

Go Recipes for Developers

Top techniques and practical solutions for real-life Go
programming problems

Burak Serdar

Go Recipes for Developers
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kunal Sawant
Publishing Product Manager: Samriddhi Murarka
Book Project Manager: Prajakta Naik
Lead Editor: Kinnari Chohan
Technical Editor: Vidhisha Patidar
Copy Editor: Safis Editing
Proofreader: Kinnari Chohan
Indexer: Pratik Shirodkar
Production Designer: Alishon Mendonca
DevRel Marketing Coordinator: Sonia Chauhan

First published: December 2024

Production reference: 1291124

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83546-439-7

www.packtpub.com

http://www.packtpub.com

Contributors

About the author
Burak Serdar is a software engineer with over 30 years of experience designing and developing
distributed applications. He has used Go to create backend software, data processing platforms,
interactive applications, and automation systems. Burak has worked for both startups and large
corporations as an engineer and technical lead. He holds B.Sc. and M.Sc. degrees in Electrical and
Electronics Engineering, as well as an M.Sc. degree in Computer Science.

About the reviewer
Dylan Meeus is a software engineer with over a decade of experience in various functional and
non-functional programming languages. He has used Go to develop systems across diverse domains,
including healthcare, machine learning frameworks, and digital signal processing software. Dylan
developed a passion for functional programming while learning Haskell and has applied this knowledge
to traditionally non-functional languages like Java. In recent years, he has spoken at various Go- and
Java-oriented conferences, such as GopherCon and Devoxx.

Preface� xv

1
Project Organization� 1

Modules and packages� 1
Technical requirements� 3
Creating a module� 3
How to do it...� 3

Creating a source tree� 4
How to do it...� 5

Building and running programs� 6
How to do it...� 6

Importing third-party packages� 8
How to do it...� 8

Importing specific versions of packages�10
How to do it...� 10

Working with the module cache� 11

How to do it...� 11

Using internal packages to reduce an
API surface� 12
How to do it...� 12

Using a local copy of a module� 14
How to do it...� 14

Working on multiple modules –
workspaces� 15
How to do it...� 15

Managing the versions of your module� 16
How to do it...� 16

Summary and further reading� 17

2
Working with Strings� 19

Creating strings� 20
How to do it...� 20

Formatting strings� 21
How to do it...� 21

How it works...� 22

Combining strings� 23
How to do it...� 23
How it works...� 24

Table of Contents

Table of Contentsvi

Working with string cases� 26
How to do it...� 26
How it works...� 26
There’s more...� 28

Working with encodings� 29
How to do it...� 29
How it works...� 29

Iterating bytes and runes of strings� 30
How to do it...� 30
How it works...� 30

Splitting� 32
How to do it...� 32
How it works...� 32

Reading strings line by line, or word
by word� 33
How to do it...� 33
How it works...� 33

Trimming the ends of a string� 34
How to do it...� 34

Regular expressions� 35
Validating input� 35

Searching patterns� 36

Extracting data from strings� 36
How to do it...� 36
How it works...� 36

Replacing parts of a string� 37
How to do it...� 37

Templates� 38
Value substitution� 38
Iteration� 40
Variables and scope� 41
There’s more – nested loops and conditionals� 43

Dealing with empty lines� 44
How to do it...� 44

Template composition� 45
How to do it...� 45
How it works...� 46

Template composition – layout
templates� 48
How to do it...� 48
How it works...� 48

There’s more...� 50

3
Working with Date and Time� 53

Working with Unix time� 54
How to do it...� 54

Date/time components� 54
How to do it...� 55

Date/time arithmetic� 56
How to do it...� 56
How it works...� 56

Formatting and parsing date/time� 58

How to do it...� 58
Time zones change by location and by date.
In the following example, even though the
same location is used to parse the date, the
time zone changes because July 9 is Mountain
Daylight Time, but January 9 is Mountain
Standard Time:� 59

Working with time zones� 59
How to do it...� 59
How it works...� 60

Table of Contents vii

Storing time information� 61
How to do it...� 61

Timers� 61
How to do it...� 61

How it works...� 62

Tickers� 63
How to do it...� 64
How it works...� 64

4
Working with Arrays, Slices, and Maps� 67

Working with arrays� 67
Creating arrays and passing them around� 68

Working with slices� 69
Creating slices� 69

Creating a slice from an array� 71
How to do it...� 71
How it works...� 71

Appending/inserting/deleting slice
elements� 72
How to do it...� 72
How it works...� 74

Implementing a stack using a slice� 75
How to do it...� 75

Working with maps� 76

Defining, initializing, and using maps� 76
How to do it...� 76

Implementing a set using a map� 78
How to do it...� 78
How it works...� 79

Composite keys� 79
How to do it...� 79
How it works...� 80

Thread-safe caching with maps� 81
Simple cache� 82
How to do it...� 82

Cache with blocking behavior� 82
How to do it...� 83
How it works...� 84

5
Working with Types, Structs, and Interfaces� 85

Creating new types� 85
Creating a new type based on an
existing type� 86
How to do it...� 86

Creating type-safe enumerations� 86
How to do it...� 86

Creating struct types� 87
How to do it...� 87

Extending types� 87
Extending a base type� 88
How to do it...� 88
How it works...� 89

Table of Contentsviii

Initializing structs� 90
How to do it...� 90
Here, NewIndex creates a new initialized
instance of the Index type:� 90

Defining interfaces� 91
Interfaces as contracts� 91
How to do it...� 91

Factories� 92
How to do it...� 93

Defining interfaces where you use them�94
How to do it...� 94
How it works...� 95

Using a function as an interface� 95
How to do it...� 95
How it works...� 96

Discovering capabilities of data types
at runtime – testing "implements"
relationship� 97
How to do it...� 97
How it works...� 98

Testing whether an interface value is
one of the known types� 98
How to do it...� 98

Ensuring a type implements an
interface during development� 99
How to do it...� 99

Deciding whether to use a pointer
receiver or value receiver for methods�101
How to do it...� 101
How it works...� 101

Polymorphic containers� 104
How to do it...� 104
How it works...� 104

Accessing parts of an object not
directly exposed via the interface� 106
How to do it...� 106

Accessing the embedding struct from
the embedded struct� 106
How to do it...� 107

Checking whether an interface is nil� 109
How to do it...� 109
How it works...� 109

6
Working with Generics� 111

Generic functions� 111
Writing a generic function that
adds numbers� 112
Declaring constraints as interfaces� 113
Using generic functions as accessors
and adapters� 114
Returning a zero value from a
generic function� 115

Using type assertion on generic arguments� 115

Generic types� 116
Writing a type-safe set� 117
An ordered map – using multiple type
parameters� 118

Table of Contents ix

7
Concurrency� 121

Doing things concurrently using
goroutines� 121
Creating goroutines� 122
Running multiple independent functions
concurrently and waiting for them to complete� 123

Communicating between goroutines
using channels� 124
Sending and receiving data using channels� 124
Sending data to a channel from multiple
goroutines� 125

Collecting the results of concurrent
computations using channels� 126

Working with multiple channels
using the select statement� 128
Canceling goroutines� 129
Detecting cancelation using
nonblocking select� 130

Sharing memory� 131
Updating shared variables concurrently� 131

8
Errors and Panics� 133

Returning and handling errors� 133
How to do it...� 134
How it works...� 134

Wrapping errors to add contextual
information� 135
How to do it...� 135

Comparing errors� 135
How to do it...� 135
How it works...� 136

Structured errors� 136
How to do it...� 136
How it works...� 137

Wrapping structured errors� 138
How to do it...� 138
How it works...� 138

Comparing structured errors by type� 139
How to do it...� 139

How it works...� 139

Extracting a specific error from the
error tree� 140
How to do it...� 140
How it works...� 140

Dealing with panics� 141
Panicking when necessary� 141
How to do it...� 141

Recovering from panics� 142
How to do it...� 142
How it works...� 143

Changing return value in recover� 143
How to do it...� 143
How it works...� 143

Capturing the stack trace of a panic� 143
How to do it...� 144

Table of Contentsx

9
The Context Package� 147

Using context for passing request-
scoped data� 148
How to do it...� 148
How it works...� 149
There’s more...� 150

Using context for cancellations� 152
How to do it...� 152
How it works...� 154

Using context for timeouts� 155
How to do it...� 155
How it works...� 156
There’s more...� 157

Using cancellations and timeouts in
servers� 158
How to do it...� 158

10
Working with Large Data� 159

Worker pools� 159
Capped worker pools� 160
Fixed-size worker pools� 162
Connection pools� 166

Pipelines� 168

Simple pipeline without fan-out/fan-in� 168
Pipeline with worker pools as stages� 171
Pipeline with fan-out and fan-in� 174

Working with large result sets� 178
Streaming results using a goroutine� 178

11
Working with JSON� 181
Marshaling/unmarshaling basics� 182

Encoding structs� 182
How to do it...� 182

Dealing with embedded structs� 184
How to do it...� 184

Encoding without defining structs� 185
How to do it...� 185

Decoding structs� 186
How to do it...� 186

Decoding with interfaces, maps, and
slices� 188
How to do it...� 188
How to do it...� 188
Dealing with missing and optional values� 189

Omitting empty fields when encoding�189
How to do it...� 189

Dealing with missing fields when
decoding� 190
How to do it...� 190

Table of Contents xi

Customizing JSON encoding/decoding� 191

Marshaling/unmarshaling custom
data types� 191
How to do it...� 191

Custom marshaling/unmarshaling of
object keys� 192
How to do it...� 192
Dynamic field names� 194
How to do it...� 194
Polymorphic data structures� 194

Custom unmarshaling with two
passes� 195
How to do it...� 195
Streaming JSON data� 197

Streaming an array of objects� 197
How to do it...� 197

Parsing an array of objects� 198
How to do it...� 198

Other ways of streaming JSON� 199
Security considerations� 200
How to do it...� 200

12
Processes� 201

Running external programs� 201
How to do it...� 202

Passing arguments to a process� 205
Expanding arguments� 205
Running the command via the shell� 206

Processing output from a child
process using a pipe� 207
How to do it...� 207

Providing input to a child process� 208
How to do it...� 208

Changing environment variables of a
child process� 209
How to do it...� 210

Graceful termination using signals� 210
How to do it...� 210

13
Network Programming� 213

TCP networking� 214
Writing TCP servers� 214
How to do it...� 214
How it works...� 216

Writing TCP clients� 217
How to do it...� 217

Writing a line-based TCP server� 218
How to do it...� 218

Sending/receiving files using a TCP
connection� 220
How to do it...� 220

Writing a TLS client/server� 223

Table of Contentsxii

How to do it...� 224

A TCP proxy for TLS termination
and load-balancing� 227
How to do it...� 227

Setting read/write deadlines� 230
How to do it...� 230

Unblocking a blocked read or write
operation� 231
How to do it...� 231
How it works...� 232

Writing UDP clients/servers� 232
How to do it...� 232

Working with HTTP� 234
Making HTTP calls� 234
How to do it...� 235

Running an HTTP server� 237

How to do it...� 237

HTTPS – setting up a TLS server� 238
How to do it...� 238

Writing HTTP handlers� 239
How to do it...� 239

Serving static files on the file system� 243
How to do it...� 243

Handling HTML forms� 244
How to do it...� 244

Writing a handler for downloading
large files� 247
How to do it...� 247

Handling HTTP uploaded files and
forms as a stream� 247
How to do it...� 247

14
Streaming Input/Output� 251

Readers/writers� 251
Reading data from a reader� 252
Writing data to a writer� 252
Reading from and writing to a byte slice� 253
Reading from and writing to a string� 254

Working with files� 254
Creating and opening files� 254
Closing a file� 256
Reading/writing data from/to files� 258
Reading/writing from/to a specific location� 261
Changing the file size� 262
Finding the file size� 263

Working with binary data� 264
How to do it...� 265

Copying data� 268
Copying files� 268

Working with the filesystem� 269
Working with filenames� 269
Creating temporary directories and files� 269
Reading directories� 271

Working with pipes� 273
Connecting code expecting a reader with
code expecting a writer� 273
Intercepting a reader using TeeReader� 274

Table of Contents xiii

15
Databases� 275

Connecting to a database� 276
How to do it...� 276

Running SQL statements� 278
Running SQL statements without explicit
transactions� 278
Running SQL statements with transactions� 281

Running prepared statements within
a transaction� 283
How to do it...� 283

Getting values from a query� 283
How to do it...� 283

Dynamically building SQL statements�286
Building UPDATE statements� 286
How to do it...� 286

Building WHERE clauses� 288
How to do it...� 289

16
Logging� 291

Using the standard logger� 292
Writing log messages� 292
Controlling format� 293
Changing where to log� 294

Using the structured logger� 295

Logging using the global logger� 295
Writing structured logs using different levels� 296
Changing log level at runtime� 297
Using loggers with additional attributes� 298
Changing where to log� 298
Adding logging information from the context� 299

17
Testing, Benchmarks, and Profiling� 301

Working with unit tests� 302
Writing a unit test� 303
How to do it...� 303

Running unit tests� 304
How to do it...� 304

Logging in tests� 305
How to do it...� 305

Skipping tests� 305
How to do it...� 306

Testing HTTP servers� 306
How to do it...� 307

Testing HTTP handlers� 309
How to do it...� 309

Checking test coverage� 310

Table of Contentsxiv

How to do it...� 310

Benchmarking� 311
Writing benchmarks� 311
How to do it...� 311

Writing multiple benchmarks with
different input sizes� 312

How to do it...� 312

Running benchmarks� 312
How to do it...� 313

Profiling� 313
How to do it…� 313
See also� 315

Index� 317

Other Books You May Enjoy� 326

Preface

Go, with its straightforward syntax and pragmatic conventions, has solidified its position as the
language of choice for developers tackling network programming, web services, data processing, and
beyond. This book is designed to empower engineers by providing up-to-date, practical recipes for
solving common programming challenges.

The journey begins with foundational principles, including effective approaches to organizing packages
and structuring code for various project types. From there, the book delves into real-world engineering
challenges, offering practical solutions in network programming, process management, database
interactions, data pipelines, and testing. Each chapter presents working solutions and production-ready
code snippets, tailored for both sequential and concurrent programming environments.

Leveraging Go’s most recent language features—such as generics and structured logging—the recipes
in this book primarily rely on the Go standard library, ensuring minimal reliance on third-party
packages and maximizing compatibility.

By the end of this book, you’ll have a wealth of proven, hands-on solutions to accelerate your Go
development journey and tackle the complexities of modern software engineering with confidence.

Who this book is for
This book is intended for developers with a basic understanding of the Go language. More experienced
developers can also use it as a reference, offering practical examples that can be applied to a variety
of use cases.

What this book covers
Chapter 1, Project Organization, covers modules, packages, source tree organization, importing
packages, versioning modules, and workspaces.

Chapter 2, Working with Strings, contains recipes showing how to work with strings, internationalization,
encoding, regular expressions, parsing, and generating formatted text using templates.

Chapter 3, Working with Date and Time, shows how to work with date, time, and duration values
correctly with time zone considerations, formatting/parsing date and time values, performing periodic
tasks, and scheduling functions to run later.

Prefacexvi

Chapter 4, Working with Arrays, Slices, and Maps, introduces the basic container types that are the
building blocks for many data structures.

Chapter 5, Working with Types, Structs, and Interfaces, shows how to define new types, extending
existing types to share functionality, interfaces, and their uses. In particular, this chapter includes
the two approaches to using interfaces, namely, interfaces as contracts and defining interfaces where
they are used.

Chapter 6, Working with Generics, introduces the basic recipes for writing generic functions and
generic types with examples.

Chapter 7, Concurrency, includes basic recipes to write concurrent programs using goroutines and
channels. Mutual exclusion using mutexes is also discussed here.

Chapter 8, Errors and Panics, shows generating errors, passing errors around, handling them, and
organizing errors in a project. It also discusses how to generate and deal with panics.

Chapter 9, The Context Package, introduces the Go’s Context which is useful for controlling request
lifecycle and passing request-scoped values within an application in a concurrent program.

Chapter 10, Working with Large Data, includes recipes for working with large amounts of data in a
concurrent setting using worker pools and concurrent pipelines.

Chapter 11, Working with JSON, includes recipes for encoding and decoding JSON, marshaling/
unmarshaling simple and complex data types, working with custom serialization logic, encoding/
decoding polymorphic structures, and streaming JSON data.

Chapter 12, Processes, shows how to run and interact with external programs, working with environment
variables, working with pipes, and graceful termination using signals.

Chapter 13, Network Programming, gives recipes for TCP and UDP servers and clients, working with
TLS, deadlines, HTTP client/servers, request multiplexing, and HTML forms.

Chapter 14, Streaming Input/Output, includes recipes using reads and writers, working with files and
the file system, and pipes.

Chapter 15, Databases, shows how to interact with an SQL database using the standard library packages
in a secure way.

Chapter 16, Logging, has recipes showing the common uses of the standard library log and slog packages.

Chapter 17, Testing, Benchmarks, and Profiling, gives recipes on writing and running unit tests, testing
HTTP servers, benchmarking, and profiling

Preface xvii

To get the most out of this book
You need a recent version of Go (anything newer than 1.22 will do) integrated with your favorite
development environment. Some of the example programs use Docker.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code via the GitHub repository (link available in the next section). Doing so will help you
avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Go-Recipes-for-Developers. In case there’s an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Note
the capitalization of InitDB.”

A block of code is set as follows:

ctx:=context.Background()
cancelable, cancel:=context.WithCancel(ctx)
defer cancel()

Tips or important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How
it works...).

https://github.com/PacktPublishing/Go-Recipes-for-Developers
https://github.com/PacktPublishing/Go-Recipes-for-Developers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexviii

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software or any
preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the
subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xix

Share Your Thoughts
Once you’ve read Go Recipes for Developers, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1835464394
https://packt.link/r/1835464394

Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83546-439-7

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83546-439-7

1
Project Organization

This chapter is about how you can start a new project, organize a source tree, and manage the packages
you need to develop your programs. A well designed project structure is important because when other
developers work on your project or try to use components from it, they can quickly and easily find
what they are looking for. This chapter will first answer some of the questions you may have when you
are starting a new project. Then, we will look at how you can use the Go package system, work with
standard library and third-party packages, and make it easy for other developers to use your packages.

This chapter includes the following recipes:

•	 Creating a module

•	 Creating a source tree

•	 Building and running programs

•	 Importing third-party packages

•	 Importing specific versions of packages

•	 Using internal packages to reduce API surface

•	 Using a local copy of a module

•	 Workspaces

•	 Managing the versions of your module

Modules and packages
First, a few words about modules and packages would be helpful. A package is a cohesive unit of
data types, constants, variables, and functions. You build and test packages, not individual files or
modules. When you build a package, the build system collects and also builds all dependent packages.
If the package name is main, building it will result in an executable. You can run the main package
without producing a binary (more specifically, the Go build system first builds the package, produces
the binary in a temporary location, and runs it). To use another package, you import it. Modules help

Project Organization2

with organizing multiple packages and the resolution of package references within a project. A module
is simply a collection of packages. If you import a package into your program, the module containing
that package will be added to go.mod, and a checksum of the contents of that module will be added
to go.sum. Modules also help you to manage versions of your programs.

All files of a package are stored under a single directory on the filesystem. Every package has a name
declared using the package directive, shared by all source files in it. The package name usually
matches the directory name containing the files, but this is not necessarily so. For example, the main
package is not usually under a directory named main/. The directory of the package determines the
package’s “import path.” You import another package into your current package using the import
<importPath> statement. Once you import a package, you use the names declared in that package
using its package name (which is not necessarily the directory name).

A module name points to the location where the module contents are stored in a version control
system on the Internet. At the time of writing, this is not a hard-and-fast requirement, so you can
actually create module names that do not follow this convention. This should be avoided to prevent
potential future incompatibilities with the build system. Your module names should be part of the
import paths for the packages of those modules. In particular, module names whose first component
(the part before the first /) does not have . are reserved for the standard library.

These concepts are illustrated in Figure 1.1.

Figure 1.1 – Modules and packages

1.	 The module name declared in go.mod is the repository path where the module can be found.

2.	 The import path in main.go defines where the imported package can be found. The Go
build system will locate the package using this import path, and then it will locate the module
containing the package by scanning the parent directories of the package path. Once the module
is found, it will be downloaded to the module cache.

Technical requirements 3

3.	 The package name defined in the imported module is the package name you use to access the
symbols of that package. This can be different from the last component of the import path. In
our example, the package name is example, but the import path for this package is github.
com/bserdar/go-recipes-module.

4.	 The Example function is located in the example package.

5.	 The example package also imports another package contained in the same module. The build
system will identify this package to be part of the same module and resolve the references, using
the downloaded version of the module.

Technical requirements
You will need a recent version of Go on your computer to build and run the examples in this chapter.
The examples in this book were tested using Go version 1.22. The code from this chapter can be
found at https://github.com/PacktPublishing/Go-Recipes-for-Developers/
tree/main/src/chp1.

Creating a module
When you start working on a new project, the first thing to do is to create a module for it. A module
is how Go manages dependencies.

How to do it...

1.	 Create a directory to store a new module.

2.	 Under that directory, use go mod init <moduleName> to create the new module. The
go.mod file marks the root directory of a module. Any package under this directory will be a
part of this module unless that directory also has a go.mod file. Although such nested modules
are supported by the build system, there is not much to be gained from them.

3.	 To import a package in the same module, use moduleName/packagePath. When
moduleName is the same as the location of the module on the internet, there are no ambiguities
about what you are referring to.

4.	 For the packages under a module, the root of the module is the closest parent directory
containing a go.mod file. All references to other packages within a module will be looked up
in the directory tree under the module root.

5.	 Start by creating a directory to store the project files. Your current directory can be anywhere
on the filesystem. I have seen people use a common directory to store their work, such as
$HOME/projects (or \user\myUser\projects in Windows). You may choose to
use a directory structure that looks like the module name, such as $HOME/github.com/
mycompany/mymodule (or \user\myUser\github.com\mycompany\mymodule
in Windows). Depending on your operating system, you may find a more suitable location.

https://github.com/PacktPublishing/Go-Recipes-for-Developers/tree/main/src/chp1
https://github.com/PacktPublishing/Go-Recipes-for-Developers/tree/main/src/chp1

Project Organization4

Warning
Do not work under the src/ directory of your Go installation. That is the source code for
the Go standard library.

Tip
You should not have an environment variable, GOPATH; if you have to keep it, do not work
under it. This variable was used by an older mode of operation (Go version <1.13) that is now
deprecated in favor of the Go module system.

Throughout this chapter, we will be using a simple program that displays a form in a web browser and
stores the entered information in a database.

After creating the module directory, use go mod init. The following commands will create a
webform directory under projects and initialize a Go module there:

$ cd projects
$ mkdir webform
$ go mod init github.com/examplecompany/webform

This will create a go.mod file in this directory that looks like this:

module github.com/PacktPublishing/Go-Recipes-for-Developers/chapter1/
webform

go 1.21.0

Use a name that describes where your module can be found. Always use a URL structure such as
the <host>.<domain>/location/to/module format (e.g., github.com/bserdar/
jsonom). In particular, the first component of the module name should have a dot (.) (the Go build
system checks this).

So, even though you can name the module something such as webform or mywork/webform,
do not do so. However, you can use something such as workspace.local/webform. When in
doubt, use the code repository name.

Creating a source tree
Once you have a new module, it is time to decide how you are going to organize the source files.

Creating a source tree 5

How to do it...

There are several established conventions, depending on the project:

•	 Use a standard layout, such as https://github.com/golang-standards/project-
layout.

•	 A library with a narrow focus can put all the exported names at the module root, with
implementation details optionally stored under internal packages. A module that produces a single
executable with relatively few or no reusable components can also use the flat directory structure.

For a project like ours that produces an executable, the structure laid out in https://github.
com/golang-standards/project-layout fits. So, let’s follow that template:

webform/
  go.mod
  cmd/
    webform/
      main.go
  web/
    static/
  pkg/
    ...
  internal/
    ...
  build/
    ci/
    package/
  configs/

Here, the cmd/webform directory will contain the main package. As you can see, this is one
instance where the package name does not match the directory it is in. The Go build system will create
executables using the directory name, so when you build the main package under cmd/webform,
you get an executable named webform. If you have multiple executables built within a single module,
you can accommodate them by creating a separate main package under a directory matching the
program name, under the cmd/ directory.

The pkg/ directory will contain the exported packages of the program. These are packages that can
be imported and reused in other projects.

If you have packages that are not usable outside this project, you should put them under the internal/
directory. The Go build system recognizes this directory and does not allow you to import packages
under internal/ from other packages that are outside the directory containing the internal/
directory. With this setup, all the packages of our webform program will have access to the packages
under internal/, but it will be inaccessible to packages importing this module.

https://github.com/golang-standards/project-layout
https://github.com/golang-standards/project-layout
https://github.com/golang-standards/project-layout
https://github.com/golang-standards/project-layout

Project Organization6

The web/ directory will contain any web-related assets. In this example, we will have a web/static
directory containing static web pages. You can also add web/templates to store server-side
templates if you have any.

The build/package directory should have packaging scripts and configuration for cloud, container,
packaging systems (dep, rpm, pkg, etc.).

The build/ci directory should have continuous integration tool scripts and configurations. If the
continuous integration tool you are using requires its files to be in a certain directory other than this, you
can create symbolic links, or simply put those files where the tool needs them instead of /build/ci.

The configs/ directory should contain the configuration file templates and default configurations.

You can also see projects that have the main package under the module root, eliminating the cmd/
directory. This is a common layout when the module has only one executable:

webform/
  go.mod
  go.sum
  main.go
  internal/
    ...
  pkg/
    ...

Then there are modules without any main package. These are usually libraries that you can import
into your projects. For example, https://github.com/google/uuid contains the popular
UUID implementation using a flat directory structure.

Building and running programs
Now that you have a module and a source tree with some Go files, you can build or run your program.

How to do it...

•	 Use go build to build the current package

•	 Use go build ./path/to/package to build the package in the given directory

•	 Use go build <moduleName> to build a module

•	 Use go run to run the current main package

•	 Use go run ./path/to/main/package to build and run the main package in the
given directory

•	 Use go run <moduleName/mainpkg> to build and run the module’s main under the
given directory

https://github.com/google/uuid

Building and running programs 7

Let’s write the main function that starts an HTTP server. The following snippet is cmd/webform/
main.go:

package main

import (
    "net/http"
)

func main() {
    server := http.Server{
        Addr:    ":8181",
        Handler: http.FileServer(http.Dir("web/static")),
    }
    server.ListenAndServe()
}

Currently, main only imports the standard library’s net/http package. It starts a server that serves
the files under the web/static directory. Note that for this to work, you have to run the program
from the module root:

$ go run ./cmd/webform

Always run the main package; avoid go run main.go. This will run main.go, excluding any
other files in the main package. It will fail if you have other .go files that contain helper functions
in the main package.

If you run this program from another directory, it will fail to find the web/static directory; because
it is a relative path, it is resolved relative to the current directory.

When you run a program via go run, the program executable is placed in a temporary directory.
To build the executable, use the following:

$ go build ./cmd/webform

This will create a binary in the current directory. The name of the binary will be determined by the
last segment of the main package – in this case, webform. To build a binary with a different name,
use the following:

$ go build -o wform ./cmd/webform

This will build a binary called wform.

Project Organization8

Importing third-party packages
Most projects will depend on third-party libraries that must be imported into them. The Go module
system manages these dependencies.

How to do it...

1.	 Find the import path of the package you need to use in your project.

2.	 Add the necessary imports to the source files you use in the external package.

3.	 Use the go get or go mod tidy command to add the module to go.mod and go.sum.
If the module was not downloaded before, this step will also download the module.

Tip
You can use https://pkg.go.dev to discover packages. It is also the place to publish
documentation for the Go projects you publish.

Let’s add a database to our program from the previous section so that we can store the data submitted
by the web form. For this exercise, we will use the SQLite database.

Change the cmd/webform/main.go file to import the database package and add the necessary
database initialization code:

package main

import (
    "net/http"
    "database/sql"

    _ "modernc.org/sqlite"

    "github.com/PacktPublishing/Go-Recipes-for-Developers/src/chp1/
    webform/pkg/commentdb"
)

func main() {
    db, err := sql.Open("sqlite", "webform.db")
    if err != nil {
        panic(err)
    }
    commentdb.InitDB(db)
    server := http.Server{
        Addr:    ":8181",

https://pkg.go.dev

Importing third-party packages 9

        Handler: http.FileServer(http.Dir("web/static")),
    }
    server.ListenAndServe()
}

The _ "modernc.org/sqlite" line imports the SQLite driver into the project. The underscore
is the blank identifier, meaning that the sqlite package is not directly used by this file and is only
included for its side effects. Without the blank identifier, the compiler would complain that the import
was not used. In this case, the modernc.org/sqlite package is a database driver, and when you
import it, its init() functions will register the required driver with the standard library.

The next declaration imports the commentdb package from our module. Note that the complete
module name is used to import the package. The build system will recognize the prefix of this import
declaration as the current module name, and it will translate it to a local filesystem reference, which,
in this case, is webform/pkg/commentdb.

On the db, err := sql.Open("sqlite", "webform.db") line, we use the database/
sql package function, Open, to start a SQLite database instance. sqlite names the database
driver, which was registered by the imported _ "modernc.org/sqlite".

The commentdb.InitDB(db) statement will call a function from the commentdb package .

Now, let’s see what commentdb.InitDB looks like. This is the webform/pkg/commentdb/
initdb.go file:

package commentdb

import (
    "context"
    "database/sql"
)

const createStmt=`create table if not exists comments (
email TEXT,
comment TEXT)`

func InitDB(conn *sql.DB) {
    _, err := conn.ExecContext(context.Background(), createStmt)
    if err != nil {
        panic(err)
    }
}

As you can see, this function creates the database tables if they have not been created yet.

Project Organization10

Note the capitalization of InitDB. If the first letter of a symbol name declared in a package is a capital
letter, that symbol is accessible from other packages (i.e., it is exported). If not, the symbol can only
be used within the package it is declared (i.e., it is not exported). The createStmt constant is not
exported and will be invisible to other packages.

Let’s build the program:

$ go build ./cmd/webform
  cmd/webform/main.go:7:2: no required module provides package
modernc.org/sqlite; to add it:
      go get modernc.org/sqlite

You can run go get modernc.org/sqlite to add a module to your project. Alternatively,
you can run the following:

$ go get

That will get all the missing modules. Alternatively, you can run the following:

$ go mod tidy

go mod tidy will download all missing packages, update go.mod and go.sum with updated
dependencies, and remove references to any unused modules. go get will only download
missing modules.

Importing specific versions of packages
Sometimes, you need a specific version of a third-party package because of API incompatibilities or
a particular behavior you depend on.

How to do it...

•	 To get a specific version of a package, specify the version label:

$ go get modernc.org/sqlite@v1.26.0

•	 To get the latest release of a specific major version of a package, use this:

$ go get gopkg.in/yaml.v3

Alternatively, use this:
$ go get github.com/ory/dockertest/v3

•	 To import the latest available version, use this:

$ go get modernc.org/sqlite

Working with the module cache 11

•	 You can also specify a different branch. The following will get a module from the devel
branch, if there is one:

$ go get modernc.org/sqlite@devel

•	 Alternatively, you can get a specific commit:

$ go get modernc.org/sqlite@
a8c3eea199bc8fdc39391d5d261eaa3577566050

As you can see, you can get a specific revision of a module using the @revision convention:

$ go get modernc.org/sqlite@v1.26.0

The revision part of the URL is evaluated by the version control system, which, in this case, is git,
so any valid git revision syntax can be used.

Tip:
You can find which revision control systems are supported by checking out the src/cmd/
go/alldocs.go file under your Go installation.

That also means you can use branches:

$ go get modernc.org/sqlite@master

Tip
The https://gopkg.in service translates version numbers to URLs compatible with the
Go build system. Refer to the instructions on that website on how to use it.

Working with the module cache
The module cache is a directory where the Go build system stores downloaded module files. This
section describes how to work with the module cache.

How to do it...

The module cache is, by default, under $GOPATH/pkg/mod, which is $HOME/go/pkg/mod when
GOPATH is not set:

•	 By default, the Go build system creates read-only files under the module cache to prevent
accidental modifications.

https://gopkg.in

Project Organization12

•	 To verify that the module cache is not modified and reflects the original versions of modules,
use this:

go mod verify

•	 To clean up the module cache, use this:

go clean -modcache

The authoritative source for information about the module cache is the Go Modules Reference (https://
go.dev/ref/mod)

Using internal packages to reduce an API surface
Not every piece of code is reusable. Having a smaller API surface makes it easier for others to adapt
and use your code. So, you should not export APIs that are specific to your program.

How to do it...

Create internal packages to hide implementation details from other packages. Anything under
an internal package can only be imported from the packages under the package containing that
internal package – that is, anything under myproject/internal can only be imported from
the packages under myproject.

In our example, we placed the database access code into a package where it can be accessed by other
programs. However, it does not make sense to expose the HTTP routes to others, as they are specific
to this program. So, we will put them under the webform/internal package.

This is the internal/routes/routes.go file:

package routes

import (
    "database/sql"
    "github.com/gorilla/mux"
    "net/http"
)

func Build(router *mux.Router, conn *sql.DB) {
    router.Path("/form").
        Methods("GET").HandlerFunc(func(w http.ResponseWriter, r
        *http.Request) {
        http.ServeFile(w, r, "web/static/form.html")

https://go.dev/ref/mod
https://go.dev/ref/mod

Using internal packages to reduce an API surface 13

    })

    router.Path("/form").
        Methods("POST").HandlerFunc(func(w http.ResponseWriter, r
        *http.Request) {
        handlePost(conn, w, r)
    })
}

func handlePost(conn *sql.DB, w http.ResponseWriter, r *http.Request)
{
    email := r.PostFormValue("email")
    comment := r.PostFormValue("comment")
    _, err := conn.ExecContext(r.Context(), "insert into comments
    (email,comment) values (?,?)",
    email, comment)
    if err != nil {
        http.Error(w, err.Error(), http.StatusInternalServerError)
        return
    }
    http.Redirect(w, r, "/form", http.StatusFound)
}

Then, we change the main.go file to use the internal package:

package main

import (
    "database/sql"
    "net/http"

    "github.com/gorilla/mux"
    _ "modernc.org/sqlite"

    "github.com/PacktPublishing/Go-Recipes-for-Developers/src/chp1/
    webform/internal/routes"
    "github.com/PacktPublishing/Go-Recipes-for-Developers/src/chp1/
    webform/pkg/commentdb"
)

func main() {
    db, err := sql.Open("sqlite", "webform.db")

Project Organization14

    if err != nil {
        panic(err)
    }
    commentdb.InitDB(db)

    r := mux.NewRouter()
    routes.Build(r, db)

    server := http.Server{
        Addr:    ":8181",
        Handler: r,
    }
    server.ListenAndServe()
}

Using a local copy of a module
Sometimes, you will work on multiple modules, or you download a module from a repository, make
some changes to it, and then want to use the changed version instead of the version available on
the repository.

How to do it...

Use the replace directive in go.mod to point to the local directory containing a module.

Let’s return to our example – suppose you want to make some changes to the sqlite package:

1.	 Clone it:

$ ls

  webform

$ git clone git@gitlab.com:cznic/sqlite.git
$ ls

  sqlite
  webform

2.	 Modify the go.mod file under your project to point to the local copy of the module. go.mod
becomes the following:

module github.com/PacktPublishing/Go-Recipes-for-Developers/
chapter1/webform

Working on multiple modules – workspaces 15

go 1.22.1

replace modernc.org/sqlite => ../sqlite

require (
    github.com/gorilla/mux v1.8.1
    modernc.org/sqlite v1.27.0
)
...

3.	 You can now make changes in the sqlite module on your system, and those changes will
be built into your application.

Working on multiple modules – workspaces
Sometimes you need to work with multiple interdependent modules. A convenient way to do this
is by defining a workspace. A workspace is simply a set of modules. If one of the modules within a
workspace refers to a package in another module in the same workspace, it is resolved locally instead
of that module being downloaded over the network.

How to do it...

1.	 To create a workspace, you have to have a parent directory containing all your work modules:

$ cd ~/projects
$ mkdir ws
$ cd ws

2.	 Then, start a workspace using this:

$ go work init

This will create a go.work file in this directory.

3.	 Place the module you are working on into this directory.

Let’s demonstrate this using our example. Let’s say we have the following directory structure:
$HOME/
  projects/
    ws/
       go.work
       webform
       sqlite

Project Organization16

Now, we want to add the two modules, webform and sqlite, to the workspace. To do that,
use this:

$ go work use ./webform
$ go work use ./sqlite

These commands will add the two modules to your workspace. Any sqlite reference from
the webform module will now be resolved to use the local copy of the module.

Managing the versions of your module
Go tooling uses the semantic versioning system. This means that the version numbers are of the
X.Y.z form, broken down as follows:

•	 X is incremented for major releases that are not necessarily backward compatible.

•	 Y is incremented for minor releases that are incremental but backward-compatible

•	 z is incremented for backward-compatible patches

You can learn more about semantic versioning at https://semver.org.

How to do it...

•	 To publish a patch or minor version, tag the branch containing your changes with the new
version number:

$ git tag v1.0.0
$ git push origin v1.0.0

•	 If you want to publish a new release that has an incompatible API with the previous releases,
you should increment the major versions of that module. To release a new major version of
your module, use a new branch:

$ git checkout -b v2

Then, change your module name in go.mod to end with /v2, and update all references in
the source tree to use the /v2 version of the module.

For example, let’s say you released the first version of the webform module, v1.0.0. Then, you
decided you would like to add new API endpoints. This would not be a breaking change, so you simply
increment the minor version number – v1.1.0. But then it turns out some of the APIs you added
were causing problems, so you removed them. Now, that is a breaking change, so you should publish
v2.0.0 with it. How can you do that?

The answer is, you use a new branch in the version control system. Create the v2 branch:

$ git checkout -b v2

https://semver.org

Summary and further reading 17

Then, change go.mod to reflect the new version:

module github.com/PacktPublishing/Go-Recipes-for-Developers/chapter1/
webform/v2

go 1.22.1

require (
  ...
)

If there are multiple packages in the module, you have to update the source tree so that any references
to packages within that module also use the v2 version.

Commit and push the new branch:

$ git add go.mod
$ git commit -m "New version"
$ git push origin v2

To use the new version, you now have to import the v2 version of the packages:

import "github.com/PacktPublishing/Go-Recipes-for-Developers/chapter1/
webform/v2/pkg/commentdb"

Summary and further reading
This chapter focused on the concepts and mechanics of setting up and managing Go projects. It is by
no means an exhaustive reference, but the recipes presented here should give you the basics of using
the Go build system effectively.

The definitive guide for Go modules is the Go Modules Reference (https://go.dev/ref/mod).

Check out the Managing dependencies link (https://go.dev/doc/modules/managing-
dependencies) for a detailed discussion on dependency management.

In the next chapter, we will start working with textual data.

https://go.dev/ref/mod
https://go.dev/doc/modules/managing-dependencies
https://go.dev/doc/modules/managing-dependencies

2
Working with Strings

String is one of the fundamental data types in Go.

Go uses immutable UTF-8-encoded strings. This might be confusing for a new developer; after all,
this works:

x:="Hello"
x+=" World"
fmt.Println(x)
// Prints Hello World

Didn’t we just change x? Yes, we did. What is immutable here are the "Hello" and " World"
strings. So, the string itself is immutable, but the string variable, x, is mutable. To modify string
variables, you create slices of bytes or runes (which are mutable), work with them, and then convert
them back to a string.

UTF-8 is the most common encoding used for web and internet technologies. This means that any
time you deal with text in a Go program, you deal with UTF-8 strings. If you have to process data in a
different encoding, you first translate it to UTF-8, process it, and encode it back to its original encoding.

UTF-8 is a variable-length encoding that uses one to four bytes for each codepoint. Most codepoints
represent a character, but there are some that represent other information, such as formatting. This
may cause some surprises. For instance, the length of a string (i.e., the number of bytes it occupies) is
different from the number of characters. To find the number of characters in a string requires you to
count them sequentially. When you slice a string, you have to be careful about codepoint boundaries.

Go uses the rune type to denote codepoints. So, a string can be seen as a sequence of bytes as well as
a sequence of runes. This is illustrated in Figure 2.1. Here, x is a string variable that has a pointer to
the immutable string, which is a sequence of bytes and can also be seen as a sequence of runes. Even
though UTF-8 is a variable-length encoding, rune is a fixed-length 32-bit type (uint32). Smaller
codepoints, like the following character, H, is a 32-bit decimal, 72, whereas the byte, H, is an 8-bit value.

Working with Strings20

Figure 2.1 – A string, byte, and rune

In this chapter, we will look at some common operations involving strings and text. The recipes
included in this chapter are as follows:

•	 Creating strings

•	 Formatting strings

•	 Combining strings

•	 Uppercase, lowercase, and title case comparisons

•	 Dealing with internationalized strings

•	 Working with encodings

•	 Iterating bytes and runes of strings

•	 Splitting

•	 Regular expressions

•	 Reading strings line by line or word by word

•	 Trimming

•	 Templates

Creating strings
In this recipe, we will look at how to create strings in a program.

How to do it...

•	 Use a string literal. There are two types of string literals in Go:

	� Use interpreted string literals, between the double quotations:

x := "Hello world"

Formatting strings 21

	� With interpreted string literals, you must escape certain characters:

x:="This is how you can include a \" in your string literal"
y:="You can also use a newline \n, tab \t"

	� You can include Unicode codepoints or hexadecimal bytes, escaped with '\':

w:="\u65e5本\U00008a9e"
x:="\xff"

You cannot have newlines or an unescaped double-quote in an interpreted string:

•	 Use raw string literals, using backticks. A raw string literal can include any characters (including
newlines) except a backtick. There is no way to escape backticks in a raw literal.

x:=`This is a
multiline raw string literal.
Backslash will print as backslash \`

If you need to include a backtick in your raw string literal, do this:

x:=`This is a raw string literal with `+"`"+` in it`

Formatting strings
The Go standard library offers multiple ways to substitute values in a text template. Here, we will
discuss the text formatting utilities in the fmt package. They offer a simple and convenient way to
substitute values in a text template.

How to do it...

•	 Use the fmt.Print family of functions to format values

•	 fmt.Print will print a value using its default formatting

•	 A string value will be printed as is

•	 A numeric value will be first converted to a string as an integer, a decimal number, or by using
scientific notation for large exponents

•	 A Boolean value will be printed as true or false

•	 Structured values will be printed as a list of fields

If a Print function ends with ln (such as fmt.Println), a new line will be output after the string.

If a Print function ends with f, the function will accept a format argument, which will be used as
the template into which it will substitute values.

Working with Strings22

fmt.Sprintf will format a string and return it.

fmt.Fprintf will format a string and write it to io.Writer, which can be a file, network
connection, and so on.

fmt.Printf will format a string and write it to standard output.

How it works...

All these functions use the %[options]<verb> format to consume an argument from the argument
list. To produce a % character in the output, use %%:

func main() {
     fmt.Printf("Print integers using %%d: %d|\n", 10)
    // Print integers using %d: 10|

     fmt.Printf("You can set the width of the printed number, left
     aligned: %5d|\n", 10)
    // You can set the width of the printed number, left
    // aligned:    10|

     fmt.Printf("You can make numbers right-aligned with a given
     width: %-5d|\n", 10)
    // You can make numbers right-aligned with a given width: 10   |

     fmt.Printf("The width can be filled with 0s: %05d|\n", 10)
    // The width can be filled with 0s: 00010|

     fmt.Printf("You can use multiple arguments: %d %s %v\n", 10,
     "yes", true)
    // You can use multiple arguments: 10 yes true

     fmt.Printf("You can refer to the same argument multiple times :
     %d %s %[2]s  %v\n", 10, "yes", true)
    // You can refer to the same argument multiple times : 10 yes
    // yes  true

     fmt.Printf("But if you use an index n, the next argument will be
     selected from n+1 : %d %s %[2]s %[1]v  %v\n", 10, "yes", true)
    // But if you use an index n, the next argument will be selected
    // from n+1 : 10 yes yes 10  yes

     fmt.Printf("Use %%v to use the default format for the type: %v %v
     %v\n", 10, "yes", true)

Combining strings 23

    // Use %v to use the default format for the type: 10 yes true

     fmt.Printf("For floating point, you can specify precision:
     %5.2f\n", 12.345657)
    // For floating point, you can specify precision: 12.35

     fmt.Printf("For floating point, you can specify precision:
     %5.2f\n", 12.0)
    // For floating point, you can specify precision: 12.00

    type S struct {
         IntValue    int
         StringValue string
    }

    s := S{
         IntValue:    1,
         StringValue: `foo "bar"`,
    }

    // Print the field values of a structure, in the order they are
    // declared
    fmt.Printf("%v\n", s)
    // {1 foo "bar"}

    // Print the field names and values of a structure
    fmt.Printf("%+v\n", s)
    //{IntValue:1 StringValue:foo "bar"}
}

Combining strings
The Go standard library offers multiple ways to build strings from components. The best way depends
on what type of strings you are dealing with, and how long they are. This section shows several ways
that strings can be built.

How to do it...

•	 To combine a few fixed numbers of strings, or to add runes to another string, use the + or +=
operators or string.Builder

•	 To build a string algorithmically, use strings.Builder

•	 To combine a slice of strings, use strings.Join

Working with Strings24

•	 To combine parts of URL paths, use path.Join

•	 To build filesystem paths from path segments, use filepath.Join

How it works...

To build constant values, or for simple concatenations, use the + or += operators:

var TwoLines = "This is the first line \n"+
"This is the second line"

func ThreeLines(newLine string) string {
   return TwoLines+"\n"+newLine
}

You can add runes to a string the same way:

func AddNewLine(line string) string {
  return line+string('\n')
}

Tip
Using the + operator for strings can be controversial among performance-conscious teams. It
is correct that the + operator may become inefficient because multiple additions may create
unnecessary temporary strings to store intermediate results. It is also correct that, for some use
cases, the compiler can generate better code than you can write manually. However, unless you
use the + operator to create strings in for-loops, they are rarely the cause of your performance
problems. For example, x+y will almost always outperform fmt.Sprintf("%s%s",x,y).
When in doubt, write a benchmark and measure. Here’s how it appears on my laptop:

BenchmarkXPlusY-12          98628536             11.31 ns/op

BenchmarkSprintf-12         12120278             97.70 ns/op

BenchmarkBuilder-12         33077902             34.89 ns/op

For non-trivial cases where you have to add many short strings to build a longer one, use strings.
Builder. Even though strings.Builder looks like a convenient frontend to a byte slice, it does
more than that. It creates strings from the underlying byte slice without copying, so it almost always
outperforms using a byte slice and then creating a string from it.

Combining strings 25

Tip
This is an example showing why you should prefer standard library functions to third-party
libraries or manual optimizations. These functions are aggressively optimized and rely on Go
internals without creating portability issues:

builder := strings.Builder{} // Zero-value is ready to use
for i:=0; i< 10000; i++ {
   builder.WriteString(getShortString(i))
}
fmt.Println(builder.String())

Use strings.Join to combine a slice of strings. If you are dealing with filenames and you need
to combine multiple levels of directories, use filepath.Join to avoid platform-specific separator
characters. filepath.Join will use \ on Windows platform and / on Linux-based platforms.
If you are dealing with URLs and need to combine multiple segments, use path.Join, which will
always use / to combine parts:

package main

import (
     "fmt"
     "path"
     "path/filepath"
     "strings"
)

func main() {
     words := []string{"foo", "bar", "baz"}
     fmt.Println(strings.Join(words, " "))
    // foo bar baz

     fmt.Println(strings.Join(words, ""))
    // foobarbaz

     fmt.Println(path.Join(words...))
    // foo/bar/baz

     fmt.Println(filepath.Join(words...))
    // foo/bar/baz or foo\bar\baz, depending on the host system

     paths := []string{"/foo", "//bar", "baz"}
     fmt.Println(strings.Join(paths, " "))
    // /foo //bar baz

Working with Strings26

     fmt.Println(path.Join(paths...))
    // /foo/bar/baz

     fmt.Println(filepath.Join(paths...))
    // /foo/bar/baz or \foo\bar\baz depending on the host system
}

Working with string cases
When working with textual data, problems related to string cases arise often. Should a text search
be case-sensitive or case-insensitive? How do we convert a string to lowercase or uppercase? In this
section, we will look at some recipes to deal with these common problems in a portable way.

How to do it...

•	 Convert strings to uppercase and lowercase using the strings.ToUpper and strings.
ToLower functions, respectively.

•	 When dealing with text in languages with special uppercase/lowercase mappings (such as
Turkish, where “İ” is the uppercase version of “I”), use strings.ToUpperSpecial
and strings.ToLowerSpecial

•	 To convert text to uppercase for use in titles, use strings.ToTitle

•	 To compare strings lexicographically, use comparison operators

•	 To test the equivalence of strings ignoring case, use strings.EqualFold

How it works...

Converting a string to uppercase or lowercase is easy:

greet := "Hello World!"
fmt.Println(strings.ToUpper(greet))
fmt.Println(strings.ToLower(greet))

This program outputs the following:

HELLO WORLD!
hello world!

But the uppercase/lowercase may differ from language to language. For example, there are special
cases for some of the Turkic languages:

word := "ilk"
fmt.Println(strings.ToUpper(word))

Working with string cases 27

This will print the following:

ILK

However, that is not the correct uppercase use for Turkish. Let’s try the following:

import (
    "fmt"
    "strings"
    "unicode"
)

func main() {
  word := "ilk"
  fmt.Println(strings.ToUpperSpecial(unicode.TurkishCase,word))
}

The preceding program will print the following:

İLK

The title case differs from uppercase or lowercase mainly when dealing with ligatures and digraphs –
that is, more than one character represented as a single character, such as Ǉ (U+01C7):

package main

import (
    "fmt"
    "strings"
)

func main() {
    fmt.Println(strings.ToTitle("Ǉ")) // U+01C7
    fmt.Println(strings.ToUpper("Ǉ"))
    fmt.Println(strings.ToLower("Ǉ"))
}

This program prints the following:

ǈ
Ǉ
ǉ

Uppercase, lowercase, and title case define how to print a string using a particular case mapping.
These are case mappings. Case folding is the process of transforming text into the same case for
comparison purposes.

Working with Strings28

For lexicographical case-sensitive comparisons, use the relational operators:

fmt.Prinln("a" < "b") // true

To compare two Unicode strings in a case-insensitive way, use strings.EqualFold:

fmt.Println(strings.EqualFold("here", "Here")) // true
fmt.Println(strings.EqualFold("here", "Here")) // true
fmt.Println(strings.EqualFold("GÖ", "gö")) // true

There’s more...

While the standard library strings package includes most of the string comparison functions you
need, they may not be sufficient when dealing with internationalized strings. For example, in many cases,
you would want to have Montréal and montreal be considered equal. strings.EqualFold
will not do that. Many of the supporting functions to deal with internalized text processing are in the
packages under golang.org/x/text.

Unicode offers multiple ways to represent a given string. The é in Montréal can be represented as a
single rune, \u00e9 or e, followed by an acute accent, e\u0301. \u0301 is the “combining acute
accent,” ◌́, and it modifies the codepoint that comes before it. According to the Unicode standard,
é and e + ◌́ are “canonically equivalent.” There is also a compatibility equivalence, such as \ufb00,
representing ff as a single codepoint, and the ff sequence. Canonically equivalent sequences are
also compatible, but not all compatible sequences are canonically equivalent.

So, if you need to remove diacritics (i.e., nonspacing marks) from text, you can decompose it, remove
the diacritics, and then compose it as follows:

// Based on the blog post https://go.dev/blog/normalization
package main

import (
     "fmt"
     "io"
     "strings"
     "unicode"

     "golang.org/x/text/transform"
     "golang.org/x/text/unicode/norm"
)

func main() {

     isMn := func(r rune) bool {
          return unicode.Is(unicode.Mn, r) // Mn: nonspacing marks

https://go.dev/blog/normalization

Working with encodings 29

     }
     t := transform.Chain(norm.NFD, transform.RemoveFunc(isMn), norm.
     NFC)
     rd := transform.NewReader(strings.NewReader("Montréal"), t)
     str, _ := io.ReadAll(rd)
     fmt.Println(string(str))
}

The above program will print the following:

Montreal

Working with encodings
If there is a chance that your program will have to work with data produced by disparate systems,
you should be aware of different text encodings. This is a huge topic, but this section should provide
some pointers to scratch the surface.

How to do it...

•	 Use the golang.org/x/text/encoding package to deal with different encodings.

•	 To find an encoding by name, use one of the following:

	� golang.org/x/text/encoding/ianaindex

	� golang.org/x/text/encoding/htmlindex

•	 Once you have an encoding, use it to translate text to and from UTF-8.

How it works...

Use one of the indexes to find an encoding. Then, use that encoding to read/write data:

package main

import (
     "fmt"
     "os"

     "golang.org/x/text/encoding/ianaindex"
)

func main() {
     enc, err := ianaindex.MIME.Encoding("US-ASCII")

Working with Strings30

     if err != nil {
            panic(err)
     }
     b, err := os.ReadFile("ascii.txt")
     if err != nil {
            panic(err)
     }
     decoder := enc.NewDecoder()
     encoded, err := decoder.Bytes(b)
     if err != nil {
            panic(err)
     }
     fmt.Println(string(encoded))
}

Iterating bytes and runes of strings
Go strings can be seen as a sequence of bytes, or as a sequence of runes. This section shows how you
can iterate a string either way.

How to do it...

To iterate the bytes of a string, use indexes:

for i:=0;i<len(str);i++ {
  fmt.Print(str[i]," ")
}

To iterate the runes of a string, use range:

for index, c:=range str {
  fmt.Print(c," ")
}

How it works...

A Go string is a slice of bytes, so you would expect to be able to write a for-loop to iterate the bytes
and runes of a string. You might think that you can do the following:

strBytes := []byte(str)
strRunes := []rune(str)

Iterating bytes and runes of strings 31

However, converting a string to a slice of bytes or a slice of runes is an expensive operation. The first
one creates a writeable copy of the bytes of the str string, and the second one creates a writeable
copy of the runes of str. Remember that rune is uint32.

There are two forms of for-loop to iterate the elements of a string. The following for-loop will iterate
the bytes of a string:

str:="Hello 世界"
for i:=0;i<len(str);i++ {
  fmt.Print(str[i]," ")
}

The output is as follows:

72 101 108 108 111 32 228 184 150 231 149 140

Also, note that str[i] will give you the i’th byte, not the i’th rune.

The following form iterates the runes of a string:

for i,r:=range str {
  fmt.Printf("(%d %d %s)", i, r, string(r))
}

The output is as follows:

(0 72 H)(1 101 e)(2 108 l)(3 108 l)(4 111 o)(5 32  )(6 19990 世)(9
30028 界)

Note the indexes – they go in a sequence of 0, 1, 2, 3, 4, 5, 6, 9. This is because str[6] contains a
rune of 3 bytes, and so does str[9].

When you are dealing with []byte instead of a string, you can emulate the rune iteration, as follows:

import (
  "unicode/utf8"
  "fmt"
)

str:=[]byte("Hello 世界")
for i:=0;i<len(str); {
  r, n:=utf8.DecodeRune(str[i:])
  fmt.Print("(",i,r, " ",string(r),")")
  i+=n
}

Working with Strings32

The utf8.DecodeRune function decodes the next rune from the byte slice and returns that rune
and the number of bytes consumed. This way, you can decode the runes of a byte slice without first
converting it to a string.

Splitting
The strings package offers convenient functions to split a string to get a slice of strings.

How to do it...

•	 To split a string into components using a delimiter, use strings.Split.

•	 To split the space-separated components of a string, use strings.Fields.

How it works...

If you need to parse a string delimited with a fixed delimiter, use strings.Split. If you need to
parse the space-separated sections of a string, use strings.Fields:

package main

import (
     "fmt"
     "strings"
)

func main() {
     fmt.Println(strings.Split("a,b,c,d", ","))
    // ["a", "b", "c", "d"]

     fmt.Println(strings.Split("a, b, c, d", ","))
    // ["a", " b", " c", " d"]

     fmt.Println(strings.Fields("a    b   c  d  "))
    // ["a", "b", "c", "d"]

     fmt.Println(strings.Split("a---b---c--d--", "-"))
    // ["a", "", "", "b", "", "", "c", "", "d", "", ""]
}

Note that strings.Split may cause some surprises when the delimiter is repeated. For instance,
with "-" as the delimiter, "a---b" splits into "a", "", "", and "b". The two empty strings are
those between the first and second "-", and the second and third "-".

Reading strings line by line, or word by word 33

Reading strings line by line, or word by word
There are many use cases for processing strings in a stream, such as when dealing with large text or
user input. This recipe shows the use of bufio.Scanner for this purpose.

How to do it...

•	 Use bufio.Scanner for reading lines, words, or custom blocks.

•	 Create a bufio.Scanner instance

•	 Set the split method

•	 Read scanned tokens in a for-loop

How it works...

The Scanner works like an iterator – every call to Scan() method will return true if it parsed the
next token, or false if there are no more tokens. The token can be obtained by the Text() method:

package main

import (
     "bufio"
     "fmt"
     "strings"
)

const input = `This is a string
that has 3
lines.`

func main() {
     lineScanner := bufio.NewScanner(strings.NewReader(input))
     line := 0
     for lineScanner.Scan() {
          text := lineScanner.Text()
          line++
          fmt.Printf("Line %d: %s\n", line, text)
     }
     if err := lineScanner.Err(); err != nil {
          panic(err)
     }
     wordScanner := bufio.NewScanner(strings.NewReader(input))
     wordScanner.Split(bufio.ScanWords)

Working with Strings34

     word := 0
     for wordScanner.Scan() {
          text := wordScanner.Text()
          word++
          fmt.Printf("word %d: %s\n", word, text)
     }
     if err := wordScanner.Err(); err != nil {
          panic(err)
     }
}

The output is as follows:

Line 1: This is a string
Line 2: that has 3
Line 3: lines.
word 1: This
word 2: is
word 3: a
word 4: string
word 5: that
word 6: has
word 7: 3
word 8: lines.

Trimming the ends of a string
User input is usually messy, including additional spaces before or after the text that matters. This
recipe shows how to use the string trimming functions for this purpose.

How to do it...

Use the strings.Trim family of functions, as shown here:

package main

import (
     "fmt"
     "strings"
)

func main() {
     fmt.Println(strings.TrimRight("Break-------", "-"))
    // Break

Regular expressions 35

     fmt.Println(strings.TrimRight("Break with spaces-- -- --", "- "))
    // Break with spaces

     fmt.Println(strings.TrimSuffix("file.txt", ".txt"))
    // file

     fmt.Println(strings.TrimLeft(" \t   Indented text", " \t"))
    // Indented text

     fmt.Println(strings.TrimSpace(" \t \n  Indented text  \n\t"))
    // Indented text
}

Regular expressions
A regular expression offers efficient methods to ensure that textual data matches a given pattern,
searches for patterns, extracts, and replaces parts of text. Usually, you compile a regular expression
once and then use that compiled regular expression many times to efficiently validate, search, extract,
or replace parts of strings.

Validating input

Format validation is the process of ensuring that data coming from user input or other sources is in
a recognized format. Regular expressions can be an effective tool for such validation.

How to do it...

Use precompiled regular expressions to validate input values that should fit a pattern.

package main

import (
     "fmt"
     "regexp"
)

var integerRegexp = regexp.MustCompile("^[0-9]+$")

func main() {
     fmt.Println(integerRegexp.MatchString("123"))   // true
     fmt.Println(integerRegexp.MatchString(" 123 ")) // false
}

Working with Strings36

To ensure an exact match, make sure you include the beginning (^) and end-of-text markers ($);
otherwise, you will end up accepting input containing strings that match the regular expression.

Not all types of input are suitable for regular expression validation. Some inputs have complicated
regular expressions (such as the one for emails or password policies), so custom validations may work
better for those.

Searching patterns

You can use a regular expression to search through textual data to locate strings matching a pattern.

How to do it...

Use the regexp.Find family of methods to search for substrings matching a pattern.

package main

import (
     "fmt"
     "regexp"
)

func main() {
     re := regexp.MustCompile(`[0-9]+`)
     fmt.Println(re.FindAllString("This regular expression find
     numbers, like 1, 100, 500, etc.", -1))
}

Here is the output:

[1 100 500]

Extracting data from strings
You can use a regular expression to locate and extract text that occurs within a pattern.

How to do it...

Use capture groups to extract substrings that match a pattern.

How it works...

package main

import (

Replacing parts of a string 37

     "fmt"
     "regexp"
)

func main() {
     re := regexp.MustCompile(`^(\w+)=(\w+)$`)
     result := re.FindStringSubmatch(`property=12`)
     fmt.Printf("Key: %s value: %s\n", result[1], result[2])
     result = re.FindStringSubmatch(`x=y`)
     fmt.Printf("Key: %s value: %s\n", result[1], result[2])
}

Here is the output:

Key: property value: 12
Key: x value: y

Let’s look at this regular expression:

•	 ^(\w+): A string composed of one or more word characters at the beginning of the line
(capture group 1)

•	 =: An “=” sign

•	 (\w+)$: A string composed of one or more word characters (capture group 2), and then the
end of line

Note that the capture groups are in parentheses.

The FindStringSubmatch method returns the matching string as the 0th element of the slice,
and then each capture group. Using the capture groups, you can extract data as above.

Replacing parts of a string
You can use a regular expression to search through text, replacing parts that match a pattern with
other strings.

How to do it...

Use the Replace family of functions to replace the patterns in a string with something else:

package main

import (
     "fmt"
     "regexp"

Working with Strings38

)

func main() {
     // Find numbers, capture the first digit
     re := regexp.MustCompile(`([0-9])[0-9]*`)
     fmt.Println(re.ReplaceAllString("This example replaces
     numbers  with 'x': 1, 100, 500.", "x"))
    // This example replaces numbers  with 'x': x, x, x.
     fmt.Println(re.ReplaceAllString("This example replaces all
     numbers with their first digits: 1, 100, 500.", "${1}"))
    // This example replaces all numbers with their first digits: 1,
    // 1, 5.

}

Templates
Templates are useful for generating data-driven textual output. The text/template package can
be used in the following contexts:

•	 Configuration files: You can accept templates in configuration files, such as the following
example that uses an env map variable to create environment-sensitive configurations

logfile: {{.env.logDir}}/log.json

•	 Reporting: Use templates to generate output for command-line applications and reports

•	 Web applications: The html/template package provides HTML-safe templating functionality
for template-based HTML generation to build web applications

Value substitution

The main use of templates is inserting data elements into structured text. This section describes how
you can insert values computed in a program into a template.

How to do it...

Use the {{.name}} syntax to substitute a value in a template.

The following code segment executes a template using different inputs:

package main

import (
     "os"

Templates 39

     "text/template"
)

type Book struct {
     Title   string
     Author  string
     PubYear int
}

const tp = `The book "{{.Title}}" by {{.Author}} was published in
{{.PubYear}}.
`

func main() {
     book1 := Book{
          Title:   "Pride and Prejudice",
          Author:  "Jane Austen",
          PubYear: 1813,
     }
     book2 := Book{
          Title:   "The Lord of the Rings",
          Author:  "J.R.R. Tolkien",
          PubYear: 1954,
     }
     tmpl, err := template.New("book").Parse(tp)
     if err != nil {
          panic(err)
     }
     tmpl.Execute(os.Stdout, book1)
     tmpl.Execute(os.Stdout, book2)
}

The preceding program outputs the following:

The book "Pride and Prejudice" by Jane Austen was published in 1813.
The book "The Lord of the Rings" by J.R.R. Tolkien was published in
1954.

The template.New(name) call creates an empty template with the given name (there’ll be more on
this later). The returned template object represents a template body (which is empty after the New()
call). The Go template engine uses a template representing the body, as well as zero or more named
templates that are associated with that body. The tmpl.Parse(tp) call parses the tp template as
the body for the given named template. If there are other template definitions in tp that are defined
using the {{define}} construct, those are kept within tmpl as well.

Working with Strings40

tmpl.Execute(os.Stdout,book1) executes the template, writing the output to os.Stdout.
The second argument, book1, is the data used to evaluate the template. You access it by ".". So, for
instance, when {{.Author}} is evaluated, the template engine reads book1.Author, using
reflection, and outputs its value. In other words, . is book1 for the first tmpl.Execute call, and
. is book2 for the second tmpl.Execute call in the preceding example.

Since this is done using reflection, the following produces the same output:

tmpl.Execute(os.Stdout,map[string]any {
   "Title":"Pride and Prejudice",
   "Author":  "Jane Austen",
   "PubYear": 1813,
   })

Iteration

A template can include tabular data or lists that are populated using slices or maps computed in a
program. Templates provide an iteration mechanism to render such content.

How to do it...

•	 For slices/arrays, do the following:

{{ range <slice> }}
  // Here, {{.}} refers the subsequent elements of the slice/
array
{{end}}

•	 For maps, do the following:

{{ range <map> }}
  // Here, {{.}} refers to the subsequent values (not keys) of
the map
  // The iteration order of the map is not guaranteed
{{end}}

Alternatively, do the following:
{{ range $key, $value := <map> }}
  // Here, {{$key}} and {{$value}} are variables that are set to
  // subsequent key-value pairs of the map
{{end}}

How it works...

Use range to loop through slices and maps.

Templates 41

Modify the preceding example with the following:

const tpIter = `{{range .}}
The book "{{.Title}}" by {{.Author}} was published in {{.PubYear}}.
{{end}}`

Then, modify it with the following too:

...
tmpl, err = template.New("bookIter").Parse(tpIter)
if err != nil {
    panic(err)
}
tmpl.Execute(os.Stdout, []Book{book1, book2})

Here is the output:

The book "Pride and Prejudice" by Jane Austen was published in 1813.

The book "The Lord of the Rings" by J.R.R. Tolkien was published in
1954.

Now, note that . is a slice of books, so we can range through the elements of it. When evaluating the
section within {{range .}}, . is set to successive elements of the slice – during the first iteration,
. is book1, and during the second iteration, . is book2.

We will deal with the empty lines shortly.

The same thing happens for maps:

tmpl.Execute(os.Stdout, map[int]Book{
  1: book1,
  2: book2,
  })

Variables and scope

It is often necessary to define local variables within templates to keep computed values. The variables
defined in templates follow similar scoping rules as variables defined in functions – the {{range}},
{{if}}, {{with}} and {{define}} blocks create a new scope.

A variable defined in a scope is accessible in all the scopes contained within that scope, but it is not
accessible outside of it.

Working with Strings42

How to do it...

. (dot) refers to the “current object,” as follows:

•	 At the top-level scope, . refers to the object passed as the data argument of the Execute method

•	 Inside a {{range}}, . refers to the current slice/array/map element

•	 Inside a {{with <expr>}}, . refers to the value of <expr>

•	 Inside a {{define}} block, . refers to the value of the object passed into {{template
"name" <object>}}

•	 .X refers to the member named X in the current object:

	� If . is a map, then .X evaluates to the element with the X key

	� If . is a struct, then .X evaluates to the exported X member variable

Tip
Note the emphasis on exported. The template engine uses reflection to find the value of X in the
current object. If the current object is a struct, reflection can only access the exported fields, so
you cannot access unexported variables. However, if the current object is a map, this becomes
a key lookup, and there is no such restriction. In other words, {{.name}} will only work if
. is a map, but {{.Name}} will work for a . struct and a . map.

Define a new local variable that is visible in the current scope using the following:

$name := value

How it works...

Use the $name notation to assign a computed value to a variable instead of recomputing it every time:

{{ $disabled := false }}
{{ if eq .Selection "1"}}
 {{ $disabled = true }}
{{ end }}

<input type="text" value="{{.Value1}}" {{if $disabled}}
disabled{{end}}>
<input type="text" value="{{.Value2}}" {{if $disabled}}
disabled{{end}}>

Templates 43

The first section of this template is equivalent to the following:

disabled := false
if data.Selection == "1" {
  disabled=true
}

$ is necessary as the first character of the variable name. Without that, the template engine will think
name is a function.

There’s more – nested loops and conditionals

When you are dealing with nested loops or conditions, scoping can become a challenge. Every
{{range}}, {{if}}, and {{with}} create a new scope. Variables defined within a scope are
only accessible in that scope and all scopes enclosed in it. You can use this to create nested loops and
still access variables defined in the enclosing scope:

type Book struct {
     Title    string
     Author   string
     Editions []Edition
}

type Edition struct {
     Edition int
     PubYear int
}

const tp = `{{range $bookIndex, $book := .}}
{{$book.Author}}
{{range $book.Editions}}
  {{$book.Title}} Edition: {{.Edition}} {{.PubYear}}
{{end}}
{{end}}`

In this template, the first range defines the loop index, $bookIndex, and the loop variable, $book,
that can be used in the nested scopes. At this stage, . points to the slice of Book fields. The next
range iterates the current $book.Editions – that is, . now points to the successive elements of
the Book.Editions slice. The nested template accesses both the Edition fields and the Book
fields from the enclosing scope.

Working with Strings44

Dealing with empty lines
Template actions (i.e., the code elements placed in a template) may result in unwanted empty spaces
and lines. The Go template system offers some mechanisms to deal with these unwanted spaces.

How to do it...

Use - next to the template delimiter:

•	 {{- will remove all spaces/tabs/newlines that were output before this template element

•	 -}} will remove all spaces/tabs/newlines that come after this template element

If a template directive produces output, such as the value of a variable, it will be written to the output
stream. But if a template directive does not generate any output, such as a {{range}} or {{if}}
statement, then it will be replaced with empty strings. And if those statements are on a line by
themselves, those lines will be written to the output as well, like this:

{{range .}}
  {{if gt . 1}}
    {{.}}
  {{end}}
{{end}}

This template will produce an output every four lines. When there is nothing to output, it will print
three empty lines.

Fix this by using “-” inside the {{ }} constructs. {{ -}} will remove all empty space (including
lines) coming after, and {{- }} will remove all empty spaces before, as follows:

{{range . -}}
  {{ if gt . 1 }}
    {{- . }}
  {{end -}}
{{end -}}

Here is the output:

2
  3
  4
  5

Template composition 45

How can we get rid of the spaces at the beginning of each line? First, we have to find out why they
are there, which is shown here:

    {{- . }}
__{{end -}}

The first “-” will remove all spaces before the value. We cannot put -}} in this line, or {{- end}},
as these solutions would remove line feeds as well. But we can do this:

{{range . -}}
{{ if gt . 1 }}
  {{- . }}
{{end -}}
{{end -}}

This will produce the following:

2
3
4
5

Template composition
As templates grow, they may become repetitive. To reduce such repetition, the Go template system
offers named blocks (components) that can be reused within a template, just like functions in a
program. Then, the final template can be composed of these components.

How to do it...

You can create template “components” that you can reuse in multiple contexts. To define a named
template, use the {{define "name"}} construct:

{{define "template1"}}
  ...
{{end}}

{{define "template2"}}
 ...
{{end}}

Working with Strings46

Then, call that template using the {{template "name" .}} construct as if it is a function with
a single argument:

{{template "template1" .}}
{{range .List}}
  {{template "template2" .}}
{{end}}

How it works...

The following example prints a book list using a named template:

package main

import (
     "os"
     "text/template"
)

const tp = `{{define "line"}}
{{.Title}} {{.Author}} {{.PubYear}}
{{end}}
Book list:
{{range . -}}
  {{template "line" .}}
{{end -}}
`

type Book struct {
     Title   string
     Author  string
     PubYear int
}

var books = []Book{
     {
          Title:   "Pride and Prejudice",
          Author:  "Jane Austen",
          PubYear: 1813,
     },
     {
          Title:   "To Kill a Mockingbird",
          Author:  "Harper Lee",
          PubYear: 1960,

Template composition 47

     },
     {
          Title:   "The Great Gatsby",
          Author:  "F. Scott Fitzgerald",
          PubYear: 1925,
     },
     {
          Title:   "The Lord of the Rings",
          Author:  "J.R.R. Tolkien",
          PubYear: 1954,
     },
}

func main() {
     tmpl, err := template.New("body").Parse(tp)
     if err != nil {
          panic(err)
     }
     tmpl.Execute(os.Stdout, books)
}

The tmpl template contains two templates in this example – the template named "body" (because
it is created with template.New("body")), and the template named "line" (because the
template contains {{define "line"}}.) For each element of the slice, the "body" template
instantiates "line" with successive elements of the books slice.

This is equivalent to the following:

const lineTemplate = `{{.Title}} {{.Author}} {{.PubYear}}`
const bodyTemplate = `Book list:
{{range . -}}
  {{template "line" .}}
{{end -}}`

func main() {
     tmpl, err := template.New("body").Parse(bodyTemplate)
     if err != nil {
          panic(err)
     }
     _, err = tmpl.New("line").Parse(lineTemplate)
     if err != nil {
          panic(err)
     }
     tmpl.Execute(os.Stdout, books)
}

Working with Strings48

Template composition – layout templates
When developing web applications, it is usually desirable to have a few templates specifying page
layouts. Complete web pages are constructed by combining page components, developed as independent
templates using this layout. Unfortunately, the Go template engine forces you to think of alternative
solutions because Go template references are static. This means you would need a separate layout
template for each page.

But there are alternatives.

I’ll show you a basic idea that demonstrates how template composition can be used so that you can
extend it, based on your use case, or how to use an available third-party library that does this. The
crucial idea in composition using layout templates is that if you define a new template using an already-
defined template name, the new definition overrides the older one.

How to do it...

•	 Create a layout template. Use empty templates or templates with default content for the sections
you will redefine for each occasion.

•	 Create a configuration system where you define every possible composition. Each composition
includes the layout template, as well as the templates defining the sections in the layout template.

•	 Compile each composition as a separate template.

How it works...

Create a layout template:

const layout=`
<!doctype html>
<html lang="en">
  <head>
  <title>{{template "pageTitle" .}}</title>
  </head>
  <body>
  {{template "pageHeader" .}}
  {{template "pageBody" .}}
  {{template "pageFooter" .}}
  </body>
</html>
{{define "pageTitle"}}{{end}}
{{define "pageHeader"}}{{end}}
{{define "pageBody"}}{{end}}
{{define "pageFooter"}}{{end}}`

Template composition – layout templates 49

This layout template defines four named templates with no content. For each new page, we can recreate
these components:

const mainPage=`
{{define "pageTitle"}}Main Page{{end}}

{{define "pageHeader"}}
<h1>Main page</h1>
{{end}}

{{define "pageBody"}}
This is the page body.
{{end}}

{{define "pageFooter"}}
This is the page footer.
{{end}}`

We can define a second page, similar to the first one:

const secondPage=`
{{define "pageTitle"}}Second page{{end}}

{{define "pageHeader"}}
<h1>Second page</h1>
{{end}}

{{define "pageBody"}}
This is the page body for the second page.
{{end}}`

Now, we compose layout with mainPage to get the template for the main page, and then layout
with secondPage to get the template for the second page:

import (
  "html/template"
)

func main() {
     mainPageTmpl := template.Must(template.New("body").Parse(layout))
     template.Must(mainPageTmpl.Parse(mainPage))

     secondPageTmpl := template.Must(template.New("body").
     Parse(layout))

Working with Strings50

     template.Must(secondPageTmpl.Parse(secondPage))
     mainPageTmpl.Execute(os.Stdout, nil)
     secondPageTmpl.Execute(os.Stdout, nil)
}

You can extend this pattern to build a sophisticated web application using layout templates, as well
as a configuration file defining all the valid compositions of templates for each page. Such a YAML
file looks like the following:

mainPage:
  - layouts/main.html
  - mainPage.html
  - fragments/status.html

detailPage:
  - layouts/2col.html
  - detailPage.html
  - fragments/status.html
...

When the application starts, you build each template for mainPage and detailPage by parsing
its constituent templates in the given order, putting each template in a map. Then, you can look up
the template name you want to generate and use the parsed template.

There’s more...
The Go standard library documentation is always your best source for up-to-date information and
great examples, such as the following:

•	 https://pkg.go.dev/strings

•	 https://pkg.go.dev/text/template

•	 https://pkg.go.dev/html/template

•	 https://pkg.go.dev/fmt

•	 https://pkg.go.dev/bufio

The following links are also useful:

•	 Character Model for the World Wide Web: String Matching: https://www.w3.org/TR/
charmod-norm/

•	 Character Properties, Case Mappings & Names FAQ: https://unicode.org/faq/
casemap_charprop.html

https://pkg.go.dev/strings
https://pkg.go.dev/text/template
https://pkg.go.dev/html/template
https://pkg.go.dev/fmt
https://pkg.go.dev/bufio
https://www.w3.org/TR/charmod-norm/
https://www.w3.org/TR/charmod-norm/
https://unicode.org/faq/casemap_charprop.html
https://unicode.org/faq/casemap_charprop.html

There’s more... 51

•	 RFC7564: PRECIS https://www.rfc-editor.org/rfc/rfc7564

•	 This is a great blog post about the Unicode normalization process: https://go.dev/
blog/normalization

•	 For all encoding, internationalization, and Unicode-related problems that are not handled by the
standard library, take a look at the packages here before searching for anything else: https://
pkg.go.dev/golang.org/x/text

https://www.rfc-editor.org/rfc/rfc7564
https://go.dev/blog/normalization
https://go.dev/blog/normalization
https://pkg.go.dev/golang.org/x/text
https://pkg.go.dev/golang.org/x/text

3
Working with Date and Time

Working with date and time can be difficult in any programming language. Go’s standard library offers
easy-to-use tools to work with date and time constructs. These may be somewhat different from what
many people are used to. For example, there are libraries in different languages that make a distinction
between a time type and a date type. Go’s standard library only includes a time.Time type. That
might make you feel disoriented when you’re working with Go’s time.

I’d like to think that Go’s treatment of date/time reduces the chances of creating subtle bugs. You see,
you have to be really careful and clear about what you mean when you talk about time: are you talking
about a point in time or an interval? A date is actually an interval (for instance, 08/01/2024 starts at
08/01/2024T00:00:00 and continues until 08/01/2024T23:59:59) even though usually that is not the
intent. A specific date/time value also depends on where you are measuring time. 2023-11-05T08:00
in Denver, Colorado is different from 2023-11-05T08:00 in Berlin, Germany. Time always moves
forward, but date/time may skip or go backward: after 2023-11-05T02:59 in Denver, Colorado, time
goes back to 2023-11-05T02:00 because that is when daylight savings time ends in Colorado. So there
are actually two time instances for 2023-11-05T02:10:10, one in Mountain Daylight Time, and one
in Mountain Standard Time.

There are many software bugs in production today that handle time incorrectly. For example, if you
are computing when the subscription of a customer ends, you have to take into account the location of
that customer and the time of day that subscription ends, otherwise, their subscriptions may terminate
early (or late) on their last day.

This chapter contains the following recipes for working with date/time correctly:

•	 Working with Unix time

•	 Date/time components

•	 Date/time arithmetic

•	 Formatting and parsing date/time

•	 Working with time zones

Working with Date and Time54

•	 Timers

•	 Tickers

•	 Storing time information

Working with Unix time
Unix time is the number of seconds (or milliseconds, microseconds, or nanoseconds) passed since
January 1, 1970 UTC (the epoch.) Go uses int64 to represent these values, so Unix time as seconds
can represent billions of years into the past or the future. Unix time as nanoseconds can represent date
values between 1678 and 2262. Unix time is an absolute measure of an instance as the duration since
(or until) the epoch. It is independent of the location, so with two Unix times, s and t, if s<t, then s
happened before t, no matter the location. Because of these properties, Unix time is usually used as a
timestamp that marks when an event happened (when a log is written, when a record is inserted, etc.).

How to do it...

•	 To get the current Unix time, use the following:

	� time.Now().Unix() int64: Unix time in seconds

	� time.Now().UnixMilli() int64: Unix time in milliseconds

	� time.Now().UnixMicro() int64: Unix time in microseconds

	� time.Now().UnixNano() int64: Unix time in nanoseconds

•	 Given a Unix time, convert it to a time.Time type using the following:

	� time.Unix(sec, nanosec int64) time.Time: Translate Unix time in seconds
and/or nanoseconds to time.Time

	� time.UnixMilli(int64) time.Time: Translate Unix time in milliseconds to time.
Time

	� time.UnixMicro(int64) time.Time: Translate Unix time in microseconds
to time.Time

•	 To translate a Unix time to local time, use l o c a l T i m e : = t i m e .
Unix(unixTimeSeconds,0).In(location), where location is a *time.
Location for the location in which to interpret the Unix time

Date/time components
When working with date values, you often have to compose a date/time from its components or need
to access the components of a date/time value. This recipe shows how it can be done.

Date/time components 55

How to do it...

•	 To build a date/time value from parts, use the time.Date function

•	 To get the parts of a date/time value, use the time.Time methods:

	� time.Day() int

	� time.Month() time.Month

	� time.Year() int

	� time.Date() (year, month, day int)

	� time.Hour() int

	� time.Minute() int

	� time.Second() int

	� time.Nanosecond() int

	� time.Zone() (name string,offset int)

	� time.Location() *time.Location

time.Date will create a time value from its components:

d := time.Date(2020, 3, 31, 15, 30, 0, 0, time.UTC)
fmt.Println(d)
// 2020-03-31 15:30:00 +0000 UTC

The output will be normalized, as follows:

d := time.Date(2020, 3, 0, 15, 30, 0, 0, time.UTC)
fmt.Println(d)
// 2020-02-29 15:30:00 +0000 UTC

Since the day of the month starts from 1, creating a date with a 0 day will result in the last day of the
previous month.

Once you have a time.Time value, you can get its components:

d := time.Date(2020, 3, 0, 15, 30, 0, 0, time.UTC)
fmt.Println(d.Day())
// 29

Again, time.Date normalizes the date value, so d.Day() will return 29.

Working with Date and Time56

Date/time arithmetic
Date/time arithmetic is necessary to answer questions such as the following:

•	 How long did it take to complete an operation?

•	 What time will it be after 5 minutes?

•	 How many days are there until next month?

This recipe shows how you can answer these questions using the time package.

How to do it...

•	 To find out how much time has passed between two instances in time, use the Time.Sub
method to subtract them.

•	 To find the duration from now to a later time, use time.Until(laterTime).

•	 To find how much time has passed since a given time, use time.Since(beforeTime).

•	 To find out what time it will be after a certain duration, use the Time.Add method. Use
negative duration to find the time before a certain duration.

•	 To add/subtract years, months, or days to/from a time, use the Time.AddDate method.

•	 To compare two time.Time values, use the following:

	� Time.Equal to check whether two time values represent the same instance

	� Time.Before or Time.After to check whether a time value is before or after a given
time value

How it works...

A time.Duration type represents the time elapsed between two instances in nanoseconds as an
int64 value. In other words, if you subtract a time.Time value from another, you get a time.
Duration:

dur := tm1.Sub(tm2)

Since Duration is an int64 representing nanoseconds, you can do duration arithmetic:

// Add 1 day to duration
dur+=time.Hour*24

Note that the last operation in the preceding also involves multiplication since time.Hour is of the
time.Duration type itself.

Date/time arithmetic 57

You can add a duration value to a time.Time value:

now := time.Now()
then := now.Add(dur)

Tip
Duration being an int64 means that a time.Duration value is limited to around 290
years. This should be sufficient for most practical cases. However, if this is not the case for you,
you need to build a solution for yourself or find a third-party library.

You can subtract the duration from a time.Time value by adding a negative duration value:

fmt.Println(then.Add(-dur).Equal(now))

Note the use of the Time.Equal method. This compares two time instances taking into account
their time zones, which can be different. For instance, Time.Equal will return true for 2024-
01-09 09:00 MST and 2024-01-09 08:00 PST.

Use Time.Before and Time.After to compare time values. For instance, you can check whether
an object with an expiration date has expired by using the following:

if object.Expiration.After(time.Now()) {
   // Object expired
}

You can also add years/months/days to a given date:

t:=time.Now()
// Subtract 1 year from now to get this moment in last year
lastYear := t.AddDate(-1,0,0)
// Add 1 day to get same time tomorrow
tomorrow := t.AddDate(0,0,1)
// Add 1 day to get the next month
nextMonth := t.AddDate(0,1,0)

The result of these operations will be normalized. For instance, if you subtract a year from 2020-
02-29, you will get 2019-03-01. This causes problems when you are working with a date at the
end of a month and you have to add/subtract month values. Adding a month to 2020-03-31 twice
will yield 2020-06-01, but adding two months will yield 2020-05-31:

d := time.Date(2020, 3, 31, 0, 0, 0, 0, time.UTC)
fmt.Println(d.AddDate(0, 1, 0).AddDate(0, 1, 0))
// 2020-06-01 00:00:00 +0000 UTC
fmt.Println(d.AddDate(0, 2, 0))
// 2020-05-31 00:00:00 +0000 UTC

Working with Date and Time58

Formatting and parsing date/time
Go uses an interesting and somewhat controversial date/time formatting scheme. The date/time
format is expressed using a specific point in time, adjusted such that every component of the date/
time is a unique number:

•	 1 is the month: “Jan” “January” “01” “1”

•	 2 is the day of the month: “2” “_2” “02”

•	 3 is the hour of the day in a 12-hour format: “15” “3” “03”

•	 15 is the hour of the day in a 24-hour format,

•	 4 is the minute: “4” “04”

•	 5 is the second: “5” “05”

•	 6 is the year: “2006” “06”

•	 MST is the timezone: “-0700” “-07:00” “-07” “-070000” “-07:00:00” “MST”

•	 0 is the millisecond padded with 0s: “0” “000”

•	 9 is the millisecond that is not padded: “9” “999”

How to do it...

•	 Use time.Parse with an appropriate format to parse date/time. Any parts of the date/time
that are not specified in the format will be initialized to its zero value, which is January for
months, 1 for the year, 1 for the day of the month, and 0 for everything else. If the time zone
information is missing, the parsed date/time will be in UTC.

•	 Use time.ParseInLocation to parse date/time in a given location. The time zone will
be determined based on the date value and the location.

•	 Use the Format() method to format a date/time value.

func main() {
  t := time.Date(2024, 3, 8, 18, 2, 13, 500, time.UTC)

  fmt.Println("Date in yyyy/mm/dd format", t.Format("2006/01/02"))
  // Date in yyyy/mm/dd format 2024/03/08
  fmt.Println("Date in yyyy/m/d format", t.Format("2006/1/2"))
  // Date in yyyy/m/d format 2024/3/8
  fmt.Println("Date in yy/m/d format", t.Format("06/1/2"))
  // Date in yy/m/d format 24/3/8
  fmt.Println("Time in hh:mm format (12 hr)", t.Format("03:04"))
  // Time in hh:mm format (12 hr) 06:02

Working with time zones 59

  fmt.Println("Time in hh:m format (24 hr)", t.Format("15:4"))
  // Time in hh:m format (24 hr) 18:2
  fmt.Println("Date-time with time zone", t.Format("2006-01-02
  13:04:05 -07:00"))
  // Date-time with time zone 2024-03-08 36:02:13 +00:00
}

Time zones change by location and by date. In the following example, even though the same
location is used to parse the date, the time zone changes because July 9 is Mountain Daylight Time,
but January 9 is Mountain Standard Time:

loc, _ := time.LoadLocation("America/Denver")
const format = "Jan 2, 2006 at 3:04pm"
str, _ := time.ParseInLocation(format, "Jul 9, 2012 at 5:02am", loc)
fmt.Println(str)
// 2012-07-09 05:02:00 -0600 MDT
str, _ = time.ParseInLocation(format, "Jan 9, 2012 at 5:02am", loc)
fmt.Println(str)
// 2012-01-09 05:02:00 -0700 MST

Working with time zones
The Go time.Time value includes time.Location, which can be one of two things:

•	 A real location, such as America/Denver. If this is the case, the actual time zone depends
on the time value. For Denver, the time zone will be either MDT (Mountain Daylight Time)
or MST (Mountain Standard Time) depending on the actual time value

•	 A fixed time zone that gives the offset.

Some applications work with local time. This is the date/time value captured at a particular location,
and interpreted as the same value everywhere, as opposed to being interpreted as the same point in
time. Birthdays (and thus, ages) are usually interpreted using local time. That is, if you are born on
2005-07-14, you will be considered 2 years old in New York (Eastern time zone) on 2007-07-14 at
00:00, but still be 1 year old at the same moment in time in Los Angeles, which is 2007-07-13 at 21:00
(Pacific time zone).

How to do it...

If you are working with moments in time, always capture date/time values with the associated location.
Such date/time values can be translated into other time zones easily.

If you are working with local time in multiple time zones, recreate time.Time in a new location
or time zone to translate.

Working with Date and Time60

How it works...

When you create a time.Time, it is always associated with a location:

// Create a new time using the local time zone
t := time.Date(2021,12,31,15,0,0,0, time.Local)
// 2021-12-31 15:00:00 -0700 MST

Once you have a time.Time, you can get the same moment in time in different time zones:

utcTime := t.In(time.UTC)
fmt.Println(utcTime)
// 2021-12-31 22:00:00 +0000 UTC

ny,err:=time.LoadLocation("America/New_York")
if err!=nil {
  panic(err)
}
nyTime := t.In(ny)
fmt.Println(nyTime)
// 2021-12-31 17:00:00 -0500 EST

These are different representations of the same moment in time in different time zones.

You can also create a custom time zone:

zone30 := time.FixedZone("30min", 30)
fmt.Println(t.In(zone30))
// 2021-12-31 22:00:30 +0000 30min

When you are dealing with local time, you discard the location and time zone information:

// Create a local time, UTC zone
t := time.Date(2021,12,31,15,0,0,0, time.UTC)
// 2021-12-31 15:00:00 +0000 UTC

To get the same time value in New York, use the following:

ny,err:=time.LoadLocation("America/New_York")
if err!=nil {
  panic(err)
}
nyTime := time.Date(t.Year(), t.Month(), t.Day(), t.Hour(),
t.Minute(), t.Second(), t.Nanosecond(), ny)
fmt.Println(nyTime)
// 2021-12-31 15:00:00 -0500 EST

Storing time information 61

Storing time information
A common problem is storing date/time information in databases, files, and so on in a portable
manner, so that it can be interpreted correctly.

How to do it...

You should first identify the exact needs: do you need to store an instant of time or time of day?

•	 To store an instant of time, do one of the following:

	� Store Unix time at the needed granularity (that is, time.Unix for seconds, time.
UnixMilli for milliseconds, etc.)

	� Store UTC time (time.UTC())

•	 To store the time of day, store the time.Duration value that gives the instant in the day.
The following function computes the instant within that day as time.Duration:

func GetTimeOfDay(t time.Time) time.Duration {
  beginningOfDay:=time.Date(t.Year(),t.Month(),t.
  Day(),0,0,0,0,t.Location())
  return t.Sub(beginningOfDay)
}

•	 To store a date value, you can clear the time portions of time.Time:

date:=time.Date(t.Year(), t.Month(), t.Day(), 0,0,0,0,t.
Location())

Note that comparing dates stored in this manner can be problematic as each day will be
interpreted to be a different instant in different time zones.

Timers
Use time.Timer to schedule some work to be done in the future. When the timer expires, you
will receive a signal from a channel. You can use a timer to run a function later or to cancel a process
that ran too long.

How to do it...

You can create a timer in one of two ways:

•	 Use time.NewTimer or time.After. The timer will send a signal through a channel when it
expires. Use a select statement, or read from the channel to receive the timer expiration signal.

•	 Use time.AfterFunc to call a function when the timer expires.

Working with Date and Time62

How it works...

A time.Timer timer is created with time.Duration:

// Create a 10-second timer
timer := time.NewTimer(time.Second*10)

The timer contains a channel that will receive the current timestamp after 10 seconds pass. A timer is
created with a channel capacity of 1, so the timer runtime will always be able to write to that channel
and stop the timer. In other words, if you fail to read from a timer, it will not leak; it will eventually
be garbage collected.

The timer can be used to stop a long-running process:

func longProcess() {
  timer := time.NewTimer(time.Second*10)
  for {
     processData()
     select {
       case <-timer.C:
          // 2 seconds passed
          return
       default:
     }
  }
}

The following example shows how a timer can be used to limit the time it takes to return from a
function. If the computation completes within a second, the response is returned. If the computation
takes longer, the function returns a channel that the caller can use to receive the result. This function
also demonstrates how you can stop a timer:

func longComputation() (concurrent chan Result, result Result) {
  timer:=time.NewTimer(time.Second)
  concurrent=make(chan Result)
  // Start the concurrent computation. Its result will be received
  // from the channel
  go func() {
     concurrent <- processData()
  }()
  // Wait until result is available, or timer expires
  select {
     case result:=<-concurrent:
        // Result became available quickly. Stop the timer and return

Tickers 63

        //the result.
        timer.Stop()
        return nil,result
     case <-timer.C:
        // Timer expired before result is computed. Return the channel
        return concurrent,Result{}
  }
}

Note that the timer can expire right before the timer.Stop() call. This is okay. Timers will
eventually expire and be garbage collected. Calling timer.Stop() simply prevents the timer from
being active longer than necessary.

Tip
You cannot call Timer.Stop concurrently while another goroutine is listening from the
timer. So, if you have to call Timer.Stop, call it from the same goroutine that listens to the
timer’s channel.

The same thing can be achieved with time.After:

  concurrent=make(chan Result)
  // Start the concurrent computation. Its result will be received
  // from the channel
  go func() {
     concurrent <- processData()
  }()
  select {
     case result:=<-concurrent:
        return nil,result
     case <-time.After(time.Second):
        return concurrent,Result{}
  }

Tickers
Use time.Ticker to perform a task periodically. You will periodically receive a signal through a
channel. Unlike time.Timer, you have to be careful about how you dispose of tickers. If you forget
to stop a ticker, it will not be garbage collected once it is out of scope, and it will leak.

Working with Date and Time64

How to do it...

1.	 Use time.Ticker to create a new ticker.

2.	 Read from the ticker’s channel to receive the periodic ticks.

3.	 When you are done with the ticker, stop it. You don’t have to drain the ticker’s channel.

How it works...

Use a ticker for periodic events. A common pattern is the following:

func poorMansClock(done chan struct{}) {
  // Create a new ticker with a 1 second period
  ticker:=time.NewTicker(time.Second)
  // Stop the ticker once we're done
  defer ticker.Stop()
  for {
    select {
      case <-done:
         return
      case <-ticker.C:
         fmt.Println(time.Now())
    }
  }
}

What happens if you miss ticks? This is possible if you run a long process that prevents you from
listening to the ticker channel. Will the ticker send a flood of ticks when you start listening again?

Similar to time.Timer, time.Ticker uses a channel with a capacity of 1. Because of this, if you
do not read from the channel, it can store, at most, one tick. When you start listening from the channel
again, you will receive the tick that you missed immediately, and the next tick when its period expires.
For example, consider the following program that calls a given function every second:

func everySecond(f func(), done chan struct{}) {
  // Create a new ticker with a 1 second period
  ticker:=time.NewTicker(time.Second)
  start:=time.Now()
  // Stop the ticker once we're done
  defer ticker.Stop()
  for {
    select {
      case <-done:
         return
      case <-ticker.C:

Tickers 65

         fmt.Println(time.Since(start).Milliseconds())
         // Call the function
         f()
    }
  }
}

Let’s say the first call to f() runs for 10 milliseconds, but the second call runs for 1.5 seconds. While
f() is running, there is nobody reading from the ticker’s channel, so a tick will be missed. Once f()
returns, the select statement will immediately read this missed tick, and after 500 milliseconds, it
will receive the next tick. The output looks like this:

1000
2000
3500
4000
5000
...

Tip
Unlike time.Timer, you can stop a ticker concurrently while reading from its channel.

4
Working with Arrays,

Slices, and Maps

Arrays, slices, and maps are the built-in container types defined by the Go language. They are essential
parts of almost every program, and usually, the building blocks of other data structures. This section
describes some of the common patterns of working with these basic data structures, as they have
nuances that may not be obvious to a newcomer.

In this chapter, we will talk about the following:

•	 Working with arrays

•	 Working with slices

•	 Implementing a stack using slices

•	 Working with maps

•	 Implementing sets

•	 Using maps for thread-safe caching

Working with arrays
Arrays are fixed-size data structures. There is no way to resize an array or to create an array using a variable
as its size (in other words, [n]int is valid only if n is a constant integer). Because of this, arrays are
useful to represent an object with a fixed number of elements, such as a SHA256 hash, which is 32 bytes.

The zero-value for an array has zero-values for every element of the array. For instance, [5]int is
initialized with five integers, all 0. A string array will have empty strings.

Working with Arrays, Slices, and Maps68

Creating arrays and passing them around

This recipe shows how you can create arrays and pass array values to functions and methods. We will
also talk about the effects of passing arrays as values.

How to do it...

1.	 Create arrays using a fixed size:

var arr [2]int // Array of 2 ints

You can also declare an array using an array literal without specifying its size:
x := [...]int{1,2} // Array of 2 ints

You can specify array indexes similar to defining a map:
y := [...]int{1, 4: 10} // Array of 5 ints,
// [0]1, y[4]=10, all other elements are 0
// [1 0 0 0 10]

2.	 Use arrays to define new types of fixed-size data:

// SHA256 hash is 256 bits - 32 bytes
type SHA256 [32]byte

3.	 Arrays are passed by value:

func main() {
  var h SHA256
  h = getHash()
  // f will get a 32-byte array that is a copy of h
  f(h)
...
}

func f(hash SHA256) {
  hash[0]=0 // This changes the copy of `hash` passed to `f`.
            // It does not affect the `h` value declared in main
  ...
}

Working with slices 69

Warning
Passing an array by value means that every time you use an array as an argument to a function,
the array will be copied. If you pass an array [1000]int64 to a function, the runtime will
allocate and copy 8,000 bytes (int64 is 64 bits, which is 8 bytes, and 1,000 int64 values is 8,000
bytes.) The copy will be a shallow copy – that is, you pass an array containing pointers, or, if
you pass an array containing structures containing pointers, the pointers will be copied, not
the contents of those pointers.

See the following example:

func f(m [2]map[string]int) {
   m[0]["x"]=1
}

func main() {
  array := [2]map[string]int{}
  // A copy of array is passed to f
  // but array[0] and array[1] are maps
  // Contents of those maps are not copied.
  f(array)
  fmt.Println(array[0])
  // This will print [x:1]
}

Working with slices
A slice is a view over an array. You may be dealing with multiple slices that work with the same
underlying data.

The zero-value for a slice is nil. Reading or writing a nil slice will panic; however, you can append
to a nil slice, which will create a new slice.

Creating slices

There are several ways a slice can be created.

How to do it...

Use make(sliceType,length[,capacity]):

slice1 := make([]int,0)
// len(slice1)=0, cap(slice1)=0
slice2 := make([]int,0,10)

Working with Arrays, Slices, and Maps70

// len(slice2)=0, cap(slice2)=10
slice3 := make([]int,10)
// len(slice3)=10, cap(slice3)=10

In the previous code snippet, you see three different uses of make to create a slice:

•	 slice1:=make([]int,0) creates an empty slice, 0 being the length of the slice. The
slice1 variable is initialized as a non-nil, 0-length slice.

•	 slice2 := make([]int,0,10) creates an empty slice with capacity 10. This is what
you should prefer if you know the likely maximum size for this slice. This slice allocation avoids
an allocate/copy operation up until the 11th element is appended.

•	 slice3 := make([]int,10) creates a slice with size 10 and capacity 10. The slice
elements are initialized to 0. In general, with this form, the allocated slice will be initialized to
the zero-value of its element type.

Tip
Be careful about allocating a slice with a non-zero length. I personally had to deal with really
obscure bugs because I mistyped make([]int,10) instead of make([]int,0,10), and
continued to append the 10 elements to the allocated slice, ending with 20 elements.

See the following example:

values:=make([]string,10)
for _,s:=range results {
  if someFunc(s) {
    values=append(values,s)
  }
}

The previous code snippet creates a string slice that has 10 empty strings, then the strings are appended
by the for-loop.

You can also initialize a slice using a literal:

slice := []int{1,2,3,4,5}
// len(slice)=5 cap(slice)=5

Alternatively, you can leave a slice variable nil, and append to it. The append built-in will accept
a nil slice, and create one:

// values slice is nil after declaration
var values []string
for _,x:=range results {

Creating a slice from an array 71

  if someFunc(s) {
    values=appennd(values, s)
  }
}

Creating a slice from an array
Many functions will accept slices and not arrays. If you have an array of values and need to pass it to a
function that wants a slice, you need to create a slice from an array. This is easy and efficient. Creating
a slice from an array is a constant-time operation.

How to do it...

Use the [:] notation to create a slice from the array. The slice will have the array as its underlying storage:

arr := [...]int{0, 1, 2, 3, 4, 5}
slice := arr[:] // slice has all elements of arr
slice[2]=10
// Here, arr = [...]int{0,1,10,3, 4,5}
// len(slice) = 6
// cap(slice) = 6

You can create a slice pointing to a section of the array:

slice2 := arr[1:3]
// Here, slice2 = {1,10}
// len(slice2) = 2
// cap(slice2) = 5

You can slice an existing slice. The bounds of the slicing operation are determined by the capacity of
the original slice:

slice3 := slice2[0:4]
// len(slice3)=4
// cap(slice3)=5
// slice3 = {1,10,3,4}

How it works...

A slice is a data structure containing three values: slice length, capacity, and pointer to the underlying
array. Slicing an array simply creates this data structure with a pointer initialized to the array. It is a
constant-time operation.

Working with Arrays, Slices, and Maps72

Figure 4.1 – Difference between an array arr and a slice arr[:]

Appending/inserting/deleting slice elements
Slices use arrays as their underlying storage, but it is not possible to grow arrays when you run out of
space. Because of this, if an append operation exceeds the slice capacity, a new and larger array is
allocated, and slice contents are copied to this new array.

How to do it...

To add new values to the end of the slice, use the append built-in function:

// Create an empty integer slice
islice := make([]int, 0)
// Append values 1, 2, 3 to islice, assign it to newSlice
newSlice := append(islice, 1, 2, 3)
// islice:  []
// newSlice: [1 2 3]

// Create an empty integer slice
islice = make([]int, 0)
// Another integer slice with 3 elements
otherSlice := []int{1, 2, 3}
// Append 'otherSlice' to 'islice'
newSlice = append(islice, otherSlice...)
newSlice = append(newSlice, otherSlice...)
// islice: []
// otherSlice: [1 2 3]
// newSlice: [1 2 3 1 2 3]

Appending/inserting/deleting slice elements 73

To remove elements from the beginning or the end of a slice, use slicing:

slice := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
// Slice elements starting from index 1
suffix := slice[1:]
// suffix: [1 2 3 4 5 6 7 8 9]
// Slice elements starting from index 3
suffix2 := slice[3:]
// suffix2: [3 4 5 6 7 8 9]

// Slice elements up to index 5 (excluding 5)
prefix := slice[:5]
// prefix: [0 1 2 3 4]

// Slice elements from 3 up to index 6 (excluding 6)
mid := slice[3:6]
// [3 4 5]

Use the slices package to insert/delete elements from arbitrary locations in a slice:

•	 slices.Delete(slice,i,j) removes slice[i:j] elements from the slice and
returns the modified slice

•	 slices.Insert(slice,i,value...) inserts the values starting at index i, shifting
all elements starting from i to make space

slice := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
// Remove the section slice[3:7]
edges := slices.Delete(slice, 3, 7)
// edges: [0 1 2 7 8 9]
// slice: [0 1 2 7 8 9 0 0 0 0]

inserted := slices.Insert(slice, 3, 3, 4)
// inserted: [0 1 2 3 4 7 8 9 0 0 0 0]
// edges: [0 1 2 7 8 9]
// slices: [0 1 2 7 8 9 0 0 0 0]

Alternatively, you can remove elements from a slice and truncate it using a for-loop, like in the following:

slice := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
// Keep an index to write to
write:=0
for _, elem := range slice {
  if elem %2 == 0 { // Copy only even numbers

Working with Arrays, Slices, and Maps74

    slice[write]=elem
    write++
  }
}
// Truncate the slice
slice=slice[:write]

How it works...

A slice is a view over an array. It contains three pieces of information:

•	 ptr: A pointer to an element of an array, which is the starting location of the slice

•	 len: The number of elements in the slice

•	 cap: The capacity remaining in the underlying array for this slice

If you append elements to a slice beyond its capacity, a larger array is allocated by the runtime, and
the contents of the slice are copied there. After this, the new slice points to a new array.

This is a source of confusion for many. A slice may share its elements with other slices. Thus, modifying
one slice may modify others as well.

Figure 4.2 illustrates a case where the same underlying array is used for four different slices:

Figure 4.2 – Slices sharing the same underlying array

See the following example:

// Appends 1 to a slice, and returns the new slice
func Append1(input []int) []int {
  return append(input,1)

Implementing a stack using a slice 75

}

func main() {
   slice:= []int{0,1,2,3,4,5,6,7,8,9}
   shortSlice := slice[:4]
   // shortSlice: []int{0,1,2,3}
   newSlice:=Append1(slice[:4])
   // newSlice:= []int{0,1,2,3,1}
   // slice: []int{0,1,2,3,1,5,6,7,8,9}
}

Note that appending to newSlice also modified an element of slice, because newSlice has
enough capacity to accommodate one more element, which overwrites slice[4].

Truncating a slice is simply creating a new slice that is shorter than the original. The underlying array
does not change. See the following:

slice:= []int{0,1,2,3,4,5,6,7,8,9}
newSlice:=slice[:5]
// newSlice: []int{0,1,2,3,4}

Remember, newSlice is simply a data structure containing the same ptr and cap as slice, with
a shorter len. Because of this, creating a new slice from an existing slice or an array is a constant-
time operation (O(1)).

Implementing a stack using a slice
A surprisingly common use of a slice is to implement a stack. Here is how it is done.

How to do it...

A stack push is simply append:

// A generic stack of type T
type Stack[T any] []T

func (s *Stack[T]) Push(val T) {
     *s = append(*s, val)
}

To implement pop, truncate the slice:

func (s *Stack[T]) Pop() (val T) {
     val = (*s)[len(*s)-1]

Working with Arrays, Slices, and Maps76

     *s = (*s)[:len(*s)-1]
     return
}

Again, note the use of parentheses and indirections. We cannot write *s[len(*s)-1], because
that is interpreted as *(s[len(*s)-1]. To prevent that, we have (*s).

Working with maps
You access the elements of an array or a slice using integer indexes. Maps provide a similar syntax to
use index keys that are not only integers but also any type that is “comparable” (which means it can
be compared using == or !=.) A map is an associative data type – that is, it stores key-value pairs.
Each key appears once in a map. A Go map provides amortized constant-time access to its elements
(that is, when measured over time, map element access should look like a constant-time operation.)

The Go map type provides convenient access to an underlying complicated data structure. It is one
of the “reference” types – that is, assigning a map variable to another map simply assigns a pointer
to the underlying structure and does not copy the elements of the map.

Warning
A map is an unordered collection. Do not rely on the ordering of elements in a map. The same
order of insertion may result in different iteration orders in the same program at a different time.

Defining, initializing, and using maps

Similar to a slice, the zero-value for a map is nil. Reading from a nil map will have the same result as
reading from a non-nil map that has no elements. Writing to a nil map will panic. This section shows
different ways a map can be initialized and used.

How to do it...

Use make to create a new map, or use a literal. You cannot write to a nil map (but you can read from
it!), so you must initialize all maps either with make, or by using a literal:

func main() {
   // Make a new empty map
   m1 := make(map[int]string)
   // Initilize a map using empty map literal
   m2 := map[int]string{}
   // Initialize a map using a map literal
   m3 := map[int]string {
      1: "a",

Working with maps 77

      2: "b",
  }
 ...

Unlike a slice, map values are not addressable:

type User struct {
  Name string
}

func main() {
   usersByID := make(map[int]User)
   usersByID[1]=User{Name:"John Doe"}
   fmt.Println(usersByID[1].Name)
   // Prints: John Doe

   // The following will give a compile error
   usersByID[1].Name="James"
...
}

In the previous example, you cannot set a member variable of a struct stored in a map. When you access
that map element with usersByID[1], what you get back is a copy of User stored in the map,
and the effect of setting its Name to something else will be lost, as that copy is not stored anywhere.

So, instead, you can read and assign the map value to an addressable variable, change it, and set it back:

  user := usersByID[1]
  user.Name="James"
  usersByID[1]=user

Alternatively, you can store pointers in the map:

  userPtrsByID := make(map[int]*User)
  userPtrsByID[1]=&User {
    Name: "John Doe"
  }
  userPtrsByID[1].Name = "James" // This works.

If the map does not have an element for the given key, it will return the zero-value for the map value type:

  user := usersByID[2]  // user is set to User{}
  userPtr := userPtrsByID[2] // userPtr is set to nil

Working with Arrays, Slices, and Maps78

To distinguish whether the zero-value is returned because the map doesn’t have the element from the
situation where the zero-value is stored in the map, use the two-return value version of map lookup:

  user, exists := usersByID[1] // exists = true
  userPtr, exists := userPtrsByID[2] // exists = false

Use delete to delete an element from a map:

delete(usersByID, 1)

Implementing a set using a map
A set is useful to remove duplicates from a collection of values. Maps can be used as sets efficiently
by utilizing a zero-size value structure.

How to do it...

Use a map whose key type is the element type of the set, and whose value type is struct{}:

stringSet := make(map[string]struct{})

Add values to the set with the struct{}{} value:

stringSet[value]=struct{}{}

Check for value existence using the two-value version of map lookup:

if _,exists:=stringSet[str]; exists {
  // String str exists in the set
}

A map is not ordered. If the ordering of elements is important, keep a slice with the map:

// Remove duplicate inputs from the input, preserving order
func DedupOrdered(input []string) []string {
   set:=make(map[string]struct{})
   output:=make([]string,0,len(input))
   for _,in:=range input {
     if _,exists:=set[in]; exists {
       continue
     }
     output=append(output,in)
     set[in]=struct{}{}
   }
   return output
}

Composite keys 79

How it works...

The struct{} structure is a zero-sized object. Such objects are handled separately by the compiler
and the runtime. When used as a value in a map, the map will only allocate storage for its keys. So, it
is an efficient way to implement sets.

Warning
Never rely on pointer equivalence for zero-sized structures. The compiler may choose to place
two separate variables that have zero-size to the same memory location.

The result of the following comparison is not defined:

x:=&struct{}{}

y:=&struct{}{}

if x==y {

  // Do something

}

The result of x==y may return true or false.

Composite keys
You need composite keys when you have multiple values that identify a particular object. For example,
say you are dealing with a system where users may have multiple sessions. You can store this information
in a map of maps, or you can create a composite key containing the user ID and session ID.

How to do it...

Use a comparable struct or an array as the map key. A comparable struct is, in general, a struct that
does not contain the following:

•	 Slices

•	 Channels

•	 Functions

•	 Maps

•	 Other non-comparable structs

Working with Arrays, Slices, and Maps80

So, to use composite keys, perform the following steps:

1.	 Define a comparable struct:

type Key struct {
  UserID string
  SessionID string
}

type User struct {
  Name string
  ...
}

var compositeKeyMap = map[Key]User{}

2.	 Use an instance of the map key to access elements:

compositeKeyMap[Key{
  UserID: "123",
  SessionID: "1",
   }] = User {
    Name: "John Doe",
  }

3.	 You can use a literal map to initialize it:

var compositeKeyMap = map[Key]User {
   Key {
     UserID: "123",
     SessionID: "1",
   }: User {
      Name: "John Doe",
  },
}

How it works...

The map implementation generates hash values from its keys and then uses comparison operators to
check for equivalence. Because of this, any data structure that is comparable can be used as a key value.

Thread-safe caching with maps 81

Be careful about pointer comparisons. A struct containing a pointer field will check for the equivalence
of the pointer. Consider the following key:

type KeyWithPointer struct {
  UserID string
  SessionID *int
}

var sessionMap = map[KeyWithPointer]{}

func main() {
  session := 1
  key := KeyWithPointer{
     UserID: "John",
     SessionID: &session,
  }
  sessionMap[key]=User{ Name: "John Doe"}

In the previous code snippet, the composite map key contains a pointer to session, an integer. After
you add an element to the map, changing the value of session will not affect the keys of the map
pointing to that variable. The map key will still be pointing to the same variable. Another instance
of KeyWithPointer can be used to locate the User object only if it is also pointing to the same
session variable, as per the following:

fmt.Println(sessionMap[KeyWithPointer{
   UserID: "John",
   SessionID: &session,
   }].Name) // "John Doe"

But:

i:=1
fmt.Println(sessionMap[KeyWithPointer{
   UserID: "John",
   SessionID: &i,
   }].Name) // ""

Thread-safe caching with maps
Caching is sometimes necessary to attain an acceptable performance. The idea is to reuse values that
have been computed or retrieved before. A map is a natural choice for caching such values but, due
to their nature, caches are usually shared among multiple goroutines and you must be careful when
using them.

Working with Arrays, Slices, and Maps82

Simple cache

This is a simple cache with a get/put method to retrieve objects from the cache and put elements
into it.

How to do it...

To cache values that are accessible with a key, use a structure with a map and mutex:

type ObjectCache struct {
   mutex sync.RWMutex
   values map[string]*Object
}

// Initialize and return a new instance of the cache
func NewObjectCache() *ObjectCache {
    return &ObjectCache{
        values: make(map[string]*Object),
    }
}

Direct access to cache internals should be prevented to ensure the proper protocol is observed
whenever the cache is used:

// Get an object from the cache
func (cache *ObjectCache) Get(key string) (*Object, bool) {
    cache.mutex.RLock()
    obj, exists := cache.values[key]
    cache.mutex.RUnlock()
    return obj, exists
}

// Put an object into the cache with the given key
func (cache *ObjectCache) Put(key string, value *Object) {
    cache.mutex.Lock()
    cache.values[key] = value
    cache.mutex.Unlock()
}

Cache with blocking behavior
If multiple goroutines ask for the same key from the simple cache in the previous example, they
may all decide to retrieve the object and put it back into the cache. That is inefficient. Usually, you
would want one of those goroutines to retrieve the object while the other waits. This can be done
using sync.Once.

Cache with blocking behavior 83

How to do it...

Cache elements are structures containing sync.Once to ensure one goroutine gets the object while
others wait for it. Also, the cache contains a Get method that uses a getObjectFunc callback to
retrieve an object if it is not in the cache:

type cacheItem struct {
   sync.Once
   object *Object
}

type ObjectCache struct {
   mutex sync.RWMutex
   values map[string]*cacheItem
   getObjectFunc func(string) (*Object, error)
}

func NewObjectCache(getObjectFunc func(string) (*Object,error))
*ObjectCache {
  return &ObjectCache{
     values: make(map[string]*cacheItem),
     getObjectFunc: getObjectFunc,
  }
}

func (item *cacheItem) get(key string, cache *ObjectCache) (err error)
{
  // Calling item.Once.Do
  item.Do(func() {
     item.object, err=cache.getObjectFunc(key)
  })
  return
}

func (cache *ObjectCache) Get(key string) (*Object, error) {
  cache.mutex.RLock()
  object, exists := cache.values[key]
  cache.mutex.RUnlock()
  if exists {
    return object.object, nil
  }
  cache.mutex.Lock()
  object, exists = cache.values[key]
  if !exists {

Working with Arrays, Slices, and Maps84

    object = &cacheItem{}
    cache.values[key] = object
  }
  cache.mutex.Unlock()
  err := object.get(key, cache)
  return object.object, err
}

How it works...

The Get method starts by read-locking the cache. Then it checks whether the key exists in the cache
and unlocks it. If the value is cached, it is returned.

If the value is not in the cache, then the cache is write-locked, because this will be a concurrent
modification to the values map. The values map is checked again to make sure another goroutine
did not already put a value there. If not, this goroutine puts an uninitialized cacheItem in the cache
and unlocks it.

The cacheItem contains a sync.Once, which will allow only one goroutine to call Once.Go
while others are blocked waiting for the winning call to complete. This is when the getObjectFunc
callback is invoked from the cacheItem.get method. At this point, there is no chance for a
memory race, because only one goroutine can be executing the item.Do function. The result of the
function will be stored in the cacheItem, so it will not cause any problems with the users of the
values map. In fact, note that while getObjectFunc is running, the cache is not locked. There
can be many other goroutines reading and/or writing to the cache.

5
Working with Types,

Structs, and Interfaces

Go is a strongly typed language. That means every value in a program must be defined using a set of
predefined basic types. The rules of the type system determine what can be done with those values,
and how values of different types interact. The Go type system takes a simplistic approach; it only
allows explicit conversions between values of different compatible types.

Go is also a statically typed language, which means that types of values are explicitly declared and
checked at compile time, as opposed to being checked at runtime. This is different from scripting
languages such as Python or JavaScript.

In this chapter, we will look at some of the properties of the Go type system, defining new types, structures,
and interfaces, and considering how to make effective use of it to implement some common patterns.

This chapter contains the following recipes:

•	 Creating new types

•	 Using composition to extend types

•	 Initializing structures

•	 Working with interfaces

•	 Factory pattern

•	 Polymorphic containers

Creating new types
There are several reasons why you want to define new types. An important one is ensuring type safety.
Type safety ensures that operations receive the correct type of data. A type-safe program is free of
type errors, limiting possible errors in the program to logic errors only.

Working with Types, Structs, and Interfaces86

Other reasons for creating new types also include the following:

•	 You can share the methods and data fields of a type in multiple different types by embedding it.

•	 Later in this chapter, we will look at interfaces. You can define a set of methods for a new type
to implement a given interface that lets you use that type in different contexts.

Creating a new type based on an existing type
Creating a new type allows you to enforce type-safety rules, and add type-specific methods.

How to do it...

Create a new type based on an existing type using the following syntax:

type <NewTypeName> <ExistingTypeName>

For example, the following declaration defines a new data type, Duration, as an unsigned 64-bit integer:

type Duration uint64

This is how the Go standard library defines time.Duration. To call the time.Sleep(d
Duration) function, you now have to use a time.Duration value, or explicitly convert a numeric
value to a time.Duration value.

Warning
When you create a new type from an existing type, the new type is created without any methods
even if the existing type has methods defined.

Creating type-safe enumerations
In this recipe, we will define a set of constants (an enumeration) with a new type.

How to do it...

1.	 Define a new type:

type Direction int

2.	 Create a sequence of constants representing the values of the enumeration using the new type.
You can use iota for numeric constants to generate increasing numbers:

const (
  DirectionLeft Direction = iota

Creating struct types 87

  DirectionRight
)

3.	 Use the new type in functions or data elements expecting this new type:

func SetDirection(dir Direction) {...}

func main() {
  SetDirection(DirectionLeft)
  SetDirection(Direction(0))
  ...
}

Tip
This does not prevent someone from calling SetDirection(Direction(3)), which is
an invalid value. This is usually only a problem for enumerated values read from user input or
from third-party sources. You should validate the input at that point.

Creating struct types
A Go struct is a collection of fields. Define structs to group interrelated data fields to form a record.
This recipe shows how to create new struct types in your program.

How to do it...

Create a struct type using the following syntax:

type NewTypeName struct {
   // List of fields
}

For instance:

type User struct {
  Username string
  Password string
}

Extending types
Go uses type composition through embedding, and structural typing through the use of interfaces.
Let’s start by examining what these mean.

Working with Types, Structs, and Interfaces88

When you embed an existing type into another, the methods and data fields defined for the embedded
type become the methods and data fields of the embedding type. If you have worked with object-
oriented languages, this may seem similar to class inheritance, but there is a crucial difference: if a
class A is derived from a class B, then A is-a B, meaning wherever B is needed, you can substitute an
instance of A. With composition, if A embeds B, A and B are distinct types, and you cannot use A
where B is needed.

Tip
There is no type inheritance in Go. Go chooses composition over inheritance. The primary
reason for this is the simplicity of combining components to build more complex ones. Most
use cases of inheritance in object-oriented languages can be rearchitected using composition,
interfaces, and structural typing. I used the word “rearchitecting” intentionally here: do not try
to port existing object-oriented programs to Go by emulating inheritance. Instead, redesign
and refactor them to be idiomatic Go programs using composition and interfaces.

The next recipes will look at how this can be done.

Extending a base type

First, we’ll look at how we can extend a base type to share its data elements and methods in new types.

How to do it...

Let’s say you have some data fields and functionality shared between multiple data types. Then you
can create a base data type, and embed it into multiple other data types to share common parts:

type Common struct {
  commonField int
}

func (a Common) CommonMethod() {}

type A struct {
  Common
  aField int
}

func (a A) AMethod() {}

type B struct {
  Common
  bField int

Extending types 89

}

func (b B) BMethod() {}

In the preceding code snippet, the fields and methods of each struct are as follows:

Type Fields Methods
Common commonField CommonMethod
A commonField, aField CommonMethod, AMethod
B commonField, bField CommonMethod, BMethod

How it works...

We have used struct embedding to share common data elements and functionality in the previous
section. The following example shows two structs, Customer and Product, that share the same
Metadata structure. Metadata contains the unique identifier, creation date, and modification
date of a record:

type Metadata struct {
  ID string
  CreatedAt time.Time
  ModifiedAt time.Time
}

// New initializes metadata fields
func (m *Metadata) New() {
  m.ID=uuid.New().String()
  m.CreatedAt=time.Now()
  m.ModifiedAt=m.CreatedAt
}

// Customer.New() uses the promoted Metadata.New() method.
// Calling Customer.New() will initialize Customer.Metadata, but
// will not modify Customer specific fields.
type Customer struct {
  Metadata
  Name string
}

// Product.New(string) shadows `Metadata.New() method. You cannot
// call `Product.New()`, but call `Product.New(string)` or
// `Product.Metadata.New()`
type Product struct {

Working with Types, Structs, and Interfaces90

  Metadata
  SKU string
}

func (p *Product) New(sku string) {
  // Initialize the metadata part of product
  p.Metadata.New()
  p.SKU=sku
}

func main() {
   c:=Customer{}
   c.New() // Initialize customer metadata

   p:=Product{}
   p.New("sku") // Initialize product metadata and sku
   // p.New() // Compile error: p.New() takes a string argument
}

Embedding is not inheritance. The receiver of an embedded struct method is not a copy of the defined
struct. In the preceding snippet, when we call c.New(), the Metedata.New() method gets a
receiver that is an instance of *Metadata, not an instance of *Customer.

Initializing structs
This recipe shows how you can use struct literals to initialize complex data structures containing
embedded structures.

How to do it...

Go guarantees that all declared variables are initialized to their zero values. This is not very useful if
you have a complicated data structure that should be initialized with default values or non-nil pointer
components. For such cases, use constructor-like functions to create a new instance of a struct. The
established convention is to write a NewX function for a type X that initializes an instance of X or *X
and returns it.

Here, NewIndex creates a new initialized instance of the Index type:

type Index struct {
   index map[string]any
   name string
}

Defining interfaces 91

func NewIndex(name string) *Index {
  return &Index{
    index:make(map[string]any),
    name:name,
  }
}

func (index *Index) Name() string {return index.name}
func (index *Index) Add(key string, value any) {
  index.index[key]=value
}

Also, observe that the Index.name and Index.index fields are not exported. Thus, they can only
be accessed using exported methods of Index. This pattern is useful for preventing unintentional
modification of data fields.

Defining interfaces
Go uses “structural typing.” If a type T defines all the methods of an interface I, then T implements I.
This causes some confusion among developers who are well-versed in languages that use nominative
typing, such as Java, where you explicitly have to name the constituent types.

Go interfaces are simply method sets. When a data type defines a set of methods, it also automatically
implements all interfaces that contain a subset of its methods. For instance, if data type A defines
a func (A) F() method, then A also implements the interface { func F() } and
interface{} interfaces. If interface A is a subset of interface B, then a data type implementing
interface B can be used wherever A is needed.

Interfaces as contracts

An interface can be used as a “specification,” or like a “contract” that defines certain functions an
implementation should satisfy.

How to do it...

Define an interface or a set of interfaces to specify the expected behavior of an object. This is suitable
when multiple different implementations of the same interface are expected. For instance, the standard
library database/driver SQL driver package defines a set of interfaces that should be implemented
by different database drivers.

For example, the following code snippet defines a storage backend for storing files:

type Storage interface {
   Create(name string, reader io.Reader) error

Working with Types, Structs, and Interfaces92

   Read(name string) (io.ReadCloser,error)
   Update(name string, reader io.Reader) error
   Delete(name string) error
}

You can use the instances of objects that implement the Storage interface to store data in different
backends, such as a filesystem or some network storage system.

In many cases, the data types used to declare the methods of such an interface are themselves dependent
on the actual implementation. In that case, a system of interfaces is necessary. The standard library
database/driver package uses this approach. As an example, consider the following authentication
provider interface:

// Authenticator uses implementation-specific credentials to create an
// implementation-specific session
type Authenticator interface {
  Login(credentials Credentials) (Session,error)
}

// Credentials contains the credentials to authenticate a user to the
// backend
type Credentials interface {
  Serialize() []byte
  Type() string
}

// CredentialParse implementation parses backend-specific credentials
// from []byte input
type CredentialParser interface {
  Parse([]byte) (Credentials, error)
}

// A backend-specific session identifies the user and provides a way
// to close the session
type Session interface {
  UserID() string
  Close()
}

Factories
This section shows a recipe that is often used to support extendible structures, such as database drivers,
where importing a particular database driver package automatically “registers” the driver to a factory.

Factories 93

How to do it...

1.	 Define an interface, or set of interfaces specifying how an implementation should behave.

2.	 Create a registry (a map), and a function to register implementations.

3.	 Every different implementation registers itself with the registry using init().

4.	 Import the implementations that will be included in the program using the main package.

Let’s implement an authentication framework using the Authenticator example from the last
section. We will allow different implementations of the Authenticator framework.

First, define a factory interface and a map to keep all registered implementations:

package auth

type AuthenticatorFactory interface {
   NewInstance() Authenticator
}

var registry = map[string]AuthenticatorFactory{}

Then, declare an exported Register function:

func RegisterAuthenticator(name string, factory AuthenticatorFactory)
{
   registry[name]=factory
}

To dynamically create instances of authenticator, we’ll need a function that looks like this:

func NewInstance(authType string) Authenticator {
   // Create a new instance using the selected factory.
   // If the given authType has not been registered, this will panic
   return registry[authType].NewInstance()
}

Implementations can register their own factories using the init() function:

type factory struct{}

func (factory) NewInstance() auth.Authenticator {
  // Create and return a new instance of db authenticator
}

func init() {
  auth.RegisterAuthenticator("dbauthenticator",factory{})
}

Working with Types, Structs, and Interfaces94

Finally, you have to stitch this together. The Go build system will only include packages that have been
directly or indirectly used by the code accessible from main(), and the implementations are not
directly referenced. We have to make sure those packages are imported, and thus, the implementations
are registered. So, import them in main:

package main

import (
  _ "import/path/of/the/implementation"
  ...
)

The preceding import will include the implementation package in the program. Since the package
is included in the program, its init() function will be called during program initialization, and the
authenticator type it provides will be registered.

Defining interfaces where you use them
Structural typing allows you to define an interface when you need to use one, as opposed to pre-defining
an exported interface. This is sometimes confused with “duck-typing” (if something walks like a duck
and talks like a duck, it is a duck). The difference is that duck-typing refers to determining data type
compatibility by looking at the subset of a type’s structure at runtimes, whereas structural typing refers
to looking at the structure of a type at compile time. This recipe shows how you can define interfaces
as you need them.

How to do it...

Let’s say you have code that looks like the following:

type A struct {
  ...
  options  map[string]any
}

func (a A) GetOptions() map[string]any {return a.options}

type B struct {
  ...
  options map[string]any
}

func (b B) GetOptions() map[string]any {return b.options}

Using a function as an interface 95

If you want to write a function that will operate on the options of a variable of type A or B (or any
type that has options), you can simply define an interface right there:

type withOptions interface {
  GetOptions() map[string]any
}

func ProcessOptions(item withOptions) {
  for key, value:=range item.GetOptions() {
    ...
  }
}

How it works...

Remember, Go uses structural typing. So, you can create an interface specifying a set of methods,
and any data type declaring those methods will automatically implement that interface. Thus, you
can create such interfaces ad hoc, and write functions that take instances of those interfaces to work
with a potentially large number of data types.

If you used a nominative language, you would have had to specify that those types implement your
interface. Not so in Go.

That also means that if you have an interface A and another interface B such that A declares the same
methods as B, then any type that implements A also implements B. In other words, if you cannot
import an interface because it is in a package that will cause a circular dependency if imported, or if
that interface is not exported by that package, you can simply define an equivalent interface in your
current package.

Using a function as an interface
Sometimes, you might encounter a situation where you have a function when an interface is needed.
This recipe shows how you can define a new function data type that also implements an interface.

How to do it...

If you need to implement a single-method interface without any data elements, you can define a
new type based on an empty struct and declare a method for that type to implement that interface.
Alternatively, you can simply use the function itself as an implementation of that interface. The
following excerpt is from the standard library net/http package:

// An interface with a single function
type Handler interface {
     ServeHTTP(ResponseWriter, *Request)

Working with Types, Structs, and Interfaces96

}

// Define a new function type matching the interface method signature
type HandlerFunc func(ResponseWriter, *Request)

// Implement the method for the function type
func (h HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
   h(w.r) // Call the underlying function
}

Here, you can use functions of the HandlerFunc type whenever an implementation of the Handler
interface is needed.

How it works...

The Go type system treats function types as any other defined type. Thus, you can declare methods
for a function type. When you declare methods for a function type, the function type automatically
implements all the interfaces that define all or some of those methods.

Let’s examine this statement with an example. We can declare a new empty type as an implementation
of the Handler interface:

type MyHandler struct{}

func (MyHandler) ServeHTTP(w ResponseWriter, r *Request) {...}

With this declaration, you can use instances of MyHandler wherever a Handler is required.
However, observe that MyHandler has no data elements and only one method. So instead, we define
a function type:

type MyHandler func(ResponseWriter,*Request)

Now MyHandler is a new named type. This is not that much different from declaring MyHandler
as a struct, but in this case, MyHandler is a function with a fixed signature.

Since MyHandler is a named type, we can define methods for it:

func (h MyHandler) ServeHTTP(w ResponseWriter, r *Request) {
  h(w,r)
}

Since MyHandler now defined ServeHTTP method, it implements the Handler interface.
However, MyHandler is a function type, so h is actually a function that has the same signature as
ServeHTTP. Due to that, the h(w,r) call works, and MyHandler can be used in places where a
Handler is required.

Discovering capabilities of data types at runtime – testing "implements" relationship 97

Discovering capabilities of data types at runtime – testing
"implements" relationship
An interface provides a way to call the methods of an underlying data object. If the same interface
is implemented by many different types, you can use a function to manipulate diverse data types
by simply using their common interface. However, many times, you need to access the underlying
object stored in an interface. Go provides several mechanisms to achieve that. We will look at type-
assertion and type-switch.

How to do it...

Use interfaces and type assertions to discover different methods a type provides. Remember that an
interface is a method set. A type that implements the methods given in an interface automatically
implements that interface.

Use the following patterns to determine whether a data type has a method:

func f(rd io.Reader) {
  // Is rd also an io.Writer?
  if wr, ok:= rd.(io.Writer); ok {
     // Yes, rd is an io.Writer, and wr is that writer.
     ...
  }

  // Does rd have a function ReadLine() (string,error)?
  // Define an interface here
  type hasReadLine interface {
     ReadLine() (string,error)
  }
  // And see if rd implements it:
  if readLine, ok:=rd.(hasReadLine); ok {
    // Yes, you can use readLine:
    line, err:=readLine.ReadLine()
    ...
  }

  // You can even define anonymous interfaces inline:
  if readLine, ok:=rd.(interface{ReadLine()(string,error)}); ok {
     line, err:=readLine.ReadLine()
  }
}

Working with Types, Structs, and Interfaces98

How it works...

Type assertions have two forms. The following form tests if an intf interface variable contains a
concrete value of the concreteValue type:

value, ok:=intf.(concreteValue)

If the interface contains a value of that type, then value now has that value, and ok becomes true.

The second form tests whether the concrete value contained within the intf interface also implements
the otherIntf interface:

value, ok:=intf.(otherIntf)

If the value contained in intf also has the methods declared by otherIntf, then value is now
an interface value of the otherIntf type containing the same concrete value as intf, and ok is
set to true.

Using this second form, you can test whether an interface variable implements the methods you need.

You may think you can do the same thing using reflection. Reflection is a method for discovering
the names of fields and methods of types at runtime. It is not a performant or easy method to check
such type equivalences.

Testing whether an interface value is one of the known types
A type-switch is used to test whether an interface value is a known concrete type, or whether it
implements a certain interface. This recipe shows how it can be used.

How to do it...

Use a type-switch instead of a sequence of type assertions if you need to check an interface against
multiple types.

The following example uses an interface{} to add two values. The values can either both be int,
or both float64. The function also provides a way to override the addition behavior: if the value
has a compatible Add method, it calls that instead:

// a and b must have the same types. They can be int, float64, or
// another type
// that has Add method.
func Add(a, b interface{}) interface{} {
  // type switch:
  // In this form, a matching case block will declare aValue
  // with the correct type
  switch aValue:=a.(type) {

Ensuring a type implements an interface during development 99

    case int:
      // Here, aValue is an int
      // b must be an int!
      bValue:=b.(int)
      return aValue+bValue

    case float64:
      // Here, aValue is a float64
      // b must be a float64!
      bValue:=b.(float64)
      return aValue+bValue

    case interface { Add(interface{}) interface{} }:
      // Here, aValue is an interface {Add{interface{}) interface{}}
      return aValue.Add(b)

    default:
      // Here, aValue is not defined
      // This is an unhandled case
      return nil
  }
}

Note the way the type switch is used to extract the value contained in the interface if the case matches.
This only works if the case lists a single type, and if the case is not the default case. For those cases,
the variable is simply not defined and you work with the interface.

Ensuring a type implements an interface during
development
During the development stages of a project, interface types may change quickly by adding new methods,
or modifying existing method signatures by changing argument types or return types. How can
developers make sure certain implementations of those interfaces are not broken by those changes?

How to do it...

Let’s say your team defined the following interface:

type Car interface {
   Move(int,int)
}

Working with Types, Structs, and Interfaces100

We’ll also say that you implemented that interface with the following struct:

type RaceCar struct {
   X, Y int
}

func (r *RaceCar) Move(dx, dy int) {
  r.X+=dx
  r.Y+=dy
}

However, later in the development, it turned out not all cars can move successfully, so the signature
of the interface changes to the following:

type Car interface {
   Move(int,int) error
}

With this change, RaceCar no longer implements Car. Many times this error will be caught at
compile time, but not always. For instance, if instances of *RaceCar are passed to functions that
require any, the compilation will succeed, but a runtime panic will be raised if that argument is
converted to a Car or *RaceCar via type assertion:

rc := item.(Car)

Let’s say that you declare the following:

var _ Car = &RaceCar{}

Any modification to the Car interface that makes *RaceCar no longer implement the Car interface
will be a compile error.

So, in general: declare a blank variable with the interface type, and assign it to the concrete type:

type I interface {...}

type Implem struct { ... }

// If something changes in Implem or I that causes Implem
// to no longer implement interface I, this will give a
// compile-time error
var _ I = Implem{}

// Same as above, but this ensures *Implem implements I
var _ I = &Implem{}

Deciding whether to use a pointer receiver or value receiver for methods 101

If there are changes that cause the type to no longer implement that interface, a compile error will
be raised.

Deciding whether to use a pointer receiver or value
receiver for methods
In this recipe, we’ll explore how to choose between a pointer receiver and a value receiver for methods.

How to do it...

In general, use one kind, not both. There are two reasons for this:

•	 Consistency throughout the code.

•	 Mixing value and pointer receivers can result in data races.

If a method modifies the receiver object, use a pointer receiver. If a method does not modify the receiver
object, or if the method relies on getting a copy of the receiver object, you can use a value receiver.

If you are implementing an immutable type, in most cases, you should use a value receiver.

If your structures are large, using a pointer receiver will reduce copy overhead. You can find different
guidelines on whether or not a structure can be considered large. When in doubt, write a benchmark
and measure.

How it works...

For a type T, if you declare a method using a value receiver, that method is declared for both T and
*T. The method gets a copy of the receiver, not a pointer to it, so any modifications performed on
the receiver will not be reflected to the object used for calling the method.

For example, the following method returns a copy of the original object while modifying one field:

type Action struct {
   Option string
}

// Returns a copy of a with the given option. The original a is not
// modified.
func (a Action) WithOption(option string) Action {
   a.Option=option
   return a
}

func main() {

Working with Types, Structs, and Interfaces102

   x:=Action{
      Option:"a",
   }
   y:=x.WithOption("b")
   fmt.Println(x.Option, y.Option) // Outputs: a b
}

A value receiver creates a shallow copy of the original. If the receiver struct has maps, slices, or pointers
to other objects, only the map headers, slice headers, or pointers will be copied, not the contents of
the pointed object. That means that even though the method gets a value receiver in the following
example, changes to the map are reflected in both the original and the copy:

type T struct {
  m map[string]int
}

func (t T) add(k string, v int) {
   t.m[k]=v
}

func main() {
  t:=T{
     m:make(map[string]int,
  }
  t.add("a",1)
  fmt.Println(t) // [a:1]
}

Be careful about how this affects slice operations. A slice is a triple (pointer, len, cap), and
that is what’s copied when you pass a value receiver:

type T struct {
  s []string
}

func (t T) set(i int, s string) {
  t.s[i]=s
}

func (t T) add(s string) {
  t.s=append(t.s,s)
}

func main() {

Deciding whether to use a pointer receiver or value receiver for methods 103

  t:=T{
    s: []string{"a","b"},
  }
  fmt.Println(t.s) // [a, b]

  // Setting a slice element contained in the value receiver will be
  // visible here
  t.set(0,"x")
  fmt.Println(t.s) // [x, b]

  // Appending to the slice contained in the value receiver will not
  // be visible here
  // The appended slice header is set in the copy of t, the original
  // never sees that update
  t.add("y")
  fmt.Println(t.s) // [x, b]
}

A pointer receiver is more straightforward to work with. The method always gets a pointer to the
object it is called with. In the preceding example, declaring the add method with a pointer receiver
behaves as expected:

func (t *T) add(s string) {
  t.s=append(t.s,s)
}

...
 t.add("y")
 fmt.Println(t.s) // [x, b, y]

At the beginning of this section, I also mentioned that mixing pointer and value receivers causes a
data race. Here is how it happens.

Remember that a data race happens when a goroutine reads from a variable that is being concurrently
modified by another. Consider the following example where the Version method uses a value
receiver that causes a copy of T to be created:

type T struct {
  X int
}

func (t T) Version() int  {return 1}

func (t *T) SetValue(x int) {t.X=x}

Working with Types, Structs, and Interfaces104

func main() {
  t:=T{}

  go func () {
     t.SetValue(1) // Writes to t.X
  }()

  ver := t.Version() // Makes a copy of t, which reads t.X
  ...
}

The act of calling t.Version() creates a copy of the variable t, reading t.X concurrently as it
is being modified, hence causing a race. This race is more obvious if t.Version reads from t.X
explicitly. There is no guarantee that that read operation will see the effects of the write operation in
the goroutine.

Polymorphic containers
In this context, a container is a data structure that holds many objects. The principles of this section
can be applied to single objects as well. In other words, you can use the same idea when you have a
single polymorphic variable or a struct field.

How to do it...

1.	 Define an interface containing the methods common to all data types that will be stored in
the container.

2.	 Declare the container type using that interface.

3.	 Put instances of actual objects into the container.

4.	 When you retrieve objects from the container, you can either work with the object through the
interface, or type-assert, get the actual type or another interface, and work with that.

How it works...

Here’s a simple example that works with Shape objects. A Shape object is something that can be
drawn on an image, and moved around:

type Shape interface {
  Draw(image.Image)
  Move(dx, dy int)
}

Polymorphic containers 105

Shape has several implementations:

type Rectangle struct {
   rect image.Rectangle
   color color.Color
}

func (r *Rectangle) Draw(target image.Image) {...}
func (r *Rectangle) Move(dx, dy int) {...}

type Circle struct {
   center image.Point
   color color.Color
}

func (c *Circle) Draw(target image.Image) {...}
func (c *Circle) Move(dx, dy int) {...}

Both *Rectangle and *Circle implement the Shape interface (note that Rectangle and
Circle do not.) Now we can work with a slice of Shapes:

func Draw(target image.Image, shapes []Shape) {
  for _,shape:=range shapes {
    shape.Draw(targeT)
  }
}

This is what the shapes slice looks like:

Figure 5.1 – Slice of interface variables

Since every interface contains a pointer to the actual shape, it is possible to use the interface to call
methods that modify the object as well:

func Move(dx, dy int, shapes []Shape) {
  for _,shape:=range shapes {

Working with Types, Structs, and Interfaces106

    shape.Move(dx, dy)
  }
}

Accessing parts of an object not directly exposed via the
interface
When working with interfaces, there are many occasions where you need to access the underlying
object. This is achieved by type-assertion, that is, testing whether the value of an interface satisfies a
given type, and if so, retrieving it.

How to do it...

Use type assertion or a type switch to test the type of the object contained in an interface:

func f(shape Shape) {

   if rect, ok := shape.(*Rectangle); ok {
      // shape contains a *Rectangle, and rect now points to it
   }

   switch actualShape := shape.(type) {
      case *Circle :
         // shape is a *Circle, and actualShape is a *Circle variable
      case *Rectangle:
         // shape is a *Rectangle, and actualShape is a *Rectangle
         // variable
      default:
         // shape is not a circle or rectangle. actualShape is not
         // defined here
   }
}

Accessing the embedding struct from the embedded struct
In object-oriented languages such as Java or C++, there is the concept of an abstract method or virtual
method, together with type inheritance. One effect of this feature is that if you call a method M of a
base class base, then the method that runs at runtime is the implementation of M that is declared
for the actual object at runtime. In other words, you can invoke a method that will be overridden by
other declarations, and you just don’t know which method you are actually calling.

There are ways of doing the same thing in Go. This recipe shows how.

Accessing the embedding struct from the embedded struct 107

How to do it...

Let’s say you need to write a circular linked list data structure whose elements will be structs embedding
a base struct:

type ListNodeHeader struct {
  next Node
  prev Node
  list *List
}

The list itself is as follows:

type List struct {
  first Node
}

So, the list points to the first node, which is an arbitrary node in the list, and every node points to
the next one, with the last node pointing back to the first.

We need a Node interface that defines the mechanics of maintaining a list. Of course, the Node
interface will be implemented by ListNodeHeader, and thus, by all the nodes of the list:

type Node interface {
  ...
}

The users of the list are supposed to embed ListHeader to implement a list node:

type ByteSliceElement struct {
  ListNodeHeader
  Payload []byte
}

type StringElement struct {
  ListNodeHeader
  Payload string
}

Now the hard part is to implement the Node interface. Let’s assume you would like to insert a
ByteSliceElement in this list. Since ByteSliceElement embeds ListNodeHeader, it
has all its methods and thus implements Node. However, we can’t write, for instance, an Insert
method for ListNodeHeader without knowing the actual object being inserted.

Working with Types, Structs, and Interfaces108

One way of doing this is by using the following pattern:

type Node interface {
   Insert(list *List, this Node)

   getHeader() *ListNodeHeader
}

func (header *ListNodeHeader) getHeader() *ListNodeHeader {return
header}

func (header *ListNodeHeader) Insert(list *List,this Node) {
   // If list is empty, this is the only node
   if list.first == nil {
      list.first = this
      header.next = this
      header.prev = this
      return
   }
   header.next=list.first
   header.prev=list.first.getHeader().prev
   header.prev.getHeader().next=this
   header.next.getHeader().prev=this
}

There are several things going on here. First, the Insert method gets two views of the node being
inserted. If the node being inserted is a *ByteSliceElement, then it gets a Node version of this, and
then it also gets the *ListNodeHeader embedded in ByteSliceElement as the receiver. Using
this, it can adjust the members of the ByteSliceElement to point to the previous and next nodes.

However, it cannot access the prev and next members of a Node.

One option is what is shown: declare an unexported method in the Node interface that will return
the ListNodeHeader from a given node. Another option is to add getNext/setNext and
getPrev/setPrev methods to the interface.

Now you have achieved two things: first, any user of this list structure outside this package must embed
ListNodeHeader to implement a list node. There is an unexported method in the interface. There
is no way to implement such an interface in a different package. The only way is to embed a struct
that already implements it.

Second, you have a polymorphic container data structure whose mechanics are managed by a base struct.

Checking whether an interface is nil 109

Checking whether an interface is nil
You may wonder why this is even a problem. After all, don’t you just compare with nil? Not always.

An interface contains two values: the type of the value contained in the interface, and a pointer to
that value. An interface is nil if both of those are nil. There are cases where an interface may point to
a nil value of a type other than nil, which makes the interface non-nil.

You can’t check for this case easily. You have to avoid creating interfaces with nil values.

How to do it...

Avoid converting a pointer to a variable that can be nil to an interface:

type myerror struct{}

func (myerror) Error() string { return "" }

func main() {
   var x *myerror
   var y error
   y = x // Avoid this
   if y!=nil {
      // y is not nil!
   }
}

Check for nil interface values explicitly instead, such as the following:

var y error
if x!=nil {
   y=x
}

Alternatively, use value errors instead of pointers. The following code avoids this problem altogether:

var x myerror

There is no chance of x being nil.

How it works...

As I explained earlier, an interface contains two values: type and value. What you are trying to avoid
is creating an interface that contains a nil value with a non-nil type.

Working with Types, Structs, and Interfaces110

After the declaration that follows, the y interface is nil because both its type and its value are nil:

var y error

After the following assignment, the type stored in y is now the type of x, and the value is nil. Thus,
y is no longer nil:

y=x

This also applies to return from a function:

func f() error {
     var x *myerror
     return x
}

The f function never returns nil.

6
Working with Generics

It happens often that you write a function that does some computation using values of a certain type
(say, integers), but as the development progresses, you suddenly need to do the same thing but with
another data type as well (say, float64). So you copy/paste the first function and modify it to have
a different name and data types. Perhaps the most obvious and well-known examples of this situation
are container data types such as maps and sets. You build a container type for integer values, then you
do the same for it using strings, then for a struct, and so on.

Generics is a way of doing this code copy/paste at compile time using code templates. First, you
create a function template (generic function) or a data type template (generic type). You instantiate
a generic function or type by providing types. The compiler takes care of instantiating the template
with the types you provided, and checks if the instantiated generic type or function is compilable
with the types you provided.

In this chapter, you will learn how to use generic functions and data types for common scenarios:

•	 Generic functions

	� Writing a generic function that adds numbers

	� Declaring constraints as interfaces

	� Using generic functions as adapters and accessors

•	 Generic types

	� Writing a type-safe set

	� An ordered map -- using multiple type parameters

Generic functions
A generic function is a function template that takes types as parameters. The generic function must
compile for all possible type assignments of its arguments. The types a generic function can accept
are defined by “type constraints.” We will learn about these concepts in this section.

Working with Generics112

Writing a generic function that adds numbers

A good introductory example for illustrating generics is a function that adds numbers. These numbers
can be various types of integers or floating-point numbers. Here, we will study several recipes with
different capabilities.

How to do it...

A generic summation function that accepts int and float64 numbers is as follows:

func Sum[T int | float64](values ...T) T {
  var result T
  for _, x := range values {
    result += x
  }
  return result
}

The construct [T int | float64] defines the type parameter for the Sum function:

•	 T is the type name. For instance, if you instantiate the Sum function for int, then T is int.

•	 The int | float64 expression is the type constraint for T. In this case, it means “T is
either int or float64.” The constraint tells the compiler that the Sum function can only be
instantiated for int or float64 values.

As I explained before, a generic function is only a template. For instance, you cannot declare a function
variable and assign it to Sum, because Sum is not a real function. The following statement instantiates
the Sum generic function for int:

fmt.Println(Sum[int](1,2,3))

For many cases, the compiler can infer the type parameter, so the following is also valid. Since all the
arguments are int values, the compiler infers that what is meant here is Sum[int]:

fmt.Println(Sum(1,2,3))

But in the following case, the instantiated function is Sum[float64], and the arguments are
interpreted as float64 values:

fmt.Println(Sum[float64](1,2,3))

The generic function must compile successfully for all possible T. In this case, T can be an int or
a float64, so the function body must be valid for T being an int and T being a float64. The
type constraints allow the compiler to produce meaningful compile-time errors. For example, the
[T int | float64 | big.Int] constraint does not compile, because result+=x does
not compile for big.Int.

Generic functions 113

The Sum function will not work for types derived from int or float64, for instance:

type ID int

Even though ID is an int, Sum[ID] will result in a compile error, because ID is a new type. To
include all types derived from an int, use ~int in the constraint – for example:

func Sum[T ~int | ~float64](values ...T) T{...}

This declaration will handle all types derived from int and float64.

Declaring constraints as interfaces

It is not practical to keep repeating constraints when you declare new functions. Instead, you can
define them in an interface as a type list or as a method list.

How to do it...

A Go interface specifies a method set. Go generics implementation extends this definition so that
interfaces define type sets when used as constraints. This requires some changes to accommodate
basic types because basic types (such as int) do not have methods. So there are two types of syntax
when it comes to interfaces as constraints:

1.	 Type lists specify the list of types acceptable in place of a type parameter. For example, the
following UnsignedInteger constraint accepts all unsigned integer types and all types
derived from unsigned integers:

type UnsignedInteger interface {
  ~uint8 | ~uint16 | ~uint32 | ~uint64
}

2.	 Method sets specify the methods that must be implemented by types that are acceptable. The
following Stringer constraint accepts all types that have the String() string method:

type Stringer interface {
  String() string
}

These constraints can be combined. For instance, the following UnsignedIntegerStringer
constraint accepts types that are derived from an unsigned integer type, and that have the String()
string method:

type UnsignedIntegerString interface {
  UnsignedInteger
  Stringer
}

Working with Generics114

The Stringer interface can both be used as a constraint and as an interface. The UnsignedInteger
and UnsignedIntegerString interfaces can only be used as constraints.

Using generic functions as accessors and adapters

Generic functions offer practical solutions for type-safe accessors and type adapters. For instance,
initializing an *int variable with a constant value requires declaring a temporary value, which can
be simplified by a generic function. This recipe includes several such accessors and adapters.

How to do it...

This generic function makes a pointer from arbitrary values:

func ToPtr[T any](value T) *T {
  return &value
}

This can be used to initialize pointers without a temporary variable:

type UpdateRequest struct {
  Name *string
  ...
}
...
request:=UpdateRequest {
  Name:ToPtr("test"),
}

Similarly, this generic function makes a slice from arbitrary values:

func ToSlice[T any](value T) []T {
        return []T{value}
}

func main() {
  fmt.Println(ToSlice(1))
  // Prints an int slice: [1]
}

The following generic function returns the last element of a slice:

func Last[T any](slice []T) (T, bool) {
  if len(slice) == 0 {
    var zero T

Generic functions 115

    return zero, false
  }
  return slice[len(slice)-1], true
}

It returns false if the slice is empty.

The following generic function can be used to adapt functions that return a value and an error to be
used in contexts that accept only the value. The function panics if there is an error:

func Must[T any](value T, err error) T {
  if err != nil {
    panic(err)
  }
  return value
}

This adapts the f() (T, error) function into Must(f()) T.

Returning a zero value from a generic function

As I said before, a generic function must compile for all possible types allowed by the type constraints.
This may cause trouble when creating a zero value.

How to do it...

To create a zero value of a parameterized type, simply declare a variable:

func Search[T []E, E comparable](slice T,value E) (E, bool) {
  for _,v:=range slice {
    if v==value {
      return v,true
    }
  }
  // Declare a zero value like this
  var zero E
  return zero, false
}

Using type assertion on generic arguments

Sometimes you need to do something different based on the type of a value in a generic function. That
requires a type assertion or a type switch – both work for interfaces. However, there is no guarantee
that the function will be instantiated for an interface. This recipe shows how you can achieve this.

Working with Generics116

How to do it...

Let’s say you have a generic function that treats integers differently:

func Print[T any](value T) {
  // The following does not work because value is not necessarily an
  // interface{}.
  if intValue, ok:=value.(int); ok {
    ...
  } else {
    ...
  }
}

To make this work, you have to make sure the value is an interface:

func Print[T any](value T) {
  // Convert value to an interface
  valueIntf := any{value)
  if intValue, ok:=valueIntf.(int); ok {
    // Value is an integer
  } else {
    // Value is not an integer
  }
}

The same idea works for a type switch:

func Print[T any](value T) {
  switch v:=any(value).(type) {
  case int:
    // Value is an integer
  default;
    // Value is not an integer
  }
}

Generic types
The generic function syntax extends naturally to generic types. A generic type has the same type
parameters and constraints, and every method of that type also implicitly has the same parameters
as the type itself.

Generic types 117

Writing a type-safe set

A type-safe set can be implemented using a map[T]struct{}. One thing to be careful about is that
T cannot be any type. Only comparable types can be map keys, and there is a predefined constraint
to address this need.

How to do it...

1.	 Declare a parameterized set type using map:

type Set[T comparable] map[T]struct{}

2.	 Declare the methods of the type using the same type parameter(s). When declaring methods,
you have to refer to the type parameters by name only:

// Has returns if the set has the given value
func (s Set[T]) Has(value T) bool {
     _, exists := s[value]
     return exists
}

// Add adds values to s
func (s Set[T]) Add(values ...T) {
     for _, v := range values {
          s[v] = struct{}{}
     }
}

// Remove removes values from s
func (s Set[T]) Remove(values ...T) {
     for _, v := range values {
          delete(s, v)
     }
}

3.	 If necessary, create a generic constructor for the new type:

// NewSet creates a new set
func NewSet[T comparable]() Set[T] {
     return make(Set[T])
}

4.	 Instantiate the type to use it:

stringSet := NewSet[string]()

Working with Generics118

Note the explicit instantiation of the NewSet function with the string type parameter. The compiler
cannot infer what type you mean, so you have to spell out NewSet[string](). Then the compiler
instantiates the Set[string] type, which also instantiates all methods of that type.

An ordered map – using multiple type parameters

This implementation of an ordered map allows you to keep the order of elements added to a map
using a slice combined with a map.

How to do it...

1.	 Define a struct with two type parameters:

type OrderedMap[Key comparable, Value any] struct {
     m     map[Key]Value
     slice []Key
}

Since Key will be used as the map key, it has to be comparable. There are no constraints on the
value type.

Define the methods for the type. The methods are now declared using both Key and Value:

// Add key:value to the map
func (m *OrderedMap[Key, Value]) Add(key Key, value Value) {
     _, exists := m.m[key]
     if exists {
          m.m[key] = value
     } else {
          m.slice = append(m.slice, key)
          m.m[key] = value
     }
}

// ValueAt returns the value at the given index
func (m *OrderedMap[Key, Value]) ValueAt(index int) Value {
     return m.m[m.slice[index]]
}

// KeyAt returns the key at the given index
func (m *OrderedMap[Key, Value]) KeyAt(index int) Key {
     return m.slice[index]
}

// Get returns the value corresponding to the key, and whether or not

Generic types 119

// key exists
func (m *OrderedMap[Key, Value]) Get(key Key) (Value, bool) {
     v, bool := m.m[key]
     return v, bool
}

Tip
The type parameters for the receiver are matched by position, not name. In other words, you
can define a method as follows:

func (m *OrderedMap[K, V]) ValueAt(index int) V {

     return m.m[m.slice[index]]

}

Here, K is for Key, and V is for Value.

1.	 Define a constructor generic function if necessary:

func NewOrderedMap[Key comparable, Value any]() *OrderedMap[Key,
Value] {
     return &OrderedMap[Key, Value]{
          m:     make(map[Key]Value),
          slice: make([]Key, 0),
     }
}

Tip
A constructor is necessary in this case because we want to initialize the map in the generic struct.
It is tempting to check for a nil map every time you want to add something to the container. You
have to choose between the convenience of having a container type whose zero value is ready to
use versus the performance penalty you pay checking a nil map every time something is added.

7
Concurrency

Concurrency is a core part of the Go language. Unlike many other languages that support concurrency
via rich multi-threading libraries, Go provides few language primitives to write concurrent programs.

Let’s start by emphasizing that concurrency is not parallelism. Concurrency is about how you write
programs; parallelism is about how programs run. A concurrent program specifies what parts of
the program can run in parallel. Depending on the actual execution, concurrent parts of a program
may run sequentially or in parallel. A correct concurrent program yields the same result regardless
of how it is run.

This chapter introduces some of the Go concurrency primitives using recipes. In this chapter, you
will learn about the following:

•	 Creating goroutines

•	 Running multiple independent functions concurrently and waiting for them to end

•	 Sending and receiving data using channels

•	 Sending data to a channel from multiple goroutines

•	 Collecting the results of concurrent computations using channels

•	 Working with multiple channels using the select statement

•	 Canceling a goroutine

•	 Detecting cancelation using nonblocking select

•	 Updating shared variables concurrently

Doing things concurrently using goroutines
A goroutine is a function that runs concurrently with other goroutines. When a program starts, the
Go runtime creates several goroutines. One of these goroutines runs the garbage collector. Another
goroutine runs the main function. As the program executes, it creates more goroutines as necessary.

Concurrency122

A typical go program may have thousands of goroutines all running concurrently. The Go runtime
schedules these goroutines to operating system threads. Each operating system thread is assigned a
number of goroutines that it runs using time sharing. At any given moment, there can be as many
active goroutines as the number of logical processors:

Number of threads per core * Number of cores per CPU * Number of CPUs

Creating goroutines

Goroutines are an integral part of the Go language. You create goroutines using the go keyword.

How to do it...

Create goroutines using the go keyword followed by a function call:

func f() {
  // Do some work
}

func main() {
  go f()
  ...
}

When go f() is evaluated, the runtime creates a new goroutine and calls the f function. The
goroutine running main also continues running. In other words, when the go keyword is evaluated,
the program execution splits into two concurrent execution streams – one is the original execution
stream (in the preceding example, the stream that is running main) and the other runs the function
that comes after the go keyword.

The function can take arguments if necessary:

func f(i int) {
  // Do some work
}

func main() {
  var x int
  go f(x)
  ...
}

The arguments to the function are evaluated before the goroutine starts. That is, the main goroutine
first evaluates the argument of f (which is, in this case, the x value) and then creates a new goroutine
and runs f.

Doing things concurrently using goroutines 123

It is common practice to use a closure to run goroutines. They provide the context necessary for
understanding code. They also prevent passing many variables as arguments to goroutines:

func main() {
  var x int
  var y int
  ...
  go func(i int) {
    if y > 0 {
      // Do some work
    }
  }(x)
  ...
}

In the preceding code, x is passed as an argument to the goroutine, but y is captured.

When the function run by the go keyword ends, the goroutine terminates.

Running multiple independent functions concurrently and
waiting for them to complete

When you have multiple independent functions that do not share data, you can use this recipe to run
them concurrently. We will also use sync.WaitGroup to wait for the goroutines to finish.

How to do it...

1.	 Create an instance of sync.WaitGroup to wait for goroutines:

wg := sync.WaitGroup{}

A sync.WaitGroup is simply a thread-safe counter. We will use wg.Add(1) for each
goroutine we create, and use wg.Done() to subtract 1 whenever a goroutine ends. Then we
can wait for the waitgroup to reach zero, signaling the termination of all goroutines.

2.	 For each function that will run concurrently, do the following:

	� Add 1 to the wait group

	� Start a new goroutine

	� Call defer wg.Done() to make sure you signal goroutine termination

wg.Add(1)
go func() {
  defer wg.Done()
  // Do work
}()

Concurrency124

Tip
Instead of adding 1 to the wait group for every goroutine, you can simply add the number
of goroutines. For instance, if you know that you will create 5 goroutines, you can simply do
wg.Add(5) before creating the first goroutine.

3.	 Wait for the goroutines to end:

wg.Wait()

This call will block until wg reaches zero, that is, until all goroutines call wg.Done().

4.	 Now, you can use the results of all the goroutines.

The crucial detail of this recipe is that all goroutines are independent, which means the following:

All variables written by each goroutine are used exclusively by that goroutine until wg.Done().
Goroutines may read shared variables, but they cannot write to them. After wg.Done(), all
goroutines are terminated and the variables they wrote can be used.

5.	 No goroutine depends on the result of another goroutine.

You should not attempt to read the results of a goroutine before wg.Wait. That is a memory race
with undefined behavior.

A memory race happens when you write to a shared variable concurrently with other writes or reads.
The result of a program containing a memory race is undefined.

Communicating between goroutines using channels
More often than not, multiple goroutines have to communicate and coordinate to distribute work,
manage state, and collate results of computations. Channels are the preferred mechanism for this. A
channel is a synchronization mechanism with an optional fixed-size buffer.

Sending and receiving data using channels

A goroutine can send to a channel if there is another goroutine waiting to receive from it, or in the case of
a buffered channel, there is space available in the channel buffer. Otherwise, is blocked until it can send.

A goroutine can receive from a channel if there is another goroutine waiting to send to it, or in the case of a
buffered channel, there is data in the channel buffer. Otherwise, the receiver is blocked until it can receive.

How to do it...

1.	 Create a channel with the type of data it will pass. The following example creates a channel
that can pass strings.

ch := make(chan string)

Communicating between goroutines using channels 125

2.	 In a goroutine, send data elements to the channel. When all data elements are sent, close
the channel:

go func() {
  for _, str := range stringData {
     // Send the string to the channel. This will block until
     // another goroutine can receive from the channel.
     ch <- str
  }
  // Close the channel when done. This is the way to signal the
  // receiver goroutine that there is no more data available.
  close(ch)
}()

3.	 Receive data from the channel in another goroutine. In the following example, the main
goroutine receives strings from the channel and prints them. The for loop ends when the
channel is closed:

for str := range ch {
  fmt.Println(str)
}

Sending data to a channel from multiple goroutines

There are cases where you have many goroutines working on a piece of a problem, and when they are
done, they send the result using a channel. A problem with this situation is deciding when to close
the channel. This recipe shows how it is done.

How to do it...

1.	 Create the result channel with the data type it will pass:

ch := make(chan string)

2.	 Create the listener goroutine and a wait group to wait for its completion later. This goroutine
will be blocked until the other goroutines start sending data:

// Allocate results
results := make([]string,0)
// WaitGroup will be used later to wait for the listener
// goroutine to end
listenerWg := sync.WaitGroup{}
listenerWg.Add(1)
go func() {
  defer listenerWg.Done()
  // Collect results and store in a slice

Concurrency126

  for str:=range ch {
    results=append(results,str)
  }
}()

3.	 Create a wait group to keep track of the goroutines that will write to the result channel. Then,
create goroutines that send to the channel:

wg := sync.WaitGroup{}
for _,input := range inputs {
  wg.Add(1)
  go func(data string) {
    defer wg.Done()
    ch <- processInput(data)
  }(input)
}

4.	 Wait for the processing goroutines to end and close the result channel:

// Wait for all goroutines to end
wg.Wait()
// Close the channel to signal end of data
// This will signal the listener goroutine that no more data
// will be arriving via the channel
close(ch)

5.	 Wait for the listener goroutine to end:

listenerWg.Wait()

Now you can use the results slice.

Collecting the results of concurrent computations using channels

Often, you have multiple goroutines working on parts of a problem and you have to collect the result
of each goroutine to compile a single result object. Channels are the perfect mechanism for this.

How to do it...

1.	 Create a channel to collect the results of the computation:

resultCh := make(chan int)

In this example, the resultCh channel is a channel of int values. That is, the results of the
computations will be integers.

Communicating between goroutines using channels 127

2.	 Create a sync.WaitGroup instance to wait for the goroutines:

wg := sync.WaitGroup{}

3.	 Distribute work among goroutines. Each goroutine should have access to the resultCh. Add
each goroutine to the wait group, and make sure to call defer wg.Done() in the goroutine.

4.	 Perform the computation in the goroutine, and send the result to the resultCh:

var inputs [][]int=[]int{...}

...
for i:=range inputs {
  wg.Add(1)
  go func(data []int) {
     defer wg.Done()
     // Perform the computation
     // computeResult takes a []int, and returns int
     // Send the result to resultCh
     resultCh <- computeResult(data)
  }(inputs[i])
}

5.	 Here, you have to do two things: wait for all goroutines to complete and collect the results from
the resultCh. There are two ways you can do this:

	� Collect the results while waiting for the goroutines to end concurrently. That is, create a
goroutine and wait for the goroutines to end. When all goroutines are done, close the channel:

go func() {
  // Wait for the goroutines to end
  wg.Wait()
  // When all goroutines are done, close the channel
  close(resultCh)
}()

// Create a slice to contain results of the computations
results:=make([]int,0)
// Collect the results from the `resultCh`
// The for-loop will terminate when resultCh is closed
for result:=range resultCh {
  results=append(results,result)
}

Concurrency128

	� Collect the results asynchronously while waiting for the goroutines to end. When all goroutines
are completed, close the channel. However, when you close the channel, the goroutine that
collects the results may still be running. We have to wait for that goroutine to end as well.
We can use another wait group for that purpose:

results:=make([]int,0)
// Create a new wait group just for the result collection
// goroutine
collectWg := sync.WaitGroup{}
// Add the collection goroutine to the waitgroup
collectWg.Add(1)
go func() {
  // Announce the completion of this goroutine
  defer collectWg.Done()
  // Collect results. The for-loop will terminate when resultCh
  // is closed.
  for result:= range resultCh {
    results=append(results,result)
  }
}()

// Wait for the goroutines to end.
wg.Wait()
// Close the channel so the result collection goroutine can
// finish
close(resultCh)
// Now wait for the result collection goroutine to finish
collectWg.Wait()
// results slice is ready

Working with multiple channels using the select statement
You can only send data or receive data from a channel at any given time. If you are interacting with
multiple goroutines (and thus, multiple concurrent events), you need a language construct that will
let you interact with multiple channels at once. That construct is the select statement.

This section shows how select is used.

How to do it...

A blocking select statement chooses an active case from zero or more cases. Each case is a channel
send or channel receive event. If there are no active cases (that is, none of the channels can be sent to
or received from), select is blocked.

Working with multiple channels using the select statement 129

In the following example, the select statement waits to receive from one of two channels. The
program receives from only one of the channels. If both channels are ready, one of the channels will
be picked randomly. The other channel will be left unread:

ch1:=make(chan int)
ch2:=make(chan int)
go func() {
  ch1<-1
}()
go func() {
  ch2<-2
}()

select {
case data1:= <- ch1:
  fmt.Println("Read from channel 1: %v", data1)
case data2:= <- ch2:
  fmt.Println("Read from channel 2: %v", data2)
}

Canceling goroutines

Creating goroutines is easy and efficient in Go, but you also have to make sure your goroutines end
eventually. If a goroutine is left running unintentionally, it is called a “leaked” goroutine. If a program
keeps leaking goroutines, eventually it crashes with an out-of-memory error.

Some goroutines perform a limited number of operations and terminate naturally, but some run
indefinitely until an external stimulus is received. A common pattern for long-running goroutines to
receive such stimulus is to use a done channel.

How to do it...

1.	 Create a done channel with an empty data type:

done:=make(chan struct{})

2.	 Create a channel to provide input to goroutines:

input := make(chan int)

3.	 Create goroutines that look like this:

go func() {
  for {
    select {
      case data:= <- input:

Concurrency130

        // Process data
      case <-done:
        // Done signal. Terminate
        return
     }
  }
}()

To cancel the goroutine(s), simply close the done channel:

close(done)

This will enable the case <-done branch in all the goroutines that are listening to the done
channel, and they will terminate.

Detecting cancelation using nonblocking select

A non-blocking select has a default case. When the select statement runs, it checks all the
available cases, and if none of them are available, the default case is selected. This allows a select
to continue without blocking.

How to do it...

1.	 Create a done channel with an empty data type:

done:=make(chan struct{})

2.	 Create goroutines that look like this:

go func() {
  for {
    select {
      case <-done:
        // Done signal. Terminate
        return
       default:
         // Done signal is not sent. Continue
     }
     // Do work
  }
}()

To cancel the goroutine(s), simply close the done channel.

close(done)

Sharing memory 131

Sharing memory
One of the most famous Go idioms is: “Do not communicate by sharing memory, share memory by
communicating.” Channels are for sharing memory by communicating. Communicating by sharing
memory is done using shared variables in multiple goroutines. Even though it is discouraged, there
are many use cases where shared memory makes more sense than a channel. If at least one of the
goroutines updates a shared variable that is read by other goroutines, you have to ensure that there
are no memory races.

A memory race happens when a goroutine updates a variable concurrently while another goroutine
reads from it. When this happens, there is no guarantee that the update to that variable will be seen
by other goroutines. A famous example of this situation is the busy-wait loop:

func main() {
  done:=false
  go func() {
    // Wait while done==false
    for !done {}
    fmt.Println("Done is true now")
  }()
  done=true
  // Wait indefinitely
  select{}
}

This program has a memory race. The done=true assignment is concurrent with the for !done
loop. That means, even though the main goroutine runs done=true, the goroutine reading done
may never see that update, staying in the for loop indefinitely.

Updating shared variables concurrently

The Go memory model guarantees that the effect of a variable write is visible to instructions that
come after that write within that goroutine only. That is, if you update a shared variable, you have to
use special tools to make that update visible to other goroutines. A simple way to ensure this is to use
a mutex. Mutex stands for “mutual exclusion.” A mutex is a tool you can use to ensure the following:

•	 Only one goroutine updates a variable at any given time

•	 Once that update is done and the mutex is released, all goroutines can see that update

In this recipe, we show how this is done.

Concurrency132

How to do it...

The section of a program that updates shared variables is a “critical section.” You use a mutex to ensure
that only a single goroutine can enter its critical section.

Declare a mutex to protect a critical section:

// cacheMutex will be used to protect access to cache
var cacheMutex sync.Mutex
var cache map[string]any = map[string]any{}

A mutex protects a set of shared variables. For instance, if you have goroutines that update a single
integer, you declare a mutex for the critical sections that update that integer. You must use the same
mutex every time you read or write that integer value.

When updating the shared variable(s), first lock the mutex. Then perform the update and unlock
the mutex:

cacheMutex.Lock()
cache[key]=value
cacheMutex.Unlock()

With the preceding code, if multiple goroutines attempt to update cache, they will queue at
cacheMutex.Lock() and only one will be allowed. When that goroutine performs the update, it
will call cacheMutex.Unlock(), which will enable one of the waiting goroutines to acquire the
lock and update the cache again.

When reading the shared variable, first lock the mutex. Then perform the read, and then unlock
the mutex:

cacheMutex.Lock()
cachedValue, cached := cache[key]
cacheMutex.Unlock()
if cached {
  // Value found in cache
}

8
Errors and Panics

Go error handling has been nothing but polarizing. Those who came from a background in languages
with exception handling (such as Java) tend to hate it, and those who came from a background in
languages where errors are regular values returned from functions (such as C) feel comfortable with it.

Having a background in both, I am of the opinion that the explicit nature of error handling forces
you to think about exceptional situations at every step of the development. Error generation, error
passing, and error handling require the same type of discipline and scrutiny as the “happy path”
(which is when no errors happen).

If you noticed, I make a distinction between three phases of errors:

•	 Detection and generation of errors deal with detecting an exceptional situation and capturing it

•	 Passing of errors deals with allowing errors to be propagated up the stack, optionally decorating
them with contextual information

•	 Handling of errors deals with actually resolving the error, which may include terminating
the program

In this chapter, you will learn about the following:

•	 How to generate errors

•	 How to pass them by annotating them using contextual information

•	 How to handle errors

•	 Organizing errors in a project

•	 Dealing with panics

Returning and handling errors
This recipe shows how to detect errors and how to wrap errors with additional contextual information.

Errors and Panics134

How to do it...

Use the last return value of a function or method to return errors:

func DoesNotReturnError() {...}

func MayReturnError() error {...}

func MayReturnStringAndError() (string,error) {...}

If the function or method is successful, it will return nil error. If an error condition is detected
within the function or method, either return that error verbatim or wrap the error with another one
containing contextual information:

func LoadConfig(f fileName) (*Config, error) {
   file, err:=os.Open(f)
   if err!=nil {
      return nil, fmt.Errorf("file %s: %w", f,err)
   }
   defer file.Close()
   var cfg Config
   err = json.NewDecoder(file).Decode(&cfg)
   if err!=nil {
     return nil, fmt.Errorf("While unmarshaling %s: %w",f,err)
   }
   return &cfg, nil
}

Tip
Do not use panic as a replacement for error. panic should be used to signal a potential bug
or unrecoverable situation. An error is used to signal a context-dependent situation, such as
a missing file or invalid input.

How it works...

Go uses explicit error detection and handling. That means there is no implicit or hidden execution
path for errors (such as throwing an exception). Go errors are simply interface values and an error
being nil is interpreted as the absence of an error. The preceding function calls some file management
functions that can return an error. When that happens (that is, when the function returns a non-nil
error), this function simply wraps that error with additional information and returns it. The additional
information allows the caller, and sometimes the user of the program to determine the correct course
of action.

Wrapping errors to add contextual information 135

Wrapping errors to add contextual information
Using the standard library errors package, you can wrap an error with another error that contains
additional contextual information. This package also provides facilities and conventions that will let
you check if an error tree contains a particular error or extract a particular error from an error tree.

How to do it...

Add contextual information to an error using fmt.Errorf. In the following example, the returned
error will contain the error returned from os.Open, and it will also include the file name:

file, err := os.Open(fileName)
if err!=nil {
   return fmt.Errorf("%w: While opening %s",err,fileName)
}

Comparing errors
When you wrap an error with additional information, the new error value is not of the same type or
value as the original error. For instance, os.Open may return os.ErrNotExist if the file is not
found, and if you wrap this error with additional information, such as the file name, the caller of this
function will need a way to get to the original error to handle it properly. This recipe shows how to
deal with such wrapped error values.

How to do it...

Checking if there is an error or not is simple: check if an error value is nil or not:

file, err := os.Open(fileName)
if err!=nil {
  // File could not be opened
}

Checking if an error is what you expect should be done using errors.Is:

file, err := os.Open(fileName)
if errors.Is(err,os.ErrNotExist) {
  // File does not exist
}

Errors and Panics136

How it works...

errors.Is(err,target error) compares if err is equal to target by doing the following:

1.	 It checks if err==target.

2.	 If that fails, it checks if err has an Is(error) bool method by calling err.Is(target).

3.	 If that fails, it checks if err has an Unwrap() error method and err.Unwrap() is not
nil by checking if err.Unwrap() is equal to target.

4.	 If that fails, it checks if err has an Unwrap() []error method, and if target is equal
to any one of those slice elements.

The meaning of this is that if you wrap an error, the caller can still check if the wrapped error happened
and behave accordingly.

If you define an error using errors.New() or fmt.Errorf(), then the returned error interface
contains a pointer to an object. In this case, the fact that two errors have the same string representation
doesn’t mean that they are equal. The following program shows this situation:

var e1 = errors.New("test")
var e2 = errors.New("test")
if e1 != e2 {
   fmt.Println("Errors are different!")
}

In the preceding code snippet, even though the error strings are the same, e1 and e2 are pointers
pointing to different objects. The program will print Errors are different. Thus, declaring
errors like the following works:

var (
  ErrNotFound = errors.New("Not found")
)

A comparison to ErrNotFound will compare if an error value is a pointer to the same object
as ErrNotFound.

Structured errors
A structured error provides contextual information that can be crucial in handling the errors before
they reach the user of a program. This recipe shows how such errors can be used.

How to do it...

1.	 Define a struct containing metadata that captures the error situation.

2.	 Implement the Error() string method to make it an error.

Structured errors 137

3.	 If the error can wrap other errors, include an error or []error to store those.

4.	 Optionally, implement the Is(error) bool method to control how to compare this error.

5.	 Optionally, implement Unwrap() error or Unwrap() []error to return wrapped errors.

How it works...

Any data type implementing the error interface (containing only one method, Error() string)
can be used as an error. This means that you can create data structures containing detailed error
information that can be later acted upon. So, if you need several data fields to describe an error, instead
of building an elaborate string and returning it via fmt.Errorf, you can use a struct.

As an example, let’s assume you are parsing a multi-line formatted text input. Returning accurate
and useful information to your users is important; nobody will enjoy receiving a Syntax error
message without showing where the error is. So, you declare this error structure:

type ErrSyntax struct {
   Line int
   Col int
   Diag string
}

func (err ErrSyntax) Error() string {
  return fmt.Sprintf("Syntax error line: %d col: %d, %s", err.Line,
  err.Col, err.Diag)
}

You can now generate useful error information:

func ParseInput(input string) error {
  ...
  if nextRune != ',' {
     return ErrSyntax {
        Line: line,
        Col: col,
        Diag: "Expected comma",
    }
  }
  ...
}

You can use this error information to display useful messages to your users or control an interactive
response, such as positioning the cursor to where the error is or highlighting text near the error location.

Errors and Panics138

Wrapping structured errors
A structured error can be used to decorate another error with additional information by wrapping it.
This recipe shows how to do that.

How to do it...

1.	 Keep an error member variable (or a slice of errors) to store the root cause in the structure.

2.	 Implement Unwrap() error (or Unwrap() []error) method.

How it works...

You can wrap the root cause error in a structured error. This allows you to add structured contextual
information about the error:

type ErrFile {
   Name string
   When string
   Err error
}

func (err ErrFile) Error() string {
   return fmt.Sprintf("%s: file %s, when %s", err.Err, err.Name, err.
   When)
}

func (err ErrFile) Unwrap() error { return err.Err }

func ReadConfigFile(name string) error {
  f, err:=os.Open(name)
  if err!=nil {
     return ErrFile {
        Name: name,
        Err:err,
        When: "opening configuration file",
     }
  }
  ...
}

Comparing structured errors by type 139

Note that Unwrap is necessary. Without that, the following code will fail to detect that the error is
derived from os.ErrNotFound:

err:=ReadConfig("config.json")
if errors.Is(err,os.ErrNotFound) {
   // file not found
}

With the Unwrap method, the errors.Is function can descend the enclosed errors, and determine
if at least one of them is os.ErrNotFound.

Comparing structured errors by type
In languages that support try-catch blocks, you usually catch errors based on their type. You can
emulate the same functionality relying on errors.Is.

How to do it...

Implement the Is(error) bool method in your error type to define what type of equivalence
you care about.

How it works...

You may remember that the errors.Is(err,target) function first tests if err = target,
and if that fails, it tests if err.Is(target), provided err implements the Is(error) bool
method. So, you can use the Is(error) bool method to tune how to compare your custom error
types. Without the Is(error) bool method, errors.Is will compare using ==, which will fail
if the contents of two errors are different even if they are the same type. The following example allows
you to check if the given error contains ErrSyntax somewhere in the error tree:

type ErrSyntax struct {
   Line int
   Col int
   Err error
}

func (err ErrSyntax) Error() string {...}

func (err ErrSyntax) Is(e error) bool {
  _,ok:=e.(ErrSyntax)
  return ok
}

Errors and Panics140

Now, you can test if an error is a syntax error:

err:=Parse(input)
if errors.Is(err,ErrSyntax{}) {
   // err is a syntax error
}

Extracting a specific error from the error tree

How to do it...

Use the errors.As function to descend an error tree, find a particular error, and extract it.

How it works...

Similar to the errors.Is function, errors.As(err error, target any) bool descends
the error tree of err until an error that is assignable to target is found. That is done by the following:

1.	 It checks if the value pointed to by target is assignable to the value pointed to by err.

2.	 If that fails, it checks if err has an As(error) bool method by calling err.As(target).
If it returns true, then an error is found.

3.	 If not, it checks if err has an Unwrap() error method and err.Unwrap() is not nil,
descending the tree.

4.	 Otherwise, it checks if err has an Unwrap() []error method, and if it returns a non-empty
slice, it descends the tree for each of those until a match is found.

In other words, errors.As copies the error that can be assigned to target into target.

The following example can be used to extract an instance of ErrSyntax from an error tree:

func (err ErrSyntax) As(target any) bool {
   if tgt, ok:=target.(*ErrSyntax); ok {
      *tgt=err
      return true
   }
   return false
}

func main() {
  ...
  err:=Parse(in)
  var syntaxError ErrSyntax
  if errors.As(err,&syntaxError) {

Dealing with panics 141

    // syntaxError has a copy of the ErrSyntax
  }
  ...
}

Note the use of pointers here. The error struct is used as a value, and you want a copy of that error struct,
so you pass a pointer to it: an instance of ErrSyntax can be copied into an instance of *ErrSyntax.
If your program used *ErrSyntax as the error value, you need to send **ErrSyntax by declaring
var syntaxError *ErrSyntax and passing &syntaxError to copy the pointer into the
memory location pointed to by the double-pointer.

Dealing with panics
In general, a panic is an unrecoverable situation, such as resource exhaustion or a violation of an
invariant (that is, a bug). Some panics, such as out of memory or divide by zero, will be raised by the
runtime (or raised by the hardware and transferred to the program as a panic). You should generate
a panic in your program when you detect a bug. But how do you decide if a situation is a bug and
you should panic or an error?

In general, an external input (user input, data submitted by an API, or data read from a file) should
not cause a panic. Such situations should be detected and returned as meaningful errors to the user. A
panic in this situation would be, for instance, a failed compilation of a regular expression that is declared
as a constant string in your program. The input is not something that can be fixed by re-running the
program with different inputs; it is simply a bug.

If a panic is not handled with recover, the program will terminate by printing diagnostic output,
including the reason for panic and the stacks of active goroutines.

Panicking when necessary
Most of the time, deciding whether to panic or to return an error is not an easy decision. This recipe
offers some guidelines to make that decision easier.

How to do it...

There are two situations where you can panic. Panic if either of the following is the case:

•	 An invariant is violated

•	 The program cannot continue in the current state

An invariant is a condition that cannot be violated in a program. Thus, if you detect that it is violated,
instead of returning an error, panic.

Errors and Panics142

The following example is from a graph library I wrote. A graph contains nodes and edges, managed by
a *Graph structure. The Graph.NewEdge method creates a new edge between two nodes. Those
two nodes must belong to the same graph as the receiver of the NewEdge method so it is appropriate
to panic if that is not the case, as follows:

func (g *Graph) NewEdge(from,to *Node) *Edge {
  if from.graph!=g {
     panic("from node is not in graph")
  }
  if to.graph!=g {
     panic("to node is not in graph")
  }
   ...
}

In the preceding example, there is nothing that can be gained by returning an error from this method.
This is clearly a bug the caller did not realize, and if the program is allowed to continue, the integrity
of the Graph object will be violated, creating hard-to-find bugs. The best course of action is to panic.

The second situation is a broad case where continuation is not possible. As an example, consider you
are writing a web application and you load HTML templates from the file system. If the compilation
of such a template fails, the program cannot continue. You should panic.

Recovering from panics
An unhandled panic will terminate the program. Often, this is the only correct course of action.
However, there are cases where you want to fail whatever caused the error, log it, and continue. For
example, a server handling many requests concurrently does not terminate just because one of the
requests panicked. This recipe shows how you can recover from a panic.

How to do it...

Use a recover statement in a defer function:

func main() {
  defer func() {
     if r:=recover(); r != nil {
        // deal with the panic
     }
  }()

  ...
}

Changing return value in recover 143

How it works...

When a program panics, the panicking function will return after all deferred blocks are executed. The
stack of that goroutine will unroll one function after the other, cleaning up by running their deferred
statements, until the beginning of the goroutine is reached, or one of the deferred functions invokes
recover. If the panic is not recovered, the program will crash by printing out diagnostic and stack
information. If the panic is recovered, the recover() function will return whatever parameter was
given to panic, which can be any value.

So, if you recover from a panic, you should check if the recovered value is an error that you can use
to give more useful information.

Changing return value in recover
When you recover from a panic, you usually want to return some sort of error describing what
happened. This recipe shows you how to do that.

How to do it...

To change the return value of a function when recovered from a panic, use named return values.

How it works...

A named return value allows you to access and set the return values of a function using names. As
shown here, you can change the return value of a function using named return values:

func process() (err error) {
  defer func() {
     r:=recover()
     if e, ok:=r.(error); ok {
         err = e
     }

Capturing the stack trace of a panic
Printing or logging a stack trace when a panic is detected is a critical tool in identifying problems at
runtime. This recipe shows how you can add a stack trace to your logging messages.

Errors and Panics144

How to do it...

Use the debug.Stack function with recover:

import "runtime/debug"
import "fmt"

func main() {
    defer func() {
        if r := recover(); r != nil {
            stackTrace := string(debug.Stack())
            // Work with stackTrace
            fmt.Println(stackTrace)
        }
    }()
    f()
}

func f() {
   var i *int
   *i=0
}

When inside the recovery function, the debug.Stack function will return the stack of the panic
that is being recovered, not the stack where it is called. Thus, if you can log this information or print
it, it will show you the exact location of the source of the panic.

Warning
Getting the stack this way is an expensive operation. Use it carefully and when necessary.

The preceding program will print the following:

goroutine 1 [running]:
runtime/debug.Stack()
     /usr/local/go-faketime/src/runtime/debug/stack.go:24 +0x5e
main.main.func1()
     /tmp/sandbox381445105/prog.go:13 +0x25
panic({0x48bbc0?, 0x5287c0?})
     /usr/local/go-faketime/src/runtime/panic.go:770 +0x132
main.f(...)

Capturing the stack trace of a panic 145

     /tmp/sandbox381445105/prog.go:23
main.main()
     /tmp/sandbox381445105/prog.go:18 +0x2e

Here:

•	 prog.go:13 is where debug.Stack() is called

•	 prog.go:23 is where *i=0 is executed

•	 prog.go:18 is where f() is called

As you can see, the stack pinpoints the exact location of the error (prog,go:23).

9
The Context Package

Context means the circumstances in which something occurs. When we are talking about a program,
the context is the program environment, settings, and so on. For a server program (an HTTP server
responding to a client request, an RPC server responding to function calls, etc.) or a program that
responds to user requests (an interactive program, a command-line application, etc.), you can talk
about a request-specific context. A request-specific context is created when the server or program
starts processing a particular request and terminates when the processing ends. The request context
contains information such as a request identifier that helps you identify log messages generated while
processing a request, or the identity of the caller so you can determine the access rights of the caller.
One of the uses of the context package is to provide an abstraction of such a request context, that
is, an object that keeps request-specific data.

You may also have concerns about the running time of a request. You usually want to limit the amount
of time a request is processed, or you may want to detect that the client is no longer interested in the
results of the request (such as a WebSocket peer disconnecting). The context package is designed
to handle these use cases as well.

The context package defines the context.Context interface. It has two uses:

•	 Add a timeout and/or cancellation to request processing

•	 Pass request-specific metadata down the stack

The use of context.Context is not limited to server programs. The term “request processing”
should be taken in a broad sense: the request can be a network request through a TCP connection, an
HTTP request, a command read from a command line, running a program with a certain flag, and
so on. So, the uses for context.Context are much more diverse.

This chapter shows common uses of the context package. In this chapter, you will learn about
the following:

•	 Passing request-scoped data using context

•	 Using contexts for cancellation and timeouts

The Context Package148

Using context for passing request-scoped data
Request-scoped objects are those that are created when request processing starts and discarded when
request processing ends. These are usually lightweight objects, such as a request identifier, authentication
information identifying the caller, or loggers. In this section, you will see how these objects can be
passed around using a context.

How to do it...

The idiomatic way of adding data values to a context is as follows:

1.	 Define a context key type. This avoids accidental name collisions. The use of an unexported
type name such as the following is common. This pattern limits the ability to put or get context
values of this particular type to the current package:

type requestIDKeyType int

Warning
You might be tempted to use struct{} instead of int here. After all, struct{} does not
consume any additional memory. You have to be very careful when working with 0-size structures
as the Go language specification does not offer any guarantees about the equivalence of two
0-size structures. That is, if you create multiple variables of a 0-size type, they may sometimes
be equal and sometimes not. In short, do not use struct{} for this.

2.	 Define the key value, or values, using the key type. In the following code line, requestIDKey
is defined to be of type requestIDKeyType with the value 0 (requestIDKey is initialized
to its 0 value when declared):

var requestIDKey requestIDKeyType

3.	 Use context.WithValue to add the new value to the context. You can define a couple of
helper functions to set and get values to and from the context:

func WithRequestID(ctx context.Context,requestID string)
context.Context {
  return context.WithValue(ctx,requestIDKey,requestID)
}

func GetRequestID(ctx context.Context) string {
  id,_:=ctx.Value(requestIDKey).(string)
  return id
}

Using context for passing request-scoped data 149

4.	 Pass the new context to the functions called from the current function:

newCtx:=WithRequestID(ctx,requestID)
handleRequest(newCtx)

How it works...

You may have noticed that context.Context does not exactly look like a key-value map (there
is no SetValue method; in fact, context.Context is immutable) even though you can use
it to store key-value pairs. In fact, you cannot add a key value to a context, but you can get a new
context containing that key value while keeping the old context. Contexts have layers like an onion;
every addition to a context creates a new context that is linked to the old one, but with more features:

// ctx: An empty context
ctx := context.Background()
// ctx1: ctx + {key1:value1}
ctx1 := context.WithValue(ctx, "key1", "value1")
// ctx2: ctx1 + {key2:value2}
ctx2 := context.WithValue(ctx, "key2", "value2")

In the preceding code, ctx, ctx1, and ctx2 are three different contexts. The ctx context is empty.
ctx1 contains ctx and the key1: value1 key-value pair. ctx2 contains ctx1 and the key2:
value2 key-value pair . So, say you do the following:

val1,_ := ctx2.Value("key1")
val2,_ := ctx2.Value("key2")
fmt.Println(val1, val2)

This will print the following:

value1 value2

Say you do the same with ctx1:

val1,_ = ctx1.Value("key1")
val2,_ = ctx1.Value("key2")
fmt.Println(val1, val2)

This will print the following:

value1 <nil>

The following is used for ctx:

val1,_ = ctx.Value("key1")
val2,_ = ctx.Value("key2")
fmt.Println(val1, val2)

The Context Package150

This will print the following:

<nil> <nil>

Tip
Even though you cannot set the values in a context (that is, a context is immutable), you can
set a pointer to a struct and set the values in that struct.

That is:

type ctxData struct {
  value int
}

...
ctx:=context.WithValue(context.Background(),dataKey, &ctxData{})
...
if data,exists:=ctx.Value(dataKey); exists {
  data.(*ctxData).value=1
}

The standard library provides a couple of predefined context values:

•	 context.Background() returns a context that has no values and that cannot be canceled.
This is usually the base context for most operations.

•	 context.TODO() is similar to context.Background() with a name that says wherever
it is used should eventually be refactored to accept a real context.

There’s more...

A context is usually shared among multiple goroutines. You have to be careful about concurrency
issues especially if you put pointers to objects in a context. Take a look at the following example, which
shows an authentication middleware for an HTTP service:

type AuthInfo struct {
  // Set when AuthInfo is created
  UserID string
  // Lazy-initialized
  privileges map[string]Privilege
}

type authInfoKeyType int
var authInfoKey authInfoKeyType

Using context for passing request-scoped data 151

// Set the privileges if is it not initialized.
// Do not do this!!
func (auth *AuthInfo) GetPrivileges() map[string]Privilege {
   if auth.privileges==nil {
      auth.privileges=GetPrivileges(auth.UserID)
   }
   return auth.privileges
}

// Authentication middleware
func AuthMiddleware(next http.Handler) func(http.Handler) http.Handler
{
  return http.HandleFunc(func(w http.ResponseWriter,r *http.Request) {
     // Authenticate the caller
     var authInfo *AuthInfo
     var err error
     authInfo, err=authenticate(r)
     if err!=nil {
       http.Error(w,err.Error(),http.StatusUnauthorized)
       return
     }
     // Create a new context with the authentication info
     newCtx:=context.WithValue(r.Context(), authInfoKey, authInfo)
     // Pass the new context to the next handler
     next.ServeHTTP(w,r.WithContext(newCtx))
   })
}

The authentication middleware creates an *AuthInfo instance and calls the next handler in the chain
using a context with the authentication info. The problem in this code is that *AuthInfo contains
a privileges field that is initialized when AuthInfo.GetPrivileges is called. Since the
context can be passed to multiple goroutines by the handlers, this lazy initialization scheme is prone
to data races; several goroutines calling AuthInfo.GetPrivileges may attempt to initialize
the map multiple times, one overwriting the other.

This can be corrected using a mutex:

type AuthInfo struct {
  sync.Mutex
  UserID string
  privileges map[string]Privilege
}

The Context Package152

func (auth *AuthInfo) GetPrivileges() map[string]Privilege {
   // Use mutex to initialize the privileges in a thread-safe way
   auth.Lock()
   defer auth.Unlock()
   if auth.privileges==nil {
      auth.privileges=GetPrivileges(auth.UserID)
   }
   return auth.privileges
}

It can also be corrected by initializing the privileges once in the middleware:

     authInfo, err=authenticate(r)
     if err!=nil {
       http.Error(w,err.Error(),http.StatusUnauthorized)
       return
     }
     // Initialize the privileges here when the structure is created
     authInfo.GetPrivileges()

Using context for cancellations
There are several reasons why you might want to cancel a computation: the client may have disconnected,
or you may have multiple goroutines working on a computation and one of them failed, so you no
longer want the others to continue. You can use other methods, such as a done channel that you close
to signal cancellation, but a context can be more convenient depending on the use case. A context can
be canceled many times (only the first call will actually cancel; the remaining ones will be ignored),
whereas you cannot close an already closed channel as it will panic. Also, you can create a tree of
contexts where canceling one context only cancels goroutines controlled by it, without affecting others.

How to do it...

These are the steps to create a cancelable context and to detect a cancellation:

1.	 Use context.WithCancel to create a new cancelable context based on an existing context,
and a cancellation function:

ctx:=context.Background()
cancelable, cancel:=context.WithCancel(ctx)
defer cancel()

Make sure the cancel function is eventually called. Canceling releases the resources associated
with the context.

Using context for cancellations 153

2.	 Pass the cancelable context to computations or goroutines that can be canceled:

go cancelableGoroutine1(cancelable)
go cancelableGoroutine2(cancelable)
cancelableFunc(cancelable)

3.	 In the cancelable function, check whether the context is canceled using the ctx.Done()
channel, or ctx.Err():

func cancelableFunc(ctx context.Context) {
  // Process some data
  // Check context cancelation
  select {
     case <-ctx.Done():
        // Context canceled
        return
     default:
  }
  // Continue computation
}

Or, use the following:
 func cancelableFunc(ctx context.Context) {
   // Process some data
   // Check context cancelation
   if ctx.Err()!=nil {
       // Context canceled
       return
   }
   // Continue computation
}

4.	 To cancel a function manually, call the cancellation function:

ctx:=context.Background()
cancelable, cancel:=context.WithCancel(ctx)
defer cancel()
wg:=sync.WaitGroup{}
wg.Add(1)
go cancelableGoroutine1(cancelable,&wg)
if err:=process(ctx); err!=nil {
   // Cancel the context
   cancel()
   // Do other things
}
wg.Wait()

The Context Package154

5.	 Ensure the cancel function is called eventually (use defer cancel()):

cancelable, cancel := context.WithCancel(ctx)
defer cancel()
...

Warning
Ensuring cancel is called is important. If you do not cancel a cancelable context, goroutines
associated with that context will leak (i.e., there will be no way to terminate the goroutines and
they will consume memory).

Tip
The cancel function can be called multiple times. Subsequent calls will be ignored.

How it works...

context.WithCancel returns a new context and the cancel closure. The returned context is
a cancelable context based on the original context:

// Empty context, no cancelation
originalContext := context.Background()
// Cancelable context based on originalContext
cancelableContext1, cancel1 := context.WithCancel(originalContext)

You can use this context to control several goroutines:

go f1(cancelableContext1)
go f2(cancelableContext1)

You can also create other cancelable contexts based on a cancelable context:

cancelableContext2, cancel2 := context.WithCancel(cancelableContext)
go g1(cancelableContext2)
go g2(cancelableContext2)

Now, we have two cancelable contexts. Calling cancel2 will only cancel cancelableContext2:

cancal2() // canceling g1 and g2 only

Calling cancel1 will cancel both cancelableContext1 and cancelableContext2:

cancel1() // canceling f1, f2, g1, g2

Using context for timeouts 155

Context cancellation is not an automated way to cancel goroutines. You have to check for context
cancellation and cleanup accordingly:

func f1(cancelableContext context.Context) {
   for {
      if cancelableContext.Err()!=nil {
         // Context is canceled
         // Cleanup and return
         return
      }
      // Process
   }
}

Using context for timeouts
A timeout is simply an automated cancellation. The context will cancel after a timer expires. This is
useful in limiting resource consumption for computations that are not likely to finish.

How to do it...

These are the steps to create a context with timeout and to detect when a timeout event happens:

1.	 Use context.WithTimeout to create a new cancelable context that will auto-cancel after
a given duration based on an existing context and a cancellation function:

ctx:=context.Background()
timeoutable, cancel:=context.WithTimeout(ctx,5*time.Second)
defer cancel()

Alternatively, you can use WithDeadline to cancel the context at a given moment.

Make sure the cancel function is eventually called.

2.	 Pass the timeout context to computations or goroutines that can time out:

go longRunningGoroutine1(timeoutable)
go longRunningGoroutine2(timeoutable)

3.	 In the goroutine, check whether the context is canceled using the ctx.Done() channel
or ctx.Err():

func longRunningGoroutine(ctx context.Context) {
  // Process some data
  // Check context cancelation
  select {

The Context Package156

     case <-ctx.Done():
        // Context canceled
        return
     default:
  }
  // Continue computation
}

Alternatively, use the following:
 func cancelableFunc(ctx context.Context) {
   // Process some data
   // Check context cancelation
   if ctx.Err()!=nil {
       // Context canceled
       return
   }
   // Continue computation
}

4.	 To cancel a function manually, call the cancellation function:

ctx:=context.Background()
timeoutable, cancel:=context.WithTimeout(ctx, 5*time.Second)
defer cancel()
wg:=sync.WaitGroup{}
wg.Add(1)
go longRunningGoroutine(timeoutable,&wg)
if err:=process(ctx); err!=nil {
   // Cancel the context
   cancel()
   // Do other things
}
wg.Wait()

5.	 Ensure the cancel function is called eventually (use defer cancel()):

timeoutable, cancel := context.WithTimeout(ctx,5*time.Second)
defer cancel()
...

How it works...

The timeout feature is simply cancellation with an attached timer. When the timer expires, the context
is canceled.

Using context for timeouts 157

There’s more...

There may be situations where a goroutine blocks without any obvious way to cancel it. For instance,
you may block waiting to read from a network connection:

func readData(conn net.Conn) {
  // Read a block of data from the connection
  msg:=make([]byte,1024)
  n, err:=conn.Read(msg)
  ...
}

This operation cannot be canceled, because Read does not take Context. If you want to cancel such
an operation, you can close the underlying connection (or file) asynchronously. The following code
snippet demonstrates a use case where all data from a connection must be read within one second,
or a goroutine will close the connection asynchronously:

timeout, cancel := context.WithTimeout(context.Background(),1*time.
Second)
defer cancel()

// Close the connection when context times out
go func() {
   // Wait for cancelation signal
   <-cancelable.Done()
   // Close the connection
   conn.Close()
}()

wg:=sync.WaitGroup()
wg.Add(1)
// This goroutine must complete within a second, or the connection
// will be closed
go func() {
   defer wg.Done()
    // Read a block of data from the connetion
   msg:=make([]byte,1024)
   // This call may block
   n, err:=conn.Read(msg)
   if err!=nil {
      return
   }
   // Process data
}()

The Context Package158

wg.Wait() // Wait for the processing of connection to complete
...

Using cancellations and timeouts in servers
Network servers usually start a new context when a new request is received. Usually, the server
cancels the context when the requester closes the connection. Most HTTP frameworks, including
the standard library, follow this basic pattern. If you are writing your own TCP server, you have to
implement it yourself.

How to do it...

These are the steps to handle network connections with a timeout or cancellation:

1.	 When you accept a network connection, create a new context with a cancellation or timeout:

2.	 Ensure the context is canceled eventually.

3.	 Pass the context to the handler:

ln, err:=net.Listen("tcp",":8080")
if err!=nil {
  return err
}
for {
  conn, err:=ln.Accept()
  if err!=nil {
    return err
  }
  go func(c net.Conn) {
     // Step 1:
     // Request times out after duration: RequestTimeout
     ctx, cancel:=context.WithTimeout(context.
     Background(),RequestTimeout)

     // Step 2:
     // Make sure cancel is called
     defer cancel()

     // Step 3:
     // Pass the context to handler
     handleRequest(ctx,c)
  }(conn)
}

10
Working with Large Data

There are several ways you can utilize Go concurrency primitives to process large amounts of data
efficiently. Unlike threads, goroutines can be created without much overhead. Having thousands of
goroutines in a program is common. With that in mind, we will look at some common patterns of
dealing with large amounts of data concurrently.

This chapter includes the following recipes:

•	 Worker pools

•	 Connection pools

•	 Pipelines

•	 Working with large result sets

Worker pools
Let’s say you have large amounts of data elements (for instance, image files) and you want to apply
the same logic to each of them. You can write a function that processes one instance of the input, and
then call this function in a for loop. Such a program will process the input elements sequentially,
and if each element takes t seconds to process, all inputs will be completed at last at n.t seconds, n
being the number of inputs.

If you want to increase throughput by using concurrent programming, you can create a pool of worker
goroutines. You can feed the next input to an idle member of the worker pool, and while that is being
processed, you can assign the subsequent input to another member. If you have p logical processors
(which can be cores of physical processors) running in parallel, the result can be available in as fast
as n.t/p seconds (this is a theoretical upper limit because the distribution of load among parallel
processes is not always perfect, and there is also synchronization and communication overhead).

We will look at two different ways of implementing worker pools next.

Working with Large Data160

Capped worker pools

If there is not an expensive initialization (for instance, loading a file or establishing a network connection
can be expensive) for each worker, it is best to create workers as necessary with a given limit on the
number of workers.

How to do it...

Create a new goroutine for each input. Use a channel as a synchronized counter to limit the maximum
number of workers (here, the channel is used as a semaphore). Use an output channel to collect the
results, if any:

// Establish a maximum pool size
const maxPoolSize = 100

func main() {
    // 1. Initialization
    // Receive outputs from the pool via outputCh
    outputCh := make(chan Output)
    // A semaphore to limit the pool size
    sem := make(chan struct{}, maxPoolSize)

    // 2. Read outputs
    // Reader goroutine reads results until outputCh is closed
    readerWg := sync.WaitGroup{}
    readerWg.Add(1)
    go func() {
        defer readerWg.Done()
        for result := range outputCh {
            // process result
            fmt.Println(result)
        }
    }()

    // 3. Processing loop
    // Create the workers as needed, but the number of active workers
    // are limited by the capacity of sem
    wg := sync.WaitGroup{}
    // This loop sends the inputs to workers, creating them as
    // necessary
    for {
        nextInput, done := getNextInput()
        if done {
            break

Worker pools 161

        }
        wg.Add(1)
        // This will block if there are too many goroutines
        sem <- struct{}{}
        go func(inp Input) {
            defer wg.Done()
            defer func() {
                <-sem
            }()
            outputCh <- doWork(inp)
        }(nextInput)
    }

    // 4. Wait until processing is complete
    // This goroutine waits until all worker pool goroutines are done,
    // then closes the output channel
    go func() {
        // Wait until processing is complete
        wg.Wait()
        // Close the output channel so the reader goroutine can
        // terminate
        close(outputCh)
    }()

    // Wait until the output channel is closed
    readerWg.Wait()
    // If we are here, all goroutines are done
}

How it works...

1.	 First is initialization. We create two channels:

	� outputCh: The output of the worker pool. Each worker will write the result to this channel.

	� sem: The semaphore channel that will be used to limit the number of active workers. It is
created with a maxPoolSize capacity. When we start a new worker goroutines, we send
one element to this channel. Send operations will not block as long as the sem channel has
fewer than maxPoolSize elements in it. When a worker goroutine is done, it receives
one element from the channel, freeing capacity. Since this channel has maxPoolSize
capacity, a send operation will block until a goroutine ends and receives from the channel
if maxPoolSize workers are running.

Working with Large Data162

2.	 Read outputs: We start a goroutine to read from the outputCh before starting the process,
so the results can be read before all the input is sent to workers. Since the number of workers
is limited, the workers will block after creating maxPoolSize of them, so we have to start
listening for the outputs before creating the worker pool.

3.	 Processing loop: We read the next input and create a new worker to work on it. Active workers
are tracked with the wg WaitGroup, which will later be used to wait for the workers to finish.
Before creating a new worker, we send an element to the semaphore channel. If there are
already maxPoolSize workers running, this will block until one of them terminates. The
worker processes the input, writes the output to the outputCh and terminates, receiving one
element from the semaphore.

4.	 This goroutine waits for the WaitGroup that keeps track of the workers. When all workers are
done, the output channel is closed. That also signals the reader WaitGroup created at Step 2.

5.	 Wait until output processing is complete. The program has to wait until all outputs are generated.
This only happens after the closing of the outputCh (which happens at #4), and then releasing
of the readerWg.

Fixed-size worker pools

A fixed-size worker pool makes sense if creating a worker is an expensive operation. Simply create
the maximum number of workers that read from a common input channel. This input channel deals
with distributing work among the available workers.

How to do it...

There are several ways this can be achieved. We will look at two.

In the following function, a fixed-size worker pool is created with poolSize workers. All workers
read from the same input channel and write the output to the same output channel. This program
uses a reader goroutine to collect the results from the worker pool while providing the inputs in the
same goroutine as the caller:

const poolSize = 50

func workerPoolWithConcurrentReader() {
    // 1. Initialization
    // Send inputs to the pool via inputCh
    inputCh := make(chan Input)
    // Receive outputs from the pool via outputCh
    outputCh := make(chan Output)

    // 2. Create the pool of workers
    wg := sync.WaitGroup{}
    for i := 0; i < poolSize; i++ {

Worker pools 163

        wg.Add(1)
        go func() {
            defer wg.Done()
            for work := range inputCh {
                outputCh <- doWork(work)
            }
        }()
    }
    // 3.a Reader goroutine
    // Reader goroutine reads results until outputCh is closed
    readerWg := sync.WaitGroup{}
    readerWg.Add(1)
    go func() {
        defer readerWg.Done()
        for result := range outputCh {
            // process result
            fmt.Println(result)
        }
    }()

    // 4. Wait workers
    // This goroutine waits until all worker pool goroutines are done,
    // then closes the output channel
    go func() {
        // Wait until processing is complete
        wg.Wait()
        // Close the output channel so the reader goroutine can
        // terminate
        close(outputCh)
    }()

    // 5.a Send inputs
    // This loop sends the inputs to the worker pool
    for {
        nextInput, done := getNextInput()
        if done {
            break
        }
        inputCh <- nextInput
    }
    // Close the input channel, so worker pool goroutines terminate
    close(inputCh)
    // Wait until the output channel is closed
    readerWg.Wait()

Working with Large Data164

    // If we are here, all goroutines are done
}

The following version uses a goroutine to submit the work to the worker pool, while reading the results
in the same goroutine as the caller:

func workerPoolWithConcurrentWriter() {
    // 1. Initialization
    // Send inputs to the pool via inputCh
    inputCh := make(chan Input)
    // Receive outputs from the pool via outputCh
    outputCh := make(chan Output)

    // 2. Create the pool of workers
    wg := sync.WaitGroup{}
    for i := 0; i < poolSize; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            for work := range inputCh {
                outputCh <- doWork(work)
            }
        }()
    }

    // 3.b Writer goroutine
    // Writer goroutine submits work to the worker pool
    go func() {
        for {
            nextInput, done := getNextInput()
            if done {
                break
            }
            inputCh <- nextInput
        }
        // Close the input channel, so worker pool goroutines
        // terminate
        close(inputCh)
    }()

    // 4. Wait workers
    // This goroutine waits until all worker pool goroutines are done,
    // then closes the output channel

Worker pools 165

    go func() {
        // Wait until processing is complete
        wg.Wait()
        // Close the output channel so the reader goroutine can
        // terminate
        close(outputCh)
    }()

    // 5.b Read results
    // Read results until outputCh is closed
    for result := range outputCh {
        // process result
        fmt.Println(result)
    }
}

How it works...

1.	 First is initialization. We create two channels:

	� inputCh: This is the input to the worker pool. Each worker in the pool reads from the same
inputCh in a for-range loop, so when a worker receives an input, it stops listening
from the channel, allowing another worker to pick up the next input.

	� outputCh: This is the output of the worker pool. All workers write the output to this
channel when they are done.

2.	 Create the pool of workers: Since this is a fixed-size pool, we can create the workers in a simple
for-loop. A WaitGroup is necessary so that we can wait for the processing to complete.
Each worker reads from the inputCh until it is closed, processes the input, and writes to
the outputCh.

The rest of the algorithm is different for the two examples. Let’s start by looking at the first case:

1.	 Reader goroutine: The output of the worker pool is read in this separate goroutine until the
outputCh is closed. When the outputCh is closed, the readerWg is signaled.

2.	 Wait workers: This is a separate goroutine that waits for the completion of all workers. When all
workers terminate (which happens because the inputCh is closed), it closes the outputCh.

3.	 This for loop sends inputs to the inputCh, and then closes the inputCh. This causes all
the workers to terminate when they complete their work. When all the workers terminate, the
outputCh is closed by the goroutine created at #4. When the output processing is complete,
readerWg is signaled, terminating computation.

Working with Large Data166

Next, let’s look at the second case:

1.	 Writer goroutine: The inputs to the worker pool are generated by this goroutine. It sends
all inputs to the inputCh one by one, and when all inputs are sent, it closes the inputCh,
causing the worker pool to terminate.

2.	 Wait workers: These work the same as in the preceding case.

3.	 Read results: This for loop reads the results from the outputCh until it is closed. The
outputCh will be closed when all workers are completed.

Connection pools

A connection pool is useful when dealing with multiple users of a scarce resource where establishing
an instance of that resource can be expensive, such as a network connection, or database connection.
Using a pair of channels, you can implement an efficient thread-safe connection pool.

How to do it...

Create a connection pool type with two channels with PoolSize capacity :

•	 available keeps the connections that are already established, but returned to the pool

•	 total keeps the total number of connections, that is, the number of available plus the
number of connections that are actively in use

To get a connection from the pool, check the available channel. If one is available, return that.
Otherwise, check the total connection pool , and create a new one if the limit is not exceeded.

Users of this pool should return the connections to the pool after they are done by sending the
connection to the available channel.

The following code snippet illustrates such a connection pool:

type ConnectionPool struct {
    // This channel keeps connections returned to the pool
    available chan net.Conn
    // This channel counts the total number of connection active
    total     chan struct{}
}

func NewConnectionPool(poolSize int) *ConnectionPool {
  return &ConnectionPool {
    available: make(chan net.Conn,poolSize),
    total: make(chan struct{}, poolSize),
 }
}

Worker pools 167

func (pool *ConnectionPool) GetConnection() (net.Conn, error) {
    select {
    // If there are connections available in the pool, return one
    case conn := <-pool.available:
        fmt.Printf("Returning an idle connection.\n")
        return conn, nil

    default:
        // No connections are available
        select {
        case conn := <-pool.available:
            fmt.Printf("Returning an idle connection.\n")
            return conn, nil

        case pool.total <- struct{}{}: // Wait until pool is not full
            fmt.Println("Creating a new connection")
            // Create a new connection
            conn, err := net.Dial("tcp", "localhost:2000")
            if err != nil {
                return nil, err
            }
            return conn, nil
        }
    }
}

func (pool *ConnectionPool) Release(conn net.Conn) {
    pool.available <- conn
    fmt.Printf("Releasing a connection. \n")
}

func (pool *ConnectionPool) Close(conn net.Conn) {
    fmt.Println("Closing connection")
    conn.Close()
    <-pool.total
}

How it works...

1.	 Initialize the connection pool with a PoolSize:

pool := NewConnectionPool(PoolSize)

Working with Large Data168

2.	 This will create two channels, both with PoolSize capacity. The available channel
will hold all connections that are returned to the pool while total will keep the number of
established connections.

3.	 To get a new connection, use the following:

conn, err := pool.GetConnection()

This implementation of GetConnection illustrates how channel priorities can be established.
GetConnection will return an idle connection if one is available in the available channel.
Otherwise, it will enter the default case where it will either create a new connection or use
one that is returned to the available channel.

Note the pattern of nested select statements in GetConnection. This is a common
pattern for implementing priority among channels. If there is a connection available, then case
conn := <-pool.available will be chosen and the connection will be removed from
the available connections channel. However, if there are no connections available when the
first select statement is run, the default case will execute, which will execute a select
between the conn:=<-pool.available and pool.total<-struct{}{} cases. If the
first case becomes available (which happens when some other goroutine returns a connection
to the pool), that connection will be returned to the caller. If the second case becomes available
(which happens when a connection is closed, thus removing an element from pool.total),
a new connection is created and returned to the caller.

4.	 When the client of the pool is done with the connection, it should call the following:

pool.Release(conn)

5.	 This will add the connection to the available channel.

If a connection becomes unresponsive, it can be closed by the client. When this happens, the
pool should be notified, and total should be decremented but the connection should not be
added to available. This is done by the following:

pool.Close(conn)

Pipelines
Whenever you have several stages of operations performed on an input, you can construct a pipeline.
Goroutines and channels can be used to construct high-throughput processing pipelines with
different structures.

Simple pipeline without fan-out/fan-in

A simple pipeline can be constructed by connecting each stage running in its own goroutine using
channels. The structure of the pipeline looks like Figure 10.1.

Pipelines 169

Figure 10.1: Simple asynchronous pipeline

How to do it...

This pipeline uses a separate error channel to report processing errors. We use a custom error type
to capture diagnostic information:

type PipelineError struct {
    // The stage in which error happened
    Stage   int
    // The payload
    Payload any
    // The actual error
    Err     error
}

Every stage is implemented as a function that creates a new goroutine. The goroutine reads input data
from an input channel, and writes the output to an output channel:

func Stage1(input <-chan InputPayload, errCh chan<- error) <-chan
Stage2Payload {
    // 1. Create the output channel for this stage.
    // This will be the input for the next stage
    output := make(chan Stage2Payload)
    // 2. Create processing goroutine
    go func() {
        // 3. Close the output channel when done
        defer close(output)
        // 4. Process all inputs until input channel is closed
        for in := range input {
            // 5. Process data
            err := processData(in.Id)
            // 6. Send errors to the error channel
            if err != nil {
                errCh <- PipelineError{
                    Stage:   1,
                    Payload: in,
                    Err:     err,
                }
                continue
            }
            // 7. Send the output to the next stage

Working with Large Data170

            output <- Stage2Payload{
                Id: in.Id,
            }
        }
    }()
    return output
}

Stages 2 and 3 are implemented using the same pattern.

The pipeline is put together as follows:

func main() {
    // 1. Create the input and error channels
    errCh := make(chan error)
    inputCh := make(chan InputPayload)

    // 2. Prepare the pipeline by attaching stages
    outputCh := Stage3(Stage2(Stage1(inputCh, errCh), errCh), errCh)

    // 3. Feed input asynchronously
    go func() {
        defer close(inputCh)
        for i := 0; i < 1000; i++ {
            inputCh <- InputPayload{
                Id: i,
            }
        }
    }()

    // 4. Listen to the error channel asynchronously
    go func() {
        for err := range errCh {
            fmt.Println(err)
        }
    }()

    // 5. Read outputs
    for out := range outputCh {
        fmt.Println(out)
    }
    // 6. Close the error channel
    close(errCh)
}

Pipelines 171

For each stage, follow these steps:

1.	 Create the output channel for the stage. This will be passed into the next stage as the input channel.

2.	 The processing goroutine continues running after the stage function returns.

3.	 Make sure the output channel of this stage is closed when the processing goroutine terminates.

4.	 Read inputs from the previous stage until the input channel is closed.

5.	 Process the input.

6.	 If there is an error, send the error to the error channel. No output will be generated.

7.	 Send the output to the next stage.

Warning
Each stage runs in its own goroutine. That means that once you pass the payload to the next
stage, you should not access that payload in the current stage. If the payload contains pointers,
or if the payload itself is a pointer, data races may occur.

The pipeline setup is done as follows:

1.	 Create the input channel and the error channel.

Attach stages to form the pipeline. The output of stage n becomes the input of stage n+1. The
output of the last stage becomes the output channel.

2.	 Send the inputs to the input channel asynchronously. When all inputs are sent, close the input
channel. This will terminate the first stage, closing its output channel, which is also the input
channel for stage 2. This goes on until all stages exit.

3.	 Start a goroutine to listen and record errors.

4.	 Collect the outputs.

5.	 Close the error channel so that the error collecting goroutine terminates.

Pipeline with worker pools as stages

The previous example used a single worker for each stage. You can increase the throughput of a
pipeline by replacing each stage with worker pools. The resulting pipeline is depicted in Figure 10.2.

Figure 10.2: Pipeline with worker pools as stages

Working with Large Data172

How to do it...

Each stage now creates multiple goroutines, all reading from the same input channel (fan-out). The
output of each worker is written to a common output channel (fan-in), which becomes the input for
the next stage. We can no longer close the stage output channel whenever the input channel is closed
because there are now multiple goroutines writing to that output channel. Instead, we use a wait group
and a second goroutine to close the output when all of the processing goroutines terminate:

func Stage1(input <-chan InputPayload, errCh chan<- error, nInstances
int) <-chan Stage2Payload {
    // 1. Create the common output channel
    output := make(chan Stage2Payload)
    // 2. Close the output channel when all the processing is done
    wg := sync.WaitGroup{}
    // 3. Create nInstances goroutines
    for i := 0; i < nInstances; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            // Process all inputs
            for in := range input {
                // Process data
                err := processData(in.Id)
                if err != nil {
                    errCh <- PipelineError{
                        Stage:   1,
                        Payload: in,
                        Err:     err,
                    }
                    continue
                }
                //Send output to the common output channel
                output <- Stage2Payload{
                    Id: in.Id,
                }
            }
        }()
    }
    // 4. Another goroutine waits until all workers are done, and
    //closes the output channel

Pipelines 173

    go func() {
        wg.Wait()
        close(output)
    }()
    return output
}

The pipeline is constructed as in the previous case:

func main() {
    errCh := make(chan error)
    inputCh := make(chan InputPayload)
    nInstances := 5
    // Prepare the pipeline by attaching stages
    outputCh := Stage3(Stage2(Stage1(inputCh, errCh, nInstances),
    errCh, nInstances), errCh, nInstances)

    // Feed input asynchronously
    go func() {
        defer close(inputCh)
        for i := 0; i < 1000; i++ {
            inputCh <- InputPayload{
                Id: i,
            }
        }
    }()

    // Listen to the error channel asynchronously
    go func() {
        for err := range errCh {
            fmt.Println(err)
        }
    }()

    // Read outputs
    for out := range outputCh {
        fmt.Println(out)
    }
    // Close the error channel
    close(errCh)
}

Working with Large Data174

How it works...

For each stage, follow these steps:

1.	 Create the output channel, which will become the input channel for the next stage.

There are multiple goroutines reading from the same input channel in a for-range loop, so when
the input channel is closed, all those goroutines will terminate. However, we cannot defer
close the output channel, because that will result in closing the output channel multiple times
(which will panic). So instead, we use a WaitGroup to keep track of the worker goroutines.
A separate goroutine waits on that wait group, and when all goroutines terminate, it closes the
output channel.

2.	 Create nInstances goroutines that all read from the same input channel, and write to the
output channel. In case of an error, the workers send the error to the error channel.

3.	 This is the goroutine that waits for the worker goroutines to finish. When they do, it closes the
output channel.

The pipeline setup is identical to the previous section, except that the initialization also sends the
worker pool size to stage functions.

Pipeline with fan-out and fan-in

In this setup, stages are wired one after the other using dedicated channels, as shown in Figure 10.3:

Figure 10.3: Pipeline with fan-out and fan-in

How to do it...

Each pipeline stage reads from a given input channel, and writes to an output channel, as follows:

func Stage1(input <-chan InputPayload, errCh chan<- error) <-chan
Stage2Payload {
    output := make(chan Stage2Payload)
    go func() {
        defer close(output)
        // Process all inputs
        for in := range input {
            // Process data

Pipelines 175

            err := processData(in.Id)
            if err != nil {
                errCh <- PipelineError{
                    Stage:   1,
                    Payload: in,
                    Err:     err,
                }
                continue
            }
            output <- Stage2Payload{
                Id: in.Id,
            }
        }
    }()
    return output
}

A separate fanIn function takes a list of output channels, and combines them using a goroutine
listening to each channel:

func fanIn(inputs []<-chan OutputPayload) <-chan OutputPayload {
    result := make(chan OutputPayload)

    // Listen to input channels in separate goroutines
    inputWg := sync.WaitGroup{}
    for inputIndex := range inputs {
        inputWg.Add(1)
        go func(index int) {
            defer inputWg.Done()
            for data := range inputs[index] {
                // Send the data to the output
                result <- data
            }
        }(inputIndex)
    }

    // When all input channels are closed, close the fan in ch
    go func() {
        inputWg.Wait()
        close(result)
    }()

    return result
}

Working with Large Data176

The pipeline is setup in a for-loop by combining the output of each stage to the input of the next stage.
The resulting output channels are all directed to the fanIn function:

func main() {
    errCh := make(chan error)
    inputCh := make(chan InputPayload)

    poolSize := 5
    outputs := make([]<-chan OutputPayload, 0)
    // All Stage1 goroutines listen to a single input channel
    for i := 0; i < poolSize; i++ {
        outputCh1 := Stage1(inputCh, errCh)
        outputCh2 := Stage2(outputCh1, errCh)
        outputCh3 := Stage3(outputCh2, errCh)
        outputs = append(outputs, outputCh3)
    }

    outputCh := fanIn(outputs)

    // Feed input asynchronously
    go func() {
        defer close(inputCh)
        for i := 0; i < 1000; i++ {
            inputCh <- InputPayload{
                Id: i,
            }
        }
    }()

    // Listen to the error channel asynchronously
    go func() {
        for err := range errCh {
            fmt.Println(err)
        }
    }()

    // Read outputs
    for out := range outputCh {
        fmt.Println(out)
    }
    // Close the error channel
    close(errCh)

}

Pipelines 177

How it works...

The worker stages are identical to the simple pipeline case. The fan-in stage works as follows.

For every output channel, the fan-in function creates a goroutine that reads data from that output
channel and writes to a common channel. This common channel becomes the combined output
channel of the pipeline. The fan-in function creates another goroutine that waits on a wait group that
keeps track of all the goroutines. When they are all complete, this goroutine closes the output channel.

The main constructs the pipeline by connecting the output of each stage to the input of the next. The
output channels of the last stage are stored in a slice and passed to the fan-in function. The output
channel of the fan-in function becomes the combined output of the pipeline.

Note that all these pipeline variations use a separate error channel. An alternative approach is to store
any error in the payload and pass it to the next stage. If the incoming payload has a non-nil error, all
stages pass it to the next one, so the payload can be recorded as an error at the end of the pipeline:

type Stage2Paylaod struct {
   // Payload data
   Err error
}

func Stage2(input <-chan Stage2Payload) <-chan Stage3Payload {
    output := make(chan Stage2Payload)
    go func() {
        defer close(output)
        // Process all inputs
        for in := range input {
            // If there is error, pass it
            if in.Err!=nil {
               output <- StagerPayload {
                  Err: in.Err,
               }
               continue
             }
             ...

Also note that except for the simple pipeline case, they also return results out of order because multiple
inputs go through the pipeline at any given moment, and there is no guarantee on the order they
arrive at the output.

Working with Large Data178

Working with large result sets
When working with potentially large result sets, it may not always be feasible to load all data to
memory and work on it. You may need to stream data elements in a controlled manner. This section
shows how to deal with such situations using concurrency primitives.

Streaming results using a goroutine

In this use case, a goroutine sends the results of a query via a channel. A context can be used to cancel
the streaming goroutine.

How to do it...

Create a data structure that holds the data elements and error information:

type Result struct {
  Err error
  // Other data elements
}

The StreamResults function runs the database query and creates a goroutine that iterates the
query results. The goroutine sends each result via a channel:

func StreamResults(
  ctx context.Context,
  db *sql.DB,
  query string,
  args...any,
) (<-chan Result, error) {
  rows, err:=db.QueryContext(ctx,query,args...)
  if err!=nil {
    return nil, err
  }
  output:=make(chan Result)
  go func() {
    defer rows.Close()
    defer close(result)
    if rows.Next() {
       var result Result
       // Check context cancellation
       if result.Err = ctx.Err(); result.Err!=nil {
          // Context canceled. return
          output<-result
          return

Working with large result sets 179

       }
       // Set result fields
       buildResult(rows,&result)
       output<-result
    }
    // If there was an error, return it
    if result.Err=rows.Err(); result.Err!=nil {
       output<-result
    }
  }()
  return output
}

Use the streaming results as follows:

// Setup a cancelable context
cancelableCtx, cancel := context.WithCancel(ctx)
defer cancel()

// Call the streaming API
results, err := StreamResults(cancelableCtx,db,"SELECT EMAIL FROM
USERS")
if err!=nil {
  return err
}
// Collect and process results
for result:=range results {
   if result.Err!=nil {
      // Handle error in the result
      continue
    }
    // Process the result
    if err:=ProcessResult(result); err!=nil {
      // Processing error. Cancel streaming results
      cancel()
      // Expect to receive at least one more message from the channel,
      // because the streaming gorutine sends the error
      for range results {}
    }
}

Working with Large Data180

How it works...

Even though we looked at a database query example, this pattern is useful any time you are dealing with
a function that generates potentially large amounts of data. Instead of loading all data into memory,
this pattern loads and processes data items one by one.

The StreamResults generator function starts a goroutine closure that captures the context and
additional information necessary to produce results (in this case, a sql.Rows instance). The generator
function creates a channel and returns immediately. The goroutine collects results and sends them to
the channel. When all results are processed or an error is detected, the channel is closed.

It is now up to the caller to communicate with the goroutine. The caller collects the results from the
channel until the channel is closed, and processes them one by one. The caller also checks the error
field in the received message to handle any errors detected by the goroutine.

This scheme uses a cancelable context. When the context is canceled, the goroutine sends another
message through the channel before closing it, so the caller must drain the channel if context
cancellation happens.

11
Working with JSON

JSON is an acronym for JavaScript Object Notation. It is a popular format for data interchange because
JSON objects closely resemble structured types (structs in Go), and it is text-based encoding,
making the encoded data human-readable. It supports arrays, objects (name-value pairs), and relatively
few basic types (strings, numbers, booleans, and null). These properties make JSON a fairly easy
format to work with.

Encoding refers to the process of transforming data elements into a sequence of bytes. When you
encode (or marshal) data elements in JSON, you create a textual representation of those data elements
while following JSON syntax rules. The reverse process, decoding (or unmarshaling) assigns JSON
values to Go objects. The encoding process is lossy: you have to describe data values as text, and that
is not always obvious for complex data types. When you decode such data, you have to know how to
interpret the textual representation so you can parse the JSON representation correctly.

In this chapter, we will first look at the encoding and decoding of basic data types. Then we will look
at some recipes that deal with more complicated data types and use cases. You should use these recipes
as a guide when implementing your own solutions. These recipes demonstrate solutions to particular
use cases, and you may need to adopt them for your specific needs.

This chapter includes the following recipes:

•	 Encoding structs

•	 Dealing with embedded structs

•	 Encoding without defining structs

•	 Decoding structs

•	 Decoding with interfaces, maps, and slices

•	 Other ways of decoding numbers

•	 Marshaling/unmarshaling custom data types

•	 Custom marshaling/unmarshaling of object keys

Working with JSON182

•	 Dynamic field names

•	 Polymorphic data structures

•	 Streaming JSON data

Marshaling/unmarshaling basics

The encoding/json package of the standard library provides convenient functions and conventions
to encode/decode JSON data.

Encoding structs
Go struct types are usually encoded as JSON objects. This section shows the standard library tools
that deal with the encoding of data types.

How to do it...

1.	 Use json tags to annotate struct fields with their JSON keys:

type Config struct {
  Version   string `json:"ver"`  // Encoded as "ver"
  Name      string               // Encoded as "Name"
  Type      string `json:"type,omitempty"` // Encoded as "type",
   // and will be omitted if
   // empty
  Style     string `json:"-"`    // Not encoded
  value     string               // Unexported field, not encoded
  kind      string `json:"kind"` // Unexported field, not encoded
}

2.	 Use the json.Marshal function to encode Go data objects in JSON. The standard library
uses the following conventions for basic types:

Go Declaration Value JSON output

NumberValue int json:”num” 0 “num”: 0

NumberValue *int json:”num” nil “num”: null

NumberValue *int json:”num,omitempty” nil omitted

BoolValue bool json:”bvalue” true “bvalue”: true

BoolValue *bool json:”bvalue” nil “bvalue”: null

BoolValue *bool json:”bvalue,omitempty” nil omitted

StringValue string json:”svalue” “str” “svalue”:”str”

Encoding structs 183

Go Declaration Value JSON output
StringValue string json:”svalue” “” “svalue”:””

StringValue string json:”svalue,omitempty” “str” “svalue”:”str”

StringValue string json:”svalue,omitempty” “” omitted
StringValue *string `json:”svalue” nil “svalue”: null

StringValue *string `json:”svalue,omitempty” nil omitted

•	 The struct and map types are marshaled as JSON objects

•	 Slice and array types are marshaled as JSON arrays

•	 If a type implements the json.Marshaler interface, then the json.Marshaler.
MarshalJSON method of the variable instance is called to encode data

•	 If a type implements the encoding.TextMarshaler interface, then the value is encoded
as a JSON string, and the string value is obtained from the encoding.TextMarshaler.
MarshalText method of the value

•	 Anything else will fail with UnsupportedValueError

Tip
Only exported fields of struct types can be marshaled.

Tip
If there are no JSON tags for a struct field, its JSON object key will be the same as the field name.

Consider the following code segment:

type Config struct {
  Version   string `json:"ver"`  // Encoded as "ver"
  Name      string               // Encoded as "Name"
  Type      string `json:"type,omitempty"` // Encoded as "type",
   // and will be omitted if
   // empty
  Style     string `json:"-"`    // Not encoded
  value     string               // Unexported field, not encoded
  kind      string `json:"kind"` // Unexported field, not encoded
}
...
cfg := Config{
     Version: "1.1",
     Name:    "name",

Working with JSON184

     Type:    "example",
     Style:   "json",
     value:   "example config value",
     kind:    "test",
}
data, err := json.Marshal(cfg)
fmt.Println(string(err))

This prints the following:

{"ver":"1.1","Name":"name","type":"example"}

Tip
The order of fields in the encoded JSON object is the same as the order in which fields are declared.

Dealing with embedded structs
Struct fields of a struct type will be encoded as JSON objects. If there are embedded structs, then the
encoder has two options: encode the embedded struct at the same level as the enclosing struct or as
a new JSON object.

How to do it...

1.	 Use JSON tags to name enclosing struct fields and the embedded struct fields:

type Enclosing struct {
     Field string `json:"field"`
     Embedded
}

type Embedded struct {
     Field string `json:"embeddedField"`
}

2.	 Use json.Marshal to encode the struct as a JSON object:

enc := Enclosing{
     Field: "enclosing",
     Embedded: Embedded{
          Field: "embedded",
     },
}
data, err = json.Marshal(enc)
// {"field":"enclosing","embeddedField":"embedded"}

Encoding without defining structs 185

3.	 Adding a json tag to the embedded struct will create a nested JSON object:

type Enclosing struct {
     Field string `json:"field"`
     Embedded `json:"embedded"`
}

type Embedded struct {
     Field string `json:"embeddedField"`
}
...
enc := Enclosing{
     Field: "enclosing",
     Embedded: Embedded{
          Field: "embedded",
     },
}
data, err = json.Marshal(enc)
// {"field":"enclosing","embedded":
{"embeddedField":"embedded"}}

Encoding without defining structs
Basic data types, slices, and maps can be used to encode JSON data.

How to do it...

•	 Use a map to represent JSON objects:

config:=map[string]any{
  "ver": "1.0",
  "Name": "config",
  "type": "example",
  }
data, err:=json.Marshal(config)

// `{"ver":"1.0","Name":"config","type":"example"}`

•	 Use a slice to represent JSON arrays:

numbersWithNil:=[]any{ 1, 2, nil, 3 }
data, err:=json.Marshal(numbersWithNil)

// `[1,2,null,3]`

Working with JSON186

•	 Match the desired JSON structure to Go equivalents:

configurations:=map[string]map[string]any {
  "cfg1": {
     "ver": "1.0",
     "Name": "config1",
  },
  "cfg2": {
     "ver": "1.1",
     "Name" : "config2",
 },
}
data, err:=json.Marshal(configurations)

// {"cfg1":{"Name":"config1","ver":"1.0"},
"cfg2":{"Name":"config2","ver":"1.1"}}`

Decoding structs
Encoding Go data objects in JSON is a relatively easy task: well-defined data types and semantics are
translated into a less expressive representation, usually resulting in some information loss. For instance,
an integer variable and a float64 variable may be encoded to give identical output. Because of this,
decoding JSON data is usually more difficult.

How to do it...

1.	 Use JSON tags to map JSON keys to struct fields.

2.	 Use the json.Unmarshal function to decode JSON data into Go data objects. The standard
library uses the following conventions for basic types:

JSON Input Go type Result
"strValue" string "strValue"

1 (number) int 1

1.2 (number) int error

1.2 (number) float64, float32 1.2

true bool true

null string Variable left unmodified

null int Variable left unmodified

"strValue" *string "strValue"

null *string nil

1 *int 1

Decoding structs 187

JSON Input Go type Result
null *int nil

true *bool true

null *bool nil

If the Go type is interface{}, the standard library creates objects using the following convention:

JSON Input Result
"strValue" "strValue"

1 float64(1)

1.2 float64(1.2)

true true

null nil

JSON Object map[string]any

JSON array []any

•	 If the target Go type implements the json.Unmarshaler interface, then json.Unmarshal.
UnmarshalJSON is called to decode data. This operation may involve creating a new instance
of the target type if necessary.

•	 If the target Go type implements the encoding.TextUnmarshaler interface and the
input is a quoted JSON string, then encoding.TextUnmarshaler.UnmarshalText
is called to decode the value.

•	 Anything else will fail with UnsupportedValueError.

Tip
Numeric values may cause confusion if the JSON input includes values of various numeric
types. For instance, if a JSON numeric value is unmarshaled to an int value, it will work if the
JSON data is representable as an integer, but fail if the JSON data has a floating-point value.

Tip
The JSON decoder will never change the unexported fields of a struct. The decoder uses
reflection, and only the exported fields are accessible via reflection.

Tip
JSON fields that do not have matching Go fields will be ignored.

Working with JSON188

Decoding with interfaces, maps, and slices
When decoding Go values to JSON, the Go value types dictate how JSON encoding will be done.
JSON does not have a rich type system like Go. Valid JSON types are string, number, boolean, object,
array, and null. When you decode JSON data into a Go struct, it is still the Go type system that
dictates how JSON data should be interpreted. But when you decode JSON into an interface{},
things change. Now it is the JSON data that dictates how Go values should be constructed, and this
sometimes causes unexpected results.

How to do it...

To unmarshal JSON data into an interface, use the following:

var output interface{}
err:=json.Unmarshal(jsonData,&output)

This creates an object tree based on the following translation rules:

JSON Go
Object map[string]interface{}

Array []interface{}

number float64

boolean bool

string string

null nil

Other ways of decoding numbers

When decoded into an interface{}, JSON numbers are converted to float64. This is not always
the desired result. You can use json.Number instead.

How to do it...

Use json.Decoder with UseNumber:

var output interface{}
decoder:=json.NewDecoder(strings.NewReader(`[1.1,2,3,4.4]`))
// Tell the decoder to use json.Number instead of float64
decoder.UseNumber()
err:=decoder.Decode(&output)
// [1.1 2 3 4.4]

Omitting empty fields when encoding 189

Every element of output in the preceding example is an instance of json.Number. You can
translate it to an int, float64, or big.Int as necessary.

Dealing with missing and optional values

You usually have to deal with JSON input with missing fields and have to generate JSON where empty
fields are omitted. This section provides recipes showing how to deal with these scenarios.

Omitting empty fields when encoding
Omitting empty fields from JSON encoding usually saves space and makes the JSON more reader-
friendly. However, what is meant by “empty” should be clear.

How to do it...

Use the ,omitempty JSON tag to omit empty string values, zero integer/floating-point values, zero
time.Duration values, and nil pointer values.

The ,omitempty tag does not work for time.Time values. Use *time.Time and set it to nil
to omit empty time values:

type Config struct {
    ...
     Type       string `json:"type,omitempty"`
     IntValue   int     `json:"intValue,omitempty"`
     FloatValue float64 `json:"floatValue,omitempty"`
     When       *time.Time    `json:"when,omitempty"`
     HowLong    time.Duration `json:"howLong,omitempty"`
}

Sometimes it is important to distinguish between an empty string and a null string. In JavaScript and
JSON, null is a valid value for strings. If that is the case, use *string:

type Config struct {
  Value  *string `json:"value,omitempty"`
  ...
}

...
emptyString := ""
emptyValue := Config {
   Value: &emptyString,
}

Working with JSON190

// JSON output: { "value": "" }

nullValue := Config {
   Value: nil,
}
// JSON output: {}

Dealing with missing fields when decoding
There are several use cases where developers have to deal with sparse JSON data that does not include
all data fields. For instance, a partial update API call may accept a JSON object that contains only those
fields that should be updated, without modifying any unspecified data field. In such cases, it becomes
important to identify which fields were provided. Then there are use cases where it is appropriate to
assume default values for missing fields.

How to do it...

If you want to determine which fields are specified in a JSON input, use pointer fields. Any fields
missing in the input will remain as nil.

To provide default values for missing fields, initialize those fields to their default values before unmarshaling:

type APIRequest struct {
   // If type is not specified, it will be nil
   Type    *string `json:"type"`
   // There will be a default value for seq
   Seq     int     `json:"seq"`
   ...
}

func handler(w http.ResponseWriter,r *http.Request) {
  data, err:=io.ReadAll(r.Body)
  if err!=nil {
     http.Error(w, "Bad request",http.StatusBadRequest)
     return
  }
  req:=APIRequest{
     Seq: 1,  // Set the default value
  }
  if err:=json.Unmarshal(data, &req); err!=nil {
     http.Error(w, "Bad request", http.StatusBadRequest)
     return

Marshaling/unmarshaling custom data types 191

  }
  // Check which fields are provided
  if req.Type!=nil {
     ...
  }
  // If seq is provided in the input, req.Seq will be set to that
  // value. Otherwise, it will be 1.
  if req.Seq==1 {
    ...
  }
}

Customizing JSON encoding/decoding

Sometimes JSON encoding of certain data structures does not match their representations in the
program. When this happens, you have to customize how a certain data element is encoded to JSON
or decoded from JSON.

Marshaling/unmarshaling custom data types
Use these recipes when you have data elements whose JSON representation needs to be
generated programmatically.

How to do it...

To control how a data object is encoded in JSON, implement the json.Marshaler interface:

// TypeAndID is encoded to JSON as type:id
type TypeAndID struct {
  Type string
  ID string
}

// Implementation of json.Marshaler
func (t TypeAndID) MarshalJSON() (out []byte, err error) {
  s := fmt.Sprintf("%s:%d",t.Type,t.ID)
  out=[]byte(s)
  return
}

Working with JSON192

To control how a data object is decoded from JSON, implement the json.Unmarshaler interface:

Tip
An unmarshaler must have a pointer receiver.

// Implementation of json.Unmarshaler. Note the pointer receiver
func (t *TypeAndID) UnmarshalJSON(in []byte) (err error) {
  parts := strings.Split(string(in),":")
  if len(parts)!=2 {
    err=ErrInvalidTypeAndID
    return
  }
  // The second part must be a valid integer
  t.ID, err=strconv.Atoi(parts[1])
  if err!=nil {
    return
  }
  t.Type=parts[0]
  return
}

Custom marshaling/unmarshaling of object keys
Maps are marshaled/unmarshaled as JSON objects. But if you have a map that has keys other than a
string type, how can you marshal/unmarshal it to JSON?

How to do it...

The solution depends on the exact type of the key:

1.	 Maps with key types derived from string or integer types can be marshaled/unmarshaled using
the standard library methods:

type Key int64

func main() {
     var m map[Key]int
     err := json.Unmarshal([]byte(`{"123":123}`), &m)
    if err!=nil {
       panic(err)
    }
     fmt.Println(m[123]) // Prints 123
}

Custom marshaling/unmarshaling of object keys 193

2.	 If map keys require additional processing for marshaling/unmarshaling, implement the
encoding.TextMarshaler and encoding.TextUnmarshaler interfaces:

// Key is an uint that is encoded as an hex strings for JSON key
type Key uint

func (k *Key) UnmarshalText(data []byte) error {
     v, err := strconv.ParseInt(string(data), 16, 64)
     if err != nil {
          return err
     }
     *k = Key(v)
     return nil
}

func (k Key) MarshalText() ([]byte, error) {
     s := strconv.FormatUint(uint64(k), 16)
     return []byte(s), nil
}

func main() {
     input := `{
    "13AD": "5037",
    "3E22": "15906",
    "90A3": "37027"
  }`

     var data map[Key]string
     if err := json.Unmarshal([]byte(input), &data); err != nil
{
          panic(err)
     }
     fmt.Println(data)
     d, err := json.Marshal(map[Key]any{
          Key(123): "123",
          Key(255): "255",
     })
     if err != nil {
          panic(err)
     }
     fmt.Println(string(d))
}

Working with JSON194

Dynamic field names

There are cases where the field names (object keys) are not constant. For example, an API may prefer
to return a list of objects as a JSON object where unique identifiers of each object are the key. In such
cases, it is not possible to use json tags in a struct.

How to do it...

Use a map[string]ValueType to represent an object with dynamic field names:

type User struct {
     Name string `json:"name"`
     Type string `json:"type"`
}

type Users struct {
     Users map[string]User `json:"users"`
}

func main() {
     input := `{
  "users": {
      "abb64dfe-d4a8-47a5-b7b0-7613fe3fd11f": {
         "name": "John",
         "type": "admin"
      },
      "b158161c-0588-4c67-8e4b-c07a8978f711": {
         "name": "Amy",
         "type": "editor"
      }
   }
  }`
     var users Users
     if err := json.Unmarshal([]byte(input), &users); err != nil {
          panic(err)
     }
}

Polymorphic data structures

A polymorphic data structure can be one of several different types that share a common interface.
The actual type is determined at runtime. For runtime objects, the Go type system ensures type-safe

Custom unmarshaling with two passes 195

operations using such fields. With the use of interfaces, polymorphic objects can be marshaled as JSON
easily. A problem arises when you need to unmarshal a polymorphic JSON object. In this recipe, we
will look at different ways of achieving this.

Custom unmarshaling with two passes
The first pass unmarshals discriminator fields while leaving the rest of the input unprocessed. Based
on the discriminator, the concrete instance of the object is constructed and unmarshaled.

How to do it...

1.	 We will work with an example Key structure in this section. The Key structure holds different
types of cryptographic public keys, whose type is given in a Type field:

type KeyType string

const (
     KeyTypeRSA     = "rsa"
     KeyTypeED25519 = "ed25519"
)

type Key struct {
     Type KeyType          `json:"type"`
     Key  crypto.PublicKey `json:"key"`
}

2.	 Define the JSON tags for the data structure as usual. Most polymorphic structures can be marshaled
without a custom marshaler because the runtime type of objects is known during marshaling.

Define another struct that is a copy of the original, with dynamically typed parts replaced with
a json.RawMessage type field:

type keyUnmarshal struct {
     Type KeyType         `json:"type"`
     Key  json.RawMessage `json:"key"`
}

3.	 Create an unmarshaler for the original struct. In this unmarshaler, first unmarshal the input
to an instance of the struct created in step 2:

func (k *Key) UnmarshalJSON(in []byte) error {
     var key keyUnmarshal
     err := json.Unmarshal(in, &key)
     if err != nil {
          return err
     }

Working with JSON196

4.	 Using the type discriminator fields, decide how to decode the dynamic part. The following
example uses a factory to obtain a type-specific unmarshaler:

     k.Type = key.Type
     unmarshaler := KeyUnmarshalers[key.Type]
     if unmarshaler == nil {
          return ErrInvalidKeyType
     }

5.	 Unmarshal the dynamically typed part (which is a json.RawMessage) into an instance of
the correctly typed variable:

     k.Key, err = unmarshaler(key.Key)
   if err != nil {
        return err
   }
   return nil
}

The factory is a simple map that knows the unmarshalers for different types of keys:
var (
     KeyUnmarshalers = map[KeyType]func(json.RawMessage)
     (crypto.PublicKey, error){}
)

func RegisterKeyUnmarshaler(keyType KeyType, unmarshaler
func(json.RawMessage) (crypto.PublicKey, error)) {
     KeyUnmarshalers[keyType] = unmarshaler
}

...
RegisterKeyUnmarshaler(KeyTypeRSA, func(in json.RawMessage)
(crypto.PublicKey, error) {
     var key rsa.PublicKey
    if err := json.Unmarshal(in, &key); err != nil {
          return nil, err
     }
     return &key, nil
})

RegisterKeyUnmarshaler(KeyTypeED25519, func(in json.RawMessage)
(crypto.PublicKey, error) {
     var key ed25519.PublicKey
     if err := json.Unmarshal(in, &key); err != nil {
          return nil, err

Streaming an array of objects 197

     }
     return &key, nil
})

This is an extensible factory framework that can be initialized with additional unmarshalers determined
at build time. Simply create an unmarshaler function for a type of object, and register it using the
preceding RegisterKeyUnmarshaler function to support new key types.

Tip
A common way to register such features is to use the init() function of packages. When you
import that package, unmarshaler types supported by the package will be registered.

Streaming JSON data

When you have to deal with large amounts of data efficiently, you should consider streaming data
instead of working on the whole dataset at once. This section describes some methods for streaming
JSON data.

Streaming an array of objects
This recipe is useful if you have a generator (a goroutine, a database cursor, etc.) that produces data
elements, and you want to stream these as a JSON array instead of storing everything before marshaling it.

How to do it...

1.	 Create a generator. This can be * a goroutine that sends data elements through a channel, * a
cursor-like object containing a Next() method, * or some other data generator.

2.	 Create an instance of json.Encoder with io.Writer representing the target. The target
can be a file, standard output, a buffer, a network connection, and so on.

3.	 Write the array beginning delimiter for the array, that is, [.

4.	 Encode each data element, preceded by a comma if necessary.

5.	 Write the array closing delimiter, that is,].

The following example assumes there is a generator goroutine writing Data instances to the input
channel. The generator closes the channel when there are no more Data instances. Here, we assume
Data is JSON marshalable:

func stream(out io.Writer, input <-chan Data) error {
     enc := json.NewEncoder(out)
     if _, err := out.Write([]byte{'['}); err != nil {
          return err

Working with JSON198

     }
     first := true
     for obj := range input {
          if first {
               first = false
          } else {
               if _, err := out.Write([]byte{','}); err != nil {
                    return err
               }
          }
          if err := enc.Encode(obj); err != nil {
               return err
          }
     }

     if _, err := out.Write([]byte{']'}); err != nil {
          return err
     }
     return nil
}

Parsing an array of objects
If you have a JSON data source providing an array of objects, you can parse these elements and process
them using json.Decoder.

How to do it...

1.	 Create json.Decoder reading from the input stream.

2.	 Parse the array beginning delimiter ([) using json.Decoder.Token().

3.	 Decode each element of the array until decoding fails.

4.	 When decoding fails, you have to determine whether the stream ended, or whether there is
really an error. To check for that, read the next token using json.Decoder.Token(). If
the next token is read successfully and if it is an array end delimiter,], then the stream parsing
ended successfully. Otherwise, there is an error in the input data.

The following example assumes that json.Decoder is already constructed to read from an input
stream. The output is stored in a slice. Alternatively, the output can be processed as elements are
parsed, or each element can be sent to a processing goroutine through a channel:

func parse(input *json.Decoder) (output []Data, err error) {
     // Parse the array beginning delimiter

Other ways of streaming JSON 199

     var tok json.Token
     tok, err = input.Token()
     if err != nil {
          return
     }
     if tok != json.Delim('[') {
          err = fmt.Errorf("Array begin delimiter expected")
          return
     }
     // Parse array elements using Decode
     for {
          var data Data
          err = input.Decode(&data)
          if err != nil {
               // Decode failed. Either there is an input error, or
               // we are at the end of the stream
               tok, err = input.Token()
               if err != nil {
                    // Data error
                    return
               }
               // Are we at the end?
               if tok == json.Delim(']') {
                    // Yes, there is no error
                    err = nil
                    break
               }
          }
          output = append(output, data)
     }
     return
}

Other ways of streaming JSON
There are other ways of streaming JSON:

•	 Concatenated JSON simply writes JSON objects one after the other

•	 Newline-delimited JSON writes every JSON object as a separate line

•	 Record separator-delimited JSON uses a special record separator character, 0x1E, and optionally
a newline between each JSON object

•	 Length-prefixed JSON prefixes the string length of every JSON object as a decimal number

Working with JSON200

All these can be read and written using json.Decoder and json.Encoder. A simple package
for JSON streaming can be found here: https://github.com/bserdar/jsonstream.

Security considerations

Whenever you accept data from outside your application (user-entered data, API calls, reading a file,
etc.), you have to be concerned about malicious input. JSON input is relatively safe because JSON
parsers do not perform data expansions like YAML or XML parsers do. Nevertheless, there are still
things you need to consider when dealing with JSON data.

How to do it...

Limit the amount of data when accepting third-party JSON input. Do not blindly use io.ReadAll
or json.Decode:

const MessageSizeLimit = 10240

func handler(w http.ResponseWriter, r *http.Request) {
  reader:=http.MaxBytesReader(w,r.Body,MessageSizeLimit)
  data, err := io.ReadAll(reader)
  if errors.Is(err,&http.MaxBytesError{}) {
    // If this happens, error is already sent.
    return
  }
  ...
}

* Always provide an upper limit for resource allocations based on data you read from third-party
input. For instance, if you are reading a length-prefixed JSON stream where each JSON object is
prefixed by its length, do not allocate a `[]byte` to store the next object. Reject the input if the
length is too large.

https://github.com/bserdar/jsonstream

12
Processes

This chapter has recipes that show how to run external programs, how to interact with them, and
how to terminate a process gracefully. There are some key points to keep in mind when dealing with
external processes:

•	 When you start an external process, it runs concurrently with your program.

•	 If you need to communicate with a child process, you have to use an interprocess communication
mechanism, such as pipes.

•	 When you run a child process, its standard input and standard output streams appear to the
parent process as independent concurrent streams. You cannot rely on the ordering of data
you receive from these streams.

This section covers the following main recipes:

•	 Running external programs

•	 Passing arguments to a process

•	 Processing output from a child process using a pipe

•	 Providing input to a child process

•	 Changing environment variables of a child process

•	 Graceful termination using signals

Running external programs
There are many use cases where you want to execute an external program to perform a task. Usually,
this is because performing the same task within your own program is not possible or not easy. For
example, you may choose to execute several instances of an external image processing program to
modify a group of images. Another use case is when you want to configure some device using programs
provided by its manufacturer. This recipe includes several ways to execute external programs.

Processes202

How to do it...

Use exec.Command or exec.CommandContext to run another program from your program.
exec.Command is appropriate if you do not need to cancel (kill) the child process or impose a
timeout. Otherwise, use exec.CommandContext, and cancel or time out the context to kill the
child process:

1.	 Create the exec.Command (or exec.CommandContext) object using the name of the
program and its arguments:

	� If you need to search the program in the platform’s executable commands path, do not
include any path separators

	� If you use path separators in the program name, it must be a path relative to exec.
Command.Dir, or if exec.Command.Dir is empty, it must be a path relative to the
current working directory

	� Use an absolute path if you know where the executable is

2.	 Prepare the input and output streams to capture program output, or to send input via the
standard input stream.

3.	 Start the program.

4.	 Wait for the program to end.

The following example builds a Go program using the go command under the sub/ directory:

// Run "go build" to build the subprocess in the "sub" directory
func buildProgram() {
    // Create a Command with the executable and its arguments
     cmd := exec.Command(
       "go", "build", "-o", "subprocess", ".")

    // Set the working directory
     cmd.Dir = "sub"

    // Collect the stdout and stderr as a combined output from the
    // process
    // This will run the process, and wait for it to end
     output, err := cmd.CombinedOutput()
     if err != nil {
          panic(err)
     }

     // The build command will not print anything if successful. So if
     // there is any output, it is a failure.

Running external programs 203

     if len(output) > 0 {
          panic(string(output))
     }
}

The preceding example will collect the process output as a combined string. The standard output and
standard error from the program will be returned as a single string, so you have no way of identifying
what parts of the output string came from standard output and what parts from standard error. Make
sure you can parse the output correctly.

Warning
The standard output and standard error streams of a process are independent concurrent streams.
In general, there is no portable way to determine which stream produced output first. This may
have serious implications. For example, suppose you executed a program that produces a stream
of lines on stdout, but whenever it detects an error, it prints a message to standard error that
is something like “last printed line has problems.” But when you read the error
in your program, the last printed line may not have arrived in your program yet.

The following program demonstrates the use of exec.CommandContext and pipes:

// Run the program built by buildProgram function for 10ms, reading
// from the output
// and error pipes concurrently
func runSubProcessStreamingOutputs() {
    // Create a context with timeout
     ctx, cancel := context.WithTimeout(context.Background(), 10*time.
     Millisecond)
     defer cancel()

    // Create the command that will timeout in 10ms
     cmd := exec.CommandContext(ctx, "sub/subprocess")

    // Pipe the output and error streams
     stdout, err := cmd.StdoutPipe()
     if err != nil {
          panic(err)
     }
     stderr, err := cmd.StderrPipe()
     if err != nil {
          panic(err)
     }

     // Read from stderr from a separate goroutine

Processes204

     go func() {
          io.Copy(os.Stderr, stderr)
     }()

    // Start running the program
     err = cmd.Start()
     if err != nil {
          panic(err)
     }

    // Copy the stdout of the child program to our stdout
     io.Copy(os.Stdout, stdout)

    // Wait for the program to end
     err = cmd.Wait()
     if err != nil {
          fmt.Println(err)
     }
}

The preceding example taps into the standard output and standard error outputs of the child process.
Note that the program starts reading from the stderr stream before the program starts. That
goroutine will block until the child process outputs an error or until the child process terminates, at
which point, the stderr pipe will be closed and the goroutine will terminate. The part that reads
from the standard output runs in the main goroutine, before cmd.Wait. This ordering is important.
If the child process starts producing output on stdout but the parent program is not listening, the
child process will block. Calling cmd.Wait at this point would create a deadlock, but the runtime
cannot detect this as such because the parent program is reliant on the behavior of the child.

You can assign the same stream to stdout and stderr of the child process, as shown here:

// Run the build subprocess for 10 ms with combined output
func runSubProcessCombinedOutput() {
    // Create a context with timeout
     ctx, cancel := context.WithTimeout(context.Background(), 10*time.
     Millisecond)
     defer cancel()

    // Define the command with the context
     cmd := exec.CommandContext(ctx, "sub/subprocess")

    // Assign both stdout and stderr to the same stream. This is
    // equivalent to calling CombinedOutput
     cmd.Stdout = os.Stdout

Passing arguments to a process 205

     cmd.Stderr = os.Stdout

    // Start the process
     err := cmd.Start()
     if err != nil {
          panic(err)
     }

    // Wait until it ends. The output will be printed to our stdout
     err = cmd.Wait()
     if err != nil {
          fmt.Println(err)
     }
}

The preceding approach is similar to running the child process with CombinedOutput. Assigning
cmd.Stdout and cmd.Stderr to the same stream has the same effect as combining both outputs
of the child process.

Passing arguments to a process
The mechanics of passing arguments to a child process can be confusing. Shell environments parse
and expand process arguments. For example, a *.txt argument is replaced by a list of filenames
matching that pattern, and each of those filenames becomes a separate argument. This recipe talks
about how to pass such arguments to child processes correctly.

There are two options to pass arguments to a child process.

Expanding arguments

The first option is to perform the shell argument processing manually.

How to do it...

To manually perform shell processing, follow these steps:

1.	 Remove shell-specific quoting from arguments, such as the shell command:

	� The ./prog "test directory" shell command becomes cmd:=exec.Command("./
prog","test directory").

	� The ./prog dir1 "long dir name" '"quoted name"' Bash command
becomes cmd:=exec.Command("./prog", "long dir name", "'\"quoted
name\"'"). Note the Bash-specific treatment of quotes.

Processes206

2.	 Expand the patterns. ./prog *.txt becomes cmd:=exec.Command("./
prog",listFiles("*.txt")...), where listFiles is a function that returns a
slice of filenames.

Tip
Passing a list of files separated by a space will pass them as a single argument. That is, cmd:=exec.
Command("./prog","file1.txt file2.txt") will pass a single argument to the
process, which is file1.txt file2.txt.

3.	 Substitute the environment variables. /.prog $HOME becomes cmd:=exec.Command("./
prog", os.Getenv("HOME")). Running cmd:=exec.Command("./prog",
"$HOME") will pass the string $HOME to the program, not its value from the environment.

4.	 Finally, you have to manually process pipelines. That is, for a ./prog >output.txt shell
command, you have to run cmd:=exec.Command("./prog"), create an output.txt
file, and set cmd.Stdout=outputFile.

Running the command via the shell

The second option is to run the program via a shell.

How to do it...

Use the platform-specific shell and its syntax to run a command:

var cmd *exec.Cmd
switch runtime.GOOS {
case "windows":
     cmd = exec.Command("cmd", "/C", "echo test>test.txt")
case "darwin": // Mac OS
     cmd = exec.Command("/bin/sh", "-c", "echo test>test.txt")
case "linux": // Linux system, assuming there is bash
     cmd = exec.Command("/bin/bash", "-c", "echo test>test.txt")
default: // Some other OS. Assume it has `sh`
     cmd = exec.Command("/bin/sh", "-c", "echo test>test.txt")
}
out, err := cmd.Output()

The preceding example selects cmd for Windows platforms, /bin/sh for Darwin (Mac), /bin/
bash for Linux, and /bin/sh for anything else. The command passed to the shell contains a
redirection, which is handled by the shell. The output of the command will be written to test.txt.

Processing output from a child process using a pipe 207

Processing output from a child process using a pipe
Remember that the standard output and standard error streams of a process are concurrent streams. If
the output generated by the child process is potentially unbounded, you can work with it in a separate
goroutine. This recipe shows how.

How to do it...

A few words about pipes. A pipe is a stream-based analog of a Go channel. It is a first-in, first-out
(FIFO) communication mechanism with two ends: a writer and a reader. The reader side blocks until
the writer writes something, and the writer side blocks until the reader reads from it. When you are
done with a pipe, you close the writer side, which closes the reader side of the pipe. This happens
when a child process terminates. If you close the reader side of a pipe and then write to it, the program
will receive a signal and possibly terminate. This happens if the parent program terminates before
the child does.

1.	 Create the command, and get its StdoutPipe:

ctx, cancel := context.WithTimeout(context.Background(),
10*time.Millisecond)
defer cancel()
cmd := exec.CommandContext(ctx, "sub/subprocess")
pipe, err := cmd.StdoutPipe()
if err != nil {
  panic(err)
}

2.	 Create a new goroutine and read from the stdout of the child process. Work with the output
of the child process in this goroutine:

// Read from the pipe in a separate goroutine
go func() {
  // Filter lines that contain "0"
  scanner := bufio.NewScanner(pipe)
  for scanner.Scan() {
    line := scanner.Text()
    if strings.Contains(line, "0")  {
      fmt.Printf("Filtered line: %s\n", line)
    }
  }
  if err := scanner.Err(); err != nil {
    fmt.Println("Scanner error: %v", err)
  }
}()

Processes208

3.	 Start the process:

err = cmd.Start()
if err != nil {
  panic(err)
}

4.	 Wait for the process to end:

err = cmd.Wait()
if err != nil {
  fmt.Println(err)
}

Providing input to a child process
There are two methods you can use to provide input to a child process: set cmd.Stdin to a stream
or use cmd.StdinPipe to obtain a writer to send the input to the child process.

How to do it...

1.	 Create the command:

// Run grep and search for a word
cmd := exec.Command("grep", word)

2.	 Provide the input to the process by setting the Stdin stream:

// Open a file
input, err := os.Open("input.txt")
if err != nil {
  panic(err)
}
cmd.Stdin = input

3.	 Run the program and wait for it to end:

if err = cmd.Start(); err != nil {
  panic(err)
}
if err = cmd.Wait(); err != nil {
  panic(err)
}

Alternatively, you can provide a streaming input using a pipe.

Changing environment variables of a child process 209

4.	 Create the command:

// Run grep and search for a word
cmd := exec.Command("grep", word)

5.	 Get the input pipe:

input, err:=cmd.StdinPipe()
if err!=nil {
  panic(err)
}

6.	 Send the input to the program through the pipe. When done, close the pipe:

go func() {
  // Defer close the pipe
  defer input.Close()
  // Open a file
  file, err := os.Open("input.txt")
  if err != nil {
    panic(err)
  }
  defer file.Close()
  io.Copy(input,file)
}()

7.	 Run the program and wait for it to end:

if err = cmd.Start(); err != nil {
  panic(err)
}
if err = cmd.Wait(); err != nil {
  panic(err)
}

Changing environment variables of a child process
Environment variables are key-value pairs associated with a process. They are useful for passing
information specific to the environment, such as the current user’s home directory, executable search
path, configuration options, and more. In containerized deployments, environment variables are a
convenient way to pass the credentials a program needs.

The environment variables for a process are provided by its parent process, but once the process starts, a
copy of those provided environment variables is assigned to the child process. Because of this, a parent
process cannot change the environment variables of its child process after the child starts running.

Processes210

How to do it...

•	 To use the same environment variables as the current process when launching a child process, set
Command.Env to nil. That will copy the current process environment variables to the child.

•	 To start the child process using additional environment variables, append those new variables
to the current process variables:

// Run the server
cmd:=exec.Command("./server")
// Copy current process environment variables
cmd.Env=os.Environ()
// Append new environment variables
// Set the authentication key as an environment variable
// of the current process
cmd.Env=append(cmd.Env,fmt.Sprintf("AUTH_KEY=%s", authkey))
// Start the server process. Parent process environment is
copied to
cmd.Start()

Graceful termination using signals
To gracefully terminate a program, you should do the following:

•	 No longer accept new requests

•	 Finish any requests that are accepted but not completed

•	 Allow a certain amount of time for any long-running processes to finish, and terminate them
if they cannot be completed in the given time

Graceful termination is especially important in cloud-based service development because most cloud
services are ephemeral and they get replaced by new instances often. This recipe shows how it can
be done.

How to do it...

1.	 Handle interrupt and termination signals. An interrupt signal (SIGINT) is usually initiated
by the user (for instance, by pressing Ctrl + C), and a termination signal (SIGTERM) is usually
initiated by the host operating system, or for a containerized environment, the container
orchestration system.

2.	 Disable acceptance of any new requests.

3.	 Wait for existing requests to complete with a timeout

4.	 Terminate the process.

Graceful termination using signals 211

An example is shown next. This is a simple HTTP echo server. When the program starts, it creates a
goroutine that listens to a channel responding to SIGINT and SIGTERM signals. When any one of these
signals is received, it shuts down the server (which first disables the acceptance of new requests, and
then waits for the existing requests to complete up to a timeout), which then terminates the program:

func main() {
  // Create a simple HTTP echo service
  http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
    io.Copy(w, r.Body)
  })
  server := &http.Server{Addr: ":8080"}

  // Listen for SIGINT and SIGTERM signals
  // Terminate the server with the signal
  sigTerm := make(chan os.Signal, 1)
  signal.Notify(sigTerm, syscall.SIGINT, syscall.SIGTERM)
  go func() {
    <-sigTerm
    // 5 second timeout for the server to shutdown
    ctx, cancel := context.WithTimeout(context.Background(), 5*time.
    Second)
    defer cancel()
    server.Shutdown(ctx)
  }()

  // Start the server. When the server shuts down, program will end
  server.ListenAndServe()
}

13
Network Programming

Network programming is a crucial skill for application developers. An extensive treatise on the topic
would be a formidable endeavor, so we will look at some of the select examples you might encounter
in your work. An important point to keep in mind is that network programming is the primary means
of creating vulnerabilities in an application. Network programs are also inherently concurrent, making
correct and safe network programming especially difficult. So, this section will include examples
written with security and scalability in mind.

This chapter contains the following recipes:

•	 Writing TCP servers

•	 Writing TCP clients

•	 Writing a line-based TCP server

•	 Sending/receiving files using a TCP connection

•	 Writing a TLS client/server

•	 A TCP proxy for TLS termination and load-balancing

•	 Setting read/write deadlines

•	 Unblocking a blocked read or write operation

•	 Writing UDP clients/servers

•	 Making HTTP calls

•	 Running an HTTP server

•	 HTTPS – setting up a TLS server

•	 Writing HTTP handlers

•	 Serving static files on the file system

•	 Handling HTML forms

Network Programming214

•	 Writing a handler for downloading large files

•	 Handling HTTP uploaded files and forms as a stream

TCP networking
 Transmission Control Protocol (TCP) is a connection-oriented protocol that provides the
following guarantees:

•	 Reliability: The sender will know whether the intended recipient received the data

•	 Ordering: Messages will be received in the order they are sent in

•	 Error-checked: Messages will be protected against corruption during transit

Thanks to these guarantees, TCP is relatively easy to work with. It is the basis for many higher-level
protocols such as HTTP and WebSockets. In this section, we will look at some recipes that show how
to write TCP servers and clients.

Writing TCP servers
A TCP server is a program that listens to connection requests on a network port. Once a connection
is established with a client, the communication between the client and the server takes place over a
net.Conn object. The server may continue to listen for new connections. This way, a single server
can communicate with many clients.

How to do it...

1.	 Select a port that will connect to the clients server.

This is usually a matter of application configuration. The first 1,024 (0 to 1023) ports usually
require a server program to have root privileges. Most of these ports are reserved for well-
known server programs, such as port 22 for ssh, or port 80 for HTTP. Ports 1024 and above
are ephemeral ports. Your server program can use any port number of 1,024 and above without
additional privileges as long as no other program is listening to it.

Use port number 0 to let the kernel pick a random unused port. You can create a listener for
port 0, and then query the listener to find out what port number was selected.

2.	 Create a listener. A listener is a mechanism that binds the address:port. Once you create a
listener using a port number, no other process on the same host, or within the same container,
can use that port number to listen to network traffic.

The following program snippet shows how to create a listener:
// The address:port to listen. If none given, use :0 to select
port randomly
addr:=":8080"

Writing TCP servers 215

// Create a TCP listener
listener, err := net.Listen("tcp", addr)
if err != nil {
  panic(err)
}
// Print out the address we are listening
fmt.Println("Listening on ", listener.Addr())
defer listener.Close()

The program first determines the network address to listen to. The exact format of the address
depends on the protocol chosen, which is TCP in this case. If no hostname or IP address is
given, the listener will listen to all available unicast IP addresses of the local system. If you give
a hostname or IP address, the listener will only listen to the traffic coming from the given IP
address. That means if you give localhost:1234, the listener will listen to traffic coming
from localhost only. It will not listen to external traffic.

The preceding example prints listener.Addr(). This is useful if you provide :0 as the
listen address, or if you do not provide one at all. In this case, the listener will listen to a random
port, and listener.Addr() will return the address that clients can connect to.

3.	 Listen to connections. Accept incoming connections using Listener.Accept(). This is
usually done in a loop as follows:

// Listen to incoming TCP connections
for {
  // Accept a connection
  conn, err := listener.Accept()
  if err != nil {
    fmt.Println(err)
    return
  }
  // Handle the connection in its own goroutine
  go handleConnection(conn)
}

In the preceding example, the listener.Accept call will fail with an error if the listener
is closed.

4.	 Handle the connection in its own goroutine. This way, the listener will continue to accept
connections while the server communicates with the connected clients in their own goroutines,
using the connections created specifically for those clients.

Network Programming216

A connection handler for a simple echo server can be written as follows:
func handleConnection(conn net.Conn) {
  io.Copy(conn,conn)
}

Here’s the complete server program:
var address = flag.String("a", ":8008", "Address to listen")

func main() {
     flag.Parse()

     // Create a TCP listener
     listener, err := net.Listen("tcp", *address)
     if err != nil {
          panic(err)
     }
     fmt.Println("Listening on ", listener.Addr())
     defer listener.Close()
     // Listen to incoming TCP connections
     for {
          conn, err := listener.Accept()
          if err != nil {
               fmt.Println(err)
               return
          }
          go handleConnection(conn)
     }
}

func handleConnection(conn net.Conn) {
     io.Copy(conn, conn)
}

The preceding program will write everything it reads from the connection back to the connection,
forming an echo service. When the client terminates the connection, the read operation will
return io.EOF, terminating the copy operation.

How it works...

The net.Conn interface has both the Read([]byte) (int,error) method (which makes it
an io.Reader), and Write([]byte) (int,error) (which also makes it an io.Writer).
Due to this, whatever is read from the connection is written back to it.

Writing TCP clients 217

You may notice that because of io.Copy, every byte read will be written back to the connection, so
this is not a line-based protocol.

Writing TCP clients
A TCP client connects to a TCP server that is listening on a port of some host. Once the connection
is established, communication is bidirectional. In other words, the distinction between a server and
a client is based on how the connection is established. When we say “server,” we mean the program
that waits listening to a port, and when we say “client,” we mean the program that connects (“dials”)
a port on a host that is being listened on by a server. Once the connection is established, both sides
send and receive data asynchronously. TCP guarantees that the messages will be received in the order
they are sent, and that the messages will not be lost, but there are no guarantees on when a message
will be received by the other side.

How to do it...

1.	 The client side has to know the server address and port. This should be provided by the
environment (command line, configuration, etc.).

2.	 Use net.Dial to create a connection to the server:

     conn, err := net.Dial("tcp", addr)
     if err != nil {
      // Handle error
     }

3.	 Use the returned net.Conn object to send data to the server, or to receive data from the server:

   // Send a line of text
   text := []byte("Hello echo server!")
   conn.Write(text)
   // Read the response
   response := make([]byte, len(text))
   conn.Read(response)
   fmt.Println(string(response))

4.	 Close the connection when done:

conn.Close()

Here is the complete program:

var address = flag.String("a", ":8008", "Server address")

func main() {
     flag.Parse()

Network Programming218

     conn, err := net.Dial("tcp", *address)
     if err != nil {
          panic(err)
     }
     // Send a line of text
     text := []byte("Hello echo server!")
     conn.Write(text)
     // Read the response
     response := make([]byte, len(text))
     conn.Read(response)
     fmt.Println(string(response))
     conn.Close()
}

This example demonstrates a request-response type of interaction with the server. This is not necessarily
always the case. A network connection provides both an io.Writer and an io.Reader interface,
and they can be used concurrently.

Writing a line-based TCP server
In this recipe, we will look at a TCP server that works with lines instead of bytes. There are some
points you need to be careful about when reading lines from a network connection, especially related
to the security of the server. Just because you are expecting to read lines does not mean the client will
send well-formed lines.

How to do it...

1.	 Use the same structure to set up the server as given in the previous section.

2.	 In the connection handler, use a bufio.Reader or bufio.Scanner to read lines.

3.	 Wrap the connection with an io.LimitedReader to limit line length.

Let’s take a look at how this can work. The following example shows how a connection handler can
be implemented:

// Limit line length to 1KiB.
const MaxLineLength = 1024

func handleConnection(conn net.Conn) error {
  defer conn.Close()
  // Wrap the connection with a limited reader
<!-- nit: this doesn't technically prevent the client from doing
anything, it just means the server doesn't align with the client. -->
  // to prevent the client from sending unbounded

Writing a line-based TCP server 219

  // amount of data
  limiter := &io.LimitedReader {
    R: conn,
    N: MaxLineLength+1, // Read one extra byte to detect long lines
  }
  reader := bufio.NewReader(limiter)
  for {
    bytes, err := reader.ReadBytes(byte('\n'))
    if err != nil {
      if err != io.EOF {
        // Some error other than end-of-stream
        return err
      }
      // End of stream. It could be because the line is too long
      if limiter.N==0 {
        // Line was too long
        return fmt.Errorf("Received a line that is too long")
      }
      // End of stream
      return nil
    }
    // Reset the limiter, so the next line can be read with
    // newlimit
    limiter.N=MaxLineLength+1

    // Process the line: send it back to client
    if _, err := conn.Write(bytes); err != nil {
      return err
    }
  }
}

The connection handling routine starts by wrapping the connection in an io.LimitedReader.
This is necessary to prevent reader.ReadBytes from reading an unlimited amount of data until
it sees the newline character. Without this, a malicious client can send large amounts of data without
any newline characters, consuming all the server memory. Putting a hard limit on the line length
prevents this attack vector. After reading every line, we reset the limiter.N to its original value so
the next line can be read using the same limits. Note that the limiter is set to read one extra byte. This
is because the io.LimitedReader returns io.EOF for both a legitimate EOF (which means the
client disconnected), and a read exceeding the limit. If the reader exceeds the limit, that means the
last line read is at least one byte above the limit, allowing us to decide this is an invalid line.

Network Programming220

Sending/receiving files using a TCP connection
Sending and receiving files over a TCP connection demonstrates several important points about
network programming, namely the protocol design (which deals with who sends what when) and
encoding (which deals with how data elements are represented on the wire). This example will show
how to transfer metadata and an octet stream over a TCP connection.

How to do it...

1.	 Use the same structure to set up the server as in the previous section.

2.	 On the sender end (client), do the following:

	� Encode file metadata containing the filename, size, and mode and send it.

	� Send the contents of the file.

	� Close the connection.

3.	 On the receiver end (server), do the following:

	� Decode file metadata. Create a file to store the received file contents with the given mode.

	� Receive file contents and write the file.

	� After all file content is received, close the file.

The first part is the transfer of metadata about the file. There are several ways this can be done: you can
work with a text-based encoding scheme such as key-value pairs or JSON, but the problem with such
schemes is that they are not fixed length. A simple, effective, and portable encoding scheme is binary
encoding using the encoding/binary package. That does not solve the encoding of the filename,
which is not a fixed-sized string. So, we include the length of the filename in the file metadata, and
encode the filename using exactly the necessary number of bytes.

The fixed-sized fileMetadata structure is as follows:

type fileMetadata struct {
     Size    uint64
     Mode    uint32
     NameLen uint16
}

This structure is 14 bytes on all platforms (eight bytes of Size, four bytes of Mode, and two bytes of
NameLen.) Using binary/encoding.Write, you can encode this fixed-size structure on the
wire using either binary.BigEndian or binary.LittleEndian encoding, and the receiving
end will decode it successfully.

More detailed information on endianness is included in the next chapter.

Sending/receiving files using a TCP connection 221

The rest of the client is as follows:

var address = flag.String("a", ":8008", "Server address")
var file = flag.String("file", "", "File to send")

func main() {
     flag.Parse()

     // Open the file
     file, err := os.Open(*file)
     if err != nil {
          panic(err)
     }

     // Connect the receiver
     conn, err := net.Dial("tcp", *address)
     if err != nil {
          panic(err)
     }

     // Encode file metadata
     fileInfo, err := file.Stat()
     if err != nil {
          panic(err)
     }
     md := fileMetadata{
          Size:    uint64(fileInfo.Size()),
          Mode:    uint32(fileInfo.Mode()),
          NameLen: uint16(len(fileInfo.Name())),
     }
     if err := binary.Write(conn, binary.LittleEndian, md); err != nil
{
          panic(err)
     }
     // The file name
     if _, err := conn.Write([]byte(fileInfo.Name())); err != nil {
          panic(err)
     }
     // The file contents
     if _, err := io.Copy(conn, file); err != nil {
          panic(err)
     }
     conn.Close()
}

Network Programming222

Note the use of io.Copy to transfer the actual contents of the file. Using io.Copy, you can transfer
arbitrary-size files to the receiver without consuming significant amounts of memory.

Now let’s look at the server (receiver):

func handleConnection(conn net.Conn) {
     defer conn.Close()

     // Read the file metadata
     var meta fileMetadata
     err := binary.Read(conn, binary.LittleEndian, &meta)
     if err != nil {
          fmt.Println(err)
          return
     }
     // Do not allow file names that are too long
     if meta.NameLen > 255 {
          fmt.Println("File name too long")
          return
     }
     // Read the file name
     name := make([]byte, meta.NameLen)
     _, err = io.ReadFull(conn, name)
     if err != nil {
          fmt.Println(err)
          return
     }
     path:=filepath.Join("downloads",string(name))
     // Create the file
     file, err := os.OpenFile(
          path,
          os.O_CREATE|os.O_WRONLY,
          os.FileMode(meta.Mode),
     )
     if err != nil {
          fmt.Println(err)
          return
     }
     defer file.Close()
     // Copy the file contents
     _, err = io.CopyN(file, conn, int64(meta.Size))
     if err != nil {
          // Remove file in case of error
          <!-- nit: technically there's an ignored error here -->

Writing a TLS client/server 223

             os.Remove(path)
          fmt.Println(err)
          return
     }
     fmt.Printf("Received file %s: %d bytes\n", string(name), meta.
     Size)
}

The first operation is a fixed-size read operation of the file metadata. Then we read the filename.
Note the filename length check before reading the filename. It is an important defensive approach to
validate and limit all memory allocations involving size read from an external system or user. Here,
we reject filenames that are longer than 255 bytes. Then, we create the file using the given mode and
use io.CopyN to read exact file size bytes from the input. In case of an error, we remove the partially
downloaded file.

Writing a TLS client/server
Transport Layer Security (TLS) provides end-to-end encryption without revealing the encryption key
to prevent man-in-the-middle attacks. It also provides authentication of peers and message integrity
guarantees. This recipe shows how to set up a TLS server for securing network communications.
However, first, a few words on public key cryptography can be useful.

A cryptographic key pair contains a private key and a public key. The private key is kept secret and
the public key is published.

This is how a key pair is used to encrypt messages. Since the public key of a party is published, anybody
can create a message and encrypt it using the public key, then send it to the party that has the private
key. Only the private key owner can decrypt that message. That also means that if the private key is
revealed, anybody with that private key can eavesdrop on such messages.

This is how a key pair is used to ensure message integrity. The owner of a private key can create a
signature (hash) of a message using its private key. Anybody with a public key can verify the integrity
of the message, that is, the public key can be used to validate whether a signature is generated by the
corresponding private key.

Public keys are distributed in the form of digital certificates. A digital certificate is a file that contains
the public key of an entity signed by a trusted third party, a certificate authority (CA). There are many
well-known CAs that publish their own public keys as certificates (root certificates), and these root
certificates are shipped with most modern operating systems, so when you get a certificate, you can
validate its authenticity using the public key of the CA that signed it. Once you validate that a public
key is authentic, you can connect the owner of the public key, which has the corresponding private
key, and establish a secure channel.

The root certificate of a CA is usually signed by the CA itself.

Network Programming224

If you need to create certificates for your internal servers, you usually create a CA for your environment
by creating a self-signed root CA. You keep the private key for that CA secret and publish the public
key internally. There are automated tools that will help you create CAs and certificates for your servers.

How to do it...

Here’s how you can set up a server and client for TLS:

1.	 Create or purchase an X.509 certificate for your server. If the server is not an internet-facing
server, a self-signed certificate is usually sufficient. If this is an internet-facing server, you
either have to get a certificate from one of the CA organizations, or publish your own public
key certificate so the clients that want to connect to your servers can use that certificate to
authenticate and encrypt traffic.

2.	 For the server, do the following:

	� Load the certificate using crypto/tls.LoadX509KeyPair.

	� Create a crypto/tls.Config using the certificate.

	� Create a listener using crypto/tls.Listen.

	� The rest of the server follows the same TCP server layout.

The following code segment illustrates these steps:

var (
   address     = flag.String(
     "a", ":4433", "Address to listen")
   certificate = flag.String(
     "c", "../server.crt", "Certificate file")
   key         = flag.String(
     "k", "../privatekey.pem", "Private key")
)

func main() {
   flag.Parse()

   // 2.1 Load the key pair
   cer, err := tls.LoadX509KeyPair(*certificate, *key)
   if err != nil {
        panic(err)
   }
   // 2.2 Create TLS configuration for the listener
   config := &tls.Config{
        Certificates: []tls.Certificate{cer},

Writing a TLS client/server 225

   }
   // 2.3 Create the listener
   listener, err := tls.Listen("tcp", *address, config)
   if err != nil {
        panic(err)
        return
   }
   defer listener.Close()

   fmt.Println("Listening TLS on ", listener.Addr())
   // 2.4 Listen to incoming TCP connections
   for {
        conn, err := listener.Accept()
        if err != nil {
             fmt.Println(err)
             return
        }
        go handleConnection(conn)
   }
}

Note that both the certificate and the private key are necessary to set up the server. Once the TLS
listener is set up, the rest of the code is identical to an unencrypted TCP server.

For the client, please follow these steps:

1.	 If you are using a certificate from a well-known CA, use crypto/x509.SystemCertPool.
If you have a self-signed certificate or some other custom certificate, create an empty certificate
pool using crypto/x509.NewCertPool.

2.	 Load the server certificate, and add it to the certificate pool.

3.	 Use crypto/tls.Dial with a TLS configuration initialized using the certificate pool.

4.	 The rest of the client follows the same TCP client layout described here.

The following code segment shows these steps:

var (
     addr     = flag.String(
       "addr", "", "Server address")
     certFile = flag.String(
       "cert", "../server.crt", "TLS certificate file")
)

func main() {

Network Programming226

     flag.Parse()

     // 3.1 Create new certificate pool
     roots := x509.NewCertPool()
     // 3.2 Load server certificate
     certData, err := os.ReadFile(*certFile)
     if err != nil {
          panic(err)
     }
     ok := roots.AppendCertsFromPEM(certData)
     if !ok {
          panic("failed to parse root certificate")
     }
     // 3.3 Connect the server
     conn, err := tls.Dial("tcp", *addr, &tls.Config{
          RootCAs: roots,
     })
     if err != nil {
          panic(err)
     }
     // 3.4 Send a line of text
     text := []byte("Hello echo server!")
     conn.Write(text)
     // Read the response
     response := make([]byte, len(text))
     conn.Read(response)
     fmt.Println(string(response))
     conn.Close()
}

Again, loading the certificate and adding it to a certificate pool is only required if the server certificate
is signed by a CA that is not recognized by the operating system. Many websites that use HTTPS
have certificates signed by a well-known CA, and that’s why you can connect them without installing
custom certificates: the operating system already trusts the CA.

Note
There are examples of this under the book’s GitHub (https://github.com/
PacktPublishing/Go-Recipes-for-Developers/tree/main/src/chp13).

https://github.com/PacktPublishing/Go-Recipes-for-Developers/tree/main/src/chp11
https://github.com/PacktPublishing/Go-Recipes-for-Developers/tree/main/src/chp11

A TCP proxy for TLS termination and load-balancing 227

A TCP proxy for TLS termination and load-balancing
Most internet-facing applications use a reverse proxy (ingress) to separate the internal resources from
the external world. The reverse proxy is usually connected by the external clients using encrypted
connections (TLS), and forwards the requests to backend services via unencrypted channels (Figure 11.1)
or by re-encrypting the connection using the internal CA. The reverse proxy usually also performs
some sort of load-balancing to distribute the work evenly.

Figure 13.1 – TLS proxy with round-robin load balancing and TLS termination

In this section, we will look at such a reverse proxy that accepts TLS traffic from external hosts, and
forwards that traffic to backend servers using unencrypted TCP while distributing the requests to
those servers in a round-robin fashion.

As a Go developer, you are unlikely to write your own reverse proxy or load balancer, as there are
multiple options available already. However, it is an interesting application and I am including it here
to show how something like this can be done in Go, in particular the proxy itself.

How to do it...

Here, we assume that the proxy is given the list of available backend servers. Many times, you will need
to use a platform-specific discovery mechanism to find out what the available servers are:

1.	 Create an external facing TLS receiver using the certificate and key for the proxy host.

2.	 Listen to incoming TLS connections.

3.	 When a client connects, select a backend server and connect.

4.	 Start a proxy goroutine to forward all traffic coming from the external host to the backend
server, and traffic coming from the backend server to the external host.

5.	 Terminate the proxy when one of the connections closes.

Network Programming228

The following program illustrates these steps:

var (
     tlsAddress      = flag.String(
       "a", ":4433", "TLS address to listen")
     serverAddresses = flag.String(
       "s", ":8080", "Server addresses, comma separated")
     certificate     = flag.String(
       "c", "../server.crt", "Certificate file")
     key             = flag.String(
       "k", "../privatekey.pem", "Private key")
)

func main() {
     flag.Parse()

     // 1. Create external facing TLS receiver

     // Load the key pair
     cer, err := tls.LoadX509KeyPair(*certificate, *key)
     if err != nil {
          panic(err)
     }
     // Create TLS configuration for the listener
     config := &tls.Config{
          Certificates: []tls.Certificate{cer},
     }
     // Create the tls listener
     tlsListener, err := tls.Listen("tcp", *tlsAddress, config)
     if err != nil {
          panic(err)
     }
     defer tlsListener.Close()
     fmt.Println("Listening TLS on ", tlsListener.Addr())

     // Listen to incoming TLS connections
     servers := strings.Split(*serverAddresses, ",")
     fmt.Println("Forwarding to servers: ", servers)

     nextServer := 0
     for {
          // 2. Listen to incoming TLS connections
          conn, err := tlsListener.Accept()

A TCP proxy for TLS termination and load-balancing 229

          if err != nil {
               fmt.Println(err)
               return
          }
          retries := 0
          for {
               // 3. Select the next server
               server := servers[nextServer]
               nextServer++
               if nextServer >= len(servers) {
                    nextServer = 0
               }
               // Start a connection to this server
               targetConn, err := net.Dial("tcp", server)
               if err != nil {
                    retries++
                    fmt.Errorf("Cannot connect to %s", server)
                    if retries > len(servers) {
                         panic("None of the servers are available")
                    }
                    continue
               }
               // 4. Start the proxy
               go handleProxy(conn, targetConn)
          }
     }
}

We have already covered the details of setting up a TLS receiver in the previous recipes, so let’s
take a look at how the backend server is selected. This implementation is given a list of all available
backend servers. Every accepted client connection is assigned the next server in the list, pointed to
by the nextServer index. The proxy uses net.Dial to connect the selected server, and if the
connection fails (the server may be temporarily down), it skips to the next server in the list. If this
fails len(servers) times, then all backend servers are unavailable, and the program terminates.
However, if one server is selected, a proxy is started and the main goroutine goes back to listening to
new connections.

Let’s see how the proxy handler is written:

func handleProxy(conn, targetConn net.Conn) {
     defer conn.Close()
     defer targetConn.Close()
     // Copy data from the client to the server
     go io.Copy(targetConn, conn)

Network Programming230

     // Copy data from the server to the client
     io.Copy(conn, targetConn)
}

As I mentioned in the previous sections, a network connection contains two concurrent streams, one
going from the client host to the server, and the other going from the server to the client host. Both
of these streams can include data in flight at the same time. Due to this, proxying a TCP connection
involves two io.Copy operations, one from server to client, and one from client to server. Furthermore,
at least one of these has to run in a separate goroutine. In the preceding example, the traffic from the
external connection to the backend server is copied in a separate goroutine, and the traffic from the
backend server to the external host is copied in the proxy goroutine. The copy operation will terminate
if either side closes the connection, which will cause the last copy operation to terminate, closing the
other connection as well.

Setting read/write deadlines
If you do not want to wait indefinitely for a connected host to send data, or for the connected host to
receive the data you sent, you have to set a deadline.

How to do it...

Depending on your specific protocol, you can set read or write deadlines, and you may choose to set
these deadlines for individual I/O operations, or globally:

1.	 Set the deadline before the operation:

conn.SetDeadline(time.Now().Add(timeoutSeconds * timeSecond))
if n, err:=conn.Read(data); err!=nil {
  if errors.Is(err, os.ErrDeadlineExceeded) {
    // Deadline exceeded.
  } else {
    // Some other error
  }
}

2.	 If you will continue using the connection after a deadline is exceeded, you have to reset
the deadline:

conn.SetDeadline(time.Time{})

Or, set a new deadline with a time in the future.

Unblocking a blocked read or write operation 231

Unblocking a blocked read or write operation
Sometimes, you need to unblock a read or write operation based on an external event. This recipe
shows how you can unblock such an I/O operation.

How to do it...

•	 If you want to unblock an I/O operation with no intention of reusing the connection again,
close the connection asynchronously:

cancel:=make(chan struct{})
done:=make(chan struct{})

// Close the connection if a message is sent to cancel channel
go func() {
   select {
      case <-cancel:
         conn.Close()
      case <-done:
   }
}()
go handleConnection(conn)

•	 If you want to unblock an I/O operation but not terminate it, set the deadline to now:

unblock:=make(chan struct{})
// Unblock the connection if a message is sent to unblock
channel
go func() {
  <-unblock
  conn.SetDeadline(time.Now())
}()
timedout:=false
if n, err:=conn.Read(data); err!=nil {
   if errors.Is(err,os.ErrDeadlineExceeded) {
      // Reset connection deadline
      conn.SetDeadline(time.Time{})
      timedout=true
      // continue using the connection
   } else {
      // Handle error
   }
}
if timedout {
  // Read timedout

Network Programming232

} else {
  // Read did not timeout
}

How it works...

A TCP read operation blocks until there is something available to read, which only happens when some
data is received from the peer. A TCP write operation will block when no more data can be buffered
on the sending side. The preceding recipe shows two ways you can unblock these calls.

Closing a connection unblocks read/write operations with an error because the connection is closed
while waiting for data to arrive, or while waiting for data to be written. Closing a connection discards
all unread or unwritten data and destroys all resources allocated for that connection.

Setting the timeout asynchronously will set a deadline for the waiting operation, and when that
deadline passes, the operation fails but the connection remains open. You can reset the deadline and
retry the operation.

Writing UDP clients/servers
Unlike TCP, UDP is connectionless. That means instead of establishing a connection with another
peer and sending data back and forth, you simply send data packets and receive them. There are no
delivery or ordering guarantees.

One of the prominent uses of UDP is the Domain Name Service (DNS) protocol. UDP is also the
choice for many streaming protocols (voice over IP, video streaming, etc.) where occasional package
loss is tolerable. Network monitoring tools also favor UDP.

Despite being connectionless, the UDP networking APIs offer an interface similar to the TCP
networking APIs. Here, we will show a simple client-server UDP echo server to demonstrate how
these APIs can be used.

How to do it...

The following steps show how to write a UDP server:

1.	 Resolve the UDP address the server will listen on using net.ResolveUDPAddr:

  addr, err := net.ResolveUDPAddr("udp4", *address)
  if err != nil {
    panic(err)
  }

Writing UDP clients/servers 233

2.	 Create a UDP listener:

  // Create a UDP connection
  conn, err := net.ListenUDP("udp4", addr)
  if err != nil {
    panic(err)
  }
  defer conn.Close()

Even though net.ListenUDP returns a *net.UDPConn, the returned object resembles a
listener and not a connection. UDP is connectionless, so this call starts listening UDP packets
on the given address. The clients technically do not connect the server and start a two-way
stream; they simply send a packet. That’s why, in the next step, the read operation also returns
the address of the sender, so a response can be sent.

3.	 Read from the listener. This will return the remote address of the peer:

  // Listen to incoming UDP connections
  buf := make([]byte, 1024)
  n, remoteAddr, err := conn.ReadFromUDP(buf)
  if err != nil {
    // Handle the error
  }
  fmt.Printf("Received %d bytes from %s\n", n, remoteAddr)

4.	 Send the response to the peer using the address obtained in the previous step:

  if n > 0 {
    _, err := conn.WriteToUDP(buf[:n], remoteAddr)
    if err != nil {
      // Handle the error
    }
  }

Now let’s take a look at the UDP client:

1.	 Resolve the address of the server:

  addr, err := net.ResolveUDPAddr("udp4", *serverAddress)
  if err != nil {
    panic(err)
  }

Network Programming234

2.	 Create a UDP connection. This requires a local address and a remote address. If the local address
is nil, the local address is automatically chosen. If the remote address is nil, it is assumed to
be the local system:

  // Create a UDP connection, local address chosen randomly
  conn, err := net.DialUDP("udp4", nil, addr)
  if err != nil {
    panic(err)
  }
  fmt.Printf("UDP server %s\n", conn.RemoteAddr())
  defer conn.Close()

Again, UDP is connectionless. The preceding call to DialUDP creates a socket that will be
used in subsequent calls. It does not create a connection to the server.

3.	 Send data to the server using conn.Write:

  // Send a line of text
  text := []byte("Hello echo server!")
  n, err := conn.Write(text)
  if err != nil {
    panic(err)
  }
  fmt.Printf("Written %d bytes\n", n)

4.	 Read data from the server using conn.Read:

  // Read the response
  response := make([]byte, 1024)
  conn.ReadFromUDP(response)

Working with HTTP
HTTP is a client-server protocol where the client (a user agent or proxy) sends requests to a server,
and the server returns a response. It is an application layer hypertext protocol, and the backbone of
the World Wide Web.

Making HTTP calls
The Go standard library offers two basic ways of issuing HTTP calls to interact with websites and web
services: if you do not need to configure timeouts, transport properties, or redirect policies, simply
use the shared client. If you need to do additional configuration, use http.Client. This recipe
demonstrates both.

Making HTTP calls 235

How to do it...

•	 The standard library includes a shared HTTP client. You can use that to interact with web
servers using the default configuration:

response, err := http.Get("http://example.com")
if err!=nil {
  // Handle error
}
// Always close response body
defer response.Body.Close()
if response.StatusCode/100==2 {
  // HTTP 2xx, call was successful.
  // Work with response.Body
}

•	 If you need to apply different timeout values, change the redirect policy, or configure the
transport, create a new http.Client, initialize it, and use that:

client:=http.Client{
  // Set a timeout for all outgoing calls.
  // If the call does not complete within 30 seconds, timeout.
  Timeout: 30*time.Second,
}
response, err:=http.Get("http://example.com")
if err!=nil {
  // handle error
}
// Always close response body
defer response.Body.Close()

•	 You can call websites using HTTPS (using TLS) if the operating system already has the certificate
for the CA that issued that website’s certificate. This is the case for most public websites over
the internet:

response, err := http.Get("https://example.com")

•	 If you are using TLS with a custom CA, or if you are using self-signed certificates, you have to
create a http.Client with a Transport containing the certificate.

	� Create a new certificate pool:

roots := x509.NewCertPool()

Network Programming236

	� Load the server certificate:

certData, err := os.ReadFile(*certFile)
if err != nil {
  panic(err)
}

	� Add the certificate to the certificate pool:

ok := roots.AppendCertsFromPEM(certData)
if !ok {
  panic("failed to parse root certificate")
}

	� Create a TLS config:

config:=tls.Config{
  RootCAs: roots,
}

	� Create an HTTP Transport using the TLS config:

transport := &http.Transport {
  TLSClientConfig: config,
}

	� Create an HTTP client:

client:= &http.Client{
  Transport: transport,
}

	� Use the client:

resp, err:=client.Get(url)
if err!=nil {
  // Handle error
}
defer resp.Body.Close()

Tip
Always close the response body when you are done working with it, and try to read all data
available in the body. The response.Body represents a streaming connection to the server.
The server will reserve resources for the connection as long as there is data in transit and the
client keeps the connection open. It also prevents the client from reusing keep-alive connections.

Running an HTTP server 237

Running an HTTP server
The standard Go library offers an HTTP server with sensible defaults that you can use out of the
box, similar to the way HTTP clients are implemented. If you need to configure transport specifics,
timeouts, and so on, then you can create a new http.Server and work with it. This section
describes both approaches.

How to do it...

1.	 Create an http.Handler to handle HTTP requests:

func myHandler(w http.ResponseWriter, req *http.Request) {
  if req.Method == http.MethodGet {
    // Handle an HTTP GET request
  }
  ...
}

2.	 Call http.ListenAndServe:

err:=http.ListenAndServe(":8080",http.HandlerFunc(myHandler))
log.Fatal(err)

The ListenAndServe function either returns immediately due to an error setting up a
network listener (for example, if the address is already in use) or successfully starts listening.
When the server is asynchronously closed (by calling server.Close() or server.
Shutdown()), it returns ErrServerClosed.

Alternatively, you can use a http.Server struct to better control server options:

1.	 Create an http.Handler as described.

2.	 Initialize an http.Server instance:

server := http.Server {
  // The address to listen
  Addr: ":8080",
  // The handler function
  Handler: http.HandlerFunc(myHandler),
  // The handlers must read the request within 10 seconds
  ReadTimeout: 10*time.Second,
  // The headers of a request must be read within 5 seconds
  ReadHeaderTimeout: 5*time.Second,
}

Network Programming238

3.	 Listen HTTP requests:

err:=server.ListenAndServe()
log.Fatal(err)

Tip
A common way to create an HTTP handler is to use a request multiplexer. Recipes for using
a request multiplexer will be covered later.

HTTPS – setting up a TLS server
To start a TLS server, you need a certificate and a private key. You can either purchase one from a CA
or generate our own certificates with your internal CA. Once you have your certificate, you can use
the recipes in this section to start your HTTPS server.

How to do it...

To create a TLS HTTP server, use one of the following:

1.	 Use the Server.ListenAndServeTLS method with the certificate and key files:

server := http.Server {
   Addr: ":4443",
   Handler: handler,
}
server.ListenAndServeTLS("cert.pem", "key.pem")

2.	 To use the default HTTP server, set a handler function (or http.Handler) and call http.
ListenAndServeTLS:

http.HandleFunc("/",func(w http.ResponseWriter, req *http.
Request) {
  // Handle request
})
http.ListenAndServeTLS("cert.pem", "key.pem")

3.	 Or prepare a http.Transport with certificates:

	� Load the TLS certificate:

cert, err := tls.LoadX509KeyPair("cert.pem", "key.pem")
if err!=nil {
  panic(err)
}

Writing HTTP handlers 239

2. Create a `tls.Config` using the certificate:
tlsConfig := &tls.Config{
  Certificates: []tls.Certificate{cert},
}
3. Create a `http.Server` using the `tlsConfig`:
server := http.Server{
  Addr:      ":4443",
  Handler:   handler,
  TLSConfig: tlsConfig,
}
4. Call `server.ListenAndServeTLS`
server.ListenAndServeTLS("","")

Writing HTTP handlers
When an HTTP request arrives at a server, the server looks at the HTTP method (GET, POST, etc),
the hostname the client used (the Host header), and the URL to decide how to handle the request.
The mechanism that determines which handler should handle such a request is called a request
multiplexer. The Go standard library comes with one, and there are many third-party open source
multiplexers. In this section, we will look at the standard library multiplexer and how it can be used.

How to do it...

1.	 You can use an anonymous function for simple cases, such as a health-check endpoint:

mux := http.NewServeMux()
mux.HandleFunc("GET /health",func(w http.ResponseWriter, req
*http.Request) {
  w.Write([]byte("Ok")
})
...
server := http.Server {
  Handler: mux,
  Addr: ":8080",
  ...
}
server.ListenAndServe()

The preceding handler will respond to GET /health endpoint requests with an Ok and
HTTP 200 status.

Network Programming240

2.	 You can use a data type that implements the http.Handler interface:

	� Create a new data type, which can be a struct containing information that you will need to
implement the handler:

// The RandomService reads random data from a source, and
returns random numbers
type RandomService struct {
  rndSource io.Reader
}
2. Implement the `http.Handler` interface:
func (svc RandomService) ServeHTTP(w http.ResponseWriter, req
*http.Request) {
  // Read 4 bytes from the random number source, convert it to
string
  data:= make([]byte,4)
  _,err:=svc.rndSource.Read(data)
  if err!=nil {
    // This will return an HTTP 500 error with the error message
    // as the message body
    http.Error(w,err.Error(),http.StatusInternalServerError)
    return
  }
  // Decode random data using binary little endian encoding
  value:=binary.LittleEndian.Uint32(data)
  // Write the data to the output
  w.Write([]byte(strconv.Itoa(int(value))))
}

	� Create an instance of the handler type and initialize it

file, err:=os.Open("/dev/random")
if err!=nil {
  panic(err)
}
defer file.Close()
svc:=RandomService {
  rndSource: file,
}

3.	 Create a multiplexer:

mux:=http.NewServeMux()

Writing HTTP handlers 241

4.	 Assign the handler to a pattern. The following example assigns GET requests for /rnd path
to the instance constructed at step 3.

mux.Handle("GET /rnd", svc)

5.	 Start the server.

server := http.Server {
  Handler: mux,
  Addr: ":8080",
  ...
}
server.ListenAndServe()

6.	 A more general method involves creating data types with multiple methods as handlers. This
pattern is especially useful for web service development because it allows for creating structures
that serve all the APIs related to a specific business domain:

	� Create a data type. This can be a struct containing all the necessary information to implement
handlers, such as database connections, public/private keys, and so on:

type UserHandler struct {
  DB *sql.DB
}

7.	 Create methods using the signature for http.HandlerFunc to

   implement multiple API endpoints:
func (hnd UserHandler) GetUser(w http.ResponseWriter, req *http.
Request) {
  ...
}

8.	 Create an initialize the handlers.

userDb, err:=sql.Open(driver, UserDBUrl)
if err!=nil {
  panic(err)
}

userHandler := UserHandler {
  DB: userDb,
}

9.	 Create a request multiplexer

mux := http.NewServeMux()

Network Programming242

10.	 Assign handler methods to patterns:

mux.Handle("GET /users/{userId}",userHandler.GetUser)
mux.Handle("POST /users", userHandler.NewUser)
mux.Handle("DELETE /users/{userId}", userHandler.DeleteUser)

11.	 Use the multiplexer to start the server.

server := http.Server{
   Addr: serverAddr,
   Handler: mux,
}
server.ListenAndServe()

The following code snippet illustrates how you can use the standard library request multiplexer tools
when writing HTTP handlers:

func (hnd UserHandler) GetUser(w http.ResponseWriter, req *http.
Request) {
  // User req.PathValue("userId") to get userId portion of /users/
  // {userId}
  // That is, if this API is invoked with GET /users/123, then after
  // the following line `userId` is assigned to "123"
  userId:=req.PathValue("userId")
  // Get user data from the DB
  user, err:=GetUserInformation(hnd.DB,userId)
  if err!=nil {
    http.Error(w,err.Error(),http.StatusNotFound)
    return
  }
  // Marshal user data to JSON
  data, err:=json.Marshal(user)
  if err!=nil {
    http.Error(w, err.Error(),http.StatusInternalServerError)
    return
  }
  // Set the content type header. You **must** set all headers before
  // writing the body. Once the body is placed on the write, there is
  // no way to change a header that is already written.
  w.Header().Set("Content-Type","application/json")
  w.Write(data)
}

Serving static files on the file system 243

Serving static files on the file system
Not all files served by web applications are dynamically generated. JavaScript files, cascading stylesheets,
and some HTML pages are usually served verbatim. This section shows several methods to serve
such files.

How to do it...

There are several ways a static file can be served via HTTP:

1.	 To serve all static files under a directory, use http.FileServer to create a handler:

fileHandler := http.FileServer(http.Dir("/var/www"))
server:=http.Server{
  Addr: addr,
  Handler: fileHandler,
}
http.ListenAndServe()

The preceding snippet will serve the files under /var/www at the root path. That is, a GET /
index.html request will serve the /var/www/index.html file with Content-Type:
text/html. Similarly, a GET /css/styles.css will serve /var/www/css/styles.
css with Content-Type: text/css.

2.	 To serve all static files under a directory but with a different URL path prefix, use http.
StripPrefix:

fileHandler := http.StripPrefix("/static/", http.
FileHandler(http.Dir("/var/www"))

The preceding call wraps the given file handler with another that strips the given prefix from
the URL path. For a GET /static/index.hml request , this handler will serve /var/
www/index.html with Content-Type: text/html. If the path does not include the
given prefix, this will return HTTP 404 Not Found.

3.	 To add additional logic to URL-filename mapping, implement the http.FileSystem
interface and use FileServerFS with that file system. You can combine this handler with
http.StripPrefix to further change URL path processing:

// Serve only HTML files in the given directory
type htmlFS struct {
  fs *http.FileSystem
}

// Filter file names by their extension before opening them
func (h htmlFS) Open(name string) (http.File, error) {
  if strings.ToLower(filepath.Ext(name))==".html" {

Network Programming244

    return h.fs.Open(name)
  }
  return nil, os.ErrNotFound
}
...

htmlHandler := http.FileHandler(htmlFS{fs:http.Dir("/var/www"))
// htmlHandler serves all HTML files under /var/www

Handling HTML forms
HTML forms are an essential component of capturing data in web applications. An HTML form can
be processed on the server side through the use of a Form HTML element, or it can be processed on
the client side using JavaScript. In this section, we will look at handling HTTP form submissions for
server-side processing.

How to do it...

On the client side, do the following.

1.	 Enclose data input fields in a Form HTML element:

<form method="POST" action="/auth/login">
<input type="text" name="userName">
<input type="password" name="password">
<button type="submit">Submit</button>
</form>

Here, the method attribute determines the HTTP method, which is POST, and the action
attribute determines the URL. Note that this URL is relative to the current page URL. When the
form is submitted, the client-side processing will prepare a POST request for the given URL,
and send the contents of input fields as name-value pairs encoded as application/x-
www-form-urlencoded encoding.

2.	 On the server side, do the following:

	� Write a handler to process the POST request. In the handler, do the following:

	� Call http.Request.ParseForm to process submitted data.

	� Get the submitted information from http.Request.PostForm.

	� Process the request.

Handling HTML forms 245

The following example implements a simple login scenario using the submitted username
and password. The handler uses an authenticator that performs the actual user validation and
returns a cookie if the login is successful. This cookie contains information to identify the user
in the subsequent calls:

type UserHandler struct {
  Auth Authenticator
}

func (h UserHandler) HandleLogin(w http.ResponseWriter, req
*http.Request) {
  // Parse the submitted form. This fills up req.PostForm
  // with the submitted information
  if err:=req.ParseForm(); err!=nil {
    http.Error(w, err.Error(), http.StatusBadRequest)
    return
  }
  // Get the submitted fields
  userName := req.PostForm.Get("userName")
  password := req.PostForm.Get("password")
  // Handle the login request, and get a cookie
  cookie,err:=h.Auth.Authenticate(userName,password);
  if err!=nil {
    // Send the user back to login page, setting an error
    // cookie containing an error message
    http.SetCookie(w,h.NewErrorCookie("Username or password
    invalid"))
    http.Redirect(w, req, "/login,html", http.StatusFound)
    return
  }
  // Set the cookie representing user session
  http.SetCookie(w,cookie)
  // Redirect the user to the main page
  http.Redirect(w,req,"/dashboard.html",http.StatusFound)
}

•	 Register the handler to handle the POST requests for the URL:

userHandler := UserHandler {
  Auth: authenticator,
}
mux := http.NewServeMux()
mux.HandleFunc("POST /auth/login", userHandler.HandleLogin)
mux.HandleFunc("GET /login.html", userHandler.ShowLoginPage)

Network Programming246

Tip
You have to be careful when working with cookies. In our example, a cookie was created by the
server application and sent to the client. Subsequent calls to the server will include that cookie
for the server to keep track of the user session. However, there is no guarantee that the cookie
submitted by the client is a valid cookie. Malicious clients can send forged or expired cookies.
Use cryptographic methods to ensure the cookie is created by the server, such as signing a
cookie using a secret key, or using a JSON Web Token.

Tip
The preceding example includes another usage of cookies to send status information from one
page to another. If login fails, the user is redirected to the login page with a cookie containing
the error message. The login page handler can check the presence of this cookie and display
the message.

An example implementation is given here:

func (h UserHandler) ShowLoginPage(w http.ResponseWriter, req *http.
Request) {
  loginFormData:=map[string]any{}
  cookie, err:= req.Cookie("error_cookie")
  if err==nil {
    loginFormData["error"] = cookie.Value
    // Unset the cookie
    http.SetCookie(&http.Cookie {
      Name: "error_cookie",
      MaxAge: 0,
    })
  }
  w.Header.Set("Content-Type","text/html")
  loginFormTemplate.Execute(w,loginFormData)
}

An implementation of the NewErrorCookie method looks like the following:

func (h UserHandler) NewErrorCookie(msg string) *http.Cookie {
  return &Cookie {
    Name: "error_cookie",
    Value: msg,
    MaxAge: 60, // Cookie lives for 60 seconds
  }
}

Writing a handler for downloading large files 247

Writing a handler for downloading large files
When an HTTP client requests a large file, it is usually not feasible to load all the file data and then
send it to the client. Use io.Copy to stream large content to clients.

How to do it...

This is how you can write a handler to download a large file:

1.	 Set the Content-Type header.

2.	 Set the Content-Length header.

3.	 Write the file contents using io.Copy.

These steps are illustrated here:

func DownloadHandler(w http.ResponseWriter, req *http.Request) {
  fileName := req.PathValue("fileName")
  f, err:= os.Open(filepath.Join("/data",fileName))
  if err!=nil {
    http.Error(w,err.Error(),http.StatusNotFound)
    return
  }
  defer f.Close()
  // TODO
  w.Header.Set("Content-Type","application/octet-stream")
  w.Header.Set("Content-Length",  strconv.Itoa(f.Length()))
  io.Copy(w,f)
}

Handling HTTP uploaded files and forms as a stream
The standard library provides methods to deal with file uploads. You can call http.Request.
ParseMultipartForm, and work with uploaded files. There is one problem with this approach:
ParseMultipartForm processes all uploads up to a given memory limit. It may even use temporary
files. This is not a scalable approach if you are dealing with large files. This section describes how you
can work with file uploads without creating temporary files or a large memory footprint.

How to do it...

On the client side, do the following:

1.	 Create an HTML form with multipart/form-data encoding.

2.	 Add the form fields and files that you are planning to upload.

Network Programming248

An example is given here:

<form action="/upload" method="post" enctype="multipart/form-data">
  <input type="text" name="textField">
  <input type="file" name="fileField">
  <button type="submit">submit</button>
</form>

When submitted, this form will create a multipart message containing two parts:

•	 There’s a part with Content-Disposition: form-data; name="textField".
The contents of this part will contain the input the user typed for the textField input field.

•	 There’s also a part with Content-Disposition: form-data; name="fileField";
filename=<name of the file user selected>. The contents of this part will
contain the file contents.

On the server side, do the following:

1.	 Use http.Request.MultipartReader to get a multipart body reader from the request.
If the request is not a multipart request (multipart/mixes or multipart/form-data), this will fail:

reader, err:=request.MultipartReader()
if err!=nil {
  http.Error(w,"Not a multipart request",http.StatusBadRequest)
  return
}

2.	 Process the parts of the submitted data one by one by calling MultipartReader.NextPart:

for {
  part, err:= reader.NextPart()
  if errors.Is(err,io.EOF) {
    break
  }
  if err!=nil {
    http.Error(w,err.Error(),http.StatusBadRequest)
    return
  }
}

Handling HTTP uploaded files and forms as a stream 249

3.	 Check whether the part is form data or file using the Content-Disposition header:

	� If Content-Disposition is form-data without a filename parameter, then this
part contains a form field.

	� If Content-Disposition is form-data with a filename parameter, then this part
is a file. You can read the file contents from the body.

formValues:=make(url.Values)
if fileName:=part.FileName(); fileName!="" {
  // This part contains a file
  output, err:=os.Create(fileName)
  if err!=nil {
    // Handle error
  }
  defer output.Close()
  if err:=io.Copy(output,part); err!=nil {
    // Handle error
  }
} else if fieldName := part.FormName(); fieldName!="" {
  // This part contains form data for an input field
  data, err := io.ReadAll(part)
  if err!=nil {
    // Handle error
  }
  formValues[fieldName]=append(formValues[fieldName],
  string(data))
}

14
Streaming Input/Output

There is flexibility and elegance in simplicity. Unlike several languages that decided to implement a
feature-rich streaming framework, Go chose a simple capability-based approach: a reader is something
from which you read bytes, and a writer is something to which you write bytes. In-memory buffers, files,
network connections, and so on are all readers and writers, defined by io.Reader and io.Writer.
A file is also an io.Seeker, as you can randomly change the reading/writing location, but a network
connection is not. A file and a network connection can be closed, so they are both io.Closer, but
a memory buffer is not. Such simple and elegant abstractions are the key to writing algorithms that
can be used in different contexts.

In this chapter, we will look at some recipes showing how this capability-based streaming framework
can be used idiomatically. We will also look at how to work with files and the filesystem. The recipes
covered in this chapter are in the following main sections:

•	 Readers/writers

•	 Working with files

•	 Working with binary data

•	 Copying data

•	 Working with the filesystem

•	 Working with pipes

Readers/writers
Remember, Go uses a structural type system. This makes any data type that implements Read([]
byte) (int,error) an io.Reader, and any data type that implements Write([]byte)
(int,error) an io.Writer. There are many uses of this property in the standard library. In
this recipe, we will look at some of the common uses of readers and writers.

Streaming Input/Output252

Reading data from a reader

An io.Reader fills a byte slice you pass to it. By passing a slice, you actually pass two pieces of
information: how much you want to read (the length of the slice) and where to put the data that was
read (the underlying array of the slice).

How to do it...

1.	 Create a byte slice large enough to hold the data you want to read:

buffer := make([]byte,1024)

2.	 Read the data into the byte slice:

nRead, err := reader.Read(buffer)

3.	 Check how much was read. The number of bytes actually read may be smaller than the buffer size:

buffer = buffer[:nRead]

4.	 Check the error. If the error is io.EOF, then the reader reached the end of the stream. If the
error is something else, handle the error or return it:

if errors.Is(err,io.EOF) {
  // End of file reached. Return data
  return buffer, nil
}
if err!=nil {
  // Some other error, handle it or return
  return nil,err
}

Note the ordering of steps 3 and 4. Returning io.EOF is not necessarily an error, it simply means
the end of the file has been reached or the network connection has been closed, so you should stop
reading. There is probably some data read in the buffer, and you should process that data. The reader
returns how much data was read.

Writing data to a writer

1.	 Encode the data you want to write as a byte slice; for instance, use json.Marshal to get the
JSON representation of your data as a []byte:

buffer, err:=json.Marshal(data)
if err!=nil {
  return err
}

Readers/writers 253

2.	 Write the data:

_, err:= writer.Write(buffer)
if err!=nil {
  return err
}

3.	 Check and handle errors.

Warning
Unlike a reader, all errors returned from a writer should be treated as errors. A writer does not
return io.EOF. Even when there is an error, a write may have written some part of the data.

Reading from and writing to a byte slice

A reader or a writer does not have to be a file or a network connection. This section shows how you
can work with byte slices as readers and writers.

How to do it...

•	 To create a reader from a []byte, use bytes.NewReader. The following example marshals
a data structure to JSON (which returns a []byte), then sends that []byte to an HTTP
POST request by creating a reader from it:

data, err:=json.Marshal(myStruct)
if err!=nil {
  return err
}
rsp, err:=http.Post(postUrl, "application/json", bytes.
NewReader(data))

•	 To use a []byte as a writer, use bytes.Buffer. The buffer will append to the underlying
byte slice as you write to it. When you are done, you can get the contents of the buffer:

buffer := &bytes.Buffer{}
encoder := json.NewEncoder(buffer)
if err:=encoder.Encode(myStruct); err!=nil {
   return err
}
data := buffer.Bytes()

Streaming Input/Output254

A bytes.Buffer is also an io.Reader, with a separate read location. Writing to a bytes.
Buffer appends to the end of the underlying slice. Reading from a bytes.Buffer starts reading
from the beginning of the underlying slice. Because of this, you can read the bytes you wrote, as follows:

buffer := &bytes.Buffer{}
encoder := json.NewEncoder(buffer)
if err:=encoder.Encode(myStruct); err!=nil {
   return err
}
rsp,err:=http.Post(postUrl, "application/json", buffer)

Reading from and writing to a string

To create a reader from a string, use strings.NewReader, as follows:

rsp, err:=http.Post(postUrl,"application/json",strings.
NewReader(`{"key":"value"}`))

Do not use bytes.NewReader([]byte(stringValue)) instead of strings.
NewReader(stringValue). The former copies the contents of the string to create a byte slice.
The latter accesses the underlying bytes without copying.

To use a string as an io.Writer, use strings.Builder. For instance, as an io.Writer,
strings.Builder can be passed to the fmt.Fprint family of functions:

query:=strings.Builder{}
args:=make([]interface{},0)
query.WriteString("SELECT id,name FROM users ")
if !createdAt.IsZero() {
  args=append(args,createdAt)
  fmt.Fprintf(&query,"where createdAt < $%d",len(args))
}
rows, err:=tx.Query(ctx,query.String(),args...)

Working with files
Files are simply sequences of bytes on a storage system. There are two ways of working with files: as a
random access byte sequence or as a stream of bytes. We will look at both types of recipes in this section.

Creating and opening files

To work with the contents of a file, you first have to open it or create it. This recipe shows how that
can be done.

Working with files 255

How to do it...

To open an existing file for reading, use os.Open:

file, err := os.Open(fileName)
if err!=nil {
 // handle error
}

You can read data from the returned file object, and when you are done, you should close it using
file.Close(). So, you can use it as an io.Reader or io.ReadCloser (there are more
interfaces that *os.File implements!)

If you attempt to write to the file, you will receive an error from the write operation. On my Linux
system, this error is a *fs.PathError message saying bad file descriptor.

To create a new file or to overwrite an existing one, use os.Create:

file, err := os.Create(fileName)
if err!=nil {
  // handle error
}

If the preceding call is successful, the returned file can be read from or written to. The file is created
with 0o666 & ^umask. If the file already existed before this call, it will be truncated to a length of 0.

Tip
umask defines the set of permissions applications cannot set on files. In the preceding text,
0o666 means that the owner, group, and others can read and write the file. A umask value
of 0o022, for instance, will change the file mode from 0o666 to 0o644, which means the
owner can read and write, but the group and others can only read.

To open an existing file for reading/writing, use os.OpenFile. This is the most general form of
the open/create family of functions:

•	 To open an existing file for both reading and writing, use the following:

file, err := os.OpenFile(fileName,os.O_RDWR, 0)

The last argument is 0. This argument is only used when creating the file is an option. We will
see this case later shortly.

•	 To open an existing file for reading only, use the following:

file, err := os.OpenFile(fileName,os.O_RDONLY, 0)

Streaming Input/Output256

•	 To open an existing file for writing only, use the following:

file, err := os.OpenFile(fileName,os.O_WRONLY, 0)

•	 To open an existing file for appending only, use the following:

file, err := os.OpenFile(fileName,os.O_WRONLY|os.O_APPEND, 0)

Trying to write somewhere other than the end of the file will fail.

•	 To open an existing file or to create one if it does not exist, use the following:

file, err := os.OpenFile(fileName,os.O_RDWR|os.O_CREATE, 0o644)

The preceding operation will open the file for reading and writing if it exists. If the file does not
exist, it will be created using the 0o644 & ^umask permission bits. 0o644 means the owner
can read/write (06), users from the same group can read (04), and other users can read (04).

The following is equivalent to os.Create; that is, truncate and open the file if it exists but create
if it does not:

file, err:= os.Open(fileName, os.O_RDWR|os.O_CREATE|os.O_TRUNC,0o644)

If you want to create the file only if it does not exist, use the “exclusive” bit:

file, err := os.Open(fileName, os.O_RDWR|os.O_CREATE|os.O_EXCL,0o644)

This call will fail if the file already exists.

Tip
This is a common way of ensuring a single instance of a process is running, or to lock a resource
if it is not locked. For instance, if you want to lock a directory, you can use this call to create a
lock file. It will fail if some other process already locked it (created the file before you.)

Closing a file

There are two reasons why you should always explicitly close files you open:

•	 All data stored in buffers are flushed when you close the file.

•	 There are limits to how many files you can keep open at any given time. These limits change
from platform to platform.

The following steps show how you can do this consistently.

Working with files 257

How to do it...

When you are done working with a file, close it. Use defer file.Close() where possible:

file, err:=os.Open(fileName)
if err!=nil {
  // handle error
}
defer file.Close()
// Work with the file

Do not rely on defer if you are working with many files. Do not do this:

for _,fileName:=range files {
   file, err:=os.Open(fileName)
   if err!=nil {
     // handle error
   }
   defer file.Close()
   // Work with file
}

Deferred calls will execute when the function returns, not when the block in which you used them
ends. The preceding code will keep all the files open until the function returns, and if there is a large
number of files, os.Open will start failing once you pass the platform-specific open file limit. You
can do one of two things. The first is to explicitly close the file for all exit points:

for _,fileName:=range files {
   file, err:=os.Open(fileName)
   if err!=nil {
     return err
   }
   // Work with file
   err:=useFile(file)
   if err!=nil {
     file.Close()
     return err
   }
   err:=useFileAgain(file)
   if err!=nil {
     file.Close()
     return err
   }
   // Do more work
   file.Close()
}

Streaming Input/Output258

The second is to use a closure with defer:

for _,fileName:=range files {
   file, err:=os.Open(fileName)
   if err!=nil {
     return err
   }
   err=func() error {
     defer file.Close()
     // Work with file
     err:=useFile(file)
     if err!=nil {
       return err
     }
     err:=useFileAgain(file)
     if err!=nil {
       return err
     }
     // Do more work
     return nil
   }()
   if err!=nil {
     return err
   }
}

Tip
 Files are garbage collected. If you open/create files and then work with file descriptors directly,
the garbage collector is not your friend. Use runtime.KeepAlive(file) to prevent the
garbage collector from closing the file while you’re working with it through the file descriptor and/
or syscalls. Avoid relying on the garbage collector to close your files. Always close files explicitly.

Reading/writing data from/to files

When you open a file for reading and writing, the operating system keeps the current location within
the file. Read and write operations are performed at that current location, and once you read or write
some data, the current location advances to accommodate the data read or written. For instance, if
you open a file for reading, the current location is set to an offset of 0. Then if you read 10 bytes from
the file, the current location becomes 10 (assuming the file is larger than 10 bytes). The next time
you read from the file or write to it, you will read the contents or write starting from an offset of 10.
Keep this behavior in mind, especially if you are mixing reads and writes to a file.

Working with files 259

How to do it...

•	 To read some data starting from the current location, use file.Read:

file, err:=os.Open(fileName)
if err!=nil {
  return err
}
// Current location: 0
buffer:=make([]byte,100)
// Read 100 bytes
n, err:=file.Read(buffer)
// Current location: n
// n tells how many bytes actually read
data:=buffer[:n]
if err!=nil {
  if errors.Is(err, io.EOF) {
  }
}

The ordering of checking for n (the number of bytes read) and checking whether there was
an error is important. An io.Reader may do a partial read and return the number of bytes
read along with an error. That error may be io.EOF, signifying that the file has less data than
you attempted to read. For instance, a file with 10 bytes will return n=10 and err=io.EOF.
Also note that this behavior is dependent on the current location of the file. The following code
segment reads the file as a slice of byte slices:

slices := make([][]byte,0)
for {
  buffer:=make([]byte,1024)
  n, err:=file.Read(buffer)
  if n>0 {
    slices=append(slices,buffer[:n])
    buffer=make([]byte,1024)
  }
  if err!=nil {
    if errors.Is(err,io.EOF) {
      break
    }
    return err
  }
}

If the current location in the file is 0 when the preceding code begins, after every read operation,
the current location will progress by n. Note that all the byte slices will be 1024 bytes except
the last. The last slice can be anywhere from 1 to 1024 bytes, depending on the file size.

Streaming Input/Output260

•	 Writing to a file is done similarly:

buffer:=[]byte("Hello world!")
n, err:=io.Write(buffer)
if err!=nil {
  return err
}

A write operation will not return io.EOF. If you write past the end of the file, the file will be
enlarged to accommodate the written bytes. If the write operation cannot write all the given
bytes, the error will always be non-nil, and you should check and handle the error.

If the current location is 0 at the beginning, it will be n after the write operation.

•	 To read everything from a file, use os.ReadFile:

data, err:= os.ReadFile("config.yaml")
if err!=nil {
  // Handle error
}

Tip
Be careful when using os.ReadFile. It allocates a []byte that is the size of the file. Use
this function only if you are sure the file you are reading is of a reasonable size.

•	 To read a large file in fixed-size chunks, allocate a fixed-size buffer and read iteratively until
io.EOF is returned:

// Read file in 10K chunks
buf:=make([]byte,10240)
for {
  n, err:=file.Read(buf)
  if n>0 {
    // Process buffer contents:
    processData(buf[:n])
  }
  // Check for errors. Check for io.EOF and handle it
  if err!=nil {
    if errors.Is(err,io.EOF) {
      // End of file. We are done
      break
    }
    // Some other error
    return err
  }
}

Working with files 261

•	 To write a byte slice to a new file, use os.WriteFile:

err:=os.WriteFile("config.yaml", data, 0o644)

Reading/writing from/to a specific location

We talked about the concept of the current location previously. This section is about moving the
current location to start reading or writing from a random location in a file.

How to do it...

You may change the current location using File.Seek.

•	 To set the current location relative to the beginning of the file, use the following:

// Move to offset 100 in file
newLocation, err := file.Seek(100,io.SeekStart)

The returned newLocation is the new current location of the file. Subsequent read or write
operations will read from or write to that location.

•	 To set the current location relative to the end of the file, use the following:

// Move to the end of the file:
newLocation, err := file.Seek(0,io.SeekEnd)

The preceding is also a quick way of determining the current file size, as newLocation is 0
bytes ahead of the end of the file.

•	 You can seek beyond the end of the file. Reading from such a location will read 0 bytes. Writing
to such a location will extend the file size to accommodate the data written at that location:

// Go to 100 after the end of file and write 1 byte
newLocation, err:=file.Seek(100, io.SeekEnd)
if err!=nil {
  panic(err)
}
// Write 1 byte.
file.Write([]byte{0})
// The file is 101 bytes larger now.

Tip
When you extend a file like this, the area between the end of the file and the newly written
bytes is filled with 0s. The underlying platform may implement this as a hole; that is, the area
that is not written may not be actually allocated.

Streaming Input/Output262

•	 os.File supports additional methods for such random access. File.WriteAt will write
data to the given location (relative to the beginning of the file) without moving the current
location. File.ReadAt will read from the given location without moving the current location:

// Go to offset 1000
_,err:=file.Seek(1000,io.SeekStart)

// Write "Hello world" to offset 10.
n, err:=file.WriteAt([]byte("Hello world!"),10)
if err!=nil {
  panic(err)
}

// Write to offset 1000, because WriteAt does not move
// the current location
_,err:=file.WriteAt([]byte{"offset 1000")

buffer:=make([]byte,5)
file.ReadAt(buffer,10)
fmt.Println(string(buffer))
// Prints "Hello"

Changing the file size

Extending a file is usually achieved by writing more data to the end of it, but how can you shrink an
existing file? This recipe describes different ways to change the file size.

How to do it...

•	 To truncate a file to a size of 0, you can open a file with the truncate flag:

file, err:=os.OpenFile("test.txt", os.O_RDWR|os.O_TRUNC,0o644)
// File is opened and truncated to 0 size

•	 If the file is already open, you can use File.Truncate to set the file size. File.Truncate
works both ways – you can extend a file or you can shrink it:

// Truncate the file to 0-size
err:=file.Truncate(0)
if err!=nil {
  panic(err)
}

// Extend the file to 100-bytes
err=file.Truncate(100)

Working with files 263

if err!=nil {
  panic(err)
}

•	 You can also extend a file by appending to it. You can do this in one of two ways. You can open
the file for append-only:

file, err:=os.OpenFile("test.txt", os.O_WRONLY|os.O_APPEND,0)
// File is opened for writing, current location is set to the
// end of the file

If you open a file append-only, you cannot read/write from other locations of the file, you can
only append to it.

•	 Alternatively, you can seek the end of the file and start writing there:

// Seek to the end
_,err:=file.Seek(0,io.SeekEnd)
if err!=nil {
  panic(err)
}
// Write new data to the end of the file
_,err:=file.Write(data)

Finding the file size

If the file is open, you can obtain the file size as follows:

fileSize, err:= file.Seek(0,io.SeekEnd)

This will return the current file size, including any data that was appended but not yet flushed.

The preceding operation will move the file pointer to the end of the file. To preserve the current
location, use the following:

// Get current location
currentLocation, err:=file.Seek(0,io.SeekCurrent)
if err!=nil {
  return err
}
// Find file size
fileSize, err:=file.Seek(0,io.SeekEnd)
if err!=nil {
  return err
}
// Move back to the saved location

Streaming Input/Output264

_,err:=file.Seek(currentLocation,io.SeekStart)
if err!=nil {
  return err
}

If the file is not open, use os.Stat:

fileInfo, err:=os.Stat(fileName)
if err!=nil {
  return err
}
fileSize := fileInfo.Size()

Tip
If you have the file open and you appended data to the file, the file size reported by os.Stat
may be different from the file size you obtained by File.Seek. The os.Stat function reads
the file information from the file directory. The File.Seek method uses process-specific file
information that may not have been reflected in the directory entry yet.

Working with binary data
If you need to send a piece of data over a network connection or store it in a file, you first have to
encode it (or serialize it, or marshal it.) This is necessary because the system at the other end of the
network connection or the application that will read the file you wrote may be running on a different
platform. A portable, easy-to-debug but not necessarily efficient way to do this is to use text-based
encodings such as JSON. If performance is paramount or when the use case demands it, you use
binary encoding.

There are many high-level binary encoding schemes. Gob (https://pkg.go.dev/encoding/
gob) is a Go-specific encoding scheme that can be used for networking applications. Protocol buffers
(https://protobuf.dev) provide a language-neutral, extensible, schema-driven mechanism for
encoding structured data. There are more, too. So instead of picking one such scheme, we will look at
the basics of binary encoding that every software engineer should know about.

Encoding data involves transforming data elements into a stream of bytes. If you have a data element
that is a single byte or a data element that is already a sequence of bytes, you can encode them verbatim.
When working with multi-byte data types (int16, int32, int64, etc.), how you order those bytes
becomes important. For example, if you have an int16 value of 0xABCD, how should you encode
those bytes as a []byte? There are two options:

•	 Little-endian: 0xABCD is encoded as []byte{0xCD, 0xAB}

•	 Big-endian: 0xABCD is encoded as []byte{0xAB, 0xCD}

https://pkg.go.dev/encoding/gob
https://pkg.go.dev/encoding/gob
https://protobuf.dev

Working with binary data 265

Similarly, a 32-bit integer, 0x01234567 , encoded in little-endian byte order gives []
byte{0x67,0x45,0x23,0x01} and encoded in big-endian byte ordering gives []
byte{0x01,0x23,0x45,0x67}. Most modern hardware uses little-endian byte ordering to
represent values in memory. Network protocols (such as IP) tend to use big-endian.

How to do it...

There are two main approaches to encoding binary data:

•	 The first is using a fixed structure. In this approach, the ordering and type of data fields are
fixed. For instance, the IPv4 header defines where every header field starts and ends. There is
no way to omit a field or add extensions in this approach. An example is shown in Figure 14.1.

Figure 14.1: Fixed-length encoding example

•	 The second is using a dynamic encoding schema, such as length value (LV) or tag length
value (TLV). In this schema, the encoded data is not fixed in length, but it is self-describing.
A tag defines the data type and/or data element, an optional length defines the length of data,
and value is the value of the data element. For instance, a common approach to LV encoding
strings is to first encode the length of the string, and then the bytes of the string itself. A TLV
encoding of the string would first write a tag denoting the value as a string field, then the
length, and then the string itself. An example TLV encoding schema is shown in Figure 14.2.

Figure 14.2: TLV encoding example

Streaming Input/Output266

This example uses 16-bit string length and 64-bit slice length encoding.

Use encoding/binary to encode data in big-endian or little-endian byte ordering.

For fixed-length encoding, you can use encoding.Write to encode, and encoding.Read to
decode data:

type Data struct {
  IntValue int64
  BoolValue bool
  ArrayValue [2]int64
}

func main() {
  output := bytes.Buffer{}
  data:=Data{
    IntValue: 1,
    BoolValue: true,
    ArrayValue: [2]int64{1,2},
  }
  // Encode data using big endian byte order
  binary.Write(&output, binary.BigEndian, data)
  stream := output.Bytes()
  fmt.Printf("Big endian encoded data   : %v\n", stream)
  // Decode data
  var value1 Data
  binary.Read(bytes.NewReader(stream), binary.BigEndian, &value1)
  fmt.Printf("Decoded data: %v\n", value1)

  // Encode data using little endian byte order
  output = bytes.Buffer{}
  binary.Write(&output, binary.LittleEndian, data)
  stream = output.Bytes()
  fmt.Printf("Little endian encoded data: %v\n", stream)
  // Decode data
  var value2 Data
  binary.Read(bytes.NewReader(stream), binary.LittleEndian, &value2)
  fmt.Printf("Decoded data: %v\n", value2)
}

Working with binary data 267

This program outputs the following:

Big endian encoded data   : [0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 2]
Decoded data: {1 true [1 2]}
Little endian encoded data: [1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0]
Decoded data: {1 true [1 2]}

Take special care when defining the Data structure. You cannot use variable length or platform-
specific types if you want to use encoding.Read or encoding.Write:

•	 No int because the size of int is platform-specific

•	 No slices

•	 No maps

•	 No strings

How can we encode these values, then? Let’s take a look at an LV encoding scheme to encode a
string value:

func EncodeString(s string) []byte {
  // Allocate the output buffer for string length (int16) +
  // len(string)
  buffer:=make([]byte, 0, len(s)+2)
  // Encode the length little endian - 2 bytes
  binary.LittleEndian.PutUint16(buffer,uint16(len(s)))
  // Copy the string bytes
  copy(buffer[2:],[]byte(s))
  return buffer
}

Here is one to decode a string value:

func DecodeString(input []byte) (string, error) {
     // Read the string length. It must be at least 2 bytes
     if len(input) < 2 {
          return "", fmt.Errorf("invalid input")
     }
     n := binary.LittleEndian.Uint16(input)
     if int(n)+2 > len(input) {
          return "", fmt.Errorf("invalid input")
     }
     return string(input[2 : n+2]), nil
}

Streaming Input/Output268

Copying data
io.Copy reads data from a reader and writes it to a writer until one of the operations fails or the
reader returns io.EOF. There are many use cases where you need to get chunks of data from a reader
and send it to a writer. io.Copy works at an abstract layer that allows you to copy data from a file
to a network connection, or from a string to a file. It also performs capability-based optimizations to
minimize data copying. For instance, if the platform supports the splice system call, io.Copy can
use it to bypass buffer usage. In this section, we will see some uses of io.Copy.

Copying files

How to do it...

To copy a file, follow these steps:

1.	 Open the source file.

2.	 Create the target file.

3.	 Use io.Copy to copy data.

4.	 Close both files.

These steps are illustrated here:

sourceFile, err:=os.Open(sourceFileName)
if err!=nil {
  panic(err)
}
defer sourceFile.Close()
targetFile, err:=os.Create(targetFileName)
if err!=nil {
  panic(err)
}
defer targetFile.Close()
if err:=io.Copy(targetFile,sourceFile);err!=nil {
  panic(err)
}

Since io.Copy works with io.Reader and io.Writer, any object implementing these interfaces
can be used as the source or the target. For example, the following code segment returns a file as a
response to an HTTP request:

// Handle GET /path/{fileName}
func HandleGetImage(w http.ResponseWriter, req *http.Request) {
  // Get the file name from the request

Working with the filesystem 269

  file, err:=os.Open(req.PathValue("fileName"))
  if err!=nil {
    http.Error(w,err.Error(),http.StatusNotFound)
    return
  }
  defer file.Close()
  // Write file contents to the response writer
  io.Copy(w,file)
}

Working with the filesystem
There are many aspects of filesystems that are platform-specific. This section talks about portable
ways of working with filesystems.

Working with filenames

Use path/filepath package to work with filenames in a portable way.

How do to it...

•	 To build a path from several path segments, use filepath.Join:

fmt.Println(filepath.Join("/a/b/","/c/d")
// Prints /a/b/c
fmt.Println(filepath.Join("/a/b/c/d/","../../x")
// Prints a/b/x

Note that filepath.Join does not allow consecutive separators, and interprets ".."
correctly.

•	 To split a path to its directory and filename parts, use filepath.Split:

fmt.Println(filepath.Split("/home/bserdar/work.txt"))
// dir: "/home/bserdar" file: "work.txt"
fmt.Println(filepath.Split("/home/bserdar/projects/"))
// dir: "/home/bserdar/projects/" file: ""

•	 Avoid using path separators (/ and \) in your code. Use filepath.Separator, which is
a platform-specific rune value.

Creating temporary directories and files

Sometimes, you will need to create unique directory names and filenames, mostly for temporary data.

Streaming Input/Output270

How to do it...

•	 To create a temporary directory under the platform-specific default directory for temporary
files, use os.MkdirTemp("",prefix):

dir, err:=os.MkdirTemp("","tempdir")
if err!=nil {
  // Handle error
}
// Clean up when done
defer os.RemoveAll(dir)
fmt.Println(dir)
// Prints /tmp/example10287493

The created name is unique. If there are multiple calls to create a temporary directory, each
will generate a unique name.

•	 To create a temporary directory under a specific directory, use os.MkdirTemp(dir,prefix):

// Create a temporary directory under the current directory
dir, err:=os.MkdirTemp(".","tempdir")
if err!=nil {
  // Handle error
}
// Cleanup when done
defer os.RemoveAll(dir)

•	 To create a temporary directory with the random part of the name not as a suffix, use *. The
random string replaces the last * character:

dir, err:=os.MkdirTemp(".", "myapp.*.txt")
if err!=nil {
  // Handle error
}
defer os.RemoveAll(dir)
fmt.Println(dir)
// Prints ./myapp.13984873.txt

•	 To create a temporary file, use os.CreateTemp. A unique file is created and opened for
reading and writing. The name of the created file can be obtained from the returned file.
Name value:

file, err:=os.CreateTemp("","app.*.txt")
if err!=nil {
  // Handle error
}
fmt.Println("Temp file", file.Name)

Working with the filesystem 271

// Cleanup when done
defer os.Remove(file.Name)
defer file.Close()

Similar to os.MkdirTemp, if the filename contains *, a random string is inserted in place of the last
* character. If the filename does not contain *, the random string is appended at the end of the name.

Reading directories

Use os.ReadDir to list or discover files under a directory.

How to do it...

•	 Call os.ReadDir to get the contents of a directory. This returns directory entries in order
sorted by name:

entries, err:=os.ReadDir(".")
if err!=nil {
  // handle error
}
for _, entry:=range entries {
   // Name contains the file name only, not the directory
   name := entry.Name()
   if entry.IsDir() {
     // This is a directory
   } else {
     // This is not a directory. Does not mean it is a regular
     // file Can be a named pipe, device, etc.
   }
}

You may notice that os.ReadDir is not your best bet if you are dealing with potentially large
directories. It returns an unbounded slice, and it also spends time sorting it.

•	 For performance and memory-conscious applications, open the directory and read it using File.
ReadDir:

// Open the directory
dir, err:= os.Open("/tmp")
if err!=nil {
  panic(err)
}
defer dir.Close()

// Read directory entries unordered, 10 at a time
for {

Streaming Input/Output272

  entries, err:=dir.ReadDir(10)
  // Are we done reading
  if errors.Is(err, io.EOF) {
    break
  }
  if err!=nil {
    panic(err)
  }
  // There are at most 10 fileInfo entries
  for _,entry:=range entries {
    // Process the entry
  }
}

•	 To recursively iterate directory entries in a portable way, use io.fs.WalkDir. This function
uses "/" as the path separator regardless of the platform. The following example prints all the
files under /tmp, skipping directories:

err:=fs.WalkDir(os.DirFS("/"), "/tmp", func(path string,d
fs.DirEntry,err error) error {
  if err!=nil {
     fmt.Println("Error during directory traversal", err)
     return err
  }
  if !d.IsDir() {
    // This is not  a directory
    fmt.Println(filepath.Join(path,d))
  }
  return nil
})

•	 To recursively iterate directory entries, use filepath.WalkDir. This function uses a platform-
specific path separator. The following example prints all directories under /tmp recursively:

err:=filepath.WalkDir("/tmp", func(path string,d fs.DirEntry,err
error) error {
  if err!=nil {
     fmt.Println("Error during directory traversal", err)
     return err
  }
  if d.IsDir() {
    // This is a directory
    fmt.Println(filepath.Join(path,d), " directory")
  }
  return nil
})

Working with pipes 273

Working with pipes
If you have a piece of code that expects a reader and another piece of code that expects a writer, you
can connect the two using io.Pipe.

Connecting code expecting a reader with code expecting a writer

A good example of this use case is preparing an HTTP POST request, which requires a reader. If you
have all of the data available, or if you already have a reader (such as os.File), you can use that.
However, if the data is produced by a function that takes a writer, use a pipe.

How to do it...

A pipe is a synchronously connected reader and writer. That is, if you write to a pipe, there must be
a reader consuming from it concurrently. So make sure you put the data-producing side (where you
use the writer) in a different goroutine than the data-consuming side (where you use the reader).

•	 Create a pipe reader and pipe writer using io.Pipe:

pipeReader, pipeWriter := io.Pipe()

pipeReader will read everything written to pipeWriter.

•	 Use pipeWriter to produce data in a goroutine. When everything is written, close pipeWriter:

go func() {
  // Close the writer side, so the reader knows when it is done
  defer pipeWriter.Close()
  encoder:=json.NewEncoder(pipeWriter)
  if err:=encoder.Encode(payload); err!=nil {
    if errors.Is(err,io.ErrClosedPipe) {
      // The reader side terminated with error
    } else {
      // Handle error
    }
  }
}()

•	 Use pipeReader where a reader is needed. If the function fails and not everything in the
pipe can be consumed, close pipeReader so the writer can terminate:

if _, err:= http.Post(serverURL, "application/json",
pipeReader); err!=nil {
  // Close the reader, so the writing goroutine terminates
  pipeReader.Close()
  // Handle error
}

Streaming Input/Output274

In the preceding code, the goroutine that encodes the JSON data will block until the POST request
establishes a connection and streams the data. If there is an error during this process, pipeReader.
Close() ensures that the goroutine that encodes JSON data does not leak.

Intercepting a reader using TeeReader

In plumbing, a tee pipe is a fitting that has a T shape. It splits the flow into two. TeeReader takes its
name from that. An io.TeeReader(r io.Reader, w io.Writer) io.Reader function
returns a new reader that reads from r at the same time as writing whatever it read to w. This is very
useful for intercepting the data going through a reader.

How to do it...

1.	 Create a pipe:

pipeReader, pipeWriter := io.Pipe()

2.	 Create a TeeReader from another reader, using pipeWriter as the writer that will receive data:

file, err:=os.Open(dataFile)
if err!=nil {
  // Handle error
}
defer file.Close()
tee := io.TeeReader(file, pipeWriter)

At this stage, reading some data from tee will read data from file and write that data
to pipeWriter.

3.	 Use pipeReader in a separate goroutine to process data read from the original reader:

go func() {
  // Copy the file to stdout
  io.Copy(os.Stdout,pipeReader)
}()

4.	 Use the TeeReader to read the data:

_,err:=http.Post(serverURL, "text/plain", tee)
if err!=nil {
  // Make sure pipe is closed
  pipeReader.Close()
}

Note that working with a pipe requires at least one other goroutine where writing to or reading from
the pipe happens. In case of error, make sure all goroutines working with the pipe terminate by closing
one end of the pipe.

15
Databases

Most applications have to work with at least one type of database. SQL databases are common enough
that the Go standard library offers a unified way to connect and use them. This chapter shows some
of the patterns you can use to work with the standard library implementation of the SQL package.

Many databases offer nonstandard extensions, in terms of both functionality and query language.
Even if you use the standard library to interface with a database, you should always check the vendor-
specific database driver to understand potential limitations, implementation differences, and the
supported SQL dialect.

Here, it might be useful to mention NoSQL databases. The Go standard library does not offer a
NoSQL database package. This is because, unlike SQL, most NoSQL databases have nonstandard
query languages that are purpose-built for the specific database. NoSQL databases built for specific
workloads perform much better than a general-purpose SQL database. If you are using such a database,
refer to its documentation. However, many of the concepts presented in this chapter will apply to
some degree to NoSQL databases as well.

This chapter has the following recipes:

•	 Connecting to a database

•	 Running SQL statements

•	 Running SQL statements without explicit transactions

•	 Running SQL statements with transactions

•	 Running prepared statements within a transaction

•	 Getting values from a query

•	 Dynamically building SQL statements

•	 Building UPDATE statements

•	 Building WHERE clauses

Databases276

Connecting to a database
There are two ways you can incorporate a database into your applications: you can use a database
server or an embedded database. Let’s start by defining what those are.

A database server runs as a separate process on the same or a different host but is independent
of your application. Usually, your application connects to this database server through a network
connection, so you have to know its network address and port. There is usually a library you have
to import into your program, a “database driver” specific to the database server you use. This driver
provides the interface between your application and the database by managing the connections,
queries, transactions, and so on.

An embedded database is not a separate process. It is included in your application as a library and
runs in the same address space. A database driver acts as an adapter that presents a standard interface
(i.e., using the database/sql package) to the application. When using an embedded database,
you have to be mindful of the resources you share with other processes. Many embedded databases
will not let multiple programs access the same underlying data.

Before performing any operations, you must connect to the database server (such as a MySQL or
PostgreSQL server) or to the embedded database engine (such as SQLite).

Tip
This page contains a list of SQL drivers: https://go.dev/wiki/SQLDrivers.

How to do it...

Find the database-specific driver you need. This driver may be provided by the database vendor or
published as an open source project. You can check https://go.dev/wiki/SQLDrivers for
a list of SQL drivers. Import this database driver in the main package.

You need a driver-specific driver name and connection string to connect to the database server or the
embedded database engine. If you are connecting to a database server, this connection string usually
includes the host/port information, authentication information, and connection options. If this is
an embedded database engine, it may include filename/directory information. Then, you either call
sql.Open or use a driver-specific connection function that returns a *sql.DB.

A database driver may defer the actual connection to the first database operation. That is, connecting
to a database using sql.Open may not actually connect immediately. To ensure you are connected
to the database, use DB.Ping. An embedded database driver usually would not require a ping.

https://go.dev/wiki/SQLDrivers
https://go.dev/wiki/SQLDrivers

Connecting to a database 277

The following is an example showing a connection to a MySQL database:

package main

import (
    "fmt"
    "database/sql"
    "context"

    // Import the mysql driver
    _ "github.com/go-sql-driver/mysql"
)

func main() {
    // Use mysql driver name and driver specific connection string
    db, err := sql.Open("mysql", "username:password>@tcp(host:port)/
    databaseName")
    if err != nil {
        panic(err.Error())
    }
    defer db.Close()

    // Check if database connection succeeded, with 5 second timeout
    ctx, cancel := context.WithTimeout(context.
    Background(),5*time,Second)
    defer cancel()
    if err:=db.PingContext(ctx); err!=nil {
        panic(err)
    }

    fmt.Println("Success!")
}

The following is an example showing a connection to an in-memory SQLite database using a local file:

package main

import (
    "database/sql"
    "fmt"
    "os"
    // Import the database driver
    _ "github.com/mattn/go-sqlite3"
)

Databases278

func main() {
    // Open the sqlite database using the given local file ./database.
    // db
    db, err := sql.Open("sqlite3", "./database.db")
    if err != nil {
        log.Fatal(err)
    }
    defer db.Close()

    // You don't need to ping an embedded database
}

Tip
Note the use of blank identifier, _, for the database driver import. That means the package is
imported only for its side effects, which, in this case, are the init() functions that register
the database driver. For instance, importing the go-sqlite3 package in main causes the
init() function declared in go-sqlite3 to register itself to the SQL drivers map with
the name sqlite3.

Running SQL statements
After acquiring an instance of *sql.DB, you can run SQL statements to modify or query data. These
queries are simply SQL strings, but the flavor of SQL varies between database vendors.

Running SQL statements without explicit transactions

When interacting with a database, an important consideration is determining transaction boundaries.
If you need to perform a single operation, such as inserting a row or running a query, you usually
do not need to create a transaction explicitly. You can execute a single SQL statement that will start
and end the transaction. However, if you have multiple SQL statements that should either run as an
atomic unit or not run at all, you have to use a transaction.

How to do it...

1.	 To run a SQL statement to update data, use DB.Exec or DB.ExecContext:

result, err:=db.ExecContext(ctx,`UPDATE users SET user.last_
login=? WHERE user_id=?",time.Now(), userId)
if err!=nil {
  // Handle error
}
n, err:=result.RowsAffected()

Running SQL statements 279

if err!=nil {
  // Handle error
}
if n!=1 {
  return errors.New("Cannot update last login time")
}

To run the same statement multiple times with different values, use a prepared statement. A
prepared statement usually sends the statement to the database server where it is parsed and
prepared. Then, you can simply run this parsed statement with different arguments, bypassing
the parsing and optimization stages of the database engine.

You should close the prepared statement when you are done using it:
func AddUsers(db *sql.DB, users []User) error {
  stmt, err := db.Prepare(`INSERT INTO users (user_name,email)
  VALUES (?,?)`)
  if err!=nil {
    return err
  }
  // Close the prepared statement when done
  defer stmt.Close()
  for _,user:=range users {
    // Run the prepared statement with different arguments
    _, err := stmt.Exec(user.Name,user.Email)
    if err!=nil {
      return err
    }
  }
}

Tip
You can create prepared statements after connecting to the database and use them in your program
until the program ends. Prepared statements can be executed from multiple goroutines concurrently.

To run a query that returns results, use DB.Query or DB.QueryContext. To run a query that is
expected to return at most one row, you can use the DB.QueryRow or DB.QueryRowContext
convenience functions.

The DB.Query and DB.QueryContext methods return a *sql.Rows object that is
essentially a uni-directional cursor over the results of a query. This provides an interface that
allows you to process large result sets without loading all results to the memory. Database
engines usually return the results in batches, and the *sql.Rows object allows you to go
through the result rows one by one, fetching results in batches as necessary.

Databases280

Another thing to keep in mind is that many database engines defer the actual execution of the
query until you start fetching the results. In other words, just because you ran a query, does
not mean that the query is actually evaluated by the server. The query evaluation may happen
when you fetch the first result row:

func GetUserNamesLoggedInAfter(db *sql.DB, after time.Time) ([]
string,error) {
  rows, err:=db.Query(`SELECT users.user_name FROM users WHERE
  last_login > ?`, after)
  if err!=nil {
    return nil,err
  }
  defer rows.Close()
  names:=make([]string,0)
  for rows.Next() {
    var name string
    if err:=rows.Scan(&name); err!=nil {
      return err
    }
    names=append(names,name)
  }
  // Check if iteration produced any errors
  if err:=rows.Err(); err!=nil {
    return nil,err
  }
  return names
}

If the expected result set has at most one row (in other words, you are looking for a specific object
that may or may not be there), you can shorten the preceding pattern by using DB.QueryRow
or DB.QueryRowContext. You can determine whether the operation found the row by
checking whether the returned error is sql.ErrNoRows:

func GetUserByID(db *sql.DB, id string) (*User, error) {
  var user User
  err:=db.QueryRow(`SELECT user_id, user_name, last_login FROM
  users WHERE user_id=?`,id).
    Scan(&user.Id, &user.Name, &user.LastLogin)
  if errors.Is(err,sql.ErrNoRows) {
    return nil,nil
  }
  if err!=nil {
    return nil,err
  }
  return &user,nil
}

Running SQL statements 281

Never use values provided by a user, read from a configuration file, or received from an API
request to build a SQL statement without validating first. Use query arguments to avoid SQL
injection attacks.

Running SQL statements with transactions

If you need to perform multiple updates atomically, you must execute those updates in a transaction.
In this context, atomically means either all updates complete successfully or none of them complete.

The transaction isolation level determines how other concurrent transactions see the updates performed
within a transaction. You can find many resources that describe transaction isolation levels. Here, I
will provide a summary to help you decide which isolation level is best for your use case:

•	 sql.LevelReadUncommitted: This is the lowest transaction isolation level. A transaction
may see uncommitted changes performed by another transaction. The other transaction may
update the read data, commit the transactions, or roll it back so there is no guarantee that what
was read is still correct right after it is read.

•	 sql.ReadCommitted: A transaction reads only committed changes performed by another
transaction. That means if one transaction attempts to read/write data that is being modified
by another transaction, the first transaction has to wait until the second transaction completes.
However, once a transaction in the ReadCommitted isolation level reads data, another transaction
may change it.

•	 sql.RepeatableRead: A transaction reads only committed changes performed by another
transaction. Furthermore, the value read by the transaction in the RepeatableRead isolation
level is guaranteed to remain unchanged until the transaction is committed or rolled back. Any
other transaction attempting to modify data read by a repeatable-read transaction will wait until
the repeatable-read transaction ends. However, this isolation level does not prevent another
transaction from inserting rows into a table that satisfy the query criteria of a repeatable-read
transaction, so querying the same table with range queries may yield different results.

•	 sql.Serializable: This is the highest transaction isolation level. A serializable transaction
reads only committed changes, prevents other transactions from modifying data it reads, and
prevents other transactions from inserting/updating/deleting rows that match the criteria of
any of the queries performed within the transaction.

Concurrent database operations decrease as the transaction isolation level increases. This also affects
the performance: lower transaction isolation levels are faster. You have to select the isolation level
carefully: choose the lower isolation level that is safe for the operation. Usually, there is a driver-specific
default isolation level that will be used if you do not specify a level explicitly.

Databases282

How to do it...

Start a transaction with the desired isolation level:

ctx, cancel := context.WithCancel(context.Background())
defer cancel()
// 1. Start transaction
tx, err := db.BeginTx(ctx, &TxOptions{
  Isolation: sql.LevelReadCommited,
  })
if err!=nil {
  // Handle error
}
// 2. Call rollback with defer, so in case of error, transaction
// rolls back
defer tx.Rollback(context.Background())

Make sure the transaction either commits or rolls back. You can do this by deferring tx.Rollback.
This causes the transaction to roll back if the function returns without committing it. If the transaction
is successful, you commit the transaction. Once a transaction is committed, the deferred rollback
does not have any effect.

Perform database operations using the transaction. All database operations performed using the
methods of *sql.Tx will be done within the transaction:

_, err:= tx.Exec(`UPDATE users SET user.last_login=? WHERE user_
id=?",time.Now()`, userId)
if err!=nil {
  // Do not commit, handle error
}

If there are no errors, commit the transaction:

tx.Commit(ctx)

Tip
Some database drivers may roll back and cancel a transaction when a query cannot complete
due to a constraint violation, such as a duplicate value on a unique index. Check your driver
documentation to see whether it performs an auto-rollback.

Running prepared statements within a transaction 283

Running prepared statements within a transaction
A statement can be prepared by calling the *sql.Tx.Prepare or *sql.Tx.PrepareContext
method of the transaction struct. The prepared statement returned by these two will be associated
with that transaction only. That is, you cannot prepare a statement using one transaction and use that
statement for another transaction.

How to do it...

There are two ways you can use prepared statements in a transaction.

The first is using a statement prepared by *DB:

1.	 Prepare the statement using DB.Prepare or DB.PrepareContext.

2.	 Get a transaction-specific copy of the transaction:

txStmt := tx.Stmt(stmt)
3. Run the operations using the new statement.

The second is using a statement prepared by *Tx:

1.	 Prepare the statement using Tx.Prepare or Tx.PrepareContext.

2.	 Run the operations using this statement.

Getting values from a query
A SQL query returns *sql.Rows, or if you use the QueryRow methods, it returns *sql.Row.
The next thing you have to do is iterate over the rows and scan the values into Go variables.

How to do it...

Running Query or QueryContext implies you are expecting zero or more rows from the query.
Because of that, it returns *sql.Rows.

For the code snippets in this section, we use the following User struct:

type User struct {
  ID        uint64
  Name      string
  LastLogin time.Time
  AvatarURL string
}

Databases284

This is used with the following table definition:

CREATE TABLE users {
  user_id int not null,
  user_name varchar(32) not null,
  last_login timestamp null,
  avatar_url varchar(128) null
)

Iterate through the rows and work with each individual result row. In the following example, the
query returns zero or more rows. The first call to rows.Next moves to the first row in the result
set, and each subsequent call to rows.Next moves to the next row. This allows for the use of a for
statement, as in the following example:

rows, err := db.Query(`SELECT user_id, user_name, last_login, avatar_
url FROM users WHERE last_login > ?`, after)
if err!=nil {
  return err
}
// Close the rows object when done
defer rows.Close()
for rows.Next() {
  // Retrieve data from this row
}

For each row, use Scan to copy data into Go variables:

users:=make([]User,0)
for rows.Next() {
  // Retrieve data from this row
  var user User
  // avatar column is nullable, so we pass a *string instead of string
  var avatarURL *string

  if err:=rows.Scan(
    &user.ID,
    &user.Name,
    &user.LastLogin,
    &avatarURL);err!=nil {
      return err
    }
    // avatar URL can be nil in the db
    if avatarURL!=nil {
      user.AvatarURL=*avatarURL
    }

Getting values from a query 285

    users=append(users,user)
}

The order of arguments to Scan must match the order of columns retrieved from the SELECT
statement. That is, the first argument, &user.ID, corresponds to the user_id column; the next
argument, &user.Name, corresponds to the user_name column; and so on. The number of
arguments to Scan thus must be equal to the number of columns fetched.

The SQL driver performs the translation from database-native types to Go data types. If the translation
results in data or precision loss, the driver usually returns an error. For instance, if you try to scan a large
integer value into an int16 variable and the translation cannot represent the value, Scan returns an error.

If the database column is defined as nullable (in this example, avatar_url varchar(128)
NULL), and if the data value retrieved from the database is null, then the Go value must be able to
accommodate the null value. For instance, if we used &user.AvatarURL in Scan and the value in
the database was null, then Scan would have returned an error complaining that a null value cannot
be scanned to a string. To prevent such errors, we used *string instead of string. In general,
if the underlying database column is nullable, you should use a pointer in Scan for that column.

Check for errors after fetching all rows:

// Check if there was an error during iteration
if err:=rows.Err(); err!=nil {
  return err
}

Close *sql.Rows. This is usually done with a defer rows.Close() statement as previously.

Running QueryRow or QueryRowContext implies you are expecting zero or one row from the
query. Then, return a *sql.Row object that you can use to scan values and check for errors.

Run QueryRow or QueryRowContext, and scan the values as described previously:

var user User
row:=db.QueryRow(`SELECT user_id, user_name, last_login, avatar_url
FROM users WHERE user_id = ?`, id)
if err:=row.Scan(
   &user.ID,
   &user.Name,
   &user.LastLogin,
   &avatarURL);err!=nil {
  return err
}
return user

If there is an error during query execution, it will be returned by the row.

Databases286

Dynamically building SQL statements
In any nontrivial application using a SQL database, you will have to build SQL statements dynamically.
This becomes necessary for cases such as the following:

•	 Using flexible search criteria that may change based on user input or requests

•	 Optionally joining multiple tables based on requested fields

•	 Selectively updating a subset of columns

•	 Inserting a variable number of columns

This section shows several common methods to build SQL statements for different use cases.

Tip
There are many open source query builder packages. You might want to explore those packages
before writing your own.

Building UPDATE statements
If you need to update a given number of columns of a table without modifying others, you can follow
the pattern given in this section.

How to do it...

1.	 You need two pieces of information to run an UPDATE statement:

	� The data to update: A common way of describing such information is to use pointers to
represent updated values. Consider the following example:

type UpdateUserRequest struct {
  Name *string
  LastLogin *time.Time
  AvatarURL *string
}

Here, a column will only be updated if the corresponding field is not null. For instance, with
the following instance of UpdateUserRequest, only the LastLogin and AvatarURL
fields will be updated:

now:=time.Now()
urlString:="https://example.org/avatar.jpg"
update:=UpdateUserRequest {
  LastLogin: &now,

Building UPDATE statements 287

  AvatarURL: &urlString,
}

	� The record locator: This is usually the unique identifier of the row that needs to be updated.
However, it is also common to use a query that will locate multiple records.

With this information, a common way to write an update function is as follows:
func UpdateUser(ctx context.Context, userId uint64, req
*UpdateUserRequest) error {
  ...
}

In the preceding code, the record locator is userId.

	� Use strings.Builder to build the statement while keeping track of the query arguments
in a slice:

query:=strings.Builder{}
args:=make([]interface{},0)
// Start building the query. Be mindful of spaces to separate
query clauses
query.WriteString("UPDATE users SET ")

2.	 Create a SET clause for each column that needs to be updated:

if req.Name != nil {
  args=append(args,*req.Name)
  query.WriteString("user_name=?")
}
if req.LastLogin!=nil {
  if len(args)>0 {
    query.WriteString(",")
  }
  args=append(args,*req.LastLogin)
  query.WriteString("last_login=?")
}
if req.AvatarURL!=nil {
  if len(args)>0 {
    query.WriteString(",")
  }
  args=append(args,*req.AvatarURL)
  query.WriteString("avatar_url=?")
}

Databases288

3.	 Add the WHERE clause:

query.WriteString(" WHERE user_id=?")
args=append(args,userId)

4.	 Run the statement:

_,err:=db.ExecContext(ctx,query.String(),args...)

Not all database drivers use ? for query arguments. For example, one of the Postgres drivers uses $n,
where n is a number starting from 1 giving the order of the argument. The algorithm is a bit different
for such drivers:

if req.Name != nil {
  args=append(args,*req.Name)
  fmt.Fpintf(&query,"user_name=$%d",len(args))
}
if req.LastLogin!=nil {
  if len(args)>0 {
    query.WriteString(",")
  }
  args=append(args,*req.LastLogin)
  fmt.Fprintf(&query,"last_login=$%d",len(args))
}
if req.AvatarURL!=nil {
  if len(args)>0 {
    query.WriteString(",")
  }
  args=append(args,*req.AvatarURL)
  fmt.Fprintf(&query,"avatar_url=$%d",len(args))
}

Building WHERE clauses
A WHERE clause can be a part of a SELECT, UPDATE, or DELETE statement. Here, I will show a
SELECT example, and you can extend this to apply to UPDATE and DELETE. Be careful with the
arguments as an UPDATE statement will include arguments for update column values as well.

Building WHERE clauses 289

How to do it...

This example shows the case where AND is used in the search criteria:

1.	 You need a data structure that gives which columns to include in the WHERE clause. Take the
following example:

type UserSearchRequest struct {
  Ids            []uint64
  Name           *string
  LoggedInBefore *time.Time
  LoggedInAfter  *time.Time
  AvatarURL      *string
}

With this structure, the search function looks as follows:
func SearchUsers(ctx context.Context, req *UserSearchRequest)
([]User,error) {
  ...
}

2.	 Use strings.Builder to build the statement parts while keeping track of the query
arguments in a slice:

query:=strings.Builder{}
where:= strings.Builder{}
args:=make([]interface{},0)
// Start building the query. Be mindful of spaces to separate
query clauses
query.WriteString("SELECT user_id, user_name, last_login,
avatar_url FROM users ")

3.	 Build a predicate for each search item:

if len(req.Ids)>0 {
   // Add this to the WHERE clause with an AND
   if where.Len()>0 {
      where.WriteString(" AND ")
   }
  // Build an IN clause.
  // We have to add one argument for each id
  where.WriteString("user_id IN (")
  for i,id:=range req.Ids {
    if i>0 {
      where.WriteString(",")
    }

Databases290

    args=append(args,id)
    where.WriteString("?")
  }
  where.WriteString(")")
}
if req.Name!=nil {
  if where.Len()>0 {
    where.WriteString(" AND ")
  }
  args=append(args,*req.Name)
  where.WriteString("name=?")
}
if req.LoggedInBefore!=nil {
  if where.Len()>0 {
    where.WriteString(" AND ")
  }
  args=append(args,*req.LoggedInBefore)
  where.WriteString("last_login<?")
}
if req.LoggedInAfter!=nil {
  if where.Len()>0 [
    where.WriteString(" AND ")
  }
  args=append(args,*req.LoggedInAfter)
  where.WriteString("last_login>?")
}
if req.AvatarURL!=nil {
  if where.Len()>0 {
    where.WriteString(" AND ")
  }
  args=append(args,*req.AvatarURL)
  where.WriteString("avatar_url=?")
}

4.	 Build and run the query:

if where.Len() {
  query.WriteString(" WHERE ")
  query.WriteString(where.String())
}
rows, err:= db.QueryContext(ctx,query.String(), args...)

Again, not all database drivers use the ? marker. See the previous section for an alternative if your
database driver is one of those.

16
Logging

Printing log messages from a program can be an important tool for troubleshooting. Log messages
tell you what is going on at any given moment, and provide much-needed contextual information
when something goes wrong. Go standard library provides convenient packages to generate and
manage log messages from programs. Here, we will look at using the log package, which can be
used to generate text messages, and the slog package, which can be used to generate structured log
messages from programs.

This chapter contains the following recipes:

•	 Using the standard logger

	� Writing log messages

	� Controlling format

	� Changing where to log

•	 Using the structured logger

	� Logging using the global logger

	� Writing structured logs using different levels

	� Changing log level at runtime

	� Using loggers with additional attributes

	� Changing where to log

	� Adding logging information from the context

Logging292

Using the standard logger
The standard library logger is defined in the log package. It is a simple logging library that can be used
to print formatted log messages that show the progression of a program. For most practical purposes,
the standard library logger functionality is too limited, but it can be a useful tool that requires minimal
setup for proof-of-concepts and smaller programs. Use the structured logger log/slog package
for any nontrivial project.

Writing log messages

The standard logger is a simple logging implementation to print diagnostic messages. It does not offer
structured output or multiple log levels but can be useful for programs where log messages are geared
toward the end users or developers.

How to do it...

You can use the default logger to print log messages:

log.Println("This is a log message similar to fmt.Println")
log.Printf("This is a log message similar to fmt.Printf")

Here is the output:

2024/09/17 23:05:26 This is a log message similar to fmt.Println
2024/09/17 23:05:26 This is a log message similar to fmt.Printf

The preceding functions use a singleton instance of log.Logger, which can be obtained by log.
Default(). In other words, calling log.Println is equivalent to calling log.Default().
Println.

You can also create a new logger, configure it, and pass it around:

logger := log.New(os.Stderr, "", log.LstdFlags)
logger.Println("This is a log message written to stderr")

Here is the output:

2024/09/17 23:10:34 This is a log message with a prefix

Other than log.Println and log.Printf, you can use log.Fatal or log.Panic to stop
a program:

log.Fatal("Fatal error")

This will terminate the program with exit code 1 and output the following:

2024/09/17 23:05:26 Fatal error

Using the standard logger 293

We can observe something similar with the following:

log.Panic("Fatal error")

This will panic and generate the output that follows:

2024/09/17 23:05:26 Fatal error
panic: Fatal error

goroutine 1 [running]:
log.Panic({0xc000104f30?, 0xc00007c060?, 0x556310?})
    /usr/local/go-faketime/src/log/log.go:432 +0x5a
main.main()
    /tmp/sandbox255937470/prog.go:8 +0x38

Controlling format

You can control the output format of the logger using bit flags. You can also define a prefix for the
subsequent log messages.

How to do it...

You can create a new logger with a prefix as follows:

logger := log.New(log.Writer(), "prefix: ", log.LstdFlags)
logger.Println("This is a log message with a prefix")

This outputs the following:

prefix: 2024/09/17 23:10:34 This is a log message with a prefix

You can also set the prefix of an existing logger:

logger.SetPrefix("newPrefix")
logger.Println("This is a log message with the new prefix")

Here is the output:

newPrefix: 2024/09/17 23:10:34 This is a log message with the new
prefix

The output fields and how they are printed are controlled by the flags. The log.LstdFlags tells
the logger that the date and time of the log should also be written.

Logging294

The log.Lshortfile prints the file name and line number showing where the log statement is:

logger.SetFlags(log.LstdFlags | log.Lshortfile)
logger.Println("This is a log message with a prefix and file name")

This gives the following output:

prefix: 2024/09/17 23:10:34 main.go:17: This is a log message with a
prefix and file name

The log.Llongfile prints the full path:

logger.SetFlags(log.LstdFlags | log.Llongfile) logger.Println("This is
a log message with a prefix and long file name")

Here is the resultant output:

prefix: 2024/09/17 23:10:34 /home/bserdar/github.com/go-recipes-book/
src/chp14/stdlogger/main.go:19: This is a log message with a prefix
and long file name

You can combine multiple flags using the bitwise | OR operator. The log.Lmsgprefix moves
the prefix string (if one exists) to the beginning of the message from the beginning of the log line:

logger.SetFlags(log.LstdFlags | log.Lshortfile | log.Lmsgprefix)
logger.Println("This is a log message with a prefix moved to the

Here’s the output::

2024/09/17 23:10:34 main.go:21: prefix: This is a log message with a
prefix moved to the beginning of the message

The following flags print the time and date in UTC, as well as the short file name:

logger.SetFlags(log.LstdFlags | log.Lshortfile | log.LUTC)
logger.Println("This is a log message with with UTC time") ```

This outputs the following:

prefix: 2024/09/18 05:10:34 main.go:23: This is a log message with
with UTC time

Changing where to log

By default, the logging output goes to standard error (os.Stderr), but it can be changed without
affecting the logging directives.

Using the structured logger 295

How to do it...

You can create a logger with a given output using log.NewLogger. The following example creates
logger to print its output to standard error:

logger := log.New(os.Stderr, "", log.LstdFlags)

You can then change the logging target using Logger.SetOutput:

output, err := os.Create("log.txt")
if err != nil {
    log.Fatal(err)
}
defer output.Close()
logger.SetOutput(output)
logger.Println("This is a log message to log.txt")
logger.SetOutput(os.Stderr)
logger.Println("Message to log.txt was written")

Use io.Discard as the log output to stop logging:

logger.SetOutput(io.Discard)
logger.Println("This message will not be logged")

Using the structured logger
Since the standard logger has limited practical use, many third-party logging libraries were developed
by the community. Some of the patterns that emerged from these libraries emphasized structured
logging and performance. The structured logging package was added to the standard library with
these usage patterns in mind. The log package is still a useful tool for development as it provides
a simple interface for developers and the users of the program, but the log/slog package is a
production quality library that enables automated log analysis tools while providing a simple-to-use
and flexible interface.

Logging using the global logger

Similar to the log package, there is a global structured logger accessible via the slog.Default()
function. You can simply configure a global logger and use that in your program.

Tip
It is advisable to pass an instance of a logger around for any nontrivial project. The logging
requirements may change from environment to environment, so having a dedicated logger helps.

Logging296

How to do it...

Use slog logging functions to write logs:

slog.Debug("This is a debug message")
slog.Info("This is an info message with an integer field", "arg", 42)
slog.Info("This is another info message with an integer field", slog.
Int("arg",42))

You cannot modify the settings of the default logger, but you can create a new one and set it as the
default. The following example shows how you can set a JSON logger as the default logger:

logger := slog.New(slog.NewJSONHandler(os.Stderr, &slog.
HandlerOptions{
        Level: slog.LevelDebug,
    },
))
slog.SetDefault(logger)

Tip
slog.SetDefault() also sets the log package default logger, so the log package
functions call the slog functions. Use slog.SetLogLoggerLevel to set the level of
the log package messages.

Writing structured logs using different levels

The structured logger allows you to log messages at different levels. For instance, you can log detailed
messages at the slog.LevelDebug level, warning messages at the slog.LevelWarn level, and
error messages at the slog.LevelError level, and set the logging level of your program from a
configuration or command line argument.

How to do it...

1.	 Create a slog.Handler with slog.HandlerOptions.Level set to the desired level.
The following example creates a text log handler that prints every log message as a separate line
of text. It uses os.Stderr as the output, and the logging level is set to slog.LevelDebug:

handler:= slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
    Level: slog.LevelDebug,
})

2.	 Create a logger using the handler:

logger := slog.New(handler)

Using the structured logger 297

3.	 Use the logger to create messages at different levels. Only those messages that are equal to or
above the level determined by the handler options will be printed to the output:

logger.Debug("This is a debug message")
logger.Info("This is an info message with an integer argument",
"arg", 42)
logger.Warn("This is a warning message with a string argument",
"arg", "foo")

4.	 If logging performance is a concern, you can check whether a specific logging level is enabled:

// Checking if logging is enabled for a specific level
if logger.Enabled(context.Background(), slog.LevelError) {
  logger.Error("This is an error message", slog.String("arg",
"foo"))
}

Changing log level at runtime

Most applications set up a logger at the beginning of the application using a command line option
or a configuration file and do not change logging at runtime. However, the ability to set log levels at
runtime can be an invaluable tool to identify production problems. You can set the debug level of a
running server to slog.LevelDebug, record logs to find out about a troubling behavior, and set
it back to its original level. This recipe shows how you can do this.

How to do it...

1.	 Use a slog.LevelVar to wrap a log level value (this is called boxing a variable):

level = new(slog.LevelVar)

2.	 Set the initial log level:

level.Set(slog.LevelError)

3.	 Create a handler using the boxed level:

handler:=slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
        Level: level,
    })

4.	 Create a logger using the handler:

logger:=slog.New(handler)

5.	 Change level to control the log level:

level.Set(slog.LevelDebug)
// Now all loggers will start printing debug level messages

Logging298

Using loggers with additional attributes

Let’s say you have a server where you handle requests using functions that are shared among multiple
request handlers. When the request is received, you can log which handler is running, but when you
pass that logger to the common functions, they lose that information. They don’t know which request
handler called. Instead of passing this information to those common functions (after all, they don’t
really need that information), you can decorate a logger with such information and pass the logger.

How to do it...

1.	 Create a new logger using Logger.With, and attach additional attributes:

func HandlerA(w http.ResponseWriter, req *http.Request) {
  reqId:=getRequestIdFromRequest(req)
  // Create a new logger with additional attributes
  logger:=slog.With(slog.String("handler", "a"),slog.
  String("reqId",reqId))
  logger.Debug("Start handling request")
  defer logger.Debug("Completed request")

2.	 Use this logger to log messages:

  HandleRequest(logger, w,req)

This will output a log message that looks like this:
{"time":"2024-09-19T14:49:42.064787730-06:00","level":"DEBUG","m
sg":"Start handling request","handler":"a","reqId":"123"}
{"time":"2024-09-19T14:49:42.308187758-
06:00","level":"DEBUG","msg":"This is a debug
message","handler":"a","reqId":"123","key":"value"}
{"time":"2024-09-19T14:49:42.945674637-06:00","level":"DEBUG","m
sg":"Completed request","handler":"a","reqId":"123"}

Changing where to log

The default logger writes to os.Stderr, and similar to the log package, this can be changed when
you create the logger.

How to do it...

The logger output is determined by the slog.Handler. The following example creates logger
to print its output to standard error:

logger := slog.New(slog.NewTextHandler(os.Stderr, &slog.
HandlerOptions{
        Level: slog.LevelDebug,
    }))

Using the structured logger 299

Unlike the log package, you cannot change where to log after creating a logger, unless you write
your own handler.

Adding logging information from the context

Often, the information you need to log is available in the context. Every slog logging function has
two variants, one with context and one without. If you use the variants with context, you can write
a handler that can extract information from that context containing information from the call site.

How to do it...

Create a new handler, potentially wrapping an existing one. The following code snippet shows a handler
that will extract an id from the context by wrapping a slog.Handler:

type ContextIDHandler struct {
    slog.Handler
}

Define the Handle method. Extract information from the context, modify the log record, and pass
it to the wrapped handler:

func (h ContextIDHandler) Handle(ctx context.Context, r slog.Record)
error {
    // If the context has a string id, retrieve it and add it to the
    // record
    if id, ok := ctx.Value("id").(string); ok {
        r.Add(slog.String("id", id))
    }
    return h.Handler.Handle(ctx, r)
}

Use the logging functions that take context.Context:

func Handler(w http.ResponseWriter, req *http.Request) {
  logger.Debug(req.Context(),"Handler started")
  ...

This will add the id from the request context to the log message if there is one:

{"time":"2024-09-19T15:02:12.163787730-06:00","level":"DEBUG","msg":"H
andler started","id":"123"}

17
Testing, Benchmarks,

and Profiling

Having tests and benchmarks for your code will help you in several ways. During development, tests
ensure that what you are developing works and that you do not break existing functionality as part
of your development work. Benchmarks ensure that your program stays within certain resource and
time constraints. After the development is complete, the same tests and benchmarks will ensure that
any maintenance work (bug fixes, feature enhancements, etc.) does not introduce bugs in existing
functionality. So, you should consider writing tests and benchmarks as a core development activity,
and develop both your program and its tests together.

Testing should focus on testing the expected behavior when everything works (“happy path testing”)
as well as when things fail, not on covering all paths of implementation. Tests developed to exercise
all possible implementation choices quickly become harder to maintain than the program itself. You
should maintain a balance between practicality and test coverage.

This section shows idiomatic ways of dealing with several common testing and benchmarking scenarios.
These are the topics covered in this chapter:

•	 Working with unit tests

•	 Writing unit tests

•	 Running unit tests

•	 Logging in tests

•	 Skipping tests

•	 Testing HTTP servers

•	 Testing HTTP handlers

•	 Checking test coverage

Testing, Benchmarks, and Profiling302

•	 Benchmarking

•	 Writing benchmarks

•	 Writing multiple benchmarks with different input sizes

•	 Running benchmarks

•	 Profiling

Working with unit tests
We will work on an example function that sorts time.Time values in ascending or descending
order, which is given here:

package sort

import (
  "sort"
  "time"
)

// Sort times in ascending or descending order
func SortTimes(input []time.Time, asc bool) []time.Time {
  output := make([]time.Time, len(input))
  copy(output, input)
  if asc {
    sort.Slice(output, func(i, j int) bool {
      return output[i].Before(output[j])
    })
    return output
  }
  sort.Slice(output, func(i, j int) bool {
    return output[j].Before(output[i])
  })
  return output
}

We will use the built-in testing tools provided by the Go build system and the standard library. For
this, let’s suppose we stored the preceding function in a file called sort.go. Then, the unit tests for
this function will be in a file called sort_test.go in the same directory as sort.go. The Go
build system will recognize source files that end with _test.go as unit tests, and will exclude them
from regular builds.

Writing a unit test 303

Writing a unit test
A unit test ideally tests whether a single unit (a function, a group of interrelated functions, or the
methods of a type) behaves as expected.

How to do it...

1.	 Create unit test files with the _test.go suffix. For sort.go, we create sort_test.go.
The files that end with _test.go will be excluded from a regular build:

package sort

Tip
You can also write tests in a separate test package that ends with _test. In this example, it
becomes package sort_test. Writing tests in a separate package allows you to test the
functions of a package as they are seen from the outside because you will not have access to the
unexported names of the package under test. You will also have to import the package under test.

2.	 The Go testing system will run functions that follow the Test<Feature>(*testing.T)
pattern. Declare a test function that fits this pattern, and write a unit test that exercises a behavior:

func TestSortTimesAscending(t *testing.T) {
    // 2.a Prepare input data
    input := []time.Time{
        time.Date(2023, 2, 1, 12, 8, 37, 0, time.Local),
        time.Date(2021, 5, 6, 9, 48, 11, 0, time.Local),
        time.Date(2022, 11, 13, 17, 13, 54, 0, time.Local),
        time.Date(2022, 6, 23, 22, 29, 28, 0, time.Local),
        time.Date(2023, 3, 17, 4, 5, 9, 0, time.Local),
    }
    // 2.b Call the function under test
    output := SortTimes(input, true)
    // 2.c Make sure the output is what is expected
    for i := 1; i < len(output); i++ {
        if !output[i-1].Before(output[i]) {
            t.Error("Wrong order")
        }
    }
}

Testing, Benchmarks, and Profiling304

3.	 The layout of a test function usually follows this structure:

	� Prepare input data and any necessary environment in which the function under test will run

	� Call the function under test with the necessary input

	� Make sure the function under test returned the correct result or behaved as expected

4.	 If the test detects errors, notify the testing system that the test failed using the t.Error family
of functions.

Running unit tests
Use the Go build system tools to run unit tests.

How to do it...

1.	 To run all unit tests in the current package, input the following:

go test
PASS
ok  github.com/bserdar/go-recipes-book/chp15/sort/sort    0.001s

2.	 To run all unit tests in a package, input the following:

go test <packageName>

Or, input the following:
go test ./<folder>

Here is an example:
go test github.com/bserdar/go-recipes-book/chp15/sort/sort

Or, you can input the following:
go test ./sort

3.	 To run all unit tests in all packages of a module recursively, input the following:

go test ./...

Do this from the root directory of the module.

4.	 To run a single test in the current package, input the following:

go test -run TestSortTimesAscending

Logging in tests 305

This form treats the test name after the -run flag as a regular expression and runs all tests that
contain that string. For instance, go test -run Sort will run all tests whose name has
Sort in them. If you want to run a specific test only, construct the regular expression accordingly:

go test -run ^TestSortTimesAscending$

Here, ^ denotes the string beginning and $ denotes the string end symbols used in
regular expressions.

For instance, the following will run all tests that end with Ascending:
go test -run Ascending$

Logging in tests
Often additional logging functionality is useful for tests to show the state of critical variables, especially
if a failure occurs. By default, the Go test executor does not print any logging information if tests pass,
but if a test fails, the logging information is also included in the output.

How to do it...

1.	 Use testing.T.Log and testing.T.Logf functions to record log messages in tests:

func TestSortTimeAscending(t *testing.T) {
  ...
  t.Logf("Input: %v",input)
  output:=SortTimes(input,true)
  t.Logf("Output: %v", output)

2.	 Run the tests. If the test passes, no log information will be printed. If the test fails, logs will
be printed.

To run the tests with logs, use the -v flag:
$ go test -v
=== RUN   TestSortTimesAscending
    sort_test.go:17: Input: [2023-02-01 12:08:37 -0700 MST 2021-
05-06 09:48:11 -0600 MDT 2022-11-13 17:13:54 -0700 MST 2022-06-
23 22:29:28 -0600 MDT 2023-03-17 04:05:09 -0600 MDT]
    sort_test.go:19: Output: [2021-05-06 09:48:11 -0600 MDT
2022-06-23 22:29:28 -0600 MDT 2022-11-13 17:13:54 -0700 MST
2023-02-01 12:08:37 -0700 MST 2023-03-17 04:05:09 -0600 MDT]
--- PASS: TestSortTimesAscending (0.00s)

Skipping tests
You can skip certain tests based on an input flag. This feature lets you have a quick test where only a
subset of the tests are run and a comprehensive test where all the tests are run.

Testing, Benchmarks, and Profiling306

How to do it...

1.	 Check the testing.Short() flag for tests that should be excluded from short test runs:

func TestService(t *testing.T) {
  if testing.Short() {
    t.Skip("Service")
  }
  ...
}

2.	 Run tests with the test.short flag:

$ go test -test.short -v
=== RUN   TestService
    service_test.go:15: Service
--- SKIP: TestService (0.00s)
=== RUN   TestHandler
--- PASS: TestHandler (0.00s)
PASS

Testing HTTP servers
The net/http/httptest package complements the testing package by providing HTTP
server testing facilities that allow you to create test HTTP servers quickly.

For this section, suppose we extend our sorting function by converting it to an HTTP service, as
given here:

package service

import (
    "encoding/json"
    "io"
    "net/http"
    "time"

    "github.com/bserdar/go-recipes-book/chp15/sort/sort"
)

// Common handler function for parsing the input, sorting, and
// preparing the output
func HandleSort(w http.ResponseWriter, req *http.Request, ascending
bool) {
    var input []time.Time
    data, err := io.ReadAll(req.Body)

Testing HTTP servers 307

    if err != nil {
        http.Error(w, err.Error(), http.StatusBadRequest)
        return
    }
    if err := json.Unmarshal(data, &input); err != nil {
        http.Error(w, err.Error(), http.StatusBadRequest)
        return
    }
    output := sort.SortTimes(input, ascending)
    data, err = json.Marshal(output)
    if err != nil {
        http.Error(w, err.Error(), http.StatusInternalServerError)
        return
    }
    w.Header().Set("Content-Type", "application/json")
    w.Write(data)
}

// Prepares a multiplexer that handles POST /sort/asc and POST /sort/
// desc endpoints
func GetServeMux() *http.ServeMux {
    mux := http.NewServeMux()
    mux.HandleFunc("POST /sort/asc", func(w http.ResponseWriter, req
    *http.Request) {
        HandleSort(w, req, true)
    })
    mux.HandleFunc("POST /sort/desc", func(w http.ResponseWriter, req
    *http.Request) {
        HandleSort(w, req, false)
    })
    return mux
}

The GetServeMux function prepares a request multiplexer that handles POST /sort/asc and
POST /sort/desc HTTP endpoints for ascending and descending sort requests respectively. The
input is a JSON array of time values. The handler returns a sorted JSON array.

How to do it...

1.	 Use the net/http/httptest package that includes support for a test server:

import (
  "net/http/httptest"
  "testing"

Testing, Benchmarks, and Profiling308

  ...
)

2.	 In the test function, create a handler or multiplexer, and use that to create a test server. Make
sure the server shuts down when the test ends -- use defer server.Close():

func TestService(t *testing.T) {
  mux := GetServeMux()
  server := httptest.NewServer(mux)
  defer server.Close()

3.	 Call the server using server.URL. This is initialized to use an unused local port by the
httptest.NewServer function. In the following example, we are sending an invalid input
to the server to verify if the server returns an error:

rsp, err := http.Post(server.URL+"/sort/asc", "application/
json", strings.NewReader("test"))
if err != nil {
  t.Error(err)
  return
}
// Must return http error
if rsp.StatusCode/100 == 2 {
  t.Errorf("Error was expected")
  return
}

Note that the http.Post function does not return an error. An error from http.Post
would mean the POST operation failed. In this case, the POST operation was successful, but
an HTTP error status was returned.

4.	 You can issue multiple calls to the server to test different inputs and check the output:

data, err := json.Marshal([]time.Time{
  time.Date(2023, 2, 1, 12, 8, 37, 0, time.Local),
  time.Date(2021, 5, 6, 9, 48, 11, 0, time.Local),
  time.Date(2022, 11, 13, 17, 13, 54, 0, time.Local),
  time.Date(2022, 6, 23, 22, 29, 28, 0, time.Local),
  time.Date(2023, 3, 17, 4, 5, 9, 0, time.Local),
))
if err != nil {
  t.Error(err)
  return
}
rsp, err = http.Post(server.URL+"/sort/asc", "application/json",
bytes.NewReader(data))

Testing HTTP handlers 309

if err != nil {
  t.Error(err)
  return
}
defer rsp.Body.Close()

if rsp.StatusCode != 200 {
  t.Errorf("Expected status code 200, got %d", rsp.StatusCode)
  return
}

var output []time.Time
if err := json.NewDecoder(rsp.Body).Decode(&output); err != nil
{
  t.Error(err)
  return
}
for i := 1; i < len(output); i++ {
  if !output[i-1].Before(output[i]) {
    t.Errorf("Wrong order")
  }
}

Testing HTTP handlers
The net/http/httptest package also contains ResponseRecorder, which can be used as
http.ResponseWriter for HTTP handlers to test a single handler without creating a server.

How to do it...

1.	 Create ResponseRecorder:

func TestHandler(t *testing.T) {
  w := httptest.NewRecorder()

2.	 Call the handler, passing the response recorder instead of http.ResponseWriter:

data, err := json.Marshal([]time.Time{
  time.Date(2023, 2, 1, 12, 8, 37, 0, time.Local),
  time.Date(2021, 5, 6, 9, 48, 11, 0, time.Local),
  time.Date(2022, 11, 13, 17, 13, 54, 0, time.Local),
  time.Date(2022, 6, 23, 22, 29, 28, 0, time.Local),
  time.Date(2023, 3, 17, 4, 5, 9, 0, time.Local),
})

Testing, Benchmarks, and Profiling310

if err != nil {
  t.Error(err)
  return
}
req, _ := http.NewRequest("POST", "localhost/sort/asc", bytes.
NewReader(data))
req.Header.Set("Content-Type", "application/json")
HandleSort(w, req, true)

3.	 The response recorder stores the HTTP response built by the handler. Validate that the response
is correct:

if w.Result().StatusCode != 200 {
  t.Errorf("Expecting HTTP 200, got %d", w.Result().StatusCode)
  return
}
var output []time.Time
if err := json.NewDecoder(w.Result().Body).Decode(&output); err
!= nil {
  t.Error(err)
  return
}
for i := 1; i < len(output); i++ {
  if !output[i-1].Before(output[i]) {
    t.Errorf("Wrong order")
  }
}

Checking test coverage
A test coverage report shows which lines of source code were covered by tests.

How to do it...

1.	 To get a quick coverage result, run tests with the cover flag:

$ go test -cover
PASS
coverage: 76.2% of statements

2.	 To write a test coverage profile to a separate file so you can get detailed reports on it, give the
test run a cover profile file name:

$ go test -coverprofile=cover.out
PASS
coverage: 76.2% of statements

Benchmarking 311

Then, you can see the coverage report in your browser using:
$ go tool cover -html=cover.out

This command opens the browser and allows you to see which lines were covered by tests.

Benchmarking
Unit tests check correctness while benchmarks check performance and memory usage.

Writing benchmarks
Similar to a unit test, benchmarks are stored in the _test.go files, but these functions start with
Benchmark instead of Test. A benchmark is given a number N where you repeat the same operation
N times while the runtime is measuring the performance.

How to do it...

1.	 Create a benchmark function in one of the _test.go files. The following example is in the
sort_test.go file:

func BenchmarkSortAscending(b *testing.B) {

2.	 Do the setup before the benchmark loop, otherwise, you will be benchmarking the setup code
as well, not the actual algorithm:

input := []time.Time{
  time.Date(2023, 2, 1, 12, 8, 37, 0, time.Local),
  time.Date(2021, 5, 6, 9, 48, 11, 0, time.Local),
  time.Date(2022, 11, 13, 17, 13, 54, 0, time.Local),
  time.Date(2022, 6, 23, 22, 29, 28, 0, time.Local),
  time.Date(2023, 3, 17, 4, 5, 9, 0, time.Local),
}

3.	 Write a for loop iterating b.N times and perform the operation that will be benchmarked:

for i := 0; i < b.N; i++ {
  SortTimes(input, true)
}

Tip
Avoid logging or printing data in benchmark loops.

Testing, Benchmarks, and Profiling312

Writing multiple benchmarks with different input sizes
You usually want to see the behavior of your algorithms with different input sizes. The Go testing
framework only provides the number of times a benchmark should run, not with what input size. Use
the following pattern to exercise different input sizes.

How to do it...

1.	 Define an unexported parameterized benchmark function that accepts input size information
or inputs of different sizes. The following example gets the number of items and sort direction
as arguments, and creates a randomly shuffled input slice with the given size before performing
the benchmark:

func benchmarkSort(b *testing.B, nItems int, asc bool) {
    input := make([]time.Time, nItems)
    t := time.Now().UnixNano()
    for i := 0; i < nItems; i++ {
        input[i] = time.Unix(0, t-int64(i))
    }
    rand.Shuffle(len(input), func(i, j int) { input[i], input[j]
    = input[j], input[i] })
    for i := 0; i < b.N; i++ {
        SortTimes(input, asc)
    }
}

2.	 Define exported benchmark functions by calling the common benchmark with different values:

func BenchmarkSort1000Ascending(b *testing.B)  {
benchmarkSort(b, 1000, true) }
func BenchmarkSort100Ascending(b *testing.B)   {
benchmarkSort(b, 100, true) }
func BenchmarkSort10Ascending(b *testing.B)    {
benchmarkSort(b, 10, true) }
func BenchmarkSort1000Descending(b *testing.B) {
benchmarkSort(b, 1000, false) }
func BenchmarkSort100Descending(b *testing.B)  {
benchmarkSort(b, 100, false) }
func BenchmarkSort10Descending(b *testing.B)   {
benchmarkSort(b, 10, false) }

Running benchmarks
Go tooling runs unit tests before running benchmarks -- there is no point in benchmarking failing code.

Profiling 313

How to do it...

1.	 Use the go test -bench=<regexp> tool. To run all benchmarks, use the following command:

go test -bench=.

2.	 Enter a benchmark regular expression if you want to run a subset of the benchmarks. The
following only runs benchmarks containing 1000 in their names:

go test -bench=1000
goos: linux
goarch: amd64
pkg: github.com/bserdar/go-recipes-book/chp15/sort/sort
cpu: AMD Ryzen 5 7530U with Radeon Graphics
BenchmarkSort1000Ascending-12             9753        105997 ns/
op
BenchmarkSort1000Descending-12             9813        105192
ns/op
PASS

Profiling
A profiler samples a running program to find how much time is spent on certain functions. You can
profile a benchmark, create a profile, and then inspect that profile to find bottlenecks in your programs.

How to do it…

To get a CPU profile and analyze it, follow these steps:

1.	 Run benchmarks with the cpuprofile flag:

$ go test -bench=1000Ascending --cpuprofile=profile
goos: linux
goarch: amd64
pkg: github.com/bserdar/go-recipes-book/chp15/sort/sort
cpu: AMD Ryzen 5 7530U with Radeon Graphics
BenchmarkSort1000Ascending-12           10000        106509 ns/
op

2.	 Start the pprof tool using the profile:

$ go tool pprof profile
File: sort.test
Type: cpu

Testing, Benchmarks, and Profiling314

3.	 Use the topN command to see the top N samples in the profile:

(pprof) top5
Showing nodes accounting for 780ms, 71.56% of 1090ms total
Showing top 5 nodes out of 47
      flat  flat%   sum%        cum   cum%
     250ms 22.94% 22.94%      360ms 33.03%  github.com/bserdar/
     go-recipes-book/chp15/sort/sort.SortTimes.func1
     230ms 21.10% 44.04%      620ms 56.88%  sort.partition_func
     120ms 11.01% 55.05%      120ms 11.01%  runtime.memmove
      90ms  8.26% 63.30%      340ms 31.19%  internal/
      reflectlite.Swapper.func9
      90ms  8.26% 71.56%      230ms 21.10%  internal/
      reflectlite.typedmemmove

This shows that most time is spent in the anonymous function that compares two time values.
The flat column shows how much time is spent in a function, excluding the time spent in
functions called by it. cum, which stands for cumulative, includes the time spent in a function,
defined as the point in time the function returned minus the point in time the function started
running. That is, the cumulative value includes the time spent in the functions called by the
function. For example sort.partition_func ran for 620ms, but only 230ms of that
time was spent in sort.partition_func and the remaining time was spent in functions
called by sort.partition_func.

4.	 Use the web command to see a visual representation of the call graph and how much time is
spent on each function.

To get a memory profile and analyze it, follow these steps:

1.	 Run benchmarks with the memprofile flag:

$ go test -bench=1000Ascending --memprofile=mem
goos: linux
goarch: amd64
pkg: github.com/bserdar/go-recipes-book/chp15/sort/sort
cpu: AMD Ryzen 5 7530U with Radeon Graphics
BenchmarkSort1000Ascending-12           10000        106509 ns/
op

2.	 Start the pprof tool using the profile:

$ go tool pprof mem
File: sort.test
Type: alloc_space

Profiling 315

3.	 Use the topN command to see the top N samples in the profile:

pprof) top5
Showing nodes accounting for 493.37MB, 99.90% of 493.87MB total
Dropped 2 nodes (cum <= 2.47MB)
      flat  flat%   sum%        cum   cum%
  492.86MB 99.80% 99.80%   493.36MB 99.90%  github.com/bserdar/
go-recipes-book/chp15/sort/sort.SortTimes
    0.51MB   0.1% 99.90%   493.87MB   100%  github.com/bserdar/
go-recipes-book/chp15/sort/sort.benchmarkSort
         0     0% 99.90%   493.87MB   100%  github.com/bserdar/
go-recipes-book/chp15/sort/sort.BenchmarkSort1000Ascending
         0     0% 99.90%   493.87MB   100%  testing.(*B).launch
         0     0% 99.90%   493.87MB   100%  testing.(*B).runN

Similar to the CPU profile output, this table shows how much memory was allocated to each
function. Again, flat refers to memory allocated in that function only, and cum refers to
memory allocated in that function and any function called by that function. Here, you can see
that sort.SortTimes is the function that allocates most of the memory. This is because it
first creates a copy of the slice and then sorts it.

4.	 Use the web command to see a visual representation of the memory allocations.

See also

•	 The definitive guide to profiling Go Programs is available at https://go.dev/blog/pprof

•	 The pprof README explains the node and edge representations: https://github.
com/google/pprof/blob/main/doc/README.md

https://go.dev/blog/pprof
https://github.com/google/pprof/blob/main/doc/README.md
https://github.com/google/pprof/blob/main/doc/README.md

Index

A
arguments

expanding 205
passing, to process 205

array
used, for creating slice 71

arrays
creating 68, 69
value, passing 68, 69
working with 67

B
base type

extending 88-90
benchmarks

running 312
writing 311

binary data
approaches 265
working with 264-267

blocked read/write operation
unblocking 231, 232

boxing 297
bytes

iterating 30-32

byte slice
reading from 253
writing to 253

C
cache 82

with blocking behavior 82, 84
capped worker pool 160, 161
case folding 27
case mappings 27
certificate authority (CA) 223
channels

used, for collecting concurrent
computations result 126-128

used, for communicating goroutines 124
used, for receiving data 124, 125
used, for sending data 124, 125
used, for sending data from multiple

goroutines 125, 126
child process

environment variables, changing 209
input, providing 208, 209
output, processing with pipe 207, 208

command
running, via shell 206

Index318

composite keys 79-81
condition 43
connection pool 166, 168
constructor 119
context

used, for passing request-
scoped data 148-152

using, for cancellations 152-155
using, for timeouts 155-157

context cancellations
using, in network servers 158

context timeouts
using, in network servers 158

custom data types
marshaling 191, 192
unmarshaling 191, 192

custom object keys
marshaling 192, 193
unmarshaling 192, 193

custom passes
unmarshaling 195-197

D
data

copying 268
extracting, from strings 36, 37
files, copying 268
reading, from reader 252
sending, to channel from multiple

goroutines 125, 126
writing, from writer 252

database
connecting 276-278

data types
capabilities, discovering at runtime 97, 98

date/time
formatting 58, 59
information, storing 61
parsing 58, 59

date/time arithmetic 56, 57
date/time value

components 54, 55
decoding numbers 188, 189

missing values, dealing with 189
optional values, dealing with 189

digital certificate 223
Domain Name Service (DNS) 232
dynamic field names 194

E
embedded struct

dealing with 184
embedding struct

accessing, from embedded struct 106-108
empty fields

omitting 189
empty lines

dealing with 44, 45
encoding/json package 182
encodings

working with 29
error handling 133, 134
error returning 133, 134
errors

comparing 135, 136
extracting, from error tree 140, 141
wrapping, to add contextual

information 135
external programs

running 201-205

Index 319

F
factories 92-94
files

closing 256-258
creating 254-256
opening 254-256
reading, from current location 261
receiving, with TCP connection 220-223
sending, with TCP connection 220-223
size, changing 262, 263
size, finding 263, 264
used, for reading data 258-261
used, for writing data 258-261
working with 254
writing, to current location 261

filesystem
directories, reading 271, 272
filenames, working with 269
temporary directories, creating 269-271
temporary files, creating 269-271
used, for serving static files 243
working with 269

first-in, first-out (FIFO) 207
fixed-size worker pool 162-165

reader goroutine 165
wait workers 165
writer goroutine 166

function
using, as interface 95, 96

G
generic function 111

constraints as interfaces, declaring 113
numbers, adding 112
type assertion, using 115, 116
using, as type adapters 114, 115

using, as type-safe accessors 114, 115
zero value, returning 115

generic types 116
ordered map 118, 119
type-safe set 117

getObjectFunc callback 83
get/put method 82
global logger

used, for logging 295, 296
goroutines 121

communicating, with channels 124
creating 122, 123
data, receiving with channels 124, 125
data, sending with channels 124, 125
used, for running multiple

functions 123, 124
using 122

Go-specific encoding scheme
reference link 264

Go standard library documentation 50
reference link 51

H
handler

writing, for downloading large files 247
HTML forms

handling 244-246
HTTP

working with 234
HTTP calls

making 234-236
HTTP handlers

testing 309, 310
writing 239-242

HTTP server
running 237, 238
testing 306-308

Index320

HTTP uploaded files and forms
handling, as stream 247-249

I
implement relationship

testing 97, 98
init() function 197
input validation 35, 36
interface

as contracts 91
decoding with 188
defining 91, 92
function, using as 95, 96
nil values, checking 109, 110
usage, considerations 94, 95
used, for accessing object parts 106

interface type
implementation, ensuring 99-101

interface value
testing, as known concrete type 98, 99

io.Reader interface 218
io.Writer interface 218
iteration 40, 41

J
JavaScript Object Notation (JSON) 181

security consideration 200
streaming 199

JSON data
streaming 197

K
key pair 223

L
large result sets

streaming goroutine 178-180
working with 178

layout template 48-50
length value (LV) 265
line-based TCP server

writing 218, 219
local time 59

M
maps

decoding with 188
defining 76-78
initializing 76, 77
used, for implementing set 78, 79
used, for thread-safe caching 81
using 76-78
working with 76

memory race 124
missing fields

dealing with 190
JSON decoding, customization 191
JSON encoding, customization 191

module 2
creating 3, 4
local copy, using 14, 15
versions, managing 16, 17

module cache
working with 11

multiple benchmarks
writing, with different input sizes 312

multiple channels
working, with select statement 128, 129

Index 321

N
named return value 143
nested loop 43
net.Conn interface 216
network servers

cancellations and timeouts, using 158
new types

creating 85
creating, based on existing type 86

O
object arrays

parsing 198
streaming 197

ordered map 118, 119

P
package 1, 2

internal package, for reducing
API surface 12, 13

specific version, importing 10, 11
panic 141

dealing with 141
guidelines 141, 142
recovering from 142, 143
stack trace, capturing 143-145

pipeline 168
with fan-out/fan-in function 174-177
without fan-out/fan-in function 168-171
with worker pool as stages 171-174

pipes 207
code connection reader 273
code connection writer 273
reader interception, with TeeReader 274
working with 273

platform-specific shell
using 206

pointer receiver for methods
usage, deciding 101-104

polymorphic containers 104, 105
polymorphic data structure 194
prepared statements

running, within transaction 283
profiling 313-315
programs

building 6, 7
running 7
terminating, gracefully 210

Protocol buffers
reference link 264

R
readers/writers 251
read/write deadlines

setting 230
RegisterKeyUnmarshaler function 197
regular expression 35

input validation 35, 36
searching pattern 36

relative path 7
request multiplexer 239
request-scoped data

passing, with context 148-152
response.Body 236
return value

changing, in recover 143

S
scope 41
searching pattern 36

Index322

select statement
used, for canceling goroutines 129
used, for detecting cancelation with

nonblocking select 130
used, for working with multiple

channels 128, 129
semantic versioning

reference link 16
set

implementing, with map 78, 79
shared variables

updating 131, 132
sharing memory 131
slice

creating 69, 70
creating, from array 71
used, for implementing stack 75
working with 69

slice elements
appending 72-75
deleting 72-75
inserting 72-75

slices
decoding with 188

source tree
creating 4-6

splitting 32
SQL query

values, obtaining 283-285
SQL statements

building, dynamically 286
running 278
running, without explicit

transactions 278-281
running, with transactions 281, 282

stack
implementing, with slice 75

standard logger
format, controlling 293, 294
logging directives, modifying 294, 295
log messages, writing 292, 293
using 292

static files
serving, on file system 243

streaming goroutine 178-180
StreamResults function 178
StreamResults generator function 180
string cases

working with 26-29
Stringer interface 114
strings

combining 23-25
creating 20
formatting 21
parts, replacing 37
reading 33, 34, 254
trimming 34
used, for extracting data 36, 37
writing 254

struct{} 79
structs

decoding 186, 187
encoding 182-186
initializing 90, 91

struct types
creating 87

structured error 136, 137
comparing, by type 139
wrapping 138, 139

structured logger
logging directives, modifying 298
logging information, adding

from context 299
log level, changing at runtime 297
logs, writing with different levels 296, 297

Index 323

using 295
using, with additional attributes 298
using, with global logger 295, 296

sync.Once 83

T
tag length value (TLV) 265
TCP client

writing 217, 218
TCP connection

used, for receiving files 220-223
used, for sending files 220-223

TCP networking 214
error-checked 214
ordering 214
reliability 214

TCP server
writing 214-216

template composition 45-47
templates 38

iteration 40
scope 41
value substitution 38, 39
variables 41

termination
graceful termination 210

test coverage
checking 310

tests
logging in 305
skipping 305, 306

text/template package
configuration files 38
reporting 38
web applications 38

third-party packages
importing 8-10

thread-safe caching
with map 81

timers
creating 61-63

time.Ticker 63-65
time zones

working with 59, 60
TLS client/server

setting up 224, 225
writing 223, 226

TLS proxy
for load-balancing 227-229
for TLS termination 227, 229

TLS server
setting up 238

Transmission Control Protocol (TCP) 214
Transport Layer Security (TLS) 223
type parameter 119
types

extending 87, 88
type-safe enumerations

creating 86, 87
type-safe set 117

U
UDP clients/servers

writing 232-234
unit tests

running 304, 305
working with 302
writing 303, 304

Unix time
working with 54

UPDATE statements
building 286-288

Index324

V
value receiver for methods

usage, deciding 101-104
variables 41, 42

W
WHERE clauses

building 288-290
worker pool 159

capped worker pool 160, 161
connection pool 166-168
fixed-size worker pool 162-165

workspace 15
creating 15

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com
for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

System Programming Essentials with Go

Alex Rios

ISBN: 978-1-80181-344-0

•	 Understand the fundamentals of system programming using Go

•	 Grasp the concepts of goroutines, channels, data races, and managing concurrency in Go

•	 Manage file operations and inter-process communication (IPC)

•	 Handle USB drives and Bluetooth devices and monitor peripheral events for hardware automation

•	 Familiarize yourself with the basics of network programming and its application in Go

•	 Implement logging, tracing, and other telemetry practices

•	 Construct distributed cache and approach distributed systems using Go

https://packt.link/1837634130

327Other Books You May Enjoy

Domain-Driven Design with Golang

Matthew Boyle

ISBN: 978-1-80461-926-1

•	 Get to grips with domains and the evolution of Domain-driven design

•	 Work with stakeholders to manage complex business needs

•	 Gain a clear understanding of bounded context, services, and value objects

•	 Get up and running with aggregates, factories, repositories, and services

•	 Find out how to apply DDD to monolithic applications and microservices

•	 Discover how to implement DDD patterns on distributed systems

•	 Understand how Test-driven development and Behavior-driven development can work with DDD

https://packt.link/1804613452

328

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Go Recipes for Developers, we’d love to hear your thoughts! If you purchased the
book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1835464394
https://packt.link/r/1835464394

329

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83546-439-7

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83546-439-7

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: Project Organization
	Modules and packages
	Technical requirements
	Creating a module
	How to do it...

	Creating a source tree
	How to do it...

	Building and running programs
	How to do it...

	Importing third-party packages
	How to do it...

	Importing specific versions of packages
	How to do it...

	Working with the module cache
	How to do it...

	Using internal packages to reduce an API surface
	How to do it...

	Using a local copy of a module
	How to do it...

	Working on multiple modules – workspaces
	How to do it...

	Managing the versions of your module
	How to do it...

	Summary and further reading

	Chapter 2: Working with Strings
	Creating strings
	How to do it...

	Formatting strings
	How to do it...
	How it works...

	Combining strings
	How to do it...
	How it works...

	Working with string cases
	How to do it...
	How it works...
	There’s more...

	Working with encodings
	How to do it...
	How it works...

	Iterating bytes and runes of strings
	How to do it...
	How it works...

	Splitting
	How to do it...
	How it works...

	Reading strings line by line, or word by word
	How to do it...
	How it works...

	Trimming the ends of a string
	How to do it...

	Regular expressions
	Validating input
	Searching patterns

	Extracting data from strings
	How to do it...
	How it works...

	Replacing parts of a string
	How to do it...

	Templates
	Value substitution
	Iteration
	Variables and scope
	There’s more – nested loops and conditionals

	Dealing with empty lines
	How to do it...

	Template composition
	How to do it...
	How it works...

	Template composition – layout templates
	How to do it...
	How it works...

	There’s more...

	Chapter 3: Working with Date and Time
	Working with Unix time
	How to do it...

	Date/time components
	How to do it...

	Date/time arithmetic
	How to do it...
	How it works...

	Formatting and parsing date/time
	How to do it...
	Time zones change by location and by date. In the following example, even though the same location is used to parse the date, the time zone changes because July 9 is Mountain Daylight Time, but January 9 is Mountain Standard Time:

	Working with time zones
	How to do it...
	How it works...

	Storing time information
	How to do it...

	Timers
	How to do it...
	How it works...

	Tickers
	How to do it...
	How it works...

	Chapter 4: Working with Arrays,
Slices, and Maps
	Working with arrays
	Creating arrays and passing them around

	Working with slices
	Creating slices

	Creating a slice from an array
	How to do it...
	How it works...

	Appending/inserting/deleting slice elements
	How to do it...
	How it works...

	Implementing a stack using a slice
	How to do it...

	Working with maps
	Defining, initializing, and using maps
	How to do it...

	Implementing a set using a map
	How to do it...
	How it works...

	Composite keys
	How to do it...
	How it works...

	Thread-safe caching with maps
	Simple cache
	How to do it...

	Cache with blocking behavior
	How to do it...
	How it works...

	Chapter 5: Working with Types,
Structs, and Interfaces
	Creating new types
	Creating a new type based on an existing type
	How to do it...

	Creating type-safe enumerations
	How to do it...

	Creating struct types
	How to do it...

	Extending types
	Extending a base type
	How to do it...
	How it works...

	Initializing structs
	How to do it...
	Here, NewIndex creates a new initialized instance of the Index type:

	Defining interfaces
	Interfaces as contracts
	How to do it...

	Factories
	How to do it...

	Defining interfaces where you use them
	How to do it...
	How it works...

	Using a function as an interface
	How to do it...
	How it works...

	Discovering capabilities of data types at runtime – testing "implements" relationship
	How to do it...
	How it works...

	Testing whether an interface value is one of the known types
	How to do it...

	Ensuring a type implements an interface during development
	How to do it...

	Deciding whether to use a pointer receiver or value receiver for methods
	How to do it...
	How it works...

	Polymorphic containers
	How to do it...
	How it works...

	Accessing parts of an object not directly exposed via the interface
	How to do it...

	Accessing the embedding struct from the embedded struct
	How to do it...

	Checking whether an interface is nil
	How to do it...
	How it works...

	Chapter 6: Working with Generics
	Generic functions
	Writing a generic function that adds numbers
	Declaring constraints as interfaces
	Using generic functions as accessors and adapters
	Returning a zero value from a generic function
	Using type assertion on generic arguments

	Generic types
	Writing a type-safe set
	An ordered map – using multiple type parameters

	Chapter 7: Concurrency
	Doing things concurrently using goroutines
	Creating goroutines
	Running multiple independent functions concurrently and waiting for them to complete

	Communicating between goroutines using channels
	Sending and receiving data using channels
	Sending data to a channel from multiple goroutines
	Collecting the results of concurrent computations using channels

	Working with multiple channels using the select statement
	Canceling goroutines
	Detecting cancelation using nonblocking select

	Sharing memory
	Updating shared variables concurrently

	Chapter 8: Errors and Panics
	Returning and handling errors
	How to do it...
	How it works...

	Wrapping errors to add contextual information
	How to do it...

	Comparing errors
	How to do it...
	How it works...

	Structured errors
	How to do it...
	How it works...

	Wrapping structured errors
	How to do it...
	How it works...

	Comparing structured errors by type
	How to do it...
	How it works...

	Extracting a specific error from the error tree
	How to do it...
	How it works...

	Dealing with panics
	Panicking when necessary
	How to do it...

	Recovering from panics
	How to do it...
	How it works...

	Changing return value in recover
	How to do it...
	How it works...

	Capturing the stack trace of a panic
	How to do it...

	Chapter 9: The Context Package
	Using context for passing request-scoped data
	How to do it...
	How it works...
	There’s more...

	Using context for cancellations
	How to do it...
	How it works...

	Using context for timeouts
	How to do it...
	How it works...
	There’s more...

	Using cancellations and timeouts in servers
	How to do it...

	Chapter 10: Working With Large Data
	Worker pools
	Capped worker pools
	Fixed-size worker pools
	Connection pools

	Pipelines
	Simple pipeline without fan-out/fan-in
	Pipeline with worker pools as stages
	Pipeline with fan-out and fan-in

	Working with large result sets
	Streaming results using a goroutine

	Chapter 11: Working with JSON
	Marshaling/unmarshaling basics
	Encoding structs
	How to do it...

	Dealing with embedded structs
	How to do it...

	Encoding without defining structs
	How to do it...

	Decoding structs
	How to do it...

	Decoding with interfaces, maps, and slices
	How to do it...
	How to do it...
	Dealing with missing and optional values

	Omitting empty fields when encoding
	How to do it...

	Dealing with missing fields when decoding
	How to do it...
	Customizing JSON encoding/decoding

	Marshaling/unmarshaling custom data types
	How to do it...

	Custom marshaling/unmarshaling of object keys
	How to do it...
	Dynamic field names
	How to do it...
	Polymorphic data structures

	Custom unmarshaling with two passes
	How to do it...
	Streaming JSON data

	Streaming an array of objects
	How to do it...

	Parsing an array of objects
	How to do it...

	Other ways of streaming JSON
	Security considerations
	How to do it...

	Chapter 12: Processes
	Running external programs
	How to do it...

	Passing arguments to a process
	Expanding arguments
	Running the command via the shell

	Processing output from a child process using a pipe
	How to do it...

	Providing input to a child process
	How to do it...

	Changing environment variables of a child process
	How to do it...

	Graceful termination using signals
	How to do it...

	Chapter 13: Network Programming
	TCP networking
	Writing TCP servers
	How to do it...
	How it works...

	Writing TCP clients
	How to do it...

	Writing a line-based TCP server
	How to do it...

	Sending/receiving files using a TCP connection
	How to do it...

	Writing a TLS client/server
	How to do it...

	A TCP proxy for TLS termination and load-balancing
	How to do it...

	Setting read/write deadlines
	How to do it...

	Unblocking a blocked read or write operation
	How to do it...
	How it works...

	Writing UDP clients/servers
	How to do it...

	Working with HTTP
	Making HTTP calls
	How to do it...

	Running an HTTP server
	How to do it...

	HTTPS – setting up a TLS server
	How to do it...

	Writing HTTP handlers
	How to do it...

	Serving static files on the file system
	How to do it...

	Handling HTML forms
	How to do it...

	Writing a handler for downloading large files
	How to do it...

	Handling HTTP uploaded files and forms as a stream
	How to do it...

	Chapter 14: Streaming Input/Output
	Readers/writers
	Reading data from a reader
	Writing data to a writer
	Reading from and writing to a byte slice
	Reading from and writing to a string

	Working with files
	Creating and opening files
	Closing a file
	Reading/writing data from/to files
	Reading/writing from/to a specific location
	Changing the file size
	Finding the file size

	Working with binary data
	How to do it...

	Copying data
	Copying files

	Working with the filesystem
	Working with filenames
	Creating temporary directories and files
	Reading directories

	Working with pipes
	Connecting code expecting a reader with code expecting a writer
	Intercepting a reader using TeeReader

	Chapter 15: Databases
	Connecting to a database
	How to do it...

	Running SQL statements
	Running SQL statements without explicit transactions
	Running SQL statements with transactions

	Running prepared statements within a transaction
	How to do it...

	Getting values from a query
	How to do it...

	Dynamically building SQL statements
	Building UPDATE statements
	How to do it...

	Building WHERE clauses
	How to do it...

	Chapter 16: Logging
	Using the standard logger
	Writing log messages
	Controlling format
	Changing where to log

	Using the structured logger
	Logging using the global logger
	Writing structured logs using different levels
	Changing log level at runtime
	Using loggers with additional attributes
	Changing where to log
	Adding logging information from the context

	Chapter 17: Testing, Benchmarks,
and Profiling
	Working with unit tests
	Writing a unit test
	How to do it...

	Running unit tests
	How to do it...

	Logging in tests
	How to do it...

	Skipping tests
	How to do it...

	Testing HTTP servers
	How to do it...

	Testing HTTP handlers
	How to do it...

	Checking test coverage
	How to do it...

	Benchmarking
	Writing benchmarks
	How to do it...

	Writing multiple benchmarks with different input sizes
	How to do it...

	Running benchmarks
	How to do it...

	Profiling
	How to do it…
	See also

	Index
	About Packt
	Other Books You May Enjoy

