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Preface

I'just love new programming languages. Perhaps it's the inevitable familiarity

and ennui with regard to existing languages and the frustration with existing tools,
syntaxes, coding conventions, and performance. Maybe I'm just hunting for that one
"language to rule them all". Whatever the reason, any time a new or experimental
language is released, I have to dive right in.

This has been a golden age for new languages and language design. Think about
it: the C language was released in the early 1970s —a time when resources were so
scarce that verbosity, clarity, and syntactical logic were often eschewed for thrift.
And most of the languages we use today were either originally written in this era
or were directly influenced by those languages.

Since the late 1980s and early 1990s, there has been a slow flood of powerful new
languages and paradigms —Perl, Python, Ruby, PHP, and JavaScript—have taken

an expanding user base by storm and has become one of the most popular languages
(up there with stalwarts such as C, C++, and Java). Multithreading, memory caching,
and APIs have allowed multiple processes, dissonant languages, applications, and
even separate operating systems to work in congress.

And while this is great, there's a niche that until very recently was largely unserved:
powerful, compiled, cross-platform languages with concurrency support that are
geared towards systems programmers.
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Very few languages match these parameters. Sure, there have been lower-level
languages that fulfill some of these characteristics. Erlang and Haskell fit the bill in
terms of power and language design, but as functional languages they pose a learning
barrier for systems programmers coming from a C/Java background. Objective-C
and C# are relatively easy, powerful, and have concurrency support—but they're
bound enough to a specific OS to make programming for other platforms arduous.
The languages we just mentioned (Python, JavaScript, and so on) —while extremely
popular —are largely interpreted languages, forcing performance into a secondary
role. You can use most of them for systems programming, but in many ways it's the
proverbial square peg in a round hole. So when Google announced Go in 2009, my
interest was piqued. When I saw who was behind the project (more on that later), I
was elated. When I saw the language and its design in action, I was in heaven.

For the last few years I've been using Go to replace systems applications I'd
previously written in C, Java, Perl, and Python. I couldn't be happier with the results.
Implementing Go has improved these applications in almost every instance. The fact
that it plays nicely with C is another huge selling point for systems programmers
looking to dip their toes in Go's pool.

With some of the best minds in language design (and programming in general)
behind it, Go has a bright future.

For years —decades, really — there have been less than a handful of options for
writing servers and network interfaces. If you were tasked with writing one, you
probably reached for C, C++, or Java. And while these certainly can handle the task,
and while they all now support concurrency and parallelism in some way or another,
they weren't designed for that.

Google brought together a team that included some giants of programming —Rob

Pike and Ken Thompson of Bell Labs fame and Robert Griesemer, who worked on
Google's JavaScript implementation V8 —to design a modern, concurrent language
with development ease at the forefront.

To do this, the team focused on some sore spots in the alternatives, which are
as follows:

* Dynamically typed languages have —in recent years —become incredibly
popular. Go eschews the explicit, "cumbersome" type systems of Java or
C++. Go uses type inference, which saves development time, but is still
also strongly typed.

* Concurrency, parallelism, pointers/memory access, and garbage collection
are unwieldy in the aforementioned languages. Go lets these concepts be as
easy or as complicated as you want or need them to be.

[2]
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* Asanewer language, Go has a focus on multicore design that was a
necessary afterthought in languages such as C++.

* Go's compiler is super-fast; it's so fast that there are implementations
of it that treat Go code as interpreted.

* Although Google designed Go to be a systems language, it's versatile
enough to be used in a myriad of ways. Certainly, the focus on advanced,
cheap concurrency makes it ideal for network and systems programming.

* Gois loose with syntax, but strict with usage. By this we mean that Go will
let you get a little lazy with some lexer tokens, but you still have to produce
fundamentally tight code. As Go provides a formatting tool that attempts
to clarify your code, you can also spend less time on readability concerns
as you're coding.

What this book covers

Chapter 1, An Introduction to Concurrency in Go, introduces goroutines and channels,
and will compare the way Go handles concurrency with the approach other
languages use. We'll build some basic concurrent applications utilizing these

new concepts.

Chapter 2, Understanding the Concurrency Model, focuses on resource allocation,
sharing memory (and when not to), and data. We will look at channels and channels
of channels as well as explain exactly how Go manages concurrency internally.

Chapter 3, Developing a Concurrent Strategy, discusses approach methods for
designing applications to best use concurrent tools in Go. We'll look at some
available third-party packages that can play a role in your strategy.

Chapter 4, Data Integrity in an Application, looks at ensuring that delegation of
goroutines and channels maintain the state in single thread and multithread
applications.

Chapter 5, Locks, Blocks, and Better Channels, looks at how Go can avoid dead
locks out of the box, and when and where they can still occur despite Go's
language design.

Chapter 6, C10K - A Non-blocking Web Server in Go, tackles one of the Internet's
most famous and esteemed challenges and attempt to solve it with core Go packages.
We'll then refine the product and test it against common benchmarking tools.

[31]
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Chapter 7, Performance and Scalability, focuses on squeezing the most out of your
concurrent Go code, best utilizing resources and accounting for and mitigating
third-party software's impact on your own. We'll add some additional functionality
to our web server and talk about other ways in which we can use these packages.

Chapter 8, Concurrent Application Architecture, focuses on when and where to
implement concurrent patterns, when and how to utilize parallelism to take
advantage of advanced hardware, and how to ensure data consistency.

Chapter 9, Logging and Testing Concurrency in Go, focuses on OS-specific methods
for testing and deploying your application. We'll also look at Go's relationship
with various code repositories.

Chapter 10, Advanced Concurrency and Best Practices, looks at more complicated and
advanced techniques including duplicating concurrent features not available in
Go's core.

What you need for this book

To work along with this book's examples, you'll need a computer running Windows,
OS X, or quite a few Linux variants that support Go. For this book, our Linux
examples and notes reference Ubuntu.

If you do not already have Go 1.3 or newer installed, you will need to get it either
from the binaries download page on http://golang.org/ or through your
operating system's package manager.

To use all of the examples in this book, you'll also need to have the following
software installed:

* MySQL (http://dev.mysql.com/downloads/)

* Couchbase (http://www.couchbase.com/download)

Your choice of IDE is a matter of personal preference, as anyone who's worked with
developers can attest. That said, there are a few that lend themselves better to some
languages than others and a couple that have good support for Go. This author uses
Sublime Text, which plays very nice with Go, is lightweight, and allows you to build
directly from within the IDE itself. Anywhere you see screenshots of code, it will be
from within Sublime Text.

And while there's a good amount of baked-in support for Go code, there's also a nice
plugin collection for Sublime Text called GoSublime, available at https://github.
com/DisposaBoy/GoSublime.

[4]
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Sublime Text isn't free, but there is a free evaluation version available that has no
time limit. It's available in Windows, OS X, and Linux variants at http://www.
sublimetext.com/.

Who this book is for

If you are a systems or network programmer with some knowledge of Go and
concurrency, but would like to know about the implementation of concurrent systems
written in Go this is the book for you. The goal of this book is to enable you to write
high-performance, scalable, resource-thrifty systems and network applications in Go.

In this book, we'll write a number of basic and somewhat less - basic network
and systems applications. It's assumed that you've worked with these types of
applications before. If you haven't, some extracurricular study may be warranted
to be able to fully digest this content.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The setProxy function is called after every request, and you can see it as the first
line in our handler."

A block of code is set as follows:

package main

import

(

"net/http"
"html/template"
"time"

n regexp n

n fmt n
"io/ioutil™
"database/sqgl"
n 1 og n

"runtime"

_ "github.com/go-sqgl-driver/mysqgl"
)

[51]
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When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

package main

import (
n fmt n

func stringReturn(text string) string (
return text

}

func main()
myText := stringReturn("Here be the code")
fmt.Println (myText)

}
Any command-line input or output is written as follows:
go get github.com/go-sql-driver/mysql

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If you
upload a file by dragging it to the Drop files here to upload box, within a few
seconds you'll see that the file is noted as changed in the web interface."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[6]
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Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[71
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Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.comif you are having a problem
with any aspect of the book, and we will do our best to address it.

[8]



An Introduction to
Concurrency in Go

While Go is both a great general purpose and low-level systems language, one
of its primary strengths is the built-in concurrency model and tools. Many other
languages have third-party libraries (or extensions), but inherent concurrency is
something unique to modern languages, and it is a core feature of Go's design.

Though there's no doubt that Go excels at concurrency —as we'll see in this
book —what it has that many other languages lack is a robust set of tools to
test and build concurrent, parallel, and distributed code.

Enough talk about Go's marvelous concurrency features and tools, let's jump in.

Introducing goroutines

The primary method of handling concurrency is through a goroutine. Admittedly,
our first piece of concurrent code (mentioned in the preface) didn't do a whole

lot, simply spitting out alternating "hello"s and "world"s until the entire task

was complete.
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Here is that code once again:

package main

import (
n fmt n
"t ime n

)

type Job struct {
i int
max int
text string

}

func outputText (j *Job) {
for j.i < j.max {
time.Sleep(l * time.Millisecond)
fmt.Println(j.text)

J.oi++
}
1
func main() {
hello := new(Job)
world := new(Job)
hello.text = "hello"

hello.i = 0
hello.max = 3

world.text = "world"
world.i = 0
world.max = 5

go outputText (hello)
outputText (world)

Downloading the example code

purchased from your account at http: //www. packtpub.com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

But, if you think back to our real-world example of planning a surprise party for
your grandmother, that's exactly how things often have to be managed with limited
or finite resources. This asynchronous behavior is critical for some applications to
run smoothly, although our example essentially ran in a vacuum.

[10]
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You may have noticed one quirk in our early example: despite the fact that we called
the outputText () function on the hello struct first, our output started with the
world struct's text value. Why is that?

Being asynchronous, when a goroutine is invoked, it waits for the blocking

code to complete before concurrency begins. You can test this by replacing the
outputText () function call on the world struct with a goroutine, as shown in the
following code:

go outputText (hello)
go outputText (world)

If you run this, you will get no output because the main function ends while the
asynchronous goroutines are running. There are a couple of ways to stop this to see
the output before the main function finishes execution and the program exits. The
classic method simply asks for user input before execution, allowing you to directly
control when the application finishes. You can also put an infinite loop at the end of
your main function, as follows:

for {}

Better yet, Go also has a built-in mechanism for this, which is the waitGroup type
in the sync package.

If you add a waitGroup struct to your code, it can delay execution of the main
function until after all goroutines are complete. In simple terms, it lets you set

a number of required iterations to get a completed response from the goroutines
before allowing the application to continue. Let's look at a minor modification
to our "Hello World" application in the following section.

A patient goroutine

From here, we'll implement a waitGroup struct to ensure our goroutines run entirely
before moving on with our application. In this case, when we say patient, it's in
contrast to the way we've seen goroutines run outside of a parent method with our
previous example. In the following code, we will implement our first waitgroup
struct:

package main

import (
n fmt n
n Sync n
"time"

[11]
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type Job struct {
i int
max int
text string

func outputText (j *Job, goGroup *sync.WaitGroup) {
for j.i < j.max {
time.Sleep(l * time.Millisecond)
fmt.Println(j.text)
J.oi++
}

goGroup . Done ()

}

func main()

goGroup := new(sync.WaitGroup)
fmt.Println("Starting")

hello := new(Job)
hello.text = "hello"
hello.i = 0
hello.max = 2

world := new(Job)
world.text = "world"
world.i = 0

world.max = 2

go outputText (hello, goGroup)
go outputText (world, goGroup)

goGroup .Add (2)
goGroup.Wait ()

}
Let's look at the changes in the following code:

goGroup := new(sync.WaitGroup)

[12]
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Here, we declared a waitGroup struct named goGroup. This variable will receive
note that our goroutine function has completed x number of times before allowing
the program to exit. Here's an example of sending such an expectation in WwaitGroup:

goGroup .Add (2)

The add () method specifies how many Done messages goGroup should receive
before satisfying its wait. Here, we specified 2 because we have two functions
running asynchronously. If you had three goroutine members and still called two,
you may see the output of the third. If you added a value more than two to goGroup,
for example, goGroup.Add (3), then waitGroup would wait forever and deadlock.

With that in mind, you shouldn't manually set the number of goroutines that need
to wait; this is ideally handled computationally or explicitly in a range. This is how
we tell WaitGroup to wait:

goGroup.Wait ()

Now, we wait. This code will fail for the same reason goGroup.2dd (3) failed; the
goGroup struct never receives messages that our goroutines are done. So, let's do
this as shown in the following code snippet:

func outputText (j *Job, goGroup *sync.WaitGroup) {
for j.i < j.max {
time.Sleep (1l * time.Millisecond)
fmt.Println(j.text)
Jj.oi++
}

goGroup . Done ()

}

We've only made two changes to our outputText () function from the preface.
First, we added a pointer to our goGroup as the second function argument. Then,
when all our iterations were complete, we told goGroup that they are all done.

Implementing the defer control
mechanism

While we're here, we should take a moment and talk about defer. Go has an elegant
implementation of the defer control mechanism. If you've used defer (or something
functionally similar) in other languages, this will seem familiar —it's a useful way of
delaying the execution of a statement until the rest of the function is complete.

[13]




An Introduction to Concurrency in Go

For the most part, this is syntactical sugar that allows you to see related operations
together, even though they won't execute together. If you've ever written something
similar to the following pseudocode, you'll know what I mean:

x = file.open('test.txt')
int longFunction() ({

1
x.close() ;

You probably know the kind of pain that can come from large "distances" separating
related bits of code. In Go, you can actually write the code similar to the following:

package main

import (

nogh

)

func main() {
file, _ := os.Create("/defer.txt™")
defer file.Close()

for {

break

}

There isn't any actual functional advantage to this other than making clearer, more
readable code, but that's a pretty big plus in itself. Deferred calls are executed reverse
of the order in which they are defined, or last-in-first-out. You should also take note
that any data passed by reference may be in an unexpected state.

[14]
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For example, refer to the following code snippet:

func main()
aValue := new(int)
defer fmt.Println (*aValue)

for i := 0; i < 100; i++ {

*aValue++

}

This will return 0, and not 100, as it is the default value for an integer.

Defer is not the same as deferred (or futures/promises) in

other languages. We'll talk about Go's implementations and
= alternatives to futures and promises in Chapter 2, Understanding

the Concurrency Model.

Using Go's scheduler

With a lot of concurrent and parallel applications in other languages, the
management of both soft and hard threads is handled at the operating system level.
This is known to be inherently inefficient and expensive as the OS is responsible for
context switching, among multiple processes. When an application or process can
manage its own threads and scheduling, it results in faster runtime. The threads
granted to our application and Go's scheduler have fewer OS attributes that need
to be considered in context to switching, resulting in less overhead.

If you think about it, this is self-evident — the more you have to juggle, the slower it
is to manage all of the balls. Go removes the natural inefficiency of this mechanism
by using its own scheduler.

There's really only one quirk to this, one that you'll learn very early on: if you don't
ever yield to the main thread, your goroutines will perform in unexpected ways
(or won't perform at all).

[15]
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Another way to look at this is to think that a goroutine must be blocked before
concurrency is valid and can begin. Let's modify our example and include some
file I/ O to log to demonstrate this quirk, as shown in the following code:

package main

import (
n fmt n
n t ime n
"io/ioutil"

type Job struct {
i int
max int

text string

func outputText (j *Job) {
fileName := j.text + ".txt"
fileContents := ""
for j.i < j.max {
time.Sleep(l * time.Millisecond)
fileContents += j.text
fmt.Println(j.text)

J.oi++
}
err := ioutil.WriteFile(fileName, []byte(fileContents), 0644)
if (err != nil) {
panic ("Something went awry")
}
}
func main() {
hello := new(Job)
hello.text = "hello"

hello.i = 0
hello.max = 3

[16]
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world := new(Job)
world.text = "world"
world.i = 0

world.max = 5

go outputText (hello)
go outputText (world)

}

In theory, all that has changed is that we're now using a file operation to log each
operation to a distinct file (in this case, hello.txt and world.txt). However,
if you run this, no files are created.

In our last example, we used a sync.WaitSync struct to force the main thread to
delay execution until asynchronous tasks were complete. While this works (and
elegantly), it doesn't really explain why our asynchronous tasks fail. As mentioned
before, you can also utilize blocking code to prevent the main thread from
completing before its asynchronous tasks.

Since the Go scheduler manages context switching, each goroutine must yield control
back to the main thread to schedule all of these asynchronous tasks. There are two
ways to do this manually. One method, and probably the ideal one, is the waitGroup
struct. Another is the Gosched () function in the runtime package.

The Gosched () function temporarily yields the processor and then returns to the
current goroutine. Consider the following code as an example:

package main

import (
"runtime"
n fmt n

func showNumber (num int) {
fmt .Println (num)

func main() {
iterations := 10

for i := 0; i<=iterations; i++ {

[17]
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go showNumber (1)

}

//runtime.Gosched ()
fmt.Println ("Goodbye!")

}

Run this with runtime.Gosched () commented out and the underscore before
"runtime" removed, and you'll see only Goodbye !. This is because there's no
guarantee as to how many goroutines, if any, will complete before the end of the
main () function.

As we learned earlier, you can explicitly wait for a finite set number of goroutines
before ending the execution of the application. However, Gosched () allows (in
most cases) for the same basic functionality. Remove the comment before runtime.
Gosched (), and you should get 0 through 10 printed before Goodbye !.

Just for fun, try running this code on a multicore server and modify your max
processors using runtime . GOMAXPROCS (), as follows:

func main()
runtime .GOMAXPROCS (2)

Also, push your runtime.Gosched () to the absolute end so that all goroutines have
a chance to run before main ends.

Got something unexpected? That's not unexpected! You may end up with a totally
jostled execution of your goroutines, as shown in the following screenshot:
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Although it's not entirely necessary to demonstrate how juggling your goroutines
with multiple cores can be vexing, this is one of the simplest ways to show exactly
why it's important to have communication between them (and the Go scheduler).

You can debug the parallelism of this using GOMAXPROCS > 1, enveloping your
goroutine call with a timestamp display, as follows:

tstamp := strconv.FormatInt (time.Now () .UnixNano(), 10)
fmt.Println (num, tstamp)

[ % Remember to import the time and strconv parent packages here. ]

This will also be a good place to see concurrency and compare it to parallelism in
action. First, add a one-second delay to the showNumber () function, as shown in
the following code snippet:

func showNumber (num int) {
tstamp := strconv.FormatInt (time.Now () .UnixNano(), 10)
fmt.Println (num, tstamp)
time.Sleep(time.Millisecond * 10)

}

Then, remove the goroutine call before the showNumber () function with
GOMAXPROCS (0), as shown in the following code snippet:

runtime .GOMAXPROCS (0)
iterations := 10

for i := 0; i<=iterations; i++ {
showNumber (i)

}

As expected, you get 0-10 with 10-millisecond delays between them followed by
Goodbye! as an output. This is straight, serial computing.

Next, let's keep GOMAXPROCS at zero for a single thread, but restore the goroutine
as follows:

go showNumber (i)

[19]
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This is the same process as before, except for the fact that everything will execute
within the same general timeframe, demonstrating the concurrent nature of
execution. Now, go ahead and change your GOMAXPROCS to two and run again.

As mentioned earlier, there is only one (or possibly two) timestamp, but the order
has changed because everything is running simultaneously.

Goroutines aren't (necessarily) thread-based, but they feel like they are. When Go
code is compiled, the goroutines are multiplexed across available threads. It's this
very reason why Go's scheduler needs to know what's running, what needs to finish
before the application's life ends, and so on. If the code has two threads to work with,
that's what it will use.

Using system variables

So what if you want to know how many threads your code has made available to you?

Go has an environment variable returned from the runtime package function
goMaxPROCS. To find out what's available, you can write a quick application similar
to the following code:

package main

import (
n fmt n
"runtime"

)
func listThreads () int

threads := runtime.GOMAXPROCS (0)
return threads

}

func main()
runtime .GOMAXPROCS (2)
fmt.Printf ("%d thread(s) available to Go.", listThreads())

}
A simple Go build on this will yield the following output:

2 thread(s) available to Go.

The 0 parameter (or no parameter) delivered to GOMAXPROCS means no change is
made. You can put another number in there, but as you might imagine, it will only
return what is actually available to Go. You cannot exceed the available cores, but
you can limit your application to use less than what's available.

[20]
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The comaxprocs () call itself returns an integer that represents the previous number
of processors available. In this case, we first set it to two and then set it to zero
(no change), returning two.

It's also worth noting that increasing GOMAXPROCS can sometimes decrease the
performance of your application.

As there are context-switching penalties in larger applications and operating
systems, increasing the number of threads used means goroutines can be shared
among more than one, and the lightweight advantage of goroutines might be
sacrificed.

If you have a multicore system, you can test this pretty easily with Go's internal
benchmarking functionality. We'll take a closer look at this functionality in Chapter 5,
Locks, Blocks, and Better Channels, and Chapter 7, Performance and Scalability.

The runtime package has a few other very useful environment variable return
functions, such as NumCPU, NumGoroutine, CPUProfile, and BlockProfile. These
aren't just handy to debug, they're also good to know how to best utilize your
resources. This package also plays well with the reflect package, which deals with
metaprogramming and program self-analysis. We'll touch on that in more detail
later in Chapter 9, Logging and Testing Concurrency in Go, and Chapter 10, Advanced
Concurrency and Best Practices.

Understanding goroutines versus
coroutines

At this point, you may be thinking, "Ah, goroutines, I know these as coroutines."
Well, yes and no.

A coroutine is a cooperative task control mechanism, but in its most simplistic sense,
a coroutine is not concurrent. While coroutines and goroutines are utilized in similar
ways, Go's focus on concurrency provides a lot more than just state control and
yields. In the examples we've seen so far, we have what we can call dumb goroutines.
Although they operate in the same time and address space, there's no real
communication between the two. If you look at coroutines in other languages, you
may find that they are often not necessarily concurrent or asynchronous, but rather
they are step-based. They yield to main () and to each other, but two coroutines
might not necessarily communicate between each other, relying on a centralized,
explicitly written data management system.
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The original coroutine

Coroutines were first described for COBOL by Melvin Conway.
In his paper, Design of a Separable Transition-Diagram Compiler,
he suggested that the purpose of a coroutine was to take a
program broken apart into subtasks and allow them to operate
independently, sharing only small pieces of data.

" Goroutines can sometimes violate the basic tenets of Conway's
% coroutines. For example, Conway suggested that there should

be only a unidirectional path of execution; in other words,
A followed by B, then C, and then D, and so on, where each
represents an application chunk in a coroutine. We know that
goroutines can be run in parallel and can execute in a seemingly
arbitrary order (at least without direction). To this point, our
goroutines have not shared any information either; they've
simply executed in a shared pattern.

Implementing channels

So far, we've dabbled in concurrent processes that are capable of doing a lot but
not effectively communicating with each other. In other words, if you have two
processes occupying the same processing time and sharing the same memory and
data, you must have a way of knowing which process is in which place as part of
a larger task.

Take, for example, an application that must loop through one paragraph of Lorem
Ipsum and capitalize each letter, then write the result to a file. Of course, we will
not really need a concurrent application to do this (and in fact, it's an endemic
function of almost any language that handles strings), but it's a quick way to
demonstrate the potential limitations of isolated goroutines. Shortly, we'll turn
this primitive example into something more practical, but for now, here's the
beginning of our capitalization example:

package main

import (
n fmt n
"runtime"
"strings"

)
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var loremIpsum string
var finalIpsum string
var letterSentChan chan string

func deliverToFinal (letter string, finallIpsum *string)

*finalIpsum += letter

func capitalize (current *int, length int, letters []lbyte,
finalIpsum *string)
for *current < length

thisLetter := strings.ToUpper (string(letters[*current]))

deliverToFinal (thisLetter, finalIpsum)
*current++

func main()

runtime.GOMAXPROCS (2)

index := new(int)
*index = 0
loremIpsum = "Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Vestibulum venenatis magna eget libero tincidunt, ac
condimentum enim auctor. Integer mauris arcu, dignissim sit amet
convallis vitae, ornare vel odio. Phasellus in lectus risus. Ut
sodales vehicula ligula eu ultricies. Fusce vulputate fringilla
eros at congue. Nulla tempor neque enim, non malesuada arcu
laoreet quis. Aliquam eget magna metus. Vivamus lacinia
venenatis dolor, blandit faucibus mi iaculis quis. Vestibulum
sit amet feugiat ante, eu porta justo."

letters := [lbyte(loremIpsum)
length := len(letters)

go capitalize(index, length, letters, &finalIpsum)

[23]
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go func() {
go capitalize(index, length, letters, &finalIpsum)
1O

fmt.Println(length, " characters.")
fmt.Println
fmt.Println
fmt.Println(finalIpsum)

loremIpsum)
*index)

(
(
(
(

}

If we run this with some degree of parallelism here but no communication between
our goroutines, we'll end up with a jumbled mess of text, as shown in the following
screenshot:

Due to the demonstrated unpredictability of concurrent scheduling in Go, it may
take many iterations to get this exact output. In fact, you may never get the exact
output.

This won't do, obviously. So how do we best structure this application? The missing
piece here is synchronization, but we could also do with a better design pattern.

Here's another way to break this problem down into pieces. Instead of having two
processes handling the same thing in parallel, which is rife with risk, let's have one
process that takes a letter from the loremIpsum string and capitalizes it, and then
pass it onto another process to add it to our finalIpsum string.
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You can envision this as two people sitting at two desks, each with a stack of letters.
Person A is responsible to take a letter and capitalize it. He then passes the letter onto
person B, who then adds it to the finalIpsum stack. To do this, we'll implement a
channel in our code in an application tasked with taking text (in this case, the first
line of Abraham Lincoln's Gettysburg address) and capitalizing each letter.

Channel-based sorting at the letter

capitalization factory

Let's take the last example and do something (slightly) more purposeful by
attempting to capitalize the preamble of Abraham Lincoln's Gettysburg address
while mitigating the sometimes unpredictable effect of concurrency in Go, as
shown in the following code:

package main

import (
n fmt n
n Sync n
"runtime"
"strings"

var initialString string
var finalString string

var stringLength int

func addToFinalStack (letterChannel chan string, wg
*sync.WaitGroup) {
letter := <-letterChannel
finalString += letter
wg .Done ()

func capitalize(letterChannel chan string, currentlLetter string,
wg *sync.WaitGroup)

thisLetter := strings.ToUpper (currentlLetter)
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wg .Done ()
letterChannel <- thisLetter

func main()

}

runtime .GOMAXPROCS (2)
var wg sync.WaitGroup

initialString = "Four score and seven years ago our fathers
brought forth on this continent, a new nation, conceived in
Liberty, and dedicated to the proposition that all men are
created equal."

initialBytes := []byte(initialString)

var letterChannel chan string = make (chan string)

stringLength = len(initialBytes)

for i := 0; i < stringLength; i++ {
wg.Add (2)
go capitalize(letterChannel, string(initialBytes[i]l), &wg)

go addToFinalStack (letterChannel, &wg)

wg.Wait ()

fmt.Println(finalString)

You'll note that we even bumped this up to a duo-core process and ended up
with the following output:

go run alpha-channel.go

FOUR SCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH ON THIS
CONTINENT, A NEW NATION, CONCEIVED IN LIBERTY, AND DEDICATED TO THE
PROPOSITION THAT ALL MEN ARE CREATED EQUAL.
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The output is just as we expected. It's worth reiterating that this example is overkill
of the most extreme kind, but we'll parlay this functionality into a usable practical
application shortly.

So what's happening here? First, we reimplemented the sync.WaitGroup struct
to allow all of our concurrent code to execute while keeping the main thread alive,
as shown in the following code snippet:

var wg sync.WaitGroup

for i := 0; i < stringLength; i++ {
wg.Add (2)
go capitalize(letterChannel, string(initialBytes[i]), &wg)

go addToFinalStack (letterChannel, &wg)

wg.Wait ()

}

We allow each goroutine to tell the waitGroup struct that we're done with the step.
As we have two goroutines, we queue two Add () methods to the WaitGroup struct.
Each goroutine is responsible to announce that it's done.

Next, we created our first channel. We instantiate a channel with the following line
of code:

var letterChannel chan string = make(chan string)

This tells Go that we have a channel that will send and receive a string to various
procedures/ goroutines. This is essentially the manager of all of the goroutines. It
is also responsible to send and receive data to goroutines and manage the order of
execution. As we mentioned earlier, the ability of channels to operate with internal
context switching and without reliance on multithreading permits them to operate
very quickly.

There is a built-in limit to this functionality. If you design non-concurrent or blocking
code, you will effectively remove concurrency from goroutines. We will talk more
about this shortly.

We run two separate goroutines through letterChannel: capitalize () and
addToFinalStack (). The first one simply takes a single byte from a byte array
constructed from our string and capitalizes it. It then returns the byte to the channel
as shown in the following line of code:

letterChannel <- thisLetter

[27]
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All communication across a channel happens in this fashion. The <- symbol
syntactically tells us that data will be sent back to (or back through) a channel. It's
never necessary to do anything with this data, but the most important thing to know
is that a channel can be blocking, at least per thread, until it receives data back. You
can test this by creating a channel and then doing absolutely nothing of value with it,
as shown in the following code snippet:

package main
func doNothing () (string) ({

return "nothing"

}

func main() {

var channel chan string = make(chan string)
channel <- doNothing()

}

As nothing is sent along the channel and no goroutine is instantiated, this results in
a deadlock. You can fix this easily by creating a goroutine and by bringing the
channel into the global space by creating it outside of main ().

. For the sake of clarity, our example here uses a local scope channel.
% Keeping these global whenever possible removes a lot of cruft,
/— particularly if you have a lot of goroutines, as references to the
channel can clutter up your code in a hurry.

For our example as a whole, you can look at it as is shown in the following figure:

Application Start
Starts Channel
Channel Asks For Capitalization
Capitalization Returns Capital Letter

Channel Hands Capital Letter To Adder
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Cleaning up our goroutines

You may be wondering why we need a WwaitGroup struct when using channels.
After all, didn't we say that a channel gets blocked until it receives data? This is
true, but it requires one other piece of syntax.

A nil or uninitialized channel will always get blocked. We will discuss the potential
uses and pitfalls of this in Chapter 7, Performance and Scalability, and Chapter 10,
Advanced Concurrency and Best Practices.

You have the ability to dictate how a channel blocks the application based on a
second option to the make command by dictating the channel buffer.

Buffered or unbuffered channels

By default, channels are unbuffered, which means they will accept anything sent on
them if there is a channel ready to receive. It also means that every channel call will
block the execution of the application. By providing a buffer, the channel will only
block the application when many returns have been sent.

A buffered channel is synchronous. To guarantee asynchronous performance,
you'll want to experiment by providing a buffer length. We'll look at ways to
ensure our execution falls as we expect in the next chapter.

. Go's channel system is based on Communicating Sequential
& Processes (CSP), a formal language to design concurrent patterns
s and multiprocessing. You will likely encounter CSP on its own
when people describe goroutines and channels.

Using the select statement

One of the issues with first implementing channels is that whereas goroutines were
formerly the method of simplistic and concurrent execution of code, we now have
a single-purpose channel that dictates application logic across the goroutines. Sure,
the channel is the traffic manager, but it never knows when traffic is coming, when
it's no longer coming, and when to go home, unless being explicitly told. It waits
passively for communication and can cause problems if it never receives any.
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Go has a select control mechanism, which works just as effectively as a switch
statement does, but on channel communication instead of variable values. A switch
statement modifies execution based on the value of a variable, and select reacts

to actions and communication across a channel. You can use this to orchestrate

and arrange the control flow of your application. The following code snippet is our
traditional switch, familiar to Go users and common among other languages:

switch {
case 'x':
case 'y':

}
The following code snippet represents the select statement:

select {
case <- channelA:

case <- channelB:

}

In a switch statement, the right-hand expression represents a value; in select,

it represents a receive operation on a channel. A select statement will block the
application until some information is sent along the channel. If nothing is sent ever,
the application deadlocks and you'll get an error to that effect.

If two receive operations are sent at the same time (or if two cases are otherwise met),
Go will evaluate them in an unpredictable fashion.

So, how might this be useful? Let's look at a modified version of the letter
capitalization application's main function:

package main

import (
n fmt n
"strings"

)
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var initialString string
var initialBytes []byte
var stringLength int

var finalString string
var lettersProcessed int
var applicationStatus bool
var wg sync.WaitGroup

func getLetters(gQ chan string)

for i := range initialBytes {
gQ <- string(initialBytes[i])

func capitalizeLetters(gQ chan string, sQ chan string)

for {

if lettersProcessed >= stringLength {
applicationStatus = false
break

}

select {
case letter := <- gQ:

capitallLetter := strings.ToUpper (letter)

finalString += capitallLetter
lettersProcessed++

func main()

applicationStatus = true;
getQueue := make(chan string)
stackQueue := make(chan string)
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initialString = "Four score and seven years ago our fathers
brought forth on this continent, a new nation, conceived in
Liberty, and dedicated to the proposition that all men are
created equal."

initialBytes = [lbyte(initialString)
stringlLength = len(initialString)
lettersProcessed = 0

fmt.Println("Let's start capitalizing")

go getLetters (getQueue)
capitalizelLetters (getQueue, stackQueue)

close (getQueue)
close (stackQueue)

for {

if applicationStatus == false {
fmt.Println ("Done")
fmt.Println(finalString)
break

}

The primary difference here is we now have a channel that listens for data across
two functions running concurrently, getLetters and capitalizelLetters.

At the bottom, you'll see a for{} loop that keeps the main active until the
applicationStatus variable is set to false. In the following code, we pass
each of these bytes as a string through the Go channel:

func getletters(gQ chan string) {

for i := range initialBytes ({
gQ <- string(initialBytes[i])
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The getLetters function is our primary goroutine that fetches individual letters
from the byte array constructed from Lincoln's line. As the function iterates through
each byte, it sends the letter through the getQueue channel.

On the receiving end, we have capitalizeLetters that takes each letter as it's sent
across the channel, capitalizes it, and appends to our finalString variable. Let's
take a look at this:

func capitalizeLetters(gQ chan string, sQ chan string) {

for {
if lettersProcessed >= stringLength ({
applicationStatus = false

break
}
select ({
case letter := <- gQ:
capitallLetter := strings.ToUpper (letter)

finalString += capitalletter
lettersProcessed++

}
}
}

It's critical that all channels are closed at some point or our application will hit a
deadlock. If we never break the for loop here, our channel will be left waiting to
receive from a concurrent process, and the program will deadlock. We manually
check to see that we've capitalized all letters and only then break the loop.

Closures and goroutines

You may have noticed the anonymous goroutine in Lorem Ipsum:

go func() {
go capitalize(index, length, letters, &finalIpsum)

1O

While it isn't always ideal, there are plenty of places where inline functions work
best in creating a goroutine.
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The easiest way to describe this is to say that a function isn't big or important enough
to deserve a named function, but the truth is, it's more about readability. If you have
dealt with lambdas in other languages, this probably doesn't need much explanation,
but try to reserve these for quick inline functions.

In the earlier examples, the closure works largely as a wrapper to invoke a select
statement or to create anonymous goroutines that will feed the select statement.

Since functions are first-class citizens in Go, not only can you utilize inline or
anonymous functions directly in your code, but you can also pass them to and from
other functions.

Here's an example that passes a function's result as a return value, keeping the
state resolute outside of that returned function. In this, we'll return a function as
a variable and iterate initial values on the returned function. The initial argument
will accept a string that will be trimmed by word length with each successive call
of the returned function.

import (
n fmt n
"strings"
)
func shortenString(message string) func() string {
return func() string ({
messageSlice := strings.Split (message," ")
wordLength := len(messageSlice)

if wordLength < 1 {
return "Nothingn Left!"

}else {
messageSlice = messageSlice[: (wordLength-1)]
message = strings.Join(messageSlice, " ")
return message

}

func main()

myString := shortenString("Welcome to concurrency in Go! ...")
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fmt.Println (myString())
fmt.Println (myString())
fmt.Println (myString())
fmt.Println (myString())
fmt.Println (myString())
fmt.Println (myString())

}

Once initialized and returned, we set the message variable, and each successive run
of the returned method iterates on that value. This functionality allows us to eschew
running a function multiple times on returned values or loop unnecessarily when we
can very cleanly handle this with a closure as shown.

Building a web spider using goroutines
and channels

Let's take the largely useless capitalization application and do something practical
with it. Here, our goal is to build a rudimentary spider. In doing so, we'll accomplish
the following tasks:

* Read five URLs
* Read those URLs and save the contents to a string
*  Write that string to a file when all URLs have been scanned and read

These kinds of applications are written every day, and they're the ones that benefit
the most from concurrency and non-blocking code.

It probably goes without saying, but this is not a particularly elegant web scraper.
For starters, it only knows a few start points — the five URLs that we supply it. Also,
it's neither recursive nor is it thread-safe in terms of data integrity.

That said, the following code works and demonstrates how we can use channels
and the select statements:

package main

import (
n fmt n
"io/ioutil™
"net/http"
"time"

[35]



An Introduction to Concurrency in Go

var
var
var
var
var
var
var

var

applicationStatus bool
urls []string
urlsProcessed int
foundUrls []string
fullText string
totalURLCount int

wg sync.WaitGroup

vl int

First, we have our most basic global variables that we'll use for the application state.
The applicationStatus variable tells us that our spider process has begun and

urls is our slice of simple string URLs. The rest are idiomatic data storage variables
and/or application flow mechanisms. The following code snippet is our function to

read the URLs and pass them across the channel:

func readURLs (statusChannel chan int, textChannel chan string)
time.Sleep(time.Millisecond * 1)
fmt.Println ("Grabbing", len(urls), "urls")
for i := 0; i < totalURLCount; i++ {
fmt.Println("Url", i, urls[i])
resp, _ := http.Get (urls[i])
text, err := ioutil.ReadAll (resp.Body)
textChannel <- string(text)
if err != nil {

fmt.Println ("No HTML body")

statusChannel <- 0

}

The readURLs function assumes statusChannel and textChannel for

{

communication and loops through the urls variable slice, returning the text on
textChannel and a simple ping on statusChannel. Next, let's look at the function

that will append scraped text to the full text:

func addToScrapedText (textChannel chan string, processChannel chan

bool) {
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for {
select {
case pC := <-processChannel:
if pC == true {
// hang on

}

if pC == false {

close (textChannel)
close (processChannel)

}

case tC := <-textChannel:
fullText += tC

}

We use the addToScrapedText function to accumulate processed text and add it to a
master text string. We also close our two primary channels when we get a kill signal
on our processChannel. Let's take a look at the evaluateStatus () function:

func evaluateStatus (statusChannel chan int, textChannel chan
string, processChannel chan bool) {

for {
select {
case status := <-statusChannel:

fmt.Print (urlsProcessed, totalURLCount)
urlsProcesgsed++
if status == {

fmt.Println("Got url")

}

if status == {
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close (statusChannel)
}
if urlsProcessed == totalURLCount {
fmt.Println("Read all top-level URLs")
processChannel <-
applicationStatus =

false
false

}
}

At this juncture, all that the evaluatestatus function does is determine what's

happening in the overall scope of the application. When we send a 0 (our

aforementioned ping) through this channel, we increment our urlsProcessed
variable. When we send a 1, it's a message that we can close the channel. Finally,

let's look at the main function:

func main() {
applicationStatus = true
statusChannel := make (chan int)
textChannel := make(chan string)
processChannel := make (chan bool)
totalURLCount = 0
urls append (urls, "http://www.mastergoco.com/indexl.html")
urls append (urls, "http://www.mastergoco.com/index2.html")
urls append (urls, "http://www.mastergoco.com/index3.html")
urls append (urls, "http://www.mastergoco.com/index4.html")
urls = append(urls, "http://www.mastergoco.com/index5.html")

fmt.Println("Starting spider")

urlsProcessed = 0
totalURLCount = len(urls)
go evaluateStatus (statusChannel, textChannel, processChannel)
go readURLs (statusChannel, textChannel)
go addToScrapedText (textChannel, processChannel)
for {
if applicationStatus == false ({

fmt.Println (fullText)
fmt.Println("Done!")
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break

select {

case sC := <-statusChannel:
fmt.Println("Message on StatusChannel", sC)

}

This is a basic extrapolation of our last function, the capitalization function.
However, each piece here is responsible for some aspect of reading URLs
or appending its respective content to a larger variable.

In the following code, we created a sort of master loop that lets you know
when a URL has been grabbed on statusChannel:

for {
if applicationStatus == false ({
fmt.Println (fullText)
fmt.Println("Done!")
break

}

select {
case sC := <- statusChannel:
fmt.Println("Message on StatusChannel", sC)

}
}

Often, you'll see this wrapped in go func () as part of a waitGroup struct,
or not wrapped at all (depending on the type of feedback you require).

The control flow, in this case, is evaluateStatus, which works as a channel
monitor that lets us know when data crosses each channel and ends execution
when it's complete. The readURrLs function immediately begins reading our URLs,
extracting the underlying data and passing it on to textChannel. At this point,
our addToScrapedText function takes each sent HTML file and appends it to the
fullText variable. When evaluateStatus determines that all URLs have been
read, it sets applicationStatus to false. At this point, the infinite loop at the
bottom of main () quits.

As mentioned, a crawler cannot come more rudimentary than this, but seeing
a real-world example of how goroutines can work in congress will set us up for
safer and more complex examples in the coming chapters.
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Summary

In this chapter, we learned how to go from simple goroutines and instantiating
channels to extending the basic functionality of goroutines and allowing cross-channel,
bidirectional communication within concurrent processes. We looked at new ways to
create blocking code to prevent our main process from ending before our goroutines.
Finally, we learned about using select statements to develop reactive channels that are
silent unless data is sent along a channel.

In our rudimentary web spider example, we employed these concepts together to
create a safe, lightweight process that could extract all links from an array of URLs,
grab the content via HTTP, and store the resulting response.

In the next chapter, we'll go beneath the surface to see how Go's internal scheduling
manages concurrency and start using channels to really utilize the power, thrift,
and speed of concurrency in Go.
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Concurrency Model

Now that we have a sense of what Go is capable of and how to test drive some
concurrency models, we need to look deeper into Go's most powerful features
to understand how to best utilize various concurrent tools and models.

We played with some general and basic goroutines to see how we can run concurrent
processes, but we need to see how Go manages scheduling in concurrency before we
get to communication between channels.

Understanding the working of goroutines

By this point, you should be well-versed in what goroutines do, but it's worth
understanding how they work internally in Go. Go handles concurrency with
cooperative scheduling, which, as we mentioned in the previous chapter,

is heavily dependent on some form of blocking code.

The most common alternative to cooperative scheduling is preemptive scheduling,
wherein each subprocess is granted a space of time to complete and then its
execution is paused for the next.

Without some form of yielding back to the main thread, execution runs into
issues. This is because Go works with a single process, working as a conductor

for an orchestra of goroutines. Each subprocess is responsible to announce its own
completion. As compared to other concurrency models, some of which allow for
direct, named communication, this might pose a sticking point, particularly if you
haven't worked with channels before.
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You can probably see a potential for deadlocks given these facts. In this chapter,
we'll discuss both the ways Go's design allows us to manage this and the methods
to mitigate issues in applications wherein it fails.

Synchronous versus asynchronous
goroutines

Understanding the concurrency model is sometimes an early pain point for
programmers —not just for Go, but across languages that use different models as
well. Part of this is due to operating in a black box (depending on your terminal
preferences); a developer has to rely on logging or errors with data consistency to
discern asynchronous and/or multiple core timing issues.

As the concepts of synchronous and asynchronous or concurrent and nonconcurrent
tasks can sometimes be a bit abstract, we will have a bit of fun here in an effort to
demonstrate all the concepts we've covered so far in a visual way.

There are, of course, a myriad of ways to address feedback and logging. You can
write to files in console/terminal/stdout.., most of which are inherently linear
in nature. There is no concise way to represent concurrency in a logfile. Given this
and the fact that we deal with an emerging language with a focus on servers,

let's take a different angle.

Instead of simply outputting to a file, we'll create a visual feedback that shows
when a process starts and stops on a timeline.

Designing the web server plan

To show how approaches differ, we'll create a simple web server that loops through
three trivial tasks and outputs their execution marks on an X-second timeline. We'll
do this using a third-party library called svgo and the built-in http package for Go.

To start, let's grab the svgo library via go get:

go get github.com/ajstarks/svgo
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If you try to install a package via the go get command and get an error about
$GOPATH not being set, you need to set that environment variable. GOPATH is where
Go will look to find installed import packages.

To set this in Linux (or Mac), type the following in bash (or Terminal):
export GOPATH=/usr/yourpathhere

This path is up to you, so pick a place where you're most comfortable storing your
Go packages.

To ensure it's globally accessible, install it where your Go binary is installed.

On Windows, you can right-click on My Computer and navigate to Properties |
Advanced system settings | Environment Variables..., as shown in the following
screenshot:

Here, you'll need to create a new variable called GopATH. As with the Linux and Mac
instructions, this can either be your Go language root directory or someplace else
entirely. In this example, we've used C:\Go, as shown in the following screenshot:

Variable name: | GOPATH

Variable value: | c\Go

Note that after taking these steps, you may need to reopen the
Terminal, Command Prompt, or bash sessions before the value is read
' as valid. On *nix systems, you can log in and log out to initiate this.
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Now that we have installed gosvg, we can visually demonstrate how the
asynchronous and synchronous processes will look side-by-side as well as
with multiple processors.

_—
More libraries

Why SVG? We didn't need to use SVG and a web server, of course,
and if you'd rather see an image generated and open that separately,
there are other alternatives to do so. There are some additional
graphical libraries available for Go, which are as follows:

¢ draw2d: As the name suggests, this is a two-dimensional
drawing library for doing vector-style and raster graphics,
which can be found at https://code.google.com/p/
draw2d/.

* graphics-go: This project involves some members of the Go

¢ team itself. It's fairly limited in scope. You can find more
% aboutitathttps://code.google.com/p/graphics-
Y= go/

e go:gine: This is one of the few OpenGL implementations
for Go. It can be overkill for this project, but if you find
yourself in need of a three-dimensional graphics library,
startat http://go-ngine.com/.

*  Go-SDL: Another possible overkill method, this is an
implementation of the wonderful multimedia library SDL.
You can find more about it at https://github.com/
banthar/Go-SDL.

Robust GUI toolkits are also available, but as they were designed as
systems languages, it isn't really Go's forte.

Visualizing concurrency

Our first attempt at visualizing concurrency will have two simple goroutines
running the drawpoint function in a loop with 100 iterations. After running this, you
can visit localhost:1900/visualize and see what concurrent goroutines look like.

If you run into problems with port 1900 (either with your firewall or through a port
conflict), feel free to change the value on line 99 in the main () function. You may
also need to access it through 127.0.0.1 if your system doesn't resolve localhost.
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Note that we're not using waitGroup or anything to manage the end of the
goroutines because all we want to see is a visual representation of our code

running. You can also handle this with a specific blocking code or runtime.

Gosched (), as shown:

package main

import (
"github.com/ajstarks/svgo"
"net/http"
n fmt n
n log n
" ime n
"strconv"

var width = 800
var height = 400
var startTime = time.Now () .UnixNano ()

func drawPoint (osvg *svg.SVG, pnt int, process int)

sec := time.Now () .UnixNano ()
diff := ( inté64(sec) - inté4 (startTime) ) / 100000
pointLocation := 0

pointLocation = int (diff)
pointLocationV := 0
color := "#000000"
switch {
case process == 1:
pointLocationV = 60
color = "#cc6666"
default:
pointLocationV = 180
color = "#66cc66"
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osvg.Rect (pointLocation, pointLocationV,3,5,"fill: "+color+";stroke:

none; ")
time.Sleep (150 * time.Millisecond)

}

func visualize (rw http.ResponseWriter, req *http.Request) {
startTime = time.Now () .UnixNano ()
fmt.Println("Request to /visualize")
rw.Header () .Set ("Content-Type", "image/svg+xml")
outputSVG := svg.New(rw)

outputSVG.Start (width, height)
outputSVG.Rect (10, 10, 780, 100, "fill:#eeeeee;stroke:none")

outputSVG.Text (20, 30, "Process 1 Timeline", "text-
anchor:start; font-size:12px;£i11:#333333")

outputSVG.Rect (10, 130, 780, 100, "fill:#eeeeee;stroke:none")

outputSVG.Text (20, 150, "Process 2 Timeline", "text-
anchor:start;font-size:12px;£i11:#333333")

for i:= 0; i < 801; i++ {
timeText := strconv.FormatInt (inté4 (i) ,10)
if i % 100 == 0 {

outputSVG.Text (1,380, timeText, "text-anchor:middle; font-
size:10px;fil11:#000000")
}Jelse if 1 % 4 == 0 {
outputSVG.Circle(i,377,1,"fill:#ccccee; stroke:none")

if i % 10 == 0 {

outputSVG.Rect (i,0,1,400,"fill:#dddddd")
}
if i % 50 == 0 {

outputSVG.Rect (i,0,1,400,"fill:#ccccce")

for i := 0; i < 100; i++ {
go drawPoint (outputSvG,i, 1)
drawPoint (outputSVG, i, 2)

[46]



Chapter 2

outputSVG.Text (650, 360, "Run without goroutines", "text-
anchor:start; font-size:12px;£i11:#333333")
outputSVG.End ()

func main()
http.Handle ("/visualize", http.HandlerFunc (visualize))

err := http.ListenAndServe(":1900", nil)
if err != nil {

log.Fatal ("ListenAndServe:", err)
1

}

When you go to localhost:1900/visualize, you should see something like the
following screenshot:

Process 1 Tim:line

Process 2 Tim:line

Run without goroutines

As you can see, everything is definitely running concurrently — our briefly sleeping
goroutines hit on the timeline at the same moment. By simply forcing the goroutines
to run in a serial fashion, you'll see a predictable change in this behavior. Remove the
goroutine call on line 73, as shown:

drawPoint (outputSvVG, i, 1)
drawPoint (outputSVG, i, 2)
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To keep our demonstration clean, change line 77 to indicate that there are no
goroutines as follows:

outputSVG.Text (650, 360, "Run with goroutines", "text-
anchor:start;font-size:12px;£i11:#333333")

If we stop our server and restart with go run, we should see something like the
following screenshot:

Process 1 Timeline

Process 2 Timeline

Faun with goroutines

Now, each process waits for the previous process to complete before beginning.
You can actually add this sort of feedback to any application if you run into
problems with syncing data, channels, and processes.

If we so desired, we could add some channels and show communication across
them as represented. Later, we will design a self-diagnosing server that gives
real-time analytics about the state and status of the server, requests, and channels.

If we turn the goroutine back on and increase our maximum available processors,
we'll see something similar to the following screenshot, which is not exactly the
same as our first screenshot:
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Process 1 Timeline

Process 2 Timeline

Your mileage will obviously vary depending on server speeds, the number of
processors, and so on. But in this case, our change here resulted in a faster total
execution time for our two processes with intermittent sleeps. This should come as
no surprise, given we have essentially twice the bandwidth available to complete
the two tasks.

RSS in action

Let's take the concept of Rich Site Summary / Really Simple Syndication (RSS)
and inject some real potential delays to identify where we can best utilize goroutines
in an effort to speed up execution and prevent blocking code. One common way

to bring real-life, potentially blocking application elements into your code is to use
something involving network transmission.

This is also a great place to look at timeouts and close channels to ensure that our
program doesn't fall apart if something takes too long.

To accomplish both these requirements, we'll build a very basic RSS reader that

will simply parse through and grab the contents of five RSS feeds. We'll read each
of these as well as the provided links on each, and then we'll generate an SVG report
of the process available via HTTP.
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This is obviously an application best suited for a background
_ task—you'll notice that each request can take a long time.
% However, for graphically representing a real-life process working
L with and without concurrency, it will work, especially with a
single end user. We'll also log our steps to standard output, so be
sure to take a look at your console as well.

For this example, we'll again use a third-party library, although it's entirely possible
to parse RSS using Go's built-in XML package. Given the open-ended nature of XML
and the specificity of RSS, we'll bypass them and use go-pkg-rss by Jim Teeuwen,
available via the following go get command:

go get github.com/jteeuwen/go-pkg-rss

While this package is specifically intended as a replacement for the Google
Reader product, which means that it does interval-based polling for new content
within a set collection of sources, it also has a fairly neat and tidy RSS reading
implementation. There are a few other RSS parsing libraries out there, though,
so feel free to experiment.

An RSS reader with self diagnostics

Let's take a look at what we've learned so far, and use it to fetch and parse a set
of RSS feeds concurrently while returning some visual feedback about the process
in an internal web browser, as shown in the following code:

package main

import (
"github.com/ajstarks/svgo"
rss "github.com/jteeuwen/go-pkg-rss"
"net/http"
n 109"
"fmt"
"strconv"
"time"
IIOS n
"sync"
"runtime"

)

type Feed struct ({
url string
status int
itemCount int
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complete bool
itemsComplete bool
index int

}

Here is the basis of our feed's overall structure: we have a url variable that
represents the feed's location, a status variable to indicate whether it's started, and
a complete Boolean variable to indicate it's finished. The next piece is an individual
FeedItem; here's how it can be laid out:

type FeedItem struct ({
feedIndex int
complete bool
url string

}

Meanwhile, we will not do much with individual items; at this point, we simply
maintain a URL, whether it's complete or a FeedItem struct's index.

var feeds []Feed
var height int

var width int

var colors []string
var startTime inté4
var timeout int

var feedSpace int

var wg sync.WaitGroup

func grabFeed(feed *Feed, feedChan chan bool, osvg *svg.SVG) ({

startGrab := time.Now() .Unix ()
startGrabSeconds := startGrab - startTime

fmt.Println ("Grabbing feed", feed.url,"
at", startGrabSeconds, "second mark")

if feed.status == 0 {
fmt.Println ("Feed not yet read")
feed.status =1

int (startGrabSeconds * 33);
feedSpace * (feed.index)

startX
startyY

fmt.Println(starty)
wg.Add (1)
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rssFeed := rss.New(timeout, true, channelHandler,
itemsHandler) ;

if err := rssFeed.Fetch(feed.url, nil); err != nil {
fmt.Fprintf (os.Stderr, "[e] %s: %s", feed.url, err)
return

} else {
endSec := time.Now () .Unix ()
endX := int( (endSec - startGrab) )
if endX == 0 {

endX = 1

}

fmt.Println("Read feed in",endX, "seconds")
osvg.Rect (startX, startY, endX, feedSpace, "fill:
#000000;0pacity:.4")

wg.Wait ()

endGrab := time.Now () .Unix ()
endGrabSeconds := endGrab - startTime
feedEndX := int (endGrabSeconds * 33);

osvg.Rect (feedEndX, startY, 1, feedSpace, "fill:#££f0000;0pacity:.9")

feedChan <- true

}else if feed.status == 1{
fmt.Println("Feed already in progress")

}

}

The grabFeed () method directly controls the flow of grabbing any individual feed.
It also bypasses potential concurrent duplication through the waitGroup struct.
Next, let's check out the itemsHandler function:

func channelHandler (feed *rss.Feed, newchannels []*rss.Channel) {

func itemsHandler (feed *rss.Feed, ch *rss.Channel, newitems
[l*rss.Item) ({
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fmt.Println("Found", len (newitems), "items in", feed.Url)
for i := range newitems {
url := *newitems([i] .Guid

fmt.Println (url)

wg .Done ()

}

The itemsHandler function doesn't do much at this point, other than instantiating a
new FeedItem struct—in the real world, we'd take this as the next step and retrieve
the values of the items themselves. Our next step is to look at the process that grabs
individual feeds and marks the time taken for each one, as follows:

func getRSS(rw http.ResponseWriter, reqg *http.Request) ({

startTime = time.Now () .Unix ()
rw.Header () .Set ("Content-Type", "image/svg+xml")
outputSVG := svg.New(rw)

outputSVG.Start (width, height)
feedSpace = (height-20) / len(feeds)

for i:= 0; i < 30000; i++ {
timeText := strconv.FormatInt (int64(i/10),10)
if i % 1000 == 0 {
outputSVG.Text (1/30,390, timeText, "text-anchor:middle; font-
size:10px;fil11:#000000")
}Jelse if 1 % 4 == 0 {
outputSVG.Circle(i,377,1,"fill:#ccccee; stroke:none")

)

if i % 10 == 0 {

outputSVG.Rect (i,0,1,400,"fill:#dddddd")
}
if i % 50 == 0 {

outputSVG.Rect (i,0,1,400,"fill:#ccccce")
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feedChan := make (chan bool, 3)
for i := range feeds {

outputSVG.Rect (0, (i*feedSpace), width, feedSpace,
"fill:"+colors[i]+";stroke:none;")

feeds[i] .status = 0
go grabFeed (&feeds[i], feedChan, outputSVG)
<- feedChan

outputSVG.End ()

}

Here, we retrieve the RSS feed and mark points on our SVG with the status of our
retrieval and read events. Our main () function will primarily handle the setup of
feeds, as follows:

func main() {
runtime .GOMAXPROCS (2)
timeout = 1000

width = 1000
height = 400

feeds = append(feeds, Feed{index: 0, url:
"https://groups.google.com/forum/feed/golang-
nuts/msgs/rss_v2_ 0.xml?num=50", status: 0, itemCount: O,
complete: false, itemsComplete: false})

feeds = append(feeds, Feed{index: 1, url:
"http://www.reddit.com/r/golang/.rss", status: 0, itemCount:
0, complete: false, itemsComplete: false})

feeds = append(feeds, Feed{index: 2, url:
"https://groups.google.com/forum/feed/golang-
dev/msgs/rss_v2_ 0.xml?num=50", status: 0, itemCount: O,
complete: false, itemsComplete: false })

Here is our slice of FeedItem structs:

colors = append(colors, "#££9999")
colors = append(colors, "#99££99")
colors = append(colors, "#9999ff")
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In the print version, these colors may not be particularly useful, but testing it on your
system will allow you to delineate between events inside the application. We'll need
an HTTP route to act as an endpoint; here's how we'll set that up:

http.Handle ("/getrss", http.HandlerFunc (getRSS))
err := http.ListenAndServe(":1900", nil)
if err != nil {
log.Fatal ("ListenAndServe:", err)
}
}

When run, you should see the start and duration of the RSS feed retrieval and
parsing, followed by a thin line indicating that the feed has been parsed and all
items read.

Each of the three blocks expresses the full time to process each feed, demonstrating
the nonconcurrent execution of this version, as shown in the following screenshot:
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Note that we don't do anything interesting with the feed items, we simply read the
URL. The next step will be to grab the items via HTTP, as shown in the following
code snippet:

url := *newitems([i] .Guid
response, _, err := http.Get(url)
if err != nil {
1
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With this example, we stop at every step to provide some sort of feedback to the SVG
that some event has occurred. Our channel here is buffered and we explicitly state
that it must receive three Boolean messages before it can finish blocking, as shown in
the following code snippet:

feedChan := make (chan bool, 3)
for i := range feeds {

outputSVG.Rect (0, (i*feedSpace), width, feedSpace,
"fill:"+colors[i]+";stroke:none;")

feeds[i] .status = 0

go grabFeed (&feeds[i], feedChan, outputSVG)

<- feedChan

outputSVG.End ()

By giving 3 as the second parameter in our channel invocation, we tell Go that this
channel must receive three responses before continuing the application. You should
use caution with this, though, particularly in setting things explicitly as we have
done here. What if one of the goroutines never sent a Boolean across the channel?
The application would crash.

Note that we also increased our timeline here, from 800ms to 60 seconds, to allow for
retrieval of all feeds. Keep in mind that if our script exceeds 60 seconds, all actions
beyond that time will occur outside of this visual timeline representation.

By implementing the waitGroup struct while reading feeds, we impose some
serialization and synchronization to the application. The second feed will not start
until the first feed has completed retrieving all URLs. You can probably see where
this might introduce some errors going forward:

wg.Add (1)

rssFeed := rss.New(timeout, true, channelHandler,
itemsHandler) ;

wg.Wait ()

This tells our application to yield until we set the Done () command from the
itemsHandler () function.

So what happens if we remove WaitGroups entirely? Given that the calls to grab
the feed items are asynchronous, we may not see the status of all of our RSS calls;
instead, we might see just one or two feeds or no feed at all.
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Imposing a timeout

So what happens if nothing runs within our timeline? As you might expect, we'll get
three bars with no activity in them. It's important to consider how to kill processes
that aren't doing what we expect them to. In this case, the best method is a timeout.
The Get method in the http package does not natively support a timeout, so you'll
have to roll your own rssFeed. Fetch (and underlying http.Get () ) implementation
if you want to prevent these requests from going into perpetuity and killing your
application. We'll dig into this a bit later; in the mean time, take a look at the
Transport struct, available in the core http package at http://golang.org/pkg/
net/http/#Transport.

A little bit about CSP

We touched on CSP briefly in the previous chapter, but it's worth exploring a bit
more in the context of how Go's concurrency model operates.

CSP evolved in the late 1970s and early 1980s through the work of Sir Tony Hoare
and is still in the midst of evolution today. Go's implementation is heavily based on
CSP, but it neither entirely follows all the rules and conventions set forth in its initial
description nor does it follow its evolution since.

One of the ways in which Go differs from true CSP is that as it is defined, a process
in Go will only continue so long as there exists a channel ready to receive from that
process. We've already encountered a couple of deadlocks that were the result of a
listening channel with nothing to receive. The inverse is also true; a deadlock can
result from a channel continuing without sending anything, leaving its receiving
channel hanging indefinitely.

This behavior is endemic to Go's scheduler, and it should really only pose problems
when you're working with channels initially.

Hoare's original work is now available (mostly) free from a number of
institutions. You can read, cite, copy, and redistribute it free of charge
(but not for commercial gain). If you want to read the whole thing,
' you can grab itathttp://www.cs.ucf.edu/courses/cop4020/
% sum2009/CSP-hoare.pdf.

The complete book itself is also available at http: //www.
usingcsp.com/cspbook.pdf.

As of this publishing, Hoare is working as a researcher at Microsoft.
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As per the designers of the application itself, the goal of Go's implementation of
CSP concepts was to focus on simplicity —you don't have to worry about threads
or mutexes unless you really want to or need to.

The dining philosophers problem

You may have heard of the dining philosophers problem, which describes the

kind of problems concurrent programming was designed to solve. The dining
philosophers problem was formulated by the great Edsger Dijkstra. The crux of

the problem is a matter of resources — five philosophers sit at a table with five plates
of food and five forks, and each can only eat when he has two forks (one to his left
and another to his right). A visual representation is shown as follows:

With a single fork on either side, any given philosopher can only eat when he has a
fork in both hands and must put both back on the table when complete. The idea is
to coordinate the meal such that all of the philosophers can eat in perpetuity without
any starving — two philosophers must be able to eat at any moment and there can

be no deadlocks. They're philosophers because when they're not eating, they're
thinking. In a programming analog, you can consider this as either a waiting
channel or a sleeping process.

[58]




Chapter 2

Go handles this problem pretty succinctly with goroutines. Given five philosophers
(in an individual struct, for example), you can have all five alternate between
thinking, receiving a notification when the forks are down, grabbing forks, dining
with forks, and placing the forks down.

Receiving the notification that the forks are down acts as the listening channel,
dining and thinking are separate processes, and placing the forks down operates
as an announcement along the channel.

We can visualize this concept in the following pseudo Go code:

type Philosopher struct {
leftHand bool
rightHand bool
status int
name string

func main()

philosophers := [...]Philospher{"Kant", "Turing",
"Descartes","Kierkegaard","Wittgenstein"}

evaluate := func() {
for {

select
case <- forkUp:
// philosophers think!
case <- forkDown:
// next philospher eats in round robin

}

This example has been left very abstract and nonoperational so that you have a
chance to attempt to solve it. We will build a functional solution for this in the
next chapter, so make sure to compare your solution later on.

There are hundreds of ways to handle this problem, and we'll look at a couple
of alternatives and how they can or cannot play nicely within Go itself.
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Go and the actor model

The actor model is something that you'll likely be very familiar with if you're an
Erlang or Scala user. The difference between CSP and the actor model is negligible
but important. With CSP, messages from one channel can only be completely sent if
another channel is listening and ready for them. The actor model does not necessarily
require a ready channel for another to send. In fact, it stresses direct communication
rather than relying on the conduit of a channel.

Both systems can be nondeterministic, which we've already seen demonstrated
in Go/CSP in our earlier examples. CSP and goroutines are anonymous and
transmission is specified by the channel rather than the source and destination.
An easy way to visualize this in pseudocode in the actor model is as follows:

= new Actor
new Actor

a
b
a -> b("message")

In CSP, it is as follows:

= new Actor
new Actor

new Channel

a
b
c
a -> c("sending something")
b

<- c("receiving something")

Both serve the same fundamental functionality but through slightly different ways.

Object orientation

As you work with Go, you will notice that there is a core characteristic that's often
espoused, which users may feel is wrong. You'll hear that Go is not an object-
oriented language, and yet you have structs that can have methods, those methods
in turn can have methods, and you can have communication to and from any
instantiation of it. Channels themselves may feel like primitive object interfaces,
capable of setting and receiving values from a given data element.

The message passing implementation of Go is, indeed, a core concept of object-
oriented programming. Structs with interfaces operate essentially as classes, and
Go supports polymorphism (although not parametric polymorphism). Yet, many
who work with the language (and who have designed it) stress that it is not object
oriented. So what gives?
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Much of this definition ultimately depends on who you ask. Some believe that Go
lacks some of the requisite characteristics of object-oriented programming, and
others believe it satisfies them. The most important thing to keep in mind is that
you're not limited by Go's design. Anything that you can do in a true object-oriented
language can be handled without much struggle within Go.

Demonstrating simple polymorphism in Go

As mentioned before, if you expect polymorphism to resemble object-oriented
programming, this may not represent a syntactical analogue. However, the use
of interfaces as an abstraction of class-bound polymorphic methods is just as
clean, and in many ways, more explicit and readable. Let's look at a very simple
implementation of polymorphism in Go:

type intInterface struct ({

}

type stringInterface struct ({

}

func (number intInterface) Add (a int, b int) int {

return a + b;

}

func (text stringInterface) Add (a string, b string) string {

return a + b

}

func main() {

number := new (intInterface)
fmt.Println( number.Add(1,2) )

text := new (stringInterface)
fmt.Println( text.Add("this old man"," he played one"))
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As you can see, we use an interface (or its Go analog) to disambiguate methods.
You cannot have generics the same way you might in Java, for example. This,
however, boils down to a mere matter of style in the end. You should neither
find this daunting nor will it impose any cruft or ambiguity into your code.

Using concurrency

It hasn't yet been mentioned, but we should be aware that concurrency is not always
necessary and beneficial for an application. There exists no real rule of thumb, and
it's rare that concurrency will introduce problems to an application; but if you really
think about applications as a whole, not all will require concurrent processes.

So what works best? As we've seen in the previous example, anything that
introduces potential latency or I/O blocking, such as network calls, disk reads,
third-party applications (primarily databases), and distributed systems, can benefit
from concurrency. If you have the ability to do work while other work is being done
on an undetermined timeline, concurrency strategies can improve the speed and
reliability of an application.

The lesson here is you should never feel compelled to shoehorn concurrency into an
application that doesn't really require it. Programs with inter-process dependencies
(or lack of blocking and external dependencies) may see little or no benefit from
implementing concurrency structures.

Managing threads

So far, you've probably noticed that thread management is not a matter that requires
the programmer's utmost concern in Go. This is by design. Goroutines aren't tied to
a specific thread or threads that are handled by Go's internal scheduler. However,
this doesn't mean that you neither have access to the threads nor the ability to
control what individual threads do. As you know, you can already tell Go how
many threads you have (or wish to use) by using coMaxprocs. We also know that
using this can introduce asynchronous issues as it pertains to data consistency and
execution order.

At this point, the main issue with threads is not how they're accessed or utilized,
but how to properly control execution flow to guarantee that your data is predictable
and synchronized.
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Using sync and mutexes to lock data

One issue that you may have run into with the preceding examples is the notion
of atomic data. After all, if you deal with variables and structures across multiple
goroutines, and possibly processors, how do you ensure that your data is safe
across them? If these processes run in parallel, coordinating data access can
sometimes be problematic.

Go provides a bevy of tools in its sync package to handle these types of problems.
How elegantly you approach them depends heavily on your approach, but you
should never have to reinvent the wheel in this realm.

We've already looked at the waitGroup struct, which provides a simple method to
tell the main thread to pause until the next notification that says a waiting process
has done what it's supposed to do.

Go also provides a direct abstraction to a mutex. It may seem contradictory to
call something a direct abstraction, but the truth is you don't have access to Go's
scheduler, only an approximation of a true mutex.

We can use a mutex to lock and unlock data and guarantee atomicity in our data.

In many cases, this may not be necessary; there are a great many times where the
order of execution does not impact the consistency of the underlying data. However,
when we do have concerns about this value, it's helpful to be able to invoke a lock
explicitly. Let's take the following example:

package main

import (
n fmt n
n Sync n

)

func main() {
current := 0
iterations := 100
wg := new (sync.WaitGroup) ;

for i := 0; i < iterations; i++ {
wg.Add (1)
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go func() {
current++
fmt.Println (current)
wg .Done ()

1O

wg.Wait ()

}

}

Unsurprisingly, this provides a list of 0 to 99 in your terminal. What happens if
we change WaitGroup to know there will be 100 instances of Done () called, and
put our blocking code at the end of the loop?

To demonstrate a simple proposition of why and how to best utilize waitGroups
as a mechanism for concurrency control, let's do a simple number iterator and look
at the results. We will also check out how a directly called mutex can augment this
functionality, as follows:

func main() {
runtime .GOMAXPROCS (2)
current := 0
iterations := 100
wg := new (sync.WaitGroup) ;
wg.Add (iterations)
for i := 0; i < iterations; i++ {
go func() {
current++
fmt.Println (current)
wg .Done ()

}

Now, our order of execution is suddenly off. You may see something like the
following output:

95

96

98
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99
100
3

4

We have the ability to lock and unlock the current command at will; however, this
won't change the underlying execution order, it will only prevent reading and/or
writing to and from a variable until an unlock is called.

Let's try to lock down the variable we're outputting using mutex, as follows:

for i := 0; i < iterations; i++ {
go func()
mutex.Lock ()
fmt.Println (current)
current++
mutex.Unlock ()
fmt.Println (current)
wg .Done ()

1O

}

You can probably see how a mutex control mechanism can be important to enforce
data integrity in your concurrent application. We'll look more at mutexes and
locking and unlocking processes in Chapter 4, Data Integrity in an Application.

Summary

In this chapter, we've tried to remove some of the ambiguity of Go's concurrency
patterns and models by giving visual, real-time feedback to a few applications,
including a rudimentary RSS aggregator and reader. We examined the dining
philosophers problem and looked at ways you can use the Go concurrency topics
to solve the problem neatly and succinctly. We compared the way CSP and actor
models are similar and ways in which they differ.

In the next chapter, we will take these concepts and apply them to the process
of developing a strategy to maintain concurrency in an application.
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Developing a Concurrent
Strategy

In the previous chapter, we looked at the concurrency model that Go relies on
to make your life as a developer easier. We also saw a visual representation of
parallelism and concurrency. These help us to understand the differences and
overlaps between serialized, concurrent, and parallel applications.

However, the most critical part of any concurrent application is not the concurrency
itself but communication and coordination between the concurrent processes.

In this chapter, we'll look at creating a plan for an application that heavily factors
communication between processes and how a lack of coordination can lead to
significant issues with consistency. We'll look at ways we can visualize our concurrent
strategy on paper so that we're better equipped to anticipate potential problems.

Applying efficiency in complex
concurrency

When designing applications, we often eschew complex patterns for simplicity,
with the assumption that simple systems are often the fastest and most efficient.

It seems only logical that a machine with fewer moving parts will be more efficient
than one with more.

The paradox here, as it applies to concurrency, is that adding redundancy and
significantly more movable parts often leads to a more efficient application. If we
consider concurrent schemes, such as goroutines, to be infinitely scalable resources,
employing more should always result in some form of efficiency benefit. This applies
not just to parallel concurrency but to single core concurrency as well.
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If you find yourself designing an application that utilizes concurrency at the cost of
efficiency, speed, and consistency, you should ask yourself whether the application
truly needs concurrency at all.

When we talk about efficiency, we aren't just dealing with speed. Efficiency should
also weigh the CPU and memory overhead and the cost to ensure data consistency.

For example, should an application marginally benefit from concurrency but
require an elaborate and/or computationally expensive process to guarantee data
consistency, it's worth re-evaluating the strategy entirely.

Keeping your data reliable and up to date should be paramount; while having
unreliable data may not always have a devastating effect, it will certainly
compromise the reliability of your application.

Identifying race conditions with race
detection

If you've ever written an application that depends on the exact timing and
sequencing of functions or methods to create a desired output, you're already
quite familiar with race conditions.

These are particularly common anytime you deal with concurrency and far more
so when parallelism is introduced. We've actually encountered a few of them in
the first few chapters, specifically with our incrementing number function.

The most commonly used educational example of race conditions is that of a bank
account. Assume that you start with $1,000 and attempt 200 $5 transactions. Each
transaction requires a query on the current balance of the account. If it passes, the
transaction is approved and $5 is removed from the balance. If it fails, the transaction
is declined and the balance remains unchanged.

This is all well and good until the query happens at some point during a concurrent
transaction (in most cases in another thread). If, for example, a thread asks "Do you
have $5 in your account?" as another thread is in the process of removing $5 but has
not yet completed, you can end up with an approved transaction that should have
been declined.

Tracking down the cause of race conditions can be —to say the least—a gigantic
headache. With Version 1.1 of Go, Google introduced a race detection tool that
can help you locate potential issues.
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Let's take a very basic example of a multithreaded application with race conditions
and see how Golang can help us debug it. In this example, we'll build a bank account
that starts with $1,000 and runs 100 transactions for a random amount between $0
and $25.

Each transaction will be run in its own goroutine, as follows:

package main

import (
"fmt"
"time"
"sync"
"runtime"
"math/rand"

var balance int
var transactionNo int

func main() {
rand.Seed (time.Now () .Unix ())
runtime .GOMAXPROCS (2)
var wg sync.WaitGroup

tranChan := make (chan bool)

balance = 1000
transactionNo = 0
fmt.Println("Starting balance: $",balance)

wg.Add (1)
for i := 0; i < 100; i++ {
go func(ii int, trChan chan (bool)) {
transactionAmount := rand.Intn(25)
transaction (transactionAmount)
if (ii == 99) {
trChan <- true

} (i, tranChan)
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go transaction(0)
select {

case <- tranChan:
fmt.Println("Transactions finished")
wg .Done ()

wg.Wait ()
close (tranChan)
fmt.Println("Final balance: $",balance)

func transaction(amt int) (bool) ({

approved := false

if (balance-amt) < 0 {
approved = false

}else {
approved = true
balance = balance - amt

approvedText := "declined"
if (approved == true)

approvedText = "approved"
}else {

}

transactionNo = transactionNo + 1

fmt.Println (transactionNo, "Transaction for $",amt,approvedText)
fmt.Println("\tRemaining balance $",balance)

return approved

}

Depending on your environment (and whether you enable multiple processors),
you might have the previous goroutine operate successfully with a $0 or more final
balance. You might, on the other hand, simply end up with transactions that exceed
the balance at the time of transaction, resulting in a negative balance.
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So how do we know for sure?

For most applications and languages, this process often involves a lot of running,
rerunning, and logging. It's not unusual for race conditions to present a daunting
and laborious debugging process. Google knows this and has given us a race
condition detection tool. To test this, simply use the -race flag when testing,
building, or running your application, as shown:

go run -race race-test.go

When run on the previous code, Go will execute the application and then report
any possible race conditions, as follows:
>> Final balance: $0

>> Found 2 data race(s)

Here, Go is telling us there are two potential race conditions with data. It isn't telling
us that these will surely create data consistency issues, but if you run into such
problems, this may give you some clue as to why.

If you look at the top of the output, you'll get more detailed notes on what's causing
a race condition. In this example, the details are as follows:

WARNING: DATA RACE

Write by goroutine 5: main.transaction/() /var/go/race.go:75 +0xbd
main. func ;001 () /var/go/race.go:31 +0x44

Previous write by goroutine 4: main.transaction()
/var/go/race.go:75 +0xbd main.funcp001 () /var/go/race.go:31

+0x44
Goroutine 5 (running) created at: main.main() /var/go/race.go:36

+0x21c
Goroutine 4 (finished) created at: main.main () /var/go/race.go:36

+0x21c

We get a detailed, full trace of where our potential race conditions exist. Pretty
helpful, huh?
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The race detector is guaranteed to not produce false positives, so you can take
the results as strong evidence that there is a potential problem in your code. The
potential is stressed here because a race condition can go undetected in normal
conditions very often —an application may work as expected for days, months,
or even years before a race condition can surface.

We've mentioned logging, and if you aren't intimately familiar with
Go's core language, your mind might go in a number of directions —
stdout, file logs, and so on. So far we've stuck to stdout, but you can use
the standard library to handle this logging. Go's log package allows you
to write to io or stdout as shown:

messageOutput := os.Stdout
Wl logOut := log.New (messageOutput, "Message: ", log.
~ Ldate|log.Ltime|log.Llongfile) ;
logOut.Println("This is a message from the
application!")

This will produce the following output:

Message: 2014/01/21 20:59:11 /var/go/log.go:12: This is
a message from the application!

So, what's the advantage of the log package versus rolling your own?

In addition to being standardized, this package is also synchronized in

terms of output.

So what now? Well, there are a few options. You can utilize your channels to ensure
data integrity with a buffered channel, or you can use the sync.Mutex struct to lock
your data.

Using mutual exclusions

Typically, mutual exclusion is considered a low-level and best-known approach to
synchronicity in your application —you should be able to address data consistency
within communication between your channels. However, there will be instances
where you need to truly block read/write on a value while you work with it.

At the CPU level, a mutex represents an exchange of binary integer values across
registers to acquire and release locks. We'll deal with something on a much higher
level, of course.

We're already familiar with the sync package from our use of the waitGroup struct,
but the package also contains the conditional variables struct Cond and Once,
which will perform an action just one time, and the mutual exclusion locks RwMutex
and Mutex. As the name RWMutex implies, it is open to multiple readers and/or
writers to lock and unlock; there is more on this later in this chapter and in Chapter 5,
Locks, Blocks, and Better Channels.
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All of these —as the package name implies —empower you to prevent race conditions
on data that may be accessed by any number of goroutines and/or threads. Using any
of the methods in this package does not ensure atomicity within data and structures,
but it does give you the tools to manage atomicity effectively. Let's look at a few ways
we can solidify our account balance in concurrent, threadsafe applications.

As mentioned previously, we can coordinate data changes at the channel level
whether that channel is buffered or unbuffered. Let's offload the logic and data
manipulation to the channel and see what the -race flag presents.

If we modify our main loop, as shown in the following code, to utilize messages
received by the channel to manage the balance value, we will avoid race conditions:

package main

import (
" Frat "
"time"
"sync"
"runtime"
"math/rand"

var balance int
var transactionNo int

func main()
rand.Seed (time.Now () .Unix () )
runtime.GOMAXPROCS (2)
var wg sync.WaitGroup
balanceChan := make (chan int)
tranChan := make (chan bool)

balance = 1000
transactionNo = 0
fmt.Println("Starting balance: $",balance)

wg.Add (1)
for i:= 0; i<100; i++ {

go func(ii int) {

transactionAmount := rand.Intn(25)
balanceChan <- transactionAmount
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if ii == 99 {
fmt.Println("Should be quittin time")
tranChan <- true
close (balanceChan)
wg .Done ()

go transaction(0)

breakPoint := false
for {
if breakPoint == true ({
break
}
select {
case amt:= <- balanceChan:

fmt.Println("Transaction for $",amt)
if (balance - amt) < 0 {

fmt.Println("Transaction failed!™")
}else {

balance = balance - amt

fmt.Println ("Transaction succeeded")

}

fmt.Println("Balance now $",balance)

case status := <- tranChan:
if status == true {
fmt.Println ("Done")
breakPoint = true
close (tranChan)

wg.Wait ()

fmt.Println("Final balance: $",balance)
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func transaction(amt int) (bool) ({

approved := false

if (balance-amt) < 0 {
approved = false

}else {
approved = true
balance = balance - amt

approvedText := "declined"
if (approved == true)

approvedText = "approved"
}else {

}

transactionNo = transactionNo + 1

fmt.Println (transactionNo, "Transaction for $",amt,approvedText)
fmt.Println("\tRemaining balance $",balance)

return approved

}
This time, we let the channel manage the data entirely. Let's look at what we're doing:

transactionAmount := rand.Intn(25)
balanceChan <- transactionAmount

This still generates a random integer between 0 and 25, but instead of passing it to
a function, we pass the data along the channel. Channels allow you to control the
ownership of data neatly. We then see the select/listener, which largely mirrors our
transaction () function defined earlier in this chapter:

case amt:= <- balanceChan:
fmt.Println("Transaction for $",amt)
if (balance - amt) < 0 {

fmt.Println("Transaction failed!")
lelse {

balance = balance - amt

fmt.Println ("Transaction succeeded")

}

fmt.Println("Balance now $",balance)

To test whether we've averted a race condition, we can run go run with the -race
flag again and see no warnings.
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Channels can be seen as the sanctioned go-to way of handling synchronized
dataUse Sync.Mutex().

As mentioned, having a built-in race detector is a luxury not afforded to developers
in most languages, and having it allows us to test methodologies and get real-time
feedback on each.

We noted that using an explicit mutex is discouraged in favor of channels of

goroutines. This isn't always exactly true because there is a right time and place for
everything, and mutexes are no exclusion. What's worth noting is that mutexes are
implemented internally by Go for channels. As was previously mentioned, you can
use explicit channels to handle reads and writes and juggle the data between them.

However, this doesn't mean there is no use for explicit locks. An application that
has many reads and very few writes might benefit from explicit locks for writes;
this doesn't necessarily mean that the reads will be dirty reads, but it could result in
faster and/or more concurrent execution.

For the sake of demonstration, let's remove our race condition using an explicit lock.
Our -race flag tells us where it encounters read/write race conditions, as shown:

Read by goroutine 5: main.transaction () /var/go/race.go:62 +0x46

The previous line is just one among several others we'll get from the race detection
report. If we look at line 62 in our code, we'll find a reference to balance. We'll
also find a reference to transactionNo, our second race condition. The easiest
way to address both is to place a mutual exclusion lock around the contents of

the transaction function as this is the function that modifies the balance and
transactionNo variables. The transaction function is as follows:

func transaction(amt int) (bool) {
mutex.Lock ()

approved := false

if (balance-amt) < 0 {
approved = false

}else {
approved = true
balance = balance - amt

approvedText := "declined"
if (approved == true)

approvedText = "approved"
}else {
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}

transactionNo = transactionNo + 1
fmt.Println (transactionNo, "Transaction for $",amt,approvedText)
fmt.Println("\tRemaining balance $",balance)

mutex.Unlock ()
return approved

}

We also need to define mutex as a global variable at the top of our application,
as shown:

var mutex sync.Mutex
If we run our application now with the -race flag, we get no warnings.

The mutex variable is, for practical purposes, an alternative to the waitGroup struct,
which functions as a conditional synchronization mechanism. This is also the way
that the channels operate — data that moves along channels is contained and isolated
between goroutines. A channel can effectively work as a first-in, first-out tool in this
way by binding goroutine state to waitGroup; data accessed across the channel can
then be provided safety via the lower-level mutex.

Another worthwhile thing to note is the versatility of a channel —we have the ability
to share a channel among an array of goroutines to receive and/or send data, and as
a first-class citizen, we can pass them along in functions.

Exploring timeouts

Another noteworthy thing we can do with channels is explicitly kill them after
a specified amount of time. This is an operation that will be a bit more involved
should you decide to manually handle mutual exclusions.

The ability to kill a long-running routine through the channel is extremely helpful;
consider a network-dependent operation that should not only be restricted to a

short time period but also not allowed to run for a long period. In other words, you
want to offer the process a few seconds to complete; but if it runs for more than a
minute, our application should know that something has gone wrong enough to stop
attempting to listen or send on that channel. The following code demonstrates using
a timeout channel in a select call:

func main() {

ourCh := make (chan string, 1)

[77]



Developing a Concurrent Strategy

go func() {
10

select
case <-time.After (10 * time.Second) :
fmt.Println ("Enough's enough")
close (ourCh)

}

If we run the previous simple application, we'll see that our goroutine will be allowed
to do nothing for exactly 10 seconds, after which we implement a timeout safeguard
that bails us out.

You can see this as being particularly useful in network applications; even in the days
of blocking and thread-dependent servers, timeouts like these were implemented to
prevent a single misbehaving request or process to gum up the entire server. This is
the very basis of a classic web server problem that we'll revisit in more detail later.

Importance of consistency

In our example, we'll build an events scheduler. If we are available for a meeting and
we get two concurrent requests for a meeting invite, we'll get double-booked should
a race condition exist. Alternately, locked data across two goroutines may cause both
the requests to be denied or will result in an actual deadlock.

We want to guarantee that any request for availability is consistent — there should
neither be double-booking nor should a request for an event be blocked incorrectly
(because two concurrent or parallel routines lock the data simultaneously).

Synchronizing our concurrent operations

The word synchronization literally refers to temporal existence — things occurring at
the same time. It seems then that the most apt demonstration of synchronicity will be
something involving time itself.
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When we think about the ways time impacts us, it's generally a matter of scheduling,
due dates, and coordination. Going back to our preliminary example from the
Preface, if one wishes to plan their grandmother's birthday party, the following
types of scheduled tasks can take several forms:

* Things that must be done by a certain time (the actual party)

* Things that cannot be done until another task is completed (putting up
decorations before they're purchased)

* Things that can be done in any particular order without impacting the
outcome (cleaning the house)

* Things that can be done in any order but may well impact the outcome
(buying a cake before finding out what cake your grandmother likes
the most)

With these in mind, we'll attempt to handle some rudimentary human scheduling
by designing an appointment calendar that can handle any number of people with
one hour timeslots between 9 a.m. and 5 p.m.

The project — multiuser appointment
calendar

What do you do when you decide to write a program?

If you're like a lot of people, you think about the program; perhaps you and a
team will write up a spec or requirements document, and then you'll get to coding.
Sometimes, there will be a drawing representing some facsimile of the way the
application will work.

Quite often, the best way to nail down the architecture and the inner workings of
an application is to put pencil to paper and visually represent the way the program
will work. For a lot of linear or serial applications, this is often an unnecessary step
as things will work in a predictable fashion that should not require any specific
coordination within the application logic itself (although coordinating third-party
software likely benefits from specification).
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You may be familiar with some logic that looks something like the following diagram:

Schedule Event

Available?

Schedule
Event

Report
Failure

The logic here makes sense. If you remember from our Preface, when humans draw
out processes, we tend to serialize them. Visually, going from step one to step two
with a finite number of processes is easy to understand.

However, when designing a concurrent application, it's essential that we at least
account for innumerable and concurrent requests, processes, and logic to make sure
our application ends where we want, with the data and results we expect.

In the previous example, we completely ignore the possibility that "Is User
Available" could fail or report old or erroneous data. Does it make more sense to
address such problems if and when we find them, or should we anticipate them as
part of a control flow? Adding complexity to the model can help us reduce the odds
of data integrity issues down the road.

Let's visualize this again, taking into account availability pollers that will request
availability for a user with any given request for a time/user pair.
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Visualizing a concurrent pattern

As we have already discussed, we wish to create a basic blueprint of how our
application should function as a starting point. Here, we'll implement some control
flow, which relates to user activity, to help us decide what functionality we'll need to
include. The following diagram illustrates how the control flow may look like:

Concurrent Schedule Requests

Mutex or channel

Is User Available? Yield
To
Channel

.

Schedule and return to channel (_j

In the previous diagram, we anticipate where data can be shared using concurrent
and parallel processes to locate points of failure. If we design concurrent applications
in such graphical ways, we're less likely to find race conditions later on.

While we talked about how Go helps you to locate these after the application has
completed running, our ideal development workflow is to attempt to cut these
problems off at the start.
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Developing our server requirements

Now that we have an idea of how the scheduling process should work, we need
to identify components that our application will need. In this case, the components
are as follows:

e A web server handler
* A template for output

* A system for determining dates and times

Web server

In our visualizing concurrency example from the previous chapter, we used Go's
built-in http package, and we'll do the same here. There are a number of good
frameworks out there for this, but they primarily extend the core Go functionality
rather than reinventing the wheel. The following are a few of these functionalities,
listed from lightest to heaviest:

* Web.go: http://webgo.io/

Web.go is very lightweight and lean, and it provides some routing
functionality not available in the net /ht tp package.

e QGorilla: http://www.gorillatoolkit.org/

Gorilla is a Swiss army knife to augment the net /http package. It's not
particularly heavy, and it is fast, utilitarian, and very clean.

e Revel: http://robfig.github.io/revel/

Revel is the heaviest of the three, but it focuses on a lot of intuitive code,
caching, and performance. Look for it if you need something mature that
will face a lot of traffic.

In Chapter 6, C10K - A Non-blocking Web Server in Go, we'll roll our own web server
and framework with the sole goal of extreme high performance.

The Gorilla toolkit

For this application, we'll partially employ the Gorilla web toolkit. Gorilla is a fairly
mature web-serving platform that fulfills a few of our needs here natively, namely
the ability to include regular expressions in our URL routing. (Note: Web.Go also
extends some of this functionality.) Go's internal HTTP routing handler is rather
simplistic; you can extend this, of course, but we'll take a shortcut down a well-worn
and reliable path here.
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We'll use this package solely for ease of URL routing, but the Gorilla web toolkit also
includes packages to handle cookies, sessions, and request variables. We'll examine
this package a little closer in Chapter 6, C10K - A Non-blocking Web Server in Go.

Using templates

As Go is intended as a system language, and as system languages often deal with
the creation of servers with clients, some care was put into making it a well-featured
alternative to create web servers.

Anyone who's dealt with a "web language" will know that on top of that you'll need
a framework, ideally one that handles the presentation layer for the web. While

it's true that if you take on such a project you'll likely look for or build your own
framework, Go makes the templating side of things very easy.

The template package comes in two varieties: text and http. Though they
both serve different end points, the same properties —affording dynamism and
flexibility —apply to the presentation layer rather than strictly the application layer.

M The text template package is intended for general plaintext
Q documents, while the ht tp template package handles the generation
of HTML and related documents.

These templating paradigms are all too common these days; if you look at the
http/template package, you'll find some very strong similarities to Mustache,
one of the more popular variants. While there is a Mustache port in Go, there's
nothing there that isn't handled by default in the template package.

For more information on Mustache, visit http://mustache.
S github.io/.

One potential advantage to Mustache is its availability in other languages. If you
ever feel the need to port some of your application logic to another language (or
existing templates into Go), utilizing Mustache could be advantageous. That said,
you sacrifice a lot of the extended functionality of Go templates, namely the ability
to take out Go code from your compiled package and move it directly into template
control structures. While Mustache (and its variants) has control flows, they may not
mirror Go's templating system. Take the following example:

<ul>
{{range .Users}}
<li>A User </lis

{{end}}

</uls>
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Given the familiarity with Go's logic structures, it makes sense to keep them
consistent in our templating language as well.

We won't show all the specific templates in this thread, but we will
show the output. If you wish to peruse them, they're available at

mastergoco.com/chapters/3/templates.

Time

We're not doing a whole lot of math here; time will be broken into hour blocks and
each will be set to either occupied or available. At this time, there aren't a lot of
external date/time packages for Go. We're not doing any heavy-date math, but it
doesn't really matter because Go's t ime package should suffice even if we were.

In fact, as we have literal hour blocks from 9 a.m. to 5 p.m., we just set these
to the 24-hour time values of 9-17, and invoke a function to translate them into
linguistic dates.

Endpoints

We'll want to identify the REST endpoints (via GET requests) and briefly
describe how they'll work. You can think of these as modules or methods
in the model-view-controller architecture. The following is a list of the
endpoint patterns we'll use:

* entrypoint/register/{name}: This is where we'll go to add a name
to the list of users. If the user exists, it will fail.

* entrypoint/viewusers: Here, we'll present a list of users with their
timeslots, both available and occupied.

* entrypoint/schedule/{name}/{time}: This will initialize an attempt
to schedule an appointment.

Each will have an accompanying template that will report the status of the
intended action.
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Custom structs

We'll deal with users and responses (web pages), so we need two structs to represent
each. One struct is as follows:

type User struct ({
Name string
email string
times[int] bool

}
The other struct is as follows:

type Page struct {
Title string
Body string

}

We will keep the page as simple as possible. Rather than doing a lot of iterative
loops, we will produce the HTML within the code for the most part.

Our endpoints for requests will relate to our previous architecture, using the
following code:

func users(w http.ResponseWriter, r *http.Request) ({

}

func register(w http.ResponseWriter, r *http.Request) ({

}

func schedule(w http.ResponseWriter, r *http.Request) ({

}

A multiuser Appointments Calendar

In this section, we'll quickly look at our sample Appointments Calendar application,
which attempts to control consistency of specific elements to avoid obvious race
conditions. The following is the full code, including the routing and templating;:

package main

import (
"net/http"
"html/template"
"fmt
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"github.com/gorilla/mux"
n SynC n
"strconv"

type User struct ({
Name string
Times map[int] bool
DateHTML template.HTML

type Page struct ({
Title string
Body template.HTML
Users map [string] User

var usersInit map[string] bool
var userIndex int

var validTimes []int

var mutex sync.Mutex

var Users map [string]User

var templates = template.Must (template.New("template") .

ParseFiles("view users.html", "register.html"))

func register (w http.ResponseWriter, r *http.Request) {

fmt.Println("Request to /register")

params := mux.Vars (r)
name := params ["name"]
if ,ok := Users[name]; ok {
t, := template.ParseFiles("generic.txt")
page := &Page{ Title: "User already exists", Body:
template.HTML ("User " + name + " already exists")}
t.Execute (w, page)
} else {
newUser := User { Name: name }
initUser (&newUser)
Users [name] = newUser
t, := template.ParseFiles("generic.txt")
page := &Page{ Title: "User created!", Body:

template.HTML ("You have created user "+name) }
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t.Execute (w, page)

func dismissData(stl int, st2 bool) {

// Does nothing in particular for now other than avoid Go compiler
errors

func formatTime (hour int) string {

hourText := hour

ampm := "am"

if (hour > 11) {
ampm = "pm"

}

if (hour > 12) {
hourText = hour - 12;

}

fmt.Println (ampm)

outputString := strconv.FormatInt (inté4 (hourText),10) + ampm

return outputString

func (u User) FormatAvailableTimes() template.HTML { HTML := ""
HTML += "<b>"+u.Name+"</b> - "

for k,v := range u.Times { dismissData (k,v)
if (u.Times([k] == true) { formattedTime := formatTime (k) HTML
+= "<a href='/schedule/"+u.Name+"/"

+strconv.FormatInt (inté64 (k) ,10) +"'
class='button'>"+formattedTime+"</a> "

} else {

} return template.HTML (HTML)
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}

func users(w http.ResponseWriter, r *http.Request) ({
fmt.Println("Request to /users")

t, := template.ParseFiles("users.txt")
page := &Page{ Title: "View Users", Users: Users}
t.Execute (w, page)

func schedule(w http.ResponseWriter, r *http.Request)
fmt.Println("Request to /schedule")
params := mux.Vars (r)
name := params ["name"]
time := params["hour"]
timeval, := strconv.ParseInt( time, 10, 0 )
intTimeval := int (timeVval)

createURL := "/register/"+name

if ,ok := Users[name]; ok {
if Users[name] .Times[intTimeVal] == true ({
mutex.Lock ()
Users [name] .Times [intTimeVal] = false
mutex.Unlock ()
fmt.Println("User exists, variable should be modified")
t, := template.ParseFiles("generic.txt")

page := &Page{ Title: "Successfully Scheduled!", Body:
template.HTML ("This appointment has been scheduled. <a
href='/users'>Back to users</a>")}

t.Execute (w, page)

} else {
fmt.Println("User exists, spot is taken!")
t, := template.ParseFiles("generic.txt")
page := &Page{ Title: "Booked!", Body:

template.HTML ("Sorry, "+name+" is booked for
"+time+" <a href='/users'sBack to users</a>")}

t.Execute (w, page)
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} else {
fmt.Println("User does not exist™")
t, := template.ParseFiles("generic.txt")
page := &Page{ Title: "User Does Not Exist!", Body:
template.HTML ( "Sorry, that user does not exist. Click
<a href='"+createURL+"'>here</a> to create it. <a

href='/users's>Back to users</a>")}
t.Execute (w, page)

}

fmt.Println (name, time)

func defaultPage (w http.ResponseWriter, r *http.Request) ({

func initUser (user *User)

user.Times = make (map[int] bool)
fori:=9;i<18;i++{
user.Times[1i] = true

func main ()
Users = make (map[string] User)
userIndex = 0
bill := User {Name: "Bill" }
initUser (&bill)
Users["Bill"] = bill

userIndex++

r := mux.NewRouter () r.HandleFunc ("/", defaultPage)
r.HandleFunc ("/users", users)

r.HandleFunc ("/register/{name: [A-Za-z]+}", register)
r.HandleFunc ("/schedule/{name: [A-Za-z]+}/{hour: [0-9]+}",
schedule) http.Handle("/", 1)

err := http.ListenAndServe(":1900", nil) if err != nil { //

log.Fatal ("ListenAndServe:", err) }
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Note that we seeded our application with a user, Bill. If you attempt to hit
/register/bill |billeexample.com, the application will report that the user exists.

As we control the most sensitive data through channels, we avoid any race
conditions. We can test this in a couple of ways. The first and easiest way is to keep
a log of how many successful appointments are registered, and run this with Bill as
the default user.

We can then run a concurrent load tester against the action. There are a number of
such testers available, including Apache's ab and Siege. For our purposes, we'll use
JMeter, primarily because it permits us to test against multiple URLs concurrently.

Although we're not necessarily using JMeter for load testing (rather,
we use it to run concurrent tests), load testers can be extraordinarily
valuable ways to find bottlenecks in applications at scales that don't
yet exist.

N For example, if you built a web application that had a blocking
=~ element and had 5,000-10,000 requests per day, you may not notice
Q it. But at 5 million-10 million requests per day, it might result in the
application crashing.

In the dawn of network servers, this is what happened; servers
scaled until one day, suddenly, they couldn't scale further. Load/
stress testers allow you to simulate traffic in order to better detect
these issues and inefficiencies.

Given that we have one user and eight hours in a day, we should end our script
with no more than eight total successful appointments. Of course, if you hit the
/register endpoint, you will see eight times as many users as you've added.
The following screenshot shows our benchmark test plan in JMeter:

Y Apache JMeter (2.11 r1554548)
File Edit Search Run Options Help
e @ 253 £ 0  + =4k & % o

s ; Concurrency Test
¢ F7 Two-threaded Reguests Test Plan

4 HTTP Request - am ‘| |name: [concurrency Test
*/,‘ HTTP Reguest - 10am :
*/,‘ HTTP Reguest - 11am
g
»
# HTIF Reguest - 1pm
*/,‘ HTTP Request - 2pm
*/,‘ HTTP Request - 3pm
#//‘
Vg
i

Comments:

HTTP Reguest - 12pm

MName:

HTTP Request - 4pm
HTTP Reguest - Spm
iZ| workBench
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When you run your application, keep an eye on your console; at the end of our load
test, we should see the following message:

Total registered appointments: 8

Had we designed our application as per the initial graphical mockup representation
in this chapter (with race conditions), it's plausible —and in fact likely — that we'd
register far more appointments than actually existed.

By isolating potential race conditions, we guarantee data consistency and ensure
that nobody is waiting on an appointment with an otherwise occupied attendee.
The following screenshot is the list we present of all the users and their available
appointment times:

<« C & [ localhost:1900/users
T .

View Users

Bill - %am 11am 1pm 3pm Spm 10am 12pm 2Zpm  4pm
angela - %9am 11am 1pm 3pm Spm 10am 12pm Zpm  4pm
chris - %am Mam 1pm 3pm Spm 10am 12pm 2Zpm  4pm
jennifer - 10am 12pm 2pm 4pm %am 11am 1pm 3pm  Spm
nathan - 10am 12pm 2pm 4pm 9am 11am 1pm 3pm  5pm
todd - %9am 11am 1pm 3pm Spm 10am 12pm Zpm  4pm

The previous screenshot is our initial view that shows us available users and their
available time slots. By selecting a timeslot for a user, we'll attempt to book them
for that particular time. We'll start with Nathan at 5 p.m.

The following screenshot shows what happens when we attempt to schedule with
an available user:

&« C A | [ localhost:1900/schedule/nathan/17

Successfully Scheduled!

This appointment has been scheduled Back to users
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However, if we attempt to book again (even simultaneously), we'll be greeted
with a sad message that Nathan cannot see us at 5 p.m, as shown in the following
screenshot:

&« = C A [ localhost:1900/schedule/nathan/17

Booked!

Sotry, nathan is booked for Spm Back to users

With that, we have a multiuser calendar app that allows for creating new users,
scheduling, and blocking double-bookings.

Let's look at a few interesting new points in this application.

First, you will notice that we use a template called generic. txt for most parts
of the application. There's not much to this, only a page title and body filled in by
each handler. However, on the /users endpoint, we use users. txt as follows:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-
g">
<title>{{.Title}}</title>
</head>
<body>

<his{{.Title}}</h1>

{{range .Users}}
<div class="user-row">

{{.FormatAvailableTimes} }

</divs>

{{end}}

</body>
</html>
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We mentioned the range-based functionality in templates, but how does
{{.FormatAvailableTimes}} work? In any given context, we can have type-specific
functions that process the data in more complex ways than are available strictly in
the template lexer.

In this case, the User struct is passed to the following line of code:

func (u User) FormatAvailableTimes() template.HTML {

This line of code then performs some conditional analysis and returns a string with
some time conversion.

In this example, you can use either a channel to control the flow of User.times

or an explicit mutex as we have here. We don't want to limit all locks, unless
absolutely necessary, so we only invoke the Lock () function if we've determined
the request has passed the tests necessary to modify the status of any given user/
time pair. The following code shows where we set the availability of a user within
a mutual exclusion:

if ,ok := Users[namel; ok {
if Users[name] .Times [intTimeVal] == true {
mutex.Lock ()
Users [name] .Times [intTimeVal] = false
mutex.Unlock ()

The outer evaluation checks that a user by that name (key) exists. The second
evaluation checks that the time availability exists (true). If it does, we lock the
variable, set it to false, and then move onto output rendering.

Without the Lock () function, many concurrent connections can compromise the
consistency of data and cause the user to have more than one appointment in a
given hour.

A note on style

You'll note that despite preferring camelCase for most of our variables, we have
some uppercase variables within structs. This is an important Go convention worth
mentioning: any struct variable that begins with a capital letter is public. Any
variable that begins with a lowercase letter is private.

If you attempt to output a private (or nonexistent) variable in your template files,
template rendering will fail.
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A note on immutability

Note that whenever possible, we'll avoid using the string type for comparative
operations, especially in multithreaded environments. In the previous example,
we use integers and Booleans to decide availability for any given user. In some
languages, you may feel empowered to assign the time values to a string for ease
of use. For the most part, this is fine, even in Go; but assuming that we have an
infinitely scalable, shared calendar application, we run the risk of introducing
memory issues if we utilize strings in this way.

The string type is the sole immutable type in Go; this is noteworthy if you end up
assigning and reassigning values to a string. Assuming that memory is yielded after
a string is converted to a copy, this is not a problem. However, in Go (and a couple
of other languages), it's entirely possible to keep the original value in memory.

We can test this using the following example:

func main() {

testString := "Watch your top / resource monitor"
for i:= 0; i < 1000; i++ {

testString = string(i)

}

doNothing (testString)

time.Sleep (10 * time.Second)

}

When run in Ubuntu, this takes approximately 1.0 MB of memory; some of that no
doubt overhead, but a useful reference point. Let's up the ante a bit—though having
1,000 relatively small pointers won't have much impact—using the following line

of code:

for i:= 0; i < 100000000; i++ {

Now, having gone through 100 million memory assignments, you can see the
impact on memory (it doesn't help that the string itself is at this point longer

than the initial, but it doesn't account for the full effect). Garbage collection takes
place here too, which impacts CPU. On our initial test here, both CPU and memory
spiked. If we substitute this for an integer or a Boolean assignment, we get much
smaller footprints.
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This is not exactly a real-world scenario, but it's worth noting in a concurrent
environment where garbage collection must happen so we can evaluate the
properties and types of our logic.

It's also entirely possible, depending on your current version of Go, your machine(s),
and so on, and this could run as efficiently in either scenario. While that might seem
fine, part of our concurrent strategy planning should involve the possibility that our
application will scale in input, output, physical resources, or all of them. Just because
something works well now doesn't mean it's not worth implementing efficiencies
that will keep it from causing performance problems at a 100x scale.

If you ever encounter a place where a string is logical, but you want or could benefit
from a mutable type, consider a byte slice instead.

A constant is, of course, also immutable, but given that's the implied purpose of a
constant variable, you should already know this. A mutable constant variable is,
after all, an oxymoron.

Summary

This chapter has hopefully directed you towards exploring methods to plan and
chart out your concurrent applications before delving in. By briefly touching on
race conditions and data consistency, we attempted to highlight the importance
of anticipatory design. At the same time, we utilized a few tools for identifying
such issues, should they occur.

Creating a robust script flowchart with concurrent processes will help you locate
possible pitfalls before you create them, and it will give you a better sense of how
(and when) your application should be making decisions with logic and data.

In the next chapter, we'll examine data consistency issues and look at advanced
channel communication options in an effort to avoid needless and often expensive
mitigating functions, mutexes, and external processes.
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Data Integrity in
an Application

By now, you should be comfortable with the models and tools provided in Go's core
to provide mostly race-free concurrency.

We can now create goroutines and channels with ease, manage basic communication
across channels, coordinate data without race conditions, and detect such conditions
as they arise.

However, we can neither manage larger distributed systems nor deal with
potentially lower-level consistency problems. We've utilized a basic and simplistic
mutex, but we are about to look at a more complicated and expressive way of
handling mutual exclusions.

By the end of this chapter, you should be able to expand your concurrency patterns
from the previous chapter into distributed systems using a myriad of concurrency
models and systems from other languages. We'll also look —at a high level —at some
consistency models that you can utilize to further express your precoding strategies
for single-source and distributed applications.

Getting deeper with mutexes and sync

In Chapter 2, Understanding the Concurrency Model, we introduced sync.mutex and
how to invoke a mutual exclusion lock within your code, but there's some more
nuance to consider with the package and the mutex type.

We've mentioned that in an ideal world, you should be able to maintain
synchronization in your application by using goroutines alone. In fact, this would
probably be best described as the canonical method within Go, although the sync
package does provide a few other utilities, including mutexes.
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Whenever possible, we'll stick with goroutines and channels to manage consistency,
but the mutex does provide a more traditional and granular approach to lock and
access data. If you've ever managed another concurrent language (or package within
a language), odds are you've had experience with either a mutex or a philosophical
analog. In the following chapters, we'll look at ways of extending and exploiting
mutexes to do a little more out of the box.

If we look at the sync package, we'll see there are a couple of different mutex structs.

The first is sync.mutex, which we've explored —but another is RwMutex. The
RWMutex struct provides a multireader, single-writer lock. These can be useful if
you want to allow reads to resources but provide mutex-like locks when a write
is attempted. They can be best utilized when you expect a function or subprocess
to do frequent reads but infrequent writes, but it still cannot afford a dirty read.

Let's look at an example that updates the date/time every 10 seconds (acquiring
a lock), yet outputs the current value every other second, as shown in the
following code:

package main

import (
n fmt n
n Sync n
"time"

)

type TimeStruct struct {
totalChanges int
currentTime time.Time
rwLock sync.RWMutex

}

var TimeElement TimeStruct

func updateTime () {
TimeElement .rwLock.Lock ()
defer TimeElement.rwLock.Unlock ()
TimeElement .currentTime = time.Now ()
TimeElement.totalChanges++

}

func main() {

var wg sync.WaitGroup

[98]




Chapter 4

TimeElement.totalChanges = 0

TimeElement.currentTime = time.Now ()
timer := time.NewTicker(l * time.Second)
writeTimer := time.NewTicker (10 * time.Second)
endTimer := make (chan bool)
wg.Add (1)
go func() {
for {
select {

case <-timer.C:

fmt.Println (TimeElement.totalChanges,

TimeElement.currentTime.String())

case <-writeTimer.C:

updateTime ()
case <-endTimer:

timer.Stop ()

return

1O

wg.Wait ()
fmt.Println (TimeElement.currentTime.String())

}

% We don't explicitly run Done () on our WaitGroup struct, so this
o will run in perpetuity.

There are two different methods for performing locks/unlocks on RWMutex:

* Lock(): This will block variables for both reading and writing until an
Unlock () method is called

* happenedRlock (): This locks bound variables solely for reads

The second method is what we've used for this example, because we want to
simulate a real-world lock. The net effect is the interval function that outputs the
current time that will return a single dirty read before rwLock releases the read lock
on the currentTime variable. The sleep () method exists solely to give us time to
witness the lock in motion. An RWLock struct can be acquired by many readers or
by a single writer.

[99]



Data Integrity in an Application

The cost of goroutines

As you work with goroutines, you might get to a point where you're spawning
dozens or even hundreds of them and wonder if this is going to be expensive. This
is particularly true if your previous experience with concurrent and/or parallel
programming was primarily thread-based. It's commonly accepted that maintaining
threads and their respective stacks can begin to bog down a program with
performance issues. There are a few reasons for this, which are as follows:

* Memory is required just for the creation of a thread

* Context switching at the OS level is more complex and expensive than
in-process context switching

* Very often, a thread is spawned for a very small process that could be
handled otherwise

It's for these reasons that a lot of modern concurrent languages implement something
akin to goroutines (C# uses the async and await mechanism, Python has greenlets/
green threads, and so on) that simulate threads using small-scale context switching.

However, it's worth knowing that while goroutines are (or can be) cheap and
cheaper than OS threads, they are not free. At a large (perhaps enormous) measure,
even cheap and light goroutines can impact performance. This is particularly
important to note as we begin to look at distributed systems, which often scale larger
and at faster rates.

The difference between running a function directly and running it in a goroutine is
negligible of course. However, keep in mind that Go's documentation states:

It is practical to create hundreds of thousands of goroutines in the same address
space.

Given that stack creation uses a few kilobytes per goroutine, in a modern
environment, it's easy to see how that could be perceived as a nonfactor. However,
when you start talking about thousands (or millions) of goroutines running, it

can and likely will impact the performance of any given subprocess or function.
You can test this by wrapping functions in an arbitrary number of goroutines and
benchmarking the average execution time and —more importantly —memory usage.
At approximately 5KB per goroutine, you may find that memory can become a
factor, particularly on low-RAM machines or instances. If you have an application
that runs heavy on a high-powered machine, imagine it reaching criticality in one
or more lower-powered machines. Consider the following example:

for i:= 0; i < 1000000000; i++
go someFunction ()

}
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Even if the overhead for the goroutine is cheap, what happens at 100 million or —as
we have here —a billion goroutines running?

As always, doing this in an environment that utilizes more than a single core can
actually increase the overhead of this application due to the costs of OS threading
and subsequent context switching.

These issues are almost always the ones that are invisible unless and until an
application begins to scale. Running on your machine is one thing, running at scale
across a distributed system with what amounts to low-powered application servers
is quite another.

The relationship between performance and data consistency is important,
particularly if you start utilizing a lot of goroutines with mutual exclusions, locks,
or channel communication.

This becomes a larger issue when dealing with external, more permanent
memory sources.

Working with files

Files are a great example of areas where data consistency issues such as race
conditions can lead to more permanent and catastrophic problems. Let's look at a
piece of code that might continuously attempt to update a file to see where we could
run into race conditions, which in turn could lead to bigger problems such as an
application failing or losing data consistency:

package main

import (
n fmt n
"jo/ioutil™"
"strconv"
n Sync n

func writeFile(i int)

rwLock.RLock () ;
ioutil .WriteFile("test.txt",

[lbyte (strconv.FormatInt (inté4 (i) ,10)), 0x777)
rwLock.RUnlock () ;
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writer<-true

var writer chan bool
var rwLock sync.RWMutex

func main() {
writer = make (chan bool)

for 1:=0;1<10;i++ {
go writeFile (i)

}

<-writer
fmt.Println("Done!")

}

Code involving file operations are rife for these sorts of potential issues, as mistakes
are specifically not ephemeral and can be locked in time forever.

If our goroutines block at some critical point or the application fails midway
through, we could end up with a file that has invalid data in it. In this case, we're
simply iterating through some numbers, but you can also apply this situation to one
involving database or datastore writes — the potential exists for persistent bad data
instead of temporary bad data.

This is not a problem that is exclusively solved by channels or mutual exclusions;
rather, it requires some sort of sanity check at every step to make certain that data
is where you and the application expect it to be at every step in the execution. Any
operation involving io.Writer relies on primitives, which Go's documentation
explicitly notes that we should not assume they are safe for parallel execution.

In this case, we have wrapped the file writing in a mutex.
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Getting low — implementing C

One of the most interesting developments in language design in the past decade

or two is the desire to implement lower-level languages and language features via
API. Java lets you do this purely externally, and Python provides a C library for
interaction between the languages. It warrants mentioning that the reasons for doing
this vary —among them applying Go's concurrency features as a wrapper for legacy
C code—and you will likely have to deal with some of the memory management
associated with introducing unmanaged code to garbage-collected applications.

Go takes a hybrid approach, allowing you to call a C interface through an import,
which requires a frontend compiler such as GCC:

import "C"
So why would we want to do this?

There are some good and bad reasons to implement C directly in your project.

An example of a good reason might be to have direct access to the inline assembly,
which you can do in C but not directly in Go. A bad reason could be any that has
a solution inherent in Golang itself.

To be fair, even a bad reason is not bad if you build your application reliably, but it
does impose an additional level of complexity to anyone else who might use your
code. If Go can satisfy the technical and performance requirements, it's always better
to use a single language in a single project.

There's a famous quote from C++ creator Bjarne Stroustrup on C and C++:

C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you
do, it blows your whole leg off.

Jokes aside (Stroustrup has a vast collection of such quips and quotes), the
fundamental reasoning is that the complexity of C often prevents people from
accidentally doing something catastrophic.
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As Stroustrup says, C makes it easy to make big mistakes, but the repercussions are
often smaller due to language design than higher-level languages. Issues dealing
with security and stability are easy to be introduced in any low-level language.

By simplifying the language, C++ provides abstractions that make low-level
operations easier to carry out. You can see how this might apply to using C directly
in Go, given the latter language's syntactical sweetness and programmer friendliness.

That said, working with C can highlight some of the potential pitfalls with regard to
memory, pointers, deadlocks, and consistency, so we'll touch upon a simple example
as follows:

package main

// #include <stdio.h>

// #include <string.h>

// int string length (char* str) {
// return strlen(str) ;

/)

import "C"

import "fmt"

func main() {
v := C.CString("Don't Forget My Memory Is Not Visible To Go!")
x := C.string length(v)

fmt.Println("A C function has determined your string
is",x,"characters in length")

Touching memory in cgo

The most important takeaway from the preceding example is to remember that
anytime you go into or out of C, you need to manage memory manually (or at least
more directly than with Go alone). If you've ever worked in C (or C++), you know
that there's no automatic garbage collection, so if you request memory space, you
must also free it. Calling C from Go does not preclude this.

The structure of cgo

Importing C into Go will take you down a syntactical side route, as you probably
noticed in the preceding code. The first thing that will appear glaringly different is
the actual implementation of C code within your application.
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Any code (in comments to stop Go's compiler from failing) directly above the import
ncn directive will be interpreted as C code. The following is an example of a C
function declared above our Go code:

/*
int addition(int a, int b)
return a + b;

}

Bear in mind that Go won't validate this, so if you make an error in your C code, it
could lead to silent failure.

Another related warning is to remember your syntax. While Go and C share a lot of
syntactical overlap, leave off a curly bracket or a semicolon and you could very well
find yourself in one of those silent failure situations. Alternately, if you're working
in the C part of your application and you go back to Go, you will undoubtedly find
yourself wrapping loop expressions in parentheses and ending your lines with
semicolons.

Also remember that you'll frequently have to handle type conversions between C
and Go that don't have one-to-one analogs. For example, C does not have a built-in
string type (you can, of course, include additional libraries for types), so you may
need to convert between strings and char arrays. Similarly, int and int64 might
need some nonimplicit conversion, and again, you may not get the debugging
feedback that you might expect when compiling these.

The other way around

Using C within Go is obviously a potentially powerful tool for code migration,
implementing lower-level code, and roping in other developers, but what about
the inverse? Just as you can call C from within Go, you can call Go functions as
external functions within your embedded C.

The end game here is the ability to work with and within C and Go in the same
application. By far the easiest way to handle this is by using gccgo, which is a
frontend for GCC. This is different than the built-in Go compiler; it is possible
to go back and forth between C and Go without gccgo, but using it makes this
process much simpler.
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gopart.go

The following is the code for the Go part of the interaction, which the C part will
call as an external function:

package main
func MyGoFunction (num C.int) int {

squared := num * num
fmt.Println (num, "squared is", squared)
return squared

}
cpart.c

Now for the C part, where we make our call to our Go application's exported
function MyGoFunction, as shown in the following code snippet:

#include <stdio.h>
extern int square it (int) _ asm_  ("cross.main.MyGoFunction")
int main() {

int output = square it (5)
printf ("Output: %d",output)
return 0;

}
Makefile

Unlike using C directly in Go, at present, doing the inverse requires the use of a
makefile for C compilation. Here's one that you can use to get an executable from
the earlier simple example:

all: main

main: cpart.o cpart.c
gcc cpart.o cpart.c -o main

gopart.o: gopart.go
gccgo -c¢ gopart.go -o gopart.o -fgo-prefix=cross

clean:
rm -f main *.o
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Running the makefile here should produce an executable file that calls the function
from within C.

However, more fundamentally, cgo allows you to define your functions as external
functions for C directly:

package output
import "C"

//export MyGoFunction
func MyGoFunction (num int) int {

squared := num * num

return squared

}

Next, you'll need to use the cgo tool directly to generate header files for C as shown
in the following line of code:

go tool cgo goback.go

At this point, the Go function is available for use in your C application:

#include <stdio.h>
#include " obj/ cgo_ export.h"

extern int MyGoFunction (int num) ;
int main() {

int result = MyGoFunction(5) ;
printf ("Output: %d",result);
return 0O;

}

Note that if you export a Go function that contains more than one return value,
it will be available as a struct in C rather than a function, as C does not provide
multiple variables returned from a function.
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At this point, you may be realizing that the true power of this functionality is the
ability to interface with a Go application directly from existing C (or even C++)
applications.

While not necessarily a true API, you can now treat Go applications as linked
libraries within C apps and vice versa.

One caveat about using //export directives: if you do this, your C code must
reference these as extern-declared functions. As you may know, extern is used
when a C application needs to call a function from another linked C file.

When we build our Go code in this manner, cgo generates the header file _cgo_
export.h, as you saw earlier. If you want to take a look at that code, it can help
you understand how Go translates compiled applications into C header files for
this type of use:

/* Created by cgo - DO NOT EDIT. */
#include " cgo export.h"

extern void crosscall2(void (*fn) (void *, int), wvoid *, int);
extern void _cgoexp d133c8d0d35b MyGoFunction(void *, int);

GoInt64 MyGoFunction (GoInt p0)
{
struct {
GoInt po0;
GoInt64 r0;
} __attribute ((packed)) a;
a.p0 = poO;
crosscall2(_cgoexp d133c8d0d35b MyGoFunction, &a, 16);

return a.r0;

}

You may also run into a rare scenario wherein the C code is not exactly as you
expect, and you're unable to cajole the compiler to produce what you expect. In
that case, you're always free to modify the header file before the compilation of
your C application, despite the DO NOT EDIT warning.
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Getting even lower — assembly in Go

If you can shoot your foot off with C and you can blow your leg off with C++, just
imagine what you can do with assembly in Go.

It isn't possible to use assembly directly in Go, but as Go provides access to C directly
and C provides the ability to call inline assembly, you can indirectly use it in Go.

But again, just because something is possible doesn't mean it should be done —if you
find yourself in need of assembly in Go, you should consider using assembly directly
and connecting via an API.

Among the many roadblocks that you may encounter with assembly in (C and
then in) Go is the lack of portability. Writing inline C is one thing — your code
should be relatively transferable between processor instruction sets and operating
systems —but assembly is obviously something that requires a lot of specificity.

All that said, it's certainly better to have the option to shoot yourself in the foot
whether you choose to take the shot or not. Use great care when considering whether
you need C or assembly directly in your Go application. If you can get away with
communicating between dissonant processes through an API or interprocess
conduit, always take that route first.

One very obvious drawback of using assembly in Go (or on its own or in C) is you
lose the cross-compilation capabilities that Go provides, so you'd have to modify
your code for every destination CPU architecture. For this reason, the only practical
times to use Go in C are when there is a single platform on which your application
should run.

Here's an example of what an ASM-in-C-in-Go application might look like. Keep in
mind that we've included no ASM code, because it varies from one processor type
to another. Experiment with some boilerplate assembly in the following __asm__
section:

package main

/*

#include <stdio.hs>
void asmCall() {

_asm_( nn )1'
printf ("I come from a %s","C function with embedded asm\n") ;
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}

*/

import "C"

func main() {
C.asmCall ()

}

If nothing else, this may provide an avenue for delving deeper into ASM even if
you're familiar with neither assembly nor C itself. The more high-level you consider
C and Go to be, the more practical you might see this.

For most uses, Go (and certainly C) is low-level enough to be able to squeeze out any
performance hiccups without landing at assembly. It's worth noting again that while
you do lose some immediate control of memory and pointers in Go when you invoke
C applications, that caveat applies tenfold with assembly. All of those nifty tools that
Go provides may not work reliably or not work at all. If you think about the Go race
detector, consider the following application:

package main

/*

int increment (int 1) {
1++;
return 1i;

!

import "C"

import "fmt"

var myNumber int

func main()
fmt .Println (myNumber)

for i:=0;1<100;i++ {
myNumber = int( C.increment (C.int (myNumber)) )
fmt .Println (myNumber)

}
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You can see how tossing your pointers around between Go and C might leave you
out in the dark when you don't get what you expect out of the program.

Keep in mind that here there is a somewhat unique and perhaps unexpected kicker
to using goroutines with cgo; they are treated by default as blocking. This isn't to say
that you can't manage concurrency within C, but it won't happen by default. Instead,
Go may well launch another system thread. You can manage this to some degree

by utilizing the runtime function runtime.LockOSThread (). Using LockOSThread
tells Go that a particular goroutine should stay within the present thread and no
other concurrent goroutine may use this thread until runtime.Unlock0SThread ()

is called.

The usefulness of this depends heavily on the necessity to call C or a C library
directly; some libraries will play happily as new threads are created, a few others
may segfault.

Another useful runtime call you should find useful within your Go
* codeis NumGcoCall (). This returns the number of cgo calls made
% by a current process. If you need to lock and unlock threads, you can
T also use this to build an internal queue report to detect and prevent
deadlocks.

None of this precludes the possibility of race conditions should you choose to mix
and match Go and C within goroutines.

Of course, C itself has a few race detector tools available. Go's race detector itself is
based on the Threadsanitizer library. It should go without saying that you probably
do not want several tools that accomplish the same thing within a single project.

Distributed Go

So far, we've talked quite a bit about managing data within single machines, though
with one or more cores. This is complicated enough as is. Preventing race conditions
and deadlocks can be hard to begin with, but what happens when you introduce
more machines (virtual or real) to the mix?
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The first thing that should come to mind is that you can throw out a lot of the
inherent tools that Go provides, and to a large degree that's true. You can mostly
guarantee that Go can handle internal locking and unlocking of data within its own,
singular goroutines and channels, but what about one or more additional instances
of an application running? Consider the following model:

Thread A Thread B Thread A Thread B

SystemA .~ SystemB

Here we see that either of these threads across either process could be reading from
or writing to our Critical Data at any given point. With that in mind, there exists a
need to coordinate access to that data.

At a very high level, there are two direct strategies for handling this, a distributed
lock or consistency hash table (consistent hashing).

The first strategy is an extension of mutual exclusions except that we do not
have direct and shared access to the same address space, so we need to create an
abstraction. In other words, it's our job to concoct a lock mechanism that's visible
to all available external entities.

The second strategy is a pattern designed specifically for caching and cache
validation/invalidation, but it has relevancy here as well, because you can use
it to manage where data lives in the more global address space.

However, when it comes to ensuring consistency across these systems, we need to
go deeper than this general, high-level approach.
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Split this model down the middle and it becomes easy: channels will handle the
concurrent flow of data and data structures, and where they don't, you can use
mutexes or low-level atomicity to add additional safeguards.

However, look to the right. Now you have another VM/instance or machine
attempting to work with the same data. How can we make sure that we do not
encounter reader/writer problems?

Some common consistency models

Luckily, there are some non-core Go solutions and strategies that we can utilize
to improve our ability to control data consistency.

Let's briefly look at a few consistency models that we can employ to manage our
data in distributed systems.

Distributed shared memory

On its own, a Distributed Shared Memory (DSM) system does not intrinsically
prevent race conditions, as it is merely a method for more than one system to share
real or partitioned memory.

In essence, you can imagine two systems with 1 GB of memory, each allocating 500
MB to a shared memory space that is accessible and writable by each. Dirty reads are
possible as are race conditions unless explicitly designed. The following figure is a
visual representation of how two systems can coordinate using shared memory:

We'll look at one prolific but simple example of DSM shortly, and play with a library
available to Go for test driving it.
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First-in-first-out - PRAM

Pipelined RAM (PRAM) consistency is a form of first-in-first-out methodology,
in which data can be read in order of the queued writes. This means that writes
read by any given, separate process may be different. The following figure
represents this concept:

> Write 2>> Write 1> Data Access { Read1 <

Looking at the master-slave model

The master-slave consistency model is similar to the leader/follower model that we'll
look at shortly, except that the master manages all operations on data and broadcasts
rather than receiving write operations from a slave. In this case, replication is the
primary method of transmission of changes to data from the master to the slave.

In the following diagram, you will find a representation of the master-slave model
with a master server and four slaves:

OO OO

While we can simply duplicate this model in Go, we have more elegant solutions
available to us.
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The producer-consumer problem

In the classic producer-consumer problem, the producer writes chunks of data to a

conduit/buffer, while a consumer reads chunks. The issue arises when the buffer is
full: if the producer adds to the stack, the data read will not be what you intend. To
avoid this, we employ a channel with waits and signals. This model looks a bit like

the following figure:

Fixed-length

Conduit Read(s)

If you're looking for the semaphore implementation in Go, there is no explicit usage
of the semaphore. However, think about the language here — fixed-size channels with
waits and signals; sounds like a buffered channel. Indeed, by providing a buffered
channel in Go, you give the conduit here an explicit length; the channel mechanism
gives you the communication for waits and signals. This is incorporated in Go's
concurrency model. Let's take a quick look at a producer-consumer model as shown
in the following code:

package main

import (
n fmt n
)

var comm = make (chan bool)
var done = make (chan bool)

func producer () {
for i:=0; i< 10; i++ {
comm <- true

}
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done <- true

}

func consumer () {
for {
communication := <-comm

fmt.Println ("Communication from producer
received!", communication)

}
}

func main() {
go producer ()
go consumer ()
<- done
fmt.Println("All Done!™")

Looking at the leader-follower model

In the leader/follower model, writes are broadcasted from a single source to any
followers. Writes can be passed through any number of followers or be restricted
to a single follower. Any completed writes are then broadcasted to the followers.
This can be visually represented as the following figure:

Broadcast

Follower
— Leader

Write

We can see a channel analog here in Go as well. We can, and have, utilized a single
channel to handle broadcasts to and from other followers.
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Atomic consistency / mutual exclusion

We've looked at atomic consistency quite a bit. It ensures that anything that is not
created and used at essentially the same time will require serialization to guarantee
the strongest form of consistency. If a value or dataset is not atomic in nature,

we can always use a mutex to force linearizability on that data.

Serial or sequential consistency is inherently strong, but can also lead to performance
issues and degradation of concurrency.

Atomic consistency is often considered the strongest form of ensuring consistency.

Release consistency

The release consistency model is a DSM variant that can delay a write's
modifications until the time of first acquisition from a reader. This is known
as lazy release consistency. We can visualize lazy release consistency in the
following serialized model:

Read

This model as well as an eager release consistency model both require an
announcement of a release (as the name implies) when certain conditions are met.
In the eager model, that condition requires that a write would be read by all read
processes in a consistent manner.

In Go, there exists alternatives for this, but there are also packages out there if
you're interested in playing with it.
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Using memcached

If you're not familiar with memcache(d), it's a wonderful and seemingly obvious way
to manage data across distributed systems. Go's built-in channels and goroutines

are fantastic to manage communication and data integrity within a single machine's
processes, but neither are built for distributed systems out of the box.

Memcached, as the name implies, allows data sharing memory among multiple
instances or machines. Initially, memcached was intended to store data for quick
retrieval. This is useful for caching data for systems with high turnover such as
web applications, but it's also a great way to easily share data across multiple
servers and/or to utilize shared locking mechanisms.

In our earlier models, memcached falls under DSM. All available and invoked
instances share a common, mirrored memory space within their respective
memories.

It's worth pointing out that race conditions can and do exist within memcached,

and you still need a way to deal with that. Memcached provides one method to share
data across distributed systems, but does not guarantee data atomicity. Instead,
memcached operates on one of two methods for invalidating cached data as follows:

* Data is explicitly assigned a maximum age (after which, it is removed from
the stack)

* Or data is pushed from the stack due to all available memory being used by
newer data

It's important to note that storage within memcache(d) is, obviously, ephemeral and
not fault resistant, so it should only be used where data should be passed without
threat of critical application failure.

At the point where either of these conditions is met, the data disappears and the
next call to this data will fail, meaning the data needs to be regenerated. Of course,
you can work with some elaborate lock generation methods to make memcached
operate in a consistent manner, although this is not standard built-in functionality
of memcached itself. Let's look at a quick example of memcached in Go using Brad
Fitz's gomemcache interface (https://github.com/bradfitz/gomemcache):

package main

import (
"github.com/bradfitz/gomemcache/memcache"
n fmt n
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func main()
mC := memcache.New("10.0.0.1:11211", "10.0.0.2:11211",
"10.0.0.3:11211", "10.0.0.4:11211")
mC.Set (&memcache.Item{Key: "data", Value: [lbyte("30") })
dataltem, err := mc.Get ("data")

}

As you might note from the preceding example, if any of these memcached clients
are writing to the shared memory at the same time, a race condition could still exist.

The key data can exist across any of the clients that have memcached connected
and running at the same time.

Any client can also unset or overwrite the data at any time.

Unlike a lot of implementations, you can set some more complex types through
memcached, such as structs, assuming they are serialized. This caveat means that
we're somewhat limited with the data we can share directly. We are obviously
unable to use pointers as memory locations will vary from client to client.

One method to handle data consistency is to design a master-slave system wherein
only one node is responsible for writes and the other clients listen for changes via
a key's existence.

We can utilize any other earlier mentioned models to strictly manage a lock on this
data, although it can get especially complicated. In the next chapter, we'll explore
some ways by which we can build distributed mutual exclusion systems, but for
now, we'll briefly look at an alternative option.

Circuit

An interesting third-party library to handle distributed concurrency that has
popped up recently is Petar Maymounkov's Go' circuit. Go' circuit attempts to
facilitate distributed coroutines by assigning channels to listen to one or more
remote goroutines.

The coolest part of Go' circuit is that simply including the package makes your
application ready to listen and operate on remote goroutines and work with
channels with which they are associated.

Go' circuit is in use at Tumblr, which proves it has some viability as a large-scale
and relatively mature solutions platform.
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circuit.

[ Go' circuit can be found at https://github.com/gocircuit/ ]
s

Installing Go' circuit is not simple —you cannot run a simple go get on it—and
requires Apache Zookeeper and building the toolkit from scratch.

Once done, it's relatively simple to have two machines (or two processes if running
locally) running Go code to share a channel. Each cog in this system falls under a
sender or listener category, just as with goroutines. Given that we're talking about
network resources here, the syntax is familiar with some minor modifications:

homeChannel := make (chan bool)

circuit.Spawn ("etphonehome.example.com", func () {
homeChannel <- true

3]

for {
select {
case response := <- homeChannel:
fmt.Print ("E.T. has phoned home with:", response)

}
}

You can see how this might make the communication between disparate machines
playing with the same data a lot cleaner, whereas we used memcached primarily as
a networked in-memory locking system. We're dealing with native Go code directly
here; we have the ability to use circuits like we would in channels, without worrying
about introducing new data management or atomicity issues. In fact, the circuit is
built upon a goroutine itself.

This does, of course, still introduce some additional management issues, primarily as
it pertains to knowing what remote machines are out there, whether they are active,
updating the machines' statuses, and so on. These types of issues are best suited for
a suite such as Apache Zookeeper to handle coordination of distributed resources.
It's worth noting that you should be able to produce some feedback from a remote
machine to a host: the circuit operates via passwordless SSH.

That also means you may need to make sure that user rights are locked down
and that they meet with whatever security policies you may have in place.
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You can find Apache Zookeeper at http://zoockeeper.
s apache.org/.

Summary

Equipped now with some methods and models to manage not only local data
across single or multithreaded systems, but also distributed systems, you should
start to feel pretty comfortable with protecting the validity of data in concurrent
and parallel processes.

We've looked at both forms of mutual exclusions for read and read/write locks,
and we have started to apply these to distributed systems to prevent blocks and
race conditions across multiple networked systems.

In the next chapter, we'll explore these exclusion and data consistency concepts
a little deeper, building non-blocking networked applications and learn to work
with timeouts and give parallelism with channels a deeper look.

We'll also dig a little deeper into the sync and OS packages, in particular looking
at the sync.atomic operations.
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Now that we're starting to get a good grasp of utilizing goroutines in safe and
consistent ways, it's time to look a bit more at what causes code blocking and
deadlocks. Let's also explore the sync package and dive into some profiling
and analysis.

So far, we've built some relatively basic goroutines and complementary channels,
but we now need to utilize some more complex communication channels between
our goroutines. To do this, we'll implement more custom data types and apply them
directly to channels.

We've not yet looked at some of Go's lower-level tools for synchronization
and analysis, so we'll explore sync.atomic, a package that—along with sync.
Mutex —allows for more granular control over state.

Finally, we'll delve into pprof, a fabulous tool provided by Go that lets us analyze
our binaries for detailed information about our goroutines, threads, overall heap,
and blocking profiles.

Armed with some new tools and methods to test and analyze our code, we'll be
ready to generate a robust, highly-scalable web server that can be used to safely
and quickly handle any amount of traffic thrown at it.



Locks, Blocks, and Better Channels

Understanding blocking methods in Go

So far, we've encountered a few pieces of blocking code, intentional and unintentional,
through our exploration and examples. At this point, it's prudent to look at the various
ways we can introduce (or inadvertently fall victim to) blocking code.

By looking at the various ways Go code can be blocked, we can also be better prepared
to debug cases when concurrency is not operating as expected in our application.

Blocking method 1 — a listening, waiting
channel

The most concurrently-focused way to block your code is by leaving a serial
channel listening to one or more goroutines. We've seen this a few times by now,
but the basic concept is shown in the following code snippet:

func thinkAboutKeys () {
for {
fmt.Println("Still Thinking")
time.Sleep(l * time.Second)

}
}

func main() {
fmt.Println ("Where did I leave my keys?")

blockChannel := make(chan int)
go thinkAboutKeys ()

<-blockChannel

fmt.Println("OK I found them!")
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Despite the fact that all of our looping code is concurrent, we're waiting on a signal
for our blockChannel to continue linear execution. We can, of course, see this in
action by sending along the channel, thus continuing code execution as shown in
the following code snippet:

func thinkAboutKeys (bC chan int)

i:=0
max := 10
for {
if 1 >= max {
bC <- 1

}

fmt.Println("Still Thinking")
time.Sleep (1l * time.Second)
i++
}
}

Here, we've modified our goroutine function to accept our blocking channel
and deliver an end message to it when we've hit our maximum. These kinds of
mechanisms are important for long-running processes because we may need to
know when and how to kill them.

Sending more data types via channels

Go's use of channels (structs and functions) as first-class citizens provides us
with a lot of interesting ways of executing, or at least trying, new approaches
of communication between channels.

One such example is to create a channel that handles translation through a function
itself, and instead of communicating directly through the standard syntax, the
channel executes its function. You can even do this on a slice/array of functions
iterating through them in the individual functions.
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Creating a function channel

So far, we've almost exclusively worked in single data type and single value
channels. So, let's try sending a function across a channel. With first-class channels,
we need no abstraction to do this; we can just send almost anything directly over

a channel as shown in the following code snippet:

func abstractListener (fxChan chan func() string )
fxChan <- func() string {

return "Sent!"

func main()

fxChan := make (chan func() string)
defer close (fxChan)
go abstractListener (fxChan)
select {
case rfx := <- fxChan:
msg := rix()
fmt.Println (msg)
fmt.Println("Received!™")

}

This is like a callback function. However, it also is intrinsically different, as it is not
just the method called after the execution of a function, but also serves as the mode
of communication between functions.

Keep in mind that there are often alternatives to passing functions across channels, so
this will likely be something very specific to a use case rather than a general practice.

Since your channel's type can be virtually any available type, this functionality
opens up a world of possibilities, which can be potentially confusing abstractions.
A struct or interface as a channel type is pretty self-explanatory, as you can make
application-related decisions on any of its defined properties.

Let's see an example of using an interface in this way in the next section.
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Using an interface channel

As with our function channel, being able to pass an interface (which is a
complementary data type) across a channel can be incredibly useful. Let's look
at an example of sending across an interface:

type Messenger interface {
Relay () string

}

type Message struct
status string

}

func (m Message) Relay () string {
return m.status

func alertMessages (v chan Messenger, i int) {

m := new(Message)
m.status = "Done with " + strconv.FormatInt (inté4 (i),10)
vV <- m
func main () {
msg := make (chan Messenger)
for i:= 0; 1 < 10; 1i++ {

go alertMessages (msg, i)

}

select {
case message := <-msg:
fmt.Println (message.Relay())
}
<- msg

}

This is a very basic example of how to utilize interfaces as channels; in the previous
example, the interface itself is largely ornamental. In actuality, we're passing
newly-created message types through the interface's channel rather than interacting
directly with the interface.
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Using structs, interfaces, and more complex channels

Creating a custom type for our channel allows us to dictate the way our intra-channel
communication will work while still letting Go dictate the context switching and
behind-the-scenes scheduling.

Ultimately, this is mostly a design consideration. In the previous examples, we used
individual channels for specific pieces of communication in lieu of a one-size-fits-all
channel that passes a multitude of data. However, you may also find it advantageous
to use a single channel to handle a large amount of communication between
goroutines and other channels.

The primary consideration in deciding whether to segregate channels into individual
bits of communication or a package of communications depends on the aggregate
mutability of each.

For example, if you'll always want to send a counter along with a function or string
and they will always be paired in terms of data consistency, such a method might
make sense. If any of those components can lose synchronicity en route, it's more
logical to keep each piece independent.

Maps in Go
As mentioned, maps in Go are like hash tables elsewhere and
immediately related to slices or arrays.
In the previous example we were checking to see if a username/
key exists already; for this purpose Go provides a simple method for
doing so. When attempting to retrieve a hash with a nonexistent key,
a zero value is returned, as shown in the following lines of code:

if Users[user.name]

% fmt.Fprintln(conn, "Unfortunately, that username
S ig in
usel!") ;

}

This makes it syntactically simple and clean to test against a map
and its keys.

One of the best features of maps in Go is the ability to make keys out
of any comparable type, which includes strings, integers, Booleans
as well as any map, struct, slice, or channel that is comprised
exclusively of those types.

This one-to-many channel can work as a master-slave or broadcaster-subscriber
model. We'll have a channel that listens for messages and routes them to appropriate
users and a channel that listens for broadcast messages and queues them to all users.
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To best demonstrate this, we'll create a simple multiuser chat system that allows
Twitter style @user communication with a single user, with the ability to broadcast
standard messages to all users and creates a universal broadcast chat note that

can be read by all users. Both will be simple, custom type struct channels, so we
can delineate various communication pieces.

Structs in Go

As a first-class, anonymous, and extensible type, a struct is
one of the most versatile and useful data constructs available.
It's simple to create analogs to other data structures such as
databases and data stores, and while we hesitate to call them
objects they can certainly be viewed as such.

The rule of thumb as it pertains to using structs within
functions is to pass by reference rather than by value if the
* struct is particularly complex. Two points of clarification are
%%‘ as follows:
* Reference is in quotations because (and this is
validated by Go's FAQ) technically everything in Go
is passed by value. By that we mean that though a
reference to a pointer still exists, at some step in the
process the value(s) is copied.
* "Particularly complex" is, understandably, tough to
quantify, so personal judgment might come into play.
However, we can consider a simple struct one with no
more than five methods or properties.

You can think of this in terms of a help desk system, and while in the present day
we'd be unlikely to create a command-line interface for such a thing, eschewing the
web portion allows us to gloss over all of the client-side code that isn't necessarily
relevant to Go.

You could certainly take such an example and extrapolate it to the Web utilizing
some frontend libraries for asynchronous functionality (such as backbone. js or
socket.io).

To accomplish this, we'll need to create both a client and a server application, and
we'll try to keep each as bare bone as possible. You can clearly and simply augment
this to include any functionality you see fit such as making Git comments and
updating a website.

We'll start with the server, which will be the most complicated part. The client
application will mostly receive messages back through the socket, so much of
the reading and routing logic will be invisible to the client-side of the process.
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The net package — a chat server with interfaced
channels

Here, we'll need to introduce a relevant package that will be required to handle most
of the communication for our application(s). We've touched on the net package a bit
while dabbling in the SVG output generation example to show concurrency —net/
http is just a small part of a broader, more complex, and more feature-full package.

The basic components that we'll be using will be a TCP listener (server) and a TCP
dialer (client). Let's look at the basic setup for these.

Server

Listening on a TCP port couldn't be easier. Simply initiate the net . Listen ()
method and handle the error as shown in the following lines of code:

listener, err := net.Listen("tcp", ":9000")
if err != nil {
fmt.Println ("Could not start server!")

}

If you get an error starting the server, check your firewall or modify the port—it's
possible that something is utilizing port 9000 on your system.

As easy as that is, it's just as simple on our client/dialer side.
Client

In this case, we have everything running on localhost as shown in the following
lines of code. However, in a real-world application we'd probably have an intranet
address used here:

conn, err := net.Dial("tcp","127.0.0.1:9000")
if err != nil {
fmt.Println("Could not connect to server!")

}

In this application, we demonstrate two different ways to handle byte buffers of
unknown lengths on Read () . The first is a rather crude method of trimming a string
using strings.TrimRight (). This method allows you to define characters you
aren't interested in counting as part of the input as shown in the following line of
code. Mostly, it's whitespace characters that we can assume are unused parts of the
buffer length.

sendMessage := []lbyte(cM.name + ": " +
strings.TrimRight (string(buf) ," \t\r\n"))
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Dealing with strings this way is often both inelegant and unreliable. What happens
if we get something we don't expect here? The string will be the length of the buffer,
which in this case is 140 bytes.

The other way we deal with this is by using the end of the buffer directly. In this
case, we assign the n variable to the conn.Read () function, and then can use that
as a buffer length in the string to buffer conversion as shown in the following lines
of code:

messBuff := make([]byte,1024)
n, err := conn.Read(messBuff)
if err != nil {

}

message := string(messBuff[:n])

Here we're taking the first n bytes of the message buffer's received value.

This is more reliable and efficient, but you will certainly run into text ingestion
cases where you will want to remove certain characters to create cleaner input.

Each connection in this application is a struct and each user is as well. We keep
track of our users by pushing them to the Users slice as they join.

The selected username is a command-line argument as follows:

./chat-client nathan

chat-client.exe nathan

We do not check to to ensure there is only one user with that name, so that
logic might be required, particularly if chats with direct messages contain
sensitive information.

Handling direct messages

For the most part, this chat client is a simple echo server, but as mentioned, we also
include an ability to do non-globally broadcast messages by invoking the Twitter
style @ syntax.

We handle this mainly through regular expressions, wherein if a message matches
@user then only that user will see the message; otherwise, it's broadcasted to all.
This is somewhat inelegant, because senders of the direct message will not see their
own direct message if their usernames do not match the intended names of the users.
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To do this, we direct every message through a evalMessageRecipient () function
before broadcasting. As this is relying on user input to create the regular expression
(in the form of the username), please take note that we should escape this with the
regexp.QuoteMeta () method to prevent regex failures.

Let's first examine our chat server, which is responsible for maintaining all
connections and passing them to goroutines to listen and receive, as shown in the
following code:

chat-server.go
package main

import

(
n fmt n
"strings"
n net n
"strconv"
n regexp n

var connectionCount int
var messagePool chan(string)

const (
INPUT BUFFER_LENGTH = 140
)

We utilize a maximum character buffer. This restricts our chat messages to no more
than 140 characters. Let's look at our User struct to see the information we might
keep about a user that joins, as follows:

type User struct ({
Name string
ID int
Initiated bool
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The initiated variable tells us that User is connected after a connection and
announcement. Let's examine the following code to understand the way we'd listen
on a channel for a logged-in user:

UChannel chan []byte
Connection *net.Conn

}

The User struct contains all of the information we will maintain
for each connection. Keep in mind here we don't do any sanity
checking to make sure a user doesn't exist - this doesn't
necessarily pose a problem in an example, but a real chat client
would benefit from a response should a user name already be

in use.
func (u *User) Listen()
fmt.Println("Listening for",u.Name)
for {
select {
case msg := <- u.UChannel:

fmt.Println("Sending new message to",u.Name)
fmt .Fprintln (*u.Connection, string(msg))

}

This is the core of our server: each User gets its own Listen () method, which
maintains the User struct's channel and sends and receives messages across it. Put
simply, each user gets a concurrent channel of his or her own. Let's take a look at the
ConnectionManager struct and the Initiate () function that creates our server in
the following code:

type ConnectionManager struct {
name string

initiated bool

func Initiate() *ConnectionManager ({
cM := &ConnectionManager
name: "Chat Server 1.0",

initiated: false,

return cM
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Our ConnectionManager struct is initiated just once. This sets some relatively
ornamental attributes, some of which could be returned on request or on chat login.
We'll examine the evalMessageRecipient function that attempts to roughly identify
the intended recipient of any message sent as follows:

func evalMessageRecipient (msg [lbyte, uName string) bool ({

eval := true
expression := "@"
re, err := regexp.MatchString(expression, string(msg))
if err != nil {
fmt.Println("Error:", err)
}
if re == true {
eval = false
pmExpression := "@" + uName
pmRe, pmErr := regexp.MatchString(pmExpression, string(msg))
if pmErr != nil {
fmt.Println ("Regex error", err)
}
if pmRe == true
eval = true
}
}
return eval

}

This is our router of sorts taking the @ part of the string and using it to detect an
intended recipient to hide from public consumption. We do not return an error
if the user doesn't exist or has left the chat.

on the re2 syntax, which is described at https://code.google.

+ The format for regular expressions using the regexp package relies
L com/p/re2/wiki/Syntax.

Let's take a look at the code for the Listen () method of the ConnectionManager
struct:

func (cM *ConnectionManager) Listen(listener net.Listener) {
fmt.Println(cM.name, "Started")

for {
conn, err := listener.Accept ()
if err != nil {

fmt.Println("Connection error", err)
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connectionCount++

fmt.Println (conn.RemoteAddr (), "connected")

user := User{Name: "anonymous", ID: 0, Initiated: false}
Users = append (Users, &user)

for , u := range Users ({

fmt.Println("User online", u.Name)

}

fmt.Println (connectionCount, "connections active")
go cM.messageReady (conn, &user)

func (cM *ConnectionManager) messageReady (conn net.Conn, user
*User) {

uChan := make(chan []lbyte)

for {
buf := make([]byte, INPUT BUFFER LENGTH)
n, err := conn.Read (buf)
if err != nil {

conn.Close ()
conn = nil
}
if n == 0 {
conn.Close ()
conn = nil
}
fmt.Println(n, "character message from user", user.Name)
if user.Initiated == false (
fmt.Println("New User is", string(buf))
user.Initiated = true
user.UChannel = uChan
user.Name = string(buf[:n])
user.Connection = &conn
go user.Listen()

minusYouCount := strconv.FormatInt (inté4 (connectionCount-1),
10)
conn.Write([]lbyte ("Welcome to the chat, " + user.Name + ",
there are " + minusYouCount + " other users"))
} else {
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sendMessage := []byte(user.Name + ": " +
strings.TrimRight (string(buf), " \t\r\n"))

for , u := range Users {
if evalMessageRecipient (sendMessage, u.Name) == true ({

u.UChannel <- sendMessage

}geReady (per connectionManager) function instantiates new
connections into a User struct, utilizing first sent message as

the user's name.

var Users []*User
This is our unbuffered array (or slice) of user structs.
func main()

connectionCount = 0

serverClosed := make (chan bool)

listener, err := net.Listen("tcp", ":9000")

if err != nil {

fmt.Println ("Could not start server!",err)

connManage := Initiate()
go connManage.Listen (listener)

<-serverClosed

}

As expected, main () primarily handles the connection and error and keeps our
server open and nonblocked with the serverClosed channel.
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There are a number of methods we could employ to improve the way we route
messages. The first method would be to invoke a map (or hash table) bound to
a username. If the map's key exists, we could return some error functionality if
a user already exists, as shown in the following code snippet:

type User struct ({
name string

}

var Users map[string] *User

func main() {
Users := make(map[string] *User)

Examining our client

Our client application is a bit simpler primarily because we don't care as much
about blocking code.

While we do have two concurrent operations (wait for the message and wait for
user input to send the message), this is significantly less complicated than our
server, which needs to concurrently listen to each created user and distribute sent
messages, respectively.

Let's now compare our chat client to our chat server. Obviously, the client has less
overall maintenance of connections and users, and so we do not need to use nearly
as many channels. Let's take a look at our chat client's code:

chat-client.go
package main

import

(
"fmt"
"net"
llOS n
"bufio"
"strings"
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type Message struct {
message string
user string

}

var recvBuffer [140]byte

func listen(conn net.Conn) ({

for {
messBuff := make([]byte,1024)
n, err := conn.Read(messBuff)
if err != nil {

fmt.Println("Read error",err)

}

message := string(messBuff[:n])
message = message[0:]

fmt.Println(strings.TrimSpace (message))
fmt.Print ("> ")

func talk(conn net.Conn, mS chan Message) {

for {
command := bufio.NewReader (os.Stdin)
fmt.Print ("> ")
line, err := command.ReadString('\n')
line = strings.TrimRight (line, " \t\r\n")

_, err = conn.Write([lbyte(line))
if err != nil {
conn.Close ()
break

}

doNothing (command)

}
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func doNothing (bf *bufio.Reader) ({
// A temporary placeholder to address io reader usage

}

func main()
messageServer := make (chan Message)
userName := os.Args[1l]

fmt.Println ("Connecting to host as",userName)

clientClosed := make (chan bool)
conn, err := net.Dial("tcp","127.0.0.1:9000")
if err != nil {

fmt.Println("Could not connect to server!")

}

conn.Write ([]byte (userName))

introBuff := make([]lbyte,1024)
n, err := conn.Read (introBuff)
if err != nil {

}

message := string(introBuff[:n])

fmt.Println (message)

go talk (conn,messageServer)
go listen(conn)

<- clientClosed

Blocking method 2 — the select statement
in a loop

Have you noticed yet that the select statement itself blocks? Fundamentally, the
select statement is not different from an open listening channel; it's just wrapped
in conditional code.
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The <- myChannel channel operates the same way as the following code snippet:

select {
case mc := <- myChannel:
// do something

}

An open listening channel is not a deadlock as long as there are no goroutines
sleeping. You'll find this on channels that are listening but will never receive
anything, which is another method of basically waiting.

These are useful shortcuts for long-running applications you wish to keep alive
but you may not necessarily need to send anything along that channel.

Cleaning up goroutines

Any channel that is left waiting and/ or left receiving will result in a deadlock.
Luckily, Go is pretty adept at recognizing these and you will almost without fail
end up in a panic when running or building the application.

Many of our examples so far have utilized the deferred close () method of
immediately and cleanly grouping together similar pieces of code that should
execute at different points.

While garbage collection handles a lot of the cleanup, we're largely left to take

care of open channels to ensure we don't have a process waiting to receive and/or
something waiting to send, both waiting at the same time for each other. Luckily,
we'll be unable to compile any such program with a detectable deadlock condition,
but we also need to manage closing channels that are left waiting.

Quite a few of the examples so far have ended with a generic integer or Boolean
channel that just waits — this is employed almost exclusively for the channel's
blocking effect and allows us to demonstrate the effects and output of concurrent
code while the application is still running. In many cases, this generic channel is
an unnecessary bit of syntactical cruft as shown in the following lines of code:

<-youMayNotNeedToDoThis
close (youmayNotNeedToDoThis)

The fact that there's no assignment happening is a good indicator this is an example
of such cruft. If we had instead modified that to include an assignment, the previous
code would be changed to the following instead:

v := <-youMayNotNeedToDoThis

It might indicate that the value is useful and not just arbitrary blocking code.
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Blocking method 3 — network connections
and reads

If you run the code from our earlier chat server's client without starting the server,
you'll notice that the Dial function blocks any subsequent goroutine. We can test this
by imposing a longer-than-normal timeout on the connection or by simply closing
the client application after logging in, as we did not implement a method for closing
the TCP connection.

As the network reader we're using for the connection is buffered, we'll always have
a blocking mechanism while waiting for data via TCP.

Creating channels of channels

The preferred and sanctioned way of managing concurrency and state is exclusively
through channels.

We've demonstrated a few more complex types of channels, but we haven't looked
at what can become a daunting but powerful implementation: channels of channels.
This might at first sound like some unmanageable wormhole, but in some situations
we want a concurrent action to generate more concurrent actions; thus, our
goroutines should be capable of spawning their own.

As always, the way you manage this is through design while the actual code may
simply be an aesthetic byproduct here. Building an application this way should make
your code more concise and clean most of the time.

Let's revisit a previous example of an RSS feed reader to demonstrate how we could
manage this, as shown in the following code:

package main
import (

n fmt n
)

type master chan Item

var feedChannel chan master
var done chan bool
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type Item struct ({
Url string

Data [lbyte

}
type Feed struct ({
Url string
Name string
Items []Item

}

var Feeds []Feed

func process (feedChannel *chan master, done *chan bool) {
for , i := range Feeds {

fmt.Println("feed", 1)

item := Item{}

item.Url = 1.Url

itemChannel := make (chan Item)

*feedChannel <- itemChannel

itemChannel <- item

}

*done <- true

}
func processItem(url string) ({

// deal with individual feed items here
fmt.Println("Got url", url)

}

func main() {
done := make (chan bool)
Feeds []Feed{Feed{Name: "New York Times", Url: "http://rss.nytimes.
com/services/xml/rss/nyt/HomePage.xml"},
Feed{Name: "Wall Street Journal", Url: "http://feeds.wsjonline.com/
wsj/xml/rss/3_7011.xml"}}

feedChannel := make (chan master)
go func (done chan bool, feedChannel chan master) {
for {
select
case fc := <-feedChannel:
select {
case item := <-fc:

processItem(item.Url)

}
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default:

}
}

} (done, feedChannel)

go process (&feedChannel, &done)
<-done

fmt.Println("Done!")

}

Here, we manage feedChannel as a custom struct that is itself a channel for our Item
type. This allows us to rely exclusively on channels for synchronization handled
through a semaphore-esque construct.

If we want to look at another way of handling a lower-level synchronization,
sync.atomic provides some simple iterative patterns that allow you to manage
synchronization directly in memory.

As per Go's documentation, these operations require great care and are prone to data
consistency errors, but if you need to touch memory directly, this is the way to do it.
When we talk about advanced concurrency features, we'll utilize this package directly.

Pprof — yet another awesome tool

Just when you think you've seen the entire spectrum of Go's amazing tool set, there's
always one more utility that, once you realize it exists, you'll wonder how you ever
survived without it.

Go format is great for cleaning up your code; the -race flag is essential for detecting
possible race conditions, but an even more robust, hands-in-the-dirt tool exists that is
used to analyze your final application, and that is pprof.

Google created pprof initially to analyze loop structures and memory allocation
(and related types) for C++ applications.

It's particularly useful if you think you have performance issues not uncovered by
the testing tools provided in the Go runtime. It's also a fantastic way to generate a
visual representation of the data structures in any application.

Some of this functionality also exists as part of the Go testing package and its
benchmarking tools —we'll explore that more in Chapter 7, Performance and Scalability.

Getting the runtime version of pprof to work requires a few pieces of setup first.
We'll need to include the runtime.pprof package and the £1ag package, which
allows command-line parsing (in this case, for the output of pprof).
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If we take our chat server code, we can add a couple of lines and have the application
prepped for performance profiling.

Let's make sure we include those two packages along with our other packages. We
can use the underscore syntax to indicate to the compiler that we're only interested
in the package's side effects (meaning we get the package's initialization functions
and global variables) as shown in the following lines of code:

import
(
n fmt n

_ "runtime/pprof"

)

Next, in our main () function, we include a flag parser that will parse and interpret
the data produced by pprof as well as create the CPU profile itself if it does not exist
(and bailing if it cannot be created), as shown in the following code snippet:

var profile = flag.String("cpuprofile", "", "output pprof data to
file")

func main() {
flag.Parse()
if *profile != "" {
flag,err := os.Create(*profile)
if err != nil {
fmt.Println("Could not create profile",err)

}

pprof.StartCPUProfile (flag)
defer pprof.StopCPUProfile ()

}
}

This tells our application to generate a CPU profiler if it does not exist, start the
profiling at the beginning of the execution, and defer the end of the profiling until
the application exits successfully.

With this created, we can run our binary with the cpuprofile flag, which tells the
program to generate a profile file as follows:

./chat-server -cpuprofile=chat.prof

For the sake of variety (and exploiting more resources arbitrarily), we'll abandon the
chat server for a moment and create a loop generating scores of goroutines before
exiting. This should give us a more exciting demonstration of profiling data than a
simple and long-living chat server would, although we'll return to that briefly:
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Here is our example code that generates more detailed and interesting profiling data:
package main

import (
"flag"
"fmt"
"math/rand"
"OS n
"runtime"
"runtime/pprof"

)

const ITERATIONS = 99999
const STRINGLENGTH = 300

var profile = flag.String("cpuprofile", "", "output pprof data to
file")

func generateString(length int, seed *rand.Rand, chHater chan
string) string {
bytes := make([]lbyte, length)
for i := 0; i < length; i++ {
bytes[i] = byte(rand.Int())
}
chHater <- string(bytes[:length])
return string(bytes[:length])

}

func generateChannel () <-chan int {
ch := make(chan int)
return ch

}

func main() {
goodbye := make (chan bool, ITERATIONS)
channelThatHatesLetters := make(chan string)

runtime.GOMAXPROCS (2)

flag.Parse()

if *profile != "" {
flag, err := os.Create(*profile)
if err != nil {

fmt.Println("Could not create profile", err)

}

pprof.StartCPUProfile (flag)
defer pprof.StopCPUProfile ()
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seed := rand.New(rand.NewSource (19))

initString := ""

for i := 0; i < ITERATIONS; i++ {
go func() {

initString = generateString (STRINGLENGTH, seed,
channelThatHatesLetters)
goodbye <- true
1O

}

select {
case <-channelThatHatesLetters:

}

<-goodbye
fmt.Println(initString)

}
When we generate a profile file out of this, we can run the following command:

go tool pprof chat-server chat-server.prof

This will start the pprof application itself. This gives us a few commands that report
on the static, generated file as follows:

* topN: This shows the top N samples from the profile file, where N represents
the explicit number you want to see.

* web: This creates a visualization of data, exports it to SVG, and opens it in a
web browser. To get the SVG output, you'll need to install Graphviz as well
(http://www.graphviz.org/).

You can also run pprof with some flags directly to output in
several formats or launch a browser as follows:
] * --text: This generates a text report
% * --web: This generates an SVG and opens in the browser
~ * --gv: This generates the Ghostview postscript

e --pdf: This generates the PDF to output
* --SVG: This generates the SVG to output
e --gif: This generates the GIF to output
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The command-line results will be telling enough, but it's especially interesting to
see the blocking profile of your application presented in a descriptive, visual way as
shown in the following figure. When you're in the pprof tool, just type in web and a
browser will spawn with the CPU profiling detailed in SVG form.
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And voila, we suddenly have an insight into how our program utilizes the CPU time
consumption and a general view of how our application executes, loops, and exits.

In typical Go fashion, the pprof tool also exists in the net /http package, although
it's more data-centric than visual. This means that rather than dealing exclusively
with a command-line tool, you can output the results directly to the Web for analysis.

Like the command-line tool, you'll see block, goroutine, heap, and thread profiles

as well as a full stack outline directly through localhost, as shown in the following
screenshot:

€& = C fi [ localhost:6060/debug/pprof/

/debug/pprof/

profiles:

0 block

7 goroutine

0 heap

6 threadcreate

full goroutine stack dump

To generate this server, you just need to include a few key lines of code in your
application, build it, and then run it. For this example, we've included the code in

our chat server application, which allows us to get the Web view of an otherwise
command-line-only application.

Make sure you have the net /http and 1og packages included. You'll also need the

http/pprof package. The code snippet is as follows:
import (_ (_
"net/http/pprof"
n 109 n
"net/http"
)

Then simply include this code somewhere in your application, ideally, near the top
of the main () function, as follows:

go func()

log.Println (http.ListenAndServe ("localhost:6060", nil))
1O
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As always, the port is entirely a matter of preference.

You can then find a number of profiling tools at 1ocalhost: 6060, including the
following:

e All tools can be found at http://localhost :6060/debug/pprof/

* Blocking profiles cab be found at http://localhost:6060/debug/pprof/
block?debug=1

* A profile of all goroutines can be found at http://localhost:6060/debug/
pprof/goroutine?debug=1

* A detailed profile of the heap can be found at http://localhost:6060/
debug/pprof/heap?debug=1

* A profile of threads created can be found at http://localhost:6060/
debug/pprof/threadcreate?debug=1

In addition to the blocking profile, you may find a utility to track down
inefficiency in your concurrent strategy through the thread creation profile. If
you find a seemingly abnormal amount of threads created, you can toy with the
synchronization structure as well as runtime parameters to streamline this.

Keep in mind that using pprof this way will also include some analyses and profiles
that can be attributed to the http or pprof packages rather than your core code.
You will find certain lines that are quite obviously not part of your application; for
example, a thread creation analysis of our chat server includes a few telling lines,

as follows:

# 0x7765e net/http.HandlerFunc.ServeHTTP+0x3e /usr/
local/go/src/pkg/net/http/server.go:1149
# 0x7896d net/http. (*ServeMux) .ServeHTTP+0x11d /usr/

local/go/src/pkg/net/http/server.go:1416

Given that we specifically eschewed delivering our chat application via HTTP
or web sockets in this iteration, this should be fairly evident.

On top of that, there are even more obvious smoking guns, as follows:

# 0x139541 runtime/pprof.writeHeap+0x731 /usr/
local/go/src/pkg/runtime/pprof /pprof.go:447
# 0x1l37aa2 runtime/pprof. (*Profile) .WriteTo+0xb2 /usr/
local/go/src/pkg/runtime/pprof /pprof.go:229
# 0x9f55f net/http/pprof.handler.ServeHTTP+0x23f /usr/
local/go/src/pkg/net/http/pprof/pprof.go:165
# 0x9f6as net/http/pprof.Index+0x135 /usr/

local/go/src/pkg/net/http/pprof/pprof.go:177
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Some system and Go core mechanisms we will never be able to reduce out of our
final compiled binaries are as follows:

# 0x18d96 runtime.starttheworld+0x126
/usr/local/go/src/pkg/runtime/proc.c:451

The hexadecimal value represents the address in the memory of
o the function when run.

A note for Windows users: pprof is a breeze to use in *nix
environments but may take some more arduous tweaking under
Windows. Specifically, you may need a bash replacement such as

M Cygwin. You may also find some necessary tweaks to pprof itself
(in actuality, a Perl script) may be in order. For 64-bit Windows
users, make sure you install ActivePer] and execute the pprof
Perl script directly using the 64-bit version of Perl.

At publish time, there are also some issues running this on 64-bit
OSX. -

Handling deadlocks and errors

Anytime you encounter a deadlock error upon compilation in your code, you'll see
the familiar string of semi-cryptic errors explaining which goroutine was left holding
the bag, so to speak.

However, keep in mind you always have the ability to invoke your own panic
using Go's built-in panic, and this can be incredibly useful for building your own
error-catching safeguards to ensure data consistency and ideal operation. The code
is as follows:

package main

import
(

"OS n

)

func main() {
panic ("Oh No, we forgot to write a program!")
os.Exit (1)

}

This can be utilized anywhere you wish to give detailed exit information to either
developers or end users.
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Summary

Having explored some new ways to examine the way that Go code can block and
deadlock, we also have some tools at our disposal that can be used to examine CPU
profiles and resource usage now.

Hopefully, by this point, you can build some complex concurrent systems with
simple goroutines and channels all the way up to multiplexed channels of structs,
interfaces, and other channels.

We've built some somewhat-functional applications so far, but next we're going
to utilize everything we've done to build a usable web server that solves a classic
problem and can be used to design intranets, file storage systems, and more.

In the next chapter, we'll take what we've done in this chapter with regard to
extensible channels and apply it to solving one of the oldest challenges the Internet
has to offer: concurrently serving 10,000 (or more) connections.
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Up to this point, we've built a few usable applications; things we can start with
and leapfrog into real systems for everyday use. By doing so, we've been able to
demonstrate the basic and intermediate-level patterns involved in Go's concurrent
syntax and methodology.

However, it's about time we take on a real-world problem —one that has vexed
developers (and their managers and VPs) for a great deal of the early history
of the Web.

In addressing and, hopefully, solving this problem, we'll be able to develop a high-
performance web server that can handle a very large volume of live, active traffic.

For many years, the solution to this problem was solely to throw hardware
or intrusive caching systems at the problem; so, alternately, solving it with
programming methodology should excite any programmer.

We'll be using every technique and language construct we've learned so far, but we'll
do so in a more structured and deliberate way than we have up to now. Everything
we've explored so far will come into play, including the following points:

* Creating a visual representation of our concurrent application

» Utilizing goroutines to handle requests in a way that will scale

* Building robust channels to manage communication between goroutines
and the loop that will manage them

* Profiling and benchmarking tools (JMeter, ab) to examine the way our event
loop actually works

* Timeouts and concurrency controls —when necessary —to ensure data and
request consistency
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Attacking the C10K problem

The genesis of the C10K problem is rooted in serial, blocking programming, which
makes it ideal to demonstrate the strength of concurrent programming, especially
in Go.

The proposed problem came from developer Dan Kegel, who famously asked:

It's time for web servers to handle ten thousand clients simultaneously, don't you
think? After all, the web is a big place now.

- Dan Kegel (http.//www.kegel.com/c10k.html)

When he asked this in 1999, for many server admins and engineers, serving 10,000
concurrent visitors was something that would be solved with hardware. The notion
that a single server on common hardware could handle this type of CPU and
network bandwidth without falling over seemed foreign to most.

The crux of his proposed solutions relied on producing non-blocking code. Of
course, in 1999, concurrency patterns and libraries were not widespread. C++ had
some polling and queuing options available via some third-party libraries and the
earliest predecessor to multithreaded syntaxes, later available through Boost and
then C++11.

Over the coming years, solutions to the problem began pouring in across various
flavors of languages, programming design, and general approaches. At the time of
publishing this book, the C10K problem is not one without solutions, but it is still an
excellent platform to conduct a very real-world challenge to high-performance Go.

Any performance and scalability problem will ultimately be bound to the underlying
hardware, so as always, your mileage may vary. Squeezing 10,000 concurrent
connections on a 486 processor with 500 MB of RAM will certainly be more
challenging than doing so on a barebones Linux server stacked with memory and
multiple cores.

It's also worth noting that a simple echo server would obviously be able to assume
more cores than a functional web server that returns larger amounts of data and
accepts greater complexity in requests, sessions, and so on, as we'll be dealing
with here.
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Failing of servers at 10,000 concurrent
connections

As you may recall, when we discussed concurrent strategies back in
Chapter 3, Developing a Concurrent Strategy, we talked a bit about Apache
and its load-balancing tools.

When the Web was born and the Internet commercialized, the level of interactivity
was pretty minimal. If you're a graybeard, you may recall the transition from
NNTP/IRC and the like and how extraordinarily rudimentary the Web was.

To address the basic proposition of [page request] — [HTTP response], the
requirements on a web server in the early 1990s were pretty lenient. Ignoring
all of the error responses, header readings and settings, and other essential
(but unrelated to the in — out mechanism) functions, the essence of the early
servers was shockingly simple, at least compared to the modern web servers.

The first web server was developed by the father of the Web, Tim
Berners-Lee.

Developed at CERN (such as WWW /HTTP itself), CERN httpd
handled many of the things you would expect in a web server
today —hunting through the code, you'll find a lot of notation
that will remind you that the very core of the HTTP protocol is
largely unchanged. Unlike most technologies, HTTP has had an
extraordinarily long shelf life.

Written in C in 1990, it was unable to utilize a lot of concurrency

%ﬁ‘ strategies available in languages such as Erlang. Frankly, doing
so was probably unnecessary — the majority of web traffic was a
matter of basic file retrieval and protocol. The meat and potatoes
of a web server were not dealing with traffic, but rather dealing
with the rules surrounding the protocol itself.

You can still access the original CERN httpd site and download
the source code for yourself from http: //www.w3 .org/
Daemon/. I highly recommend that you do so as both a history
lesson and a way to look at the way the earliest web server
addressed some of the earliest problems.

However, the Web in 1990 and the Web when the C10K question was first posed
were two very different environments.
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By 1999, most sites had some level of secondary or tertiary latency provided by
third-party software, CGI, databases, and so on, all of which further complicated
the matter. The notion of serving 10,000 flat files concurrently is a challenge in itself,
but try doing so by running them on top of a Perl script that accesses a MySQL
database without any caching layer; the challenge is immediately exacerbated.

By the mid 1990s, the Apache web server had taken hold and largely controlled
the market (by 2009, it had become the first server software to serve more than
100 million websites).

Apache's approach was rooted heavily in the earliest days of the Internet. At its
launch, connections were initially handled first in, first out. Soon, each connection
was assigned a thread from the thread pool. There are two problems with the
Apache server. They are as follows:

* Blocking connections can lead to a domino effect, wherein one or more
slowly resolved connections could avalanche into inaccessibility

* Apache had hard limits on the number of threads/workers you could utilize,
irrespective of hardware constraints

It's easy to see the opportunity here, at least in retrospect. A concurrent server that
utilizes actors (Erlang), agents (Clojure), or goroutines (Go) seems to fit the bill
perfectly. Concurrency does not solve the C10k problem in itself, but it absolutely
provides a methodology to facilitate it.

The most notable and visible example of an approach to the C10K problem today is
Nginx, which was developed using concurrency patterns, widely available in C by
2002 to address —and ultimately solve —the C10k problem. Nginx, today, represents
either the #2 or #3 web server in the world, depending on the source.

Using concurrency to attack C10K

There are two primary approaches to handle a large volume of concurrent requests.
The first involves allocating threads per connection. This is what Apache (and a few
others) do.

On the one hand, allocating a thread to a connection makes a lot of sense —it's
isolated, controllable via the application's and kernel's context switching, and can
scale with increased hardware.
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One problem for Linux servers —on which the majority of the Web lives —is that
each allocated thread reserves 8 MB of memory for its stack by default. This can
(and should) be redefined, but this imposes a largely unattainable amount of
memory required for a single server. Even if you set the default stack size to 1 MB,
we're dealing with a minimum of 10 GB of memory just to handle the overhead.

This is an extreme example that's unlikely to be a real issue for a couple of reasons:
first, because you can dictate the maximum amount of resources available to each
thread, and second, because you can just as easily load balance across a few servers
and instances rather than add 10 GB to 80 GB of RAM.

Even in a threaded server environment, we're fundamentally bound to the issue that
can lead to performance decreases (to the point of a crash).

First, let's look at a server with connections bound to threads (as shown in the following
diagram), and visualize how this can lead to logjams and, eventually, crashes:

)&

Requests

e

This is obviously what we want to avoid. Any I/O, network, or external process that
can impose some slowdown can bring about that avalanche effect we talked about,
such that our available threads are taken (or backlogged) and incoming requests
begin to stack up.

We can spawn more threads in this model, but as mentioned earlier, there are
potential risks there too, and even this will fail to mitigate the underlying problem.
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Taking another approach

In an attempt to create our web server that can handle 10,000 concurrent connections,
we'll obviously leverage our goroutine/channel mechanism to put an event loop in
front of our content delivery to keep new channels recycled or created constantly.

For this example, we'll assume we're building a corporate website and infrastructure
for a rapidly expanding company. To do this, we'll need to be able to serve both
static and dynamic content.

The reason we want to introduce dynamic content is not just for the purposes of
demonstration —we want to challenge ourselves to show 10,000 true concurrent
connections even when a secondary process gets in the way.

As always, we'll attempt to map our concurrency strategy directly to goroutines
and channels. In a lot of other languages and applications, this is directly analogous
to an event loop, and we'll approach it as such. Within our loop, we'll manage the
available goroutines, expire or reuse completed ones, and spawn new ones where
necessary.

In this example visualization, we show how an event loop (and corresponding
goroutines) can allow us to scale our connections without employing too many
hard resources such as CPU threads or RAM:

Requests

Event Loop

(goroutines) Server

guigaigy
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The most important step for us here is to manage that event loop. We'll want to
create an open, infinite loop to manage the creation and expiration of our goroutines
and respective channels.

As part of this, we will also want to do some internal logging of what's happening,
both for benchmarking and debugging our application.

Building our C10K web server

Our web server will be responsible for taking requests, routing them, and serving
either flat files or dynamic files with templates parsed against a few different data
sources.

As mentioned earlier, if we exclusively serve flat files and remove much of the
processing and network latency, we'd have a much easier time with handling 10,000
concurrent connections.

Our goal is to approach as much of a real-world scenario as we can—very little of the
Web operates on a single server in a static fashion. Most websites and applications
utilize databases, CDNs (Content Delivery Networks), dynamic and uncached
template parsing, and so on. We need to replicate them whenever possible.

For the sake of simplicity, we'll separate our content by type and filter them through
URL routing, as follows:

* /static/I[request]: This will serve request .html directly

* /template/ [request]: This will serve request.tpl after its been parsed
through Go

* /dynamic/ [request] [number]: This will also serve request .tpl and parse
it against a database source's record

By doing this, we should get a better mixture of possible HTTP request types that
could impede the ability to serve large numbers of users simultaneously, especially
in a blocking web server environment.

We'll utilize the html/template package to do parsing—we've briefly looked at the
syntax before, and going any deeper is not necessarily part of the goals of this book.
However, you should look into it if you're going to parlay this example into something
you use in your environment or have any interest in building a framework.

1
‘Q You can find Go's exceptional library to generate safe data-driven

templating at http://golang.org/pkg/html/template/.
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By safe, we're largely referring to the ability to accept data and move it directly into
templates without worrying about the sort of injection issues that are behind a large
amount of malware and cross-site scripting.

For the database source, we'll use MySQL here, but feel free to experiment with other
databases if you're more comfortable with them. Like the html/template package,
we're not going to put a lot of time into outlining MySQL and/ or its variants.

Benchmarking against a blocking web server

It's only fair to add some starting benchmarks against a blocking web server first
so that we can measure the effect of concurrent versus nonconcurrent architecture.

For our starting benchmarks, we'll eschew any framework, and we'll go with our old
stalwart, Apache.

For the sake of completeness here, we'll be using an Intel i5 3GHz machine with 8 GB
of RAM. While we'll benchmark our final product on Ubuntu, Windows, and OS X
here, we'll focus on Ubuntu for our example.

Our localhost domain will have three plain HTML files in /static, each trimmed
to 80 KB. As we're not using a framework, we don't need to worry about raw
dynamic requests, but only about static and dynamic requests in addition to data
source requests.

For all examples, we'll use a MySQL database (named master) with a table called
articles that will contain 10,000 duplicate entries. Our structure is as follows:

CREATE TABLE articles (
article id INT NOT NULL AUTO INCREMENT,
article title VARCHAR(128) NOT NULL,
article text VARCHAR(128) NOT NULL,
PRIMARY KEY (article id)

)

With ID indexes ranging sequentially from 0-10,000, we'll be able to generate random
number requests, but for now, we just want to see what kind of basic response we
can get out of Apache serving static pages with this machine.

For this test, we'll use Apache's ab tool and then gnuplot to sequentially map the
request time as the number of concurrent requests and pages; we'll do this for our
final product as well, but we'll also go through a few other benchmarking tools for
it to get some better details.
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Apache's AB comes with the Apache web server itself. You
can read more aboutitat http://httpd.apache.org/
docs/2.2/programs/ab.html.

%j%“ You can download it for Linux, Windows, OS X, and more from
’ http://httpd.apache.org/download.cgi.

The gnuplot utility is available for the same operating systems
athttp://www.gnuplot.info/.

So, let's see how we did it. Have a look at the following graph:

2500 : T T T T T
Request Time ——
/'/‘
15000+
L ,»/.
5000
 — 1 1 | | 1 1 1
0 200 400 600 800

Ouch! Not even close. There are things we can do to tune the connections available
(and respective threads/workers) within Apache, but this is not really our goal.
Mostly, we want to know what happens with an out-of-the-box Apache server.

In these benchmarks, we start to drop or refuse connections at around 800
concurrent connections.
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More troubling is that as these requests start stacking up, we see some that exceed
20 seconds or more. When this happens in a blocking server, each request behind
it is queued; requests behind that are similarly queued and the entire thing starts
to fall apart.

Even if we cannot hit 10,000 concurrent connections, there's a lot of room for
improvement. While a single server of any capacity is no longer the way we expect a
web server environment to be designed, being able to squeeze as much performance
as possible out of that server, ostensibly with our concurrent, event-driven approach,
should be our goal.

Handling requests

In an earlier chapter, we handled URL routing with Gorilla, a compact but feature-full
framework. The Gorilla toolkit certainly makes this easier, but we should also know
how to intercept the functionality to impose our own custom handler.

Here is a simple web router wherein we handle and direct requests using a custom
http.Server struct, as shown in the following code:

var routes []string

type customRouter struct ({

}

func (customRouter) ServeHTTP (rw http.ResponseWriter, r
*http.Request) {

fmt.Println(r.URL.Path) ;

}

func main()
var cr customRouter;

server := &http.Server ({
Addr: ":9000",
Handler:cr,
ReadTimeout: 10 * time.Second,
WriteTimeout: 10 * time.Second,
MaxHeaderBytes: 1 << 20,

}

server.ListenAndServe ()

}
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Here, instead of using a built-in URL routing muxer and dispatcher, we're creating
a custom server and custom handler type to accept URLs and route requests. This
allows us to be a little more robust with our URL handling.

In this case, we created a basic, empty struct called customRouter and passed it to
our custom server creation call.

We can add more elements to our customRouter type, but we really don't need to
for this simple example. All we need to do is to be able to access the URLs and pass
them along to a handler function. We'll have three: one for static content, one for
dynamic content, and one for dynamic content from a database.

Before we go so far though, we should probably see what our absolute barebones
HTTP server written in Go does when presented with the same traffic that we sent
Apache's way.

By old school, we mean that the server will simply accept a request and pass along
a static, flat file. You could do this using a custom router as we did earlier, taking
requests, opening files, and then serving them, but Go provides a much simpler
mode to handle this basic task in the http.FileServer method.

So, to get some benchmarks for the most basic of Go servers against Apache, we'll
utilize a simple FileServer and test it against a test . html page (which contains the
same 80 KB file that we had with Apache).

As our goal with this test is to improve our performance in serving
flat and dynamic pages, the actual specs for the test suite are
somewhat immaterial. We'd expect that while the metrics will not
% match from environment to environment, we should see a similar
"~ trajectory. That said, it's only fair we supply the environment used
for these tests; in this case, we used a MacBook Air with a 1.4 GHz i5
processor and 4 GB of memory.
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First, we'll do this with our absolute best performance out of the box with Apache,
which had 850 concurrent connections and 900 total requests.
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The results are certainly encouraging as compared to Apache. Neither of our test
systems were tweaked much (Apache as installed and basic FileServer in Go), but
Go's FileServer handles 1,000 concurrent connections without so much as a blip,
with the slowest clocking in at 411 ms.

Apache has made a great number of strides pertaining to
concurrency and performance options in the last five years, but

M to get there does require a bit of tuning and testing. The intent of
this experiment is not intended to denigrate Apache, which is well
tested and established. Instead, it's to compare the out-of-the-box
performance of the world's number 1 web server against what we
can do with Go.
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To really get a baseline of what we can achieve in Go, let's see if Go's FileServer
can hit 10,000 connections on a single, modest machine out of the box:

ab -n 10500 -c 10000 -g test.csv http://localhost:8080/a.html

We will get the following output:

1400 T T T

10000 /

6000-

2000~

! I
0 4000 8000 12000

Success! Go's FileServer by itself will easily handle 10,000 concurrent connections,
serving flat, static content.

Of course, this is not the goal of this particular project—we'll be implementing
real-world obstacles such as template parsing and database access, but this alone
should show you the kind of starting point that Go provides for anyone who needs
a responsive server that can handle a large quantity of basic web traffic.

Routing requests

So, let's take a step back and look again at routing our traffic through a traditional
web server to include not only our static content, but also the dynamic content.
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We'll want to create three functions that will route traffic from our
customRouter:serveStatic () :: read function and serve a flat file
serveRendered () :, parse a template to display serveDynamic () :, connect to
MySQL, apply data to a struct, and parse a template.

To take our requests and reroute, we'll change the serveHTTP method for our
customRouter struct to handle three regular expressions.

For the sake of brevity and clarity, we'll only be returning data on our three possible
requests. Anything else will be ignored.

In a real-world scenario, we can take this approach to aggressively and proactively
reject connections for requests we think are invalid. This would include spiders and
nefarious bots and processes, which offer no real value as nonusers.

Serving pages
First up are our static pages. While we handled this the idiomatic way earlier, there

exists the ability to rewrite our requests, better handle specific 404 error pages, and
so on by using the http.ServeFile function, as shown in the following code:

path := r.URL.Path;

staticPatternString := "static/(.*)"

templatePatternString := "template/ (.*)"
dynamicPatternString := "dynamic/(.*)"

staticPattern := regexp.MustCompile (staticPatternString)
templatePattern := regexp.MustCompile (templatePatternString)
dynamicDBPattern := regexp.MustCompile (dynamicPatternString)

if staticPattern.MatchString(path) ({
page := staticPath + staticPattern.ReplaceAllString(path,
n${1}||) + ".html"

http.ServeFile(rw, r, page)

}

Here, we simply relegate all requests starting with /static/ (.*) to match the
request in addition to the .html extension. In our case, we've named our test file
(the 80 KB example file) test .html, so all requests to it will go to /static/test.

We've prepended this with staticpath, a constant defined upcode. In our case,
it's /var/www/, but you'll want to modify it as necessary.
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So, let's see what kind of overhead is imposed by introducing some regular
expressions, as shown in the following graph:
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How about that? Not only is there no overhead imposed, it appears that the
FileServer functionality itself is heavier and slower than a distinct Fileserve () call.
Why is that? Among other reasons, not explicitly calling the file to open and serve
imposes an additional OS call, one which can cascade as requests mount up at the
expense of concurrency and performance.

Sometimes it's the little things

Other than strictly serving flat pages here, we're actually doing one
W\l other task per request using the following line of code:

-~
fmt.Println(r.URL.Path)
While this ultimately may have no impact on your final performance,
we should take care to avoid unnecessary logging or related activities
that may impart seemingly minimal performance obstacles that
become much larger ones at scale.

Parsing our template

In our next phase, we'll measure the impact of reading and parsing a template.
To effectively match the previous tests, we'll take our HTML static file and impose
some variables on it.
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If you recall, our goal here is to mimic real-world scenarios as closely as possible.
A real-world web server will certainly handle a lot of static file serving, but today,
dynamic calls make up the vast bulk of web traffic.

Our data structure will resemble the simplest of data tables without having access
to an actual database:

type WebPage struct {
Title string
Contents string

}

We'll want to take any data of this form and render a template with it. Remember
that Go creates the notion of public or private variables through the syntactical
sugar of capitalized (public) or lowercase (private) values.

If you find that the template fails to render but you're not given explicit errors in the
console, check your variable naming. A private value that is called from an HTML
(or text) template will cause rendering to stop at that point.

Now, we'll take that data and apply it to a template for any calls to a URL that begins

with the / (. *) template. We could certainly do something more useful with the
wildcard portion of that regular expression, so let's make it part of the title using the
following code:

} else if templatePattern.MatchString(path) {

urlVar := templatePattern.ReplaceAllString(path, "${1}")

page := WebPage{ Title: "This is our URL: "+urlVar, Contents:
"Enjoy our content" }

tmp, _ := template.ParseFiles(staticPath+"template.html")
tmp.Execute (rw, page)

}

Hitting localhost:9000/template/hello should render a template with a primary

body of the following code:

<his{{.Title}}</h1>
<p>{{.Contents}}</p>
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We will do this with the following output:

TEST

This is our title

EMAIL Enjov our content

One thing to note about templates is that they are not compiled; they remain
dynamic. That is to say, if you create a renderable template and start your server,
the template can be modified and the results are reflected.

This is noteworthy as a potential performance factor. Let's run our benchmarks
again, with template rendering as the added complexity to our application and
its architecture:
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Yikes! What happened? We've gone from easily hitting 10,000 concurrent requests to
barely handling 200.

To be fair, we introduced an intentional stumbling block, one not all that uncommon
in the design of any given CMS.

You'll notice that we're calling the template.ParseFiles () method on every
request. This is the sort of seemingly cheap call that can really add up when you
start stacking the requests.

It may then make sense to move the file operations outside of the request handler,
but we'll need to do more than that—to eliminate overhead and a blocking call,
we need to set an internal cache for the requests.

Most importantly, all of our template creation and parsing should happen outside
the actual request handler if you want to keep your server non-blocking, fast, and
responsive. Here's another take:

var customHTML string

var customTemplate template.Template
var page WebPage

var templateSet bool

func main() {
var cr customRouter;
fileName := staticPath + "template.html"
cH, := ioutil.ReadFile(fileName)

customHTML = string(cH[:])

page := WebPage{ Title: "This is our URL: ", Contents: "Enjoy
our content" }

cT, := template.New("Hey") .Parse (customHTML)

customTemplate = *cT

Even though we're using the Parse () function prior to our request, we can still
modify our URL-specific variables using the Execute () method, which does not
carry the same overhead as Parse ().

When we move this outside of the customRouter struct's ServeHTTP () method,
we're back in business. This is the kind of response we'll get with these changes:

[170]




Chapter 6

E500

8000 -

7500 -

7000

6500 -

000 |-

5500 -

000

4500 -

4000

3500

3000

0 1000 2000 2000 A0 5000 6000 7000 8000 9000 10000]

External dependencies

Finally, we need to bring in our biggest potential bottleneck, which is the database.
As mentioned earlier, we'll simulate random traffic by generating a random integer
between 1 and 10,000 to specify the article we want.

Randomization isn't just useful on the frontend — we'll want to work around any
query caching within MySQL itself to limit nonserver optimizations.

Connecting to MySQL

We can route our way through a custom connection to MySQL using native Go,
but as is often the case, there are a few third-party packages that make this process
far less painful. Given that the database here (and associated libraries) is tertiary
to the primary exercise, we'll not be too concerned about the particulars here.

The two mature MySQL driver libraries are as follows:

*  Go-MySQL-Driver (https://github.com/go-sgl-driver/mysqgl)
* MyMySQL (https://github.com/ziutek/mymysql)

For this example, we'll go with the Go-MySQL-Driver. We'll quickly install it using
the following command:

go get github.com/go-sql-driver/mysql
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Both of these implement the core SQL database connectivity package in Go, which
provides a standardized method to connect to a SQL source and iterate over rows.

One caveat is if you've never used the SQL package in Go but have in other
languages — typically, in other languages, the notion of an Open () method implies
an open connection. In Go, this simply creates the struct and relevant implemented
methods for a database. This means that simply calling Open () on sql.database
may not give you relevant connection errors such as username/ password issues
and so on.

One advantage of this (or disadvantage depending on your vantage point) is that
connections to your database may not be left open between requests to your web
server. The impact of opening and reopening connections is negligible in the grand
scheme.

As we're utilizing a pseudo-random article request, we'll build a MySQL piggyback
function to get an article by ID, as shown in the following code:

func getArticle(id int) WebPage ({
Database,err := sqgl.Open("mysgl", "test:test@/master")
if err != nil {
fmt.Println("DB error!!!")

}

var articleTitle string

sglQ := Database.QueryRow ("SELECT article title from articles
where article id=? LIMIT 1", 1).Scan(&articleTitle)
switch {
case sqlQ == sqgl.ErrNoRows:
fmt.Printf ("No rows!")
case sglQ != nil:
fmt.Println (sqlQ)
default:

wp := WebPage({}
wp.Title = articleTitle

return wp
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We will then call the function directly from our ServeHTTP () method, as shown in
the following code:

}else if dynamicDBPattern.MatchString (path) {
rand.Seed (9)
id := rand.Intn(10000)
page = getArticle(id)
customTemplate.Execute (rw, page)

}
How did we do here? Take a look at the following graph:
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Slower, no doubt, but we held up to all 10,000 concurrent requests, entirely from
uncached MySQL calls.

Given that we couldn't hit 1,000 concurrent requests with a default installation
of Apache, this is nothing to sneeze at.
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Multithreading and leveraging multiple
cores

You may be wondering how performance may vary when invoking additional
processor cores —as mentioned earlier, this can sometimes have an unexpected effect.

In this case, we should expect only improved performance in our dynamic requests
and static requests. Any time the cost of context switching in the OS might outweigh
the performance advantages of additional cores, we can see paradoxical performance
degradation. In this case, we do not see this effect and instead see a relatively similar
line, as shown in the following graph:
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Exploring our web server

Our final web server is capable of serving static, template-rendered, and dynamic
content well within the confines of the goal of 10,000 concurrent connections on
even the most modest of hardware.

The code —much like the code in this book —can be considered a jumping-off point
and will need refinement if put into production. This server lacks anything in the
form of error handling but can ably serve valid requests without any issue. Let's
take a look at the following server's code:

package main

import

(
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"net/http"
"html/template"
"time"

"regexp"

"fmt"
"jo/ioutil™"
"database/sqgl"
n 1og n

"runtime"

_ "github.com/go-sgl-driver/mysgl"
)

Most of our imports here are fairly standard, but note the MySQL line that is called
solely for its side effects as a database/SQL driver:

const staticPath string = "static/"

The relative static/ path is where we'll look for any file requests —as mentioned
earlier, this does no additional error handling, but the net /http package itself will
deliver 404 errors should a request to a nonexistent file hit it:

type WebPage struct
Title string

Contents string
Connection *sqgl.DB

}

Our webPage type represents the final output page before template rendering. It can
be filled with static content or populated by data source, as shown in the following
code:

type customRouter struct {
func serveDynamic() {

func serveRendered() ({

func serveStatic()
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Use these if you choose to extend the web app — this makes the code cleaner and
removes a lot of the cruft in the serveHTTP section, as shown in the following code:

func (customRouter) ServeHTTP (rw http.ResponseWriter, r
*http.Request) {

path := r.URL.Path;

staticPatternString := "static/(.*)"

templatePatternString := "template/ (.*)"
dynamicPatternString := "dynamic/(.*)"

staticPattern := regexp.MustCompile (staticPatternString)
templatePattern := regexp.MustCompile (templatePatternString)
dynamicDBPattern := regexp.MustCompile (dynamicPatternString)

if staticPattern.MatchString(path) ({
serveStatic ()

page := staticPath + staticPattern.ReplaceAllString(path,
||${1}n) + ".html"

http.ServeFile(rw, r, page)
else if templatePattern.MatchString (path)
gip

serveRendered ()
urlVar := templatePattern.ReplaceAllString(path, "${1}")
page.Title = "This is our URL: " + urlVar

customTemplate.Execute (rw, page)
}else if dynamicDBPattern.MatchString (path) {
serveDynamic ()

page = getArticle(1)
customTemplate.Execute (rw, page)
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All of our routing here is based on regular expression pattern matching. There are

a lot of ways you can do this, but regexp gives us a lot of flexibility. The only time
you may consider simplifying this is if you have so many potential patterns that it
could cause a performance hit—and this means thousands. The popular web servers,
Nginx and Apache, handle a lot of their configurable routing through regular
expressions, so it's fairly safe territory:

func gobble(s [lbyte) ({

}

Go is notoriously cranky about unused variables, and while this isn't always the best
practice, you will end up, at some point, with a function that does nothing specific
with data but keeps the compiler happy. For production, this is not the way you'd
want to handle such data.

var customHTML string

var customTemplate template.Template
var page WebPage

var templateSet bool

var Database sql.DB

func getArticle(id int) WebPage ({
Database,err := sgl.Open("mysqgl", "test:test@/master")
if err != nil {
fmt.Println("DB error!")

}

var articleTitle string

sglQ := Database.QueryRow ("SELECT article title from articles
WHERE article id=? LIMIT 1", id).Scan(&articleTitle)
switch {
case sqlQ == sqgl.ErrNoRows:
fmt.Printf ("No rows!")
case sglQ != nil:
fmt.Println (sqlQ)
default:

wp := WebPage({}
wp.Title = articleTitle
return wp
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Our getArticle function demonstrates how you can interact with the database/
sql package at a very basic level. Here, we open a connection and query a single row
with the QueryRow () function. There also exists the Query command, which is also
usually a SELECT command but one that could return more than a single row.

func main() {

}

runtime .GOMAXPROCS (4)
var cr customRouter;
fileName := staticPath + "template.html"

CH,_ := ioutil.ReadFile(fileName)
customHTML = string(cH[:])

page := WebPage{ Title: "This is our URL: ", Contents:
our content" }

cT, := template.New("Hey") .Parse (customHTML)

customTemplate = *cT

gobble (cH)

log.Println (page)
fmt.Println (customTemplate)

server := &http.Server ({
Addr: ":9000",
Handler:cr,
ReadTimeout: 10 * time.Second,
WriteTimeout: 10 * time.Second,
MaxHeaderBytes: 1 << 20,

}

server.ListenAndServe ()

"Enjoy

Our main function sets up the server, builds a default webPage and customRouter,
and starts listening on port 9000.

Timing out and moving on

One thing we did not focus on in our server is the notion of lingering connection
mitigation. The reason we didn't worry much about it is because we were able to
hit 10,000 concurrent connections in all three approaches without too much issue,
strictly by utilizing Go's powerful built-in concurrency features.
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Particularly when working with third-party or external applications and services,
it's important to know that we can and should be prepared to call it quits on a
connection (if our application design permits it).

Note the custom server implementation and two notes-specific properties:
ReadTimeout and WriteTimeout. These allow us to handle this use case precisely.

In our example, this is set to an absurdly high 10 seconds. For a request to be
received, processed, and sent, up to 20 seconds can transpire. This is an eternity in
the Web world and has the potential to cripple our application. So, what does our
C10K look like with 1 second on each end? Let's take a look at the following graph:
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Here, we've saved nearly 5 seconds off the tail end of our highest volume of
concurrent requests, almost certainly at the expense of complete responses to each.

It's up to you to decide how long it's acceptable to keep slow-running connections,
but it's another tool in the arsenal to keep your server swift and responsive.

There will always be a tradeoff when you decide to kill a connection—too early and
you'll have a bevy of complaints about a nonresponsive or error-prone server; too
late and you'll be unable to cope with the connection volume programmatically.
This is one of those considerations that will require QA and hard data.
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Summary

The C10K problem may seem like a relic today, but the call to action was
symptomatic of the type of approaches to systems' applications that were
primarily employed prior to the rapid expansion of concurrent languages
and application design.

Just 15 years ago, this seemed a largely insurmountable problem facing systems
and server developers worldwide; now, it's handled with only minor tweaking
and consideration by a server designer.

Go makes it easy to get there (with a little effort), but reaching 10,000 (or 100,000
or even 1,000,000) concurrent connections is only half the battle. We must know
what to do when problems arise, how to seek out maximum performance and
responsiveness out of our servers, and how to structure our external dependencies
such that they do not create roadblocks.

In our next chapter, we'll look at squeezing even more performance out of our
concurrent applications by testing some distributed computing patterns and best
utilizing memory management.
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To build a high-powered web server in Go with just a few hundred lines of code, you
should be quite aware of how concurrent Go provides us with exceptional tools for
performance and stability out of the box.

Our example in Chapter 6, C10K — A Non-blocking Web Server in Go, also showed how
imposing blocking code arbitrarily or inadvertently into our code can introduce
some serious bottlenecks and quickly torpedo any plans to extend or scale your
application.

What we'll look at in this chapter are a few ways that can better prepare us to take
our concurrent application and ensure that it's able to continuously scale in the
future and that it is capable of being expanded in scope, design, and/or capacity.

We'll expand a bit on pprof, the CPU profiling tool we looked at briefly in previous
chapters, as a way to elucidate the way our Go code is compiled and to locate
possible unintended bottlenecks.

Then we'll expand into distributed Go and into ways to offer some performance-
enhancing parallel-computing concepts to our applications. We'll also look at the
Google App Engine, and at how you can utilize it for your Go-based applications
to ensure scalability is placed in the hands of one of the most reliable hosting
infrastructures in the world.

Lastly, we'll look at memory utilization, preservation, and how Google's garbage
collector works (and sometimes doesn't). We'll finally delve a bit deeper into using
memory caching to keep data consistent as well as less ephemeral, and we will also
see how that dovetails with distributed computing in general.
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High performance in Go

Up to this point, we've talked about some of the tools we can use to help discover
slowdowns, leaks, and inefficient looping.

Go's compiler and its built-in deadlock detector keep us from making the kind of
mistake that's common and difficult to detect in other languages.

We've run time-based benchmarks based on specific changes to our concurrency
patterns, which can help us design our application using different methodologies
to improve overall execution speed and performance.

Getting deeper into pprof

The pprof tool was first encountered in Chapter 5, Locks, Blocks, and Better Channels,
and if it still feels a bit cryptic, that's totally understandable. What pprof shows you
in export is a call graph, and we can use this to help identify issues with loops or
expensive calls on the heap. These include memory leaks and processor-intensive
methods that can be optimized.

One of the best ways to demonstrate how something like this works is to build
something that doesn't. Or at least something that doesn't work the way it should.

You might be thinking that a language with garbage collection might be immune to
these kinds of memory issues, but there are always ways to hide mistakes that can
lead to memory leakage. If the GC can't find it, it can sometimes be a real pain to do
so yourself, leading to a lot of — often feckless — debugging.

To be fair, what constitutes a memory leak is sometimes debated among computer
science members and experts. A program that continuously consumes RAM may not
be leaking memory by technical definition if the application itself could re-access any
given pointers. But that's largely irrelevant when you have a program that crashes
and burns after consuming memory like an elephant at a buffet.

The basic premise of creating a memory leak in a garbage-collected language relies
on hiding the allocation from the compiler —indeed, any language in which you can
access and utilize memory directly provides a mechanism for introducing leaks.

We'll review a bit more about garbage collection and Go's implementation later in
this chapter.

So how does a tool like pprof help? Very simply put, by showing you where your
memory and CPU utilization goes.
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Let's first design a very obvious CPU hog as follows to see how pprof highlights this
for us:

package main

import (

"OS n

n flag"

n fmt n
"runtime/pprof"

)

const TESTLENGTH = 100000

type CPUHog struct ({
longByte [lbyte

}

func makeLongByte () [lbyte ({
longByte := make ([]byte, TESTLENGTH)

for i:= 0; i < TESTLENGTH; i++ {
longByte[i] = byte(i)

}

return longByte

}

var profile = flag.String("cpuprofile", "", "output pprof data to
file")

func main()
var CPUHogs []CPUHog

flag.Parse ()

if *profile != "" {
flag,err := os.Create(*profile)
if err != nil {

fmt.Println("Could not create profile",err)

}

pprof.StartCPUProfile (flag)
defer pprof.StopCPUProfile ()

}

for i := 0; i < TESTLENGTH; i++ {
hog := CPUHog{}
hog.longByte = makeLongByte ()
_ = append (CPUHogs, hog)
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The output of the preceding code is shown in the following diagram:
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In this case, we know where our stack resource allocation is going, because

we willfully introduced the loop (and the loop within that loop).
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Imagine that we didn't intentionally do that and had to locate resource hogs. In this
case, pprof makes this pretty easy, showing us the creation and memory allocation
of simple strings comprising the majority of our samples.

We can modify this slightly to see the changes in the pprof output. In an effort to
allocate more and more memory to see whether we can vary the pprof output, we
might consider heavier types and more memory.

The easiest way to accomplish that is to create a slice of a new type that includes a
significant amount of these heavier types such as int64. We're blessed with Go: in
that, we aren't prone to common C issues such as buffer overflows and memory
protection and management, but this makes debugging a little trickier when we
cannot intentionally break the memory management system.

The unsafe package

Despite the built-in memory protection provided, there is still another
interesting tool provided by Go: the unsafe package. As per Go's
documentation:

Package unsafe contains operations that step around the type safety of
Go programs.

~ This might seem like a curious library to include —indeed, while many
low-level languages allow you to shoot your foot off, it's fairly unusual
to provide a segregated language.

Later in this chapter, we'll examine unsafe.Pointer, which allows
you to read and write to arbitrary bits of memory allocation. This

is obviously extraordinarily dangerous (or useful and nefarious,
depending on your goal) functionality that you would generally try to
avoid in any development language, but it does allow us to debug and
understand our programs and the Go garbage collector a bit better.

So to increase our memory usage, let's switch our string allocation as follows, for
random type allocation, specifically for our new struct MemoryHog:

type MemoryHog struct {
a,b,c,d,e, f,g9 inte4
h,i,j,k,1,m,n floate4
longByte []byte

}

There's obviously nothing preventing us from extending this into some ludicrously
large set of slices, huge arrays of int64s, and so on. But our primary goal is solely
to change the output of pprof so that we can identify movement in the call graph's
samples and its effect on our stack/heap profiles.
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Our arbitrarily expensive code looks as follows:

type MemoryHog struct {
a,b,c,d,e, f,g9 inte4
h,i,j,k,1,m,n floate4
longByte []byte

}

func makeMemoryHog () []MemoryHog {

memoryHogs := make ( []MemoryHog, TESTLENGTH)

for i:= 0; i < TESTLENGTH; i++ {
m := MemoryHog({ }
_ = append (memoryHogs, m)

return memoryHogs

var profile = flag.String("cpuprofile",
file")

func main() {
var CPUHogs []CPUHog

flag.Parse()

if *profile != "" {
flag,err := os.Create(*profile)
if err != nil {

nn
’

"output pprof data to

fmt.Println("Could not create profile",err)

}

pprof.StartCPUProfile (flag)
defer pprof.StopCPUProfile ()

for i := 0; i < TESTLENGTH; i++ {
hog := CPUHog{}
hog.mHog = makeMemoryHog ()
_ = append (CPUHogs, hog)
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With this in place, our CPU consumption remains about the same (due to the
looping mechanism remaining largely unchanged), but our memory allocation

has increased — unsurprisingly — by about 900 percent. It's unlikely that you will
precisely duplicate these results, but the general trend of a small change leading to a
major difference in resource allocation is reproducible. Note that memory utilization
reporting is possible with pprof, but it's not what we're doing here; the memory
utilization observations here happened outside of pprof.

If we took the extreme approach suggested previously — to create absurdly large
properties for our struct—we could carry that out even further, but let's see what
the aggregate impact is on our CPU profile on execution. The impact is shown in the
following diagram:
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On the left-hand side, we have our new allocation approach, which invokes our
larger struct instead of an array of strings. On the right-hand side, we have our
initial application.

A pretty dramatic flux, don't you think? While neither of these programs is wrong in
design, we can easily toggle our methodologies to see where resources are going and
discern how we can reduce their consumption.
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Parallelism's and concurrency's impact on
1/0 pprof

One issue you'll likely run into pretty quickly when using pprof is when you've
written a script or application that is especially bound to efficient runtime
performance. This happens most frequently when your program executes too
quickly to properly profile.

A related issue involves network applications that require connections to profile;
in this case, you can simulate traffic either in-program or externally to allow
proper profiling.

We can demonstrate this easily by replicating something like the preceding example
with goroutines as follows:

const TESTLENGTH = 20000
type DataType struct {
a,b,c,d,e,f,g inte4

longByte []byte

}

func (dt DataType) init()

var profile = flag.String("cpuprofile", "", "output pprof data to
file")

func main() {

flag.Parse()

if *profile != "" {
flag,err := os.Create(*profile)
if err != nil ({

fmt.Println("Could not create profile",err)

}

pprof.StartCPUProfile (flag)
defer pprof.StopCPUProfile()
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var wg sync.WaitGroup

numCPU := runtime.NumCPU ()
runtime.GOMAXPROCS (numCPU)

wg .Add (TESTLENGTH)

for i := 0; i < TESTLENGTH; i++ {
go func() {
for y := 0; y < TESTLENGTH; y++ {
dT := DataType{}
dT.init ()
}
wg .Done ()
10
}
wg.Wait ()

fmt.Println("Complete.")

}

The following diagram shows the pprof output of the preceding code:

Total samples: 1303 time goschedd
Focusing on: 1303 of 1303 g 0(38;;
Dropped nodes with <= 6 abs(samples)

Dropped edges with <= 1 samples™

1298

main.func-001
1298 (99.6%)

It's not nearly as informative, is it?
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If we want to get something more valuable about the stack trace of our goroutines,
Go —as usual — provides some additional functionality.

In the runtime package, there is a function and a method that allow us to access and
utilize the stack traces of our goroutines:

* runtime.Lookup: This function returns a profile based on name

* runtime.WriteTo: This method sends the snapshot to the I/ O writer

If we add the following line to our program, we won't see the output in the pprof
Go tool, but we can get a detailed analysis of our goroutines in the console.

pprof .Lookup ("goroutine") .WriteTo (os.Stdout, 1)

The previous code line gives us some more of the abstract goroutine memory
location information and package detail, which will look something like the
following screenshot:

But an even faster way to get this output is by utilizing the http/pprof tool, which
keeps the results of our application active via a separate server. We've gone with port
6000 here as shown in the following code, though you can modify this as necessary:

go func() {
log.Println (http.ListenAndServe ("localhost:6000", nil))

1O

While you cannot get an SVG output of the goroutine stack call, you can see
it live in your browser by going to http://localhost:6060/debug/pprof/
goroutine?debug=1.
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Using the App Engine
While not right for every project, Google's App Engine can open up a world of

scalability when it comes to concurrent applications, without the hassle of VM
provisioning, reboots, monitoring, and so on.

The App Engine is not entirely dissimilar to Amazon Web Services, DigitalOcean,
and the ilk, except for the fact that you do not need to necessarily involve yourself
in the minute details of direct server setup and maintenance. All of them provide a
single spot to acquire and utilize virtual computing resources for your applications.

Rather, it can be a more abstract environment within Google's architecture with
which to house and run your code in a number of languages, including —no surprise
here — the Go language itself.

While large-scale apps will cost you, Google provides a free tier with reasonable
quotas for experimentation and small applications.

The benefits as they relate to scalability here are two-fold: you're not responsible
for ensuring uptime on the instances as you would be in an AWS or DigitalOcean
scenario. Who else but Google will have not only the architecture to support
anything you can throw at it, but also have the fastest updates to the Go core itself?

There are some obvious limitations here that coincide with the advantages, of course,
including the fact that your core application will be available exclusively via http
(although it will have access to plenty of other services).

To deploy apps to the App Engine, you'll need the SDK for Go,
M . . .
N available for Mac OS X, Linux, and Windows, at https://
developers.google.com/appengine/downloads#Google
App_Engine SDK for Go.

Once you've installed the SDK, the changes you'll need to make to your code are
minor — the most noteworthy point is that for most cases, your Go tool command
will be supplanted by goapp, which handles serving your application locally and
then deploying it.
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Distributed Go

We've certainly covered a lot about concurrent and parallel Go, but one of the biggest
infrastructure challenges for developers and system architects today has to do with
cooperative computing.

Some of the applications and designs that we've mentioned previously scale from
parallelism to distributed computing.

Memcache(d) is a form of in-memory caching, which can be used as a queue among
several systems.

Our master-slave and producer-consumer models we presented in Chapter 4, Data
Integrity in an Application, have more to do with distributed computing than single-
machine programming in Go, which manages concurrency idiomatically. These
models are typical concurrency models in many languages, but can be scaled to
help us design distributed systems as well, utilizing not just many cores and vast
resources but also redundancy.

The basic premise of distributed computing is to share, spread, and best absorb
the various burdens of any given application across many systems. This not only
improves performance on aggregate, but provides some sense of redundancy for
the system itself.

This all comes at some cost though, which are as follows:

* Potential for network latency

* Creating slowdowns in communication and in application execution

* Opverall increase in complexity both in design and in maintenance

* Potential for security issues at various nodes along the distributed route(s)
* Possible added cost due to bandwidth considerations

This is all to say, simply, that while building a distributed system can provide great
benefits to a large-scale application that utilizes concurrency and ensures data
consistency, it's by no means right for every example.

Types of topologies

Distributed computing recognizes a slew of logical topologies for distributed design.
Topology is an apt metaphor, because the positioning and logic of the systems
involved can often represent physical topology.

Out of the box, not all of the accepted topologies apply to Go. When we design
concurrent, distributed applications using Go, we'll generally rely on a few of the
simpler designs, which are as follows.
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Type 1 — star

The star topology (or at least this particular form of it), resembles our master-slave
or producer-consumer models as outlined previously.

The primary method of data passing involves using the master as a message-passing
conduit; in other words, all requests and commands are coordinated by a single
instance, which uses some routing method to pass messages. The following diagram
shows the star topology:

SIaves/Subscribers

We can actually very quickly design a goroutine-based system for this. The following
code is solely the master's (or distributed destination's) code and lacks any sort of
security considerations, but shows how we can parlay network calls to goroutines:

package main

import

(
n fmt n
n net n

)

Our standard, basic libraries are defined as follows:

type Subscriber struct ({
Address net.Addr
Connection net.Conn
do chan Task

}

type Task struct {
name string

}
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These are the two custom types we'll use here. A Subscriber type is any distributed
helper that comes into the fray, and a Task type represents any given distributable
task. We've left that undefined here because it's not the primary goal of demonstration,
but you could ostensibly have Task do anything by communicating standardized
commands across the TCP connection. The Subscriber type is defined as follows:

var SubscriberCount int

var Subscribers []Subscriber
var CurrentSubscriber int
var taskChannel chan Task

func (sb Subscriber) awaitTask() {
select {
case t := <-sb.do:

fmt.Println(t.name, "assigned")

func serverListen (listener net.Listener) {
for {
conn, := listener.Accept ()

SubscriberCount++

subscriber := Subscriber{ Address: conn.RemoteAddr (),
Connection: conn }

subscriber.do = make (chan Task)

subscriber.awaitTask ()

= append (Subscribers, subscriber)

func doTask()
for {
select {
case task := <-taskChannel:
fmt.Println (task.name, "invoked")
Subscribers [CurrentSubscriber] .do <- task
if (CurrentSubscriber+l) > SubscriberCount {
CurrentSubscriber = 0

}else {
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CurrentSubscriber++

func main() {
destinationStatus := make(chan int)

SubscriberCount = 0
CurrentSubscriber = 0

taskChannel = make (chan Task)

listener, err := net.Listen("tcp", ":9000")
if err != nil {

fmt.Println ("Could not start server!",err)
go serverListen(listener)
go doTask ()

<-destinationStatus

}

This essentially treats every connection as a new Subscriber, which gets its
own channel based on its index. This master server then iterates through existing
Subscriber connections using the following very basic round-robin approach:

if (CurrentSubscriber+l) > SubscriberCount {
CurrentSubscriber = 0

lelse {
CurrentSubscriber++

}

As mentioned previously, this lacks any sort of security model, which means that any
connection to port 9000 would become a Subscriber and could get network messages
assigned to it (and ostensibly could invoke new messages too). But you may have
noticed an even bigger omission: this distributed application doesn't do anything.
Indeed, this is just a model for assignment and management of subscribers. Right now,
it doesn't have any path of action, but we'll change that later in this chapter.
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Type 2 — mesh

The mesh is very similar to the star with one major difference: each node is able
to communicate not just through the master, but also directly with other nodes
as well. This is also known as a complete graph. The following diagram shows a
mesh topology:

For practical purposes, the master must still handle assignments and pass
connections back to the various nodes.

This is actually not particularly difficult to add through the following simple
modification of our previous server code:

func serverlListen (listener net.Listener) {
for {
conn, := listener.Accept ()

SubscriberCount++

subscriber := Subscriber{ Address: conn.RemoteAddr (),
Connection: conn }

subscriber.awaitTask ()
= append (Subscribers, subscriber)
broadcast ()
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Then, we add the following corresponding broadcast function to share all available
connections to all other connections:

func broadcast () {
for i:= range Subscribers {
for j:= range Subscribers {
Subscribers[i] .Connection.Write
([lbyte ("Subscriber:", Subscriber [j] .Address))

The Publish and Subscribe model

In both the previous topologies, we've replicated a Publish and Subscribe model with
a central/master handling delivery. Unlike in a single-system, concurrent pattern,
we lack the ability to use channels directly across separate machines (unless we use
something like Go's Circuit as described in Chapter 4, Data Integrity in an Application).

Without direct programmatic access to send and receive actual commands, we rely
on some form of AP In the previous examples, there is no actual task being sent or
executed, but how could we do this?

Obviously, to create tasks that can be formalized into non-code transmission, we'll
need a form of APL. We can do this one of two ways: serialization of commands,
ideally via JSONDirect transmission, and execution of code.

As we'll always be dealing with compiled code, the serialization of commands
option might seem like you couldn't include Go code itself. This isn't exactly true,
but passing full code in any language is fairly high on lists of security concerns.

But let's look at two ways of sending data via API in a task by removing a URL
from a slice of URLSs for retrieval. We'll first need to initialize that array in our main
function as shown in the following code:

type URL struct {
URI string
Status int
Assigned Subscriber
SubscriberID int

}

Every URL in our array will include the UR], its status, and the subscriber address to
which it's been assigned. We'll formalize the status points as 0 for unassigned, 1 for
assigned and waiting, and 2 for assigned and complete.
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Remember our CurrentSubscriber iterator? That represents the next-in-line round
robin assignment which will fulfill the SubscriberID value for our URL struct.

Next, we'll create an arbitrary array of URLs that will represent our overall job here.
Some suspension of incredulity may be necessary to assume that the retrieval of
four URLs should require any distributed system; in reality, this would introduce
significant slowdown by virtue of network transmission. We've handled this in a
purely single-system, concurrent application before:

URLs = [JURL{ {Status:0,URL:"http://golang.org/"},
{status:0,URL: "http://play.golang.org/"},
{status:0,URL: "http://golang.org/doc/"}
{status:0,URL: "http://blog.golang.org/"} }

Serialized data

In our first option in the API, we'll send and receive serialized data in JSON. Our
master will be responsible for formalizing its command and associated data. In this
case, we'll want to transmit a few things: what to do (in this case, retrieve) with the
relevant data, what the response should be when it is complete, and how to address
errors.

We can represent this in a custom struct as follows:

type Assignment struct {
command string
data string
successResponse string
errorResponse string

asmnt := Assignment{command:"process",
url:"http://www.golang.org", successResponse: "success",
errorResponse: "error"}
json, _ := json.Marshal (asmnt )
send (string(json))

Remote code execution

The remote code execution option is not necessarily separate from serialization
of commands, but instead of structured and interpreted formatted responses,
the payload could be code that will be run via a system command.
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As an example, code from any language could be passed through the network and
executed from a shell or from a syscall library in another language, like the following
Python example:

from subprocess import call
call ( [remoteCode])

The disadvantages to this approach are many: it introduces serious security issues
and makes error detection within your client nearly impossible.

The advantages are you do not need to come up with a specific format and
interpreter for responses as well as potential speed improvements. You can also
offload the response code to another external process in any number of languages.

In most cases, serialization of commands is far preferable over the remote code
execution option.

Other topologies

There exist quite a few topology types that are more complicated to manage as part
of a messaging queue.

The following diagram shows the bus topology:

The bus topology network is a unidirectional transmission system. For our purposes,
it's neither particularly useful nor easily managed, as each added node needs to
announce its availability, accept listener responsibility, and be ready to cede that
responsibility when a new node joins.

The advantage of a bus is quick scalability. This comes with serious disadvantages
though: lack of redundancy and single point of failure.

Even with a more complex topology, there will always be some issue with potentially
losing a valuable cog in the system; at this level of modular redundancy, some
additional steps will be necessary to have an always-available system, including
automatic double or triple node replication and failovers. That's a bit more than we'll
get into here, but it's important to note that the risk will be there in any event, although
it would be a little more vulnerable with a topology like the bus.
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The following diagram shows the ring topology:

The ring topology looks similar to our mesh topology, but lacks a master. It essentially
requires the same communication process (announce and listen) as does a bus. Note
one significant difference: instead of a single listener, communication can happen
between any node without the master.

This simply means that all nodes must both listen and announce their presence to
other nodes.

Message Passing Interface

There exists a slightly more formalized version of what we built previously, called
Message Passing Interface. MPI was borne from early 1990s academia as a standard
for distributed communication.

Originally written with FORTRAN and C in mind, it is still a protocol, so it's largely
language agnostic.

MPI allows the management of topology above and beyond the basic topologies we
were able to build for a resource management system, including not only the line
and ring but also the common bus topology.

For the most part, MPI is used by the scientific community; it is a highly concurrent
and analogous method for building large-scale distributed systems. Point-to-point
operations are more rigorously defined with error handling, retries, and dynamic
spawning of processes all built in.
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Our previous basic examples lend no prioritization to processors, for example, and
this is a core effect of MPI.

There is no official implementation of MPI for Go, but as there exists one for both C
and C++, it's entirely possible to interface with it through that.

There is also a simple and incomplete binding written in Go by Marcus
Thierfelder that you can experiment with. It is available at https: //
github.com/marcusthierfelder/mpi.

%@‘\ You can read more about and install OpenMPI from http: //www.
’ open-mpi.org/.
Also you can read more about MPI and MPICH implementations at
http://www.mpich.org/.

Some helpful libraries

There's little doubt that Go provides some of the best ancillary tools available
to any compiled language out there. Compiling to native code on a myriad of
systems, deadlock detection, pprof, fmt, and more allow you to not just build
high-performance applications, but also test them and format them.

This hasn't stopped the community from developing other tools that can be used
for debugging or aiding your concurrent and/or distributed code. We'll take a look
at a few great tools that may prove worthy of inclusion in your app, particularly if
it's highly visible or performance critical.

Nitro profiler

As you are probably now well aware, Go's pprof is extremely powerful and useful,
if not exactly user-friendly.

If you love pprof already, or even if you find it arduous and confusing, you may
love Nitro profiler twice as much. Coming from Steve Francia of spf13, Nitro profiler
allows you to produce even cleaner analyses of your application and its functions
and steps, as well as providing more usable a/b tests of alternate functions.

N Read more about Nitro profiler at http://spf13.com/project/

~Q nitro.
You can get it via github.com/spf13/nitro.
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As with pprof, Nitro automatically injects flags into your application, and you'll see
them in the results themselves.

Unlike pprof, your application does not need to be compiled to get profile analysis
from it. Instead, you can simply append -stepAnalysis to the go run command.

Heka

Heka is a data pipeline tool that can be used to gather, analyze, and distribute raw
data. Available from Mozilla, Heka is more a standalone application rather than a
library, but when it comes to acquiring, analyzing, and distributing data such as
server logfiles across multiple servers, Heka can prove itself worthy.

Heka is also written in Go, so make sure to check out the source to see how Mozilla
utilizes concurrency and Go in real-time data analysis.

M You can visit the Heka home page at http://heka-docs.
Q readthedocs.org/en/latest/ and the Heka source page
athttps://github.com/mozilla-services/heka.

GoFlow

Finally, there's GoFlow, a flow-based programming paradigm tool that lets you
segment your application into distinct components, each capable of being bound
to ports, channels, the network, or processes.

While not itself a performance tool, GoFlow might be an appropriate approach
to extending concurrency for some applications.

Q Visit GoFlow at https://github.com/trustmaster/goflow.

Memory preservation

At the time of this writing, Go 1.2.2's compiler utilizes a naive mark/sweep garbage
collector, which assigns a reference rank to objects and clears them when they are
no longer in use. This is noteworthy only to point out that it is widely considered

a relatively poor garbage collection system.
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So why does Go use it? As Go has evolved; language features and compiler speed
have largely taken precedence over garbage collection. While it's a long-term
development timeline for Go, for the time being, this is where we are. The tradeoff
is a good one, though: as you well know by now, compiling Go code is light years
faster than, say, compiling C or C++ code. Good enough for now is a fair description
for the GC. But there are some things you can do to augment and experiment within
the garbage collection system.

Garbage collection in Go

To get an idea of how the garbage collector is managing the stack at any time, take a
look at the runtime.MemProfileRecord object, which keeps track of presently living
objects in the active stack trace.

You can call the profile record when necessary and then utilize it against the
following methods to get a few interesting pieces of data:

* InUseBytes (): This method has the bytes used presently as per the
memory profile

* InUseObjects ():This method has the number of live objects in use

* Stack(): This method has the full stack trace

You can place the following code in a heavy loop in your application to get a peek
at all of these:

var mem runtime.MemProfileRecord

obj := mem.InUseObjects() ;
bytes := mem.InUseBytes();
stack := mem.Stack() ;

fmt.Println (i, obj,bytes)

Summary

We can now build some pretty high-performance applications and then utilize some
of Go's built-in tools and third-party packages to seek out the most performance in a
single instance application as well as across multiple, distributed systems.

In the next chapter, we're going to wrap everything together to design and build a
concurrent server application that can work quickly and independently, and easily
scale in performance and scope.
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By now, we've designed small bits of concurrent programs, primarily in a single
piece keeping concurrency largely isolated. What we haven't done yet is tie
everything together to build something a little more robust, complex, and more
daunting to manage from an administrator's perspective.

Simple chat applications and web servers are fine and dandy. However, you will
eventually need more complexity and require external software to meet all of the
more advanced requirements.

In this case, we'll build something that's satisfied by a few dissonant services: a file
manager with revision control that supplies web and shell access. Services such as
Dropbox and Google Drive allow users to keep and share files among peers. On
the other hand, GitHub and its ilk allow for a similar platform but with the critical
added benefit of revision control.

Many organizations face problems with the following sharing and distribution options:

* Limitations on repositories, storage, or number of files

* Potential inaccessibility if the services are down

* Security concerns, particularly for sensitive information
Simple sharing applications such as Dropbox and Google Drive are great at storing
data without a large amount of revision control options. GitHub is an excellent

collaborative revision control and distribution system, but comes with many costs and
the mistakes by developers can lead to large and potentially serious security lapses.
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We'll be combining the aims of version control (and the GitHub ideal) with
Dropbox's / Google Drive's simplicity and openness. This type of application will
be perfect as an intranet replacement —wholly isolated and accessible with custom
authentication that doesn't necessarily rely on cloud services. The ability to keep

it all in-house removes any potential for network security concerns and allows

an administrator to design permanent backup solutions in a way that fits their
organization.

File sharing within the organization will allows forking, backups, file locking, and
revision control all from the command line but also through a simple web interface.

Designing our concurrent application

When designing a concurrent application, we will have three components running in
separate processes. A file listener will be alerted to make changes to files in specified
locations. A web-CLI interface will allow users to augment or modify files, and

a backup process will be bound to the listener to provide automated copies of

new file changes. With that in mind, these three processes will look a bit like

what is shown in the following diagram:

File Listener

—| Web, CLI Interface Backup Process

Our file listener process will do the following three things:

* Keep an eye on any file changes
* Broadcast to our web/CLI servers and the backup process

* Maintain the state of any given file in our database / data store

[206]



Chapter 8

The backup process will accept any broadcasts from the file listener (#2) and create
a backup file in an iterative design.

Our general server (web and CLI) will report details on individual files and allow
versioning forward and backward with a customizable syntax. This part of the
application will also have to broadcast back to the file listener when new files are
committed or revisions are requested.

Identifying our requirements

The most critical step in our architectural design process is really zooming in on the
required features, packages, and technologies that we'll need to implement. For our
file management and revision control application, there are a few key points that
will stand out:

* A web interface that allows file uploads, downloads, and revisions.

* A command-line interface that allows us to roll back changes and modify
files directly.

* A filesystem listener that finds changes made to a shared location.

* A data store system that has strong Go tie-in and allows us to maintain
information about files and users in a mostly consistent manner. This
system will also maintain user records.

* A concurrent log system that maintains and cycles logs of changed files.

We're somewhat complicating things by allowing the following three different ways
to interface with the overall application:

* Via the Web that requires a user and login. This also allows our users to
access and modify files even if they happen to be somewhere not connected
to the shared drive.

* Via the command line. This is archaic but also extremely valuable anytime a
user is traversing a filesystem, particularly power users not in a GUIL.

* Via the filesystem that changes itself. This is the shared drive mechanism
wherein we assume that any user with access to this will be making valid
modifications to any files.
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To handle all of this, we can identify a few critical technologies as follows:

* A database or data store to manage revisions to our filesystem. When
choosing between transactional, ACID-compliant SQL and fast document
stores in NoSQL, the tradeoff is often performance versus consistency.
However, since most of our locking mechanism will exist in the application,
duplicating locks (even at the row level) will add a level of potential
slowness and cruft that we don't need. So, we will utilize a NoSQL solution.

* This solution will need to play well with concurrency.

* We'll be using a web interface, one that brings in powerful and clean
routing/muxing and plays well with Go's robust built-in templating system.

* A filesystem notification library that allows us to monitor changes to files
as well as backing up revisions.

Any solutions we uncover or build to satisfy these requirements will need to be
highly concurrent and non-blocking. We'll want to make sure that we do not
allow simultaneous changes to files, including changes to our internal revisions
themselves.

With all of this in mind, let's identify our pieces one-by-one and decide how they
will play in our application.

We'll also present a few alternatives with options that can be swapped without
compromising the functionality or core requirements. This will allow some flexibility
in cases where platform or preference makes our primary option unpalatable. Any
time we're designing an application, it's a good idea to know

what else is out there in case the software (or terms of its use) change or it is no
longer satisfactory to use at a future scale.

Let's start with our data store.

Using NoSQL as a data store in Go

One of the biggest concessions with using NoSQL is, obviously, the lack of
standardization when it comes to CRUD operations (create, read, update, and
delete). SQL has been standardized since 1986 and is pretty airtight across a
number of databases —from MySQL to SQL Server and from Microsoft and
Oracle all the way down to PostgreSQL.
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You can read more about NoSQL and various NoSQL platforms
athttp://nosgl-database.org/.

% Martin Fowler has also written a popular introduction to the
concept and some use cases in his book NoSQL Distilled at
http://martinfowler.com/books/nosqgl.html.

Depending on the NoSQL platform, you can also lose ACID compliance and
durability. This means that your data is not 100 percent secure — there can be
transactional loss if a server crashes, if reads happen on outdated or non-existent
data, and so on. The latter of which is known as a dirty read.

This is all noteworthy as it applies to our application and with concurrency
specifically because we've talked about one of those big potential third-party
bottlenecks in the previous chapters.

For our file-sharing application in Go, we will utilize NoSQL to store metadata about
files as well as the users that modify/interact with those files.

We have quite a few options when it comes to a NoSQL data store to use here, and
almost all of the big ones have a library or interface in Go. While we're going to go
with Couchbase here, we'll briefly talk about some of the other big players in the
game as well as the merits of each.

The code snippets in the following sections should also give you some idea of how
to switch out Couchbase for any of the others without too much angst. While we
don't go deeply into any of them, the code for maintaining the file and modifying
information will be as generic as possible to ensure easy exchange.

MongoDB

MongoDB is one of the most popular NoSQL platforms available. Written in 2009,
it's also one of the most mature platforms, but comes with a number of tradeoffs
that have pushed it somewhat out of favor in the recent years.

Even so, Mongo does what it does in a reliable fashion and with a great deal of
speed. Utilizing indices, as is the case with most databases and data stores, improves
query speed on reads greatly.

Mongo also allows for some very granular control of guarantees as they apply to
reads, writes, and consistency. You can think of this as a very vague analog to any
language and/ or engine that supports syntactical dirty reads.
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Most importantly, Mongo supports concurrency easily within Go and is implicitly
designed to work in distributed systems.

The biggest Go interface for Mongo is mgo, which is available at:
s http://godoc.org/labix.org/v2/mgo

Should you wish to experiment with Mongo in Go, it's a relatively straightforward
process to take your data store record and inject it into a custom struct. The following
is a quick and dirty example:

import

(
"labix.org/v2/mgo"
"labix.org/v2/mgo/bson"

type User struct ({
name string

}

func main() {
servers, err := mgo.Dial ("localhost")
defer servers.Close()
data := servers.DB("test").C("users")
result := User{}
err = c.Find(bson.M{"name": "John"}) .One (&result)

}

One downside to Mongo compared to other NoSQL solutions is that it does

not come with any GUI by default. This means we either need to tie in another
application or web service, or stick to the command line to manage its data store.
For many applications, this isn't a big deal, but we want to keep this project as
compartmentalized and provincial as possible to limit points of failure.

Mongo has also gotten a bit of a bad rap as it pertains to fault tolerance and data loss,
but this is equally true of many NoSQL solutions. In addition, it's in many ways a
feature of a fast data store —so often catastrophe recovery comes at the expense of
speed and performance.
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It's also fair to say this is a generally overblown critique of Mongo and its peers.
Can something bad happen with Mongo? Sure. Can it also happen with a managed
Oracle-based system? Absolutely. Mitigating massive failures in this realm is more
the responsibility of a systems administrator than the software itself, which can only
provide the tools necessary to design such a contingency plan.

All that said, we'll want something with a quick and highly-available management
interface, so Mongo is out for our requirements but could easily be plugged into this
solution if those are less highly valued.

Redis

Redis is another key/value data store and, as of recently, took the number one spot
in terms of total usage and popularity. In an ideal Redis world, an entire dataset is
held in memory. Given the size of many datasets, this isn't always possible; however,
coupled with Redis' ability to eschew durability, this can result in some very high
performance results when used in concurrent applications.

Another useful feature of Redis is the fact that it can inherently hold different data
structures. While you can make abstractions of such data by unmarshalling JSON
objects/arrays in Mongo (and other data stores), Redis can handle sets, strings,
arrays, and hashes.

There are two major accepted libraries for Redis in Go:

* Radix: This is a minimalist client that's barebones, quick, and dirty.
To install Radix, run the following command:

go get github.com/fzzy/radix/redis

* Redigo: This more robust and a bit more complex, but provides a lot of the
more intricate functionality that we'll probably not need for this project. To
install Redigo, run the following command:

go get github.com/garyburd/redigo/redis
We'll now see a quick example of getting a user's name from the data store of Users
in Redis using Redigo:

package main

import

(
n fmt n
"github.com/garyburd/redigo/redis"
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func main()

connection, := dial()
defer connection.Close()

data, err := redis.Values (connection.Do ("SORT", "Users", "BY",
"User:*->name",
"GET", "User:*->name"))

if (err) {
fmt.Println ("Error getting values", err)

for i:= range data ({
var Uname string
data,err := redis.Scan(data, &Uname)
if (err) {
fmt.Println ("Error getting value", err)
}else {
fmt.Println ("Name Uname")

}

Looking over this, you might note some non programmatic access syntax, such as
the following:

data, err := redis.Values (connection.Do ("SORT", "Users", "BY",
"User:*->name",
"GET", "User:*->name"))

This is indeed one of the reasons why Redis in Go will not be our choice for this
project—both libraries here provide an almost API-level access to certain features
with some more detailed built-ins for direct interaction. The Do command passes
straight queries directly to Redis, which is fine if you need to use the library,

but a somewhat inelegant solution across the board.

Both the libraries play very nicely with the concurrent features of Go, and you'll have
no problem making non-blocking networked calls to Redis through either of them.

It's worth noting that Redis only supports an experimental build for Windows,
so this is mostly for use on *nix platforms. The port that does exist comes from
Microsoft and can be found at https://github.com/MSOpenTech/redis.
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Tiedot

If you've worked a lot with NoSQL, then the preceding engines all likely seemed
very familiar to you. Redis, Couch, Mongo, and so on are all virtual stalwarts in
what is a relatively young technology.

Tiedot, on the other hand, probably isn't as familiar. We're including it here only
because the document store itself is written in Go directly. Document manipulation
is handled primarily through a web interface, and it's a JSON document store like
several other NoSQL solutions.

As document access and handling is governed via HTTP, there's a somewhat
counterintuitive workflow, shown as follows:

[Your Go Application]— Web Interface — [Go Application—Tiedot]

As that introduces a potential spot for latency or failure, this keeps from being an
ideal solution for our application here. Keep in mind that this is also a feature of

a few of the other solutions mentioned earlier, but since Tiedot is written in Go, it
would be significantly easier to connect to it and read/modify data using a package.
While this book was being written, this did not exist.

Unlike other HTTP- or REST-focused alternatives such as CouchDB, Tiedot relies
on URL endpoints to dictate actions, not HTTP methods.

You can see in the following code how we might handle something like this through
standard libraries:

package main

import

(
nfmt"
n ] son"
"http"

)

type Collection struct ({
Name string

}
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This, simply, is a data structure for any record you wish to bring into your Go
application via data selects, queries, and so on. You saw this in our previous
usage of SQL servers themselves, and this is not any different:

func main() {

Col := Collection{
Name: ''

}

data, err := http.Get("http://localhost:8080/all")
if (err != nil) {
fmt.Println ("Error accessing tiedot")

}

collections, = json.Unmarshal (data, &Col)

}

While not as robust, powerful, or scalable as many of its peers, Tiedot is certainly
worth playing with or, better yet, contributing to.

You can find Tiedot at https://github.com/HouzuoGuo/
/S tiedot.

CouchDB

CouchDB from Apache Incubator is another one of the big boys in NoSQL big data.
As a JSON document store, CouchDB offers a great deal of flexibility when it comes
to your data store approach.

CouchDB supports ACID semantics and can do so concurrently, which provides
a great deal of performance benefit if one is bound to those properties. In our
application, that reliance on ACID consistency is somewhat flexible. By design,
it will be failure tolerant and recoverable, but for many, even the possibility of
data loss with recoverability is still considered catastrophic.

Interfacing with CouchDB happens via HTTP, which means there is no need for a
direct implementation or Go SQL database hook to use it. Interestingly, CouchDB
uses HTTP header syntax to manipulate data, as follows:

* GET: This represents read operations

* PUT: This represents creation operations

* DELETE: This represents deletion and update operations
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These are, of course, what the header methods were initially intended in HTTP 1.1,
but so much of the Web has focused on GET/POST that these tend to get lost in
the fray.

Couch also comes with a convenient web interface for management. When CouchDB
is running, you're able to access this at http://localhost:5984/ utils/, as shown
in the following screenshot:

Overview

B>
Wy Create Database ..
Name Size Number of Documents Update Seq
_replicator 41KB 1 4

_users 41KB 1 ; couchDB

file_manager 79 bytes 0 relax

Rows per page: |10 ¥

That said, there are a few wrappers that provide a level of abstraction for some of the
more complicated and advanced features.

Cassandra

Cassandra, another Apache Foundation project, isn't technically a NoSQL solution
but a clustered (or cluster-able) database management platform.

Like many NoSQL applications, there is a limitation in the traditional query methods
in Cassandra, for example, subqueries and joins are generally not supported.

We're mentioning it here primarily because of its focus on distributed computing
as well as the ability to programmatically tune whether data consistency or
performance is more important. Much of that is equally expressed in our solution,
Couchbase, but Cassandra has a deeper focus on distributed data stores.

Cassandra does, however, support a subset of SQL that will make it far more familiar
to developers who have dabbled in MySQL, PostgreSQL, or the ilk. Cassandra's
built-in handling of highly concurrent integrations makes it in many ways ideal for
Go, although it is an overkill for this project.

The most noteworthy library to interface with Cassandra is gocql, which focuses on
speed and a clean connection to the Cassandra connection. Should you choose to use
Cassandra in lieu of Couchbase (or other NoSQL), you'll find a lot of the methods
that can be simply replaced.
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The following is an example of connecting to a cluster and writing a simple query:

package main

import
(
"github.com/gocqgl/gocgl™"

n 1og n
)
func main() {
cass := gocqgl.NewCluster("127.0.0.1")
cass.Keyspace = "filemaster"

cass.Consistency = gocqgl.LocalQuorum

session, _ := cass.CreateSession()
defer session.Close()

var fileTime int;

if err := session.Query( SELECT file modified time FROM filemaster
WHERE filename = ? LIMIT 17,
"test.txt") .Consistency(gocql.One) .Scan(&fileTime); err != nil {

log.Fatal (err)

}

fmt.Println("Last modified",fileTime)

}

Cassandra may be an ideal solution if you plan on rapidly scaling this application,
distributing it widely, or are far more comfortable with SQL than data store /
JSON access.

For our purposes here, SQL is not a requirement and we value speed over anything
else, including durability.

Couchbase

Couchbase is a relative newcomer in the field, but it was built by people from both
CouchDB and memcached. Written in Erlang, it shares many of the same focuses on
concurrency, speed, and non-blocking behavior that we've come to expect from a
great deal of our Go applications.

Couchbase also supports a lot of the other features we've discussed in the previous
chapters, including easy distribution-based installations, tuneable ACID compliance,
and low-resource consumption.
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One caveat on Couchbase is it doesn't run well (or at all) on some lower-resourced
machines or VMs. Indeed, 64-bit installations require an absolute minimum of 4
GB of memory and four cores, so forget about launching this on tiny, small, or even
medium-grade instances or older hardware.

While most NoSQL solutions presented here (or elsewhere) offer performance
benefits over their SQL counterparts in general, Couchbase has done very well
against its peers in the NoSQL realm itself.

Couchbase, such as CouchDB, comes with a web-based graphical interface that
simplifies the process of both setup and maintenance. Among the advanced features
that you'll have available to you in the setup include your base bucket storage engine
(Couchbase or memcached), your automated backup process (replicas), and the level
of read-write concurrency.

In addition to configuration and management tools, it also presents some real-time
monitoring in the web dashboard as shown in the following screenshot:

[ ] - . + Sign Out
Couchbase

A& Cluster Overviey Server Nodes Data Buckets Views XDCR og Settings

Cluster Overview

Cluster

Total Allscated (512 WB) Totalin Cluster (S1Z MB}
RAM Overview -

In Use (30.3 MB 1 MB Unallocated (0 B)

Usable Free Space Total Cluster Storage (383 GB}
Disk Overview

In Use (1.57 MB ther Data (143 GB Free (245 GB

Buckets (1 bucket active)

Operations per second .| Diskfeiches per second

Servers

' Servers Failed Over: 0

' Servers Down: 0

. Servers Pending Rebalance: 0

Active Servers: 1
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While not a replacement for full-scale server management (what happens when this
server goes down and you have no insight), it's incredibly helpful to know exactly
where your resources are going without needing a command-line method or an
external tool.

The vernacular in Couchbase varies slightly, as it tends to in many of these solutions.
The nascent desire to slightly separate NoSQL from stodgy old SQL solutions will
pop its head from time to time.

With Couchbase, a database is a data bucket and records are documents. However,
views, an old transactional SQL standby, bring a bit of familiarity to the table. The
big takeaway here is views allow you to create more complex queries using simple
JavaScript, in some cases, replicating otherwise difficult features such as joins,
unions, and pagination.

Each view created in Couchbase becomes an HTTP access point. So a view that

you name select_all_files will be accessible via a URL such as http://
localhost:8092/file manager/ design/select all files/ view/Select%20
All%20Files?connection timeout=60000&limit=10&skip=0.

The most noteworthy Couchbase interface library is Go Couchbase, which, if nothing
else, might save you from some of the redundancy of making HTTP calls in your
code to access CouchDB.

couchbaselabs/go-couchbase

[ Go Couchbase can be found at https://github.com/ ]
VS

Go Couchbase makes interfacing with Couchbase through a Go abstraction simple
and powerful. The following code connects and grabs information about the various
data pools in a lean way that feels native:

package main

import

(
n fmt n
"github.com/couchbaselabs/go-couchbase"

)

func main() {
conn, err := couchbase.Connect ("http://localhost:8091")
if err != nil {

fmt.Println("Error:",err)

}
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for , pn := range conn.Info.Pools {

fmt.Printf ("Found pool: %s -> %$s\n", pn.Name, pn.URI)

Setting up our data store

After installing Couchbase, you can access its administration panel by default
at localhost and port 8091.

You'll be given an opportunity to set up an administrator, other IPs to connect
(if you're joining a cluster), and general data store design.

After that, you'll need to set up a bucket, which is what we'll use to store all
information about individual files. Here is what the interface for the bucket
setup looks like:

Create Bucket
Bucket Settings

Bucket Name: file_manager

Bucket Type: @ Couchbase

Memcached

Memory Size

Cluster quota (512 MB)

ez it R Qo 256] MB o herBuckets (0 B)  This Bucket (256 ME)  Free (256 MB)
Total bucket size = 256 MB (256 MB x 1 node)

Access Control
= Standard port (TCP port 11211. Needs SASL auth.)
Enter password:

Dedicated port (supports ASCII protocol and is auth-less)

Protocol Port:

Replicas

] Enable

) Index replicas

Disk Read-Write Concurrency

Number of suggested reader/writer workers: 3 (Min = 2, Max = 8)
Auto-Compaction
The Auto-Compaction daemon compacts databdases and their respective view indexes

when all the condition parameters are satisfied.

Qverride the default autocompaction settings?

Flush

Enable
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In our example, we're working on a single machine, so replicas (also known as
replication in database vernacular) are not supported. We've named it file
manager, but this can obviously be called anything that makes sense.

We're also keeping our data usage pretty low — there's no need for much more than
256 MB of memory when we're storing file operations and logging older ones. In
other words, we're not necessarily concerned with keeping the modification history
of test.txt in memory forever.

We'll also stick with Couchbase for a storage engine equivalent, although you can
flip back and forth with memcache(d) without much noticeable change.

Let's start by creating a seed document: one we'll delete later, but that will represent
the schema of our data store. We can create this document with an arbitrary JSON
structured object, as shown in the following screenshot:

[
Couchbase
A& Cluster Overview Server Nodes Data Buckets Views XDCR Log Settings
file_manager = > Documents
1 | Delete | Save As.. =~ Save

Since everything stored in this data store should be valid JSON, we can mix and
match strings, integers, bools, arrays, and objects. This affords us some flexibility
in what data we're using. The following is an example document:

{

"file name": "test.txt",
"hash": "",

"created": 1,

"created user": 0,

"last modified": "",
"last_modified user": "",
"revisions": [],
"version": 1
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Monitoring filesystem changes

When it came to NoSQL options, we had a vast variety of solutions at our disposal.
This is not the case when it comes to applications that monitor filesystem changes.
While Linux flavors have a fairly good built-in solution in inotify, this does restrict
the portability of the application.

So it's incredibly helpful that a cross-platform library for handling this exists in
Chris Howey's fsnotify.

Fsnotify works on Linux, OSX, and Windows and allows us to detect when files
in any given directory are created, deleted, modified, or renamed, which is more
than enough for our purposes.

Implementing fsnotify couldn't be easier, either. Best of all it's all non-blocking,
so if we throw the listener behind a goroutine, we can have this run as part of
the primary server application code.

The following code shows a simple directory listener:

package main

import (
"github.com/howeyc/fsnotify"
"fme "
"log""
)
func main() {
scriptDone := make (chan bool)
dirSpy, err := fsnotify.NewWatcher ()
if err != nil {
log.Fatal (err)
}
go func()
for {
select ({
case fileChange := <-dirSpy.Event:
log.Println("Something happened to a file:",
fileChange)
case err := <-dirSpy.Error:
log.Println("Error with fsnotify:", err)
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}
}O

err = dirSpy.Watch("/mnt/sharedir")
if err != nil {
fmt.Println (err)

}

<-scriptDone

dirSpy.Close ()

Managing logdfiles

Like many basic features in a developer's toolbox, Go provides a fairly complete
solution built-in for logging. It handles many of the basics, such as creating
timestamp-marked log items and saving to disk or to console.

One thing the basic package misses out on is built-in formatting and log rotation,
which are key requirements for our file manager application.

Remember that key requirements for our application include the ability to work
seamlessly in our concurrent environment and be ready to scale to a distributed
network if need be. This is where the fine log4go application comes in handy. Log4go
allows logging to file, console, and memory and handles log rotation inherently.

Log4go can be found at https://code.google.com/p/

log4go/.
To install Log4go, run the following command:

go get code.google.com/p/log4go

Creating a logfile that handles warnings, notices, debug information, and critical
errors is simple and appending log rotation to that is similarly simple, as shown
in the following code:

package main

import
(
logger "code.google.com/p/logdgo"
)
func main()
logMech := make (logger.Logger) ;
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logMech.AddFilter ("stdout", logger.DEBUG,
logger.NewConsoleLogWriter ())

fileLog := logger.NewFileLogWriter ("log manager.log", false)
fileLog.SetFormat (" [$D %T] [%L] (%S) %M")
fileLog.SetRotate (true)

fileLog.SetRotateSize (256)

fileLog.SetRotatelLines (20)

fileLog.SetRotateDaily (true)

logMech.AddFilter("file", logger.FINE, fileLog)

logMech.Trace ("Received message: %s)", "All is well")
logMech.Info ("Message received: ", "debug!")
logMech.Error ("Oh no!", "Something Broke")

Handling configuration files

When it comes to configuration files and parsing them, you have a lot of options,
from simple to complicated.

We could, of course, simply store what we want in JSON, but that format is a little
tricky to work directly for humans — it will require escaping characters and so on,
which makes it vulnerable to errors.

Instead, we'll keep things simple by using a standard ini config file library in gcfg,
which handles gitconfig files and traditional, old school . ini format, as shown in
the following code snippet:

[revisions]

count = 2
revisionsuffix = .rev
lockfiles = false

[logs]
rotatelength = 86400

[alarms]
emails = sysadmin@example.com, ceo@example.com

% You can find gcfg at https://code.google.com/p/gcfg/.
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Essentially, this library takes the values of a config file and pushes them into a struct
in Go. An example of how we'll do that is as follows:

package main

import

(
" Frt "
"code.google.com/p/gctg"

type Configuration struct {

Revisions struct {
Count int
Revisionsuffix string
Lockfiles bool

}

Logs struct
Rotatelength int

}

Alarms struct {
Emails string

}
}

func main()
configFile := Configurationf{}
err := gcfg.ReadFileInto(&configFile, "example.ini™")
if err != nil {
fmt.Println("Error", err)

}

fmt.Println ("Rotation duration:",configFile.Logs.Rotatelength)

Detecting file changes

Now we need to focus on our file listener. You may recall this is the part of
the application that will accept client connections from our web server and our
backup application and announce any changes to files.

The basic flow of this part is as follows:

1. Listen for changes to files in a goroutine.
2. Accept connections and add to the pool in a goroutine.

3. If any changes are detected, announce them to the entire pool.
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All three happen concurrently, and the first and the third can happen without any
connections in the pool, although we assume there will be a connection that is always
on with both our web server and our backup application.

Another critical role the file listener will fulfill is analyzing the directory on first load
and reconciling it with our data store in Couchbase. Since the Go Couchbase library
handles the get, update, and add operations, we won't need any custom views. In the
following code, we'll examine the file listener process and show how we listen on a
folder for changes:

package main

import

(
"fmt"
"github.com/howeyc/fsnotify"
"net"
"time"
n iO"
"io/ioutil™"
"github.com/couchbaselabs/go-couchbase"
"crypto/mds"
"encoding/hex"
"encoding/json"
"strings"

var listenFolder = "mnt/sharedir"

type Client struct ({
ID int
Connection *net.Conn

}

Here, we've declared our shared folder as well as a connecting client struct.
In this application, Client is either a web listener or a backup listener, and we'll
pass messages in one direction using the following JSON-encoded structure:

type File struct ({
Hash string "json:hash"
Name string "json:file name"
Created int64 "json:created"
CreatedUser int "json:created user"
LastModified int64 "json:last modified"
LastModifiedUser int "json:last modified user"
Revisions int "json:revisions"
Version int "json:version"
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If this looks familiar, it could be because it's also the example document format we
set up initially.

If you're not familiar with the syntactical sugar expressed earlier, these
are known as struct tags. A tag is just a piece of additional metadata
that can be applied to a struct field for key/value lookups via the
"~ reflect package. In this case, they're used to map our struct fields to
JSON fields.

Let's first look at our overall Message struct:

type Message struct {

}

Hash string "json:hash"

Action string "json:action"
Location string "json:location"
Name string "json:name"

Version int "json:version"

We compartmentalize our file into a message, which alerts our other two processes
of changes:

func generateHash(name string) string {

}

hash := md5.New ()
io.WriteString (hash, name)
hashString := hex.EncodeToString (hash.Sum(nil))

return hashString

This is a somewhat unreliable method to generate a hash reference to a file and will
fail if a filename changes. However, it allows us to keep track of files that are created,
deleted, or modified.

Sending changes to clients

Here is the broadcast message that goes to all existing connections. We pass along
our JSON-encoded Message struct with the current version, the current location,
and the hash for reference. Our other servers will then react accordingly:

func alertServers (hash string, name string, action string, location
string, version int) ({
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msg :=
Message{Hash:hash,Action:action,Location:location,Name:name,
Version:version}

msgJSON, := json.Marshal (msg)
fmt.Println(string (msgJSON) )

for i := range Clients (
fmt.Println("Sending to clients")
fmt.Fprintln(*Clients[i] .Connection, string (msgJSON) )

}

Our backup server will create a copy of that file with the . [VERSION] extension
in the backup folder.

Our web server will simply alert the user via our web interface that the file
has changed:

func startServer (listener net.Listener)

for {
conn,err := listener.Accept ()
if err != nil {
}
currentClient := Client{ ID: 1, Connection: &conn}
Clients = append(Clients, currentClient)
for i:= range Clients

fmt.Println("Client",Clients[i] .ID)

}

Does this code look familiar? We've taken almost our exact chat server client
handler and brought it over here nearly intact:

func removeFile (name string, bucket *couchbase.Bucket) {
bucket .Delete (generateHash (name) )

}

The removeFile function does one thing only and that's removing the file from
our Couchbase data store. As it's reactive, we don't need to do anything on the
file-server side because the file is already deleted. Also, there's no need to delete
any backups, as this allows us to recover. Next, let's look at our function that
updates an existing file:
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func updateExistingFile (name string, bucket *couchbase.Bucket) int ({
fmt.Println (name, "updated")
hashString := generateHash (name)

thisFile := Files[hashString]
thisFile.Hash = hashString

thisFile.Name = name

thisFile.Version = thisFile.Version + 1
thisFile.LastModified = time.Now() .Unix ()
Files[hashString] = thisFile

bucket.Set (hashString, 0,Files [hashString])
return thisFile.Version

}

This function essentially overwrites any values in Couchbase with new ones,
copying an existing File struct and changing the LastModified date:

func evalFile(event *fsnotify.FileEvent, bucket *couchbase.Bucket) {
fmt.Println (event.Name, "changed")
create := event.IsCreate()
fileComponents := strings.Split (event.Name, "\\")
fileComponentSize := len(fileComponents)
trueFileName := fileComponents[fileComponentSize-1]
hashString := generateHash (trueFileName)

if create == true {
updateFile (trueFileName, bucket)
alertServers (hashString, event .Name, "CREATE", event .Name, 0)
}
delete := event.IsDelete()
if delete == true {
removeFile (trueFileName, bucket)
alertServers (hashString, event .Name, "DELETE", event .Name, 0)
}
modify := event.IsModify ()
if modify == true
newVersion := updateExistingFile (trueFileName, bucket)
fmt.Println (newVersion)
alertServers (hashString, trueFileName, "MODIFY", event .Name,
newVersion)
}
rename := event.IsRename ()
if rename == true
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Here, we react to any changes to the filesystem in our watched directory. We aren't
reacting to renames, but you can handle those as well. Here's how we'd approach the
general updateFile function:

func updateFile (name string, bucket *couchbase.Bucket) {
thisFile := File{}
hashString := generateHash (name)

thisFile.Hash = hashString

thisFile.Name = name

thisFile.Created = time.Now() .Unix ()
thisFile.CreatedUser = 0
thisFile.LastModified = time.Now () .Unix ()
thisFile.LastModifiedUser = 0
thisFile.Revisions = 0

thisFile.Version = 1

Files[hashString] = thisFile

checkFile := File{}
err := bucket.Get (hashString, &checkFile)
if err != nil {
fmt.Println("New File Added", name)
bucket.Set (hashString, 0,thisFile)

}

Checking records against Couchbase

When it comes to checking for existing records against Couchbase, we check whether
a hash exists in our Couchbase bucket. If it doesn't, we create it. If it does, we do
nothing. To handle shutdowns more robustly, we should also ingest existing records
into our application. The code for doing this is as follows:

var Clients []Client
var Files map([string] File

func main() {
Files = make (map[string]File)
endScript := make (chan bool)
couchbaseClient, err := couchbase.Connect ("http://localhost:8091/")
if err != nil {
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fmt.Println ("Error connecting to Couchbase", err)
!
pool, err := couchbaseClient.GetPool ("default")
if err != nil {

fmt.Println ("Error getting pool",err)
}
bucket, err := pool.GetBucket ("file manager")
if err != nil {
fmt.Println ("Error getting bucket",err)

}

files, _ := ioutil.ReadDir (listenFolder)
for , file := range files {
updateFile (file.Name () ,bucket)

}

dirSpy, err := fsnotify.NewWatcher ()
defer dirSpy.Close()

listener, err := net.Listen("tcp", ":9000")
if err != nil {
fmt.Println ("Could not start server!",err)

}

go func() {
for {
select {
case ev := <-dirSpy.Event:
evalFile (ev,bucket)
case err := <-dirSpy.Error:
fmt.Println("error:", err)

1O
err = dirSpy.Watch(listenFolder)
startServer (listener)

<-endScript

}

Finally, main () handles setting up our connections and goroutines, including a file
watcher, our TCP server, and connecting to Couchbase.

Now, let's look at another step in the whole process where we will automatically
create backups of our modified files.
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Backing up our files

Since we're sending our commands on the wire, so to speak, our backup process
needs to listen on that wire and respond with any changes. Given that modifications
will be sent via localhost, we should have minimal latency on both the network and

the file side.

We'll also return some information as to what happened with the file, although at this
point we're not doing much with that information. The code for this is as follows:

package main

import
(
"fmt"
"net"
n iO"
IIOS n
"strconv"
"encoding/json"

)
var backupFolder = "mnt/backup/"

Note that we have a separate folder for backups, in this case, on a Windows machine.
If we happen to accidentally use the same directory, we run the risk of infinitely
duplicating and backing up files. In the following code snippet, we'll look at the
Message struct itself and the backup function, the core of this part of the application:

type Message struct {
Hash string "json:hash"
Action string "json:action"
Location string "json:location"
Name string "json:name"
Version int "json:version"

}

func backup (location string, name string, version int)

newFileName := backupFolder + name + "." +
strconv.FormatInt (inté4 (version),b10)
fmt.Println (newFileName)

org, := os.Open(location)
defer org.Close()
cpy,_ := os.Create(newFileName)

defer cpy.Close()
io.Copy (cpy, org)
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Here is our basic file operation. Go doesn't have a one-step copy function; instead
you need to create a file and then copy the contents of another file into it with
io.Copy:

func listen(conn net.Conn) {
for {

messBuff := make([]byte,1024)
n, err := conn.Read(messBuff)
if err != nil {

resultMessage := Message{}
json.Unmarshal (messBuff [:n], &resultMessage)

if resultMessage.Action == "MODIFY"
fmt.Println("Back up file",resultMessage.Location)
newVersion := resultMessage.Version + 1
backup (resultMessage.Location, resultMessage.Name, newVersion)

}

}

This code is nearly verbatim for our chat client's 1isten () function, except that
we take the contents of the streamed JSON data, unmarshal it, and convert it to a
Message{ } struct and then a File{} struct. Finally, let's look at the main function
and TCP initialization:

func main() {
endBackup := make (chan bool)
conn, err := net.Dial("tcp","127.0.0.1:9000")
if err != nil {

fmt.Println("Could not connect to File Listener!")

}

go listen(conn)

<- endBackup
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Designing our web interface

To interact with the filesystem, we'll want an interface that displays all of the current
files with the version, last modified time, and alerts to changes, and allows drag-and-
drop creation/replacement of files.

Getting a list of files will be simple, as we'll grab them directly from our file_manager
Couchbase bucket. Changes will be sent through our file manager process via TCP,
which will trigger an API call, illuminating changes to the file for our web user.

A few of the methods we've used here are duplicates of the ones we used in

the backup process and could certainly benefit from some consolidation; still,
the following is the code for the web server, which allows uploads and shows
notifications for changes:

package main

import

(

"net"
"net/http"
"html/template"
n 1og|l

n iO"

"OS n
"io/ioutil"

"github.com/couchbaselabs/go-couchbase"

"time"

"fmt"
"crypto/md5s"
"encoding/hex"
"encoding/json"

type File struct ({

Hash string "json:hash"
Name string "json:file name"
Created int64 "json:created"

CreatedUser int "json:created user"
LastModified int64 "json:last modified"
LastModifiedUser int "json:last modified user"

Revisions int "json:revisions"

Version int "json:version"
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This, for example, is the same File struct we use in both the file listener and the
backup process:

type Page struct ({
Title string
Files map[string] File

}

Our page struct represents generic web data that gets converted into corresponding
variables for our web page's template:

type ItemWrapper struct {

Items []File
CurrentTime inté4
PreviougTime inté64

}

type Message struct {
Hash string "json:hash"
Action string "json:action"
Location string "json:location"
Name string "json:name"
Version int "json:version"

}

The 1temWrapper struct is simply a JSON wrapper that will keep an array that's
converted from our Files struct. This is essential to loop through the API's JSON
on the client side. Our Message struct is a duplicate of the same type we saw in our
file listener and backup processes. In the following code snippet, we'll dictate some
general configuration variables and our hash generation function:

var listenFolder = "/wamp/www/shared/"

var Files map[string] File

var webTemplate = template.Must (template.ParseFiles("ch8 html.html"))
var fileChange chan File

var lastChecked inté4

func generateHash(name string) string {
hash := md5.New()
io.WriteString (hash, name)

hashString := hex.EncodeToString (hash.Sum(nil))

return hashString
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Our mds hashing method is the same for this application as well. It's worth noting
that we derive a 1astChecked variable that is the Unix-style timestamp from each
time we get a signal from our file listener. We use this to compare with file changes
on the client side to know whether to alert the user on the Web. Let's now look at
the updateFile function for the web interface:

func updateFile (name string, bucket *couchbase.Bucket) {
thisFile := File{}
hashString := generateHash (name)

thisFile.Hash = hashString

thisFile.Name = name

thisFile.Created = time.Now() .Unix ()
thisFile.CreatedUser = 0
thisFile.LastModified = time.Now () .Unix ()
thisFile.LastModifiedUser = 0
thisFile.Revisions = 0

thisFile.Version = 1

Files[hashString] = thisFile

checkFile := File{}
err := bucket.Get (hashString, &checkFile)
if err != nil {
fmt.Println("New File Added", name)
bucket.Set (hashString, 0,thisFile)
}else {
Files[hashString] = checkFile

}

This is the same function as our backup process, except that instead of creating a
duplicate file, we simply overwrite our internal File struct to allow it represent its
updated LastModified value when the /api is next called. And as with our last
example, let's check out the 1isten () function:

func listen(conn net.Conn) {

for {
messBuff := make([]byte,1024)
n, err := conn.Read(messBuff)
if err != nil {
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}

message := string(messBuff[:n])
message = message[0:]

resultMessage := Message{}
json.Unmarshal (messBuff [:n], &resultMessage)

updateHash := resultMessage.Hash
tmp := Files[updateHash]
tmp.LastModified = time.Now () .Unix ()
Files[updateHash] = tmp

}

Here is where our message is read, unmarshalled, and set to its hashed map's key.
This will create a file if it doesn't exist or update our current one if it does. Next, we'll
look at the main () function, which sets up our application and the web server:

func main() {
lastChecked := time.Now () .Unix()
Files = make (map[string]File)
fileChange = make(chan File)

couchbaseClient, err := couchbase.Connect ("http://localhost:8091/")
if err != nil {
fmt.Println ("Error connecting to Couchbase", err)
}
pool, err := couchbaseClient.GetPool ("default")
if err != nil {

fmt.Println ("Error getting pool",err)
}
bucket, err := pool.GetBucket ("file manager")
if err != nil {
fmt.Println ("Error getting bucket",err)

files, _ := ioutil.ReadDir (listenFolder)
for , file := range files {
updateFile (file.Name () ,bucket)

}

conn, err := net.Dial("tcp","127.0.0.1:9000")
if err != nil {
fmt.Println("Could not connect to File Listener!")
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go listen(conn)

http.HandleFunc ("/api", func(w http.ResponseWriter, r
*http.Request) {
apiOutput := ItemWrapper{}
apiOutput.PreviousTime = lastChecked
lastChecked = time.Now () .Unix ()
apiOutput.CurrentTime = lastChecked

for i:= range Files {
apiOutput.Items = append(apiOutput.Items,Files[i])
}
output, := json.Marshal (apiOutput)
fmt .Fprintln (w, string (output))

3]

http.HandleFunc("/", func(w http.ResponseWriter, r
*http.Request) {
output := Page{Files:Files,Title:"File Manager"}
tmp,  := template.ParseFiles("ch8 html.html")
tmp.Execute (w, output)

3]

http.HandleFunc ("/upload", func(w http.ResponseWriter, r
*http.Request) {

err := r.ParseMultipartForm(10000000)

if err != nil {
return

}

form := r.MultipartForm

files := form.File["file"]

for i, _ := range files {
newFileName := listenFolder + files[i] .Filename
org, := files[i] .Open()

defer org.Close()
cpy,_ := os.Create(newFileName)
defer cpy.Close()
io.Copy (cpy,org)
}
3]

log.Fatal (http.ListenAndServe (":8080",nil))
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In our web server component, main () takes control of setting up the connection to
the file listener and Couchbase and creating a web server (with related routing).

If you upload a file by dragging it to the Drop files here to upload box, within a few
seconds you'll see that the file is noted as changed in the web interface, as shown in
the following screenshot:

File Manager
New File:

+ index1 html

+ shared

o 2Mxt

¢ siyle.css

o Tixt

Drop files here to upload

We haven't included the code for the client side of the web interface; the key points,
though, are retrieval via an API. We used a JavaScript library called Dropzone. js
that allows a drag-and-drop upload, and jQuery for API access.

Reverting a file's history — command line

The final component we'd like to add to this application suite is a command-line

file revision process. We can keep this one fairly simple, as we know where a file is
located, where its backups are located, and how to replace the former with the latter.
As with before, we have some global configuration variables and a replication of our
generateHash () function:
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var liveFolder = "/mnt/sharedir "
var backupFolder = "/mnt/backup

func generateHash(name string) string {
hash := md5.New /()
io.WriteString (hash, name)
hashString := hex.EncodeToString (hash.Sum(nil))
return hashString

func main()
revision := flag.Int("r",O0, "Number of versions back")
fileName := flag.String("f","","File Name")
flag.Parse()

if *fileName == "" {

fmt.Println("Provide a file name to use!")

os.Exit (0)
}
couchbaseClient, err := couchbase.Connect ("http://localhost:8091/")
if err != nil {
fmt.Println ("Error connecting to Couchbase", err)
}
pool, err := couchbaseClient.GetPool ("default")
if err != nil {

fmt.Println ("Error getting pool",err)
}
bucket, err := pool.GetBucket ("file manager")
if err != nil {
fmt.Println ("Error getting bucket", err)

hashString := generateHash (*fileName)
checkFile := File{}

bucketerr := bucket.Get (hashString, &checkFile)
if bucketerr != nil {
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}else {

backupLocation := backupFolder + checkFile.Name + "." +
strconv.FormatInt (inté4 (checkFile.Version-*revision),b 10)

newLocation := liveFolder + checkFile.Name

fmt .Println (backupLocation)

org, := os.Open (backupLocation)
defer org.Close()

cpy,_ := os.Create(newLocation)
defer cpy.Close()

io.Copy (cpy,org)

fmt.Println("Revision complete")

}
This application accepts up to two parameters:

e _f: This denotes the filename

e _r: This denotes the number of versions to revert

Note that this itself creates a new version and thus a backup, so -2 would need to
become -3, and then -6, and so on in order to continuously back up recursively.

As an example, if you wished to revert example. txt back three versions, you could
use the following command:

fileversion -f example.txt -r -3

Using Go in daemons and as a service

A minor note on running something like this part of the application—you'll ideally
wish to keep these applications as active, restartable services instead of standalone,
manually executed background processes. Doing so will allow you to keep the
application active and manage its life from external or server processes.

This sort of application suite would be best suited on a Linux box (or boxes) and
managed with a daemon manager such as daemontools or Ubuntu's built-in Upstart
service. The reason for this is that any long-term downtime can result in lost data
and inconsistency. Even storing file data details in the memory (Couchbase and
memcached) provides a vulnerability for lost data.
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Checking the health of our server

Of the many ways to check general server health, we're in a good position here without
having to build our own system, thanks in great part to Couchbase itself. If you visit
the Couchbase web admin, under your cluster, server, and bucket views, clicking on
any will present some real-time statistics, as shown in the following screenshot:

DATA BUCKETS: | file_manager = on| All server Nodes (1)
General Bucket Analytics Last 1 minute Minute
Hour
ops per second Day
25 Week

Month

Vienr

(@) ops per second

Total amount of operations
per second to this bucket
(measured from cmd_get +
cmd_set + incr_misses +
incr_hits + decr_misses +
decr_hits + delefe_misses +
delete_hits)

023:33:45pm 03:34:00pm 03:24:15pm

W SERVER RESOURCES

7.97GE swap usage P 1.51GE free RAM P 413 CPU ufilization % ™ 0 Minor page faults B
0 Major page faults P 334 Page faults > 10 connections » { port 8091 reqsisec P

These areas are also available via REST if you wish to include them in the application
to make your logging and error handling more comprehensive.
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Summary

We now have a top to bottom application suite that is highly concurrent, ropes
in several third-party libraries, and mitigates potential failures with logging and
catastrophe recovery.

At this point, you should have no issue constructing a complex package of software
with a focus on maintaining concurrency, reliability, and performance in Go. Our file
monitoring application can be easily modified to do more, use alternative services, or
scale to a robust, distributed environment.

In the next chapter, we'll take a closer look at testing our concurrency and
throughput, explore the value of panic and recover, as well as dealing with logging
vital information and errors in a safe, concurrent manner in Go.
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At this stage, you should be fairly comfortable with concurrency in Go and should
be able to implement basic goroutines and concurrent mechanisms with ease.

We have also dabbled in some distributed concurrency patterns that are managed
not only through the application itself, but also through third-party data stores for
networked applications that operate concurrently in congress.

Earlier in this book, we examined some preliminary and basic testing and logging.
We looked at the simpler implementations of Go's internal test tool, performed
some race condition testing using the race tool, and performed some rudimentary
load and performance testing.

However, there's much more to be looked at here, particularly as it relates to the
potential black hole of concurrent code —we've seen unexpected behavior among
code that runs in goroutines and is non-blocking.

In this chapter, we'll further investigate load and performance testing, look at
unit testing in Go, and experiment with more advanced tests and debugging.
We'll also look at best practices for logging and reporting, as well as take a
closer look at panicking and recovering.

Lastly, we'll want to see how all of these things can be applied not just to our
standalone concurrent code, but also to distributed systems.

Along the way, we'll introduce a couple of frameworks for unit testing in a
variety of different styles.
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Handling errors and logging

Though we haven't specifically mentioned it, the idiomatic nature of error handling
in Go makes debugging naturally easier by mandate.

One good practice for any large-scale function inside Go code is to return an error
as a return value —for many smaller methods and functions, this is potentially
burdensome and unnecessary. Still, it's a matter for consideration whenever we're
building something that involves a lot of moving pieces.

For example, consider a simple 2dd () function:

func Add(x int, y int) int
return x + y

}

If we wish to follow the general rule of "always return an error value", we may be
tempted to convert this function to the following code:

package main

import

(
"fmt"
"errors"
"reflect"

func Add(x int, y int) (int, error)
var err error

xType := reflect.TypeOf (x) .Kind ()
yType := reflect.TypeOf (y) .Kind()
if xType != reflect.Int || yType != reflect.Int

fmt.Println (xType)
err = errors.New("Incorrect type for integer a or b!")

}

return x + y, err

}

func main() {

sum,err := Add("foo",2)
if err != nil {
fmt.Println("Error", err)

}

fmt.Println (sum)
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You can see that we're (very poorly) reinventing the wheel. Go's internal compiler
kills this long before we ever see it. So, we should focus on things that the compiler
may not catch and that can cause unexpected behavior in our applications,
particularly when it comes to channels and listeners.

The takeaway is to let Go handle the errors that the compiler would handle, unless
you wish to handle the exceptions yourself, without causing the compiler specific
grief. In the absence of true polymorphism, this is often cumbersome and requires
the invocation of interfaces, as shown in the following code:

type Alpha struct {

type Numeric struct {

}

You may recall that creating interfaces and structs allows us to route our function
calls separately based on type. This is shown in the following code:

func (a Alpha) Add(x string, y string) (string, error)
var err error

xType := reflect.TypeOf (x) .Kind ()
yType := reflect.TypeOf (y) .Kind()
if xType != reflect.String || yType != reflect.String ({

err = errors.New("Incorrect type for strings a or b!")

}
finalString := x + y

return finalString, err

func (n Numeric) Add(x int, y int) (int, error) {
var err error

xType := reflect.TypeOf (x) .Kind ()
yType := reflect.TypeOf (y) .Kind ()
if xType != reflect.Int || yType != reflect.Int

err = errors.New("Incorrect type for integer a or bl!")

}

return x + y, err
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func main()
nl := Numeric{}
al := Alpha{}
z,err := nl.Add(5,2)
if err != nil {

log.Println("Error", err)

}

log.Println(z)

y,err := al.Add("super", "lative")
if err != nil {
log.Println("Error", err)

}

log.Println(y)

}

This still reports what will eventually be caught by the compiler, but also handles some
form of error on what the compiler cannot see: external input. We're routing our Add ()
function through an interface, which provides some additional standardization by
directing the struct's parameters and methods more explicitly.

If, for example, we take user input for our values and need to evaluate the type of
that input, we may wish to report an error in this way as the compiler will never
know that our code can accept the wrong type.

Breaking out goroutine logs

One way of handling messaging and logging that keeps a focus on concurrency and
isolation is to shackle our goroutine with its own logger that will keep everything
separate from the other goroutines.

At this point, we should note that this may not scale — that is, it may at some point
become expensive to create thousands or tens of thousands of goroutines that have
their own loggers, but at a minimal size, this is totally doable and manageable.

To do this logging individually, we'll want to tie a Logger instance to each goroutine,
as shown in the following code:

package main
import

(
n 10g n
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nog"

"strconv"

const totalGoroutines = 5

type Worker struct ({
wLog *log.Logger
Name string

}

We'll create a generic Worker struct that will ironically do no work (at least not in
this example) other than hold onto its own Logger object. The code is as follows:

func main()
done := make (chan bool)

for 1i:=0; 1< totalGoroutines; i++ {
myWorker := Worker{}

myWorker .Name = "Goroutine " + strconv.FormatInt (inté64 (i), 10) +
myWorker.wLog = log.New(os.Stderr, myWorker.Name, 1)

go func(w *Worker) {
w.wLog.Print ("Hmm")

done <- true
} (smyWorker)

}

Each goroutine is saddled with its own log routine through worker. While we're
spitting our output straight to the console, this is largely unnecessary. However, if we
want to siphon each to its own logfile, we could do so by using the following code:

log.Println("...")

<- done
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Using the LitelDE for richer and easier
debugging

In the earlier chapters of this book, we briefly addressed IDEs and gave a few
examples of IDEs that have a tight integration with Go.

As we're examining logging and debugging, there's one IDE we previously and
specifically didn't mention before, primarily because it's intended for a very small
selection of languages —namely, Go and Lua. However, if you end up working
primarily or exclusively in Go, you'll find it absolutely essential, primarily as it
relates to debugging, logging, and feedback capabilities.

LiteIDE is cross-platform and works well on OS X, Linux, and Windows. The
number of debugging and testing benefits it presents in a GUI form are invaluable,
particularly if you're already very comfortable with Go. That last part is important
because developers often benefit most from "learning the hard way" before diving in
with tools that simplify the programming process. It's almost always better to know
how and why something works or doesn't work at the core before being presented
with pretty icons, menus, and pop-up windows. Having said that, LiteIDE is a
fantastic, free tool for the advanced Go programmer.

By formalizing a lot of the tools and error reporting from Go, we can easily plow
through some of the more vexing debugging tasks by seeing them onscreen.

LiteIDE also brings context awareness, code completion, go fmt, and more into
our workspace. You can imagine how an IDE tuned specifically for Go can help
you keep your code clean and bug free. Refer to the following screenshot:
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- LitelDE - C:\Users\nkoj
File Recent Edit Find View Build Debug Help
3 ] :13 3 B8 & :|winsa - ([ Welcome foo.go *
§0CMXxIB 4« B-52-0-0-6-0 0 =
£ 1 // foo.go
(=] .
2 package main
3
4 import (
5 "fmt"
6l )
84 func main() {
] clear := make (chan int)
10
11 go funec () {
_ 12 fmt.
§ 13 “ Errorf func(format string, a ...interfacel}) error
2 14 () “ Formatter interface
z 15 & Fprint funclw io.Writer, a ..interface{}) (n int, err error)
2 16k fo & Fprintf funclw io.Writer, format string, a ..interfacell) (n int, err error)
& _ @ Fprintln funclw io.Writer, a ...interfacel}) (n int, err error)
G 174 @ Fscan funcirio.Reader, a ..interfacell) (n int, err error)
= 8 @ Fscanf func(r io.Reader, format string, a ..interfacel}) (nint, err error) v
5 15 : Mt . PEINCIN ("MESSSge reEceived: T wal, y exiting™)
S| 20 }
8l 21 }
o
5| 22
‘? 23 <—clear
Tl o24]
Build Qutput ~| B 2

C:/Users/nkozyra/nkozyra.exe [C:/Users/nkozyra]
Message received: 1, exiting
fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan receive]:
main.main{)

C:fUsers/nkozyra foo.go: 18 +0xbb
Error: process exited with code 2.

[0 | 2: Build Output | 7: Debug Output

LiteIDE showing output and automatic code completion on Windows

File System  Golang Api Index

Al

N LiteIDE for Linux, OS X, and Windows can be found
athttps://code.google.com/p/liteide/.

Sending errors to screen

Throughout this book, we have usually handled soft errors, warnings, and general
messages with the fmt . Print1n syntax by sending a message to the console.

While this is quick and easy for demonstration purposes, it's probably ideal to
use the 1og package to handle these sorts of things. This is because we have more
versatility, as 1og relates to where we want our messages to end up.
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As for our purposes so far, the messages are ethereal. Switching out a simple print1ln
statement to Logger is extremely simple.

We've been relaying messages before using the following line of code:

fmt.Println("Horrible error:",err)

You'll notice the change to Logger proves pretty similar:

myLogger.Println ("Horrible error:", err)

This is especially useful for goroutines, as we can create either a global Logger
interface that can be accessed anywhere or pass the logger's reference to individual
goroutines and ensure our logging is handled concurrently.

One consideration for having a single logger for use across our entire application is
the possibility that we may want to log individual processes separately for clarity in
analysis. We'll talk a bit more about that later in this chapter.

To replicate passing messages to the command line, we can simply use the following
line of code:

log.Print ("Message")

With defaults to stdout as its io.writer—recall that we can set any io.writer as
the log's destination.

However, we will also want to be able to log to file quickly and easily. After all, any
application running in the background or as a daemon will need to have something
a little more permanent.

Logging errors to file

There are a lot of ways to send an error to a logfile —we can, after all, handle this
with built-in file operation OS calls. In fact, this is what many people do.

However, the 1og package offers some standardization and potential symbiosis
between the command-line feedback and more permanent storage of errors,
warnings, and general information.

The simplest way to do this is to open a file using the os.0penFile () method
(and not the os.open () method) and pass that reference to our log instantiation
as io.Writer.
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Let's take a look at such functionality in the following example:
package main
import (

lllogll
"og"

func main() {
logFile, _ := os.OpenFile("/var/www/test.log", os.O RDWR, 0755)

log.SetOutput (logFile)
log.Println("Sending an entry to log!")

logFile.Close()

}

In our preceding goroutine package, we could assign each goroutine its own file and
pass a file reference as an io Writer (we'll need to have write access to the destination
folder). The code is as follows:

for i:=0; i< totalGoroutines; i++ {

myWorker := Worker({}

myWorker.Name = "Goroutine " + strconv.FormatInt (inté4(i),10)
+ nn

myWorker.FileName = "/var/www/"+strconv.FormatInt (inté4 (i),10)
+ ".log"

tmpFile, := os.OpenFile (myWorker.FileName, os.O CREATE,
0755)

myWorker.File = tmpFile
myWorker.wLog = log.New(myWorker.File, myWorker.Name, 1)
go func(w *Worker) {

w.wLog.Print ("Hmm")

done <- true

}(&myWorker)
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Logging errors to memory

When we talk about logging errors to memory, we're really referring to a data store,
although there's certainly no reason other than volatility and limited resources to
reject logging to memory as a viable option.

While we'll look at a more direct way to handle networked logging through

another package in the next section, let's delineate our various application errors in

a concurrent, distributed system without a lot of hassle. The idea is to use shared
memory (such as Memcached or a shared memory data store) to pass our log messages.

While these will technically still be logfiles (most data stores keep individual
records or documents as JSON-encoded hard files), it has a distinctively different
feel than traditional logging.

Going back to our old friend from the previous chapter — CouchDB — passing our
logging messages to a central server can be done almost effortlessly, and it allows
us to track not just individual machines, but their individual concurrent goroutines.
The code is as follows:

package main

import

(
"github.com/couchbaselabs/go-couchbase™
n ioll
"time"
"fmt"
nogh
"net/http"
"crypto/md5s"
"encoding/hex"

)

type LogItem struct {
ServerID string "json:server id"
Goroutine int "json:goroutine"
Timestamp time.Time "json:time"
Message string "json:message"
Page string "json:page"
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This is what will eventually become our JSON document that will be sent to our
Couchbase server. We'll use the page, Timestamp, and ServerID as a combined,
hashed key to allow multiple, concurrent requests to the same document against
separate servers to be logged separately, as shown in the following code:

var currentGoroutine int
func (li LogItem) logRequest (bucket *couchbase.Bucket) {

hash := md5.New/()

io.WriteString(hash,li.ServerID+1li.Page+li.Timestamp.Format ("Jan
1, 2014 12:00am"))

hashString := hex.EncodeToString (hash.Sum(nil))
bucket.Set (hashString, 0, 11)
currentGoroutine = 0

}

When we reset currentGoroutine to 0, we use an intentional race condition to
allow goroutines to report themselves by numeric ID while executing concurrently.
This allows us to debug an application that appears to work correctly until it invokes
some form of concurrent architecture. Since goroutines will be self-identified by an
ID, it allows us to add more granular routing of our messages.

By designating a different log location by goroutine ID, timestamp, and serverID,
any concurrency issues that arise can be quickly plucked from logfiles. This is done
using the following code:

func main()
hostName, _ := os.Hostname ()
currentGoroutine = 0
logClient, err := couchbase.Connect ("http://localhost:8091/")
if err != nil {
fmt.Println("Error connecting to logging client", err)
}
logPool, err := logClient.GetPool ("default")
if err != nil {

fmt.Println("Error getting pool",err)
}
logBucket, err := logPool.GetBucket ("logs")
if err != nil {

fmt.Println ("Error getting bucket", err)
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http.HandleFunc("/", func(w http.ResponseWriter, r
*http.Request)
request := LogItem{}
request.Goroutine = currentGoroutine
request.ServerID = hostName
request.Timestamp = time.Now ()
request.Message = "Request to " + r.URL.Path
request.Page = r.URL.Path
go request.logRequest (logBucket)

3]

http.ListenAndServe (":8080",nil)

Using the log4go package for robust
logging

As with most things in Go, where there's something satisfactory and extensible

in the core page, it can be taken to the next level by a third party —Go's wonderful
logging package is truly brought to life with log4go.

Using log4go greatly simplifies the process of file logging, console logging, and
logging via TCP/UDP.

\
~Q For more information on log4go, visit https://code.google.

com/p/logdgo/.

Each instance of a 1og4go Logger interface can be configured by an XML
configuration file and can have filters applied to it to dictate where messaging
goes. Let's look at a simple HTTP server to show how we can direct specific logs
to location, as shown in the following code:

package main

import (
"code.google.com/p/logdgo"
"net/http"
"fmt"
"github.com/gorilla/mux"
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var errorLog log4go.Logger
var errorLogWriter log4go.FileLogWriter

var accessLog log4go.Logger
var accessLogWriter *log4go.FileLogWriter

var screenlLog log4go.Logger
var networkLog log4go.Logger

In the preceding code, we created four distinct log objects —one that writes errors
to a logfile, one that writes accesses (page requests) to a separate file, one that sends
directly to console (for important notices), and one that passes a log message across
the network.

The last two obviously do not need FileLogWriter, although it's entirely possible
to replicate the network logging using a shared drive if we can mitigate issues with
concurrent access, as shown in the following code:

func init () {
fmt.Println ("Web Server Starting")

func pageHandler (w http.ResponseWriter, r *http.Request) {
pageFoundMessage := "Page found: " + r.URL.Path
accessLog. Info (pageFoundMessage)
networkLog. Info (pageFoundMessage)
w.Write([]byte("Valid page"))

}

Any request to a valid page goes here, sending the message to the web-access.log
file accessLog.

func notFound(w http.ResponseWriter, r *http.Request) {
pageNotFoundMessage := "Page not found / 404: " + r.URL.Path
errorLog. Info (pageNotFoundMessage)
w.Write([]byte ("Page not found"))

}

As with the accessLog file, we'll take any 404 / page not found request and route
it directly to the notFound () method, which saves a fairly generic error message
along with the invalid / missing URL requested. Let's look at what we'll do with
extremely important errors and messages in the following code:

func restricted(w http.ResponseWriter, r *http.Request)
message := "Restricted directory access attempt!"
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errorLog.Info (message)
accessLog. Info (message)
screenlLog.Info (message)
networkLog. Info (message)
w.Write([]byte ("Restricted!"))

}

The restricted () function and corresponding screenLog represents a message
we deem as critical and worthy of going to not only the error and the access logs,
but also to screen and passed across the wire as a networkLog item. In other words,
it's a message so important that everybody gets it.

In this case, we're detecting attempts to get at our .git folder, which is a fairly
common accidental security vulnerability that people have been known to commit in
automatic file uploads and updates. Since we have cleartext passwords represented
in files and may expose that to the outside world, we'll catch this on request and pass
to our critical and noncritical logging mechanisms.

We might also look at this as a more open-ended bad request notifier —one worthy
of immediate attention from a network developer. In the following code, we'll start
creating a few loggers:

func main() {
screenlLog = make (log4go.Logger)

screenlLog.AddFilter ("stdout", log4go.DEBUG, log4go.
NewConsoleLogWriter())

errorLogWriter := log4go.NewFileLogWriter ("web-errors.log",
false)
errorLogWriter.SetFormat ("%d %t - %M (%S)")

errorLogWriter.SetRotate (false)
errorLogWriter.SetRotateSize (0)
errorLogWriter.SetRotateLines (0)
errorLogWriter.SetRotateDaily (true)

Since log4go opens up a bevy of additional logging options, we can play a bit with
how our logs rotate and are formatted without having to draw that out specifically
with sprintf or something similar.
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The options here are simple and expressive:

* SetFormat: This allows us to specify how our individual log lines will look.

* SetRotate: This permits automatic rotation based on the size of the file and/or
the number of lines in 1og. The SetRotatesize () option sets rotation on bytes
in the message and SetRotateLines () sets the maximum number of lines.
The setRotateDaily () function lets us create new logfiles based on the day
regardless of our settings in the previous functions. This is a fairly common
logging technique and can generally be burdensome to code by hand.

The output of our logging format ends up looking like the following line of code:

04/13/14 10:46 - Page found%! (EXTRA string=/valid)
(main.pageHandler:24)

The %s part is the source, and that gives us the line number and our method trace
for the part of our application that invoked the log:

errorLog = make (log4go.Logger)
errorLog.AddFilter ("file", log4go.DEBUG, errorLogWriter)

networkLog = make (logd4go.Logger)
networkLog.AddFilter ("network", log4go.DEBUG,
log4go.NewSocketLogWriter ("tcp", "localhost:3000"))

Our network log sends JSON-encoded messages via TCP to the address we provide.
We'll show a very simple handling server for this in the next section of code that
translates the log messages into a centralized logfile:

accessLogWriter = log4go.NewFileLogWriter ("web-access.log",false)
accessLogWriter.SetFormat ("%d %t - $M (%S)")
accessLogWriter.SetRotate (true)
accessLogWriter.SetRotateSize (0)
accessLogWriter.SetRotateLines (500)
accessLogWriter.SetRotateDaily (false)

Our accessLogWriter is similar to the errorLogWriter except that instead of
rotating daily, we rotate it every 500 lines. The idea here is that access logs would
of course be more frequently touched than an error log—hopefully. The code is
as follows:

accessLog = make (log4go.Logger)
accessLog.AddFilter ("file", log4go.DEBUG, accessLogWriter)

rtr := mux.NewRouter ()
rtr.HandleFunc ("/valid", pageHandler)
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rtr.HandleFunc ("/.git/", restricted)
rtr.NotFoundHandler = http.HandlerFunc (notFound)

In the preceding code, we used the Gorilla Mux package for routing. This gives us
easier access to the 404 handler, which is less than simplistic to modify in the basic
http package built directly into Go. The code is as follows:

http.Handle("/", rtr)
http.ListenAndServe (":8080", nil)

}

Building the receiving end of a network logging system like this is also incredibly
simple in Go, as we're building nothing more than another TCP client that can
handle the JSON-encoded messages.

We can do this with a receiving server that looks remarkably similar to our TCP
chat server from an earlier chapter. The code is as follows:

package main

import
(
"net"
"fmt"
)

type Connection struct {

}

func (c Connection) Listen(l net.Listener) ({
for {
conn, := l.Accept()
go c.logListen (conn)

}
}

As with our chat server, we bind our listener to a Connection struct, as shown in
the following code:

func (c *Connection) logListen(conn net.Conn) {

for {
buf := make([]lbyte, 1024)
n, _ := conn.Read (buf)

fmt.Println("Log Message",string(n))
}
}

[258]




Chapter 9

In the preceding code, we receive log messages delivered via JSON. At this point, we're
not unmarshalling the JSON, but we've shown how to do that in an earlier chapter.

Any message sent will be pushed into the buffer — for this reason, it may make sense
to expand the buffer's size depending on how detailed the information is.

func main()
serverClosed := make (chan bool)
listener, err := net.Listen("tcp", ":3000")
if err != nil {

fmt.Println ("Could not start server!",err)

}

Conn := Connectionf{}
go Conn.Listen(listener)

<-serverClosed

}

You can imagine how network logging can be useful, particularly in server clusters
where you might have a selection of, say, web servers and you don't want to reconcile
individual logfiles into a single log.

Panicking
With all the discussion of capturing errors and logging them, we should probably
consider the panic () and recover () functionality in Go.

As briefly discussed earlier, panic () and recover () operate as a more basic,
immediate, and explicit error detection methodology than, say, try/catch/finally
or even Go's built-in error return value convention. As designed, panic () unwinds
the stack and leads to program exit unless recover () is invoked. This means that
unless you explicitly recover, your application will end.

So, how is this useful other than for stopping execution? After all, we can catch an
error and simply end the application manually through something similar to the
following code:

package main
import

(
"fmt"
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nog"

func processNumber (un int) {

if un < 1 || un > 4 {
fmt.Println ("Now you've done it!")
os.Exit (1)
}else {
fmt.Println("Good, you can read simple instructions.")
}
}

func main() {
userNum := 0
fmt.Println ("Enter a number between 1 and 4.")
_,err := fmt.Scanf ("%d", &userNum)
if err != nil {}

processNumber (userNum)

}

However, while this function does sanity checking and enacts a permanent,
irreversible application exit, panic () and recover () allow us to reflect errors
from a specific package and/or method, save those, and then resume gracefully.

This is very useful when we're dealing with methods that are called from other
methods that are called from other methods, and so on. The types of deeply
embedded or recursive functions that make it hard to discern a specific error
are where panic () and recover () are most advantageous. You can also
imagine how well this functionality can play with logging.

Recovering

The panic () function on its own is fairly simple, and it really becomes useful when
paired with recover () and defer ().

Take, for example, an application that returns meta information about a file from
the command line. The main part of the application will listen for user input, pass
this into a function that will open the file, and then pass that file reference to another
function that will get the file's details.
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Now, we can obviously stack errors as return elements straight through the process,
or we can panic along the way, recover back down the steps, and gather our errors
at the bottom for logging and/ or reporting directly to console.

Avoiding spaghetti code is a welcomed side effect of this approach versus the former
one. Think of this in a general sense (this is pseudo code):

func getFileDetails (fileName string) error {
return err

func openFile(fileName string) error {
details,err := getFileDetails(fileName)
return err

func main() {
file,err := openFile (fileName)

}

With a single error, it's entirely manageable to approach our application in this way.
However, when each individual function has one or more points of failure, we will
require more and more return values and a way of reconciling them all into a single
overall error message or messages. Check the following code:

package main

import
(
IIOS n
n fmt n
"strconv"
)
func gatherPanics()
if rec := recover(); rec != nil {
fmt.Println("Critical Error:", rec)
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This is our general recovery function, which is called before every method on which
we wish to capture any panic. Let's look at a function to deduce the file's details:

func getFileDetails (fileName string)
defer gatherPanics ()
finfo,err := os.Stat (fileName)
if err != nil {
panic ("Cannot access file")
}else {
fmt.Println("Size: ", strconv.FormatInt (finfo.Size(),10))

func openFile(fileName string) {
defer gatherPanics ()
if , err := os.Stat(fileName); err != nil ({
panic ("File does not exist")

}
}

The two functions from the preceding code are merely an attempt to open a file and
panic if the file does not exist. The second method, getFileDetails (), is called from
the main () function such that it will always execute, regardless of a blocking error in
openFile ().

In the real world, we will often develop applications where a nonfatal error stops
just a portion of the application from working, but will not cause the application
as a whole to break. Check the following code:

func main() {
var fileName string
fmt.Print ("Enter filename>")
_,err := fmt.Scanf ("%s", &fileName)
if err != nil {}
fmt.Println("Getting info for", fileName)

openFile (fileName)
getFileDetails (fileName)

}

If we were to remove the recover () code from our gatherPanics () method,
the application would crash if/when the file didn't exist.
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This may seem ideal, but imagine a scenario where a user selects a nonexistent file
for a directory that they lack the rights to view. When they solve the first problem,
they will be presented with the second instead of seeing all potential issues at

one time.

The value of expressive errors can't be overstated from a user experience standpoint.
Gathering and presenting expressive errors is made easier through this methodology —
evena try/catch/finally requires that we (as developers) explicitly do something
with the returned error in the catch clause.

Logging our panics
In the preceding code, we can integrate a logging mechanism pretty simply in addition
to catching our panics.

One consideration about logging that we haven't discussed is the notion of when
to log. As our previous examples illustrate, we can sometimes run into problems
that should be logged but may be mitigated by future user action. As such, we
can choose to log our errors immediately or save it until the end of execution

or a greater function.

The primary benefit of logging immediately is that we're not susceptible to an
actual crash preventing our log from being saved. Take the following example:

type LogItem struct {
Message string
Function string

}

var Logs []LogItem

We've created a log struct and a slice of LogItems using the following code:

func SaveLogs () {
logFile := log4go.NewFileLogWriter ("errors.log", false)
logFile.SetFormat ("%d %t - %M (%S)")
logFile.SetRotate (true)
logFile.SetRotateSize (0)
logFile.SetRotateLines (500)
logFile.SetRotateDaily (false)

errorLog := make (log4go.Logger)
errorLog.AddFilter ("file", log4go.DEBUG, logFile)
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for i:= range Logs ({
errorLog.Info(Logs[i] .Message + " in " + Logs[i] .Function)

}
}

This, ostensibly, is where all of our captured LogItems will be turned into a good
collection of line items in a logfile. There is a problem, however, as illustrated in the
following code:

func registerError (block chan bool) {

Log := LogItem{ Message:"An Error Has Occurred!", Function:
"registerError ()"}

Logs = append (Logs, Log)

block <- true

}

Executed in a goroutine, this function is non-blocking and allows the main thread's
execution to continue. The problem is with the following code that runs after the
goroutine, which causes us to log nothing at all:

func separateFunction() {
panic ("Application quitting!™")

}

Whether invoked manually or by the binary itself, the application quitting prematurely
precludes our logfiles from being written, as that method is deferred until the end of
the main () method. The code is as follows:

func main() {
block := make (chan bool)
defer SavelLogs ()
go func(block chan bool) {
registerError (block)

} (block)

separateFunction ()
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The tradeoff here, however, is performance. If we execute a file operation every
time we want to log something, we're potentially introducing a bottleneck into
our application. In the preceding code, errors are sent via goroutine but written
in blocking code — if we introduce the log writing directly into registerError (),
it can slow down our final application.

As mentioned previously, one opportunity to mitigate these issues and allow the
application to still save all of our log entries is to utilize either memory logging or
network logging.

Catching stack traces with concurrent code

In earlier Go releases, the ability to properly execute a stack trace from our source was
a daunting task, which is emblematic of some of the many complaints and concerns
users had early on about general error handling in Go.

While the Go team has remained vigilant about the right way to do this (as they have
with several other key language features such as a lack of generics), stack traces and
stack info have been tweaked a bit as the language has grown.

Using the runtime package for granular
stack traces

In an effort to capture stack traces directly, we can glean some helpful pieces of
information from the built-in runtime package.

Specifically, Go provides a couple of tools to give us insight into the invocation
and/or breakpoints of a goroutine. The following are the functions within the
runtime package:

* runtime.Caller (): This returns information about the parent function of
a goroutine

* runtime.Stack (): This allocates a buffer for the amount of data in a stack
trace and then fills that with the trace

* runtime.NumGoroutine (): This returns the total number of open goroutines

We can utilize all three preceding tools to better describe the inner workings of any
given goroutine and related errors.
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Using the following code, we'll spawn some random goroutines doing random
things and log not only the goroutine's log message, but also the stack trace and
the goroutine's caller:

package main

import
(
nogh
"fmt"
"runtime"
"strconv"
"code.google.com/p/log4go"

type LogItem struct {
Message string

}

var LogIltems []LogItem

func savelLogs () {
logFile := log4go.NewFileLogWriter ("stack.log", false)
logFile.SetFormat ("%d %t - %M (%S)")
logFile.SetRotate (false)
logFile.SetRotateSize (0)
logFile.SetRotateLines (0)
logFile.SetRotateDaily (true)

logStack := make (log4go.Logger)
logStack.AddFilter ("file", log4go.DEBUG, logFile)
for i := range LogItems {
fmt.Println(LogItems[i] .Message)
logStack.Info(LogItems[i] .Message)
}
}
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The saveLogs () function merely takes our map of LogItems and applies them to
file per log4go, as we did earlier in the chapter. Next, we'll look at the function that
supplies details on our goroutines:

func goDetails (done chan bool) {

i:=0
for {
var message string
stackBuf := make([]byte,1024)
stack := runtime.Stack(stackBuf, false)
stack++
_, callerFile, callerLine, ok := runtime.Caller (0)
message = "Goroutine from " + string(callerLine) + "" +
string(callerFile) + " stack:" + string (stackBuf)
openGoroutines := runtime.NumGoroutine ()
if (ok == true) {

message = message + callerFile

}

message = message +
strconv.FormatInt (int64 (openGoroutines),10) + " goroutines
active"

1li := LogItem{ Message: message}

LogItems = append(LogIltems,1li)
if i == 20 {

done <- true

break

i++

}

This is where we gather more details about a goroutine. The runtime.Caller ()
function provides a few returned values: its pointer, the filename of the caller, the
line of the caller. The last return value indicates whether the caller could be found.
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As mentioned previously, runtime.NumGoroutine () gives us the number of extant
goroutines that have not yet been closed.

Then, in runtime.Stack (stackBuf, false), we fill our buffer with the stack trace.
Note that we're not trimming this byte array to length.

All three are passed into LogItem.Message for later use. Let's look at the setup in the
main () function:

func main()
done := make (chan bool)

go goDetails (done)
for i:= 0; i < 10; i++ {
go goDetails (done)

}

for {
select ({
case d := <-done:
if d == true {
saveLogs ()
os.Exit (1)

}

}

Finally, we loop through some goroutines that are doing loops themselves and exit
upon completion.

When we examine our logfile, we're given far more verbose details on our goroutines
than we have previously, as shown in the following code:

04/16/14 23:25 - Goroutine from + /var/log/go/ch9 11 stacktrace.
goch9 11 stacktrace.go stack:goroutine 4 [running]:
main.goDetails (0xc08400b300)
/var/log/go/ch9 11 stacktrace.goch9 11 stacktrace.go:41 +0x8e
created by main.main
/var/log/go/ch9 11 stacktrace.goch9 11 stacktrace.go:69 +0x4c

/var/log/go/ch9 11 stacktrace.goch9 11 stacktrace.gol4 goroutines
active (main.savelLogs:31)

M . . .
‘Q For more information on the runtime package,

gotohttp://golang.org/pkg/runtime/.
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Summary

Debugging, testing, and logging concurrent code can be particularly cumbersome,
often when concurrent goroutines fail in a seemingly silent fashion or fail to execute
whatsoever.

We looked at various methods of logging, from file to console to memory to
network logging, and examined how concurrent application pieces can fit into
these various implementations.

By now, you should be comfortable and natural in creating robust and expressive
logs that rotate automatically, impose no latency or bottlenecks, and assist in
debugging your applications.

You should feel comfortable with the basics of the runtime package. We'll dive
into the testing package, controlling goroutines more explicitly, and unit testing
as we dig deeper in the next chapter.

In addition to further examining the testing and runtime packages, in our final
chapter, we'll also broach the topic of more advanced concurrency topics in Go
as well as review some overall best practices as they relate to programming in
the Go language.
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Advanced Concurrency
and Best Practices

Once you're comfortable with the basic and intermediate usage of concurrency
features in Go, you may find that you're able to handle the majority of your
development use cases with bidirectional channels and standard concurrency tools.

In Chapter 2, Understanding the Concurrency Model, and Chapter 3, Developing a
Concurrent Strategy, we looked at the concurrency models, not just of Go but of other
languages as well, and compared the way they —and distributed models —can work.
In this chapter, we'll touch on those and some higher level concepts with regard to
designing and managing your concurrent application.

In particular, we're going to look at central management of goroutines and their
associated channels — out of the box you may find goroutines to be a set-it-and-
forget-it proposition; however, there are cases where we might want more granular
control of a channel's state.

We've also looked quite a bit at testing and benchmarking from a high level, but
we'll look at some more detailed and complex methods for testing. We'll also explore
a primer on the Google App Engine, which will give us access to some specific
testing tools we haven't yet used.

Finally, we'll touch upon some general best practices for Go, which will surely
pertain not just to concurrent application design but your future work in general
with the language.
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Going beyond the basics with channels

We've talked about quite a few different channel implementations —channels of
different type (interfaces, functions, structs, and channels) —and touched upon the
differences in buffered and unbuffered channels. However, there's still a lot more
we can do with the design and flow of our channels and goroutines.

By design, Go wants you to keep things simple. And that's fantastic for 90 percent
of what you'll do with Go. But there are other times where you'll need to dig a
little deeper for a solution, or when you'll need to save resources by preserving
the amount of open goroutine processes, channels, and more.

You may, at some point, want some hands on control of the size and state, and
also the control of a running or closed goroutine, so we'll look at doing that.

Just as importantly, designing your goroutines to work in concert with the
application design as a whole can be critical to unit testing, which is a topic
we'll touch on in this final chapter.

Building workers

Earlier in this book, we talked about concurrency patterns and a bit about workers.
We even brought the workers concept into play in the previous chapter, when we
were building our logging systems.

Truly speaking, "worker" is a fairly generic and ambiguous concept, not just in Go,
but in general programming and development. In some languages, it's an object/
instantiated class, and in others it's a concurrent actor. In functional programming
languages, worker is a graduated function return passed to another.

If we go back to the preface, we will see that we have literally used the Go gopher as
an example of a worker. In short, a worker is something more complex than a single
function call or programmatic action that will perform a task one or more times.

So why are we talking about it now? When we build our channels, we are creating
a mechanism to do work. When we have a struct or an interface, we're combining
methods and values at a single place, and then doing work using that object as both
a mechanism for the work as well as a place to store information about that work.

This is particularly useful in application design, as we're able to delegate various
elements of an application's functionality to distinct and well-defined workers.
Consider, for example, a server pinging application that has specific pieces doing
specific things in a self-contained, compartmentalized manner.
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We'll attempt to check for server availability via the HTTP package, check the status
code and errors, and back off if we find problems with any particular server. You can
probably see where this is going — this is the most basic approach to load balancing.
But an important design consideration is the way in which we manage our channels.

We'll have a master channel, where all important global transactions should be
accumulated and evaluated, but each individual server will also have its own
channels for handling tasks that are important only to that individual struct.

The design in the following code can be considered as a rudimentary pipeline,
which is roughly akin to the producer/consumer model we talked about in the
previous chapters:

package main

import

(
n fmt n
"time"
"net/http"

)

const INIT DELAY = 3000
const MAX DELAY = 60000
const MAX RETRIES = 4

const DELAY INCREMENT = 5000

The preceding code gives the configuration part of the application, setting scope on
how frequently to check servers, the maximum amount of time for backing off, and
the maximum amount of retries before giving up entirely.

The DELAY INCREMENT value represents how much time we will add to our server
checking process each time we discover a problem. Let's take a look at how to create
a server in the following section:

var Servers []Server

type Server struct ({
Name string
URI string
LastChecked time.Time
Status bool
StatusCode int
Delay int
Retries int
Channel chan bool
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Now, we design the basic server (using the following code), which contains its
current status, the last time it was checked, the present delay between checks,
its own channel for evaluating statuses and establishing the new status, and
updated retry delay:

func (s *Server) checkServerStatus(sc chan *Server) {
var previousStatus string

if s.Status == true {
previousStatus = "OK"
}else {
previousStatus = "down"

fmt.Println("Checking Server",s.Name)
fmt.Println("\tServer was",previousStatus, "on last check
at",s.LastChecked)

response, err := http.Get (s.URI)
if err != nil {
fmt.Println("\tError: ",err)

s.Status = false
s.StatusCode = 0

}else {
fmt.Println (response.Status)
s.StatusCode = response.StatusCode
s.Status = true

s.LastChecked = time.Now ()
sc <- s

}

The checkServerStatus () method is the meat and potatoes of our application
here. We pass all of our servers through this method in the main () function to our
cycleServers () loop, after which it becomes self-fulfilling.

If our Status is set to true, we send the state to the console as Ok (otherwise down)
and set our Server status code with s.StatuscCode as either the HTTP code or o if
there was a network or other error.
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Finally, set the last-checked time of server to Now () and pass Server through the
serverChan channel. In the following code, we'll demonstrate how we'll rotate
through our available servers:

func cycleServers(sc chan *Server) {

for i := 0; i < len(Servers); i++ {
Servers[i] .Channel = make (chan bool)
go Servers[i] .updateDelay(sc)
go Servers[i].checkServerStatus (sc)

}
}

This is our initial loop, called from main. It simply loops through our available
servers and initializes its listening goroutine as well as sending the first
checkServerStatus request.

It's worth noting two things here: first, the channel invoked by server will never
actually die, but instead the application will stop checking the server. That's fine for
all practical purposes here, but if we have thousands and thousands of servers to
check, we're wasting resources on what essentially amounts to an unclosed channel
and a map element that has not been removed. Later, we'll broach the concept

of manually killing goroutines, something we've only been able to do through
abstraction by stopping the communication channel. Let's now take a look at the
following code that controls a server's status and its next steps:

func (s *Server) updateDelay(sc chan *Server) ({
for {
select ({
case msg := <- s.Channel:

if msg == false {
s.Delay = s.Delay + DELAY INCREMENT
s.Retries++
if s.Delay > MAX DELAY {
s.Delay = MAX DELAY

}
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}else {
s.Delay = INIT DELAY

}

newDuration := time.Duration (s.Delay)

if s.Retries <= MAX RETRIES ({
fmt.Println("\tWill check server again")
time.Sleep (newDuration * time.Millisecond)
s.checkServerStatus (sc)

}else {
fmt.Println("\tServer not reachable
after",MAX RETRIES, "retries")

default:

}

This is where each server will listen for changes in its status, as reported by
checkServerStatus (). When any given Server struct receives a message that a
change in status has been reported via our initial loop, it will evaluate that message
and act accordingly.

If the status is set to false, we know that the server was inaccessible for some
reason. The server reference itself will then add a delay to the next time it's checked.
If it's set to true, the server was accessible and the delay will either be set or reset to
the default retry value of INIT DELAY.

It finally sets a sleep mode on that goroutine before reinitializing the
checkServerStatus () method on itself, passing the serverchan reference along in
the initial goroutine loop in the main () function:

func main() {
endChan := make (chan bool)
serverChan := make (chan *Server)
Servers = []Server{ {Name: "Google", URI: "http://www.google.com",

Status: true, Delay: INIT DELAY}, {Name: "Yahoo", URI: "http://www.
yahoo.com", Status: true, Delay: INIT DELAY}, {Name: "Bad Amazon",
URI: "http://amazon.zom", Status: true, Delay: INIT DELAY} }
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One quick note here —in our slice of servers, we intentionally introduced a typo
in the last element. You'll notice amazon . zom, which will provoke an HTTP error in
the checkserversStatus () method. The following is the function to cycle through

servers to find an appropriate match:

go cycleServers (serverChan)

for {
select
case currentServer := <-
currentServer.Channel <-
default:

endChan

<-

}

serverChan:
false

The following is an example of the output with the typo included:

Checking Server Google

Server was OK on last check at

200 OK

Will check server again
Checking Server Yahoo

Server was OK on last check at

200 OK

Will check server again
Checking Server Amazon

Server was OK on last check at

Error:
host is known.

Get http://amazon.zom:

Will check server again
Checking Server Google

Server was OK on last check at
EDT

0001-01-01 00:00:00 +0000 UTC

0001-01-01 00:00:00 +0000 UTC

0001-01-01 00:00:00 +0000 UTC
dial tcp: GetAddrInfoW: No such

2014-04-23 12:49:45.6575639 -0400

We'll be taking the preceding code for one last spin through some concurrency
patterns later in this chapter, turning it into something a bit more practical.
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Implementing nil channel blocks

One of the bigger problems in designing something like a pipeline or producer/
consumer model is there's somewhat of a black hole when it comes to the state
of any given goroutine at any given time.

Consider the following loop, wherein a producer channel creates an arbitrary set
of consumer channels and expects each to do one and only one thing:

package main

import (
n fmt n
"time"

const CONSUMERS = 5
func main() {
Producer := make(chan (chan int))

for i := 0; 1 < CONSUMERS; i++ {
go func()
time.Sleep (1000 * time.Microsecond)
conChan := make(chan int)

go func()
for {
select ({
case _,0k := <-conChan:
if ok {
Producer <- conChan
}else {
return

}

default:

}
}O

conChan <- 1
close (conChan)
1O
}
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Given a random amount of consumers to produce, we attach a channel to each and
pass a message upstream to the Producer via that consumer's channel. We send just
a single message (which we could handle with a buffered channel), but we simply
close the channel after.

Whether in a multithreaded application, a distributed application, or a highly
concurrent application, an essential attribute of a producer-consumer model is
the ability for data to move across a queue/channel in a steady, reliable fashion.
This requires some modicum of mutual knowledge to be shared between both the
producer and consumers.

Unlike environments that are distributed (or multicore), we do possess some
inherent awareness of the status on both ends of that arrangement. We'll next look
at a listening loop for producer messages:

for {
select
case consumer, ok := <-Producer:
if ok == false {

fmt.Println ("Goroutine closed?")
close (Producer)
} else {
log.Println (consumer)
// consumer <- 1
}
fmt.Println("Got message from secondary channel")
default:
}
}
}

The primary issue is that one of the producer channel doesn't know much about
any given Consumer, including when it's actively running. If we uncommented the
// consumer <- 1 line, we'll get a panic, because we're attempting to send

a message on a closed channel.

As a message is passed across a secondary goroutine's channel, upstream to the
channel of the Producer, we get an appropriate reception, but cannot detect when
the downstream goroutine is closed.

Knowing when a goroutine has terminated is in many cases inconsequential, but
consider an application that spawns new goroutines when a certain number of tasks
are complete, effectively breaking a task into mini tasks. Perhaps each chunk is
dependent on the total completion of the last chunk, and a broadcaster must know
the status of the current goroutines before moving on.
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Using nil channels

In the earlier versions of Go, you could communicate across uninitialized, thus nil
or 0-value channels without a panic (although your results would be unpredictable).
Starting from Go Version 1, communication across nil channels produced a
consistent but sometimes confusing effect.

It's vital to note that within a select switch, transmission on a nil channel on its own
will still cause a deadlock and panic. This is something that will most often creep
up when utilizing global channels and not ever properly initializing them. The
following is an example of such transmission on a nil channel:

func main() {
var channel chan int
channel <- 1

for {
select {
case <- channel:

default:

}
}

}

As the channel is set to its 0 value (nil, in this case), it blocks perpetually and the Go
compiler will detect this, at least in more recent versions. You can also duplicate this
outside of a select statement, as shown in the following code:

var done chan int
defer close (done)
defer log.Println("End of script")
go func() {
time.Sleep(time.Second * 5)
done <- 1

1O

for {
select {
case <- done:
log.Println("Got transmission")
return
default:
}
}
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The preceding code will block forever without the panic, due to the default in the
select statement keeping the main loop active while waiting for communication on
the channel. If we initialize the channel, however, the application runs as expected.

With these two fringe cases — closed channels and nil channels —we need a way for
a master channel to understand the state of a goroutine.

Implementing more granular control over
goroutines with tomb

As with many such problems —both niche and common — there exists a third-party
utility for grabbing your goroutines by the horns.

Tomb is a library that provides diagnostics to go along with any goroutine and
channel — it can tell a master channel if another goroutine is dead or dying.

In addition, it allows you to explicitly kill a goroutine, which is a bit more nuanced
than simply closing the channel it is attached to. As previously mentioned, closing the
channel is effectively neutering a goroutine, although it could ultimately still be active.

You are about to find a simple fetch-and-grab body script that takes a slice of URL
structs (with status and URI) and attempts to grab the HTTP response for each and
apply it to the struct. But instead of just reporting information from the goroutines,
we'll have the ability to send "kill messages" to each of a "master" struct's child
goroutines.

In this example, we'll run the script for 10 seconds, and if any of the goroutines fail
to do their job in that allotted time, it will respond that it was unable to get the URL's
body due to a kill send from the master struct that invoked it:

package main

import (
n fmt n
"io/ioutil™"
"launchpad.net/tomb"
"net/http"
"strconv"
n Sync n
" ime n

)
var URLS []URL

type GoTomb struct {
tomb tomb.Tomb

}
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This is the minimum necessary structure required to create a parent or a master
struct for all of your spawned goroutines. The tomb . Tomb struct is simply a mutex,
two channels (one for dead and dying), and a reason error struct. The structure of
the URL struct looks like the following code:

type URL struct {
Status bool
URI string
Body string

}

Our URL struct is fairly basic—status, set to false by default and true when the
body has been retrieved. It consists of the URI variable —which is the reference to
the URL —and the Body variable for storing the retrieved data. The following
function allows us to execute a "kill" on a GoTomb struct:

func (gt GoTomb) Kill()

gt.tomb.Kill (nil)

}

The preceding method invokes tomb.Kill on our GoTomb struct. Here, we have set
the sole parameter to nil, but this can easily be changed to a more descriptive error,
such as errors.New ("Time to die, goroutine").Here, we'll show the listener
for the GoTomb struct:

func (gt *GoTomb) TombListen (i int) {

for {
select
case <-gt.tomb.Dying() :
fmt.Println("Got kill command from tomb!")
if URLS[i].Status == false (
fmt.Println ("Never got data for", URLS[i].URI)

}

return
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We invoke TombListen attached to our GoTomb, which sets a select that listens for
the Dying () channel, as shown in the following code:

func (gt *GoTomb) Fetch() {
for i := range URLS (
go gt.TombListen (i)

go func(ii int) {

timeDelay := 5 * ii
fmt.Println("Waiting ", strconv.FormatInt (inté64 (timeDelay),
10), " seconds to get", URLS[ii] .URI)
time.Sleep (time.Duration(timeDelay) * time.Second)
response, _ := http.Get (URLS[ii] .URI)
URLS[ii] .Status = true
fmt.Println("Got body for ", URLS[ii] .URI)
responseBody, _ := ioutil.ReadAll (response.Body)
URLS[ii] .Body = string(responseBody)
}(i)

}

When we invoke Fetch (), we also set the tomb to TombListen (), which receives
those "master" messages across all spawned goroutines. We impose an intentionally
long wait to ensure that our last few attempts to Fetch () will come after the ki1l ()
command. Finally, our main () function, which handles the overall setup:

func main()
done := make (chan int)

URLS = [JURL{{Status: false, URI: "http://www.google.com", Body:
wn}, {Status: false, URI: "http://www.amazon.com", Body: ""}, {Status:
false, URI: "http://www.ubuntu.com", Body: ""}}

var MasterChannel GoTomb
MasterChannel .Fetch ()

go func()

time.Sleep (10 * time.Second)
MasterChannel .Kill ()
done <- 1

1O
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for {
select {
case <-done:
fmt.Println("")
return
default:
}
}
}

By setting time.Sleep to 10 seconds and then killing our goroutines, we guarantee
that the 5 second delays between Fetch () prevent the last of our goroutines from
successfully finishing before being killed.

M For the tomb package, go to http://godoc.org/
Q launchpad.net/tomb and install it using the go get
launchpad.net/tomb command.

Timing out with channels

One somewhat critical point with channels and select loops that we haven't
examined particularly closely is the ability —and often necessity —to kill a select
loop after a certain timeout.

Many of the applications we've written so far are long-running or perpetually-running,
but there are times when we'll want to put a finite time limit on how long goroutines
can operate.

The for { select { } } switch we've used so far will either live perpetually
(with a default case) or wait to be broken from one or more of the cases.

There are two ways to manage interval-based tasks —both as part of the time
package, unsurprisingly.

The time.Ticker struct allows for any given operation after the specified period
of time. It provides C, a blocking channel that can be used to detect activity sent
after that period of time; refer to the following code:

package main

import (
n 10g n
"time"
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func main()

timeout := time.NewTimer (5 * time.Second)

defer log.Println("Timed out!")

for {
select {
case <-timeout.C:
return
default:
}
}

}

We can extend this to end channels and concurrent execution after a certain amount

of time. Take a look at the following modifications:

package main

import (
n fmt n

" ime n

func main()

myChan := make (chan int)

go func() {
time.Sleep(6 * time.Second)
myChan <- 1

1O

for {
select {
case <-time.After (5 * time.Second) :
fmt.Println("This took too long!™")
return
case <-myChan:
fmt.Println("Too little, too late")
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Building a load balancer with concurrent
patterns

When we built our server pinging application earlier in this chapter, it was probably
pretty easy to imagine taking this to a more usable and valuable space.

Pinging a server is often the first step in a health check for a load balancer. Just as

Go provides a usable out-of-the-box web server solution, it also presents a very clean
proxy and ReverseProxy struct and methods, which makes creating a load balancer
rather simple.

Of course, a round-robin load balancer will need a lot of background work,
specifically on checking and rechecking as it changes the ReverseProxy
location between requests. We'll handle these with the goroutines triggered
with each request.

Finally, note that we have some dummy URLs at the bottom in the configuration —
changing those to production URLs should immediately turn the server that runs
this into a working load balancer. Let's look at the main setup for the application:

package main

import (
n fmt n
n logll
"net/http"
"net/http/httputil”
"net/url"
"strconv"
" time n

const MAX SERVER FAILURES = 10
const DEFAULT_ TIMEOUT_SECONDS = 5
const MAX TIMEOUT SECONDS = 60
const TIMEOUT_ INCREMENT = 5
const MAX RETRIES = 5
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In the previous code, we defined our constants, much like we did previously. We
have a MAX_RETRIES, which limits how many failures we can have, MAX_TIMEOUT
SECONDS, which defines the longest amount of time we'll wait before trying again,
and our TIMEOUT INCREMENT for changing that value between failures. Next, let's
look at the basic construction of our server struct:

type Server struct ({
Name string
Failures int
InService bool

Status bool
StatusCode int
Addr string
Timeout int

LastChecked time.Time
Recheck chan bool

}

As we can see in the previous code, we have a generic Server struct that maintains
the present state, the last status code, and information on the last time the server
was checked.

Note that we also have a Recheck channel that triggers the delayed attempt to check
the server again for availability. Each Boolean passed across this channel will either
remove the server from the available pool or reannounce that it is still in service:

func (s *Server) serverlListen (serverChan chan bool) {
for {
select {
case msg := <-s.Recheck:
var statusText string
if msg == false {
statusText = "NOT in service"
s.Failures++
s.Timeout = s.Timeout + TIMEOUT INCREMENT
if s.Timeout > MAX TIMEOUT SECONDS {
s.Timeout = MAX TIMEOUT SECONDS

}

} else {
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if ServersAvailable == false ({
ServersAvailable = true
serverChan <- true

statusText = "in service"

s.Timeout = DEFAULT TIMEOUT_ SECONDS

if s.Failures >= MAX SERVER FAILURES {

s.InService = false

fmt.Println("\tServer", s.Name, "failed too many times.")
} else {

timeString := strconv.FormatInt (inté4 (s.Timeout), 10)

fmt.Println("\tServer", s.Name, statusText, "will check
again in", timeString, "seconds")

s.InService = true

time.Sleep(time.Second * time.Duration(s.Timeout))

go s.checkStatus ()

}

This is the instantiated method that listens on each server for messages delivered
on the availability of a server at any given time. While running a goroutine, we
keep a perpetually listening channel open to listen to Boolean responses from
checkStatus (). If the server is available, the next delay is set to default; otherwise,
TIMEOUT_ INCREMENT is added to the delay. If the server has failed too many times,
it's taken out of rotation by setting its InService property to false and no longer
invoking the checkStatus () method. Let's next look at the method for checking
the present status of Server:

func (s *Server) checkStatus() ({
previousStatus := "Unknown"
if s.Status == true {
previousStatus = "OK"
} else {
previousStatus = "down"

}

fmt.Println("Checking Server", s.Name)
fmt.Println("\tServer was", previousStatus, "on last check at",
s.LastChecked)
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response, err := http.Get (s.Addr)

if err != nil {
fmt.Println("\tError: ", err)
s.Status = false
s.StatusCode = 0

} else {
s.StatusCode = response.StatusCode
s.Status = true

s.LastChecked = time.Now ()
s.Recheck <- s.Status

}

Our checkstatus () method should look pretty familiar based on the server ping
example. We look for the server; if it is available, we pass true to our Recheck
channel; otherwise false, as shown in the following code:

func healthCheck (sc chan bool) {
fmt.Println("Running initial health check")
for i := range Servers {
Servers [i] .Recheck = make (chan bool)
go Servers[i] .serverListen (sc)
go Servers[i] .checkStatus ()

}
}

Our healthcCheck function simply kicks off the loop of each server checking
(and re-checking) its status. It's run only one time, and initializes the Recheck
channel via the make statement:

func roundRobin() Server ({
var AvailableServer Server

if nextServerIndex > (len(Servers) - 1) {
nextServerIndex = 0

if Servers[nextServerIndex].InService == true ({
AvailableServer = Servers [nextServerIndex]

} else {
serverReady := false
for serverReady == false ({
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for i := range Servers ({
if Servers([i].InService == true {
AvailableServer = Servers([i]
serverReady = true

}

nextServerIndex++
return AvailableServer

}

The roundrobin function first checks the next available server in the queue —if
that server happens to be down, it loops through the remaining to find the first
available server. If it loops through all, it will reset to 0. Let's look at the global
configuration variables:

var Servers []Server

var nextServerIndex int

var ServersAvailable bool

var ServerChan chan bool

var Proxy *httputil.ReverseProxy
var ResetProxy chan bool

These are our global variables —our Servers slice of Server structs, the
nextServerIndex variable, which serves to increment the next Server to be
returned, ServersAvailable and ServerChan, which start the load balancer only
after a viable server is available, and then our pProxy variables, which tell our http
handler where to go. This requires a ReverseProxy method, which we'll look at
now in the following code:

func handler (p *httputil.ReverseProxy) func (http.ResponseWriter,
*http.Request)

Proxy = setProxy ()

return func(w http.ResponseWriter, r *http.Request) {

r.URL.Path = "/"

p.ServeHTTP (w, r)
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Note that we're operating on a ReverseProxy struct here, which is different from our

previous forays into serving webpages. Our next function executes the round robin
and gets our next available server:

func setProxy () *httputil.ReverseProxy {

nextServer := roundRobin ()

nextURL, = url.Parse (nextServer.Addr)
log.Println ("Next proxy source:", nextServer.Addr)
prox := httputil.NewSingleHostReverseProxy (nextURL)

return prox

}

The setProxy function is called after every request, and you can see it as the first

line in our handler. Next we have the general listening function that looks out for
requests we'll be reverse proxying;:

func startListening()
http.HandleFunc ("/index.html", handler (Proxy))
_ = http.ListenAndServe(":8080", nil)

func main()
nextServerIndex = 0
ServersAvailable = false
ServerChan := make (chan bool)
done := make (chan bool)

fmt.Println("Starting load balancer")

Servers = []Server{{Name: "Web Server 01", Addr: "http://www.google.
com", Status: false, InService: false}, {Name: "Web Server 02", Addr:
"http://www.amazon.com", Status: false, InService: false}, {Name: "Web

Server 03", Addr: "http://www.apple.zom", Status: false, InService:
false}}

go healthCheck (ServerChan)

for {
select
case <-ServerChan:
Proxy = setProxy ()
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startListening()
return

<-done

}

With this application, we have a simple but extensible load balancer that works with
the common, core components in Go. Its concurrency features keep it lean and fast,
and we wrote it in a very small amount of code using exclusively standard Go.

Choosing unidirectional and bidirectional
channels

For the purpose of simplicity, we've designed most of our applications and sample
code with bidirectional channels, but of course any channel can be set unidirectionally.
This essentially turns a channel into a "read-only" or "write-only" channel.

If you're wondering why you should bother limiting the direction of a channel
when it doesn't save any resources or guarantee an issue, the reason boils down
to simplicity of code and limiting the potential for panics.

By now we know that sending data on a closed channel results in a panic, so if
we have a write-only channel, we'll never accidentally run into that problem in
the wild. Much of this can also be mitigated with waitGroups, but in this case
that's a sledgehammer being used on a nail. Consider the following loop:

const TOTAL RANDOMS = 100

func concurrentNumbers (ch chan int) {

for i := 0; i < TOTAL RANDOMS; i++ {
ch <- 1
}
}
func main() {
ch := make(chan int)
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go concurrentNumbers (ch)

for {
select {

case num := <- ch:
fmt .Println (num)
if num == 98 {

close(ch)

}

default:

}
}
}

Since we're abruptly closing our ch channel one digit before the goroutine can finish,
any writes to it cause a runtime error.

In this case, we are invoking a read-only command, but it's in the select loop.
We can safeguard this a bit more by allowing only specific actions to be sent on
unidirectional channels. This application will always work up to the point where
in the channel is closed prematurely, one shy of the TOTAL_RANDOMS constant.

Using receive-only or send-only channels

When we limit the direction or the read/write capability of our channels, we also
reduce the potential for closed channel deadlocks if one or more of our processes
inadvertently sends on such a channel.

So the short answer to the question "When is it appropriate to use a unidirectional
channel?" is "Whenever you can."

Don't force the issue, but if you can set a channel to read/write only, it may preempt
issues down the road.

Using an indeterminate channel type

One trick that can often come in handy, and we haven't yet addressed, is the ability
to have what is effectively a typeless channel.

If you're wondering why that might be useful, the short answer is concise code and
application design thrift. Often this is a discouraged tactic, but you may find it useful
from time to time, especially when you need to communicate one or more disparate
concepts across a single channel. The following is an example of an indeterminate
channel type:
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package main
import (

nfmt"
" ime n

func main() {
acceptingChannel := make (chan interface{})
go func() {

acceptingChannel <- "A text message"
time.Sleep(3 * time.Second)
acceptingChannel <- false

1O

for {
select {
case msg := <- acceptingChannel:
switch typ := msg. (type) ({
case string:
fmt.Println ("Got text message", typ)
case bool:
fmt.Println ("Got boolean message", typ)
if typ == false {
return
}
default:
fmt.Println("Some other type of message")

default:

<- acceptingChannel
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Using Go with unit testing

As with many of the basic and intermediate development and deployment
requirements you may have, Go comes with a built-in application for handling
unit tests.

The basic premise behind testing is that you create your package and then create
a testing package to run against the initial application. The following is a very
basic example:

mathematics.go
package mathematics

func Square(x int) int {

return x * 3

}

mathematics test.go
package mathematics

import
(
"testing"

)

func Test Square 1(t *testing.T) {
if Square(2) != 4 {
t.Error ("Square function failed one test")

}
}

A simple Go test in that subdirectory will give you the response you're looking for.
While this was admittedly simple —and purposefully flawed — you can probably see
how easy it is to break apart your code and test it incrementally. This is enough to do
very basic unit tests out of the box.

Correcting this would then be fairly simple — the same test would pass on the
following code:

func Square(x int) int {

return x * x

}

The testing package is somewhat limited; however, as it provides basic pass/fails
without the ability to do assertions. There are two third-party packages that can
step in and help in this regard, and we'll explore them in the following sections.
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GoCheck

GoCheck extends the basic testing package primarily by augmenting it with
assertions and verifications. You'll also get some basic benchmarking utility out
of it that works a little more fundamentally than anything you'd need to engineer
using Go.

1
‘\Q For more details on GoCheck visit http://labix.org/gocheck

and install it using go get gopkg.in/check.vl.

Ginkgo and Gomega

Unlike GoCheck, Ginkgo (and its dependency Gomega) takes a different approach to
testing, utilizing the behavior-driven development (BDD) model. Behavior-driven
development is a general model for making sure your application does what it should
at every step, and Ginkgo formalizes that into some easily parseable properties.

BDD tends to complement test-driven development (for example, unit testing) rather
than replacement. It seeks to answer a few critical questions about the way people
(or other systems) will interact with your application. In that sense, we'll generally
describe a process and what we expect from that process in fairly human-friendly
terms. The following is a short snippet of such an example:

Describe ("receive new remote TCP connection", func() {
Context ("user enters a number", func() {
It ("should be an integer", func()

3]
3]
3]

This allows testing to be as granular as unit testing, but also expands the way we
handle application usage in verbose and explicit behaviors.

If BDD is something you or your organization is interested in, this is a fantastic,
mature package for implementing deeper unit testing.

For more information on Ginkgo go to https://github.com/
N onsi/ginkgo and install it using go get github.com/onsi/

~Q ginkgo/ginkgo.
For more information on dependency, refer to go get github.com/
onsi/gomega.
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Using Google App Engine
If you're unfamiliar with Google App Engine, the short version is it's a cloud

environment that allows for simple building and deployment of Platform-As-A-
Service (paas) solutions.

Compared to a lot of similar solutions, Google App Engine allows you to build and
test your applications in a very simple and straightforward way. Google App Engine
allows you to write and deploy in Python, Java, PHP, and of course, Go.

For the most part, Google App Engine provides a standard Go installation that
makes it easy to dovetail off of the http package. But it also gives you a few
noteworthy additional packages that are unique to Google App Engine itself:

Package Description

appengine/memcache This provides a distributed memcache
installation unique to Google App Engine

appengine/mail This allows you to send e-mails through an
SMTP-esque platform

appengine/log Given your storage may be more ephemeral
here, it formalizes a cloud version of the log

appengine/user This opens both identity and OAuth
capabilities

appengine/search This gives your application the power of
Google search on your own data via datastore

appengine/xmpp This provides Google Chat-like capabilities

appengine/urlfetch This is a crawler functionality

appengine/aetest This extends unit testing for Google App
Engine

While Go is still considered beta for Google App Engine, you can expect that if anyone
was able to competently deploy it in a cloud environment, it would be Google.

Utilizing best practices

The wonderful thing with Go when it comes to best practices is that even if you
don't necessarily do everything right, either Go will yell at you or provide you
with the tools necessary to fix it.

If you attempt to include code and not use it, or if you attempt to initialize a variable
and not use it, Go will stop you. If you want to clean up your code's formatting, Go
enables it with go fmt.
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Structuring your code

One of the easiest things you can do when building a package from scratch is
to structure your code directories in an idiomatic way. The standard for a new
package would look something like the following code:

/projects/
thisproject/
bin/
pkg/
src/
package/
mypackage.go

Setting up your Go code like this is not just helpful for your own organization,
but allows you to distribute your package more easily.

Documenting your code

For anyone who has worked in a corporate or collaborative coding environment,
documentation is sacrosanct. As you may recall earlier, using the godoc command
allows you to quickly get information about a package at the command line or via
an ad hoc localhost server. The following are the two basic ways you may use godoc:

Using godoc Description
godoc fmt This brings fmt documentation to the screen
godoc -http=:3000 This hosts the documentation on port : 3030

Go makes it super easy to document your code, and you absolutely should. By
simply adding single-line comments above each identifier (package, type, or
function), you'll append that to the contextual documentation, as shown in the
following code:

// A demo documentation package
package documentation

// The documentation struct object
// Chapter int represents a document's chapter
// Content represents the text of the documentation
type Documentation struct {
Chapter int
Content string

}
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// Display() outputs the content of any given Document by chapter
func (d Documentation) Display () ({

}

When installed, this will allow anyone to run the godoc documentation on your
package and get as much detailed information as you're willing to supply.

You'll often see more robust examples of this in the Go core code itself, and it's
worth reviewing that to compare your style of documentation to Google's and
the Go community's.

Making your code available via go get

Assuming you've kept your code in a manner consistent with the organizational
techniques as listed previously, making your code available via code repositories
and hosts should be a cinch.

Using GitHub as the standard, here's how we might design our third-party
application:

1. Make sure you stick to the previous structural format.

2. Keep your source files under the directory structures they'll live in
remotely. In other words, expect that your local structure will reflect
the remote structure.

3. Perhaps obviously, commit only the files you wish to share in the
remote repository.

Assuming your repository is public, anyone should be able to get (go get)
and then install (go install) your package.

Keeping concurrency out of your packages

One last point that might seem somewhat out of place given the context of the
book —if you're building separate packages that will be imported, avoid including
concurrent code whenever possible.

This is not a hard-and-fast rule, but when you consider potential usage, it makes
sense —let the main application handle the concurrency unless your package
absolutely needs it. Doing so will prevent a lot of hidden and difficult-to-debug
behavior that may make your library less appealing.
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Summary

It is my sincere hope that you've been able to explore, understand, and utilize the
depths of Go's powerful abilities with concurrency through this book.

We've gone over a lot, from the most basic, channel-free concurrent goroutines to
complex channel types, parallelism, and distributed computing, and we've brought
some example code along at every step.

By now, you should be fully equipped to build anything your heart desires in code,
in a manner that is highly concurrent, fast, and error-free. Beyond that, you should
be able to produce well-formed, properly-structured, and documented code that can
be used by you, your organization, or others to implement concurrency where it is
best utilized.

Concurrency itself is a vague concept; it's one that means slightly different things
to different people (and across multiple languages), but the core goal is always fast,
efficient, and reliable code that can provide performance boosts to any application.

Armed with a full understanding of both the implementation of concurrency in Go
as well as its inner workings, I hope you continue your Go journey as the language
evolves and grows, and similarly implore you to consider contributing to the Go
project itself as it develops.
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