al

Generic
Structures and
Algorithms in Go

An Applied Approach Using Concurrency,
Genericity and Heuristics

Generic Data Structures
and Algorithms in Go

An Applied Approach Using
Concurrency, Genericity
and Heuristics

Richard Wiener

Apress-

Generic Data Structures and Algorithms in Go

Richard Wiener
Colorado Springs, CO, USA

ISBN-13 (pbk): 978-1-4842-8190-1 ISBN-13 (electronic): 978-1-4842-8191-8
https://doi.org/10.1007/978-1-4842-8191-8

Copyright © 2022 by Richard Wiener

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Jim Markham

Coordinating Editor: Gryffin Winkler

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub at http://github.com/Apress/Generic-Data-Structures-and-Algorithms-in-Go.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8191-8

This book is dedicated to my wife Hanne.

Table of Contents

About the AUtNOFcceiiiissmmmmmsssssnmsssssssms s ssssssssssnnnssssssnnnssnsssnnnnnnsnnns Xvii
About the Technical REVIEWETccuvussesssssnsssssnsssssnsssssnsssssnsssssnsssssnnssssanssssnnssssnnssssns Xix
AcknNoWIedgmentscccusssessmmsssnssssssssnnnssssssnnnssssssnnnssssssnnnnsssssnnnnsssssnnnnsssssnnnnnsssnnns XXi
INtroducCtionccuiiemmmssannmssannmssansmssannsssannssssnnssssnnssssnnesssnnnsssnnesssnnssssnnssssnnssssnnnsssnns xxiii
Chapter 1: A Tour of Generics and Concurrency in GO.....c.uccessesssssnssrsssssnssssssssnnnsssss 1
1.1 Brief History and DesSCHPLion 0f GO........ccccorercrrierenesereserireses s se e sessesessenens 1
1.2 Introducing GEneric Parameterscouocorerrrnererenese s se e ssesesnsnens 2
Adding a New Student By Name..........cccceeerrerrererese e 3
Adding a New Student by ID NUMDET ... 4
Adding a New Student by Student StruCt..........coooeereernerrer s 5
INTrOTUCING GENEIICS ...cveiviiiirer et p e e nrs 6
L0 1= g 701 SRS RS 8
Constraingd GENEIIC TYPEc.coveeeeerercrerereree s se s nr e 8
Implementing an INTErface ... ———————— 9
Instantiating @ GeneriC TYPEccve i s 9
Unconstrained GENeric TYPE @NYccoveeerercrerrerereseseesesesese s sese e sessesessssesessesenes 9
BENEfitS OF GENEIICScovveceerecerecrerese e 10
USINg GO’S SOt PACKAJE........ccvierieririircresie st sns s s sae st nnesnens 11

ST 4 1] T 12

T T4 [0 110 £ OO OSSR 15
Making MyMap GENEIIC........ccccrrereririirere s s e s s s s p e s 16
TS T 0 (1 16
Making MyFIlter GENEIICcocoeeeecrercreree e 17

TABLE OF CONTENTS

1.3 CONCUITENCY ..utvuerrerseerersessessssersessessssessessesssssssessesssssssessessesssssssessesasssssensessessssssnessessessnsensenaes 19
CT0] (010111 19
LTy T 0 O 21
THE CANNEL......ceciccirirseece s a e 24
Select STAtEMENT ... ——————————— 26
Use a quit Channel to Avoid USiNg WaitGroUP........cccvrvvererrerenserseresessessesesssssssessessessssessessens 26
ChannNEl DIFECHONcouvvirieccreresseese e s 28
RACE CONAILIONcvecccerisiccecre e 30
T N 3
Playing Chess USING GOFOULINEScuecevverrererrerserersesessersessessssessessesssssssessessesssssssessesssssssessees 32
Fibonacci Numbers USIiNG GOFOULINEScevverrererserenseressessssessessessssessessessessssessessessssessessenes 35

1.4 Benchmarking Concurrent Applications...........ccccecrrvrniennisscnnsc s 37
Generating Prime Numbers USing CONCUITENCYc.ccccvererereserinienenesesesesessesessesessesesessesenns 42
Sieve of Eratosthenes AlgOrithm ... e 42
Segmented Sieve AlGOrthm ... e 46
Concurrent SieVe SOIULIONoveecrerereree e 50

TS 17111 54

Chapter 2: Algorithm Efficiency: Sorting and Searching.......cccccccvcnsssssssssesnnsesssssnns 55

2.1 Describing the Speed Efficiency of an Algorithm...........ccocvevvinnesnssnnseseseses s 55
Working With Big O.....ccceeeereeirresirese s sesse e sesssssssssesssssssssssssssnens 55
Determining Whether a Slice of Numbers IS Sorted.........ccoovvivnresrinnesnesessse s 56
USING CONCUITEINCY ...ecuviveuereeesensesessssessssesessessssssessssssessssessssssssssssssssssssnssssnsssssssssssssssenssssssssnns 60

2.2 SOrting AlGOMTNMSc.covieeecir e 64
Bubblesort AIgOrithm..........ccvecrccin e s 64
QUICKSOrt AIGOFTtNM.......vvccceerr e 66
Big O ANAIYSISccvireerrierisesessese e p s 68
Worst Case for QUICKSOIT........ccoueiererernserineserese e s sn s se e sessssesssnens 68
Comparing Bubblesort to QUICKSOIT............ccovirrnrnnesnese e 69
Concurrent QUICKSOM........couceeiieieresersse e nr s 70
Mergesort AIGOrtNM........uccoieerrese s e re s 75

TABLE OF CONTENTS

CONCUITENT IMEIGESOMccveierererreste s sre s s s s e s s e e s e saesae e s e s e saesa e e e e saesaene e e naenaens 78

00 4T 1T 10§ TR 82
2.3 SearChiNg Array SHICEScocveeereririnierererire st s s se s st as e se s e s e se e e seene e 82
LiNAr SEAICRES.coceerereeeecr e s 83
CONCUITENT SEAICNEScueueerererrereesese e se e nenpn s 84
BiNAry SEAICHEScoveerircrirc ettt e et a e e e e np s 87
2.4 SUMIMAIY.....cetieeeererersenersssesessesessesessssesessssessessssesesessssssessssesssesssssssssssanssssssssssensssassssssssnsenens 89
Chapter 3: Abstract Data Types: 00P Without Classes in GOccccuussssssmsesnssesssssnns 91
3.1 Abstract Data Type USING ClaSSEScueurerermrrnsmressmsesesessssesesssssssesssssssssssssssssssssssssssssssssenens 91
3.2 Abstract Data TYPES iN GOccccvevecerrnierinesere s sr s sn e 94
ADT COUNTEE ... ccireerirresrrreserree s sr e e e a e r s e e e e g e e b e e n e nnnn e 94
Creating @ coUNter PACKAGEcccucerrvierrneseneserse e s ss s srs s s ses s 98
Mechanics of Creating @ PaCKAgEcccceerrurernserinesenese s ses e ssssessanes 98
Another Example of Implementing an ADTccccoccvninrnnennennnesessse s sessessssesens 101
USiNG COMPOSITION.....cccivieriiirire e 103
BT 30§ 110 0] 11 1 O 106
Using Interfaces to Achieve PolymorphiSmccovvrinievnnninns s ses e s 107
3.4 00P Application: Simplified Game 0f BIACKJACKccvrerrrrerieriererenserseressssessesessesessessenses 109
3.5 Another OOP Application: Permutation Group of Wordsccccevvninininnsnscnnenssensesennns 117
Using the Standard map Data StrUCLUFe........cccevrecrcc e 117
3.6 SUMIMANY.....coiiiieeereecrercre e e e e s e s r e e e e Re e e e e e e e e e Re e nr e e e nns 121
Chapter 4: ADT in Action: Game of Life...........ccccsmssmsmmsmsmsssnsmsssnsssssnsssssssssssnssssns 123
- S 123
Rules of Grid Cell EVOIULIONccoeveeereeseresersse s se s s sennes 123
0 I (0 g o PR 128
4.3 Console Implementation of the GAME.........ccccvcevirrrrrinenr e 128
4.4 GUI Implementation of the GAME 0f Lifeccvcevivvrvvierennsriene s sessese s ssssesesessesessessesees 135
(0 LT o T 10T 0T I O 138
Program OUIPULccviererr e s s a s sae e e sae e sa e naennes 138
4.5 SUMIMAIY.....citiiierueseriesestse s s e st ssese s e ses e sessesesse e s e s aesesae e s e et sesaeseeRe e b e e seeReneeRe e neeae e nns 140

vii

TABLE OF CONTENTS

Chapter 5: STACKScuuvemmrrmssssnnnmmssssnnnmmssssnsnmssssssssssssssnssesssssnnnesssssnnsssssnnnnssssnnnnnss 141
5.1 STACK ADT.....vveceeeririre e se e s e bbb p e e 141
5.2 Slice Implementation of Generic StackK..........ccccuvvrrnininncnr e ——— 142

The Get ZEro FUNCTHIONcocoeeeeeecere s e 145
Why T Is Declared AS Ordered ... sssses e snes 145
5.3 Node Implementation of @ Generic Stack ..., 149
5.4 Compare the Efficiency of Node and Slice STackscccocvvvvririnnsninienn s sesennns 153
5.5 Stack Application: Function Evaluationccceevvvinennnninnene s sessesessesessessesnes 156
POSHiX EVAIUALION ... 157
We Walk Through AIGOFtRIMcccveeriresirsere e sr s enes 160
Evaluating PoStfiX EXPreSSION......c.cuvvreriererirrereresis s sesse e sessessessessssessessessssessessesasssssessesnes 162
5.6 Converting Decimal NUMDBEr t0 BiNAry........cccvcevvvenrnienenessensenessesessesesessssesessessssessessesses 164
5.7 Maze APPLICALION........ccoerreiiriere e e e 166
Efficient Strategy for Maze Path Using a StackK.........ccccovievrrcrncnncsnccers e 166
Building Infrastructure for Maze Applicationccccvvrevnrnnninnsns e 167
COMPIELEd MAZE APP...cveerereirecere sttt s e s se s ae e s 176
5.8 SUMMANY.....coiiiiree e e n e e ne e e R e e e e e 185

Chapter 6: Queues and LiStS.....ccccusummmmmssssnnmmsssssnnnmsssssssssssssssnsssssssnnssssssssnnsssssnnnnss 187
6.1 QUEUE ADT.....oeereerree s r e e n e r e e e R e e e e 188
6.2 Implementation of SliCe QUEUE........ccccrerrrririe e e e nes 188

10T L] SRS 190
6.3 Implementation of NOde QUEUEccceverrererierererinrire s se s ss e e sse e ssesnes 191
6.4 Comparing the Performance of Slice and Node QUEUE..........cccccvvverrvcernsrnsenen s 194
6.0 DBOUE. ...ttt e E e E R R e e e nnn 195
6.6 Deque APPlICALIONcocvecircere s 198
LI o 10 13 00T 203
6.8 Queue Application: Discrete Event Simulation of Waiting Line..........cccccoevvvvnvriennnenieniennn, 207

POISSON PIOCESSucviveerreerissessssesessse s s s s sr s ss s s sr s sn s s sas s nsens s nennis 207

SIMUIALION LOGIC......civieiteriserinesire e sr e 208

Implementation of SYSTEM ... —————————— 209

viil

TABLE OF CONTENTS

6.9 Queue Application: Shuffling Cards...........cuvvninrinnnr 215
Card Shuffling MOGEL.........cccvverrerrrerrerere s sae e e aesresn e e e sae s 216
6.10 LINKEU LiSEScvevevrrrerererereseseseseesssssssssssss s sssssss e e e e s sssssssssssssssssssssnsssnsnenenenes 219
6.11 Singly LINKEA LISt ..ot 220
6.12 DOUDIY LINKEA LiST......coeeeereernsesenssessse s sesse e s e s e s sesssssssssssesssnenns 228
Benefit of DOUDIE LINKING ...c.ccceerererenersesesesessse s sesse e s sesss e sessssessssssssssssnss 235
6.13 SUMIMAIY......ceitirieriesesisse s e e b ee e e e p e e e e R e e e e nne 236
Chapter 7: Hash Tables..........ccccummnssnmmnmmssssnnnmmsssssnnmsssssssnmsssssssnmssssssnssssssssnssssssnnnnss 237
75 T = SO 237
g (8 = 1TV 77 0] o 239
7.2 HOW FaSt IS @ MAP?.......coeierierererenserere s sese e sae s s e ssessesasssssessesaesassessssaessssessesassasssssesnenaes 240
7.3 Building @ Hash TabIe.........c.ccocrniininennsinsne e 244
Create an Empty Hash TabIE.........ccccvriirrcrr st 245
Insertion int0 Hash TaDIE ... 245
Collisions and ColliSon RESOIULION.........cuvveeererererreeseseseres e e sessssesens 246
LI To T (0 246
Determining Whether a Key IS Present..........ccccovvninnncncnsc s 246
Comparing the Performance of Hash Table with Standard Map..........ccccoeevrvnnicnricccnnnne. 247
7.4 Hash Application: String SEarch..........cccovvivrininnsnn e 250
Rolling Hash Computation ... s s sss s snes 251
Rabin-Karp AIGOFTNM ..o 252
7.5 GENEIIC SEL.....ceieieereerre s ne e 256
7.6 SUMIMAIY.....citiistirisersssesessese e s sr s e e e s ss e e e s se R e R e e e e Re e R e e b e e e Re e be e e e e nns 263
Chapter 8: BiNary Treesccouusmmsesmssssmssmmssssssnsssssssssssssnssssnsssssssssssssssssassssnsssansnsass 265
8.1 BINAIY TIBES .everveerereruestesersessesseses e s e s e sas e s e s s sae e s e e s b e se e e e s s sae e e e e aesae e e e e e saesae e e e naennes 265
8.2 Tree TraVEISAL......cucereicirci s e 266
INOFAEr TrAVEISAL......cuceriecririeree e 266
Preorder TraVerSal ... 267
POStOrder TrAVEISal........cocoeriereriiree s 267
LT 0] A T S 267
Binary Tre STIUCTUNE.....covce ettt et e e 269

TABLE OF CONTENTS

Infrastructure Used 1o Display Binary Treecccucvverininnnnininninse e nsesseessesesesssessesessens 269
EXPIanation Of COAE.......cccevuvrerverererensere s sessere s s e s ssesae e s e ssessess s e ssesaessesessesaesassassessesnes 271
Implementation of SHOWTIEEGIAPNccvevrvveriererr s s sr e ene s 273
Creating go.mod Files in Subdirectories binarytree and mainc.ccceevrevvverrerrenensensenenns 283
B 04114 OO 286
Chapter 9: Binary S€arch Tre€.....cuscurrrssssnssrsssssnnsssssssnnssssssssnsssssssnnssssssnnnssssssnnnnss 287
8T 011 T 287
RS2 1 111 T T 288
TS (o T 289
Ordered OQULPUL ... e e e e 289

D 0] T 290
9.2 Generic Binary SArch TrEe......c.cucvrrermresmrnsesrsesese s s s se s e s sessssenns 291
TYPE OrderedSIrNGEr......ccoveeeeerree s s s r s sre e e s e nnnnnns 291
Generic Types Needed for Binary SEarch Tree.........ocvvrernseresenesssesnsesessesessesesessesessssessnns 291
Methods for Binary SEarch Treecccvveerrsererenerssesessesessse s ses s sennes 293
Discussion of Insert, Delete, and Inorder Traversal..........ccccvvevverrererierserseessessessesseessesessenns 294
SUPPOIE FUNCHIONS ..o s s e 295
Implementation of Tree GraphiCS.......cccueviirinirinnnn s 297
Discussion of binarysearchtree Package and Main DrivVerc.cocvvrenrnnerensesessenessssenenns 313
0.3 SUMIMAIY....ueitiuirireserrssesesseses e srs e se s e e sa e e s e s e e se e e s e e Re e e R e neaRe e e R e e b e e nenRe e e be e e e e e nns 314
Chapter 10: AVL Tre@S...ccccuruusssnsmrsssssnnnssssssnnnssssssnnnsssssnnnsssssssnnsssssssnnssssssnnnssssssnnnnss 315
10.1 Overview: Adelson Velsky and Landiscccvcerererrrierienessensenessssessessessesessessessessssessesaens 315
Tree ROTALIONS.cciereriiccir e 316
1L 0] T 317
D12] 3 (o] T 318
Facts ADOUE AVL TrEES.......ccerircririe e s s 319
10.2 Implementation of @ GENEIiC AVL TFBEccevvererrererrerersessssessessessssessessesssssssessessessssessensens 320
Explanation of vl PACKAQE.........ccccevvrverienniriinien e s e e e s sse s e sss s saessens 332
Discussion of Main Driver RESUILS...........ccovererinmrnnnnse s 338

TABLE OF CONTENTS

10.3 Set Using Map, AVL, and CONCUITENT AVLccccvvrerrerrerenensensessessssessessessessssessessessssessessens 339
Implementation of Set Using Map, AVL Tree, and Concurrent AVL Tre€cccvvereverserseraens 341
Explanation of CONCUITENt AVL SEt.......ccvevvirrerernserseneresessesse s ssssessessessssessessesasssssessesnes 343
Comparing the Three Set Implementationsc.cccvvvivevrrnrne e 343
DiscusSion 0f RESUILS ..o s 346

L0 344 R 347

Chapter 11: Heap TreeS....ccucurrssmmrrsssnsssssnsssssnsssssnsesssnsesssnsesssnsesssnsesssnnssssnnssssansessas 349

11.1 Heap Tree CONSLIUCTION........cccccvivirircre s 349

11.2 Deletion from @ HEap TrEe.....c.cveviiriererin ettt ssesnens 351

11.3 Implementation 0f @ HEap Treec.cvcevvererrirernserrne s 352
Logic for Building @ HE@p Tree.......cccvvererinernsesnsesesese s sesssss s e sssss s sssssssssssessnnes 352
s T L To [0 [T OSSPSR 353
Explanation of PAackage Neapcccucvvcerneninisennse s s ssnns 356

B 5 T o DT OSSN 358
Discussion of heapsort RESUILSccvcevevrrrreriernnersere s sese s se s ssesaesessessesnes 360

11.5 Heap Application: Priority QUEUE........cccceeerricernierncrir s 360

11,6 SUMIMAIY.....coiiiiiecre s e e s e R e e e e e et eRe e b e e e e ens 362

Chapter 12: Red-Black TreeSccuvsseurrsssnssssansssssnsssssnsssssnsesssnsesssnsssssnnssssnnssssnnssssas 363

12.1 REU-BIACK TIBESeeeeecereerseerreeresesesse e ses e s s s s ses e 363
Definition of REd-BIACK TrEEccoveeeereecrereeree e 363
Example of Red-BIaCK TrEe.......cccviuvririririnsin s s se s s 364

12.2 INSEILION PIOCESScoveerersesersesesresesessesessesessesssrssssessesessssessssssesssssssssessssssessssssssssssessssssssnns 364
Detailed Walk-Through of Many INSErtionscccevvrerneneressnsesessesesese s sessssesenns 367

12.3 Implementation of Red-BIaCK Tree.........cccrurmrnserrnenmnesersse s sessesens 373
Comparing the Performance of Red-Black Tree t0 AVL Tree.......c.coovvvnenenrrnnsnssssesesssnsnenns 384
Benchmark CONCIUSION.........ucceierereserne e sn s s nre s 384

BT Ty OO 385

chapter 13: Expression Trees SN NN NN NN NN NN E NN NN NN NN NN NN NN REREEEEN 387
13.1 EXPreSSION TrEES ...ccuevverieererirses et se st e s e s se e s s b e s d e a e s ae s e e e e a e s ae s e an 387
13.2 Construction of an EXPreSsion TrEE........cccuererrrerrniererenersssesesesessssessssesessesessesessesessssesenns 389

xi

TABLE OF CONTENTS

Building @ New EXPreSSion TrEEccvverveererieriinseenesiessesssesessessesssessessesssessessessssssssaessessenns 389
Explanation of FUNCHION NEWTIEEccccvvereririir e s s 390
Function Evaluation Using EXpression Treec.ccvrirrinnenieniensessesessessesssessessessesssessessenns 391
Explanation of Method Evaluate...............ccverinerinnncnne s 391
13.3 Implementation of SNOWTIEEGIAPN.........cvveverrererrrerrerereres s s e e s srese s ssessesessessesaens 396
L T 311404 T 399
Chapter 14: Ecological Simulation with Concurrencyuuceeeemmmsrressssssssssssssnnns 401
T4.1 QVEBIVIBW c..eceeecerreesree e e e e s e se e e s e e e e s R p e e e e s 401
14.2 SPECITICALIONSeeveerreeriresire st nr s 402
T (=T] OSSO 402
L SRR 403
SRATK ..ttt ———————————————— 403
L0101 OSSPSR 404
T4.3TRE DESIGN ..eeruereetrierererir st sa e s a e e e e s s ae s ae e e e s aeeae e e e naennees 406
14.4 The IMpPIementation ... e 406
Data Model for EACHh SPECIES.....cervrerrerierertrsererersssessesseseesessessessessssessessesssssssessesasssssessesses 406
DiSCUSSION Of COUEcueueererrssseeseresrssssss e s sesp e 407
SUPPOI FUNCHIONS ..c.veviiecerere e sesere e ssssesse s sseses e ssessessesessessesassassessesnessssessessesasssssensessens 408
DiSCUSSION Of COUEcueueererrssseeseresrssssss e s sesp e 409
Required Methods for Mackerel to Be of Type MarineLife...........ccocvvrvnvnnninsennennenienienns 409
DiSCUSSION Of COUEcueueererrssseeseresrssssss e s sesp e 41
Move Method fOr ShArk ... 412
DiSCUSSION Of COUEcueuerererrsseeeseresrssssese e sr s s n e 413
Move Method fOr TUNQ........coouceierinerie s 414
Output Function for the Graphical Display of CHEErS.......cocvvvrirnrnrnire s sessensenns 416
DiSCUSSION OF COUEcuvueererrsseeeseresssssss e sr s s p e 418
Full Implementation of SImUIAtion..........ccccvvvrvrinnnnsne e ssesnes 418
T4.5 SUMIMAIY.....ciiiiierecriec st e s et e e s e e R e e Rt e et e e e e Re e b e e e ae e ens 425

xii

TABLE OF CONTENTS

Chapter 15: Dynamic Programmingccccsesssssssssssssssssssssssssssssssssnssssssssnsssssssnnnss 427
15.1 Example of Dynamic Programming: nth Fibonacci Number...........ccccovevnvninecncniennens 427
Top-Down Dynamic Programming...........ccucrrerennsmnsesiennnnnsensesessssessessesssssssessessesssssssessesnes 428
Bottom-Up Dynamic Programming.........cccccuvrrniennnmnsensesiessnsessesessssessessessssessessessssssssssesnes 428
RECUISIVE SOIULION.cccoeeererrreecrere s 429
DiSCUSSION OF COUEcueeeererrereeeseresssseeesesesssss s e e s e se e s s s sesesssssss e sessnssssasnsens 431
15.2 Another Application: 0/1 Knapsack Problem...........ccviivnincnnsnsnsnssssesesessssesennens 432
Brute-FOrce SOIULIONcccomieeeeeecr et 432
DiSCUSSION OF COURcereecercereeree e nne s 433
Dynamic Programming SOIULON ..o 433
DiSCUSSION OF COURcereecercereeree e nne s 434
DiSCUSSION OF COURcereecercereeree e nne s 436
15.3 DNA SUDSEAUENCES....c..eiviirireriesirsire st sr s ettt nne 437
DiSCUSSION OF COURcvrveerrrseserreseresr s e s e s s nne e 440
15,4 SUMIMAIY.....citiiitireserrese s r e s e e e e e e e R e e Re e b e e e e e Re e b e e e e e 440
Chapter 16: Graph Structures........ccccinnnemmmmnnsssnnmmmssnnmsss s ————————————— 441
16.1 RepreSenting GraphS........cccucveevererserierersssessesesssssssessessesessessessessssessessesssssssessessesssssssesnens 441
16.2 Traversing GIAPNSccveveieriereresenseresessssesessesssssssessessesessessessesssssssessesssssssessessesssssnsessens 442
16.3 Depth- and Breadth-First SEArch...........ccccevvrrcrriecrcsrr e 442
Depth-First SEACHcoecciireerecr e e e 444
Breadth-FirSt SEArch ..o 445
16.4 Single-Source Shortest Path in Graphcoooornrerresrrcrere e 451
IMPIEMENTALION ..o ——————— 452
Explanation of SOIULION..........cccvrinin s 455
16.5 Minimum SPanNing TrEEcceevrrerernsererererese s s se s s s e s s e s s e ssesesessssenns 457
Kruskal AlGOrthMcccveeerneneneserese s s s s se s s e e ssssenenns 457
16.6 Implementation of Kruskal Algorithm ... 458
Explanation of Kruskal Implementation ..o sessennes 464
T6.7 SUMMAIY....cceiereerteserieresssesse s sse e s e sse s ss s e s saesaese s e s s saese e e e aesaese e e naesaesae e e e naesaeseenenansnnes 464

xiii

TABLE OF CONTENTS

Chapter 17: Travelling Salesperson Problem.........cccucccnmmsssmnnnnsssssnnssssssssssssssssnns 465
17.1 Travelling Salesperson Problem and Its History.........cccccovvnvnniecnincvnccnrcsccccerseee 465
17.2 An Exact Brute-Force SOIULION ... 466

Finding Permutations ... s 467
Brute-Force Computation for TSP........cccvninninnn s s 469
DiSCUSSION OF COURcueeecrercereer s e nre s 472
L0 TeT o] 1] 10 473
17.3 DiSplaying @ TSP TOU.......ccovererrenerenesesesesrese s sesessesessssesessesesssssssssessssssessssssssssssssssssssenns 473
DiSCUSSION OF COURvcereecrrrerrrreser s se s e e s nre e 475
17,4 SUMIMANY.....citiiseireserrese s s se e r e e e e e e e e e R e e R e b e e e e e Re e b e e e e e e nns 476

Chapter 18: Branch-and-Bound Solution 10 TSP.........cccccunemmmmmssssnmmmmsssssnsmsssssnnns 477

18.1 Branch and Bound fOr TSP ... sesssssssas 477
D ez 1 1] TSSO 478
Computation of LOWEr BOUNG.........cccvcerernirierere s sese e e s sss e ssessssessesne s 478
Branch-and-Bound AlgOrthm..........ccccveerinninn e s ssesnes 479
THE Priority QUEUEveceecerererte e s et sa e s s e e sae b e s s ae s a e e enen 480
A Walk-Through Part of the Five-City Example Presented Earlier.........ccocvvrverievvverierennn, 480

18.2 Branch-and-Bound Implementation.............ccocvvernininnnnininsnsie s sesses s ssessessenns 481
Implementation of Priority QUEUE..........cccvecrrcerrcrr e 483
Generating Branch-and-Bound SOIULION..........cccvvirrreniennnensere s s ssessessssessessees 485
Data for MAIN........ccoii 490
RESUITS.....ccveeieicserce e e e 490

18.3 SUMMAIY.....coiieierecriee sttt e s s e e s e e e e R e b et e e e Re e b et e e ae e ens 491

Chapter 19: Simulated Annealing Heuristic Solution 10 TSPccccccunsenrnssnnsnanas 493

19.1 Combinatorial Optimization...........cccviniinrir 493

HEUNISTIC SOIULIONScccoeeeeeecerce e 494
19.2 Simulated ANNEAIINGccovermrerernserere s 495
Simulated ANNEAIING SIEPS......covviererrrrerr e 495
Problem of Convergence to Local Minimum Rather Than Global Minimumcccecennu.e. 496

Xiv

TABLE OF CONTENTS

19.3 Implementation of Simulated ANNEAIINGcccvrvrrrrierienr s 497
DiSCUSSION OF COUEcueueererrsssriseresrsssse s s n e 516
RESUITS.....cviereie et e 516
Displaying Final RESUISccccvviriiirrirsin e e ssens 516
LiNES CrOSSING .eeveeeersersersrsersessersessssessessessssessessesssssssessessesssssssessesssssssessessesssssssessessensssesseses 517

L I 4444 RS 521

Chapter 20: Genetic Algorithm for TSP.......ccccussemmmmssssnssmssssssnssssssssnsssssssnssesssssnnnss 523

20.1 Genetic AlGOITtRM.......coc e 523
High-Level Description of Genetic AlgOrithm...........cccovoerrenrerrreere s 523
More Detailed Description of Genetic AIgOrithm............coeoeererrncnree e 524

20.2 Implementation of Genetic AlgQOrithmccovvirecrnrerr e 525
Step 1 — Form an Initial Population of Random ToUrs ..o 525
Step 2 — Form an Elite Group of BESt TOUIS......cccvvvvvieriennniniene s ses s sessessessens 526
Step 3 — Tournament SEIECTION ... 527
Step 4 — Mating of Parents...........ccovvernsnnnenennnnesssssessese s s sessssenns 527
FOrm Next GENEratioN.........c.vccereneresmrnsesessese e s s nennis 531
Putting the Pieces TOGELNEN ... s 534

20.3 SUIMIMEAIY...cviueitiriserresesessesssesessssesssessssesesssessssessssesessssesssssssssassssssessssassssassssasensesansssasesnns 547

Chapter 21: Neural Networks and Machine Learning.......ccuecsssssssssssasssssasssssnnssssns 549

21.1 Overview of Neural Networks and Maching Learning.........ccueevreverrerieriensnsensessessesessessenaes 549
L U1 11T OO 550
NeUral NETWOIKS. ..o s 550
e (0T 0 0] o OSSPSR 551
Schematics of Neural NETWOrKS ... 552
LA L o o 553

21.2 A CONCIete EXAMPIEcccvierererersereresessesessessesessessessesssssssessesssssssessessessssessessesssssssensesnes 553

21.3 Constructing @ Neural NEtWOIK..........ccccrrerreninescrnie s ses e sessssesenns 554
Matrices That Represent NEtwork ... 554

TABLE OF CONTENTS

21.4 Neural Network Implementation ... s 555
Estimating the Partial Derivatives of Cost with Respect to Each Weight..........cccoevvvverenne. 560

21.5 Output from Neural NEtWOIK.........ccocvieriininensin s se s s se s snes 568
P BT T1 0] 02 572
INA@X.ueeiiiisnnnnnnnssnnnnnsssnnnnnnssssnnnnessssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnssssnnnnnssssnnnnssssnnnnnsssn 573

About the Author

Richard Wiener, PhD, authored or coauthored 22
professional, software development, and computer science
textbooks published by Wiley, Addison-Wesley, Prentice
Hall, Cambridge University Press, and Thompson.

He served as founding Editor-in-Chief of the Journal of
Object-Oriented Programming for 12 years and, later,
founding Editor-in-Chief of the Journal of Object Technology
for 9 years. He worked as Associate Professor of Computer
Science at the University of Colorado Colorado Springs
(UCCS) from 1977 to 2012. He served as Department

Chair during the last four years at UCCS. He also served

as consultant and software developer for IBM, HP, Boeing,

Tektronix, DEC, and many other companies. He presented
industry short courses all over the world from 1980 to 2006.
He earned a BS and an MS in Electrical Engineering from the City University of New York
and PhD from the Polytechnic Institute of New York.

xvii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer
using Microsoft technologies. He works for Bluarancio (www.bluarancio.com).

He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified
Application Developer for .NET, a Microsoft Certified Professional, and a prolific
author and technical reviewer. Over the past ten years, he’s written articles for Italian
and international magazines and coauthored more than ten books on a variety of
computer topics.

Xix

http://www.bluarancio.com

Acknowledgments

The author thanks the reviewers at Apress including Gryffin Winkler and James
Markham; the technical reviewer, Fabio Claudio Ferracchiati; and Steve Anglin for
signing the book.

xxi

Introduction

This book is aimed at practicing Go software developers and students who wish to
experience the excitement and see the benefits of data structures and algorithms in
action. Because of its clean and readable syntax, outstanding support for concurrency
and generics, and execution speed, Go was chosen to present the implementations of
the data structures and algorithms along with many applications. It is assumed that the
reader has basic familiarity with Go. The numerous code listings and their explanations
will hopefully serve to improve your programming skills using Go.

The latest version of Go, Version 1.18, features genericity (generic and constrained
generic parameters for data types and functions). This long-awaited addition to the Go
language is ideally suited for use in building reusable data structure packages. Prior
to Go Version 1.18, separate implementations of data structures and their associated
algorithms were limited to a particular data type. So, for example, a list containing
information of type int would have to be reimplemented if the underlying type was, for
example, changed to float64 or to a more complex user-defined custom type. With the
new Version 1.18 of Go, generic and constrained generic data types remove this severe
restriction. Generic and constrained generic data types will be featured throughout this
book, and all source listings will use Version 1.18 of Go.

Computer science, like many sciences, has many areas of specialization - network
security, e-commerce, general web application development, graphics, game design,
database applications, encryption, natural language processing, text analysis, compiler
design, operating systems, simulation, machine learning, and Al, just to name a few.
Knowledge of the effective design and use of data structures and algorithms are useful in
these areas of specialization and are therefore a fundamental part of computer science
and software development methodology.

Over the years and because of application development in the areas mentioned
and not mentioned previously, a consensus has emerged about which data structures
and algorithms have the greatest utility. Nothing is static in this area, so new data
structures and algorithms are being designed. The task of successfully advancing and
moving ahead as a developer is greatly enhanced by studying the great works already
established. The goal of education is learning how to learn. In the context of this book,

xxiii

INTRODUCTION

the great works are the data structures and accompanying algorithms that have been
shown to have utility in a large variety of computation problem domains.

This is not a theoretical book laden with formal proofs. There are many such books
already available. For the data structures presented, not every use case is included. It
is hoped and expected that after focusing on the major data structures and associated
algorithms presented, the reader will be better prepared to extend their knowledge
as they move forward in creating or discovering new data structures and algorithms.

It is also hoped that by presenting a variety of problems that are solved by hitching a
ride with one or more of the data structures and algorithms introduced, the reader will
appreciate the power that mastery of this subject matter brings to the table of software
development.

The use of concurrency in implementing data structures is a major feature of this
book. Concurrent implementations are utilized whenever appropriate throughout
the book.

Chapter 1 presents a tour of generics and concurrency in Go.

Chapters 2 through 16 present classic data structures and algorithms and show them
in action. These include sorting and searching, stack, queue, lists, deque, hash table,
binary search tree, AVL tree, red-black tree, heap, expression tree, and graph. Many
examples and applications are presented. Dynamic programming and branch-and-
bound algorithms are used to solve classic problems such as shortest path in a graph and
minimum spanning tree.

Chapter 17 introduces combinatorial optimization problems and focuses on the
famed Travelling Salesperson Problem (TSP). Exact solutions are intractable both
in memory and execution time. A brute-force solution is presented in Chapter 17. A
branch-and-bound solution is presented in Chapter 18. This sets the stage for Chapters
19 and 20, which present heuristic solutions to this problem.

Chapter 19 presents a simulated annealing heuristic solution, which is shown to be
very effective in solving large TSP problems.

Chapter 20 presents a genetic algorithm, another effective heuristic solution to TSP.

Chapter 21 introduces machine learning and neural networks. A neural network is
constructed from scratch and used to train a network to evaluate medical test results.

In summary, this book will

o Explore classical data structures and algorithms aimed at making
your applications run faster or require less storage

o Use the new generic features of Go to build reusable data structures

XXiv

INTRODUCTION

Utilize concurrency for maximizing application performance

See the power of heuristic algorithms for computationally intractable
problems

Enhance and improve your Go programming skills

CHAPTER 1

A Tour of Generics and
Concurrency in Go

This chapter introduces the syntax and semantics of generics in Go. Many coding
examples are presented that illustrate this new and powerful feature of Go. This sets the
stage for the continued use of generics throughout the book.

Concurrency in Go is also reviewed in this chapter. Many coding examples are
presented along with benchmarks that contrast the performance of algorithms with
and without concurrency. This also sets the stage for the continued use of concurrency
throughout the book.

1.1 Brief History and Description of Go

Go is a relatively new programming language released in late 2009 and developed at
Google by Robert Griesemer (a Swiss computer scientist who helped create Google’s V8
JavaScript engine), Rob Pike (a Canadian computer scientist and part of the Unix team at
Bell Labs and creator of the Limbo programming language), and Ken Thompson (creator
of the Unix operating system and the B programming language).

The Go programming language is sometimes called Golang. Why? The domain “go.
org” wasn’t available at the time the language was released, so golang.org (a mix of Go
and language) was born. The official name of the language is Go, but the Twitter tag is
#golang. Go figure!

One of the major goals in creating Go was to produce an easily readable, strong, and
statically typed language with garbage collection and fast compilation and execution
speed particularly suited for concurrent applications.

The goroutine is a lightweight process that requires less memory overhead than a
normal thread seen in other languages such as Java and C#. A concurrent Go program
may spawn thousands of goroutines running on a much smaller number of threads.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8 1

https://doi.org/10.1007/978-1-4842-8191-8_1

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

The channel construct (to be explained later in this chapter) allows information to be
passed into and taken out of goroutines and is used to synchronize these concurrent
lightweight processes. Although parallel processing is not the primary objective of
goroutines, they can be used to approximate this on a shared memory multiprocessor
computer.

Go is a platform-independent language that runs on various Unix platforms
including MacOS and also runs on MS Windows. Go applications compile to a binary
executable so they can be distributed to a customer without having to package an
interpreter and runtime libraries as is the case with Python and other interpreted
languages.

Go, like many recent languages, is a public open source project. There are a bevy of
free tools that are downloadable. New packages are constantly being released, so much
of the power of the language resides outside the language in the plethora of high-quality
packages available to the programmer. In this sense, Go is like Python.

Among the tools that are available are high-quality editors, debuggers, and IDEs.
Go requires a prescribed format, so the gofmt tool is often integrated into various code
editors. Having a standard code format provides a huge advantage to Go programming
teams as well as solo programmers inspecting the code written by others.

So what is missing in Go? What is its downside? Up until the most recent and
perhaps most important new release, Version 1.18, Go lacked genericity. With this new
release of Go, this major shortcoming is gone.

Now one can build an algorithm or data structure that does not have to be modified
every time the underlying information to be stored changes. Data structure and
algorithm implementations can focus on the core logic needed to manipulate the
information. A new syntax associated with generics allows a programmer to precisely
describe the requirements that data must satisfy to be stored in a particular data
structure. This furthers a programmer’s ability to have a program specify its intent in the
code itself. The use of constrained and unconstrained generic parameters is introduced
and illustrated in the next section.

1.2 Introducing Generic Parameters

In this section, we present a series of examples that introduce and illustrate the use of
generic-type parameters, both unconstrained and constrained.

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

In the first several code listings, we present a set of related problems of adding a new
student to an existing slice of students. First, we add just the name of the student to our
existing slice. Next, we add the student’s ID number to a slice containing ID numbers.
Next, we add a struct containing name, ID, and age to an existing slice of structs. Then
finally, we bring generics on stage and show the simplification that is achievable using a
generic-type parameter.

Adding a New Student by Name

Consider the simple Go application given in Listing 1-1.

Listing 1-1. A slice of students
package main

import(
llfmt n

)

func addStudent(students []string, student string) []string {
return append(students, student)

}

func main() {
students := []string{} // Empty slice
result := addStudent(students, "Michael")
result = addStudent(result, "Jennifer")
result = addStudent(result, "Elaine")
fmt.Println(result)

}

/*

Output:

[Michael Jennifer Elaine]

*/

The function addStudent takes a slice of string representing the current collection of
students as the first parameter and a string representing a new student to be added to the
collection as the second parameter. The append function is used to add the new student
to the existing slice, and that result is returned.

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Adding a New Student by ID Number

Suppose we wish to specify the slice of students using their ID number, an int, instead of
their name, a string.
We would need to modify Listing 1-1 as shown in Listing 1-2.

Listing 1-2. Adding student IDs
package main

import(
n {mt n
)

func addStudent(students []string, student string) []string {
return append(students, student)

}

func addStudentID(students []int, student int) []int {
return append(students, student)

}

func main() {
students := []string{} // Empty slice
result := addStudent(students, "Michael™)

result = addStudent(result, "Jennifer")
result = addStudent(result, "Elaine")
fmt.Println(result)

students1 := []int{} // Empty slice
resultl := addStudentID(students1i, 155)
resulti = addStudentID(resulti, 112)
resultl = addStudentID(resulti, 120)
fmt.Println(result1)

}

/* Output

[Michael Jennifer Elaine]

[155 112 120]

*/

4

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

The logic in function addStudentID is essentially the same as in function
addStudent. Only the base type of the slice is changed from string to int.

Adding a New Student by Student Struct

And to take this one step further, suppose we define a Student type as

type Student struct {
Name string
ID int
age floaté64

}

and we modify Listing 1-2 as shown in Listing 1-3.

Listing 1-3. Adding Student type to the mix
package main

import(
llfmt n

)

type Student struct {
Name string
ID int
age floaté64

}

func addStudent(students []string, student string) []string {
return append(students, student)

}

func addStudentID(students []int, student int) []int {
return append(students, student)

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

func addStudentStruct(students []Student, student Student) []Student {
return append(students, student)
}
func main() {
students := []string{} // Empty slice
result := addStudent(students, "Michael")
result = addStudent(result, "Jennifer")
result = addStudent(result, "Elaine")
fmt.Println(result)

students1 := []int{} // Empty slice
resultl := addStudentID(students1i, 155)
resultl = addStudentID(result1, 112)
resulti = addStudentID(resulti, 120)
fmt.Println(result1)

students2 := []Student{} // Empty slice
result2 := addStudentStruct(students2, Student{"John", 213, 17.5})
result2 = addStudentStruct(result2, Student{"James", 111, 18.75})
result2 = addStudentStruct(result2, Student{"Marsha", 110, 16.25})
fmt.Println(result2)

}

/* Output

[Michael Jennifer Elaine]

[155 112 120]

[{John 213 17.5} {James 111 18.75} {Marsha 110 16.25}]

*/

Having to add a new function each time we wish to add a new underlying data
type to our various student collections is tedious and a major downside to earlier

versions of Go.

Introducing Generics

Enter Go, Version 1.18, that introduces support for generics.
A generic solution to this problem is presented in Listing 1-4.

CHAPTER 1

Listing 1-4. Generic solution to problem
package main

import (
n fmt n
)

type Stringer = interface {
String() string

}
type Integer int

func (i Integer) String() string {
return fmt.Sprintf("%d", i)

}
type String string

func (s String) String() string {
return string(s)

}

type Student struct {
Name string
ID int
Age floaté64

}
func (s Student) String() string {

ATOUR OF GENERICS AND CONCURRENCY IN GO

return fmt.Sprintf("%s %d %0.2f", s.Name, s.ID, s.Age)

}

func addStudent[T Stringer](students []T, student T) []T {

return append(students, student)

}

func main() {
students := []String{}

result := addStudent[String](students, "Michael")

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

result = addStudent[String](result, "Jennifer")
result = addStudent[String](result, "Elaine")
fmt.Println(result)

students1 := []Integer{}

result1l := addStudent[Integer](studentsi, 45)
resultl = addStudent[Integer](result1i, 64)
resultl = addStudent[Integer](resulti, 78)
fmt.Println(result1)

students2 := []Student{}

result2 := addStudent[Student](students2, Student{"John", 213, 17.5})
result2 = addStudent[Student](result2, Student{"James", 111, 18.75})
result2 = addStudent(result2, Student{"Marsha", 110, 16.25})
fmt.Println(result2)

}

/* Output

[Michael Jennifer Elaine]

[45 64 78]

[John 213 17.50 James 111 18.75 Marsha 110 16.25]
*/

Stringer Type

A type Stringer is defined as an interface containing a single method signature:

String() string.

Any entity that implements this type by having a well-defined String() definition
can be converted to a string for output purposes. Since we wish to be able to output our
various student collections (slices), we constrain the data type, T, in the signature of our
generic addStudent function to be of type Stringer.

Constrained Generic Type

The generic signature of our single addStudent function becomes

func addStudent[T Stringer](students []T, student T) []T

Types Integer, String, and Student are defined along with their definitions
of String() so that we can use generic function addStudent using each of these

Stringer types.
8

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Implementing an Interface

In Go, one implements an interface implicitly by implementing the function(s) specified
in the interface definition. In this case, any type that implements a String() function can
be considered to be of type Stringer.

Instantiating a Generic Type

In main, after declaring students to be an empty slice of String (not a slice of string), we
invoke addStudent[String](students, “Michael”).

The generic parameter T constrained to be of type Stringer is replaced by the actual
instantiated type String which we know is of type Stringer because it implements the
Stringer interface (which has a concrete definition of String()).

We next use addStudent with Integer used as the Stringer type. And finally, we use
addStudent with Student as the Stringer type.

Unconstrained Generic Type any

The Go compiler can do type inferencing if we replace the constrained generic type
[T Stringer] with the unconstrained type any.

Listing 1-5 presents a simpler, less verbose, generic implementation of addStudent
along with a driver function main that exercises this generic function.

Listing 1-5. Simpler generic function addStudent
package main
import (
llfmtll
)

type Student struct {
Name string
ID int
Age float64

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

func addStudent[T any](students []T, student T) []T {
return append(students, student)

}

func main() {
students := []string{}
result := addStudent[string](students, "Michael")
result = addStudent[string](result, "Jennifer")
result = addStudent[string](result, "Elaine")
fmt.Println(result)

students1 := []int{}

resultl := addStudent[int](students1i, 45)
resultl = addStudent[int](result1, 64)
resultl = addStudent[int](result1, 78)
fmt.Println(result1)

students2 := []Student{}

result2 := addStudent[Student](students2, Student{"John", 213, 17.5})
result2 = addStudent[Student](result2, Student{"James", 111, 18.75})
result2 = addStudent(result2, Student{"Marsha", 110, 16.25})
fmt.Println(result2)

}

/* Output

[Michael Jennifer Elaine]

[45 64 78]

[John 213 17.50 James 111 18.75 Marsha 110 16.25]
*/

Using type inferences, the compiler uses the default conversions of string, int, and
Student to allow program output by converting each of these types to string.

Benefits of Generics

In Listing 1-5, the benefits of generics are evident. The simple algorithm for appending
a new student (second parameter) to the existing collection of students is expressed
independently of the type being used to represent a student.

Suppose we wish to sort each collection of students prior to outputting the

collection. We can do so with the sort package discussed in the next section.
10

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Using Go’s Sort Package

The Sort function in Go’s sort package, sort.Sort, requires that the type in the slice being

sorted must implement three methods:

1. Len
2. Less
3. Swap

We show how a generic collection implemented as a slice can be sorted.
We define OrderedSlice as follows and provide the required group of Len, Less,

and Swap.

// Group of functions that ensure that an OrderedSlice can be sorted
type OrderedSlice[T Ordered] []T // T must implement < and >

func (s OrderedSlice[T]) Len() int {
return len(s)

}

func (s OrderedSlice[T]) Less(i, j int) bool {
return s[i] < s[j]

}

func (s OrderedSlice[T]) Swap(i, j int) {
s[i], s[3] = s[jl, slil
}

// end group for OrderedSice

11

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Sort Type

We introduce another type, SortType, along with the required group of Len, Less, and Swap.

// Group of functions that ensure that SortType can be sorted
type SortType[T any] struct {

slice []T

compare func(T, T) bool

}

func (s SortType[T]) Len() int {
return len(s.slice)

}

func (s SortType[T]) Less(i, j int) bool {
return s.compare(s.slice[i], s.slice[j])

}

func (s SortType[T]) Swap(i, j int) {
s.slice[i], s.slice[j] = s.slice[j], s.slice[i]

}
// end of group for SortType

Finally, we define a function, PerformSort, that uses SortType as follows:

func PerformSort[T any](slice []T, compare func(T, T) bool) {
sort.Sort(SortType[T]{slice, compare})

The user of PerformSort must supply a function for comparing two elements of type T.
Listing 1-6 integrates this functionality into the code that implements the generic
addStudent function to allow us to use the imported sort package and its function Sort.

Listing 1-6. Building and sorting slices of students

package main

import (
"fmt"
"sort"
)

12

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

type Ordered interface {
~int | ~float64 | ~string
}

type Student struct {
Name string
ID int
Age float64

}

func addStudent[T any](students []T, student T) []T {
return append(students, student)

}

// Group of functions that ensure that an OrderedSlice can be sorted
type OrderedSlice[T Ordered] []T // T must implement < and >

func (s OrderedSlice[T]) Len() int {
return len(s)

}

func (s OrderedSlice[T]) Less(i, j int) bool {
return s[i] < s[j]

}

func (s OrderedSlice[T]) Swap(i, j int) {
s[i], s[j] = s[jl, sli]
}

// end group for OrderedSice

// Group of functions that ensure that SortType can be sorted
type SortType[T any] struct {

slice []T

compare func(T, T) bool

}
func (s SortType[T]) Len() int {

return len(s.slice)

13

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

func (s SortType[T]) Less(i, j int) bool {
return s.compare(s.slice[i], s.slice[j])

}

func (s SortType[T]) Swap(i, j int) {
s.slice[i], s.slice[j] = s.slice[j], s.slice[i]

}

// end of group for SortType

func PerformSort[T any](slice []T, compare func(T, T) bool) {
sort.Sort(SortType[T]{slice, compare})

}

func main() {
students := []string{}
result := addStudent[string](students, "Michael")
result = addStudent[string](result, "Jennifer")
result = addStudent[string](result, "Elaine")
sort.Sort(OrderedSlice[string](result))
fmt.Println(result)

students1 := []int{}

resultl := addStudent[int](students1, 78)
resultl = addStudent[int](result1, 64)
resultl = addStudent[int](result1, 45)
sort.Sort(OrderedSlice[int](result1))
fmt.Println(result1)

students2 := []Student{}
result2 := addStudent[Student](students2, Student{"John", 213, 17.5})
result2 = addStudent[Student](result2, Student{"James", 111, 18.75})
result2 = addStudent(result2, Student{"Marsha", 110, 16.25})
PerformSort[Student](result2, func(si, s2 Student) bool {

return si.Age < s2.Age // comparing two Student values

1))
fmt.Println(result2)

14

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

/* Output

[Elaine Jennifer Michael]

[45 64 78]

[{Marsha 110 16.25} {John 213 17.5} {James 111 18.75}]
*/

Map Functions

Map functions in Go are commonplace and perform a transformation in a slice to

produce a new slice with the transformed results. Consider this example:

func MyMap(input []int, f func(int) int) []int {
result := make([]int, len(input))
for index, value := range input {
result[index] = f(value)

}

return result

}

func main() {
slice := []int{a, 5, 2, 7, 4}
result := MyMap(slice, func(i int) int {
return i * 1

1))
fmt.Println(result)

}

/* Output

[1 25 4 49 16]
*/

The MyMap function produces an output slice containing the square of the integers
contained in the input slice. After declaring result to be a slice of len(slice) integers, it
iterates over the range of values in input, transforming each value based on the function
fpassed in to MyMap.

15

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Making MyMap Generic
MyMap can be made generic as follows:

func GenericMap[T1, T2 any](input []T1, f func(T1) T2) []T2 {
result := make([]T2, len(input))
for index, value := range input {
result[index] = f(value)

}

return result

Function GenericMap takes two generic parameters, T1 and T2. Using the function f
that is passed in, it transforms the data in the input slice to type T2. Here, T1 and T2 are
not constrained. They are of type any.

Filter Functions

Filter functions in Go are also commonplace and perform a filtering operation on an
input slice based on a function passed in. Consider this example:

func MyFilter(input []float64, f func(float64) bool) []floatés {
var result []float64
for , value := range input {
if f(value) == true {
result = append(result, value)

}

return result

}

func main() {
input := []float64{17.3, 11.1, 9.9, 4.3, 12.6}
res := MyFilter(input, func(num float64) bool {
if num <= 10.0 {
return true

16

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

return false

1))
fmt.Println(res)

}
/* Output
[9.9 4.3]
*/

Here, any value in the input slice that is less than or equal to 10.0 is retained, and all
other values are filtered out.

Making MyFilter Generic

MyFilter can be made generic as follows:

func GenericFilter[T any](input []T, ¥ func(T) bool) []T {
var result []T
for _, val := range input {
if f(val) {
result = append(result, val)

}
}

return result

In Listing 1-7, we exercise the generic map and filter functions.

Listing 1-7. Using generic map and filter functions
package main

import (
n _Fmt n

17

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

func GenericMap[T1, T2 any](input []T1, f func(T1) T2) []T2 {
result := make([]T2, len(input))
for index, value := range input {
result[index] = f(value)

}

return result

}

func GenericFilter[T any](input []T, f func(T) bool) []T {
var result []T
for _, val := range input {
if f(val) {
result = append(result, val)
}
}

return result

}

func main() {
input := []float64{-5.0, -2.0, 4.0, 8.0}
resultl := GenericMap[float64, float64](input, func(n float64)
float64 {
return n * n

1))
fmt.Println(result1)

greaterThanFive := GenericFilter[int]([]int{4, 6, 5, 2, 20, 1, 7},
func(i int) bool {
return 1 > 5

1)
fmt.Println(greaterThanFive)

oddNumbers := GenericFilter[int]([]int{4, 6, 5, 2, 20, 1, 7},
func(i int) bool {
return i % 2 == 1

1)
fmt.Println(oddNumbers)

18

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

lengthGreaterThan3 := GenericFilter[string]([]string{"hello", "or",
"the", "maybe"}, func(s string) bool {
return len(s) > 3

H
fmt.Println(lengthGreaterThan3)

}

/* Output

[25 4 16 64]
[6 20 7]
[517]
[hello maybe]
*/

We now turn our attention to the use of concurrency.

1.3 Concurrency

Concurrency allows a program to process multiple tasks at the same time (parallel
processing where each task is assigned to a separate processor) or what appears to be at
the same time where tasks are multiplexed so progress is made on all tasks over time. If
the multiplexing is very fast, it appears that the concurrent processes are running at the
same time but are run in overlapping periods of time.

In most languages that support concurrent processing, the thread construct is used
to support concurrency. There is memory overhead associated with a thread, so the
number of threads that can be spawned at the same time is limited.

Goroutine

In developing the Go language, Google introduced a lightweight process called a
goroutine that requires less memory overhead than a thread. Their motivation was
to be able to serve multiple HTML web pages made from many web browsers at the
same time.

Goroutines are functions that run concurrent with other functions. When a regular
function is invoked, the code below the function gets executed after the function
completes its work. When a goroutine function is invoked, the code directly below it gets
executed immediately since the goroutine runs concurrently with code beneath it.

19

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

We illustrate this in Listing 1-8.

Listing 1-8. Simple goroutine running concurrent with main

package main

import (
"fmt"
“time"
)

func regularFunction() {
fmt.Println("Just entered regularFunction()")
time.Sleep(5 * time.Second)

}

func goroutineFunction() {
fmt.Println("Just entered goroutineFunction()")
time.Sleep(10 * time.Second)
fmt.Println("goroutineFunction finished its work")

}

func main() {
go goroutineFunction()
fmt.Println("In main one line below goroutineFunction()")
regularFunction()
fmt.Println("In main one line below regularFunction()")
}
/* Output
In main, one line below goroutineFunction()
Just entered regularFunction()
Just entered goroutineFunction()
In main one line below regularFunction()
*/

When the goroutineFunction is launched as a goroutine using go
goroutineFunction(), it runs concurrently with the main function, which is a goroutine.
The first line of output occurs immediately even though the goroutineFunction requires
ten seconds to complete its work. When the regularFunction() is invoked next, five

20

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

seconds elapses before the line of output. “In main, one line below regularFunction()” is
emitted. Function main terminates immediately after this output is emitted, which ends
the program before the goroutineFunction can complete its work. It gets interrupted and
terminates when the program ends.

If we swap the time delays so that the goroutineFunction has a time delay of five
seconds and the regularFunction has a time delay of ten seconds, the output becomes

In main one line below goroutineFunction()
Just entered regularFunction()

Just entered goroutineFunction()
goroutineFunction finished its work

In main, one line below regularFunction()

Now the goroutine running concurrently with main completes it work before the
regularFunction and before the main goroutine exits.

WaitGroup

Go provides a mechanism for allowing multiple goroutines to all complete their work
before main exits while killing off unfinished goroutines.

We introduce the sync package and the WaitGroup construct and illustrate its use in
Listing 1-9.

Listing 1-9. The sync package and WaitGroup

package main

import (
"fmt"
"time"
"math/rand"
"sync"

)

var wg sync.WaitGroup

func outputStrings() {
defer wg.Done()
strings := [5]string{"One", "Two", "Three", "Four", "Five"}

21

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

for i :=0; i < 5; i++ {
delay := 1 + rand.Intn(3)
time.Sleep(time.Duration(delay) * time.Second)
fmt.Println(strings[i])

}

func outputInts() {
defer wg.Done()
for i :=0; 1< 5; i++ {
delay := 1 + rand.Intn(3)
time.Sleep(time.Duration(delay) * time.Second)
fmt.Println(i)

}

func outputFloats() {
defer wg.Done()
for i :=0; i < 5; i++ {
delay := 1 + rand.Intn(3)
time.Sleep(time.Duration(delay) * time.Second)
fmt.Println(float64(i * i) + 0.5)

}

func main() {
wg.Add(3)
go outputStrings()
go outputInts()
go outputFloats()
wg.Wait()

}

/* Output

One

0.5

0

1

22

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Two
1.5
2
4.5
3
Three
Four
4
9.5
Five
16.5
*/

This program does nothing useful except illustrating the WaitGroup construct and
shows three goroutines running concurrently.

A global variable wg of type sync.WaitGroup is declared.

In main, we invoke wg.Add(3). The last line of code in main is wg .Wait(). This
causes main to pause until the value in wg is zero. This assures us that all three
goroutines complete their work before the program terminates.

In each of the goroutines, the first line of code, defer wg.Done(), causes the value of
the global variable wg to be decremented when the goroutine completes its work. When
wg reaches a value of zero, the function main is allowed to exit.

The sequence of random numbers generated is the same each time the program is
run, but the output sequence varies from run to run. This is because the time multiplexer
allocates different chunks of execution time to each concurrent goroutine differently
each time the program runs. After the second run of the program, the output is

One
0

0.5
1.5
Two

4-5

Three
9.5
23

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

16.5
Four
3
Five
4

The Channel

We often want to be able to synchronize the sequence of goroutines and have them
communicate with each other. We introduce the powerful construct of the channel to
accomplish this.

Consider the goroutines in Listing 1-10.

Listing 1-10. Deadlock

package main

import (
"fmt"
"time"
"sync"
)

var wg sync.WaitGroup

func pingGenerator(c chan string) {
defer wg.Done()
for i :=0; i < 5; i++ {
c <- "ping"
time.Sleep(time.Second * 1)

}

func output(c chan string) {
defer wg.Done()
for {

24

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

value := ¢- ¢
fmt.Println(value)

}

func main() {
¢ := make(chan string)

wg.Add(2)
go pingGenerator(c)
go output(c)

wg.Wait()
}
/* Output
ping
ping
ping
ping
ping
fatal error: all goroutines are asleep - deadlock!
*/

The first line of code in main initializes a channel, c¢. Channels must be initialized
with a make statement before they can be used.

As in the previous listing, we create a WaitGroup variable, wg, with the initial value of 2.

We next launch the two goroutines, pingGenerator and output, passing the channel
variable c to each.

The pingGenerator goroutine assigns the string “ping” to the channel variable ¢
every second and does this five times. The left arrow from the value “ping” to the variable
c represents the assignment of the “ping” value to c.

The channel must be empty for this assignment to be made. In the output goroutine,
the assignment to value, using value := <- ¢, gobbles up the channel variable c as
soon as it is assigned in the pingGenerator. This occurs every second. During the time
between “ping” assignments from the pingGenerator, the value assignment is blocked.
That is execution is halted within the output goroutine until there is information in the
channel assigning to value. So the two goroutines are being affected by the channel
variable ¢, common to both.

25

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

There is a problem. When the pingGenerator has emitted its five “ping”
assignments, each displayed on the console through the output goroutine, it blocks
while waiting for a sixth channel assignment. This never occurs. The program crashes
with the error message shown earlier. A deadlock has occurred. The program cannot

terminate.

Select Statement

We can resolve this problem by modifying the output goroutine and using a select

statement.

func output(c chan string) {
for {
select {
case value := ¢- c:
fmt.Println(value)
case <-time.After(3 * time.Second):
fmt.Println("Program timed out.")
wg.Done()

In a select statement, the case that occurs first gets executed. If two or more cases are
ready to execute, the system chooses one at random. Since the channel ¢ gets assigned to
value every second (blocks between assignments), the program outputs the five “ping”
assignments. Instead of deadlocking as before, the second case gets executed after three
seconds from the time the fifth and final “ping” is assigned to value.

Use a quit Channel to Avoid Using WaitGroup

We can use a quit channel to block main from exiting and avoid the use of WaitGroup as
shown in Listing 1-11.

26

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Listing 1-11. Using a quit channel instead of WaitGroup

package main

import (
"fmt"
“time"
)

var quit chan bool

func pingGenerator(c chan string) {
for i := 0; i < 5; i++ {
c <- "ping"
time.Sleep(time.Second * 1)

}
}
func output(c chan string) {
for {
select {
case value := ¢- c:
fmt.Println(value)
case <-time.After(3 * time.Second):
fmt.Println("Program timed out.")
quit <- true
}
}
}

func main() {
quit = make(chan bool)
c := make(chan string)
go pingGenerator(c)
go output(c)
<- quit

27

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

/* Output

ping

ping

ping

ping

ping

Program timed out.
*/

The quit channel is initialized as the first line of code in main. The last line of code
in main, <- quit, blocks main from ending until a Boolean value is assigned to quit. This
occurs in the second case statement in goroutine output.

This mechanism for controlling the end of the program is simpler and less
encumbered than using WaitGroup.

We add the inevitable pongGenerator to this program.

Channel Direction

Channel direction can be added to a goroutine signature as shown in Listing 1-12. An
arrow pointing to the chan from the right, as shown in the signatures to pingGenerator
and pongGenerator, requires the goroutine to assign to the channel (a generator). An
arrow to the left of chan and pointing to the channel variable requires the goroutine to
only consume values in the channel.

If an attempt is made to send information to the channel when it is specified as a
consumer, or if an attempt is made to access information from the channel in the case
that it is specified as a generator, a compiler error will occur.

Listing 1-12. Ping pong using direction channels in goroutine signatures
package main

import (
n -Fmt n
“time"

)

var quit chan bool

28

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

func pingGenerator(c chan<- string) {
// The channel can only be sent to - a generator
for i :=0; 1 < 5; i++ {
c <- "ping"
}
}

func pongGenerator(c chan<- string) {
// Information can only be sent to the channel - a generator
for i :=0; i < 5; i++ {
c <- "pong"

}

func output(c <- chan string) {
// Information can only be received from the channel - a consumer
for {
time.Sleep(time.Second * 1)
select {
case value := <- c:
fmt.Println(value)
case <-time.After(3 * time.Second):
fmt.Println("Program timed out.")
quit <- true

}

func main() {
quit = make(chan bool)
¢ := make(chan string)
go pingGenerator(c)
go pongGenerator(c)
go output(c)
<- quit

29

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

/* Output
ping

pong

ping

pong

ping

pong

ping

pong

ping

pong
Program timed out.
*/

We have moved the one-second time delay into the output goroutine. This allows
the ping and pong generators to alternate since each assignment to the channel blocks
alternately until the channel is read by the consuming output goroutine.

Race Condition

A pervasive problem using concurrency is race condition. This problem occurs when
two or more goroutines modify the same shared data.
A simple example is presented in Listing 1-13.

Listing 1-13. Example of race condition
package main

import (
II_Fmt n
n Sync"

)

const (
number = 1000

30

CHAPTER1 ATOUR OF GENERICS AND CONCURRENCY IN GO
var countValue int

func main() {
var wg sync.WaitGroup
wg.Add(number)

for i := 0; i < number; i++ {
go func() {
countValue++
wg.Done()

})
}
wg.Wait()
fmt.Printf("\ncountValue = %d", countValue)

One thousand goroutines are spawned in a for-loop within main. Each goroutine
increments countValue exactly once. Therefore, one would expect the output of the
program to be 1000.

Each time the program is run, the output is different. This is because of the conflict
of multiple goroutines attempting to modify the global changeValue at nearly the same
time. There is no error message generated by the system. But the output is incorrect.

Mutex

We can correct the race-condition problem by using a mutex. This locks the global
countValue while each goroutine modifies its value and protects this shared data from
being corrupted.

Listing 1-14 shows the use of a mutex to remove the race condition.

Listing 1-14. Using mutex to avoid race condition

package main

import (
"fmt"
"sync"
)

31

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO
const number = 1000

var countValue int
var m sync.Mutex

func main() {
var wg sync.WaitGroup
wg.Add (number)
for i := 0; i < number; i++ {

go func() {
m.Lock()
countValue++
m.Unlock()
wg.Done()
1O,
}
wg.Wait()

fmt.Printf("\ncountValue = %d", countValue)

The code m.Lock() within each goroutine protects the global countValue from
modification outside of the goroutine in which it is invoked. No other goroutine can
change countValue until the m.Unlock() is invoked.

Program execution is slowed down using the mutex, but the program is protected
from the race condition shown in Listing 1-13.

Playing Chess Using Goroutines

Listing 1-15 simulates the sequence of two chess players making moves using
goroutines.

Listing 1-15. Concurrent moves in chess

// This sample program demonstrates how to use an unbuffered
// channel to simulate a move of chess between two goroutines.
package main

32

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

import (
"fmt"
"math/rand"
"time"

)

var quit chan bool

func main() {
rand.Seed(time.Now().UnixNano())
move := make(chan int)
quit = make(chan bool)

// Launch two players.
go player("Bobby Fischer", move)
go player("Boris Spassky", move)

// Start the move
move <- 1
<-quit // Blocks until quit assigned a value

}

// player simulates a person moving in chess.
func player(name string, move chan int) {
// This function takes data out of the move channel
// and puts data back into the move channel
for {
// Wait for turn to play
turn := <-move // blocks until move assigned a value (every second)

// Pick a random number and see if we lose the move

n := rand.Intn(100)

if n <=5 &% turn >= 5 {
fmt.Printf("Player %s was check mated and loses!", name)
quit <- true
return

33

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

// Display and then increment the total move count by one.
fmt.Printf("Player %s has moved. Turn %d.\n", name, turn)
turn++

// Yield the turn back to the opposing player
time.Sleep(1 * time.Second)
move <- turn

/*

Player Boris Spassky has moved. Turn
Player Bobby Fischer has moved. Turn
Player Boris Spassky has moved. Turn
Player Bobby Fischer has moved. Turn
Player Boris Spassky has moved. Turn
Player Bobby Fischer has moved. Turn
Player Boris Spassky has moved. Turn
Player Bobby Fischer has moved. Turn
Player Boris Spassky has moved. Turn

O 60N O U1 »h W N B

Player Bobby Fischer has moved. Turn 10.
Player Boris Spassky has moved. Turn 11.
Player Bobby Fischer has moved. Turn 12.
Player Boris Spassky has moved. Turn 13.
Player Bobby Fischer has moved. Turn 14.
Player Boris Spassky has moved. Turn 15.
Player Bobby Fischer has moved. Turn 16.
Player Boris Spassky has moved. Turn 17.
Player Bobby Fischer has moved. Turn 18.
Player Boris Spassky has moved. Turn 19.
Player Bobby Fischer has moved. Turn 20.
Player Boris Spassky has moved. Turn 21.
Player Bobby Fischer has moved. Turn 22.
Player Boris Spassky has moved. Turn 23.
Player Bobby Fischer has moved. Turn 24.

Player Boris Spassky has moved. Turn 25.

Player Bobby Fischer was check mated and loses!
*/

34

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

The first line within the for-loop of the goroutine player blocks until an int is taken
out of the move channel. With a 5 percent probability, the player loses the game and sets
quit to true.

After outputting that the player has moved and posting the player’s turn, it puts an
int back into the move channel, freeing the other player to move.

Fibonacci Numbers Using Goroutines

The next example, in Listing 1-16, shows how we can output a sequence of Fibonacci

numbers using a goroutine.

Listing 1-16. Fibonacci numbers using a goroutine
package main
import "fmt"

func fibonacci(c chan¢- int, quit <-chan bool) {
X, y :=0, 1
for {
select {
case ¢ ¢<- X:
X, Yy =Y, X +y // Generates the sequence
case <- quit:
fmt.Println("quit")
return

}

func main() {
c := make(chan int)
quit := make(chan bool)
go func() {
for i :=0; 1 < 20; i++ {
fmt.Println(<-c)
}

quit <- true

35

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

10

fibonacci(c, quit)

* Qutput

}
/
0
1
1
2
3
5
8

13
21
34
55
89
144
233
377
610
987
1597
2584
4181
quit
*/

The first parameter, ¢, in function fibonacci puts information into the channel, and
the second parameter, quit, takes information out of the channel.

The goroutine is launched within main as an internal function. The Println(<-c)
statement blocks until the fibonacci function puts the value x into the integer channel c.

The select statement in function fibonacci either takes the next value of x into
channel c or ends the program as soon as quit becomes true. The actual fibonacci
sequence is computed as the second line within the case ¢ <-x statement.

In the next section, we examine the possible performance improvements that are

attainable by using concurrency.

36

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

1.4 Benchmarking Concurrent Applications

The goal in using concurrency is to speed up program execution. There is overhead
in deploying goroutines, so sometimes, using concurrency is counterproductive.
Because debugging concurrent code is challenging and dealing with deadlocks and
race conditions is sometimes tricky, one needs to be careful when crafting concurrent
solutions to a problem. Testing a concurrent application and comparing its performance
with a nonconcurrent solution is useful.

In this section, we present several applications in which we compare the
performance of a concurrent solution with a nonconcurrent solution. Since the result
of a benchmark test is dependent on the processor and memory used, the ambient
workload of the machine (how many processes are running in the background), and
the machine architecture, one must be careful in generalizing and possibly drawing
incorrect conclusions from a benchmark result.

Consider the program in Listing 1-17. Here, we compare the time required to
construct and sum 100 million floating-point numbers into a slice with and without

concurrency.

Listing 1-17. Computing Sum With and Without Concurrency
package main

import "fmt"
import "time"
import "sync"

var outputl float64
var output2 float64
var output3 float64
var output4 float64

var wg sync.WaitGroup

func workeri() {
defer wg.Done()
var output []floaté4
sum := 0.0
for index := 0; index < 100 000 000; index++ {

37

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

output = append(output, 89.6)
sum += 89.6
}

outputl = sum

}

func worker2() {

defer wg.Done()

var output []float64

sum := 0.0

for index := 0; index < 100 000 000; index++ {
output = append(output, 64.8)
sum += 64.8

}

output2 = sum

}

func worker3() {

defer wg.Done()

var output []floaté4

sum := 0.0

for index := 0; index < 100 000 000; index++ {
output = append(output, 956.8)
sum += 956.8

}

output3 = sum

}

func workers() {
defer wg.Done()
var output []float64
sum := 0.0
for index := 0; index < 100 000 000; index++ {
output = append(output, 1235.8)
sum += 1235.8

}

output4 = sum

38

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

func main() {

}

wg.Add(8)

// Compute time with no concurrent processing

start := time.Now()

worker1()

worker2()

worker3()

worker4 ()

elapsed := time.Since(start)

fmt.Println("\nTime for 4 workers in series: ", elapsed)

fmt.Printf("Outputi: %f \nOutput2: %f \nOutput3: %f \nOutput4: %f\n",
output1, output2, output3, output4)

// Compute time with concurrent processing

start = time.Now()

go worker1()

go worker2()

go worker3()

go worker4()

wg.Wait()

elapsed = time.Since(start)

fmt.Println("\nTime for 4 workers in parallel: ", elapsed)

fmt.Printf("Outputi: %f \nOutput2: %f \nOutput3: %f \nOutputs: %f",
outputi, output2, output3, outputs)

/* Output on a Macbook Pro with M1 Max chip with 10-core CPU, 32-core GPU,
and 16-core Neural Engine

Time for 4 workers in series: 1.133640541s

Outputi1: 8960000016.634367

Output2: 6480000011.637030

Output3: 95680000176.244049

Output4: 123580000205.352280

Time for 4 workers in parallel: 756.305958ms
Output1: 8960000016.634367
Output2: 6480000011.637030

39

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Output3: 95680000176.244049
Output4: 123580000205.352280
*/

Each worker function appends a float64 value to construct an output slice of 100
million values while computing the sum in the slice.

In main, we compute and output the computation time if the worker functions are
executed sequentially. Then we execute the four worker functions concurrently using
goroutines. We compare the computation time and verify the correctness of the results
by outputting the sums with and without concurrency.

The computation time running the four worker functions concurrently is 67 percent
the time running the four functions sequentially. As expected, the sums computed are
the same.

Suppose we wish to speed up the computation of summing a sequence of numbers
by using concurrency. Listing 1-18 demonstrates this.

Listing 1-18. Using concurrency to speed up the computation of sum
package main

import (
n _Fmt n
"time"

)

const (
NumbexrsToSum = 10_000_000

)

func sum(s []float64, c chan<- float64) {
// A generator that puts data into channel
sum := 0.0
for , v := range s {
sum += float64(v)
}

c ¢- sum // blocks until c is taken out of the channel

40

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

func plainSum(s []float64) float64 {
sum := 0.0
for , v := range s {
sum += float64(v)
}

return sum

}

func main() {
s := []float64{}
for i := 0; i < NumbersToSum; i++ {
s = append(s, 1.0)
}

c := make(chan float64)

start := time.Now()

go sum(s[:len(s) / 2], c)

go sum(s[len(s) /7 2 :], c)

first, second := <-c, <¢-c // receive from each c

elapsed := time.Since(start)

fmt.Printf("first: %f second: %f elapsed time: %v", first, second,

elapsed)
start = time.Now()
answer := plainSum(s)
elapsed = time.Since(start)
fmt.Printf("\nplain sum: %f elapsed time: %v", answer, elapsed)
}
/*

first: 5000000.000000 second: 5000000.000000 elapsed time: 5.864275ms
plain sum: 10000000.000000 elapsed time: 11.601511ms
*/

By summing half the numbers in each of two goroutines, a substantial improvement
in execution time occurs as is evident in the program output.

The two goroutines perform their computation in a for-loop concurrently and return
their values by assigning to the channel variable c. In main, the assignment of the two
sums to first and second is blocked until both values are assigned to the channel.

41

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Generating Prime Numbers Using Concurrency

Next, we turn to the generation of prime numbers. The classic algorithm for doing this is
the Sieve of Eratosthenes. This is an extremely fast nonconcurrent algorithm.

The goal is to find all the prime numbers up to a specified number, say, ten million.
A prime number is an integer that is only divisible by 1 or itself. The first several prime
numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23. With the exception of 2, all other prime numbers
are odd numbers.

Sieve of Eratosthenes Algorithm

The Sieve of Eratosthenes algorithm is presented in the following function:

func SieveOfEratosthenes(n int) []int {
// Finds all primes up to n
primes := make([]bool, n+1)
for i :=2; 1 < n+1; i++ {
primes[i] = true
}
The sieve logic for removing non-prime indices
for p := 25 p * p <= n; p++ {
if primes[p] == true {
// Update all multiples of p
for i :=p * 25 i <=n; i += p {
primes[i] = false

}

// return all prime numbers <= n
var primeNumbers []int
for p :=2; p <=n; p++ {
if primes[p] == true {
primeNumbers = append(primeNumbers, p)

}

return primeNumbers

42

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

A slice of bool is initialized to contain n + 1 boolean values. Each element in the slice
is initialized to true, indicating that all are initially considered to be primes.

In the for-loop that follows, an index variable p is run from 2 up to the square root
of n. If the value prime[p] is true (indicating that p is a prime), all indices that are
multiples of p are removed from the primes slice. Say, n = 20. When p is 2, the prime slice
is set to false at the following indices: 4, 6, 8, 10, 12, 14, 16, 18, 20. When p is 3, the prime
slice is set to false at the following indices: 6, 9, 12, 15, 18. When p is 4, the prime slice is
set to false at the following indices: 8, 12, 16, 20. Since p = 5 squared exceeds 20, we are
done. The sieve has done its work. The indices whose prime values have not been set to
falseare 2, 3,5,7,11, 13,17, and 19.

Listing 1-19 presents a program for benchmarking the performance of the sieve.

Listing 1-19. Benchmarking the Sieve of Eratosthenes

// Sieve of Eratosthenes
package main

import (
"fmt"
"time"
)

const LargestPrime = 10_000_000

func SieveOfEratosthenes(n int) []int {
// Finds all primes up to n
primes := make([]bool, n+1)
for i :=2; 1 < n+1; i++ {
primes[i] = true
}
// The Sieve logic
for p := 2; p*p <= n; p++ {
if primes[p] == true {
// Update all multiples of p
for i :=p *2; i<=n; 1i+=p{

43

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

primes[i] = false

}

// return all prime numbers <= n
var primeNumbers []int
for p :=2; p <=n; p++ {
if primes[p] == true {
primeNumbers = append(primeNumbers, p)

}

return primeNumbers

}

func main() {
start := time.Now()
sieve := SieveOfEratosthenes(LargestPrime)
elapsed := time.Since(start)
fmt.Println("\nComputation time: ", elapsed)
fmt.Println("Largest prime: ", sieve[len(sieve)-1])

}

/* Output

Computation time: 28.881792ms
Number of primes = 664579

*/

Lest you think that all concurrent solutions are superior, consider the concurrent
solution to generating prime numbers in Listing 1-20.

The concurrent solution is so slow compared to the nonconcurrent Sieve of
Eratosthenes presented in Listing 1-19 that the constant LargestPrime is lowered by
two orders of magnitude to 100,000 instead of the 10 million. Even then, the solution

is slower.

44

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Listing 1-20. A concurrent daisy chain solution to generating prime numbers

// A concurrent prime sieve
package main

import (
"fmt"
"time"
)

const LargestPrime = 100_000

var primes []int
// Send the sequence 3, 5, ... to channel 'ch'.
func Generate(primel chan<- int) {
for i :=3; ; 1i+=2{
primel <- i // Send 'i

to channel primeil.

}
// Copy the values from channel 'in' to channel ‘'out’,
// removing those divisible by 'prime’.
func Filter(in <-chan int, out chan<- int, prime int) {
for {
i := <-in // Receive value from 'in'.
if i % prime != 0 {
out <- i // Send 'i' to 'out'.

}

func main() {
start := time.Now()
prime1l := make(chan int) // Create a new channel.
go Generate(primel) // Launch goroutine.
for {
prime := <-primel // Take primel out of channel
if prime > LargestPrime {
break

45

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

primes = append(primes, prime)

prime2 := make(chan int)

go Filter(prime1, prime2, prime)

primel = prime2
}
elapsed := time.Since(start)
fmt.Println("Computation time: ", elapsed)
fmt.Println("Number of primes = ", len(primes))

}

/* Output

Computation time: 1.462818125s
Number of primes = 9591

*/

The use of the remainder operator, %, in the Filter goroutine imposes a significant
performance penalty. This goroutine receives information from the in channel and
outputs information to the out channel as shown by the directional arrows in the
signature to the function.

Can we do better by using another concurrent solution?

Segmented Sieve Algorithm

As a stepping stone toward answering this question, we introduce a modification to
the Sieve of Eratosthenes algorithm implemented in Listing 1-19. Listing 1-21 presents
a segmented sieve algorithm that provides the basis for a concurrent solution to be

presented later.

Listing 1-21. Segmented sieve algorithm

package main

import (
"fmt"
"math"
"time"
)

const LargestPrime = 10_000_000

46

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

var cores int

func SieveOfEratosthenes(n int) []int {

}

// Finds all primes up to n

primes := make([]bool, n+1)

for i :=2; 1 < n+1; i++ {
primes[i] = true

}

// The Sieve logic
for p := 2; p*p <= n; p++ {
if primes[p] == true {
// Update all multiples of p
for i :=p *2; i<=n; 1+=p{

primes[i] = false

}

// return all prime numbers <= n
var primeNumbers []int
for p :=2; p <= n; p++ {
if primes[p] == true {
primeNumbers = append(primeNumbers, p)

}

return primeNumbers

func primesBetween(prime []int, low, high int) []int {

// Computes the prime numbers between low and high
// given the initial set of primes from the SieveOfEratosthenes
limit := high - low
var result []int
segment := make([]bool, 1limit+1)
for i := 0; i < len(segment); i++ {
segment[i] = true

47

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

}

// Find the primes in the current segment based on initial primes
for i := 0; i < len(prime); i++ {
lowlimit := int(math.Floor(float64(low)/float64(prime[i])) *
float64(prime[i]))

if lowlimit < low {
lowlimit += prime[i]

}

for j := lowlimit; j < high; j += prime[i] {
segment[j-low] = false

}

for i := low; i < high; i++ {
if segment[i-low] == true {
result = append(result, i)

}

return result

func SegmentedSieve(n int) []int {

48

// Each segment is of size square root of n

// Finds all primes up to n

var primeNumbers []int

limit := (int)(math.Floor(math.Sqrt(float64(n))))

prime := SieveOfEratosthenes(limit)
for i := 0; i < len(prime); i++ {
primeNumbers = append(primeNumbers, prime[i])

}

low := limit

high := 2 * limit

if high >= n {
high = n

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

for {
if low < n {
next := primesBetween(prime, low, high)
// fmt.Printf("\nprimesBetween(%d, %d) = %v", low, high, next)
for i := 0; i < len(next); i++ {
primeNumbers = append(primeNumbers, next[i])
}
low = low + limit
high = high + limit
if high >= n {
high = n
}
} else {
break

}

return primeNumbers

}

func main() {
start := time.Now()
primeNumbers := SegmentedSieve(LargestPrime)
elapsed := time.Since(start)
fmt.Println("\nComputation time: ", elapsed)
fmt.Println("Number of primes = ", len(primeNumbers))

}

/* Output

Computation time: 50.557584ms
Number of primes = 664579

*/

A series of array segments, each of size square root of n (where n is the highest
number to be considered in the array of primes), are defined. Using the prime
numbers in the first such array segment, 0 to sqrt(n), which are computed using the
SieveOfEratosthenes function, we compute the prime numbers in each succeeding
array segment using the primesBetween function.

49

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Let us walk through this function when n is 100 and the size of each array segment
is 10. Specifically, let us examine the computation of the primes in the segment 10 to 20.
The primes up to 10 are 2, 3, 7.
The variable low is 10 and high is 20.
An empty slice result is defined, and a segment slice of bool is created of size
limit + 1. This segment slice is initialized with values of true.
In a for-loop ranging from 0 to 3 (the length of prime), we define variable
lowlimit using

int(math.Floor(float64(low)/float64(prime[i]))* float64(prime[i]))

This evaluates to (10.0 / 2.0) * 2 = 10.

In another for-loop that ranges from lowlimit to high in increments of 2, we set
segment at indices 10, 12, 14, 16, 18, and 20 to false.

We advance the index i from 0 to 1 and compute lowlimit as floor(10 / 3) *3 =9.
Since lowlimit is now less than low, we set it to 12 using lowlimit += prime[1].

In the loop with index j, we set segment slice to false at indices 12, 15, and 18.

Continuing with i set to 2, lowlimit is floor(10 / 7) * 7, which equals 7. Since that is
less than low, we reassign it to 14 (lowlimt += prime[2]).

In the j loop, we set the segment slice to false at index 14.

Finally, we capture the values in the segment slice that are still true: 11, 13,

17, and 19.

This pattern is the same for each of the segment slices. The number of computations
is the same as the original Sieve of Eratosthenes function. But now the array slice is much
smaller (size 10 instead of size 100).

As you can see from the program output, the segmented sieve solution is 1.75
times slower (50.557584ms) compared to the original Sieve of Eratosthenes solution
(28.881792ms). This is due to the overhead of defining the ten segment slices and
the overhead of the function calls to these slices, not needed in the original sieve
computation.

The stage has been set now for a concurrent solution that leverages off the

segmented sieve.

Concurrent Sieve Solution

This concurrent solution is presented in Listing 1-22.

50

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

Listing 1-22. Concurrent segmented sieve

package main

import (
"fmt"
"math"
"Tuntime"
"sync"
"time"

)

const LargestPrime

var cores int

= 10_000_000

var primeNumbers []int

var m sync.Mutex

var wg sync.WaitGroup

func SieveOfEratosthenes(n int) []int {
// Finds all primes up to n
primes := make([]bool, n+1)
for i :=2; 1 < n+1; i++ {

primes[i] =

}

true

// The Sieve logic
for p := 2; p*p <= n; p++ {

if primes[p] == true {
// Update all multiples of p

for i

t=p*2; i<=n; 1+=p{

primes[i] = false

51

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

}

// return all prime numbers <= n
var primeNumbers []int
for p :=2; p <=n; p++ {
if primes[p] == true {
primeNumbers = append(primeNumbers, p)

}

return primeNumbers

func primesBetween(prime []int, low, high int) {

52

// Computes the prime numbers between low and high
// given the initial set of primes from the SieveOfEratosthenes
defer wg.Done()
limit := high - low
segment := make([]bool, limit+1)
for i := 0; i < len(segment); i++ {

segment[i] = true
}
// Find the primes in the current segment based on initial primes
for i := 0; i < len(prime); i++ {

lowlimit := int(math.Floor(float64(low)/float64(prime[i])) *

float64(prime[i]))
if lowlimit < low {
lowlimit += prime[i]

}

for j := lowlimit; j < high; j += prime[i] {
segment[j-low] = false

}

// Each number in [low to high] is mapped to [0, high - low]
for j := lowlimit; j < high; j += prime[i] {
segment[j-low] = false

m. Lock()

}

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

for i := low; i < high; i++ {
if segment[i-low] == true {
primeNumbers = append(primeNumbers, i)
}

}
m.Unlock()

func SegmentedSieve(n int) {

}

limit := int(math.Floor(float64(n) / float64(cores)))
prime := SieveOfEratosthenes(limit)
for i := 0; i < len(prime); i++ {

primeNumbers = append(primeNumbers, prime[i])

}

for low := limit; low < n; low += limit {
high := low + limit

if high >= n {
high = n
}
wg.Add(1)
go primesBetween(prime, low, high)
}
wg.Wait()

func main() {

}

cores = runtime.NumCPU()

start := time.Now()

SegmentedSieve(LargestPrime)

elapsed := time.Since(start)

fmt.PrintIn("\nComputation time for concurrrent: ", elapsed)
fmt.Println("Number of primes = ", len(primeNumbers))

/* Output
Computation time for concurrrent: 19.783666ms
Number of primes = 664579

*/

53

CHAPTER 1 ATOUR OF GENERICS AND CONCURRENCY IN GO

The concurrency is achieved in function SegmentedSieve, which launches a series
of goroutines, primesBetween, and uses a WaitGroup to block the completion of
SegmentedSieve until all the goroutines have completed their work.

To prevent a race condition from occurring, a mutex, m, is used at the end of each
goroutine to guarantee that the assignment to the globally shared primeNumbers
slice is controlled using an m.Lock() at the beginning of the assignment loop and an
m.UnLock() at the end of this assignment loop.

The time required to obtain prime numbers up to the number 10 million is
19.78366ms, which is smaller than the Sieve of Eratosthenes computation, which
requires 28.881792ms. The segment size is computed by choosing a number of cores
given by runtime.NumCPU(). In principle, this should allow a computation that utilizes
each of the computer cores approximating parallel processing. The use of the mutex to
protect against a race condition compromises the efficiency of the concurrent solution
but is essential using the approach taken to avoid a race condition.

The sequence of primes that are generated using the concurrent segmented sieve
is not in order but is complete. This is because the goroutines run asynchronously in
random order.

1.5 Summary

In this chapter, we introduced and illustrated the use of generic types. We demonstrated
that using generic types can greatly simplify application development by avoiding
duplication of code each time we change an underlying type used by the code. We set
the stage for using generic types in the data structures and algorithms to be presented
throughout this book.

We also demonstrated the potential benefits of using concurrency. We showed that
the use of concurrency does not automatically guarantee improved performance. We
looked at the use of goroutines and channels as a vehicle of communication between
goroutines. We introduced the mutex as a construct for avoiding race conditions and the
WaitGroup as a construct for assuring some synchronization between goroutines.

In the next chapter, we enter the world of algorithm design. We discuss methods for
characterizing algorithm efficiency. We look at some classic sorting algorithms and the
use of concurrency to attain faster sorting.

54

CHAPTER 2

Algorithm Efficiency:
Sorting and Searching

The previous chapter introduced generics and reviewed concurrency. We utilize both
going forward in this chapter and the rest of the book.

The principal goal of this book is providing techniques based on data structures and
algorithms for making programs run faster or in less space (more efficiently). The first
question we address in this chapter is how we describe the efficiency of an algorithm. We

then examine sorting and searching algorithms and examine their efficiency.

2.1 Describing the Speed Efficiency of an Algorithm

The normal practice in determining the efficiency of an algorithm is to estimate its
performance as a function of problem size, asymptotically. That is, we are concerned
with the speed of computation as the size of the problem becomes significant. In this
section, we'll introduce Big O notation and its application in algorithm design.

Working with Big 0

Big O notation characterizes how the execution time of an algorithm grows as a function
of problem size as the problem size becomes large. It is based on an analysis of how
many basic operations such as assignment, swapping, and accessing a value are required
to perform the task. Because of the requirement that the problem size must become
large, big O is an asymptotic performance indicator.

For example, suppose we were able to characterize the runtime of some algorithm as
a function of problem size n as follows: execution-time(n) = 12n? + 117n +25.

55
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_2

https://doi.org/10.1007/978-1-4842-8191-8_2

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

When n is large, the first term in the preceding expression dominates. We ignore the
constant 12 and focus on the n% This leads us to characterize the algorithm as O(n?). For
large n, if we were to double the value of n, the execution time would quadruple. This
would not hold if n were small.

Big O provides an asymptotic upper bound. The actual performance for large n
(problem size) is bounded by the function inside the O notation. So O(n) implies that for
large n, the algorithm’s execution time is bounded by n or is linear with respect to n.

Algorithms with O(2"), exponential complexity, are intractable. Likewise, algorithms
of O(n!) are intractable. As the size of the problem, n, becomes large, the computation
time becomes too great to provide any reasonable completion. We examine and tackle
computationally intractable problems later in this book.

We return to computationally tractable problems now and consider the following
example. We wish to determine whether an array slice of floating-point numbers is
sorted from smallest to largest.

Determining Whether a Slice of Numbers Is Sorted

One approach to solving this problem is to use the Sort function in package sort and
then compare the resultant array slice with the array slice we wish to test. This is an
approach that I have seen many less experienced programmers take.

A function that performs this is given as follows:

func isSortedi(data []float64) bool {
var datai []floaté6s
datai = make([]float64, len(data)) // Creates a slice of len(data)
copy(datai, data) // Copies data into datai
sort.Float64s(data1)

// Compare data and datai
for i := 0; i < size; i++ {
if data[i] != datai[i] {
return false

}

return true

56

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

We allocate storage for the datal slice and copy the input data into datal. We sort
datal using sort.Float64s(datal). Finally, we compare each element of datal with
data and return false if there is a mismatch.

It is known that the asymptotic complexity of the Sort algorithm is O(nlog,n).

Now consider as an alternative approach function isSorted2, given as follows:

func isSorted2(data []float64) bool {
for i := 1; i < len(data); i++ {
if data[i] < data[i - 1] {
return false

}

return true

This function compares all consecutive pairs of data. If an instance of datal[i] is less
than datali - 1], the function immediately returns false. If no returns of false occur, the
function returns true.

This function has an asymptotic complexity of O(n). For large n, isSorted2 should be
much faster than isSorted1.

Listing 2-1 does a benchmark comparison between the two isSorted functions.

Listing 2-1. Comparing two isSorted functions

package main

import (
“fmt"
"math/rand"
"time"
"sort"

)

const size = 100_000_000
var data []float6s

func isSortedi(data []float64) bool {
var data1l []float64
data1l = make([]float64, len(data))

57

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

copy(data1l, data) // Copies data into datal
sort.Float64s(datal)

// Compare data and data1
for i :=0; i < size; i++ {
if data[i] != datai1[i] {
return false

}

return true

}

func isSorted2(data []float64) bool {
for i := 1; i < len(data); i++ {
if data[i] < data[i - 1] {
return false

}

return true

}

func main() {
data = make([]float64, size)
for i :=0; i < size; i++ {
data[i] = 100.0 * rand.Float64()
}

start := time.Now()

result := isSortedi(data)

elapsed := time.Since(start)
fmt.Println("Sorted: ", result)
fmt.Println("elapsed using sortedi:", elapsed)

data2 := make([]float64, size)
for i :=0; i < size; i++ {
data2[i] = float64(2 * i)

58

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

start = time.Now()

result = isSortedi(data2)

elapsed = time.Since(start)
fmt.Println("Sorted: ", result)
fmt.Println("elapsed using sorted1i:", elapsed)

start = time.Now()

result = isSorted2(data)

elapsed = time.Since(start)
fmt.Println("\nSorted: ", result)
fmt.Println("elapsed using sorted2", elapsed)

start = time.Now()
result = isSorted2(data2)
elapsed = time.Since(start)
fmt.Println("Sorted: ", result)
fmt.Println("elapsed using sorted2:", elapsed)
}
/* Output
Sorted: false
elapsed using sorted1l: 20.554518978s
Sorted: true
elapsed using sorted1l: 7.328819941s

Sorted: false

elapsed using sorted2 291ns
Sorted: true

elapsed using sorted2: 76.644396ms
*/

Each function is invoked with an array, datal, of random float64 values. Next, each
function is invoked with an array that is already sorted, data2.

As evident in the output, isSorted?2 is over 100 times faster than isSorted]l,
confirming the analysis with big O.

59

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

Using Concurrency

Can we do better by using concurrency? Consider function isSorted3 as follows:

func isSegmentSorted(data []float64, a, b int, ch chan<- bool) {
// Generates boolean value put into ch
for i :=a+ 1; i < b; i++ {
if data[i] < data[i - 1] {
ch <- false

}

ch <- true

}

func isSorted3(data []float6a) bool {
ch := make(chan bool)
numSegments := runtime.NumCPU()
segmentSize := int(float64(len(data)) / float64(numSegments))
// Launch numSegments goroutines
for index := 0; index < numSegments; index++ {
go isSegmentSorted(data, index * segmentSize,
index * segmentSize + segmentSize, ch)

}
num := 0 // completed goroutines
for {
select {
case value := <- ch: // Blocks until a goroutine puts a bool into the

// channel
if value == false {
return false
}
num += 1
if num == numSegments { // All goroutiines have completed
return true

60

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

}

return true

In function isSorted3, we subdivide the data into numberSegments given by the
number of CPUs on the computer. In a for-loop, we launch numSegments goroutines,
passing the starting and ending indices, a and b, along with a channel variable, ch, of
type bool.

Each goroutine uses the same logic as in function isSorted2 over a much smaller
interval and concurrent with the other goroutines. Each goroutine assigns its result to
the channel variable ch.

In a for-loop in function isSorted3, a select statement reads a Boolean value from
the channel ch and blocks program execution until another goroutine has completed its
work. If a value of false is received, isSorted3 immediately returns false. If not, the value
of num, which counts the goroutines that have completed their work, is incremented by
one. If num reaches numberSegments, isSorted3 returns true since all segments have
reported true.

In Listing 2-2, we extend the benchmark test to include the concurrent isSorted3.

Listing 2-2. Concurrent implementation and timing of isSorted
package main

import (
"fmt"
"math/rand"
"time"
"sort"
"runtime"

)

const size = 1_000_000_000
var data []float6s

// Snip

61

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

func isSorted3(data []float64) bool {

}

ch := make(chan bool)
numSegments := runtime.NumCPU()
segmentSize := int(float64(len(data)) / float64(numSegments))
// Launch numSegments goroutines
for index := 0; index < numSegments; index++ {
go isSegmentSorted(data, index * segmentSize,
index * segmentSize + segmentSize, ch)

}
num := 0 // Completed goroutines
for {
select {
case value := <- ch:
if value == false {
return false
}
num += 1
if num == numSegments { // All goroutiines have completed
return true
}
}
}

return true

func main() {

62

data = make([]float64, size)

for i :=0; i< size; i++ {
data[i] = 100.0 * rand.Float64()
}

data2 := make([]float64, size)
// Create a sorted sequence of numbers
for i :=0; i < size; i++ {

data2[i] = float64(2 * i)

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

start := time.Now()

result := isSorted2(data)

elapsed := time.Since(start)
fmt.Println("\nSorted: ", result)
fmt.Println("elapsed using sorted2", elapsed)
start = time.Now()

result = isSorted2(data2)

elapsed = time.Since(start)
fmt.Println("Sorted: ", result)
fmt.Println("elapsed using sorted2:", elapsed)

start = time.Now()
result = isSorted3(data)
elapsed = time.Since(start)
fmt.Println("\nSorted: ", result)
fmt.Println("elapsed using concurrent sorted3”, elapsed)
start = time.Now()
result = isSorted3(data2)
elapsed = time.Since(start)
fmt.Println("Sorted: ", result)
fmt.Println("elapsed using concurrent sorted3:", elapsed)
}
/* Output
Sorted: false
elapsed using sorted2 594ns
Sorted: true
elapsed using sorted2: 845.586082ms

Sorted: false

elapsed using concurrent sorted3 61.863us
Sorted: true

elapsed using concurrent sorted3: 132.375156ms
*/

63

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

The size of the array to test for isSorted has been increased to a billion floating-point
numbers.

The results are dramatic. The concurrent isSorted solution is over six times faster
than the noncurrent solution. Both solutions are of O(n). Improving performance by a
constant factor does not change the big O complexity of the algorithm.

In the next section, we present several classic sorting algorithms and their
complexity.

2.2 Sorting Algorithms

Sorting collections of data such as a slice in Go has always been a fundamental part of
learning computer science. In this section, we look at two well-known sorting algorithms
and examine their complexity using a big O analysis.

Bubblesort Algorithm

Listing 2-3 implements a generic bubblesort algorithm assuming an ordered slice of
data (base type where each element can be compared with respect to greater than or
less than).

Listing 2-3. Generic bubble sort
package main

import(
n _Fmt n
)

type Ordered interface {
~float64 | ~int | ~string
}

func bubblesort[T Ordered](data []T) {
n := len(data)
for i:= 0; i < n - 15 i++ {
for j:=0; j<n-1-i; j++ {
if data[j] » data[j + 1] {

64

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

data[j], data[j + 1] = data[j + 1], data[j]

}

func main() {
numbers := []float64{3.5, -2.4, 12.8, 9.1}
names := []string{"Zachary", "John", "Moe", "Jim", "Robert"}
bubblesort[float64] (numbers)
fmt.Println(numbers)
bubblesort[string](names)
fmt.Println(names)

}

/* Output

[-2.4 3.5 9.1 12.8]

[Jim John Moe Robert Zachary]

*/

The type Ordered can have many more basic types included. The tilde symbol in
front of each of the basic types means that any user-defined type that uses the given base
type is considered Ordered.

Bubblesort has earned its popularity in CS 1 courses because of its relative simplicity.
Elements are compared sequentially and interchanged if out of order. On each iteration
of the outer loop, the largest value “bubbles” to the rightmost position in the slice. This
position is not considered during the next iteration of the inner loop because of

j<n-1-i.

The nested for-loops, shown in boldface, make this an O(n?) algorithm. In general, k
nested loops produce an algorithm of O(n*).

Bubblesort is most efficient when the slice being sorted is already sorted and slowest
when the slice is in reverse order.

Next, we examine one of the most widely used sorting algorithms, the classic

quicksort.

65

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

Quicksort Algorithm

As the name implies, this algorithm is reputed to perform very fast sorts.
Listing 2-4 shows the implementation of a generic quicksort.

Listing 2-4. Generic quicksort
package main

import(
n fmt n
)

type Ordered interface {
~float64 | ~int | ~string
}

func quicksort[T Ordered](data []T, low, high int) {
if low < high {
var pivot = partition(data, low, high)
quicksort(data, low, pivot)
quicksort(data, pivot + 1, high)

}
func partition[T Ordered](data []T, low, high int) int {

// Pick a lowest bound element as a pivot value
var pivot = data[low]

var i = low
var j = high
for i < j{
for data[i] <= pivot 88 i < high {
i++;
}
for data[j] > pivot & j > low {
j--
}
66

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

ifi<j{
data[i], data[j] = data[j], data[i]

}

data[low] = data[j]
data[j] = pivot
return j

}

func main() {
numbers := []float64{3.5, -2.4, 12.8, 9.1}
names := []string{"Zachary", "John", "Moe", "Jim", "Robert"}
quicksort[float64](numbers, 0, len(numbers) - 1)
fmt.Println(numbers)
quicksort[string](names, 0, len(names) - 1)
fmt.Println(names)

}

/* Output

[-2.4 3.5 9.1 12.8]

[Jim John Moe Robert Zachary]

*/

The quicksort algorithm is an example of a divide-and-conquer algorithm. We
partition the original slice into two smaller slices and sort each of these by continuing
to partition each into two more until eventually we get slices of two elements that we
compare with each other.

If the original slice has n elements, we can perform the divide-and-conquer log,n
times (the number of times we can divide n by 2 to get down to two elements).

This assumes that we partition the slices by cutting them in half each time. A close
examination of the partition function reveals that this is not always the case.

The partition function uses its leftmost element as the pivot element. It then moves
data around the slice to ensure that elements to the left of the pivot element are smaller
and elements to the right of the pivot are larger.

67

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

Big O Analysis

We “walk” through an example to illustrate, in detail, how partition does its work.
Suppose our array slice that we wish to partition is

[6J 2) 3’ 9) 8) 17) 4]

We choose the pivot element to be 6 (the leftmost element).

We increment the index i until we find an element larger than the pivot element 6.
That is element 9 in position 3.

Now starting with index j in position 6 (the rightmost position), we decrement j
until we find an element whose value is less than the pivot element. That is element 4 in
position 6. We interchange the elements in positions 3 and 6 producing

[6, 2, 3, 4, 8, 17, 9]

Starting at index 3, we again increment i until we find an element greater than 6,
which is 8 in position 4. We decrement j (in position 6) until we find an element less than
the pivot element 6. That is element 4 in position 3. We don’t interchange the elements
in positions 3 and 4 since i is not less than j.

Since i is no longer less than j, we exit the outer for-loop.

We perform the final interchange of the pivot element with position j to get

[4’ 2, 3’ 6) 8’ 17’ 9]

All the elements to the left of the pivot element 6 are less than 6, and those to the
right of 6 are greater than 6.

Worst Case for Quicksort

If the original array were sorted, so the pivot element was the smallest, this would be
worst case. We would have to interchange n - 1 elements on the first pass, n - 2 elements
on the second pass, etc., giving us an O(n?) algorithm. This is one of the ironies of
quicksort. The closer the data is to initially sorted, the worse quicksort performs.

A useful filter to impose in front of quicksort would be to test the input to see
whether it is already sorted. If so, bail out and don’t perform any sorting.

Since the partition function is O(n), the quicksort algorithm is O(nlog,n) when the
data being sorted is not already sorted or close to sorted.

68

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

Comparing Bubblesort to Quicksort

In Listing 2-5, we compare bubblesort with quicksort using sine wave data for our
array slice.

Listing 2-5. Comparing bubblesort with quicksort

package main

import(
“fmt"
"math"
"time"
)

const size = 100_000

type Ordered interface {
~float64 | ~int | ~string
}

// Snip - See Listings 2.3 and 2.4

func main() {
data := make([]float64, size)
for i := 0; i < size; i++ {
data[i] = math.Sin(float64(i * i))
}
start := time.Now()
quicksort[float64](data, 0, len(data) - 1)
elapsed := time.Since(start)
fmt.Println("Elapsed sort time for sine wave using quicksort: ",
elapsed)

data = make([]float64, size)
for i := 0; i < size; i++ {
data[i] = math.Sin(float64(i * i))

69

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

start = time.Now()
bubblesort[float64](data)
elapsed = time.Since(start)
fmt.Println("Elapsed sort time for sine wave using bubblesort: ",
elapsed)
}
/*0utput
lapsed sort time for sine wave using quicksort: 7.808522ms
Elapsed sort time for sine wave using bubblesort: 12.26859692s
*/

The O(nlog,n) quicksort performs almost 1600 times faster than the O(n?)
bubblesort.

Concurrent Quicksort

Can we improve the performance of quicksort using concurrency?
As a stepping stone toward a concurrent solution, we consider another O(n?) sorting
algorithm, InsertSort, implemented as follows:

func InsertSort[T Ordered](data[] T) {

i:x=1

for i < len(data) {
h := data[i]
j::i-l

for j »= 0 & h < data[j] {
data[j + 1] = data[j]

j-=1
}
data[j + 1] = h
i+4+=1

Let us “walk” through a simple example to see how this sorting algorithm works.
Suppose the slice, data, that we wish to sort is [5, 1, 12, 9].
The variable i is initialized to 1.

70

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

In the for-loop, h is set to data[1], which is 1. The variable j is set to 0. In a nested for-
loop, datalj + 1] is set to data[0], so data[1] is set to 5. The inner loop terminates. Next,
data[0] is set to 1. The sliceisnow [1, 5, 12, 9].

After incrementing i, we execute the outer loop again. The variable h is set to 12,
and jis set to 1. The inner loop terminates since 12 is not less than either 1 or 5. We
increment i to 3. Variable h is set to 9. In the inner loop, since 9 is less than 12, the slice
becomes [1, 5,9, 12], and we are done.

Because of the two nested loops, the InsertSort is O(n?) for large n.

For each iteration of the outer loop, the next element, not yet considered, is inserted
to the left of the first element that is larger than it.

In Listing 2-6, we consider a concurrent implementation of quicksort of 50 million

numbers.

Listing 2-6. Concurrent implementation of quicksort

package main

import (
“fmt"
"time"
"math/rand"
"sync"

)

const size = 50_000_000
const threshold = 5000

type Ordered interface {
~float64 | ~int | ~string

}
func InsertSort[T Ordered](data[] T) {
im=1
for i < len(data) {
h := data[i]
ji=1-1

for j >= 0 8 h < data[j] {
data[j + 1] = data[j]
j -1

71

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

}
data[j + 1] = h
i+=1

}

func Partition[T Ordered](data[] T) int {
data[len(data) / 2], data[o] = data[0], data[len(data) / 2]
pivot := data[0]
mid := 0
iz:=1
for i < len(data) {
if data[i] < pivot {
mid += 1
data[i], data[mid] = data[mid], data[i]

data[o], data[mid] = data[mid], data[0]
return mid

}

func IsSorted[T Ordered](data[] T) bool {
for i := 1; i < len(data); i++ {
if data[i] < data[i - 1] {
return false

}

return true

}

func ConcurrentQuicksort[T Ordered](data[] T, wg *sync.WaitGroup) {
for len(data) >= 30 {
mid := Partition(data)
var portion[] T
if mid < len(data) / 2 {
portion = data[:mid]

72

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

data = data[mid + 1:]

} else {
portion = data[mid + 1:]
data = data[:mid]

}
if (len(portion) > threshold) {
wg.Add(1)
go func(data[] T) {
defer wg.Done()
ConcurrentQuicksort(data, wg)
}(portion)
} else {
ConcurrentQuicksort(portion, wg)
}
}
InsertSort(data)

}

func QSort[T Ordered](data[] T) {
var wg sync.WaitGroup
ConcurrentQuicksort(data, &wg)
wg.Wait()
}
func partition[T Ordered](data []T, low, high int) int {

var pivot = data[low]
var 1 = low

var j = high
for i < j{
for data[i] <= pivot && i < high {
i++;
}
for data[j] > pivot & j > low {
j--
}
ifi<jo

73

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

data[i], data[j] = data[j], data[i]

}

data[low] = data[j]
data[j] = pivot
return j

}

func quicksort[T Ordered](data []T, low, high int) {
if low < high {
var pivot = partition(data, low, high)
quicksort(data, low, pivot)
quicksort(data, pivot + 1, high)

}

func main() {
data := make([]float64, size)
for i :=0; i < size; i++ {
data[i] = 100.0 * rand.Float64()
}
data2 := make([]float64, size)
copy(data2, data)

start := time.Now()
QSort[float64](data)
elapsed := time.Since(start)

fmt.Println("Elapsed time for concurrent quicksort = ", elapsed)

fmt.Println("Is sorted: ", IsSorted(data))

start = time.Now()

quicksort(data2, 0, len(data2) - 1)

elapsed = time.Since(start)

fmt.Println("Elapsed time for regular quicksort =
fmt.Println("Is sorted: ", IsSorted(data2))

, elapsed)

}
/* Output

74

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

Elapsed time for concurrent quicksort = 710.431619ms
Is sorted: true

Elapsed time for regular quicksort = 5.382400384s

Is sorted: true

*/

The results are again dramatic. In sorting 50 million numbers and comparing the
sort time of regular quicksort with that of concurrent quicksort, we find the regular
quicksort is about 7.6 times slower than the concurrent quicksort.

When the length of the slice is less than 30, we use InsertSort to complete the
sorting of the slice. When the length of the slice is less than the threshold of 5000, we use
ordinary quicksort to complete the sorting. The constants 30 and 5000 are determined
empirically. The motivation is to prevent the overhead associated with many goroutines
deployed to sort small-sized slices.

It is noted that the performance of InsertSort on a slice whose size is less than 30 is
not governed by O(n?), which is an asymptotic bound for large n.

Mergesort Algorithm

The next sorting algorithm we examine is the classic mergesort algorithm. It is a divide-
and-conquer algorithm, just like quicksort. We replace the original slice with two slices,
each of size a half of the original slice size. Each of these half-slices is further divided into
quarter slices, and this pattern continues until we get slices of size 1. Using recursion, we
weave the slices together by merging them as shown in Listing 2-7.

Listing 2-7. Mergesort algorithm

package main

import (
“fmt"
"math/rand"
"time"

)

75

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING
const size = 50_000_000

type Ordered interface {
~float64 | ~int | ~string
}

func IsSorted[T Ordered](data[] T) bool {
for i := 1; i < len(data); i++ {
if data[i] < data[i - 1] {
return false

}
}
return true
}
func InsertSort[T Ordered](data[] T) {
i::=1
for i < len(data) {
h := data[i]
ji=1-1
for j >= 0 8 h < data[j] {
data[j + 1] = data[j]
j-=1
}
data[j + 1] = h
i+4=1
}
}

func Merge[T Ordered](left, right []T) []T {
result := make([]T, len(left) + len(right))
i, j, k=0, 0, 0

for i < len(left) 8& j < len(right) {
if left[i] < right[j] {
result[k] = left[i]
i++
} else {

76

}

CHAPTER 2

result[k] = right[j]
j++
}
k++
}
for i < len(left) {

result[k] = left[i]

i++
k++

}

for j < len(right) {
result[k] = right[j]
j++
k++

}

return result

ALGORITHM EFFICIENCY: SORTING AND SEARCHING

func MergeSort[T Ordered](data []T) []IT {

}

if len(data) > 100 {

middle := len(data) / 2

left := data[:middle]

right := data[middle:]

data = Merge(MergeSort(right), MergeSort(left))
} else {

InsertSort(data)
}

return data

func main() {

data := make([]float64, size)
for i :=0; i < size; i++ {
data[i] = 100.0 * rand.Float64()
}
/*

77

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

data2 := make([]float64, size)
copy(data2, data)
*/

start := time.Now()

result := MergeSort[float64](data)

elapsed := time.Since(start)

fmt.Println("Elapsed time for MergeSort = ", elapsed)
fmt.Println("Is sorted: ", IsSorted(result))

}

/* Output

Elapsed time for MergeSort = 6.18063849s
Is sorted: true

*/

This algorithm is simpler to understand than quicksort. Function Merge constructs
a new slice, result, by merging elements from the two input slices, left and right, so that
result is sorted.

The recursive MergeSort function partitions the input array into left and right and
calls Merge on the results of recursively invoking MergeSort.

It is noted that MergeSort does not sort in place as quicksort does. This requires
extra memory allocation compared to quicksort.

Since Merge is O(n) and there are log,n recursive calls in MergeSort, the complexity
of MergeSort is O(nlog,n).

Concurrent Mergesort

Can we improve the performance of MergeSort with concurrency? Yes!
Listing 2-8 shows a concurrent implementation of MergeSort.

Listing 2-8. Concurrent implementation of MergeSort
package main

import (
n _Fmt n

78

CHAPTER 2

"time"
"math/rand"
n syncll

)

const size = 50_000_000
const max = 5000

type Ordered interface {
~float64 | ~int | ~string
}

ALGORITHM EFFICIENCY: SORTING AND SEARCHING

func IsSorted[T Ordered](data[] T) bool {

for i := 1; i < len(data); i++ {
if data[i] < data[i - 1] {
return false

}
}
return true
}
func InsertSort[T Ordered](data[] T) {
iz:=1
for i < len(data) {
h := data[i]
ji=1i-1
for j >= 0 8 h < data[j] {
data[j + 1] = data[j]
j-=1
}
data[j + 1] = h
i+=1
}
}

func Merge[T Ordered](left, right []T) [IT {

result :=
i, j, k:==0,0,0

make([]T, len(left) + len(right))

79

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

for i < len(left) & j < len(right) {
if left[i] < right[j] {
result[k] = left[i]
it++
} else {
result[k] = right[]j]
J++
}

k++

for i < len(left) {
result[k] = left[i]
i++
k++

for j < len(right) {
result[k] = right[j]
j++
k++

}

return result

}

func MergeSort[T Ordered](data []T) []T {
if len(data) > 100 {
middle := len(data) / 2
left := data[:middle]
right := data[middle:]
data = Merge(MergeSort(right), MergeSort(left))
} else {
InsertSort(data)
}

return data

80

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

func ConcurrentMergeSort[T Ordered](data []T) []T {
if len(data) » 1 {
if len(data) <= max {
return MergeSort(data)
} else { // Concurrent
middle := len(data) / 2
left := data[:middle]
right := data[middle:]
var wg sync.WaitGroup
wg.Add(2)
var datai, data2 []T
go func() {
defer wg.Done()
data1l = ConcurrentMergeSort(left)

()

go func() {
defer wg.Done()

data2 = ConcurrentMergeSort(right)

30O
wg.Wait()
return Merge(datai, data2)
}
}
return nil

}

func main() {
data := make([]float64, size)
for i :=0; i < size; i++ {
data[i] = 100.0 * rand.Float64()
}
start := time.Now()
result := ConcurrentMergeSort(data)
elapsed := time.Since(start)
fmt.Println("Elapsed time for concurrent mergesort =

, elapsed)

81

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

fmt.Println("Sorted: ", IsSorted(result))
}
/* Output
Elapsed time for concurrent mergesort = 1.275120179s
Sorted: true
*/

The two goroutines, shown in boldface, perform MergeSort concurrently. The wg.
Wait() forces the Merge of the two results to wait for both goroutines to finish.

To avoid the overhead of spawning goroutines for small-sized data, ordinary
sequential MergeSort is used when data has a size less than max (5000 in this case).

The performance of ConcurrentMergeSort on a random slice of 50 million floating-
point numbers is slightly slower than ConcurrentQuickSort but faster than the

sequential version.

Conclusions

Quicksort has an average complexity of O(nlog,n) and sorts in place (no need for extra
storage). If the input data is already sorted or close to sorted, the complexity falls to
0O(n?). The concurrent quicksort is extremely fast.

MergeSort has an average complexity of O(nlog,n). It does not sort in place, so
there is a need for extra storage. Generally, it is slower than quicksort. If the input data is
sorted or close to sorted, mergesort is very fast. The concurrent mergesort is extremely
fast but slower than the concurrent quicksort.

In the next section, we examine the issue of searching array slices.

2.3 Searching Array Slices

In this section, we restrict our attention to searching array slices efficiently.

Searching a data structure for the presence of stored information is one of the
important operations we perform and is often the reason we create the data structure.
As we introduce data structures in later sections of the book, we examine methods for
efficiently searching for information stored in the data structure.

82

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

Linear Searches

The simplest search algorithm for searching a slice is a linear search. We iterate through
all the elements of the slice sequentially until we find a matchup or complete searching
all the elements of the slice.

Listing 2-9 presents the linear search in a slice.

Listing 2-9. Linear search of a slice

package main

import (
“fmt"
"time"
"math/rand"
)

const size = 100_000_000

type Ordered interface {
~float64 | ~int | ~string
}

func linearSearch[T Ordered](slice []T, target T) bool {
// Return true if T is in the slice
for i := 0; i < len(slice); i++ {
if slice[i] == target {
return true

}

return false

}

func main() {
data := make([]float64, size)
for i := 0; i < size; i++ {
data[i] = 100.0 * rand.Float64()
}

start := time.Now()

83

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

result := linearSearch[float64](data, 54.0)

elapsed := time.Since(start)

fmt.Println("Time to search slice of 100 000 000 floats using
linearSearch = ", elapsed)
fmt.Println("Result of search is

, result)

start = time.Now()

result = linearSearch[float64](data, data[size / 2])

elapsed = time.Since(start)

fmt.Println("Time to search slice of 100 000 000 floats using

linearSearch = ", elapsed)
fmt.Println("Result of search is ", result)
}
/* Output
Time to search slice of 100 000 000 floats using linearSearch =
Result of search is false
Time to search slice of 100 _000 000 floats using linearSearch =

Result of search is true
*/

54.464458ms

17.981833ms

The preceding benchmark was done on a MacBook Pro with M1 Max processor and

32G of RAM.

Concurrent Searches

In Listing 2-10, we show the details of a concurrent search of an array slice.

Listing 2-10. Concurrent search of a slice

package main

import (
“fmt"
"time"
"math/rand"
"runtime"

)

84

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

type Ordered interface {
~float64 | ~int | ~string
}

const size = 100_000_000

func searchSegment[T Ordered](slice []T, target T, a, b int, ch
chan<- bool) {
// Generates boolean value put into ch
for i :=a; i< b; i++ {
if slice[i] == target {
ch <- true

}

ch <- false

}

func concurrentSearch[T Ordered](data []T, target T) bool {
ch := make(chan bool)
numSegments := runtime.NumCPU()
segmentSize := int(float64(len(data)) / float64(numSegments))
// Launch numSegments goroutines
for index := 0; index < numSegments; index++ {
go searchSegment(data, target, index * segmentSize, index *
segmentSize + segmentSize, ch)

}
num := 0 // Completed goroutines
for {
select {
case value := <- ch: // Blocks until a goroutine puts a bool into the

//channel
if value == true {
return true

}

num += 1

85

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

if num == numSegments { // All goroutiines have completed
return false

}

return false

}

func main() {

data := make([]float64, size)

for i :=0; i < size; i++ {

data[i] = 100.0 * rand.Float64()

}

start := time.Now()

result := concurrentSearch[float64](data, 54.0) // Should return false

elapsed := time.Since(start)

fmt.Println("Time to search slice of 100 000 000 floats using
", elapsed)
, result)

concurrentSearch =
fmt.Println("Result of search is "

start = time.Now()

result = concurrentSearch[float64](data, data[size / 2]) // true

elapsed = time.Since(start)

fmt.Println("Time to search slice of 100 _000 000 floats using
concurrentSearch = ", elapsed)

fmt.Println("Result of search is

, result)

}

/*

Time to search slice of 100 000 000 floats using concurrentSearch
= 9.666792ms

Result of search is false

Time to search slice of 100 000 000 floats using concurrentSearch
= 5.311917ms

Result of search is true

*/

86

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

An improvement of over a factor of 5 in worst-case search time is achieved using

concurrency. The complexity of the linear search and concurrent search is O(n).

Binary Searches

If the data in the slice to be searched is sorted, a binary search algorithm could be used.
This algorithm is O(log.n) since the search space is halved during each iteration.
Listing 2-11 presents the details of this binary search on sorted data.

Listing 2-11. Binary search on sorted data

package main

import (
"fmt"
"time"
)

const size = 100_000_000

type Ordered interface {
~float64 | ~int | ~string
}

func binarySearch[T Ordered](slice []T, target T) bool {
low := 0
high := len(slice) - 1

for low <= high {
median := (low + high) / 2

if slice[median] < target {
low = median + 1

} else {
high = median - 1

87

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

}

if low == len(slice) || slice[low] != target {
return false

}

return true

func main() {

data := make([]float64, size)

for i :=0; i < size; i++ {
data[i] = float64(i) // is sorted

}

start := time.Now()

result := binarySearch[float64](data, -10.0)

elapsed := time.Since(start)

fmt.Println("Time to search slice of 100 _000 000 floats using

binarySearch = ", elapsed)

fmt.Println("Result of search is

, result)

start = time.Now()

result = binarySearch[float64](data, float64(size / 2))
elapsed = time.Since(start)

fmt.Println("Time to search slice of 100 000 000 floats using
binarySearch = ", elapsed)

fmt.Println("Result of search is ", result)
}
/* Output
Time to search slice of 100 000 000 floats using binarySearch = 1.375us
Result of search is false
Time to search slice of 100 000 000 floats using binarySearch = 334ns

Result of search is true

*/

The search time here is significantly smaller than the search times on random data

achieved earlier. That is because the data is sorted.

The fastest sorting algorithm has complexity O(nlog,n). If one needed to perform

many independent searches within the slice, it might pay to sort the data first and then

conduct the many searches using a binary search.

88

CHAPTER 2 ALGORITHM EFFICIENCY: SORTING AND SEARCHING

It would not be beneficial to sort the slice before performing a single search of the
slice because of the overhead of sorting.

2.4 Summary

Big O notation describes the asymptotic efficiency of an algorithm. We examined several
classic sorting and searching algorithms in this chapter and characterized them by their
big O property. We presented concurrent solutions for each of the sorting algorithms and
observed significant improvements in their performance.

In the next chapter, we discuss object-oriented programming in Go without classes.

89

CHAPTER 3

Abstract Data Types: OOP
Without Classes in Go

In the previous chapter, we discussed algorithm complexity and presented examples
with and without the use of concurrency.

In this chapter, we show how object-oriented programming can be done without the
class construct. We review the fundamental concept of abstract data types and illustrate
their use with many examples.

3.1 Abstract Data Type Using Classes

In 1980, the Smalltalk language, developed at Xerox PARC, was released. This
seminal language set the stage for a new paradigm of programming: object-oriented
programming. The centerpiece of Smalltalk and newer object-oriented languages
that followed is the class construct. Some of the major object-oriented languages
that followed Smalltalk include Eiffel, C++ (a hybrid language that includes the class
construct), Java, Swift, Python, and C#. Each uses the class as the central construct for
defining abstract data types and describing the behavior of objects that are instances of
a class.

The class construct implements some older well-established ideas about how
software is constructed. Specifically, classes implement abstract data types.

An abstract data type is characterized by a set of operations that can be performed
on the underlying type. Consider the following simple example.

91
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8 3

https://doi.org/10.1007/978-1-4842-8191-8_3

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

We define the Counter abstract data type as follows:

Attributes

count int — The internal data of each Counter object (instance)

Methods

Increment() — Adds one to the current value of the attribute count

Decrement() — Subtracts one from the current value of the attribute count only if count > 0

Reset() — Sets the value of count to zero

GetCount() — Returns the current value of count

If myCounter is defined as being of type Counter (an instance of some class
Counter), the following operations would be legal:

myCounter.Increment()

myCounter .Decrement()

myCounter .Reset()

countValue = myCounter.GetCount()

In the preceding example, myCounter is referred to as an object (an instance of class
Counter), and the method calls connected to each object with the dot operator are the
legal operations that could be performed on each object, thus the name object-oriented
programming.

Object-oriented languages supporting the class construct provide a mechanism for
extending the operation set defined in a parent class using inheritance. Languages like
C++ and Eiffel allows a subclass to inherit operations from two or more parent classes,
while languages such as Java and C# allow inheritance from only one parent class.

Much has been written about inheritance in object-oriented languages. Inheritance
has fallen out of favor in recent years because of the complexity it can introduce and the
dependencies that may be created in a class hierarchy.

Two recent languages that have abandoned inheritance and in fact have abandoned
classes are Go and Rust. But Go and Rust have not abandoned object-oriented
programming (OOP) but have changed how this paradigm is used.

92

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

Before we delve into the details of OOP in Go, let us examine how we might
implement the Counter abstract data type in Python.

class Counter:

def __init__(self):
self.count =0

def increment(self):
self.count += 1

def decrement(self):
self.count -= 1

def reset():
self,count = 0

def get_count(self) -» int:
return self.count

if __name__ == "__main__":
my_counter = Counter()
for index in range(10):

my_counter.increment()

my_counter.decrement()
current_count = my_counter.get_count()
print(current_count)

""" Output

9

The keyword selfis used as a reference to any instance of class Counter. The
attribute count, defined in the __init__ method, is stored in each instance (object) of
class Counter.

One obvious appeal of the class construct is that all the operations on the underlying
attribute(s) are encapsulated in this single construct.

What about Go? In the next section, we look at defining abstract data types in Go
without the use of classes.

93

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

3.2 Abstract Data Types in Go

Go does not include the class construct. This is a major departure from recent object-
oriented languages. Since there is no class construct in Go, there is no inheritance.

ADT Counter

The ADT Counter must restrict the operations that can be performed on an instance of
Counter. Specifically, we cannot assign an arbitrary value to a counter. We cannot change
the value of a counter by more than one. Without these restrictions, there would be no
value in defining this abstract data type. We could use a simple int type instead.

Listing 3-1 shows our first implementation of the Counter abstract data type (ADT).
As we will see shortly, this implementation is faulty. After defining Counter as a struct
with the field count, we define a series of methods that operate on instances, ¢, of
Counter or pointer to Counter.

Listing 3-1. Firstimplementation of Counter ADT
package main

import (
n fmt n
)

type Counter struct {
count int

}

// Methods
func (c *Counter) Increment() {
c.count++

}

func (c *Counter) Decrement() {
c.count--

94

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

func (c *Counter) Reset() {
c.count = 0

}

func (c Counter) GetCount() int {
return c.count

}

func main() {
myCounter := new(Counter)
// myCounter.count = 100 // Defeats the encapsulatiom of Counter
fmt .Println(myCounter.GetCount())
for i := 15 i <= 10; i++ {
myCounter.Increment()
}
myCounter .Decrement()
// myCounter.count -= 6 // Defeats the encapsulation of Counter
fmt .Println(myCounter.GetCount())
}
/*
(1]
9
*/

There is a problem with this first implementation. If one were to uncomment the two
commented lines of code:

myCounter.count = 100
myCounter.count -= 6

the encapsulation that preserves the integrity of the ADT would be broken. The whole
point of creating and implementing an ADT is to enforce the abstraction. In this case,
that means not allowing the count value to be changed by more than one and not
allowing the count value to be arbitrarily assigned.

We repair the problem and enforce the abstraction, as shown in Listing 3-2. We
define a Counter interface (using an uppercase C) to formally define the ADT.

95

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

Listing 3-2. Second implementation of Counter ADT

// Creating ADT Counter
package main

import (
n _Fmt n
)

// This type implicitly implements Counter ADT
type counter struct {
count int

}

// Interface serves to expose public features of counter
// The attribute count is private
type Counter interface {

increment()

decrement()

reset()

getCount() int

}

func (c *counter) increment() {
c.count += 1

}

func (c *counter) decrement() {
if c.count > 0 {
c.count -=1

}

}

func (c *counter) reset() {
c.count = 0

}

func (c counter) getCount() int {
return c.count

96

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

func main() {
myCounter := Counter(&counter{})
// The only operations that can be performed on myCounter
// are specified in the Counter interface
myCounter.increment()
myCounter.increment()
myCounter.reset()
myCounter.increment()
myCounter.increment()
myCounter.increment()
myCounter.increment()
myCounter.decrement()
countValue := myCounter.getCount()
fmt.Println(countValue)

}
/13

The Counter interface specifies the signature of the four operations that can be
performed on an ADT Counter.

The methods increment(), decrement(), reset(), and getCount(), each defined on a
counter type, implicitly make counter implement the ADT Counter.

If we were to comment out the reset() method and comment out the myCounter.
reset() in function main, we would get the following compiler error message:

./counter2.go:41:26: cannot convert &counter{} (value of type *counter) to type
Counter:

*counter does not implement Counter (missing reset method)

Without the reset() method defined on counter, the type counter no longer can be
considered to be of type Counter, and the compiler detects this error.

Abstract data types in Go are always implicitly defined by defining an interface that
specifies the operations associated with the ADT and then implementing methods on
the underlying type that have the exact signatures given in the interface specification.

With this accomplished in Listing 3-2, there is no way to violate the ADT
encapsulation as was evident in Listing 3-1.

97

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

Creating a counter Package

Another way to protect count and preserve the encapsulation of the counter abstraction
is to create a counter package and export Counter but not count.

package counter

// Field count is encapsulated as private because it is lowercase
type Counter struct {
count int // private field

}

func (c *Counter) Increment() {
c.count += 1

}

func (c *Counter) Decrement() {
if c.count > 0 {
c.count -=1

}

func (c *Counter) Reset() {
c.count = 0

}

func (c Counter) GetCount() int {
return c.count

In package counter, we protect the count field of Counter from being assigned to
outside the package by using a lowercase character as the first character in count.

Mechanics of Creating a Package

In order to define a package in a subdirectory of your own choosing, we must follow a set
of steps that are outlined in the following. Here, we desire to include the counter.go file
that defines the counter package in a subdirectory counter in some work directory.

A main driver program, main.go, is defined in another subdirectory, maincounter.

98

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

The steps needed to create package counter are the following:

1.

2.

10.

11.

Create a subdirectory counter in your work directory.

Save the counter.go file that contains package counter (see the
preceding text) in this subdirectory.

Create a subdirectory maincounter in your work directory.

Save the maincounter.go file in this subdirectory.

Open a terminal window to the counter directory.

Type the following command: go mod init example.com/counter
Type the following command: go mod tidy

Open a terminal window to the maincounter directory.

Type the following command: go mod init example.com/
maincounter

Edit the go.mod file to be

module example.com/maincounter
go 1.18

replace example.com/counter =»> ../counter

Type the following command: go mod tidy

Listing 3-3 shows the third implementation of Counter ADT.

Listing 3-3. Third implementation of Counter ADT using package counter

// In subdirectory counter
package counter

type Counter struct {
count int

}

func (c *Counter) Increment() {
c.count += 1

99

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

func (c *Counter) Decrement() {
if c.count » 0 {
c.count -=1

}

func (c *Counter) Reset() {
c.count = 0

}

func (c Counter) GetCount() int {
return c.count

}

// In subdirectory maincounter
package main

import (
II_Fmt n
"example.com/counter"
)

func main() {
myCounter := counter.Counter{}

myCounter.Increment()

myCounter. Increment()
myCounter.Reset()
myCounter.Increment()

myCounter. Increment()
myCounter.Increment()
myCounter.Increment()
myCounter.Decrement()

countValue := myCounter.GetCount()
fmt.Println(countValue)

/13

100

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

Identifiers that are exported and therefore available outside of a package must start
with an uppercase character. This includes type names such as Counter and method
names. The field count in the Counter struct purposely uses a lowercase letter so that
its value cannot be accessed outside the package. The only way to change the count is
through the methods that operate on Counter.

Which of the two approaches, given in Listings 3-2 and 3-3, should one use in
implementing the ADT Counter?

If an ADT is to be used in two or more applications, the solution in Listing 3-3 that
defines a package for the ADT is preferred. If an ADT is a one-off, needed only in a
specialized application, then the solution using the interface type is easier.

Another Example of Implementing an ADT

We look at another example with more complexity to illustrate how Go implements
abstract data types without the use of classes.
Consider the ADT Employee.

Attributes

LastName string
FirstName string

Role string

Salary float64

Methods

Get LastName (read-only)
Get FirstName (read-only)
Set/Get Role

Set/Get Salary

String() string — Represents the instance as a string

We have specified LastName and FirstName as read-only. Once their values have
been assigned, they cannot be changed.

101

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

Also consider the ADT PartTimeEmployee that is an Employee with an additional
feature.

Attributes

Employee

HourlyWage float64
Methods
Set/Get HourlyWage

String() string — Represents the instance as a string

We deploy the struct and interface definitions shown in the following to establish
the ADT:

type employee struct {
lastName string
firstName string
role string
salary float64

}

type Employee interface {
SetLastName(1Name string)
SetFirstName(fName string)
SetRole(r string)
GetRole() string
SetSalary(s float6s)
GetSalary() floaté6s4
String() string

}

type partTimeEmployee struct {
employee
hourlyWage float64

}

102

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

type PartTimeEmployee interface {
Employee
SetHourlyWage(hourly float64)
GetHourlyWage() float64

Using Composition

Each of the struct types, employee and partTimeEmployee, is accompanied by interface
types. These define the operations required on their respective struct types to implicitly
make the struct types implement the interfaces given.

We use embedding when we define the first field of partTimeEmployee to be
employee.

In software design, this is called composition. The abstraction for a part time
employee is composed of an employee and an hourly wage.

The PartTimeEmployee interface also uses embedding by including the interface
Employee first. This requires that all the methods of Employee be implemented along
with the two new methods, Set/Get hourly wage.

Listing 3-4 fleshes out the ADTs defined previously and presents a short main driver
program.

Listing 3-4. Employee and PartTimeEmployee ADTs in action
package main

import (
n _Fmt n
)

type employee struct {
lastName string
firstName string
role string
salary float64

103

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

type Employee interface {
SetLastName(1Name string)
SetFirstName(fName string)
SetRole(r string)
GetRole() string
SetSalary(s float64)
GetSalary() floaté6s
String() string

}

type partTimeEmployee struct {
employee
hourlylage float64

}

type PartTimeEmployee interface {
Employee
SetHourlyWage(hourly float64)
GetHourlyWage() float64

}

// Methods

func (person *employee) SetSalary(yearly float64) {
person.salary = yearly

}

func (person employee) GetSalary() float64 {
return person.salary

}

func (person *employee) SetFirstName(firstN string) {
person.firstName= firstN

}

func (person employee) GetFirstName() string {
return person.firstName

104

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

func (person *employee) SetLastName(lastN string) {
person.lastName = lastN

}

func (person *employee) SetRole(r string) {
person.role = r

}

func (person employee) GetRole() string {
return person.role

}
func (person employee) String() string {
result := "Name: " + person.firstName + " " + person.lastName + "\n"
result += "Role: " + person.role + "\n"
result += "Annual salary: $" + fmt.Sprintf("%0.2f", person.
salary) + "\n"
return result
}
func (person partTimeEmployee) String() string {
result := "Name: " + person.firstName + " " + person.lastName + "\n"
result += "Role: " + person.role + "\n"
result += "HourlyWage: $" + fmt.Sprintf("%0.2f", person.
hourlyWage) + "\n"
return result
}

func (person *partTimeEmployee) SetHourlyWage(amt float64) {
person.hourlyhWage = amt

}

func (person partTimeEmployee) GetHourlyWage() float64 {
return person.hourlyWage

105

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

func main() {
person := new(employee) // Returns the address of an employee
person.SetFirstName("Helen")
person.SetLastName("Rose")
person.SetRole("Technical Lead")
person.SetSalary(125 644.0)
fmt.Println(person.String())

hourlyWorker := new(partTimeEmployee) // Returns address
hourlyWorker.SetFirstName("Mark")
hourlyWorker.SetLastName("Smith")
hourlyWorker.SetRole("Software Developer")
hourlyWorker.SetHourlyWage(85.00)
fmt.Println(hourlyWorker.String())

}

/*

Name: Helen Rose

Role: Technical Lead

Annual salary: $125644.00

Name: Mark Smith

Role: Software Developer
HourlyWage: $85.00

*/

Variables person and hourlyWorker act like objects (instances of a class) in
traditional object-oriented programming (OOP) languages. Methods are invoked on
these variables as one would do in traditional OOP languages.

In the next section, we discuss polymorphism in Go. This is another fundamental
pillar of object-oriented programming.

3.3 Polymorphism

Polymorphism is a basic pillar of object-oriented programming. It allows actions to
be taken on objects at runtime, where the action is based on the type of object that
receives the action.

106

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

In traditional strongly typed object-oriented languages like C#, Java, and Swift, if the
action is declared on a formal type and the actual type is an instance of a descendant
class, the runtime system chooses the method belonging to the actual type receiving the
message.

This cannot happen in Go since descendant classes (inheritance) do not exist.

Using Interfaces to Achieve Polymorphism

We can achieve polymorphic behavior using interfaces as the next example in Listing 3-5
illustrates.

Listing 3-5. Polymorphism in action
package main

import (
n _Fmt n
)

type FixedPricelob struct {
description string
fixedPrice float64

}

type Hourlylob struct {
description string
hourlyRate float64
numberHours int

}

type JobInterface interface {
Cost() floatés
GetDescription() string

107

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

// Implicitly defines FixedPriceJob as implementing the JobInterface
func (job FixedPricelob) Cost() float64 {
return job.fixedPrice

}

func (job FixedPricelob) GetDescription() string {
return job.description

}

// Implicitly defines HourlyJob as implementing the JobInterface
func (hourlylob Hourlylob) Cost() float64 {
return hourlyJob.hourlyRate * float64(hourlyJob.numberHours)

}

func (hourlylob Hourlylob) GetDescription() string {
return hourlyJob.description

}

func TotallobCost(jobs []JobInterface) float64 {
result := 0.0
for _, job := range jobs {
result += job.Cost()
}

return result

}

func main() {
job1 := FixedPriceJob{"Stucco House", 34760.0}
job2 := HourlyJob{"Landscaping", 40.0, 50}
jobs := []JobInterface{job1, job2}
totalCost := TotalJobCost(jobs)
fmt.Printf("Total job cost: $%0.2f", totalCost)

}
// Total job cost: $36760.00

Any type that defines methods with the signatures given in JobInterface implicitly
implements this interface. That is what we do in Listing 3-5. We define Cost() and
GetDescription() methods on both FixedPriceJob and HourlyJob.

108

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

In function ToetalJobCost, we input a slice of type JobInterface. We iterate over
the range of input jobs and accumulate the total cost by invoking the Cost() method
on each job. The runtime system binds the correct Cost() method based on the type
of job receiving this method (whether the job is a FixedPriceJob or HourlyJob in this
example). That is polymorphism in action.

In the next section, we present an object-oriented programming (OOP) application.
A simple Blackjack card game is developed.

3.4 00P Application: Simplified Game of Blackjack

In traditional object-oriented languages such as Smalltalk, Java, C#, and Swift, the design
process involves problem decomposition into classes. This is not possible in Go since
classes do not exist.

We illustrate how problem decomposition can be achieved in Go. We design and
implement a small, simplified Blackjack card game. This game is console based.

In Blackjack, two cards are dealt from the deck to the player and to the house. The
goal is to accumulate points but not exceed 21 points. The point value of a card is the
number on its face or 10 if the card is a jack, queen, or king or 11 if the card is an ace.

If the hand has two or more aces, then 10 is subtracted from the total point count of
the hand.

The player goes first and acquires additional cards, if she wishes to, by saying “hit
me.” When the player’s score gets close to 21, the player stops. If the player’s score
exceeds 21 after being “hit,” the game ends with the house as the winner. If not, it is the
house’s turn. Here, we simplify things by assuming that the house will request “hit me”
if its total score is less than 17. After the house is finished with its play, the winner is the
one with the highest score if that score is less than or equal to 21. Ties are possible.

In traditional object-oriented languages, we would define classes Card, Hand, and
Deck and also define methods for taking actions on these entities.

In Go, we model the system using structs and methods.

Consider the following:

var l'anks = []string {"zll, II3||, ll4", "5", “6“’ ll7ll’ “8“, ll9ll, ll1°||, “J",
llo—ll’ “K“, "All}
var suits = []rune {'\u2660', '\u2661', '\u2662', '\u2663'}

109

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

type Card struct {
Rank string
Suit string

}

type Hand struct {
Cards []Card

}

type Deck struct {
Cards []Card

Variable ranks is a slice containing the available cards, each a string. Variable suits
contains a slice of four rune values representing the symbols for club, diamond, heart,
and spade.

Type Card is a struct with the fields Rank and Suit.

The method value operates on a hand as follows:

func (hand Hand) value() int {
result := 0
numberAces :=
for index := 0; index < len(hand.Cards); index++ {
if hand.Cards[index].Rank != "A" && hand.Cards[index].Rank
I= "K" &&
hand.Cards[index].Rank != "Q" && hand.Cards[index].
Rank != "3" {
intval, _ := strconv.Atoi(hand.Cards[index].Rank)
result += intVal
} else if hand.Cards[index].Rank == "J" || hand.Cards[index].
Rank == "Q" ||
hand.Cards[index].Rank == "K" {
result += 10
} else if hand.Cards[index].Rank == "A"{
result += 11
numberAces += 1

110

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

if result » 21 &% numberAces » 1 {
result -= 10 * numberAces

}

return result

The other supporting methods are presented in the following:

func (hand *Hand) addCard(card Card) {
hand.Cards = append(hand.Cards, card)

}

func (hand Hand) Display() {
fmt.Println("\n")
for _, card := range hand.Cards {
fmt.Print(card.Rank + card.Suit + " ")

}
}

func (deck *Deck) dealCard() Card {
result := deck.Cards[o0]
deck.Cards = deck.Cards[1:]
return result

}

func (deck *Deck) shuffle() {
rand.Seed(time.Now().UnixNano())
rand.Shuffle(len(deck.Cards), func(i, j int) { deck.Cards[i],
deck.Cards[j] = deck.Cards[j], deck.Cards[i]

b))
}

func (deck *Deck) initializeDeck() Deck{
for _, suit := range suits {
for _, rank := range ranks {
deck.Cards = append(deck.Cards, Card{rank, string(suit)})

}

111

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

deck.shuffle()
return *deck

}

func (deck Deck) display() {
for _, card := range deck.Cards {
fmt.Print(card.Rank + card.Suit + " ")

Method shuffle utilizes the Shuffle function from package “math/rand’”.
Listing 3-6 presents the complete Go application for Blackjack.

Listing 3-6. Blackjack
package main

import (
"strconv"
"fmt"
"math/rand"
"time"
"bufio”

0S

)

var ranks = []St!’il‘lg {llzll’ ll3ll, Il4ll’ "5", lI6Il, ll7ll’ llsll, II9II’ "10“, IIJII’
llo-ll, IIKII’ "A"}

var suits = []rune {'\u2660', '\u2661', '\u2662', '\u2663"'}

type Card struct {
Rank string
Suit string

}

type Hand struct {
Cards []Caxd

112

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

type Deck struct {
Cards []Card

}
func (hand Hand) value() int {
result := 0
numberAces := 0
for index := 0; index < len(hand.Cards); index++ {
if hand.Cards[index].Rank != "A" 8& hand.Cards[index].
Rank != "K" &&
hand.Cards[index].Rank != "Q" && hand.Cards[index].
Rank != "J" {
intval, _ := strconv.Atoi(hand.Cards[index].Rank)
result += intval
} else if hand.Cards[index].Rank == "1" || hand.
Cards[index].Rank == "Q" ||
hand.Cards[index].Rank == "K" {
result += 10
} else if hand.Cards[index].Rank == "A"{
result += 11
numberAces += 1
}
}
if result > 21 && numberAces > 1 {
result -= 10 * numberAces
}
return result
}

func (hand *Hand) addCard(card Card) {
hand.Cards = append(hand.Cards, card)

113

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

func (hand Hand) Display() {
fmt.Println("\n")
for , card := range hand.Cards {
fmt.Print(card.Rank + card.Suit + " ")

}

func (deck *Deck) dealCard() Card {
result := deck.Cards[0]
deck.Cards = deck.Cards[1:]
return result

}

func (deck *Deck) shuffle() {
rand.Seed(time.Now().UnixNano())
rand.Shuffle(len(deck.Cards), func(i, j int) { deck.Cards[i],
deck.Cards[j] = deck.Cards[j], deck.Cards[i] })

}

func (deck *Deck) initializeDeck() Deck{
for , suit := range suits {
for _, rank := range ranks {
deck.Cards = append(deck.Cards, Card{rank, string(suit)})

}
deck.shuffle()

return *deck

}

func (deck Deck) display() {
for _, card := range deck.Cards {
fmt.Print(card.Rank + card.Suit + " ")

114

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

func main() {

gameOver := false

myDeck := Deck{}

myDeck.initializeDeck()

houseHand := Hand{}

playerHand := Hand{}

for i :=1; i <= 2; i++ {
card := myDeck.dealCard()
houseHand.addCard(card)
card = myDeck.dealCard()
playerHand.addCard(card)

}
playerHand.Display()
fmt.Println(" Do you want to be hit (y/n)?")
reader := bufio.NewReader(os.Stdin)
res, _, _:= reader.ReadRune()
for ; ; {
if res 1= "y' {
break
}
card := myDeck.dealCard()
playerHand.addCard(card)
playerHand.Display()
if playerHand.value() > 21 {
fmt.PrintIn("PLAYER'S SCORE EXCEEDS 21. GAME OVER. HOUSE WINS!M)
gameOver = true
break
}
fmt.Println(" Do you want to be hit (y/n)?")
reader = bufio.NewReader(os.Stdin)
res, _, _ = reader.ReadRune()
}
if !gameOver {
for ; ; {

if houseHand.value() > 21 {

115

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

fmt.Println("HOUSE SCORE EXCEEDS 21. GAME OVER. PLAYER WINS!™)
gameOver = true
break
}
if houseHand.value() < 17 {
card := myDeck.dealCard()
houseHand.addCard(card)
} else {
break

}
if !gameOver {
if playerHand.value() > houseHand.value() {
fmt.Println("PLAYER SCORE EXCEEDS HOUSE SCORE. GAME OVER.
PLAYER WINS!M)
} else if playerHand.value() == houseHand.value() {
fmt.Println("PLAYER SCORE EQUALS HOUSE SCORE. GAME OVER.

TIE GAME!™)
} else {
fmt.Println("HOUSE SCORE EXCEEDS PLAYER SCORE. GAME OVER.
HOUSE WINS!")
}

The output of one of many runs is

49 3& Do you want to be hit (y/n)?

y

4Q 3& 68 Do you want to be hit (y/n)?

y

4 34 6@ 50 Do you want to be hit (y/n)?

n

HOUSE SCORE EXCEEDS PLAYER SCORE. GAME OVER. HOUSE WINS!

In the final section of this chapter, we present another OOP application. This
application utilizes the standard map data structure defined in Go.

116

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

3.5 Another 00P Application: Permutation Group
of Words

A permutation group of words contains a collection of words that are formed from the
same letters and are all found in the same dictionary.

For example, a permutation group for “persist” contains a collection of words that
are formed from the same letters and are all found in the same dictionary.

The permutation group for “persist” is [‘esprits’, ‘persist’, ‘priests), ‘spriest’, ‘sprites),
‘stirpes), ‘stripes’].

One’s first thought might be to enumerate all permutations of the group of letters
and see what subset is in the dictionary.

Using the Standard map Data Structure

We will take a different approach. As we scan an entire file of words, we construct a map
with key-value pairs as follows:

key: Alphabetized word (all the letters of the given word rearranged from
smallest letter to largest letter). For example, alphabetized(“camp”) = “acmp’,
alphabetized(“balloon”) = “abllnoo”

value: A collection of dictionary words that can be reduced to the same
alphabetized word

As we process each word in a words.txt file, we compute the key by alphabetizing
the word and then check to see whether the key is already present in our map. If it is, we
add the word we are processing to the value collection associated with this key. If not, we
create a new collection and add the <alphabetized(word), new collection> key-value pair
to our map.

When the map is done, we find the permutations of a specified word by computing
its key and then getting the collection associated with this key from our map.

We start by defining a global variable dictionary.

var dictionary map[string][]string

117

CHAPTER 3 ABSTRACT DATA TYPES: O0P WITHOUT CLASSES IN GO
Next, we define a function, alphabetize.

func alphabetize(word string) string {
s := strings.Split(word, "")
sort.Strings(s)
return strings.Join(s, "")

The first line creates an array of characters. The next line sorts this array in place. The

third line joins the sorted array forming the resulting string.
The function, buildDictionary, creates a map with each key representing a sorted

alphabetized word and each value being a slice of words that alphabetize to the key.
This function is shown next.

func buildDictionary() {
dictionary = make(map[string][]string)

file, err := os.Open("words.txt")

if err != nil {
log.Fatalf("failed opening file: %s", err)
}

scanner := bufio.NewScanner(file)
scanner.Split(bufio.ScanLines)
var txtwords []string

for scanner.Scan() {
txtwords = append(txtwords, scanner.Text())

}
file.Close()

for _, word := range txtwords {
alphabetized := alphabetize(worxd)
var 1st []string
if len(dictionary) » 0 && len(dictionary[alphabetized]) » 0 {
1st = dictionary[alphabetized]

118

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

} else {
1st = []string{}

}
1st = append(1lst, word)

dictionary[alphabetized] = 1st

The file handling portion of buildDictionary is the most complex.

file, err := os.Open("words.txt")

if err !'= nil {
log.Fatalf("failed opening file: %s", err)
}

scanner := bufio.NewScanner(file)
scanner.Split(bufio.ScanLines)
var txtwords []string
for scanner.Scan() {
txtwords = append(txtwords, scanner.Text())

}
file.Close()

Using the imported package, os, a text file of words is opened. A scanner is defined

by using NewScanner on the bufio package that is imported. Using scanner.Scan(), the

slice of words contained in the words.txt file is generated.

Each word in this slice is alphabetized and either added to the existing map for that

key or a new key is created and the first value in the slice of words associated with the key

is inserted.

Listing 3-7 presents the full source code for this application.

Listing 3-7. Permutation Group of Words

package main

import (

II_Fmtll
"sort"
119

CHAPTER 3 ABSTRACT DATA TYPES: O0OP WITHOUT CLASSES IN GO

"strings"
"bufio”
"log"
"os"
)
func init() {
buildDictionary()
}

var dictionary map[string][]string

func alphabetize(word string) string {
s := strings.Split(word, "")
sort.Strings(s)
return strings.Join(s, "")

}

func buildDictionary() {
dictionary = make(map[string][]string)

file, err := os.Open("words.txt")

if err != nil {
log.Fatalf("failed opening file: %s", err)
}

scanner := bufio.NewScanner(file)
scanner.Split(bufio.ScanlLines)
var txtwords []string

for scanner.Scan() {
txtwords = append(txtwords, scanner.Text())

}
file.Close()

for _, word := range txtwords {
alphabetized := alphabetize(word)
var 1st []string
if len(dictionary) > 0 && len(dictionary[alphabetized]) > 0 {

120

CHAPTER 3 ABSTRACT DATA TYPES: OOP WITHOUT CLASSES IN GO

1st = dictionary[alphabetized]
} else {

1st = []string{}
}
1st = append(1lst, word)
dictionary[alphabetized] = 1st

}

func output(word string) {
wd := alphabetize(word)
fmt.Printf("Permutation group of %s is %s", word, dictionary[wd])

func main() {
output("parties")
}
// Pexrmutation group of parties is [parties pastier piaster piastre pirates
// raspite spirate tapiser traipse]

3.6 Summary

We focused on the implementation of abstract data types in this chapter. Two
approaches were shown to accomplish this. The first uses an interface to define the
required operations given by the ADT. The second uses a package to expose the
public features required by the ADT while hiding internal features. We introduced the
important concept of polymorphism. This allows the runtime system to determine
which particular method to bind to an object receiving the method assuming that the
object is of a type implementing the interface. We presented several examples of object-
oriented programming.

In the next chapter, we present a larger example of object-oriented programming by
showing an implementation of the Game of Life. We utilize a third-party graphical user

interface (GUI) package.

121

CHAPTER 4

ADT in Action:
Game of Life

In the previous chapter, we showed how abstract data types can be implemented and
how object-oriented programming can be performed in Go. In this chapter, we continue
to explore object-oriented programming in Go. We implement the classic Game of Life.
We introduce and utilize a third-party GUI package as part of our implementation.

In the next section, we specify the Game of Life.

4.1 Game

To illustrate the central role that ADTs can play in software design, we explore the Game
of Life, invented by John Conway and published in 1970 by Scientific American. This
game is a cellular automaton and interesting to design, implement, and observe.

In addition to showcasing the central role of an ADT in the design of this game, we
introduce the fyne graphical user interface (GUI) framework in Go.

We start with an empty grid with R rows and C columns. Clusters of live cells are
created at random locations. Then the internal rules of grid evolution take over, and the

user can observe each successive grid evolution at one-second intervals.

Rules of Grid Cell Evolution

The rules of grid cell evolution to produce the next generation of grid cells are the following:

1. Any live cell that has zero or one neighbor dies (disappears from
the grid in the next generation).

2. Any live cell with four or more neighboring live cells dies
(disappears from the grid in the next generation).

123
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_4

https://doi.org/10.1007/978-1-4842-8191-8_4

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

3. Anylive cell with two or three neighboring live cells survives to the
next generation.

4. Any empty cell with exactly three live neighbors becomes a live

cell in the next generation.

Let us consider the evolution of the game starting with Figure 4-1.

Figure 4-1. Initial configuration

The next iteration evolves into Figure 4-2.

Figure 4-2. First iteration

124

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

Here, two cells are brought to life (rightmost cell and leftmost cell), and one cell
survives (second rightmost cell). The other cells die.
Then the next iteration evolves into Figure 4-3.

Figure 4-3. Second iteration

And finally on the last iteration, the configuration evolves into Figure 4-4.

Figure 4-4. Final iteration

Very interesting patterns emerge as the Game of Life evolves. Sometimes, oscillations
occur forever. Figures 4-5 and 4-6 provide an example.

125

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

Figure 4-5. Initial configuration for oscillation

126

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

Figure 4-6. Final configuration for oscillation

The pattern jumps back and forth from the first pattern to the second pattern as the
game evolves.

In the next section, we define an abstract data type (ADT) for grid.

127

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

4.2 ADT for Grid

There are five operations that define the Grid ADT. These are given as follows:

The underlying grid has dimensions <rows, cols>.
Operations

initializeGrid(rows, cols) — Allocates storage for a grid with given rows and cols
bringAlive(row, col) — Brings cell <row, col> to life
kill(row, col) — Removes the cell <row, col> from the grid and makes it an empty cell

numberLiveNeighbors(row, col) — Returns the number of live neighbors from grid position <row,
col>

evolveGrid() — Obtains the next grid based on the four rules of evolution

In the next section, we present a console-based implementation of the game.

4.3 Console Implementation of the Game

In this section, we implement the ADT defined in Section 4.2 and enable a stepwise
console output.
The ADT defined is implemented using the following methods with g of type Grid,

the receiver:

type Grid [][]bool

func (g *Grid) initializeGrid(r, c int)

func (g Grid) bringAlive(row, col int)

func (g Grid) kill(row, col int)

func (g Grid) numberLiveNeighbors(row, col int) int

func (g Grid) evolveGrid()

128

CHAPTER 4 ADT IN ACTION: GAME OF LIFE
The method initializeGrid is implemented as follows:

func (g *Grid) initializeGrid(r, c int) {
TOWS = T
cols = c
*g = make([][]bool, rows)
for row := 0; row < rows; row++ {
(*g)[row] = make([]bool, cols)

The global variables rows and cols are assigned to the input parameters r and c.
Storage is allocated to hold rows of data. For each row, storage is allocated to hold cols
of data.

Because the receiver is a pointer to Grid, the receiver, grid, is initialized in place.

The function numberLiveNeighbors is implemented in the following. Although the
details are somewhat tedious, they are straightforward.

func (g Grid) numberLiveNeighbors(row, col int) int {
result := 0
if row » 0 && g[row - 1][col] == true {

result++

}

if row > 0 && col < cols - 1 && g[row - 1][col + 1]

== true {

result += 1

}

if col < cols - 1 && g[row][col + 1] == true {
result += 1

}

if row < rows - 1 && col ¢ cols -1
&& g[row + 1][col + 1] == true {

result += 1

}

if row < rows - 1 && g[row + 1][col] == true {
result += 1

}

129

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

if row < rows - 1 && col » 0 &&
glrow + 1][col - 1] == true {

result += 1

}

if col » 0 && g[row][col - 1] == true {
result += 1

}

if row > 0 && col » 0 &&
glrow - 1][col - 1] == true {
result += 1

}

return result

The method evolveGrid implements the business logic - the four rules that specify
how the game evolves. This method is implemented as follows:

func (g Grid) evolveGrid() {
Copy(newGrid, g)
for row := 0; row < rows; row++ {
for col := 0; col < cols; col++ {
liveN := g.numberLiveNeighbors(row, col)
// Rules 1 and 2
if g[row][col] == true && (liveN < 2 ||
liveN >= g) {
newGrid[row][col] = false
}
// Rule 4
if g[row][col] == false && liveN == 3 {
newGrid[row][col] = true

}
Copy(g, newGrid)

130

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

Alocally created newGrid is used and initialized to the receiver, g. The number of
live neighbors is computed, and in the next two if clauses, the rules for a live cell being
killed or an empty cell coming alive are exercised.

At the end, the locally created newGrid is copied back to the receiver, g.

Listing 4-1 puts the pieces together along with a main driver and shows the output
for a specified input.

Listing 4-1. Console implementation of the Game of Life
package main

import (
n _Fmt n
"time"

)

var (
rows int
cols int

)
type Grid [][]bool

var grid Grid
var newGrid Grid

func (g *Grid) initializeGrid(r, c int) {
TOWS = T
cols = ¢
*g = make([][]bool, rows)
for row := 0; YOW < TOWS; TOW++ {
(*g)[row] = make([]bool, cols)

}

func Copy(target [][]bool, source [][]bool) {
for row := 0; TOW < TOWS; TOw++ {
for col := 0; col < cols; col++ {

131

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

}

target[row][col] = source[row][col]

func (g Grid) bringAlive(row, col int) {

}

g[row][col] = true

func (g Grid) kill(row, col int) {
glrow][col] = false

}

func (g Grid) numberLiveNeighbors(row, col int) int {
result := 0
if row > 0 &&% g[row - 1][col] == true {

132

}
if

if

if

if

if

if

result++

Tow > 0 &&
result +=

col < cols
result +=

TOW < YOWS
result +=

TOW < YOWS
result +=

TOW < YOWS
result +=

col > 0 &&
result +=

col < cols - 1 8& g[row - 1][col + 1] == true {
1
- 1 8 g[row][col + 1] == true {

- 1 & col < cols -1 & g[row + 1][col + 1] == true {

- 188 g[row + 1][col] == true {

1 8% col > 0 && g[row + 1][col - 1] == true {

glrow][col - 1] == true {
1

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

if row > 0 && col > 0 &&% g[row - 1][col - 1] == true {
result += 1

}

return result

}

func (g Grid) evolveGrid() {
Copy(newGrid, g)
for row := 0; YOW < TOWS; Tow++ {
for col := 0; col < cols; col++ {
liveN := g.numberLiveNeighbors(row, col)
// Rules 1 and 2
if g[row][col] == true && (liveN < 2 || liveN >= 4) {
newGrid[row][col] = false
}
// Rule 4
if g[row][col] == false && liveN == 3 {
newGrid[row][col] = true

}
Copy(g, newGrid)

}

func consoleOutput() {
for row := 0; YOW < TOWS; TOw++ {
for col := 0; col < cols; col++ {
if grid[row][col] == true {
fmt.Print("$ ")
} else {
fmt.Print("# ")

}
}
fmt.Print("\n")
}
fmt.Println("----- ")

133

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

func main() {
grid.initializeGrid(3, 3)
newGrid.initializeGrid(3, 3)

grid.bringAlive(0, 0)
grid.bringAlive(0, 2)
grid.bringAlive(1, 0)
grid.bringAlive(1, 1)
grid.bringAlive(2, 2)
consoleOutput()

for iteration := 1; iteration < 5; iteration++ {
time.Sleep(1 * time.Second)
grid.evolveGrid()
consoleOutput()

}

/* Output
$# 3
$$#

134

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

In the text-based console output, dollar signs, $, are used to represent live cells, and
pound symbols, #, are used to represent empty cells.

A new grid is displayed every second.

Let us carefully examine the evolution from the initial state to the next state.

$#$
$$#

#$#

The live cell at <0, 0> survives since it has two live neighbors.

The empty cell at <0, 1> remains empty since it has four live neighbors.

The live cell at <0, 2> does not survive since it has only one live neighbor.

The live cell at <1, 0> survives since it has two live neighbors.

The live cell at <1, 1> does not survive since it has four live neighbors.

The empty cell at <1, 2> comes alive since it has three live neighbors.

The empty cell at <2, 0> remains empty since it has two live neighbors.

The empty cell at <2, 1> comes alive since it has three live neighbors.

And finally, the live cell at <2,2> does not survive since it has one live neighbor.

It is left to the reader to verify that the remaining three grids correctly follow the rules
of evolution.

In the next section, we implement a GUI version of the game.

4.4 GUI Implementation of the Game of Life

Applications that require graphical user interfaces (GUIs) in Go are dependent on third-
party libraries since there are no built-in GUI libraries. One such third-party library that
we shall use here and in later chapters is the Fyne library.

135

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

A reference on the Fyne library is the book by Andrew Williams: Building Cross-
Platform GUI Applications with Fyne and the Go Programming Language, Packt
Publishing, 2021.

Listing 4-2 presents a GUI solution to the Game of Life.

Listing 4-2. GUI version of the Game of Life
package main

import (
"math/rand"
"time"
"image/color"
"fyne.io/fyne/v2"
"fyne.io/fyne/v2/app"
"fyne.io/fyne/v2/canvas”
"fyne.io/fyne/v2/container”

)
var (
rows int
cols int
rect *canvas.Rectangle
// Holds rectangle objects
segments = []fyne.CanvasObject
)

// Snip from Listing 4.1

func output() *fyne.Container {
for row := 0; row < rows; rowi+ {
for col := 0; col < cols; col++ {
if grid[col][row] == false {
rect =
canvas .NewRectangle(&coloxr .RGBA{B:
200, R: 200, G:200, A: 255})
} else {
rect =

136

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

canvas.NewRectangle(&color .RGBA{B:
0, R: 255, G: 0, A: 255})
}
rect.Resize(fyne.NewSize(10, 10))
rect.Move(fyne.NewPos(float32(row * 11),
float32(col * 11)))
segments = append(segments, rect)

}

return container.NewWithoutLayout(segments...)

}

func main() {
grid.initializeGrid(25, 25)
newGrid.initializeGrid(25, 25)

for numberCritters := 0; numberCritters < 4;
numberCritters++ {
r := 5 + rand.Intn(10)
c := 5 + rand.Intn(10)
grid.bringAlive(r, c)
grid.bringAlive(r + 1, c)

grid.bringAlive(r + 1, c + 1)
grid.bringAlive(r - 1, c)
grid.bringAlive(r - 2, c - 1)

}

a := app.New()

W := a.NewWindow("GAME OF LIFE - Hit Any Key To
Quit")

w.Resize(fyne.NewSize(300, 300))

w.SetFixedSize(true)

go func() {
for ; ; {
container := output()
w.SetContent(container)

137

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

time.Sleep(1 * time.Second)
grid.evolveGrid()

}
})

w.Canvas().SetOnTypedKey(func(k *fyne.KeyEvent) {
// Shuts down simulation
w.Close()

)
w.ShowAndRun()

Function output returns a fyne container. This container contains a grid of colored
10 x 10 rectangles based on whether grid[row][col] is true or false.

In main, four clusters of live cells are created at random locations. A new fyne
window is created and sized at 300 x 300 pixels.

In a goroutine, the content of the container is displayed on the fyne window every
second. The content is changed by the method evolveGrid(). The output keeps evolving
until the user presses any key. This action closes the window and terminates the

program.

Creating go.mod file

For your program to access the myriad of functions imported from the fyne library, you
need to create a go.mod file as follows:

(1) go mod init guigameoflife.go

(2) go mod tidy

These two commands, executed from a terminal window containing the program,
produce the needed go.mod and sum.mod files needed for program execution.

Program Output

Two screenshots taken during the evolution of the game are shown in the following. The
second screen shot shows a steady-state unchanging pattern. This often happens.
Beautiful patterns evolve as the game progresses (Figures 4-7 and 4-8).

138

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

'© ® ® GAME OF LIFE - Hit Any Key To Quit
OO00O00COODOfOmCECO o cEE me
A | | | [

HEEE HEOEEOE0OOEEEE
5 5 10 o i 0
0 o
1 o

o o

I 1 0 O
e 4

Figure 4-7. Pattern during game evolution

139

CHAPTER 4 ADT IN ACTION: GAME OF LIFE

©® @ ® GAME OF LIFE - Hit Any Key To Quit
5 | i i o A
A

Figure 4-8. Steady-state pattern

4.5 Summary

In this chapter, we presented a console-based and GUI-based implementation of
the Game of Life. We defined an ADT based on the rules of evolution in the game
specification. We used a third-party GUI package to depict the grid and its cells.

In the next chapter, we start the data structure portion of this book. We focus on
Stack and present some generic stack implementations along with some applications
that use a stack.

140

CHAPTER 5

Stacks

The previous chapter presented an application of abstract data types, the Game of Life.

In this chapter, we switch gears and begin our exploration of generic data structures.
The first and perhaps simplest data structure we look at is the Stack. It has many
practical uses in application development.

A stack organizes data in a last-in, first-out (LIFO). Only the last item inserted into a
stack is accessible.

Because of LIFO, the most obvious application is to reverse a sequence of insertions.
For example, if the items in a list are inserted onto a stack, a new list that is the reverse of
the original list may be obtained by successively popping the elements of the stack.

In the next section, we formalize the Stack abstract data type.

5.1 Stack ADT

There are four operations that characterize a Stack ADT.

Push(item) — Adds item to the stack
Pop() item — Removes and returns the last item pushed onto the stack

Top() item — Accesses the last item pushed onto the stack without altering the stack

IsEmpty bool — Returns true if the stack has no items, otherwise returns false

The first implementation of a stack that we consider is presented in the next section

where we consider a slice implementation.

141
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_5

https://doi.org/10.1007/978-1-4842-8191-8_5

CHAPTER5 STACKS

5.2 Slice Implementation of Generic Stack

The first implementation of generic stack, presented in Listing 5-1, uses a slice to hold
the data in the stack.

Listing 5-1. Slice implementation of generic stack

package main

import (
n fmt n
)

type Ordered interface {
~float64 | ~int | ~string

}

type Stack[T Ordered] struct {
items []T

}

func getZero[T Ordered]() T {
var result T
return result

}

// Methods
func (stack *Stack[T]) Push(item T) {
// item is added to the right-most position in the
// slice
if item != getZero[T]() { // We exclude item if it
// is getZero[T]()
stack.items = append(stack.items, item)

}

func (stack *Stack[T]) Pop() T {
length := len(stack.items)
if length > 0 {

142

returnValue := stack.items[length - 1]
stack.items = stack.items[:(length - 1)]
return returnValue

} else {
return getZero[T]()

}

func (stack Stack[T]) Top() T {
length := len(stack.items)
if length > 0 {
return stack.items[length - 1]
} else {
return getZero[T]()

}

func (stack Stack[T]) IsEmpty() bool {
return len(stack.items) == 0

}

func main() {

// Create a stack of names

nameStack := Stack[string]{}

nameStack.Push("Zachary")

nameStack.Push("Adolf")

topOfStack := nameStack.Top()

if topOfStack != getZero[string]() {
fmt.Printf("\nTop of stack is %s", topOfStack)

}

poppedFromStack := nameStack.Pop()

if poppedFromStack != getZero[string]() {
fmt.Printf("\nValue popped from stack is %s",

poppedFromStack)

}

poppedFromStack = nameStack.Pop()
if poppedFromStack != getZero[string]() {

CHAPTER5 STACKS

143

CHAPTER5 STACKS

fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)
}
poppedFromStack = nameStack.Pop()
if poppedFromStack != getZero[string]() {
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)
}
poppedFromStack = nameStack.Pop()
if poppedFromStack != getZero[string]() {
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)

}

// Create a stack of integers
intStack := Stack[int]{}
intStack.Push(5)
intStack.Push(10)
intStack.Push(0) // Problem since 0 is the zero
// value for int
top := intStack.Top()
if top != getZero[int]() {
fmt.Printf("\nValue on top of intStack is %d", top)
}
popFromStack := intStack.Pop()
if popFromStack != getZero[int]() {
fmt.Printf("\nValue popped from intStack is
%d", popFromStack)
}
popFromStack = intStack.Pop()
if popFromStack != getZero[int]() {
fmt.Printf("\nvalue popped from intStack is
%d", popFromStack)

}
popFromStack = intStack.Pop()

144

CHAPTER5 STACKS

if popFromStack != getZero[int]() {
fmt.Printf("\nValue popped from intStack is
%d", popFromStack)

}

/* Output

Top of stack is Adolf

Value popped from stack is Adolf
Value popped from stack is Zachary
Value on top of intStack is 10
Value popped from intStack is 10
Value popped from intStack is 5

*/

The Get Zero Function

The function getZero[T]() returns a “zero value” associated with the generic parameter,
T. This special value is returned from the functions Pop() and Top() if the slice, items,
contained within the stack is empty.

Since we are using the “zero value” as a sentinel, indicating an empty stack, we
cannot allow this “zero value” to be pushed onto the stack.

Why T Is Declared As Ordered

If you are wondering why we require T to be Ordered, rather than any, consider the
statement if item != getZero[T]() in method Push. The generic type, T, must be Ordered
for this statement to be valid. That is, we need to be assured that two variables of type T
can be compared. This is an unfortunate requirement fostered by this implementation
since there is nothing intrinsic about the stack abstraction that requires the data being
held to be ordered.

When we create a stack of integers, the third value we push, value 0, is blocked from
insertion onto the stack because it happens to be the “zero value” of type int.

So this first implementation of generic stack using a slice to hold the data is
seriously flawed.

We examine a second implementation in Listing 5-2.

145

CHAPTER5 STACKS

Listing 5-2. Another slice implementation of generic stack
package main

import (
n _Fm_t n
)

type Stack[T any] struct {
items []T

}

// Methods

func (stack *Stack[T]) Push(item T) {
// item is added to the right-most position in the
// slice
stack.items = append(stack.items, item)

}

func (stack *Stack[T]) Pop() T {
length := len(stack.items)
returnValue := stack.items[length - 1]
stack.items = stack.items[:(length - 1)]
return returnValue

}

func (stack Stack[T]) Top() T {
length := len(stack.items)
return stack.items[length - 1]

}

func (stack Stack[T]) IsEmpty() bool {
return len(stack.items) == 0

}

func main() {
// Create a stack of names
nameStack := Stack[string]{}
nameStack.Push("Zachary")

146

nameStack.Push("Adolf")

if InameStack.IsEmpty() {
topOfStack := nameStack.Top()
fmt.Printf("\nTop of stack is %s", topOfStack)

if InameStack.IsEmpty() {
poppedFromStack := nameStack.Pop()
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)

if !nameStack.IsEmpty() {
poppedFromStack := nameStack.Pop()
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)

if !nameStack.IsEmpty() {
poppedFromStack := nameStack.Pop()
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)

if InameStack.IsEmpty() {
poppedFromStack := nameStack.Pop()
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)

}

// Create a stack of integers
intStack := Stack[int]{}
intStack.Push(5)
intStack.Push(10)
intStack.Push(0)

CHAPTER 5

STACKS

147

CHAPTER5 STACKS

if lintStack.IsEmpty() {
top := intStack.Top()
fmt.Printf("\nValue on top of intStack is %d", top)

}

if lintStack.IsEmpty() {
popFromStack := intStack.Pop()
fmt.Printf("\nValue popped from intStack is
%d", popFromStack)

}

if !intStack.IsEmpty() {
popFromStack := intStack.Pop()
fmt.Printf("\nValue popped from intStack is
%d", popFromStack)

}

if !intStack.IsEmpty() {
popFromStack := intStack.Pop()
fmt.Printf("\nValue popped from intStack is
%d", popFromStack)

}

/* Output

Top of stack is Adolf

Value popped from stack is Adolf
Value popped from stack is Zachary
Value on top of intStack is 0
Value popped from intStack is o
Value popped from intStack is 10
Value popped from intStack is 5

*/

In this second implementation, the parameter T is of type any, as it should be. The
methods Top() and Pop() produce a fatal index violation error if an attempt is made to
exercise either of these methods on an empty stack.

The main driver illustrates the proper way to avoid this problem. Before invoking
either of these methods, the stack is tested to see whether it is empty.

148

CHAPTER5 STACKS

Here, the stack was implemented in package main. Ordinarily, we would create a
package stack, separate from the main package. We did it this way to keep things simple.
In the next section, we present a Node implementation of a generic stack.

5.3 Node Implementation of a Generic Stack

Listing 5-3 presents an alternative implementation of stack.

Listing 5-3. Node implementation of generic stack
package main

import (
n _Fmt n
)

type Node[T any] struct {
value T
next *Node[T]

}

type Stack[T any] struct {
first *Node[T]
}

// Methods

func (stack *Stack[T]) Push(item T) {
newNode := Node[T]{item, nil}
newNode.next = stack.first
stack.first = &newNode

}

func (stack *Stack[T]) Top() T {
return stack.first.value

}

func (stack *Stack[T]) Pop() T {
result := stack.first.value

149

CHAPTER5 STACKS

}

stack.first = stack.first.next
return result

func (stack Stack[T]) IsEmpty() bool {

}

return stack.first == nil

func main() {

150

// Create a stack of names
nameStack := Stack[string]{}
nameStack.Push("Zachary")
nameStack.Push("Adolf")

if !nameStack.IsEmpty() {
topOfStack := nameStack.Top()
fmt.Printf("\nTop of stack is %s", topOfStack)
}
if InameStack.IsEmpty() {
poppedFromStack := nameStack.Pop()
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)

}

if !nameStack.IsEmpty() {
poppedFromStack := nameStack.Pop()
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)

}

if !nameStack.IsEmpty() {
poppedFromStack := nameStack.Pop()
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)

CHAPTER 5

if InameStack.IsEmpty() {
poppedFromStack := nameStack.Pop()
fmt.Printf("\nValue popped from stack is %s",
poppedFromStack)

}

// Create a stack of integers
intStack := Stack[int]{}
intStack.Push(5)
intStack.Push(10)
intStack.Push(0)

if !intStack.IsEmpty() {
top := intStack.Top()
fmt.Printf("\nValue on top of intStack is %d", top)

}

if !intStack.IsEmpty() {
popFromStack := intStack.Pop()
fmt.Printf("\nValue popped from intStack is
%d", popFromStack)

}

if lintStack.IsEmpty() {
popFromStack := intStack.Pop()
fmt.Printf("\nValue popped from intStack is
%d", popFromStack)

}

if !intStack.IsEmpty() {
popFromStack := intStack.Pop()
fmt.Printf("\nValue popped from intStack is
%d", popFromStack)

STACKS

151

CHAPTER5 STACKS

/* Output
Top of stack is Adolf
Value popped from stack is Adolf
Value popped from stack is Zachary
Value on top of intStack is 0
Value popped from intStack is o
Value popped from intStack is 10
Value popped from intStack is 5
*/
A generic type Node is defined along with a generic type Stack.
type Node[T any] struct {

value T

next *Node[T]

}

type Stack[T any] struct {
first *Node[T]

We may visualize the data structure as shown in Figure 5-1.

Stack

nil

Figure 5-1. Stack structure

Function main is identical to main in Listing 5-2, and the output is identical. If Top()
or Pop() are invoked on an empty stack, a memory segment violation would occur. So it
is imperative, as in Listing 5-2, to verify that the stack is not empty before invoking either
of these methods.

In the next section, we compare the efficiency of the node vs. the slice
implementations of stack.

152

CHAPTER5 STACKS

5.4 Compare the Efficiency of Node and
Slice Stacks

Which of the two Stack implementations is more efficient?

The slice implementation requires less memory because the node implementation
requires the memory overhead of pointers to each succeeding node.

To compare the speed efficiency of these two Stack types, we run a benchmark that
pushes 10 million int values onto the stack and then pops the stack until it is empty.

We package the two stack types as nodestack and slicestack as shown in Listings 5-4
and 5-5. In Listing 5-6, we present the application that compares the speed of these two
stack packages.

Listing 5-4. Package nodestack
package nodestack

type Node[T any] struct {
value T
next *Node[T]

}

type Stack[T any] struct {
first *Node[T]
}

// Methods

func (stack *Stack[T]) Push(item T) {
newNode := Node[T]{item, nil}
// newNode.value = item
newNode.next = stack.first
stack.first = &newNode

}

func (stack *Stack[T]) Top() T {
return stack.first.value

153

CHAPTER5 STACKS

func (stack *Stack[T]) Pop() T {
result := stack.first.value
stack.first = stack.first.next
return result

}

func (stack Stack[T]) IsEmpty() bool {
return stack.first == nil

}

Listing 5-5. Package slicestack
package slicestack

type Stack[T any] struct {
items []T

}

// Methods

func (stack *Stack[T]) Push(item T) {
// item is added to the right-most position in the
// slice
stack.items = append(stack.items, item)

}

func (stack *Stack[T]) Pop() T {
length := len(stack.items)
returnValue := stack.items[length - 1]
stack.items = stack.items[:(length - 1)]
return returnValue

}

func (stack Stack[T]) Top() T {
length := len(stack.items)
return stack.items[length - 1]

}

func (stack Stack[T]) IsEmpty() bool {
return len(stack.items) ==

154

CHAPTER5 STACKS

Listing 5-6. Speed comparison of nodestack and slicestack
package main

import (
"example.com/nodestack"
"example.com/slicestack"
"time"
"fmt"

)

const size = 10_000_000

func main() {
nodeStack := nodestack.Stack[int]{}
sliceStack := slicestack.Stack[int]{}

// Benchmark nodeStack
start := time.Now()
for i :=0; i < size; i++ {
nodeStack.Push(i)
}
elapsed := time.Since(start)
fmt.Println("\nTime for 10 million Push() operations on nodeStack: ",
elapsed)

start = time.Now()
for i := 0; i < size; i++ {
nodeStack.Pop()
}
elapsed = time.Since(start)
fmt.Println("\nTime for 10 million Pop() operations on nodeStack: ",
elapsed)

// Benchmark sliceStack

start = time.Now()

for i :=0; i < size; i++ {
sliceStack.Push(i)

155

CHAPTER5 STACKS

elapsed = time.Since(start)
fmt.Println("\nTime for 10 million Push()
operations on sliceStack:

, elapsed)

start = time.Now()
for i :=0; i < size; i++ {
sliceStack.Pop()

}

elapsed = time.Since(start)

fmt.Println("\nTime for 10 million Pop() operations

on sliceStack: ", elapsed)

}
/* Output
Time for 10 million Push() operations on nodeStack: 616.365084ms

Time for 10 million Pop() operations on nodeStack: 29.104829ms
Time for 10 million Push() operations on sliceStack: 148.623915ms

Time for 10 million Pop() operations on sliceStack: 11.485335ms
*/

The slicestack is significantly faster than the nodestack. As always, benchmark
results are affected by the processor, the amount of RAM, clock speed, and other factors
that vary from machine to machine.

In the next section, we present an application of the stack.

5.5 Stack Application: Function Evaluation

We wish to build a function that takes as input a string representing a mathematical

N oA g gy

expression with operand symbols from a to z and operators from the set “+’, “-) “*’ “/’)
urn uymn
G)
For example, the input to the function might be “(a + (b - ¢) / (d * e)”. After assigning
each operand value a float number, the function must evaluate the expression.
As we will soon see, the stack plays a critical role in designing and implementing this
application although this is not at all obvious.

156

CHAPTER5 STACKS

Postfix Evaluation

If one were to perform this computation on a Hewlett-Packard (HP) calculator, the
sequence of steps would be the following:

1. Enter the quantity a.

2. Enter the quantity b.

3. Enter the quantity c.

4. Push the subtract button.
5. Enter the quantity d.

6. Enter the quantity e.

7. Push the multiply button.
8. Push the divide button.
9. Push the add button.

Symbolically, this sequence of operations could be written as follows: abc-de*/+.

There are no parentheses in the preceding expression. The precedence of operations
is encapsulated in the expression. We call the expression a postfix representation of the
original expression.

To clarify further, suppose a were assigned the value 2, b the value 3, c the value 1, d
the value 5, and e the value 2; the postfix evaluation would be performed as follows:

The operator - (the fourth character in the infix expression) would operate on the
previous two operands, b and c. That would produce b - ¢, which is 2. The next operator,
*, would operate on its previous two operands producing d * e, which is 10. The next
operator, /, would divide its two previous operands, which are 2 and 10, to produce 0.2.
Finally, the last operator, +, would add its two previous operands, which are a and 0.2,
producing the answer 2.2.

Following this approach to expression evaluation, we divide the problem into two
subproblems. The first subproblem is converting the input expression into a postfix
expression. The second subproblem is evaluating this postfix expression.

Each of these subproblems utilizes a stack to accomplish their work.

Function infixpostfix in Listing 5-7 converts the infix expression to a postfix form.

157

CHAPTER5 STACKS

Listing 5-7. Conversion from infix to postfix
package main

import (
II_Fmt n
"example.com/nodestack"

)

func precedence(symboli, symbol2 string) bool {
// Returns true if symboll has a higher precedence
// than symbol2
if (symbol1l == "+" || symboll == "-") && (symbol2
== "(" || symbol2 == "/") {
return false
} else if (symboll == "(" && symbol2 != ")") ||
symbol2 == "(" {
return false
} else {
return true

}

func isPresent(symbol string, operators []string) bool {
for i := 0; i < len(operators); i++ {
if symbol == string(operators[i]) {
return true

}

return false

}

func infixpostfix(infix string) (postfix string) {

operators := []string{ll+ll) II_"’ "*ll, II/II’ n "J II)II}
postfix = ""
nodeStack := nodestack.Stack[string]{}

158

for index := 0; index < len(infix); index++ {

newSymbol := string(infix[index])

if newSymbol == " " || newSymbol == "\n" {
continue

}

if newSymbol >= "a" && newSymbol <= "z" {
postfix += newSymbol
}
if isPresent(newSymbol, operators) {
if InodeStack.IsEmpty() {
topSymbol := nodeStack.Top()
if precedence(topSymbol, newSymbol) ==
true {
if topSymbol != "(" {
postfix += topSymbol
}
nodeStack.Pop()

}
if newSymbol != ")" {
nodeStack.Push(newSymbol)
} else { // Pop nodeStack down to first
// left parenthesis

for {

if nodeStack.IsEmpty() == true {
break

}

ch := nodeStack.Top()

if ch 1= "(" {
postfix += ch
nodeStack.Pop()

} else {
nodeStack.Pop()
break

}

CHAPTER 5

STACKS

159

CHAPTER5 STACKS

}
}
}
}
for {
if nodeStack.IsEmpty() == true {
break
}
if nodeStack.Top() != "(" {
postfix += nodeStack.Top()
nodeStack.Pop()
}
}

return postfix

}

func main() {
postfix := infixpostfix("a + (b - ¢) / (d * e)")
fmt.Println(postfix)

}
// Output: abc-de*/+

The nodeStack is the centerpiece of this algorithm.

We Walk Through Algorithm

Let us “walk” through function infixpostfix for the infix expression given. We depict the
stack with the top of the stack shown on the right and previous items pushed on the stack
shown from right to left. The oldest item pushed on our stack depiction is the leftmost
item, and the most recent item pushed on our stack is the rightmost item.

The infix expressionis “a+(b-c)/ (d *e)"

We initialize the operators slice, the output postfix string, and the nodeStack as
follows:

operators o= []string{ +", ll_ll’ ll*ll, ll/ll’ n ll, ll)ll}
postfix = ""

nodeStack nodestack.Stack[string]{}

160

CHAPTER5 STACKS

In a loop that captures each newSymbol of the infix expression, if the newSymbol is
whitespace, we skip the rest of the loop and continue back to the top of the loop.

The first nonwhitespace character is the operand “a” The first “if” statement appends
this operand to the postfix string.

The next nonwhitespace character is “+”. This operator gets pushed onto the
nodeStack. The state of the system is

Stack: +
postfix: a

The next nonwhitespace character is “(”. Using the precedence function and
comparing topSymbol (“+”) with newSymbol (“(”), it returns false. We therefore push
the “(” onto the stack yielding a system state:

Stack (top on the right): + (
postfix: a

The next nonwhitespace character gets appended to postfix. The system state is

Stack: + (
postfix: ab

“u n -

We next process the “-” operator. The precedence of “(” with “-” is false, so the

operator is pushed onto the stack.

Stack (top on the right): + (-
postfix: ab

Next, we process the operand “c”. It gets appended to the result.

Stack (top on the right): + (-
postfix: abc

The next character we process is “)”. The precedence is false between “-” and “)”. The
conditional logic drops us to the “else” clause. As the comment suggests, this causes us
to deposit all operands on the stack onto postfix until we encounter the “(” symbol.

Stack (top on the right): +
postfix: abc-

161

CHAPTER5 STACKS

The next character, “/’; gets pushed onto the stack because of the false precedence
between “+” and “/”.

Stack (top on the right): + /
postfix: abc-

For the same reason as earlier, the next symbol, “(’; gets pushed onto the stack.

Stack (top on the right): + / (
postfix: abc-

Ugen

As before, the next operator symbol “*” gets pushed onto the stack.

Stack (top on the right): + / (*
postfix: abc-

At each stage of this process, the operators on the stack are in increasing order of
precedence going from left to right. This is what assures us that the result requires no
parentheses.

The next symbol, “)’; causes the stack to be cleared up to the “(”"

Stack (top on the right): + /
postfix: abc-*

With all the symbols from the infix expression processed, only the final loop remains.
In this loop, all remaining operator symbols are appended to postfix as the stack
is popped.

The final state of the system is

Stack (top on the right):
postfix: abc-*/+

Evaluating Postfix Expression

Next, we grapple with the second part of this problem: evaluating the postfix expression
when each operand is assigned a float64 value.

Listing 5-8 presents the function evaluate, which takes as input a postfix expression
as well as a map of numeric values for each operand symbol.

162

CHAPTER 5 STACKS
Listing 5-8. Evaluating postfix expression
package main
// Snip from Listing 5.7
var values map[string]float64

func evaluate(postfix string) float64 {
operandStack := nodestack.Stack[float64]{}
for index := 0; index < len(postfix); index++ {
ch := string(postfix[index])
if ch >= "a" && ch <= "z" {
operandStack.Push(values[ch])
} else { // ch is an operator
operandl := operandStack.Pop()
operand2 := operandStack.Pop()

if ch == "+" {
operandStack.Push(operandl + operand2)
} else if ch == "-" {

operandStack.Push(operand2
} else if ch == "*" {

operandStack.Push(operandl * operand2)
} else if ch == "/" {

operandStack.Push(operand2 / operand1)

operand1)

}
return operandStack.Top()

}

func main() {
postfix := infixpostfix("a + (b - c) / (d * e)")
fmt.Println(postfix)
values = make(map[string]float64)
values["a"] = 10
values["b"]

values["c"]

163

CHAPTER5 STACKS

values["d"] = 4
values["e"] = 3
result := evaluate(postfix)

fmt.Println("function evaluates to: ", result)

}
// Output: abc-de*/+
// function evaluates to: 10.25

In function evaluate, another stack, operandStack, is the centerpiece. This function
is much simpler than the infixpostfix function and is left to the reader to walk through a
simple example.

The benefit of genericity should be evident. The nodeStack in Listing 5-7 used
string as its type instance, and the operandStack in Listing 5-8 used float64 as its type
instance.

In the next section, we consider another application of stack - converting a decimal
number to binary.

5.6 Converting Decimal Number to Binary

A much simpler application of stacks is converting a decimal number to binary.
Listing 5-9 shows how to do this.

Listing 5-9. Converting decimal number to binary using a stack
package main

import (
n _Fmt n
"example.com/slicestack”

)

func convertToBinary(input int) (binary []int) {
binaryNumberStack := slicestack.Stack[int]{}
for {
binaryNumberStack.Push(input % 2)
input = input / 2

164

CHAPTER5 STACKS

if input == 0 {

break
}
}
binary = []int{}
for {
if !binaryNumberStack.IsEmpty() {
binary = append(binary,
binaryNumberStack.Pop())
} else {
break
}
}

return binary

}

func main() {
number := 1 000 000
binaryNumber := convertToBinary(number)
fmt.Printf("\n%d converted to binary is \n%v",
number, binaryNumber)
}
/* Output
1000000 converted to binary is
[11110100001001000000]
*/

Here, the binaryNumberStack[int] is used to reverse the sequence of 0’s and 1’s
produced by finding the sequence of remainders, input % 2, as input is reduced by a
factor of 2 at every iteration.

In the next section, we present another application of stack, finding a path

through a maze.

165

CHAPTER5 STACKS

5.7 Maze Application

Although the study of data structures, like the stack and many others to be explored later,
is interesting, it is when data structures and their associated operations are deployed in
applications that they come to life.

In this section, we present a more complex application in which the stack plays a

central role.

Note This application is an adaptation of an example presented in Section 3.2
of Data Structures Using Modula-2 by Richard Sincovec and Richard Wiener (John
Wiley, 1986) and later implemented in C# in Modern Software Development Using
C#.Net by Richard Wiener (Thompson Learinng, 2007).

We represent a maze with a two-dimensional list of 0’s and 1’s. Cells with value 1
represent obstacles that block a maze path. Cells with value 0 represent possible maze
path locations. Given such a matrix file of 0’s and 1’s and given the starting location
and ending location, the goal is to write a Go application that finds a path from starting
location to ending location, if one or more such paths exist.

We wish to avoid a brute-force strategy that enumerates every possible path from
starting point to ending point.

Efficient Strategy for Maze Path Using a Stack

Using a stack, we can develop an efficient strategy, which is outlined as follows.

At any location along the maze path, the next move can be chosen from among the
eight adjacent locations (north, northeast, east, southeast, south, southwest, west, and
northwest) providing that the given location has value 0 (is open). We let the program
make a random choice among the open adjacent locations. The program will possibly
produce different viable paths each time it is run.

Since a path cannot visit the same location more than once, we set the value along
each cell in the path from 0 to 1.

After each move, we push the current position along with the direction of the move
to be made onto the path stack. If the path hits a dead end as many typically will, we can
backtrack and access the last safe position and continue from there.

166

CHAPTER5 STACKS

More formally, our maze algorithm uses a stack as its central control mechanism and

is the following:

1.

Load the maze file, number of rows, number of columns, and the
starting and ending locations.

Initialize a path stack that holds path objects. We use a generic
stack with the base type T of type Path.

A path object contains a coordinate within the maze, a current
move direction, and a list of available move directions.

Choose an initial move direction from among the open
neighboring locations.

As each move direction is attempted, delete it from the list of eight
possible move directions.

Construct a new path object from the starting point, an initial
move direction, and a list of remaining move directions.

Push the initial path object onto the stack.

While the stack is not empty, get the path object at the top of the
stack by popping the stack.

Start a loop: While the current path object has more available
moves, choose one of the available locations randomly and set its
value from 0 to 1. Construct a new path object and push it onto the
stack. While the stack is not empty, get the path object at the top of
the stack by popping the stack.

Building Infrastructure for Maze Application

Before we plunge into the maze implementation, we build some infrastructure by

defining some relevant types and their operations - some abstract data types.

Listing 5-10 introduces the basic types needed for the maze application.

167

CHAPTER5 STACKS
Listing 5-10. Type infrastructure for maze application

package main

import (
II_Fm_t n
"math/rand"
"time"

)

// Direction abstraction
type Direction int

const (
Nint =0

NW =7
NotAvailable = 8
)

func (d Direction) String() string {

switch d {
case 0:

return "north"
case NE:

return "north-east
case E:

return "east"
case SE:

return "south-east

case S:
return "south"

168

CHAPTER 5
case SW:
return "south-west"
case W:
return "west"
case NW:

return "north-west"
case NotAvailable:
return "not available"

}

return "unknown"

}

func (d Direction) PrintDirection() {
fmt.Println("direction: ", d)

}

// Point abstraction
type Point struct {
X, y int

}

func (p Point) Equals(other Point) bool {
return p.x == other.x && p.y == other.y

}

func (p Point) PrintPoint() {
fmt.Printf("<%d, %d>\n", p.x, p.y)

}

// Path abstraction

type Path struct {
point Point
move Direction
movesAvailable []Direction

}

func NewPath(point Point) Path {
path := Path{point, Direction(NotAvailable),
[]Direction{}}

STACKS

169

CHAPTER5 STACKS

}

path.move = NotAvailable

// Initially all directions available

path.movesAvailable = []Direction{0, NE, E, SE, S, SW, W, NW}
return path

func (path *Path) RandomMove() Direction {

}

// Returns value of move and changes the receiver
indicesAvailable := []int{}
for index := 0; index < 8; index++ {
if path.movesAvailable[index] != NotAvailable {
indicesAvailable =
append(indicesAvailable, index)

}

count := len(indicesAvailable)
if count > 0 {
randomIndex := rand.Intn(count)
path.move =
path.movesAvailable[indicesAvailable[randomIndex]]
path.movesAvailable[indicesAvailable[randomIndex]]
= NotAvailable
return path.move
} else {
return NotAvailable

func main() {

170

rand.Seed(time.Now().UnixNano())
myDirection := Direction(6)
myDirection.PrintDirection()

myPoint := Point{3, 4}
myPoint.PrintPoint()

result := myPoint.Equals(Point{3, 4})
fmt.Println(result)

CHAPTER5 STACKS

myPath := NewPath(Point{3, 4})
randomMove := myPath.RandomMove()
fmt.Println(randomMove)
fmt.Println(myPath)

}

/* Output

direction: west

<3, &4

true

south

{{34}4[0123856 7]}

*/

The method RandomMove changes the receiver and returns the direction of
the move.
Go does not support enum types, so we simulate an enum type by defining

type Direction int

Creating this new type allows us to protect entities of this type from being
manipulated and possibly corrupted like they were ordinary integers.

We define a set of constants representing the nine directions that are possible (if we
consider NotAvailable to be one of these).

Function main does nothing useful but is there to illustrate how variables of each
type can be created and used.

Now we are ready to introduce the Maze abstraction and write this application. Since
we will need a stack (we will use a slicestack for this application although a nodestack
would do just as well), we will create a separate subdirectory for the Maze functionality
(the code in package main) and import the slicestack. We will create a go.mod file in the
subdirectory mainmaze that contains the main package. The go.mod file is

module example.com/main
go 1.18
replace example.com/slicestack =» ../slicestack

require example.com/slicestack vo0.0.0-00010101000000-000000000000

171

CHAPTER5 STACKS
The Maze type is defined as follows:

type Maze struct {
rows, cols int
start, end Point
mazefile string
barriers [][]bool
current Path
moveCount int
pathStack slicestack.Stack[Path]
gameOver bool

The field barriers, which defines the locations that are either blocked or open, is a
two-dimensional slice of bool. A rune of “1” in the mazefile indicates a blocked location,
and a rune of “0” indicates an open location.

The field pathStack is a slicestack.Stack with Path as its generic type.

The function NewMaze creates an instance of Maze as follows:

func NewMaze(rows int, cols int, start Point, end
Point, mazefile string) (maze Maze) {
maze.rows = YOWS

maze.cols = cols
maze.start = start
maze.end = end

// Initialize maze.barriers

maze.barriers = make([][]bool, rows)

for i := range maze.barriers {
maze.barriers[i] = make([]bool, cols)

}

file, err := os.Open(mazefile)
if err !'= nil {
log.Fatal(err)
}
scanner := bufio.NewScanner(file)
scanner.Split(bufio.ScanLines)

172

var textlines []string
for scanner.Scan() {
textlines = append(textlines, scanner.Text())
}
defer file.Close()
for row := 0; row < rows; rowt+ {
line := textlines[row]
for col := 0; col < cols; col++ {
if string(line[col]) == "1" {
maze.barriers[row][col] = true
} else {

maze.barriers[row][col] = false

}

maze.current = NewPath(start)
maze.pathStack = slicestack.Stack[Path]{}
maze.pathStack.Push(maze.current)
maze.barriers[start.x][start.y] = true
return maze

CHAPTER5 STACKS

The two-dimensional slice barriers are initialized by allocating storage for the given

number of rows and then for each row allocating storage for the columns.

The input text file, mazefile, is read line by line using NewScanner from

package bufio.

Then the barriers slice is assigned true at a given row and column if a “1” is present

and false if a “0” is present.

A support function, NewPosition, returns a Point based on the oldPosition and the

move direction and is given as follows:

func NewPosition(oldPosition Point, move Direction)

Point {
if move == Direction(N) {

return Point{oldPosition.x, oldPosition.y - 1}

} else if move == NE {

return Point{oldPosition.x + 1, oldPosition.y - 1}

173

CHAPTER5 STACKS

} else if move == E {

return Point{oldPosition.x + 1, oldPosition.y}
} else if move == SE {

return Point{oldPosition.x + 1, oldPosition.y + 1}
} else if move == S {

return Point{oldPosition.x, oldPosition.y + 1}
} else if move == SW {

return Point{oldPosition.x - 1, oldPosition.y + 1}
} else if move == W {

return Point{oldPosition.x - 1, oldPosition.y}
} else {

return Point{oldPosition.x - 1, oldPosition.y - 1}

The main program logic for advancing through the maze is given in method

StepAhead. This function returns a new position and backtracks location, each of
type Point.

This function is given as follows:

func (m *Maze) StepAhead() (Point, Point) {

174

validMove := false
backTrackPoint := None
newPos := None
for {
if m.gameOver || validMove ||
m.pathStack.IsEmpty() {
break
}
validMove = false
m.current = m.pathStack.Pop()
m.moveCount += 1
nextMove := m.current.RandomMove()
for {
if validMove || nextMove == NotAvailable {
break

CHAPTER5 STACKS

newPos = NewPosition(m.current.point,
m.current.move)
if m.barriers[newPos.y][newPos.x] == false
{
validMove = true
if newPos.Equals(m.end) {

for {
if m.pathStack.IsEmpty() ==
true {
break
}
m.pathStack.Pop()
}

m.gameOver = true

}
m.barriers[newPos.y][newPos.x] = true
m.pathStack.Push(m.current)
newPathObject := NewPath(newPos)
m.pathStack.Push(newPathObject)

} else {
nextMove = m.current.RandomMove()

}
if !validMove && !m.pathStack.IsEmpty() {

fmt.Printf("\nBacktrack from %v to %v\n",
m.current.point,
m.pathStack.Top().point)
backTrackPoint = m.pathStack.Top().point

}
if m.pathStack.IsEmpty()

fmt.Println("No solution is possible")
return None, None

}

return newPos, backTrackPoint

175

CHAPTER5 STACKS

Two nested for-loops control the logic of finding the next position in the maze. The
outer loop terminates if the gameOQver field of the maze m is true or if a validMove
is true or if the pathStack of the maze is empty. If the pathStack is empty, then the
application terminates with the message “No solution is possible.” The inner loop
terminates if a valid move is found, or the next random move is NotAvalable.

The pieces of this application fit together tightly and are moderately complex. It
should be evident that the slicestack.Stack[Path] plays a central role in moving through
the maze.

Completed Maze App

Listing 5-11 presents the complete maze app with a main driver and output from a
typical run. The maze file, maze.txt, for this run is illustrated in Figure 5-2.

111111111111111111711111211111111111111111
10111101111117111111111111111111111111111
110110111211117121111711111211111111111111111
1000011111111111111110111111100001111111
1111021211171711111111111101211117111111111111
1111102111111111111110111111111111111111
1111110111111111111110121111111111111111
11111010111111111111101211117111111111111
11110111000111111171110121111211111111111
11110111111011111111101211117111111111111
11110111111011111171110121111111111111111
11110111111101111111101211111111111111111
1111011111110000011101121117121111121111111
1111101111111111000011111111111111111111
1111100112111117111102111712111711111111111111
1111110011111111101111111111111111111111
1111101111111111102211112111711111111111111
1111011111111111110000011110000000000111
1111101111111111111111000000111111111111

Figure 5-2. maze.txt

176

11111101211111211171111171111171111111111111
110010101111712111717111712111121111111111111
111100100111121117171117211112111111111111
1111111100000000000000000000000011111111
1111111111111111111111111111110101111111
1111111111111111111111111111110110111111
11111111111111111111117111111110111011111
11111111111111111111117111111110111101111
11111111111111111111117111111110111110111
11111111111111111111117111111110111110111
11111111111111111111117111111101111110111
11111111111111111111117111111011111110111
111111111111171111111117111110111111110111
11111111111111111111117111101111111110111
111111111111171111111117111011111111110111
1111111111111111111111111111111111110111
1111111111111111111111111111111111110111
11111111111111111111117111111111111110111
11111111111111111111117111111111111110111
11111111111111111111117111111111111111001
11111111111111111111117111111111111111111

Figure 5.2. (continued)

CHAPTER5 STACKS

You can see from the sequence of zeros that a solution is possible if the starting

location is <1, 1> and the ending location is <38, 38> in this 40 x 40 grid of possible

locations. You can also see the possibility of several side tracks that lead to dead ends.

Listing 5-11. Maze application

// MAZE application
package main

import (
"bufio”
"example.com/slicestack”
“fmt"
"log"

177

CHAPTER5 STACKS

)

"math/rand"

0s
"time"

// Snip from Listing 5.10

/] RERRsRkskekskskoksoksokskokskokskkok ok ok skokskoksk ok

// MAZE abstraction
type Maze struct {

}

rows, cols int

start, end Point

mazefile string

barriers [][]bool

current Path

moveCount int

pathStack slicestack.Stack[Path]
gameOver bool

func NewMaze(rows int, cols int, start Point, end

178

Point, mazefile string) (maze Maze) {
maze.rows = YOWS
maze.cols = cols
maze.start = start
maze.end = end

// Initialize maze.barriers

maze.barriers = make([][]bool, rows)

for i := range maze.barriers {
maze.barriers[i] = make([]bool, cols)

}

file, err := os.Open(mazefile)
if err != nil {
log.Fatal(err)

CHAPTER5 STACKS

scanner := bufio.NewScanner(file)
scanner.Split(bufio.ScanLines)
var textlines []string
for scanner.Scan() {
textlines = append(textlines, scanner.Text())
}
defer file.Close()
for row := 0; TOW < TOWS; TOw++ {
line := textlines[row]
for col := 0; col < cols; col++ {
if string(line[col]) == "1" {
maze.barriers[row][col] = true
} else {

maze.barriers[row][col] = false

}

maze.current = NewPath(start)

maze.pathStack = slicestack.Stack[Path]{} // generic instance
maze.pathStack.Push(maze.current)
maze.barriers[start.x][start.y] = true

return maze

}

func NewPosition(oldPosition Point, move Direction)
Point {

if move == Direction(N) {

return Point{oldPosition.x, oldPosition.y - 1}
} else if move == NE {

return Point{oldPosition.x + 1, oldPosition.y - 1}
} else if move == E {

return Point{oldPosition.x + 1, oldPosition.y}
} else if move == SE {

return Point{oldPosition.x + 1, oldPosition.y + 1}
} else if move == S {

return Point{oldPosition.x, oldPosition.y + 1}

179

CHAPTER5 STACKS

} else if move == SW {

return Point{oldPosition.x - 1, oldPosition.y + 1}
} else if move == W {

return Point{oldPosition.x - 1, oldPosition.y}
} else {

return Point{oldPosition.x - 1, oldPosition.y - 1}

}

func (m *Maze) StepAhead() (Point, Point) {
validMove := false
backTrackPoint := None
newPos := None
for {
if m.gameOver || validMove ||
m.pathStack.IsEmpty() {
break
}
validMove = false
m.current = m.pathStack.Pop()
m.moveCount += 1
nextMove := m.current.RandomMove()

for {
if validMove || nextMove == NotAvailable {
break
}
newPos = NewPosition(m.current.point, m.current.move)
if m.barriers[newPos.y][newPos.x] == false
{

validMove = true
if newPos.Equals(m.end) {

for {
if m.pathStack.IsEmpty() ==
true {
break
}

180

CHAPTER 5

m.pathStack.Pop()
}

m.gameOver = true

}
m.barriers[newPos.y][newPos.x] = true
m.pathStack.Push(m.current)
newPathObject := NewPath(newPos)
m.pathStack.Push(newPathObject)

} else {
nextMove = m.current.RandomMove()

}
if lvalidMove && !m.pathStack.IsEmpty() {

fmt.Printf("\nBacktrack from %v to %v\n",
m.current.point,
m.pathStack.Top().point)

backTrackPoint = m.pathStack.Top().point

}
if m.pathStack.IsEmpty() {

fmt.Println("No solution is possible")
return None, None

}

return newPos, backTrackPoint
}

/] CRERERsRksksksoksokstokskokosk stk ok ok skokskkok ok ok skokskokok ok ok ok sk

func main() {
rand.Seed(time.Now().UnixNano())
start := Point{1, 1}
end := Point{38, 38}
maze := NewMaze(40, 40, start, end, "maze.txt")
newPos, _ := maze.StepAhead()
time.Sleep(1 * time.Second)

STACKS

181

CHAPTER5 STACKS

if newPos != None {
fmt.Println(newPos)

}
for {
if newPos == None || newPos.Equals(end) {
break
}
newPos, = maze.StepAhead()
time.Sleep(100 * time.Millisecond)
if newPos != None {
fmt.Println(newPos)
}
}

if newPos.Equals(end) {
fmt.Println("SUCCESS! Reached ", end)

}

/* Output
{2 2}

{1 3}

{2 3}

{3 3}

{4 4}

{a 3}

{5 2}

{6 1}

Backtrack from {6 1} to {5 2}
Backtrack from {5 2} to {4 3}

Backtrack from {4 3} to {4 4}
{5 5}
{6 6}
{5 7}
{4 8}
{4 9}

182

{4
{4
{4
{5
{6
{6
{5
{4
{5
{6
{5
{5
{4
{3
{2

Backtrack from {2 20} to {3
Backtrack from {3 20} to {4
Backtrack from {4 21} to {5
Backtrack from {5 21} to {5

Backtrack from {5 20} to {6

{7
{8
{8
{7

Backtrack from {7 21} to {8

{9

{10
{11
{12
{13
{14
{15
{16

10}
11}
12}
13}
14}
15}
16}
17}
18}
19}
20}
21}
21}
20}
20}

20}
21}
22}
21}

22}
22}
22}
22}
22}
22}
22}
22}

20}

21}

20}

19}

22}

CHAPTER5 STACKS

183

CHAPTER5 STACKS

{17 22}
{18 22}
{19 22}
{20 22}
{21 22}
{22 22}
{23 22}
{24 22}
{25 22}
{26 22}
{27 22}
{28 22}
{29 22}
{30 23}
{31 22}
{32 23}
{33 24}
{34 25}
{35 26}
{36 27}
{36 28}
{36 29}
{36 30}
{36 31}
{36 32}
{36 33}
{36 34}
{36 35}
{36 36}
{36 37}
{37 38}
{38 38}
SUCCESS! Reached {38 38}
*/

184

CHAPTER5 STACKS

In the output shown, there were three dead end detours. The pathStack enabled
backtracking recovery from each of these detours and the eventual successful path
through the maze.

5.8 Summary

In this chapter, we showed two implementations of a generic stack. We then proceeded
with several applications of stack including algebraic function evaluation, converting
decimal to binary and finding the path through a maze.

In the next chapter, we focus on the queue and list data structures.

185

CHAPTER 6

Queues and Lists

Queue is another relatively simple data type. It has many practical uses in application
development.

A queue organizes data in a first-in, first-out (FIFO) manner. Because of FIFO, the
most obvious application is to model a waiting line. This could be a line of customers
waiting for some service, a print job waiting in a print queue, a concurrent process
waiting for CPU access, and many other applications that require waiting lines. New
items are inserted into the back of a queue, and items are removed from the front of the
queue. The queue maintains the order in which the items are inserted.

We present two implementations of Queue in this chapter and compare their
efficiency. We also present several applications of Queue.

Deque is more general than a Queue. It allows insertion and deletion from the front
as well as the back of the structure. We present an implementation of Deque and an
application that uses Deque.

PriorityQueue is a specialized type of Queue. We show an implementation of
PriorityQueue and an application involving airline passengers.

List is a more general data type than a Queue. Items can be inserted in the front,
back, or anywhere in the middle. We present the implementation of a singly linked and
doubly linked list.

In the next section, we define the Queue abstract data type (ADT).

187
© Richard Wiener, PhD 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_6

https://doi.org/10.1007/978-1-4842-8191-8_6

CHAPTER6 QUEUES AND LISTS

6.1 Queue ADT

There are six operations that characterize a Queue ADT.

Insert(item) — Adds item to the queue

Remove() item — Removes and returns the first item inserted in the queue

First() item — Accesses the first item inserted in the queue without altering the queue
Size int — Returns the number of items in the queue

Range() — Returns an Iterator

Empty() — Returns a bool, true if the Ilterator it is applied to has no items

Next() — Returns the next item in the Iterator

We present two implementations of Queue: slice based and node based. In the next
section, we focus on a slice-based implementation of Queue.

6.2 Implementation of Slice Queue

Listing 6-1 presents a generic slice implementation of Queue in package slicequeue.
The Queue struct contains a field, items, a slice of generic type T.

Listing 6-1. Generic slice implementation of Queue
package slicequeue

type Queue[T any] struct {
items []T
}

type Iterator[T any] struct {
next int // index in items
items []T

188

CHAPTER6 QUEUES AND LISTS

// Queue Methods

func (queue *Queue[T]) Insert(item T) {
// item is added to the right-most position in the slice
queue.items = append(queue.items, item)

}

func (queue *Queue[T]) Remove() T {
returnValue := queue.items[0]
queue.items = queue.items[1:]
return returnValue

}

func (queue Queue[T]) First() T {
return queue.items[0]

}

func (queue Queue[T]) Size() int {
return len(queue.items)

}

func (queue *Queue[T]) Range() Iterator[T] {
return Iterator[T]{0, queue.items}

}

// Iterator Methods
func (iterator *Iterator[T]) Empty() bool {
return iterator.next == len(iterator.items)

}

func (iterator *Iterator[T]) Next() T {
returnValue := iterator.items[iterator.next]
iterator.next++
return returnValue

The FIFO protocol of Queue is achieved by inserting new items in the rightmost
position of the items slice and removing items from the leftmost position, index 0, in the
items slice.

189

CHAPTER6 QUEUES AND LISTS

lterator

An Iterator type is a struct containing an index next and the items slice.
The Empty method on Iterator is true if the iterator field next equals the length of
the items slice.
The Next method on Iterator returns the value T in index next of the items slice.
The Range method on Queue returns an Iterator.
Listing 6-2 shows a simple main driver program that exercises a generic queue.

Listing 6-2. Driver Program for Generic Queue

package main

import (
“fmt"
"example.com/slicequeue”

)

func main() {

myQueue := slicequeue.Queue[int]{}
myQueue. Insert(15)
myQueue. Insert(20)
myQueue.Insert(30)
myQueue . Remove ()
fmt.Println(myQueue.First())
queue := slicequeue.Queue[float64]{}
for i := 0; i < 10; i++ {

queue.Insert(float64(i))
}
iterator := queue.Range()
for {

if iterator.Empty() {

break

}
fmt.Println(iterator.Next())

}
fmt.Println("queue.First() = ", queue.First())

190

CHAPTER6 QUEUES AND LISTS

/* Output

N
o

0 N OV B W N RO

9
queue.First() = 0
*/

The package slicequeue is imported. A queue with type int and another queue
with type float64 are defined and exercised. It is noted that when the float64 queue is
constructed and the values are displayed using an iterator, the state of the queue is not
changed.

In the next section, we present the implementation of a node-based Queue.

6.3 Implementation of Node Queue

Listing 6-3 presents a node implementation of Queue.

Listing 6-3. Generic node implementation of queue
package nodequeue

type Node[T any] struct {
item T
next *Node[T]

191

CHAPTER6 QUEUES AND LISTS

type Queue[T any] struct {
first, last *Node[T]
length int

}

type Iterator[T any] struct {
next *Node[T]

}

// Methods
func (queue *Queue[T]) Insert(item T) {
newNode := &Node[T]{item, nil}
if queue.first == nil {
queue.first = newNode
queue.last = queue.first
} else {
queue.last.next = newNode
queue.last = newNode

}

queue.length +=1

}

func (queue *Queue[T]) Remove() T {
returnValue := queue.first.item
queue.first = queue.first.next
if queue.first == nil {
queue.last = nil

}

return returnValue

}

func (queue Queue[T]) First() T {
return queue.first.item

}

func (queue Queue[T]) Size() int {
return queue.length

192

CHAPTER6 QUEUES AND LISTS

func (queue *Queue[T]) Range() Iterator[T] {
return Iterator[T]{queue.first}

}

func (iterator *Iterator[T]) Empty() bool {
return iterator.next == nil

}

func (iterator *Iterator[T]) Next() T {
returnValue := iterator.next.item
if iterator.next != nil {

iterator.next = iterator.next.next

}
return returnValue

}

A generic Node type is defined containing an item field of type T and a next field, a
pointer to Node. This recursive structure is similar to what we did in defining a node in
nodestack.

The Queue type is a struct containing two pointers to Node, first and last. They point
to the beginning and end of the queue.

The Insert method creates a first value if the queue is empty and sets last to equal
first. If the queue already has a non-nil first value, it links the current last value to the
new node and replaces last with a pointer to this new node. The first value is unaffected.

The Remove method returns the item in the first Node and resets first to its
first.next link. If first becomes nil, then the last field is also set to nil; otherwise, it is
unaffected.

The Iterator is a struct with a next field that points to a Node.

The Range method returns an Iterator that contains a next field pointing to the first
item in the queue.

The Empty method on Iterator returns true if the next field points to nil; otherwise,
it returns false.

Finally, the Next method on Iterator returns the value in the next Node and
advances the field iterator.next to the iterator.next.next link.

A main driver program that exercises the queuenode is the same as in Listing 6-2
except the package “example.com/nodequeue” is used.

193

CHAPTER6 QUEUES AND LISTS

In the next section, we compare the performance of a slice-based Queue with a
node-based Queue.

6.4 Comparing the Performance of Slice
and Node Queue

Listing 6-4 presents a program that compares the execution time of inserting and
removing items from a slicequeue and a nodequeue.

Listing 6-4. Benchmarking the performance of slicequeue and nodequeue

// We compare the performance of slicequeue and nodequeue
package main

import (
“fmt"
"example.com/nodequeue"
"example.com/slicequeue”
"time"

)

const size = 1_000_000

func main() {
sliceQueue := slicequeue.Queue[int]{}
nodeQueue := nodequeue.Queue[int]{}
start := time.Now()
for i :=0; i < size; i++ {
sliceQueue.Insert(i)
}
elapsed := time.Since(start)
fmt.Println("Time for inserting 1 million ints in sliceQueue is",
elapsed)

start = time.Now()
for i :=0; i < size; i++ {
nodeQueue.Insert(i)

194

}

CHAPTER6 QUEUES AND LISTS

elapsed = time.Since(start)
fmt.Println("Time for inserting 1 million ints in nodeQueue is",
elapsed)

start = time.Now()
for i :=0; i < size; i++ {
sliceQueue.Remove()
}
elapsed = time.Since(start)
fmt.Println("Time for removing 1 million ints from sliceQueue is",
elapsed)

start = time.Now()
for i :=0; i < size; i++ {
nodeQueue.Remove ()
}
elapsed = time.Since(start)
fmt.Println("Time for removing 1 million ints from nodeQueue is",
elapsed)

/* Output
Time for inserting 1 million ints in sliceQueue is 18.841914ms

Time for inserting 1 million ints in nodeQueue is 30.275662ms

Time for removing 1 million ints from sliceQueue is 1.413447ms
Time for removing 1 million ints from nodeQueue is 2.818313ms

*/

As expected, the slice queue is significantly faster than the node queue because of

the overhead associated with pointer access in the node-based queue.

In the next section, we introduce and implement the Deque data structure.

6.5 Deque

A Deque is a queue in which items may be inserted or deleted from the front or the back

of the structure.

Listing 6-5 presents a slice implementation of a generic Deque.

195

CHAPTER 6 QUEUES AND LISTS
Listing 6-5. Generic slice implementation of Deque
package deque

type Deque[T any] struct {
items []T
}

func (deque *Deque[T]) InsertFront(item T) {
deque.items = append(deque.items, item) // Expands deque.items
for i := len(deque.items) - 1; i > 0 ; i-- {
deque.items[i] = deque.items[i - 1]
}
deque.items[0] = item

}

func (deque *Deque[T]) InsertBack(item T) {
deque.items = append(deque.items, item)

}

func (deque *Deque[T]) First() T {
return deque.items[0]

}

func (deque *Deque[T]) RemoveFirst() T {
returnValue := deque.items[0]
deque.items = deque.items[1:]
return returnValue

}

func (deque *Deque[T]) Last() T {
return deque.items[len(deque.items) - 1]

}

func (deque *Deque[T]) RemovelLast() T {
length := len(deque.items)
returnValue := deque.items[length - 1]
deque.items = deque.items[:(length - 1)]
return returnValue

196

CHAPTER 6 QUEUES AND LISTS
func (deque *Deque[T]) Empty() bool {
return len(deque.items) ==
Listing 6-6 presents a simple driver program that uses Deque.

Listing 6-6. Exercising Deque

package main

import (
n _Fmt n
"example.com/deque”
)

func main() {
myDeque := deque.Deque[int]{}
myDeque. InsertFront(5)
myDeque. InsertBack(10)
myDeque. InsertFront(2)
myDeque.InsertBack(12) // 2 5 10 12
fmt.Println("myDeque.First() = ", myDeque.First())
fmt.Println("myDeque.Last() = ", myDeque.Last())

myDeque.Removelast()
myDeque .RemoveFirst()
fmt.Println("myDeque.First() = ", myDeque.First())
fmt.Println("myDeque.Last() = ", myDeque.Last())

}

/* Output

myDeque.First() = 2

myDeque.Last() = 12

myDeque.First() = 5

myDeque.Last() = 10

*/

In the next section, we present an application that uses Deque.

197

CHAPTER6 QUEUES AND LISTS

6.6 Deque Application

Given an array and an integer k, find the maximum value for every contiguous subarray
of size k.
As an example, consider the following problem:

Input array: input := []int{9, 1, 1, 0,0, 0, 1, 0, 6, 8} with k=3
Maxof9,1,1is9.
Maxof1,1,0is 1.
Maxof1,0,0is 1.
Max of 0, 0, 0is 0.
Max of 0,0, 1is 1.

So the outputis[91101168].

Listing 6-7 presents a simple brute-force solution to this problem.

Listing 6-7. Brute-force solution to the maximum contiguous array problem
package main

import (
“fmt"
)

func MaxSubarray(input []int, k int) (output []int) {
for first := 0; first <= len(input) - k; first++ {
max := input[first]
for second := 0; second < k; second++ {
if input[first + second] > max {
max = input[first + second]

}
output = append(output, max)

}

return output

198

CHAPTER6 QUEUES AND LISTS

func main() {
input := []int{3, 1, 6, 4, 2, 10, 5, 9}
output := MaxSubarray(input, 3)
fmt.Println("Output = ", output)

}

/* Output

Output = [6 6 6 10 10 10]

*/

Because of the nested loops, the computational complexity of this solution is O(n * k),
where n is the size of the input slice.

Can we do better? This would be useful if n and k were large. We can do much better
using the services of a Deque.

Consider function MaxSubarrayUsingDeque as follows:

func MaxSubarrayUsingDeque(input []int, k int) (output []int) {
deque := deque.Deque[int]{}

var index int
// Fixrst window
for index = 0; index < k; index++ {

for {
if deque.Empty() || input[index] < input[deque.Last()] {
break
}
deque.Removelast()
}

deque.InsertBack(index)

}

for ; index < len(input); index++ {
output = append(output, input[deque.First()])

// Remove elements out of the window

for {
if deque.Empty() || deque.First() » index - k {
break
}

199

CHAPTER6 QUEUES AND LISTS

deque.RemoveFirst()
}
// Remove values smaller than the element currently being added
for {
if deque.Empty() || input[index] < input[deque.Last()] {
break
}
deque.Removelast()
}

deque.InsertBack(index)
}
output = append(output, input[deque.First()])
return output

Let us walk through the function for a portion of the example before.

A deque with generic type int is initialized to empty.

Since deque is empty, we break out of the inner for-loop and insert index 0 into the
deque and then advance index from 0 to 1.

Since input[1] is less than input[0], we again break out of the inner for-loop and
insert index 1 into the back of the deque so the deque contains [0 1]. We advance
index to 2.

Since input[2] is not less than index[1], we remove the last element, 1, from the
deque, leaving the deque as [0]. Since index[2] is less than input[0], we break out of the
inner loop and insert index 2 to the back of the deque producing [0 2]. The outer for-loop
is done. We are assured that the first element in the deque is the largest in the deque.

In the second outer for-loop, we append input[deque, First()] to the output, namely,
the value of 9.

The logic of the second outer for-loop mirrors the first outer for-loop. First, the deque
is purged of values out of the index window of the deque, which gets shifted by one to the
right after each iteration. Then the deque is filled with the next k values, and the values
are rotated so that the first value in the deque is largest.

The computational complexity of this algorithm is O(n).

Listing 6-8 compares the performance of the brute-force algorithm with the deque-
based algorithm.

200

CHAPTER6 QUEUES AND LISTS

Listing 6-8. Comparing the performance of the brute-force algorithm with the
deque-based algorithm

package main

import (
“fmt"
"example.com/deque"”
"time"
"math/rand"

)

const size = 1_000_000

func MaxSubarrayBruteForce(input []int, k int) (output []int) {
for first := 0; first <= len(input) - k; first++ {
max := input[first]
for second := 0; second < k; second++ {
if input[first + second] > max {
max = input[first + second]

}
output = append(output, max)

}

return output

}
func MaxSubarrayUsingDeque(input []int, k int) (output []int) {
deque := deque.Deque[int]{}

var index int
// First window
for index = 0; index < k; index++ {

for {
if deque.Empty() || input[index] < input[deque.Llast()] {
break
}

201

CHAPTER6 QUEUES AND LISTS

deque.Removelast()

}

deque.InsertBack(index)

}

for ; index < len(input); index++ {
output = append(output, input[deque.First()])

// Remove elements out of the window

for {
if deque.Empty() || deque.First() > index - k {
break
}
deque.RemoveFirst()
}
// Remove values smaller than the element currently being added
for {
if deque.Empty() || input[index] < input[deque.Llast()] {
break
}
deque.Removelast()
}

deque.InsertBack(index)
}
output = append(output, input[deque.First()])
return output

}

func main() {
input := []int{9, 1, 1, 0, 0, 0, 1, O, 6, 8}
outputl := MaxSubarrayBruteForce(input, 3)
fmt.Println("Output = ", outputl)

output2 := MaxSubarrayUsingDeque(input, 3)
fmt.Println("Output = ", output2)

// Benchmark performance of two algorithms
input = []int{}

202

CHAPTER6 QUEUES AND LISTS

for i :=0; i < size; i++ {

input = append(input, rand.Intn(1000))
}
start := time.Now()
MaxSubarrayUsingDeque(input, 10000)
elapsed := time.Since(start)
, elapsed)

fmt.Println("Using Deque:

start = time.Now()
MaxSubarrayBruteForce(input, 10000)
elapsed = time.Since(start)

fmt.Println("Using Brute Force: ", elapsed)

}

/* Output

Output = [911 0116 8]
Output = [91101 16 8]
Using Deque: 21.873658ms

Using Brute Force: 6.042102028s
*/

The results are dramatic: 21.87ms for the deque-based algorithm and 6.04 seconds
for the brute-force algorithm.
In the next section, we introduce and implement a priority queue.

6.7 Priority Queue

Priority queues exist in many real-world situations. For example, when passengers line
up to board a plane, many airlines associate a priority with each passenger. This may be
based on age (children enjoy high priority), price for the ticket (first-class passengers
get high priority), loyalty points (frequent traveler), disability, or other factors that
determine the customer’s priority. Within each priority grouping, the usual FIFO queue
rules apply.

We assume here that only a bounded number of priorities can be assigned to each
item to be inserted in the queue.

We show one implementation in which we use a slice in which each element of the
slice contains an ordinary queue.

203

CHAPTER6 QUEUES AND LISTS

The first queue in the slice contains items assigned the highest priority. The second
queue in the slice contains items assigned the second highest priority and so on.

When an item is inserted, we access the queue corresponding to its priority and do
an insertion in that queue.

Using a node-based queue for each element of the slice, we define a generic
PriorityQueue and a function for creating the priority queue as follows:

type PriorityQueue[T any] struct {
q [Inodequeue.Queue[T] // slice of queues
size int

}

func NewPriorityQueue[T any](numberPriorities int) (pq PriorityQueue[T]) {
Pq.q = make([]nodequeue.Queue[T], numbexPriorities)
return pq

The NewPriorityQueue constructor function defines a slice with numberPriorities
node queues.

Listing 6-9 defines a Passenger type and presents an implementation of
PriorityQueue along with a main driver. In the main driver, an airline queue with
Passenger as the generic type is defined, and a group of passengers are inserted into the
queue. Several passengers are removed, and the head of the line is output.

Listing 6-9. A slice implementation of priority queue and driver program

package main

import (
"example.com/nodequeue”
"fmt"

)

type Passenger struct {
name string
priority int

204

CHAPTER6 QUEUES AND LISTS

type PriorityQueue[T any] struct {
q []nodequeue.Queue[T]
size int

}

func NewPriorityQueue[T any](numberPriorities int) (pq PriorityQueue[T]) {
pq.q = make([]nodequeue.Queue[T], numberPriorities)
return pq

}

// Methods for priority queue
func (pq *PriorityQueue[T]) Insert(item T, priority int) {
pq.q[priority - 1].Insert(item)

pq.size++
}
func (pq *PriorityQueue[T]) Remove() T {
pq.size--
for i := 0; i < len(pqg.q); i++ {
if pq.q[i].Size() > 0 {
return pq.q[i].Remove()
}
}
var zero T
return zero
}

func (pq *PriorityQueue[T]) First() T {
for , queue := range(pq.q) {
if queue.Size() > 0 {
return queue.First()

}

var zero T
return zero

205

CHAPTER6 QUEUES AND LISTS

func (pq *PriorityQueue[T]) IsEmpty() bool {
result := true
for , queue := range(pq.q) {
if queue.Size() > 0 {
result = false
break

}

return result

}

func main() {
airlineQueue := NewPriorityQueue[Passenger](3)
passengers := []Passenger{ {"Erika", 3},{"Robert”, 3}, {"Danielle", 3},
{"Madison", 1}, {"Frederik", 1}, {"James", 2},
{"Dante", 2}, {"Shelley", 3} }
fmt.Println("Passsengers: ",passengers)
for i := 0; i < len(passengers); i++ {
airlineQueue.Insert(passengers[i], passengers[i].priority)
}
fmt.Println("First passenger in line: ", airlineQueue.First())
airlineQueue.Remove()
airlineQueue.Remove()
airlineQueue.Remove()
fmt.Println("First passenger in line: ", airlineQueue.First())
}
/* Output
Passsengers: [{Erika 3} {Robert 3} {Danielle 3} {Madison 1} {Frederik 1}
{James 2} {Dante 2} {Shelley 3}]
First passenger in line: {Madison 1}
First passenger in line after three Removes: {Dante 2}*/

The Remove method returns the zero value of T (Passenger in this case) if all the
queues in the slice are empty.

The first three Remove invocations strip both priority 1 passengers from the queue
and the first priority 2 passenger from the queue, making “Dante” the first in line.

206

CHAPTER6 QUEUES AND LISTS

We see in Listing 6-9 a layering of abstractions, a common practice in software
development. We could have used a slice queue instead of the node queue by changing
one line of code in the imports and changing each occurrence of nodequeue.Queue to
slicequeue.Queue.

In the next section, we present an important application of Queue - a discrete event
simulation of a waiting line. A typical waiting line occurs when customers compete
for service by lining up and waiting for a server to process each customer. An example
would be the checkout process at a supermarket.

6.8 Queue Application: Discrete Event Simulation
of Waiting Line

Suppose we have a waiting line for service at a bank. Customers arrive according to a
Poisson arrival process with a specified average rate of arrival. Customers are served
with a service time specified by a uniformly distributed random service time between

a specified lower and upper bound. Our goal is to construct a simulation that estimates
the average wait time (time from arrival on the line to time of completion of service) for a

customer joining the line as well as other statistics taken over an eight-hour day.

Poisson Process

Events modeled by a Poisson arrival process satisfy the following conditions:

1. Events are independent of each other. The occurrence of an event
does not influence when another event occurs. If the events being
modeled are customers arriving at a bank waiting line, this is
probably a reasonable requirement to meet.

2. The average rate of events remains constant. Here, we shall use
a minute as the basic unit of time, so the average rate will be in

events per minute.

It can be shown that the time between events, a random variable, can be generated
using the function shown in the following:

func InterArrivalInterval(arrivalRate float64) floaté4 {
// Models a Poisson process and returns

207

CHAPTER6 QUEUES AND LISTS

rn := rand.Float64() // random float between 0.0 and 1
return -math.Log(1.0 - rn) / arrivalRate

This corresponds to a probability that the wait time between events greater than

some tis
P(Wait time » t) = e ™t

where A is the average arrival rate in events/minute. This is an exponential distribution.
As tincreases, the probability of the wait time exceeding t approaches 0. When t equals
0, the probability is 1. As the arrival rate A increases (more events on average per
minute), the probability of having the wait time for the next event to be greater than
some t decreases.

We model the service duration (the time that it takes to process a customer) as a
uniform distribution between 0.5 / arrival rate and 1.4 / arrival rate. So, for example, if
the arrival rate is 0.25 (an average of one customer every 4 minutes), the service time is
modeled as uniformly distributed between 2 minutes and 5.6 minutes or an average of
3.8 minutes. This leads to a stable queue since average service time is less than average
time between arrivals.

Simulation Logic

Let us examine a typical sequence of events to set the stage for our simulation logic. The
a’s represent customer arrival times. The d’s represent customer departure times. The
line forms from left to right, so the leftmost customer is at the head of the line and is next

to depart.
t1
0 al line: c1
t2
0 al a2 line: c1, c2
t3
0 a1l a2 d1 line: c2

| <- a1 service time -> |

208

CHAPTER6 QUEUES AND LISTS

tq
0 al a2 di a3 line: c2, c3
t5
0 a1l a2 di a3 d2 line: c3
t6
0 al a2 d1 a3 d2 d3 line: empty

The variable t (time) advances in discrete steps based on the next event - either an
arrival or a departure - thus the name discrete-event simulation.

For the sequence of events shown, the wait times for customers 1, 2, and 3 are the
following:

Customer 1: (d1 -al)

Customer 2: (d2 - a2)

Customer 3: (d3 - a3)

The queue time is as follows: (2 -t1) *1 + (t3-t2) *2 + (t4 -t3) * 1 + (t5-t4) *2 +

(t6-t5)*1

Average queue size: queue time / t6.

After each event (arrival or departure), the queue time is updated by taking the new
event time - the last event time multiplied by the size of the queue. If the next event is a
departure, the first customer on the queue is removed; its departure time - arrival time
is added to the wait times. If the next event is an arrival, the customer is inserted into
the queue.

The next arrival time is the previous arrival time + interval between arrivals. The next
departure time is computed as the time when the customer becomes the first in the line
+ service time for the customer.

Implementation of System

With these observations in hand, we present Listing 6-10, which implements this system.

Listing 6-10. Discrete event simulation of waiting line

// Discrete event simulation of waiting line
package main

import (

209

CHAPTER6 QUEUES AND LISTS

"math/rand"

"math"

"fmt"

"time"
"example.com/nodequeue”

)

const (
arrivalRate = 0.25 // average customer arrivals per minute
lowerBoundServiceTime = 0.5 / arrivalRate
upperBoundServicetime = 2.0 / arrivalRate
quitTime = 480 // Minutes in an 8 hour day

)

func InterArrivallnterval(arrivalRate float64) float64 {
// Models a Poisson process and returns
rn := rand.Float64() // random float between 0.0 and 1
return -math.Log(1.0 - rn) / arrivalRate

}

func ServiceTime() float64 {
// Uniform distribution
rn := rand.Float64() // rn between 0.0 and 1.0
return lowerBoundServiceTime +
(upperBoundServicetime - lowerBoundServiceTime) * rn

}

type Customer struct {
arrivalTime float64
serviceDuration float64

}

// ADT for Statistics
type Statistics struct {
waitTimes []floaté64
queueTime float64 // Accumulated time * queue size

210

CHAPTER6 QUEUES AND LISTS

longestQueue int
longestWaitTime floaté64

}

func (s *Statistics) AddWaitTime(wait float64) {
s.waitTimes = append(s.waitTimes, wait)
if wait > s.longestWaitTime {
s.longestWaitTime = wait

}

func (s *Statistics) AddQueueSizeTime(queueSize int, timeAtSize float64) {
s.queueTime += float64(queueSize) * timeAtSize

}

func (s *Statistics) AddLength(length int) {
if length > s.longestQueue {
s.longestQueue = length

}

var lastArrivalTime, departureTime, lastEventTime float64

func main() {
rand.Seed(time.Now().UnixNano())
lastEventTime := 0.0 // beginning of day
line := nodequeue.Queue[Customer]{}
statistics := Statistics{}
// Start simulation

for {
lastArrivalTime = lastArrivalTime + InterArrivallInterval(ar
rivalRate)
if lastArrivalTime > quitTime {
break
}
if line.Size() == 0 {
lastEventTime = lastArrivalTime

211

CHAPTER6 QUEUES AND LISTS

// fmt.Printf("\nline no longer empty at time: %0.2f. line size is 1",
lastEventTime)
serviceTime := ServiceTime()
customer := Customer{lastArrivalTime, serviceTime}
line.Insert(customer)
statistics.AddLength(1line.Size())
departureTime = lastArrivalTime + serviceTime
} else {
if lastArrivalTime < departureTime { // next event is an arrival
customer := Customer{lastArrivalTime, ServiceTime()}
statistics.AddQueueSizeTime(line.Size(), lastArrivalTime -
lastEventTime)
lastEventTime = lastArrivalTime
line.Insert(customer)
// fmt.Printf("\nArrival event at %0.2f - line size is: %d: ",
lastEventTime, line.Size())
statistics.AddLength(line.Size())
} else { // next event is a departure
statistics.AddQueueSizeTime(1line.Size(), departureTime -
lastEventTime)
departingCustomer := line.Remove()
statistics.AddWaitTime(departureTime -
departingCustomer.arrivalTime)
lastEventTime = departureTime
// fmt.Printf("\nDeparture event at %0.2f - line size is: %d: ",
lastEventTime, line.Size())
if line.Size() » 0 {
departureTime = lastEventTime +
line.First().serviceDuration

212

CHAPTER6 QUEUES AND LISTS

totalWaitTime := 0.0
for i := 0; i < len(statistics.waitTimes); i++ {
totalWaitTime += statistics.waitTimes[i]
}
averageWaitTime := totalWaitTime / float64(len(statistics.waitTimes))
fmt.Printf("\nAverage Time from Arrival to Departure: %0.2f minutes”,
averageWaitTime)
fmt.Printf("\nAverage size of waiting line: %0.2f", statistics.
queueTime / lastEventTime)
fmt.Printf("\nLongest queue during the day: %d", statistics.
longestQueue)
fmt.Printf("\nLongest wait time during the day: %0.2f minutes",
statistics.longestWaitTime)
}
/* An output
Average Time from Arrival to Departure: 16.19 minutes
Average size of waiting line: 2.28
Longest queue during the day: 8
Longest wait time during the day: 40.18 minutes
*/

Multiple runs of the simulation exhibit a relatively large variance in the output
statistics shown previously.

If we instrument the code with the three commented lines of code indented flush
left, we output the exact sequence of events along with their event times.

A portion of the output produced during a typical run of the simulation is
shown here:

line no longer empty at time: 0.81. line size is 1
Departure event at 6.23 - line size is: O:

line no longer empty at time: 7.82. line size is 1
Departure event at 12.91 - line size is: O:

line no longer empty at time: 28.79. line size is 1
Arrival event at 29.87 - line size is: 2:

Departure event at 33.56 - line size is: 1:

213

CHAPTER6 QUEUES AND LISTS

Departure event at 41.07 - line size is: O:

line no longer empty at time: 53.59. line size is 1
Arrival event at 55.22 - line size is: 2:

Departure event at 58.17 - line size is: 1:

Departure event at 61.30 - line size is: O:
line no longer empty at time: 62.79. line size is 1

Arrival event at 67.35 - line size is: 2:

Departure event at 70.29 - line size is: 1:
Arrival event at 71.87 - line size is: 2:

Departure event at 77.07 - line size is: 1:

Departure event at 81.35 - line size is: O:
line no longer empty at time: 85.97. line size is 1

Arrival event at 89.44 - line size is: 2:

Departure event at 90.97 - line size is: 1:
Departure event at 93.27 - line size is: O:

line no longer empty at time: 95.92. line size is 1

Departure event at 99.66 - line size is: O:

line no longer empty at time: 105.60. line size is 1
Arrival event at 105.96 -
Arrival event at 108.51 -
Departure event at 109.23
Arrival event at 114.78 -
Arrival event at 115.19 -
Arrival event at 115.93 -
Departure event at 117.01
Arrival event at 119.26 -
Arrival event at 120.21 -

Departure
Departure
Departure
Departure
Departure
Departure

event
event
event
event
event
event

at
at
at
at
at
at

124.32
129.74
133.90
137.58
140.13
147.02

line size is: 2:

line size is: 3:

- line size is: 2:

line size is: 3:

line size is: 4:

line size is: 5:

- line size is: 4:

line size is: 5:

line size is: 6:

line
line
line
line
line
line

size
size
size
size
size
size

line no longer empty at time: 170.46.
Arrival event at 170.87 - line size is: 2:

214

is:
is:
is:
is:
is:

O B N W B~ U

is:
line size is 1

CHAPTER6 QUEUES AND LISTS

Arrival event at 173.63 - line size is: 3:

Departure event at 177.92 - line size is: 2:

Arrival event at 181.92 - line size is: 3:

Departure event at 184.98 - line size is: 2:
Departure event at 192.90 - line size is: 1:
Departure event at 195.10 - line size is: O:

line no longer empty at time: 211.92. line size is 1
Departure event at 215.48 - line size is: O:

line no longer empty at time: 217.21. line size is 1

Many variations of the simulation presented here are interesting and useful. For
example, we could investigate whether in the presence of multiple servers (e.g., bank
tellers), it would be more efficient to have a single waiting line feeding all the tellers (line
decreases in size by one when a teller is free) or separate waiting lines. We leave such
investigations to the reader.

In the next section, we present another application of Queue: shuffling a deck
of cards.

6.9 Queue Application: Shuffling Cards

In Section 3.4, Blackjack Game, we introduced the Deck abstraction as follows:

var I,a“I(s = []St!’il‘lg {llzll’ ll3ll, Il4ll’ "5", “6“, ll7ll’ llsll, II9II’ "10“, IIJII’
llo-ll, IIKII’ "A"}
var suits = []rune {'\u2660', '\u2661', '\u2662', '\u2663"'}

type Card struct {
Rank string
Suit string

}

type Deck struct {
Cards []Card

215

CHAPTER6 QUEUES AND LISTS

We saw that the math/rand package contains a Shuffle() method that can be
applied to a slice, in this case, a slice of Card.
In this section, we construct our own Shuffle method using two queues.

Card Shuffling Model

Shuffling a deck of playing cards can be modeled as follows: Cut the deck of 52 cards
into two piles, with a random size mismatch in the two piles of at most five cards. Then
grab a card from alternating piles until the deck is reformed from the two separate piles.
When the shorter pile has no more cards to contribute, add the cards from the larger pile
directly to the deck.

If we model each pile as a queue of cards, then the shuffling process is
straightforward.

Listing 6-11 presents the Shuffle method described earlier. We display the original
deck and the shuffled deck.

Listing 6-11. Shuffling a deck of cards

// Shuffle deck of cards
package main

import (
"example.com/nodequeue”
"math/rand"
"time"
“fmt"

)

type Card struct {
Rank string
Suit string

}

type Deck struct {
Cards []Card

216

CHAPTER6 QUEUES AND LISTS

var I,a“ks = []St!’il‘lg {llzll’ ll3ll, Il4ll’ "5", lI6Il, Il7ll’ llsll, II9II’ "10“, IIJII’
llo-ll’ IIKII, IIAII}
var suits = []rune {'\u2660', '\u2661', '\u2662', '\u2663"'}

func NewDeck() (deck Deck) {
for , suit := range(suits) {
for , rank := range(ranks) {
deck.Cards = append(deck.Cards, Card{rank, string(suit)})

}

return deck

}

func (deck Deck) Shuffle() Deck {

q1 := nodequeue.Queue[Card]{}

q2 := nodequeue.Queue[Card]{}

// Cut deck

mismatch := -5 + rand.Intn(11) // -5 to 5

var i int

for i = 0; 1 < 26 + mismatch; i++ {
ql.Insert(deck.Cards[i])

}

for ; i < 52; i++ {
q2.Insert(deck.Cards[i])

}

// Rebuild deck

deck = Deck{}

for {
if q1.Size() == 0 || q2.Size() == 0 {
break
}

card := qgl.Remove()

deck.Cards = append(deck.Cards, card)
card = g2.Remove()

deck.Cards = append(deck.Cards, card)

217

CHAPTER6 QUEUES AND LISTS

if q2.S5ize() == 0 {

for {
if q1.Size() == 0 {
break
}

card := gq1.Remove()
deck.Cards = append(deck.Cards, card)

}
}
if q1.Size() == 0 {
for {
if q2.Size() == 0 {
break
}
card := g2.Remove()
deck.Cards = append(deck.Cards, card)
}
}

return deck

}

func main() {
rand.Seed(time.Now().UnixNano())
deck := NewDeck()
fmt.Println("\nOriginal deck: ", deck)
// Cut deck 5 times
for index := 0; index < 5; index++ {
deck = deck.Shuffle()

}
fmt.Println("\nShuffled deck: ", deck)

A typical output is shown as follows after five shuffles:

Original deck: {[{2 @} {3 @} {4 @} {5a} {6 o} {7a} {88} {96} {10a}{] 6} {Q o} {Ka}{A
&} {20} {30} {40} {50} {6 V} {7 0} {8 V} {9 V} {10 V} {] VHH{Q VIHK OV} {AV} {2 0} {3 0} {4
015 01{6 01 {7 0} {8 01{9 010 0T OHQ OHK OHA O} {2 8} {3 &} {4 &} {5 &} {6 &} {7
&} {88} {98} {10 &} {] 8} {Q &} {K &} {A #}]}

218

CHAPTER6 QUEUES AND LISTS

Shutffled deck: {[{2 #} {10 O} {Q V} {7 0} {9 #} {4 #} {6 &} {A &} {20} {] 0} {K 0} {8 0} {9
o} {10} {681 {AVH3OH{J 8} {K &} {88} {9V {406V} {2 8} {3 &} {] &} (K} {8 4}{10
OH5 OH7 012 0} {3 &} {T OHK O} {8 0} {10 #} {5 #} {7 &} {9 0} {8 VHQ 0} A 0} {5 #} {10
o} {Q a} {78} {501 {4 0H{Q o} {A 8} {6 0}]}

In method Shuffle, the availability of a generic queue (in this case, from package
nodequeue with generic parameter Card) greatly simplifies our work.

In the next section, we introduce the more general data structure, linked list.

6.10 Linked Lists

Lists play a fundamental role in software development. They hold a sequence of items
from first to last. In a singly linked list, discussed in Section 6.11, each node containing
an item points to the next node in the sequence. In a doubly linked list, discussed in
Section 6.12, each node points forward to the next node in the list and backward to the
previous node in the list. This allows us to traverse the list from first to last or from last
to first.

Because of the linear structure of a list, it takes longer to access a particular item
than in an array or slice. One needs to traverse the list, item by item, until the item being
sought is found. In applications where fast direct access to an item through a location
index is needed, arrays or slices are preferable.

We have already seen two specialized examples of linked lists: nodestack and
nodequeue. In nodestack, information is inserted and removed from the leftmost
node in the linked structure, assuming that elements are inserted from the left side with
LIFO. In nodequeue, information is inserted into the linked structure from left to right
with FIFO.

In a linked list, information may be inserted anywhere (front, middle, end).

Each insertion adds a new node to the list that is linked to the next node in a singly
linked list or the next node and previous node in a doubly linked list. We shall show

implementations of each.

219

CHAPTER6 QUEUES AND LISTS

The ADT operations that characterize a linked list are the following:

First() — Returns the first node in the list

Size() — Returns the number of nodes in the list

Insert(i, item) — Creates and inserts item in the i node of the list
RemoveAt(i) — Removes and returns the item in the i node of the list
Append(item) — Creates and inserts item into the last node of the list

IndexOf(item) — Returns the node position containing item in the list

ltems() — Returns a slice of all the items in the list

In the next section, we present the implementation of a singly linked list.

6.11 Singly Linked List

A data structure for a generic singly linked list is given as follows:
package singlylinkedlist

import (
n {mt n
)

type Ordered interface {
~string | ~int | ~float64

}

type Node[T Ordered] struct {
Item T
next *Node[T]

}

type List[T Ordered] struct {
first *Node[T]
numberItems int

}

220

CHAPTER6 QUEUES AND LISTS

Type Node contains an Item (uppercase so it can be accessed outside the package)
and a pointer to the next node in the list.

Type List contains a pointer, first, to the head node of the list and an integer
numberltems.

Let us discuss in some detail two of the methods that can be invoked on List.

Method Append creates a new node and adds it to the end of the list as follows:

func (list *List[T]) Append(item T) {

// Adds item to a new node at the end of the list
newNode := Node[T]{item, nil}
if list.first == nil {

list.first = &newNode
} else {

last := list.first

for {

if last.next == nil {
break

}

last = last.next

}

last.next = &newNode

}

list.numbexItems += 1

A newNode with generic type Tis defined with item and pointing to nil.

If the list the method is invoked on is empty, list.first is assigned to the address of
newNode.

Otherwise, a for-loop is executed, advancing the pointer last until last.next is nil.
Then last.next is assigned to the address of newNode.

Method InsertAt creates a new node and adds it at location index as follows:

func (list *List[T]) InsertAt(index int, item T) error {
// Adds item to a new node at position index in the list
if index < 0 || index » list.numberItems {
return fmt.Errorf("Index out of bounds error")

221

CHAPTER6 QUEUES AND LISTS

newNode := Node[T]{item, nil}
if index == 0 {
newNode.next = list.first
list.first = &newNode
list.numbexItems += 1
return nil // No error
}
node := list.first
count := 0
previous := node
for count < index {
previous = node
count++
node = node.next
}
newNode.next = node
previous.next = &newNode
list.numberItems += 1
return nil // no error

A test is first performed on the value of index and an error returned if index is less
than 0 or greater than the number of existing items in the list.

As before, a new node is created with item and pointing to nil. If index is zero, new
node is set to point to list.first. Then list.first is assigned to the address of new node.

If index is not zero, a for-loop moves pointer node (initially assigned to list.first) to
the next node location with a trailing node, previous, index - 1 times.

Then two link assignments are made. The new node is inked to node, and the
previous node is assigned to the address of new node.

222

CHAPTER6 QUEUES AND LISTS

Listing 6-12 presents the entire package singlylinkedlist, and Listing 6-13 shows a
driver program that exercises all the methods defined in Listing 6-12.

Listing 6-12. Package singlylinkedlist
package singlylinkedlist

import (
n _Fmt n
)

type Ordered interface {
~string | ~int | ~float64

}

type Node[T Ordered] struct {
Item T
next *Node[T]

}

type List[T Ordered] struct {
first *Node[T]
numberItems int

}

// Methods

func (list *List[T]) Append(item T) {
// Adds item to a new node at the end of the list
newNode := Node[T]{item, nil}
if list.first == nil {
list.first = &newNode

} else {
last := list.first
for {
if last.next == nil {
break
}

last = last.next

223

CHAPTER6 QUEUES AND LISTS

last.next = &newNode

}

list.numberItems += 1

}

func (list *List[T]) InsertAt(index int, item T) error {
// Adds item to a new node at position index in the list
if index < 0 || index > list.numberItems {
return fmt.Errorf("Index out of bounds error")
}
newNode := Node[T]{item, nil}
if index == 0 {
newNode.next = list.first
list.first = &newNode
list.numberItems += 1
return nil // No error

}

node := list.first
count := 0
previous := node

for count < index {
previous = node
count++
node = node.next
}
newNode.next = node
previous.next = &newNode
list.numberItems += 1
return nil // no error

}

func (list *List[T]) RemoveAt(index int) (T, error) {
if index < 0 || index > list.numberItems {
var zero T
return zero, fmt.Errorf("Index out of bounds error")

224

CHAPTER6 QUEUES AND LISTS

node := list.first
if index == 0 {
toRemove := node
list.first = toRemove.next
list.numberItems -= 1
return toRemove.Item, nil
}
count := 0
previous := node
for count < index {
previous = node
count++
node = node.next
}
toRemove := node
previous.next = toRemove.next
list.numberItems -= 1
return toRemove.Item, nil

}

func (list *List[T]) IndexOf(item T) int {
node := list.first
count := 0
for {
if node.Item == item {
return count

}

if node.next == nil {
return -1

}

node = node.next
count += 1

225

CHAPTER6 QUEUES AND LISTS

func (list *List[T]) ItemAfter(item T) T {
// Scan list for the first occurence of item
node := list.first

for {

if node == nil { // item not found
var zero T
return zero

}

if node.Item == item {
break

}

node = node.next

}

return node.next.Item

}

func (list *List[T]) Items() []T {
result := []T{}
node := list.first
for i := 0; i < list.numberItems; i++ {
result = append(result, node.Item)
node = node.next

}

return result

}

func (list *List[T]) First() *Node[T] {
return list.first

}

func (list *List[T]) Size() int {
return list.numberItems

226

CHAPTER6 QUEUES AND LISTS

Listing 6-13. Main driver program for singlylinkedlist

package main

import (

)

II_Fmt n
"example.com/singlylinkedlist"

func main() {

}

cars := singlylinkedlist.List[string]{}
cars.Append("Honda")

cars.InsertAt(o, "Nissan")
cars.InsertAt(0, "Chevy")
cars.InsertAt(1, "Ford")
cars.InsertAt(1, "Tesla")
cars.InsertAt(o, "Audi")
cars.InsertAt(2, "Volkswagon")
cars.Append("Volvo")

fmt.Println(cars.Items())
fmt.Println("Index of Tesla: ", cars.IndexOf("Tesla"))

cars.RemoveAt(0)

car, _ := cars.RemoveAt(3)
fmt.Println("car removed is: "
fmt.Println(cars.Items())
cars.RemoveAt(cars.Size() - 1)

fmt.Println(cars.Items())

, car)

cars.Append("Lexus")
fmt.Println(cars.Items())
fmt.Println("First car in the list is:

, cars.First().Item)

fmt.Println("Last car in the list is: ", cars.Items()[cars.Size() - 1])

/* Output
[Audi Chevy Volkswagon Tesla Ford Nissan Honda Volvo]

227

CHAPTER6 QUEUES AND LISTS

Index of Tesla: 3

car removed is: Ford

[Chevy Volkswagon Tesla Nissan Honda Volvo]
[Chevy Volkswagon Tesla Nissan Honda]
[Chevy Volkswagon Tesla Nissan Honda Lexus]
First car in the list is: Chevy

Last car in the list is: Lexus

*/

It is left to the reader to examine and understand the remaining methods in package
singlylinkedlist and verify that the output for the main driver program is correct.

In the next section, for completeness, we present the implementation details of a
doubly linked list.

6.12 Doubly Linked List

In a doubly linked list, each node points to the previous as well as the next node in the
list. This leads us to a data structure for a generic doubly linked list as follows:

type Ordered interface {
~string | ~int | ~float64

}

type Node[T Ordered] struct {
Item T
next *Node[T]
prev *Node[T]

}

type List[T Ordered] struct {
first *Node[T]
last *Node[T]
numberItems int

}

228

CHAPTER6 QUEUES AND LISTS

The List contains an additional field, last, that points to the end of the list. The
methods for a doubly linked list are more complex because of the need to have each
node link backward in addition to forward. These details are presented in Listing 6-14.

Listing 6-14. Package doublylinkedlist
package doublylinkedlist

import (
n _Fmt n
)

type Ordered interface {
~string | ~int | ~float64

}

type Node[T Ordered] struct {
Item T
next *Node[T]
prev *Node[T]

}

type List[T Ordered] struct {
first *Node[T]
last *Node[T]
numberItems int

}

// Methods

func (list *List[T]) Append(item T) {
// Adds item to a new node at the end of the list
newNode := Node[T]{item, nil, nil}
if list.first == nil {
list.first = &newNode
list.last = list.first
} else {
list.last.next = &newNode
newNode.prev = list.last
list.last = &newNode

229

CHAPTER6 QUEUES AND LISTS

}

list.numberItems += 1

}

func (list *List[T]) InsertAt(index int, item T) error {
// Adds item to a new node at position index in the list
if index < 0 || index > list.numberItems {
return fmt.Errorf("Index out of bounds error")
}
newNode := Node[T]{item, nil, nil}
if index == 0 {
newNode.next = list.first
if list.first != nil {
list.first.prev = &newNode
}
list.first = &newNode
list.numberItems += 1
if list.numberItems == 1 {
list.last = list.first
}

return nil // No error
}
node := list.first
count := 0
previous := node
for count < index {
previous = node
count++
node = node.next
}
newNode.next = node
previous.next = &newNode
node.prev = &newNode
newNode.prev = previous

230

CHAPTER6 QUEUES AND LISTS

list.numberItems += 1
return nil // no error

}

func (list *List[T]) RemoveAt(index int) (T, error) {

if index < 0 || index > list.numberItems {

var zero T

return zero, fmt.Errorf("Index out of bounds error")
}
node := list.first
if index == 0 {

toRemove := node

list.first = toRemove.next

list.numberItems -= 1

if list.numberItems <= 1 {

list.last = list.first

}

return toRemove.Item, nil
}
count := 0
previous := node

for count < index {
previous = node
count++
node = node.next
}
toRemove := node
previous.next = toRemove.next
toRemove.next.prev = previous
list.numberItems -= 1
if list.numberItems <= 1 {
list.last = list.first
}

return toRemove.Item, nil

231

CHAPTER6 QUEUES AND LISTS

func (list *List[T]) IndexOf(item T) int {
node := list.first
count := 0
for {
if node.Item == item {
return count

}

if node.next == nil {
return -1

}

node = node.next
count += 1

}

func (list *List[T]) ItemAfter(item T) T {
// Scan list for the first occurence of item
node := list.first

for {

if node == nil { // item not found
var zero T
return zero

}

if node.Item == item {
break

}

node = node.next

}

return node.next.Item

}

func (list *List[T]) ItemBefore(item T) T {
// Scan list for the first occurence of item
node := list.first
for {

232

}

if node == nil { // item not found
var zero T
return zero

}

if node.Item == item {
break

}

node = node.next

}

return node.prev.Item

func (list *List[T]) Items() []T {

}

result := []T{}

node := list.first

for i := 0; i < list.numberItems; i++ {
result = append(result, node.Item)
node = node.next

}

return result

func (list *List[T]) ReverseItems() []T {

result := []T{}
node := list.last

for {
if node == nil {
break
}

result = append(result, node.Item)
node = node.prev

}

return result

CHAPTER6 QUEUES AND LISTS

233

CHAPTER6 QUEUES AND LISTS

func (list *List[T]) First() *Node[T] {
return list.first

}

func (list *List[T]) Last() *Node[T] {
return list.last

}

func (list *List[T]) Size() int {
return list.numberItems

If we compare the implementation details of this doubly linked list to the details
presented earlier for the singly linked list, we see several assignment statements that link
anode being added to the node that precedes it. When the list contains one node, the
first and last pointers are the same.

We examine method InsertAt in detail. This is the most complex of all the methods.
The other methods work in a similar way.

func (list *List[T]) InsertAt(index int, item T) error {
// Adds item to a new node at position index in the list
if index < 0 || index » list.numberItems {
return fmt.Errorf("Index out of bounds error")
}
newNode := Node[T]{item, nil, nil}
if index == 0 {
newNode.next = list.first
if list.first != nil {
list.first.prev = &newNode
}
list.first = &neuwNode
list.numberItems += 1
if list.numbexItems == 1 {
list.last = list.first
}

return nil // No error

234

CHAPTER6 QUEUES AND LISTS

Node := list.first
count :=
previous := node
for count < index {
previous = node
count++
node = node.next
}
newNode.next = node
previous.next = &newNode
node.prev = &newNode
newNode.prev = previous
list.numberItems += 1
return nil // no error

After verifying that the index value sent in is not out of range, we create a newNode
that contains item and points forward and backward to nil.

We first consider the case when index is 0. In this case, we link newNode.next to
the existing list.first, even if it is nil (empty list). We then set list.first to newNode and
increment list.numberItems. If the number of items is 1, we assign list.last to list.first
since they are one in the same. We return nil to indicate no error.

In the case where index is not 0, we assign local variable node to list.first, local
variable count to 0, and local variable previous to node.

In a for-loop that runs until count equals index, we set previous to node, increment
count, and advance node to node.next.

Below the loop, having found the location in which to insert newNode, we do this
insertion by setting newNode.next to node, setting previous.next to &newNode, setting
node.prev to &newNode, setting newNode.prev to previous, and incrementing list.

numberltems.

Benefit of Double Linking

What, you may be thinking, is the benefit of double linking considering the extra
complexity required to construct and maintain a doubly linked list?

235

CHAPTER6 QUEUES AND LISTS

The most important benefit is the ability to traverse the list in reverse, from
end to beginning. Although this is possible using a singly linked list, it would be
computationally expensive.

6.13 Summary

In this chapter, we presented several important and useful generic data structures
including Queue, Deque, PriorityQueue, and singly and doubly linked lists. We
presented several applications that utilize these generic data structures.

In the next chapter, we present the hash table structure and some applications that
use this structure.

236

CHAPTER 7

Hash Tables

In the previous chapter, we introduced queues and lists. We presented several
specialized types of queues and their applications.

A map is a function that converts (maps) some key to a value in a key-value pair.
The key and value may be of any type. A hash table is an unordered collection of key-
value pairs where each key is distinct (no duplicate keys). Values are not required to be
distinct, so two or more keys may map to the same value. Hash tables support very fast
access to information accessed through keys. Fast table lookup is achieved by computing
the hash value of a key and obtaining the location in the table containing the value.

In the next section, we review the standard Go data structure, map.

7.1 Map

A Go map type is declared as follows:

map|[KeyType]ValueType
Listing 7-1 is a simple program that illustrates the basic operations using a
standard map.

Listing 7-1. Using a standard map
package main

import (
n _Fmt n
)

type map1 map[string]string

func main() {
nicknames := make(map1, 5)
nicknames["Charles"] = "Chuck"

237
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_7

https://doi.org/10.1007/978-1-4842-8191-8_7

CHAPTER 7 HASH TABLES

nicknames["Robert"] = "Bob"
nicknames["Richard"] = "Rick"
nicknames["Teddy"] = "Ted"
nicknames["Mohammad"] = "Mo"

for key, value := range (nicknames) {
fmt.Printf("\nThe nickname of %s is %s", key, value)

}

// Test for the presence of James in the map
_, present := nicknames["James"]
fmt.Println("\nThe key James is present:

, present)

// Test for the presence of Teddy in the map

_, present = nicknames["Teddy"]

fmt.Println("The key Teddy is present: ", present)
delete(nicknames, "Robert")

// Test for the presence of Robert in the map
_, present = nicknames["Robert"]

fmt.Println("The key Robert is present: ", present)

// Modify the nickname of Charles
nicknames["Charles"] = "Charlie”

}

/* Output

The nickname of Robert is Bob

The nickname of Richard is Rick

The nickname of Teddy is Ted

The nickname of Mohammad is Mo

The nickname of Charles is Chuck

The key James is present: false

The key Teddy is present: true

The key Robert is present: false

*/

The sequence of key-value output produced by the for-loop in Listing 7-1 may
change from run to run of the program. A map is an unordered collection.

238

CHAPTER 7 HASH TABLES

If a key is not present in a map, the value returned when testingx the key is the zero
value associated with the value type stored in the map. But there are two return values
when accessing a key. The first is the value associated with the key, and the second is
a Boolean that determines the presence of the key in the map. We used this in several
places in Listing 7-1 to determine whether a particular key is present in the map.

Hash Encryption

Hash function packages have been produced to support encryption. In Listing 7-2, we
examine the use of two such hash-encryption packages.

Listing 7-2. Hash encryption

package main

import (
"crypto/mds”
"crypto/sha256"
“fmt"

)

func main() {
namel := "Richard"
name2 := "Richards"

md5hash := md5.Sum([]byte(name1))
sha256hash := sha256.Sum256([]byte(name1))
fmt.PrintIn(" MD5: ", mdShash)
fmt.Println("SHA256: ", sha256hash)

md5hash = md5.Sum([]byte(name2))
sha256hash = sha256.Sum256([|byte(name2))
fmt.Println(" MD5: ", mdShash)
fmt.Println("SHA256: ", sha256hash)

239

CHAPTER 7 HASH TABLES

/* Output

MD5:[197 28 139 189 158 140 139 196 144 66 204 213 211 233 134 77]
SHA256:[29 235 10 59 134 117 13 14 74 76 33 220 150 1 115 105 84 174 92 202
198 84 197 127 61 69 86 58 31 89 89 152]

MD5:[166 13 63 148 118 202 25 29 165 242 21 183 0 101 165 76]
SHA256:[107 180 140 197 199 134 66 52 247 101 104 172 63 77 46 205 135 103
147 106 45 109 84 183 195 48 107 144 11 99 127 198]

*/

The Sum method is invoked on md5 with the input string converted to [][byte. The
Sum256 method is invoked on sha256 with the input string converted to [][byte.

Itis interesting to see how the addition of one character from namel to name2
significantly changes the md5 and sha256 hash values.

These encryption functions are widely used to secure passwords.

In the next section, we examine the efficiency of a map and compare its search time
with a slice.

7.2 How Fast Is a Map?

Suppose we examine the speed of accessing a large collection of dictionary words.

Specifically, we construct a slice of 466,551 English words taken from a text file. We
next construct a map containing the same 466,551 words from the same text file. Then
we compare the time it takes to look up every word in the slice vs. the map.

To speed up the sliceCollection search, we sort the words so we can use a binary
search. We compare the map search time to the slice search time after we have sorted
the words in the slice.

Listing 7-3 presents the details of this comparison.

Listing 7-3. Search time of map vs. slice

// We compare dictionary lookup using map versus slice
package main

import (
"bufio"
"fmt"
"Tog"

240

CHAPTER 7 HASH TABLES

0s
n Sort mn
"time"

)

var mapCollection map[string]string
var sliceCollection []string

func IsPresent(word string, sliceCollection []string) bool {
for i := 0; i < len(sliceCollection); i++ {
if sliceCollection[i] == word {
return true

}

return false

}

func IsPresentBinarySearch(word string, sliceCollection []string) bool {
// The slice collection is sorted
low := 0
high := len(sliceCollection) - 1
for low <= high {
median := (low + high) / 2

if sliceCollection[median] < word {
low = median + 1

} else {
high = median - 1

}

}

if low == len(sliceCollection) || sliceCollection[low] != word {
return false

}

return true

241

CHAPTER 7 HASH TABLES

func main() {

242

file, err := os.Open("words.txt")
defer file.Close()

if err != nil {
log.Fatalf("Error opening file: %s", err)

}

// Fill mapCollection and sliceConnection with words
scanner := bufio.NewScanner(file)
scanner.Split(bufio.ScanLines)

mapCollection = make(map[string]string)
sliceCollection = make([]string, 1)

var words []string

for scanner.Scan() {
word := scanner.Text()
words = append(words, word)
mapCollection[word] = word
sliceCollection = append(sliceCollection, word)

}

// Benchmark time to test for presence of each word in mapCollection
start := time.Now()
for i := 0; i < len(words); i++ {
_, present := mapCollection[words[i]]
if !present {
fmt.Println("Word not found in mapCollectioon™)

}

elapsed := time.Since(start)

', len(mapCollection))
", elapsed)

fmt.Println("Number of words in mapCollection:
fmt.Println("\nTime to test words in mapCollection:

sort.Strings(sliceCollection)

}

CHAPTER 7 HASH TABLES

// Benchmark time to test for presence of each word in sliceCollection
start = time.Now()
for i := 0; i < len(sliceCollection); i++ {
if !IsPresent(sliceCollection[i], sliceCollection) {
fmt.Println("Word not found in mapCollectioon™)

}

elapsed = time.Since(start)
fmt.Println("Time to test words in sliceCollection:

, elapsed)

// Benchmark time to test for presence of each word in sorted
// sliceCollection
start = time.Now()
for i := 0; i < len(sliceCollection); i++ {
if !IsPresentBinarySearch(sliceCollection[i], sliceCollection) {
fmt.Println("Word not found in mapCollectioon™)

}

elapsed = time.Since(start)
fmt.Println("Time to test words in sorted sliceCollection:

, elapsed)

/* Output
Number of words in mapCollection: 466468

Time to test words in mapCollection: 29.022542ms
Time to test words in sliceCollection: 2m20.874580833s
Time to test words in sorted sliceCollection: 51.836708ms

*/

The map-based collection is almost twice as fast as the sorted slice collection,

confirming our earlier statement that maps provide very fast access to their information.

The unsorted slice collection is inefficient and is many times slower than the map

collection.

In the next section, we show how to build a hash table.

243

CHAPTER 7 HASH TABLES

7.3 Building a Hash Table

Commercial-grade hash tables (maps) are complex and, as the previous section
demonstrated, extremely efficient.

The details of how the Go map function is constructed are given in https://github.
com/golang/go/blob/master/src/runtime/map.go.

In this section, we construct a relatively inefficient hash table from scratch so that we
can briefly explore the issues related to hash-table construction.

Consider the following code segment:

package main

import (
"hash/fnv" // Fowler-Noll-Vo algorithm
// Other details not shown yet

)

const tableSize = 100_000

func hash(s string) uint32 {
h := fnv.New32a() // Fowler-Noll-Vo algorithm
h.Write([]byte(s))
return h.Sum32()

}

type WordType struct {
word string
list []string

}

// At every index there is a word and slice of words
type HashTable [tableSize]WordType

The function hash uses the Fowler-Noll-Vo algorithm to map a string to an unsigned
32-bit integer. The interested reader may wish to research the details of this algorithm.

We define a WordType as a struct with fields word and list.

Next, consider the function NewTable that creates and returns a Hashtable.

244

https://github.com/golang/go/blob/master/src/runtime/map.go
https://github.com/golang/go/blob/master/src/runtime/map.go

CHAPTER 7 HASH TABLES

Create an Empty Hash Table

func NewTable() HashTable {
var table HashTable
for i := 0; i < tableSize; i++ {
table[i] = WordType{"", []string{}}
}

return table

At every location in the HashTable array (fixed size tableSize), a variable of
WordType is assigned with empty word and empty string slice, []string{}.

Insertion into Hash Table

Now consider method Insert as follows:

func (table *HashTable) Insert(word string) {
index := hash(word) % tableSize // Between 0 and tableSize - 1
// Search table[index] for word
if table[index].word == word {
return // duplicates not allowed
}
if len(table[index].list) » 0 {
for i := 0; i < len(table[index].list); i++ {
if table[index].list[i] == woxd {
return // duplicates not allowed

}

}
}
if table[index].word == "" {

table[index].word = word
} else {

table[index].list = append(table[index].list, word)
}
length += 1

245

CHAPTER 7 HASH TABLES

We “map” the input parameter, word (a string), to an index using the hash function
displayed earlier.

A hash table cannot contain duplicate keys, so we test to see whether word already
exists at index. If so, we return without changing the table.

We further test for a duplicate entry by scanning the list, if non-empty, for word and
again return without changing the table if a duplicate is found.

Assuming the input word is not already in the table, we assign word to table at
index. If there is already a word at the table of index, we append the input word to the
string slice at location index.

Collisions and Collison Resolution

For a string slice at some index location to grow, there must be a collision. That is, the index
assigned to the input word must collide with an existing word already at that location. Such
collisions are inevitable since we compress index to be within the table size using

index := hash(woxd) % tableSize // Between 0 and tableSize - 1

Load Factor

The load factor of the table is the number of words in the table divided by the table size.
Even if the load factor is less than 1, collisions may still occur because the hash function
does not produce unique values for all input words. A table with many string slices
(collision chains) at various index locations takes longer to access.

Determining Whether a Key Is Present

We next consider function IsPresent given as follows:

func (table HashTable) IsPresent(word string) bool {
index := hash(word) % tableSize // Between 0 and tableSize - 1
// Search table[index] for word
if table[index].word == word {
return true

}
if len(table[index].list) » 0 {

246

CHAPTER 7 HASH TABLES

for i := 0; i < len(table[index].list); i++ {
if table[index].list[i] == word {
return true

}

return false

This function returns true if the input word is at location index or in a non-empty list
rooted at index.

Comparing the Performance of Hash Table
with Standard Map

Listing 7-4 puts the pieces discussed earlier together and compares the execution time of
the hash table with the standard map.

Listing 7-4. Comparing hash table to map

// Hash table construction
package main

import (
“fmt"
"hash/fnv" // Fowler-Noll-Vo algorithm
"strconv"
“time"
)

const tableSize = 100_000
var length int

func hash(s string) uint32 {
h := fnv.New32a()
h.Write([]byte(s))
return h.Sum32()

247

CHAPTER 7 HASH TABLES

type WordType struct {
word string
list []string

}

// At every index there is a slice of words
type HashTable [tableSize]WordType

func NewTable() HashTable {
var table HashTable
for i := 0; i < tableSize; i++ {
table[i] = WordType{"", []string{}}

}

return table
}
// Methods

func (table *HashTable) Insert(word string) {
index := hash(word) % tableSize // Between 0 and tableSize - 1
// Search table[index] for word
if table[index].word == word {
return // duplicates not allowed
}
if len(table[index].list) > 0 {
for i := 0; i < len(table[index].list); i++ {
if table[index].list[i] == word {
return // duplicates not allowed

}

}
}
if table[index].word == "" {

table[index].word = word
} else {

table[index].list = append(table[index].list, word)
}
length += 1

248

CHAPTER 7 HASH TABLES

func (table HashTable) IsPresent(word string) bool {

index := hash(word) % tableSize // Between 0 and tableSize - 1
// Search table[index] for word
if table[index].word == word {

return true
}
if len(table[index].list) > 0 {

for i := 0; i < len(table[index].list); i++ {

if table[index].list[i] == word {
return true

}

return false

}

func main() {
myTable := NewTable()
mapCollection := make(map[string]string)

words := []string{}
for i := 0; i < 500 000; i++ {
word := strconv.Itoa(i)

words = append(words, word)
myTable.Insert(word)
mapCollection[word] =

}

fmt.Println("Benchmark test begins to test words: ", length)
start := time.Now()
for i := 0; i < length; i++ {
if myTable.IsPresent(words[i]) == false {
fmt.Println("Word not found in table: ", words[i])

}

elapsed := time.Since(start)

249

CHAPTER 7 HASH TABLES

fmt.Println("Time to test all words in myTable: ", elapsed)

start = time.Now()
for i := 0; i < len(mapCollection); i++ {
_, present := mapCollection[words[i]]
if !present {
fmt.Println("Word not found in mapCollection:

, words[i])

}

elapsed = time.Since(start)
fmt.Println("Time to test words in mapCollection:

, elapsed)
}

/* Output

Benchmark test begins to test words: 500000

Time to test all words in myTable: 1m17.880336666s
Time to test words in mapCollection: 24.405583ms
*/

A half-million words are generated by converting the integer index in a loop to a
string and using the resulting strings as inputs to the table and to the map. The table
takes almost 138 seconds to search for all the words that are entered compared to less
than 25 milliseconds for the map. Quite a dramatic difference!

In the next section, we delve into the important application area of string searching.
We present a classic string search algorithm that uses hashing as its basis.

7.4 Hash Application: String Search

We explore a classic and important string search application in this section. The Rabin-
Karp algorithm features hashing and attempts to reduce the complexity of searching
from O(n*m) to O(n), where n is the length of the string to be searched and m is the
length of the pattern we are searching for.

250

CHAPTER 7 HASH TABLES
A function that accomplishes a string search using brute force is given as follows:

func BruteForceSearch(txt, pattern string) (bool, int) {
patternLength := len(pattexn)
for outer := 0; outer < len(txt)-patternLength; outer++ {
if txt[(outer):(outer+patternLength)] == pattern {
return true, outer

}

return false, -1

As an outer loop ranges from 0 to len(txt) - patternLength, we compare the
string bounded by txt[(outer):(outer+patternLength)] to pattern. If the two strings
are equal, we return true and the outer position. Since the string comparison is of
O(patternLength) and we perform this operation n times, we have an O(n * m)
algorithm, where m is the pattern length.

At this moment, you may rightfully be asking “what does this have to do with hashing?”

Suppose we replace the test for string equality, performed n - m times with a comparison
of their hash values. That is, we compare hash(txt[(outer):(outer+patternLength)] with
hash(pattern) and do this n - m times, returning true if their hash values are the same.

Rolling Hash Computation

What if the first hash computation, as outer index is incremented by one, can be
determined from the previous hash value, avoiding the need to perform a separate
hash from scratch? This is what the Rabin-Karp algorithm does. It uses a “rolling” hash
function, where succeeding hash computations are inexpensively computed from the
previous hash computation.

The hash function, H, is defined as follows for a portion of the text going from i to i+
m - 1, where m is the length of the pattern:

H; = (¢R™! + ¢, ,R™2 + ... + ¢;m1R®) mod Q

The c’s are integer character values at the given locations in the string being
searched, and R is a radix that corresponds to the number of possible values that each
character can have. Q is a large prime number that serves to prevent the computed hash

value from overflowing.
251

CHAPTER 7 HASH TABLES

This function does not guarantee unique hash values for different strings, butif Q
and n (the string length) are large, it minimizes the probability of a collision.
The hash value at location i + 1 can be computed from the hash value at i, in

constant time, as follows:

Hi,, = (Hi- cR™")R + Ciym

Suppose we limit the character set to the numerals from “0” to “9” Our string search
attempts to see whether a pattern defined by a string of numerals is contained in a larger
string of numerals.

The hash function is given as follows:

const (

Radix = uint64(10)

0 = uint64(10 * 9 + 9)
)

func Hash(s string, Length int) uinté64 {
// Horner's method
h := uint64(0)
for i := 0; i < Length; i++ {
h = (h*Radix + uint64(s[i])) % 0
}

return h

This is Horner’s method for evaluating a polynomial. We use uint64 for the integer

values to avoid overflow.

Rabin-Karp Algorithm
The Search method uses the Rabin-Karp algorithm outlined earlier and is shown here:

func Search(txt, pattern string) (bool, int) {
strings.ToLower(txt)
strings.ToLower(pattern)
n := len(txt)
m := len(pattern)

252

CHAPTER 7 HASH TABLES

patternHash := Hash(pattexn, m)

textHash := Hash(txt, m)

if textHash == patternHash {
return true, 0

}

PM := uint64(1)

for i := 1; i <= m-1; i++ {
PM = (Radix * PM) % Q

}
for i :=my i < n; i++ {
textHash = (textHash + Q - PM*uint64(txt[i-m])%Q) % Q
textHash = (textHash*Radix + uinté64(txt[i])) % Q
if (patternHash == textHash) && pattern == txt[(i-m+1):(i+1)] {

return true, i - m+ 1

}

return false, -1
Since the equality of patternHash and textHash does not guarantee that the pattern
has been found, we test the pattern against the segment of text to be sure.

Listing 7-5. Comparing Rabin-Karp to brute-force search

package main

import (
"fmt"
"strings"
"time"
)
const (
Radix = uint64(10)
0 = uint64(120 * 9 + 9)
)

253

CHAPTER 7 HASH TABLES

func BruteForceSearch(txt, pattern string) (bool, int) {
patternLength := len(pattern)
for outer := 0; outer < len(txt)-patternLength; outer++ {
if txt[(outer):(outer+patternLength)] == pattern {
return true, outer

}

return false, -1

}

func Hash(s string, Length int) uint64 {
// Horner's method
h := uint64(0)
for i := 0; i < Length; i++ {
h = (h*Radix + uint64(s[i])) % Q
}

return h

}

func Search(txt, pattern string) (bool, int) {
strings.TolLower(txt)
strings.TolLower (pattern)
n := len(txt)
m := len(pattern)
patternHash := Hash(pattern, m)
textHash := Hash(txt, m)
if textHash == patternHash {
return true, 0
}
PM := uint64(1)
for i :=1; i <= m-1; i++ {
PM = (Radix * PM) % 0

}

for i :=m; i< n; i++ {
textHash = (textHash + Q - PM*uint64(txt[i-m])%Q) % Q
textHash = (textHash*Radix + uint64(txt[i])) % Q

254

}

CHAPTER 7 HASH TABLES
if (patternHash == textHash) 8&& pattern == txt[(i-m+1):(i+1)] {

return true, i - m+ 1

}

return false, -1

func main() {

}

text :="3141592653589793238462643383279502884197169399375105820974944592307816406
2862089986280348253421170679"

pattern := "816406286208998628034825342"

start := time.Now()

_, _ = BruteForceSearch(text, pattern)

elapsed := time.Since(start)

fmt.Println("Computation time using BruteForceSearch:

, elapsed)

start = time.Now()

_, _ = Search(text, pattern)

elapsed = time.Since(start)

fmt.Println("Computation time using Search: ", elapsed)

fmt.Println(BruteForceSearch(text, pattern))
fmt.Println(Search(text, pattern))

/* Output with Macbook Pro using M1 Max
Computation time using BruteForceSearch: 10.083ps
Computation time using Search: 1.375ps

true 67

true 67

Using iMac with 3.2 GHz 8-Core Intel Xeon W
Computation time using BruteForceSearch: 354ns

Computation time using Search: 1.161ps

*/

255

CHAPTER 7 HASH TABLES

The program was run on two computers, and the results are surprising. On the
MacBook Pro with M1 Max processor and 32G of combined RAM, the Rabin-Karp search
is over seven times faster in searching the first 100 digits of Pi, not surprising. On the
iMac with a 3.2-GHz 8-core Xeon W processor, the opposite occurs. The brute-force
algorithm returns a time that is over three times faster than the Rabin-Karp algorithm.

These contradictory benchmarks again highlight the fact that the hardware and
instruction set of a particular machine can greatly influence the outcome of such a
benchmark.

In the next section, we use hashing to implement a generic Set.

7.5 Generic Set

The Go language does not provide a Set data structure. In this section, we implement a
generic Set data structure. A set stores unique values with ordering of the values.
The operations that define a Set are the following:

Insert(item) — Adds item to the existing set if not already present
Delete(item) — Removes item from the existing set if present

In(item) — Returns true if item is in the existing set, otherwise returns false
[tems() — Returns a slice of items from the existing set

Size() — Returns the number of items in the existing set

Union(set2) — Returns all the unique items in the existing set and set2
Intersection(set2) — Returns all the items in both the existing set and set2

Difference(set2) — Returns the items in the existing set, not in set2

Subset(set2) — Returns true if all the items in set2 are in set1, otherwise false

256

CHAPTER 7 HASH TABLES
In our package set, we define generic type Set as follows:
package set

type Ordered interface {
~string | ~int | ~float64
}

type Set[T Ordered] struct {
items map[T]bool

Here, we define the items field of Set as a map with generic parameter T of type
Ordered.

The map structure in Go requires that the key value type be ordered.

The Insert method is implemented as follows:

// Add item to set
func (set *Set[T]) Insert(item T) {
if set.items == nil {
set.items = make(map[T]bool)
}
// Prevent duplicate entry
_» present := set.items[item]
if !present {
set.items[item] = true

We first determine whether the set is empty, in which case set.items would be nil. In
this case, we initialize the map using make.

To prevent a duplicate entry, which is not legal in a set, we test to see whether item is
already in the set. If not, we assign item to the set.items map.

The Delete method is implemented as follows:

// Remove item from set
func (set *Set[T]) Delete(item T) {
_» present := set.items[item]

257

CHAPTER 7 HASH TABLES

if present {
delete(set.items, item)

If the item is present, we delete it from the set.items map.
The In method is implemented as follows:

// Return true if item is in set, otherwise false
func (set *Set[T]) In(item T) bool {

_y present := set.items[item]

return present

We return true if item is in the set.items map, otherwise false.
The Items method is implemented as follows:

// Return a slice of all the items in set
func (set *Set[T]) Items() []IT {
items := []T{}
for item := range set.items {
items = append(items, item)
}

return items

We initialize an empty slice of type T. We iterate through the range of the set.items
map and append each item to items which we return.

The complete package set is presented in Listing 7-6. The other methods are equally
straightforward.

Listing 7-6. Package set

package set
type Ordered interface {
~string | ~int | ~float64

258

type Set[T Ordered] struct {
items map[T]bool

}
// Methods

// Add item to set
func (set *Set[T]) Insert(item T) {
if set.items == nil {
set.items = make(map[T]bool)
}
// Prevent duplicate entry
_, present := set.items[item]
if !present {
set.items[item] = true

}

// Remove item from set
func (set *Set[T]) Delete(item T) {
_, present := set.items[item]
if present {
delete(set.items, item)

}

// Return true if item is in set, otherwise false
func (set *Set[T]) In(item T) bool {

_, present := set.items[item]

return present

}

// Return a slice of all the items in set
func (set *Set[T]) Items() []T {
items := []T{}

CHAPTER 7 HASH TABLES

259

CHAPTER 7 HASH TABLES

for item :

range set.items {

items = append(items, item)

}

return items

}

// Return the number of items in set
func (set *Set[T]) Size() int {
return len(set.items)

}

// Return a new set containing all the unique items of set and set2
func (set *Set[T]) Union(set2 Set[T]) *Set[T] {
result := Set[T]{}
result.items = make(map[T]bool)
for index := range set.items {
result.items[index] = true
}
for j := range set2.items {
_, present := result.items[j]
if lpresent {
result.items[j] = true

}

return &result

}

// Return a new set containing the items found in both set and set2
func (set *Set[T]) Intersection(set2 Set[T]) *Set[T] {
result := Set[T]{}
result.items = make(map[T]bool)
for i := range set2.items {
_, present := set.items[i]
if present {
result.items[i] = true

260

CHAPTER 7 HASH TABLES

return &result

}

// Return a new set of items in set not found in set2
func (set *Set[T]) Difference(set2 Set[T]) *Set[T] {
result := Set[T]{}
result.items = make(map[T]bool)
for i := range set.items {
_, present := set2.items[i]
if lpresent {
result.items[i] = true

}

return &result

}

// Return true if all items of set2 are in set
func (set *Set[T]) Subset(set2 Set[T]) bool {
for i := range set.items {
_, present := set2.items[i]
if lpresent {
return false

}
}
return true
}
Listing 7-7 presents a main driver test program that exercises the methods of
package set.

Listing 7-7. Main driver to exercise set package

package main

import (
"example.com/set"
"fmt"

)

261

CHAPTER 7 HASH TABLES

func main() {
set1 := set.Set[int]{}
setl.Insert(3)
set1.Insert(5)
set1.Insert(7)
setl.Insert(9)
set2 := set.Set[int]{}
set2.Insert(3)
set2.Insert(6)
set2.Insert(8)
set2.Insert(9)
set2.Insert(11)
set2.Delete(11)
fmt.Println("Items in set2: ", set2.Items())

fmt.Println("s in set1: ", set1.In(5))
fmt.Println("5 in set2: ", set2.In(5))

fmt.Println("Union of setl and set2: ", seti.Union(set2).Items())
fmt.Println("Intersection of seti and set2: ",
setl.Intersection(set2).Items())
fmt.Println("Difference of set2 with respect to seti: ",
set2.Difference(set1).Items())
fmt.Println("Size of this difference: ", seti.
Intersection(set2).Size())
}
/* Output
Items in set2: [6 8 9 3]
5 in set1: true
5 in set2: false
Union of set1 and set2: [9 3 57 6 8]
Intersection of set1 and set2: [3 9]
Difference of set2 with respect to seti: [6 8]
Size of this difference: 2

*/

262

CHAPTER 7 HASH TABLES

7.6 Summary

We examined hash functions and hash tables in this chapter. We saw that hash tables
using the standard map data structure are extremely efficient in searching an unordered
collection. We looked at the classic Rabin-Karp for efficiently searching a string for a
pattern. This algorithm uses a rolling hash function. Finally, we implemented a Set using
a hash map.

In the next chapter, we turn our attention to Tree data structures. This is the first of
several chapters that focus on binary trees.

263

CHAPTER 8

Binary Trees

In the previous chapter, we examined hash functions and hash tables and looked at
several applications including string searching and the implementation of a Set that
utilizes hashing.

In this chapter, we turn our attention to Tree structures. This is the first of
several chapters that focus on trees. We introduce binary trees in this chapter. We
look at mechanisms for traversing a binary tree. We tackle the challenging problem
of graphically displaying a binary tree. To do this, we again use the third-party Fyne
package to obtain the resources needed for such graphics.

In the next section, we define a binary tree.

8.1 Binary Trees

A binary tree is a specialized type of tree in which
e Everynode has at most two children
e The children are called left and right

A binary tree with 7 nodes of height 5 with 3 leaf nodes is shown in Figure 8-1.

265
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_8

https://doi.org/10.1007/978-1-4842-8191-8_8

CHAPTER 8 BINARY TREES

Root

Level 2

Level 3

Level 5

Figure 8-1. Binary tree

In contrast with trees in nature, the root of a binary tree is at the top of the structure,
and the tree grows downward as more nodes are added. Leaf nodes have no children.
In the next section, we look at three methods for traversing a binary tree.

8.2 Tree Traversal

A tree traversal visits each node once operating on the data stored in each node. There
are three traversals that we shall consider for binary trees: inorder, preorder, and
postorder. Each of these traversals is defined recursively. We illustrate with the tree
shown previously.

Inorder Traversal

Starting at the root, we descend left from A to B. We descend again left arriving at

D. Then left again to E and finally again to FE. No output has occurred yet. From F, we
descend left only to find no left child. Then we backtrack and visit E. A visit could simply
output the data stored in F or perform some operation on this data. We descend to

the right of F again finding no right child. Having gone to F’s left and outputting F and

266

CHAPTER 8 BINARY TREES

F’s right, we backtrack to E. Having already gone to E'’s left, we visit node E. We then
descend to E’s right. We go left from G; then we visit G. We backtrack to D. We visit D. We
backtrack to B. We visit B. We backtrack to A. Having gone to A’s left, we visit A. We
descend to the right to node C. We go left. We visit C. We go right. We backtrack to A, and
we are done.

The sequence of visitation is therefore F, E, G, D, B, A, C.

Preorder Traversal

For this traversal, we visit node A first. A visit could simply output the data stored in A
or perform some operation on this data. After visiting A, we descend to the left reaching
node B. We visit node B. Then we descend to the left and visit node D. Then we descend
to the left and visit node E. Then we descend to the left and visit node F. Since node F
does not have a left child, and having visited node F, we descend to the right and visit
node G. We backtrack up the tree to node A. Having already visited A, we descend to the
right and visit node C. The sequence of visitation is therefore ABD E F G C.

Postorder Traversal

Here, the recursive sequence of operations is descend left, descend right, and then visit.
See whether you agree that this produces the sequence of visitation F G E D B C A for the
tree shown previously.

In the next section, we implement a graphical depiction of a binary tree using the
support of the third-party Fyne package.

8.3 Draw Tree

We wish to be able to draw a binary tree using graphics from the fyne graphical user
interface package. Such a drawing must show all tree nodes with their key values and
lines connecting parent and child nodes with the level of each node respected in the
drawing.

Figure 8-2 shows a screenshot of the tree constructed from the code that we
present in this section. The base type assumed for the data in each node is a single-
character string.

267

CHAPTER 8 BINARY TREES

ede Binary Tree Graph

T
o 8 16

Figure 8-2. Screenshot of a binary tree

We simplify the explanation of the fairly complex draw-tree algorithm by first
presenting a nongeneric version that uses string as the base type. In the next chapter,
we present a generic version. Listing 8-1 presents the core data structures for drawing a
binary tree.

Listing 8-1. Core data structures for drawing a binary tree
package main

type BinaryTree struct {
Root *Node
NumNodes int

}

type Node struct {
Value string
Left *Node
Right *Node

268

CHAPTER 8 BINARY TREES

}

type nodePair struct {
Vali, Val2 string

}

type nodePos struct {
Val string
YPos int
XPos int

}

var data []nodePos // Used to get node positions (Val, XPos, YPos)
var endPoints []nodePair // Used to plot lines

Binary Tree Structure

BinaryTree is defined as a struct containing a Root field specified as a pointer to a Node
and a field NumNodes, an int.

Node is defined as a struct with a Value field of type string (later, it will be a generic
type) and fields Left and Right each defined as a pointer to Node. A Node contains two
recursive references to Node through Left and Right pointers.

Type nodePair is defined as a struct containing fields Vall and Val2 (string).
Variable endPoints is defined as a slice of nodePair and is used to keep track of the end
point values of the lines connecting nodes in the binary tree.

Type nodePos is a struct containing Val (string) and YPos and XPos (int). Variable
data is defined as a slice of nodePos and is used to define the position and value of each
node to be graphed.

Infrastructure Used to Display Binary Tree

Listing 8-2 shows the support functions that set up the infrastructure to display the
graphics of the binary tree.

Listing 8-2. Functions for setting up the display of the binary tree

func prepareDrawTree(tree BinaryTree) {
prepareToDraw(tree)

269

CHAPTER 8 BINARY TREES

fmt.Println(endPoints)
fmt.Println(data)

}

func findXY(val string) (int, int) {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return data[i].XPos, data[i].YPos

}

return -1, -1

}

func findX(val string) int {
for i := 0; i < len(data); i++ {
if data[i].Val == val {
return i

}

return -1

}

func setXValues() {
for index := 0; index < len(data); index++ {
xValue := findX(data[index].Val)
data[index].XPos = xValue

}

func prepareToDraw(tree BinaryTree) {
inorderLevel(tree.Root, 1)
setXValues()
getEndPoints(tree.Root, nil)

}

func inorderLevel(node *Node, level int) {
if node != nil {

inorderLevel(node.Left, level + 1)

270

CHAPTER 8 BINARY TREES

data = append(data, nodePos{node.Value, 100 - level, -1})
inorderLevel(node.Right, level + 1)

}

func getEndPoints(node *Node, parent *Node) {
if node != nil {

if parent != nil {
endPoints = append(endPoints, nodePair{node.Value,
parent.Value})

}

getEndPoints(node.Left, node)

getEndPoints(node.Right, node)

Explanation of Code

The function prepareDrawTree invokes prepareToDraw, each taking a parameter tree
(BinaryTree).

Function prepareToDraw invokes inorderLevel passing the root node of the tree
and the level 1. This inorder traversal tests if the node is not nil and, if so, recursively calls
itself passing the parameters node.Left and level + 1.

The second line of code is the visitation, which appends to the global data slice
a nodePos with node.Value and YPos equal to 100 - level and an XPos of -1 (just a
temporary place holder). Since trees are built from the root downward, the higher the
level, the lower the YPos, thus the 100 - level for YPos.

The third line of code is the recursive call to node.Right and level + 1.

The second line of code in prepareToDraw is an invocation of the setXValues()
function. This function uses findX to locate the index in the data slice that contains the
value of every nodePos in data. This index is used as the XValue in the nodePos as we
iterate through the data slice. The first nodePos in data will be the node furthest to the
left (node F in the tree shown earlier) and will have an XPos of 0. The second nodePos in
data will be node E in that tree. The slice data needs to be computed (except for XPos)
before the setXY() function can do its work.

271

CHAPTER 8 BINARY TREES

Upon the completion of setXY(), the preorder recursive function getEndPoints is
invoked.

As each node is visited, the slice of nodePair is built using the node visited and its
parent. This information will be used to draw the edges connecting the tree nodes.

We illustrate the construction of data and endPoints using a simple tree containing
four nodes.

Listing 8-3 shows a simple main function and the resulting data and endPoints
slices displayed in the console.

Listing 8-3. Main function with four nodes
package main

func main() {
root := Node{"A", nil, nil}
nodeB := Node{"B",nil, nil}
nodeC := Node{"C", nil, nil}
nodeD := Node{"D", nil, nil}

root.Left = &nodeB
root.Right = &nodeC
nodeC.Right = &nodeD

myTree := BinaryTree{8root, 4}
ShowTreeGraph(myTree)

The console output is:

slice of endPoints: [{B A} {C A} {D C}]

slice of data: [{B 98 0} {A 99 1} {C 98 2} {D 97 3}]

The data slice reveals that node B has an XPos of 0 (leftmost node); node A, an XPos
of 1; node C, an XPos of 2; and node D, an XPos of 3. This sequence results from the
inorder traversal shown previously.

The end points of the three lines that must be drawn are shown in the slice of
endPoints (a line from B to A, from C to A, and from D to C).

The tree that is constructed using the fyne GUI package is shown in Figure 8-3.

272

CHAPTER 8 BINARY TREES

ane Binary Tree

«

— - . - . - T v T r - . - . . .
I L] 1 2 3
-

Figure 8-3. Another binary tree screenshot

Implementation of ShowTreeGraph

With the computation of the global variables data and endPoints, we are ready to plot
the graph representing the binary tree.
Listing 8-4 presents the details of plotting the tree graph.

Listing 8-4. Plotting the graph of the binary tree

func drawGraph(a fyne.App, w fyne.Window) {
image := canvas.NewImageFromResource(theme.FynelLogo())
image = canvas.NewImageFromFile(path + "tree.png")
image.FillMode = canvas.ImageFillOriginal
w.SetContent(image)
w. Show()

}

func ShowTreeGraph(myTree BinaryTree) {
prepareDrawTree(myTree)

273

CHAPTER 8 BINARY TREES

myApp := app.New()

myWindow := myApp.NewWindow("Binary Tree")
myWindow.Resize(fyne.NewSize (1000, 600))
path, := homedir.Dir()

path += "/Desktop//"

nodePts := make(plotter.XYs, myTree.NumNodes)

for i := 0; i < len(data); i++ {
nodePts[i].Y = float64(data[i].YPos)
nodePts[i].X = float64(data[i].XPos)

}

nodePtsData := nodePts

p := plot.New()

p.Add(plotter.NewGrid())

nodePoints, err := plotter.NewScatter(nodePtsData)

if err != nil {

log.Panic(err)
}
nodePoints.Shape = draw.CircleGlyph{}
nodePoints.Color = color.RGBA{G: 255, A: 255}

nodePoints.Radius = vg.Points(12)

// Plot lines
for index := 0; index < len(endPoints); index++ {
vall := endPoints[index].Val1l
x1, y1 := findXY(val1)
val2 := endPoints[index].Val2
x2, y2 := findXY(val2)
pts := plotter.XYs{{X: float64(x1), Y: float64(y1)}, {X: float64(x2),
Y: float64(y2)}}
line, err := plotter.NewlLine(pts)
if err != nil {
log.Panic(err)
}
scatter, err := plotter.NewScatter(pts)
if err != nil {

274

CHAPTER 8 BINARY TREES

log.Panic(err)

}

p.Add(line, scatter)
}
p.Add(nodePoints)

// Add Labels
for index := 0; index < len(data); index++ {
x := float64(data[index].XPos) - 0.05
y := float64(data[index].YPos) - 0.02
str := data[index].Val
label, err := plotter.NewlLabels(plotter.XYLabels {
XYs: []plotter.Xy {
{X: x ,Y: y},
}J
Labels: []string{str},
1)
if err != nil {
log.Fatalf("Could not creates labels plotter: %+v", err)

}
p.Add(label)

}

path, = homedir.Dir()
path += "/Desktop/GoDS/"
err = p.Save(1000, 600, "tree.png")
if err != nil {
log.Panic(err)

}
drawGraph(myApp, myWindow)

myWindow. ShowAndRun()

275

CHAPTER 8 BINARY TREES

The first line of code in ShowTreeGraph is prepareDrawTree. This populates data
with a slice of nodePos, with each nodePos containing the key value stored in a node as
well as its XPos and YPos in the graph.

A new fyne.Window, myWindow, is created with the title “Binary Tree: and width
1000 and height 600 pixels”.

A new plotter, nodePts, is created. The X and Y coordinates of the plotter are
assigned from the XPos and YPos in the data slice.

A new plot is created and populated with the information in plotter. A scatter plot,
nodePoints, is created from plotter using nodePtsData.

The Shape, Color, and Radius of each node point are assigned.

The same approach is taken in drawing the lines and creating the labels on
each node.

Finally, a file “tree.png” is saved to the main directory.

The support function drawGraph is invoked with the fyne.App (myApp) and fyne.
Window (myWindow) passed as parameters.

Function drawGraph loads and displays the “tree.png” image.

Many packages from the fyne framework need to be imported for the code to work.
These imports are shown in Listing 8-5, which presents the complete binarytree package.

Listing 8-5. Complete binarytree package
package binarytree

import (
"fmt"
"image/color"
"log"
"fyne.io/fyne/v2"
"fyne.io/fyne/v2/app"
"fyne.io/fyne/v2/canvas”
"fyne.io/fyne/v2/theme"
"github.com/mitchellh/go-homedir"
"gonum.org/vi/plot”
"gonum.org/vi/plot/plotter’
"gonum.org/vi/plot/vg"
"gonum.org/vi/plot/vg/draw’

276

type BinaryTree struct {

Root *Node
NumNodes int

}

type Node struct {
Value string
Left *Node
Right *Node

}

type nodePair struct {
Vali, Val2 string

}

type nodePos struct {
Val string
YPos int
XPos int

}

CHAPTER 8 BINARY TREES

var data []nodePos // Used to get (Val, XPos, YPos) of each node

var endPoints []nodePair

func prepareDrawTree(tree BinaryTree) {

prepareToDraw(tree)

fmt.Printf("\nslice of endPoints: %v", endPoints)
fmt.Printf("\nslice of data: %v", data)

}

func findXY(val string) (int, int) {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return data[i].XPos, data[i].YPos

}

return -1, -1

// Used to plot lines

277

CHAPTER 8 BINARY TREES

func findX(val string) int {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return i

}

return -1

}

func setXValues() {
for index := 0; index < len(data); index++ {
xValue := findX(data[index].Val)
data[index].XPos = xValue

}

func prepareToDraw(tree BinaryTree) {
inorderLevel(tree.Root, 1)
setXValues()
getEndPoints(tree.Root, nil)

}

func inorderLevel(node *Node, level int) {
if node != nil {
inorderLevel (node.Left, level + 1)
data = append(data, nodePos{node.Value, 100 - level, -1})
inorderLevel(node.Right, level + 1)

}

func getEndPoints(node *Node, parent *Node) {
if node != nil {
if parent != nil {
endPoints = append(endPoints, nodePair{node.Value,
parent.Value})

278

}

CHAPTER 8 BINARY TREES

getEndPoints(node.Left, node)
getEndPoints(node.Right, node)

var path string

func drawGraph(a fyne.App, w fyne.Window) {

}

image := canvas.NewImageFromResource(theme.FynelLogo())
image = canvas.NewImageFromFile(path + "tree.png")
image.FillMode = canvas.ImageFillOriginal
w.SetContent(image)

w. Show()

func ShowTreeGraph(myTree BinaryTree) {

prepareDrawTree(myTree)

myApp := app.New()

myWindow := myApp.NewWindow("Binary Tree")
myWindow.Resize(fyne.NewSize (1000, 600))
path, := homedir.Dir()

path += "/Desktop//"

nodePts := make(plotter.XYs, myTree.NumNodes)

for i := 0; i < len(data); i++ {
nodePts[i].Y = float64(data[i].YPos)
nodePts[i].X = float64(data[i].XPos)

}

nodePtsData := nodePts

p := plot.New()

p.Add(plotter.NewGrid())

nodePoints, err := plotter.NewScatter(nodePtsData)

if err != nil {

log.Panic(err)
}
nodePoints.Shape = draw.CircleGlyph{}
nodePoints.Color = color.RGBA{G: 255, A: 255}

nodePoints.Radius = vg.Points(12)

279

CHAPTER 8 BINARY TREES

280

// Plot lines
for index := 0; index < len(endPoints); index++ {

vall := endPoints[index].Val1
x1, y1 := findXY(val1)
val2 := endPoints[index].Val2
x2, y2 := findXY(val2)
pts := plotter.XYs{{X: float64(x1), Y: float64(y1)},
{X: float64(x2), Y: float64(y2)}}
line, err := plotter.NewlLine(pts)
if err != nil {
log.Panic(err)
}
scatter, err := plotter.NewScatter(pts)
if err != nil {

log.Panic(err)
}
p.Add(line, scatter)
}
p.Add(nodePoints)

// Add Labels
for index := 0; index < len(data); index++ {

x := float64(data[index].XPos) - 0.05
y := float64(data[index].YPos) - 0.02
str := data[index].Val
label, err := plotter.NewlLabels(plotter.XYLabels {
XYs: []plotter.XY {
{X: x ,Y: y},
}J
Labels: []string{str},

1)

CHAPTER 8 BINARY TREES

if err != nil {
log.Fatalf("Could not creates labels plotter: %+v", err)
}
p.Add(label)
}
path, = homedir.Dir()

path += "/Desktop/GoDS/"
err = p.Save(1000, 600, "tree.png")
if err != nil {

log.Panic(err)

}
drawGraph(myApp, myWindow)

myWindow.ShowAndRun()

Listing 8-6 presents a main driver program that uses package binarytree to
construct a BinaryTree with 18 nodes and then displays this tree.
Listing 8-6. A main driver program that builds and displays a binary tree

package main
import bt"example.com/binarytree"

func main() {
root := bt.Node{"A", nil, nil}
nodeB := bt.Node{"B",nil, nil}
nodeC := bt.Node{"C", nil, nil}
nodeD := bt.Node{"D", nil, nil}
nodeE := bt.Node{"E", nil, nil}
nodeF := bt.Node{"F",nil, nil}
nodeG := bt.Node{"G", nil, nil}
nodeH := bt.Node{"H", nil, nil}
nodel := bt.Node{"I", nil, nil}
nodeJ := bt.Node{"J", nil, nil}
nodeK := bt.Node{"K", nil, nil}
nodeL := bt.Node{"L", nil, nil}

281

CHAPTER 8 BINARY TREES

nodeM := bt.Node{"M", nil, nil}
nodeN := bt.Node{"N", nil, nil}
node0 := bt.Node{"0", nil, nil}
nodeP := bt.Node{"P", nil, nil}
nodeQ := bt.Node{"Q", nil, nil}
nodeR := bt.Node{"R", nil, nil}

root.Left = &nodeB
root.Right = &nodeC
nodeB.Left = &nodeD
nodeD.Right = &nodeH
nodeD.Left = &nodeE
nodeE.Left = &nodeF
nodeE.Right = &nodeG
nodeC.Right = &nodel
nodeC.Left = &node]
nodel.Right = &nodeK
nodeK.Left = &nodel
nodelL.Left = &nodeM
nodelL.Right = &nodeN
nodeN.Right = &node0
node0.Left = &nodeP
node0.Right = &nodeQ
nodeM.Left = &nodeR
myTree := bt.BinaryTree{&root, 18}
bt.ShowTreeGraph(myTree)

The binary tree produced is shown in Figure 8-4.

282

CHAPTER 8 BINARY TREES

LN] Binary Tree

90—

b

Figure 8-4. Output of program

Creating go.mod Files in Subdirectories binarytree
and main

As discussed in Section 3.2, a module file, go.mod, must be generated in each of the
subdirectories main and binarytree containing main.go and binarytree.go.

The invocation of go mod tidy in subdirectories main and binarytree causes the
correct require clauses to be built in each of these go.mod files. The first time main is
run, the imports from GitHub are downloaded.

The files generated are as follows:

module example.com/main

go 1.18

replace example.com/binarytree => ../binarytree
require (

example.com/binarytree v0.0.0-00010101000000-000000000000 // indirect

283

CHAPTER 8 BINARY TREES

fyne.io/fyne/v2 v2.1.2 // indirect

github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
golang.
golang.
golang.
golang.

com/ajstarks/svgo v0.0.0-20210923152817-c3b6e2f0c527 // indirect
com/davecgh/go-spew v1.1.1 // indirect

com/fogleman/gg v1.3.0 // indirect

com/fredbi/uri v0.0.0-20181227131451-3dcfdacbaaf3 // indirect
com/fsnotify/fsnotify v1.4.9 // indirect

com/go-fonts/liberation v0.2.0 // indirect

com/go-gl/gl v0.0.0-20210813123233-e4099ee2221f // indirect
com/go-gl/glfw/v3.3/glfw v0.0.0-20211024062804-40e447a793be
com/go-latex/latex v0.0.0-20210823091927-c0d11ff05a81 // indirect
com/go-pdf/fpdf v0.5.0 // indirect

com/godbus/dbus/v5 v5.0.4 // indirect

com/goki/freetype v0.0.0-20181231101311-fa8a33aabaff // indirect
com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0 // indirect
com/mitchellh/go-homedir v1.1.0 // indirect
com/pmezard/go-difflib v1.0.0 // indirect

com/srwiley/oksvg v0.0.0-20200311192757-870daf9aa564 // indirect
com/srwiley/rasterx v0.0.0-20200120212402-85cb7272f5e9 // indirect
com/stretchr/testify vi.5.1 // indirect

com/yuin/goldmark v1.3.8 // indirect

org/x/image v0.0.0-20210628002857-a66eb6448b8d // indirect
org/x/net v0.0.0-20210405180319-a5a99cb37ef4 // indirect
org/x/sys v0.0.0-20210630005230-0f9fa26af87c // indirect
org/x/text v0.3.6 // indirect

gonum.org/vi/plot v0.10.0 // indirect
gopkg.in/yaml.v2 v2.2.8 // indirect

)

module example.com/binarytree

go 1.18

require (

fyne.io/fyne/v2 v2.1.2

github.

com/mitchellh/go-homedir vi.1.0

gonum.org/vi/plot v0.10.0

284

require (

github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
github.
golang.
golang.
golang.
golang.

CHAPTER 8 BINARY TREES

com/ajstarks/svgo v0.0.0-20210923152817-c3b6e2f0c527 // indirect
com/davecgh/go-spew v1.1.1 // indirect

com/fogleman/gg v1.3.0 // indirect

com/fredbi/uri v0.0.0-20181227131451-3dcfdacbaaf3 // indirect
com/fsnotify/fsnotify v1.4.9 // indirect

com/go-fonts/liberation v0.2.0 // indirect

com/go-gl/gl v0.0.0-20210813123233-e4099ee2221f // indirect
com/go-gl/glfw/v3.3/glfw v0.0.0-20211024062804-40e447a793be
com/go-latex/latex v0.0.0-20210823091927-c0d11ff05a81 // indirect
com/go-pdf/fpdf v0.5.0 // indirect

com/godbus/dbus/v5 v5.0.4 // indirect

com/goki/freetype v0.0.0-20181231101311-fa8a33aabaff // indirect
com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0 // indirect
com/pmezard/go-difflib v1.0.0 // indirect

com/srwiley/oksvg v0.0.0-20200311192757-870dat9aa564 // indirect
com/srwiley/rasterx v0.0.0-20200120212402-85cb7272f5e9 // indirect
com/stretchr/testify v1.5.1 // indirect

com/yuin/goldmark v1.3.8 // indirect

org/x/image v0.0.0-20210628002857-a66eb6448b8d // indirect
org/x/net v0.0.0-20210405180319-a5a99cb37ef4 // indirect
org/x/sys v0.0.0-20210630005230-0f9fa26af87¢c // indirect
org/x/text v0.3.6 // indirect

gopkg.in/yaml.v2 v2.2.8 // indirect

Now the import statement

package main

import bt"example.com/binarytree"”

will work and allow the resources defined in package binarytree to be available in

main.go.

285

CHAPTER 8 BINARY TREES

8.4 Summary

We introduced the binary tree structure. We showed three mechanisms for visiting each
tree node exactly once. We presented a nongeneric implementation of a binary tree and
a suite of functions for graphically displaying a binary tree using the resources in the
third-party fyne package.

In the next chapter, we continue our exploration of trees and examine binary
search trees.

286

CHAPTER 9

Binary Search Tree

In the previous chapter, we introduced and implemented binary trees and explained the
code for traversing and displaying such trees graphically.

In this chapter, we explore an important specialized binary tree, the binary
search tree. The goal of a search tree is to organize data to support rapid access to
the information stored in the tree. Search trees that are relatively balanced have a
logarithmic relationship between the maximum depth of the tree and the number of
nodes in the tree and therefore the number of operations required to search the tree for a
particular item stored in the tree.

Tree search algorithms with complexity limited by maximum depth are highly
efficient.

In the next section, we present an overview of search trees.

9.1 Overview

There are many types of search trees.

The first type of search tree we examine is the binary search tree. In later chapters,
we explore other types of search trees.

A binary search tree (BST) is a special type of binary tree in which every node
contains a search key and

1. All keys smaller than the key in node X are stored in the left
subtree of X

2. All keys greater than the key in node X are stored in the right
subtree of X

287
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8 9

https://doi.org/10.1007/978-1-4842-8191-8_9

CHAPTER9 BINARY SEARCH TREE

This implies that in a search tree, we must be able to compare the Value fields of
each node.

As an example, consider the BST shown in Figure 9-1. This tree is not balanced, but
conditions 1 and 2 stated previously hold for every node in the tree.

Figure 9-1. Binary search tree

Searching

Searching a binary search tree uses a simple algorithm. Compare the key you are
searching for with the key in the root node. If the search key is smaller, descend to the
left; if larger, descend to the right. Continue this pattern recursively until the bottom of
the tree is reached or a node is found with a value that equals the search key.

As an example, if we were to search for node 12 in the tree shown previously, we
would descend left (to node 15), descend left (to mode 10), descend right (to node 14),
and descend left to our target, node 12. This would require five comparison operations,
which is the depth of this tree.

288

CHAPTER9 BINARY SEARCH TREE

Insertion

To insert a node into a search tree, we search for the node we wish to insert. This takes us
to the bottom of the tree since we will not allow nodes with duplicate values in a search
tree. We then insert the new node where it would have been found if initially present in

the tree.
For the tree given earlier, if we were to insert node 13, it would be inserted as the
right child of node 12 since that is where it would have been found if initially present in

the tree.

Ordered Output

An inorder traversal of this search tree, and all search trees, produces a sequence of
visitation from smallest value to largest value, ordered output. Try this out for the tree

given in Figure 9-2 and verify this fact.

Figure 9-2. Binary search tree for inorder traversal

289

CHAPTER9 BINARY SEARCH TREE

Deletion

The algorithm and method for removing a key from a search tree are more complicated.
After the removal, we must be guaranteed to still have a search tree.

There are three special cases:
1. The node to be removed is a leaf node.
2. Thenode to be removed has one child.
3. The node to be removed has two children.

Case 1 is the simplest. We find the parent of the leaf node and set the appropriate link
(left or right) of the parent to nil, effectively clipping the leaf node from the tree.

The second case (the node to be removed has one child) is handled as a linked list
deletion as follows:

Assume left is the left child of the node being deleted, or assume right is the right
child of the node being deleted.

if node to be deleted has one child (left or right):

if left != nil and parent.left == keyNode:
parent.left = left

else if left != nil and parent.right == keyNode:
parent.right = left

else if right != nil and parent.left == keyNode:
parent.left = right

else if right != nil and parent.right == keyNode:
parent.right = right

As an exercise, diagram out these four cases to verify that the keyNode is unlinked
from its parent and the parent reattached to its grandchild.
The third case (the node to be removed has two children) is the most complex. It is a

three-step process:

1. Find the inorder successor of keyNode (the smallest node to the
right of keyNode).

2. Copy the key from successor node to keyNode.

3. Remove the successor node.

290

CHAPTER9 BINARY SEARCH TREE

As an exercise, show that the successor node has either zero or one child, so its
removal is a case 1 or case 2 deletion shown previously.
In the next section, we present a generic binary search tree implementation.

9.2 Generic Binary Search Tree

We present a generic implementation of binary search tree. We must constrain the
generic type, T, so that it satisfies two conditions:

1. The values of type T stored in the tree nodes can be compared.

2. The values of type T stored in the tree nodes can be converted to a
string using the String() function.

Type OrderedStringer

We define a constraint type OrderedStringer that satisfies the two preceding conditions
as follows:

type ordered interface {
~int | ~float64 | ~string
}

type OrderedStringer interface {
ordered
String() string

Requirement 1 is specified using the ordered type. Requirement 2 is specified using
the signature for the String() function.

Any instantiation of the generic binary search tree must use a value type that satisfies
the OrderedStringer type given previously. We will present examples later in this section
that illustrates this usage.

Generic Types Needed for Binary Search Tree

Listing 9-1 presents the generic data structures needed in package binarysearchtree.

291

CHAPTER9 BINARY SEARCH TREE

Listing 9-1. Generic data structures in package binarysearchtree

package binarysearchtree

import (
"image/color"
"log"
"fyne.io/fyne/v2"
"fyne.io/fyne/v2/app"
"fyne.io/fyne/v2/canvas”
"fyne.io/fyne/v2/theme"
"github.com/mitchellh/go-homedir"
"gonum.org/vi/plot”
"gonum.org/vi/plot/plotter"
"gonum.org/vi/plot/vg"
"gonum.org/vi/plot/vg/draw"

)

type ordered interface {
~int | ~float64 | ~string
}

type BinarySearchTree[T OrderedStringer] struct {
Root *Node[T]
NumNodes int

}

type Node[T OrderedStringer] struct {
Value T
Left *Node[T]
Right *Node[T]

}

type OrderedStringer interface {
ordered
String() string

}

292

CHAPTER9 BINARY SEARCH TREE

The type BinarySearchTree and the type Node are each defined with a generic
parameter T of type OrderedStringer. This assures us that we can compare node values
and output the values as strings in our graphical display of the generic tree. If we were
not using the functions for displaying our binary search tree, we would not need the
second constraint on the generic parameter T.

Methods for Binary Search Tree

The methods defined for type BinarySearchTree are presented in Listing 9-2.

Listing 9-2. Methods for BinarySearchTree

func (bst *BinarySearchTree[T]) Insert(newValue T) {
if bst.Search(newValue) == false { // newValue not in existing tree
n := 8Node[T]{newValue, nil, nil}
if bst.Root == nil { // First value in bst
bst.Root = 8Node[T]{newValue, nil, nil}
} else {
insertNode(bst.Root, n)

}

bst.NumNodes += 1

}

func (bst *BinarySearchTree[T]) Delete(value T) {
if bst.Search(value) == true {
deleteNode(bst.Root, value)
bst.NumNodes -= 1

}

func (bst *BinarySearchTree[T]) Search(value T) bool {
return search(bst.Root, value)

}

func (bst *BinarySearchTree[T]) InOrderTraverse(op func(T)) {
inOrderTraverse(bst.Root, op)

293

CHAPTER9 BINARY SEARCH TREE

func (bst *BinarySearchTree[T]) Min() *T {
node := bst.Root
if node == nil {

return nil
}
for {
if node.Left == nil {
return &node.Value
}
node = node.Lleft
}
}
func (bst *BinarySearchTree[T]) Max() (*T, int) { // second return value is
// height
node := bst.Root
height := 1
if node == nil {
return nil, 0
}
for {
if node.Right == nil {
return &node.Value, height
}
height += 1
node = node.Right
}
}

Discussion of Insert, Delete, and Inorder Traversal

Methods Insert and Delete require that the node being inserted is not currently in
the search tree and that the node being deleted is in the search tree. There is a small
performance penalty imposed by this testing if the tree is relatively balanced.

The generic parameter constraint is not present in any of the methods. The compiler
can infer this constraint since it is defined in type BinarySearchTree.

The method InOrderTraversal takes a function op as input. This represents the
operation to be performed when visiting each node of the binary search tree.

294

CHAPTER9 BINARY SEARCH TREE

Support Functions

Listing 9-3 contains the support functions that do the actual work defined in the publicly
available methods defined in Listing 9-2.

Listing 9-3. Support functions for implementing methods

func insertNode[T OrderedStringer](node, newNode *Node[T]) {
if newNode.Value < node.Value {
if node.Left == nil {
node.Left = newNode
} else {
insertNode(node.Left, newNode)
}
} else {
if node.Right == nil {
node.Right = newNode
} else {
insertNode(node.Right, newNode)

}
}
}
func deleteNode[T OrderedStringer](node *Node[T], value T) *Node[T] {
if node == nil { return nil }

if value < node.Value {
node.Left = delete(node.Left, value)
return node

}

if value> node.Value {
node.Right = delete(node.Right, value)
return node

}

if node.Left == nil && node.Right == nil {
node = nil
return nil

}

295

CHAPTER9 BINARY SEARCH TREE

if node.Left == nil {
node = node.Right
return node

}

if node.Right == nil {
node = node.Lleft
return node

}
LeftmostRightside := node.Right
for {
//find smallest value on the Right side
if LeftmostRightside != nil && LeftmostRightside.Left != nil {
LeftmostRightside = LeftmostRightside.Left
} else {
break
}
}
node.Value = LeftmostRightside.Value
node.Right = delete(node.Right, node.Value)
return node
}
func search[T OrderedStringer](n *Node[T], value T) bool {
if n == nil {
return false
}
if value < n.Value {
return search(n.Left, value)
}
if value > n.Value {
return search(n.Right, value)
}
return true
}

296

CHAPTER9 BINARY SEARCH TREE

func inOrderTraverse[T OrderedStringer](n *Node[T], op func(T)) {
if n = nil {
inOrderTraverse(n.Left, op)
op(n.Value)
inOrderTraverse(n.Right, op)

Each of these support functions requires the explicit specification of the generic type
constraint since the compiler cannot infer this from the function signature.

The support functions presented in Listing 9-3 are relatively simple recursive
functions that perform the task indicated. It is left as an exercise for the reader to
verify this.

Implementation of Tree Graphics

Listing 9-4 presents the code needed to display the binary search tree.

Listing 9-4. Code for graphing binary search tree

type NodePair struct {
Vali, Val2 string

}

type NodePos struct {
Val string
YPos int
XPos int

}

var data []NodePos
var endPoints []NodePair

func PrepareDrawTree[T OrderedStringer](tree BinarySearchTree[T]) {
prepareToDraw(tree)
// fmt.Println(endPoints)
// fmt.Println(data)

297

CHAPTER9 BINARY SEARCH TREE

func FindXY(val interface{}) (int, int) {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return data[i].XPos, data[i].YPos

}

return -1, -1

}

func FindX(val interface{}) int {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return i

}

return -1

}

func SetXValues() {
for index := 0; index < len(data); index++ {
xValue := FindX(data[index].Val)
data[index].XPos = xValue

}

func prepareToDraw[T OrderedStringer](tree BinarySearchTree[T]) {
inorderLevel(tree.Root, 1)
SetXValues()
getEndPoints(tree.Root, nil)

}

func inorderLevel[T OrderedStringer](node *Node[T], level int) {
if node != nil {
inorderLevel (node.Left, level + 1)
data = append(data, NodePos{node.Value.String(), 100 - level, -1})
inorderLevel(node.Right, level + 1)

298

CHAPTER9 BINARY SEARCH TREE

func getEndPoints[T OrderedStringer](node *Node[T], parent *Node[T]) {
if node != nil {
if parent != nil {
endPoints = append(endPoints, NodePair{node.Value.String(),
parent.Value.String()})
}
getEndPoints(node.Left, node)
getEndPoints(node.Right, node)

}

var path string

func DrawGraph(a fyne.App, w fyne.Window) {
image := canvas.NewImageFromResource(theme.FynelLogo())
image = canvas.NewImageFromFile(path + "tree.png")
image.FillMode = canvas.ImageFillOriginal
w.SetContent(image)
w.Close()
w. Show()

}

func ShowTreeGraph[T OrderedStringer](myTree BinarySearchTree[T]) {
PrepareDrawTree(myTree)
myApp := app.New()
myWindow := myApp.NewWindow("Tree")
myWindow.Resize(fyne.NewSize (1000, 600))
path, _ := homedir.Dir()
path += "/Desktop//"

nodePts := make(plotter.XYs, myTree.NumNodes)
for i := 0; i < len(data); i++ {
nodePts[i].Y = float64(data[i].YPos)
nodePts[i].X = float64(data[i].XPos)
}
nodePtsData := nodePts
p := plot.New()

299

CHAPTER9 BINARY SEARCH TREE

p.Add(plotter.NewGrid())
nodePoints, err := plotter.NewScatter(nodePtsData)
if err != nil {

log.Panic(err)
}
nodePoints.Shape = draw.CircleGlyph{}
nodePoints.Color = color.RGBA{G: 255, A: 255}
nodePoints.Radius = vg.Points(12)

// Plot lines
for index := 0; index < len(endPoints); index++ {
vall := endPoints[index].Val1
x1, y1 := FindXY(val1)
val2 := endPoints[index].Val2
X2, y2 := FindXY(val2)
pts := plotter.XYs{{X: float64(x1), Y: float64(y1)},
{X: float64(x2), Y: float64(y2)}}
line, err := plotter.NewLine(pts)
if err != nil {
log.Panic(err)
}
scatter, err := plotter.NewScatter(pts)
if err != nil {
log.Panic(err)
}
p.Add(line, scatter)

}
p.Add(nodePoints)

// Add Labels

for index := 0; index < len(data); index++ {
x := float64(data[index].XPos) - 0.2
y := float64(data[index].YPos) - 0.02
str := data[index].Val

300

CHAPTER9 BINARY SEARCH TREE

label, err := plotter.NewLabels(plotter.XYLabels {
XYs: []plotter.XY {

{X: x,Y: y},
b
Labels: []string{str},
1)

if err != nil {
log.Fatalf("could not creates labels plotter: %+v", err)

}
p.Add(label)
}
path, = homedir.Dir()

path += "/Desktop/GoDS/"
err = p.Save(1000, 600, "tree.png")
if err != nil {

log.Panic(err)

}

DrawGraph (myApp, myWindow)
myWindow.ShowAndRun()

The code follows the logic presented in Chapter 8 for displaying a binary tree.
Listings 9-5 and 9-6 present the complete code for package binarysearchtree and a
main driver program that exercises the features of such a tree.

Listing 9-5. Package binarysearchtree
package binarysearchtree

import (
"image/color"
"log"
"fyne.io/fyne/v2"
"fyne.io/fyne/v2/app"
"fyne.io/fyne/v2/canvas”
"fyne.io/fyne/v2/theme"
"github.com/mitchellh/go-homedir"

301

CHAPTER9 BINARY SEARCH TREE

"gonum.org/vi/plot”
"gonum.org/vi/plot/plotter"
"gonum.org/vi/plot/vg"
"gonum.org/vi/plot/vg/draw"

)

type ordered interface {
~int | ~float64 | ~string
}

type BinarySearchTree[T OrderedStringer] struct {
Root *Node[T]
NumNodes int

}

type Node[T OrderedStringer] struct {
Value T
Left *Node[T]
Right *Node[T]

}

type OrderedStringer interface {
ordered
String() string

}

// Methods

func (bst *BinarySearchTree[T]) Insert(newValue T) {
if bst.Search(newValue) == false { // newValue not in existing tree
n := 8Node[T]{newValue, nil, nil}
if bst.Root == nil { // First value in bst
bst.Root = 8Node[T]{newValue, nil, nil}
} else {
insertNode(bst.Root, n)
}

bst.NumNodes += 1

302

CHAPTER9 BINARY SEARCH TREE

func (bst *BinarySearchTree[T]) Delete(value T) {
if bst.Search(value) == true {
deleteNode(bst.Root, value)
bst.NumNodes -= 1

}

func (bst *BinarySearchTree[T]) Search(value T) bool {
return search(bst.Root, value)

}

func (bst *BinarySearchTree[T]) InOrderTraverse(op func(T)) {
inOrderTraverse(bst.Root, op)

}

func (bst *BinarySearchTree[T]) Min() *T {
node := bst.Root
if node == nil {

return nil
}
for {
if node.Left == nil {
return &node.Value
}
node = node.Lleft
}
}
func (bst *BinarySearchTree[T]) Max() (*T, int) { // second return value is

// height
node := bst.Root
height := 1
if node == nil {
return nil, 0

303

CHAPTER9 BINARY SEARCH TREE

for {
if node.Right == nil {
return &node.Value, height
}
height += 1
node = node.Right

}

// For internal use
func insertNode[T OrderedStringer](node, newNode *Node[T]) {
if newNode.Value < node.Value {
if node.Left == nil {
node.Left = newNode
} else {
insertNode(node.Left, newNode)
}
} else {
if node.Right == nil {
node.Right = newNode
} else {
insertNode(node.Right, newNode)

}

func deleteNode[T OrderedStringer](node *Node[T], value T) *Node[T] {
if node == nil {
return nil

}

if value < node.Value {
node.Left = deleteNode(node.Left, value)
return node

304

CHAPTER9 BINARY SEARCH TREE

if value> node.Value {
node.Right = deleteNode(node.Right, value)
return node

}

if node.Left == nil && node.Right == nil {
node = nil
return nil

}

if node.Left == nil {
node = node.Right
return node

}

if node.Right == nil {
node = node.left
return node

}
LeftmostRightside := node.Right
for {
//find smallest value on the Right side
if LeftmostRightside != nil 8& LeftmostRightside.Left != nil {
LeftmostRightside = LeftmostRightside.Left
} else {
break
}
}

node.Value = LeftmostRightside.Value
node.Right = deleteNode(node.Right, node.Value)
return node

}

func search[T OrderedStringer](n *Node[T], value T) bool {
if n == nil {
return false

305

CHAPTER9 BINARY SEARCH TREE

if value < n.Value {

return search(n.Left, value)
}
if value > n.Value {

return search(n.Right, value)

}
return true
}
func inOrderTraverse[T OrderedStringer](n *Node[T], op func(T)) {
if n 1= nil {
inOrderTraverse(n.Left, op)
op(n.Value)
inOrderTraverse(n.Right, op)
}
}

// Logic for drawing tree
type NodePair struct {
Vali, Val2 string

}

type NodePos struct {
Val string
YPos int
XPos int

}

var data []NodePos
var endPoints []NodePair // Used to plot lines

func PrepareDrawTree[T OrderedStringer](tree BinarySearchTree[T]) {
prepareToDraw(tree)
// fmt.Println(endPoints)
// fmt.Println(data)

306

func FindXY(val interface{}) (int, int) {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return data[i].XPos, data[i].YPos

}

return -1, -1

}

func FindX(val interface{}) int {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return i

}

return -1

}

func SetXValues() {
for index := 0; index < len(data); index++ {
xValue := FindX(data[index].Val)
data[index].XPos = xValue

}

CHAPTER9 BINARY SEARCH TREE

func prepareToDraw[T OrderedStringer](tree BinarySearchTree[T]) {

inorderLevel(tree.Root, 1)
SetXValues()
getEndPoints(tree.Root, nil)

}

func inorderLevel[T OrderedStringer](node *Node[T], level int) {

if node != nil {

inorderLevel(node.Left, level + 1)

data = append(data, NodePos{node.Value.String(), 100 - level, -1})

inorderLevel(node.Right, level + 1)

307

CHAPTER9 BINARY SEARCH TREE

func getEndPoints[T OrderedStringer](node *Node[T], parent *Node[T]) {
if node != nil {
if parent != nil {
endPoints = append(endPoints, NodePair{node.Value.String(),
parent.Value.String()})
}
getEndPoints(node.Left, node)
getEndPoints(node.Right, node)

}

var path string

func DrawGraph(a fyne.App, w fyne.Window) {
image := canvas.NewImageFromResource(theme.FyneLogo())
image = canvas.NewImageFromFile(path + "tree.png")
image.FillMode = canvas.ImageFillOriginal
w.SetContent(image)
w.Close()
w. Show()

}

func ShowTreeGraph[T OrderedStringer](myTree BinarySearchTree[T]) {
PrepareDrawTree(myTree)
myApp := app.New()
myWindow := myApp.NewWindow("Tree")
myWindow.Resize(fyne.NewSize (1000, 600))
path, _ := homedir.Dir()
path += "/Desktop//"

nodePts := make(plotter.XYs, myTree.NumNodes)
for i := 0; i < len(data); i++ {
nodePts[i].Y = float64(data[i].YPos)
nodePts[i].X = float64(data[i].XPos)
}
nodePtsData := nodePts
p := plot.New()

308

CHAPTER9 BINARY SEARCH TREE

p.Add(plotter.NewGrid())
nodePoints, err := plotter.NewScatter(nodePtsData)
if err != nil {

}

log.Panic(err)

nodePoints.Shape = draw.CircleGlyph{}
nodePoints.Color = color.RGBA{G: 255, A: 255}
nodePoints.Radius = vg.Points(12)

// Plot lines
for index := 0; index < len(endPoints); index++ {

}

vall := endPoints[index].Val1
x1, y1 := FindXY(val1)
val2 := endPoints[index].Val2
X2, y2 := FindXY(val2)
pts := plotter.XYs{{X: float64(x1), Y: float64(y1)},
{X: float64(x2),
Y: float64(y2)}}

line, err := plotter.NewLine(pts)
if err != nil {

log.Panic(err)
}
scatter, err := plotter.NewScatter(pts)
if err != nil {

log.Panic(err)
}
p.Add(line, scatter)

p.Add(nodePoints)

// Add Labels
for index := 0; index < len(data); index++ {

x := float64(data[index].XPos) - 0.2 // Originall .05
y := float64(data[index].YPos) - 0.02

str := data[index].Val

label, err := plotter.NewLabels(plotter.XYLabels {

309

CHAPTER9 BINARY SEARCH TREE

XYs: []plotter.Xy {

X x,Y:y),
b
Labels: []string{str},
1)
if err != nil {

log.Fatalf("could not create labels plotter: %+v", err)

}
p.Add(label)

}

path, = homedir.Dir()
path += "/Desktop/GoDS/"
err = p.Save(1000, 600, "tree.png")
if err != nil {
log.Panic(err)

}
DrawGraph(myApp, myWindow)

myWindow.ShowAndRun()
}

Listing 9-6. Main driver program that uses binarysearchtree package

package main

import (
bst"example.com/binarysearchtree”
"math/rand"
"time"
“fmt"

)

// Satisfies OrderedStringer because of ~int
// Also satisfies OrderedStringer because of String() method below
type Number int

310

CHAPTER9 BINARY SEARCH TREE

func (num Number) String() string {
return fmt.Sprintf("%d", num)

}
type Float float64

func (num Float) String() string {
return fmt.Sprintf("%0.1f", num)

}

func inorderOperator(val Float) {
fmt.Println(val.String())

}

func main() {

rand.Seed(time.Now().UnixNano())

// Generate a random search tree

randomSearchTree := bst.BinarySearchTree[Float]{nil, 0}

for i :=0; i < 30; i++ {
rn := 1.0 + 99.0 * rand.Float64()
randomSearchTree.Insert(Float(rn))

}

time.Sleep(3 * time.Second)

bst.ShowTreeGraph(randomSearchTree)

randomSearchTree.InOrderTraverse(inorderOperator)

min := randomSearchTree.Min()

max, _ := randomSearchTree.Max()

fmt.Printf("\nMinimum value in random search tree is %0.1f \nMaximum

value in random search tree is %0.1f", *min, *max)

start := time.Now()

tree := bst.BinarySearchTree[Number]{nil, o0}

for val := 0; val < 100 000; val++ {
tree.Insert(Number(val))

}

elapsed := time.Since(start)

_, ht := tree.Max()

311

CHAPTER9 BINARY SEARCH TREE

fmt.Printf("\nTime to build BST tree with 100,000 nodes in sequential
order: %s. Height of tree: %d", elapsed, ht)

}
/* Output
1.2
4.4
6.9
7.7
13.
14.
17.
17.
20.
21.
24.
25.
25.
30.
33.
33.
38.
46.
47.
56.
56.
57.
57.
60.
70.
72.
75.
83.
92.
94.

Ui B, WU O ULT NN PR N U RO UTO W OON B OO N 0W W N o

312

CHAPTER9 BINARY SEARCH TREE

Minimum value in random search tree is 1.2

Maximum value in random search tree is 94.5

Time to build BST tree with 100,000 nodes in sequential order:
35.645312291s. Height of tree: 100000

*/

Discussion of binarysearchtree Package and Main Driver

The code for displaying a binary search tree in Listing 9-5 uses .String() in multiple
places since the type T is not known. This invocation of String() is boldfaced in that
listing.

There are two binary search trees used in the main driver. The generic types used are
Number and Float. Both of these types are implicitly of type OrderedStringer since they
have a String() function defined.

A binary search tree of base type float64 is constructed with 30 nodes. Each
invocation produces a different tree. One such tree is shown in Figure 9-3.

eve Tree

o

Figure 9-3. A 30-node binary search tree

313

CHAPTER9 BINARY SEARCH TREE

This random binary search tree is unbalanced. The depth of the left subtree is 5,
whereas the depth of the right subtree is 8.

The second binary search tree, with base type Number, is constructed by inserting
100,000 integers in sequential order. Essentially, this is a linked list. It took 35.6 seconds
to build this completely unbalanced search tree.

9.3 Summary

In this chapter, we implemented a generic binary search tree. We made slight
modifications to the draw tree logic so that the base type T could be output.

In the next chapter, we introduce one of the most important binary search trees, the
AVL tree. This tree maintains its balance as new nodes are added to the tree.

314

CHAPTER 10

AVL Trees

In the previous chapter, we introduced the binary search tree. In such a tree, each node
contains a key that is larger than all the keys in its left subtree and smaller than all the
keys in its right subtree. Duplicate keys are not allowed.

In building a binary search tree, the balance is dependent on the order in which keys
are inserted. For example, if the keys are inserted in ascending order, the search tree
resembles a linked list with its nodes to the right of the root node.

In 1962, two Russian mathematicians, Adelson Velsky and Landis, defined a useful
definition of search tree balance (later called AVL balance in their honor) and described
algorithms for insert and remove that preserve AVL balance. Their work has become a
classic part of data structure legacy.

In the next section, we present an overview of AVL trees.

10.1 Overview: Adelson Velsky and Landis

In this chapter, we explore and implement a generic AVL tree.

For any binary search tree, the efficiency of Insert, Delete, and Search is dependent
on how balanced the search is. Each of these operations requires approximately log,n
operations, if n is the number of nodes in the tree and the tree is balanced.

A binary search tree is defined as an AVL tree if for every node in the tree, the
maximum depth of the left subtree minus the maximum depth of the right subtree is
equal or less than 1 in magnitude. That is the AVL balance of every node is either -1, 0,
or 1 and is given by the depth of the left subtree minus the depth of the right subtree.

In the following tree, the AVL balance (hereby called balance) of each node is shown.
Balance 0 is not shown. This is not an AVL tree because of node A.

315
© Richard Wiener, PhD 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_10

https://doi.org/10.1007/978-1-4842-8191-8_10

CHAPTER 10 AVL TREES

A (-2)

/\&E(1)

Please verify that the following search tree is an AVL tree.

/10\15
AN /N

3/5 13 20
N\
4

The AVL algorithms for insert and delete involve tree rotations. We illustrate with the

6\8

12

previous tree.

Tree Rotations

Aright rotate on node 10 yields

/\
/\ \
S NN

/

12

When 10 is rotated to the right, 5’s right child becomes node 10. This makes 6 and 8
orphans. Since they are both greater than 5 and less than 10, they are placed into the left
subtree of 10 and the right subtree of 5 as shown previously.

A left rotate on node 10 produces

316

CHAPTER 10 AVL TREES

5

/ \
(left sub tree unchanged) 15\
/10 20
6 13
N,

12

The orphan nodes 13 and 12 are larger than 10 and smaller than 15 and are placed as

shown previously.

There is very little computational work involved in performing tree rotation. Only

two links in the entire tree must be modified. This is true regardless of tree size.
The brilliance of the AVL algorithms is in the Insert and Delete methods. Both these
methods are required to yield an AVL tree after either of these operations.

Insertion

We consider AVL insertion first. There are four steps.

1.

Perform an ordinary binary search tree insertion into the AVL tree.
If the tree is still an AVL tree, stop.

Starting at the node inserted (always at a leaf position), backtrack
up the search path toward the root node. If a combination of
nodes is found in which the parent has a balance whose absolute
value is 2 and its child has a balance whose magnitude is 1,

if the signs are the same (e.g., -2 and -1 or 2 and 1), a type 1
configuration exists. If the signs are opposite (e.g., -2 and 1 or 2
and -1), a type 2 configuration exists.

If the configuration is of type 1, perform a single rotation on the
parent node in a direction to restore balance.

If the configuration is of type 2, perform a sequence of two
rotations. The first rotation is on the child in a direction to restore
balance. Then perform a second rotation in a direction opposite
the first rotation on the parent.

317

CHAPTER 10 AVL TREES

These steps are guaranteed to produce a search tree with the AVL property intact.

The proof of this is beyond the scope of this book.

Deletion

The steps for AVL deletion are given as follows:

1.

Perform an ordinary binary search tree deletion. If the tree is an
AVL tree, stop.

If the tree is not an AVL tree after the ordinary deletion, traverse

up the search path from the node being deleted to the root node.

Stop when one of the following combinations of balance occurs:

a.

Parent with balance whose absolute value is 2 and child with balance
whose absolute value is 1. Determine the type of configuration as with
insertion and perform the same type of either single rotation or sequence of
two rotations.

The parent has a balance of 2 or -2, and the child has a balance of 0.
Consider this a type 1 configuration and perform the appropriate single
rotation on the parent node.

Reevaluate the balance of nodes above the parent. There is a possibility that
because of the rotation(s) performed in step a or b, another configuration
of type 1 or 2 needs to be dealt with. Continue step c until the root node is
reached and no further rotational corrections are needed.

A tree that demonstrates the need for step c is shown in Figure 10-1.

318

CHAPTER 10 AVL TREES

Figure 10-1. A tree illustrating AVL deletion

We wish to remove node 20. After the ordinary deletion of 20, node 15 has a balance
of 2. This causes us to perform a right rotation on node 15. Node 13 moves upward and
becomes the right child of the root node 10.

But now the root node 10 also has a balance of 2 since its left subtree is level 4 and
its right subtree is level 2 (we lost a level in the right subtree during the first rotation). We
correct this with a right rotation on node 10. As an exercise, sketch the resulting tree.

As an exercise, sketch the AVL tree resulting from step c.

Facts About AVL Trees

The following are some interesting facts about AVL trees:

o When inserting into AVL trees, approximately 50 percent of insertions
require no rotational correction. Among the remaining 50 percent,
about half require a type 1 single rotational correction, and half
require the type 2 rotational corrections.

319

CHAPTER 10 AVL TREES

e When deleting from an AVL tree, about 80 percent require no
rotational corrections. Among the remaining 20 percent, about
half are type 1 and half type 2. Only rarely are multiple rotational
corrections required up the search tree.

In the next section, we present an implementation of a generic AVL tree.

10.2 Implementation of a Generic AVL Tree

We present an entire avl package in Listing 10-1. Like the binary search tree, we include
the supporting code for displaying the AVL tree.

Listing 10-1. Package avl
package avl

import (
"image/color"
"log"
"fyne.io/fyne/v2"
"fyne.io/fyne/v2/app"
"fyne.io/fyne/v2/canvas”
"fyne.io/fyne/v2/theme"
"github.com/mitchellh/go-homedir"
"gonum.org/vi/plot”
"gonum.org/vi/plot/plotter’
"gonum.org/vi/plot/vg"
"gonum.org/vi/plot/vg/draw’

)

type ordered interface {
~int | ~float64 | ~string
}

type AVLTree[T OrderedStringer] struct {
Root *Node[T]
NumNodes int

320

CHAPTER 10 AVL TREES

type Node[T OrderedStringer] struct {
Value T
Left *Node[T]
Right *Node[T]
Ht int
}

type OrderedStringer interface {
ordered
String() string

}

// Methods
func (avl *AVLTree[T]) Insert(newValue T) {
if avl.Search(newValue) == false { // newValue is not in existing tree
avl.Root = insertNode(avl.Root, newValue)
avl.NumNodes += 1

}

func (avl *AVLTree[T]) Delete(value T) {
if avl.Search(value) == true {
avl.Root = deleteNode(avl.Root, value)
avl.NumNodes -= 1

}

func (avl *AVLTree[T]) Search(value T) bool {
return search(avl.Root, value)

}

func (avl *AVLTree[T]) Height() int {
return avl.Root.Height()

}

func (avl *AVLTree[T]) InOrderxTraverse(f func(T)) {
inOrderTraverse(avl.Root, f)

321

CHAPTER 10 AVL TREES

func (avl *AVLTree[T]) Min() *T {
node := avl.Root
if node == nil {

return nil
}
for {
if node.lLeft == nil {
return &node.Value
}
node = node.Left
}

}

func (avl *AVLTree[T]) Max() *T {
node := avl.Root
if node == nil {

return nil
}
for {
if node.Right == nil {
return &node.Value
}
node = node.Right
}
}
func (n *Node[T]) balanceFactor() int {
if n == nil {
return 0
}
return n.Left.Height() - n.Right.Height()
}
func (n *Node[T]) Height() int {
if n == nil {
return O
} else {

322

CHAPTER 10 AVL TREES

return n.Ht

}

func (n *Node[T]) updateHeight() {
max := func (a, b int) int {
ifa>b{
return a

}

return b

n.Ht = max(n.Left.Height(), n.Right.Height()) + 1
}

// Support functions
func newNode[T OrderedStringer](val T) *Node[T] {
return &Node[T] {
Value: val,
Left: nil,
Right: nil,
Ht: 1,

}

func search[T OrderedStringer](n *Node[T], value T) bool {
if n == nil {
return false
}
if value < n.Value {
return search(n.Left, value)
}
if value > n.Value {
return search(n.Right, value)

}

return true

323

CHAPTER 10 AVL TREES

func insertNode[T OrderedStringer](node *Node[T], val T) *Node[T] {
// if there's no node, create one
if node == nil {
return newNode(val)
}
// if value is greater than current node's value, insert to the right
if val > node.Value {
right := insertNode(node.Right, val)
node.Right = right
}
// if value is less than current node's value, insert to the left
if val < node.Value {
left:= insertNode(node.Left, val)
node.Left = left
}

return rotateInsert(node, val)

}

func rightRotate[T OrderedStringer](x *Node[T]) *Node[T] {
y = x.left
t := y.Right

.Right = x
Left = t

xX <

x

.updateHeight()
y.updateHeight()

return y

}

func leftRotate[T OrderedStringer](x *Node[T]) *Node[T] {
y := x.Right
t := y.left

y.Left = x
.Right = t

x

x

.updateHeight()

324

}

y.updateHeight()

return y

CHAPTER 10 AVL TREES

func rotateInsert[T OrderedStringer](node *Node[T], val T) *Node[T] {

}

node.updateHeight()
bFactor := node.balanceFactor()

if bFactor > 1 && val < node.Left.Value {
return rightRotate(node)

}

if bFactor < -1 && val > node.Right.Value {
return leftRotate(node)

}

if bFactor > 1 && val > node.Left.Value {
node.Left = leftRotate(node.Left)
return rightRotate(node)

}

if bFactor < -1 && val < node.Right.Value {
node.Right = rightRotate(node.Right)
return leftRotate(node)

}

return node

func inOrderTraverse[T OrderedStringer](n *Node[T], op func(T)) {

if n = nil {
inOrderTraverse(n.Left, f)
op(n.Value)
inOrderTraverse(n.Right, f)

325

CHAPTER 10 AVL TREES

func largest[T OrderedStringer](node *Node[T]) *Node[T] {
if node == nil {
return nil

}

if node.Right == nil {
return node

}
return largest(node.Right)

}

func rotateDelete[T OrderedStringer](node *Node[T]) *Node[T] {
node.updateHeight()
bFactor := node.balanceFactor()

if bFactor > 1 && node.lLeft.balanceFactor() »= 0 {
return rightRotate(node)

}

if bFactor > 1 && node.left.balanceFactor() < 0 {
node.Left = leftRotate(node.Left)
return rightRotate(node)

}

if bFactor < -1 && node.Right.balanceFactor() <= 0 {
return leftRotate(node)

}

if bFactor < -1 && node.Right.balanceFactor() > 0 {
node.Right = rightRotate(node.Right)
return leftRotate(node)

}

return node

}

func deleteNode[T OrderedStringer](node *Node[T], val T) *Node[T] {
if node == nil {
return nil

326

CHAPTER 10

if val > node.Value {
right := deleteNode(node.Right, val)
node.Right = right
} else if val < node.Value {
left := deleteNode(node.Left, val)
node.Left = left
} else {
if node.Left != nil && node.Right != nil {
// has 2 children, find the successor
successor := largest(node.Left)
value := successor.Value

// remove the successor
left := deleteNode(node.Left, value)
node.Left = left

// copy the successor value to the current node
node.Value = value

} else if node.Left != nil || node.Right != nil {
// has 1 child
// move the child position to the current node
if node.Left != nil {
node = node.left

} else {
node = node.Right
}

} else if node.Left == nil 8& node.Right == nil {
// has no child
// simply remove the node

node = nil
}
if node == nil {
return nil
}

return rotateDelete(node)

AVL TREES

327

CHAPTER 10 AVL TREES

// Logic for drawing tree
type NodePair struct {
Vali, Val2 string

}

type NodePos struct {
Val string
YPos int
XPos int

}

var data []NodePos
var endPoints []NodePair

func PrepareDrawTree[T OrderedStringer](tree AVLTree[T]) {
prepareToDraw(tree)
// fmt.Println(endPoints)
// fmt.Println(data)

func FindXY(val interface{}) (int, int) {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return data[i].XPos, data[i].YPos

}

return -1, -1

}

func FindX(val interface{}) int {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return i

}

return -1

328

CHAPTER 10 AVL TREES

func SetXValues() {
for index := 0; index < len(data); index++ {
xValue := FindX(data[index].Val)
data[index].XPos = xValue

}

func prepareToDraw[T OrderedStringer](tree AVLTree[T]) {
inorderLevel(tree.Root, 1)
SetXValues()
getEndPoints(tree.Root, nil)

}

func inorderLevel[T OrderedStringer](node *Node[T], level int) {
if node != nil {
inorderLevel(node.Left, level + 1)
data = append(data, NodePos{node.Value.String(), 100 - level, -1})
inorderLevel(node.Right, level + 1)

}

func getEndPoints[T OrderedStringer](node *Node[T], parent *Node[T]) {
if node != nil {
if parent != nil {
endPoints = append(endPoints, NodePair{node.Value.String(),
parent.Value.String()})
}
getEndPoints(node.Left, node)
getEndPoints(node.Right, node)

}

var path string

func DrawGraph(a fyne.App, w fyne.Window) {
image := canvas.NewImageFromResource(theme.FynelLogo())
image = canvas.NewImageFromFile(path + "tree.png")
image.FillMode = canvas.ImageFillOriginal

329

CHAPTER 10 AVL TREES

}

w.SetContent(image)
w.Close()
w. Show()

func ShowTreeGraph[T OrderedStringer](myTree AVLTree[T]) {

330

PrepareDrawTree(myTree)

myApp := app.New()

myWindow := myApp.NewWindow("Tree")
myWindow.Resize(fyne.NewSize (1000, 600))
path, := homedir.Dir()

path += "/Desktop//"

nodePts := make(plotter.XYs, myTree.NumNodes)
for i := 0; i < len(data); i++ {
nodePts[i].Y = float64(data[i].YPos)
nodePts[i].X = float64(data[i].XPos)
}
nodePtsData := nodePts
p := plot.New()
p.Add(plotter.NewGrid())
nodePoints, err := plotter.NewScatter(nodePtsData)
if err != nil {
log.Panic(err)
}
nodePoints.Shape = draw.CircleGlyph{}
nodePoints.Color = color.RGBA{G: 255, A: 255}
nodePoints.Radius = vg.Points(12)

// Plot lines
for index := 0; index < len(endPoints); index++ {
vall := endPoints[index].Val1
x1, y1 := FindXY(val1)
val2 := endPoints[index].Val2
X2, y2 := FindXY(val2)
pts := plotter.XYs{{X: float64(x1), Y: float64(y1)},
{X: float64(x2), Y: float64(y2)}}

CHAPTER 10

line, err := plotter.NewLine(pts)
if err != nil {
log.Panic(err)
}
scatter, err := plotter.NewScatter(pts)
if err != nil {
log.Panic(err)

}

p.Add(line, scatter)
}
p.Add(nodePoints)

// Add Labels

for

}

index := 0; index < len(data); index++ {
x := float64(data[index].XPos) - 0.2 // Originall .05
y := float64(data[index].YPos) - 0.02
str := data[index].Val
label, err := plotter.NewLabels(plotter.XYLabels {
XYs: []plotter.XY {
0 x LV yl,
b
Labels: []string{str},

1)

if err != nil {

log.Fatalf("could not creates labels plotter: %+v", err)

}
p.Add(label)

path, = homedir.Dir()
path += "/Desktop/GoDS/"

err

= p.Save(1000, 600, "tree.png")

if err != nil {

}

log.Panic(err)

DrawGraph(myApp, myWindow)
myWindow. ShowAndRun()

AVL TREES

331

CHAPTER 10 AVL TREES

Explanation of avl Package

There are many functions to dissect. The easiest way to do this is using a debugger. I have
used VS Code and IntelliJ IDEA Ultimate, which has a Go plug-in and an outstanding
debugger.

We construct the tree shown earlier using the main driver code given in Listing 10-2.

Listing 10-2. Main driver code
package main

import (
avl "example.com/avl"
llfmt n

)
type Integer int

func (num Integer) String() string {
return fmt.Sprintf("%d", num)

}

func main() {
myTree := avl.AVLTree[Integer]{nil, 0}
myTree.Insert(10)
myTree.Insert(15)
myTree.Insert(5)
myTree.Insert(3)
myTree.Insert(6)
myTree.Insert(13)
myTree.Insert(20)
myTree.Insert(2)
myTree.Insert(4)
myTree.Insert(8)
myTree.Insert(12)
myTree.Insert(1)

332

CHAPTER 10 AVL TREES

// myTree.Delete(20)
avl.ShowTreeGraph(myTree)

This produces the tree display shown in Figure 10-2.

[] Tree

Figure 10-2. Resulting AVL tree

Using a debugger, let us “walk” through the code for deleting node 20, one of the
harder use cases. If you do not have a debugger, just perform the “walk” visually, line
by line.

We uncomment the line of code, myTree.Delete(20), and set a break point at this
line of code using Intelli] IDEA.

myTr
myTree.D

avl.ShowTreeGraph(myTree)

333

CHAPTER 10 AVL TREES

We recursively descend to the right down the tree in function deleteNode until node
is equal to nil. Then the recursion backtracks to node equal to 15.

node =
Value =
Left =
Value =

Left =

Right =

Ht =
Right =
Ht =

rotateDelete(node)

We enter function rotateDelete with node at 15. The right child of 15 has been
set to nil.
The bFactor (balance) of node 15 is 2, and its left node has a bFactor of 1.

bFactor >

We invoke rightRotate(node), where node is 15. The variable y gets set to 13; the
right child of 13 gets set to 15. Node 13 is returned up the recursive chain (as right in the
debugger code shown in the following).

334

CHAPTER 10 AVL TREES

f val > node.Value {

right := dele e(node.Right, val)

node.Right = right

- val < node.Value {

Node 10 assigns its right child to 13. The return statement at the end of deleteNode
returns the result of rotateDelete(10).

bFactor > 1 && node.Left.balanceFactor()

rightRotate(node)

Based on the bFactor of 10 (greater than 1) and the bFactor of 5 (equal or greater
than 0), we next perform a rightRotate(10).

The value of 5 is returned up the chain and becomes the new root node of the tree.
The right child of 5 becomes 10. The left child of 10 becomes 6.

The new tree is shown in Figure 10-3.

335

CHAPTER 10 AVL TREES

L N Tree

Figure 10-3. Tree resulting from deletion

Some additional tests of AVL trees are presented in Listing 10-3 (uncomment the test
you wish to perform).

Listing 10-3. Another main driver with more AVL tests
package main

import (
avl "example.com/avl"
"fmt"
"math/rand"
"time"

)

func inorderOperator(val Float) {
val *= val
fmt.Println(val.String())

336

CHAPTER 10 AVL TREES

// Satisfies OrderedStringer because of ~float64
// Also satisfies OrderedStringer because of String() method below
type Float floaté64

func (num Float) String() string {
return fmt.Sprintf("%0.1f", num)

}
type Integer int

func (num Integer) String() string {
return fmt.Sprintf("%d", num)

}

func main() {

rand.Seed(time.Now().UnixNano())
// Generate a random search tree
randomSearchTree := avl.AVLTree[Float]{nil, 0}
for i :=0; i < 30; i++ {
rn := 1.0 + 99.0 * rand.Float64()
randomSearchTree.Insert(Float(rn))
}
time.Sleep(3 * time.Second)
avl.ShowTreeGraph(randomSearchTree)

randomSearchTree.InOrderTraverse(inorderOperator)

min := randomSearchTree.Min()

max := randomSearchTree.Max()

fmt.Printf("\nMinimum value in tree is %0.1f Maximum value in tree is
%0.1f", *min, *max)

/*

start := time.Now()

tree := avl.AVLTree[Integer]{nil, o}

for val := 0; val < 100 000; val++ {
tree.Insert(Integer(val))

}

elapsed := time.Since(start)

337

CHAPTER 10 AVL TREES

}
/*

Time to build BST tree with 100,000 nodes: 17.054928498s
Time to build AVL tree with 100,000 nodes: 24.698786ms
Time to build AVL tree with 1 000 000 nodes: 281.799923ms

*/

Discussion of Main Driver Results

fmt.Printf("\nTime to build AVL tree with 100,000 nodes: %s.
tree: %d", elapsed, tree.Height())

numbers := make([]int, 100 000)
for i := 0; i < 100 000; i++ {
numbers[i] = i

}
start = time.Now()
sort.Ints(numbers)

elapsed = time.Since(start)

fmt.Printf("\nTime to sort 100 000 ints: %s", elapsed)

*/

Height of

The graph of a 30-node AVL tree generated using Listing 10-3 is shown in Figure 10-4.

338

CHAPTER 10 AVL TREES

000 25.00

Figure 10-4. A thirty-node AVL tree

An AVL tree is an Ordered Set. The Search method allows us to determine the
presence or absence of a key value in the data structure. This is a central requirement
of any set. It also allows us to perform an inorder traversal that accesses the nodes from
smallest to largest.

In the next section, we implement a Set first using an AVL tree and then using a
concurrent AVL tree. We assume that the set holds floating-point values. In the next
chapter, we present a more complete generic Set implementation.

10.3 Set Using Map, AVL, and Concurrent AVL

A set is typically implemented using a map. Listing 10-4 presents a few important
methods of a set.

Listing 10-4. Setimplemented using map

func NewSet() *Set {
return &Set{

339

CHAPTER 10 AVL TREES

container: make(map[float64]struct{}),

}

type Set struct {
container map[float64]struct{}

}

func (c *Set) IsPresent(key float64) bool {
_» present := c.container[key]
return present

}

func (c *Set) Add(key float64) {
c.container[key] = struct{}{}

}

func (c *Set) Remove(key float64) error {
_» present := c.container[key]
if !present {
return fmt.Exrrorf("Remove Exror: Item doesn't exist in set")
}
delete(c.container, key)
return nil

}

func (c *Set) Size() int {
return len(c.container)

In Listing 10-4, we assume a base type of float64 as the elements of the set. The
map structure associates an empty struct{ } with each float64 key value. Here, we are
concerned only with the key in the key-value pair in the map.

A map is known to produce high speed access to its members. We wish to compare
the performance of this map implementation of set with an AVL tree. Following this,
we define a concurrent avl set that constructs many AVL trees concurrently, and we
compare its performance with the map and single AVL tree implementations.

340

CHAPTER 10 AVL TREES

Implementation of Set Using Map, AVL Tree,
and Concurrent AVL Tree

Listing 10-5 presents a floatset package that includes the map, AVL, and concurrent AVL
implementations of set. We skip the implementation details of AVL tree to save space
since it has been presented earlier.

Listing 10-5. Package floatset
package floatset

import (
"fmt"
"sort"
"sync"

)

const (
Concurrent = 32

)

var max [Concurrent]float64 // Holds the maximum value in each AVL tree

func NewSet() *Set { // Creates a new Set
return &Set{
container: make(map[float64]struct{}),

}

type Set struct {
container map[float64]struct{}

}

func (c *Set) IsPresent(key float64) bool {
_, present := c.container[key]
return present

}
func (c *Set) Add(key float64) {

341

CHAPTER 10 AVL TREES

c.container[key] = struct{}{}
}

func (c *Set) Remove(key float64) error {
_, present := c.container[key]
if !present {
return fmt.Errorf("Remove Error: Item doesn't exist in set")
}
delete(c.container, key)
return nil

}

func (c *Set) Size() int {
return len(c.container)

}
// Skip AVL tree details

var concurrrentSet [Concurrent]AVLTree // Slice of AVL trees

func BuildConcurrentSet(dataSet []float64) {
// Use concurrent processing to construct concurrent AVL trees
var wg sync.WaitGroup
sort.Float64s(dataSet)
segment := len(dataSet) / Concurrent
for treeNumber := 0; treeNumber < Concurrent; treeNumber++ {
wg.Add(1)
go func(num int) {
defer wg.Done()
startVal := segment * num
for j := startVal; j < startValisegment; j++ {
concurrrentSet[num] . Insert(dataSet[j])

}
max[num] = dataSet[startVal+segment-1]
} (treeNumber)
}
wg.Wait()

342

CHAPTER 10 AVL TREES

}

func IsPresent(val float64) bool {
// Determine which AVUL tree val is in
treeNumber :-=
for ; treeNumber < len(max); treeNumber++ {
if val <= max[treeNumber] {
break

}

return concurrrentSet[treeNumber].Search(val)

Explanation of Concurrent AVL Set

The constant Concurrent (in this case, 32) defines the number of AVL trees that we build
concurrently. The variable concurrentSet holds an array of AVLTree.

First, we sort the incoming dataSet slice. We compute the number of nodes in each
AVL, segment, by dividing the length of the dataSet with the number of concurrent trees.
In a loop that iterates over tree number, we invoke goroutines, each one inserting
the sorted values from the incoming dataSet slice. The wait group assures that each

concurrently constructed AVL tree is complete before we exit this function.

The global max array stores the maximum value in each of the AVL trees. There is
no conflict among goroutines assigning to max since the index in max is unique to each
goroutine (the tree number sent in).

Function IsPresent first determines which AVL tree the incoming val belongs to by
comparing its value to the maximum values of each AVL tree stored in the max array.
Once determined, the function returns the result of invoking the Search method on the
correct tree number.

Comparing the Three Set Implementations

Listing 10-6 is a driver program that performs the experiment of comparing set
construction time and most importantly the time for determining whether a value is
present. To do this, we access every element in the data set and determine whether it is
present in the set type we are timing.

343

CHAPTER 10 AVL TREES

Listing 10-6. Comparing the performance of three set types
package main

import (
"fmt"
"math/rand"
"time"
"example.com/floatset"

)

const (
size = 1_000_000

)
var dataSet []floaté4

func main() {
mySet := floatset.NewSet()

dataSet = make([]float64, size)
for i :=0; i < size; i++ {
dataSet[i] = 100.0 * rand.Float64()

}
// Time construction of Set
start := time.Now()

for i :=0; i< size; i++ {
mySet.Add(dataSet[i])
}
elapsed := time.Since(start)
fmt.Printf("\nTime to build Set with %d numbers: %s", size, elapsed)

// Time to test the presence of all numbers in dataSet
start = time.Now()
for i := 0; i < len(dataSet); i++ {
if ImySet.IsPresent(dataSet[i]) {
fmt.Println("%f not present", dataSet[i])

344

CHAPTER 10 AVL TREES

elapsed = time.Since(start)
fmt.Printf("\nTime to test the presence of all numbers in Set: %s",
elapsed)

avlSet := floatset.AVLTree{nil, 0}
// Time construction of avlSet
start = time.Now()
for i :=0; i < size; i++ {
avlSet.Insert(dataSet[i])
}
elapsed = time.Since(start)
fmt.Printf("\n\nTime to build avlSet with %d numbers: %s", size,
elapsed)

// Time to test the presence of all numbers in avlSet
start = time.Now()
for i := 0; i < len(dataSet); i++ {
if ImySet.IsPresent(dataSet[i]) {
fmt.Println("%f not present", dataSet[0])

}

elapsed = time.Since(start)
fmt.Printf("\nTime to test the presence of all numbers in avlSet: %s",
elapsed)

// Use concurrent processing to construct concurrent avl trees

start = time.Now()

floatset.BuildConcurrentSet(dataSet)

elapsed = time.Since(start)

fmt.Printf("\n\nTime to build concurrent (%d) avlSet with %d numbers:
%s", floatset.Concurrent, size, elapsed)

// Test every number in dataSet against the concurrent set
start = time.Now()
for i := 0; i < len(dataSet); i++ {
if !floatset.IsPresent(dataSet[i]) {
fmt.Println("%f not present”, dataSet[i])

345

CHAPTER 10 AVL TREES

}
}

elapsed = time.Since(start)
fmt.Printf("\nTime to test the presence of all numbers in concurrent
(%d) avlSet: %s", floatset.Concurrent, elapsed)

}

/*

On iMac Pro with 32G Ram and 3.2 GHz 8-Core Intel Xeon W
Time to build Set with 1000000 numbexrs: 184.442966ms

Time to test the presence of all numbers in Set: 105.600217ms

Time to build avlSet with 1000000 numbers: 819.517251ms
Time to test the presence of all numbers in avlSet: 103.422116ms

Time to build concurrent (32) avlSet with 1000000 numbers: 184.681628ms
Time to test the presence of all numbers in concurrent (32) avlSet:
66.183935ms

On iMac Pro Apple M1 Max with 32G Ram
Time to build Set with 1000000 numbers: 90.186209ms
Time to test the presence of all numbers in Set: 44.667542ms

Time to build avlSet with 1000000 numbers: 421.970625ms
Time to test the presence of all numbers in avlSet: 39.154042ms

Time to build concurrent (32) avlSet with 1000000 numbers: 172.478583ms
Time to test the presence of all numbers in concurrent (32) avlSet:
47.972875ms

*/

Discussion of Results

The program was run on two computers, and the results are surprising.

On a 2017 iMac Pro with 32G of RAM and a 3.2-GHz 8-Core Intel Xeon W processor,
the concurrentAVLSet turns in the fastest isPresent performance, faster than a single
AVL tree and over twice as fast as the map implementation of set.

346

CHAPTER 10 AVL TREES

On a MacBook Pro with 32G of unified RAM and an Apple M1 Max chip with 10-core
CPU and 32-core GPU, the concurrentAVLSet turns in the slowest performance, and the
single AVL tree turns in the fastest performance.

It must be noted that all the set implementations on the Apple M1 Max computer
are significantly faster than their corresponding execution times on the Intel Xeon W
computer.

It is therefore not clear whether the use of go-routines and concurrent processing
in populating 32 AVL trees with the input data provides a meaningful benefit since the
results are processor dependent.

10.4 Summary

We presented the properties of an AVL tree. The operations of Insert and Delete
preserve the AVL properties. We outlined the logic for performing these operations. Then
we presented a package that includes these operations and examined the performance
associated with constructing and searching an AVL tree. Finally, we presented three
different implementations of a Set using a map, an AVL tree, and a concurrent AVL tree
and compared their performance.

In the next chapter, we focus on hash functions and hash tables along with several

important applications.

347

CHAPTER 11

Heap Trees

The previous chapter presented AVL trees. These trees are extremely useful when many
fast lookups are needed.

In this chapter, we present another important tree structure, Heap. A heap tree is
another balanced tree type with the largest item in the tree always in the root of the tree.
We use a heap tree to implement an efficient sorting algorithm.

In the next section, we define heap tree and illustrate heap tree construction.

11.1 Heap Tree Construction

A heap is a complete binary tree such that each node has a value greater than its two
children. The largest value in a heap tree will always be in the root node. A complete tree
has leaf nodes filled from left to right, all at the deepest level in the tree.

Consider the heap tree shown in the following. Each node has a value greater than its
two children.

We wish to insert a new node with the value 90. See Figure 11-1.

349
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_11

https://doi.org/10.1007/978-1-4842-8191-8_11

CHAPTER 11 HEAP TREES

%2

Figure 11-1. Insertion of 90

We fill the leaf nodes from left to right, so node 90 needs to be the left node of 30. But
90 is larger than its parent 30. So we exchange the two nodes. See Figure 11-2.

»e
@

But 90 is larger than its parent 60, so we do another exchange producing the new

Figure 11-2. Insertion continued

heap tree that contains 90. See Figure 11-3.

350

CHAPTER 11 HEAP TREES

’ol

Figure 11-3. Result after insertion

In the next section, we show how to perform deletion from a heap tree.

11.2 Deletion from a Heap Tree

We can only delete the value in the root node of a heap tree. To delete the root node
value 100, we replace the value in the root node with the value in the rightmost node on
the lowest level of the tree, 30 in this case. Then we compare the new root value with the
values of its two children, swapping with the larger of the children. We continue this sift-
down process until there are no further nodes to swap. So 30 gets swapped with 90 (the
largest of the children, 90 and 80); then 30 gets swapped with 60 (the larger of the two
children, 50 and 60). This leads to the new heap tree shown in Figure 11-4.

351

CHAPTER 11 HEAP TREES

Figure 11-4. Result after deletion

In the next section, we examine the implementation details for building a generic
heap tree from a slice of items and inserting a new item.

11.3 Implementation of a Heap Tree
Logic for Building a Heap Tree

The logic for building and inserting items in a heap tree flows from the following
relationship between the index of an item in a slice and the location of that item in a
heap tree. Suppose we have an item at a specified index.

o [Itsparentis at location index / 2 if index is odd and at location index
/2-1ifindexis even.

o Itsleft child is at index 2 * index + 1.
o Itsright child is atindex 2 * index + 2.

Consider the slice [90, 60, 80, 50, 30, 75, 40, 10, 35] that corresponds to the
preceding heap tree. The slice values relate to the values in the heap tree by traversing
the values from left to right at each succeeding level in the tree.

Consider the node with value 50 at index 3 in the slice.

352

CHAPTER 11 HEAP TREES

The parent is at index 3 / 2, which equals 1. This corresponds to the node with value
60. The two children are at index values 2 *3 + 1 and 2 * 3 + 2 or indices 7 and 8. This
corresponds to the nodes with values 10 and 35.

Package Heap

Listing 11-1 presents a package for a generic heap, and Listing 11-2 shows a main driver
program to test and exercise the methods of package heap.

Listing 11-1. Package heap
package heap

type Ordered interface {
~float64 | ~int | ~string
}

type Heap[T Ordered] struct {
Items []T

}

// Methods
func (heap *Heap[T]) Swap(index1, index2 int) {
heap.Items[index1], heap.Items[index2] =
heap.Items[index2], heap.Items[index1]

}

func NewHeap[T Ordered](input []T) *Heap[T] {
heap := &Heap[T]{}
for i := 0; i < len(input); i++ {
heap.Insert(input[i])
}

return heap

}

func (heap *Heap[T]) Insert(value T) {
heap.Items = append(heap.Items, value)
heap.buildHeap(len(heap.Items) - 1)

353

CHAPTER 11 HEAP TREES

func (heap *Heap[T]) Remove() {

}

// Can only remove Items[0], the largest value
heap.Items[0] = heap.Items[len(heap.Items)-1]
heap.Items = heap.Items[:(len(heap.Items) - 1)]
heap.rebuildHeap(0)

func (heap *Heap[T]) Largest() T {

}

return heap.Items[0]

func (heap *Heap[T]) buildHeap(index int) {

}

var parent int
if index > 0 {

parent = (index - 1) / 2
if heap.Items[index] > heap.Items[parent] {
heap.Swap(index, parent)

}
heap.buildHeap(parent)

func (heap *Heap[T]) rebuildHeap(index int) {

354

length := len(heap.Items)
if (2 * index + 1) < length {

left := 2*index + 1
right := 2*index + 2
largest := index

if left < length && right < length &&
heap.Items[left] >= heap.Items[right] &&
heap.Items[index] < heap.Items[left] {
largest = left
} else if right < length &&
heap.Items[right] >= heap.Items[left] &&
heap.Items[index] < heap.Items[right]{
largest = right
} else if left < length &8 right >= length &&

CHAPTER 11 HEAP TREES

heap.Items[index] < heap.Items[left] {
largest = left

}

if index != largest {
heap.Swap(index, largest)
heap.rebuildHeap(largest)

}

Listing 11-2. Main driver for heap

package main

import (
n _Fmt n
"example.com/heap”
)

func main() {
slice1:= []int{100, 60, 80, 50, 30, 75, 40, 10, 35}
heap1l := heap.NewHeap[int](slice1)
heap1.Insert(90)
fmt.Println("heapl after inserting 90")
fmt.Println(heapl.Items)
fmt.Println("Largest item in heap:

, heapi.largest())

heap1.Remove()
fmt.Println("Removing largest item from heap
yielding the heap: ")
fmt.Println(heap1.Items)
fmt.Println("Largest item in heap: ", heapl.Largest())

slice2:= []int{20, 35, 100, 80, 30, 75, 40, 50, 60}

heap2 := heap.NewHeap[int](slice2)

heap2.Insert(90)

fmt.Println("heap2 with rearranged slice2 after inserting 90")
fmt.Println(heap2.Items)

355

CHAPTER 11 HEAP TREES

/* Output

heap1 after inserting 90

[100 90 80 50 60 75 40 10 35 30]

Largest item in heap: 100

Removing largest item from heap yielding the heap:
[90 60 80 50 30 75 40 10 35]

Largest item in heap: 90

heap2 with rearranged slice2 after inserting 90
[100 90 75 60 80 35 40 10 50 30]

*/

Explanation of Package heap

The generic Heap structure is given by a struct containing a slice of generic
ordered type T.

type Heap[T Ordered] struct {
Items []T

We focus on the function NewHeap and on the methods Insert and Remove. The
other methods are much simpler and do not need explanation.
To build a heap from a slice of some ordered type T, we perform

func NewHeap[T Ordered](input []T) *Heap[T] {
heap := &Heap[T]{}
for i := 0; i < len(input); i++ {
heap.Insert(input[i])
}

return heap

The first line of code defines a heap as the address (since we are returning a pointer
to a Heap) of Heap with an empty slice of Items.
A for-loop follows that invokes the Insert method on each item in the input slice.

356

CHAPTER 11 HEAP TREES
The Insert method, given as

func (heap *Heap[T]) Insert(value T) {
heap.Items = append(heap.Items, value)
heap.buildHeap(len(heap.Items) - 1)

}

appends the input value to the heap.Items slice. It then invokes the private method
buildHeap.

This private method buildHeap directly follows the example shown in Section
11.1 and works upward from the bottom of the tree doing swaps when necessary to
produce a heap.

The Remove method, given as

func (heap *Heap[T]) Remove() {
// Can only remove Items[0], the largest value
heap.Items[0] = heap.Items[len(heap.Items)-1]
heap.Items = heap.Items[:(len(heap.Items) - 1)]
heap.rebuildHeap(0)

}

assigns the item in the lowest rightmost position to index 0 in the heap.Items slice.

It then reassigns this slice to exclude this rightmost item. The heap structure is
temporarily broken by placing the deepest, rightmost value in the root. A private method
rebuildHeap is invoked, which restores the heap property.

The method rebuildHeap is closely reasoned and requires care in understanding
how it works. At each level of recursion, the item at index is initially assumed to be the
largest. The values at index left and index right (or just left if right is out of range) are
compared. If the value at index is less than the larger of the children, largest is set to
the index of the larger child. Then a swap of values between value at index and largest
is made, and a recursive call to rebuildHeap is made with parameter largest sent into
rebuildHeap. Upon the completion of this method, the heap structure is restored.

Since a heap is close to perfectly balanced, its height is related to the number of
nodes with a logarithmic relationship, height = log,n, where n is the number of nodes.
Therefore, the methods buildHeap and rebuildHeap have complexity O(log,n).

357

CHAPTER 11 HEAP TREES

In the main driver program, a second heap, heap2, is constructed using the same
input integers but arranged in a different order. The resulting tree is indeed a heap but
with a slightly different sequence of values in the slice.

In the next section, we examine an important application of a heap tree - a sorting

algorithm, heap sort.

11.4 Heap Sort

The heap tree provides the basis for a sorting algorithm. It works as follows:

Build a heap from the initial list to be sorted. Extract the largest from the root and
append it to the result list (initialized to empty). Apply the Remove method to the heap.
Continue this process until the heap is shrunk to empty.

This process will produce a slice sorted from largest to smallest. We can produce
output in ascending order by reversing the sequence in the slice produced previously.

The details of heap sort are presented in Listing 11-3.

Listing 11-3. Heap sort

package main

import (
"example.com/heap”
"fmt"
"math/rand"
“time"

)

type Ordered interface {
~float64 | ~int | ~string
}

func heapSort[T Ordered](input []T) []IT {
heap1l := heap.NewHeap[T](input)
descending := []T{}
for {
if len(heap1.Items) > 0 {
descending = append(descending, heapi.Llargest())

358

CHAPTER 11 HEAP TREES

heap1.Remove()
} else {
break

}

ascending := []T{}

for i := len(descending) - 1; i >= 0; i-- {
ascending = append(ascending, descending[i])

}

return ascending

}

const size = 50_000_000

func IsSorted[T Ordered](data []T) bool {
for i := 1; i < len(data); i++ {
if data[i] < data[i-1] {
return false

}

return true

}

func main() {
slice := []float64{0.0, 2.7, -3.3, 9.6, -13.8, 26.0, 4.9, 2.6,
5.1, 1.1}
sorted := heapSort[float64](slice)
fmt.Println("After heapSort on slice: ", sorted)

data := make([]float64, size)
for i :=0; i < size; i++ {
data[i] = 100.0 * rand.Float64()
}
start := time.Now()
largeSorted := heapSort[float64](data)
elapsed := time.Since(start)
fmt.Println("Time for heapSort of 50 million floats: ", elapsed)

359

CHAPTER 11 HEAP TREES

if !IsSorted[float64](largeSorted) {
fmt.Println("largeSorted is not sorted.")

}

/* Output

Elapsed time for regular quicksort = 5.382400384s (from Chapter 1)
Elapsed time for concurrent quicksort = 710.431619ms (from Chapter 1)

After heapSort on slice: [-13.8 -3.3 0 1.1 2.6 2.7 4.9 5.1 9.6 26]
Time for heapSort of 50 million floats: 23.978801647s
*/

Discussion of heapsort Results

The complexity of heapsort is O(nlog,n) since the complexity of buildHeap and
rebuildHeap is log,n, and we do this n times.
Comparing the time to sort 50 million floating-point numbers with quicksort or
concurrent quicksort, we see that heapSort is about four times slower than quicksort.
In the next section, we examine another application of Heap, a priority queue.

11.5 Heap Application: Priority Queue

A heap provides a natural model for a priority queue. Each item is assumed to
encapsulate a priority. For example, if we insert string values into the priority queue, we
assume that the larger the string in a lexical sense, the higher its priority. So the string
“Zachary” has a higher priority than the string “Robert”.

Listing 11-4 shows an implementation of priority queue using heaps.

Listing 11-4. Priority queue using heap

package main

import (
"example.com/heap”
“fmt"

)

360

type Ordered interface {
~float64 | ~int | ~string
}

type PriorityQueue[T Ordered] struct {
infoHeap heap.Heap[T]

}

// Methods
func (queue *PriorityQueue[T]) Push(item T) {
queue.infoHeap.Insert(item)

}

func (queue *PriorityQueue[T]) Pop() T {
returnValue := queue.infoHeap.Llargest()
queue.infoHeap.Remove()
return returnValue

}

func main() {
myQueue := PriorityQueue[string]{}
myQueue.Push("Helen")
myQueue.Push("Apollo")
myQueue.Push("Richard")
myQueue.Push("Barbara")
fmt.Println(myQueue)
myQueue.Pop()
fmt.Println(myQueue)
myQueue.Push("Arlene")

fmt.Println(myQueue)
myQueue.Pop()
myQueue.Pop()
fmt.Println(myQueue)
}
/* Output

{{[Richard Barbara Helen Apollo]}}
{{[Helen Barbara Apollo]}}

CHAPTER 11

HEAP TREES

361

CHAPTER 11 HEAP TREES

{{[Helen Barbara Apollo Arlene]}}
{{[Arlene Apollo]}}
*/

11.6 Summary

In this chapter, we defined a heap structure and presented an implementation. Building
a heap from a slice of items guarantees that the largest item is in the root node. Every
item in a heap is larger than its left and right child items. We used a heap to implement
an efficient sorting algorithm. We also used a heap to implement a priority queue.

In the next chapter, we introduce and implement red-black trees.

362

CHAPTER 12

Red-Black Trees

In the previous chapter, we presented heap trees. These are close to fully balanced trees
in which the largest item is always found in the root node and each node has a value
greater than its children.

In this chapter, we present another balanced tree structure, the red-black tree.
Like the AVL tree presented in Chapter 10, the red-black tree data structure is aimed at
efficient insertion, deletion, and searching of items stored in the tree.

In the next section, we introduce red-black trees.

12.1 Red-Black Trees

An interesting and important balanced binary search tree is the red-black tree. Rudolf
Bayer invented this tree structure in 1972, ten years after the AVL tree was invented.

Red-black trees, like AVL trees, are self-balancing. After an insertion or deletion,
the resulting tree is a red-black tree. Like AVL trees, the computational complexity for
insertion, deletion, or search is O(log,n).

Insertion and deletion for red-black trees generally involve fewer rotational
corrections, but the resulting tree is less balanced than an AVL tree. In applications
that expect many insertions and deletions and fewer searches, red-black trees may be
preferable to AVL trees.

Because of the complexity of red-black trees, we limit ourselves in this chapter
to implementing insertion into a red-black tree. The interested reader will find an
implementation for deletion in Chapter 13 (page 545) of my book, Modern Software
Development Using C#.Net, Thompson, 2006.

Definition of Red-Black Tree

A binary search tree is a red-black tree if

363
© Richard Wiener, PhD 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_12

https://doi.org/10.1007/978-1-4842-8191-8_12

CHAPTER 12 RED-BLACK TREES
1. Everynode is assigned a color of red or black.
2. Therootnode is always black.
3. The children of a red node are black.

4. Every path from the root node to a leaf node contains the same
number of black nodes.

Example of Red-Black Tree

In this ten-node red-black tree, every path from the root to a leaf node contains exactly
two black nodes.

Some terminologies we will use include parent, grandparent, and uncle.

As an example, the parent of node 217 is 250. The uncle of 217 is 150 (sibling of
parent). The grandparent of 217 is 175.

In the next section, we discuss the logic of inserting an item into a red-black tree. We
“walk” through an example in detail to illustrate the process.

12.2 Insertion Process

We discuss the logic of insertion with a series of examples.

364

CHAPTER 12 RED-BLACK TREES

The first step for insertion is to do an ordinary search-tree insertion.

The new node added to the tree is always colored red. Our goal is to keep the number
of black nodes between root and all leaf nodes constant.

If the new inserted node has a red parent, this violates condition 3 in the
preceding text, which requires the child of a red node to be black. We then must take
corrective action.

The first case we consider is when the parent of the node inserted is red and the
uncle of the node inserted exists and is red. Consider the following tree after inserting
25. The uncle of 25 is 150 and is red.

100

50 150

25

We perform a correction by modifying the color of the parent (change red to black)
and uncle (change red to black) and grandparent if it is not the root (which it is in this
case). The corrected tree is shown in the following. If 100 was not the root, we might have
to continue the search for violations up the tree after changing node 100 to red.

The result of performing color modification is shown as follows:

100

50 150

25

365

CHAPTER 12 RED-BLACK TREES

The next case we consider is when the parent of the node inserted is red and the
uncle is black or does not exist. There are four cases to consider.
In the first case, we insert 25. Parent is red and uncle does not exist.

In the second case, we again insert 25. Parent is red and uncle does not exist.

The other two cases are symmetric with respect to the root node (are on the right
side of the root).

The corrective action we take involves tree rotations as follows:

We take an inorder traversal of the subtree starting at the grandparent and label the
nodes first, second, and third in the traversal; then the second node will always be the
new root of the subtree and its left child the first and right child the third.

In case 1, the traversal produces first = 25, second = 50, and third = 100.

In case 2, the traversal produces first = 25, second = 50, and third = 100.

We recolor the new subroot black, and its two children remain red.

366

CHAPTER 12 RED-BLACK TREES

This produces the corrected tree.

In case 1, we perform a right rotate on node 100. In case 2, we perform a left rotate
on node 25 (producing case 1) and then a right rotate on node 100. Cases 3 and 4 follow

a symmetric pattern.

Detailed Walk-Through of Many Insertions

To solidify our understanding of insertion, we construct a red-black tree, step by step, by
inserting the sequence of values: 10, 20, 4, 15, 17, 40, 50, 60, 70, 35, 38, 18, 19, 45, 30, 25.
We show the work for some of the insertions and leave the rest as an exercise.

After inserting 10, 20, and 4, we have

After inserting 15, we have

367

CHAPTER 12 RED-BLACK TREES

Since the parent of 15 is red and uncle is red, we do recoloring to produce

After inserting 17, we get

368

CHAPTER 12 RED-BLACK TREES

But this needs correction. Since the parent of 17 is red and uncle does not exist, we
perform rotational corrections (left on 15 and right on 20) and recoloring to get

We next insert 40. We show only the result after reconfiguring (recoloring case)
because the parent and uncle are red.

369

CHAPTER 12 RED-BLACK TREES

We next insert 50. This is a case 4 requiring one left rotational correction on 20
producing

We next insert 60. Because of the red parent and red uncle, this requires only
recoloring. The result is

370

CHAPTER 12 RED-BLACK TREES

We are halfway there! As an exercise, please continue the insertions and show that
the final red-black tree is

371

CHAPTER 12 RED-BLACK TREES

17

10 40

19

18 25

20 30

A careful inspection of this tree shows that the number of black nodes from root 17 to
every leaf is exactly 3. Every red node has only black children.

This tree is clearly less balanced than an AVL tree (the maximum depth on the right
side of the root is 5 and the maximum depth on the left side of the root is 2).

In the next section, we present an implementation of Insertion into a red-black tree.
The details are complex because of the many special cases.

372

CHAPTER 12 RED-BLACK TREES

12.3 Implementation of Red-Black Tree

The implementation details for insertion into a red-black tree are daunting. This is
because of the number of possible rotational or color corrections that are potentially
possible based on the logic discussed and illustrated in Section 12.2.

The best strategy for unraveling the logic in the implementation presented in
Listing 12-1 is to “walk” as far as you can, step by step, through the example presented in
Section 12.2.

A few small changes to the display tree function, defined and discussed in
Section 8.3, were made for drawing a red-black tree. The changes in this portion of the
implementation are shown in boldface.

Listing 12-1 presents the implementation of a red-black tree, including logic for
drawing the tree, but only including the Insert method. The tree implementation is
combined with a short driver program, main, without creating a separate package for
the tree.

Listing 12-1. Red-black tree
package main

import (
"image/color"
"log"
"fyne.io/fyne/v2"
"fyne.io/fyne/v2/app"
"fyne.io/fyne/v2/canvas”
"fyne.io/fyne/v2/theme"
"github.com/mitchellh/go-homedir"
"gonum.org/vi/plot"
"gonum.org/vi/plot/plotter"”
"gonum.org/vi/plot/vg"
"gonum.org/vi/plot/vg/draw"
"strconv"

)

type ordered interface {
~int | ~float64 | ~string

373

CHAPTER 12 RED-BLACK TREES

type OrderedStringer interface {

ordered
String() string
}
type Node[T OrderedStringer] struct {
value T
red bool
paxent *Node[T]
left *Node[T]
right *Node[T]
}
type RedBlackTree[T OrderedStringer] struct {
count int
root *Node[T]
}

func NewTree[T OrderedStringer](value T) *RedBlackTree[T] {
return &RedBlackTree[T]{1, &Node[T]{value, false, nil, nil, nil}}

}

// Methods
func (tree *RedBlackTree[T]) Insert(value T) {
if tree.root == nil { // Empty tree
tree.root = &Node[T]{value, false, nil, nil, nil}
tree.count += 1
return
}
parent, nodeDirection := tree.findParent(value)
if nodeDirection == "" {
return

}

newNode := Node[T]{value, true, parent, nil, nil}

if nodeDirection == "L" {
parent.left = &newNode

374

}

CHAPTER 12 RED-BLACK TREES

} else {
parent.right = &newNode

}

tree.checkReconfigure(&newNode)
tree.count += 1

func (tree *RedBlackTree[T]) IsPresent(value T, node

}

*Node[T]) bool {
if node == nil {
return false
}
if value < node.value {
return tree.IsPresent(value, node.left)
}
if value > node.value {
return tree.IsPresent(value, node.right)

}

return true

func (tree *RedBlackTree[T]) findParent(value T)

}

func (tree *RedBlackTree[T]) checkReconfigure(node *Node[T]) {
var nodeDirection, parentDirection, rotation string

(*Node[T], string) {
return search(value, tree.root)

var uncle *Node[T]

parent := node.parent
value := node.value
if parent == nil || parent.parent == nil ||

node.red == false || parent.red == false {

return

}

grandfather := parent.parent

375

CHAPTER 12 RED-BLACK TREES

if value < parent.value {

nodeDirection = "L"
} else {
nodeDirection = "R"

}

if grandfather.value > parent.value {
parentDirection = "L"

} else {
parentDirection = "R"

}
if parentDirection == "L" {
uncle = grandfather.right
} else {
uncle = grandfather.left
}

rotation = nodeDirection + parentDirection
if uncle == nil || uncle.red == false {
if rotation == "LL" {
tree.rightRotate(node, parent, grandfather, true)
} else if rotation == "RR" {
tree.leftRotate(node, parent, grandfather, true)
} else if rotation == "LR" {
tree.rightRotate(nil, node, parent, false)
tree.leftRotate(parent, node, grandfather, true)
node, parent = parent, node

} else if rotation == "RL" {
tree.leftRotate(nil, node, parent, false)
tree.rightRotate(parent, node, grandfather, true)

}
} else {
tree.modifyColor(grandfather)

}

func (tree *RedBlackTree[T]) leftRotate(node, parent, grandfather
*Node[T], modifyColor bool) {

376

CHAPTER 12 RED-BLACK TREES

greatgrandfather := grandfather.parent

tree.updateParent(parent, grandfather, greatgrandfather)

oldLeft := parent.left

parent.left = grandfather

grandfather.parent

grandfather.right

if oldLeft != nil {
oldLeft.parent = grandfather

parent
oldLeft

}

if modifyColor == true {
parent.red = false
node.red = true
grandfather.red = true

}

func (tree *RedBlackTree[T]) rightRotate(node, parent,
grandfather *Node[T], modifyColor bool) {
greatgrandfather := grandfather.parent
tree.updateParent(parent, grandfather,
greatgrandfather)
oldRight := parent.right
parent.right = grandfather
grandfather.parent = parent
grandfather.left = oldRight
if oldRight != nil {
oldRight.parent = grandfather
}
if modifyColor == true {
parent.red = false
node.red = true
grandfather.red = true

377

CHAPTER 12 RED-BLACK TREES

func (tree *RedBlackTree[T]) modifyColor(grandfather
*Node[T]) {
grandfather.right.red = false
grandfather.left.red = false
if grandfather != tree.root {
grandfather.red = true

}

tree.checkReconfigure(grandfather)

}

func (tree *RedBlackTree[T]) updateParent(node,
parent0ldChild, newParent *Node[T]) {
node.parent = newParent
if newParent != nil {
if newParent.value > parentO0ldChild.value {
newParent.left = node
} else {
newParent.right = node
}
} else {
tree.root = node

}

func search[T OrderedStringer](value T, node *Node[T])
(*Node[T], string) {
if value == node.value {
return nil, ""
} else if value > node.value {
if node.right == nil {
return node, "R"
}
return search(value, node.right)
} else if value < node.value {
if node.left == nil {
return node, "L"

378

CHAPTER 12 RED-BLACK TREES

return search(value, node.left)

}

return nil,

}

// Logic for drawing tree
type NodePair struct {
Vali, Val2 string

}
type NodePos struct {
Val string
Red bool
YPos int
XPos int
}

var data []NodePos
var endPoints []NodePair // Used to plot lines

func PrepareDrawTree[T OrderedStringer](tree RedBlackTree[T]) {
prepareToDraw(tree)

}

func FindXY(val interface{}) (int, int) {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return data[i].XPos, data[i].YPos

}

return -1, -1

}

func FindX(val interface{}) int {
for i := 0; i < len(data); i++ {
if data[i].val == val {
return i

379

CHAPTER 12 RED-BLACK TREES

return -1
}
func SetXValues() {
for index := 0; index < len(data); index++ {
xValue := FindX(data[index].Val)
data[index].XPos = xValue

}

func prepareToDraw[T OrderedStringer](tree RedBlackTree[T]) {
inorderLevel(tree.root, 1)
SetXValues()
getEndPoints(tree.root, nil)

}

func inorderLevel[T OrderedStringer](node *Node[T], level int) {
if node != nil {
inorderLevel(node.left, level + 1)
data = append(data,
NodePos{node.value.String(), node.red,
100 - level, -1})
inorderLevel(node.right, level + 1)

}

func getEndPoints[T OrderedStringer](node *Node[T], parent *Node[T]) {
if node != nil {
if parent != nil {
endPoints = append(endPoints,
NodePair{node.value.String(),
parent.value.String()})

}
getEndPoints(node.left, node)

getEndPoints(node.right, node)

}

var path string

380

CHAPTER 12 RED-BLACK TREES

func DrawGraph(a fyne.App, w fyne.Window) {

}

image := canvas.NewImageFromResource(theme.FynelLogo())
image = canvas.NewImageFromFile(path + "tree.png")
image.FillMode = canvas.ImageFillOriginal
w.SetContent(image)

w.Close()

w. Show()

func ShowTreeGraph[T OrderedStringer](myTree RedBlackTree[T]) {

PrepareDrawTree(myTree)

myApp := app.New()

myWindow := myApp.NewWindow("Tree")
myWindow.Resize(fyne.NewSize (1000, 600))
path, _ := homedir.Dir()

path += "/Desktop//"

nodePts := make(plotter.XYs, myTree.count)

for i := 0; i < len(data); i++ {
nodePts[i].Y = float64(data[i].YPos)
nodePts[i].X = float64(data[i].XPos)

}

nodePtsData := nodePts

p := plot.New()

p.Add(plotter.NewGrid())

nodePoints, err := plotter.NewScatter(nodePtsData)

if err != nil {

log.Panic(err)
}
nodePoints.Shape = draw.CircleGlyph{}
nodePoints.Color = color.RGBA{R: 255, G: 255, B:

250, A: 255} // White fill
nodePoints.Radius = vg.Points(12)
// Plot lines
for index := 0; index < len(endPoints); index++ {
vall := endPoints[index].Val1
x1, y1 := FindXY(val1)

381

CHAPTER 12 RED-BLACK TREES

val2 := endPoints[index].Val2
X2, y2 := FindXY(val2)
pts := plotter.XYs{{X: float64(x1), V:
float64(y1)},{X: float64(x2), Y: float64(y2)}}
line, err := plotter.NewLine(pts)
if err != nil {
log.Panic(err)
}
scatter, err := plotter.NewScatter(pts)
if err != nil {
log.Panic(err)
}
p.Add(line, scatter)

}
p.Add(nodePoints)

// Add Labels

for index := 0; index < len(data); index++ {
x := float64(data[index].XPos) - 0.10
y := float64(data[index].YPos) - 0.02
str := data[index].Val
if data[index].Red == true {

str += "(RED)"
} else {

str += "(BLACK)"
}
label, err :=

plotter.NewLabels(plotter.XYLabels {
XYs: []plotter.XY {
{X: x ,Y: y},
}J
Labels: []string{str},

1)

382

}

CHAPTER 12

if err != nil {
log.Fatalf("could not creates labels
plotter: %+v", err)

}
p.Add(label)

}

path, = homedir.Dir()
path += "/Desktop/GoDS/"
err = p.Save(1000, 600, "tree.png")
if err != nil {
log.Panic(err)

}
DrawGraph (myApp, myWindow)

myWindow.ShowAndRun()

// Make int comply with Stringer interface
type Integer int

func (i Integer) String() string {

}

return strconv.Itoa(int(i))

func main() {

myTree := NewTree[Integer](10)
myTree.Insert(20)
myTree.Insert(4)
myTree.Insert(15)
myTree.Insert(17)
myTree.Insert(40)
myTree.Insert(50)
myTree.Insert(60)
myTree.Insert(70)
myTree.Insert(35)
myTree.Insert(38)

RED-BLACK TREES

383

CHAPTER 12 RED-BLACK TREES

myTree.Insert(18)
myTree.Insert(19)
myTree.Insert(45)
myTree.Insert(30)
myTree.Insert(25)
ShowTreeGraph(*myTree)

The output produced by main is shown in the following. This is the same as the tree
constructed in Section 12.2.

The OrderedStringer interface was brought back into play because the display tree
requires it to create the labels for each tree node.

Comparing the Performance of Red-Black Tree
to AVL Tree

A benchmark test was performed to see how long it takes to construct a red-black tree
from a sequence of 100,000 random integers. The same test was performed to see the
time required to build an AVL tree from 100,000 random integers.

The results are interesting and the following:

Insertion time for red-black tree: 27.62615ms

Search time for red-black tree: 16.037945ms

Insertion time for AVL tree: 48.315163ms

Search time for AVL tree: 3.914522ms

Benchmark Conclusion

The red-black tree takes about half as long to build but takes four times as long to
search compared to the AVL tree. The AVL tree is more balanced than the red-black tree
but requires many more rotations during construction.

Since we typically build search trees for many fast lookups, the AVL is generally
preferable in such cases.

384

CHAPTER 12 RED-BLACK TREES

17(BLACK)

98— I0{BLACK) J{REDY)

N

4 4(BLACK) 15(BLACK) um ACK) r«nl..\cxl
56— / IBBLACK) ﬂle ACK) THBLACK)

l!(BL ACK) IS(BLACK) A5(RED)

Vas

oy Z{RED) IRED)

12.4 Summary

The logic for building a red-black tree was presented and illustrated. An implementation
of a generic red-black tree was presented with the Insert method along with many
supporting methods. With small modifications, the code for drawing a red-black tree was
shown. The performance of a red-black tree was compared to an AVL tree. Red-black
trees can be more efficiently generated but are less efficient to search than AVL trees.

In the next chapter, we introduce expression trees.

385

CHAPTER 13

Expression Trees

In the previous chapter, we presented red-black trees. These binary search trees provide
faster insertion performance compared to AVL trees but slower search time.

In this chapter, we introduce and implement expression trees. These are used to
represent and evaluate some mathematical expressions.

In the next section, we introduce expression trees.

13.1 Expression Trees

Expression trees are used to represent and evaluate mathematical expressions. Here, we
limit such expressions to have operands given by a single character between “a” and “z”
and operators that include “+’; “-’, “*”, and “/".

Consider the expression “((a+b) + (c-d) / (f+g) +h)) +y/ (x-z)".

An expression tree representing this mathematical expression is shown in

Figure 13-1.

387
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8 13

https://doi.org/10.1007/978-1-4842-8191-8_13

CHAPTER 13 EXPRESSION TREES

Figure 13-1. Expression tree for mathematical expression

The operands are contained in the leaf nodes and the operators in the interior nodes.

We interpret and obtain the mathematical expression represented by this tree by
starting at the various leaf nodes and working upward toward the root node.

Starting with the leftmost leaf nodes, we have (a + b) +

Moving to the middle section leaf nodes, we have

(c-d)/(f+g)+h
From the rightmost leaf nodes, we have
y/(x-2)+...

Putting the three sections together gives us the original expression.
In the next section, we present and discuss the construction of an expression tree.

388

CHAPTER 13 EXPRESSION TREES

13.2 Construction of an Expression Tree

The construction of an expression tree requires a layering of abstractions. We need a
Stack to assist in the construction process.
We define two types, Node and ExpressionTree, as follows:

type Node struct {
ch string
left *Node
right *Node

}

type ExpressionTree struct {
postfix string
root *Node

Type Node is the familiar binary tree node with a string, ch, stored in each node. This
string will be either an operand or operator.

Type ExpressionTree contains two fields. Field postfix is the postfix string
representation of the mathematical expression we input to build the expression tree.
Field root is a pointer to Node.

Building a New Expression Tree

Function NewTree, presented in the following, is used to build our expression tree.

func NewTree(infix string) (tree *ExpressionTree) {
infix = strings.TolLower(infix)
tree = &ExpressionTree{"", nil}
tree.postfix = infixpostfix(infix)
stack := nodestack.Stack[*Node]{} // Create stack
// of Node
str := strings.Split(tree.postfix, "")
for index := 0; index < len(str); index++ {
if str[index] »= string('a') &&
str[index] <= string('z') {
node := &Node{str[index], nil, nil}

389

CHAPTER 13 EXPRESSION TREES

stack.Push(node)

} else if (str[index] == "+") ||
(str[index] == "-") ||
(str[index] == "*") ||
(str[index] == "/") {

right := stack.Top()

stack.Pop()

left := stack.Top()

stack.Pop()

node := &Node{stx[index], nil, nil}
node.left = left

node.right = right

stack.Push(node)

}
tree.root = stack.Top()

return tree

Explanation of Function NewTree

The first four lines of code create an empty tree (the tree variable is used as the return
variable) and an empty Stack of base type pointer to Node.

This is another example of how useful generic data structures are. Instead of having
to duplicate a new stack implementation with *Node as a base type, we can simply use
the generic stack package and specify the base type as *Node.

In a for-loop that accesses each character of the postfix string, if the character is an
operand, we create a node with the character and push the node onto the stack.

If the character is one of the four possible operators, we grab the top two characters
from the stack, create a node containing the operator character, and set its left and right
child to the two nodes popped from the stack. Finally, we push this new node onto the
stack. This is equivalent to moving upward from the leaf nodes to the root of the tree that
we described in the previous section.

390

CHAPTER 13 EXPRESSION TREES

Function Evaluation Using Expression Tree

Method Evaluate, presented in the following, takes the root of an expression tree as its
first parameter and a map of operand values as its second parameter and returns the
value of the function (float64).

func (tree *ExpressionTree) Evaluate(node *Node,
operandValues map[string]float64) float64 {
if node == nil {
return 0.0
}
if node.left == nil && node.right == nil {
value := operandValues[node.ch]
return value
}
leftValue := tree.Evaluate(node.left, operandValues)
rightValue := tree.Evaluate(node.right, operandValues)

if node.ch == "+" {

return leftValue + rightValue
} else if node.ch == "-" {

return leftValue - rightValue
} else if node.ch == "*" {

return leftValue * rightValue
} else {

return leftValue / rightValue

Explanation of Method Evaluate

If the expression tree node is a leaf node, we assign and return value by accessing the
operandValues map.

Otherwise, we assign leftValue and rightValue by recursively invoking Evaluate
sending in node.left and node.right, along with the operandValues map.

Then, based on the operator contained in node, we combine leftValue and
rightValue accordingly.

391

CHAPTER 13 EXPRESSION TREES

In Listing 13-1, we present the full implementation of expression tree construction
and evaluation along with a main driver.

Listing 13-1. Expression tree
package main

import (
"fmt"
"example.com/nodestack"
"strings"

)

type Node struct {
ch string
left *Node
right *Node

}

type ExpressionTree struct {
postfix string
root *Node

}

func NewTree(infix string) (tree *ExpressionTree) {
infix = strings.TolLower(infix)
tree = 8ExpressionTree{"", nil}
tree.postfix = infixpostfix(infix)
stack := nodestack.Stack[*Node]{}
str := strings.Split(tree.postfix, "")
for index := 0; index < len(str); index++ {
if str[index] >= string('a') 8& str[index] <=
string('z") {
node := &Node{str[index], nil, nil}

stack.Push(node)
} else if (str[index] == "+") ||
(str[index] == "-") ||
(str[index] == "*") ||

392

}

CHAPTER 13

(str[index] == "/") {
right := stack.Top()
stack.Pop()
left := stack.Top()
stack.Pop()
node := &Node{str[index], nil, nil}
node.left = left
node.right = right
stack.Push(node)

tree.root = stack.Top()
return tree

}

func (tree *ExpressionTree) Evaluate(node *Node,

operandValues map[string]float64) float64 {

if node == nil {

}

return 0.0

if node.left == nil && node.right == nil {

}

value := operandValues[node.ch]
return value

leftValue := tree.Evaluate(node.left, operandValues)
rightValue := tree.Evaluate(node.right, operandValues)
if node.ch == "+" {

return leftValue + rightValue

} else if node.ch == "-" {

return leftValue - rightValue

} else if node.ch == "*" {

return leftValue * rightValue

} else {

return leftValue / rightValue

EXPRESSION TREES

393

CHAPTER 13 EXPRESSION TREES

// From Listing 5.7
func infixpostfix(infix string) (postfix string) {

Opera_tors := []string{ll+ll, Il_", "*II, II/II” ll)"}
postfix = ""
nodeStack := nodestack.Stack[string]{}

for index := 0; index < len(infix); index++ {
newSymbol := string(infix[index])
if newSymbol == " " || newSymbol == "\n" {
continue
}
if newSymbol >= "a" 8& newSymbol <= "z" {
postfix += newSymbol
}
if isPresent(newSymbol, operators) {
if !nodeStack.IsEmpty() {
topSymbol := nodeStack.Top()
if precedence(topSymbol, newSymbol) ==
true {
if topSymbol != "(" {
postfix += topSymbol
}
nodeStack.Pop()

}
if newSymbol != ")" {

nodeStack.Push(newSymbol)
} else {
for {
if nodeStack.IskEmpty() == true {
break
}
ch := nodeStack.Top()
if ch 1= "(" {
postfix += ch
nodeStack.Pop()

394

CHAPTER 13

} else {
nodeStack.Pop()
break

}

}
}
}
}
for {
if nodeStack.IsEmpty() == true {
break
}
if nodeStack.Top() != "(" {
postfix += nodeStack.Top()
nodeStack.Pop()
}
}

return postfix

}

// From Listing 5.7
func precedence(symboli, symbol2 string) bool {
if (symbol1l == "+" || symboll == "-") &&
(symbol2 == "(" || symbol2 == "/") {
return false
} else if (symboll == "(" && symbol2 != ")") ||
symbol2 == "(" {
return false
} else {
return true

}

// From Listing 5.7
func isPresent(symbol string,operators []string) bool {
for i := 0; i < len(operators); i++ {

EXPRESSION TREES

395

CHAPTER 13 EXPRESSION TREES

if symbol == string(operators[i]) {
return true

}

return false

}

func main() {
operandValues := map[string]float64{"a": 5.0, "b":
2.0, "c": 3.0, "d": 2.0,
"f": 4.0, "g": 8, "h": 17, "y": 20,
"x": 14, "z": 3}
infix := "((atb)+(- d)/(f+g)+ h))+y / (x - z)"
expressionTree := NewTree(infix)
fmt.Println("Expression tree evaluates to: ",
expressionTree.Evaluate(expressionTree.root,

operandValues))
}
/* Output
Expression tree evaluates to: 25.90151515151515
*/
In the next section, we implement the ShowTreeGraph function for an
expression tree.

13.3 Implementation of ShowTreeGraph

If we use the code from Chapter 8 for graphing a binary tree and apply it, as is, to
an expression tree, we get the graph shown in Figure 13-2 for the tree produced in
Listing 13-1.

Why the failure? An expression tree is a binary tree, so one would expect the code of
Chapter 8 to work here.

The suite of code for graphically displaying a binary tree assumes that each node has
a unique value field.

396

CHAPTER 13 EXPRESSION TREES

An expression tree fails this requirement because there are nodes with identical
values. For example, how many nodes contain a “+” for their value? Many!

To fix the problem so that we can deploy the code to graph an expression tree, we
concatenate a unique numerical tag, as a string, to each node’s ch field. Then when we
create labels; we extract only the first character from node.ch. In this way, we have forced
each node to have a unique string representation while we build the tree.

ece Tre
. ® o
96—
e
] o 16

Figure 13-2. Expression tree resulting from code in Chapter 8

Listing 13-2 presents the revised portion of the suite of functions for graphing an
expression tree. The four lines of code that are added are shown in boldface.

A variable cis defined global to function inorderLevel. Each time this function
is invoked, c is incremented by one, and node.ch is modified with this additional
unique tag.

When adding labels in function ShowTreeGraph, only the first character of node.ch
is used, blocking out the unique tag.

397

CHAPTER 13 EXPRESSION TREES

Listing 13-2. Code for graphing an expression tree
var ¢ =0

func inorderLevel(node *Node, level int) {
if node != nil {
inorderLevel(node.left, level + 1)
cC +=1
node.ch += string(c)
data = append(data, NodePos{node.ch, 100 -
level, -1})
inorderLevel(node.right, level + 1)

}

// Add Labels
for index := 0; index < len(data); index++ {
x := float64(data[index].XPos) - 0.1
y := float64(data[index].YPos) - 0.02
str := data[index].Val
label, err := plotter.NewlLabels(plotter.XYLabels {
XYs: []plotter.XY {

{X: x,Y: y},
b
Labels: []string{string(str[o])},
1)

if err != nil {
log.Fatalf("could not creates labels
plotter: %+v", err)

}
p.Add(label)

When the modified suite of tree graphing functions is added to the code in
Listing 13-2, the tree graph produced is shown in Figure 13-3.

398

CHAPTER 13 EXPRESSION TREES

Figure 13-3. Expression tree from modified code for graphing

13.4 Summary

In this chapter, we implemented and discussed the details of building and evaluating an
expression tree. We showed the modification needed for graphing an expression tree.
In the next chapter, we present a larger application that features concurrency.

399

CHAPTER 14

Ecological Simulation
with Concurrency

The previous chapter introduced expression trees. We showed how we can represent and
evaluate simple mathematical expressions using such trees.

In this chapter, we switch gears. We present a concurrent implementation of an
ecological simulation.

In the next section, we present an overview of the simulation.

14.1 Overview

This chapter presents an interesting emergent computation using a predator/prey model
of a simple ecological system that simulates population dynamics. The design uses
concurrency.

Many important concepts and techniques from previous chapters are used in this
example. These include a graphical framework, extensive use of goroutines, object-
oriented programming, type assertions (introduced in this chapter), implementing
interfaces, and protecting shared data, to name a few.

We simulate the dynamics of three simplified marine-life species coexisting in an
ocean with positions at any instant defined in a 50 x 50 grid of locations. At any moment,
each of the 2500 locations contains nothing or a shark or a tuna or a mackerel.

In this simple food chain, shark is the top of the chain because shark can eat tuna.
Tuna is second in the food chain because tuna can eat mackerel. Mackerel are at the
bottom of the food chain. They are strictly a prey (can be eaten by tuna). Tuna is both a
predator (can eat mackerel) and a prey (can be eaten by shark).

Each of the three species can reproduce according to rules to be specified. The two
species that are predators (shark and tuna) can die of starvation. Tuna can also die
because they are eaten by shark. All three species can die of old age. Since shark cannot

401
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_14

https://doi.org/10.1007/978-1-4842-8191-8_14

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

be eaten, their population declines because of starvation (failure to eat tuna within a
specified interval of time) or old age. Tuna also can reproduce and can die of starvation
or old age. Mackerel can reproduce, die of old age, or die because they are eaten.

The rules of movement within the 50 x 50 grid of locations allow each critter (shark,
tuna, or mackerel) to move concurrently once they are created. When they die (from
starvation, old age, or being eaten), their movement stops, and they are purged from the
ocean. Snapshots of the entire ocean are taken periodically to display the location of all
the species along with empty locations.

We color-code each species, so the simulation output is most interesting as it shows
the migration and population dynamics of the three species as a function of time. There
is no communication between the critters. Each critter is an independent agent moving
concurrently with all the other critters.

14.2 Specifications

We specify the rules that govern each of the three species.

Mackerel

A mackerel moves to an empty location in its immediate neighborhood (the collection
of up to eight cells from the mackerel’s current location, fewer if the mackerel is at one
of the boundaries of the ocean (row 0, row 49, col 0, col 49)). If more than one empty
location is found, it chooses one randomly and moves to this empty location, vacating its
previous location. All mackerel, when created, are assigned a reproduction value. Each
time it moves, its reproduction value is decremented by one. When its reproduction
value becomes equal or less than zero, and the mackerel has been able to move to a
neighboring empty location, it reproduces by creating a new mackerel and placing it

in the location just vacated. This new mackerel takes on a life of its own and moves
concurrently with the rest of the sea critters. If the mackerel was able to reproduce, its
reproduction value is reset to its initial value. If the reproduction value is equal or less
than zero but the mackerel was blocked from movement (no empty locations in its
immediate neighborhood), it cannot reproduce on that move and must wait for a future
move. Reproduction can occur only when the mackerel has moved, to allow the newly
created mackerel to occupy the cell vacated by the mackerel that is reproducing.

402

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

If a mackerel is eaten by some tuna, it must be blocked from further moves because a
dead mackerel cannot move or reproduce.

A mackerel is also assigned an age value when created. On each move, its age value
is decremented by one. When the age value reaches 0, the mackerel dies. The dead
mackerel must be blocked from further movement and purged from the ocean.

Tuna

The behavior of a tuna is only slightly different than a mackerel. On each move, its
reproduction value, starvation value, and age value are decremented by one. If its
starvation value or age value is zero, it dies and cannot move again and is purged from
the ocean.

The tuna first attempts to move to a neighboring location containing a mackerel.
If there is more than one mackerel found, it chooses one at random and moves to
its location. The dead mackerel can no longer move and is purged from the ocean.
The tuna’s starvation value is reset to its original state. If there are no mackerel in the
immediate neighborhood of the tuna, it attempts to move to a neighboring empty
location, choosing a random empty cell if there is more than one. When its reproduction
value is equal or less than 0, it reproduces using the same mechanism described for the
mackerel. It cannot reproduce unless it has moved.

If some tuna is eaten by a shark, it cannot move again and must be purged from
the ocean.

Shark

The behavior of a shark is like a tuna except that it cannot be eaten. When it moves, it
first attempts to find and eat some tuna in one of its neighboring cells. Failing that, it
moves to a neighboring empty location if one exists, choosing one randomly if more than
one exists. Its rules for reproduction are identical to tuna and mackerel.

In summary, the population of mackerel increases because of reproduction. Its
population decreases because of being eaten or old age.

The population of tuna increases because of reproduction. Its population decreases
because of being eaten, starvation, or old age.

The population of shark increases because of reproduction. Its population decreases
because of starvation or old age.

403

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

Output

Each critter is represented by a colored rectangle in the 50 x 50 grid of cells. Red
rectangles represent shark. Blue rectangles represent tuna, and green rectangles
represent mackerel. Empty cells are colored gray.

A census is conducted periodically, and the current positions of each critter and
empty cells in the 50 x 50 grid are displayed graphically. This enables the migration
pattern of each species to be dramatically displayed as the critters move concurrently.

A screenshot of the simulation in action is shown in Figure 14-1.

404

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

-

0 Ecological Simulation - Type Any Key To Quit

Figure 14-1. Simulation in action

Here, the population of mackerel has exploded outward, the population of tuna is
about to encroach on the mackerel, and the sharks are waiting for the tuna to increase so
they can feed on the tuna.

405

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

14.3 The Design

A global grid of location objects is constructed. Each location object contains an x and
y position and a critter. This critter is either a shark, tuna, or mackerel. As each critter
moves, the global location grid (a two-dimensional array) is updated.

The movement of each critter is controlled by an independent goroutine spawned
when the critter is born (from reproduction or from the initial population). When the
critter dies either from being eaten (mackerel or tuna) or starvation (tuna or shark) or old
age (mackerel, tuna, or shark), its goroutine must be halted to prevent further movement
and to control computer resources. As the ocean cells become occupied with critters,
there could be thousands of goroutines running concurrently, each representing a critter
that is moving.

To achieve continual movement of each critter, a loop is constructed within the
goroutine of the critter, with a random sleep delay of between a half second and one
second. This loop must be terminated when the simulation ends or when the critter dies.
Terminating (breaking out of) the loop ends the goroutine for that critter.

A separate output goroutine is constructed in a loop with a sleep delay of one
second. So every second, the census of critters is computed, and the positions of all the
critters are displayed with colored rectangles. During this output, the global matrix of
locations containing critters is displayed.

Using a mutex, the global locations matrix must be frozen when a critter moves or
when the ocean is displayed to prevent a race condition.

14.4 The Implementation

Before presenting the entire implementation (over 400 lines of code), we show and
discuss various pieces.

Data Model for Each Species

We start by examining the data model of each species and most importantly the global
location matrix.

type Location struct {
X int
int

406

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

critter MarinelLife

}
type MarineLife interface {

Move()

Reproduce(1l Location)

Starve() bool

LifeOver() bool
}
type Tuna struct {

repro int

starv int

life int

X, y int // Set x to -1, y = -1 if dead
}
type Shark struct {

repro int

starv int

life int

X, y int // Set x to -1, y = -1 if dead
}
type Mackerel struct {

repro int

starv int

life int

X, yint // Set x to -1, y = -1 if dead
}

var locations [numRows][numCols]Location

Discussion of Code

Type location specifies critter as type MarineLife. For this to work, each of the concrete
critter types (shark, tuna, and mackerel) must implement the MarineLife interface. This
means that each of the concrete types must implement methods Move, Reproduce,
Starve, and LifeOver.

407

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

Each of the critter types is defined by a struct containing the fields repro, starv, life,
x,andy.

The global locations two-dimensional array is defined as containing Location
objects.

Support Functions

Several support functions are defined that are needed to implement the MarineLife
interface methods. These are shown as follows:

func init() {
rand.Seed(time.Now().UTC().UnixNano())

}

func distance0fOne(x1, y1, x2, y2 float64) bool {
return (math.Abs(x2-x1) == 0 &&
math.Abs(y2-y1) == 1) ||
(math.Abs(x2-x1) == 1 && math.Abs(y2-y1) == 0)
|| (math.Abs(x2-x1) == 1 &&
math.Abs(y2-y1) == 1)
}

func initializelocations() {
for row := 0; row < numRows; row++ {
for col := 0; col < numCols; col++ {
locations[row][col] =
Location{col, row, nil}

}

func findRandomCritter(x int, y int,
critter MarineLife) (bool, Location) {
// Send in nil for critter to get random empty
// location
result := []Location{}
for r := 0; r < numRows; r++ {

408

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

for c := 0; c < numCols; c++ {
d := distanceOfOne(float64(x), float6a(y),
float64(c), float64(r))
if d == true 8&
reflect.TypeOf(locations[c][x].critter) ==
reflect.TypeOf(critter) {
result = append(result, Location{r, c,
critter})

}
if len(result) == 0 {
return false, Location{}
} else {
return true, result[rand.Intn(len(result))]

Discussion of Code

We use the reflect.TypeOf method in function findRandomCritter to create a slice
of Location objects containing the critter that is input to this function. This function
returns two outputs and allows the caller to determine whether a target location has
been found.

Function init() seeds the random number generator with the current clock time that
assures different results each time the simulation is run.

Function initializeLocations assigns an x and y coordinate to each cell and assigns
each cell with a nil critter.

Required Methods for Mackerel to Be of Type MarineLife

func (mackerel *Mackerel) Move() {
for ; quit == false ; {
if mackerel.x == -1 { // mackerel has been
// killed

409

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

break

}

mutex.Lock()

mackerel.repro -= 1

mackerel.staxrv -= 1

mackerel.life -= 1

if mackerel.LifeOver() || mackerel.Starve() {
locations[mackerel.y][mackerel.x].critter

= nil
mackerel.x = -1
mackerel.y = -1
mutex.Unlock()
break

}

// Find random neighbor that has no critter
found, newLoc := findRandomCritter(mackerel.x,
mackerel.y, nil)
if found == true {
fmt.Printf("\nMackerel Move from <%d, %d>
to <%d, %d>", mackerel.x,
mackerel.y, newLoc.x, newlLoc.y)
mackerel .Reproduce(newLoc)
}
mutex.Unlock()
time.Sleep(time.Duration(rand.Intn(500) + 500)
* time.Millisecond)

}

func (mackerel Mackerel) Starve() bool {
return mackerel.starv <= 0

}

func (mackerel Mackerel) LifeOver() bool {
return mackerel.life <= 0

410

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

func (mackerel *Mackerel) Reproduce(l Location) {

if mackerel.x == -1 {
return

}

if mackerel.repro <= 0 {
newMackerel := new(Mackerel)
newMackerel.repro = MACKERELREPRO
newMackerel.starv = MACKERELSTARVE
newMackerel.life = MACKERELLIFE
newMackerel.x = mackerel.x
newMackerel.y = mackerel.y
locations[mackerel.y][mackerel.x].critter

newMackerel

go newMackerel.Move()
} else {

locations[mackerel.y][mackerel.x].critter = nil

}

mackerel.x = 1l.x // assign mackerel to new location

mackerel.y = l.y
// add mackerel to new location
locations[1l.y][1l.x].critter = mackerel

Discussion of Code

The Move method for mackerel takes a pointer to a Mackerel as receiver of the method.
This is needed since the mackerel receiver may have its internal data modified.

In the for-loop that defines successive moves, if the x coordinate of the mackerel
object is negative 1, we break out of the loop, which terminates the method. This method
will be defined elsewhere as a goroutine.

We lock the mutex to prevent the global locations matrix from being changed
outside of this goroutine. We decrement the three fields repro, starv, and life.

If either Starve or LifeOver is true, we purge the mackerel object from the ocean
(setting its critter value to nil at the appropriate location[mackerel.y][mackerel.x]). We
terminate the goroutine of the dead mackerel object by setting its x and y values to -1. We
unlock the mutex.

411

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

If an empty target location is found, we output the move to the console and pass the
newLoc to the Reproduce method. We unlock the mutex. We pause the goroutine loop
using a random sleep interval.

The Reproduce method uses a pointer receiver since the receiver’s internal data may
be changed.

If the repro value is equal or less than zero, we create a new mackerel object using
global constants that define the initial field values repro, starv, and life. We assign the
new mackerel object to the critter field of Location and its x and y values to the location
vacated by the reproducing mackerel.

If the repro value is greater than one, we set the vacated location to a critter
value of nil.

Finally, we set the x and y coordinates of the mackerel to the new location.

Move Method for Shark

We next show the implementation of the Move method for Shark.

func (shark *Shark) Move() {
for ; quit == false ; {
if shark.x == -1 { // Shark no longer alive
break
}
mutex.Lock()
shark.repro -= 1
shark.staxv -= 1
shark.life -= 1
if shark.LifeOvex() || shark.Starve() {
locations[shark.y][shark.x].critter = nil
shark.x = -1

shark.y = -1
mutex.Unlock()
break

}

// Find random neighbor that has tuna
found, newlLoc := findRandomCritter(shark.x,
shark.y, new(Tuna))

412

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

if found == true {
fmt . Printf("\nShark Move from <%d, %d» to
<%d, %d»", shark.x, shark.y, newlLoc.x,
newlLoc.y)
shark.staxrv = SHARKSTARVE

// Type assertion
eatenTuna := locations[newLoc.y][newLoc.x].critter.(*Tuna)

// Must stop go routine for tuna that was
// eaten
eatenTuna.x = -1
eatenTuna.y = -1
fmt.Printf("\nEaten tuna = %v", eatenTuna)
shark.Reproduce(neuwloc)
} else {
found, newlLoc = findRandomCritter(shark.x,

shark.y, nil)
if found == true {
fmt.Printf("\nShark Move from <%d, %d>
to <%d, %d>", shark.x,
shark.y, newLoc.x, newlLoc.y)
shark.Reproduce(newlLoc)

}
mutex.Unlock()

time.Sleep(time.Duration(rand.Intn(500) + 500)
* time.Millisecond)

Discussion of Code

Most of the implementation details of Move for Shark are the same as for Mackerel. The
only change is that the shark first looks for a neighboring tuna to eat.
Here, we encounter a type assertion. Let’s look closely at this.

413

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

We invoke the findRandomCritter method as follows passing new(Tuna) as the
third parameter:

found, newlLoc := findRandomCritter(shark.x, shark.y,
new(Tuna))

If found is true, we set the starv value back to its SHARKSTARVE initial value. Then
we assign the variable eatenTuna as follows:

// Type assertion
eatenTuna := locations[newLoc.y][newLoc.x].critter.(*Tuna)

This type assertion asserts that locations[[newLoc.y][newLoc.x] is of type *Tuna.

Since this assertion is true, we can treat eatenTuna as if it had been defined to be of
type *Tuna.

By setting the x and y values of eatenTuna to -1, we effectively terminate the
goroutine for the eaten Tuna object.

Type assertions of this kind are useful when it is necessary to act on the actual type of
an object whose formal type is an interface.

It is essential that the Tuna type implement the MarineLife interface for this to work.
It does!

The other three methods that implement the MarineLife interface for type Shark are
the same.

Move Method for Tuna

The Move method for class Tuna is essentially the same as the Move method just
described for type Shark.

func (tuna *Tuna) Move() {
for ; quit == false ; {
if tuna.x == -1 { // Tuna no longer alive
break

}
mutex.Lock()
tuna.repro -= 1
tuna.starv -= 1
tuna.life -= 1

414

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

if tuna.LifeOver() || tuna.Starve() {
locations[tuna.y][tuna.x].critter = nil
tuna.x = -1

tuna.y = -1
mutex.Unlock()
break

}

// Find random neighbor that is a Mackerel
found, newlLoc := findRandomCritter(tuna.x,
tuna.y, new(Mackerel))
if found == true {
fmt.Printf("\nTuna Move from <%d, %d> to
<%d, %d»", tuna.x, tuna.y, newlLoc.x,
newLoc.y)
tuna.staxrv = TUNASTARVE
// Must stop go routine for mackerel that
// was eaten
// Type assertion
eatenMackerel:= locations[newLoc.y][newLoc.x].critter.
(*Mackerel)
-1
eatenMackerel.y = -1
fmt.Printf("\nEaten mackerel = %v",
eatenMackerel)
tuna.Reproduce(newLoc)

eatenMackerel.x

}

found, newlLoc = findRandomCritter(tuna.x,
tuna.y, nil)
if found == true {
fmt.Printf("\nTuna Move from <%d, %d> to
<%d, %d»", tuna.x, tuna.y, newlLoc.x,
newlLoc.y)
tuna.Reproduce(newloc)

}
mutex.Unlock()

415

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

time.Sleep(time.Duration(rand.Intn(500) + 500)
* time.Millisecond)

A similar type assertion is used to enable the killing of the eaten mackerel.

Output Function for the Graphical Display of Critters

The output function that produces a graphical display of the critters is given as follows:

func output() *fyne.Container {
for col := 0; col < numCols; col++ {
for row := 0; row < numRows; row++ {

if locations[col][row].critter == nil {

rect =
canvas.NewRectangle(&color .RGBA{B:
200, R: 200, G: 200, A: 255})

} else if
reflect.TypeOf(locations[col][row].critter) ==
reflect.TypeOf(new(Tuna)) {

rect =
canvas.NewRectangle(&color .RGBA{B:
255, R: 0, G: 0, A: 255})

} else if
reflect.TypeOf(locations[col][row].critter) ==
reflect.TypeOf (new(Shark)) {

rect =
canvas.NewRectangle(&color .RGBA{B:
0, R: 255, G: 0, A: 255})

} else if
reflect.TypeOf(locations[col][row].critter) ==
reflect.TypeOf(new(Mackerel)) {

rect =
canvas.NewRectangle(&color .RGBA{B:

416

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

0, R: 0, G: 255, A: 255})
}
rect.Resize(fyne.NewSize(10, 10))
rect.Move(fyne.NewPos(float32(col * 11),
float32(row * 11)))
segments[col + numCols * row] = rect

}

return container.NewWithoutLayout(segments...)

Itis supported by the following global declarations:

const (
numRows int = 50
numCols int = 50
MAKERELREPRO int = 4
MAKERELSTARVE int = 10000000
MAKERELLIFE int = 30
TUNAREPRO int = 8
TUNASTARVE int = 11
TUNALIFE int = 18
SHARKREPRO int = 15
SHARKSTARVE int = 25
SHARKLIFE int = 30

var (

quit bool

contain *fyne.Container

rect *canvas.Rectangle

mutex = &sync.Mutex{}

// Holds rectangle objects

segments = make([]fyne.CanvasObject, numRows *
numCols)

417

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

The output function is contained within the following goroutine in function main:

go func() {
for ; ; {
mutex.Lock()
contain := output()
mutex.Unlock()
w.SetContent(contain)
time.Sleep(1000 * time.Millisecond)

}
})

Discussion of Code

In a loop that queries every location object, a rectangle, rect, is defined with its color
based on the type of critter occupying the location. These rectangles are assigned to the
segments array that allows w.SetContent to display the rectangles.

Full Implementation of Simulation

The implementation of the ecological simulation is presented in Listing 14-1. Functions
presented and discussed previously are snipped out in the interest of space. You can
download the full source code from the website specified in the Preface and run the

simulation.

Listing 14-1. Ecological simulation
package main

import (
"fmt"
"math"
"math/rand"
"reflect"
"time"
"image/color"

"fyne.io/fyne/v2

418

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

"fyne.io/fyne/v2/app"
"fyne.io/fyne/v2/canvas”
“fyne.io/fyne/v2/container”
"sync"

)

const (
numRows int

50
numCols int = 50
MAKERELREPRO int = 4
MAKERELSTARVE int = 10000000
MAKERELLIFE int = 30
TUNAREPRO int = 8
TUNASTARVE int = 11
TUNALIFE int = 18
SHARKREPRO int = 15
SHARKSTARVE int = 25
SHARKLIFE int = 30

var (
quit bool
contain *fyne.Container
rect *canvas.Rectangle
mutex = &sync.Mutex{}
// Holds rectangle objects
segments = make([]fyne.CanvasObject, numRows *
numCols)

)

type Location struct {
X int
y int
critter Marinelife

}

type MarineLife interface {

419

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

Move()

Reproduce(1l Location)
Starve() bool
LifeOver() bool

}

type Tuna struct {
repro int // Moves til reproduction
starv int // Movew til starvation
life int // Moves til life over
X, y int // Set x to -1, y = -1 if dead
}

type Shark struct {

repro int

starv int

life int

X, y int // Set x to -1, y = -1 if dead
}

type Mackerel struct {

repro int

starv int

life int

X, y int // Set x to -1, y = -1 if dead
}

var locations [numRows][numCols]Location

func init() {
rand.Seed(time.Now().UTC().UnixNano())

}

func distance0fOne(x1, y1, x2, y2 float64) bool {
// snip

}

420

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

func initializelocations() {

// snip

}

func findRandomCritter(x int, y int, critter MarineLife) (bool, Location) {
// snip

}

func (tuna *Tuna) Move() {
// snip

}

func (shark *Shark) Move() {
// snip

}

func (mackerel *Mackerel) Move() {
// snip

}

func (tuna Tuna) Starve() bool {
// snip

}

func (tuna Tuna) LifeOver() bool {
// snip

}

func (shark Shark) Starve() bool {
// snip

}

func (shark Shark) LifeOver() bool {
// snip

}

func (mackerel Mackerel) Starve() bool {
// snip

}

421

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

func (mackerel Mackerel) LifeOver() bool {

// snip
}
func (tuna *Tuna) Reproduce(l Location) {
// snip
}
func (shark *Shark) Reproduce(l Location) {
// snip
}
func (mackerel *Mackerel) Reproduce(l Location) {
// snip
}
func output() *fyne.Container {
// snip
}
func main() {
quit = false
a := app.New()
w := a.NewWindow("Ecological Simulation - Type Any

Key To Quit")
w.Resize(fyne.NewSize (600, 600))
w.SetFixedSize(true)

initializelocations()

newTuna := new(Tuna)

newTuna.repro = TUNAREPRO
newTuna.starv = TUNASTARVE
newTuna.life = TUNALIFE

newTuna.x = 15

newTuna.y = 15
locations[15][15].critter = newTuna
go newTuna.Move()

422

CHAPTER 14

newTuna = new(Tuna)

newTuna.repro = TUNAREPRO
newTuna.starv = TUNASTARVE
newTuna.life = TUNALIFE

newTuna.x = 19

newTuna.y = 19
locations[19][19].critter = newTuna
go newTuna.Move()

newTuna = new(Tuna)

newTuna.repro = TUNAREPRO
newTuna.starv = TUNASTARVE
newTuna.life = TUNALIFE

newTuna.x = 4

newTuna.y = 4
locations[4][4].critter = newTuna
go newTuna.Move()

newShark := new(Shark)
newShark.repro = SHARKREPRO
newShark.starv = SHARKSTARVE
newShark.life = SHARKLIFE

newShark.x = 11

newShark.y = 11
locations[11][11].critter = newShark
go newShark.Move()

newShark = new(Shark)

newShark.repro = SHARKREPRO
newShark.starv = SHARKSTARVE
newShark.life = SHARKLIFE
newShark.x = 16

newShark.y = 16

locations[16][16].critter = newShark
go newShark.Move()

newMackerel := new(Mackerel)

ECOLOGICAL SIMULATION WITH CONCURRENCY

423

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

424

MAKERELREPRO
newMackerel.starv = MAKERELSTARVE
newMackerel.life = MAKERELLIFE
newMackerel.x = 2

newMackerel.y = 2
locations[2][2].critter = newMackerel

newMackerel.repro

go newMackerel.Move()

newMackerel = new(Mackerel)
newMackerel.repro = MAKERELREPRO
newMackerel.starv = MAKERELSTARVE
newMackerel.life = MAKERELLIFE
newMackerel.x = 13

newMackerel.y = 8
locations[8][13].critter = newMackerel
go newMackerel.Move()

newMackerel = new(Mackerel)
newMackerel.repro = MAKERELREPRO
newMackerel.starv = MAKERELSTARVE
newMackerel.life = MAKERELLIFE

16

newMackerel.y = 16
locations[16][16].critter = newMackerel
go newMackerel.Move()

newMackerel.x

newMackerel = new(Mackerel)
newMackerel.repro = MAKERELREPRO
newMackerel.starv = MAKERELSTARVE
newMackerel.life = MAKERELLIFE
newMackerel.x = 28

newMackerel.y = 28
locations[28][28].critter = newMackerel
go newMackerel.Move()

go func() {
for ; ; {

CHAPTER 14 ECOLOGICAL SIMULATION WITH CONCURRENCY

mutex.Lock()

contain := output()

mutex.Unlock()

w.SetContent(contain)
time.Sleep(1000 * time.Millisecond)

}

10

w.Canvas().SetOnTypedKey(func(k *fyne.KeyEvent) { // Shuts down

simulation

quit = true
w.Close()

1}

w. ShowAndRun ()

14.5 Summary

A concurrent implementation of an ecological simulation is presented in this chapter.
Type assertions are introduced and used in the implementation.

Many important concepts and techniques from previous chapters are used in this
example. These include a graphical framework, extensive use of goroutines, object-
oriented programming, type assertions, implementing interfaces, and protecting
shared data.

In the next chapter, we introduce an important technique of algorithm design,

dynamic programming.

425

CHAPTER 15

Dynamic Programming

The previous chapter presented a concurrent implementation of an ecological
simulation. It used many of the techniques presented earlier in this book.

This chapter changes focus from data structures to algorithm design.

We introduce an algorithmic technique for solving optimization problems, dynamic
programming, and apply this technique to several problems.

As you will see in this chapter, “if you cannot remember the past, you are destined to
repeat it.”

In the next section, we present a simple example of dynamic programming, the
computation of the nth Fibonacci number. We explore two dynamic programming

approaches.

15.1 Example of Dynamic Programming: nth
Fibonacci Number

The central mechanism of dynamic programming is representing the solution to a
problem in terms of smaller subproblems, each of which has optimal solutions. Each
subproblem is a smaller version of the original problem. By storing the results to the
smaller problems, we can efficiently obtain the results to the larger problem.

A simple example involves the computation of the nth Fibonacci number.

Fib(n) = Fib(n-1) + Fib(n-2), forn > 1

The first two numbers in the sequence are 0 and 1.
The initial sequence of Fibonacci numbers is

[0,1,1,23,5,8,13,21,...]

We examine three alternative algorithms for computing the nth Fibonacci number.
The first two involve dynamic programming, and the third involves recursion.

427
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_15

https://doi.org/10.1007/978-1-4842-8191-8_15

CHAPTER 15 DYNAMIC PROGRAMMING

Top-Down Dynamic Programming

Consider the function FibonacciTopDown and its support function
computeFromCache given as follows:

func FibonacciTopDown(n int) inté64 {
firstTwoCases := map[int]int64({
0: 0,
1: 1,
}

return computeFromCache(n, firstTwoCases)

}

func computeFromCache(n int, cache map[int]int64) inté64 {
// If answer already found for n, return it
if val, found := cache[n]; found {
return val
}
cache[n] = computeFromCache(n - 1, cache) +
computeFromCache(n - 2, cache)
return cache[n]

A map is used in computeFromCache to return a solution if it has already been
calculated.

The variable cache holds the key-value pairs (n and the nth Fibonacci number).

This is dynamic programming because a problem of size n is computed in terms of
problems of sizen -1 and n - 2.

The computational complexity of this top-down approach is O(n). The space
complexity is also O(n) because of the map that holds previous computations.

Bottom-Up Dynamic Programming

Consider the function FibonacciBottomUp presented as follows:

func FibonacciBottomUp(n int) inté64 {
table := []int64{0, 1}
for i := 25 i <= nj i++ {

428

CHAPTER 15 DYNAMIC PROGRAMMING

table = append(table, table[i - 1] +
table[i - 2])
}

return table[n]

We construct the variable table from 0 to n, bottom-up.
The computational complexity of this solution is also O(n). The space complexity
is O(1).

Recursive Solution

The function Fib, presented in the following, is a recursive solution. But it is of
computational complexity O(2"). This is intractable.

func Fib(n int64) inté64 {
if n ¢ 2 {
return n

}

return Fib(n - 1) + Fib(n - 2)
Listing 15-1 presents the three approaches along with a main driver that does a
timing analysis.

Listing 15-1. Fibonacci numbers

package main

import (
"fmt"
"time"
)

func FibonacciTopDown(n int) inté64 {
firstTwoCases := map[int]int64{

0: 0,

1: 1,

429

CHAPTER 15 DYNAMIC PROGRAMMING

return computeFromCache(n, firstTwoCases)

}

func computeFromCache(n int, cache map[int]int64) int64 {
// If answer already found for n, return it
if val, found := cache[n]; found {
return val
}
cache[n] = computeFromCache(n - 1, cache) +
computeFromCache(n - 2, cache)
return cache[n]

}

func FibonacciBottomUp(n int) int64 {
table := []int64{0, 1}
for i :=2; i <= n; i++ {
table = append(table, table[i - 1] +
table[i - 2])

ieturn table[n]
}
func Fib(n int64) int64 {

ifnc<c2{

return n

}

return Fib(n - 1) + Fib(n - 2)
}

func main() {
fmt.Println("fib(7) = ", FibonacciTopDown(7))
start := time.Now()
fib40 := FibonacciTopDown(40)
elapsed := time.Since(start)
fmt.Println("Value of FibonacciTopDown(40): ", fib40)

fmt.Println("Computation time: ", elapsed)

fmt.Println("fib(7) = ", FibonacciBottomUp(7))

430

CHAPTER 15 DYNAMIC PROGRAMMING

start = time.Now()

fib40 = FibonacciBottomUp(40)

elapsed = time.Since(start)

fmt.Println("\nValue of FibonacciBottomUp(40): ", fib40)

fmt.Println("Computation time: ", elapsed)

fmt.Println("fib(7) = ", Fib(7))
start = time.Now()
fib40o = Fib(40)
elapsed = time.Since(start)
fmt.Println("\nValue of Fib(40): ", fib40)
fmt.Println("Computation time: ", elapsed)
}
/* Output
fib(7) = 13
Value of FibonacciTopDown(40): 102334155
Computation time: 36.136pus
fib(7) = 13

Value of FibonacciBottomUp(40): 102334155
Computation time: 7.377us

fib(7) = 13

Value of Fib(40): 102334155

Computation time: 424.44211ms

*/

Discussion of Code

The dynamic programming bottom-up approach is roughly five times faster than the
dynamic programming top-down approach. Both are significantly faster than the
recursive approach.

In the next section, we examine a classic problem from algorithm design, the 0/1
knapsack problem.

431

CHAPTER 15 DYNAMIC PROGRAMMING

15.2 Another Application: 0/1 Knapsack Problem

Suppose we are given a set of objects. We wish to pack a subset of these objects into a
knapsack with a specified weight limit. Each object to be considered has a specified
weight and profit, if included in the knapsack. We wish to choose a subset of the objects
that maximizes our profit.

As a small example, suppose the four potential objects have weights 4, 6, 2, 8 and
profits 12, 15, 9, 21. Suppose the weight limit on the knapsack is 10.

Let us enumerate combinations of objects whose total weight is <= 10.

Objectl + Object2 (total weight 10), profit 27

Objectl + Object3 (total weight 6), profit 21

Object2 + Object3 (total weight 8), profit 24

Object3 + Object4 (total weight 10), profit 30

The optimum solution is to include Object3 and Object4 in the knapsack.

Brute-Force Solution

A brute-force solution enumerates every combination of subsets of weights and profits.
Consider the following function:

// Brute Force solution
func KnapSackBF(weightLimit int, weights []int, profits []int, n int) int {
ifn=x0 II weightLimit == 0 {
return 0
}
if weights[n - 1] » weightLimit {
return KnapSackBF(weightLimit, weights, profits, n - 1)
} else {
// Assume that we include object n - 1
valuel := profits[n - 1] +
KnapSackBF (weightLimit -
weights[n - 1], weights, profits, n - 1)
// Assume that we do not include object n - 1
value2 := KnapSackBF(weightLimit, weights,
profits, n - 1)
if valuel »>= value2 {

432

CHAPTER 15 DYNAMIC PROGRAMMING

return valuel
} else {
return value2

Discussion of Code

If the weight at weights[n - 1] exceeds weightLimit, recursively invoke KnapSackBF
replacingn byn - 1.

Otherwise, compute valuel, which assumes that you include object n - 1, and
value2, which assumes that you exclude object n - 1. Return the larger of valuel and
value?2 at this level of recursion.

This brute-force algorithm is our first example of a computationally intractable
procedure

Since all the subsets are encompassed and used in this recursive function, and it is
well known that the number of subsets of a set of size n is 27, we conclude that this brute-
force method is O(2"). The computation time grows exponentially, asymptotically.

Dynamic Programming Solution

A dynamic programming solution to this problem is given as follows:

// Dynamic Programming solution
func KnapSackDP(weightLimit int, weights []int, profits
[lint) int {
n := len(weights)
if weightLimit <= 0 || n == 0 || len(profits) !=n {
return 0
}
// Create a (n + 1 x weighlimit + 1) table
table := make([][]int, n + 1)
for row := 0; row < n + 1; row++ {
table[row] = make([]int, weightLimit + 1)

433

CHAPTER 15 DYNAMIC PROGRAMMING

for i := 03 i < n + 15 i++ {
for w := 0; w < weightLimit + 1; w++ {
ifi==0 || w==0{
table[i][w] = 0
} else if weights[i - 1] <= w {
// Include item i
wt := w - weights[i - 1]
profiti := profits[i - 1] +
table[i - 1][wt]
// Exclude item i
profit2 := table[i - 1][w]
if profiti »= profit2 {
table[i][w] = profita
} else {
table[i][w] = profit2
}
} else {
// Exclude item
table[i][w] = table[i - 1][w]

}
return table[n][weightLimit]

Discussion of Code

We utilize a two-dimensional slice to accomplish the dynamic programming. Let us
“walk” through a small example to see how the algorithm works.

Suppose our weights and profits arrays are as follows:

Weights = (3, 5, 1]

Profits = [10, 20, 1]

WeightLimit =5

We compute n equal to 2.

We create a 4 x 6 table.

434

CHAPTER 15 DYNAMIC PROGRAMMING

The following table is generated in KnapsackDP:

000 0 O0 O

000 O010 10

000 10 10 20

0111011 20

Because the dynamic programming solution is found using two nested loops, the
computation is O(n x L) complexity where L is the weight limit.

In Listing 15-2, we compare the computation time for each of the algorithms for
solving the 0/1 knapsack problem.

Listing 15-2. 0/1 Knapsack computation times

package main

import (
"fmt"
"time"
)

// Brute Force solution - Snip

// Dynamic Programming solution - Snip

func main() {
weights := []int{4, 6, 2, 8}
profits := []int{12, 15, 9, 21}
fmt.Println("Solution 1 = ", KnapSackBF(10, weights, profits, 4))

weights1 := []int{4, 6, 2, 8, 1, 17, 23, 10, 4, 8}
profitsi := []int{12, 15, 9, 21, 5, 8, 20, 6, 1, 15}
result := KnapSackBF(20, weights1, profitsi, 10)
fmt.Println("Solution 2 = ", result)

weights2 := []int{}
for i :=0; i < 800; i++ {
weights2 = append(weights2, 2 * i)
}
profits2 := []int{}
for i :=0; i < 800; i++ {

435

CHAPTER 15 DYNAMIC PROGRAMMING

profits2 = append(profits2, 3 * i)
}

start := time.Now()

result2 := KnapSackBF(400, weights2, profits2, 800)

elapsed := time.Since(start)

fmt.Println("Solution 3 = ", result2)

fmt.Println("Time for solution3 (brute force): ",
elapsed)

start = time.Now()
result3 := KnapSackDP(400, weights2, profits2)
elapsed = time.Since(start)
fmt.Println("Solution 3 = ", result3)
fmt.Println("Time for solution3 (dynamic programming): ", elapsed)
}
/* Output
Solution 1 = 30
Solution 2 = 57
Solution 3 = 600
Time for solution3 (brute force): 1m10.248200934s
Solution 3 = 600
Time for solution3 (dynamic prograamming): 1.621038ms
*/

Discussion of Code

For a problem involving 800 weights and profits, the dynamic programming solution is
43,000 times faster than the brute-force solution. If the weight limit in this problem were
increased, the computation time for the brute-force solution would become intractable.

In the next section, we apply dynamic programming to finding the longest
subsequence in two DNA strings.

436

CHAPTER 15 DYNAMIC PROGRAMMING

15.3 DNA Subsequences

DNA strings are a sequence of characters taken from the alphabet {A, C, G, T}. An
example of such a string is “CGTTACAATTTGCG".

We define a subsequence of a string to be a sequence of characters taken in order
(not necessarily contiguous order) from the characters of the original string as one scans
from left to right in the original string.

For the preceding string, a subsequence would be “GTAAAGG”. This sequence is
taken from the characters shown in boldface from the original string.

In computational genetics, an important problem is finding the longest subsequence
that is common to two DNA strings. This is the longest subsequence problem.

A brute-force approach would be to enumerate all the subsequences of stringl
and then test each one against string2. If string1 has n characters and string2 has m
characters, it would take O(2"m) for this brute-force algorithm. This is computationally
intractable for a large stringl.

We use dynamic programming to solve this problem.

We define Length(j, k) as the length of a longest string that is a subsequence of X[0:j]
and Y[0:K].

There are two cases to consider. In the first, X, is equal to yi.;.

It follows then that Length(j, k) = 1 + Length(j-1, k-1).

If x;, is not equal to y,.;, we cannot have a subsequence that includes x;; and yi.1».

We then set Length(j, k) = max{Length(j-1, k), Length(j, k - 1)}.

Length(j, 0) is 0 forj=0, 1, ..., n and

Length(0,k)is0fork=0,1,...,m

These recurrence relations give rise to a dynamic programming solution.

We create an (n + 1) x (m + 1) two-dimensional slice, L. We initialize this list to 0’s.
We iteratively construct L until we get L, ..

Listing 15-3 presents a dynamic programming solution to the longest common
subsequence problem along with a main driver program with two test cases.

Listing 15-3. Longest common subsequence
package main

import (
n _Fmt n

437

CHAPTER 15 DYNAMIC PROGRAMMING

func max(valuel, value2 int) int {
if valuel »= value2 {
return valuel
} else {
return value2

}

func reverse(x []rune) []rune {
result := []rune{}
for index := len(x) - 1; index >= 0; index-- {
result = append(result, x[index])

}

return result

}

func longestCommonSubsequenceTable(x, y []rune) (LCS [][]int) {
// Return matrix so that LCS[j][k] is longest
// common sequence for x[0:j] and y[0:k]

len(x)

m := len(y)

// Initialize LCS table of size (n + 1 x m + 1)

LCS = make([][]int, n + 1)

for row := 0; row < n + 1; row++ {
LCS[row] = make([]int, m + 1)

}

for row := 0; row < n; row++ {
for col := 0; col < m; col++ {

if x[row] == y[col] {
LCS[row + 1][col + 1] =1 +
LCS[row][col]
} else {

LCS[row + 1][col + 1] =
max(LCS[row][col + 1],
LCS[row + 1][col])

438

CHAPTER 15

}
return LCS

}

func LongestCommonSequence(x, y []rune) string {
table := longestCommonSubsequenceTable(x, y)
result := []rune{}
j, k := len(x), len(y)

for {
if table[j][k] == 0 {
break
}

if x[§ - 1] == y[k - 1] {
result = append(result, x[j - 1])

j =1
k -=1
} else if table[j - 1][k] >= table[j][k - 1] {
j =1
k -=1

}

return string(reverse(result))

}

func main() {
X := "CGTTACAATTTGCG"
y := "TTTTAAACGTGCG"
lcs := LongestCommonSequence([]rune(x), []rune(y))
fmt.Println(lcs)

x = "ATCGAATTCCGGTAGTCGT"

y = "CGATAGTTCAGCCAG"

lcs = LongestCommonSequence([]rune(x), []rune(y))
fmt.Println(lcs)

DYNAMIC PROGRAMMING

439

CHAPTER 15 DYNAMIC PROGRAMMING

/* Output
TTAATGCG
TAGC

*/

Discussion of Code

In order to be able to access individual characters of the x and y input strings, we need to
convert each to a slice of rune.

The recurrence relationships described earlier form the basis for the details in
function longestCommonSubsequenceTable.

In function LongestCommonSequence, we start at the right of the table and work
leftward toward the beginning of the table. Therefore, we need to reverse the result and
convert the reversed slice of rune to a string.

The computational complexity of this dynamic programming solution is O(n x m).

15.4 Summary

The algorithm design technique of dynamic programming was introduced. It was
applied to several problems including Fibonacci numbers, 0/1 knapsack, and DNA
subsequences. In all three problems, dynamic programming provides an efficient
solution.

In the next chapter, we turn our attention to graph structures and some classic
algorithms that utilize graphs.

440

CHAPTER 16

Graph Structures

In the previous chapter, we presented dynamic programming and three applications.
In this chapter, we introduce graph structures and some applications. We show
several examples of how to represent a graph, and we examine some basic algorithms
associated with graph traversal.
In the next section, we examine how graphs can be represented.

16.1 Representing Graphs

Graph data structures provide one of the most useful and powerful frameworks for
algorithm design. A graph (not to be confused with a pictorial representation of a
mathematical function) can represent a huge number of systems from communication
networks, transportation, electrical grid, online interactions, games, and pattern
matching, to name a few.

A graph consists of a set of nodes and edges between them: Graph = (N, E), where N
is the collection of nodes and E the collection of edges.

In a directed graph, each edge has a specified direction.

Nodes are adjacent if there is an edge connecting them. Nodes that are adjacent to a
given node are neighbors.

The degree of a node is the number of nodes incident to it.

A path in a graph is a subgraph (subset of N and E) where the edges connect a series
of nodes in a sequence without visiting any node more than once.

A weighted graph has a weight associated with each edge. The length of a path is the
sum of its edge weights.

Consider the weighted directed graph shown in Figure 16-1.

441
© Richard Wiener, PhD 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_16

https://doi.org/10.1007/978-1-4842-8191-8_16

CHAPTER 16 GRAPH STRUCTURES

Figure 16-1. A weighted graph

In the next section, we discuss two methods for traversing this graph or any graph.
We allow the node to be of generic type OrderedStringer. Here, the generic type
is String.

16.2 Traversing Graphs

We look at two important traversal algorithms:
1. Depth-first search (DFS)
2. Breadth-first search (BFS)

The method DFS uses recursion and moves in a sequence outward from the starting
node and continues to visit nodes in a sequence as far as possible from the starting node
without revisiting a node and getting progressively closer to the starting node.

The method BFS uses iteration and an internal queue to traverse the graph
incrementally from the starting node. Nodes are visited at distances progressively further
from the starting vertex toward the furthest vertex from the starting vertex.

The edge values are stored in a global map variable as edges are defined.

In the next section, we discuss and implement a depth-first traversal and a breadth-
first traversal of a graph with generic vertex values.

16.3 Depth- and Breadth-First Search

We start by defining important data types.

442

CHAPTER 16 GRAPH STRUCTURES

type OrderedStringer interface {

comparable
String() string
}
type Vertex[T OrderedStringer] struct {
Key T
Neighbors map[T]*Vertex[T]
}

type Graph[T OrderedStringer] struct {
Vertices map[T]*Vertex[T]

}

var visitation []string

Our generic type is OrderedStringer. Entities of this type must be comparable and
have a string representation using the String() function.

A generic Vertex contains a Key (type T) and a map, Neighbors, mapping keys
(type T) to pointers to other vertices.

A generic Graph contains a map, Vertices, mapping keys (type T) to pointers to
vertices.

A global visitation variable is defined. This variable is a slice of string representing
the traversal keys.

Several important functions and methods are shown as follows:

func NewVertex[T OrderedStringer](key T) *Vertex[T] {
return &Vertex|[T]{
Key: key,
Neighbors: map[T]*Vertex[T]{},

}

func NewGraph[T OrderedStringer]() *Graph[T] {
return &Graph[T]{Vertices: map[T]*Vertex[T]{}}

443

CHAPTER 16 GRAPH STRUCTURES

func (g *Graph[T]) AddVertex(key T) {
vertex := NewVertex(key)
g.Vertices[key] = vertex

}

func (g *Graph[T]) AddEdge(key1, key2 T, edgeValue int) {
vertexi := g.Vertices[key1]
vertex2 := g.Vertices[key2]
if vertexi == nil || vertex2 == nil {
return
}
vertexi.Neighbors[vertex2.Key] = vertex2
g.Vertices[vertexi.Key] = vertexi
g.Vertices[vertex2.Key] = vertex2

The function NewVertex takes a key (of type T) and returns a pointer to a Vertex with
an empty map, Neighbors.

The function NewGraph returns an empty graph with an empty map of Vertices.

The method AddVertex creates a new vertex and assigns Vertices[key] to the
new vertex.

The method AddEdge takes the two keys, assigns these to the Vertices field of graph,
and assigns the Neighbors field of vertex1 to vertex2.

Depth-First Search

The first traversal method we examine is depth-first search. This method moves outward
from the starting vertex and moves directly to the furthest vertex not yet visited.

Itis implemented as follows:

func (g *Graph[T]) DepthFirstSearch(start *Vertex|[T],
visited map[T]bool) {
if start == nil {
return
}
visited[start.Key] = true
visitation = append(visitation, start.Key.String())

444

CHAPTER 16 GRAPH STRUCTURES

// for each of the adjacent vertices, call the

// function recursively if it hasn't yet been

// visited

for _, v := range start.Neighbors {
// The sequence of v may change from run to run
if visited[v.Key] {

continue
}
g.DepthFirstSearch(v, visited)
}
}
The parameter, visited, passed in must be initialized to an empty map before
invoking the method.

The sequence of recursive calls causes the traversal to move away from the starting
vertex until it is furthest away before backtracking and finding other vertices far away
from the starting vertex.

Breadth-First Search

The second traversal method we examine is breadth-first search. This method visits
vertices close to the starting vertex slowly moving outward and away from the starting
vertex. There is no recursion used here. A queue is used to store vertices that neighbor
visited vertices. These neighboring vertices are traversed first. So as the name of this
method implies, this traversal moves to adjacent vertices slowly getting further from the
starting vertex. It is implemented as follows:

type Queue[T any] struct {
items []T

}

// Methods

func (queue *Queue[T]) Insert(item T) {
// item is added to the right-most position in the
// slice
queue.items = append(queue.items, item)

445

CHAPTER 16 GRAPH STRUCTURES

func (queue *Queue[T]) Remove() T {

}

returnValue := queue.items[0]
queue.items = queue.items[1:]
return returnValue

func (g *Graph[T]) BreadthFirstSearch(start *Vertex[T],

446

visited map[T]bool) {

if start == nil {

return

queue := Queue[*Vertex[T]]{} // Queue hold pointers

// to Vertex

current := start
for {

if lvisited[current.Key] {

visitation = append(visitation,

current.Key.String())

}
visited[current.Key] = true
// Insert each neighboring vertex not visited
// onto the queue
for _, v := range current.Neighbors {

if lvisited[v.Key] {

queue.Insert(v)

}

// Grab first vertex in the queue and remove it
if len(queue.items) » 0 {

current = queue.Remove()
} else {

break

CHAPTER 16 GRAPH STRUCTURES

The queue plays a central role in the implementation of this method. It forces
all nearby vertices to be visited early in contrast to depth-first search. Like the latter

method, this method requires the parameter visited to be initialized to an empty map

before invoking the method.

Listing 16-1 presents all the details of defining and traversing a graph. The graph
shown in Section 16.1 is constructed in the main driver program.

Listing 16-1. Defining and traversing a graph
package main

import (
n _Fmt n
)

type OrderedStringer interface {
comparable
String() string

}

type Graph[T OrderedStringer] struct {
Vertices map[T]*Vertex[T]

}

type Vertex[T OrderedStringer] struct {
Key T
Neighbors map[T]*Vertex[T]

}

var visitation []string

func NewVertex[T OrderedStringer](key T) *Vertex[T] {
return &Vertex[T]{
Key: key,
Neighbors: map[T]*Vertex[T]{},

447

CHAPTER 16 GRAPH STRUCTURES

func NewGraph[T OrderedStringer]() *Graph[T] {

}

return &Graph[T]{Vertices: map[T]*Vertex[T]{}}

func (g *Graph[T]) AddVertex(key T) {

}

vertex := NewVertex(key)
g.Vertices[key] = vertex

func (g *Graph[T]) AddEdge(key1, key2 T,

}

edgeValue int) {
vertexl := g.Vertices[key1]
vertex2 := g.Vertices[key2]
if vertexi == nil || vertex2 == nil {
return
}
vertexl.Neighbors[vertex2.Key] = vertex2
g.Vertices[vertexi.Key] = vertexi
g.Vertices[vertex2.Key] = vertex2

func (g *Graph[T]) DepthFirstSearch(start *Vertex[T],

448

visited map[T]bool) {
if start == nil {
return
}
visited[start.Key] = true
visitation = append(visitation, start.Key.String())

for , v := range start.Neighbors {
// The sequence of v may change from run to run
if visited[v.Key] {
continue

}
g.DepthFirstSearch(v, visited)

CHAPTER 16 GRAPH STRUCTURES

type Queue[T any] struct {
items []T
}

// Methods
func (queue *Queue[T]) Insert(item T) {
queue.items = append(queue.items, item)

}

func (queue *Queue[T]) Remove() T {
returnValue := queue.items[0]
queue.items = queue.items[1:]
return returnValue

}

func (g *Graph[T]) BreadthFirstSearch(start *Vertex[T],
visited map[T]bool) {
if start == nil {

return
}
queue := Queue[*Vertex[T]]{}
current := start
for {

if lvisited[current.Key] {

visitation = append(visitation,

current.Key.String())

}
visited[current.Key] = true
for , v := range current.Neighbors {

if lvisited[v.Key] {

queue.Insert(v)

}
// Grab first vertex in the queue and remove it
if len(queue.items) > 0 {
current = queue.Remove()
} else {

449

CHAPTER 16 GRAPH STRUCTURES

break
}
}
}
func (g *Graph[T]) String() string {
result := ""
for i := 0; i < len(visitation); i++ {
result += " " + visitation[i]
}
return result
}

// Make String implement Stringer
type String string

func (str String) String() string {
return string(str)

}

func main() {
g := NewGraph[String]()
g.AddVertex("A")
start := g.Vertices["A"]
g.AddVertex("B")
g.AddVertex("C")
g.AddVertex("D")
g.AddVertex("E")
g.AddVertex("F")
g.AddVertex("G")
g.AddEdge("A", "B
g.AddEdge("A", "C
g.AddEdge("A", "D
g.AddEdge("B", "D", 3)
g.AddEdge("C", "F
g.AddEdge("D", "E
g.AddEdge("E", "D

450

CHAPTER 16 GRAPH STRUCTURES

g.AddEdge("F", "E", 6)
g.AddEdge("E", "G", 7)
g.AddEdge("F", "G", 3)

visited := make(map[String]bool)
visitation = []string{}
g.DepthFirstSearch(start, visited)
fmt.Println("Depth First Search:", g.String())
visited = make(map[String]bool)
visitation = []string{}
g.BreadthFirstSearch(start, visited)
fmt.Println("Breadth First Search:", g.String())

}

/* Output

Depth First Search: ABDEGCF

Breadth First Search: ACDBFEG

*/

The two output traversal sequences confirm our assertions about the sequence of
visited nodes for depth- vs. breadth-first search.

In the next section, we present and implement a solution to a classic graph problem.
We show how to find the shortest path from a source node to every other node in

a graph.

16.4 Single-Source Shortest Path in Graph

Given a graph and a source node in the graph. Find the shortest paths from the source
node to all the nodes in the graph.

The celebrated Dijkstra algorithm is presented. It was conceived by computer
scientist Edsger W. Dijkstra in 1956 and published three years later.

Consider the graph with source node “A” shown in Figure 16-2.

451

https://en.wikipedia.org/wiki/Computer_scientist
https://en.wikipedia.org/wiki/Computer_scientist
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

CHAPTER 16 GRAPH STRUCTURES

Figure 16-2. Graph for single-source shortest path

The Dijkstra algorithm returns the shortest distance from source node “A” to all the
other nodes in the graph.

Implementation

Listing 16-2 presents an implementation of the Dijkstra algorithm.

Listing 16-2. Dijkstra algorithm
package main

import (
II_Fmt n
"github.com/jiaxwu/container/heap"

)

// PriorityQueue Priority queue

type PriorityQueue[T any] struct {
h *heap.Heap[T]

}

func New[T any](less func(ei1 T, e2 T) bool)
*PriorityQueue[T] {
return 8PriorityQueue[T]{

452

CHAPTER 16 GRAPH STRUCTURES

h: heap.New(less),

}

func (p *PriorityQueue[T]) Add(elem T) {
p.h.Push(elem)

}

func (p *PriorityQueue[T]) Remove() T {
return p.h.Pop()
}

func (p *PriorityQueue[T]) Len() int {
return p.h.Len()
}

func (p *PriorityQueue[T]) Empty() bool {
return p.Len() ==

}

func Less(a, b tuple) bool {
return a.weight < b.weight

}

// end priority queue

type edges = map[rune]int
type Graph map[rune]edges

type tuple struct {
node rune
weight int

}

func convert(r rune) int {
return int(r) - 65
}

func Dijkastra(graph Graph) []tuple {

453

CHAPTER 16 GRAPH STRUCTURES
distances := make([]tuple, len(graph))

for i := 0; i < len(graph); i++ {
distances[i] = tuple{'A', 32767}
}

distances[0] = tuple{'A', 0}
heapQueue := New[tuple](Less)
t := tuple{'A', 0}
heapQueue.Add(t)
for {
if heapQueue.Len() == 0 {
break
}
t = heapQueue.Remove()
currentNode := t.node
currentDistance := t.weight
if currentDistance >
distances[convert(currentNode)].weight {

continue

}

for t, w := range graph[currentNode] {
neighbor := t
weight := w
distance := currentDistance + weight
/*

Only consider this new path if it's
better than any path we've already
found
*/
if distance <
distances[convert(neighbor)].weight {
distances[convert(neighbor)] =
tuple{neighbor, distance}
heapQueue.Add(tuple{neighbor,
distance})

454

CHAPTER 16 GRAPH STRUCTURES

}

return distances

}

func main() {
graph := make(map[rune]edges)

graph['A'] = edges{'B': 4, 'H': 1}

graph['B'] = edges{'A': 4, 'C': 1, 'H': 11}
graph['C'] = edges{'B': 1, 'I': 2, 'F': 1, 'D': 7}
graph['D'] = edges{'C': 7, 'F': 8, 'E': 1}
graph['E'] = edges{'D': 1, 'F': 10}

graph['F'] = edges{'G': 2, 'C': 1, 'D': 8, 'E': 10}
graph['G'] = edges{'F': 2, 'I': 1, 'H': 1}
graph['H'] = edges{'G': 1, 'I': 7, 'B': 11, 'A': 1}
graph['I'] = edges{'C': 2, 'H': 7, 'G': 1}

solution := Dijkastra(graph)
for node, weight := range solution {
fmt.Printf("%s %d ", string(node + 65), weight)
}
}

/* Output

A {65 0} B {66 4} C {67 5} D {68 12} E {69 13} F {70 4} G {71 2} H {72 1}
I{73 3}

*/

Explanation of Solution

Each node in the graph is represented by a tuple defined as

type tuple struct {
node rune
weight int

}

type edges = map[rune]int

455

CHAPTER 16 GRAPH STRUCTURES
A Graph is defined as:
type Graph map[rune]edges

In a graph, each node, with key of type rune, such as “A’ is mapped to another map,
edges, from rune to int. This layering of abstractions is needed to represent a structure as
complicated as a graph.

A priority queue plays a central role in implementing a solution to the problem.
Here, we implement PriorityQueue with generic type T by importing package
“github.com/jiaxwu/container/heap”.

We define a Less function that compares the int field of the tuples to order them from
smallest to largest.

We initialize the queue using

heapQueue := New[tuple](Less)

Here, we see another example whereby having a generic structure, PriorityQueue,
makes it easy to create an instance with base-type tuple, useful in this application.

We define a slice, distances, as containing tuples of node (type rune) and an int that
represents the best distance so far. We initialize distances to have very large initial value.

We set distances[0] to tuple{‘A} 0}.

We push this tuple onto the heap queue. This heap queue is set up to ensure that
the tuple with the smallest distance is at the head of the line, the first tuple that can be
removed.

In aloop that terminates when the queue becomes empty, we remove the head of
the queue and assign current distance to its weight field. If this value is greater than the
second field of the tuple removed from the queue, we discard it by continuing the loop.

In a second inner loop in which we range over the connections from the current
node, we compare the sum of the current distance and the weight of each graph
connection to the best distance so far for the given connection. If this best distance so far
is less than the value in the distances slice, we push the tuple onto the queue and update
the distances slice.

In main, we define the graph shown earlier. The output displays the shortest
distances from source node “A” to each of the other nodes.

In the next section, we present another classic graph problem and its

solution - minimum spanning tree.

456

CHAPTER 16 GRAPH STRUCTURES

16.5 Minimum Spanning Tree

A minimum spanning tree for a weighted undirected connected graph is a collection
of edges that touch all nodes of the graph without any cycles and with minimum weight.
The weight of the spanning tree is defined as the sum of the weights of the edges that
comprise the tree.

Although several people have laid claim to creating an algorithm for creating a
minimum spanning tree from a weighted graph, the two most famous algorithms for
doing this are by Prim and Kruskal.

We shall present the Kruskal algorithm and its implementation. This algorithm first
appeared in Proceedings of the American Mathematical Society, pp. 48-50, in 1956 and
was written by Joseph Kruskal.

The approach that is taken is to incrementally build the tree one edge at a time by
choosing the cheapest edge among those still available. This strategy is a classic greedy
strategy in which a local optimization leads to a global optimum solution.

Kruskal Algorithm

1. Sort the edges in ascending order of their weights.

2. Select the edge having minimum weight and add it to the
spanning tree providing that a cycle does not occur.

3. Repeatsteps 1 and 2 until all nodes have been covered.

To see how the algorithm works, we shall walk through an example.
Consider the tree shown in Figure 16-3.

457

https://en.wikipedia.org/wiki/Proceedings_of_the_American_Mathematical_Society
https://en.wikipedia.org/wiki/Joseph_Kruskal

CHAPTER 16 GRAPH STRUCTURES

Figure 16-3. Graph for Kruskal algorithm

The first edge that we insert into our spanning tree has the smallest weight. There
are three such edges, “AB’, “AC’, and “CG’, each with weight equal to 1. We insert all three
into the spanning tree since no cycles are produced. Next, we insert “DE” and “EF’, with
weights 2 and 3, since these produce no cycles.

The next smallest edge is “BC’; with a weight of 4. If we were to add this edge to the
spanning tree, we would get a cycle among the nodes, “A’; “B’, and “C”. So we reject this
edge. Likewise, we reject the next smallest available edge, “DF’, since its inclusion would
produce a cycle among the nodes, “D’, “E’) and “F”.

The next smallest node, “GD’; with weight 6, is added next. The remaining available
node, “CD’, is rejected since its inclusion would create a cycle among the nodes, “C’, “G’,
and “D”.

A minimum spanning tree for this graph is therefore

{1AB}{1AC}{1CG}{2DE}{3EF}{6GD} with a total weight of 14.

In the next section, we implement the Kruskal algorithm. The main driver program
uses the graph shown previously.

16.6 Implementation of Kruskal Algorithm

Our implementation of the Kruskal algorithm is relatively short. The details are
presented in Listing 16-3 and carefully explained after the listing.

458

Listing 16-3. Kruskal algorithm

package main

import (
"fmt"
"sort"
)

type Edge struct {
weight int
nodel Node
node2 Node

}
type Node = string

type EdgeSlice []Edge

// Infrastructure to allow []Edges to be sorted
func (edges EdgeSlice) Len() int {
return len(edges)

}

func (edges EdgeSlice) Swap(i, j int) {
edges[i], edges[j] = edges[j], edges[i]
}

func (edges EdgeSlice) Less(i, j int) bool {
return edges[i].weight < edges[j].weight

}

var connection map[Node]Node

/*
The initial level of each Node is 0.
If the node is node2 of an Edge,
increase its level by 1.

*/

CHAPTER 16 GRAPH STRUCTURES

459

CHAPTER 16 GRAPH STRUCTURES
var end map[Node]int

func Initialize(node Node) {
connection[node] = node
end[node] =0

}

func Find(node Node) Node {
// Stops a cycle
if connection[node] != node {
connection[node] = Find(connection[node])

}

return connection[node]

}

func Connect(node1, node2 Node) {
nl := Find(nodel)
n2 := Find(node2)
fmt.Printf("\nFind(%s)
fmt.Printf("\nFind(%s)
if n1 1= n2 {
fmt.Printf("\nend[%s]
fmt.Printf("\nend[%s]
if end[n1] > end[n2] {
connection[n2] = n1
fmt.Printf("\nconnection[%s]
n1)

%s", nodel, n1)
%s", node2, n2)

%d", n1, end[n1])
%d", n2, end[n2])

%s", n2,

} else {
connection[n1] = n2
fmt.Printf("\nconnection[%s]
n2)
if end[n1] == end[n2] {
end[n2] += 1
fmt.Printf("\nend[%s] = 1", n2)

%s", ni,

460

CHAPTER 16 GRAPH STRUCTURES

}

func Kruskal(nodes []Node, edges EdgeSlice) []Edge {
for , node := range nodes {
Initialize(node)
}
spanningTree := []Edge{}
sort.Sort(edges)
for , edge := range edges {
nodel := edge.nodel
node2 := edge.node2
nl := Find(nodel)
n2 := Find(node2)
fmt.Printf("\nFind(%s) = %s", nodel, n1)
fmt.Printf("\nFind(%s) = %s", node2, n2)
if n1 !=n2 {
Connect(nodel, node2)
fmt.Printf("\nConnect(%s, %s)", nodel,
node2)
spanningTree = append(spanningTree, edge)
} else {
fmt.Printf("\nReject edge %s and %s",
nodel, node2)

}

return spanningTree

}

func main() {
connection = make(map[Node]Node)
end = make(map[Node]int)
// Define the graph by its nodes and edges
nodes := []Node{"A", "B", "C", "D", "E", "F", "G"}
edges := [JEdge{ {1, "A", "B}, {1, "A", "C'},
{4) "B") "C"}) {ZOJ "C") "D"}J

461

CHAPTER 16 GRAPH STRUCTURES

{2, "D", "E"}, {3, "E", "F'},
{6, "¢", "p"}, {1, "C", "G"},
5, 0", "F'})
spanningTree := Kruskal(nodes, edges)
fmt.Println("\n", spanningTree)

}

/* Output
Find(A) = A
Find(B) = B
Find(A) = A
Find(B) = B
end[A] = 0
end[B] = 0
connection[A] = B
end[B] = 1
Connect(A, B)
Find(A) = B
Find(C) = C
Find(A) = B
Find(C) = C
end[B] = 1
end[C] = 0

connection[C] = B
Connect(A, C)

Find(C) =B
Find(G) = G
Find(C) = B
Find(G) = G
end[B] = 1
end[G] = 0O

connection[G] = B
Connect(C, G)

Find(D) = D
Find(E) = E
Find(D) = D

462

Find(E) = E
end[D] = 0

end[E] = 0
connection[D] = E
end[E] = 1
Connect(D, E)
Find(E) = E
Find(F) = F
Find(E) = E
Find(F) = F
end[E] = 1
end[F] = 0
connection[F]
Connect(E, F)
Find(B) = B
Find(C) =B
Reject edge B and C
Find(D) = E

Find(F) = E

Reject edge D and F
Find(G) = B

Find(D) = E

Find(G) = B

Find(D) = E

end[B] = 1

end[E] = 1
connection[B] = E
end[E] = 1
Connect(G, D)
Find(C) = E

Find(D) = E

Reject edge C and D

Il
m

CHAPTER 16 GRAPH STRUCTURES

[{1AB} {1 ACH{1CG}{2DE}{3EF}{6GD}*

463

CHAPTER 16 GRAPH STRUCTURES

Explanation of Kruskal Implementation

We walk through the example given in the main driver to uncover the details of this
implementation.

We initialize the connection and end maps.

We define the input, the slice of Node values, and the slice of Edge values in main.

We pass these slices to the Kruskal function.

In function Kruskal, we initialize all the nodes by setting the connection of the node
to itself and the end value to 0.

We define spanningTree as an empty slice of edges. We sort the edges by their
weight, having created the infrastructure for ensuring that an edge slice can be sorted
(functions Len, Swap, and Less).

In aloop over the edges, for each edge, we define nodel and node2 as the beginning
and ending nodes of the edge.

The code has been instrumented with many fimt. Printf outputs that chronicle the
algorithm in detail showing, in particular, the rejection of edges that cause cycles.

Let’s take a look.

The first edge that needs to be rejected is the link from “B” to “C”. Let’s zoom in on
the details following the connection from “E” to “F’ The next link to be inserted is the
link from “C” to “B”.

Since Find(“B”) equals Find(“C”), this link is not appended to the spanning tree.

The output lines shown in boldface lead to the rejections of the links shown. The link
from “D” to “F” is rejected for the same reason.

16.7 Summary

In this chapter, we introduced graph structures and some applications. We showed
several examples of how to represent a graph, and we examined some basic algorithms
associated with graph traversal.

The next chapter introduces the famed Travelling Salesperson Problem (TSP). All
known exact solutions to this problem are computationally intractable. We introduce
one such solution and test it on a smaller-sized problem. We also show how to plot a tour
associated with a TSP solution.

464

CHAPTER 17

Travelling Salesperson
Problem

The previous chapter introduced the graph data structure. A generic implementation
was shown. Several classic graph algorithms were implemented and discussed.

This chapter is the first of several chapters that examine solutions to the classic
Travelling Salesperson Problem. An exact solution to this problem is computationally
intractable. In this chapter, we present and implement an algorithm for obtaining an
exact solution to this problem.

In the next section, we introduce this classic problem.

17.1 Travelling Salesperson Problem and Its History

The Travelling Salesperson Problem (TSP) is a classic problem with a rich history. Given
a set of cities and the distance between every pair of cities, the problem is to find the
shortest tour that visits every city exactly once and returns to the starting city. The
problem was first formulated in 1930. It has become one of the most intensively studied
problems in optimization.

Some history:

See

https://en.wikipedia.org/wiki/Travelling salesman_problem#Exact_
algorithms.

1. An exact solution for 15,112 German towns from TSPLIB was
found in 2001 using the cutting-plane method proposed by
George Dantzig, Ray Fulkerson, and Selmer M. Johnson in 1954,
based on linear programming.

465
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_17

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Exact_algorithms
https://en.wikipedia.org/wiki/Travelling_salesman_problem#Exact_algorithms
https://en.wikipedia.org/wiki/Cutting-plane_method
https://en.wikipedia.org/wiki/George_Dantzig
https://en.wikipedia.org/wiki/D._R._Fulkerson
https://en.wikipedia.org/wiki/Selmer_M._Johnson
https://en.wikipedia.org/wiki/Linear_programming
https://doi.org/10.1007/978-1-4842-8191-8_17

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

2. In May 2004, the Travelling Salesman Problem of visiting all 24,978
towns in Sweden was solved: a tour of length approximately
72,500 kilometers was computed, and it was proven that no
shorter tour exists.

3. In March 2005, the Travelling Salesman Problem of visiting all
33,810 points in a circuit board was solved using Concorde TSP
Solver. The computation took approximately 15.7 CPU-years.

TSP is a member of a group of problems that are NP-hard (nondeterministic
polynomial time hard). If a polynomial-time-based solution could be found for any
problem in this group, it can be proven that a polynomial-time solution for all the
problems in this group could be found. To date, no such polynomial-time solutions have
been found for any NP-hard problem.

In the next section, we present a brute-force solution to this problem that produces
an exact solution.

17.2 An Exact Brute-Force Solution

Cities will be represented by vertices in a graph and numbered 0, 1, 2, ..., n. The distance
between cities will be specified as either integer or floating-point numbers and shown as
the edges in the graph.

Consider the graph shown in Figure 17-1. This graph represents a four-city problem.
The edge values represent the distance between cities.

Figure 17-1. Graph of a four-city TSP

466

https://en.wikipedia.org/wiki/Concorde_TSP_Solver
https://en.wikipedia.org/wiki/Concorde_TSP_Solver

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

The brute-force solution requires that we obtain all permutations of tours that start
with city 0 and end with city 0. For each tour in the permutation, we compute its cost. We
return the tour with the lowest cost.

The tour permutations that we consider are shown in Figure 17-2.

coocooo
w WD N P
RPN WwRE Wb
NP PR WD W

Figure 17-2. Tour permutations

For each tour permutation, we compute the length of the tour. The tour permutation
with the smallest length is an optimum solution to the problem. There may be ties.

Finding Permutations

The first task is to compute all the permutations of a slice containing consecutive
integers starting at 0.
Listing 17-1 performs this task.

Listing 17-1. Permutations of slice
package main

import (
“fmt"
)

func Permutations(data []int, operation func([]int)) {
permute(data, operation, 0)

}
func permute(data []int, operation func([]int), step
int) {
if step > len(data) {
operation(data)

467

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

}

return

permute(data, operation, step + 1)
for k := step + 1; k < len(data); k++ {

}

data[step], data[k] = data[k], data[step]
permute(data, operation, step + 1)
data[step], data[k] = data[k], data[step]

func main() {
data := []int{o, 1, 2, 3}
Permutations(data, func(a []int) {

fmt.Println(a)
1))

}

/* Output
[0 12 3]
[0 13 2]
[0 21 3]
[0 23 1]
[0 32 1]
[0312]
[1 02 3]
[103 2]
[120 3]
[12 3 0]
[1320]
[130 2]
[2 10 3]
[2 13 0]
[2 01 3]
[2 03 1]
[2301]
[2310]
[3120]

468

¥ /M /A e
~ W W www
N
o
=
—_— e e

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

We leave it to the reader to walk through the code for a small problem and verify that

it produces the desired permutation.

The second parameter in the Permutations function is an operation that must be

performed on each slice. In the example presented in Listing 17-1, the operation is to

output the slice. This is shown in main in boldface.

Brute-Force Computation for TSP

Listing 17-2 presents a brute-force computation for the TSP. It uses the permutation logic

presented in Listing 17-1. It finds all the permutations of tours that start at 0 and end at 0.

For each tour, it computes the cost of the tour and saves the best tour along with its cost.

Listing 17-2. Brute-force solution to TSP

package main

import (
"fmt"
"math/rand"
"time"

)

type Graph [][]int

type TourCost struct {
cost int
tour []int

}

var minimumTouxCost TourCost
var graph Graph

469

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

func Permutations(data []int, operation func([]int)) {
permute(data, operation, 0)

}
func permute(data []int, operation func([]int), step
int) {
if step » len(data) {
operation(data)
return
}
permute(data, operation, step+1)
for k := step + 1; k < len(data); k++ {
data[step], data[k] = data[k], data[step]
permute(data, operation, step+1)
data[step], data[k] = data[k], data[step]
}
}

func TSP(graph Graph, numCities int) {
tour := []int{}
for i := 1; i < numCities; i++ {
tour = append(tour, i)
}
minimumTourCost = TourCost{32767, []int{}}
Permutations(tour, func(tour []int) {
// Compute cost of tour
cost := graph[o][toux[o]]
for i := 0; i < len(tour)-1; i++ {
cost += graph[tour[i]][tour[i+1]]
}
cost += graph[tour[len(tour)-1]][o0]
if cost < minimumTourCost.cost {
minimumTourCost.cost = cost
var tourCopy []int
tourCopy = append(tourCopy, 0)
tourCopy = append(tourCopy, tour...)

470

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

tourCopy = append(tourCopy, 0)

minimumTourCost.tour = tourCopy

b
}

func main() {
graph = Graph{{o, 5, 3, 9}, {5, 0, 2, 1}, {3, 2, 0, 6},
{9, 1, 6, 0}}
TSP(graph, 4)
fmt.Printf("\nOptimum tour cost: %d An Optimum
Tour %v", minimumTourCost.cost,
minimumTourCost.tour)

numCities := 14
graph2 := make([][]int, numCities)
for i := 0; i < numCities; i++ {
graph2[i] = make([]int, numCities)
}
for row := 0; row < numCities; row++ {
for col := 0; col < numCities; col++ {
graph2[row][col] = rand.Intn(9) + 2

}

// Create a short path for test purposes

for i := 0; i < numCities-1; i++ {
graph2[i][i+1] = 1

}

graph2[numCities-1][0] = 1

start := time.Now()

TSP(graph2, numCities)

elapsed := time.Since(start)

fmt.Printf("\nOptimum tour cost: %d An Optimum
Tour %v", minimumTourCost.cost,
minimumTourCost.tour)

471

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

fmt.Println("\nComputation time: ", elapsed)

}

/* Output

Optimum tour cost: 15 An Optimum Tour [0 1 3 2 0]

Optimum tour cost: 14 An Optimum Tour [0 1 23 456 7 8 9 10 11 12 13 0]
Computation time: 2m15.918717943s

*/

Discussion of Code

We focus on the invocation of Permutations inside of function TSP. In particular, we
look at the function defined as the second parameter, shown in boldface.

For each tour in the permutation, we compute the cost of the tour.

The first cost computed is the cost of going from city 0 to the first city in the tour
permutation. Following that, in a loop, we compute and add the costs for the sequence
of cities in the tour permutation. The final cost computed is the cost from the last city in
the tour permutation back to city 0.

We compare the cost of the tour permutation with the lowest cost thus far. This is
held as a global variable of type TourCost.

type TourCost struct {
cost int
tour []int

A programming subtlety requires that we make a copy of the tour that we save in the
global minimumTourCost. This is needed because assigning one slice to another makes
a shallow copy. We are interested here in copying the information, not the address of
the slice.

We accomplish this with the append function as follows:

var tourCopy []int

tourCopy = append(tourCopy, 0)
tourCopy = append(tourCopy, tour...)
tourCopy = append(tourCopy, 0)

472

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

This block of code also adds the tour link from the starting city 0 and the tour link of
getting back to city 0.

The computational cost of this brute-force solution is (n - 1)! That is why the brute-
force method is intractable.

To illustrate this, we solve a 14-city problem with random integer distances between
cities. We embed a low-cost path from cityOto 1, 1 to 2, ..., 13 to 0, each a distance 1
apart, for a total cost of 14. This does not affect computation time but gives us a test of
correctness of the TSP algorithm.

As you can see from the output, we pass this test. The computation time for a 14-city
problem is over two minutes.

If we were to increase the size of the problem by one city, the computation time
would increase by a factor of 14. The computational complexity, O(n!), clearly makes this
brute-force algorithm intractable.

Other Solutions

There are many algorithms, all intractable, that produce exact solutions to TSP. These
algorithms employ dynamic programming, branch and bound, linear programming, and
other techniques. They work well for small-sized problems but are impractical when the
number of cities exceeds several dozen.

Before we examine heuristic algorithms for solving TSP that produce solutions close
to the exact solution in reasonable time and storage space for large-sized problems, the
next section presents code for displaying a TSP tour.

17.3 Displaying a TSP Tour

Listing 17-3 uses a third-party package to graphically display a tour given a slice of points
that define the cities in the tour.

Listing 17-3. Displaying a TSP tour
package main

import (
"image/color"
"gonum.org/vi/plot"

473

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

"gonum.org/vi/plot/plotter”

"gonum.org/vi/plot/vg"
"gonum.org/vi/plot/vg/draw"
)
type Point struct {
X floaté4
Y float64
}

func definePoints(cities []Point, tour []int)
plotter.Xys {

make(plotter.XYs, len(cities) + 1)

= cities[0].X

= cities[0].Y

= 1; i < len(cities); i++ {

[i].X = cities[tour[i]].X

[i].Y = cities[tour[i]].Y

pts :=
pts[o].
pts[o].
for i :

< X

pts

pts
}
pts[len(cities)].X
pts[len(cities)].Y
return pts

cities[0].X
cities[0].Y

}

func DrawTour(cities []Point, tour []int) {
data := definePoints(cities, tour) // plotter.XYs
p := plot.New()
p.Title.Text = "TSP Tour"
lines, points, err := plotter.NewLinePoints(data)
if err != nil {
panic(err)
}
lines.Color = color.RGBA{R: 255, A: 255}
points.Shape = draw.PyramidGlyph{}
points.Color = color.RGBA{B: 255, A: 255}
p.Add(1lines, points)
// Save the plot to a PNG file.

474

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

if err := p.Save(4*vg.Inch, 4*vg.Inch,
"tour.png"); err != nil {
panic(err)

}

func main() {
numCities := 4

cities := make([]Point, numCities)
cities[0] = Point{0.0, 0.0}
cities[1] = Point{3.0, 0.0}
cities[2] = Point{3.0, 4.0}
cities[3] = Point{1.0, 11.0}

tour := []int{o, 3, 1, 2}
DrawTour(cities, tour)

Discussion of Code

The helper function, definePoints, returns a plotter.XYs. It uses the input slice, cities,
to obtain the X and Y coordinates of each city that are assigned to pfs. It assigns the
sequence of points based on the input slice, tour.

The DrawTour function invokes definePoints and assigns the result to data. The
remaining code follows the protocol in the plot package that is imported. A new plot, p,
is defined. The lines and points variables are obtained from plotter.NewLinePoints.

After adding these to the plot, p, a png file is saved, which contains the points and
lines that graphically display the tour.

The output of this program is shown in Figure 17-3.

475

CHAPTER 17 TRAVELLING SALESPERSON PROBLEM

TSP Tour
10 —
5 —
- h
0 \
|]]] I | I i I] | I]]] |
0 1 2 3

Figure 17-3. Output from Listing 17-3

17.4 Summary

The famed Travelling Salesperson Problem is introduced. A brute-force solution is
presented. This solution, like all known exact solutions, is computationally intractable
with a big O of O(n!).

Code for displaying a tour with specified coordinate locations is presented and
illustrated with a simple example.

In the next chapter, we present another algorithm for obtaining an exact solution solving
TSP. This algorithm uses a powerful technique called branch and bound. Like all known
exact solutions to TSP, this branch-and-bound algorithm is computationally intractable.

476

CHAPTER 18

Branch-and-Bound
Solution to TSP

The previous chapter introduced the famed Travelling Salesperson Problem (TSP).
A brute-force solution was presented. Like all exact solutions to this problem, it is
computationally intractable. A third-party package was presented along with code for
graphically displaying a TSP tour.

This chapter presents another exact solution to TSP using a powerful technique,
branch and bound. It too is computationally intractable.

In the next section, we introduce the technique of branch and bound and show how
it can be applied to TSP.

18.1 Branch and Bound for TSP

Much of this chapter is based on a paper written by this author and published in the
Journal of Object Technology in 2003. The paper is “Branch and Bound Implementation
for the Traveling Salesperson Problem” (Richard Wiener, Journal of Object Technology,
Vol 2. No. 3, May-June 2003).

We are given a graph that contains distances connecting all cities (each city is
connected to every other city with an edge representing the distance between the two
cities). The nodes of the graph are the cities, numbered 0, ..., n - 1. A tour is a sequence
of cities that starts at city 0, visits each of the other cities exactly once, and returns to the
starting city 0.

In any tour, the value of an edge when leaving a city must be equal or greater
than the value of the shortest edge leaving the city.

This forms the basis for a branch-and-bound solution to TSP.

477
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8 18

https://doi.org/10.1007/978-1-4842-8191-8_18

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

An Example

Consider a TSP with the following distance matrix (cost matrix):
014 4 11 20
14 0 7 8 7
4 7 0 7 16
11 8 7 0 2
20 716 2 O
We build a solution tree as follows:
Atlevel 0, the root node represents a partial tour [0].
Atlevel 1, nodes representing the partial tours [0, 1], [0, 2], [0, 3], ..., [0,n - 1] are
generated.
Atlevel 2, nodes representing the partial tours [0, 1, 2], [0, 1, 3], [0, 1, 4], ... are
generated.
This pattern continues until at the lowest level, we have every permutation for
all tours.

Computation of Lower Bound

For the root node of the preceding graph, with partial tour [0], the lower bound on the
costs of leaving the five vertices is
City 0: minimum (14, 4, 11, 20) = 4.
City 1: minimum (14, 7,8, 7) = 7.
City 2: minimum (4, 7, 7, 16) = 4.
City 3: minimum (11, 8, 7, 2) = 2.
City 4: minimum (20, 7, 16, 2) = 2.

Therefore, the lower bound for the TSP solution based on the partial tour [0] is the

sum of these values, which is 19.
Let us compute the lower bound for a partial tour [0, 2, 3].
City 0: 4 (since the tour contains 0 -> 2)
City 1: 7 (cannot touch node already on tour)
City 2: 7 (since the tour contains 2 -> 3)
City 3: 11 (since the tour contains 3 -> 0)
City 4: 7 (cannot touch node already on tour)

Therefore, the lower bound for the partial tour [0, 2, 3] is the sum, which equals 36.

The computational cost of computing the lower bound for a partial tour is low.

478

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

At any level in the tree containing partial tours, the nodes can be ranked by their

computed lower bounds. We can use a priority queue to hold the tree structure.

Branch-and-Bound Algorithm

Set an initial value for the best tour cost.
Initialize a priority queue (PQ).

Generate the first node with partial tour [0] and compute its
lower bound.

Insert this node into PQ.

While the PQ is not empty, remove the first node from the PQ and
assign it to parent.

If its lower bound < best tour cost, set its level to the level of parent
node + 1.

If this level is N - 1, where N is the number of cities, add starting city 0
to the end of the partial tour and compute the cost of the full tour.

If this cost of full tour < best tour cost, update the best tour cost and
save the best tour.

If the level of the parent node + 1 isnotequaltoN - 1,

For alli such that 1 <=i< N and i is not in the partial tour of
the parent,

Copy the partial tour from parent to new node and add i to the end of
this partial tour.

Compute the lower bound for this new node.

If this lower bound is less than the best tour cost, insert this new node
into the priority queue; otherwise, prune this node.

479

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

The Priority Queue

Before a node is inserted into the PQ, it is screened to determine whether its lower
bound is less than the currently known best tour. This helps to keep the number of nodes
in the PQ to a manageable level.

What priority rules must the queue enforce?

Nodes at a deeper level (higher level number) have priority over nodes at a
shallower level in the PQ. This assures that the tree grows downward and that leaf nodes
representing complete tours are generated as quickly as possible. In comparing two
nodes at the same level, priority is given to the node with the smallest lower bound. In
the event of a tie (two nodes with equal lower bound), the sum of the cities in the partial
tour is computed. The node with the smaller sum is given a higher priority than the node
with the larger sum (a tie cannot occur). The rules just stated disallow two distinct nodes
from having an equal priority.

We walk through a portion of the five-city example presented earlier to see how the
priority queue is built.

A Walk-Through Part of the Five-City Example
Presented Earlier

The initial cost is computed by finding the cost of the tour, [0, 1, ..., n - 1, 0], which is

50. Since the lower bound (LB) of the root node was shown earlier to be 19, we push

the partial tour [0] onto the PQ. We remove tour[0] from the PQ and generate nodes at
level 1. All but one of these nodes have LB < 50, so we push them onto the PQ. The top of
the PQ is [0, 2] with LB = 19. Next comes [0, 1] with LB = 39, and third comes [0, 3] with
LB= 43. We continue to generate nodes as specified in the algorithm and as shown in
Figure 18-1.

480

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

[0, 1139
[0,2, 1] 29

[0,2, 1, 3] 30

[0, 2, 4] 56

[0,2, 1,4]38

[0,2,]1,3,4] 41

Figure 18-1. Part of solution tree

The full tour [0, 2, 1, 3, 4] is the first to be generated. Since its cost is less than the best
so far of 50, we assign the best tour to be [0, 2, 1, 3, 4] and its cost 41.

The front of the PQ contains the node [0, 2, 1, 4] since it is at the deepest level. The
algorithm backtracks to that node and then generates another full tour [0, 2, 1, 4, 3] also
with cost 41. This allows some of the nodes to be pruned when they are taken off the PQ
since their lower bounds are greater than 41.

You may wish to continue this process for this example.

In the next section, we look at the implementation of this algorithm.

18.2 Branch-and-Bound Implementation

One of the most important functions needed to support this branch-and-bound
algorithm is the computation of a lower bound for a given tour. This function is as follows:

func LowerBound(tour []int) float64 {
edges := make([]floaté4, 0)
sum := 0.0
n := len(tour)
481

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

for city := 0; city < NUMCITIES; city++ {
for index := 0; index < NUMCITIES; index++ {
// index is part of tour
found, pos := In(city, tour)
if n » 1 && found {
if pos == n-1 {

edges = append(edges,
graph[city][o])
} else {
edges = append(edges,
graph[city][tour[pos+1]])
}
break
}
found, _ = In(index, tour)

if n == 1 || !found {
// Don't allow an index already in
// tour
edges = append(edges,
graph[city][index])

}

sum += Minimum(edges)

edges = make([]float64, 0)
}

return sum

The function works exactly as specified in the outline of the algorithm presented in
Section 18.1.
A key support function is In given as follows:

func In(value int, values []int) (bool, int) {
// Returns true if value in values
// Returns index of location or -1 if not found
for index := 0; index < len(values); index++ {

482

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

if values[index] == value {
return true, index

}

return false, -1

Implementation of Priority Queue

The priority queue plays a central role in this algorithm. It stores nodes, each containing
a tour, a lower bound, and a level with priorities defined as specified in Section 18.1 and
repeated here for your convenience:

o Nodes at a deeper level (higher level number) have priority over
nodes at a shallower level in the PQ.

e Priority is given to the node with the smallest lower bound if the

nodes are at the same level.

o Iftwo nodes at the same level have the same lower bound, we add up
the cities in the node’s tour, and the node with the higher sum has a

higher priority.
The code that supports the implementation of the priority queue is given as follows:

type Node struct {

tour []int
lowerBound float64
level int

}
type Nodes []Node

// Allow nodes to be sorted
func (nodes Nodes) Len() int {
return len(nodes)

483

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

func (nodes Nodes) Swap(i, j int) {
nodes[i], nodes[j] = nodes[j], nodes[i]

}

func (nodes Nodes) Less(i, j int) bool {

if nodes[i].level » nodes[j].level {
return true

}

if nodes[i].level == nodes[j].level &&
nodes[i].lowerBound == nodes[j].lowerBound {
// Return the smaller sum of cities
tourl := nodes[i].tour
sumi := 0;
for i := 0; i < len(tour1); i++ {

suml += touri[i]

}
tour2 := nodes[j].tour
sum2 := 0;

for i := 0; i < len(tour2); i++ {
sum2 += tour2[i]

}

return sumi < sum2
}
if nodes[i].level == nodes[j].level &&
nodes[i].lowerBound != nodes[j].lowerBound {
return nodes[i].lowexBound <
nodes| j] . lowerBound

}

return false

}

type PriorityQueue struct {
items Nodes

}

func NewPriorityQueue() PriorityQueue {
return PriorityQueue{}

}

484

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

func (pq *PriorityQueue) Insert(node Node) {
tourToInsert := DeepCopy(node.tour)
nodeToInsert := Node{tourToInsert, node.lowerBound,

node.level}

pq.items = append(pq.items, nodeToInsert)
sort.Sort(pq.items)

}

func (pq *PriorityQueue) Remove() Node {
result := pq.items[o0]
pq.items = pq.items[1:]
return result

The priority queue (PQ) holds entities of type Node. Each time we insert a new node
into the queue, we sort the queue to ensure that the node with the highest priority is at
the front of the queue.

To enable the sorting of nodes in the PQ, we need to implement the interface to the
Sort method from package sort.

This is accomplished with the functions Len, Swap, and Less as given earlier. Each of
the three priority rules is implemented in the function Less.

The Insert function sorts the items (slice of Node) after appending the node being
inserted.

Generating Branch-and-Bound Solution

The function that generates nodes according to the outline from Section 18.1, inserts
them into the priority queue, finds best new tours, and backtracks while pruning
nodes whose lower bound exceeds the known best tour to date is given as follows in
function TSP:

func TSP() {
var elapsed time.Duration
start := time.Now()
bestTour := []int{}
for i := 0; i < NUMCITIES; i++ {
bestTour = append(bestTour, i)

485

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

486

pq := NewPriorityQueue()
bestCost := LowerBound(bestTour)
tour := []int{o}
lowerBound := LowerBound(tour)
node := Node{tour, lowerBound, 0}
nodesGenerated += 1
pq.Insert(node)
for {

if len(pq.items) == 0 {

break

}

top := pq.Remove()

topLevel := top.level

topTour := top.tour

// Generate nodes at toplLevel + 1

for i := 0; i < NUMCITIES; i++ {
tour := DeepCopy(topTour)
found, _ := In(i, topTour)
if 'found {
tour = append(tour, i)
nodesGenerated += 1
if nodesGenerated %

10_000_000 == 0 {
fmt.Println("\nNodes generated (in
millions): ", nodesGenerated /

1_000_000)
fmt.Printf("\n\nOptimum tour cost:
%0.2f \nBest tour: %v", bestCost,
bestTour)
elapsed = time.Since(start)
seconds := elapsed / 1_000_000_000
rate := float64(nodesGenerated) /

float64(seconds)
fmt.Printf("\nNodes generated per
second: %0.0f Length of PQ: %d

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

Time elapsed: %v", rate,
len(pq.items), elapsed)
}
if len(tour) == NUMCITIES {
// A complete tour is obtained
tourCost := LowerBound(tour)
if tourCost < bestCost {
bestTour = tour
bestCost = tourCost
fmt.Println("\n\nBest cost of
tour so far: ", bestCost)
}
} else {
tourCost := LowerBound(tour)
if tourCost < bestCost {
node := Node{tour, tourCost,
topLevel + 1}
pq.Insert(node)

}

fmt . Printf("\n\nOptimum tour cost: %0.2f \nBest
tour: %v \nNodes generated: %d", bestCost,
bestTour, nodesGenerated)

Listing 18-1 puts all the pieces together and shows all the support functions and a

main driver that attempts to solve a 33-city problem.

487

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

Listing 18-1. Branch-and-bound solution to TSP

package main

import (
"fmt"
"sort"
"time"

)

const (
NUMCITIES = 33

)

type Node struct {
tour [lint
lowerBound floaté64
level int

}

type Graph [][]float64

var graph Graph
var nodesGenerated inté64

type Nodes []Node

// Allow nodes to be sorted
func (nodes Nodes) Len() int {
return len(nodes)

}

func (nodes Nodes) Swap(i, j int) {
nodes[i], nodes[j] = nodes[j], nodes[i]

}

func (nodes Nodes) Less(i, j int) bool {
// Snip

}

488

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

type PriorityQueue struct {
items Nodes

}

func NewPriorityQueue() PriorityQueue {
return PriorityQueue{}

}

func (pq *PriorityQueue) Insert(node Node) {
// Snip

}

func (pq *PriorityQueue) Remove() Node {
// Snip

}

func DeepCopy(tour []int) []int {
result := []int{}
for i := range tour {
result = append(result, tour[i])

}

return result

}

func Minimum(values []float63) float6s {
// This function excludes value 0
min := 100000000.0
for i := 0; i < len(values); i++ {
if values[i] !'= 0 && values[i] < min {
min = values[i]

}
if min == 100000000.0 {
return 0.0

}

return min

489

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

func In(value int, values []int) (bool, int) {
// Snip

}

func LowerBound(tour []int) floaté64 {
// Snip

}

func TSP() {
/7 Snip

}

func main() {
graph = // Download from publisher’s website
TSP()

Data for main

The graph is constructed from data taken from a Rand McNally Atlas of 33 US cities with
distances between them specified.

The details in main are omitted here because of limited space. Please download the
entire listing from the publisher’s website.

The known solution to this problem is an optimum tour of 10,861 miles.

Results

After running the branch-and-bound program for 18 hours and 42 minutes and
generating 4.6 billion nodes at about 70,000 nodes per second, the best tour generated
so far is

[01312354678910111718192729302831322221232425262014151612]

This tour is 11,553 miles, which is an error of about 6 percent. We must remind
ourselves that the total number of nodes in the full tree representing this problem is 26
3,130,836,933,693,530,167,218,012,160,000,000 nodes.

At an average rate of 71,874 nodes per second, it would take about 1.39 x 10*
seconds or about 4.41 x 10?* years to generate all the leaf nodes in this tree.

490

CHAPTER 18 BRANCH-AND-BOUND SOLUTION TO TSP

18.3 Summary

We presented a branch-and-bound algorithm that provides an exact solution to the
TSP. The problem is that this is a computationally intractable problem. If allowed to run
long enough, it will find an exact solution to the problem.

A priority queue is used to hold a sequence of nodes, where each node contains
a tour (may be a partial tour), a lower bound, and a level. The nodes are sorted in the
queue by level, lower bound, and, in the case of a tie, sum of city values in the tour.

A 33-city problem is attempted. After two hours of computation, the best tour
obtained is about 6 percent higher than the known optimum tour. This best tour so far
remains the same after 16 hours.

This sets the stage for the next two chapters in which we present heuristic solutions
to the TSP. These heuristic solutions execute in a matter of seconds and produce
solutions that are either exact or have small error.

The next chapter presents a heuristic algorithm, simulated annealing.

491

CHAPTER 19

Simulated Annealing
Heuristic Solution to TSP

The previous chapter presented a branch-and-bound algorithm for producing an exact
solution to TSP. Like all known exact solutions, it is computationally intractable.
This chapter presents the powerful simulated annealing heuristic solution to the TSP.
In the next section, we introduce combinatorial optimization problems and set the
stage for our presentation of heuristic algorithms for solving TSP.

19.1 Combinatorial Optimization

Combinatorial optimization problems are computationally hard. As the size of these
problems increases, the computation time for an exact solution becomes infeasible - years
or centuries of computation time and memory requirements that are not realizable.

One such famous and interesting problem is the Travelling Salesperson Problem (TSP),
introduced in the previous chapter. The problem is easy to state and understand. Given
n cities, with specified distances between the cities, find the shortest tour that starts at
a given city, say, city 0; visits the remaining n - 1 cities; and returns to the starting city.

In other words, find the sequence of cities visited so that the total distance travelled is
minimum.

Often, we are given the location of the n cities from which we can compute distances
between them. We shall assume bidirectional links between cities in a fully connected
graph (every city has a link to every other city).

As we saw in Chapter 17, a brute-force solution that enumerates all possible
combinations of tours and chooses the tour of lowest distance travelled is of complexity
(n - 1)! For example, for four cities labelled 1,2 3, and 4, the possible tours starting and
returning to city 1 are

493
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_19

https://doi.org/10.1007/978-1-4842-8191-8_19

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

1->2->3->4

1->2->4->3

1->3->2->4

1->3->4->2

1->4->2->3

1->4->3->2

As predicted, there are (4 - 1)! or 3! = 6 possible tours.

For a 29-city problem, the number of possible tours is 28! = 3.0488834e+29. If we
could evaluate the tours at a rate of 10 million tours per second, it would take about
317,000,000,000,000 years to complete this computation.

So getting an exact solution to TSP is computationally intractable for problems even
of modest size such as a 29-city problem.

Heuristic Solutions

Since there are many important “real-world” applications of TSP (e.g., printed circuit
boards, transportation), researchers have devised many heuristic solutions to TSP. A
heuristic solution is one that is not guaranteed to be optimum but is computationally
tractable (polynomial complexity) and hopefully produces a solution near optimal.
Often. a heuristic algorithm will produce the optimum solution to the problem.

Two major frameworks for such approximate solutions to the TSP are

1. Simulated annealing
2. Genetic programming

What makes the two major frameworks given previously so interesting is that they
are each taken from processes and systems unrelated to TSP specifically. They can be
deployed on a wide range of combinatorial optimizations problems. There are other
such frameworks that are used to obtain heuristic solutions to TSP.

The first of these heuristic frameworks utilizes models from thermodynamics and
the second from genetics and survival of the fittest.

In the next section, we examine the first of these heuristic frameworks, simulated

annealing.

494

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

19.2 Simulated Annealing

The seminal work that has led to this framework for solving combinatorial optimization
problems was published in 1953 by Nicholas Constantine Metropolis. Later, he and a
colleague, W.K. Hastings, published the Metropolis-Hastings algorithm, which forms the
basis of simulated annealing.

Simulated annealing is a Monte Carlo algorithm. Such algorithms rely on repeated
statistical sampling of a system. Many random configurations of the system are
generated while computing properties of interest and refining the sampling based on
experimental results.

Simulated annealing relies on mimicking the thermodynamic properties of the
molecular lattice structure of metal as it is heated and slowly cooled to produce a
rigid and strong lattice structure. This process when done by metallurgists is called
“annealing.” It is done to minimize microscopic deformities in steel load-bearing
beams by creating a lattice structure of minimum internal energy. The average energy
in such beams during the annealing process (slow cooling of the beam) is given by the
Boltzmann factor, e **T, where E is the average energy of the beam, T is the temperature,
and k is the Boltzmann constant.

A critically important part of the physical annealing process of metallic beams is
to lower the temperature slowly. This increases the probability that the internal lattice
structure of the beam has minimum energy and is strongest.

Simulated Annealing Steps

An outline of the simulated-annealing algorithm is the following:
1. Choose an initial tour and find its cost.

2. Choose a high initial temperature T for an artificial temperature
variable.

3. Modify the tour by making a change to the existing tour (e.g.,
modifying the order of two cities in the tour or other modifications
to be seen shortly).

4. Ifthe new tour cost is smaller than the old tour cost, accept this
new tour (downhill move).

495

https://en.wikipedia.org/wiki/Nicholas_Metropolis
https://en.wikipedia.org/wiki/Nicholas_Metropolis
https://en.wikipedia.org/wiki/Nicholas_Metropolis

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

5. Ifthe new tour cost is higher than the old tour cost, accept this
uphill move with probability given by the Boltzmann factor, e"*/*T.

6. Athigh temperature, the probability of accepting such an “uphill
move” is close to 1. This allows the simulation to explore many
regions in the solution space and not be driven into a local valley
in the tour-cost vs. temperature space.

7. Lower the temperature based on a cooling curve. This cooling
curve can be obtained empirically by observing the rate of decline
in tour cost as a function of temperature and slowing down the
reduction in temperature when this rate of decline is high.

8. Repeatsteps3to7.

9. Asthe temperature gets lower, the probability of accepting uphill
moves decreases. This allows a descent hopefully to a lowest
energy state (lowest tour cost) close to the global minimum.

What is so special about this algorithm is that it evolves statistically to better and
better tours as the temperature variable is slowly lowered. It is a guided random walk of
the solution space based on the physics of metallurgy annealing.

It is relatively easy to implement and, as we will demonstrate, produces high-quality

solutions, either optimum or close to optimum.

Problem of Convergence to Local Minimum Rather Than
Global Minimum

An ever-present challenge in solving combinatorial optimization problems is having a
solution converge to a local minimum rather than the desired global minimum. For this
reason, it is desirable to allow the solution space to be explored and not to be in a great
rush to evolve to a solution.

In the simulated annealing algorithm, we achieve this by allowing “uphill moves.”
These are moves in the solution space that produce tours that are greater than the best-
known tour to date. The goal is to be able to climb out of local valleys in the solution
space while finding deeper valleys that hopefully contain the global minimum.

In the next section, we present an implementation of simulated annealing that
follows the steps just presented.

496

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

19.3 Implementation of Simulated Annealing

We create a type Status, which encapsulates the relevant state information about
the system.

type Status struct {

tour [1int
bestTour []int
bestCostToDate floaté64
previousCost float64
temperature float64
downhillMoves int
uphillMoves int
rejectedMoves int

inverseOps int
swapOps int
insertOps int

}

var status Status

There are three separate operations that we use to perturb a tour in the
solution space:

o Inverse Operation - We reverse the tour within two index values
chosen randomly.

o Swap - We swap two cities, chosen randomly, in a given tour.

o Insert - Move city in random position second to random
position first.

The details of this simulated annealing implementation along with extensive
comments and program output are presented in Listing 19-1.

497

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

Listing 19-1. Simulated annealing solution to TSP

package main

import (
"fmt"
"math"
"math/rand"
"time"
)
const (
NUMCITIES = 29
)
type Point struct {
x floaté64
y floaté4
}

func init() {
rand.Seed(time.Now().UnixNano())

}

func (pt Point) distance(other Point) float64 {
dx := pt.x - other.x
dy := pt.y - other.y
return math.Sqrt(dx*dx + dy*dy)

}

func createGraph(numCities int, cities []Point, graph
[1[1float6a) {
for row := 0; row < numCities; row++ {
for col := 0; col < numCities; col++ {
if row == col {
graph[row][col]
} else {
graph[row][col] =
cities[row].distance(cities[col])

0.0

498

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

}

func cost(graph [][]float64, tour []int) float64 {
result := 0.0
for index := 0; index < len(tour) - 2; index++ {
result += graph[tour[index]][tour[index+1]]
}
result += graph[tour[NUMCITIES - 1]][tour[0]]
return result

}

func randomFrom(min int, max int) int {
return rand.Intn(max - min) + min

}

func inverseOperation(tour []int) []int {

/*
Choose city i randomly from 1 to count - 1.
Choose city j randomly from 1 to count - 1
let first be the minimum of index i and j.
let second be the larger of index i and j.
reverse the order of cities in the tour from
index first to index second
Consider tour = [0, 3, 2, 1, 5, 4] and first = 1
and second = 4
The segment 3, 2, 1, 5 is replaced by 5, 1, 2, 3
and the new tour is
[O) 5,1, 2, 3, 4]-

*/

// Choose first and second

firstIndex := randomFrom(1, len(tour) - 1)

secondIndex := randomFrom(1, len(tour) - 1)

for firstIndex == secondIndex {
firstIndex = randomFrom(1, len(tour) - 1)

499

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

secondIndex = randomFrom(1, len(tour) - 1)
}
if firstIndex > secondIndex {
firstIndex, secondIndex = secondIndex,
firstIndex
}
result := deepcopy(tour[:firstIndex])
for index := 0; index <
(secondIndex - firstIndex + 1); index += 1 {
result = append(result, tour[secondIndex -
index])
}
for index := secondIndex + 1; index < len(tour);
index += 1 {
result = append(result, tour[index])

}

return result

}

func swap(tour []int) []int {

/*
Swap the city in position first with city in
position second
Consider tour [0, 3, 2, 1, 5, 4] and first = 1
and second = 4
The new tour would be [0, 5, 2, 1, 3, 4]

*/

// Choose first and second
firstIndex := randomFrom(1, len(tour) - 1)
secondIndex := randomFrom(1, len(tour) - 1)
for firstIndex == secondIndex {
firstIndex = randomFrom(1, len(tour) - 1)
secondIndex = randomFrom(1, len(tour) - 1)

500

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

if firstIndex > secondIndex {
firstIndex, secondIndex = secondIndex,
firstIndex
}
result := deepcopy(tour)
result[firstIndex], result[secondIndex] =
result[secondIndex], result[firstIndex]
return result

}

func insert(tour []int) []int {

/*
It means to move the city in position second to
position first.
Consider tour [0, 3, 2, 1, 5, 4] and first = 1
and second = 4
The new tour would be [0, 5, 3, 2, 1, 4]

*/

// Choose first and second
// Choose first and second
firstIndex := randomFrom(1, len(tour) - 1)
secondIndex := randomFrom(1, len(tour) - 1)
for firstIndex == secondIndex {
firstIndex = randomFrom(1, len(tour) - 1)
secondIndex = randomFrom(1, len(tour) - 1)
}
if firstIndex > secondIndex {
firstIndex, secondIndex = secondIndex,
firstIndex
}
result := []int{}
for index := 0; index < len(tour) + 1; index += 1 {
if index < firstIndex {
result = append(result, tour[index])
} else if index == firstIndex {

501

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

result = append(result, tour[secondIndex])
} else if index > firstIndex 8& index !=
secondIndex + 1 {
result = append(result, tour[index-1])

}

}
return result

}

type Status struct {
tour []int
bestTour []int
bestCostToDate float64
previousCost float64
temperature float64
downhillMoves int
uphillMoves int
rejectedMoves int
inverseOps int
swapOps int
insertOps int

}

var status Status

func deepcopy(tour []int) []int {
result := []int{}
for i := range tour {
result = append(result, tour[i])
}

return result

}

func simulatedAnnealing(graph [][]float64) {
for i := 0; 1 < NUMCITIES; i++ {
status.tour = append(status.tour, i)

502

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

status.tour = append(status.tour, 0)
fmt.Printf("\n\nCost of initial tour %v is %f\n\n",

status.tour, cost(graph, status.tour))
status.bestTour = deepcopy(status.tour)
status.bestCostToDate = cost(graph,

status.bestTour)
status.previousCost = status.bestCostToDate
numberIterationsAtTemperature := 5000
lowestTemperature := 5.0
for status.temperature >= lowestTemperature {
for iteration := 0; iteration <
numberIterationsAtTemperature; iteration
+= 1 {

tourl := inverseOperation(status.tour)

costl := cost(graph, tourl)

tour2 := swap(status.tour)

cost2 := cost(graph, tour2)

tour3 := insert(status.tour)

cost3 := cost(graph, tour3)

newCostl := math.Min(cost1, cost2)

newCost := math.Min(newCost1, cost3)

if newCost == cost1 {
status.inverseOps += 1
// Determine whether to accept this
// tourl
if newCost < status.previousCost {
status.downhillMoves += 1
status.previousCost = newCost
status.tour = deepcopy(tour1)
if newCost <
status.bestCostToDate {
status.bestCostToDate =
newCost
status.bestTour =
deepcopy(tour1)

503

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

fmt.Printf("\nLowest cost
tour to-date = %0.2f at
Temperature = %0.2f Best
tour: %v",
status.bestCostToDate,
status.temperature,

status.bestTour)
}
} else {
metropolis :=
math.Exp((status.previousCost
- newCost) /
status.temperature)

r := rand.Float64()
if r <= metropolis {// Uphill move

status.uphillMoves += 1

status.previousCost = newCost

status.tour = deepcopy(tour1)

if newCost <
status.bestCostToDate {
status.bestCostToDate =

newCost
status.bestTour =
deepcopy(tour1)

fmt.Printf("\nLowest cost
tour to-date = %0.2f at
Temperature = %0.2f Best
tour: %v",
status.bestCostToDate,
status.temperature,
status.bestTour)

} else {
status.rejectedMoves += 1

504

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

} else if newCost == cost2 {
status.swapOps += 1
// Determine whether to accept this
// tour2
if newCost < status.previousCost {
status.downhillMoves += 1
status.previousCost = newCost
status.tour = deepcopy(tour2)
if newCost <
status.bestCostToDate {
status.bestCostToDate =
newCost
status.bestTour =
deepcopy(tour2)
fmt.Printf("\nLowest cost
tour to-date = %0.2f at
Temperature = %0.2f Best
tour: %v", status.bestCostToDate,
status.temperature,
status.bestTour)
}
} else {
metropolis :=
math.Exp((status.previousCost
- newCost) /
status.temperature)
r := rand.Float64()
if r <= metropolis {// Uphill move
status.uphillMoves += 1
status.previousCost = newCost
status.tour = deepcopy(tour2)
if newCost <
status.bestCostToDate {
status.bestCostToDate =
newCost

505

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

status.bestTour =
deepcopy(tour2)

fmt.Printf("\nLowest cost

tour to-date = %0.2f at

Temperature = %0.2f Best

tour: %v",

status.bestCostToDate,

status.temperature,

status.bestTour)

} else {
status.rejectedMoves += 1

}

} else if newCost == cost3 {
status.insertOps += 1
// Determine whether to accept this
// tour3
if newCost < status.previousCost {
status.downhillMoves += 1
status.previousCost = newCost
status.tour = deepcopy(tour3)
if newCost <
status.bestCostToDate {
status.bestCostToDate = newCost
status.bestTour =
deepcopy(tour3)
fmt.Printf("\nLowest cost tour
to-date = %0.2f at Temperature
= %0.2f Best tour: %v",
status.bestCostToDate,
status.temperature,
status.bestTour)

506

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

} else {
metropolis :=
math.Exp((status.previousCost
- newCost) /
status.temperature)
r := rand.Float64()
if r <= metropolis {// Uphill move
status.uphillMoves += 1
status.previousCost = newCost
status.tour = deepcopy(tour3)
if newCost <
status.bestCostToDate {
status.bestCostToDate =
newCost
status.bestTour =
deepcopy (tour3)
fmt.Printf("\nLowest cost
tour to-date = %0.2f at
Temperature = %0.2f Best
tour: %v",
status.bestCostToDate,
status.temperature,
status.bestTour)
} else {
status.rejectedMoves += 1

h

// Cooling curve

if status.temperature >= 1000.0 {
status.temperature *= 0.90

} else if status.temperature >= 500 {
status.temperature *= 0.94

507

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

} else if status.temperature >= 200 {
status.temperature *= 0.97

} else if status.temperature >= 50 {
status.temperature *= 0.98

} else {
status.temperature *= 0.99

}

func main() {
cities := []Point{}
pt1 := Point{1150.0,1760.0}
cities = append(cities, pt1)
pt2 := Point{630.0, 1660.0}
cities = append(cities, pt2)
pt3 := Point{40.0, 2090.0}
cities = append(cities, pt3)
pt4 := Point{750.0, 1100.0}
cities = append(cities, pt4)
pt5 := Point{750.0, 2030.0}
cities = append(cities, pt5)
pt6 := Point{1030.0, 2070.0}
cities = append(cities, pt6)
pt7 := Point{1650.0, 650.0}
cities = append(cities, pt7)
pt8 := Point{1490.0, 1630.0}
cities = append(cities, pt8)
pt9 := Point{790.0, 2260.0}
cities = append(cities, pt9)
pt10 := Point{710.0, 1310.0}
cities = append(cities, pt10)
pt1l := Point{840.0, 550.0}
cities = append(cities, pti1)
pt12 := Point{1170.0, 2300.0}
cities = append(cities, pt12)

508

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

pt13 := Point{970.0, 1340.0}

cities = append(cities, pt13)
pt14 := Point{510.0, 700.0}

cities = append(cities, pti4)
pt15 := Point{750.0, 900.0}

cities = append(cities, pt15)
pt16 := Point{1280.0, 1200.0}
cities = append(cities, pt16)
pt17 := Point{230.0, 590.0}

cities = append(cities, pt17)
pt18 := Point{460.0, 860.0}

cities = append(cities, pt18)
pt19 := Point{1040.0, 950.0}

cities = append(cities, pt19)
pt20 := Point{590.0, 1390.0}

cities = append(cities, pt20)
pt21 := Point{830.0, 1770.0}

cities = append(cities, pt21)
pt22 := Point{490.0, 500.0}

cities = append(cities, pt22)
pt23 := Point{1840.0, 1240.0}
cities = append(cities, pt23)
pt24 := Point{1260.0, 1500.0}
cities = append(cities, pt24)
pt25 := Point{1280.0, 790.0}
cities = append(cities, pt25)
pt26 := Point{490.0, 2130.0}
cities = append(cities, pt26)
pt27 := Point{1460.0, 1420.0}
cities = append(cities, pt27)
pt28 := Point{1260.0, 1910.0}
cities = append(cities, pt28)
pt29 := Point{360.0, 1980.0}
cities = append(cities, pt29)

graph := make([][]float64, NUMCITIES)

509

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

for i:=0; i < NUMCITIES ; i++ {

graph[i] =

}

make ([]float64, NUMCITIES)

createGraph(NUMCITIES, cities, graph)

status.temperature =

2000.0

simulatedAnnealing(graph)

fmt.Printf("\nInverse Operations: %d Swap Operations: %d Insert

Operations: %d Downhill moves: %d Uphill moves, %d", status.inverseOps,

status.swapOps, status.insertOps, status.downhillMoves, status.uphillMoves)

}
/* Output

Cost of initial tour [0 1234567 89 10 11 12
877363

21 22 23 24

Lowest cost
[012326
27 28 0]
Lowest cost
[012326
27 28 0]
Lowest cost
[012326
25 28 0]
Lowest cost
[012326
25 28 0]
Lowest cost
[012326
25 28 0]
Lowest cost
[012326
25 28 0]
Lowest cost
[012326
25 28 0]

510

25 26 27 28 0] is 25814.

tour to-date = 25669.
45678910 11 12

25456.
11 12

tour to-date =
45678910

24872.
11 12

tour to-date =
45678910

tour to-date =
456789 15

24249.
10 11

tour to-date =
456789 15

22921.
27 19

tour to-date =
456789 15

22479.
27 19

tour to-date = 21640.

20
13

00
13

68
13

12
12

49
18

54
18

at
14

at
14

at
14

at
13

at
17

at
13

Temperature
15 16 17 18

Temperature
15 16 17 18

Temperature
15 16 17 18

Temperature
14 16 17 18

Temperature
16 14 13 12

Temperature
17 16 14 12

13 14 15 16 17 18 19 20

= 2000.00 Best tour:
19 20 21 22 23 24 25

= 2000.00 Best tour:
19 25 21 22 23 24 20

= 2000.00 Best tour:
19 27 21 22 23 24 20

= 2000.00 Best tour:
19 27 21 22 23 24 20

= 2000.00 Best tour:
11 10 21 22 23 24 20

= 2000.00 Best tour:
11 10 21 22 23 24 20

15 at Temperature = 2000.00 Best tour:
4562489 1527 19 18 13 17 16 14 12 11 10 21 22 23 7 20

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

Lowest cost tour to-date = 21208.12 at Temperature = 2000.00 Best

[012315264 56248927 19 18 13 17 16 14 12 11 10

25 28 0]

Lowest cost tour to-date = 18984.
[0 1723152221109 12

25 28 0]
Lowest cost tour

[0 172315222116 109

25 28 0]
Lowest cost tour
[0 127 23 18 13
25 28 0]
Lowest cost tour
[0 6 24 10 16 21
25 28 0]
Lowest cost tour
[0 6 24 10 16 21
25 28 0]
Lowest cost tour
[0 6 24 10 16 21
25 28 0]
Lowest cost tour
[0 6 24 10 16 21
25 28 0]
Lowest cost tour
[0 6 24 10 16 21
25 28 0]
Lowest cost tour
[0 6 24 10 16 21
20 28 0]
Lowest cost tour
[0 6 24 10 16 21
20 28 0]

14 16

to-date

12 14

to-date
17 14 12 9 5 11

to-date = 18218.

22 1519 7 115

to-date = 18110.

221512 711 1

to-date = 17873.

2215 12 7 11 4

to-date = 17544.

17 13 18 1 4 11

to-date = 17327.
17 13 3
to-date = 17300.

18849.

18735.

25 at Temperature
17 13 18 19 27 11

81 at Temperature
17 13 18 19 27 11

36 at Temperature

7 19 15 22 21 16 10

92 at Temperature

9 12 14 17 13 18 23

89 at Temperature

18 13 17 14 19 9 5 23 27

48 at Temperature

118 13 17 14 19 9 8 23 27 5

27 at Temperature

7 12 15 22 14 19 9 8 23 27 5

28 at Temperature

14117 12 15 22 14 19 9

34 at Temperature

17 13 12 3 1 8 11 7 15 22 14 19 9

to-date = 16585.

81 at Temperature

17 13 12 3 1 8 11 4 9 19 14 22 15

21 22 23

2000.00 Best
82465 4263

Best
26 3

2000.
8246

00
5 4

Best
26 3

2000.
24 6

00
8 4

Best
26 3

= 2000.
27 1

00
8 4

Best
26 3

= 2000.00

8 4

Best
26 3

= 2000.00

Best
26 3

= 2000.00

2000.00 Best
8 23 27 5 26 18

2000.00 Best
4 23 27 5 26 18

2000.00 Best
7 23 27 5 26 18

tour:

7 20

tour:

2 20

tour:

2 20

tour:

2 20

tour:

2 20

tour:

2 20

tour:

2 20

tour:

2 20

tour:

2 20

tour:

25 2

tour:

25 2

511

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

Lowest cost tour to-date = 15655.98 at Temperature = 2000.00

Best tour:

[0 6 24 10 16 21 17 13 12 3 120 8 11 4 9 19 14 22 15 7 23 27 5 26 18

25 2 28 0]

Lowest cost tour to-date = 15655.04 at Temperature = 2000.00

Best tour:

[0 6 24 10 16 21 17 13 12 3 120 8 11 4 9 19 14 22 7 15 23 27 5 26 18

25 2 28 0]

Lowest cost tour to-date = 15439.96 at Temperature = 2000.00

Best tour:

[0 6 24 10 16 21 17 13 12 3 1 18 26 527 23 15 7 22 14 19 9 4 11 8 20

25 2 28 0]
Lowest cost tour to-date = 15315.97 at Temperature = 2000.00

Best tour:

[0 6 24 10 16 21 17 13 12 3 1 23 27 5 26 18 15 7 22 14 19 9 4 11 8 20

25 2 28 0]
Lowest cost tour to-date = 14339.52 at Temperature = 2000.00

Best tour:

[011 7 22 14 9 3 128 2 25 8 20 19 12 15 26 10 16 21 17 13 24 6 18 4 5

27 23 0]

Lowest cost tour to-date = 14118.61 at Temperature = 2000.00
[0 6 22 15 24 10 21 14 18 3 12 16 17 13 7 26 23 27 11 4 25 5
28 20 0]

Lowest cost tour to-date = 14082.51 at Temperature = 1800.00
[027 7 6 22 26 23 49 13 17 12 15 24 18 10 3 14 16 21 19 11
25 20 0]

Lowest cost tour to-date = 14009.54 at Temperature = 1800.00
[027 7 6 22 26 23 4 9 13 17 12 15 24 18 10 14 3 16 21 19 11
25 20 0]

Lowest cost tour to-date = 13848.14 at Temperature = 1800.00
[027 7 6222623 4119 13 16 21 17 18 15 24 10 14 3 19 12
8 5 20 0]

Lowest cost tour to-date = 13659.70 at Temperature = 1800.00
[0 27 7 23 12 15 26 19 1 28 20 17 13 21 16 9 2 25 4 5 8 11 3
24 6 22 0]

Lowest cost tour to-date = 13386.10 at Temperature = 1800.00

Best tour:
81199 2

Best tour:
581282

Best tour:
581282

Best tour:
25 2 1 28

Best tour:
14 18 10

Best tour:

[0 27 7 23 26 15 12 1 19 28 20 17 13 21 16 9 2 25 4 5 8 11 18 3 14 10

24 6 22 0]

512

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

Lowest cost tour to-date = 13074.00 at Temperature
[0 27 20 9 3 19 14 24 26 18 10 13 17 16 21 1 28 25

22 7 23 0]

Lowest cost tour to-date = 12666.24 at Temperature

[020 28 25247 851127 119 6 22 24 18 14 10 21

26 23 0]

Lowest cost tour to-date = 12643.30 at Temperature
[027 511 8202522841919 72622246 14 10 13 16 21

12 18 0]

Lowest cost tour to-date = 12487.86 at Temperature

[0 23 15 12 9 3 18 6 24 22

14 7 27 0]

Lowest cost tour to-date
[020 511 4 252 28 89

23 27 0]

12162.28 at Temperature
19 3 17 16 21 13 10 14 15

Lowest cost tour to-date = 11764.31 at Temperature
[027 511 8 428 22520312 1518 7 26 23 1 19 9 16 21 10

24 6 22 0]

Lowest cost tour to-date = 11640.94 at Temperature
[0 7 1519 14 3 12 20 8 4 5 23 26 22 6 24 18 10 21

11 27 0]

Lowest cost tour to-date = 11428.50 at Temperature
[054 2522019 12 3 14 9 17 16 13 21 10 18 24 6

11 27 0]

Lowest cost tour to-date
[0 27 23 26 7 22 15 19 3

28 2 8 0]

Lowest cost tour to-date
[0 27 23 7 26 15 22 6 24

2 28 8 0]

11411.98 at Temperature

1620.00

Best tour:

28451112 156

1180.98

= 794.53

= 746.86

26 511 20 1 25 8 4 28 2 19 17 21

= 702.05
12 1 18 6

= 702.05

= 484.32

Best tour:
13 16 17 3 9 12 15

Best tour:
17 3 23 15

Best tour:
13 16 10

Best tour:
24 26 22 7

Best tour:
13 17 14

Best tour:

13 16 17 9 1 28 2 25

= 484.32

Best tour:

22 7 23 26 15 1 28 8

469.79

9 14 13 17 16 21 10 6 24 18 12 20 1

11140.76 at Temperature
18 10 14 21 13 16 3 17 19

Lowest cost tour to-date = 11091.14 at Temperature
[027 11 58 428 2 2520 1 12 24 6 10 21 16 17 13

22 26 0]

469.79
912 1 20

455.70
18 9 19 3

Best tour:
11 5 4 25

Best tour:
11 5 4 25

Best tour:
14 15 23 7

513

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

Lowest cost tour to-date

[027 1154825282199 143

12 1 20 0]
Lowest cost tour to-date

[0527 11 4825282199 143

12 1 20 0]
Lowest cost tour to-date

[027 511 8228254201199

23 15 0]
Lowest cost tour to-date

[027 11 58 2 28 25 4 20 12 1 19 9 3 14 10 21 17 16

23 15 0]
Lowest cost tour to-date

= 10549.20 at Temperature

17 16 10 21 13 18
= 10477.04 at Temperature
17 21 16 13 10 18
= 10368.42 at Temperature
3 18 12 10 21 17

= 10162.14 at Temperature

9899.85 at Temperature

346.44 Best tour:
24 6 22 26 15 23 7

= 346.44 Best tour:
24 6 22 26 15 7 23

325.96 Best tour:

16 13 14 24 6 22 26 7

325.96 Best tour:
13 18 24 6 22 26 7

247.81 Best tour: [0 5

27 11 8 252 28 420 1 19 9 12 15 18 14 13 3 17 16 21 10 24 6 22 26 7 23 0]

to-date
18 3 13
to-date
6 24 18

Lowest cost tour
23 26 15 22 6 24
Lowest cost tour
[0 23 15 7 26 22
4 5 27 0]

Lowest cost tour
[0 23 7 26 15 22
4 5 27 0]

Lowest cost tour
[0 23 7 22 26 15
11 5 27 0]
Lowest cost tour
[0 23 7 26 22 15
11 5 27 0]
Lowest cost tour to-date
[0 23 7 26 22 6 24 15 12
11 5 27 0]

Lowest cost tour to-date
[0 23 7 26 22 6 24 10 13
11 5 27 0]

to-date
6 24 18

to-date
12 3 14

to-date
12 3 14

514

= 9846.42 at Temperature
21 16 17 10 14 12 9 19 1
= 9829.90 at Temperature
14 10 21 16 13 17 3 9 12

= 9740.09 at Temperature
14 10 21 16 13 17 3 9 12

= 9677.66 at Temperature
17 16 13 21 10 6 24 18 9

= 9642.94 at Temperature
17 16 13 21 10 6 24 18 9

= 9606.44 at Temperature
14 21 16 17 13 10 18 3 9

= 9596.98 at Temperature
17 16 21 14 12 15 18 3 9

226.17 Best tour: [0 7
20 28 2 25 4 8 5 11 27 0]
= 179.14 Best tour:

19 1 20 11 8 28 2 25

= 179.14 Best tour:
19 1 20 11 8 28 2 25
= 175.56 Best tour:
19 1 20 4 28 2 25 8
= 175.56 Best tour:
19 1 20 4 28 2 25 8
= 175.56 Best tour:
19 1 20 4 28 2 25 8
= 175.56 Best tour:
19 1 20 4 28 2 25 8

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

Lowest cost tour to-date = 9569.98 at Temperature
[027 11 58 42822520119 9 3 10 21 16 13 17
26 23 0]

Lowest cost tour to-date = 9490.31 at Temperature
[027 20511 8 425228119 9 3 12 15 18 14 17
26 7 23 0]

Lowest cost tour to-date = 9406.00 at Temperature
[0 23 7 26 22 6 24 15 18 10 16 21 13 17 14 3 9 12
11 5 27 0]

Lowest cost tour to-date = 9248.08 at Temperature
[0 23 7 26 22 6 24 15 18 10 21 16 13 17 14 3 9 12
11 5 27 0]

Lowest cost tour to-date = 9248.08 at Temperature
[027 511 8 25228 420119 12 9 3 14 17 13 16
26 7 23 0]

Lowest cost tour to-date = 9120.82 at Temperature
[027 511 825228420119 9 12 3 14 17 13 16
26 7 23 0]

Lowest cost tour to-date = 9107.19 at Temperature
5118 25228 420119 9 12 3 14 17 13 16 21 10
Lowest cost tour to-date = 9077.92 at Temperature
5118 25228 420119 9 12 3 14 17 13 16 21 10
Lowest cost tour to-date = 9076.98 at Temperature

15 26 7 22 6 24 18 10 21
Lowest cost tour to-date

9074.15 at Temperature

175.56 Best
14 18 12 15 24

172.05 Best
16 21 13 10 24

161.93 Best
19 1 20 4 28 2

161.93 Best
19 1 20 4 28 2

161.93 Best
21 10 18 15 24

161.93 Best
21 10 18 15 24

= 93.85 Best
18 24 6 22 26
= 93.85 Best
18 24 6 22 15
= 72.17 Best

16 13 17 14 3 12 9 19 1 20 4 28 2 25 8

72.17 Best

tour:
6 22

tour:
6 22

tour:
25 8

tour:
25 8

tour:
6 22

tour:
6 22

tour: [0 27
15 23 7 0]
tour: [0 27
26 7 23 0]
tour: [0 23
11 5 27 0]
tour: [0 27

511 8 25 228 420119 9 3 14 17 13 16 21 10 18 24 6 22 7 26 15 12 23 0]
Inverse Operations: 748742 Swap Operations: 345285 Insert Operations:

625973 Downhill moves: 95259 Uphill moves, 96014

> Elapsed: 2.288s
*/

515

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

Discussion of Code

Let’s focus on function simulatedAnnealing.

A for-loop runs if temperature is greater than lowestTemperature, which we set at
5.0. We consider perturbing the existing tour using the three operations discussed earlier.
We assign the new tour to the tour among the three choices with the lowest tour cost.

If the cost of this new tour is smaller than the previous tour cost, we accept this new
tour, increment the number of downhill moves, and update other status values.

Otherwise, we compute a metropolis value using the Boltzmann-like function to
determine whether we accept an uphill move (a tour cost greater than the previous
tour cost).

metropolis :=
math.Exp((status.previousCost - newCost) /
status.temperature)

Next, we generate a random float value between 0 and 1. If this value is less than
metropolis, we accept an uphill move by changing the tour to the tour with worse cost
(uphill move) and then update the appropriate status values.

If the random float value is equal or greater than the metropolis value, we do not
modify the current tour.

Following this, a new potential modification to the tour occurs using the three
operations defined earlier. This continues until we have performed the requisite number
of modifications specified for the given temperature. Then we use the logic of the cooling
curve to lower the temperature and start the process just described again.

Results

The execution time of this run is 2.3 seconds on an iMac. The lowest-cost tour of 9074.15
is the known optimum tour for this 29-city problem. It is not unusual for the simulated
annealing heuristic algorithm to find the optimum tour, although this is not guaranteed.

Displaying Final Results

If the code from Listing 17-3 is added to Listing 19-1 and the line DrawTour is added
as the last line in function simulatedAnnealing, we obtain the drawing shown in
Figure 19-1.

516

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

TSP Tour
2000 —
1500 —
1000 —|
500 —
[! | ! |
250.00 1000.00 1750.00

Figure 19-1. A 29-city tour from simulated annealing

Lines Crossing

As expected, this tour has no lines crossing. It is well known that if two edges in a closed
polygon cross, there is a polygon with the same vertices that has a smaller perimeter.
This follows from the triangle inequality. This inequality is that in any triangle, the sum
of any two sides must be greater than the third side.

So a necessary condition for a tour to be optimum is that no lines cross in the tour.
But that is not a sufficient condition. It is possible for suboptimal tours to not have
lines cross.

517

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

The additional code for producing the graphical output is shown in Listing 19-2.
Only the changed functions are shown.

Listing 19-2. Simulated annealing with graphical output
package main

import (
“fmt"
"math"
"math/rand"
“time"
"image/color"
"gonum.org/vi/plot"
"gonum.org/vi/plot/plotter”
"gonum.org/vi/plot/vg"
"gonum.org/vi/plot/vg/draw"

)

const (
NUMCITIES = 29

)

type Point struct {
x floaté64
y floaté64

}

var cities []Point

func init() {

// Snip

}

func (pt Point) distance(other Point) float64 {
// Snip

}

518

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

func createGraph(numCities int, cities []Point, graph

[1[]1float64) {

// Snip

}

func cost(graph [][]float64, tour []int) floatés4 {
// Snip

}

func swap(tour []int) []int {
// Snip

}

func insert(tour []int) []int {
// snip

}

type Status struct {
// Snip

}

var status Status

func deepcopy(tour []int) []int {

// Snip

}

func simulatedAnnealing(graph [][]float64) {
// Snip
DrawTour(cities, status.bestTour)

}

func definePoints(cities []Point, tour []int)
plotter.Xys {
pts := make(plotter.XYs, len(cities) + 1)
pts[0].X = cities[0].x
pts[0].Y = cities[0].y
for i := 1; i < len(cities); i++ {

519

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

pts[i].X
pts[i].Y

cities[tour[i]].x

cities[tour[i]].y

}
pts[len(cities)].X
pts[len(cities)].Y
return pts

cities[0].x

cities[o].y

}

func DrawTour(cities []Point, tour []int) {
data := definePoints(cities, tour) // plotter.XYs
p := plot.New()
p.Title.Text = "TSP Tour"
lines, points, err := plotter.NewLinePoints(data)
if err != nil {
panic(err)
}
lines.Color = color.RGBA{R: 255, A: 255}
points.Shape = draw.PyramidGlyph{}
points.Color = color.RGBA{B: 255, A: 255}
p.Add(1lines, points)
// Save the plot to a PNG file.
if err := p.Save(6*vg.Inch, 6*vg.Inch, "tour.png");
err != nil {

panic(err)
}
}
func main() {
// Snip
}

520

CHAPTER 19 SIMULATED ANNEALING HEURISTIC SOLUTION TO TSP

19.4 Summary

This chapter presented a simulated annealing heuristic algorithm for solving TSP. The
steps of this algorithm mimic the annealing of metal beams where the goal is to immerse
the beam in a hot liquid and cool the beam slowly until the internal average energy of
the lattice structure is minimized. Using an artificial temperature variable, the simulated
annealing algorithm cools the solution space slowly while attempting to lower the cost
of a tour.

We obtained remarkable results applying this heuristic algorithm to a 29-city
problem.

The next chapter presents another heuristic algorithm for tackling TSP, a genetic
algorithm.

521

CHAPTER 20

Genetic Algorithm for TSP

The previous chapter presented an implementation of simulated annealing, a powerful
and useful heuristic algorithm for solving TSP. We saw that this heuristic algorithm often
obtains the optimum solution to the problem with relatively little computational effort.
This chapter presents another heuristic approach for TSP - genetic algorithm.
In the next section, we introduce the basis for this heuristic algorithm

20.1 Genetic Algorithm

A genetic algorithm is inspired by the biological maxim survival of the fittest.

As species evolve, traits that resonate with the ecosystem in which the species exist
prevail. The traits that promote the greatest ability to survive in a hostile environment
become dominant, and the traits that promote weakness disappear over time. This
evolutionary process assumes continual changes in the underlying genetic structure of
the species resulting from reproduction.

We apply this evolutionary model to TSP.

High-Level Description of Genetic Algorithm

An initial population of tours that visit each city once and return to the starting city
is randomly generated. The fitness of each tour is the reciprocal of the tour cost. The
smaller the tour cost, the higher the fitness.

We define a mating process as combining two tours to produce two offspring tours
that are formed by some combination of the parent tours.

We define a mating pool as a collection of parent tours to be combined (mated) to
produce the next generation of tours.

We define a mutation of a tour as a new tour that results from some small random
perturbation of an existing tour.

523
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_20

https://doi.org/10.1007/978-1-4842-8191-8_20

CHAPTER 20 GENETIC ALGORITHM FOR TSP

More Detailed Description of Genetic Algorithm

Initial Generation: We define a constant population size, say, PopSize. We generate
PopSize random tours, each starting and ending at city 0. These tours represent our
initial generation.

Rank the Population: We rank the tours that comprise the initial generation based
on the fitness of each tour. The smaller the cost of the tour, the higher the fitness. We sort
the tours by their fitness.

Mating Pool: We use a tournament selection rule that works as follows: A specified
group of tours are randomly selected from the population, and the one with the highest
fitness in the group is chosen as the first parent. This is repeated to choose the second
parent. We continue this process until we have created PopSize / 2 mating pairs.

Mating: This is the most challenging and important aspect of the genetic algorithm.
We need to combine two tours to produce two child tours where each child retains a
portion of its parents. We will utilize several crossover algorithms to accomplishing
this mating.

Mutation: We will use a simple swap of two randomly chosen cities in a tour to
produce a new tour. Such a new tour may have inferior fitness compared to the tour being
mutated. This is like an uphill move in the simulated annealing algorithm. It promotes
diversity and helps stave off a premature descent to a local minimum in the solution
space. We apply mutation to a randomly selected small percentage of a given generation.

The steps for our genetic algorithm are the following:

1. Form an initial population of random tours of size
ToursPerGeneration.

2. Select a small elite group of the fittest tours in the existing
generation to be moved to the next generation.

3. Use tournament selection on the tours that remain to define a
mating pool.

4. Perform mating of the parents in the mating pool to form a new
generation of tours. This new generation contains the elite group
from the previous generation along with the new children formed
by mating.

524

CHAPTER 20 GENETIC ALGORITHM FOR TSP

5. Perform mutation on a randomly selected small fraction of the
new generation.

6. Repeat steps 2 through 5 for a specified number of generations.
Output the best tour to date as the tours progress from one
generation to another.

In the next section, we construct our solution, following these steps.

20.2 Implementation of Genetic Algorithm
Step 1 — Form an Initial Population of Random Tours

We form an initial population of tours as follows:
var population [][]int

func CreateInitialPopulation() {
firstCities := make([]int, NUMCITIES - 1)
for i := 1; i < NUMCITIES; i++ {
firstCities[i - 1] = i
}
for row := 0; row < ToursPerGeneration; row++ {
rand.Shuffle(len(firstCities), func(i, j int) {
firstCities[i], firstCities[j] =
firstCities[j], firstCities[i]
)
population[row] = []int{o0}
for col := 1; col < NUMCITIES; col++ {
population[row] = append(population[row],
firstCities[col - 1])

We utilize the Shuffle function from package rand by producing a random sequence
of integers from 1 to NUMCITIES. We initialize the global population variable at each
row with value 0 and then append the random sequence to this initial value.

525

CHAPTER 20 GENETIC ALGORITHM FOR TSP

When we are done, each row of the population matrix contains a sequence of cities,
each starting with city 0. When we compute the cost of each tour, we add the cost of
going from the last city in the sequence back to city 0.

The Cost function for a given tour (row of the population matrix) is the following:

func Cost(graph [][]float64, tour []int) float64
result := 0.0
for index := 0; index < len(tour) - 2; index++ {
result += graph[tour[index]][tour[index+1]]
}
result += graph[tour[NUMCITIES - 1]][toux[o0]]
return result

Step 2 — Form an Elite Group of Best Tours

The function ChooseEliteGroup() returns a matrix of ELITENU best tours in the current
population.
This function is given as follows:

func ChooseEliteGroup() (elite [][]int) {
// The population is sorted prior calling
// this function

// Initialize elite

elite = make([][]int, EliteNumber)

for row := 0; row < EliteNumber; row++ {
elite[row] = make([]int, EliteNumber)

}

for row := 0; row < EliteNumber; row++ {
elite[row] = DeepCopy(population[row])

}

return elite

The DeepCopy is needed because we wish to copy the values in each row of the
sorted population and not the address of the row.

526

CHAPTER 20 GENETIC ALGORITHM FOR TSP

Step 3 — Tournament Selection

To obtain mating pairs from the current population minus the elite tours, we grab
TournamentNumber tours chosen randomly from the population minus elite tours, sort
them, and return the best tour (lowest cost) among them. That tour is parentl. We do
the same again to produce parent2. We mate the two parents and add the children into
newpopulation matrix.

We choose EliteNumber so that ToursPerGeneration - EliteNumber is an even
number. The number of parent pairs that we need to mate is (ToursPerGeneration -
EliteNumber) / 2.

Step 4 — Mating of Parents

The OrderedCrossover function which we use to mate two parent tours transmits
information about the relative ordering of the parents to the children.

We create two random crossover points in the parents and copy the segment
between them from parentl to child1.

Starting from the second crossover point in parent2, we copy the remaining numbers
from the second parent to the first child, not allowing duplicates and wrapping when the
end of parent2 is encountered.

Do the same for the second child, reversing the role of the parents.

Consider the following example.

parentl:0,1,2,|3,4,5,6,|7,8,9

parent2:0,8,7,|4,3,2,1,|9,6,5

Here, the crossover indices are 3 and 6 shown with the vertical lines.

Let’s walk through the process of obtaining child1.

After copying from parentl, childl is the following:

X,XX,3,4,5,6,X,X,X

Starting with the 9 in parent2 and working to the right and wrapping back to the
beginning of parent2 and child1, we add the values not in child1 to get

213,45,6,90,8

Reversing the roles of parentl and parent2, show that child2 is

05,643,21,7,8,9

Now the challenge is to write function OrderedCrossover that implements the
preceding logic.

The logic is nontrivial. Function OrderedCrossover is the following:

527

CHAPTER 20 GENETIC ALGORITHM FOR TSP

func OrderedCrossOver(parenti, parent2 []int) (childi,
child2 []int) {
var index1i, index2 int
n := len(parent1)
for {
index1 = 1 + rand.Intn(len(parent1)-1)
index2 = 1 + rand.Intn(len(parent1)-1)
if index1 != index2 {
break // the two indices are different

}

if index1 » index2 {
index1, index2 = index2, indexi

}

child1l = make([]int, len(parent1))
child2 = make([]int, len(parent1))
for i := 0; i < len(parent1); i++ {
// Since 0 is a legal value
childi[i] = -1
child2[i] = -1
}

// Logic for childi
for i := index1; i <= index2; i++ {
childi[i] = parenti[i]
}
k := index2 + 1 // index for childi
for i := index2 + 1; i < len(parenti); i++ {
found, _ := In(parent2[i], child1)
if !found {
childi[k%n] = parent2[i]
k += 1

528

CHAPTER 20 GENETIC ALGORITHM FOR TSP

for i := 0; i <= index2; i++ {
found, _ := In(parent2[i], child1)
if !found {
/17 j := (i + index2 + 1) % n
childi[k%n] = parent2[i]
k += 1

}

// Logic for child2
for i := index1; i <= index2; i++ {
child2[i] = parent2[i]
}
k = index2 + 1 // index for child2
for i := index2 + 1; i < len(parent2); i++ {
found, := In(parenti[i], child2)
if !found {
child2[k%n] = parenti[i]
k += 1

}
for i := 03 i <= index2; i++ {
found, _ := In(parenti[i], child2)
if !found {
/7 j := (i + index2 + 1) % n
child2[k%n] = parenti[i]
k += 1

}

// Form childi1i and child22
// so they both start at o

child11 := []int{}

child22 := []int{}

_y index0 := In(0, child1)

529

CHAPTER 20 GENETIC ALGORITHM FOR TSP

for i := index0; i < len(child1); i++ {
child11 = append(childi1, childi[i])
}
for i := 0; i < index0; i++ {
child11 = append(child11i, childi[i])

}

_» indexo = In(0, child2)
for i := index0; i < len(child2); i++ {
child22 = append(child22, child2[i])

}
for i := 0; i < index0; i++ {
child22 = append(child22, child2[i])

}

return childii, child22

We force each child to start their tour at city 0 by creating child11 and child22 from
childl and child2 in such a way that child11 and child22 start at city 0. The final portion
of the OrderedCrossover function accomplishes this.

Helper function In is used in several places and is given as follows:

func In(value int, values []int) (bool, int) {
// Returns true if value in values
// returns index of location or -1 if not found
for index := 0; index < len(values); index++ {
if values[index] == value {
return true, index

}

return false, -1

530

CHAPTER 20 GENETIC ALGORITHM FOR TSP

Form Next Generation

We define a global variable newpopulation that is created from the global variable
population.

The new population consists of the elite tours from population, the children from
the parents that have been mated, and mutations that are performed with specified
probability for each tour in the newpopulation. These mutations involve swapping two
randomly chosen cities in the tour.

The function for doing this is presented next.

func FormNextGeneration() {
elite := ChooseEliteGroup()
// Move elite into newpopulation
row := 0 // index into newpopulaton
for ; row < EliteNumber; row++ {
newpopulation[row] = DeepCopy(elite[row])
}
// Remove the first EliteNumber rows from
// population
population = population[EliteNumber:]

// Initialize groupl and group2

group1 := make([][]int, TournamentNumber)

for i := 0; i < TournamentNumber; i++ {
groupi[i] = make([]int, NUMCITIES)

}

group2 := make([][]int, TournamentNumber)

for i := 0; i < TournamentNumber; i++ {
group2[i] = make([]int, NUMCITIES)

}

MatingPoolSize := (ToursPerGeneration -
EliteNumber) / 2
for index := 0; index < MatingPoolSize; index++ {
// Grap first group
indicesChosen := []int{}
rowsChosen := 0;

531

CHAPTER 20 GENETIC ALGORITHM FOR TSP

532

for {
randomRow := rand.Intn(TournamentNumber)
found, _ := In(randomRow, indicesChosen)
if !found {
indicesChosen = append(indicesChosen,
randomRow)
groupi|[rowsChosen] =
DeepCopy(population[randomRow])
rowsChosen += 1
}
if rowsChosen == TournamentNumber {
break

}

// Grap second group
indicesChosen = []int{}
rowsChosen = 0;
for {
randomRow := rand.Intn(TournamentNumber)
found, _ := In(randomRow, indicesChosen)
if 'found {
indicesChosen = append(indicesChosen,
randomRow)
group2[rowsChosen] =
DeepCopy(population[randomRow])
rowsChosen += 1
}
if rowsChosen == TournamentNumber {
break

}

// Sort groupi and group2

sort.Slice(group1, func(i, j int) bool {
return Cost(groupi[i]) < Cost(groupi[j])

b))

CHAPTER 20

sort.Slice(group2, func(i, j int) bool {
return Cost(group2[i]) < Cost(group2[j])
)
parent1 := groupi[o] // The best from groupi
parent2 := group2[0] // The best from group2
childi, child2 := OrderedCrossOver(parenti,
parent2)
newpopulation[row] = childi
roWw += 1
newpopulation[row] = child2
roWw += 1
}
// Perform mutations
for row := 0; row < ToursPerGeneration; row++ {
r := rand.Float64()
if r <= ProbMutation {
SwapMutation(newpopulation[row])

}

population = make([][]int, ToursPerGeneration)
for i := 0; i < NUMCITIES; i++ {
population[i] = make([]int, NUMCITIES)
}
// Copy newpopulation to population
for row := 0; row < ToursPerGeneration; row++ {
for col := 0; col < NUMCITIES; col++ {
population[row][col] =
newpopulation[row][col]

GENETIC ALGORITHM FOR TSP

The code is heavily commented and should be straightforward to understand.

533

CHAPTER 20 GENETIC ALGORITHM FOR TSP
Sorting is accomplished using the Slice function from package sort.

sort.Slice(group1, func(i, j int) bool {
return Cost(groupi[i]) < Cost(groupi[j])
}

Here, it is specified that the cost of a tour is the basis for sorting where lower-cost
tours occur before higher-cost tours.

Putting the Pieces Together

In Listing 20-1, we present the entire program for solving the TSP with the heuristic
genetic programming algorithm. We include a main driver that loads the same 29-city
problem presented in Chapter 19 where it was tackled using simulated annealing. We
present and compare the results of these two approaches to obtaining heuristic solutions
to this TSP.

Listing 20-1. Genetic algorithm for TSP
package main

import (
"fmt"
"math"
"math/rand"
"sort"
"time"

)

const (
NUMCITIES = 29
EliteNumbex
ToursPerGeneration

n
N

100
50000

NumberGenerations
TournamentNumbex
ProbMutation

n
L -]

0.25

534

CHAPTER 20 GENETIC ALGORITHM FOR TSP

type Point struct {
x floaté64
y floaté64

}

var population [][]int
var newpopulation [][]int
var graph [][]float64

func (pt Point) distance(other Point) float64 {
dx := pt.x - other.x
dy := pt.y - other.y
return math.Sqrt(dx*dx + dy*dy)

}

func CreateGraph(numCities int, cities []Point,
graph [][]float6s) {
for row := 0; row < numCities; row++ {
for col := 0; col < numCities; col++ {
if row == col {
graph[row][col]
} else {
graph[row][col] =
cities[row].distance(cities[col])

0.0

}

func DeepCopy(tour []int) []int
result := []int{}
for i := range tour {
result = append(result, tour[i])

~~—

}

return result

535

CHAPTER 20 GENETIC ALGORITHM FOR TSP

func In(value int, values []int) (bool, int) {

}

// Returns true if value in values
// returns index of location or -1 if not found
for index := 0; index < len(values); index++ {
if values[index] == value {
return true, index

}

return false, -1

func Cost(tour []int) float6s {

}

result := 0.0

for index := 0; index < len(tour)-2; index++ {
result += graph[tour[index]][tour[index+1]]

}

result += graph[tour[NUMCITIES-1]][tour[0]]

return result

func CreateInitialPopulation() {

536

firstCities := make([]int, NUMCITIES-1)
for i := 1; 1 < NUMCITIES; i++ {
firstCities[i-1] = i
}
for row := 0; row < ToursPerGeneration; row++ {
rand.Shuffle(len(firstCities), func(i, j int) {
firstCities[i], firstCities[j] =
firstCities[j], firstCities[i]
1)
population[row] = []int{o0}
for col := 1; col < NUMCITIES; col++ {
population[row] = append(population[row],
firstCities[col-1])

CHAPTER 20

func ChooseEliteGroup() (elite [][]int) {

}

// The population is sorted prior calling
// this function

// Initialize elite

elite = make([][]int, EliteNumber)

for row := 0; row < EliteNumber; row++ {
elite[row] = make([]int, EliteNumber)

}

for row := 0; row < EliteNumber; row++ {
elite[row] = DeepCopy(population[row])
}

return elite

func FormNextGeneration() {

elite := ChooseEliteGroup()

// Move elite into newpopulation

row := 0 // index into newpopulaton

for ; row < EliteNumber; row++ {
newpopulation[row] = DeepCopy(elite[row])

}

// Remove the first EliteNumber rows from

// population

population = population[EliteNumber:]

// Initialize groupl and group2

groupl := make([][]int, TournamentNumber)

for i := 0; i < TournamentNumber; i++ {
group1[i] = make([]int, NUMCITIES)

}

group2 := make([][]int, TournamentNumber)

for i := 0; i < TournamentNumber; i++ {
group2[i] = make([]int, NUMCITIES)

}

MatingPoolSize := (ToursPerGeneration -
EliteNumber) / 2

GENETIC ALGORITHM FOR TSP

537

CHAPTER 20 GENETIC ALGORITHM FOR TSP

for index := 0; index < MatingPoolSize; index++ {
// Grap first group
indicesChosen := []int{}
rowsChosen := 0;
for {
randomRow := rand.Intn(TournamentNumber)
found, _ := In(randomRow, indicesChosen)
if !found {
indicesChosen = append(indicesChosen,
randomRow)
groupi[rowsChosen] =
DeepCopy (population[randomRow])
rowsChosen += 1
}
if rowsChosen == TournamentNumber {
break

h

// Grap second group
indicesChosen = []int{}
rowsChosen = 0;

for {
randomRow := rand.Intn(TournamentNumber)
found, _ := In(randomRow, indicesChosen)
if !found {
indicesChosen = append(indicesChosen,
randomRow)
group2[rowsChosen] =
DeepCopy (population[randomRow])
rowsChosen += 1
}
if rowsChosen == TournamentNumber {
break
}
}

538

CHAPTER 20

// Sort groupl and group2

sort.Slice(group1, func(i, j int) bool {
return Cost(group1[i]) < Cost(groupi[j])

)

sort.Slice(group2, func(i, j int) bool {
return Cost(group2[i]) < Cost(group2[j])

)

parentl := group1[0] // The best from group1

parent2 := group2[0] // The best from group2

child1, child2 := OrderedCrossOver(parenti,

parent2)
newpopulation[row] = child1l
Tow += 1
newpopulation[row] = child2
Tow += 1

}

// Perform mutations
for row := 0; row < ToursPerGeneration; row++ {
r := rand.Float64()
if r <= ProbMutation {
SwapMutation(newpopulation[row])

}

population = make([][]int, ToursPerGeneration)

for i := 0; i < ToursPerGeneration; i++ {
population[i] = make([]int, NUMCITIES)

}

// Copy newpopulation to population

for row := 0; row < ToursPerGeneration; row++ {
for col := 0; col < NUMCITIES; col++ {

population[row][col] =

GENETIC ALGORITHM FOR TSP

newpopulation[row][col]

539

CHAPTER 20 GENETIC ALGORITHM FOR TSP

func SwapMutation(tour []int) {

}

var index1, index2 int
n := len(tour)

for {
index1 = 1 + rand.Intn(n-1)
index2 = 1 + rand.Intn(n-1)

if index2 != index1 + 4 {
break // the two indices are different

}

if index1 > index2 {
index1, index2 = index2, indexi
}
tour[index1], tour[index2] = tour[index2],
tour[index1]

func OrderedCrossOver(parenti, parent2 []int)

540

(child1, child2 []int) {
var index1, index2 int
n := len(parent1)

for {
index1 = 1 + rand.Intn(len(parent1)-1)
index2 = 1 + rand.Intn(len(parent1)-1)

if index1 != index2 {
break // the two indices are different

}

if index1 > index2 {
index1, index2 = index2, index1

}
childl = make([]int, len(parent1))
child2 = make([]int, len(parent1))

for i := 0; i < len(parent1); i++ {
// Since 0 is a legal value
childi[i] = -1

CHAPTER 20

child2[i] = -1
}

// Logic for childil

for i := index1; i <= index2; i++ {
child1[i] = parent1[i]

}

k := index2 + 1 // index for child1

for i := index2 + 1; i < len(parent1); i++ {

found, _ := In(parent2[i], child1)
if !found {

childi[k%n] = parent2[i]

k += 1
}

}

for i := 0; i <= index2; i++ {

found, _ := In(parent2[i], child1)
if !found {
// j = (i + index2 + 1) % n
child1i[k%n] = parent2[i]
k += 1
}
}
// Logic for child2
for i := index1; i <= index2; i++ {
child2[i] = parent2[i]
}

k = index2 + 1 // index for child2
for i := index2 + 1; i < len(parent2); i++ {

found, _ := In(parenti[i], child2)
if !found {

child2[k%n] = parent1[i]

k += 1
}

GENETIC ALGORITHM FOR TSP

541

CHAPTER 20 GENETIC ALGORITHM FOR TSP

}

for i := 0; i <= index2; i++ {
found, _ := In(parenti[i], child2)
if !found {
/7 j = (i + index2 + 1) % n
child2[k%n] = parent1[i]
k += 1
}
}

// Form child11 and child22
// so they both start at o

child11
child22

i= [lint{}
i= []int{}

_, index0 := In(0, child1)

for i

}

for i

}

:= index0; i < len(child1); i++ {
childi1

append(child11, child1[i])

1= 0; 1 < index0; i++ {
child11

append(child11, child1[i])

_, index0 = In(0, child2)

for i

}

for i

}

:= index0; i < len(child2); i++ {
child22

append(child22, child2[i])

1= 0; 1 < index0; i++ {
child22

append(child22, child2[i])

return child11, child22

func GeneticAlgorithm() {
generation := 0
population = make([][]int, ToursPerGeneration)

542

for i

:= 0; i < ToursPerGeneration; i++ {

population[i] = make([]int, NUMCITIES)

CHAPTER 20 GENETIC ALGORITHM FOR TSP

newpopulation = make([][]int, ToursPerGeneration)

for i := 0; i < ToursPerGeneration; i++ {
newpopulation[i] = make([]int, NUMCITIES)

}

lowestCostTour := 1000000000.0

CreateInitialPopulation()

for {
if generation == NumberGenerations {
break
}

// Sort the population based on tour cost

sort.Slice(population, func(i, j int) bool {
return Cost(population[i]) <

Cost(population[j])

)

bestCost := Cost(population[0])

if bestCost < lowestCostTour {
lowestCostTour = bestCost
fmt.Printf("\nLowest cost tour at
generation %d = %0.2f", generation,
lowestCostTour)

}

FormNextGeneration()

generation += 1

}

func main() {
rand.Seed(time.Now().UnixNano())
cities := []Point{}
// Known solution: 9074.15
pt1 := Point{1150.0,1760.0}
cities = append(cities, pt1)
pt2 := Point{630.0, 1660.0}
cities = append(cities, pt2)
pt3 := Point{40.0, 2090.0}

543

CHAPTER 20 GENETIC ALGORITHM FOR TSP

544

cities = append(cities, pt3)
pt4 := Point{750.0, 1100.0}
cities = append(cities, pt4)
pt5 := Point{750.0, 2030.0}
cities = append(cities, pt5)
pt6 := Point{1030.0, 2070.0}
cities = append(cities, pt6)
pt7 := Point{1650.0, 650.0}
cities = append(cities, pt7)
pt8 := Point{1490.0, 1630.0}
cities = append(cities, pt8)
pt9 := Point{790.0, 2260.0}
cities = append(cities, pt9)
pt10 := Point{710.0, 1310.0}
cities = append(cities, pt10)
pt1l := Point{840.0, 550.0}
cities = append(cities, pti1)
pt12 := Point{1170.0, 2300.0}
cities = append(cities, pt12)
pt13 := Point{970.0, 1340.0}
cities = append(cities, pt13)
pt14 := Point{510.0, 700.0}
cities = append(cities, pti4)
pt15 := Point{750.0, 900.0}
cities = append(cities, pti15)
pt16 := Point{1280.0, 1200.0}
cities = append(cities, pt16)
pt17 := Point{230.0, 590.0}
cities = append(cities, pt17)
pt18 := Point{460.0, 860.0}
cities = append(cities, pt18)
pt19 := Point{1040.0, 950.0}
cities = append(cities, pt19)
pt20 := Point{590.0, 1390.0}
cities = append(cities, pt20)

pt21

:= Point{830.0, 1770.0}

cities = append(cities, pt21)

pt22

:= Point{490.0, 500.0}

cities = append(cities, pt22)

pt23

:= Point{1840.0, 1240.0}

cities = append(cities, pt23)

pt24

:= Point{1260.0, 1500.0}

cities = append(cities, pt24)

pt25

:= Point{1280.0, 790.0}

cities = append(cities, pt25)

pt26

:= Point{490.0, 2130.0}

cities = append(cities, pt26)

pt27

:= Point{1460.0, 1420.0}

cities = append(cities, pt27)

pt28

:= Point{1260.0, 1910.0}

cities = append(cities, pt28)

pt29

:= Point{360.0, 1980.0}

cities = append(cities, pt29)

graph = make([][]float64, NUMCITIES)
for i:=0; i < NUMCITIES ; i++ {
graph[i]

}

CreateGraph(NUMCITIES, cities, graph)
GeneticAlgorithm()

}

/* Output

Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest

cost
cost
cost
cost
cost
cost
cost
cost

tour
tour
tour
tour
tour
tour
tour
tour

at
at
at
at
at
at
at
at

generation
generation
generation
generation
generation
generation
generation
generation

~N o 1 B O

=

2

15

22019.11
20169.35
20017.31
19545.05
18447.20
18340.78
17953.87
17350.68

CHAPTER 20 GENETIC ALGORITHM FOR TSP

make ([]float64, NUMCITIES)

545

CHAPTER 20 GENETIC ALGORITHM FOR TSP

Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest
Lowest

546

cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost

tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour
tour

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation

16
18
19
20
24
28
30
53
68
72
73
77
92
103
123
186
191
204
209
215
218
224
280
344
423
482
492
496
503
508
513
519
527
536
561

17095.
16612.
16425.
16299.
16002.
15749.
14754.
13900.
13831.
13668.
13636.
13392.
12979

9990.

07
21
63
86
17
40
66
84
31
22
80
64

.84
12200.
12030.
11960.
11860.
11647.
11639.
11582.
11580.
11255.
11150.
11099.
10775.
10717.
10592.
10587.
10556.
10489.
10415.
10409.
10292.
10256.

31
21
10
86
36
41
62
22
27
08
42
75
58
38
10
30
54
89
44
43
38
04

CHAPTER 20 GENETIC ALGORITHM FOR TSP

Lowest cost tour at generation 795 = 9936.06
Lowest cost tour at generation 810 = 9869.37
Lowest cost tour at generation 883 = 9817.69
Lowest cost tour at generation 891 = 9694.19
Lowest cost tour at generation 909 = 9616.14
Lowest cost tour at generation 956 = 9541.14
Lowest cost tour at generation 965 = 9456.43
Lowest cost tour at generation 970 = 9362.68
Lowest cost tour at generation 1179 = 9285.43
*/

It takes less than ten seconds for this program to terminate.

After ten runs, the lowest-cost tour at generation 1179 is 9285. This is an error of 2
percent from the known optimum solution of 9074.

Clearly, this approach to solving TSP is useful.

20.3 Summary

In this chapter, we presented an approach to solving TSP based on genetic modeling
and survival of the fittest. As the program moves from one generation to another and
solutions evolve, the best tours converge to approximate the optimum solution.

Each run of the genetic algorithm is a new experiment. The results are greatly
dependent on the constants chosen.

In the next chapter, we turn our attention to machine learning and neural networks.

547

CHAPTER 21

Neural Networks
and Machine Learning

The previous chapter presented an implementation of a generic algorithm for
solving TSP.

This chapter introduces neural networks and machine learning. We present an
implementation of a neural network from scratch.

In the next section, we present an overview of machine learning and neural networks.

21.1 Overview of Neural Networks
and Machine Learning

Al (artificial intelligence) has its roots in research done at Dartmouth in 1956. Its goal is
to mimic human reasoning.

Machine learning is a subfield of AL It uses statistics, operations research, and neural
network models to obtain insights from data. It allows the computer (machine) to obtain
insights through an iterative process that mimics how we believe the human brain learns
new things. It allows computers the ability to learn to perform complex tasks without
explicitly being programmed.

Applications of machine learning include natural language processing, including
language translation, image classification and analysis, chatbots, medical diagnosis,
game playing, pattern recognition, and stock price prediction.

Machine learning starts with data, often a huge quantity of data. This data may be
numerical time series, photos, text, repair records, bank transactions, sales reports, or
sensor data from a multitude of sources (weather data, seismic data, medical data, etc.).

549
© Richard Wiener 2022

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8 21

https://doi.org/10.1007/978-1-4842-8191-8_21

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

Such data is used to “train” a computer model such as a neural network. After
sufficient training, the model is used to perform classification, to predict future
outcomes, make a move in a game, provide a translation of some text, etc., based on the
learning achieved from the training data.

Training

Training a neural network model involves feeding forward input data through the
network to one or more outputs, feeding back errors that are detected in the output to
modify the network to minimize these errors. We will examine this important process in
detail in this chapter.

Neural Networks

Neural networks are function approximators. By training such a network with many
observed inputs and corresponding outputs, the goal is to obtain a reliable output when
new inputs are applied.

For example, if our goal is to have our network distinguish between a photo of a dog
and a photo of a cat, we train the network by sending in numerous cat and dog images,
each time informing the network whether the image (a two-dimensional matrix of pixel
values) is a dog or cat. Then when images the network has never seen are sent in, the
network will hopefully determine with high accuracy whether it is a dog or cat image.

Such a trained neural network may be thought of as a mathematical function that
when presented with input produces some output (a classification in this case).

A neural network generally contains

1. A collection of input values that comprise an input layer
2. One or more hidden layers

3. An output layer with output values

4. A collection of weights and biases between layers

5. An activation function for each layer

550

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

Perceptron

In 1943, neurophysiologist Warren McCulloch and mathematician Walter Pitts defined
a simple model of a neuron that takes a set of inputs, multiplies them by weighted
values and adds a bias value, and then puts them through an activation function, which
produces an output of 0 or 1. This model is called the McCulloch-Pitts perceptron.

A schematic of this perceptron is shown in Figure 21-1.

Inputs Weights
Wi

l

|2

s

Threshold T

In

McCulloch-Pitts perceptron | Source: Wikimedia Commons

Figure 21-1. Perceptron

The output, y, is the sum of the input values multiplied by the set of weights, W, and
a bias value b and followed by a threshold function that converts the sum to a value
between zero and one.

Next, the expected value is compared to the actual value to form an error. This
computed error is fed back to the weights to modify the weights to reduce this error. After
many iterations, it is hoped that the error can be made very small.

The process of obtaining the output from the inputs and weights is called forward
propagation. The process of modifying the weights based on the error is called
backpropagation. By knowing the derivative of the error with respect to each weight, a
recursive-descent algorithm that successively modifies the weights while decreasing the
output error is achieved.

By stacking a collection of neurons in various layers, a neural network is created.

551

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

Schematics of Neural Networks

Schematics of two such neural networks are shown in Figures 21-2 and 21-3. The first has
one “hidden” layer containing four neurons and a single output layer.

The second neural network has three layers containing four neurons each and is a
deep neural network because of the many layers.

Figure 21-3. Neural network with many hidden layers

552

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

A Neuron

We drill deeper and examine an individual neuron or node in a neural network. In
Figure 21-4, we show such a neuron.

X

Sigmoid

X3

Figure 21-4. A neuron

The output, y, is computed from the inputs x,, X,, and x; as follows:

Z = W;X; + WoX, + WyX5 + b

We follow this by taking this linear combination of inputs and bias and using a
nonlinear activation function such as the sigmoid function as follows:

y =sigmoid(z) =1/ (1 + e?)

The use of the sigmoid activation function forces the result to be between 0 and 1 as
z varies from a large negative number to a large positive number.
In the next section, we define a simple problem that we will solve.

21.2 A Concrete Example

Suppose we wish to construct and train a neural network to determine whether a
diagnostic test indicates that a patient has a particular disease. There are two numbers
from the test, x and y, each between 0.0 and 1.0. If x> < y, the test is negative; otherwise,
it is positive. We will represent a negative test by the numerical label 0 and a positive test

with the numerical label 1.
553

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

The neural network will receive 150 test results (each result a pair of numbers, each
between 0.0 and 1.0). The output of the neural network contains 150 computed scores, each
between 0.0 and 1.0, as well as 150 correct labels, each between 0.0 and 1.0, based on the.

This example allows us to introduce the methodology of neural network modeling
and computation and see how the important pieces fit together.

In the next section, we will build a neural network from scratch to solve this problem.

21.3 Constructing a Neural Network

We will construct a simple neural network, from scratch, that solves the problem
presented in Section 21.2.

We define a weight matrix. Each column of this weight matrix shows the weights
from all neurons in the previous layer to a particular neuron in the current layer.

So, for example, the values w[0][2], w[1][2], w[2][[2], ..., w[n - 1][2] (the third
column of the weight matrix) represent the weights from the n neurons in the previous
level to neuron 3 in the current level.

The neural network that we will build contains 150 nodes for the input layer (one
node for each test result containing two numbers), 25 nodes for the hidden layer, and
150 nodes for the output layer.

Matrices That Represent Network

The input matrix is of dimension 150 x 2. Each row of this matrix contains the test result
numbers x and y.

The weight matrix that connects the input layer to the hidden layer is of
dimension 2 x 25.

The weight matrix that connects the hidden layer to the output layer is of
dimension 25 x 1.

The output of the neural network is of dimension 150 x 1.

We will set the biases to zero for this example.

Some sample input and output would be

Input 1: <0.42, 0.1> (positive test since 0.42% > 0.1)

Input 2: <0.6, 0.8> (negative test since 0.6 < 0.8)

We will generate the test results by generating random x and y values for each test,
each between 0.0 and 1.0.

554

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

We use the 150 test results to train the network. We then generate 25 more fresh test
results randomly, as before. We then use the fully trained network to predict whether
each of the 25 new tests is positive or negative and tabulate our errors.

In the next section, we present and explain the implementation of a neural network
that classifies the results of the diagnostic tests.

21.4 Neural Network Implementation

We begin the implementation by defining some global variables and initializing all
weights with random values from 0 to 1.

package main

import (
n fmt n
"math"
"math/xand"

"time"

var (
InputLayer
HiddenLayer
OutputLayer
Inputs

150

25

InputLayer

2 // x and y values

)

var weightsi [][]float64
var derivativesi [][]floatés4
var weights2 [][]float64
var derivatives2 [][]floatés
var input [][]floaté64

func Initializelleightsi() {
weightsi = make([][]float64, Inputs)
derivatives1 = make([][]float64, Inputs)
for row := 0; row < Inputs; row++ {
weightsi[row] = make([]float64, HiddenLayer)

555

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

derivativesi[row] = make([]floatés,
HiddenLayer)
}
for row := 0; row < Inputs; row++ {
for col := 0; col < HiddenLayer; col++ {
weightsi[row][col] = rand.Float64()

}

func InitializeWeights2() {

weights2 = make([][]float64, HiddenLayer)

derivatives2 = make([][]float64, HiddenLayer)

for row := 0; row < HiddenLayer; row++ {
weights2[row] = make([]float6s, 1)
derivatives2[row] = make([]floatés,

OutputLayer)

}

for row := 0; row < HiddenLayer; row++ {
for col := 0; col < 1; col++ {

weights2[row][col] = rand.Float64()

The derivativesl and derivatives2 matrices will be explained later.

Next, we look at two functions: trueQutput and cost.

The trueOutput function evaluates a[0], representing x, and a[1], representingy,
and returns 0 for a negative test result and 1 for a positive test result.

The cost function compares the values in column zero (the only column) of the
neural network output with the correct values, squares each error, adds the errors, and

divides by the number of errors.

func trueOutput(a []float64) float6s {
if a[o] * a[o] <= a[1] {
retuxn 0.0
} else {

556

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

return 1.0

}

func cost(output [][]float64) float64 {
result := 0.0
for i := 0; i < InputlLayer; i++ {
correctAnswer := trueOutput(input[i])
result += (output[i][0] - correctAnswer) * (output[i][0] -
correctAnswer)

}
return result / float64(InputLayer)

The functions dot, DotProduct, and Sigmoid are support functions that support the

neural network matrix operations that are needed.

func dot(vectori []float64, vector2 []float64) floaté4 {
if len(vectori) != len(vector2) {
panic("Illegal vector dimensions for dot product.")

}

result := 0.0
for i := 0; i < len(vector1); i++ {
result += vectori[i] * vector2[i]

}

return result

}

func DotProduct(matrixi, matrix2 [][]float64) (result [][]float64q) {
rowsl := len(matrixi)

cols1 := len(matrixi[o])
rows2 := len(matrix2)
cols2 := len(matrix2[o])

if colsi != rows2 {
panic("Cannot take dot product")

}
result = make([][]float64, rows1)

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

for row := 0; row < rowsl; row++ {
result[row] = make([]float64, cols2)
}
for row := 0; row < rowsl; row++ {
for col := 0; col < cols2; col++ {
column := []floaté6a{}
for r := 0; r < colsi; r++ {
column = append(column,

matrix2[x][col])
}
result[row][col] = dot(matrixi[row],
column)

}

return result
}

func Sigmoid(matrix [][]float64) (result [][]float64) {
rows := len(matrix)
cols := len(matrix[o])
result = make([][]float64, rows)
for row := 0; row < rows; rowi+ {
result[row] = make([]float64, cols)

for row := 0; row < rows; rowi+ {
for col := 0; col < cols; col++ {
result[row][col] = 1.0 / (1.0 + math.Exp(-
matrix[row][col]))

}

return result

558

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

These functions are needed in the FeedForward function that transforms the neural
network input to its output.

func FeedForward() [][]floatés {
hidden := Sigmoid(DotProduct(input, weights1))
output := Sigmoid(DotProduct(hidden, weights2))
return output

We see that by taking the dot product of the input matrix with the weights1 matrix
and following this by the dot product of the resulting hiddern matrix with the weights2
matrix, we get the output matrix.

The Sigmoid activation function ensures that all the values are scaled to be between
0and 1.

So far, we have examined how the inputs to the network (a matrix of 150 test results,
each test having two real numbers) produce 150 outputs.

The magic of neural networks is the process of training the network. This means
making modifications to the weight’s matrices (weightsI and weights2 in this case) and
to lower the mean-squared average error between the computed output and the correct
results (the cost).

The process for achieving this is called backpropagation.

The mathematics related to backpropagation is complex. See, for example,
https://hmkcode.com/ai/backpropagation-step-by-step/

Backpropagation involves taking partial derivatives of the cost with respect to each
of the many weights. Each of these partial derivatives characterizes how the cost would
be increased or decreased if a small change in a particular weight were made. If we knew
the partial derivative for each of the weights, we could modify each weight with the goal
of lowering the mean-squared error (the cost). The partial derivative would specify the
direction and magnitude of the needed weight modification.

Since this chapter aims at introducing the mechanics of neural networks, we will
bypass the mathematics by estimating the partial derivatives empirically. The price we
pay for this is performance. At each iteration of backpropagation, we need to evaluate
the effect of changing each weight on the overall cost of the network output.

559

https://hmkcode.com/ai/backpropagation-step-by-step/

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

Estimating the Partial Derivatives of Cost with Respect
to Each Weight

For each weight in weights1 and weights2, we add 0.01 or any other small amount to
the weight. We compute the output of the network and its cost after making this change.
The partial derivative of cost with respect to this weight is the ratio of the change in cost
resulting from the tweak in the weight to the change in weight. If this ratio is positive, we
save this positive partial derivative in a separate matrix with the same dimensions as the
weight matrix. If the ratio is negative, we change the sign of the ratio and save it in the
separate partial derivative matrix.

After we have estimated and saved all the partial derivatives, we modify the entire
weightsl and weights2 matrices by the partial derivative amounts. This represents the
firstiteration of training in the network.

The function ComputeDerivatives, shown in the following, performs the estimation

of partial derivatives:

func ComputeDerivatives() {

// Estimates the partial derivative of the cost

// with respect to each weight

for row := 0; row < Inputs; row++ {

for col := 0; col < HiddenLayer; col++ {

outputl := FeedForward()
c1 := cost(outputi)
weightsi[row][col] += .01
output2 := FeedForward()
c2 := cost(output2)
weightsi[row][col] -= .01
derivativesi[row][col] = (c2 - c1) / .01
weights2[col][0] += .01
output3 := FeedForward()
c3 := cost(output3)
weights2[col][0] -= .01
derivatives2[col][0] = (c3 - c1) / .01

560

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

The function BackPropagate changes each weight, as shown, based on the values in

the derivatives matrix.

func BackPropagate() {
ComputeDerivatives()
// Modifiy weights1i and weights2
for row := 0; row < Inputs; row++ {
col := 0; col < HiddenLayer; col++ {
weightsi[row][col] -=
derivativesi[row][col]

for

}

for row := 0; row < HiddenLayer; row++ {
for col := 0; col < 1; col++ {

weights2[row][col] -=
derivatives2[row][col]

Finally, the function Train() iteratively modifies the weights with the goal of

lowering the cost.

func Train() {
for epoch := 1; epoch < 1500; epoch++ {
output := FeedForward()
fmt.Println("cost = ", cost(output))

BackPropagate()

We put all the pieces together in Listing 21-1 including a main driver function that
builds inputs for the neural network, trains the network, and outputs the results on fresh

data after the training is completed.

561

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING
Listing 21-1. Neural network from scratch
package main

import (
"fmt"
"math"
"math/rand"
"time"

var (
InputlLayer
HiddenLayer
OutputLayer
Inputs

150

25

InputlLayer

2 // x and y values

)

var weightsi [][]floaté4
var derivativesi [][]float64
var weights2 [][]float64
var derivatives2 [][]floatés
var input [][]float64

func InitializeWeightsi() {
weights1 = make([][]float64, Inputs)
derivatives1l = make([][]float64, Inputs)
for row := 0; row < Inputs; row++ {
weightsi[row] = make([]float64, HiddenLayer)
derivativesi[row] = make([]float64,
HiddenLayer)
}
for row := 0; row < Inputs; row++ {
for col := 0; col < HiddenLayer; col++ {
weightsi[row][col] = rand.Float64()

562

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

func Initializelleights2() {

weights2 = make([][]float64, HiddenLayer)

derivatives2 = make([][]float64, HiddenLayer)

for row := 0; row < HiddenlLayer; row++ {
weights2[row] = make([]float64, 1)
derivatives2[row] = make([]float64,

OutputLayer)

}

for row := 0; row < HiddenlLayer; row++ {
for col := 0; col < 1; col++ {

weights2[row][col] = rand.Float64()

}

func dot(vector1i []float64,vector2 []float64) float64 {
if len(vector1) != len(vector2) {
panic("Illegal vector dimensions for dot
product.")
}
result := 0.0
for i := 0; i < len(vector1); i++ {
result += vectori[i] * vector2[i]

}

return result

}

func DotProduct(matrixi, matrix2 [][]float64) (result
[1[1float6s) {

rowsl := len(matrix1)
cols1 := len(matrixi[o0])
rows2 := len(matrix2)
cols2 := len(matrix2[0])

if cols1 != rows2 {
panic("Cannot take dot product")

563

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

result = make([][]float64, rows1)
for row := 0; row < rOwsl; row++ {
result[row] = make([]float64, cols2)
}
for row := 0; row < TOwsl; row++ {
for col := 0; col < cols2; col++ {
column := []float64{}
for r := 0; 1 < colsl; r++ {
column = append(column,
matrix2[r][col])
}
result[row][col] = dot(matrixi[row],
column)

}

return result

}

func Sigmoid(matrix [][]float64) (result [][]float64) {
rows := len(matrix)
cols := len(matrix[o0])
result = make([][]float64, rows)
for row := 0; YOW < TOWS; Tow++ {
result[row] = make([]float64, cols)
}
for row := 0; YOW < TOWS; TOow++ {
for col := 0; col < cols; col++ {
result[row][col] = 1.0 / (1.0 + math.Exp(-
matrix[row][col]))

}

return result

}

func trueOutput(a []float64) float64 {
if a[o] * a[o0] <= a[1] {
return 0.0

564

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

} else {
return 1.0

}

func cost(output [][]float64) float64 {
result := 0.0
for i := 0; i < Inputlayer; i++ {
correctAnswer := trueOutput(input[i])
result += (output[i][0] - correctAnswer) *
(output[i][0] - correctAnswer)

}
return result / float64(InputLayer)

}

func ComputeDerivatives() {

// Estimates the partial derivative of the cost

// with respect to each weight

for row := 0; row < Inputs; row++ {

for col := 0; col < HiddenLayer; col++ {

outputl := FeedForward()
cl := cost(output1)
weightsi[row][col] += .01
output2 := FeedForward()
c2 := cost(output2)
weightsi[row][col] -= .01

derivativesi[row][col] = (c2 - c1) / .01
weights2[col][0] += .01

output3 := FeedForward()

c3 := cost(output3)

weights2[col][0] -= .01
derivatives2[col][0] = (c3 - c1) / .01

565

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

func FeedForward() [][]float64 {
hidden := Sigmoid(DotProduct(input, weights1))
output := Sigmoid(DotProduct(hidden, weights2))
return output

}
func BackPropagate() {
ComputeDerivatives()
// Modifiy weightsi and weights2
for row := 0; row < Inputs; row++ {
for col := 0; col < Hiddenlayer; col++ {
weightsi[row][col] -=
derivativesi[row][col]
}
}
for row := 0; row < HiddenlLayer; row++ {
for col := 0; col < 1; col++ {
weights2[row][col] -=
derivatives2[row][col]
}
}
}

func Train() {
for epoch := 1; epoch < 1500; epoch++ {
output := FeedForward()
fmt.Println("cost = ", cost(output))
BackPropagate()

}

func main() {
rand.Seed(time.Now().UnixNano())
InitializeWeights1()
InitializeWeights2()
input = make([][]float64, InputLayer)

566

CHAPTER 21

for row := 0; row < InputlLayer; row++ {
input[row] = make([]float64, Inputs)

}
for row := 0; row < InputlLayer; row++ {
for col := 0; col < Inputs; col++ {
input[row][col] = rand.Float64()
input[row][col] = rand.Float64()

}

Train()
// Use existing weights and see how well
// the neural network handles new data
Inputlayer = 25
OutputLayer = 25
input = make([][]float64, InputlLayer)
for row := 0; row < InputlLayer; row++ {
input[row] = make([]float64, Inputs)
}
for row := 0; row < InputlLayer; row++ {
for col := 0; col < Inputs; col++ {
input[row][col] = rand.Float64()
input[row][col] = rand.Float64()

}
output := FeedForward()

var verdict bool // false by default
for i := 0; i < InputlLayer; i++ {

NEURAL NETWORKS AND MACHINE LEARNING

if output[i][0] > 0.5 && trueOutput(input[i])

==1{
verdict = true
} else if output[i][0] < 0.5 &&
trueOutput(input[i]) == 0 {
verdict = true

567

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

fmt.Printf("\nComputed value: %f correct
answer = %f Correct Estimate: %v",
output[i][0], trueOutput(input[i]), verdict)
}
fmt.Println()

In the next section, we examine the program output.

21.5 Output from Neural Network

The output is voluminous. The function Train performs 1500 epochs, each epoch
involving a forward and back computation that trains the network. And each iteration
causes an output of the current mean-squared error, cost. It is interesting and important
to observe the evolution of these costs and see how they decrease as the network gets
trained.

Only a portion of the output is shown in the interest of space. Of notice are the
results of testing 25 fresh inputs. The outputs for these fresh inputs indicate 100 percent
accuracy by the neural network if we interpret an output greater than 0.5 as positive and
less than 0.5 as negative.

cost = 0.6637402659161185
cost = 0.6636630956218156
cost = 0.6635817634090139
cost = 0.6634959251095335
cost = 0.6634051977180305
cost = 0.6633091537786991
cost = 0.6632073147732753
cost = 0.663099143297417

cost = 0.6629840337592922
cost = 0.6628613012653831
cost = 0.6627301682691753
cost = 0.6625897484413662
cost = 0.6624390270658043
cost = 0.6622768370596327
cost = 0.6621018294396175

568

cost
cost
cost
cost
cost
cost
cost
cost

cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost

O O O ©O O O O o

O O O O O O O O O O O O O O OO O o o o oo o o o o

.6619124366814639
.6617068269041807
.6614828460975539
.6612379446084452
.6609690826757143
.660672607747008

.660344093298625

.6599781243955765

.5811888364173224

.5117698491474624

.3431174223399081

.22278592696925442
.22219689682890306
.22164595119640423
.22109565104100137
.22054536159623406
-21999484909425368
.21944389274059498
.21889227410423057
.2183397768384557

.21778618670317892
.21723129159816149
.21667488160010032
.21611674900371572
.21555668836712247
-21499449656177205
.21442997282722046
.21386291883096756
.21329313873359648
.21272043925942305
.21214462977284917
.21156552236059478
.21098293191996614
.2103966762532983

CHAPTER 21

NEURAL NETWORKS AND MACHINE LEARNING

569

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

cost = 0.209806576168689
cost = 0.14066304727899404
cost = 0.1397261098810677
cost = 0.138792748311244
cost = 0.13786318684860793
cost = 0.13693764327438454
cost = 0.1360163286396859
cost = 0.13509944705792176
cost = 0.1341871955218915
cost = 0.13327976374542316
cost = 0.13237733402931087
cost = 0.13148008115118084
cost = 0.13058817227880457
cost = 0.1297017669062738
cost = 0.12882101681236946
cost = 0.1279460660403555
cost = 0.12707705089837232
cost = 0.1262140999795274
cost = 0.1253573342007353
cost = 0.12450686685930376
cost = 0.12366280370623699
cost = 0.12282524303519099
cost = 0.121994275786003
cost = 0.12116998566170542
cost = 0.12035244925792699
cost = 0.1195417362035959
cost = 0.11873790931186408
cost = 0.117941024740192
cost = 0.1171511321585531
cost = 0.11636827492474516
cost = 0.11559249026582975
cost = 0.11482380946475092
cost = 0.11406225805122268

570

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

cost = 0.016816878951632613
cost = 0.01680969687113106
cost = 0.016802523693735683
cost = 0.0167953594016083

cost = 0.01678820397696063

cost = 0.01678105740205403

cost = 0.016773919659199398
cost = 0.016766790730756983
cost = 0.016759670599136158
cost = 0.01675255924679531
cost = 0.01674545665624165

cost = 0.016738362810030993
cost = 0.016731277690767675
cost = 0.016724201281104255

Computed value: 0.991841 correct answer = 1.000000 Correct Estimate: true
Computed value: 0.001271 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.025702 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.998475 correct answer = 1.000000 Correct Estimate: true
Computed value: 0.958112 correct answer = 1.000000 Correct Estimate: true
Computed value: 0.021453 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.000903 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.963236 correct answer = 1.000000 Correct Estimate: true
Computed value: 0.854382 correct answer = 1.000000 Correct Estimate: true
Computed value: 0.115060 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.528623 correct answer = 1.000000 Correct Estimate: true
Computed value: 0.996182 correct answer = 1.000000 Correct Estimate: true
Computed value: 0.000672 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.168254 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.525666 correct answer = 1.000000 Correct Estimate: true
Computed value: 0.004078 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.000913 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.000013 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.549601 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.000007 correct answer = 0.000000 Correct Estimate: true
Computed value: 0.926115 correct answer = 1.000000 Correct Estimate: true

571

CHAPTER 21 NEURAL NETWORKS AND MACHINE LEARNING

Computed value:
Computed value:
Computed value:
Computed value:

0.292149
0.000013
0.000048
0.882903

correct answer
correct answer
correct answer
correct answer

0.000000
0.000000
0.000000
1.000000

Correct Estimate:
Correct Estimate:
Correct Estimate:
Correct Estimate:

true
true
true
true

The results shown in boldface show the 100 percent correct outcomes generated

by the neural network. Not bad for a network constructed from scratch and without

requiring the complex partial derivative computations associated with backtracking.

21.6 Summary

A relatively simple neural network with one hidden layer containing 25 nodes is

constructed from scratch. It is trained with 150 pairs of diagnostic test results and

associated labels with known correct results, over 1500 epochs. The network is then

tested against 25 fresh test results, not in the original training set. The results are

encouraging. The mean-squared error is shown to decrease to a small error as training

progresses. All 25 test results produce the correct outcome.

572

Index

A

Abstract data types (ADTs)
game, 123-127
game, console implementation
of, 128-135
game of life, GUI implementation
of, 135-138
Go
counter, 94-97
counter package, creating, 98
counter package,
mechanics, 98-101
implementing, 101-103
OOP application, 109-121
polymorphism, 106-109
using composition, 103-106
using classes, 91-93
go.mod file, 138
for grid, 128
program output, 138, 139
stacks, 141
Adelson Velsky and Landis (AVL)
trees, 315
avl package
code implementation, 320
deleteNode function, 334
Intelli] IDEA, 333
main driver code, 332, 336
map, 339
rightRotate(node) function, 334
rotateDelete function, 334
Search method, 339

© Richard Wiener 2022

binary search tree, 315

comparing set construction, 343

concurrentAVLSet, 346
dataSet slice, 343
deletion, 318

floatset package, 341
insert and delete, 316
insertion, 317
interesting facts, 319
tree Rotations, 316

Algorithm efficiency

Big O, 55, 56
searching array slices, 82-89

slice of numbers, determining, 56-59

sorting (see Sorting algorithms)
speed efficiency, describing, 55
using concurrency, 60-63

Artificial intelligence (AI), 549

B

Big O, 55, 56, 68
Binary searches, 87-89
Binary search tree (BST)

deletion, 290

generic implementation, 291
data structures, 291
delete, 294
graphing, 297
InOrderTraversal, 294
insert, 294
Main driver program, 310
methods, 293

R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8

573

https://doi.org/10.1007/978-1-4842-8191-8

INDEX

Binary search tree (BST) (cont.)
package, 301
support functions, 295
type OrderedStringer, 291
inorder traversal, 289
insertion, 289
overview, 287
searching, 288
String() function, 313
Binary tree, 265, 266
draw tree, 267-285
tree traversal, 266, 267
Blackjack, simplified game of, 109-116
Bottom-up dynamic programming, 428, 429
Branch-and-bound algorithm, 476, 479,
481, 491, 493
Brute-force computation, 432, 433
finding permutations, 467-469
Travelling Salesperson Problem,
466, 467, 469-473
Bubblesort algorithm, 64, 65

C

Card shuffling model, 216-219
Channel, 2, 24-26
Classes, abstract data type using, 91-93
Combinatorial optimization problems,
395, 493, 496
Concurrency, 19
channel, 24-26
channel direction, 28-30
generating prime numbers using, 42
goroutine, 19-21
goroutines, Fibonacci numbers
using, 35, 36
goroutines, playing chess using, 32-35
mutex, 31, 32

574

race condition, 30, 31
Segmented Sieve algorithm, 46-50
select statement, 26
Sieve of Eratosthenes algorithm, 42-46
sieve solution, 50-54
use quit channel, 26-28
WaitGroup, 21-23
Converting decimal number, to binary,
164, 165

D

Deque, 187, 195-203
Dijkstra algorithm, 451, 452
DNA subsequences, 437-440
Doubly linked list, 187, 219, 228-236
Draw tree, 267-269
binary tree structure, 269
explanation of code, 271-273
go.mod files, in subdirectories
binarytree and main, 283-285
infrastructure, 269-271
ShowTreeGraph, implementation
of, 273-282
Dynamic programming
DNA subsequences, 437-440
knapsack problem, 432-436
nth Fibonacci number, 427-431

E

Ecological simulation, 401
code implementation, 418, 425
data model, 406
design, 406
findRandomCritter method, 414
mackerel, 402
Move method, 411-413

output, 404

overview, 401

reflect TypeOf method, 409
shark, 403

support functions, 408
tuna, 403

Expression trees, 387

F

building new tree, 389

construction, 389

explanation, 390, 391, 396

function evaluation, 391

mathematical expression, 388
ShowTreeGraph function, 396, 397, 399

FeedForward function, 559

Fibonacci numbers, using goroutines, 35, 36
Filter functions, 16, 17

G

Game, 123

console implementation of, 128-135
grid cell evolution, rules of, 123-127

Generics, 6-8

benefits of, 10
parameters, 2, 16

Generic set, hash tables, 256-262
Genetic algorithm

definition, 523

implementation
elite group, 526
form next generation, 531-533
initial population, random tours, 525
mating of parents, 527-530
tournament selection, 527
TSP, 534-546

INDEX

mating process, 523
PopSize, 524
steps, 524, 525

Get Zero function, 145

benchmarking concurrent
applications, 37-54

concurrency, 19-36

history and description of, 1, 2

Go, abstract data types in

ADT Counter, 94-97
ADT, implementing, 101-103
counter package, creating, 98
counter package,

mechanics, 98-101
OOP application, 109-121
polymorphism, 106-109
using composition, 103-106

gofmt tool, 2
Go, generic parameters, 2

constrained generic type, 8

filter functions, 16, 17

generics, 6-8

generics, benefits of, 10

generic type, instantiating, 9

interface, implementing an, 9

making MyFilter Generic, 17-19

making MyMap Generic, 16

Map functions, 15

new student by ID number,
adding, 4, 5

new student by name, adding, 3

new student by Student Struct,
adding, 5, 6

sort package, 11

sort type, 12-15

stringer type, 8

unconstrained generic type any, 9, 10

575

INDEX

go.mod file, 99, 138

Goroutine, 1, 19-21
fibonacci numbers using, 35, 36
playing chess using, 32-35

Graph, 441
AddEdge method, 444
AddVertex method, 444
breadth-first search method, 445
defining and traversing, 447
depth-first search method, 444
Dijkstra algorithm, 451, 452
directed graph, 441
Kruskal algorithm, code

implementation, 458, 464

minimum spanning tree, 457
NewGraph function, 444
OrderedStringer interface, 443
queue, 447
traversal algorithms, 442
tuple, 455
visitation variable, 443
weighted graph, 441

Grid, ADT for, 128

GUI, implementation, game of

life, 135-138

H

Hash encryption, 239-243
Hash tables, 237
building, 244
collisions and collison
resolution, 246
creation, 245
determination, 246, 247
generic set, 256-262
Hash encryption, 239-243
insertion into, 245, 246

576

load factor, 246

map, 237-239

performance of, 247-250
Rabin-Karp algorithm, 252-256
rolling hash computation, 251, 252
string search, 250, 251

Heap sort, 358-360
Heap trees

application, 360, 361

construction, 349-351

deletion from, 351, 352

heap sort, 358-360

logic for building, 352, 353

package, 353-356

package heap, explanation
of, 356-358

Horner’s method, 252

I, J

Inorder traversal, 266, 267, 271, 272, 289,

294, 339, 366

Iterator, 188, 190, 191

K

Knapsack problem, 432

brute-force solution, 432, 433
dynamic programming
solution, 433-436

Kruskal algorithm, 457, 458, 464

L

Linear searches, 83, 84
Linked lists, 219, 220

doubly linked list, 228-235
singly linked list, 220-228

Machine learning, 547, 549

Map, 237-239

Map functions, 15

Maze application, 166
building infrastructure

for, 167-176

completed, 176-185
efficient strategy for, 166, 167

Mergesort algorithm, 75-82

Move method, 411, 412, 414

Mutex, 31, 32, 406, 411, 412

MytFilter Generic, 17-19

N

Neural network
concrete example, 554
definition, 550
implementation, 555-557, 559
layers, 552
matrices, 554
neuron, 553
output, 568-572
partial derivatives of cost,
weight, 560-567
perceptron, 551
training, 550
Node implementation,
stacks, 149-152
Node queue
implementation of, 191-194
performance of, 194, 195
nth Fibonacci number, 427
bottom-up dynamic programming,
428, 429
recursive solution, 429-431
top-down dynamic programming, 428

INDEX

O

Object-oriented programming (OOP)
application, 92, 106, 109

OOP application, permutation group of
words, 109-121

P

Permutation group of words, 117-121
Poisson process, queue application,
207, 208
Polymorphism, 106-109
Postfix evaluation, stacks, 157-160, 162
Postfix expression, evaluating, 162-164
Postorder traversal, 267
Preorder traversal, 267
Priority queue (PQ), 203-207
implementation of, 483-485
TSP, 480
Program output, 138, 139, 497

Q

Queue, 187
ADT, 188
application, 207-219
iterator, 190, 191

Quicksort
algorithm, 66, 67
bubblesort, 69, 70
concurrent quicksort, 70-75
worst case for, 68

R

Rabin-Karp algorithm, 250, 252-256
Recursive solution, nth Fibonacci
Number, 429-431

577

INDEX

Red-black trees, 363
definition of, 363, 364
example of, 364
implementation of, 373-384
insertion process, 364-367
insertions, detailed walk-through
of, 367-372
performance of, 384
Rolling hash computation, hash tables,
251, 252

S

Searching array slices, 82
binary searches, 87-89
concurrent searches, 84-87
linear searches, 83, 84
Segmented Sieve algorithm, 46-50
Shuffling cards, card shuffling
model, 216-219
Sieve of Eratosthenes algorithm, 42-46
Sigmoid activation function, 553, 559
Simulated annealing, TSP
algorithm, 495, 496
artificial temperature variable, 521
combinatorial optimization, 493
convergence problem, 496
definition, 495
heuristic solutions, 494
implementation
code, 516
lines crossing, 517-520

operations, 497, 498, 500-508, 510,

511,513,514
results, 516
status, 497
Simulation logic, queue
application, 208, 209

578

Singly linked list, 219-228
Slice queue
implementation of, 188, 189
performance of, 194, 195
Smalltalk language, 91
Sorting algorithms
Big O analysis, 68
bubblesort algorithm, 64, 65
concurrent mergesort, 78-82
concurrent quicksort, 70-75
mergesort algorithm, 75-78
quicksort algorithm, 66, 67
quicksort, bubblesort and, 69, 70
quicksort, worst case for, 68
Stacks, 141
ADT, 141
converting decimal
number, 164, 165
efficiency of node and slice, 153-156
function evaluation, 156
Get Zero function, 145
Maze application, 166-185
node implementation, 149-152
postfix evaluation, 157-160, 162
postfix expression,
evaluating, 162-164
slice implementation, 142-145
T, declared as ordered, 145-149
Statement, concurrency, 26
Steady-state pattern, 140
Stringer, 8, 9
String search, hash tables, 250, 251

UV

Top-down dynamic programming, 428

Travelling Salesperson Problem (TSP),
464, 493

branch-and-bound algorithm, 479
branch and bound for, 477, 478
branch-and-bound
implementation, 481-483
branch-and-bound solution,
generating, 485-490
brute-force computation, 469-473
exact brute-force solution, 466-469
five-city example, walk-through part of,
480, 481
and history, 465, 466
lower bound, computation
of, 478, 479
priority queue, 480

INDEX

priority queue, implementation
of, 483-485
tour, displaying, 473-476
Tree traversal, 266
inorder traversal, 266, 267
postorder traversal, 267
preorder traversal, 267
trueOutput function, 556

W XY,Z

WaitGroup, 21-23

Waiting line, discrete event simulation
of, 207-215

579

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: A Tour of Generics and Concurrency in Go
	1.1 Brief History and Description of Go
	1.2 Introducing Generic Parameters
	Adding a New Student by Name
	Adding a New Student by ID Number
	Adding a New Student by Student Struct
	Introducing Generics
	Stringer Type
	Constrained Generic Type
	Implementing an Interface
	Instantiating a Generic Type
	Unconstrained Generic Type any
	Benefits of Generics
	Using Go’s Sort Package
	Sort Type
	Map Functions
	Making MyMap Generic
	Filter Functions
	Making MyFilter Generic

	1.3 Concurrency
	Goroutine
	WaitGroup
	The Channel
	Select Statement
	Use a quit Channel to Avoid Using WaitGroup
	Channel Direction
	Race Condition
	Mutex
	Playing Chess Using Goroutines
	Fibonacci Numbers Using Goroutines

	1.4 Benchmarking Concurrent Applications
	Generating Prime Numbers Using Concurrency
	Sieve of Eratosthenes Algorithm
	Segmented Sieve Algorithm
	Concurrent Sieve Solution

	1.5 Summary

	Chapter 2: Algorithm Efficiency: Sorting and Searching
	2.1 Describing the Speed Efficiency of an Algorithm
	Working with Big O
	Determining Whether a Slice of Numbers Is Sorted
	Using Concurrency

	2.2 Sorting Algorithms
	Bubblesort Algorithm
	Quicksort Algorithm
	Big O Analysis
	Worst Case for Quicksort
	Comparing Bubblesort to Quicksort
	Concurrent Quicksort
	Mergesort Algorithm
	Concurrent Mergesort
	Conclusions

	2.3 Searching Array Slices
	Linear Searches
	Concurrent Searches
	Binary Searches

	2.4 Summary

	Chapter 3: Abstract Data Types: OOP Without Classes in Go
	3.1 Abstract Data Type Using Classes
	3.2 Abstract Data Types in Go
	ADT Counter
	Creating a counter Package
	Mechanics of Creating a Package
	Another Example of Implementing an ADT
	Using Composition

	3.3 Polymorphism
	Using Interfaces to Achieve Polymorphism

	3.4 OOP Application: Simplified Game of Blackjack
	3.5 Another OOP Application: Permutation Group of Words
	Using the Standard map Data Structure

	3.6 Summary

	Chapter 4: ADT in Action: Game of Life
	4.1 Game
	Rules of Grid Cell Evolution

	4.2 ADT for Grid
	4.3 Console Implementation of the Game
	4.4 GUI Implementation of the Game of Life
	Creating go.mod file
	Program Output

	4.5 Summary

	Chapter 5: Stacks
	5.1 Stack ADT
	5.2 Slice Implementation of Generic Stack
	The Get Zero Function
	Why T Is Declared As Ordered

	5.3 Node Implementation of a Generic Stack
	5.4 Compare the Efficiency of Node and Slice Stacks
	5.5 Stack Application: Function Evaluation
	Postfix Evaluation
	We Walk Through Algorithm
	Evaluating Postfix Expression

	5.6 Converting Decimal Number to Binary
	5.7 Maze Application
	Efficient Strategy for Maze Path Using a Stack
	Building Infrastructure for Maze Application
	Completed Maze App

	5.8 Summary

	Chapter 6: Queues and Lists
	6.1 Queue ADT
	6.2 Implementation of Slice Queue
	Iterator

	6.3 Implementation of Node Queue
	6.4 Comparing the Performance of Slice and Node Queue
	6.5 Deque
	6.6 Deque Application
	6.7 Priority Queue
	6.8 Queue Application: Discrete Event Simulation of Waiting Line
	Poisson Process
	Simulation Logic
	Implementation of System

	6.9 Queue Application: Shuffling Cards
	Card Shuffling Model

	6.10 Linked Lists
	6.11 Singly Linked List
	6.12 Doubly Linked List
	Benefit of Double Linking

	6.13 Summary

	Chapter 7: Hash Tables
	7.1	 Map
	Hash Encryption

	7.2	 How Fast Is a Map?
	7.3	 Building a Hash Table
	Create an Empty Hash Table
	Insertion into Hash Table
	Collisions and Collison Resolution
	Load Factor
	Determining Whether a Key Is Present
	Comparing the Performance of Hash Table with Standard Map

	7.4	 Hash Application: String Search
	Rolling Hash Computation
	Rabin-Karp Algorithm

	7.5	 Generic Set
	7.6	 Summary

	Chapter 8: Binary Trees
	8.1 Binary Trees
	8.2 Tree Traversal
	Inorder Traversal
	Preorder Traversal
	Postorder Traversal

	8.3 Draw Tree
	Binary Tree Structure
	Infrastructure Used to Display Binary Tree
	Explanation of Code
	Implementation of ShowTreeGraph
	Creating go.mod Files in Subdirectories binarytree and main

	8.4 Summary

	Chapter 9: Binary Search Tree
	9.1 Overview
	Searching
	Insertion
	Ordered Output
	Deletion

	9.2 Generic Binary Search Tree
	Type OrderedStringer
	Generic Types Needed for Binary Search Tree
	Methods for Binary Search Tree
	Discussion of Insert, Delete, and Inorder Traversal
	Support Functions
	Implementation of Tree Graphics
	Discussion of binarysearchtree Package and Main Driver

	9.3 Summary

	Chapter 10: AVL Trees
	10.1 Overview: Adelson Velsky and Landis
	Tree Rotations
	Insertion
	Deletion
	Facts About AVL Trees

	10.2 Implementation of a Generic AVL Tree
	Explanation of avl Package
	Discussion of Main Driver Results

	10.3 Set Using Map, AVL, and Concurrent AVL
	Implementation of Set Using Map, AVL Tree, and Concurrent AVL Tree
	Explanation of Concurrent AVL Set
	Comparing the Three Set Implementations
	Discussion of Results

	10.4 Summary

	Chapter 11: Heap Trees
	11.1 Heap Tree Construction
	11.2 Deletion from a Heap Tree
	11.3 Implementation of a Heap Tree
	Logic for Building a Heap Tree
	Package Heap
	Explanation of Package heap

	11.4 Heap Sort
	Discussion of heapsort Results

	11.5 Heap Application: Priority Queue
	11.6 Summary

	Chapter 12: Red-Black Trees
	12.1 Red-Black Trees
	Definition of Red-Black Tree
	Example of Red-Black Tree

	12.2 Insertion Process
	Detailed Walk-Through of Many Insertions

	12.3 Implementation of Red-Black Tree
	Comparing the Performance of Red-Black Tree to AVL Tree
	Benchmark Conclusion

	12.4 Summary

	Chapter 13: Expression Trees
	13.1 Expression Trees
	13.2 Construction of an Expression Tree
	Building a New Expression Tree
	Explanation of Function NewTree
	Function Evaluation Using Expression Tree
	Explanation of Method Evaluate

	13.3 Implementation of ShowTreeGraph
	13.4 Summary

	Chapter 14: Ecological Simulation with Concurrency
	14.1 Overview
	14.2 Specifications
	Mackerel
	Tuna
	Shark
	Output

	14.3 The Design
	14.4 The Implementation
	Data Model for Each Species
	Discussion of Code
	Support Functions
	Discussion of Code
	Required Methods for Mackerel to Be of Type MarineLife
	Discussion of Code
	Move Method for Shark
	Discussion of Code
	Move Method for Tuna
	Output Function for the Graphical Display of Critters
	Discussion of Code
	Full Implementation of Simulation

	14.5 Summary

	Chapter 15: Dynamic Programming
	15.1 Example of Dynamic Programming: nth Fibonacci Number
	Top-Down Dynamic Programming
	Bottom-Up Dynamic Programming
	Recursive Solution
	Discussion of Code

	15.2 Another Application: 0/1 Knapsack Problem
	Brute-Force Solution
	Discussion of Code
	Dynamic Programming Solution
	Discussion of Code
	Discussion of Code

	15.3 DNA Subsequences
	Discussion of Code

	15.4 Summary

	Chapter 16: Graph Structures
	16.1 Representing Graphs
	16.2 Traversing Graphs
	16.3 Depth- and Breadth-First Search
	Depth-First Search
	Breadth-First Search

	16.4 Single-Source Shortest Path in Graph
	Implementation
	Explanation of Solution

	16.5 Minimum Spanning Tree
	Kruskal Algorithm

	16.6 Implementation of Kruskal Algorithm
	Explanation of Kruskal Implementation

	16.7 Summary

	Chapter 17: Travelling Salesperson Problem
	17.1 Travelling Salesperson Problem and Its History
	17.2 An Exact Brute-Force Solution
	Finding Permutations
	Brute-Force Computation for TSP
	Discussion of Code
	Other Solutions

	17.3 Displaying a TSP Tour
	Discussion of Code

	17.4 Summary

	Chapter 18: Branch-and-Bound Solution to TSP
	18.1 Branch and Bound for TSP
	An Example
	Computation of Lower Bound
	Branch-and-Bound Algorithm
	The Priority Queue
	A Walk-Through Part of the Five-City Example Presented Earlier

	18.2 Branch-and-Bound Implementation
	Implementation of Priority Queue
	Generating Branch-and-Bound Solution
	Data for main
	Results

	18.3 Summary

	Chapter 19: Simulated Annealing Heuristic Solution to TSP
	19.1 Combinatorial Optimization
	Heuristic Solutions

	19.2 Simulated Annealing
	Simulated Annealing Steps
	Problem of Convergence to Local Minimum Rather Than Global Minimum

	19.3 Implementation of Simulated Annealing
	Discussion of Code
	Results
	Displaying Final Results
	Lines Crossing

	19.4 Summary

	Chapter 20: Genetic Algorithm for TSP
	20.1 Genetic Algorithm
	High-Level Description of Genetic Algorithm
	More Detailed Description of Genetic Algorithm

	20.2 Implementation of Genetic Algorithm
	Step 1 – Form an Initial Population of Random Tours
	Step 2 – Form an Elite Group of Best Tours
	Step 3 – Tournament Selection
	Step 4 – Mating of Parents
	Form Next Generation
	Putting the Pieces Together

	20.3 Summary

	Chapter 21: Neural Networks and Machine Learning
	21.1 Overview of Neural Networks and Machine Learning
	Training
	Neural Networks
	Perceptron
	Schematics of Neural Networks
	A Neuron

	21.2 A Concrete Example
	21.3 Constructing a Neural Network
	Matrices That Represent Network

	21.4 Neural Network Implementation
	Estimating the Partial Derivatives of Cost with Respect to Each Weight

	21.5 Output from Neural Network
	21.6 Summary

	Index

