}

We start the main function of the program by populating the access credentials and processing the
device configuration inputs, just like in other examples in the book:

func main() {

  iosxr := xrgrpc{

    IOSXR: IOSXR{

      Hostname: "sandbox-iosxr-1.cisco.com",

      Authentication: Authentication{

        Username: "admin",

        Password: "C1sco12345",

      },

    },

  }

  src, err := os.Open("input.yml")

  // process error

  defer src.Close()

  d := yaml.NewDecoder(src)

  var input Model

  err = d.Decode(&input)

  /* ... <continues next > ... */

}

Next, we use the ygot Go bindings from the grpc/pkg/oc package to prepare the yangjson
payload. We build the BGP configuration in the buildNetworkInstance method in the same way
we showed in the JSON-RPC section of this chapter. Once the oc.Device struct is fully populated,
we serialize it into a JSON string:

func main() {

  /* ... <continues from before > ... */

gRPC 283

  device := &oc.Device{}

  input.buildNetworkInstance(device)

  payload, err := ygot.EmitJSON(device,

  &ygot.EmitJSONConfig{

    Format: ygot.RFC7951,

    Indent: "  ",

    RFC7951Config: &ygot.RFC7951JSONConfig{

      AppendModuleName: true,

    },

  })

  /* ... <continues next > ... */

}

To simplify the interactions with the target device, we created a thin wrapper around the gRPC API.
We define a handful of method receivers for the xrgrpc type that implement things such as initial
connection establishment and deleting or replacing RPCs. This is how we connect and replace the
target device’s configuration:

func main() {

  /* ... <continues from before > ... */

  iosxr.Connect()

  defer router.conn.Close()

  iosxr.ReplaceConfig(payload)

  /* ... <continues next > ... */

}

Looking closer at the ReplaceConfig method, we can see exactly how to invoke the required RPC.
We dynamically generate a random ID and populate the ConfigArg message with the YANG-based
JSON payload that we generated with ygot a couple of steps before. The inner ReplaceConfig
method is the one that the protoc command automatically generated for us:

func (x *xrgrpc) ReplaceConfig(json string) error {

  // Random int64 for id

  id := rand.Int63()

  // 'g' is the gRPC stub.

Network APIs284

  g := xr.NewGRPCConfigOperClient(x.conn)

  // We send 'a' to the router via the stub.

  a := xr.ConfigArgs{ReqId: id, Yangjson: json}

  // 'r' is the result that comes back from the target.

  r, err := g.ReplaceConfig(x.ctx, &a)

  // process error

  return nil

}

The configuration payload we send in this case is a string blob, but we can also encode the content
fields with protobuf if the target devices support this. This is what we’ll examine next with a streaming
telemetry example.

Streaming telemetry from a network device with gRPC

gRPC streaming capabilities allow network devices to send data over a persistent TCP connection
either continuously (stream) or on demand (poll). We’ll continue with the same program we started
earlier and reuse the same connection we set up to configure a network device to subscribe to a
telemetry stream.

Even though we initiated a connection to the Cisco IOS XR device, the data now flows in the opposite
direction. This means we need to be able to decode the information we receive and there are two
different ways of doing this.

Once we’ve configured the device, we request it to stream the operational state of all BGP neighbors. In
the first scenario, we’ll cover the case where you have the BGP neighbor proto definition to decode the
messages you get. Then, we’ll examine a less efficient option where a proto definition is unnecessary.

Decoding YANG-defined data with Protobuf

We use the CreateSubs RPC to subscribe to a telemetry stream. We need to submit the subscription
ID we want to stream and choose an encoding option between gpb for protobuf or gpbkv for an
option we’ll explore at the end of this chapter. The following output shows the proto definition of this
RPC and its message types:

service gRPCConfigOper {

  rpc CreateSubs(CreateSubsArgs) returns(stream
CreateSubsReply) {};

}

gRPC 285

message CreateSubsArgs {

  int64 ReqId = 1;

  int64 encode = 2;

  string subidstr = 3;

  QOSMarking qos = 4;

  repeated string Subscriptions = 5;

}

message CreateSubsReply {

  int64 ResReqId = 1;

  bytes data = 2;

  string errors = 3;

}

Similar to the configuration part of the program, we create a helper function to submit the request to the
router. The main difference is that now the reply is a data stream. We store the result of CreateSubs
in a variable we call st.

For data streams, gRPC gives us the Recv method, which blocks until it receives a message. To
continue processing in the main thread, we run an anonymous function in a separate goroutine that
calls the auto-generated GetData method. This method returns the data field of each message we
get and we send it over a channel (b) back to the main goroutine:

func (x *xrgrpc) GetSubscription(sub, enc string) (chan []byte,
chan error, error) {

  /* ... <omitted for brevity > ... */

  

  // 'c' is the gRPC stub.

  c := xr.NewGRPCConfigOperClient(x.conn)

  // 'b' is the bytes channel where telemetry is sent.

  b := make(chan []byte)

  a := xr.CreateSubsArgs{

        ReqId: id, Encode: encoding, Subidstr: sub}

  // 'r' is the result that comes back from the target.

  st, err := c.CreateSubs(x.ctx, &a)

  // process error

Network APIs286

  go func() {

    r, err := st.Recv()

    /* ... <omitted for brevity > ... */

    for {

      select {

      /* ... <omitted for brevity > ... */

      case b <- r.GetData():

      /* ... <omitted for brevity > ... */

      }

    }

  }()

  return b, e, err

}

The data field, and hence the data we receive in channel b, consist of arrays of bytes that we need to
decode. We know this is a streaming telemetry message, so we use its proto-generated code to decode
its fields. Figure 8.5 shows an example of how we can get to BGP state information by following the
proto file definitions:

Figure 8.5 – Protobuf telemetry message (protobuf)

gRPC 287

Back in the main goroutine, we listen out for what the GetSubscription channel returns and
iterate over each message we get. We unmarshal the data received into a Telemetry message. At
this point, we have access to the general telemetry data, so we can use the auto-generated functions
to access some of its fields, such as the timestamp and the encoding path:

func main() {

  /* ... <omitted for brevity > ... */

  ch, errCh, err := router.GetSubscription("BGP", "gpb")

  // process error

    

  for msg := range ch {

    message := new(telemetry.Telemetry)

    proto.Unmarshal(msg, message)

        

    t := time.UnixMilli(int64(message.GetMsgTimestamp()))

    fmt.Printf(

      "Time: %v\nPath: %v\n\n",

      t.Format(time.ANSIC),

      message.GetEncodingPath(),

    )

    /* ... <continues next > ... */

  }

}

Following that, we extract the content of the data_bgp field to access the BGP data encoded with
protobuf. Cisco IOS XR lists the items in rows, so for each one, we unmarshal the content into the
auto-generated BgpNbrBag data structure, from where we can access all operational information of
a BGP neighbor. This way, we get the connection state and the IPv4 address of the BGP peer, which
we print to the screen:

func main() {

  for msg := range ch {

    /* ... <continues from before > ... */  

    for _, row := range message.GetDataGpb().GetRow() {

      content := row.GetContent()

      nbr := new(bgp.BgpNbrBag)

      err = proto.Unmarshal(content, nbr)

Network APIs288

      if err != nil {

        fmt.Printf("could decode Content: %v\n", err)

        return

      }

      state := nbr.GetConnectionState()

      addr := nbr.GetConnectionRemoteAddress().Ipv4Address

      fmt.Println("  Neighbor: ", addr)

      fmt.Println("  Connection state: ", state)

    }

  }

}

If you don’t have access to the BGP message definition (proto file), gRPC can still represent the fields
with protobuf, but it has to add the name and value type for each one, so the receiving end can parse
them. This is what we’ll examine next.

Protobuf self-describing messages

While self-describing messages in a way defeat the purpose of protobuf by sending unnecessary data,
we’ve included an example here to contrast how you could parse a message in this scenario:

Figure 8.6 – Protobuf self-describing telemetry message (JSON)

gRPC 289

The telemetry header is the same, but when you choose gpbkv as the encoding format, Cisco IOS
XR sends the data in the data_bgpkv field instead:

func main() {

  for msg := range ch {

    message := new(telemetry.Telemetry)

    err := proto.Unmarshal(msg, message)

    /* ... <omitted for brevity > ... */

    b, err := json.Marshal(message.GetDataGpbkv())

    check(err)

    j := string(b)

    // https://go.dev/play/p/uyWenG-1Keu

    data := gjson.Get(

      j,

      "0.fields.0.fields.#(name==neighbor-address).ValueByType.
StringValue",

    )

    fmt.Println("  Neighbor: ", data)

    data = gjson.Get(

      j,

      "0.fields.1.fields.#(name==connection-state).ValueByType.
StringValue",

    )

    fmt.Println("  Connection state: ", data)

  }

}

At this point, what you have is a big JSON file you can navigate using a Go package of your preference.
Here, we’ve used gjson. To test this program, you can rerun the same program we described earlier
with an extra flag to enable the self-describing key-value messages:

ch08/grpc$ go run grpc -kvmode=true

While this method might seem less involved, not only do you compromise the performance benefits
but also, by not knowing the Go data structures beforehand, it opens up room for bugs and typos,

Network APIs290

it prevents you from taking advantage of the auto-completion features of most IDEs, and it makes
your code less explicit. All of that has a negative impact on code development and troubleshooting.

Summary
In this chapter, we explored different ways to use APIs and RPCs to interact with network devices.
One common theme we saw throughout this chapter was having a model for any data we exchange.
Although the network community has embraced YANG as the standard language to model network
configuration and operational state data, the implementation differences across networking vendors
still impede its wide adoption.

In the next chapter, we’ll look at how OpenConfig tries to increase the adoption of declarative
configuration and model-driven management and operations by defining a set of vendor-neutral
models and protocols.

Further reading
•	 The book’s GitHub repository: https://github.com/PacktPublishing/Network-

Automation-with-Go

•	 OpenAPI versions: https://swagger.io/specification/#appendix-a-
revision-history

•	 CUE: https://cuelang.org/

•	 ch08/cue/template.cue: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch08/cue/template.cue

•	 CUE’s References and Visibility tutorial: https://cuelang.org/docs/tutorials/
tour/references/

•	 The ch08/cue directory: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch08/cue

•	 ch08/cue/cue_tool.cue: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch08/cue/cue_tool.cue

•	 Istio: https://istio.io/

•	 dagger.io: https://dagger.io/

•	 Jsonnet: https://github.com/google/go-jsonnet

•	 Dhall: https://github.com/philandstuff/dhall-golang

•	 JSON-RPC: https://documentation.nokia.com/srlinux/SR_Linux_HTML_
R21-11/SysMgmt_Guide/json-interface.html

•	 openconfig/ygot: https://github.com/openconfig/ygot

https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/Network-Automation-with-Go
https://swagger.io/specification/#appendix-a-revision-history
https://swagger.io/specification/#appendix-a-revision-history
https://cuelang.org/
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/cue/template.cue
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/cue/template.cue
https://cuelang.org/docs/tutorials/tour/references/
https://cuelang.org/docs/tutorials/tour/references/
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/cue
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/cue
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/cue/cue_tool.cue
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/cue/cue_tool.cue
https://istio.io/
https://dagger.io/
https://github.com/google/go-jsonnet
https://github.com/philandstuff/dhall-golang
https://documentation.nokia.com/srlinux/SR_Linux_HTML_R21-11/SysMgmt_Guide/json-interface.html
https://documentation.nokia.com/srlinux/SR_Linux_HTML_R21-11/SysMgmt_Guide/json-interface.html

Further reading 291

•	 Nokia’s YANG models: https://github.com/nokia/srlinux-yang-models

•	 The YANG browser: https://yang.srlinux.dev/v21.6.4/

•	 ygot’s official documentation: https://github.com/openconfig/ygot#introduction

•	 The ch08/json-rpc/main.go file: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch08/json-rpc/main.go

•	 The ch08/json-rpc directory: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch08/json-rpc

•	 The yget library design documentation: https://github.com/openconfig/ygot/
blob/master/docs/design.md#openconfig-path-compression

•	 Arista YANG models: https://github.com/aristanetworks/yang

•	 The ch08/restconf directory: https://github.com/PacktPublishing/
Network-Automation-with-Go/tree/main/ch08/restconf

•	 The ch08/state directory: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch08/state

•	 IETF draft: https://datatracker.ietf.org/doc/html/draft-openconfig-
netmod-opstate-01

•	 The ch08/state program: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch08/state

•	 ch08/state/go.mod: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch08/state/go.mod

•	 The ch08/protobuf/write directory: https://github.com/PacktPublishing/
Network-Automation-with-Go/tree/main/ch08/protobuf/write

•	 ems_grpc.proto: https://github.com/nleiva/xrgrpc/blob/master/
proto/ems/ems_grpc.proto

•	 telemetry.proto: https://github.com/Juniper/jtimon/blob/master/
telemetry/telemetry.proto

•	 gnmi.proto: https://github.com/openconfig/gnmi/blob/master/proto/
gnmi/gnmi.proto

•	 ch08/grpc/proto: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/ch08/grpc/proto

•	 ch08/grpc/generate_code: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch08/grpc/generate_code

http://.com/nokia/srlinux-yang-models
https://yang.srlinux.dev/v21.6.4/
https://github.com/openconfig/ygot#introduction
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/json-rpc/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/json-rpc/main.go
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/json-rpc
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/json-rpc
https://github.com/openconfig/ygot/blob/master/docs/design.md#openconfig-path-compression
https://github.com/openconfig/ygot/blob/master/docs/design.md#openconfig-path-compression
https://github.com/aristanetworks/yang
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/restconf
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/restconf
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/state
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/state
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/state
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/state
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/state/go.mod
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/state/go.mod
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/protobuf/write
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/protobuf/write
https://github.com/nleiva/xrgrpc/blob/master/proto/ems/ems_grpc.proto
https://github.com/nleiva/xrgrpc/blob/master/proto/ems/ems_grpc.proto
https://github.com/Juniper/jtimon/blob/master/telemetry/telemetry.proto
https://github.com/Juniper/jtimon/blob/master/telemetry/telemetry.proto
https://github.com/openconfig/gnmi/blob/master/proto/gnmi/gnmi.proto
https://github.com/openconfig/gnmi/blob/master/proto/gnmi/gnmi.proto
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/grpc/proto
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/ch08/grpc/proto
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/grpc/generate_code
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch08/grpc/generate_code

9
OpenConfig

OpenConfig is a group of network operators (see the Further reading section) with the common goal of
streamlining the way we manage and operate networks. They welcome anyone operating a production
network as a member and, more recently, have started to accept contributions from vendors when
more than one of them implements the same feature (that they want to include in a YANG model).

Their initial focus was to create a set of vendor-neutral YANG data models based on common
operational use cases and requirements from the field. This later expanded to include vendor-neutral
Remote Procedure Calls (RPCs) for configuring, streaming telemetry, performing operational
commands, and manipulating forwarding entries (see Further reading) on network devices. In this
chapter, we will focus primarily on the OpenConfig RPCs, as we already covered YANG data models
in Chapter 8, Network APIs.

One thing that sets OpenConfig apart from other similar initiatives is that they not only work
publicly on the specifications but also write open source code that implements these specifications,
helping you to interact with OpenConfig-compliant devices. They write most of these projects in Go,
including but not limited to ygot, gNxI Tools, the gNMI collector, the gNMI CLI utility, the gNMI
test framework, gRPC tunnels, and IS-IS LSDB parsing (see Further reading). We encourage you to
explore those projects, especially the ones we do not cover in this book, as they target a wide range
of network-related applications.

At the time of writing, OpenConfig includes four gRPC services:

•	 gRPC Network Management Interface (gNMI): For streaming telemetry and
configuration management

•	 gRPC Network Operations Interface (gNOI): For executing operational commands on
network devices

•	 gRPC Routing Information Base Interface (gRIBI): To let an external client inject routing
entries on a network element

•	 gRPC Network Security Interface (gNSI): Infrastructure services for securing access to a
compliant network device

OpenConfig294

In the following sections, we will examine the following common operational tasks:

•	 Device provisioning, with the gNMI Set RPC, to label correctly the primary and backup
interfaces between two nodes in the lab topology

•	 Streaming telemetry, with the Subscribe RPC, where a Go program reacts to a gNMI
telemetry stream to make changes to the network

•	 Network operations, with a traceroute example with the gNOI Traceroute RPC, to
check that all the forwarding paths in the network are working as expected

Technical requirements
You can find the code examples for this chapter in the book’s GitHub repository (see Further reading),
in the ch09 folder.

Important Note
We recommend you execute the Go programs in this chapter in a virtual lab environment.
Refer to the appendix for prerequisites and instructions on how to build the fully configured
network topology.

The first example we discuss in the following section explores gNMI to configure network devices
with Go.

Device provisioning
In Chapter 6, Configuration Management, we discussed applying the desired configuration state on
a network device. Network engineers routinely have to log in to network devices to provision new
services, bring up new connections, or remove outdated configurations. We covered the different
transport options available to configure network devices such as SSH or HTTP in the same chapter,
and in Chapter 8, Network APIs, we added gRPC as another option.

We briefly touched on modeling network device configurations with a data modeling language such as
YANG, so we could move from configuring networks with semi-structured vendor-specific CLI syntax
to a model where we exchange structured data with the network to change its configuration state.

OpenConfig defines a gRPC service specifically for configuration management called gNMI. It aims to
provide a common gRPC protobuf definition that any vendor can implement, alongside their existing
proprietary gRPC services.

The protobuf definition for gNMI is as follows:

service gNMI {

   rpc Capabilities(CapabilityRequest) returns

Device provisioning 295

(CapabilityResponse);

   rpc Get(GetRequest) returns (GetResponse);

   rpc Set(SetRequest) returns (SetResponse);

   rpc Subscribe(stream SubscribeRequest) returns (stream
SubscribeResponse);

}

gNMI particularly offers configuration management capabilities via the Set RPC that you can
use to make changes on a target node. The gNMI specification (see Further reading) has extensive
documentation on all available gNMI RPCs. In this section, we will focus on Set.

Set RPC

The Set RPC lets you change the state of a target network device. You do this by sending a SetRequest
message that encodes all changes you want to make.

You can update, replace, or delete values in the data tree of the target device in a single transaction,
using dedicated fields of the SetRequest message. This means that unless the target can apply every
specified change, it must roll all of them back and return to its previous state. The following protobuf
definition shows the options you have in a SetRequest message:

message SetRequest {

   Path prefix = 1;

   repeated Path delete = 2;

   repeated Update replace = 3;

   repeated Update update = 4;

   repeated gnmi_ext.Extension extension = 5;

}

The field called Path in SetRequest encodes a YANG data tree path. It’s worth noting that gNMI
is not limited to using OpenConfig YANG models; it works equally well with vendor-defined YANG
models. gNMI describes the data tree path as a series of PathElem (path elements). Each one of these
is a data tree node that has a name, and it may have one or more attributes (keys) associated with it:

message Path {

  string origin = 2;

  repeated PathElem elem = 3;

  string target = 4;

}

message PathElem {

OpenConfig296

  string name = 1;

  map<string, string> key = 2;

}

For instance, the /interfaces/interface[name=Ethernet2]/config/description
path lets you set the description on the Ethernet2 interface on a target device. The only data node
in this case that has an attribute is interface, which needs a name. To configure an IPv4 address
on the native VLAN in that same interface, you can use a path that looks like this: /interfaces/
interface[name=Ethernet2]/subinterfaces/subinterface[index=0]/ipv4/
addresses/address[ip=192.0.2.2]. In this case, you need to add the subinterface
index, as the interface could have IP addresses on different sub-interfaces.

Once you have identified the data path, you need to build the content that has the new values you
want to set on the target device, which is a data instance of a YANG schema. You only need this for
replace and update. For delete, the path is enough to tell the target device what to remove
from the configuration.

An Update message that you would use to send the values for either replace or update has a
Path and TypedValue pair. The latter lets you encode the content in different formats:

message Update {

  Path path = 1;

  TypedValue val = 3;

  uint32 duplicates = 4;

}

message TypedValue {

  oneof value {

    string string_val = 1;

    int64 int_val = 2;

    uint64 uint_val = 3;

    bool bool_val = 4;

    bytes bytes_val = 5;

    double double_val = 14;

    ScalarArray leaflist_val = 8;

    google.protobuf.Any any_val = 9;

    bytes json_val = 10;

    bytes json_ietf_val = 11;

    string ascii_val = 12;

    bytes proto_bytes = 13;

Device provisioning 297

  }

}

A value could be a string for an interface description, such as PRIMARY: TO -> CVX:swp1 or
a JSON value to describe the IPv4 address of an interface such as {"config":{"ip":"192.0.
2.2","prefix-length":31}}.

Using gNMI to configure network interfaces

The virtual lab topology for this chapter, which you can bring up by running make lab-full from
the root of this book’s GitHub repository, has two connections between ceos and cvx. They have
IPv4 addresses configured already, but they don’t have a description that lets you identify the roles of
these interfaces, whether they are the primary or the backup link:

Figure 9.1 – A dual link between ceos and cvx

In the next example, we add a description to those interfaces on the ceos side via gNMI. To do this,
we use the gNMIc package (karimra/gnmic/api). We chose gNMIc over the official gNMI
package (openconfig/gnmi) because it’s more developer-friendly and higher-level. It lets us
conveniently encode the gNMI paths as strings, instead of Go data structures, as the gNMIc docs
(see Further reading) describe. You can find the code for this example in the ch09/gnmi directory
of this book’s GitHub repository (see Further reading).

The gNMIc package has a NewTarget function that creates a new gNMI target device. In the following
example, we wrap this function in the createTarget method:

func (r Router) createTarget() (*target.Target, error) {

      return api.NewTarget(

           api.Name("gnmi"),

           api.Address(r.Hostname+":"+r.Port),

           api.Username(r.Username),

           api.Password(r.Password),

           api.Insecure(r.Insecure),

      )

}

OpenConfig298

The first step in the code is to read the connection details from a YAML file (input.yml) to create
this target device:

input.yml

- hostname: clab-netgo-ceos

  port: 6030

  insecure: true

  username: admin

  password: admin

We store all target devices in the Routers data structure. In our case, we only have one device
(clab-netgo-ceos) but the connection details are a list, so we could’ve added more devices if
we wanted to. Now, with the target data, we use the CreateGNMIClient method to set up the
underlying gRPC connection to the target device (clab-netgo-ceos:6030):

func main() {

  /* ... <omitted for brevity > ... */

  for _, router := range inv.Routers {

    tg, err := router.createTarget()

    // process error

    ctx, cancel := context.WithCancel(

    context.Background())

    defer cancel()

    err = tg.CreateGNMIClient(ctx)

    // process error

    defer tg.Close()

  /* ... <continues next > ... */

}

With the connection established, we now can send the Set requests. Another YAML file (api-ceos.
yml) has a list of parameters for each request: prefix, encoding, path, and value. You can
add prefix when you want to reduce the length of a path. In our Go program, we save this list of
parameters in the info slice:

api-ceos.yml

- prefix: "/interfaces/interface[name=Ethernet2]"

  encoding: "json_ietf"

Device provisioning 299

  path: '/subinterfaces/subinterface[index=0]/ipv4/addresses/
address[ip=192.0.2.2]'

  value: '{"config":{"ip":"192.0.2.2","prefix-length":31}}'

- prefix: ""

  encoding: "json_ietf"

  path: '/interfaces/interface[name=Ethernet2]/config/
description'

  value: 'PRIMARY: TO -> CVX:swp1''

... <omitted for brevity > ...

The last step is to iterate over the info slice, build a Set request with the NewSetRequest function,
and send it to the target device using the Set method:

func main() {

  /* ... <continues from before > ... */

    for _, data := range info {

      setReq, err := api.NewSetRequest(

              api.Update(

                    api.Path(data.Prefix+data.Path),

                    api.Value(data.Value, data.Encoding)),

      )

      // process error

  

      configResp, err := tg.Set(ctx, setReq)

      // process error

      fmt.Println(prototext.Format(configResp))

    }

  }

}

Here, NewSetRequest has only one Update message, but you could include several messages in
a single request.

You get the following output when running this example:

ch09/gnmi$ go run main.go

response: {

OpenConfig300

  path: {

    elem: {

      name: "interfaces"

    }

    elem: {

      name: "interface"

      key: {

        key: "name"

        value: "Ethernet2"

      }

    }

    elem: {

      name: "subinterfaces"

    }

    elem: {

      name: "subinterface"

      key: {

        key: "index"

        value: "0"

      }

    }

    elem: {

      name: "ipv4"

    }

    elem: {

      name: "addresses"

    }

    elem: {

      name: "address"

      key: {

        key: "ip"

        value: "192.0.2.2"

      }

    }

  }

  op: UPDATE

Device provisioning 301

}

timestamp: 1660148355191641746

response: {

  path: {

    elem: {

      name: "interfaces"

    }

    elem: {

      name: "interface"

      key: {

        key: "name"

        value: "Ethernet2"

      }

    }

    elem: {

      name: "config"

    }

    elem: {

      name: "description"

    }

  }

  op: UPDATE

}

timestamp: 1660148355192866023

... <omitted for brevity > ...

What you see on the terminal screen are the SetResponse messages, containing the path,
response, and timestamp values of the operation:

message SetResponse {

  Path prefix = 1;

  repeated UpdateResult response = 2;

  int64 timestamp = 4;

  repeated gnmi_ext.Extension extension = 5;

}

OpenConfig302

If you connect to the ceos device now, you will see the following in its running configuration:

interface Ethernet2

   description PRIMARY: TO -> CVX:swp1

   no switchport

   ip address 192.0.2.2/31

!

interface Ethernet3

   description BACKUP: TO -> CVX:swp2

   no switchport

   ip address 192.0.2.4/31

!

Configuring network devices is one of those repetitive tasks that most network engineers spend a good
amount of time on, so automating this process has the potential to have a good return on investment.

The years of work of the OpenConfig working group, which released the official gNMI package
(openconfig/gnmi), set the path for the emergence of other open source packages and libraries
such as gNMIc (karimra/gnmic) and pyGNMI (akarneliuk/pygnmi), creating a community
around these vendor-neutral gRPC services to drive consistent automation practices in our networks.

In the following section, we will cover another OpenConfig gRPC service that enhances your network
visibility capabilities.

Streaming telemetry
Traditionally, network engineers have relied on the Simple Network Management Protocol (SNMP)
to gather state information from network devices. Devices encode this information in a binary format
using the Abstract Syntax Notation One (ASN.1) and send it to a receiver, typically a collector or a
Network Management System (NMS). The latter would use one of the Management Information
Bases (MIBs) to decode the received information and store it locally for further processing.

This has been the way we’ve done network monitoring for decades, but this approach has room
for improvement:

•	 The limited number of vendor-neutral data models means that even the basic things require
unique MIBs that you may need to update every time you do a major network OS upgrade.

•	 MIBs use a notation defined by a subset of ASN.1, which isn’t the best way to structure values.
It has no concept of lists or key-value pairs. Instead, you must implement these with indexed
values and extra lookup tables.

Streaming telemetry 303

•	 SNMP uses UDP as its transport protocol to avoid putting an extra burden on the collector.
This means that you could miss some events completely, leaving blind spots in the stream of
telemetry data.

•	 Since SNMP primarily relies on polling, we can only see aggregated values and may miss
important state transitions.

•	 SNMP does not generally timestamp when a value changes. Collectors can only infer timing
based on the time of collection.

gNMI offers a new approach to network monitoring via a dedicated Subscribe RPC. At the very
least, it offers the same capabilities as SNMP but takes it further, making the protocol more feature-
rich and versatile:

•	 One of the greatest improvements is telemetry streaming. Now, you can continuously receive
any value of the operational YANG tree from a network device, which gives you better visibility
into all state transitions along with their timestamps.

•	 You have a choice to receive telemetry data only when there is a change as opposed to a periodic
transmission.

•	 Thanks to the underlying gRPC transport, gNMI supports both dial-in and dial-out connection
methods and delivers messages using a reliable HTTP/2 protocol.

•	 OpenConfig defines vendor-neutral YANG models to describe the operational state of a network
device, which enables clients to parse and process the received data from different vendors in
a standard pipeline.

Important Note
Even with streaming telemetry, you are not necessarily getting an update for every counter
increment. Network devices have local processes that periodically poll internal data stores to
get the latest metrics or stats, such as interface packet counters, which they feed to their gNMI
process. Hence, how real-time the data you receive is depends not only on how often you get
streaming messages but also on the internal polling cadence. Still, you will probably see the
most relevant system events, such as BGP state transitions, which you would otherwise miss
with SNMP.

These features are just a subset of the gNMI capabilities. The gNMI specification (see Further reading)
can serve as a good reference for all gNMI protocol features. Next, we examine the gNMI protobuf
message for the telemetry service to help you understand how it works.

OpenConfig304

Subscribe RPC

gNMI defines a single RPC to subscribe to a telemetry stream. Network devices receive one or more
SubscribeRequest messages and respond with a stream of SubscribeResponse messages:

service gNMI {

     rpc Subscribe(stream SubscribeRequest) returns (stream
SubscribeResponse);

}

gNMI clients have different options to control their telemetry subscriptions. The following figure
shows the composition of the SubscribeRequest message, highlighting some of these options:

Figure 9.2 – gNMI subscribe protobuf messages

The most basic way to control the telemetry subscription is by specifying Path and SubscriptionMode:

•	 Path: References the part of the YANG tree you want to monitor. You can subscribe to anything,
from the entire device state to just a single leaf value. It follows the gNMI path convention (see
Further reading).

•	 SubscriptionMode: Determines whether to send the telemetry on-change or periodically:

enum SubscriptionMode {

     TARGET_DEFINED = 0;

     ON_CHANGE      = 1;

     SAMPLE         = 2;

}

Streaming telemetry 305

In return, a network device sends you a stream of response messages with the following information:

•	 TypedValue: The most critical field, containing the actual telemetry value

•	 Path: The full gNMI path of the value, which identifies the unique YANG leaf node

•	 timestamp: To help you arrange and process received data in the right order or find out when
a value last changed for those that do not change frequently:

message Notification {

     int64 timestamp = 1;

     Path prefix = 2;

     string alias = 3;

     repeated Update update = 4;

     repeated Path delete = 5;

     bool atomic = 6;

}

message Update {

     Path path = 1;

     TypedValue val = 3;

     uint32 duplicates = 4;

}

We are just scratching the surface of the Subscribe RPC. You can check the gnmi.proto file to
see the complete set of protobuf messages and read the telemetry section of the gNMI specification
(see Further reading) to get a better idea of the capabilities and features offered by the protocol. Here
are some features you can learn about that we don’t cover in this book:

•	 gNMI lets you poll or take an instant one-off (ONCE) snapshot of telemetry values.

•	 Some network devices can send several Update messages bundled in a single
SubscribeResponse. This comes at the expense of reduced timestamp accuracy, since
there’s only a single timestamp for all transported values.

•	 If you are not interested in seeing every single value, you can let a network device aggregate
those values.

•	 For values that different YANG models define, you can specify the definition you prefer to use.

Important Note
As with OpenConfig YANG models, the exact set of implemented features varies from vendor
to vendor.

OpenConfig306

Streaming telemetry processing pipelines with gNMI

To receive or collect the data from a gNMI-compliant network device, you could use the Go gNMI
client implementation from the official gNMI repository (see Further reading). Another alternative
is gNMIc (see Further reading), which builds on top of the official gNMI client and provides more
capabilities, such as data transformation and wide support of northbound interfaces.

gNMIc can serve as a link between a network device and a Time-Series Database (TSDB) or a
message queue, as it can transform the received telemetry data into a format popular open source
projects, such as Prometheus, InfluxDB, NATS, and Kafka, can understand. You can run gNMIc as
a command-line tool to interact with network devices or as a daemon, subscribing to telemetry data
and publishing it into a message queue or a database.

Event-manager sample program

Let’s examine one example of a telemetry processing pipeline via an implementation of a primitive
event-manager application. The goal of this program is to react to an increased packet rate by temporarily
enabling a backup interface to redistribute incoming traffic. The following diagram depicts the high-
level architecture of the telemetry processing pipeline and includes the following main components:

•	 A gNMIC process running as a daemon, collecting and processing network telemetry data

•	 A TSDB (Prometheus) storing the collected telemetry data

•	 AlertManager (see Further reading) processing alerts received from Prometheus and triggering
external events

•	 A Go program that implements the event-manager business logic:

Figure 9.3 – The event-manager application

Streaming telemetry 307

You can spin up these components with make gnmic-start from the root of this book’s GitHub
repository (see Further reading). This command starts the gNMIc daemon and brings up Prometheus,
Grafana, and AlertManager using docker-compose. These applications now run alongside our
test lab topology and interact with it over standard network interfaces:

Figure 9.4 – The event-manager topology

We configured these applications using a series of files located in the topo-full/workdir/
(see Further reading) directory of this book’s GitHub repository (see Further reading). These files get
mounted into their respective containers, as we define in the configuration files of either Containerlab
(topo.yml – see Further reading) or Docker Compose (docker-compose.yml – see Further
reading). Here’s a brief description of the role these applications play in our setup:

•	 The gNMIc daemon process runs in Host-3 of the test topology. It subscribes to telemetry
data from the cvx device and exposes it as Prometheus-style metrics. We manage these settings
in the gnmic.yaml file that looks like this:

targets:

 "clab-netgo-cvx:9339":

    username: cumulus

    password: cumulus

OpenConfig308

subscriptions:

  counters:

    target: netq

    paths:

      - /interfaces

    updates-only: true

outputs:

  prom-output:

    type: prometheus

    listen: ":9313"

•	 You can find the Prometheus configuration values in the prometheus.yml file. We configure
it to scrape the gNMIc endpoint every 2 seconds and store the collected data in its TSDB:

scrape_configs:

  - job_name: 'event-trigger'

    scrape_interval: 2s

    static_configs:

      - targets: ['clab-netgo-host-3:9313']

•	 The same configuration file includes a reference to the alert definition file, called alert.
rules, and the connection details of the AlertManager:

rule_files:

  - 'alert.rules'

alerting:

  alertmanagers:

  - scheme: http

    static_configs:

    - targets:

      - "alertmanager:9093"

Streaming telemetry 309

•	 Inside of the alert.rules file, we define a single alert we call HighLinkUtilization.
Every 10 seconds, Prometheus checks whether the incoming packet rate has exceeded a
predefined threshold of 50 packets per 30-second interval, in which case it fires an alert and
sends it to the AlertManager:

groups:

- name: thebook

  interval: 10s

  rules:

  - alert: HighLinkUtilization

    expr: rate(interfaces_interface_state_counters_in_
pkts[30s]) > 50

    for: 0m

    labels:

      severity: warning

    annotations:

      summary: Transit link {{ $labels.interface_name }}
is under high load

      description: "Transit link {{ $labels.interface_
name }} is under high load LABELS = {{ $labels }}"

      value: '{{ $value }}'

•	 AlertManager has its own configuration file, called alertmanager.yml, that controls how
to aggregate and route incoming alerts from Prometheus. In our case, we have a single alert
type, so we only need one route. We decrease the default aggregation timers to enable faster
reaction time and specify the webhook URL where to send these alerts:

route:

  receiver: 'event-manager'

  group_wait: 5s

  group_interval: 10s

receivers:

  - name: 'event-manager'

    webhook_configs:

    - url: http://clab-netgo-host-2:10000/alert

•	 event-manager parses the alert and toggles a backup interface to re-balance the traffic coming
into the cvx device. Its behavior is fairly static, so we don’t need a configuration file for it.

OpenConfig310

The event-manager program implements a standard web server that listens to incoming requests and
dispatches them to a handler function. Here, we decode the received Prometheus alert and invoke the
toggleBackup function based on its status:

func alertHandler(w http.ResponseWriter, req *http.Request) {

  log.Println("Incoming alert")

  var alerts Alerts

  err := json.NewDecoder(req.Body).Decode(&alerts)

  // process error

  for _, alert := range alerts.Alerts {

    if alert.Status == "firing" {

      if err := toggleBackup(alert.Labels.InterfaceName,
"permit"); err != nil {

        w.WriteHeader(http.StatusInternalServerError)

        return

      }

      continue

    }

    if err := toggleBackup(alert.Labels.InterfaceName, "deny");
err != nil {

      w.WriteHeader(http.StatusInternalServerError)

      return

    }

  }

  w.WriteHeader(http.StatusOK)

}

We have two uplinks between the cvx and ceos devices, and we only use one of them by default. The
backup uplink does BGP ASN prepending and only receives traffic when we announce more specific or
disaggregated prefixes. The toggleBackup function does this by toggling a permit/deny statement
on an IP prefix list (on cvx), thereby enabling or disabling the BGP disaggregation behavior:

var (

  backupRules = map[string][]int{

    "swp1": {10, 20},

  }

)

Streaming telemetry 311

func toggleBackup(intf string, action string) error {

  log.Printf("%s needs to %s backup prefixes",

              intf, action)

  ruleIDs, ok := backupRules[intf]

  // process error

  var pl PrefixList

  pl.Rules = make(map[string]Rule)

  for _, ruleID := range ruleIDs {

    pl.Rules[strconv.Itoa(ruleID)] = Rule{

      Action: action,

    }

  }

  var payload nvue

  payload.Router.Policy.PrefixLists = map[string]PrefixList{

    plName: pl,

  }

  b, err := json.Marshal(payload)

  // process error

  return sendBytes(b)

}

The final sendBytes function applies the constructed configuration using the three-stage commit
process we discussed ‌in Chapter 6, Configuration Management.

Visualizing the data

You can connect to the local instance of Grafana running at :3000 using admin as the username/
password to test the complete telemetry-driven pipeline in action. This Grafana instance comes up
pre-integrated with Prometheus as its data source, and it includes a pre-built event-manager
dashboard that plots the incoming packet rate for both cvx links to ceos.

OpenConfig312

Run make traffic-start from the root of this book’s GitHub repository (see Further reading)
to generate traffic in the lab topology. All traffic should initially flow over the primary connection
between cvx and ceos (swp1).

Next, we want to start the event-manager application so that we can load-balance traffic across both
connections. To do this, run the event-manager Go application inside the host-2 container. This
translates to the command that we execute in the following snippet:

$ sudo ip netns exec clab-netgo-host-2 /usr/local/go/bin/go run
ch09/event-manager/main.go

AlertManager event-triggered webhook

2022/08/01 21:51:13 Starting web server at 0.0.0.0:10000

Open a new terminal window or tab and run make traffic-start again, but increase the traffic
generation period from the default 60s using the DURATION variable. For example, the following
command would generate traffic for 2 minutes:

$ DURATION=2m make traffic-start

This can help you see the longer-term effect of traffic re-balancing. Logs should show that the traffic
rate has triggered an alert and the application implemented corrective actions:

$ sudo ip netns exec clab-netgo-host-2 /usr/local/go/bin/go run
ch09/event-manager/main.go

AlertManager event-triggered webhook

2022/08/01 21:51:13 Starting web server at 0.0.0.0:10000

ch09/event-manager/main.go

2022/08/01 21:53:10 Incoming alert

2022/08/01 21:53:10 swp1 needs to permit backup prefixes

2022/08/01 21:53:10 Created revisionID: changeset/
cumulus/2022-08-01_21.53.10_ASP0

{

  "state": "apply",

  "transition": {

    "issue": {},

    "progress": ""

  }

}

2022/08/01 21:54:00 Incoming alert

2022/08/01 21:54:00 swp1 needs to deny backup prefixes

2022/08/01 21:54:00 Created revisionID: changeset/

Streaming telemetry 313

cumulus/2022-08-01_21.54.00_ASP2

{

  "state": "apply",

  "transition": {

    "issue": {},

    "progress": ""

  }

}

2022/08/01 21:54:00 swp2 needs to permit backup prefixes

2022/08/01 21:54:00 Could not find a backup prefix for swp2

2022/08/01 21:54:20 Incoming alert

2022/08/01 21:54:20 swp2 needs to deny backup prefixes

2022/08/01 21:54:20 Could not find a backup prefix for swp2

2022/08/01 21:54:30 Incoming alert

2022/08/01 21:54:30 swp1 needs to permit backup prefixes

2022/08/01 21:54:30 Created revisionID: changeset/
cumulus/2022-08-01_21.54.30_ASP4

{

  "state": "apply",

  "transition": {

    "issue": {},

    "progress": ""

  }

}

2022/08/01 21:55:20 Incoming alert

2022/08/01 21:55:20 swp1 needs to deny backup prefixes

2022/08/01 21:55:20 Created revisionID: changeset/
cumulus/2022-08-01_21.55.20_ASP6

{

  "state": "apply",

  "transition": {

    "issue": {},

    "progress": ""

  }

}

OpenConfig314

All three of the tests we performed should get you a similar-looking graph:

Figure 9.5 – Event-manager visualization

Streaming telemetry is a powerful capability that you can adapt to a wide variety of business use cases.
However, most of these use cases are specific to the operating network environment, so it’s hard to
come up with a set of killer applications that would apply to every network. Hence, it’s important to
know how to implement the required business logic in code, which is what we have tried to show
you in this chapter.

In the following section, we cover another OpenConfig gRPC service you can use to automate
operational tasks.

Network operations
In the preceding sections, we explored how the OpenConfig management interface approaches two
common network automation use cases: configuration management and operational state collection.
These two tasks alone can get you a long way in your network automation journey, but there is a set
of common operational tasks that don’t fall into either ‌of these categories.

To automate all aspects of network operations, we need to perform tasks such as network device
reloads, software life cycle management, and counter and adjacency resets. You normally execute
these activities as part of interactive CLI workflows, with prompts and warnings that assume a human

Network operations 315

operator is involved in the process. This makes the automation of these tasks a major undertaking, as
we have to resort to screen-scraping, which increases the already high risk of these tasks.

To address these challenges, OpenConfig proposed a new gRPC API, designed to abstract away the
interactive commands and surface these network operations capabilities in a standard, vendor-neutral way.

gNOI

gNOI defines a list of gRPC services that address a wide range of network operations use cases. Each
service represents one operational process with a set of actions, and the following table includes a few
examples to give you an idea of the challenges gNOI attempts to solve:

Service Description RPC examples
OS NOS package management Install, Activate, and Verify
File File operations Get, Transfer, Put, and Remove
L2 L2 protocols operations ClearNeighborDiscovery and ClearLLDPInterface
Cert Certificate management Rotate, Install, GenerateCSR, and RevokeCertificates
System System operations Ping, Traceroute, Reboot, and Time

Table 9.1 – gNOI use case examples

Some RPCs are a one-shot with immediate response, some stream responses synchronously until
complete or canceled, and some work asynchronously.

The gNOI GitHub repository (see Further reading) protobuf files have the most recent list of actions
for each service. At the time of writing, this is the top-level definition of the system.proto file
(see Further reading):

service System {

     rpc Ping(PingRequest) returns (stream PingResponse) {}

     rpc Traceroute(TracerouteRequest) returns (stream
TracerouteResponse) {}

     rpc Time(TimeRequest) returns (TimeResponse) {}

     rpc SetPackage(stream SetPackageRequest) returns
(SetPackageResponse) {}

     rpc SwitchControlProcessor(SwitchControlProcessorRequest)

       returns (SwitchControlProcessorResponse) {}

     rpc Reboot(RebootRequest) returns (RebootResponse) {}

     rpc RebootStatus(RebootStatusRequest) returns
(RebootStatusResponse) {}

     rpc CancelReboot(CancelRebootRequest) returns
(CancelRebootResponse) {}

OpenConfig316

     rpc KillProcess(KillProcessRequest) returns
(KillProcessResponse) {}

}

We don’t cover all gNOI RPCs in this book. Instead, we focus on just one and include an example
program built around it.

Traceroute RPC

Most, if not all, network engineers are familiar with the traceroute command. This is a common
way to explore the forwarding path between a pair of network endpoints. When you run traceroute
from a network device’s interactive shell, the terminal prints the result on your screen. With gNOI,
traceroute is an action we request via an RPC with a TracerouteRequest message in the
payload, and the result is a stream (one or many) of TracerouteResponse messages:

service System {

     rpc Traceroute(TracerouteRequest) returns (stream
TracerouteResponse) {}

As with the traceroute command-line arguments and flags, the request message lets you specify
options such as source address, the maximum number of hops, and whether to perform reverse
DNS lookups:

message TracerouteRequest {

     string source = 1;      // Source addr to ping from.

     String destination = 2; // Destination addr to ping.

     Uint32 initial_ttl = 3; // Initial TTL. (default=1)

     int32 max_ttl = 4;      // Maximum number of hops.

     Int64 wait = 5;         // Response wait-time (ns).

     Bool do_not_fragment = 6;  

     bool do_not_resolve = 7;

     /* ... <omitted for brevity > ... */

}

Each response message includes the results of a single measurement cycle, including the hop count,
the round-trip time, and the responding address extracted from a probe reply:

message TracerouteResponse {

     /* ... <omitted for brevity > ... */

     int32 hop = 5;          // Hop number. required.

     string address = 6;     // Address of responding hop.

Network operations 317

     string name = 7;        // Name of responding hop.

     int64 rtt = 8;          // Round trip time in nanoseconds.

     /* ... <omitted for brevity > ... */

}

Now, let’s see an example of how to use the gNOI interface with Go.

Path verifier application

In the streaming telemetry section of this chapter, we explored the implementation of an event-manager
application that enables or disables a backup link as the traffic through the primary interface crosses
a pre-defined threshold. We used Grafana to plot the traffic rate for both interfaces to confirm that
the application works as intended.

In real-world automation use cases involving complex workflows, relying on visual clues is not always
the right approach. Ideally, we need a programmatic way to verify that the backup link is actually
working. We use the gNOI Traceroute RPC to check this in the next code example. The goal is to
explore diverse network paths and confirm that we are forwarding some traffic flows over the backup
interface. You can find the code example for this section in the ch09/gnoi-trace directory of
this book’s GitHub repository (see Further reading).

We start by setting up a gRPC session to the ceos virtual network device and creating a new API
client for the gNOI System service:

var target = "clab-netgo-ceos:6030"

import (

     "google.golang.org/grpc"

     "github.com/openconfig/gnoi/system"

)

func main() {

     conn, err := grpc.Dial(target, grpc.WithInsecure())

     // process error

     defer conn.Close()

     sysSvc := system.NewSystemClient(conn)

     ctx, cancel := context.WithCancel(context.Background())

     defer cancel()

OpenConfig318

  /* ... <continues next > ... */

}

Next, we create a sync.WaitGroup to coordinate all goroutines running traceroutes to different
destinations. These goroutines send the collected results back to the main goroutine over the traceCh
channel. For each traceroute destination encoded as string, the traceroute result includes a list of
responded IP addresses per network hop.

To make it easier to compare lists of IP addresses in the following steps, we store them as a set using
the deckarep/golang-set (mapset) third-party package, because Go doesn’t implement sets
natively in the standard library. We encode the hop count implicitly as the index of the []mapset.
Set array:

var destinations = []string{

           "203.0.113.251",

           "203.0.113.252",

           "203.0.113.253",

}

func main() {

     /* ... <continues from before > ... */

     var wg sync.WaitGroup

     wg.Add(len(destinations))

     traceCh := make(chan map[string][]mapset.Set,

                            len(destinations))

  /* ... <continues next > ... */

}

Each goroutine runs a single traceroute, and we only specify the source and destination fields of the
TracerouteRequest message, leaving the rest options as default. As we receive responses, we store
the results in the route slice. When the traceroute stops, which is when the error type is io.EOF,
we send the accumulated response over the traceCh channel and call wg.Done:

var source = "203.0.113.3"

func main() {

  /* ... <continues from before > ... */

  for _, dest := range destinations {

    go func(d string) {

Network operations 319

      defer wg.Done()

      retryMax := 3

      retryCount := 0

    START:

      response, err := sysSvc.Traceroute(ctx,

                        &system.TracerouteRequest{

                                 Destination: d,

                                 Source: source,

      })

      // process error

      var route []mapset.Set

      for {

        resp, err := response.Recv()

        if errors.Is(err, io.EOF) {

        // end of stream, traceroute completed

          break

        }

        // process error

        // timed out, restarting the traceroute

        if int(resp.Hop) > len(route)+1 {

          if retryCount > retryMax-1 {

            goto FINISH

          }

          retryCount += 1

          goto START

        }

        // first response

        if len(route) < int(resp.Hop) {

          route = append(route, mapset.NewSet())

        }

OpenConfig320

        // subsequent responses

          route[resp.Hop-1].Add(resp.Address)

        }

    FINISH:

      traceCh <- map[string][]mapset.Set{

               d: route,

             }

    }(dest)

  }

  wg.Wait()

  close(traceCh)

  /* ... <continues next > ... */

}

Since network devices have default control plane security settings that may restrict them from processing
every incoming ICMP packet they receive, you might see gaps in your traceroute results. To overcome
this, we use Go’s labels and goto statements in the code to retry a traceroute in case we don’t get any
information for any one hop. START and FINISH are the two labels we used to implement this retry
logic, with the latter serving as a fall-through case when we don’t get a result after several attempts.

Once we have completed all traceroute requests, we can process and analyze the results. To simplify
the code logic, we first transform the data to store a map between a hop count and a set of IP addresses
per traceroute destination:

func main() {

  /* ... <continues from before > ... */

  routes := make(map[int]map[string]mapset.Set)

  for trace := range traceCh {

    for dest, paths := range trace {

      for hop, path := range paths {

        if _, ok := routes[hop]; !ok {

          routes[hop] = make(map[string]mapset.Set)

        }

        routes[hop][dest] = path

      }

    }

  }

Network operations 321

  /* ... <continues next > ... */

}

Finally, we can traverse over each hop and check whether there is a discrepancy between a set of
responding IP addresses for different traceroute destinations, which would mean that the packets
went over different paths. If we detect this, we print it on the screen:

func main() {

  /* ... <continues from before > ... */

  for hop, route := range routes {

    if hop == len(routes)-1 {

      continue

    }

    found := make(map[string]string)

    for myDest, myPaths := range route {

      for otherDest, otherPaths := range route {

        if myDest == otherDest {

          continue

        }

        diff := myPaths.Difference(otherPaths)

        if diff.Cardinality() == 0 {

          continue

        }

        v, ok := found[myDest]

        if ok && v == otherDest {

          continue

        }

        log.Printf("Found different paths at hop %d", hop)

        log.Printf("Destination %s: %+v", myDest, myPaths)

        log.Printf(

                "Destination %s: %+v",

                        otherDest,

                        otherPaths,

                        )

OpenConfig322

        found[otherDest] = myDest

      }

    }

  }

  log.Println("Check complete")

}

You can run this program from the ch09/gnoi-trace folder. Make sure lab-full is up and
running first. You should see output like the following:

ch09/gnoi-trace$ go run main.go

2022/06/26 16:51:10 Checking if routes have different paths

2022/06/26 16:51:16 Missed at least one hop in 203.0.113.251

2022/06/26 16:51:16 retrying 203.0.113.251

2022/06/26 16:51:17 Check complete

Generate traffic with make traffic-start and run this program again. In another tab, run
simultaneously the event-manager application from the clab-netgo-host-2 host to activate
the backup link:

$ DURATION=2m make traffic-start

docker exec -d clab-netgo-cvx systemctl restart hsflowd

docker exec -d clab-netgo-host-3 ./ethr -s

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.253 -b
900K -d 2m -p udp -l 1KB

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.252 -b
600K -d 2m -p udp -l 1KB

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.251 -b
400K -d 2m -p udp -l 1KB

$ sudo ip netns exec clab-netgo-host-2 /usr/local/go/bin/go run
ch09/event-manager/main.go

AlertManager event-triggered webhook

2022/09/14 21:02:57 Starting web server at 0.0.0.0:10000

2022/09/14 21:02:58 Incoming alert

2022/09/14 21:02:58 swp1 needs to permit backup prefixes

2022/09/14 21:02:58 Created revisionID: changeset/
cumulus/2022-09-14_21.02.58_S4SQ

{

Network operations 323

  "state": "apply",

  "transition": {

    "issue": {},

    "progress": ""

  }

}

2022/09/14 21:03:40 Incoming alert

2022/09/14 21:03:40 swp1 needs to deny backup prefixes

2022/09/14 21:03:40 Created revisionID: changeset/
cumulus/2022-09-14_21.03.40_S4SS

{

  "state": "apply",

  "transition": {

    "issue": {},

    "progress": ""

  }

}

2022/09/14 21:03:40 swp2 needs to permit backup prefixes

2022/09/14 21:03:40 Could not find a backup prefix for swp2

2022/09/14 21:04:10 Incoming alert

2022/09/14 21:04:10 swp1 needs to permit backup prefixes

2022/09/14 21:04:10 Created revisionID: changeset/
cumulus/2022-09-14_21.04.10_S4SV

{

  "state": "apply",

  "transition": {

    "issue": {},

    "progress": ""

  }

}

2022/09/14 21:04:10 swp2 needs to deny backup prefixes

2022/09/14 21:04:10 Could not find a backup prefix for swp2

OpenConfig324

The output of the program would look like this:

ch09/gnoi-trace$ go run main.go

2022/09/14 21:03:29 Checking if routes have different paths

2022/09/14 21:03:34 Missed at least one hop in 203.0.113.253

2022/09/14 21:03:34 retrying 203.0.113.253

2022/09/14 21:03:34 Found different paths at hop 0

2022/09/14 21:03:34 Destination 203.0.113.252: Set{192.0.2.5}

2022/09/14 21:03:34 Destination 203.0.113.253: Set{192.0.2.3}

2022/09/14 21:03:34 Found different paths at hop 0

2022/09/14 21:03:34 Destination 203.0.113.251: Set{192.0.2.5}

2022/09/14 21:03:34 Destination 203.0.113.253: Set{192.0.2.3}

2022/09/14 21:03:34 Found different paths at hop 0

2022/09/14 21:03:34 Destination 203.0.113.253: Set{192.0.2.3}

2022/09/14 21:03:34 Destination 203.0.113.252: Set{192.0.2.5}

2022/09/14 21:03:34 Check complete

The last output shows that the path that 203.0.113.252/32 and 203.0.113.251/32 follow
is different from the path that 203.0.113.253/32 follows (primary link). This is because the
event-manager disaggregated .252 and .251 from the main 203.0.113.250/30 prefix. Now,
we know that the backup link is working as expected, as it is carrying traffic for these two IP addresses.

Historically, networking vendors were not incentivized to create vendor-neutral APIs and data models,
as it doesn’t allow them to differentiate themselves from the competition. And while standards bodies
such as the Internet Engineering Task Force (IETF) produce standards for the networking industry,
they can’t always influence what vendors actually implement. Also, some vendors might still perceive
technological lock-ins as an effective way to keep their existing customer base.

By contrast, the OpenConfig community of network operators has more leverage to influence networking
vendors to adopt vendor-independent data models and APIs. OpenConfig adoption is still relatively
low, in both model and feature coverage, but, as long as the OC participants continue to push for more,
the coverage will increase, which, in turn, will drive the adoption in the wider networking community.

Even today, OpenConfig provides a vendor-neutral way of doing a lot of common networking tasks,
including configuration management, monitoring, and operations. In this chapter, we’ve shown the
two most popular interfaces, gNMI and gNOI, ignoring the less common gRIBI, which is outside of
the scope of this book. We hope ‌this chapter provides enough examples of tools and workflows that
you can use with Go to consume and interact with OpenConfig-compliant devices.

Summary 325

Summary
In this chapter, by introducing streaming telemetry, we have started exploring the world of network
monitoring, ‌a critical task for a business. The ability to observe network-wide state and collect and
process data plane information are all important in determining the health of your network. In the
next chapter, we will examine a few concrete examples of network monitoring tasks and use cases and
learn how Go can help us automate them.

Further reading
•	 Network operators: https://www.openconfig.net/about/participants/

•	 Manipulating forwarding entries: https://github.com/openconfig/gribi/blob/
master/doc/motivation.md#grpc-service-for-rib-injection

•	 gNMI collector: https://github.com/openconfig/gnmi/tree/master/cmd/
gnmi_collector

•	 gNMI CLI utility: https://github.com/openconfig/gnmi/tree/master/
cmd/gnmi_cli

•	 gNMI Test framework: https://github.com/openconfig/gnmitest

•	 gRPC tunnel: https://github.com/openconfig/grpctunnel

•	 IS-IS LSDB parsing: https://github.com/openconfig/lsdbparse

•	 Ygot: https://github.com/openconfig/ygot

•	 gNxI Tools: https://github.com/google/gnxi

•	 Book’s GitHub repository: https://github.com/PacktPublishing/Network-
Automation-with-Go

•	 gNMI specification: https://github.com/openconfig/reference/blob/
master/rpc/gnmi/gnmi-specification.md

•	 gNMIc docs: https://gnmic.kmrd.dev/user_guide/golang_package/
intro/#set-request

•	 gNMI path convention: https://github.com/openconfig/reference/blob/
master/rpc/gnmi/gnmi-path-conventions.md

•	 gNMI repository: https://github.com/openconfig/gnmi

•	 gNMIc: https://gnmic.kmrd.dev/

•	 AlertManager: https://prometheus.io/docs/alerting/latest/alertmanager/

•	 full/workdir/: https://github.com/PacktPublishing/Network-
Automation-with-Go/tree/main/topo-full/workdir

https://www.openconfig.net/about/participants/
https://github.com/openconfig/gnmi/tree/master/cmd/gnmi_cli
https://github.com/openconfig/gnmi/tree/master/cmd/gnmi_cli
https://github.com/openconfig/gnmitest
https://github.com/openconfig/grpctunnel
https://github.com/openconfig/lsdbparse
https://github.com/openconfig/ygot
https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md
https://github.com/openconfig/gnmi
https://gnmic.kmrd.dev/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/topo-full/workdir
https://github.com/PacktPublishing/Network-Automation-with-Go/tree/main/topo-full/workdir

OpenConfig326

•	 topo.yml: https://github.com/PacktPublishing/Network-Automation-
with-Go/blob/main/topo-full/topo.yml

•	 docker-compose.yml: https://github.com/PacktPublishing/Network-
Automation-with-Go/blob/main/ch09/docker-compose.yml

•	 gNOI GitHub repository: https://github.com/openconfig/gnoi

•	 system.proto file: https://github.com/openconfig/gnoi/blob/master/
system/system.proto

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/topo-full/topo.yml
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/topo-full/topo.yml
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch09/docker-compose.yml
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch09/docker-compose.yml
https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi/blob/master/system/system.proto
https://github.com/openconfig/gnoi/blob/master/system/system.proto

10
Network Monitoring

Despite the popularity of configuration management, we actually spend more time monitoring
networks than configuring them. As networks become more and more complex, with new layers of
encapsulation and IP address translations, our ability to understand whether a network functions
correctly to let us meet customer service-level agreements (SLAs) is becoming increasingly difficult.

Engineers working in the cloud infrastructure space have come up with the term observability, referring
to the ability to reason about the internal state of a system by observing its external outputs. Translated
into networking terms, this may include passive monitoring through logs and state telemetry collection
or active monitoring using distributed probing, data processing, and visualization.

The ultimate goal of all this is to reduce the mean time to repair (MTTR), adhere to customer SLAs,
and shift to proactive problem resolution. Go is a very popular language of choice for these kinds of
tasks, and in this chapter we will examine a few of the tools, packages, and platforms that can help
you with network monitoring. Here are the highlights of this chapter:

•	 We will explore traffic monitoring by looking at how to capture and parse network packets
with Go.

•	 Next, we will look at how to process and aggregate data plane telemetry to get meaningful
insights into the current network behavior.

•	 We show how you can use active probing to measure network performance, and how to produce,
collect, and visualize performance metrics.

We will deliberately avoid talking about YANG-based telemetry, as we covered this already in Chapter 8,
Network APIs, and Chapter 9, OpenConfig.

Another area that we haven’t touched on so far and that we want to discuss briefly in this chapter is the
developer experience. As we write more code, maintaining existing software becomes an important
part of our day-to-day operations. We introduce one tool per section of this chapter, acknowledging
that we are just scratching the surface and that this topic could be the subject of an entire book. In
the end, we don’t strive to give a comprehensive overview of all tools there are out there but just want
to give you an idea of what developing Go code in production may feel like.

Network Monitoring328

Technical requirements
You can find the code examples for this chapter in the book’s GitHub repository (see the Further
reading section), under the ch10 folder.

Important Note
We recommend you execute the Go programs in this chapter in a virtual lab environment.
Refer to the Appendix for prerequisites and instructions on how to build the fully configured
network topology.

The first example we will discuss in the following section explores packet capturing and parsing
capabilities in Go.

Data plane telemetry processing
Network activities such as capacity planning, billing, or distributed denial-of-service (DDoS) attack
monitoring require insights into the traffic flowing through a network. One way we can offer such
visibility is by deploying a packet sampling technology. The premise is that at a high-enough rate, it’s
possible to capture only a randomly sampled subset of packets to build a good understanding of the
overall network traffic patterns.

While it’s the hardware that samples the packets, it’s the software that aggregates them into flows
and exports them. NetFlow, sFlow, and IP Flow Information Export (IPFIX) are the three main
protocols we use for this, and they define the structure of the payload and what metadata to include
with each sampled packet.

One of the first steps in any telemetry processing pipeline is information ingestion. In our context,
this means receiving and parsing data plane telemetry packets to extract and process flow records. In
this section, we will look at how you can capture and process packets with the help of the google/
gopacket package (see Further reading).

Packet capturing

In Chapter 4, Networking (TCP/IP) with Go, we discussed how to build a UDP ping application using
the net package from Go’s standard library. And while we should probably take a similar approach
when building an sFlow collector, we will do something different for the next example.

Instead of building a data plane telemetry collector, we designed our application to tap into an existing
flow of telemetry packets, assuming the network devices in the topology are sending them to an existing
collector somewhere in the network. This allows you to avoid changing the existing telemetry service
configuration while still being able to capture and process telemetry traffic. You can use a program
like this when you want a transparent tool that can run directly on a network device, on demand,
and for a short period of time.

Data plane telemetry processing 329

In the test lab topology, the cvx node runs an agent that exports sampled metrics using the sFlow
protocol. The sFlow traffic flows toward host-2, where it gets intercepted by the example application
using a tap:

Figure 10.1 – sFlow application

To show you the packet-capturing capabilities of the google/gopacket package, we intercept all
sFlow packets using pcapgo – a native Go implementation of the traffic-capturing API in Linux.
Although it’s less feature-rich than its counterpart pcap and pfring packages, the benefit of pcapgo
is that it doesn’t rely on any external C libraries and can work natively on any Linux distribution.

In the first part of the packet-capture program, which you can find in the ch10/packet-
capture folder of this book’s GitHub repository, we set up a new af_packet socket handler with
the pcapgo.NewEthernetHandle function, passing it the name of the interface to monitor:

import (

     "github.com/google/gopacket/pcapgo"

)

var (

     intf = flag.String("intf", "eth0", "interface")

)

func main() {

Network Monitoring330

     handle, err := pcapgo.NewEthernetHandle(*intf)

     /* ... <continues next > ... */

}

At this point, handle gives us access to all packets on the eth0 interface.

Packet filtering

While we could just capture all packets through the interface, for the sake of experimenting, we
will include an example of how to filter the traffic we capture with a Berkeley Packet Filter (BPF)
program in Go.

First, we generate a compiled packet-matching code in a human-readable format, using the -d option
of the tcpdump command to filter IP and UDP packets:

$ sudo tcpdump -p -ni eth0 -d "ip and udp"

(000) ldh      [12]

(001) jeq      #0x800           jt 2    jf 5

(002) ldb      [23]

(003) jeq      #0x11            jt 4    jf 5

(004) ret      #262144

(005) ret      #0

Then, we convert each of the preceding instructions into a corresponding bpf.Instruction from
the golang.org/x/net/bpf package. We assemble these instructions into a set of []bpf.
RawInstruction that are ready to load into a BPF virtual machine:

import (

  "golang.org/x/net/bpf"

)

func main() {

/* ... <continues from before > ... */

  rawInstructions, err := bpf.Assemble([]bpf.Instruction{

    // Load "EtherType" field from the ethernet header.

    bpf.LoadAbsolute{Off: 12, Size: 2},

    // Skip to last instruction if EtherType isn't IPv4.

    bpf.JumpIf{Cond: bpf.JumpNotEqual, Val: 0x800,

                    SkipTrue: 3},

Data plane telemetry processing 331

    // Load "Protocol" field from the IPv4 header.

    bpf.LoadAbsolute{Off: 23, Size: 1},

    // Skip to the last instruction if Protocol is not UDP.

    bpf.JumpIf{Cond: bpf.JumpNotEqual, Val: 0x11,

                    SkipTrue: 1},

    // "send up to 4k of the packet to userspace."

    bpf.RetConstant{Val: 4096},

    // Verdict is "ignore packet and return to the stack."

    bpf.RetConstant{Val: 0},

  })

  handle.SetBPF(rawInstructions)

  /* ... <continues next > ... */

}

We can attach the result to the EthernetHandle function we created earlier, to act as a packet
filter and reduce the number of packets received by the application.

In summary, we copy all packets that match the 0x800 EtherType and the 0x11 IP protocol to the
user space process, where our Go program runs, while all the other packets, including the ones we
match, continue through the network stack. This makes this program completely transparent to any
existing traffic flows, and you can use it without having to change the configuration of the sFlow agent.

Packet processing

All packets that the kernel sends to the user space become available in the Go application through the
PacketSource type, which we build by combining the EthernetHandle function we created
with an Ethernet packet decoder:

func main() {

  /* ... <continues from before > ... */

     packetSource := gopacket.NewPacketSource(

           handle,

           layers.LayerTypeEthernet,

     )

     /* ... <continues next > ... */

}

Network Monitoring332

This PacketSource structure sends each received and decoded packet over a Go channel, which
means we can use a for loop to iterate over them one by one. Inside this loop, we use gopacket
to match packet layers and extract information about L2, L3, and L4 networking headers, including
protocol-specific details such as the sFlow payload:

func main() {

  /* ... <continues from before > ... */

  for packet := range packetSource.Packets() {

    sflowLayer := packet.Layer(layers.LayerTypeSFlow)

    if sflowLayer != nil {

      sflow, ok := sflowLayer.(*layers.SFlowDatagram)

      if !ok {

        continue

      }

      for _, sample := range sflow.FlowSamples {

        for _, record := range sample.GetRecords() {

          p, ok := record.(layers.SFlowRawPacketFlowRecord)

          if !ok {

            log.Println("failed to decode sflow record")

            continue

          }

          srcIP, dstIP := p.Header.

            NetworkLayer().

            NetworkFlow().

            Endpoints()

          sPort, dPort := p.Header.

            TransportLayer().

            TransportFlow().

            Endpoints()

          log.Printf("flow record: %s:%s <-> %s:%s\n",

            srcIP,

            sPort,

            dstIP,

            dPort,

          )

Data plane telemetry processing 333

        }

      }

     }

  }

}

The benefit of using gopacket specifically for sFlow decoding is that it can parse and create another
gopacket.Packet based on the sampled packet’s headers.

Generating traffic

To test this Go application, we need to generate some traffic in the lab topology, so the cvx device
can generate sFlow records about it. Here, we use microsoft/ethr – a Go-based traffic generator
that offers a user experience and features comparable to iperf. It can generate and receive a fixed
volume of network traffic and measure bandwidth, latency, loss, and jitter. In our case, we only need it
to generate a few low-volume traffic flows over the lab network to trigger the data plane flow sampling.

The packet-capture application taps into the existing sFlow traffic, parses and extracts flow
records, and prints that information on the screen. To test the program, run make capture-start
from the root of this book’s GitHub repository (see Further reading):

$ make capture-start

docker exec -d clab-netgo-cvx systemctl restart hsflowd

docker exec -d clab-netgo-host-3 ./ethr -s

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.253 -b
900K -d 60s -p udp -l 1KB

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.252 -b
600K -d 60s -p udp -l 1KB

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.251 -b
400K -d 60s -p udp -l 1KB

cd ch10/packet-capture; go build -o packet-capture main.go

docker exec -it clab-netgo-host-2 /workdir/packet-capture/
packet-capture

2022/02/28 21:50:25  flow record: 203.0.113.0:60087 <->
203.0.113.252:8888

2022/02/28 21:50:25  flow record: 203.0.113.0:60087 <->

203.0.113.252:8888

2022/02/28 21:50:27  flow record: 203.0.113.0:40986 <->
203.0.113.252:8888

Network Monitoring334

2022/02/28 21:50:29  flow record: 203.0.113.0:60087 <->
203.0.113.252:8888

2022/02/28 21:50:29  flow record: 203.0.113.0:49138 <->
203.0.113.251:8888

2022/02/28 21:50:30  flow record: 203.0.113.0:60087 <->
203.0.113.252:8888

2022/02/28 21:50:30  flow record: 203.0.113.0:49138 <->
203.0.113.251:8888

As promised, before we move on to the next section, let’s review the first developer experience tool of
the chapter.

Debugging Go programs
Reading and reasoning about an existing code base is a laborious task, and it gets even harder as
programs mature and evolve. This is why, when learning a new language, it’s very important to have
at least a basic understanding of the debugging process. Debugging allows us to halt the execution of
a program at a pre-defined place and step through the code line by line while examining in-memory
variables and data structures.

In the following example, we use Delve to debug the packet-capture program we just ran. Before
you can start, you need to generate some traffic through the lab topology with make traffic-start:

$ make traffic-start

docker exec -d clab-netgo-cvx systemctl restart hsflowd

docker exec -d clab-netgo-host-3 ./ethr -s

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.253 -b
900K -d 60s -p udp -l 1KB

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.252 -b
600K -d 60s -p udp -l 1KB

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.251 -b
400K -d 60s -p udp -l 1KB

The Delve binary file is already pre-installed in the host lab containers, so you can connect to the
host-2 container with the docker exec -it command and start the Delve shell with the dlv
debug command:

$ docker exec -it clab-netgo-host-2 bash

root@host-2:/# cd workdir/ch10/packet-capture/

root@host-2:/workdir/packet-capture# dlv debug main.go

Debugging Go programs 335

Once in the dlv interactive shell, you can use different built-in commands to control the execution
of the program (you can use help to view the full list of commands). Set a breakpoint at line 49 of
main.go and run the program until the point where we receive the first packet:

(dlv) break main.go:49

Breakpoint 1 set at 0x5942ce for main.main() ./main.go:49

(dlv) continue

> main.main() ./main.go:49 (hits goroutine(1):1 total:1) (PC:
0x5942ce)

    44:    packetSource := gopacket.NewPacketSource(

    45:      handle,

    46:      layers.LayerTypeEthernet,

    47:    )

    48:    for packet := range packetSource.Packets() {

=>  49:      if l4 := packet.TransportLayer(); l4 == nil {

    50:        continue

    51:      }

    52:  

    53:      sflowLayer := packet.Layer(layers.LayerTypeSFlow)

    54:      if sflowLayer != nil {

When execution stops at a breakpoint, you can examine the local variables using the locals command:

(dlv) locals

err = error nil

handle = ("*github.com/google/gopacket/pcapgo.EthernetHandle")
(0xc000162200)

rawInstructions = []golang.org/x/net/bpf.RawInstruction len: 6,
cap: 6, [...]

packetSource = ("*github.com/google/gopacket.PacketSource")
(0xc00009aab0)

packet = github.com/google/gopacket.Packet(*github.com/google/
gopacket.eagerPacket) 0xc0000c3c08

You can print the variable contents on a screen, as in the following example for the packet variable:

(dlv) print packet

github.com/google/gopacket.Packet(*github.com/google/gopacket.
eagerPacket) *{

  packet: github.com/google/gopacket.packet {

Network Monitoring336

    data: []uint8 len: 758, cap: 758, [170,193,171,140,219,204,
170,193,171,198,150,242,8,0,69,0,2,232,40,71,64,0,63,17,18,182,
192,0,2,5,203,0,113,2,132,19,24,199,2,212,147,6,0,0,0,5,0,0,0,1
,203,0,113,129,0,1,134,160,0,0,0,39,0,2,...+694 more],

    /* ... < omitted > ... */

    last: github.com/google/gopacket.Layer(*github.com/google/
gopacket.DecodeFailure) ...,

    metadata: (*"github.com/google/gopacket.PacketMetadata")
(0xc0000c6200),

    decodeOptions: (*"github.com/google/gopacket.
DecodeOptions")(0xc0000c6250),

    link: github.com/google/gopacket.LinkLayer(*github.com/
google/gopacket/layers.Ethernet) ...,

    network: github.com/google/gopacket.NetworkLayer(*github.
com/google/gopacket/layers.IPv4) ...,

    transport: github.com/google/gopacket.
TransportLayer(*github.com/google/gopacket/layers.UDP) ...,

    application: github.com/google/gopacket.ApplicationLayer
nil,

    failure: github.com/google/gopacket.ErrorLayer(*github.com/
google/gopacket.DecodeFailure) ...,},}

The text-based navigation and verbosity of the output may be intimidating for beginners, but luckily,
we have alternative visualization options.

Debugging from an IDE

If debugging in a console is not your preferred option, most of the popular Integrated Development
Environments (IDEs) come with some form of support for Go debugging. For example, Delve
integrates with Visual Studio Code (VSCode) and you can also configure it for remote debugging.

Although you can set up VSCode for remote debugging in different ways, in this example, we run
Delve manually inside a container in the headless mode while specifying the port at which to
listen for incoming connections:

$ docker exec -it clab-netgo-host-2 bash

root@host-2:/# cd workdir/ch10/packet-capture/

root@host-2:/workdir/ch10/packet-capture#  dlv debug main.go
--listen=:2345 --headless --api-version=2

API server listening at: [::]:2345

Debugging Go programs 337

Now, we need to tell VSCode how to connect to the remote Delve process. You can do this by including
a JSON config file in the .vscode folder next to the main.go file. Here’s an example file you can
find in ch10/packet-capture/.vscode/launch.json in this book’s GitHub repository:

{

	 "version": "0.2.0",

	 "configurations": [

        {

            "name": "Connect to server",

            "type": "go",

            "request": "attach",

            "mode": "remote",

            "remotePath": "/workdir/ch10/packet-capture",

            "port": 2345,

            "host": "ec2-3-224-127-79.compute-1.amazonaws.com",  

        },

    ]

}

You need to replace the host value with the one where the lab is running and then start an instance
of VSCode from the root of the Go program (code ch10/packet-capture):

Figure 10.2 – VSCode development environment

Network Monitoring338

In VSCode, now you can go to the debug icon in the left menu to get to RUN AND DEBUG, where
you should see the Connect to server option that reads the preceding JSON config file. Click on the
green arrow to connect to the remote debugging process.

At this point, you can navigate through the code and examine local variables inside the VSCode user
interface (UI), while the debugging process is running inside a container:

Figure 10.3 – VSCode debugging

In the next section, we will look at how to add value to the data plane telemetry we collect and process
by aggregating it to generate a report of the highest bandwidth consumers.

Data plane telemetry aggregation
After collecting and parsing data plane telemetry, we need to think about what to do with it next.
Looking at raw data is not always helpful because of the sheer number of flows and lack of any
meaningful context. Hence, the next logical step in a telemetry processing pipeline is data enrichment
and aggregation.

Telemetry enrichment refers to the process of adding extra metadata to each flow based on some
external source of information. For example, these external sources can provide a correlation between
a public IP and its country of origin or BGP ASN, or between a private IP and its aggregate subnets
or device identity.

Data plane telemetry aggregation 339

Another technique that can help us interpret and reason about the telemetry we collect is aggregation.
We can combine different flow records either based on the IP prefix boundary or flow metadata, such as
a BGP ASN, to help network operators draw meaningful insights and create high-level views of the data.

You could build the entire telemetry processing pipeline out of open source components with ready-
to-use examples (see Further reading) available on the internet, but sooner or later, you might need
to write some code to meet your specific business requirements. In the following section, we will
work on a scenario where we need to aggregate data plane telemetry to better understand the traffic
patterns in our network.

Top talkers

In the absence of long-term telemetry storage, getting a just-in-time snapshot of the highest bandwidth
consumers can be quite helpful. We refer to this application as top talkers, and it works by displaying
a list of network flows that are sorted based on their relative interface bandwidth utilization.

Let’s walk through an example Go application that implements this feature.

Exploring telemetry data

In our top-talkers application, we collect sFlow records with netsampler/goflow2, a
package designed specifically to collect, enrich, and save sFlow, IPFIX, or NetFlow telemetry. This
package ingests raw protocol data and produces normalized (protocol-independent) flow records. By
default, you can save these normalized records in a file or send them to a Kafka queue. In our case,
we store them in memory for further processing.

To store the flow records in memory, we save the most relevant fields of each flow record we receive
in a user-defined data structure we call MyFlow:

type MyFlow struct {

     Key         string

     SrcAddr     string `json:"SrcAddr,omitempty"`

     DstAddr     string `json:"DstAddr,omitempty"`

     SrcPort     int    `json:"SrcPort,omitempty"`

     DstPort     int    `json:"DstPort,omitempty"`

     Count       int    // times we've seen this flow sample

}

Network Monitoring340

Additionally, we create a flow key as a concatenation of the ports and IP addresses of the source and
destination to uniquely identify each flow:

Figure 10.4 – A flow key

To help us calculate the final result, we create another data structure we call topTalker, which
has two fields:

•	 flowMap: A map to store a collection of MyFlow-type flows. We use the key we created to
index them.

•	 Heap: A helper data structure that keeps track of the most frequently seen flows:

type Heap []*MyFlow

type topTalker struct {

     flowMap map[string]*MyFlow

     heap    Heap

}

Since we use a high-level sFlow package (goflow2), we don’t need to worry about setting up a UDP
listener or receiving and decoding packets, but we need to tell goflow2 the format to report flow
records (json) and point to a custom transport driver (tt) that determines what to do with the data
after the sFlow package normalizes the received flow records:

import (

  "github.com/netsampler/goflow2/format"

  "github.com/netsampler/goflow2/utils"

)

func main() {

     tt := topTalker{

           flowMap: make(map[string]*MyPacket),

Data plane telemetry aggregation 341

           heap:    make(Heap, 0),

     }

     formatter, err := format.FindFormat(ctx, "json")

     // process error

     sSFlow := &utils.StateSFlow{

           Format:    formatter,

           Logger:    log.StandardLogger(),

           Transport: &tt,

     }

     go sSFlow.FlowRoutine(1, hostname, 6343, false)

}

The Transport field in the utils.StateSFlow type of the preceding code snippet accepts any
type that implements TransportInterface. This interface expects a single method (Send())
where all the enrichment and aggregation may take place:

type StateSFlow struct {

     Format    format.FormatInterface

     Transport transport.TransportInterface

     Logger    Logger

     /* ... < other fields > ... */

}

type TransportInterface interface {

     Send(key, data []byte) error

}

The Send method accepts two arguments, one representing the source IP of an sFlow datagram and
the second one containing the actual flow record.

Telemetry processing

In our implementation of the Send method (to satisfy the TransportInterface interface), we
first parse the input binary data and deserialize it into a MyFlow data structure:

func (c *topTalker) Send(key, data []byte) error {

     var myFlow MyFlow

Network Monitoring342

     json.Unmarshal(data, &myFlow)

     /* ... <continues next > ... */

}

Bearing in mind that sFlow can capture packets going in either direction, we need to ensure that both
flows count toward the same in-memory flow record. This means creating a special flow key that
satisfies the following two conditions:

•	 It must be the same for both ingress and egress packets of the same flow.

•	 It must be unique for all bidirectional flows.

We do this by sorting the source and destination IPs when constructing the bidirectional flow key,
as the next code snippet shows:

var flowMapKey = `%s:%d<->%s:%d`

func (c *topTalker) Send(key, data []byte) error {

  /* ... <continues from before > ... */

  ips := []string{myFlow.SrcAddr, myFlow.DstAddr}

  sort.Strings(ips)

  var mapKey string

  if ips[0] != myFlow.SrcAddr {

    mapKey = fmt.Sprintf(

      flowMapKey,

      myFlow.SrcAddr,

      myFlow.SrcPort,

      myFlow.DstAddr,

      myFlow.DstPort,

    )

  } else {

    mapKey = fmt.Sprintf(

      flowMapKey,

      myFlow.DstAddr,

      myFlow.DstPort,

      myFlow.SrcAddr,

      myFlow.SrcPort,

    )

  }

Data plane telemetry aggregation 343

  /* ... <continues next > ... */

}

With a unique key that represents both directions of a flow, we can save it in the map (flowMap) to
store in memory. For each received flow record, the Send method performs the following checks:

•	 If this is the first time we’ve seen this flow, then we save it on the map and set the count number
to 1.

•	 Otherwise, we update the flow by incrementing its count by one:

func (c *topTalker) Send(key, data []byte) error {

  /* ... <continues from before > ... */

    myFlow.Key = mapKey

    foundFlow, ok := c.flowMap[mapKey]

    if !ok {

          myFlow.Count = 1

          c.flowMap[mapKey] = &myFlow

          heap.Push(&c.heap, &myFlow)

          return nil

    }

    c.heap.update(foundFlow)

    return nil

}

Now, to display the top talkers in order, we need to sort the flow records we have saved. Here, we use
the container/heap package from the Go standard library. It implements a sorting algorithm,
offering O(log n) (logarithmic) upper-bound guarantees, which means it can do additions and deletions
of data very efficiently.

To use this package, you only need to teach it how to compare your items. As you add, remove, or
update elements, it will sort them automatically. In our example, we want to sort flow records saved
as the MyFlow data type. We define Heap as a list of pointers to MyFlow records. The Less()
method instructs the container/heap package to compare two MyFlow elements, based on the
Count field that stores the number of times we have seen a flow record:

type Heap []*MyFlow

Network Monitoring344

func (h Heap) Less(i, j int) bool {

     return h[i].Count > h[j].Count

}

With this, we now have an in-memory flow record store with elements sorted according to their
Count. We can now iterate over the Heap slice and print its elements on the screen. As in the earlier
example with gopacket, we use ethr to generate three UDP flows with different throughputs to get
a consistently sorted output. You can trigger the flows in the topology with make top-talkers-
start:

Network-Automation-with-Go $ make top-talkers-start

docker exec -d clab-netgo-cvx systemctl restart hsflowd

docker exec -d clab-netgo-host-3 ./ethr -s

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.253 -b
900K -d 60s -p udp -l 1KB

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.252 -b
600K -d 60s -p udp -l 1KB

docker exec -d clab-netgo-host-1 ./ethr -c 203.0.113.251 -b
400K -d 60s -p udp -l 1KB

Then, run the Top-talkers Go application with go run main.go from within the host-2 container
(clab-netgo-host-2) to get a real-time Top-talkers table:

$ cd ch10/top-talkers; sudo ip netns exec clab-netgo-host-2 /
usr/local/go/bin/go run main.go; cd ../../

Top Talkers

+---+-------------------+--------------------+------

| # | FROM              | TO                 | PROTO

+---+-------------------+--------------------+------

| 1 | 203.0.113.253:8888 | 203.0.113.0:48494 | UDP |

| 2 | 203.0.113.252:8888 | 203.0.113.0:42912 | UDP |

| 3 | 203.0.113.251:8888 | 203.0.113.0:42882 | UDP |

+---+-------------------+--------------------+------

Note that due to low traffic volume, random packet sampling, and limited test duration, your results
may be slightly different but should converge to a similar distribution after several test iterations.

Testing Go programs

Code testing is an integral part of any production software development process. Good test coverage
improves application reliability and increases tolerance to bugs introduced at later stages of software

Data plane telemetry aggregation 345

development. Go has native support for testing with its testing package from the standard library
and built-in command-line tool, go test. With test coverage built into the Go tool, it’s uncommon
to see third-party packages used for testing Go code.

Table-driven testing is one of the most popular testing methodologies in Go. The idea is to describe
test cases as a slice of custom data structures, with each one providing both inputs and expected results
for each test case. Writing test cases as a table makes it easier to create new scenarios, consider corner
cases, and interpret existing code behaviors.

We can test part of the code of the top-talkers example we just reviewed by building a set of
table tests for the heap implementation we used to sort the flow records.

Let’s create a test file, main_test.go, with a single test function in it:

package main

import (

     "container/heap"

     "testing"

)

func TestHeap(t *testing.T) {

  // code tests

}

Both the _test.go filename suffix and the Test<Name> function prefix are naming conventions
that allow Go to detect testing code and exclude it during binary compilation.

We design each test case to have all the relevant information, including the following:

•	 A name to use in error messages

•	 A set of unique flows described by their starting counters and resulting positions:

type testFlow struct {

     startCount   int

     timesSeen    int

     wantPosition int

     wantCount    int

}

type testCase struct {

     name  string

Network Monitoring346

     flows map[string]testFlow

}

Given the preceding definitions, we create a test suite for a different combination of input and output
values to cover as many non-repeating scenarios as possible:

 var testCases = []testCase{

  {

    name: "single packet",

    flows: map[string]testFlow{

      "1-1": {

        startCount:   1,

        timesSeen:    0,

        wantPosition: 0,

        wantCount:    1,

      },

    },

  },{

    name: "last packet wins",

    flows: map[string]testFlow{

      "2-1": {

        startCount:   1,

        timesSeen:    1,

        wantPosition: 1,

        wantCount:    2,

      },

      "2-2": {

        startCount:   2,

        timesSeen:    1,

        wantPosition: 0,

        wantCount:    3,

      },

    },

  },

Data plane telemetry aggregation 347

We tie all this together in the body of the TestHeap function, where we iterate over all test cases.
For each test case, we set up its preconditions, ‌push all flows on the heap, and update their count
timeSeen number of times:

func TestHeap(t *testing.T) {

     for _, test := range testCases {

           h := make(Heap, 0)

           // pushing flow on the heap

           for key, f := range test.flows {

                      flow := &MyFlow{

                           Count: f.startCount,

                           Key:   key,

                      }

                      heap.Push(&h, flow)

                      // updating packet counts

                      for j := 0; j < f.timesSeen; j++ {

                           h.update(flow)

                      }

           }

     /* ... <continues next > ... */

}

Once we have updated all flows, we remove them off the heap, one by one, based on the highest count,
and check whether the resulting position and count match what we had described in the test case.
In case of a mismatch, we generate an error message using the *testing.T type injected by the
testing package:

func TestHeap(t *testing.T) {

  /* ... < continues from before > ... */

  for i := 0; h.Len() > 0; i++ {

                f := heap.Pop(&h).(*MyFlow)

                tf := test.flows[f.Key]

                if tf.wantPosition != i {

                           t.Errorf(

                             "%s: unexpected position for
packet key %s: got %d, want %d", test.name, f.Key, i,
tf.wantPosition)

Network Monitoring348

                }

                if tf.wantCount != f.Count {

                           t.Errorf(

                                 "%s: unexpected count for
packet key %s: got %d, want %d", test.name, f.Key, f.Count,
tf.wantCount)

                }

           }

}

Thus far, we’ve only discussed data plane telemetry, which is crucial, but not the only element of
network monitoring. In the following section, we will explore network control plane telemetry by
building a complete end-to-end telemetry processing pipeline.

Measuring control plane performance
Most network engineers are familiar with tools such as ping, traceroute, and iperf to verify
network data plane connectivity, reachability, and throughput. At the same time, control plane performance
often remains a black box, and we can only assume how long it takes for our network to re-converge.
In this section, we aim to address this problem by building a control plane telemetry solution.

Modern control plane protocols, such as BGP, distribute large volumes of information from IP routes
to MAC addresses and flow definitions. As the size of our networks grows, so does the churn rate of the
control plane state, with users, VMs, and applications constantly moving between different locations
and network segments. Hence, it’s critical to have visibility of how well our control plane performs to
troubleshoot network issues and take any preemptive actions.

The next code example covers the telemetry processing pipeline we built to monitor the control plane
performance of the lab network. At the heart of it, there is a special bgp-ping application that allows
us to measure the round-trip time of a BGP update. In this solution, we take advantage of the features
of the following Go packages and applications:

•	 jwhited/corebgp: A pluggable implementation of a BGP finite state machine that allows
you to run arbitrary actions for different BGP states.

•	 osrg/gobgp: One of the most popular BGP implementations in Go; we use it to encode
and decode BGP messages.

•	 cloudprober/cloudprober: A flexible distributed probing and monitoring framework.

•	 Prometheus and Grafana: A popular monitoring and visualization software stack.

Measuring control plane performance 349

Figure 10.5 – Telemetry pipeline architecture

To bring up this entire setup, you can run make bgp-ping-start from the root of this book’s
GitHub repository (see Further reading):

Network-Automation-with-Go $ make bgp-ping-start

cd ch10/bgp-ping; go build -o bgp-ping main.go

docker exec -d clab-netgo-host-3 /workdir/bgp-ping/bgp-
ping -id host-3 -nlri 100.64.0.2 -laddr 203.0.113.254 -raddr
203.0.113.129 -las 65005 -ras 65002 -p

docker exec -d clab-netgo-host-1 /workdir/bgp-ping/bgp-ping -id
host-1 -nlri 100.64.0.0 -laddr 203.0.113.0 -raddr 203.0.113.1
-las 65003 -ras 65000 -p

docker exec -d clab-netgo-host-2 /cloudprober -config_file /
workdir/workdir/cloudprober.cfg

cd ch10/bgp-ping; docker-compose up -d; cd ../../

Creating prometheus ... done

Creating grafana    ... done

http://localhost:3000

The final line of the preceding output shows the URL that you can use to access the deployed instance
of Grafana, using admin as both username and password:

Network Monitoring350

Figure 10.6 – BGP ping dashboard

This instance has a pre-created dashboard called BGP-Ping that plots the graph of BGP round-trip
times in milliseconds.

It’s important to note that there’s a lot more to routing protocol convergence and performance than
the update propagation time. Other important factors may include update churn due to transient
events or Forwarding Information Base (FIB) programming time. We focus on a single-dimension
metric in this example, but in reality, you may want to consider other performance metrics as well.

Measuring BGP Update propagation time
As the standard ping, the bgp-ping application works by sending and receiving probe messages.
A sender embeds a probe in a BGP Update message and sends it to its BGP neighbor. We encode
the probe as a custom BGP optional transitive attribute, which allows it to propagate transparently
throughout the network until it reaches one of the bgp-ping responders.

A bgp-ping responder recognizes this custom transitive attribute and reflects it back to the sender.
This gives the sender a measure of BGP Update propagation delay within the network, which is then
reported to an external metric consumer or printed on a screen.

Measuring BGP Update propagation time 351

Since the bgp-ping application needs to inter-operate with real BGP stacks, at the very least it has to
implement the initial exchange of Open messages to negotiate the BGP session capabilities, followed
by the periodic exchange of Keepalive messages. We also need to do the following:

1.	 Send BGP Update messages triggered by different events.

2.	 Encode and decode custom BGP attributes.

Let’s see how we can implement these requirements using open source Go packages and applications.

Event-driven BGP state machine

We use CoreBGP (jwhited/corebgp) to establish a BGP session with a peer and keep it alive
until it’s shut down. This gets us the Open and Keepalive messages we just discussed.

Inspired by the popular DNS server CoreDNS, CoreBGP is a minimalistic BGP server that you can
extend through event-driven plugins.

In practice, you extend the initial capabilities by building a custom implementation of the Plugin
interface. This interface defines different methods that can implement user-defined behavior at certain
points of the BGP finite state machine (FSM):

type Plugin interface {

     GetCapabilities(...) []Capability

     OnOpenMessage(...) *Notification

     OnEstablished(...) handleUpdate

     OnClose(...)

}

For the bpg-ping application, we only need to send and receive BGP Update messages, so we focus
on implementing the following two methods:

•	 OnEstablished: To send BGP Update messages.

•	 handleUpdate: We use this to process received updates, identify ping requests, and send
a response message.

Network Monitoring352

The following diagram shows the main functional blocks of this application:

Figure 10.7 – BGP Ping Design

Let’s start the code overview by examining the BGP Update handling logic (handleUpdate).
Since our goal is to parse and process BGP ping probes, we can make sure we discard any other BGP
updates early in the code. For every BGP Update message we receive, we check whether any of the
BGP attributes have the custom bgpPingType transitive attribute we created to signal the probe
or ping. We silently ignore BGP updates that don’t have this attribute with a continue statement:

import bgp "github.com/osrg/gobgp/v3/pkg/packet/bgp"

const (

     bgpPingType = 42

Measuring BGP Update propagation time 353

)

func (p *plugin) handleUpdate(

     peer corebgp.PeerConfig,

     update []byte,

) *corebgp.Notification {

     msg, err := bgp.ParseBGPBody(

           &bgp.BGPHeader{Type: bgp.BGP_MSG_UPDATE},

           update,

     )

     // process error

     for _, attr := range msg.Body.

                    (*bgp.BGPUpdate).PathAttributes {

           if attr.GetType() != bgpPingType {

                      continue

           }

     /* ... <continues next > ... */

}

Once we have determined that it’s a BGP ping message, we deal with two possible scenarios:

•	 If it’s a ping response, we calculate the round-trip time using the timestamp extracted from
the bgpPingType path attribute.

•	 If it’s a ping request, we trigger a ping response by sending parsed data over a channel to the
OnEstablished function:

func (p *plugin) handleUpdate(

  peer corebgp.PeerConfig,

  update []byte,

) *corebgp.Notification {

    /* ... < continues from before > ... */

    source, dest, ts, err := parseType42(attr)

    // process error

    sourceHost := string(bytes.Trim(source, "\x00"))

    destHost := string(bytes.Trim(dest, "\x00"))

Network Monitoring354

    /* ... <omitted for brevity > ... */

    // if src is us, may be a response. id = router-id

    if sourceHost == *id {

      rtt := time.Since(ts).Nanoseconds()

      metric := fmt.Sprintf(

        "bgp_ping_rtt_ms{device=%s} %f\n",

        destHost,

        float64(rtt)/1e6,

      )

    p.store = append(p.store, metric)

			 return nil

    }

    p.pingCh <- ping{source: source, ts: ts.Unix()}

    return nil

}

The event-driven logic to send BGP updates lives in the OnEstablished() method that has a
three-way select statement to listen for triggers over Go channels, representing three different states
of the bgp-ping application:

•	 Responding to a received ping request, triggered by a request coming from the
handleUpdate function

•	 Firing a new ping request, triggered by an external signal

•	 Sending a scheduled withdraw message at the end of the probing cycle:

func (p *plugin) OnEstablished(

  peer corebgp.PeerConfig,

  writer corebgp.UpdateMessageWriter,

) corebgp.UpdateMessageHandler {

  log.Println("peer established, starting main loop")

  go func() {

    for {

      select {

      case pingReq := <-p.pingCh:

Measuring BGP Update propagation time 355

        // Build the ping response payload

        bytes, err := p.buildUpdate(

                      type42PathAttr,

                      peer.LocalAddress,

                      peer.LocalAS,

        )

        // process error

        writer.WriteUpdate(bytes)

        /* ... < schedule a withdraw > ... */

      case <-p.probeCh:

        // Build the ping request payload

        bytes, err := p.buildUpdate(

                      type42PathAttr,

                      peer.LocalAddress,

                      peer.LocalAS,

        )

        // process error

        writer.WriteUpdate(bytes)

        /* ... < schedule a withdraw > ... */

      case <-withdraw.C:

        bytes, err := p.buildWithdraw()

        // process error

        writer.WriteUpdate(bytes)

      }

    }

  }()

  return p.handleUpdate

}

One caveat of CoreBGP is that it doesn’t include its own BGP message parser or builder. It sends any
raw bytes that may confuse or even crash a standard BGP stack, so always use it with caution.

Now, we need a way to parse and craft a BGP message, and here is where we can use another Go
library called GoBGP.

Network Monitoring356

Encoding and decoding BGP messages

GoBGP is a full-blown BGP stack and supports most of the BGP address families and features.
However, since we already use CoreBGP for BGP state management, we limit the use of GoBGP to
message encoding and decoding.

For example, whenever we need to build a BGP withdraw update message, we call a helper function
(buildWithdraw) that uses GoBGP to build the message. GoBGP allows us to include only the
relevant information, such as a list of Network Layer Reachability Information (NLRI), while it
takes care of populating the rest of the fields, such as type, length, and building a syntactically correct
BGP message:

func (p *plugin) buildWithdraw() ([]byte, error) {

     myNLRI := bgp.NewIPAddrPrefix(32, p.probe.String())

     withdrawnRoutes := []*bgp.IPAddrPrefix{myNLRI}

     msg := bgp.NewBGPUpdateMessage(

           withdrawnRoutes,

           []bgp.PathAttributeInterface{},

           nil,

     )

     return msg.Body.Serialize()

}

Here’s another example of how to use GoBGP to parse a message received by CoreBGP. We take a slice
of bytes and use the ParseBGPBody function to deserialize it into GoBGP’s BGPMessage type:

func (p *plugin) handleUpdate(

     peer corebgp.PeerConfig,

     update []byte,

) *corebgp.Notification {

     msg, err := bgp.ParseBGPBody(

           &bgp.BGPHeader{Type: bgp.BGP_MSG_UPDATE},

           update,

     )

     // process error

     if err := bgp.ValidateBGPMessage(msg); err != nil {

           log.Fatal("validate BGP message ", err)

     }

Measuring BGP Update propagation time 357

You can now further parse this BGP message to extract various path attributes and NLRIs, as we’ve
seen in the earlier overview of the handleUpdate function.

Collecting and exposing metrics

The bgp-ping application can run as a standalone process and print the results on a screen. We also
want to be able to integrate our application into more general-purpose system monitoring solutions.
To do that, it needs to expose its measurement results in a standard format that an external monitoring
system can understand.

You can implement this capability natively by adding a web server and publishing your metrics for
external consumers, or you can use an existing tool that collects and exposes metrics on behalf of
your application. One tool that does this is Cloudprober, which enables automated and distributed
probing and monitoring, and offers native Go integration with several external probes.

We integrate the bgp-ping application with the Cloudprober via its serverutils package, which
allows you to exchange probe requests and replies over the standard input (stdin) and standard
output (stdout). When we start bgp-ping with a -c flag, it expects all probe triggers to come from
Cloudprober and sends its results back in a ProbeReply message:

func main() {

  /* ... < continues from before > ... */

  probeCh := make(chan struct{})

  resultsCh := make(chan string)

  

  peerPlugin := &plugin{

              probeCh: probeCh,

            resultsCh: resultsCh,

  }

  if *cloudprober {

    go func() {

      serverutils.Serve(func(

        request *epb.ProbeRequest,

        reply *epb.ProbeReply,

      ) {

        probeCh <- struct{}{}

        reply.Payload = proto.String(<-resultsCh)

        if err != nil {

          reply.ErrorMessage = proto.String(err.Error())

Network Monitoring358

        }

      })

    }()

  }

}

The Cloudprober application itself runs as a pre-compiled binary and requires minimal configuration
to tell it about the bgp-ping application and its runtime options:

probe {

  name: "bgp_ping"

  type: EXTERNAL

  targets { dummy_targets {} }

  timeout_msec: 11000

  interval_msec: 10000

  external_probe {

    mode: SERVER

    command: "/workdir/bgp-ping/bgp-ping -id host-2 -nlri
100.64.0.1 -laddr 203.0.113.2 -raddr 203.0.113.3 -las 65004
-ras 65001 -c true"

  }

}

All measurement results are automatically published by Cloudprober in a format that most popular
cloud monitoring systems can understand.

Storing and visualizing metrics

The final stage in this control plane telemetry processing pipeline is metrics storage and visualization.
Go is a very popular choice for these systems, with examples including Telegraf, InfluxDB, Prometheus,
and Grafana.

The current telemetry processing example includes Prometheus and Grafana with their respective
configuration files and pre-built dashboards. The following configuration snippet points Prometheus
at the local Cloudprober instance and tells it to scrape all available metrics every 10 seconds:

scrape_configs:

  - job_name: 'bgp-ping'

    scrape_interval: 10s

Developing distributed applications 359

    static_configs:

      - targets: ['clab-netgo-host-2:9313']

Although we discuss little of it here, building meaningful dashboards and alerts is as important as doing
the measurements. Distributed systems observability is a big topic that is extensively covered in existing
books and online resources. For now, we will stop at the point where we see a visual representation
of the data in a Grafana dashboard but don’t want to imply that a continuous linear graph of absolute
values is enough. Most likely, to make any reasonable assumptions, you’d want to present your data as
an aggregated distribution and monitor its outlying values over time, as this would give a better sign
of increasing system stress and may serve as a trigger for any further actions.

Developing distributed applications
Building a distributed application, such as bgp-ping, can be a major undertaking. Unit testing and
debugging can help spot and fix a lot of bugs, but these processes can be time-consuming. In certain
cases, when an application has different components, developing your code iteratively may require
some manual orchestration. Steps such as building binary files and container images, starting the
software process, enabling logging, and triggering events are now something you need to synchronize
and repeat for all the components that include your application.

The final developer experience tool that we will cover in this chapter was specifically designed to
address the preceding issues. Tilt helps developers automate manual steps, and it has native integration
with container and orchestration platforms, such as Kubernetes or Docker Compose. You let it know
which files to monitor, and it will automatically rebuild your binaries, swap out container images, and
restart existing processes, all while showing you the output logs of all applications on a single screen.

It works by reading a special Tiltfile containing a set of instructions on what to build and how
to do it. Here’s a snippet from a Tiltfile that automatically launches a bgp-ping process inside one
of the host containers and restarts it every time it detects a change to main.go:

local_resource('host-1',

  serve_cmd='ip netns exec clab-netgo-host-1 go run main.go -id
host-1 -nlri 100.64.0.0 -laddr 203.0.113.0 -raddr 203.0.113.1
-las 65003 -ras 65000 -p',

  deps=['./main.go'])

The full Tiltfile has two more resources for the other two hosts in our lab network. You can bring
up all three parts of the application with sudo tilt up:

Network-Automation-with-Go $ cd ch10/bgp-ping

Network-Automation-with-Go/ch10/bgp-ping $ sudo tilt up

Tilt started on http://localhost:10350/

Network Monitoring360

Tilt has both a console (text) and a web UI that you can use to view the logs of all resources:

Figure 10.8 – Tilt

Any change to the source code of the bgp-ping application would trigger a restart of all affected
resources. By automating a lot of manual steps and aggregating the logs, this tool can simplify the
development process of any distributed application.

Summary
This concludes the chapter about network monitoring. We have only touched upon a few selected
subjects and admit that the topic of this chapter is too vast to cover in this book. However, we hope we
have provided enough resources, pointers, and ideas for you to continue the exploration of network
monitoring, as it’s one of the most vibrant and actively growing areas of the network engineering discipline.

Further reading
•	 Book’s GitHub repository: https://github.com/PacktPublishing/Network-

Automation-with-Go

•	 google/gopacket package: https://github.com/google/gopacket

•	 gdb documentation: https://go.dev/doc/gdb

•	 vscode-go: https://code.visualstudio.com/docs/languages/go

https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/google/gopacket
https://go.dev/doc/gdb
https://code.visualstudio.com/docs/languages/go

Further reading 361

•	 ch10/packet-capture/.vscode/launch.json: https://github.com/
PacktPublishing/Network-Automation-with-Go/blob/main/ch10/
packet-capture/.vscode/launch.json

•	 Open source components with ready-to-use examples: https://github.com/netsampler/
goflow2/tree/main/compose/kcg

•	 CoreBGP documentation: https://pkg.go.dev/github.com/jwhited/
corebgp#section-readme

https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch10/packet-capture/.vscode/launch.json
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch10/packet-capture/.vscode/launch.json
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch10/packet-capture/.vscode/launch.json
https://github.com/netsampler/goflow2/tree/main/compose/kcg
https://github.com/netsampler/goflow2/tree/main/compose/kcg
https://pkg.go.dev/github.com/jwhited/corebgp#section-readme
https://pkg.go.dev/github.com/jwhited/corebgp#section-readme

11
Expert Insights

As we’re getting closer to the end of the book, we want to do something special. Instead of a more
traditional final chapter that reiterates the main points and tries to look into the future, we have done
something different and, hopefully, more entertaining for you.

We reached out to several people who have real-world hands-on experience with network automation
and/or are using Go for network-related tasks and activities so that they could share their perspectives
with us.

We hope that their thoughts, lessons learned, ideas, and opinions will provide you with guidance and
more food for thought about the role and importance of automation in the networking industry and
reinforce the point that Go is not an esoteric, niche language, but one that is used extensively today
for a wide range of network-related use cases.

Without further ado, we present to you the Expert Insights chapter.

David Barroso
David is a Principal Engineer working in the intersection between infrastructure
and software engineering. Among other things, he is responsible for creating open

source projects such as NAPALM, Nornir, and Gornir.

Traditionally, the networking space has been very stable. Most innovations came through standard
bodies that took years to be ratified. In addition, vendors promoted certifications with clear and
structured learning guides and courses. This meant that network engineers had a clear path to start
their careers and become certified experts without having to worry too much about being sidetracked
and even without having to bother to figure out what came next for them; someone else had already
decided that.

However, the year is 2022 and our everyday vocabulary has gone from acronyms such as MPLS-over-
GRE-over-IPSec to others such as IaC, CI, PR, and DevSecOps. Our vendor-driven, slow-changing,
cozy life is no more and now we need to keep up with the latest industry buzzwords and the breaking
changes in the latest update of our framework/library of choice (luckily, we don’t need to keep up
with JavaScript frameworks, for now). But do not despair—take the red pill and be ready to choose
your own path.

Expert Insights364

My advice to keep up with this ever-changing crazy world is as follows: rely less on vendor-driven
certifications unless they are a hard requirement for your job. Instead, grab books such as the one
you are reading now. Get familiar with the ideas and concepts without worrying too much about
the tiny details. Instead of setting up impossible lab scenarios, collaborate with open source projects
and learn from the community, the tooling used to develop and maintain the project, the processes,
the frameworks, the ideas, and so on. Finally, do not get overwhelmed. People will come up with
new buzzwords, libraries, projects, and so on all the time, but if you focus on the ideas, you quickly
notice that things are not as earth-shattering as they claim to be and the industry doesn’t move as
fast as advertised.

Stuart Clark
Stuart is a Senior Developer Advocate Of Community AWS, author for Cisco Press,

and a Cisco-Certified DevNet Expert #20220005.

It would be fair to say I would not be where I am now/today without network automation. I was not
the first person on the “automate everything” bus, though. I fully admit I was late to the game, or so I
felt back in 2014. Since starting in networking in 2008, a number of people have said how they could
automate many of their daily tasks, but yet, my ego said my CLI was still better. What held me back?
Mostly fear, failure, and not knowing where to begin. It wasn’t until the summer of 2014 that I rolled
up my sleeves and said, I am going to master this now. Being a network genius, I could easily do this!
Nope. This humbled me and I found I could not brute-force learn to code the same way I learned
network engineering. For me, a more logical approach was required. This started as just an hour a day
in the morning when my brain was fresh and my day of customer network issues and network projects
kicked off. I often found I would be stuck in areas for days, too. I could complete labs or copy the
examples, but understanding concepts I would often struggle with, so I started making mini projects
based on my current day tasks. This often was the same script, but I kept adding and building on this
day after day, adding better error handling or validation. Having someone with more experience look
over your work and get feedback is great too. After a while, your code has evolved into a work tool
that your whole team now uses, and that kick-started many other exciting new workflows. It takes
time, but it comes a year or 2 years later.

When anyone asks me about careers, learning new things, or applying for a new role, I always ask:
Where do you want to be in 2 years’ time and 5 years’ time? Your skills always need to be sharpened
and to do that, you need to hone your skills and learn new things. It is not today we are preparing
for, it is our future, and each step of the way requires discipline and consistency. That is where all the
magic in you happens. I do not believe we are born with a skill. Sure, we might learn something faster
than others. I believe we can be whoever we want to be, and if you have the passion and desire and
are willing to put in the work, you can achieve anything.

Good luck in all you do.

Claudia de Luna 365

Claudia de Luna
After graduating from Stanford University, Claudia started working for NASA JPL
initially in software development and then moving into enterprise networking. In
2006, she left JPL and worked in several verticals, including biotech and financial.

In 2015, while working for one of the largest Cisco VARs, she began automating
network workflows. Today, she works for a boutique consulting firm, Enterprise
Infrastructure Acceleration, Inc., helping Fortune 100 companies deploy network

and security programs at speed.

Network automation truths... so far...

1 – Automation will not replace network engineers

Make no mistake, the discipline of network engineering is not going anywhere. How we interact
with devices is amid revolution to be sure, but the knowledge of how a TCP three-way handshake
takes place or how a routing protocol works is, and will continue to be, essential. In fact, the depth
of this knowledge will likely increase as scripting networking workflows will require an in-depth
understanding. I never truly understood Cisco’s Application Centric Infrastructure (ACI) until I
scripted a complete data center ACI fabric build-out.

2 – The power of text and revision control

This does not get said often enough (or ever), but text is all-powerful. It is the lowest common
denominator as well as the input to rich typesetting output with which to convey a written language
(programming or otherwise). While putting together a richly formatted book or a computer script,
you can take the simple text and snapshot its evolution over time. In this way, you know the exact
nature of every change. This is revision control. Originally developed to track code changes, today,
as with network automation, you can put configurations, configuration templates, state, diagrams,
documents, and almost anything under revision control. Before you leap into scripting, take a little
bit of time to learn a revision control system such as Git and GitHub.

While we are on the topic of text, get a real text editor! Notepad and TextEdit are only handy if you
have no other option (and learn vi—see 9 – Linux and regular expressions). Invest the time to get
familiar with more advanced text editors such as Sublime or Atom.

3 – Just start

Approaching something new and unfamiliar can be daunting. Just start. If you are new to programming,
search for resources on basic programming concepts or programming fundamentals. This is an
important step if you are NOT familiar with the concepts of variables, scopes, operators, control
structures, and namespaces.

Once you have a footing in these concepts, write down a particular problem you want to solve,
pick a language, and dive right in. For me, it was generating configurations. In fact, for every new

Expert Insights366

programming language I learn, that is the first problem I solve. I’m just working with text and not
actual devices, so I can’t get into too much trouble. If there is a small problem at work that you are
comfortable tackling, start there. Define the problem clearly, detail the desired outcome, and just start.
Jot down the specific steps and tackle each one individually.

Let’s say you want to generate configuration commands for configuring the same VLAN on 10 devices
and, just to keep it simple, output the necessary commands you need to run on each device to the
screen. Your first script could be as simple as taking a list of devices and printing out to the screen
the following configuration:

!Switch01 vlan 10

name Vlan10_on_Switch01

Once you have that, you will want to save the output to a text file. After that, you will want a file for
each switch. After that, you will start to customize each switch. You get the idea. Every enhancement
will teach you something new. Every new feature will expand your experience.

4 – Embrace the landscape

Doubly daunting is the fact that you are trying to learn something new, but there is so much to
learn! See 3 – Just start. The experience you get from learning something and then abandoning it for
something better is invaluable. Being able to articulate why you prefer one solution over another or
why you are recommending a particular approach will immediately set you apart and will instantly
generate credibility. This makes you a true engineer.

I believe there is as much value in trying something and abandoning it as there is in trying something
and adopting it. This process makes you credible. It moves you from someone who says, You should use
X. Why? Uh.. because ... to the person who says, For what you are trying to do, you should use X because
X has these features or is easier to support in your environment or Cultivate the ability to articulate
why you are recommending something, along with why you are not recommending something.

That experience, that credibleness, has served me well as a female in a largely male-dominated industry.
I’ve shown up for a job or a meeting with males and had the client speak only to my male counterparts.
That credibility and these fact-based recommendations always win the day. They may start out talking
only to my male teammates, but they end up speaking with me. That will always hold true and not
just for gender.

5 – Share and package

It’s tempting to code for yourself but think about the impact you can have if you empower your team.
To that end, as you write your scripts, think about how you would write them if you had to share them.
Think about teaching a teammate who has zero programming or even CLI experience to execute one
of your scripts. This will get you thinking about how to package your script. There are many options,

Claudia de Luna 367

including turning your script into a Windows executable if that is your audience, or front-ending your
script by a GUI or web page if your team leverages different operating systems.

6 – No limits

In network automation, it’s very easy to focus solely on automation for infrastructure. Don’t do
that! Think about an environment where your final documentation was automatically generated by
the configurations. Have to do lots of change control tickets that are often similar? Think about an
environment where your change control information was generated by a script. And the closeout is
also generated by a script. Want to add a diagram to your documentation? Think about a world where
your diagram was autogenerated from your new topology. Have to interface with another team and
share information with them? How appreciative would they be if you shared just the information
that they needed in a consistent format rather than making them slog through an email thread or an
exasperating Excel spreadsheet?

7 – Understand data structures

How you put your data together has far-reaching implications. Get comfortable with complex data
structures. By data structures, I mean lists and dictionaries and every combination thereof. Ask yourself:
will my code be clearer if I iterate over a list of dictionaries or if I pick data from a set of keys? Get
comfortable extracting the data you need when these data structures are highly nested. For more on
this topic, see my post Decomposing Data Structures (in the Further reading section).

8 – Learn about and use APIs

Many modern network devices now offer APIs. These APIs will generally return the answers to queries
in structured data (See 7 – Understand data structures). If you don’t have to log in to a switch, pull
a configuration, or show a command in semi-formatted text and then parse that text, don’t! Use an
API. In addition to APIs offered by infrastructure appliances and network devices, there is a wealth
of data available, often with open and free APIs.

Need to look up the vendor OUI of a MAC address? There is a public and free API for that. Need to
look up the physical location of an IP address? There is a public and free API for that. Enrich your
data, reports, and information with APIs.

9 – Linux and regular expressions

I can’t stress this enough. A background in Unix is invaluable. Many infrastructure devices start out
with a Unix or Linux base. Having this background will further distinguish you from the run-of-the-
mill network engineer. Part of having some Linux knowledge should include knowledge of regular
expressions. Because network automation invariably requires some parsing, having a familiarity with
regular expressions will help you do your own parsing and will help you work with other parsing
modules. The more sophisticated text editors understand regular expressions to facilitate your searches.

Expert Insights368

10 – Wander and explore

Finally, set aside time to explore. I try to set aside at least two Sunday mornings a month where I take
something I heard about or read about or saw and start exploring, or I take a problem and research
solutions. No destination in mind, I just see where it takes me. Half the time, I start with one thing
and wind up basically on another planet. I’m going to take an Udemy course on MongoDB and I wind
up trying to create the best regular expression I can for matching an IP address. I’m not hung up on
this completion thing (at least on Sundays).

Alexis de Talhouët
Alexis de Talhouët is an avid network automation expert always trying to lessen

network complexity by getting involved in open source communities; he was mainly
involved with OpenDaylight (ODL) and Open Network Automation Platform

(ONAP), both hosted by The Linux Foundation, where he held Technical Steering
Committee membership.

I initially started my career as a Java developer, with a massive passion for networking. At first, it felt
very weird to build systems automating networks without really understanding them. But throughout
the years, I learned to be sufficiently proficient in networking to properly build automation platforms
around it. Such knowledge can be acquired either by building labs, following workshops, or, for the
luckiest ones, spending some time in a network operation center.

Something that struck me the most, and is still true, is how much the path to network automation
can be different if you come from a software developer versus a network engineering background.
Both have their own acronyms, processes, standards, and so on, and yet, with the rise of cloud-native,
Infra as Code, Network as Code, GitOps, and so on, we saw both worlds adopting similar concepts,
methodologies, and tooling to do the initial provisioning and operate the entire life cycle of what was
automated. So, at a high level, the how to perform the automation became fairly common, whereas
the what still remains fairly domain-specific. When embarking on such a journey, we should really
take advantage of this ecosystem to accelerate our automation strategies.

In my opinion, the basis of network automation is the configuration to apply a (golden) template of that
configuration with well-defined (typed) parameters, and the protocol used to apply that configuration.
Another very important element required for service assurance is the notion of telemetry, to retrieve
the running state and get updates on state changes and state.

With my developer hat on, what matters most is the API/contract exposed by the network equipment/
network function; these are commonly represented by the device YANG models. The main issue is,
given the network is non-homogeneous, each vendor has its own models, and exposes more or less
its functionalities. Even though there is a lot of effort being put into standardizing the configuration
and monitoring of network equipment (OpenConfig, OpenROADM, and IETF), this is certainly not
fully adopted, and thus still requires a lot of cookie-cutter handling.

Alexis de Talhouët 369

Network automation strategies must account for this and accordingly design their platform to accept
any type of network automation techniques. Of course, the more the said platform attempts to abstract
that non-homogeneous environment, the more maintenance there is, as the shim layer that will convert
from the device’s native API to that higher-level business API will have to keep up with the pace of
device upgrade and device model change.

This put forward the following design decision: should you strive to have one abstraction layer for
your entire network and maintain a shim layer that talks southbound to devices?

If yes, you’d better be armed with a team of developers to build and maintain that abstraction.

If not, I suggest solving the issue by letting the network engineers build that golden template for each
network service and have a platform to load, version, and interact with them. And that interaction
might be a shell script, a Python snippet, a Go program, an Ansible playbook, and so on: whatever
might work for that specific team, as long as the said platform exposes a REST API with the ability
to execute it. That way, network teams are empowered to automate by exposing the API and can stop
worrying about the platform. The onus of keeping these golden templates and scriptlets becomes theirs.

Another important aspect is having an orchestration engine enabling the definition of a workflow
consuming these domain-specific APIs. With maturity and governance, enforcing pre-check and post-
check tasks should become a must-have in these workflows. Also, always consider how to roll back
if the post-check isn’t successful. Applying and rolling back configuration can be tricky when doing
network-wide transactions; consider building helper functions to increase reusability.

These orchestration engines can either be distributed or centralized, but often there will be an end-to-
end service orchestration that will consume these exposed domain-specific workflows.

Finally, one of the key components to keep in mind is the inventory of the network elements/functions.
As soon as a workflow does something, it is important to have and keep the inventory up to date so
that service assurance workflows can properly act upon the active and available state of the network.

Given most of the network automation is currently done either through NETCONF or gNxI southbound
protocols, YANG has become the de facto model standard to define and express device configuration,
and the tooling around YANG is mature enough to rely on XML/JSON for the golden templates.
Rendering these templates is also something easily doable, regardless of the technology used, even if
enforcing YANG-defined types. Considering all of this, when starting a network automation journey, I
wouldn’t advocate for a specific programming/scripting language, but rather let each team manage that
for themselves. But I would definitely advocate for standardizing as much as possible the southbound
protocol and interaction. As the journey matures, and you feel that, as an organization, you have a
better handle on a specific technology, then you can build more helpers and start putting forward
some company-wide practice for automation.

As the network automation domain evolves, infrastructure provisioning is also evolving. With the rise
of Kubernetes, the latest trend is to extend the Kubernetes API to provide Custom Resource Definition
(CRD) abstracting hardware and software configuration, and supporting their entire lifecycle through

Expert Insights370

the use of an Operator. An Operator exposes the CRD as a K8S native API and contains the logic for
managing the end-to-end lifecycle of a CRD instance. This is shifting the responsibility of operation
to the Operator provider and is fostering intent-driven automation. As network equipment vendors
adopt this concept, network automation will become even closer to application lifecycle management.
And with this trend, one of the main programming languages being put forward is Go.

One project to look at is Nephio, the latest Linux Foundation networking initiative aiming at providing
network controllers using Kubernetes API extensions.

Happy coding!

John Doak
John Doak is a Principal Software Engineer Manager at Microsoft, an ex-Google

Network Systems Engineer (SRE), and an ex-LucasArts/Lucasfilm Network
Engineer.

I cut my teeth in networking at LucasArts after I asked the Director of IT what my next career step
was. He made me a network engineer on the spot and said to go buy a Cisco book and configure a
router for a new T1 we just got. There is nothing quite like staring at a box in a closet, hoping that
the Cisco book you have placed on top of your head will give you knowledge via osmosis. I spent
the next several years there automating my way out of doing work (portals that reset network MAC
security parameters, moved ports to new VLANs, auto-balanced inbound BGP traffic using route
maps, and so on).

I moved from there to Google, where I spent the bulk of my time automating the vendor backbone
known as Backend Backbone (B2). I wrote the first autonomous services that programmed the various
routers. Then, I built the first workflow orchestration system for the network with some very talented
software engineers (Sridhar Srinivasan, Benjamin Helsley, and Wencheng Lu), and then I went on
to build the next version (because you never get it right the first time). The biggest change between
the first and second was moving from Python to Go. We were able to decrease our bugs, increase the
number of workflows by 10x, and made it possible to refactor the code without breaking everything. I
spent the next few years migrating all of NetOps onto Go from Python and building automations that
configured the network on a daily basis (BGP mesh deployments, LSP metrics, SRLG configuration
deployments, edge router turn-ups, BGP-LU updates, ISIS metrics, LSP optimizations, and so on).
One of the keys for making that scalable was another service I wrote that allows sending an RPC
that could configure any vendor router we supported for a change (such as configuring a BGP peer).

Now, I work at Microsoft where I no longer am working in networking, but write Go SDKs and
manage a software group that deploys software to validate data, supply gating controls, audit data
sources, and so on. This includes running Kubernetes clusters, deploying software, and building tools
to run these systems.

Finally, I’m the author of the book Go For DevOps.

Roman Dodin 371

If I could give one piece of advice for network automation: use a centralized workflow orchestration
system. The benefits of a centralized workflow system to allow visibility into what is happening in
your network, allow emergency controls, and provide policy enforcement have been proven time
and time again.

So, what do I mean by centralized workflow enforcement? You want an RPC service that exists and
has a set of actions that the service can do. Your tools submit an RPC describing the set of actions
and monitor the running of that from the server.

This means all executions are running out of the same place. You can then build emergency tools to
stop problem network executions in case there are issues (or simply pause them). You can enforce
concurrency limits on how many network devices can be touched within a time period. You can
provide network health checks that have to run before an automation can run.

Centralization is key to controlling the automation on your network. When you’re in a small group,
it is easy to know what is going on. When your group grows much beyond five people, this starts to
become impossible.

Two of the largest outages I witnessed at Google were due to engineers running scripts on their
desktops that mutated the network while they were working outside their time zone. Backtracking to
who/what was causing the issue required scanning TACACS logs to find the culprits. And if the scripts
had been making ongoing changes, no one could have stopped it without tracking down someone in
security to disable their credentials. That precious time might mean that your entire network is down.

If you’d like to look at a basic workflow system that could be used for network actions, see my Designing
for Chaos chapter in the Go For DevOps book.

The packets must flow!

Roman Dodin
Roman is a Network Automation Engineer with a product management hat signed
by Nokia. Besides his professional affiliation, he is a renowned open source leader,

maintainer, and contributor in the network automation landscape. You might
recognize him as the current maintainer of the Containerlab project, which you will

come across while working on the practical exercises provided within this book.

I assume you are already into Go, and you want to see how Go can apply to the network automation
problem space, or you’re curious to know why Go for network automation. Allow me to share why I
once switched to Go, what were the main drivers for that move, and why I think it is a perfect time
for network engineers to start looking at Go.

Before delving into Go, I used Python for all things network automation; no big surprises here. For the
past couple of decades, the usual network automation workflow revolved around crafting/templating
CLI commands, sending them over SSH/Telnet to the network element’s CLI process, parsing the
replies, and processing them. Back then, you were lucky to have any kind of vendor-provided REST

Expert Insights372

API. Hence, most automation projects were using screen scraping libraries with all the pains of dealing
with unstructured data in an ad hoc way.

Meanwhile, in the IT realm, the proliferation of containerization, micro-segmentation, and Infra-
as-Code paradigms was coupled with the Go language mounting solid ground. The simplicity of
the language syntax, coupled with a rich standard library, compiled nature, first-class concurrency,
and decent performance, made Go win lots of developers’ hearts. In no time, we witnessed a new
ecosystem—Cloud Native Computing Foundation (CNCF)—emerge with a new set of requirements
on how applications get deployed, run, and interface with one another. Consequently, the community
revisited the networking layer to comply with the new way of running applications in an API-first,
cloud-native setting.

With time, the waves made in the sea of IT reached the networking island. Nowadays, any decent
network OS carries on top a set of management APIs with structured and modeled data for anyone
to consume. The modern automation workflow assumes leveraging those APIs solely in a concurrent,
performant, and cloud-native way. And you guessed it right: being able to write concurrent, performant,
easily deployable applications leveraging the sheer set of cloud-native tools and libraries is what Go
offers to network automation engineers out of the box.

Even with the inertia levels we have in networking, the ecosystem of network-focused projects is
growing fast. As you will see for yourself, getting through the chapters of this book, typical network-
related libraries have been created for Go already.

Another critical player in the network automation/management field is the OpenConfig consortium.
Spearheaded by Google with the participation of network operators, OpenConfig conceived many
network automation projects that gravitate toward Go—goyang, ygot, kne, ondatra, and
featureprofiles. Those who want to get a grasp of what these projects have to offer will have
to get a hold of Go. As it often happens, the tools that we will consider a commodity in the future are
being shaped by hyper-scalers today.

In summary, if your network automation activities have any of the following properties, you might
consider Go as a tool for the job:

•	 Require being performant at scale.

•	 Have a strong use case for concurrent execution.

•	 Use generated data classes off of YANG models.

•	 Leverage Kubernetes control plane.

•	 Integrate with CNCF tools and projects.

•	 Make use of OpenConfig projects.

Echoing others, Go is not an ultimate answer or a replacement for Python/Java/and so on. It is, though,
a programming language with a solid set of strong points, a large community, and a flourishing

David Gee 373

ecosystem. In my opinion, it has a bright future in the network automation domain, and this book
should be an excellent aid for those who want to see the practical aspects of using Go for network
automation today.

David Gee
David Gee is a Director of Product Management at Juniper Networks. He blogs
at dave.dev, previously ipengineer.net. He is the creator of the JUNOS Terraform

Automation Framework (JTAF), among other things. Twitter: @davedotdev

If you’ve built knowledge in the network space, chances are you’ve purchased and inhaled knowledge
from Cisco Press books. These books, for the most part, are well structured and provide knowledge that
opens up like a flower. For those looking to build automation knowledge, good sources of knowledge
that are multi-vendor-friendly are hard to come by. The industry itself is fairly immature, and network
engineers developing software skills vertically in the networking silo tend to make very questionable
decisions. This isn’t the fault of the network automation engineer but is due to a lack of discipline
that’s present in the industry. In plain-old networking, if you configure BGP badly, a session might not
come up. If you accidentally leak prefixes, then someone will correct your knowledge pretty quickly.
The next time you configure BGP, you probably won’t make that mistake again!

Software discipline in the networking space is sorely needed, and many organizations are still in their
nascent networking automation phase. Bad experiences in this phase normally are catastrophic for
confidence levels and either confirm that it’s too hard or light the runway for a great take-off. There are
lots of people going to bootcamps still, and thanks to Udemy, Pluralsight, and a raft of other learning
platforms, it’s easier today than ever to get into software. This is a contentious topic and I want to be
careful here, but software isn’t all just throwing lines of code at something until it works on a knife
edge. It’s a discipline, a mindset, and requires rigor.

My journey toward a decade of Go

Go is a great language, and for many, it’s a primary programming language as well as a tooling language.
Go provides a “belts and braces approach” in which even the compiler nags you to do the right thing.
Sure, you could write sloppy code, but the whole Go ecosystem is wired to help you not do that. Most
of the IDEs on the market have great Go tooling and will further lint and format your code, kicking
you into being a better developer. Mat Ryer of Grafana Labs and the “Go Time” podcast once said:
"Because of the Go tools, I can read other people’s code and it feels familiar as if I’d written it." That’s
down to how the Go community has baked best practices into the toolchain. You get that for free.

For amusement, but also to make a point, I’m going to share a moment from my past career. I wrote
C back in the day (C99) and wrote it on Microsoft Windows Notepad, linked it, and compiled it with
individual tools into a binary, which then needed burning onto EPROMs for an embedded system.
I managed thousands of lines of plain text, without so much as a hint of what was going to work at
the time of writing. Test rigs helped, but the real world is always the truth. One day, I was called to an

Expert Insights374

industrial unit where one of my systems had blown the lid off a water reservoir tank. In the moment
and under pressure, I managed to find a bug because I’d written down the algorithm and left key
comments in the code so I could follow under stress. Great tools and a solid engineering approach
to writing code will save you from being fired or, even worse, being sued. If it was all spaghetti code
(some of it was—I’m no hero), I’d have probably been imprisoned. Since then, we have great IDEs at
our fingertips, and Go takes the best bits of C (in my opinion) and gives you a development journey
that I’ve not found anywhere else. Ahead of even risking a production run, the compiler can tell me
about race conditions, pointer problems, and a whole raft of things that I’ve been waiting decades for.

Beyond the IDE, compiler, and Go toolchain, Go lends itself to writing clear, readable, and maintainable
code because of things such as error handling and desirable repetition. Avoiding magic is a key tenet,
and you should be able to import a package and initiate it deterministically in your own code because
of the discipline within the Go community.

Go offers so many out-of-the-box features, newcomers tend to get Go punch drunk. It’s normal to see
goroutines appearing everywhere and channels being used in situations where they’re just not needed.
Bill Kennedy of Ardan Labs has some great material on this, and if you think you need a goroutine,
the chances are you probably do not. It’s worth profiling your code with pprof before building things
that you don’t need and doing some benchmarks through Go’s testing capabilities. Go in its simplest
form will probably outperform your use case, and deciding to keep your design architecturally simple
in the early days will prevent complex headaches in the future.

Go’s type system

Go’s type system can be strict to work with, but it provides the rigor and structure that you absolutely
need. Network operating systems are normally based on structured data and things such as NETCONF
engines have API schemas that are modeled from YANG. By consuming the domain-specific language
(DSL) that defines the schema of the NOS data, you can generate one-to-one mappings against
your Go code. The result is that by ingesting YANG and GPB, you gain predictable and reliable data
structures, which are an important part of the API contract for interacting with a NOS. As network
telemetry trends grow, a clear winner is working with GPB and gRPC. Good news! You can take
the .proto files and get programmatic contract alignment for free when building client code.
The same principle works for XML as it does for gRPC and GPB. There are many tools available for
building data structures, and some IDEs have the capability to go from JSON to structs. Use the tools
where they are available, but never dismiss the opportunity for entropy and drift. Version control
is important for this very reason alone. As a final note on data encoding and schemas, XML is rich
and programmatically powerful. JSON might be a cool kid thing, but XML is great to work with for
generating configurations for platforms such as Junos. If you are comfortable with XML, working with
NETCONF is one small stone’s throw away. When building types with Go, encoding XML is just as
easy as JSON. Here’s an example of that:

package main

David Gee 375

import (

     "encoding/json"

     "encoding/xml"

     "fmt"

)

type DataEncodingExample struct {

     /*

           Example payload

           {

                "_key": "blah",

                "_value": "42",

                "_type": "string",

           },

     */

     Key   string `json:"_key",xml:"_key"`

     Value string `json:"_value",xml:"_value"`

     VType string `json:"_type",xml:"_type"`

}

func main() {

     dataInput := DataEncodingExample{

           Key:   "blah",

           Value: "42",

           VType: "string",

     }

     jsonEncoded, _ := json.Marshal(dataInput)

     xmlEncoded, _ := xml.Marshal(dataInput)

     // This is example code. What errors? :)

     fmt.Println("JSON Encoded: ", string(jsonEncoded))

     fmt.Println("XML Encoded: ", string(xmlEncoded))

}

Expert Insights376

The output is as follows:

JSON Encoded:  {"_key":"blah","_value":"42","_type":"string"}

XML Encoded:  <DataEncodingExample><Key>blah</Key><Value>42</
Value><VType>string</VType></DataEncodingExample>

A note on version control

On to version control, which is not only important for your own code but also important for Go’s
package management system. There have been more than 10 package management attempts from the
core Go team, but as of version 1.13, the Go module system feels like they finally got it right. If you’re
unfamiliar with go mod and its use, it’s worth investing the time. Being able to deterministically
rebuild a Go program with the correct package is of prime importance, and it’s worth understanding
how you can use semantic versioning and the go mod system to sturdy up your development habits.
There are famous stories in the DevOps and SRE space about one patch version being off and code
being entirely unpredictable. As great as those stories are when telling them at meet-ups, they aren’t
fun in the moment and can be avoided by locking your code to use specific versions and trusting that
in CI/CD pipelines or build systems, your code will be re-composed the same way you composed it
in development.

Growing your code

I’m thankful to have been an electronics engineer before I went into networking and learned assembly
language and C before even so much as touching a CLI. I found it odd that I could make more money
typing commands into a serial port than building a system with a serial port. Roll the calendar forward
two decades (yikes), and many of my old habits are still in existence. If I begin to write a new tool or
software service, I start by building out the kernel of the idea without implementation. This vehicle
enables experimentation and learning about the problem space without lots of tedious code changes
in the early phases of exploration. The algorithm kind of grows itself, and over time, I’ll embed links
to useful API code or comments I’ve found on forums and blogs, and so on:

package main

import (

     "context"

     "fmt"

     uuid2 "github.com/google/uuid"

     "github.com/sethvargo/go-envconfig"

     log "github.com/sirupsen/logrus"

)

David Gee 377

const _VERSION = "0.0.1"

/*

This code logs into the auth service for X and then updates the
remote status with the local status measurement.

It is triggered when the remote state is changed.

Each invocation generates a UUID which can be used by the ops
team.

*/

type Config struct {

     APIUser string `env:"PROG1_API_USER_ID"`

     APIKey  string `env:"PROG1_API_USER_ID"`

}

// GetToken retrieves a JWT from the external auth service

func (c *Config) GetToken(URL, uuid string) (string, error) {

     // Initiate thing

     log.Info(fmt.Sprintf("system: updater, uuid: %v,

      message: logging into device with key %v\n", uuid,

      c.APIUser))

     // Imagine this is implemented!

     return "JWT 42.42.42", nil

}

func main() {

     // Set log level, normally this would be from config

     log.SetLevel(log.DebugLevel)

     // Get UUID for this instantiation

     uuid := uuid2.New().String()

     // Show the world what we are

     log.Info(fmt.Sprintf("system: updater, uuid: %v,

      version: %v, maintainer: davedotdev\n", uuid,

Expert Insights378

      _VERSION))

     ctx := context.Background()

     // Get the config from env vars

     var c Config

     if err := envconfig.Process(ctx, &c); err != nil {

           log.Fatal(err)

     }

     // GetToken will get a JWT from the thing upstream

     token, err := c.GetToken(

            "https://example.com/api/v1/auth", uuid)

     if err != nil {

           log.Fatal(err)

     }

      log.Debug(fmt.Sprintf(

      "TODO: Got token from external provider: %v\n",

      token))

     log.Debug("TODO: Got the local state")

      log.Debug(

      "TODO: Logged in to remote service with token and updated
the state")

     log.Debug(

      "TODO: Update success: ID from remote update is: 42")

     log.Debug("TODO: Our work here is done.")

}

The output is as follows:

go build

./main

David Gee 379

INFO[0000] system: updater, uuid: 6cb60c9b-<snip>, version:
0.0.1, maintainer: davedotdev

INFO[0000] system: updater, uuid: 6cb60c9b-<snip>, message:
logging into device with key testuser

DEBU[0000] TODO: Got token from external provider: JWT 42.42.42

DEBU[0000] TODO: Got the local state                    

DEBU[0000] TODO: Logged in to remote service with token and
updated the state

DEBU[0000] TODO: Update success: ID from remote update is: 42

DEBU[0000] TODO: Our work here is done. Exit Go routines
cleanly if there are any.

A couple of items in the preceding code are worth mentioning. The first mention is on the use of external
packages. I tend to standardize on a given project for a logging library and method of dealing with
configuration. It makes the code easy to work with and predictable in its nature. Also, great libraries are
gifts that keep on giving. Logrus is a great example of that. Want JSON? Not an issue. Want to change
the log destination? Easy. Logging is not only important in development, but it’s super important
when you release a tool or put a software service into production. It might seem silly to have a UUID
system in place for a low-use tool, but if it’s a software service with many invocations per day, you can
PayPal me a suitable gift when operations tell you how nice it is to follow what your creation does.

Comments

The value of comments is an age-old subject for shouty arguments. Be kind to the future version of
yourself or any poor soul that has to maintain your code. Comments are worthless if they point out
the obvious, and so I write a small variation of comment styles. They say know your audience when
you write, and for reading code, the required expertise is a basic understanding of Go, and so you
do not need to point out that a string is a string. Here are some pointers on what you could include:

•	 Future hints: This is when there is a known bottleneck or issue that’s likely to arise at a certain
user base or request rate but is not worth solving at the time.

•	 To-do items: When exploring problem spaces, there’s nothing wrong with leaving mental hooks
so that you can relocate your thoughts. They should reduce over time as the algorithm becomes
more concrete, so remove them and improve the explanations in larger comment chunks as
you work through your to-do list.

•	 When things get complex, write the algorithm out. It’s like reading an exec summary in a corporate
document. It’s easier to understand what the code is trying to do from a tech memo comment
than from reading the code, especially if it’s complex and deals with things such as recursion.
Always worth leaving a date too so that readers can reconcile versions against comments.

Expert Insights380

Being blindsided

Because writing in Go forces you into good habits, it can also blindside you. Go is massively powerful
and packed with features that are quickly turned into invisible guard rails. Imagine interacting with
an API that’s been written in Python. Imagine also that the payload is encoded into a slice with each
item being a small map—something simple, like this:

[

     {

           "key": "blah",

           "val": 42

     }

]

Immediately, we can see how to marshal and unmarshal, but a common gotcha, especially when
interfacing between a strongly typed language and a dynamically typed language, is poor data type
management discipline. The following example will trigger an error in Go when you attempt to marshal
it because of the type system, but it’s really common to see, unfortunately:

[

     {

           "key": "blah1",

           "key": 42

     },

     {

           "key": "blah2",

           "val": "42",

     },

]

Some software engineers handle these scenarios with TLV-style data encoding (see next), but if
you’re stuck with this problem, you can use Go’s reflection capabilities to inspect the data and
de-serialize it in a customized way for handling within your code. You could use reflection with the
preceding code to then instantiate in types such as the following. This approach has saved my bacon
more than once and is especially of use in dynamic data scenarios where languages such as Python
make it dangerously easy. The user of the underscore is normally a hint that this is a TLV-style data
instance and used for inter-process communication:

/*

     {

           "_key": "blah",

Daniel Hertzberg 381

           "_value": "42",

           "_type": "string",

     },

*/

type BadDataManagement struct {

     Key   string `json:"_key"`

     Value string `json:"_value"`

     VType string `json:"_type"`

}

Go is a great language, and I implore you to work with standardized interfaces such as NETCONF, REST,
and gRPC while making an effort to avoid silver-bullet network API-style packages and middleware.
Simple rules such as avoiding magic will pay dividends in the future and, having a memory like a
sieve, I try to remember that at all times if nothing else.

Writing this section has been an honor, and I believe this book paves the way for you to develop your
own discipline, rigor, and skill for an industry that desperately needs it. Without lightning-rod efforts
to provide learning paths, we’ll find the network automation discipline heavily fragmented for years
to come, and this book will help immensely with that journey. A huge thank you to the authors for
letting me share these thoughts.

Daniel Hertzberg
Daniel is a Senior Technical Marketing Engineer at Arista Networks. He’s been

working within this field for double-digit years and has always had one foot in the
door of networking and one foot in the door of automation/programmability. He
writes Go on Visual Studio Code multiple times per week because of his success

with network automation, cloud-native technologies, and OpenConfig.

I started off my automation not with network devices but with network overlays and network security
with VMware NSX. NSX provides way too many options to click on to break the system. The same
way that a network person could make a mistake and fat-finger a switch made it really easy for me to
enter the same OSPF router ID within the same network... whoops! This was a REST API built with
XML as an encoding and used Python requests to talk to it. At the time, most were using PowerShell
to make this work, so even Python in this community was way outside the barriers of normalcy.

Fast forward a few years later—we started to see a lot of usage with vendor APIs. I found Python more
or less at home given the amount of “getting started” examples that were out there simply importing
the requests library and doing the typical RESTful thing—that is, sending a request and getting a
response back. I found it pretty simplistic to generally work with all the normal Python objects such
as dictionaries, lists, tuples, and so on.

Expert Insights382

Within every journey, you start to run into scaling problems, and there is no issue with Python if it
works for what you are doing. I started getting more involved in cloud-native projects, Kubernetes,
and OpenConfig. All things that ended up using Go. I felt the learning curve was a bit steeper than
Python because the network community was not as into it as they were into Python. However, the
benefits outweighed everything I knew about Python:

•	 Typed system

•	 Compiled system

•	 Concurrency

•	 Modules (go mod is so great to open it up and see what is being used across the entire project)

•	 No white spacing

•	 Garbage collection

I could probably add a bit more, but those are generally why I like Go so much. Having early access to
this book and seeing the examples, I can see generations of network engineers picking this up rather
easily and swapping out Python for Go.

Go overall has helped me tremendously in my career as customers are asking for more and more code
written in Go for general networking projects including Kubernetes operators, network automation,
and OpenConfig streaming. Best of luck, network gophers!

Marcus Hines
Marcus has spent his career focused on network device testing, test framework
development, test automation and generally asking why things can’t be done

differently. He started his career as a Network Engineer and he now focuses on
engineering productivity across his organization. He helps maintain most of the

OpenConfig organization’s repositories.

In a nutshell

I have become a very strong proponent of Go for general development for several key aspects:

•	 Ease of use of language-provided tooling

•	 Ramp-up speed for engineers joining projects

•	 Speed of compilation and multi-platform support

•	 Strongly typed language for static analysis with great build-time validations

Marcus Hines 383

Reasoning about automation

•	 Testing and automation are basically the same thing.

Testing and automation can be distilled down to an ordered set of operations and validations
to transform an input state and intent into an expected output state.

•	 A stream of bytes is not an API.

SSH and shell scripts that contain vendor-specific details do not lend themselves to a
heterogeneous environment.

•	 Flexibility on API definition, which focuses on iterative versioning with non-breaking changes.

Go has strong first-class support for gRPC, which is a rich serialization and RPC framework
with support for most popular programming languages.

•	 Automation should always only have one layer of templates and one layer of configuration.
Everything else should be code.

•	 One automated test running continuously is worth 1,000 manual tests.

•	 Automation systems themselves need to be life - cycled.

The first test developed for the system should be how to install, version, and tear down the
system itself in a hermetic, repeatable way.

Once you have that ecosystem, you can unlock the rest of your development team to quickly
iterate on development with the trust they are not regressing the infrastructure.

Background

I have had a very long winding path to come to where I am today.

I started my network automation scripting back in TCL/Expect and Perl. Both of these ecosystems
allowed for at least consistent repeated operations; however, everything else was a mess. Python
added a robust ecosystem around libraries and version systems to allow for a more hermetic and
repeatable world.

The Python code base, though, suffered from a couple of issues, which made it hard to maintain. The
testing of the code itself was fairly straightforward. However, because of a lack of typing, we often
had to write a lot of type validation into the code and could only find these errors during runtime.
Also, the general focus on using mocking to drive up coverage numbers but not extensively testing
the public contracts caused fairly brittle tests, which slowed development in the long term. I don’t
blame Python specifically for this, but it is very easy to fall into a pattern without the right tooling to
enforce good practices.

I was introduced to Go around 2014 on a project and was quickly impressed with its strong typing,
built-in tooling, and compilation speed. Before this, I had been working on a C++ test framework

Expert Insights384

for a project. I was constantly frustrated with the complexity of building flexible C++ code; it had
become a meta-programming nightmare of templates to generically support all of our use cases. Go
fixed most of this by providing interface definitions for our use cases.

Since then, I have written three Go-based test frameworks for different organizations, all with
different system needs. The first framework represented some unique challenges for solution testing.
It required the ability to be open sourced. It needed to control components written by four different
teams developing code in three different languages across two different build ecosystems. The tests
themselves had to run on both Linux and Windows test runners. Go allowed us to develop this
ecosystem using just standard Go tools for compilation.

The next framework was used for solution testing of a cloud-based Kubernetes ecosystem. We were able
to make quick progress given the tooling and library support for k8s based projects. We could leverage
infrastructure for cluster bring-up, k8s deployment, operator deployment, and application lifecycle.

The current framework I am involved with is Ondatra (see the Further reading section). This framework
is focused on delivering an open source functional-, integration-, and solution-testing framework for
network solutions. It is currently used by internal teams in my organization through feature profiles
(see the Further reading section) for describing our network device requirements to vendors.

Ability to impact the industry

One last point I would like to make is the ability of individuals to change the industry.

This industry has long been dominated by vendors and the perception that the IETF will solve your
problems. When it comes to automation, vendors are disincentivized to help. Every vendor-specific
knob and API that can be created locks an operator further into a vendor solution that translates into
purchase orders (POs) for them.

By starting to shape this industry around software automation and APIs, we are moving a network
from an art to computer science. We are on the path to where network devices are nothing more than
general-purpose compute with fancy network interface cards. With general APIs that can express intent,
such as OpenConfig over gNMI, operators can build a single configuration and telemetry system that
can support any number of vendors. With additional operational APIs around bootstrapping, security,
software, and file management, operators can uniformly build their infrastructure. This becomes a very
consistent testable layer that then can be used to test northbound services and downstream devices
separately at the unit test layer. Building a strong layered test strategy gives you confidence and finds
breakages much faster in your development cycle.

Don’t wait for others to solve your needs; it won’t happen. If you want something, demand it from the
vendors. If they don’t do it, demand it from a standards body. If they don’t do it, take it upon yourself.
Don’t assume your idea is a bad one or that others have more understanding of the ecosystem than
you do. Get into the open source world and pitch your ideas. The model of software development
and collaboration has drastically changed over the last 20 years, let alone just in the last 5 years.

Sneha Inguva 385

Network automation has many opportunities to develop ecosystems that can have a minimal number
of transforms between operator intent and state on network devices.

Sneha Inguva
Sneha is a Software Engineer at Fastly on the network control and optimization

team and a former Network Engineer at DigitalOcean.

My journey to writing networking code began on the internal Kubernetes and observability teams at
DigitalOcean, a cloud hosting provider. Before I ever touched a line of network code or configuration
logic, I learned that behind a planet-scale company is a multitude of distributed systems consisting of
hundreds, if not thousands, of services, serviced by many teams of engineers. The process of building
and deploying maintainable services required a proper CI/CD setup, monitoring, and actionable
alerting. This was echoed in my experiences when I transitioned over to writing lower-level networking
code in Go on various networking teams. When you are writing code that is meant to be deployed to
thousands of hypervisors or servers in various locations around the world—and when that code controls
fundamentals’ ingress and egress networking—automation is key. This experience has continued at
Fastly, a CDN provider with points of presence around the world.

Whether it is homegrown networking software or third-party OSS such as the BIRD routing daemon,
I have learned that we absolutely need to be able to roll forward or roll back changes with ease. I am
also a huge proponent of actionable alerts and runbooks; from experience, noisy alerts that are not
directly tied to specific actions should never be pageable. I’ve also come to appreciate Go for what it
offers when writing networking code; compared to languages such as C, it has been far easier to iterate
code quickly and cross-compile applications for various platforms using Go. Go also has a useful
network standard library and a growing ecosystem of packages that ease the process of writing code
all the way from layer 2 and packet sockets to layer 7 using HTTP.

In summary, if I had to advise someone newly entering this field of networking and Go software
engineering, I would say the following:

•	 My ethos when writing software at any large company is to keep it simple. Write such easily
readable, modular, extensible, and well-documented code so that a new engineer well versed
in Go but unfamiliar with the company’s ecosystem would be able to easily join and contribute.
I believe that excellent documentation and clear, simple code will always beat clever code.

•	 When it comes to CI/CD and Infrastructure as Code, there are numerous options available
that often depend on the use case. Will the software be run as a binary on a host machine? Can
it be containerized? Are we building Debian packages? Whatever it is you use, make sure it is
easy to both deploy and roll back the version of a service with ease.

•	 Learn the idiosyncrasies of Go and have some agreed-upon best practices for company repositories.

Expert Insights386

•	 Though I absolutely appreciate third-party packages in the Go networking ecosystem (netaddr,
gobgp, and so on), I also like to read through code and confirm my understanding of its
functionality. This also often allows us to find bugs and upstream contributions.

•	 Make sure you have white-box monitoring and actionable alerts configured for your services.

And with these tips, I encourage everyone to embrace the Gopher life!

Antonio Ojea
Antonio Ojea is a Software Engineer at Red Hat, where he works on Kubernetes

and other open source projects, mainly focused on cloud technologies, networking,
and containers. He is currently a maintainer and contributor on the Kubernetes

and KIND projects and has contributed in the past to other projects such as
OpenStack and MidoNet.

During my early years as a professional, I started in the network department of a telecommunications
company. We were responsible for the internal network and its services (DNS, email, WWW, and so
on). At that time, our automation consisted basically of the following:

•	 Configuration: TCL/Expect scripts that connected to the network devices to apply
different configurations

•	 Monitoring: Perl scripts that polled via SNMP the network devices and stored the data on
Round Robin Database (RRD) files

•	 Logging: Using a central Syslog server dumping all logs to text files that were rotated periodically
via cron

•	 Alerting and reporting: Processing text files with Perl, cat, grep, cut, awk, sed, sort,
and so on, and sending the result via email

If we look back, in hindsight, it’s incredible how much everything has improved and how interesting
has been its evolution, especially in the open source area.

At the beginning of the 2000s, open source software was gathering momentum, the Apache license
opened a new way for FOSS and corporations to interact, and there were already several stable Linux
distributions providing the support, maintenance, security, and reliability required by enterprises.

During the 2000s, some projects started to flourish, improving the existing network automation. Some
of them are still alive these days:

•	 Really Awesome New Cisco confIg Differ (RANCID): Monitors the device configurations and
uses a versioning backend such as CVS, Subversion, or Git to maintain a history of changes.

•	 Nagios: It was kind of the industry standard for monitoring and alerting.

Carl Montanari 387

•	 Cacti: A complete network graphing solution designed to harness the power of RRDTool’s data
storage and graphing functionality.

However, it wasn’t until the late 2000s that open source entered the spotlight, regulations were more
clear about free software licenses, and the open source ecosystem was more solid and stable. Companies
started to use and contribute to open source, attracted by the growth and change potential and the
economic benefits in contrast to the existing licensing model of private software.

During this period, and driven by the necessity of businesses and companies to be more agile, the
infrastructure becomes more flexible: virtual machines, containers, software-defined networks, and
so on. All these changes cause an evolution in the industry. It’s the dawn of the cloud, and network
engineers start to have access to the networking data plane with technologies such as OpenFlow,
or to the physical or virtual device configurations via APIs. The network becomes more open and
programmable, creating unlimited opportunities for software developers.

My career was following this evolution. I started creating simple scripts and using other software
projects to help me automate my work. However, once you realize you can build your own tools,
collaborate with others to add the features that you need, and/or fix the limitations or bugs that are
impacting you, you just can’t stop. That’s how I became a Kubernetes contributor and maintainer on
SIG-Network. There is no secret: study, practice ... repeat.

Nowadays, and thanks to the explosion of open source projects and collaborative tools, it is easy to
practice. Every project will be happy to have people willing to help, or you can just create your own
project. There will always be someone that will be interested. The same is happening for studying; there
is a lot of material accessible for everyone – videos, tutorials, and blogs – but I always recommend
having some key books at hand, not just for reading, but also for consulting. Good books never age.

Remember, a programming language is just a tool. There is no ring to rule them all. There are tools
you feel more comfortable with or are better suited for some kind of work or to solve some specific
problem. Go is the core language for the container ecosystem; the main projects such as Kubernetes,
Docker, and so on are built using Go. If you plan to work on network automation and containers, Go
is definitively the appropriate language for you.

Carl Montanari
Carl defines himself as an ex(?) network person. He is a Python and Go developer,

and creator of Scrapli(go), a Go package used in this book.

When I first started getting involved in the network automation community, the idea of anything but
Python for network automation felt a bit insane. Of course, there were folks out there using things other
than Python—maybe they had some Perl or Ruby, or maybe crazy folks had some C or something,
but it really felt that Python was generally the one ring to rule them all. I leaned into Python, and, like
many folks, I quickly fell in love. Python is a really neat language, and for somebody like me, without
any kind of programming or computer science background, it served as an amazing and reasonably
gentle introduction to the world of software.

Expert Insights388

For a good long while, I kind of felt like the network automation folks espousing Go were living
in a fantasy land! Why would you need anything other than Python? Certainly, the speed/ease
of development of Python outweighed the general speed of Go. Surely the much larger network
automation ecosystem in Python was such a leg up that Go could never compete! Perhaps, I thought,
the Go network automation advocates only had the newest fanciest gear that had 100% support for
everything they could need to do with RESTCONF or gRPC. They probably also drank only the finest
artisan coffees and beers and had enviable mustaches and/or colorful, fancy hair!

Naturally, these thoughts are all silly, and eventually, I started growing out a fancy mustache and learning
Go. Just kidding—I can’t grow a mustache, or at least not an enviable one, but I did dive into Go!

Of course, I never had any delusion that Python was truly the one ring to rule them all, but learning
one language was hard enough, so perhaps I was just protecting my sanity from trying to learn another
one! It’s a bit unclear whether I’ve retained my sanity, but I do feel like I have learned quite a bit about
Go over the past few years! For anyone that is on a journey like mine and looking to dig into Go, here
are a few things I would recommend:

•	 Lean into the typing ecosystem in Python. mypy is awesome—you will catch bugs you had no
idea you had. You will learn a ton about typing, and the best part: if your typing is all broken,
your programs will still run! Being a pretty rabid-type hinting fan, I feel it helped me a ton
when going into Go where it is required.

•	 Take the time to really understand interfaces and how to use them idiomatically. At first, for me,
they were just kind of clunky abstract base classes, but of course, they really are more than that.
While we’re at it, make sure to understand the empty interface and how to use and abuse that!

•	 Stop trying to inherit all the things! This was (is?!) difficult for me—I quite fancied inheritance
(perhaps too much, and perhaps that is a taboo nowadays anyway?), so it has been somewhat
of a challenge at times to break away from that pattern. Sure, embed a struct here and there,
but generally try to move away from that inheritance style mentality.

•	 Let the robots (linters) yell at you and tell you how bad your code is! I like golangci-lint,
which is a linter aggregator that runs tons of linters against your code. Get a ton of errors, and
search-engine-engineer your way to understanding why the error exists and how you can do
better. While annoying, I’ve learned a ton from all the errors I’ve created this way!

I suspect Go will continue to become more and more commonplace in the network automation
community. The benefits of language—speed, small footprint, compiled binary, and on and on—are
hard to ignore. Moreover, as the network automation ecosystem continues to expand and grow, I believe
that network automation roles will be increasingly software-centric, rather than network-centric or
automation/software as an afterthought of a network role; as that happens, Go will be increasingly
important for all the reasons espoused in this very book! Of course, just as Python is not the one ring
to rule them all, neither will Go be, but both are tools you should absolutely have in your toolbelt...
or some other worn-out platitude. Happy Gophering!

Brent Salisbury 389

Brent Salisbury
Brent is a Principle Software Engineer with over 20 years of networking and

compute experience. He started in network ops and architecture and gradually
transitioned into network software development. He is as bullish as ever on the

future of the prospects for young engineers entering the networking industry.

We have witnessed trends in networking come and go, and projects succeed and fail during a few
innovation cycle booms and busts in the still-young life of the internet. Through these important
iterations, one paradigm shift that will stick is the adoption of DevOps practices in networking. A
core component of DevOps is automation. To scale network automation, it is important to have tools
that are powerful yet not overly complex to use for the operator. The authors have done an excellent
job laying out reasons Go has arguably become the de facto language for infrastructure programming
over the past few years as libraries have matured, and some of the largest open source projects have
been written in Go.

Whether you are a network engineer or a seasoned developer, it is often said a particular language is
just a tool and we shouldn’t grow too attached to one specific technology. While there is some truth
in that premise, in the specific case of a language such as Go for networking, I would argue the right
tool for the job is incredibly important. We are expecting a large swath of networking professionals to
evolve into DevOps engineers for the network. If we are expecting a retooling of engineers’ skill sets,
we should make that path as easy as possible. The learning curve, packaging, and baseline performance
of Go all benchmark exceptionally well as compared to peer languages, making it an excellent choice
for both a newcomer and a seasoned developer for programming and automation.

Here are some recommendations for those getting started in the network programming and
automation journey:

•	 Embrace open source.

•	 Learn Linux and Linux networking.

•	 Pick a language such as Go to start hacking.

•	 Get familiar with open source automation tools such as Ansible and Jinja.

•	 Learn how to use Git and its potential impact on configuration management.

•	 Start with a read-only project that won’t do damage to the network as you are getting comfortable
with automation and coding. Examples such as network monitoring/telemetry or configuration
management/backups are relatively safe places to begin.

•	 Programmatically improve the understanding of the state of your network. Stop driving using
the rear-view mirror!

•	 Learn about current developer tools and deployment mechanisms (Kubernetes, containers,
popular libraries, and so on).

•	 Explore how to create CI/CD pipelines for your networks.

Expert Insights390

Start thinking of your network configurations as code. Automated outages are increasingly at the root
of some of the more recent high-profile outages. Leverage your experience in operations, and create
tests and safeguards to prevent common mistakes someone doing automation without a background
in networking would not be aware of. Network engineers are not endangered species; it takes years to
understand how networks work and how to build them at scale. By combining a new discipline such
as programming, it makes you that much more valuable in being able to connect the increasingly
complex environments in today’s networks.

In closing, your goal should be to ensure the network is not a blocker of business velocity. Changes
to the network taking weeks to implement must be a thing of the past. That is, of course, easier said
than done, as network uptime is, and will always be, the number one metric a network team is going
to be judged by. If I look at any projects, deployments, or products that I have done, the successful
ones were where we took complexity and made it a little bit simpler. As networking professionals
continue to evolve, powerful yet simple-to-use tools such as Go coupled with automation projects will
be key enablers. Lastly, don’t be afraid to fail. Find your strengths and work around your weaknesses.
The network is a big boat and hard to steer, but I firmly believe we are tacking in the right direction
with automation.

Maximilian Wilhelm
Maximilian—Max—Wilhelm is a Holistic (Network) Automation Evangelist,

trying to bring software engineering methods to network automation, and helping
to overcome vendor lock-in.

He developed a weakness for networking, IPv6, and routing early on and is an avid
open source enthusiast, cofounder, maintainer, and contributor of Bio-Routing

and ifupdown-ng, a regular speaker at open source and networking conferences,
founder of the FrOSCon Network Track, and co-host of the virtualNOG.net

meetings.

He’s currently working as a Network Automation Engineer at Cloudflare and does a little moonlighting
as a Senior Infrastructure Consultant. His second calling is being the lead architect behind the widely
automated Freifunk Hochstift community network where he got his hands dirty with ifupdown2 as well
as ifupdown-ng, VXLAN, Linux VRFs, BGP, and OSPF, plus infrastructure automation with Salt Stack,
and has been afraid of commercial SDN solutions ever since.

A little bit of history

Coming from a Linux administrator/systems engineering background, I’ve been used to having
home-grown automation solutions in place to manage a fleet of—for me at the time—a large number
of servers and clients since my first job at the IT center of the Institute of Mathematics at Paderborn
University in early 2004.

Maximilian Wilhelm 391

We had a locally developed software suite called SDeployment—written in Shell if I remember correctly—
that was responsible for provisioning the correct software packages and desired configuration file state
onto Linux-based servers and clients and enforcing the desired state to stay this way.

This even helped to detect an intruder who managed to exchange the sshd binary, which didn’t have
support for Kerberos, so he needed to change the sshd_config, which got overwritten after 1 hour
and the service didn’t start anymore.

At the time this was a huge benefit over solutions such as CFEngine, which could do incremental
changes to configuration files but not maintain them holistically; Puppet had not been born yet
(according to Wikipedia).

With the rise of Bcfg2, Puppet, Chef, Salt, and Ansible, we saw a shift from incremental configuration
changes to intent-based configuration management in the wider industry, where the operator describes
the desired state (intent) and writes templates to generate contents of entire configuration files, and
the configuration management solution’s task is to make this a reality and keep it this way.

Mental shift to holistic automation

The systems engineering/SRE world underwent this shift in thinking a long time ago, but it feels like the
majority of network automation solutions are still following the idea of making incremental changes
to the routers and switches out there, which, at the same time, might also be managed manually by
operators typing (or copying) magic spells into a CLI.

This makes the device configuration the synchronization point, and we don’t really have an idea of
what this configuration will look like in full without checking back on the device.

I believe we, as network (automation) engineers, need to follow suit, make the mental shift to the
holistic approach, let Perl, Shell, and Expect scripts be, and bring software engineering methods to
network automation. This way, we are able to tackle the problems at hand at an abstract level and build
solutions that can be reasoned with, tested on their own, and that scale to our needs (see Chapter 5,
Network Automation).

For the most daunting problem of configuration management, this means plugging some of those
systems together and building a solution that generates and owns the full device configuration.

The automation will likely rely on multiple inputs to gain full knowledge of the topology, operational
overrides, subscribers, and services, as well as rules to derive the configuration from all of that.

This is following the overarching goal to do as few configuration changes as possible and leverage
protocols such as BGP and BMP to extract/observe state or manipulate device state where more
dynamic changes are required.

Expert Insights392

This is the way

Having all of this in the cards, the only API you need from a device is a function to upload a new
complete configuration and let the device figure out the path from the current configuration to the
new one.

Dealing with diverging configuration parts across the fleet, carefully cleaning up old approaches to
configure X, doing incremental changes, and figuring out how to interact with a platform API, a dialect
of NETCONF, YANG, and so on would all be from the past—wouldn’t that be great?

I believe we have a bright future ahead of us!

That’s where this great and inspiring book and Go come in!

With Go, you have a very solid foundation to build reliable, scalable, and fairly easily testable and
observable software. Prometheus integration is at your fingertips.

This way, you can build tools to monitor your network (via BMP or streaming telemetry, for example),
inject routes via BGP, or build your own holistic network config generator and deployment pipeline,
as outlined previously.

Existing open source suites such as Bio-Routing can help you on the first part (using BMP/RIS) and
act as the foundation to, for example, build a route-injector following your business logic.

The fact that you are reading this indicates you are looking into building your own automation solution
to tackle your organization’s needs—that’s great!

If you can, please share it as open source and present it at your local NOG—or VirtualNOG—so that
others can benefit and learn from it too. Good luck!

Matt Oswalt
Matt is a Systems Engineer at Cloudflare, where he works on proxies and

control plane systems. He blogs at https://oswalt.dev and occasionally posts on
Twitter as @Mierdin.

I’m grateful to have been exposed to software development as well as infrastructure technologies such
as networking at roughly the same time in my life. While I had toyed around with the BASIC-esque
language on my TI-82 calculator in high school (okay, toyed is a stretch—I created a rudimentary Galaga
clone while failing Geometry) and taken a single semester of programming in Visual Basic, it wasn’t
until university that I first encountered Linux, networking, and a modern programming environment.

Over the next few years, I bounced back and forth between what seemed to be fairly isolated technical
domains. Doing so often made me feel like a beginner in everything and an expert in nothing. I’ve
had more than a few moments of anxiety, worrying that I’m not doing the right things in my career.
In retrospect, however, this was the best experience I could have asked for. It kept me uncomfortable,
and in this state, I honed the skill that I prize above all others, and that’s my ability to learn. This

Matt Oswalt 393

skill has a snowball effect—having a formalized system of learning gives me the confidence to try
new, more challenging things, which usually forces me to be even more rigorous and efficient in my
learning process, and so on.

These days, there is a multitude of things to learn, and while it may be tempting to learn them all, we
cannot. Something I’m still working on is my ability to seek out those skills that will really impact my
career and the industry. In my experience, the kind of technologies and skills that have staying power
are not always those that get the hype on social media or stars on GitHub—often, these are more
fundamental technologies or ways of thinking that allow you to more quickly understand whatever
the latest manifestation of those ideas might be.

If you’re new in your career, or if you feel like you might be stagnating a bit but you’re not sure where
to go, hopefully the following advice is helpful to you:

•	 Stay curious. The work of learning is never finished. Don’t get too focused on attaining
certification X or being able to add technology Y to your resume—these are fleeting. Rather,
take pride in building a continuously improving system of learning, and hone your own ability
to acquire new skills efficiently.

•	 So much of what we tend to cling on to in our lives and careers is a crippling distraction.
Separate the essential few from the trivial many and focus on what will allow you to make your
highest level of contribution. It’s far better to do a few things exceptionally well than to create
a bounty of mediocre work.

•	 There are many more highly skilled engineers building efficient, scalable systems that you
will never hear about; then, there are people posting about technology X on social media and
getting all the likes. The vast majority of technology hot takes on social media aren’t worth the
bits used to transmit them.

•	 The technical skills that have the steepest learning curve can often (but do not always) have the
biggest reward. Be very careful not to make career-limiting technical decisions based on how
adoptable/approachable a technology may be; often, industry-changing innovations will not
come with a perfect user experience at first, and the opportunities are much more plentiful for
those who don’t wait for the polished user manual. At the same time, do not fall into the trap of
believing that the more complex or difficult to learn, the better it must be. As with most things
in life, the truth is probably somewhere in the middle.

•	 No technology is a panacea; they were all designed with specific trade-offs in mind, including
Go. If you haven’t found the trade-offs, you haven’t looked hard enough. Your job as an engineer
is to understand these trade-offs and pick a technology that aligns best with the trade-offs you
want to make in your current situation.

Happy learning!

Expert Insights394

Further reading
•	 Decomposing Data Structures: https://gratuitous-arp.net/decomposing-

complex-json-data-structures/

•	 Ondatra: https://github.com/openconfig/ondatra

•	 Feature profiles: https://github.com/openconfig/featureprofiles

•	 FrOSCon Network Track: https://myfirst.network

https://github.com/openconfig/featureprofiles
https://myfirst.network

12
Appendix : Building a Testing

Environment

Every chapter of this book includes Go code examples to illustrate some points we make in the text.
You can find all these Go programs in this book’s GitHub repository (see the Further reading section
of this chapter). While you don’t have to execute them all, we believe that manually running the code
and observing the result may help reinforce the learned material and explain the finer details.

The first part of this book, Chapters 1 to 5, includes relatively short code examples you can run in
the Go Playground (Further reading) or on any computer with Go installed. For instructions on how
to install Go, you can refer to Chapter 1 or follow the official download and installation procedure
(Further reading).

The rest of the book, starting from Chapter 6, assumes you can interact with a virtual topology, which
we run in containers with the help of containerlab (Further reading). This Appendix documents
the process of building a testing environment that includes the compatible version of containerlab
and other related dependencies, to make sure you get a seamless experience running examples from
any chapter of this book.

What is a testing environment?
The primary goal is to build an environment with the right set of hardware and software that meets the
minimum requirements to execute the code examples. We base the requirements on the assumption
that you’re deploying a virtual machine (VM), as we realize you might not deploy this on a dedicated
bare-metal server.

Appendix : Building a Testing Environment396

When it comes to deploying a VM for testing (testbed), you have two options, both of which we
discuss later:

•	 You can deploy this VM in a self-hosted environment, such as VMware or Kernel-based
Virtual Machine (KVM).

•	 You could use a cloud-hosted environment—for example, Amazon Web Services (AWS).

From the hardware perspective, we assume that the underlying CPU architecture is 64-bit x86, and
our recommendation is to give the VM at least 2 vCPUs and 4 GB of RAM and ideally double that
to make things a bit faster.

We describe all software provisioning and configuration in an Ansible playbook included in this book’s
GitHub repository (Further reading). We highly recommend you use the automated approach we have
prepared for you to install all the dependencies to run the code examples in the book.

You can still install these packages on top of any Linux distribution—for example, Windows Subsystem
for Linux version 2 (WSL 2). In case you want to do the installation manually, we include a full list
of dependencies here:

Package Version
Go 1.18.1
containerlab 0.25.1
Docker 20.10.14
ansible-core (only required for Chapter 7) 2.12.5
Terraform (only required for Chapter 7) 1.1.9

Table 12.1 – Software dependencies

Step 1 – building a testing environment

In the following section, we describe the two automated ways of building a testing environment. If
you are unsure which option is right for you, we recommend you pick the first one, as it has minimal
external dependencies and is completely managed by a cloud service provider. This is also the only
option that we (the authors of this book) can test and verify, and hence it should give you the most
consistent experience.

Option 1 – cloud-hosted

We have picked AWS as the cloud service provider because of its popularity and general familiarity
in our industry. Inside this book’s GitHub repository (Further reading), we have included an Ansible
playbook that completely automates all tasks required to create a VM in AWS. You are free to use any
other cloud provider but you will have to do the provisioning manually.

What is a testing environment? 397

The testing environment is a single Linux VM in AWS running containerlab to create container-
based network topologies. The next diagram illustrates what the AWS environment looks like:

Figure 12.1 – Target environment

To conform with the hardware requirements stated earlier, we recommend you run at least a
t2.medium-, ideally a t2.large-sized VM (Elastic Compute Cloud (EC2) instance). But the AWS
Free Tier plan (Further reading) does not cover these instance types, so you should expect to incur some
charges associated with the running of the VM. We assume you are familiar with the costs and billing
structure of AWS and use financial common sense when working with a cloud-hosted environment.

Before you run the playbook, you need to make sure you meet the following requirements:

1.	 Create an AWS account (AWS Free Tier (Further reading)).

2.	 Create an AWS access key (AWS Programmatic access (Further reading)).

3.	 A Linux OS with the following packages:

	� Git

	� Docker

	� GNU Make

Appendix : Building a Testing Environment398

With all this in place, you can go ahead and clone the book’s GitHub repository (Further reading)
with the git clone command:

$ git clone https://github.com/PacktPublishing/Network-
Automation-with-Go

After you clone the repository, change directory to it.

Input variables

Before you can start the deployment, you need to supply your AWS account credentials (AWS_ACCESS_
KEY_ID and AWS_SECRET_ACCESS_KEY). You do this by exporting a pair of environment variables
containing the key ID and secret values, as follows. Check out AWS Programmatic access (Further
reading) for instructions on how to create an access key:

$ export AWS_ACCESS_KEY_ID='…'

$ export AWS_SECRET_ACCESS_KEY='…'

Besides these required variables, there are other three optional input variables that you can adjust to
fine-tune your deployment environment:

Name Values
AWS_DISTRO fedora or ubuntu (default: fedora)
AWS_REGION One of the AWS Regions (default: us-east-1)
VM_SIZE One of the AWS instance types (default: t2.large)

Table 12.2 – Testing VM options

If you choose to change any of these default values, you can do this the same way as the AWS access
key. Here’s an example:

$ export AWS_DISTRO=ubuntu

$ export AWS_REGION=eu-west-2

In that scenario, we selected Ubuntu as the Linux distribution of the VM and London (eu-west-2)
as the AWS Region for deployment.

Deployment process

Once you have set all the required input variables, you can deploy the testing environment. From
within the book repository directory, run the make env-build command, which deploys the VM
and installs all the required software packages:

Network-Automation-with-Go$ make env-build

What is a testing environment? 399

AWS_ACCESS_KEY_ID is AKIAVFPUEFZCFVFGXXXX

AWS_SECRET_ACCESS_KEY is **************************

Using /etc/ansible/ansible.cfg as config file

PLAY [Create EC2 instance] ************************************

**

TASK [Gathering Facts] **

**

ok: [localhost]

... <omitted for brevity > ...

TASK [Print out instance information for the user] ************

**

ok: [testbed] => {}

MSG:

['SSH: ssh -i lab-state/id_rsa fedora@ec2-54-86-51-96.
compute-1.amazonaws.com\n', 'To upload cEOS image: scp -i lab-
state/id_rsa ~/Downloads/cEOS64-lab-4.28.0F.tar fedora@ec2-54-
86-51-96.compute-1.amazonaws.com:./network-automation-with-
go\n']

PLAY RECAP **

**

localhost                  :
ok=28   changed=9    unreachable=0    failed=0    skipped=3    
rescued=0    ignored=0   

testbed                    :
ok=36   changed=24   unreachable=0    failed=0    skipped=11   
rescued=0    ignored=0

Appendix : Building a Testing Environment400

Assuming that the playbook has completed successfully, you can see the VM access details in the
logs, as the preceding output shows. You can also view the connection details at any time after you’ve
deployed the environment by running the make env-show command:

Network-Automation-with-Go$ make env-show

fedora@ec2-54-86-51-96.compute-1.amazonaws.com

Now, you can use this information to connect to the provisioned VM. The playbook generates an Secure
Shell (SSH) private key (lab-state/id_rsa), so don’t forget to always use it for SSH authentication:

Network-Automation-with-Go$ ssh -i lab-state/id_rsa fedora@ec2-
54-86-51-96.compute-1.amazonaws.com

fedora@testbed:~$  go version

go version go1.18.1 linux/amd64

fedora@testbed:~$  ls network-automation-with-go/

LICENSE  Makefile  README.
md  ch01  ch02  ch03  ch04  ch05  ch06  
ch07  ch08  ch09  
ch10  ch12  lab-state  topo-base  topo-full

You can connect to the VM and check the Go version installed and take a look at the files of the
book’s repository.

Option 2 – self-hosted

Another option is to create a VM in a private environment. This environment could be your personal
computer running a hypervisor such as VirtualBox, an ESXi server, an OpenStack cluster, or something
else as long as it can allocate the CPU and memory the VM requires to run the lab topology. The OS
on the VM has to be either Ubuntu 22.04 or Fedora 35.

Once you have built the VM with SSH enabled, make sure you can SSH to the IP address of the VM
and access it with its credentials. Then, change the Ansible inventory file (inventory) in the ch12/
testbed folder (Further reading) of your personal computer’s copy of this book’s GitHub repository
to point to your VM. It should look something like this:

inventory

[local-vm]

192.168.122.18

[local-vm:vars]

ansible_user=fedora

What is a testing environment? 401

ansible_password=fedora

ansible_sudo_pass=fedora

Include at least the IP address (ansible_host) to reach the VM, and the ansible_user,
ansible_password, or ansible_ssh_private_key_file user credentials.

In the same ch12/testbed folder (Further reading), there is an Ansible playbook that calls the
configure_instance role. Use this playbook to auto-configure your VM to run the book
examples, like so:

configure-local-vm.yml

- name: Configure Instance(s)

  hosts: local-vm

  gather_facts: true

  vars_files:

    - ./vars/go_inputs.yml

    - ./vars/clab_inputs.yml

    - ./vars/aws_common.yml

  roles:

    - {role: configure_instance, become: true}

The playbook filename is configure-local-vm.yml and the inventory filename is inventory,
so from the ch12/testbed folder (Further reading), run ansible-playbook configure-
local-vm.yml -i inventory -v to get the VM ready to go.

Step 2 – uploading container images

Not all networking vendors make it simple to access their container-based network OSes (NOSes).
If you can’t pull the image directly from a container registry such as Docker Hub, you might need to
download the image from their website and upload it to the test VM. The only container image in the
book that we can’t pull from a public registry at the time of writing is Arista’s cEOS image. Here, we
describe the process of uploading this image into the testing environment.

The first thing you need to do is download the image from arista.com (Further reading). You should
select the 64-bit cEOS image from the 4.28(F) train—for example, cEOS64-lab-4.28.0F.tar.
You can copy the image to the test VM with the scp command using the generated SSH private key:

Network-Automation-with-Go$ scp -i lab-state/id_rsa ~/
Downloads/cEOS64-lab-4.28.0F.tar fedora@ec2-54-86-51-96.
compute-1.amazonaws.com:./network-automation-with-go

http://arista.com

Appendix : Building a Testing Environment402

cEOS64-lab-4.28.0F.
tar                        100%  434MB  26.6MB/s   00:16

Then, SSH to the instance and import the image with the docker command:

Network-Automation-with-Go$ ssh -i lab-state/id_rsa fedora@ec2-
54-86-51-96.compute-1.amazonaws.com

fedora@testbed:~$  cd network-automation-with-go

fedora@testbed:~$  docker import cEOS64-lab-4.28.0F.tar
ceos:4.28

sha256:dcdc721054804ed4ea92f970b5923d8501c28526ef175242cfab0d1
58ac0085c

You can now use this image (ceos:4.28) in the image section of one or more routers in the
topology file.

Step 3 – iInteracting with the testing environment

We recommend you start with a fresh build of a virtual network topology at the beginning of Chapters
6 through 8. To orchestrate the topologies, we use containerlab, which is available in the testing
VM. containerlab offers a quick way to run arbitrary network topologies based on their definition
provided in a human-readable YAML file.

Important Note
containerlab is written in Go and serves as a great example of an interactive CLI program
that orchestrates local container resources.

You can find the following base topology definition file in the topo-base directory of this book’s
GitHub repository (Further reading):

name: netgo

topology:

  nodes:

    srl:

      kind: srl

      image: ghcr.io/nokia/srlinux:21.6.4

    ceos:

      kind: ceos

      image: ceos:4.28.0F

What is a testing environment? 403

      startup-config: ceos-startup

    cvx:

      kind: cvx

      image: networkop/cx:5.0.0

      runtime: docker

  links:

    - endpoints: ["srl:e1-1", "ceos:eth1"]

    - endpoints: ["cvx:swp1", "ceos:eth2"]

This YAML file defines a three-node topology, as the next diagram shows. One node runs Nokia
SR Linux, another NVIDIA Cumulus Linux, and the last one runs Arista cEOS. In this scenario, all
network devices come up with their default startup configurations, and throughout each chapter, we
describe how to establish full end-to-end reachability between all three of them:

Figure 12.2 – “Base” network topology

The next two chapters (Chapters 9 and 10) rely on a slightly different version of the preceding topology.
Unlike the base topology, the full topology comes up fully configured and includes an extra set
of nodes to emulate physical servers attached to the network devices:

Appendix : Building a Testing Environment404

Figure 12.3 – “Full” network topology

These end hosts run different applications that interact with the existing network topology.

Launching a virtual network topology
You can use a containerlab binary to deploy the test topology. For convenience, we included a
couple of make targets that you can use:

•	 make lab-base to create the base topology used in Chapters 6 through 8

•	 make lab-full to create the full topology used in Chapters 9 and 10

Here’s an example of how you can create the base topology from inside the test VM:

Launching a virtual network topology 405

fedora@testbed network-automation-with-go$ make lab-base

...

+---+-----------------+--------------+--------------

| # | Name            | Container ID | Image

+---+-----------------+--------------+--------------

| 1 | clab-netgo-ceos | fe422727f351 | ceos:4.28.0F

| 2 | clab-netgo-cvx  | 85e5b9135e1b | cx:5.0.0

| 3 | clab-netgo-srl  | 00106bef1d4e |srlinux:21.6.4

+---+-----------------+--------------+--------------

You now have clab-netgo-ceos, clab-netgo-cvx and clab-netgo-srl routers ready to go.

Connecting to the devices

containerlab uses Docker to run the containers. This means we can use standard Docker
capabilities to connect to the devices—for example, you can use the docker exec command to
start any process inside a container:

fedora@testbed:~$  docker exec -it clab-netgo-srl sr_cli

Welcome to the srlinux CLI.                      

A:srl# show version | grep Software

Software Version  : v21.6.4

sr_cli in the preceding example is the CLI process for an SR Linux device. The following table
displays the “default shell” process for each virtual network device:

NOS Command
Cumulus Linux bash or vtysh
SR Linux sr_cli

EOS Cli

Table 12.3 – Device default shells

You can also use SSH to connect to the default shell. The next table provides the hostname and the
corresponding credentials you can use to connect to each device:

Device Username Password
clab-netgo-srl admin admin

clab-netgo-ceos admin admin

clab-netgo-cvx cumulus cumulus

Table 12.4 – Device credentials

Appendix : Building a Testing Environment406

Here’s how you can connect to Arista cEOS and Cumulus Linux, for example:

fedora@testbed:~$  ssh admin@clab-netgo-ceos

(admin@clab-netgo-ceos) Password: admin

ceos>en

ceos#exit

fedora@testbed:~$

fedora@testbed:~$  ssh cumulus@clab-netgo-cvx

cumulus@clab-netgo-cvx's password: cumulus

Welcome to NVIDIA Cumulus (R) Linux (R)

cumulus@cvx:mgmt:~$

Once you finish the chapter, you can destroy the topology.

Destroying the network topology

You can clean up both virtual network topologies using the make cleanup command:

fedora@testbed:~/network-automation-with-go$ make cleanup

The make cleanup command only cleans up the virtual network topology while all the cloud
resources are still running.

Step 4 – cleaning up of the cloud-hosted environment

Once you’re done working with the cloud-hosted testing environment, you can clean it up so that you
don’t pay for something you might no longer need. You can do this using another Ansible playbook
that makes sure all the AWS resources you created before are now wiped out:

etwork-Automation-with-Go$ make env-delete

AWS_ACCESS_KEY_ID is AKIAVFPUEFZCFVFGXXXX

AWS_SECRET_ACCESS_KEY is **************************

PLAY [Delete EC2 instance] ************************************

**

TASK [Gathering Facts] **

Further reading 407

**

ok: [localhost]

... <omitted for brevity > ...

TASK [Cleanup state files] ************************************

**

changed: [localhost] => (item=.region)

changed: [localhost] => (item=.vm)

PLAY RECAP **

**

localhost                  : ok=21   changed=8   
 unreachable=0    failed=0    skipped=3    
rescued=0    ignored=0

Further reading
•	 Book’s GitHub repository: https://github.com/PacktPublishing/Network-

Automation-with-Go

•	 Go Playground: https://play.golang.org/

•	 Official download and install procedure: https://golang.org/doc/install#install

•	 containerlab: https://containerlab.dev/

•	 AWS Free Tier: https://aws.amazon.com/free/

•	 AWS Programmatic access: https://docs.aws.amazon.com/general/latest/
gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys

•	 ch12/testbed: https://github.com/PacktPublishing/Network-Automation-
with-Go/blob/main/ch12/testbed

•	 ch12/testbed/inventory: https://github.com/PacktPublishing/
Network-Automation-with-Go/blob/main/ch12/testbed/inventory

•	 Arista: https://www.arista.com/en/support/software-download

•	 Beginner’s Guide—Downloading Python: https://wiki.python.org/moin/
BeginnersGuide/Download

https://github.com/PacktPublishing/Network-Automation-with-Go
https://github.com/PacktPublishing/Network-Automation-with-Go
https://play.golang.org/
https://golang.org/doc/install#install
https://containerlab.dev/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch12/testbed/inventory
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch12/testbed/inventory
https://www.arista.com/en/support/software-download
https://wiki.python.org/moin/BeginnersGuide/Download
https://wiki.python.org/moin/BeginnersGuide/Download

Appendix : Building a Testing Environment408

•	 Installing Ansible with pip: https://docs.ansible.com/ansible/latest/
installation_guide/intro_installation.html#installing-ansible-
with-pip

•	 Getting Started - Installing Git: https://git-scm.com/book/en/v2/Getting-
Started-Installing-Git

•	 Installing pip—Supported Methods: https://pip.pypa.io/en/stable/
installation/#supported-methods

•	 Get Arista cEOS: https://github.com/PacktPublishing/Network-Automation-
with-Go/blob/main/ch12/testbed/get_arista_ceos.md

•	 AWS access keys: https://docs.aws.amazon.com/general/latest/gr/
aws-sec-cred-types.html#access-keys-and-secret-access-keys

•	 AWS Regions: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
using-regions-availability-zones.html

•	 AWS instance types: https://aws.amazon.com/ec2/instance-types/

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-with-pip
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-with-pip
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-with-pip
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://pip.pypa.io/en/stable/installation/#supported-methods
https://pip.pypa.io/en/stable/installation/#supported-methods
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch12/testbed/get_arista_ceos.md
https://github.com/PacktPublishing/Network-Automation-with-Go/blob/main/ch12/testbed/get_arista_ceos.md
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/ec2/instance-types/

Index

A
Abstract Forwarding Table (AFT) 273
Abstract Syntax Notation One (ASN.1) 302
Address Resolution Protocol (ARP) 139
Amazon Web Services (AWS) 395
Ansible 222

playbook, running 230
Ansible components

inventory 223
modules 224
overview 222
playbooks 223
plays 223
tasks 223, 224

Ansible modules
developing 226
interface 226-229
working with 224, 225

API data modeling 250, 251
Application Centric Infrastructure

(ACI) 365
application layer 161

HTTP client, working with 162-164
HTTP server, working with 165-169

arithmetic operators 71-73
TCP header length, setting with 74, 75

arrays 63
using 63, 64

automation frameworks 242
Consul 243
Gornir 243
mgmt 243

B
Backend Backbone (B2) 370
Barroso, David 363
basic types 57

bool 61
error 62
numeric 57, 58
strings 59, 60

Berkeley Packet Filter (BPF) program 330
BGP finite state machine (FSM) 351
bgp-ping responder 350
BGP Routing Information Base (RIB) 269
BGP update propagation time

measurement 350, 351
BGP messages, decoding 356
BGP messages, encoding 356

Index410

event-driven BGP state machine 351-355
metrics, collecting 357, 358
metrics, exposing 357, 358
metrics, storing 358, 359
metrics, visualizing 358, 359

bool data type 61
Border Gateway Protocol (BGP) 193

C
Cacti 387
Carnegie Mellon University (CMU) 10
central processing unit (CPU) 11
channels 122

using 122, 123
checkRoutes method 210
Clark, Stuart 364
closed-loop automation 182, 183

demo application 183-187
closures 93, 94
cloud-hosted environment

cleaning up 406
Cloud Native Computing

Foundation (CNCF) 6, 372
code formatting 12
command-line interface (CLI) 192
comments 34

creating 35
Communicating Sequential

Processes (CSPs) 27
comparison operators 78, 79
composition 106, 107
concurrency 115, 116

caveats 130
channels 122, 123
Goroutines 116-121
shared data access 126-130

ticker 125, 126
timer 124, 125

conditional statements 81-83
configuration management 177, 189

compliance checks 179
config generation 177, 178
backups and restore 178, 179
configuration diffs 179
environment setup 190
network devices, via HTTP 202
network devices, via SSH 192
state validation 210
topology, creating 190-192

Configure Unify Execute (CUE) 252
Congestion Window Reduced flag 73
Consul 243
Consul-Terraform-Sync solution 243
Containerlab 190, 191
container types 63

arrays 63, 64
maps 67-69
slices 65-67

control flow 79
conditional statements 81-83
for loops 79-81
goto statements 83, 84

control plane performance
measuring 348-350

CRUD operations 266
crypto/ssh package 178
Custom Resource Definition (CRD) 369

D
dagger.io project 259
data

visualizing 311-314

Index 411

data center infrastructure
management (DCIM) 207

data plane telemetry aggregation 338, 339
Go programs, testing 344-348
top talkers 339

data plane telemetry processing 328
packet capturing 328-330
packet filtering 330, 331
packet processing 331-333
traffic, generating 333, 334

Data Sources 232
decoding 107

into empty interface 109-111
JSON 108, 109
XML 111, 112
YAML 113, 114

defer statement 94, 95
de Luna, Claudia 364, 365
de Talhouët, Alexis 368-370
Dhall language 259
distributed applications

developing 359
distributed denial-of-service (DDoS) 328
Doak, John 370
Dodin, Roman 371, 372
Domain Name System (DNS) 252
Domain-Specific Language (DSL) 223, 252
Dynamic Host Configuration

Protocol (DHCP) 252

E
Elastic Compute Cloud (EC2) 397
encoding 114, 115
encoding package 178
end-of-file (EOF) 202
error handling 90, 91

error type 62
Ethernet 139-143
event-manager sample program 306-311
Expert Insights

Barroso, David 363, 364
Clark, Stuart 364
de Luna, Claudia 364, 365
de Talhouët, Alexis 368-370
Doak, John 370
Dodin, Roman 371, 372
Gee, David 373-381
Hertzberg, Daniel 381, 382
Hines, Marcus 382-384
Inguva, Sneha 385
Montanari, Carl 387, 388
Ojea, Antonio 386, 387
Oswalt, Matt 392, 393
Salisbury, Brent 389, 390
Wilhelm, Maximilian 390-392

Explicit Congestion Notification (ECN) 73
extended Berkeley packet filter (eBPF) 138
extra IP address functions 153, 154

F
first-in, first-out (FIFO) 14
flosch/pongo2 package 178
for loop 79-81
Forwarding Information Base (FIB) 350
function closure 93
functions 85, 86

closures 93, 94
defer 94, 95
error handling 90, 91
function arguments 86-90
methods 91, 92
variadic functions 92, 93

Index412

G
garbage collector 11
Gee, David 373-381
Geo IP data 152
GetRoutes method 210
GJSON 111
Global Interpreter Lock (GIL) 19
Go 56

about 4, 26-29
benefits 5
code complexity 10
code, executing 37
concurrency 229
future 8
history 28
installing 20
installing, on Linux 21
installing, on Mac 20
installing, on Windows 20
language stability 10
memory safety 10
modules 7, 32
non-technical benefits 5
principles 29, 30
reference link 20
static analysis 10
static typing 10
type system 56, 57

Go 1.18 7
GoBGP 356
go:embed package 181
Go, for networking 13

concurrency 14, 15
data streaming 15
standard library 15

Go, future 8
cross-platform compiling 11

performance 10
readability 11, 12
technical aspects 8
tooling 12, 13

golang 26
Go Playground 38

reference link 38
Go Play Space 40
Go programs

debugging 334-336
debugging, from IDE 336-338
running, online 38

Gornir 243
Goroutines 14, 116-121
Go source code files

import declaration 30
package clause 30
top-level declaration 31

Gotip Playground 42
reference link 42

Go tool 43
build command 44, 45
env command 52, 53
fmt command 50
functions 43
get command 49
install command 49
mod command 46-49
run command 46
test command 50, 51

goto statements 83, 84
Go, versus Python

code execution 16
community 19
concurrency 19
failure handling 18, 19
memory management 18
performance 17

Index 413

syntax 18
type system 17
user friendly 17

gratuitous ARP (GARP) 141
gRPC 184, 275

network devices, configuring with 280-283
protobuf 275-277
services, defining 278-280
streaming telemetry, from

network device 284
transport 278

gRPC Network Management
Interface (gNMI) 293, 294

used, for configuring network
interfaces 297-302

used, for streaming telemetry to
process pipelines 306

gRPC Network Operations Interface
(gNOI) 293, 315

gRPC Network Security Interface (gNSI) 293
gRPC Routing Information Base

Interface (gRIBI) 293

H
Hashicorp Configuration

Language (HCL) 231
Hertzberg, Daniel 381, 382
Hines, Marcus 382-384
homeport/dyff package 179
html/template package 181
HTTP client

working with 162-164
HTTP server

working with 165-169

I
ICMP packet 320
Identity and Access Management (IAM) 232
Inguva, Sneha 385
input and output operations 101
integrated development

environments (IDEs) 9
intent 182
Interface Definition Language (IDL) 275
interfaces 95

as contracts 100, 101
network automation example 96, 97
standard library example 98-100

Internet Control Message
Protocol (ICMP) 143

internet layer 143
IP addresses, working with 149
netip package 146-149
net package 143-146
route lookup 150, 151

Internet Protocol (IP) 143
Internet Protocol Security (IPsec) 143
io.Copy function 104, 105
io.Reader interface 101, 102
io.Writer interface 102, 103
IP addresses

working with 149
IP Address Management (IPAM) 252

tool 207
IP Flow Information Export (IPFIX) 328
Istio project 259

J
JSON

decoding 108, 109
Jsonnet language 259

Index414

JSON-RPC 259, 260
building configuration 261-264
code generation 260, 261
device configuration 264-266

JUNOS Terraform Automation
Framework 242

K
Kernel-based Virtual Machine (KVM) 395

L
link layer 136

Ethernet 139-143
network interfaces 136-138

Linux
Go installation 21

logical operators 77
lookup handler function

examining 168

M
Mac

Go installation 20
machine learning (ML) 17
Management Information Bases (MIBs) 302
maps 67

using 68, 69
methods 91, 92
mgmt 243
mitchellh/hashstructure package 180
Montanari, Carl 388

N
Nagios 386
names

declaring 36, 37
Nautobot

reference link 232
URL 207

net/http package 179
netip package 146-149
Netlink 136
net package 143-146
network automation 174

benefits 176
bottom-up view 175
example 96, 97
existence, reasons 174, 175
facts 365-367
top-down view 176, 177

network automation frameworks 244
characteristics 244

network device
provisioning 294
Set RPC 295-297
network devices, via HTTP
accessing, with Go HTTP package 202-206
config inputs, obtaining 206-209
interacting 202

network devices, via SSH
accessing, with Go SSH package 195-199
interacting 192
network device configurations 193-195
routine SSH tasks, automating 200-202

networking 4
network intelligence 182

Index 415

network interfaces 136-138
configuring, with gNMI 297-302

Network Layer Reachability
Information (NLRI) 356

Network Management System (NMS) 302
network monitoring

improvement 302
network operating system

(NOS) 179, 190, 401
network operations 314

automating 177
configuration management 177
gNOI 315
network audits 181
network state analysis 179
path verifier application 317-324
reporting 181
Traceroute RPC 316, 317

network state analysis 179
operational state, collecting 179, 180
operational state, validating 180, 181
state snapshot 180, 181

non-technical benefits, Go
community 5
maturity 7
popularity 6, 7

Nornir 243
ntc-templates 215
numeric types 57, 58

O
Ojea, Antonio 386, 387
OpenAPI 252

data input 255, 256
data modeling 253-255
device configuration 256-259

OpenConfig 293
OpenConfig gRPC service

network device, provisioning 294
network operations 314
streaming telemetry 302

Open Shortest Path First (OSPF) 143
Open Systems Interconnection

(OSI) model 135
operators 71

arithmetic operators 71-73
comparison operators 78, 79
logical operators 77

Oswalt, Matt 392, 393

P
packages 31, 32

importing 33, 34
path verifier application 317-324
ping request 353
ping response 353
primitive types. See basic types
protobuf 275

on wire 277, 278
wire types 276
working with 275, 276

providers 231
provisioners 231
purchase orders (POs) 384

Q
quality assurance (QA) 174
quality of service (QoS) 138

Index416

R
r3labs/diff package 181
RANCID 386
Reader 15
reflect.DeepEqual package 180
regexp package 178, 180
regular expressions 15, 210
Remote Procedure Call (RPC) 235, 293
Request for Comments (RFC) 279
resources 232
RESTCONF 266

building configuration 268
code generation 266, 267
device configuration 270, 271

RESTful API calls 210
Round Robin Database (RRD) files 386
route lookup 150, 151

extra IP address functions 153, 154
Geo IP data 152

routing information
checking 210-213
command outputs, parsing with

regular expressions 213, 214
JSON-formatted data, obtaining with

REST API requests 216, 217
semi-formatted command outputs,

parsing with templates 215, 216

S
Salisbury, Brent 389, 390
scrapli/scrapligo package 178, 180
Secure Shell (SSH) 98, 192, 400
sergi/go-diff package 179
ServeHTTP method, arguments

HTTP Request 166
ResponseWriter interface 166

Service Router Linux (SR Linux) 195
Set RPC 295-297
shared data access, concurrency 126-130
Simple Network Management

Protocol (SNMP) 302
sirikothe/gotextfsm package 180
SJSON 111
slices 65

capacity 65
using 66, 67

standard library example 98-100
state validation 210, 271

end-to-end reachability, validating 217, 218
operational state modeling 272
operational state processing 272-274
routing information, checking 210-213

stdin (standard input) 357
stdout (standard output) 357
streaming telemetry 302, 303

data, visualizing 311-314
event-manager sample program 306-311
processing, pipelines with gNMI 306
Subscribe RPC 304, 305

streaming telemetry example, gRPC 284
protobuf self-describing messages 288-290
YANG-defined data, decoding

with protobuf 284-288
strings 59, 60
strings package 179
struct 69-71
Subscribe RPC 304, 305
sync.Map documentation 126
sync.Map mutex operation 126
sync.Mutex type operation 126
sync.RWMutex type operation 126
systems approach 182

closed-loop automation 182, 183

Index 417

T
technical aspects, Go

builds 9, 10
reliability 10
type safety 8, 9

telemetry subscription
Path 304
SubscriptionMode 304

TeleTYpe (TTY) 197
Terraform 230

components, overview 231, 232
networking providers 242
provider, defining 232, 233
resource, creating 233-235
working with 232

Terraform Core 231
Terraform provider

create operation 239, 240
defining 235-237
developing 235
implementations 242
read operation 240, 241
resources, defining 237-239

terraform-provider-ciscoasa 242
Terraform Provider for Cisco IOS X 242
terraform-provider-junos 242
test-driven development (TDD) 174
testing environment 395, 396

building 396
cloud-hosted 396-398
container images, uploading 401
interacting with 402-404
self-hosted 400, 401

testing environment, cloud-hosted
deployment process 398-400
input variables 398

TextFSM templates 210

text/tabwriter package 181
text/template package 178, 181
ticker 125, 126
timer 124, 125
time-series database (TSDB) 306
top talkers application 339

telemetry data, exploring 339-341
telemetry processing 341-344

Traceroute RPC 316, 317
Transmission Control Protocol

(TCP) header 73
building 75, 76
length 74
parsing 77
structure 74

transport layer 155, 156
UDP ping application 156-161

Type-Length-Values (TLVs) 276
types, Go

basic types 57
container types 63
primitive types 57
user-defined types 69

U
UDP ping application 156-161
unidoc/unioffice package 181
user-defined types 69

interfaces 69
struct 69-71

user experience (UX) 19

V
variadic functions 92, 93

reference link, for example 93
virtual IP (VIP) 139

Index418

virtual machine (VM) 395
virtual network topology

cloud-hosted environment, cleaning up 406
connecting, to devices 405, 406
destroying 406
launching 404

Virtual Routing and Forwarding (VRF) 273
Visual Studio Code (VSCode) 336

debugging 338
user interface (UI) 338

W
Wilhelm, Maximilian 390-392
Windows

Go installation 20
Windows Subsystem for Linux

version 2 (WSL 2) 396
Writer 15

X
XML

decoding 111, 112

Y
YAML Ain’t Markup Language (YAML) 18

decoding 113, 114

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Network Programming Techniques

Marcel Neidinger

ISBN: 9781838646639

•	 Programmatically connect to network devices using SSH (secure shell) to execute commands

•	 Create complex configuration templates using Python

•	 Manage multi-vendor or multi-device environments using network controller APIs or unified
interfaces

•	 Use model-driven programmability to retrieve and change device configurations

•	 Discover how to automate post modification network infrastructure tests

•	 Automate your network security using Python and Firepower APIs

https://packt.link/9781838646639

421Other Books You May Enjoy

Network Automation Cookbook

Karim Okasha

ISBN: 9781789956481

•	 Understand the various components of Ansible

•	 Automate network resources in AWS, GCP, and Azure cloud solutions

•	 Use IaC concepts to design and build network solutions

•	 Automate network devices such as Cisco, Juniper, Arista, and F5

•	 Use NetBox to build network inventory and integrate it with Ansible

•	 Validate networks using Ansible and Batfish

https://packt.link/9781789956481

422

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Network Automation with Go, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-800-56092-3

423

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80056-092-5

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
The Go Programming Language
	Chapter 1: Introduction
	Technical requirements
	Networking and Go
	Why Go?
	Non-technical reasons

	The future of Go
	Technical reasons
	Go for networking

	Go versus Python
	Code execution
	Type system
	Performance
	Ease of use
	Memory management
	Syntax
	Failure handling
	Concurrency
	Community

	Installing Go on your computer
	Windows
	Mac
	Linux

	Summary
	Further reading

	Chapter 2: Go Basics
	Technical requirements
	What is Go?
	Go Proverbs
	Go source code files
	Packages
	Go modules
	Importing packages
	Comments
	Names
	Executing your Go code

	Running Go programs online
	The Go Playground
	The Go Play Space
	A look into the Future

	The Go tool
	Build
	Run
	Mod
	Get
	Install
	Fmt
	Test
	Env

	Summary
	Further reading

	Chapter 3: Getting Started with Go
	Technical requirements
	Go’s type system
	Basic types
	Container types
	User-defined types

	Arithmetic, comparison, and logical operators
	Arithmetic operators
	Logical operators
	Comparison operators

	Control flow
	for loops
	Conditional statements
	goto statements

	Functions
	Function arguments
	Error handling
	Methods
	Variadic functions
	Closures
	Defer

	Interfaces
	Network automation example
	Standard library example
	Interfaces as contracts

	Input and output operations
	The io.Reader interface
	The io.Writer interface
	The io.Copy function
	Composition

	Decoding and encoding
	Decoding
	Encoding

	Concurrency
	Goroutines
	Channels
	Channels and Timers
	Shared data access
	Concurrency caveats

	Summary
	Further reading

	Chapter 4: Networking (TCP/IP) with Go
	Technical requirements
	The link layer
	Network interfaces
	Ethernet

	The internet layer
	The net package
	The New netip package
	Working with IP addresses
	Route lookups

	The transport layer
	UDP ping application

	The application layer
	Working with an HTTP client
	Working with an HTTP (server)

	Summary
	Further reading

	Part 2:
Common Tools and Frameworks
	Chapter 5: Network Automation
	Technical requirements
	What is network automation?
	Why network automation exists
	Bottom-up view
	Top-down view

	Automating network operation tasks
	Configuration management
	Network state analysis
	Network audits and reporting

	Systems approach
	Closed-loop automation
	Demo application

	Summary
	Further reading

	Chapter 6: Configuration Management
	Technical requirements
	Environment setup
	Creating the topology

	Interacting with network devices via SSH
	Describing the network device configurations
	Using Go’s SSH package to access network devices
	Automating routine SSH tasks

	Interacting with network devices via HTTP
	Using Go’s HTTP package to access network devices
	Getting config inputs from other systems via HTTP

	State validation
	Checking routing information
	Validating end-to-end reachability

	Summary
	Further reading

	Chapter 7: Automation Frameworks
	Technical requirements
	Ansible
	Overview of Ansible components
	Working with Ansible modules
	Developing an Ansible module
	Running the playbook

	Terraform
	Overview of Terraform components
	Working with Terraform
	Developing a Terraform provider
	Networking providers

	Other automation frameworks
	Gornir
	Consul-Terraform-Sync
	mgmt
	Looking into the future

	Summary
	Further reading

	Part 3:
Interacting with APIs
	Chapter 8: Network APIs
	Technical requirements
	API data modeling
	OpenAPI
	Data modeling
	Data input
	Device configuration

	JSON-RPC
	Code generation
	Building configuration
	Device configuration

	RESTCONF
	Code generation
	Building configuration
	Device configuration

	State validation
	Operational state modeling
	Operational state processing

	gRPC
	Protobuf
	gRPC transport
	Defining gRPC services
	Configuring network devices with gRPC
	Streaming telemetry from a network device with gRPC

	Summary
	Further reading

	Chapter 9: OpenConfig
	Technical requirements
	Device provisioning
	Set RPC
	Using gNMI to configure network interfaces

	Streaming telemetry
	Subscribe RPC
	Streaming telemetry processing pipelines with gNMI
	Event-manager sample program
	Visualizing the data

	Network operations
	Traceroute RPC
	Path verifier application

	Summary
	Further reading

	Chapter 10: Network Monitoring
	Technical requirements
	Data plane telemetry processing
	Packet capturing
	Packet filtering
	Packet processing
	Generating traffic

	Debugging Go programs
	Debugging from an IDE

	Data plane telemetry aggregation
	Top talkers
	Testing Go programs

	Measuring control plane performance
	Measuring BGP Update propagation time
	Event-driven BGP state machine
	Encoding and decoding BGP messages
	Collecting and exposing metrics
	Storing and visualizing metrics

	Developing distributed applications
	Summary
	Further reading

	Chapter 11: Expert Insights
	David Barroso
	Stuart Clark
	Claudia de Luna
	Alexis de Talhouët
	John Doak
	Roman Dodin
	David Gee
	Daniel Hertzberg
	Marcus Hines
	Sneha Inguva
	Antonio Ojea
	Carl Montanari
	Brent Salisbury
	Maximilian Wilhelm
	Matt Oswalt
	Further reading

	Appendix : Building a Testing Environment
	What is a testing environment?
	Step 1 – building a testing environment
	Step 2 – uploading container images
	Step 3 – iInteracting with the testing environment

	Launching a virtual network topology
	Connecting to the devices
	Destroying the network topology
	Step 4 – cleaning up of the cloud-hosted environment

	Further reading

	Index
	Other Books You May Enjoy

