Powerful Tools and Techniques for
Collaborative Software Development

Version Control with

W\
\

N
N
S

.
\

\
\

\
N

\
N

Z

\
N
\
W
\
I

NN
\%\‘\\\
NN
N
M

W
\)

Z

\
\

Z

N
Q
\N

NN

NN

NN

N
\

7
/) o
-
/0%/?//,/

7
-
%2

&
Rk
ntit

i

“\\\w N

N

Z%%Z%%I/ 7 /
il //

e 7
i
i

-
bl
.

i ;///II/II/M ,/////// //// /// //% //

-
ll””/’l]%” % %

7
7
I
/%// e
,”%11.7”11/1

]
7]
O, REILLY®

o
i
.

Jon Loeliger &
Matthew McCullough

Programming

Version Control with Git

Get up to speed on Git for tracking, branching, merging, and
managing code revisions. Through a series of step-by-step
tutorials, this practical guide takes you quickly from Git
fundamentals to advanced techniques, and provides friendly yet
rigorous advice for navigating the many functions of this open
source version control system.

This thoroughly revised edition also includes tips for manipulating
trees, extended coverage of the reflog and stash, and a complete
introduction to the GitHub repository. Git lets you manage code
development in a virtually endless variety of ways, once you
understand how to harness the system’s flexibility. This book
shows you how.

m Learn how to use Git for several real-world development
scenarios

B Gain insight into Git's common-use cases, initial tasks, and
basic functions

m Use the system for both centralized and distributed version
control

B Learn how to manage merges, conflicts, patches, and diffs

B Apply advanced techniques such as rebasing, hooks, and ways
to handle submodules

B Interact with Subversion (SVN) repositories—including SVN
to Git conversions

B Navigate, use, and contribute to open source projects
through GitHub

Jon Loeliger, a software
engineer at Freescale
Semiconductor, Inc., works
on open source projects such
as Git, Linux, and U-Boot.
He’s given Git tutorials at
conferences such as Linux
World, and has contributed
articles to Linux Magazine.

Matthew McCullough, VP

of Training for GitHub, is a
15-year veteran of enterprise
software development and an
open source educator. Matthew
is the creator of O'Reilly’s

Git Master Class series.

US $34.99 CAN $36.99
ISBN: 978-1-449-31638-9

NPIOAAD

7814491316389

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

Download from Wow! eBook <www.wowebook.com>

SECOND EDITION

Version Control with Git

Jon Loeliger and Matthew McCullough

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol - Tokyo

Version Control with Git, Second Edition
by Jon Loeliger and Matthew McCullough

Copyright © 2012 Jon Loeliger. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Nancy Guenther on behalf of Potomac
Production Editor: 1Iris Febres Indexing, LLC

Copyeditor: Absolute Service, Inc. Cover Designer: Karen Montgomery
Proofreader: Absolute Service, Inc. Interior Designer: David Futato

Illustrators: Robert Romano and Rebecca Demarest

May 2009: First Edition.
August 2012: Second Edition.

Revision History for the Second Edition:
2012-08-03 First release

See http:/foreilly.com/catalog/errata.csp?isbn=9781449316389 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Version Control with Git, the image of the image of a long-eared bat, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31638-9
[LSI]
1344953139

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449316389

Preface

1.

Table of Contents

INtrodUCtion ...vvvvviii ittt ittt ittt

Background

The Birth of Git
Precedents
Timeline

What’s in a Name?

Installing Gitcooviiniiiiiii i i i

Using Linux Binary Distributions
Debian/Ubuntu
Other Binary Distributions
Obtaining a Source Release
Building and Installing
Installing Git on Windows
Installing the Cygwin Git Package
Installing Standalone Git (msysGit)

GettingStartedooiiiiiiiiiii i i

The Git Command Line

Quick Introduction to Using Git
Creating an Initial Repository
Adding a File to Your Repository
Configuring the Commit Author
Making Another Commit
Viewing Your Commits
Viewing Commit Differences
Removing and Renaming Files in Your Repository
Making a Copy of Your Repository

Configuration Files

~N O BN

19
19
21
21
22
24
24
25
26
26
27
28

Configuring an Alias
Inquiry

BasicGit Conceptscovviiiiiiiiiniiiinenannes

Basic Concepts
Repositories
Git Object Types
Index

Content-Addressable Names

Git Tracks Content
Pathname Versus Content
Pack Files

Object Store Pictures

Git Concepts at Work
Inside the .git Directory
Objects, Hashes, and Blobs
Files and Trees

A Note on Git’s Use of SHA1

Tree Hierarchies
Commits
Tags

File Management and the Index
It’s All About the Index

File Classifications in Git
Using git add

Some Notes on Using git commit

Using git commit --all

Writing Commit Log Messages

Using git rm

Using git mv

A Note on Tracking Renames
The .gitignore File

A Detailed View of Git’s Object Model and Files

01111113

Atomic Changesets
Identifying Commits
Absolute Commit Names
refs and symrefs
Relative Commit Names
Commit History
Viewing Old Commits

ooooooooooooooooooooo

oo

oooooooooooooooooooo

30
30

31
31
31
32
33
33
34
35
36
36
39
39
40
41
42
43
44
46

47
48
48
50
52
52
54
54
56
57
58
60

65
66
67
67
68
69
72
72

iv | Table of Contents

Commit Graphs
Commit Ranges
Finding Commits
Using git bisect
Using git blame
Using Pickaxe

Branchesovvviiiiiiii i i i e

Reasons for Using Branches

Branch Names
Dos and Don’ts in Branch Names

Using Branches

Creating Branches

Listing Branch Names

Viewing Branches

Checking out Branches
A Basic Example of Checking out a Branch
Checking out When You Have Uncommitted Changes
Merging Changes into a Different Branch
Creating and Checking out a New Branch
Detached HEAD Branches

Deleting Branches

Forms of the git diff Command

Simple git diff Example

git diff and Commit Ranges

git diff with Path Limiting

Comparing How Subversion and Git Derive diffs

Merges ..ot i e e eas

Merge Examples
Preparing for a Merge
Merging Two Branches
A Merge with a Conflict
Working with Merge Conflicts
Locating Conflicted Files
Inspecting Conflicts
How Git Keeps Track of Conflicts
Finishing Up a Conflict Resolution
Aborting or Restarting a Merge
Merge Strategies
Degenerate Merges

74
78
83
83
87
88

.............. 89

89
90
91
91
93
94
94
97
97
98
99
101
102
103

............. 107

108
112
115
117
119

.............. 121

121
122
122
124
128
129
129
134
135
137
137
140

Table of Contents | v

Normal Merges 142

Specialty Merges 143
Applying Merge Strategies 144
Merge Drivers 145
How Git Thinks About Merges 146
Merges and Git’s Object Model 146
Squash Merges 147
Why Not Just Merge Each Change One by One? 148
10. Altering CommMIts .. .ovuirenitn it ii e iieeieneeeenaneenanasnnnns 151
Caution About Altering History 152
Using git reset 154
Using git cherry-pick 161
Using git revert 163
reset, revert, and checkout 164
Changing the Top Commit 165
Rebasing Commits 167
Using git rebase -i 170
rebase Versus merge 174
11. TheStashandtheReflogccoovviniiiiiiiii i 181
The Stash 181
The Reflog 189
12. Remote Repositoriescvvvevriiereenineninenenencnenenensnenenss 195
Repository Concepts 196
Bare and Development Repositories 196
Repository Clones 197
Remotes 198
Tracking Branches 199
Referencing Other Repositories 200
Referring to Remote Repositories 200
The refspec 202
Example Using Remote Repositories 204
Creating an Authoritative Repository 205
Make Your Own Origin Remote 206
Developing in Your Repository 208
Pushing Your Changes 209
Adding a New Developer 210
Getting Repository Updates 212
Remote Repository Development Cycle in Pictures 217
Cloning a Repository 217
Alternate Histories 218

vi | Table of Contents

13.

Non-Fast-Forward Pushes

Fetching the Alternate History

Merging Histories

Merge Contflicts

Pushing a Merged History
Remote Configuration

Using git remote

Using git config

Using Manual Editing
Working with Tracking Branches

Creating Tracking Branches

Ahead and Behind
Adding and Deleting Remote Branches
Bare Repositories and git push

Repository Managementcooeviiiiiininnt,

A Word About Servers

Publishing Repositories
Repositories with Controlled Access
Repositories with Anonymous Read Access
Repositories with Anonymous Write Access
Publishing Your Repository to GitHub

Repository Publishing Advice

Repository Structure
The Shared Repository Structure
Distributed Repository Structure
Repository Structure Examples

Living with Distributed Development
Changing Public History
Separate Commit and Publish Steps
No One True History

Knowing Your Place
Upstream and Downstream Flows
The Maintainer and Developer Roles
Maintainer—Developer Interaction
Role Duality

Working with Multiple Repositories
Your Own Workspace
Where to Start Your Repository
Converting to a Different Upstream Repository
Using Multiple Upstream Repositories
Forking Projects

219
221
222
223
223
223
224
225
226
227
227
230
231
232

................. 235

235
236
236
238
242
242
243
244
244
244
246
248
248
249
249
250
251
251
252
253
254
254
255
256
257
259

Table of Contents | vii

) T {11 263

Why Use Patches? 264
Generating Patches 265
Patches and Topological Sorts 272
Mailing Patches 273
Applying Patches 276
Bad Patches 283
Patching Versus Merging 283
15, HOOKS ..o 285
Installing Hooks 287
Example Hooks 287
Creating Your First Hook 288
Available Hooks 290
Commit-Related Hooks 290
Patch-Related Hooks 291
Push-Related Hooks 292
Other Local Repository Hooks 294
16. Combining Projectsocvvviiniiniiiiiiiieiiietnenerneneensnnnnns 295
The Old Solution: Partial Checkouts 296
The Obvious Solution: Import the Code into Your Project 297
Importing Subprojects by Copying 299
Importing Subprojects with git pull -s subtree 299
Submitting Your Changes Upstream 303
The Automated Solution: Checking out Subprojects Using Custom Scripts 304
The Native Solution: gitlinks and git submodule 305
Gitlinks 306
The git submodule Command 308
17. Submodule Best Practicescoooviviiiiiiiiiiiiiiiinnn, 313
Submodule Commands 314
Why Submodules? 315
Submodules Preparation 315
Why Read Only? 316
Why Not Read Only? 317
Examining the Hashes of Submodule Commits 317
Credential Reuse 318
Use Cases 318
Multilevel Nesting of Repos 319
Submodules on the Horizon 320

viii | Table of Contents

18.

19.

20.

Using Git with Subversion Repositoriesccoiviiiiiiiiiiinann.n. 321
Example: A Shallow Clone of a Single Branch 321
Making Your Changes in Git 324
Fetching Before Committing 325
Committing Through git svn rebase 326
Pushing, Pulling, Branching, and Merging with git svn 327
Keeping Your Commit IDs Straight 328
Cloning All the Branches 329
Sharing Your Repository 331
Merging Back into Subversion 332
Miscellaneous Notes on Working with Subversion 334
svn:ignore Versus .gitignore 334
Reconstructing the git-svn Cache 334
Advanced Manipulationscooiiiiiiiiiiiiiiiiii it 337
Using git filter-branch 337
Examples Using git filter-branch 339
filter-branch Pitfalls 344
How I Learned to Love git rev-list 345
Date-Based Checkout 345
Retrieve Old Version of a File 348
Interactive Hunk Staging 350
Recovering a Lost Commit 360
The git fsck Command 361
Reconnecting a Lost Commit 365
Tips, Tricks, and Techniquescoiriiiiiiiiiiiiiiiiiiinineenannns 367
Interactive Rebase with a Dirty Working Directory 367
Remove Left-Over Editor Files 368
Garbage Collection 368
Split a Repository 370
Tips for Recovering Commits 371
Subversion Conversion Tips 372
General Advice 372
Remove a Trunk After an SVN Import 372
Removing SVN Commit IDs 373
Manipulating Branches from Two Repositories 374
Recovering from an Upstream Rebase 374
Make Your Own Git Command 376
Quick Overview of Changes 376
Cleaning Up 377
Using git-grep to Search a Repository 378
Updating and Deleting refs 380

Table of Contents | ix

Download from Wow! eBook <www.wowebook.com>

Following Files that Moved 380

Keep, But Don’t Track, This File 381
Have You Been Here Before? 382
21. GitandGitHub ..o 385
Repo for Public Code 385
Creating a GitHub Repository 388
Social Coding on Open Source 390
Watchers 391
News Feed 392
Forks 392
Creating Pull Requests 394
Managing Pull Requests 396
Notifications 398
Finding Users, Projects, and Code 401
Wikis 402
GitHub Pages (Git for Websites) 403
In-Page Code Editor 405
Subversion Bridge 407
Tags Automatically Becoming Archives 408
Organizations 409
REST API 410
Social Coding on Closed Source 411
Eventual Open Sourcing 411
Coding Models 412
GitHub Enterprise 414
GitHub in Sum 416
] 417

x | Table of Contents

Preface

Audience

Although some familiarity with revision control systems will be good background
material, a reader who is not familiar with any other system will still be able to learn
enough about basic Git operations to be productive in a short while. More advanced
readers should be able to gain insight into some of Git’s internal design and thus master
some of its more powerful techniques.

The main intended audience of this book should be familiar and comfortable with the
Unix shell, basic shell commands, and general programming concepts.

Assumed Framework

Almost all examples and discussions in this book assume the reader has a Unix-like
system with a command-line interface. The author developed these examples on

Debian and Ubuntu Linux environments. The examples should work under other
environments, such as Mac OS X or Solaris, but the reader can expect slight variations.

A few examples require root access on machines where system operations are needed.
Naturally, in such situations, you should have a clear understanding of the responsi-
bilities of root access.

Book Layout and Omissions

This book is organized as a progressive series of topics, each designed to build upon
concepts introduced earlier. The first 11 chapters focus on concepts and operations
that pertain to one repository. They form the foundation for more complex operations
on multiple repositories covered in the final 10 chapters.

If you already have Git installed or have even used it briefly, then you may not need the
introductory and installation information in the first two chapters, nor even the quick
tour presented in the third chapter.

Xi

The concepts covered in Chapter 4 are essential for a firm grasp on Git’s object model.
They set the stage and prepare the reader for a clearer understanding of many of Git’s
more complex operations.

Chapters 5 through 11 cover various topics in more detail. Chapter 5 describes the
index and file management. Chapters 6 and 10 discuss the fundamentals of making
commits and working with them to form a solid line of development. Chapter 7 intro-
duces branches so that you may manipulate several different lines of development from
your one local repository. Chapter 8 explains how Git derives and presents “diffs.”

Git provides a rich and powerful ability to join different branches of development. The
basics of branch merging and resolving merge conflicts are covered in Chapter 9. A key
insight into Git’s model is to realize that all merging performed by Git happens in your
local repository in the context of your current working directory. Chapters 10 and 11
expose some operations for altering, storing, tracking, and recovering daily develop-
ment within your development repository.

The fundamentals of naming and exchanging data with another, remote repository are
covered in Chapter 12. Once the basics of merging have been mastered, interacting
with multiple repositories is shown to be a simple combination of an exchange step
plus a merge step. The exchange step is the new concept covered in this chapter and
the merge step is covered in Chapter 9.

Chapter 13 provides a more philosophical and abstract coverage of repository
management “in the large.” It also establishes a context for Chapter 14 to cover patch
handling when direct exchange of repository information isn’t possible using Git’s
native transfer protocols.

The next four chapters cover advanced topics of interest: the use of hooks (Chap-
ter 15), combining projects and multiple repositories into a superproject (Chap-
ter 16), and interacting with Subversion repositories (Chapter 17).

Chapters 19 and 20 provide some advanced examples and clever tips, tricks, and tech-
niques that may help transform you into a true Git guru.

Finally, Chapter 21 introduces GitHub and explains how Git has enabled a creative,
social development process around version control.

Git is still evolving rapidly because there is an active developer base. It’s not that Git is
so immature that you cannot use it for development; rather, ongoing refinements and
user interface issues are being enhanced regularly. Even as this book was being written,
Git evolved. Apologies if I was unable to keep up accurately.

I do not give the command gitk the complete coverage that it deserves. If you like
graphical representations of the history within a repository, you should explore gitk.
Other history visualization tools exist as well, but they are not covered here either. Nor
am [able to cover a rapidly evolving and growing host of other Git-related tools. I'm
not even able to cover all of Git’s own core commands and options thoroughly in this
book. Again, my apologies.

xii | Preface

Perhaps, though, enough pointers, tips, and direction can be found here to inspire
readers to do some of their own research and exploration!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a useful hint or a tip.

This icon indicates a warning or caution.

This icon indicates a general note.

Furthermore, you should be familiar with basic shell commands to manipulate files
and directories. Many examples will contain commands such as these to add or remove
directories, copy files, or create simple files:

$ cp file.txt copy-of-file.txt
$ mkdir newdirectory

$ rm file

$ rmdir somedir

$ echo "Test line" > file

$ echo "Another line" >> file

Preface | xiii

Commands that need to be executed with root permissions appear as a sudo operation:

Install the Git core package
$ sudo apt-get install git-core

How you edit files or effect changes within your working directory is pretty much up
to you. You should be familiar with a text editor. In this book, I'll denote the process
of editing a file by either a direct comment or a pseudocommand:

edit file.c to have some new text

$ edit index.html

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Version Control with Git by Jon Loeliger
and Matthew McCullough. Copyright 2012 Jon Loeliger, 978-1-449-31638-9.”

If you feel your use of code examples falls outside fair use or the permission given
previously, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
S f Safari Books Online (www.safaribooksonline.com) is an on-demand digital
arari library that delivers expert content in both book and video form from the

world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books Online, please
visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http:/foreil.ly/VCWG2e
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: hitp://www.youtube.com/oreillymedia

Acknowledgments

This work would not have been possible without the help of many other people. I'd
like to thank Avery Pennarun for contributing substantial material to Chapters 15, 16,
and 18. He also contributed some material to Chapters 4 and 9. His help was appre-
ciated. I'd like to thank Matthew McCullough for the material in Chapters 17 and 21,
assorted suggestions, and general advice. Martin Langhoff is paraphrased with
permission for some repository publishing advice in Chapter 13, and Bart Massey’s tip
on keeping a file without tracking is also used with permission. I'd like to publicly thank
those who took time to review the book at various stages: Robert P. J. Day, Alan Hasty,
Paul Jimenez, Barton Massey, Tom Rix, Jamey Sharp, Sarah Sharp, Larry Streepy, Andy
Wilcox, and Andy Wingo. Robert P. J. Day, thankfully, took the time to review both
editions of the book front to back.

Also, I'd like to thank my wife Rhonda, and daughters Brandi and Heather, who pro-
vided moral support, gentle nudging, Pinot Noir, and the occasional grammar tip. And

Preface | xv

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/VCWG2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

thanks to Mylo, my long-haired dachshund who spent the entire writing process curled
up lovingly in my lap. I'd like to add a special thanks to K. C. Dignan, who supplied
enough moral support and double-stick butt-tape to keep my behind in my chair long
enough to finish this book!

Finally, T would like to thank the staff at O’Reilly as well as my editors, Andy Oram
and Martin Streicher.

Attributions

Linux® is the registered trademark of Linus Torvalds in the United States and other
countries.

PowerPC® is a trademark of International Business Machines Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

xvi | Preface

CHAPTER 1
Introduction

Background

No cautious, creative person starts a project nowadays without a back-up strategy.
Because data is ephemeral and can be lost easily—through an errant code change or a
catastrophic disk crash, say—it is wise to maintain a living archive of all work.

For text and code projects, the back-up strategy typically includes version control, or
tracking and managing revisions. Each developer can make several revisions per day,
and the ever increasing corpus serves simultaneously as repository, project narrative,
communication medium, and team and product management tool. Given its pivotal
role, version control is most effective when tailored to the working habits and goals of
the project team.

A tool that manages and tracks different versions of software or other content is referred
to generically as a version control system (VCS), a source code manager (SCM), a
revision control system (RCS), and several other permutations of the words “revision,”
“version,” “code,” “content,” “control,” “management,” and “system.” Although the
authors and users of each tool might debate esoterics, each system addresses the same
issue: develop and maintain a repository of content, provide access to historical editions
of each datum, and record all changes in a log. In this book, the term version control
system (VCS) is used to refer generically to any form of revision control system.

This book covers Git, a particularly powerful, flexible, and low-overhead version con-
trol tool that makes collaborative development a pleasure. Git was invented by Linus
Torvalds to support the development of the Linux®! kernel, but it has since proven
valuable to a wide range of projects.

1. Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

The Birth of Git

Often, when there is discord between a tool and a project, the developers simply create
anew tool. Indeed, in the world of software, the temptation to create new tools can be
deceptively easy and inviting. In the face of many existing version control systems, the
decision to create another shouldn’t be made casually. However, given a critical need,
a bit of insight, and a healthy dose of motivation, forging a new tool can be exactly the
right course.

Git, affectionately termed “the information manager from hell” by its creator (Linus is
known for both his irascibility and his dry wit), is such a tool. Although the precise
circumstances and timing of its genesis are shrouded in political wrangling within the
Linux kernel community, there is no doubt that what came from that fire is a well-
engineered version control system capable of supporting the worldwide development
of software on a large scale.

Prior to Git, the Linux kernel was developed using the commercial BitKeeper VCS,
which provided sophisticated operations not available in then-current, free software
VCSs such as RCS and the concurrent version system (CVS). However, when the
company that owned BitKeeper placed additional restrictions on its “free as in beer”
version in the spring of 2005, the Linux community realized that BitKeeper was no
longer a viable solution.

Linus looked for alternatives. Eschewing commercial solutions, he studied the free
software packages but found the same limitations and flaws that led him to reject them
previously. What was wrong with the existing VCSs? What were the elusive missing
features or characteristics that Linus wanted and couldn’t find?

Facilitate Distributed Development
There are many facets to “distributed development,” and Linus wanted a new VCS
that would cover most of them. It had to allow parallel as well as independent and
simultaneous development in private repositories without the need for constant
synchronization with a central repository, which could form a development
bottleneck. It had to allow multiple developers in multiple locations even if some
of them were offline temporarily.

Scale to Handle Thousands of Developers
It isn’t enough just to have a distributed development model. Linus knew that
thousands of developers contribute to each Linux release. So any new VCS had to
handle a very large number of developers whether they were working on the same
or different parts of a common project. And the new VCS had to be able to integrate
all of their work reliably.

Perform Quickly and Efficiently
Linus was determined to ensure that a new VCS was fast and efficient. In order to
support the sheer volume of update operations that would be made on the Linux
kernel alone, he knew that both individual update operations and network transfer

2 | Chapter1: Introduction

operations would have to be very fast. To save space and thus transfer time, com-
pression and “delta” techniques would be needed. Using a distributed model
instead of a centralized model also ensured that network latency would not hinder
daily development.

Maintain Integrity and Trust
Because Git is a distributed revision control system, it is vital to obtain absolute
assurance that data integrity is maintained and is not somehow being altered. How
do you know the data hasn’t been altered in transition from one developer to the
next? Or from one repository to the next? Or, for that matter, that the data in a Git
repository is even what it purports to be?

Git uses a common cryptographic hash function, called Secure Hash Function
(SHA1), to name and identify objects within its database. Though perhaps not
absolute, in practice it has proven to be solid enough to ensure integrity and trust
for all Git’s distributed repositories.

Enforce Accountability
One of the key aspects of a version control system is knowing who changed files
and, if at all possible, why. Git enforces a change log on every commit that changes
a file. The information stored in that change log is left up to the developer, project
requirements, management, convention, and so on. Git ensures that changes will
not happen mysteriously to files under version control because there is an
accountability trail for all changes.

Immutability
Git’s repository database contains data objects that are immutable. That is, once
they have been created and placed in the database, they cannot be modified. They
can be recreated differently, of course, but the original data cannot be altered
without consequences. The design of the Git database means that the entire history
stored within the version control database is also immutable. Using immutable
objects has several advantages, including quick comparison for equality.

Atomic Transactions
With atomic transactions, a number of different but related changes are performed
either all together or not at all. This property ensures that the version control
database is not left in a partially changed or corrupted state while an update or
commit is happening. Git implements atomic transactions by recording complete,
discrete repository states that cannot be broken down into individual or smaller
state changes.

Support and Encourage Branched Development
Almost all VCSs can name different genealogies of development within a single
project. Forinstance, one sequence of code changes could be called “development”
while another is referred to as “test.” Each version control system can also split a
single line of development into multiple lines and then unify, or merge, the dispa-
rate threads. As with most VCSs, Git calls a line of development a branch and
assigns each branch a name.

The Birth of Git | 3

Download from Wow! eBook <www.wowebook.com>

Along with branching comes merging. Just as Linus wanted easy branching to
foster alternate lines of development, he also wanted to facilitate easy merging of
those branches. Because branch merging has often been a painful and difficult
operation in version control systems, it would be essential to support clean, fast,
easy merging.
Complete Repositories

So that individual developers needn’t query a centralized repository server for
historical revision information, it was essential that each repository have a com-
plete copy of all historical revisions of every file.

A Clean Internal Design
Even though end users might not be concerned about a clean internal design, it
was important to Linus and ultimately to other Git developers as well. Git’s object
model has simple structures that capture fundamental concepts for raw data,
directory structure, recording changes, and so forth. Coupling the object model
with a globally unique identifier technique allowed a very clean data model that
could be managed in a distributed development environment.

Be Free, as in Freedom
‘Nuff said.

Given a clean slate to create a new VCS, many talented software engineers collaborated
and Git was born. Necessity was the mother of invention again!

Precedents

The complete history of VCSs is beyond the scope of this book. However, there are
several landmark, innovative systems that set the stage for or directly led to the
development of Git. (This section is selective, hoping to record when new features were
introduced or became popular within the free software community.)

The Source Code Control System (SCCS) was one of the original systems on Unix®?2
and was developed by M. J. Rochkind in the very early 1970s. [“The Source Code
Control System,” IEEE Transactions on Software Engineering 1(4) (1975): 364-370.]
This is arguably the first VCS available on any Unix system.

The central store that SCCS provided was called a repository, and that fundamental
concept remains pertinent to this day. SCCS also provided a simple locking model to
serialize development. If a developer needed files to run and test a program, he or she
would check them out unlocked. However, in order to edit a file, he or she had to check
it out with a lock (a convention enforced through the Unix file system). When finished,
he or she would check the file back into the repository and unlock it.

2. UNIX s a registered trademark of The Open Group in the United States and other countries.

4 | Chapter1: Introduction

The Revision Control System (RCS) was introduced by Walter F. Tichy in the early
1980s. [“RCS: A System for Version Control,” Software Practice and Experience 15(7)
(1985): 637-654.] RCS introduced both forward and reverse delta concepts for the
efficient storage of different file revisions.

The Concurrent Version System (CVS), designed and originally implemented by Dick
Grune in 1986 and then crafted anew some four years later by Berliner and colleagues
extended and modified the RCS model with great success. CVS became very popular
and was the de facto standard within the open source (http://www.opensource.org)
community for many years. CVS provided several advances over RCS, including
distributed development and repository-wide change sets for entire “modules.”

Furthermore, CVS introduced a new paradigm for the lock. Whereas earlier systems
required a developer to lock each file before changing it and thus forced one developer
to wait for another in serial fashion, CVS gave each developer write permission in his
or her private working copy. Thus, changes by different developers could be merged
automatically by CVS unless two developers tried to change the same line. In that case,
the conflict was flagged and the developers were left to work out the solution. The new
rules for the lock allowed different developers to write code concurrently.

As often occurs, perceived shortcomings and faults in CVS eventually led to a new VCS.
Subversion (SVN), introduced in 2001, quickly became popular within the free software
community. Unlike CVS, SVN committed changes atomically and had significantly
better support for branches.

BitKeeper and Mercurial were radical departures from all the aforementioned solutions.
Each eliminated the central repository; instead, the store was distributed, providing
each developer with his own shareable copy. Git is derived from this peer-to-peer
model.

Finally, Mercurial and Monotone contrived a hash fingerprint to uniquely identify a
file’s content. The name assigned to the file is a moniker and a convenient handle for
the user and nothing more. Git features this notion as well. Internally, the Git identifier
is based on the file’s contents, a concept known as a content-addressable file store. The
concept is not new. [See “The Venti Filesystem,” (Plan 9), Bell Labs, http://www.usenix
.orglevents/fast02/quinlan/quinlan_html/index.html.] Git immediately borrowed the
idea from Monotone, according to Linus.3 Mercurial was implementing the concept
simultaneously with Git.

3. Private email.

Precedents | 5

http://www.opensource.org
http://www.usenix.org/events/fast02/quinlan/quinlan_html/index.html
http://www.usenix.org/events/fast02/quinlan/quinlan_html/index.html

Timeline

With the stage set, a bit of external impetus, and a dire VCS crisis imminent, Git sprang
to life in April 2005.

Git became self-hosted on April 7 with this commit:

commit e83c5163316189bfbde7d9ab23ca2e25604at29
Author: Linus Torvalds <torvalds@ppc970.osdl.org>
Date: Thu Apr 7 15:13:13 2005 -0700

Initial revision of "git", the information manager from hell

Shortly thereafter, the first Linux commit was made:

commit 1da177e4c3t41524e886b7f1b8a0c1fc7321cac2
Author: Linus Torvalds <torvalds@ppc970.osdl.org>
Date: Sat Apr 16 15:20:36 2005 -0700

Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!

That one commit introduced the bulk of the entire Linux Kernel into a Git
repository.4 It consisted of

17291 files changed, 6718755 insertions(+), 0 deletions(-)
Yes, that’s an introduction of 6.7 million lines of code!

It was just three minutes later when the first patch using Git was applied to the kernel.
Convinced that it was working, Linus announced it on April 20, 2005, to the Linux
Kernel Mailing List.

Knowing full well that he wanted to return to the task of developing the kernel, Linus
handed the maintenance of the Git source code to Junio Hamano on July 25, 2005,
announcing that “Junio was the obvious choice.”

About two months later, Version 2.6.12 of the Linux Kernel was released using Git.

4. See http://kerneltrap.org/node/13996 for a starting point on how the old BitKeeper logs were imported
into a Git repository for older history (pre-2.5).

6 | Chapter1: Introduction

http://kerneltrap.org/node/13996

What's in a Name?

Linus himself rationalizes the name “Git” by claiming “I’'m an egotistical bastard, and
I name all my projects after myself. First Linux, now git.”> Granted, the name “Linux”
for the kernel was sort of a hybrid of Linus and Minix. The irony of using a British term
for a silly or worthless person was not missed, either.

Since then, others had suggested some alternative and perhaps more palatable
interpretations: the Global Information Tracker seems to be the most popular.

5. See http://www.infoworld.com/article/05/04/19/HNtorvaldswork_1.html.

What'sinaName? | 7

http://www.infoworld.com/article/05/04/19/HNtorvaldswork_1.html

CHAPTER 2
Installing Git

At the time of this writing, Git is (seemingly) not installed by default on any GNU/
Linux distribution or any other operating system. So, before you can use Git, you must
install it. The steps to install Git depend greatly on the vendor and version of your
operating system. This chapter describes how to install Git on Linux and Microsoft
Windows and within Cygwin.

Using Linux Binary Distributions

Many Linux vendors provide precompiled, binary packages to make the installation of
new applications, tools, and utilities easy. Each package specifies its dependencies, and
the distribution’s package manager typically installs the prerequisites and the desired
package in one (well-orchestrated and automated) fell swoop.

Debian/Ubuntu

On most Debian and Ubuntu systems, Git is offered as a collection of packages, where
each package can be installed independently depending on your needs. Prior to the
12.04 release, the primary Git package was called git-core. As of the 12.04 release, it is
simply called git, and the documentation is available in git-doc. There are other
packages to consider, too.

git-arch

git-cvs

git-svn
If you need to transfer a project from Arch, CVS, or SVN to Git or vice versa, install
one or more of these packages.

git-gui

gitk

gitweb
If you prefer to browse repositories in a graphical application or your web browser,
install these as appropriate. git-gui is a Tcl/Tk-based graphical user interface for
Git; gitk is another Git browser written in Tcl/Tk but focuses more on visualizing
project history. gitweb is written in Perl and displays a Git repository in a browser
window.

git-email
This is an essential component if you want to send Git patches through electronic
mail, which is a common practice in some projects.

git-daemon-run
To share your repository, install this package. It creates a daemon service that
allows you to share your repositories through anonymous download requests.

Because distributions vary greatly, it’s best to search your distribution’s package depot
for a complete list of Git-related packages. git-doc and git-email are strongly
recommended.

Debian and Ubuntu provide a package named git, but it isn’t a part of
*t% the Git version control system discussed in this book. git is a completely

different program called GNU Interactive Tools. Be careful not to install
the wrong package by accident!

This command installs the important Git packages by running apt-get as root.

$ sudo apt-get install git git-doc gitweb \
git-gui gitk git-email git-svn

Other Binary Distributions

To install Git on other Linux distributions, find the appropriate package or packages
and use the distribution’s native package manager to install the software.

For example, on Gentoo systems, use emerge.
$ sudo emerge dev-util/git
On Fedora, use yum.

$ sudo yum install git

The Fedora git is roughly equivalent to Debian’s git. Other 1386 Fedora packages
include:
git.i386 :

The core Git tools

10 | Chapter2: Installing Git

git-all.i386 :

A meta-package for pulling in all Git tools
git-arch.i386 :

Git tools for importing Arch repositories
git-cvs.i386 :

Git tools for importing CVS repositories
git-daemon.i386 :

The Git protocol daemon
git-debuginfo.i386 :

Debug information for package git
git-email i386 :

Git tools for sending email
git-gui.i386 :

Git GUI tool
git-svn.i386 :

Git tools for importing SVN repositories
gitk.i386 :

Git revision tree visualizer

Again, be mindful that, like Debian, some distributions may split the Git release among
many different packages. If your system lacks a particular Git command, you may need
to install an additional package.

Be sure to verify that your distribution’s Git packages are sufficiently up-to-date. After
Git is installed on your system, run git --version. If your collaborators use a more
modern version of Git, you may have to replace your distribution’s precompiled Git
packages with a build of your own. Consult your package manager documentation to
learn how to remove previously installed packages; proceed to the next section to learn
how to build Git from source.

Obtaining a Source Release

If you prefer to download the Git code from its canonical source or if you want the
latest version of Git, visit Git’s master repository. As of this writing, the master
repository for Git sources is http://git.kernel.org in the pub/software/scm directory.

The version of Git described in this book is roughly 1.7.9, but you might want to

download the latest revision of the source. You can find a list of all the available versions
at http://code.google.com/p/git-core/downloads/list.

To begin the build, download the source code for version 1.7.9 (or later) and unpack it.

$ wget http://git-core.googlecode.com/files/git-1.7.9.tar.gz
$ tar xzf git-1.7.9.tar.gz
$ cd git-1.7.9

Obtaining a Source Release | 11

http://git.kernel.org
http://code.google.com/p/git-core/downloads/list

Building and Installing

Git is similar to other pieces of open source software. Just configure it, type make, and
install it. Small matter of software, right? Perhaps.

If your system has the proper libraries and a robust build environment and if you do
not need to customize Git, then building the code can be a snap. On the other hand, if
your machine lacks a compiler or a suite of server and software development libraries,
or if you’ve never built a complex application from source, then you should consider
building Git from scratch only as a last resort. Git is highly configurable, and building
it shouldn’t be taken lightly.

To continue the build, consult the INSTALL file in the Git source bundle. The file lists
several external dependencies, including the zlib, openssl, and libcurl libraries.

Some of the requisite libraries and packages are a bit obscure or belong to larger
packages. Here are three tips for a Debian stable distribution.

* curl-config, a small tool to extract information about the local curl install, can be
found in the libcurl4-openssl-dev package.

* The header file expat.h comes from the libexpat1-dev package.
* The msgfmt utility belongs to the gettext package.

Because compiling from sources is considered “development” work, the normal binary
versions of installed libraries are not sufficient. Instead, you need the -dev versions,
because the development variants also supply header files required during compilation.

If you are unable to locate some of these packages or cannot find a necessary library on
your system, the Makefile and configuration options offer alternatives. For example, if
you lack the expat library, you can set the NO_EXPAT option in the Makefile. However,
your build will lack some features, as noted in the Makefile. For example, you will not
be able to push changes to a remote repository using the HTTP and HTTPS transports.

Other Makefile configuration options support ports to various platforms and distribu-
tions. For instance, several flags pertain to Mac OS X’s Darwin operating system. Either
hand-modify and select the appropriate options or find what parameters are set auto-
matically in the top-level INSTALL file.

Once your system and build options are ready, the rest is easy. By default, Git s installed
in your home directory in subdirectories ~/bin/, ~/lib/, and ~/share/. In general, this
default is useful only if you’re using Git personally and don’t need to share it with other
users.

These commands build and install Git in your home directory.

$ cd git-1.7.9
$./configure
$ make all

$ make install

12 | Chapter2: Installing Git

If you want to install Git into an alternate location, such as /usr/local/ to provide general
access, add --prefix=/usr/local to the ./configure command. To continue, run make
as a normal user, but run make install as root.

$ cd git-1.7.9

$./configure --prefix=/usr/local

$ make all
$ sudo make install

To install the Git documentation, add the doc and install-doc targets to the make and
make install commands, respectively.
$ cd git-1.7.9

$ make all doc
$ sudo make install install-doc

Several more libraries are needed to do a complete build of the documentation. As an
alternative, prebuilt manpages and HTML pages are available and can be installed
separately as well; just be careful to avoid version mismatch problems if you choose to
go this route.

A build from source includes all the Git subpackages and commands, such as
git-email and gitk. There is no need to build or install those utilities independently.

Installing Git on Windows

There are two competing Git packages for Windows: a Cygwin-based Gitand a “native”
version called msysGit.

Originally, only the Cygwin version was supported and msysGit was experimental and
unstable. But as this book went to press, both versions work well and support an almost
identical set of features. The most important exception, as of Git 1.6.0, is that
msysGit does not yet properly support git-svn. If you need interoperability between
Gitand SVN, then you must use the Cygwin version of Git. Otherwise, the version you
choose is a matter of personal preference.

If you aren’t sure which one you want, here are some rules of thumb.

* If you use Cygwin already on Windows, use Cygwin’s Git because it interoperates
better with your Cygwin setup. For example, all your Cygwin-style filenames will
work in Git, and redirecting program input and output will always work exactly
as expected.

* If you don’t use Cygwin, it’s easier to install msysGit because it has its own stand-
alone installer.

* If you want Git integration with the Windows Explorer shell (for example, the
ability to right-click on a folder and pick “Git GUI Here” or “Git Bash Here”), then
install msysGit. If you want this feature but prefer to use Cygwin, you can install
both packages without harm.

Installing Git on Windows | 13

If you’re still in doubt about which package to use, install msysGit. Make sure you
obtain the latest version (1.7.10 or higher) because the quality of Git’s Windows sup-
port steadily improves in successive versions.

Installing the Cygwin Git Package

The Cygwin Git package, as the name implies, is a package inside the Cygwin system
itself. To install it, run Cygwin’s setup.exe program, which you can download from
http://cygwin.com.

After setup.exe launches, use the default settings for most options until you get to the
list of packages to install. The Git packages are in the devel category, as shown in
Figure 2-1.

= Cyowin Setup - Select Packages

Select Packages
Select packages to instal C
O keep O Prev O Exp Category
oy Current Mew B. 5. Size Package -~
& Skip nfa nfa P geoo-testsuite: GCC testsuite sources
& Skip nfa nfa 4,420k gdb: The GNU Debugger
& Skip nfa nfa 4k gdk-pisbuf2-wmf: Windows Metafile ibrary - (Gdl
0151 & Feep na [176k gettext: GHU Internationalization library and core
& Skip nfa nfa 1,872k gettext-devel GNU Internationalization developi
& 1.6.01 O 1,327k git: Fast Version Control System - core files
& 1.6.01 O Bk git-completion: Fast Verzion Control System - git
& 1.6.01 O 125k git-gui: Fast Verzion Control System - git-gui view
& 1.6.01 O T2k gitk: Fast Version Control System - gitk, viewer
& Skip nfa nfa 458k glib-devel: Gnome C function library [developme
& Skip nfa nfa 26k gnome-common: Common development files for
& Skip nfa nfa BO2k grtls-devel: Library implementing TLS 1.0 and ! be;
. o PR B N N SO S ’
Hide obsolete packages
< Back ” Mext »] [Cancel

Figure 2-1. Cygwin setup

After choosing the packages you want to install, click Next a few more times until the
Cygwin installation finishes. You can then start the Cygwin Bash Shell from your Start
menu, which should now include the git command (Figure 2-2).

As an alternative, if your Cygwin configuration includes the various compiler tools like
gcc and make, then you can build your own copy of Git from source code on Windows
under Cygwin by following the same instructions as on Linux.

14 | Chapter2: Installing Git

http://cygwin.com

§ git
wzage: git [-—version] [——exec—path[=GIT_EXEC_PATH1] [-pi——paginate i——no—pager]
[——bhare] [—git—dir=GIT_DIR] [——work—tree=GIT_WORK_TREE]1 [——helpl COMMAND [ARGS]

The most commonly used git commands are:
add Add file contents to the index
hisect Find the change that introduced a bug by binary search
branch List, create, or delete branches
checkout Checkout a branch or paths to the working tree
Clone a repository into a new directory
Record changes to the repository
Show changes between commits,. commit and working tree. etc
Download obhjects and refs from another repository
Print lines matching a pattern
Create an empty git repository or reinitialize an existing one
Show commit logs
Join two or more development histories together
Move or rename a file. a directory, or a symlink
Fetch from and merge with another repository or a local branch
Update remote refs along with associated objects
Forvard-port local commits to the updated upstream head
reset Reset current HEAD to the specified state
rm Remove files from the working tree and from the index
show Show various types of ohjects
status Show the working tree status
tag Create,. list, delete or verify a tag obhject signed with GPG

See ‘git help COMMAND’ for more information on a specific command.

$ -

Figure 2-2. Cygwin shell
Installing Standalone Git (msysGit)

The msysGit package is easy to install on a Windows system because the package
includes all its dependencies. It even has Secure Shell (SSH) commands to generate the
keys that repository maintainers require to control access. msysGit is designed to
integrate well with Windows-style native applications (such as the Windows Explorer

shell).

First, download the latest version of the installer from its home at hitp://code.google
.com/p/msysgit. The file to collect is usually called something like Git-1.5.6.1-pre-
view20080701.exe.

After the download completes, run the installer. You should see a screen that looks
something like Figure 2-3.

Depending on the actual version being installed, you may or may not need to click Next
through a compatibility notice, as shown in Figure 2-4. This notice concerns incom-
patibilities between Windows-style and Unix-style line endings, called CRLF and LF,
respectively.

Click Next a few more times until you see the screen shown in Figure 2-5. The best way
to run msysGit on a daily basis is via Windows Explorer, so check the two pertinent
boxes as shown.

Installing Git on Windows | 15

http://code.google.com/p/msysgit
http://code.google.com/p/msysgit

" Git Setup

FEX
Welcome to the Git Setup Wizard

Thiz will install Git 1.5.6.1-preview20080707 on your computer,

Itiz recommended that you close all ather applications before
continuing.

Click Mext to continue, or Cancel to exit Setup.

Wihen you are ready to continue with Setup, click Next

| Mest> | [Cancel
Figure 2-3. msysGit setup
~ Git Setup E]‘E‘El
Information ——
Please read the following important information before continuing. 0

dirsctory.

Important Compatibility Notice

With Git 1.5.5, the dsfault for core.autacrlf changes to "true”. This
means that Git converts line endings to CRLF {Windows line endings)
in your work tree and to LF (Unix line endings) in the repository.
This is the right choice for cross-platform projects. If you wish to
keep the old behavior, you can run

for the user accounts that shall use the old default; or you can set
the system-wide default by editing "etc/giteonfig” in the installation

git config --global core autocrlf false

<Back || Wet> | [Cancel

Figure 2-4. msysGit notice

Inaddition, anicon to startGit Bash (a command prompt that makes the git commands
available) is installed in the Start menu in the section called Git. Because most of the

examples in this book use the command line, use Git Bash to get started.

All the examples in this book work equally well on Linux and Windows, with one
caveat: msysGit for Windows uses the older Git command names mentioned in “The
Git Command Line” on page 19 of Chapter 3. To follow the examples with msys-

Git, enter git-add for git add.

16 | Chapter2: Installing Git

Git Setup

Select Additional Tasks
Wwhich additional tasks should be performed?

O
Select the additional tasks you would like Setup to perform while installing Git, then click
Mext.

Additional icons:

[] Create a Quick Launch icon
[] Create a Desktop icon
‘windows Explorer integration:
Add "Git Bagh Here"

< Back ” Mext »][Cancel

Figure 2-5. msysGit choices

Installing Git on Windows | 17

CHAPTER 3

Git manages change. Given that intent, Git shares much with other version control
systems. Many tenets—the notion of a commit, the change log, the repository—are the
same, and workflow is conceptually similar among the corpus of tools. However, Git
offers many novelties, too. The notions and practices of other version control systems

Getting Started

may work differently in Git or may not apply at all. Yet no matter what your experience,
this book explains how Git works and teaches mastery.

Let’s get started.

The Git Command Line

Git is simple to use. Just type git. Without any arguments, Git lists its options and the
most common subcommands.

$ git

git [--version] [--exec-path[=GIT_EXEC_PATH]]
[-p|--paginate|--no-pager] [--bare] [--git-dir=GIT_DIR]
[--work-tree=GIT WORK_TREE] [--help] COMMAND [ARGS]

The most commonly used git commands are:

add
bisect
branch
checkout
clone
commit
diff
fetch
grep
init
log
merge
mv
pull
push

Add file contents to the index

Find the change that introduced a bug by binary search

List, create, or delete branches

Checkout and switch to a branch

Clone a repository into a new directory

Record changes to the repository

Show changes between commits, the commit and working trees, etc
Download objects and refs from another repository

Print lines matching a pattern

Create an empty git repository or reinitialize an existing one
Show commit logs

Join two or more development histories

Move or rename a file, a directory, or a symlink

Fetch from and merge with another repository or a local branch
Update remote refs along with associated objects

19

rebase Forward-port local commits to the updated upstream head

reset Reset current HEAD to the specified state

m Remove files from the working tree and from the index

show Show various types of objects

status Show the working tree status

tag Create, list, delete, or verify a tag object signed with GPG

For a complete (and somewhat daunting) list of git subcommands, type
git help --all.

As you can see from the usage hint, a small handful of options apply to git. Most
options, shown as [ARGS] in the hint, apply to specific subcommands.

For example, the option --version affects the git command and produces a version
number.

$ git --version

git version 1.6.0

In contrast , --amend is an example of an option specific to the git subcommand
commit.

$ git commit --amend

Some invocations require both forms of options. (Here, the extra spaces in the com-
mand line merely serve to visually separate the subcommand from the base command
and are not required.)

$ git --git-dir=project.git repack -d

For convenience, documentation for each git subcommand is available using
git help subcommand, git --help subcommand or git subcommand --help.

Historically, Git was provided as a suite of many simple, distinct, standalone com-
mands developed according to the “Unix toolkit” philosophy: build small, interoper-
able tools. Each command sported a hyphenated name, such as git-commit and
git-log. However, the current trend among developers is to use the single git exe-
cutable and affix a subcommand. That being said, the forms git commit and
git-commit are identical.

You can visit http://www.kernel.org/pub/software/scm/git/docs/ to read
the complete Git documentation online.

Git commands understand both “short” and “long” options. For example, the
git commit command treats the following examples as equivalents.

$ git commit -m "Fixed a typo."
$ git commit --message="Fixed a typo."

20 | Chapter3: Getting Started

http://www.kernel.org/pub/software/scm/git/docs/

Download from Wow! eBook <www.wowebook.com>

The short form, -m, uses a single hyphen, whereas the long form, --message, uses two.
(This is consistent with the GNU long options extension.) Some options exist only in
one form.

Finally, you can separate options from a list of arguments via the “bare double dash”
convention. For instance, use the double dash to contrast the control portion of the
command line from a list of operands, such as filenames.

$ git diff -w master origin -- tools/Makefile

You may need to use the double dash to separate and explicitly identify filenames if
they might otherwise be mistaken for another part of the command. For example, if
you happened to have both a file and a tag named main.c, then you will get different
behavior:

Checkout the tag named "main.c"
$ git checkout main.c

Checkout the file named "main.c"
$ git checkout -- main.c

Quick Introduction to Using Git

To see gitin action, let’s create a new repository, add some content, and manage a few
revisions.

There are two fundamental techniques for establishing a Git repository. You can either
create it from scratch, populating it with an existing body of work, or you can copy, or
clone, an existing repository. It’s simpler to start with an empty repository, so let’s start
there.

Creating an Initial Repository

To model a typical situation, let’s create a repository for your personal website from
the directory ~/public_html and place it in a Git repository.

If you don’t have content for your personal website in ~/public_html, create the
directory and place some simple content in a file called index.html:

$ mkdir ~/public_html
$ cd ~/public_html
$ echo 'My website is alive!' > index.html

To turn ~/public_html or any directory into a Git repository, run git init:
$ git init

Initialized empty Git repository in .git/

Quick Introduction to Using Git | 21

Git doesn’t care whether you start with a completely empty directory or if you start
with a directory full of files. In either case, the process of converting the directory into
a Git repository is the same.

To signify that your directory is a Git repository, the git init command creates a
hidden directory, called .git, at the top level of your project. Whereas CVS and SVN
place revision information in CVS and .svn subdirectories within each of your project’s
directories, Git places all its revision information in this one, top-level .git directory.
The contents and purpose of the data files are discussed in more detail in “Inside the .git
Directory” on page 39 of Chapter 4.

Everything in your ~/public_html directory remains untouched. Git considers it your
project’s working directory, or the directory where you alter your files. In contrast, the
repository hidden within .git is maintained by Git.

Adding a File to Your Repository

The command git init creates a new Git repository. Initially, each Git repository is
empty. To manage content, you must explicitly deposit it in the repository. Such a
conscious step separates scratch files from important files.

Use git add file to add file to the repository:
$ git add index.html

If you have a directory populated with several files, let Git add all the
files in the directory and all subdirectories with git add .. (The argu-
* 9ls ment ., the single period or “dot” in Unix parlance, is shorthand for the
" current directory.)

After an add, Git knows that the file, index. html, is to remain in the repository. However,
so far, Git has merely staged the file, an interim step before committal. Git separates
the add and commit steps to avoid volatility. Imagine how disruptive, confusing, and
time-consuming it would be to update the repository each time you add, remove, or
change a file. Instead, multiple provisional and related steps, such as an add, can be
“batched,” keeping the repository in a stable, consistent state.

Running git status reveals this in-between state of index.html:

$ git status

On branch master

#

Initial commit

#

Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#

new file: index.html

22 | Chapter3: Getting Started

The command reports that the new file index. html will be added to the repository during
the next commit.

In addition to actual changes to the directory and to file contents, Git records several
other pieces of metadata with each commit, including a log message and the author of
the change. A fully qualified git commit command suppliesalog message and an author:

$ git commit -m "Initial contents of public_html" \
--author="Jon Loeliger <jdl@example.com>"

Created initial commit 9da581d: Initial contents of public_html
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 index.html

You can provide a log message on the command line, but it’s more typical to create the
message during an interactive editor session. This gives you an opportunity to compose
a complete and detailed log message in your favorite editor. To configure Git to open
your favorite editor during a git commit, set your GIT_EDITOR environment variable.

In tcsh
$ setenv GIT_EDITOR emacs

In bash
$ export GIT_EDITOR=vim

After you commit the addition of the new file into the repository, git status indicates
that there are no outstanding, staged changes to be committed.

$ git status

On branch master
nothing to commit (working directory clean)

Git also takes the time to tell you that your working directory is clean, which means
the working directory has no unknown or modified files that differ from what is in the
repository.

Obscure Error Messages

Git tries hard to determine the author of each commit. If you haven’t set up your name
and email address in a way that Git can find it, you may encounter some odd warnings.

But there is no need to have an existential crisis if you see a cryptic error message like
one of these:
You don't exist. Go away!

Your parents must have hated you!
Your sysadmin must hate you!

The error indicates that Git is unable to determine your real name, likely due to a
problem (existence, readability, length) with your Unix “gecos” information. The
problem can be fixed by setting your name and email configuration information as
described in “Configuring the Commit Author” on page 24.

Quick Introduction to Using Git | 23

Configuring the Commit Author

Before making many commits to a repository, you should establish some basic
environment and configuration options. At a bare minimum, Git must know your
name and email address. You may specify your identity on every commit command
line, as shown previously, but that is the hard way and quickly becomes tedious.

Instead, save your identity in a configuration file using the git config command.

$ git config user.name "Jon Loeliger"
$ git config user.email "jdl@example.com"

You can also tell Git your name and email address using the GIT_AUTHOR_NAME and
GIT_AUTHOR EMAIL environment variables. If set, these variables override all configura-
tion settings.

Making Another Commit

To show a few more features of Git, let’s make some modifications and create a complex
history of changes within the repository.

Let’s commit an alteration to the index.html file. Open the file, convert it to HTML,
and save the file.

$ cd ~/public_html
edit the index.html file

$ cat index.html
<html>

<body>

My web site is alive!
</body>

</html>

$ git commit index.html

If you are already somewhat familiar with Git, you may be tempted to think “Aha! You
need to git add index.html before you can commit that file!” But that isn’t true. Because
the file was already added to the repository (in “Adding a File to Your Reposi-
tory” on page 22), there’s no need to tell the index about the file; it already knows.
Furthermore, file changes are captured when directly committing a file named on the
command line! Using a generic git commit without naming the file would not have
worked in this case.

When your editor comes up, enter a commit log entry such as “Convert to HTML” and
exit the editor. There are now two versions of index.html in the repository.

24 | Chapter3: Getting Started

Viewing Your Commits

Once you have one or more commits in the repository, you can inspect them in a variety
of ways. Some Git commands show the sequence of individual commits, others show
the summary of an individual commit, and still others show the full details of any
commit in the repository.

The command git log yields a sequential history of the individual commits within the
repository:

$ git log

commit ec232cddfb94eodfdsb5855af8ded7f5eb5c90d6
Author: Jon Loeliger <jdl@example.com>
Date: Wed Apr 2 16:47:42 2008 -0500

Convert to HTML

commit 9da581d910c9c4ac93557ca4859e767f5caf5169
Author: Jon Loeliger <jdl@example.com>
Date: Thu Mar 13 22:38:13 2008 -0500

Initial contents of public_html

The entries are listed, in order, from most recent to oldest! (the original file); each entry
shows the commit author’s name and email address, the date of the commit, the log
message for the change, and the internal identification number of the commit. The
commit ID number is explained in “Content-Addressable Names” on page 33 of
Chapter 4, and commits are discussed in Chapter 6.

To see more detail about a particular commit, use git show with a commit number:

$ git show 9da581d910c9c4ac93557ca4859e767f5caf5169

commit 9da581d910c9c4ac93557ca4859e767f5caf5169
Author: Jon Loeliger <jdl@example.com>
Date: Thu Mar 13 22:38:13 2008 -0500

Initial contents of public_html

diff --git a/index.html b/index.html
new file mode 100644

index 0000000..34217e9

--- /dev/null

+++ b/index.html

@@ -0,0 +1 @@

+My web site is alive!

If you run git show without an explicit commit number, it simply shows the details of
the most recent commit.

1. Strictly speaking, they are not in chronological order but rather are a topological sort of the commits.

Quick Introduction to Using Git | 25

Another view, show-branch, provides concise, one-line summaries for the current
development branch:

$ git show-branch --more=10

[master] Convert to HTML
[master”] Initial contents of public_html

The phrase --more=10 reveals up to an additional 10 more versions, but only two exist
so far and so both are shown. (The default in this case would list only the most recent
commit.) The name master is the default branch name.

Branches are covered extensively in Chapter 7. “Viewing Branches” on page 94
describes the git show-branch command in more detail.

Viewing Commit Differences

To see the differences between the two revisions of index.html, recall both full commit
ID names and run git diff:

$ git diff 9da581d910c9c4ac93557ca4859e767f5caf5169 \
ec232cddfb9geodfdsb5855af8ded7f5eb5c90d6

diff --git a/index.html b/index.html
index 34217e9..8638631 100644

--- a/index.html

+++ b/index.html

@@ -1 +1,5 @@

+<html>

+<body>

My web site is alive!

+</body>

+</html>

This output should look familiar: It resembles what the diff program produces. As is
the convention, the first revision named, 9da581d910c9c4ac93557ca4859e767f5caf5169,
is the earlier version of the content and the second revision, named
ec232cddfbo4eodfdsbs5855af8ded7f5eb5c90d6 is the newer one. Thus, a plus sign (+) pre-
cedes each line of new content.

Scared yet? Don’t worry about those intimidating hex numbers. Thankfully, Git pro-
vides many shorter, easier ways to do commands like this without having to produce
large complicated numbers.

Removing and Renaming Files in Your Repository

Removing a file from a repository is analogous to adding a file but uses git rm. Suppose
you have the file poem.html in your website content and it’s no longer needed.
$ cd ~/public_html

$1s
index.html poem.html

26 | Chapter3: Getting Started

$ git rm poem.html
m 'poem.html’

$ git commit -m "Remove a poem"

Created commit 364a708: Remove a poem

0 files changed, 0 insertions(+), 0 deletions(-)
delete mode 100644 poem.html

As with an addition, a deletion requires two steps: git rm expresses your intent to
remove the file and stages the change, and then git commit realizes the change in the
repository. Again, you can omit the -m option and type a log message such as “Remove
a poem” interactively in your favorite text editor.

You can rename a file indirectly by using a combination of git rmand git add, or you
can rename it more quickly and directly with git mv. Here’s an example of the former:
$ mv foo.html bar.html
$ git rm foo.html

m ‘foo.html'
$ git add bar.html

In this sequence, you must execute mv foo.html bar.html at the onset lest git rm per-
manently delete the foo.html file from the filesystem.

Here’s the same operation performed with git mv.

$ git mv foo.html bar.html

In either case, the staged changes must be committed subsequently:

$ git commit -m "Moved foo to bar"

Created commit 8805821: Moved foo to bar

1 files changed, 0 insertions(+), 0 deletions(-)
rename foo.html => bar.html (100%)

Git handles file move operations differently than most akin systems, employing a
mechanism based on the similarity of the content between two file versions. The
specifics are described in Chapter 5.

Making a Copy of Your Repository

If you followed the previous steps and made an initial repository in your ~/pub-
lic_html directory, then you can now create a complete copy, or clone, of that repository
using the git clone command. This is how people around the world use Git to pursue
pet projects on the same files and keep in sync with other repositories.

For the purposes of this tutorial, let’s just make a copy in your home directory and call
it my_website:

$cd~
$ git clone public_html my website

Quick Introduction to Using Git | 27

Although these two Git repositories now contain exactly the same objects, files, and
directories, there are some subtle differences. You may want to explore those differ-
ences with commands such as:

$ 1s -1sa public_html my_website
$ diff -r public_html my_website

On a local filesystem like this, using git clone to make a copy of a repository is quite
similar to cp -a or rsync. However, Git supports a richer set of repository sources,
including network names, for naming the repository to be cloned. These forms and
usage are explained in Chapter 12.

Once you clone a repository, you are able to modify the cloned version, make new
commits, inspect its logs and history, and so on. It is a complete repository with full
history.

Configuration Files

Git’s configuration files are all simple text files in the style of .ini files. They record
various choices and settings used by many Git commands. Some settings represent
purely personal preferences (should a color.pager be used?); others are vital to a
repository functioning correctly (core.repositoryformatversion); and still others
tweak command behavior a bit (gc.auto).

Like many tools, Git supports a hierarchy of configuration files. In decreasing
precedence they are:

.git/config
Repository-specific configuration settings manipulated with the --file option or
by default. These settings have the highest precedence.
~/.gitconfig
User-specific configuration settings manipulated with the --global option.
Jetc/gitconfig
System-wide configuration settings manipulated with the --system option if you
have proper Unix file write permissions on it. These settings have the lowest prece-
dence. Depending on your actual installation, the system settings file might be
somewhere else (perhaps in /usr/local/etc/gitconfig), or may be entirely absent.

For example, to establish an author name and email address that will be used on all the
commits you make for all of your repositories, configure values for user.name and
user.email in your SHOME/.gitconfig file using git config --global:

$ git config --global user.name "Jon Loeliger"
$ git config --global user.email "jdl@example.com"

28 | Chapter3: Getting Started

Or, to set a repository-specific name and email address that would override a
--global setting, simply omit the --global flag:

$ git config user.name "Jon Loeliger"
$ git config user.email "jdl@special-project.example.org"

Use git config -1 to list the settings of all the variables collectively found in the
complete set of configuration files:

Make a brand new empty repository
$ mkdir /tmp/new

$ cd /tmp/new

$ git init

Set some config values

$ git config --global user.name "Jon Loeliger"

$ git config --global user.email "jdl@example.com"

$ git config user.email "jdl@special-project.example.org"

$ git config -1

user.name=Jon Loeliger
user.email=jdl@example.com
core.repositoryformatversion=0
core.filemode=true

core.bare=false

core.logallrefupdates=true
user.email=jdl@special-project.example.org

Because the configuration files are simple text files, you can view their contents with
cat and edit them with your favorite text editor, too.

Look at just the repository specific settings

$ cat .git/config
[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
[user]
email = jdl@special-project.example.org

Oh, and, if you use a Pacific Northwest-based OS, you may see some differences here.
Maybe something like this:

[core]
repositoryformatversion = 0
filemode = true
bare = true
logallrefupdates = true
symlinks = false
ignorecase = true
hideDotFiles = dotGitOnly

Many of these differences allow for different file system characteristics.

Configuration Files | 29

Use the --unset option to remove a setting:
$ git config --unset --global user.email
The behavior of the git config command changed between versions 1.6.2 and 1.6.3.

Earlier versions required option --unset to follow option --global; newer versions
allow either order.

Multiple configuration options and environment variables frequently exist for the same
purpose. For example, the editor to be used when composing a commit log message
follows these steps, in order:

* GIT_EDITOR environment variable

* core.editor configuration option

* VISUAL environment variable

e EDITOR environment variable

* the vi command
There are more than a few hundred configuration parameters. I'm not going to bore

you with them, but I will point out important ones as we go along. A more extensive
(yet still incomplete) list can be found on the git config manual page.

Configuring an Alias

For starters, here is a tip for setting up command aliases. If there is a common but
complex Git command that you type frequently, consider setting up a simple Git alias
for it.
$ git config --global alias.show-graph \
'log --graph --abbrev-commit --pretty=oneline'

In this example, I've made up the show-graph alias and made it available for use in any
repository I make. Now when I use the command git show-graph, it is just like I had
typed that long git log command with all those options.

Inquiry

You will surely have a lot of unanswered questions about how Git works, even after
the actions performed so far. For instance, how does Git store each version of a file?
What really makes up a commit? Where did those funny commit numbers come from?
Why the name master? And is a “branch” what I think it is? Good questions.

The next chapter defines some terminology, introduces some Git concepts, and
establishes a foundation for the lessons found in the rest of the book.

30 | Chapter3: Getting Started

CHAPTER 4
Basic Git Concepts

Basic Concepts

The previous chapter presented a typical application of Git—and probably sparked a
good number of questions. Does Git store the entire file at every commit? What’s the
purpose of the .git directory? Why does a commit ID resemble gibberish? Should I take
note of it?

If you’ve used another VCS, such as SVN or CVS, the commands in the last chapter
likely seemed familiar. Indeed, Git serves the same function and provides all the oper-
ations you expect from a modern VCS. However, Git differs in some fundamental and
surprising ways.

In this chapter, we explore why and how Git differs by examining the key components
of its architecture and some important concepts. Here we focus on the basics and
demonstrate how to interact with one repository; Chapter 12 explains how to work
with many, interconnected repositories. Keeping track of multiple repositories may
seem like a daunting prospect, but the fundamentals you learn in this chapter apply
just the same.

Repositories

A Git repository is simply a database containing all the information needed to retain
and manage the revisions and history of a project. In Git, as with most version control
systems, a repository retains a complete copy of the entire project throughout its life-
time. However, unlike most other VCSs, the Git repository not only provides a complete
working copy of all the files in the repository, but also a copy of the repository itself
with which to work.

Git maintains a set of configuration values within each repository. You saw some of
these, such as the repository user’s name and email address, in the previous chapter.
Unlike file data and other repository metadata, configuration settings are not propa-
gated from one repository to another during a clone, or duplicating, operation. Instead,

31

Git manages and inspects configuration and setup information on a per-site, per-user,
and per-repository basis.

Within a repository, Git maintains two primary data structures, the object store and
the index. All of this repository data is stored at the root of your working directory in
a hidden subdirectory named .git.

The object store is designed to be efficiently copied during a clone operation as part
of the mechanism that supports a fully distributed VCS. The index is transitory
information, is private to a repository, and can be created or modified on demand as
needed.

The next two sections describe the object store and index in more detail.

Git Object Types

At the heart of Git’s repository implementation is the object store. It contains your
original data files and all the log messages, author information, dates, and other infor-
mation required to rebuild any version or branch of the project.

Git places only four types of objects in the object store: the blobs, trees, commits, and
tags. These four atomic objects form the foundation of Git’s higher level data structures.

Blobs
Each version of a file is represented as a blob. Blob, a contraction of “binary large
object,” is a term that’s commonly used in computing to refer to some variable or
file that can contain any data and whose internal structure is ignored by the
program. A blob is treated as being opaque. A blob holds a file’s data but does not
contain any metadata about the file or even its name.

Trees
A tree object represents one level of directory information. It records blob identi-
fiers, path names, and a bit of metadata for all the files in one directory. It can also
recursively reference other (sub)tree objects and thus build a complete hierarchy
of files and subdirectories.

Commits
A commit object holds metadata for each change introduced into the repository,
including the author, committer, commit date, and log message. Each commit
points to a tree object that captures, in one complete snapshot, the state of the
repository at the time the commit was performed. The initial commit, or root com-
mit, has no parent. Most commits have one commit parent, although later in the
book (Chapter 9) we explain how a commit can reference more than one parent.
Tags
A tag object assigns an arbitrary yet presumably human readable name to a specific
object, usually a commit. Although 9da581d910c9c4ac93557ca4859e767f5caf5169

32 | Chapter4: BasicGit Concepts

Download from Wow! eBook <www.wowebook.com>

refers to an exact and well-defined commit, a more familiar tag name like Ver-1.0-
Alpha might make more sense!

Over time, all the information in the object store changes and grows, tracking and
modeling your project edits, additions, and deletions. To use disk space and network
bandwidth efficiently, Git compresses and stores the objects in pack files, which are
also placed in the object store.

Index

The index is a temporary and dynamic binary file that describes the directory structure
of the entire repository. More specifically, the index captures a version of the project’s
overall structure at some moment in time. The project’s state could be represented by
a commit and a tree from any point in the project’s history, or it could be a future state
toward which you are actively developing.

One of the key, distinguishing features of Git is that it enables you to alter the contents
of the index in methodical, well-defined steps. The index allows a separation between
incremental development steps and the committal of those changes.

Here’s how it works. As the developer, you execute Git commands to stage changes in
the index. Changes usually add, delete, or edit some file or set of files. The index records
and retains those changes, keeping them safe until you are ready to commit them. You
can also remove or replace changes in the index. Thus, the index allows a gradual
transition, usually guided by you, from one complex repository state to another,
presumably better state.

Asyou’llseein Chapter 9, the index plays an important role in merges, allowing multiple
versions of the same file to be managed, inspected, and manipulated simultaneously.

Content-Addressable Names

The Git object store is organized and implemented as a content-addressable storage
system. Specifically, each object in the object store has a unique name produced by
applying SHALI to the contents of the object, yielding an SHA1 hash value. Because the
complete contents of an object contribute to the hash value and the hash value is
believed to be effectively unique to that particular content, the SHA1 hash is a sufficient
index or name for that object in the object database. Any tiny change to a file causes
the SHA1 hash to change, causing the new version of the file to be indexed separately.

SHAT1 values are 160-bit values that are usually represented as a 40-digit hexadecimal
number, such as 9da581d910c9c4ac93557ca4859e767f5caf5169. Sometimes, during
display, SHA1 values are abbreviated to a smaller, unique prefix. Git users speak of
SHALI, hash code, and sometimes object ID interchangeably.

Basic Concepts | 33

Globally Unique Identifiers

An important characteristic of the SHA1 hash computation is that it always computes
the same ID for identical content, regardless of where that content is. In other words,
the same file content in different directories and even on different machines yields the
exact same SHA1 hash ID. Thus, the SHA1 hash ID of a file is an effective globally
unique identifier.

A powerful corollary is that files or blobs of arbitrary size can be compared for equality
across the Internet by merely comparing their SHA1 identifiers.

Git Tracks Content

It’s important to see Git as something more than a VCS: Git is a content tracking
system. This distinction, however subtle, guides much of the design of Git and is per-
haps the key reason it can perform internal data manipulations with relative ease. Yet,
this is also perhaps one of the most difficult concepts for new users of Git to grasp, so
some exposition is worthwhile.

Git’s content tracking is manifested in two critical ways that differ fundamentally from
almost all other! revision control systems.

First, Git’s object store is based on the hashed computation of the contents of its objects,
not on the file or directory names from the user’s original file layout. Thus, when Git
places a file into the object store, it does so based on the hash of the data and not on
the name of the file. In fact, Git does not track file or directory names, which are
associated with files in secondary ways. Again, Git tracks content instead of files.

If two separate files have exactly the same content, whether in the same or different
directories, Git stores a single copy of that content as a blob within the object store.
Git computes the hash code of each file according solely to its content, determines that
the files have the same SHA1 values and thus the same content, and places the blob
object in the object store indexed by that SHA1 value. Both files in the project, regard-
less of where they are located in the user’s directory structure, use that same object for
content.

If one of those files changes, Git computes a new SHA1 for it, determines that it is now
a different blob object, and adds the new blob to the object store. The original blob
remains in the object store for the unchanged file to use.

Second, Git’s internal database efficiently stores every version of every file—not their
differences—as files go from one revision to the next. Because Git uses the hash of a
file’s complete content as the name for that file, it must operate on each complete copy

1. Monotone, Mercurial, OpenCMS, and Venti are notable exceptions here.

34 | Chapter4: BasicGit Concepts

of the file. It cannot base its work or its object store entries on only part of the file’s
content nor on the differences between two revisions of that file.

The typical user view of a file—that it has revisions and appears to progress from one
revision to another revision—is simply an artifact. Git computes this history as a set of
changes between different blobs with varying hashes, rather than storing a file name
and set of differences directly. It may seem odd, but this feature allows Git to perform
certain tasks with ease.

Pathname Versus Content

As with many other VCSs, Git needs to maintain an explicit list of files that form the
content of the repository. However, this need not require that Git’s manifest be based
on file names. Indeed, Git treats the name of a file as a piece of data that is distinct from
the contents of that file. In this way, it separates index from data in the traditional
database sense. It may help to look at Table 4-1, which roughly compares Git to other
familiar systems.

Table 4-1. Database comparison

System Index mechanism Data store

Traditional database | Indexed Sequential Access Method (ISAM) | Data records

Unix file system Directories (/path/to/file) Blocks of data

Git .git/objects/hash, tree object contents Blob objects, tree objects

The names of files and directories come from the underlying filesystem, but Git does
not really care about the names. Git merely records each pathname and makes sure it
can accurately reproduce the files and directories from its content, which is indexed by
a hash value.

Git’s physical data layout isn’t modeled after the user’s file directory structure. Instead,
it has a completely different structure that can, nonetheless, reproduce the user’s orig-
inal layout. Git’s internal structure is a more efficient data structure for its own internal
operations and storage considerations.

When Git needs to create a working directory, it says to the filesystem: “Hey! I have
this big blob of data that is supposed to be placed at pathname path/to/directoryffile.
Does that make sense to you?” The filesystem is responsible for saying “Ah, yes, I
recognize that string as a set of subdirectory names, and I know where to place your
blob of data! Thanks!”

Basic Concepts | 35

Pack Files

An astute reader my have formed a lingering question about Git’s data model and its
storage of individual files: Isn’t it incredibly inefficient to store the complete content of
every version of every file directly? Even if it is compressed, isn’t it inefficient to have
the complete content of different versions of the same file? What if you only add, say,
one line to a file, doesn’t Git store the complete content of both versions?

Luckily, the answer is “No, not really!”

Instead, Git uses a more efficient storage mechanism called a pack file. To create a
packed file, Git first locates files whose content is very similar and stores the complete
content for one of them. It then computes the differences, or deltas, between similar
files and stores just the differences. For example, if you were to just change or add one
line to a file, Git might store the complete, newer version and then take note of the one
line change as a delta and store that in the pack too.

Storing a complete version of a file and the deltas needed to construct other versions
of similar files is not a new trick. It is essentially the same mechanism that other VCSs
such as RCS have used for decades.

Git does the file packing very cleverly, though. Since Git is driven by content it doesn’t
really care if the deltas it computes between two files actually pertain to two versions
of the same file or not. That is, Git can take any two files from anywhere within the
repository and compute deltas between them if it thinks they might be similar enough
to yield good data compression. Thus, Git has a fairly elaborate algorithm to locate and
match up potential delta candidates globally within a repository. Furthermore, Git is
able to construct a series of deltas from one version of a file to a second, to a third, etc.

Git also maintains the knowledge of the original blob SHA1 for each complete file
(either the complete content or as a reconstruction after deltas are applied) within the
packed representation. This provides the basis for an index mechanism to locate objects
within a pack.

Packed files are stored in the object store alongside the other objects. They are also
used for efficient data transfer of repositories across a network.

Object Store Pictures

Let’s look at how Git’s objects fit and work together to form the complete system.

The blob object is at the “bottom” of the data structure; it references nothing and is
referenced only by tree objects. In the figures that follow, each blob is represented by
a rectangle.

Tree objects point to blobs and possibly to other trees as well. Any given tree object
might be pointed at by many different commit objects. Each tree is represented by a
triangle.

36 | Chapter4: BasicGit Concepts

commit
1492 author Jon L
tree 8675309
tag Initial commit branch name
2504624
ree W
blob dead23
blob feeb1e
» "4
blob blob
Four Mary
dead23 | (. hada | feeble
and little
seven lamb

Figure 4-1. Git objects

A circle represents a commit. A commit points to one particular tree that is introduced
into the repository by the commit.

Each tag is represented by a parallelogram. Each tag can point to, at most, one commit.

The branch is not a fundamental Git object, yet it plays a crucial role in naming
commits. Each branch is pictured as a rounded rectangle.

Figure 4-1 captures how all the pieces fit together. This diagram shows the state of a
repository after a single, initial commit added two files. Both files are in the top-level
directory. Both the master branch and a tag named V1.0 point to the commit with ID
1492.

Now, let’s make things a bit more complicated. Let’s leave the original two files as is,
adding a new subdirectory with one file in it. The resulting object store looks like
Figure 4-2.

As in the previous picture, the new commit has added one associated tree object to
represent the total state of directory and file structure. In this case, it is the tree object
with ID cafedood.

Because the top-level directory is changed by the addition of the new subdirectory, the
content of the top-level tree object has changed as well, so Git introduces a new tree,
caftedood.

Object Store Pictures | 37

author Jon L
tree cafed00d
parent 1492

Add a limerick

branch name

author Jon L
tree 8675309

v ftree
cafed00d

Initial commit

tree ¥ tree 1010220
blob dead23

blob feeh1e

blob dead23
blob feeh1e

¥ o
blob blob < tree

dead23 | FoUr Mary | feeble 1010220
and little
seven lamb

blob 1010b

v
blob
There
i 1010b
wasa
man

Figure 4-2. Git objects after a second commit

However, the blobs dead23 and feebie didn’t change from the first commit to the sec-
ond. Git realizes that the IDs haven’t changed and thus can be directly referenced and
shared by the new cafedood tree.

Pay attention to the direction of the arrows between commits. The parent commit or
commits come earlier in time. Therefore, in Git’s implementation, each commit points
back to its parent or parents. Many people get confused because the state of a repository
is conventionally portrayed in the opposite direction: as a dataflow from the parent
commit fo child commits.

In Chapter 6, we extend these pictures to show how the history of a repository is built
up and manipulated by various commands.

38 | Chapter4: BasicGit Concepts

Git Concepts at Work

With some tenets out of the way, let’s see how all these concepts and components fit
together in the repository itself. Let’s create a new repository and inspect the internal
files and object store in much greater detail.

Inside the .git Directory

To begin, initialize an empty repository using git init and then run find to reveal
what’s created.

$ mkdir /tmp/hello

$ cd /tmp/hello

$ git init

Initialized empty Git repository in /tmp/hello/.git/

List all the files in the current directory
$ find .

./.git

./ .git/hooks

./ .git/hooks/commit-msg.sample

./ .git/hooks/applypatch-msg.sample
./ .git/hooks/pre-applypatch.sample
./ .git/hooks/post-commit.sample

./ .git/hooks/pre-rebase.sample

./ .git/hooks/post-receive.sample
./ .git/hooks/prepare-commit-msg.sample
./ .git/hooks/post-update.sample

./ .git/hooks/pre-commit.sample

./ .git/hooks/update.sample
./.git/refs

./.git/refs/heads

./.git/refs/tags

./.git/config

./.git/objects

./.git/objects/pack
./.git/objects/info
./.git/description

./.git/HEAD

./.git/branches

./.git/info

./.git/info/exclude

As you can see, .git contains a lot of stuff. The files are displayed based on a template
directory that you can adjust if desired. Depending on the version of Git you are using,
your actual manifest may look a little different. For example, older versions of Git do
not use a .sample suffix on the .git/hooks files.

In general, you don’t have to view or manipulate the files in .git. These “hidden” files
are considered part of Git’s plumbing or configuration. Git has a small set of plumbing
commands to manipulate these hidden files, but you will rarely use them.

Git ConceptsatWork | 39

Initially, the .git/objects directory (the directory for all of Git’s objects) is empty, except
for a few placeholders.

$ find .git/objects

.git/objects
.git/objects/pack
.git/objects/info

Let’s now carefully create a simple object:

$ echo "hello world" > hello.txt
$ git add hello.txt

If you typed “hello world” exactly as it appears here (with no changes to spacing or
capitalization), then your objects directory should now look like this:

$ find .git/objects

.git/objects

.git/objects/pack

.git/objects/3b

.git/objects/3b/18e512dba79e4c8300dd08aeb3718e728b8dad

.git/objects/info

All this looks pretty mysterious. But it’s not, as the following sections explain.

Objects, Hashes, and Blobs

When it creates an object for hello.txt, Git doesn’t care that the filename is hello.txt.
Git cares only about what’s inside the file: the sequence of 12 bytes that represent “hello
world” and the terminating newline (the same blob created earlier). Git performs a few
operations on this blob, calculates its SHA1 hash, and enters it into the object store as
a file named after the hexadecimal representation of the hash.

How Do We Know a SHA1 Hash Is Unique?

There is an extremely slim chance that two different blobs yield the same SHA1 hash.
When this happens, it is called a collision. However, a SHA1 collision is so unlikely that
you can safely bank on it never interfering with our use of Git.

SHALI is a “cryptographically secure hash.” Until recently, there was no known way
(better than blind luck) for a user to cause a collision on purpose. But could a collision
happen at random? Let’s see.

With 160 bits, you have 2190 or about 10*® (1 with 48 zeroes after it) possible SHA1
hashes. That number is just incomprehensibly huge. Even if you hired a trillion people
to produce a trillion new unique blobs per second for a trillion years, you would still
only have about 103 blobs.

If you hashed 289 random blobs, you might find a collision.

Don’t trust us. Go read Bruce Schneier.

40 | Chapter4: BasicGit Concepts

The hash in this case is 3b18e512dba79e4c8300dd08aeb378e728b8dad. The 160 bits of an
SHAT1 hash correspond to 20 bytes, which takes 40 bytes of hexadecimal to display, so
the content is stored as .git/objects/3b/18e512dba79¢4c8300dd08aeb37f8e728b8dad.
Gitinserts a/after the first two digits to improve filesystem efficiency. (Some filesystems
slow down if you put too many files in the same directory; making the first byte of the
SHAL into a directory is an easy way to create a fixed, 256-way partitioning of the
namespace for all possible objects with an even distribution.)

To show that Git really hasn’t done very much with the content in the file (it’s still the
same comforting “hello world”), you can use the hash to pull it back out of the object
store any time you want:

$ git cat-file -p 3bi8e512dba79e4c8300ddo8aeb378e728b8dad
hello world

L)

Git also knows that 40 characters is a bit chancy to type by hand, so it

provides a command to look up objects by a unique prefix of the object
N

o hash:

$ git rev-parse 3bi8e512d
3b18e512dba79e4c8300dd08aeb37f8e728b8dad

Files and Trees

Now that the “hello world” blob is safely ensconced in the object store, what happened
to its filename? Git wouldn’t be very useful if it couldn’t find files by name.

As mentioned before, Git tracks the pathnames of files through another kind of object
called a tree. When you use git add, Git creates an object for the contents of each file
you add, but it doesn’t create an object for your tree right away. Instead, it updates the
index. The index is found in .git/index and keeps track of file pathnames and corre-
sponding blobs. Each time you run commands such as git add, git rm, or git mv, Git
updates the index with the new pathname and blob information.

Whenever you want, you can create a tree object from your current index by capturing
a snapshot of its current information with the low-level git write-tree command.
At the moment, the index contains exactly one file, hello.txt.

$ git 1s-files -s
100644 3b18e512dba79e4c8300dd08aeb37f8e728b8dad 0 hello.txt

Here you can see the association of the file, hello.txt, and the 3b18es5... blob.

Next, let’s capture the index state and save it to a tree object:

$ git write-tree
68aba62e560c0ebc3396e8ae9335232cd93a3f60

$ find .git/objects
.git/objects
.git/objects/68

Git Conceptsat Work | 41

.git/objects/68/aba62e560c0ebc3396e8ae9335232cd93a3f60
.git/objects/pack

.git/objects/3b
.git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad
.git/objects/info

Now there are two objects: the “hello world” object at 3b18e5 and a new one, the tree
object, at 68abab. As you can see, the SHA1 object name corresponds exactly to the
subdirectory and filename in .git/objects.

But what does a tree look like? Because it’s an object, just like the blob, you can use
the same low-level command to view it.

$ git cat-file -p 68aba6
100644 blob 3b18e512dba79e4c8300ddo8aeb37f8e728b8dad hello.txt

The contents of the object should be easy to interpret. The first number, 100644,
represents the file attributes of the object in octal, which should be familiar to anyone
who has used the Unix chmod command. Here, 3b18e5 is the object name of the hello
world blob, and hello.txt is the name associated with that blob.

It is now easy to see that the tree object has captured the information that was in the
index when you ran git 1s-files -s.

A Note on Git’s Use of SHA1

Before peering at the contents of the tree object in more detail, let’s check out an
important feature of SHA1 hashes:

$ git write-tree
68aba62e560c0ebc3396e8ae9335232cd93a3f60

$ git write-tree
68aba62e560c0ebc3396e8ae9335232cd93a3f60

$ git write-tree
68abab2e560c0ebc3396e8ae9335232cd93a3f60

Every time you compute another tree object for the same index, the SHA1 hash remains
exactly the same. Git doesn’t need to recreate a new tree object. If you’re following
these steps at the computer, you should be seeing exactly the same SHA1 hashes as the
ones published in this book.

In this sense, the hash function is a true function in the mathematical sense: For a given
input, it always produces the same output. Such a hash function is sometimes called a
digest to emphasize that it serves as a sort of summary of the hashed object. Of course,
any hash function, even the lowly parity bit, has this property.

That’s extremely important. For example, if you create the exact same content as
another developer, regardless of where or when or how both of you work, an identical
hash is proof enough that the full content is identical, too. In fact, Git treats them as
identical.

42 | Chapter4: BasicGit Concepts

But hold on a second—aren’t SHA1 hashes unique? What happened to the trillions of
people with trillions of blobs per second who never produce a single collision? This is
a common source of confusion among new Git users. So read on carefully, because if
you can understand this distinction, then everything else in this chapter is easy.

Identical SHA1 hashes in this case do not count as a collision. It would be a collision
only if two different objects produced the same hash. Here, you created two separate
instances of the very same content, and the same content always has the same hash.

Git depends on another consequence of the SHA1 hash function: it doesn’t matter
how you got a tree called 68aba62e560c0ebc3396e8ae9335232cd93a3f60. If you have it,
you can be extremely confident it is the same tree object that, say, another reader of
this book has. Bob might have created the tree by combining commits A and B from
Jennie and commit C from Sergey, whereas you got commit A from Sue and an update
from Lakshmi that combines commits B and C. The results are the same, and this
facilitates distributed development.

If you are asked to look for object 68aba62e560c0ebc3396e8ae9335232¢cd93a3f60 and can
find such an object, then, because SHA1 is a cryptographic hash, you can be confident
that you are looking at precisely the same data from which the hash was created.

The converse is also true: If you don’t find an object with a specific hash in your object
store, then you can be confident that you do not hold a copy of that exact object. In
sum, you can determine whether your object store does or does not have a particular
object even though you know nothing about its (potentially very large) contents. The
hash thus serves as a reliable label or name for the object.

But Git also relies on something stronger than that conclusion, too. Consider the most
recent commit (or its associated tree object). Because it contains, as part of its content,
the hash of its parent commits and of its tree and that in turn contains the hash of all
of its subtrees and blobs recursively through the whole data structure, it follows by
induction that the hash of the original commit uniquely identifies the state of the whole
data structure rooted at that commit.

Finally, the implications of our claim in the previous paragraph lead to a powerful use
of the hash function: It provides an efficient way of comparing two objects, even two
very large and complex data structures,? without transmitting either in full.

Tree Hierarchies

It’s nice to have information regarding a single file, as was shown in the previous section,
but projects contain complex, deeply nested directories that are refactored and moved
around over time. Let’s see how Git handles this by creating a new subdirectory that
contains an identical copy of the hello.txt file:

2. This data structure is covered in more detail in “Commit Graphs” on page 74 of Chapter 6.

Git ConceptsatWork | 43

$ pwd

/tmp/hello

$ mkdir subdir

$ cp hello.txt subdir/

$ git add subdir/hello.txt

$ git write-tree
492413269336d21fac079d4a4672e55d5d2147ac

$ git cat-file -p 4924132693
100644 blob 3b18e512dba79e4c8300ddo8aeb37f8e728b8dad hello.txt
040000 tree 68aba62e560c0ebc3396e8ae9335232cd93a3f60 subdir

The new top-level tree contains two items: the original hello.txt file as well as the new
subdir directory, which is of type tree instead of blob.

Notice anything unusual? Look closer at the object name of subdir. It’s your old friend,
68abab2e560c0ebc3396e8ae9335232cd93a3f60!

What just happened? The new tree for subdir contains only one file, hello.txt, and that
file contains the same old “hello world” content. So the subdir tree is exactly the same
as the older, top-level tree! And of course it has the same SHA1 object name as before.

Let’s look at the .git/objects directory and see what this most recent change affected:

$ find .git/objects

.git/objects

.git/objects/49
.git/objects/49/2413269336d21fac079d4a4672e55d5d2147ac
.git/objects/68
.git/objects/68/aba62e560c0ebc3396e8ae9335232cd93a3f60
.git/objects/pack

.git/objects/3b
.git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad
.git/objects/info

There are still only three unique objects: a blob containing “hello world”; a tree con-
taining hello.txt, which contains the text “hello world” plus a new line; and a second
tree that contains another reference to hello.txt along with the first tree.

Commits

The next object to discuss is the commit. Now that hello.txt has been added with
git add and the tree object has been produced with git write-tree, you can create a
commit object using low-level commands like this:

$ echo -n "Commit a file that says hello\n" \

| git commit-tree 492413269336d21fac079d4a4672e55d5d2147ac
3ede4622cc241bcb09683af36360e7413b9ddf6c

The result will look something like this:

$ git cat-file -p 3ede462
tree 492413269336d21fac079d4a4672e55d5d2147ac
author Jon Loeliger <jdl@example.com> 1220233277 -0500

44 | Chapter4: BasicGit Concepts

committer Jon Loeliger <jdl@example.com> 1220233277 -0500
Commit a file that says hello

If you’re following along on your computer, you probably found that the commit object
you generated does not have the same name as the one in this book. If you’ve understood
everything so far, the reason for that should be obvious: it’s not the same commit. The
commit contains your name and the time you made the commit, so of course it is
different, however subtly. On the other hand, your commit does have the same tree.
This is why commit objects are separate from their tree objects: different commits often
refer to exactly the same tree. When that happens, Git is smart enough to transfer
around only the new commit object, which is tiny, instead of the tree and blob objects,
which are probably much larger.

In real life, you can (and should!) pass over the low-level git write-tree and
git commit-tree steps, and just use the git commit command. You don’t need to
remember all those plumbing commands to be a perfectly happy Git user.

A basic commit object is fairly simple, and it’s the last ingredient required for a real
RCS. The commit object just shown is the simplest possible one, containing;:
* The name of a tree object that actually identifies the associated files

* The name of the person who composed the new version (the author) and the time
when it was composed

* The name of the person who placed the new version into the repository (the
committer) and the time when it was committed

* A description of the reason for this revision (the commit message)

By default, the author and committer are the same; there are a few situations where
they’re different.

N

You can use the command git show --pretty=fuller to see additional
details about a given commit.

Commit objects are also stored in a graph structure, although it’s completely different
from the structures used by tree objects. When you make a new commit, you can give
it one or more parent commits. By following back through the chain of parents, you
can discover the history of your project. More details about commits and the commit
graph are given in Chapter 6.

Git ConceptsatWork | 45

Tags

Finally, the last object Git manages is the tag. Although Git implements only one kind
of tag object, there are two basic tag types, usually called lightweight and annotated.

Lightweight tags are simply references to a commit object and are usually considered
private to a repository. These tags do not create a permanent object in the object store.
An annotated tag is more substantial and creates an object. It contains a message,
supplied by you, and can be digitally signed using a GnuPG key according to RFC4880.

Git treats both lightweight and annotated tag names equivalently for the purposes of
naming a commit. However, by default, many Git commands work only on annotated
tags, because they are considered “permanent” objects.

You create an annotated, unsigned tag with a message on a commit using the git tag
command:

$ git tag -m "Tag version 1.0" V1.0 3ede462

You can see the tag object via the git cat-file -p command, but what is the SHA1 of
the tag object? To find it, use the Tip from “Objects, Hashes, and Blobs” on page 40:

$ git rev-parse Vi.0
6b608c1093943939ae78348117dd18b1ba151c6a

$ git cat-file -p 6b608c

object 3ede4622cc241bcb09683at36360e7413b9ddf6c

type commit

tag V1.0

tagger Jon Loeliger <jdl@example.com> Sun Oct 26 17:07:15 2008 -0500

Tag version 1.0

In addition to the log message and author information, the tag refers to the commit
object 3ede462. Usually, Git tags a particular commit as named by some branch. Note
that this behavior is notably different from that of other VCSs.

Git usually tags a commit object, which points to a tree object, which encompasses the
total state of the entire hierarchy of files and directories within your repository.

Recall from Figure 4-1 that the V1.0 tag points to the commit named 1492, which in
turn points to a tree (8675309) that spans multiple files. Thus, the tag simultaneously
applies to all files of that tree.

This is unlike CVS, for example, which will apply a tag to each individual file and then
rely on the collection of all those tagged files to reconstitute a whole tagged revision.
And whereas CVS lets you move the tag on an individual file, Git requires a new commit,
encompassing the file state change, onto which the tag will be moved.

46 | Chapter4: BasicGit Concepts

Download from Wow! eBook <www.wowebook.com>

CHAPTER 5
File Management and the Index

When your project is under the care of a VCS, you edit in your working directory and
commit your changes to your repository for safekeeping. Git works similarly but inserts
another layer, the index, between the working directory and the repository to stage, or
collect, alterations. When you manage your code with Git, you edit in your working
directory, accumulate changes in your index, and commit whatever has amassed in the
index as a single changeset.

You can think of Git’s index as a set of intended or prospective modifications. You add,
remove, move, or repeatedly edit files right up to the culminating commit, which ac-
tualizes the accumulated changes in the repository. Most of the critical work actually
precedes the commit step.

Remember, a commit is a two-step process: stage your changes and
commit the changes. An alteration found in the working directory but
%+ not in the index isn’t staged and thus can’t be committed.

For convenience, Git allows you to combine the two steps when you
add or change a file:

$ git commit index.html
But if you move or remove a file, you don’t have that luxury. The two
steps must then be separate:

$ git rm index.html
$ git commit

This chapter! explains how to manage the index and your corpus of files. It describes
how to add and remove a file from your repository, how to rename a file, and how to
catalog the state of the index. The finale of this chapter shows how to make Git ignore
temporary and other irrelevant files that need not be tracked by version control.

1. T have it on good authority that this chapter should, in fact, be titled “Things Bart Massey Hates About
Git.”

47

It's All About the Index

Linus Torvalds argued on the Git mailing list that you can’t grasp and fully appreciate
the power of Git without first understanding the purpose of the index.

Git’s index doesn’t contain any file content; it simply tracks what you want to commit.
When you run git commit, Git checks the index rather than your working directory to
discover what to commit. (Commits are covered fully in Chapter 6.)

Although many of Git’s “porcelain” (higher level) commands are designed to hide the
details of the index from you and make your job easier, it is still important to keep the
index and its state in mind.

You can query the state of the index at any time with the command git status. It
explicitly calls out what files Git considers staged. You can also peer into the internal
state of Git with “plumbing” commands such as git 1s-files.

You’ll also likely find the git diff command useful during staging. (Diffs are discussed
extensively in Chapter 8.) This command can display two different sets of changes:
git diff displays the changes that remain in your working directory and are not staged;
git diff --cached shows changes that are staged and will therefore contribute to your
next commit.

You can use both variations of git diff to guide you through the process of staging
changes. Initially, git diffisa large set of all modifications, and --cached is empty. As
you stage, the former set will shrink and the latter set will grow. If all your working
changes are staged and ready for a commit, the --cached will be full and git diff will
show nothing.

File Classifications in Git

Git classifies your files into three groups: tracked, ignored, and untracked.

Tracked
A tracked file is any file already in the repository or any file that is staged in the
index. To add a new file somefile to this group, run git add somefile.

Ignored

An ignored file must be explicitly declared invisible or ignored in the repository
even though it may be present within your working directory. A software project
tends to have a good number of ignored files. Common ignored files include tem-
porary and scratch files, personal notes, compiler output, and most files generated
automatically during a build. Git maintains a default list of files to ignore, and you
can configure your repository to recognize others. Ignored files are discussed in
detail later in this chapter (see “The .gitignore File” on page 58).

48 | Chapter5: File Management and the Index

Untracked
An untracked file is any file not found in either of the previous two categories. Git
considers the entire set of files in your working directory and subtracts both the
tracked files and the ignored files to yield what is untracked.

Let’s explore the different categories of files by creating a brand new working directory
and repository and then working with some files.

$ cd /tmp/my_stuff
$ git init

$ git status

On branch master

#

Initial commit

#

nothing to commit (create/copy files and use "git add" to track)

$ echo "New data" > data

$ git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

data

nothing added to commit but untracked files present (use "git add" to track)

Initially, there are no files and the tracked, ignored, and therefore untracked sets are
empty. Once you create data, git status reports a single, untracked file.

Editors and build environments often leave temporary or transient files among your
source code. Such files usually shouldn’t be tracked as source files in a repository. To
have Git ignore a file within a directory, simply add that file’s name to the special
file .gitignore:

Manually create an example junk file
$ touch main.o

$ git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

data

#
#
#
main.o

$ echo main.o > .gitignore

File Classifications in Git | 49

$ git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#
#
.gitignore

data

Thus main.o is ignored, but git status now shows a new, untracked file
called .gitignore. Although the .gitignore file has special meaning to Git, it is managed
just like any other normal file within your repository. Until .gitignore is added, Git

considers it untracked.

The next few sections demonstrate different ways to change the tracked status of a file
as well as how to add or remove it from the index.

Using git add

The command git add stages a file. In terms of Git’s file classifications, if a file is
untracked, then git add converts that file’s status to tracked. When git add is used on
a directory name, all of the files and subdirectories beneath it are staged recursively.

Let’s continue the example from the previous section.

$ git status
On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)

#

#

.gitignore
data

Track both new files.
$ git add data .gitignore

$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)

#

#

new file: .gitignore
new file: data

#

50 | Chapter5: File Management and the Index

The first git status shows you that two files are untracked and reminds you that to
make a file tracked, you simply need to use git add. After git add, both data
and .gitignore are staged and tracked, and ready to be added to the repository on the
next commit.

In terms of Git’s object model, the entirety of each file at the moment you issued
git add was copied into the object store and indexed by its resulting SHA1 name.
Staging a file is also called caching a file? or “putting a file in the index.”

You can use git ls-files to peer under the object model hood and find the SHA1
values for those staged files:

$ git 1s-files --stage

100644 0487144090ad950161955271cf0a2d6c6a83ad9a 0 .gitignore

100644 534469f67ae5ce72a7a274faft30dee3c2ea1746d 0 data

Most of the day-to-day changes within your repository will likely be simple edits. After
any edit and before you commit your changes, run git add to update the index with
the absolute latest and greatest version of your file. If you don’t, you’ll have two different
versions of the file: one captured in the object store and referenced from the index, and
the other in your working directory.

To continue the example, let’s change the file data so it’s different from the one in the
index and use the arcane git hash-object file command (which you’ll hardly ever
invoke directly) to directly compute and print the SHA1 hash for the new version.

$ git 1s-files --stage

100644 0487f44090ad950f61955271cfoa2d6cba83ad9a 0 .gitignore
100644 534469f67ae5ce72a7a274faf30dee3c2eal746d 0 data

edit "data" to contain...

$ cat data

New data

And some more data now

$ git hash-object data
e476983139f6e4f453f0fe4a859410f63b58b500

After the file is amended, the previous version of the file in the object store and index
has SHA1 534469f67ae5ce72a7a274faf30dee3c2eal746d. However, the updated version
of the file has SHA1 e476983f39f6e4f453f0fe4a85941063b58b500. Let’s update the
index to contain the new version of the file:

$ git add data

$ git 1s-files --stage

100644 0487144090ad950161955271cf0a2d6c6a83ad9a 0 .gitignore

100644 e476983f39f6e4f453f0fe4a859410f63b58b500 0 data

2. You did see the --cached in the git status output, didn’t you?

Using gitadd | 51

The index now has the updated version of the file. Again, “the file data has been
staged,” or speaking loosely, “the file data is in the index.” The latter phrase is less
accurate because the file is actually in the object store and the index merely refers to it.

The seemingly idle play with SHA1 hashes and the index brings home a key point:
Think of git add not as “add this file,” but more as “add this content.”

In any event, the important thing to remember is that the version of a file in your
working directory can be out of sync with the version staged in the index. When it
comes time to make a commit, Git uses the version in the index.

B
)

The --interactive option to either git add orgit commit can be a useful
way to explore which files you would like to stage for a commit.

Some Notes on Using git commit

Using git commit --all

The -a or --all option to git commit causes it to automatically stage all unstaged,
tracked file changes—including removals of tracked files from the working copy—
before it performs the commit.

Let’s see how this works by setting up a few files with different staging characteristics:

Setup test repository

$ mkdir /tmp/commit-all-example

$ cd /tmp/commit-all-example

$ git init

Initialized empty Git repository in /tmp/commit-all-example/.git/

$ echo something >> ready

$ echo somthing else >> notyet

$ git add ready notyet

$ git commit -m "Setup"

[master (root-commit) 71774a1] Setup

2 files changed, 2 insertions(+), 0 deletions(-)
create mode 100644 notyet

create mode 100644 ready

Modify file "ready" and "git add" it to the index
edit ready
$ git add ready

Modify file "notyet", leaving it unstaged
edit notyet

Add a new file in a subdirectory, but don't add it
$ mkdir subdir
$ echo Nope >> subdir/new

52 | Chapter5: File Management and the Index

Use git status to see what a regular commit (without command line options) would

do:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: ready

Changed but not updated:
(use "git add <file>..." to update what will be committed)

modified: notyet

Untracked files:
(use "git add <file>..." to include in what will be committed)

P L E E L E

subdir/

Here, the index is prepared to commit just the one file named ready, because it’s the
only file that’s been staged.

However, if you run git commit --all, Git recursively traverses the entire repository;
stages all known, modified files and commits those. In this case, when your editor
presents the commit message template, it should indicate that the modified and known
file notyet will, in fact, be committed as well:

Please enter the commit message for your changes.

(Comment lines starting with '#' will not be included)

On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: notyet

modified: ready

#

Untracked files:

(use "git add <file>..." to include in what will be committed)
#

subdir/

Finally, because the directory named subdir/ is new and no file name or path within it
is tracked, not even the --all option causes it to be committed:

Created commit db7de5f: Some --all thing.
2 files changed, 2 insertions(+), 0 deletions(-)

While Git recursively traverses the repository looking for modified and removed files,
the completely new file subdir/ directory and all of its files do not become part of the
commit.

Some Notes on Using git commit | 53

Writing Commit Log Messages

If you do not directly supply a log message on the command line, Git runs an editor
and prompts you to write one. The editor chosen is selected from your configuration
as described in “Configuration Files” on page 28 of Chapter 3.

If you are in the editor writing a commit log message and for some reason decide to
abort the operation, simply exit the editor without saving; this results in an empty log
message. If it’s too late for that because you’ve already saved, just delete the entire log
message and save again. Git will not process an empty (no text) commit.

Using git rm

The command git rm is, naturally the inverse of git add. It removes a file from both
the repository and the working directory. However, because removing a file tends to
be more problematic (if something goes wrong) than adding a file, Git treats the removal
of a file with a bit more care.

Git will remove a file only from the index or from the index and working directory
simultaneously. Git will not remove a file just from the working directory; the regular
rm command may be used for that purpose.

Removing a file from your directory and the index does not remove the file’s existing
history from the repository. Any versions of the file that are part of its history already
committed in the repository remain in the object store and retain that history.

Continuing the example, let’s introduce an “accidental” additional file that shouldn’t
be staged and see how to remove it.

$ echo "Random stuff" > oops

Can't "git rm" files Git considers "other"

This should be just "rm oops"

$ git rm oops

fatal: pathspec 'oops' did not match any files

Because git rm is also an operation on the index, the command won’t work on a file
that hasn’t been previously added to the repository or index; Git must first be aware of
a file. So let’s accidentally stage the oops file:

Accidentally stage "oops" file
$ git add oops

$ git status
On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
#

54 | Chapter5: File Management and the Index

HoH H R

new file: .gitignore
new file: data
new file: oops

To convert a file from staged to unstaged, use git rm --cached:

$ git 1s-files --stage

100644 0487144090ad950161955271cf0a2d6c6a83ad9a 0 .gitignore
100644 e476983f39f6e4f453f0fe4a859410f63b58b500 0 data
100644 fcd87b055f261557434fa9956e6ce29433a5cd1ic 0 oops

$ git rm --cached oops
m 'oops'

$ git 1s-files --stage
100644 0487144090ad950161955271cf0a2d6c6a83ad9a 0 .gitignore
100644 e476983f39f6e4f453f0fe4a859410f63b58b500 0 data

Whereas git rm --cached removes the file from the index and leaves it in the working
directory, git rm removes the file from both the index and the working directory.

Using git rm --cached to make a file untracked while leaving a copy in
the working directory is dangerous, because you may forget that it is no
longer being tracked. Using this approach also overrides Git’s check that
the working file’s contents are current. Be careful.

If you want to remove a file once it’s been committed, just stage the request through a
simple git rm filename:

$ git commit -m "Add some files"

Created initial commit 5b22108: Add some files

2 files changed, 3 insertions(+), 0 deletions(-)
create mode 100644 .gitignore

create mode 100644 data

$ git rm data
m 'data’

$ git status
On branch master
Changes to be committed:

#
#
#
#

(use "git reset HEAD <file>..." to unstage)

deleted: data

Before Git removes a file, it checks to make sure the version of the file in the working
directory matches the latest version in the current branch (the version that Git com-
mands call the HEAD). This verification precludes the accidental loss of any changes (due
to your editing) that may have been made to the file.

Using gitrm | 55

Use git rm -f to force the removal of your file. Force is an explicit man-

date and removes the file even if you have altered it since your last com-
N .

oy, mit.

And in case you really meant to keep a file that you accidentally removed, simply add
it back:

$ git add data
fatal: pathspec 'data' did not match any files

Darn! Git removed the working copy, too! But don’t worry. VCSs are good at recovering
old versions of files:

$ git checkout HEAD -- data

$ cat data

New data
And some more data now

$ git status
On branch master
nothing to commit (working directory clean)

Using git mv

Suppose you need to move or rename a file. You may use a combination of git rm on
the old file and git add on the new file, or you may use git mv directly. Given a
repository with a file named stuff that you want to rename newstuff, the following
sequences of commands are equivalent Git operations:

$ mv stuff newstuff

$ git rm stuff
$ git add newstuff

and

$ git mv stuff newstuff
In both cases, Git removes the pathname stuff from the index, adds a new pathname
newstuff, keeps the original content for stuff in the object store, and reassociates that
content with the pathname newstuff.
With data back in the example repository, let’s rename it and commit the change:

$ git mv data mydata

$ git status

On branch master

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

#
#
renamed: data -> mydata
#

56 | Chapter5: File Management and the Index

$ git commit -m "Moved data to mydata"

Created commit ec7d888: Moved data to mydata

1 files changed, 0 insertions(+), 0 deletions(-)
rename data => mydata (100%)

If you happen to check the history of the file, you may be a bit disturbed to see that Git
has apparently lost the history of the original data file and remembers only that it
renamed data to the current name:

$ git log mydata

commit ec7d888b6492370a8ef43f56162a2a4686aea3bs

Author: Jon Loeliger <jdl@example.com>
Date: Sun Nov 2 19:01:20 2008 -0600

Moved data to mydata

Git does still remember the whole history, but the display is limited to the particular
filename you specified in the command. The --follow option asks Git to trace back
through the log and find the whole history associated with the content:

$ git log --follow mydata

commit ec7d888b6492370a8ef43f56162a2a4686aea3bs

Author: Jon Loeliger <jdl@example.com>
Date: Sun Nov 2 19:01:20 2008 -0600

Moved data to mydata

commit 5b22108820b6638a86bf57145a1363a7ab71818
Author: Jon Loeliger <jdl@example.com>
Date: Sun Nov 2 18:38:28 2008 -0600

Add some files

One of the classic problems with VCSs is that renaming a file can cause them to lose
track of a file’s history. Git preserves this information even after a rename.

A Note on Tracking Renames

Let’s talk a bit more about how Git keeps track of file renames.

SVN, as an example of traditional revision control, does a lot of work tracking when a
file is renamed and moved around because it keeps track only of diffs between files. If
you move a file, it’s essentially the same as deleting all the lines from the old file and
adding them to the new one. But it would be inefficient to transfer and store all the
contents of the file again whenever you do a simple rename; imagine renaming a whole
subdirectory that contains thousands of files.

To alleviate this situation, SVN tracks each rename explicitly. If you want to rename
hello.txt to subdir/hello.txt, you must use svn mv instead of svn rm and svn add on the
files. Otherwise, SVN has no way to see that it’s a rename and must go through the
inefficient delete/add sequence just described.

ANote on Tracking Renames | 57

Next, given this exceptional feature of tracking a rename, the SVN server needs a special
protocol to tell its clients, “please move hello.txt into subdir/hello.txt.” Furthermore,
each SVN client must ensure that it performs this (relatively rare) operation correctly.

Git, on the other hand, doesn’t keep track of a rename. You can move or copy
hello.txt anywhere you want, but doing so affects only tree objects. (Remember that
tree objects store the relationships between content, whereas the content itself is stored
in blobs.) A look at the differences between two trees makes it obvious that the blob
named 3b18e5. .. has moved to a new place. And even if you don’t explicitly examine
the differences, every part of the system knows it already has that blob, so every part
knows it doesn’t need another copy of it.

In this situation, as in many other places, Git’s simple hash-based storage system
simplifies a lot of things that baffle or elude other RCS.

Problems with Tracking a Rename
Tracking the renaming of a file engenders a perennial debate among developers of VCSs.

A simple rename is fodder enough for dissension. The argument becomes even more
heated when the file’s name changes and then its content changes. Then the scenarios
turn the parley from practical to philosophical: Is that “new” file really a rename, or is
it merely similar to the old one? How similar should the new file be before it’s considered
the same file? If you apply someone’s patch that deletes a file and recreates a similar
one elsewhere, how is that managed? What happens if a file is renamed in two different
ways on two different branches? Is it less error prone to automatically detect renames
in such a situation, as Git does, or to require the user to explicitly identify renames, as
SVN does?

In real life use, it seems that Git’s system for handling file renames is superior, because
there are just too many ways for a file to be renamed and humans are simply not smart
enough to make sure SVN knows about them all. But there is no perfect system for
handling renames ... yet.

The .gitignore File

Earlier in this chapter you saw how to use the .gitignore file to pass over main.o, an
irrelevant file. As in that example, you can skip any file by adding its name
to .gitignore in the same directory. Additionally, you can ignore the file everywhere by
adding it to the .gitignore file in the topmost directory of your repository.

But Git also supports a much richer mechanism. A .gitignore file can contain a list of
filename patterns that specify what files to ignore. The format of .gitignore is as follows:

58 | Chapter5: File Management and the Index

* Blank lines are ignored, and lines starting with a pound sign (#) can be used for
comments. However, the # does not represent a comment if it follows other text
on the line.

* A simple, literal filename matches a file in any directory with that name.

* A directory name is marked by a trailing slash character (/). This matches the
named directory and any subdirectory but does not match a file or a symbolic link.

* A pattern containing shell globbing characters, such as an asterisk (*), is expanded
as a shell glob pattern. Just as in standard shell globbing, the match cannot extend
across directories and so an asterisk can match only a single file or directory name.
But an asterisk can still be part of a pattern that includes slashes to specify directory
names (e.g., debug/32bit/*.0).

* An initial exclamation point (!) inverts the sense of the pattern on the rest of the
line. Additionally, any file excluded by an earlier pattern but matching an inversion
rule is included. An inverted pattern overrides lower precedence rules.

Furthermore, Git allows you to have a .gitignore file in any directory within your
repository. Each file affects its directory and all subdirectories. The .gitignore rules also
cascade: you can override the rules in a higher directory by including an inverted pattern
(using the initial !) in one of the subdirectories.

To resolve a hierarchy with multiple .gitignore directories, and to allow command-line
addenda to the list of ignored files, Git honors the following precedence, from highest
to lowest:

* Patterns specified on the command line.
* Patterns read from .gitignore in the same directory.

* Patterns in parent directories, proceeding upward. Hence, the current directory’s
patterns overrule the parents’ patterns, and the parents close to the current
directory take precedence over higher parents.

* Patterns from the .git/info/exclude file.

* Patterns from the file specified by the configuration variable core.excludefile.

Because a .gitignore is treated as a regular file within your repository, it is copied during
clone operations and applies to all copies of your repository. In general, you should
place entries into your version controlled .gitignore files only if the patterns apply to
all derived repositories universally.

If the exclusion pattern is somehow specific to your one repository and should not (or
might not) be applicable to anyone else’s clone of your repository, then the patterns
should instead go into the . git/info/exclude file, because it is not propagated during clone
operations. Its pattern format and treatment is the same as .gitignore files.

Here’s another scenario. It’s typical to exclude .o files, which are generated from source
by the compiler. To ignore .o files, place *o in your top level .gitignore. But what if you
also had a particular *o file that was, say, supplied by someone else and for which you

The .gitignore File | 59

couldn’t generate a replacement yourself? You’d likely want to explicitly track that
particular file. You might then have a configuration like this:
$ cd my_package

$ cat .gitignore
*.0

$ cd my_package/vendor_files
$ cat .gitignore
ldriver.o

The combination of rules means that Git will ignore all .o files within the repository
but will track one exception, the file driver.o within the vendor_files subdirectory.

A Detailed View of Git's Object Model and Files

By now, you should have the basic skills to manage files. Nonetheless, keeping track
of what file is where—working directory, index, and repository—can be confusing.
Let’s follow a series of four pictures to visualize the progress of a single file named
filel as it is edited, staged in the index, and finally committed. Each picture simulta-
neously shows your working directory, the index, and the object store. For simplicity,
let’s stick to just the master branch.

The initial state is shown in Figure 5-1. Here, the working directory contains two files
named filel and file2, with contents “foo” and “bar,” respectively.

In addition to filel and file2 in the working directory, the master branch has a commit
that records a tree with exactly the same “foo” and “bar,” contents for files filel and
file2. Furthermore, the index records SHA1 values a23bf and 9d3a2 (respectively) for
exactly those same file contents. The working directory, the index, and the object store
are all synchronized and in agreement. Nothing is dirty.

Figure 5-2 shows the changes after editing filel in the working directory so that its
contents now consist of “quux.” Nothing in the index nor in the object store has
changed, but the working directory is now considered dirty.

Some interesting changes take place when you use the command git add file1 to stage

the edit of filel.

As Figure 5-3 shows, Git first takes the version of filel from the working directory,
computes a SHA1 hash ID (bd71363) for its contents, and places that ID in the object
store. Next, Git records in the index that the pathname file1 has been updated to the
new bd71363 SHA1.

Because the contents of file2 haven’t changed and no git add staged file2, the index
continues to reference the original blob object for it.

60 | Chapter5: File Management and the Index

Working directory
project

filel file2
foo bar

Index

Object store

a23bf 9d3a2

foo bar

Figure 5-1. Initial files and objects

At this point, you have staged filel in the index, and the working directory and index
agree. However, the index is considered dirty with respect to HEAD because it differs
from the tree recorded in the object store for the HEAD commit of the master branch.3

Finally, after all changes have been staged in the index, a commit applies them to the
repository. The effects of git commit are depicted in Figure 5-4.

As Figure 5-4 shows, the commit initiates three steps. First, the virtual tree object that
is the index gets converted into a real tree object and placed into the object store under
its SHA1 name. Second, a new commit object is created with your log message. The
new commit points to the newly created tree object and also to the previous or parent
commit. Third, the master branch ref is moved from the most recent commit to the
newly created commit object, becoming the new master HEAD.

3. You can geta dirty index in the other direction, too, irrespective of the working directory state. By reading
a non-HEAD commit out of the object store into the index and not checking out the corresponding files
into the working directory, you create the situation where the index and working directory are not in
agreement and where the index is still dirty with respect to the HEAD.

A Detailed View of Git's Object Model and Files | 61

Download from Wow! eBook <www.wowebook.com>

Working directory
project
1. Edit file1 A
¥ 4
file1 file2
foo quux bar
Index
Object store -
A
a23bf 9d3a2
foo bar

Figure 5-2. After editing filel

An interesting detail is that the working directory, index, and object store (represented
by the HEAD of master) are once again all synchronized and in agreement, just as they
were in Figure 5-1.

62 | Chapter5: File Management and the Index

Working directory

project
3 P
filel file2
bar
Index 2a.Add file to
Object store
Object store

3 § "\ 2b. Update index
Ko
PR AV
a23bf 9d3a2 bd71363
foo bar quux

Figure 5-3. After git add

A Detailed View of Git's Object Model and Files | 63

Working directory

project
¥ P
file1 file2
quux bar
Index
3a. Convertindex into tree object
Object store
.} 3c Update
B (D

PR t%i A4
a23bf 9d3a2 bd71363
foo bar quux

Figure 5-4. After git commit

64 | Chapter5: File Management and the Index

CHAPTER 6
Commits

In Git, a commit is used to record changes to a repository.

At face value, a Git commit seems no different from a commit or check in found in
other VCS. Under the hood, however, a Git commit operates in a unique way.

When a commit occurs, Git records a snapshot of the index and places that snapshot
in the object store. (Preparing the index for a commit is covered in Chapter 5.) This
snapshot does not contain a copy of every file and directory in the index, because such
a strategy would require enormous and prohibitive amounts of storage. Instead, Git
compares the current state of the index to the previous snapshot and so derives a list
of affected files and directories. Git creates new blobs for any file that has changed and
new trees for any directory that has changed, and it reuses any blob or tree object that
has not changed.

Commit snapshots are chained together, with each new snapshot pointing to its
predecessor. Over time, a sequences of changes is represented as a series of commits.

It may seem expensive to compare the entire index to some prior state, yet the whole
process is remarkably fast because every Git object has an SHA1 hash. If two objects,
even two subtrees, have the same SHA1 hash, the objects are identical. Git can avoid
swaths of recursive comparisons by pruning subtrees that have the same content.

There is a one-to-one correspondence between a set of changes in the repository and a
commit: A commit is the only method of introducing changes to a repository, and any
change in the repository must be introduced by a commit. This mandate provides
accountability. Under no circumstance should repository data change without a record
of the change! Just imagine the chaos if, somehow, content in the master repository
changed and there was no record of how it happened, who did it, or why.

Although commits are most often introduced explicitly by a developer, Git itself can
introduce commits. As you’ll see in Chapter 9, a merge operation causes a commit in
the repository in addition to any commits made by users before the merge.

How you decide when to commit is pretty much up to you and your preferences or
development style. In general, you should perform a commit at well-defined points in

65

time when your development is at a quiescent stage, such as when a test suite passes,
when everyone goes home for the day, or any number of other reasons.

However, don’t hesitate to introduce commits! Git is wellsuited to frequent commits
and provides a rich set of commands for manipulating them. Later, you’ll see how
several commits—each with small, well-defined changes—can also lead to better
organization of changes and easier manipulation of patch sets.

Atomic Changesets

Every Git commit represents a single, atomic changeset with respect to the previous
state. Regardless of the number of directories, files, lines, or bytes that change with a
commit,! either all changes apply or none do.

In terms of the underlying object model, atomicity just makes sense: A commit snapshot
represents the total set of modified files and directories. It must represent one tree state
or the other, and a changeset between two state snapshots represents a complete tree-
to-tree transformation. (You can read about derived differences between commits in
Chapter 8.)

Consider the workflow of moving a function from one file to another. If you perform
the removal with one commit and then follow with a second commit to add it back,
there remains a small “semantic gap” in the history of your repository during which
time the function is gone. Two commits in the other order is problematic, too. In either
case, before the first commit and after the second your code is semantically consistent,
but after the first commit, the code is faulty.

However, with an atomic commit that simultaneously deletes and adds the function,
no such semantic gap appears in the history. You can learn how best to construct and
organize your commits in Chapter 10.

Git doesn’t care why files are changing. That is, the content of the changes doesn’t
matter. As the developer, you might move a function from here to there and expect this
to be handled as one unitary move. But you could, alternatively, commit the removal
and then later commit the addition. Git doesn’t care. It has nothing to do with the
semantics of what is in the files.

But this does bring up one of the key reasons why Git implements atomicity: It allows
you to structure your commits more appropriately by following some best practice
advice.

Ultimately, you can rest assured that Git has not left your repository in some transitory
state between one commit snapshot and the next.

1. Git also records a mode flag indicating the executability of each file. Changes in this flag are also part of
a changeset.

66 | Chapter6: Commits

Identifying Commits

Whether you code individually or with a team, identifying individual commits is an
essential task. For example, to create a branch, you must choose a commit from which
to diverge; to compare code variations, you must specify two commits; and to edit the
commit history, you must provide a collection of commits. In Git, you can refer to every
commit via an explicit or an implied reference.

You’ve already seen explicit references and a few implied references. The unique, 40-
hexadecimal-digit SHA1 commit ID is an explicit reference, whereas HEAD, which always
points to the most recent commit, is an implied reference. At times, though, neither
reference is convenient. Fortunately, Git provides many different mechanisms for nam-
ing a commit, each with advantages and some more useful than others, depending on
the context.

For example, when discussing a particular commit with a colleague working on the
same data but in a distributed environment, it’s best to use a commit name guaranteed
to be the same in both repositories. On the other hand, if you’re working within your
own repository and need to refer to the state a few commits back on a branch, a simple
relative name works perfectly.

Absolute Commit Names

The most rigorous name for a commit is its hash identifier. The hash ID is an absolute
name, meaning it can only refer to exactly one commit. It doesn’t matter where the
commit is among the entire repository’s history; the hash ID always identifies the same
commit.

Each commit ID is globally unique, not just for one repository but for any and all
repositories. For example, if a developer writes you with reference to a particular
commit ID in his repository and if you find the same commit in your repository, then
you can be certain that you both have the same commit with the same content. Fur-
thermore, because the data that contribute to a commit ID contain the state of the
whole repository tree as well as the prior commit state, by an inductive argument, an
even stronger claim can be made: You can be certain that both of you are discussing
the same complete line of development leading up to and including the commit.

Because a 40-hexadecimal-digit SHA1 number makes for a tedious and error-prone
entry, Git allows you to shorten this number to a unique prefix within a repository’s
object database. Here is an example from Git’s own repository.

$ git log -1 --pretty=oneline HEAD
1fbb58b4153e90eda08c2b022ee32d90729582e6 Merge git://repo.or.cz/git-gui

$ git log -1 --pretty=oneline 1fbb

error: short SHA1 1fbb is ambiguous.

fatal: ambiguous argument '1fbb': unknown revision or path
not in the working tree.

Identifying Commits | 67

Use '--' to separate paths from revisions

$ git log -1 --pretty=oneline 1fbb58
1fbb58b4153e90eda08c2b022ee32d90729582e6 Merge git://repo.or.cz/git-gui

Although a tag name isn’t a globally unique name, it is absolute in that it points to a
unique commit and doesn’t change over time (unless you explicitly change it, of
course).

refs and symrefs

A ref is an SHA1 hash ID that refers to an object within the Git object store. Although
a ref may refer to any Git object, it usually refers to a commit object. A symbolic
reference, or symref, is a name that indirectly points to a Git object. It is still just a ref.

Local topic branch names, remote tracking branch names, and tag names are all refs.

Each symbolic ref has an explicit, full name that begins with refs/ and each is stored
hierarchically within the repository in the .git/refs/ directory. There are basically three
different namespaces represented in refs/: refs/heads/ref for your local branches,
refs/remotes/ref for your remote tracking branches, and refs/tags/ref for your tags.
(Branches are covered in more detail in Chapter 7 and in Chapter 12.)

For example, a local topic branch named dev is really a short form of refs/heads/dev.
Remote tracking branches are in the refs/remotes/ namespace, so origin/master really
names refs/remotes/origin/master. And finally, a tag such asv2.6.23 is short for refs/
tags/v2.6.23.

You can use either a full ref name or its abbreviation, but if you have a branch and a
tag with the same name, Git applies a disambiguation heuristic and uses the first match
according to this list from the git rev-parse manpage:

.git/ref

.git/refs/ref

.git/refs/tags/ref

.git/refs/heads/ref

.git/refs/remotes/ref

.git/refs/remotes/ref/HEAD

The first rule is usually just for a few refs described later: HEAD, ORIG_HEAD, FETCH_HEAD,
CHERRY_PICK_HEAD, and MERGE_HEAD.

\

W

Technically, the name of the Git directory, .git, can be changed. Thus,
Git’s internal documentation uses the variable $GIT DIR instead of the
W literal .git.

Git maintains several special symrefs automatically for particular purposes. They can
be used anywhere a commit is used.

68 | Chapter6: Commits

HEAD
HEAD always refers to the most recent commit on the current branch. When you
change branches, HEAD is updated to refer to the new branch’s latest commit.

ORIG HEAD
Certain operations, such as merge and reset, record the previous version of HEAD in
ORIG_HEAD just prior to adjusting it to a new value. You can use ORIG_HEAD to recover
or revert to the previous state or to make a comparison.

FETCH_HEAD
When remote repositories are used, git fetch records the heads of all branches
fetched in the file .git/FETCH_HEAD. FETCH_HEAD is a shorthand for the head of
the last branch fetched and is valid only immediately after a fetch operation. Using
this symref, you can find the HEAD of commits from git fetch even if an anonymous
fetch that doesn’t specifically name a branch is used. The fetch operation is covered
in Chapter 12.

MERGE_HEAD
When a merge is in progress, the tip of the other branch is temporarily recorded in
the symref MERGE_HEAD. In other words, MERGE_HEAD is the commit that is being
merged into HEAD.

All of these symbolic references are managed by the plumbing command

git symbolic-ref.

Although it is possible to create your own branch with one of these

"*’@ special symbolic names (e.g., HEAD), it isn’t a good idea.

There are a whole raft of special character variants for ref names. The two most
common, the caret (*) and tilde (*), are described in the next section. In another twist
on refs, colons can be used to refer to alternate versions of a common file involved in
a merge conflict. This procedure is described in Chapter 9.

Relative Commit Names

Git also provides mechanisms for identifying a commit relative to another reference,
commonly the tip of a branch.

You’ve seen some of these names already, such as master and master”, where master”
always refers to the penultimate commit on the master branch. There are others as well:
you can use master™*, master~2, and even a complex name like master~10”2~2"2.

Identifying Commits | 69

Except for the first root commit,? each commit is derived from at least one earlier
commit and possibly many, where direct ancestors are called parent commits. For a
commit to have multiple parent commits, it must be the result of a merge operation.
As a result, there will be a parent commit for each branch contributing to a merge
commit.

Within a single generation, the caret is used to select a different parent. Given a commit
C, C*1 is the first parent, C*2 is the second parent, C*3 is the third parent, and so on, as
shown in Figure 6-1.

Figure 6-1. Multiple parent names

The tilde is used to go back before an ancestral parent and select a preceding generation.
Again, given the commit C, C*1 is the first parent, C~2 is the first grandparent, and C~3
is the first great-grandparent. When there are multiple parents in a generation, the first
parent of the first parent is followed. You might also notice that both C*1 and C~1 refer
to the first parent; either name is correct, and is shown in Figure 6-2.

)—2)——c1

C/ \N/
m m

Figure 6-2. Multiple parent names

2. Yes, you can actually introduce multiple root commits into a single repository. This happens, for example,
when two different projects and both entire repositories are brought together and merged into one.

70 | Chapter6: Commits

Git supports other abbreviations and combinations as well. The abbreviated forms C*
and C~ are the same as C*1 and C~1, respectively. Also, C** is the same as C*1"1 and,
because that means the “first parent of the first parent of commit C,” it refers to the
same commit as C~2.

By combining a ref and instances of caret and tilde, arbitrary commits may be selected
from the ancestral commit graph of ref. Remember, though, that these names are
relative to the current value of ref. If a new commit is made on top of ref, the commit
graph is amended with a new generation and each “parent” name shifts further back
in the history and graph.

Here’s an example from Git’s own history when Git’s master branch was at commit
1fbb58b4153e90eda08c2b022ee32d90729582e6. Using the command:

git show-branch --more=35

and limiting the output to the final 10 lines, you can inspect the graph history and
examine a complex branch merge structure:

$ git rev-parse master
1fbb58b4153e90eda08c2b022ee32d90729582e6

$ git show-branch --more=35 | tail -10
-- [master~15] Merge branch 'maint’
[master~372~] Merge branch 'maint-1.5.4' into maint
[master~37272"] wt-status.h: declare global variables as extern
[master~372~2] Merge branch 'maint-1.5.4"' into maint
[master~16] Merge branch 'lt/core-optim'
+* [master~16~2] Optimize symlink/directory detection

[

[

[

[

¥

master~17] rev-parse --verify: do not output anything on error
master~18] rev-parse: fix using "--default" with "--verify"

master~19] rev-parse: add test script for "--verify"
master~20] Add svn-compatible "blame" output format to git-svn

$ git rev-parse master~3~2/2"

32efcd91c6505ae28f87c0e9a3e2b3c0115017d8
Between master~15 and master~16, a merge took place that introduced a couple of other
merges as well as a simple commit named master~3~272*. That happens to be commit
32efcd91c6505ae28f87c0e9a3e2b3c0115017d8.

The command git rev-parse is the final authority on translating any form of commit
name—tag, relative, shortened, or absolute—into an actual, absolute commit hash ID
within the object database.

Identifying Commits | 71

Commit History

Viewing Old Commits

The primary command to show the history of commits is git log. It has more options,
parameters, bells, whistles, colorizers, selectors, formatters, and doodads than the
fabled 1s. But don’t worry. Just as with 1s, you don’t need to learn all the details right
away.

In its parameterless form, git log acts like git log HEAD, printing the log message
associated with every commit in your history that is reachable from HEAD. Changes are
shown starting with the HEAD commit and work back through the graph. They are likely
to be in roughly reverse chronological order, but recall Git adheres to the commit graph,
not time, when traveling back over the history.

If you supply a commit 4 la git log commit, the log starts at the named commit and
works backward. This form of the command is useful for viewing the history of a
branch:

$ git log master

commit 1fbb58b4153e90eda08c2b022ee32d90729582e6
Merge: 58949bb... 76bbgoc...

Author: Junio C Hamano <gitster@pobox.com>
Date: Thu May 15 01:31:15 2008 -0700

Merge git://repo.or.cz/git-gui

* git://repo.or.cz/git-gui:
git-gui: Delete branches with 'git branch -D' to clear config
git-gui: Setup branch.remote,merge for shorthand git-pull
git-gui: Update German translation
git-gui: Don't use '$$cr master' with aspell earlier than 0.60
git-gui: Report less precise object estimates for database compression

commit 58949bb18a1610d109e64€997c41696e0dfe97c3
Author: Chris Frey <cdfrey@foursquare.net>
Date: Wed May 14 19:22:18 2008 -0400

Documentation/git-prune.txt: document unpacked logic

Clarifies the git-prune manpage, documenting that it only
prunes unpacked objects.

Signed-off-by: Chris Frey <cdfrey@foursquare.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>

commit c7ea453618e41e05a06f05e3ab63d555doddd7d9

72 | Chapter6: Commits

The logs are authoritative, but rolling back through the entire commit history of your
repository is likely not very practical or meaningful. Typically, a limited history is more
informative. One technique to constrain history is to specify a commit range using the
form since..until. Given a range, git logshows all commits following since running
through until. Here’s an example.

$ git log --pretty=short --abbrev-commit master~12..master~10

commit 6d9878c...
Author: Jeff King <peff@peff.net>

clone: bsd shell portability fix

commit 30684df...
Author: Jeff King <peff@peff.net>

t5000: tar portability fix

Here, git log shows the commits between master~12 and master~10, or the 10th and
11th prior commits on the master branch. You’ll see more about ranges in “Commit
Ranges” on page 78 later in this chapter.

The previous example also introduces two formatting options, --pretty=short and
--abbrev-commit. The former adjusts the amount of information about each commit
and has several variations, including oneline, short, and full. The latter simply re-
quests that hash IDs be abbreviated.

Use the -p option to print the patch, or changes, introduced by the commit.
$ git log -1 -p 4fe86488

commit 4fe86488e1a550aa058c081c7e67644ddof7c98e
Author: Jon Loeliger <jdl@freescale.com>
Date: Wed Apr 23 16:14:30 2008 -0500

Add otherwise missing --strict option to unpack-objects summary.

Signed-off-by: Jon Loeliger <jdl@freescale.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>

diff --git a/Documentation/git-unpack-objects.txt b/Documentation/git-unpack-objects.txt
index 3697896..50947c5 100644

--- a/Documentation/git-unpack-objects.txt

+++ b/Documentation/git-unpack-objects.txt

@@ -8,7 +8,7 @@ git-unpack-objects - Unpack objects from a packed archive

SYNOPSIS

-:éié:;;Eack-objects' [-n] [-q] [-r] <pack-file
[-n] [-q]

+'git-unpack-objects' [-n [-r] [--strict] <pack-file

Notice the -1 option as well: it restricts the output to a single commit. You can also
type -n to limit the output to at most n commits.

Commit History | 73

The --stat option enumerates the files changed in a commit and tallies how many lines
were modified in each file.

$ git log --pretty=short --stat master~i12..master~10

commit 6d9878cc60ba97fc99aa92f40535644938cad9o7
Author: Jeff King <peff@peff.net>

clone: bsd shell portability fix

git-clone.sh | 3 +--
1 files changed, 1 insertions(+), 2 deletions(-)

commit 30684dfaf8cf96e5afc01668acc0laccOade59db
Author: Jeff King <peff@peff.net>

t5000: tar portability fix

t/t5000-tar-tree.sh | 8 H+tt----
1 files changed, 4 insertions(+), 4 deletions(-)

W8

Compare the output of git log --stat with the output of

git diff --stat. There is a fundamental difference in their displays.

918 The former produces a summary for each individual commit named in

" the range, whereas the latter prints a single summary of the total differ-
ence between two repository states named on the command line.

Another command to display objects from the object store is git show. You can use it
to see a commit:

$ git show HEAD™2

or to see a specific blob object:

$ git show origin/master:Makefile

In the latter display, the blob shown is the Makefile from the branch named origin/
master.

Commit Graphs

In Chapter 4, “Object Store Pictures” on page 36 introduced some figures to help
visualize the layout and connectivity of objects in Git’s data model. Such sketches are
illuminating, especially if you are new to Git; however, even a small repository with
just a handful of commits, merges, and patches becomes unwieldy to render in the same
detail. For example, Figure 6-3 shows a more complete but still somewhat simplified
commit graph. Imagine how it would appear if all commits and all data structures were
rendered.

74 | Chapter6: Commits

O
A

Figure 6-3. Full commit graph

Yet one observation about commits can simplify the blueprint tremendously: Each
commit introduces a tree object that represents the entire repository. Therefore, a
commit can be pictured as just a name.

Figure 6-4 shows the same commit graph as Figure 6-3 but without depicting the tree
and blob objects. Usually for the purpose of discussion or reference, branch names are
also shown in the commit graphs.

In the field of computer science, a graph is a collection of nodes and a set of edges
between the nodes. There are several types of graphs with different properties. Git
makes use of a special graph called a directed acyclic graph (DAG). A DAG has two
important properties. First, the edges within the graph are all directed from one node
to another. Second, starting at any node in the graph, there is no path along the directed
edges that leads back to the starting node.

Git implements the history of commits within a repository as a DAG. In the commit
graph, each node is a single commit, and all edges are directed from one descendant
node to another parent node, forming an ancestor relationship. The graphs you saw in
Figure 6-3 and Figure 6-4 are both DAGs. When speaking of the history of commits

Commit History | 75

Download from Wow! eBook <www.wowebook.com>

olele]

Od@ooo

Q.

Figure 6-4. Simplified commit graph

and discussing the relationship between commits in a graph, the individual commit
nodes are often labeled as shown in Figure 6-5.

In these diagrams, time is roughly left to right. A is the initial commit because it has no
parent, and B occurred after A. Both E and C occurred after B, but no claim can be made
about the relative timing between C and E; either could have occurred before the other.
In fact, Git doesn’t really care about the time or timing (absolute or relative) of commits.
The actual “wall clock” time of a commit can be misleading because a computer’s clock
can be setincorrectly orinconsistently. Within a distributed development environment,
the problem is exacerbated. Time stamps can’t be trusted. What is certain, though, is
that if commit Y points to parent X, then X captures the repository state prior to the
repository state of commit Y, regardless of what time stamps might be on the commits.

jsfede

Figure 6-5. Labeled commit graph

76 | Chapter6: Commits

The commits E and C share a common parent, B. Thus, B is the origin of a branch. The
master branch begins with commits A, B, C, and D. Meanwhile, the sequence of commits
A, B, E, F, and G form the branch named pr-17. The branch pr-17 points to commit G.
(You can read more about branches in Chapter 7.)

The commit H is a merge commit, where the pr-17 branch has been merged into the
master branch. Because it’s a merge, H has more than one commit parent—in this case,
D and G. After this commit is made, master will be updated to refer to the new commit
H, but pr-17 will continue to refer to G. (The merge operation is discussed in more detail
in Chapter 9.)

In practice, the fine points of intervening commits are considered unimportant. Also,
the implementation detail of a commit pointing back to its parent is often elided, as
shown in Figure 6-6.

O ~N
)
H

Figure 6-6. Commit graph without arrows

Time is still vaguely left to right, there are two branches shown, and there is one iden-
tified merge commit (H), but the actual directed edges are simplified because they are
implicitly understood.

This kind of commit graph is often used to talk about the operation of certain Git
commands and how each might modify the commit history. The graphs are a fairly
abstract representation of the actual commit history, in contrast to tools (e.g., gitk and
git show-branch) that provide concrete representations of commit history graphs. With
these tools, though, time is usually represented from bottom to top, oldest to most
recent. Conceptually, it is the same information.

Using gitk to View the Commit Graph

The purpose of a graph is to help you visualize a complicated structure and relationship.
The gitk command? can draw a picture of a repository DAG whenever you want.

Let’s look at our example website:

Commit History | 77

$ cd public_html
$ gitk

The gitk program can do a lot of things, but let’s just focus on the DAG for now. The
graph output looks something like Figure 6-7.

Merge branch 'master' of imy_website
bring hack the poem, | liked it!
Add impartant technical infarmation
Remave my poem; people just don't appreciate art
Rename poem to paem.html
Add a poem
Convert to HTML
Initial contents of public_html

Figure 6-7. Merge viewed with gitk

Here’s what you must know to understand the DAG of commits. First of all, each
commit can have zero or more parents, as follows:

* Normal commits have exactly one parent, which is the previous commit in the
history. When you make a change, your change is the difference between your new
commit and its parent.

* There is usually only one commit with zero parents: the initial commit, which
appears at the bottom of the graph.

* Amerge commit, such as the one at the top of the graph, has more than one parent.

A commit with more than one child is the place where history began to diverge and
formed a branch. In Figure 6-7, the commit Remove my poem is the branch point.

There is no permanent record of branch start points, but Git can
algorithmically determine them via the git merge-base command.

Commit Ranges

Many Git commands allow you to specify a commit range. In its simplest instantiation,
a commit range is a shorthand for a series of commits. More complex forms allow you
to include and exclude commits.

A range is denoted with a double-period (..), as in start..end, where start and end
may be specified as described in “Identifying Commits” on page 67. Typically, a range
is used to examine a branch or part of a branch.

3. Yes, this is one of the few Git commands that is not considered a subcommand; thus, it is given as gitk
and not git gitk.

78 | Chapter6: Commits

In “Viewing Old Commits” on page 72, you saw how to use a commit range with
git log. The example used the range master~12..master~10 to specify the 11th and
10th prior commits on the master branch. To visualize the range, consider the commit
graph of Figure 6-8. Branch Mis shown over a portion of its commit history that is linear:

M~14 M~13 M~12 M~11 M~10 M~9

000000

Figure 6-8. Linear commit history

Recall that time flows left to right, so M~14 is the oldest commit shown, M9 is the most
recent commit shown, and A is the 11th prior commit.

The range M~12..M~10 represents two commits, the 11th and 10th oldest commits,
which are labeled A and B. The range does not include M~12. Why? It’s a matter of
definition. A commit range, start. .end, is defined as the set of commits reachable from
end that are not reachable from start. In other words, “the commit end is included”
whereas “the commit start is excluded.” Usually this is simplified to just the phrase “in
end but not start.”

Reachability in Graphs

In graph theory, a node X is said to be reachable from another node A if you can start
at A, travel along the arcs of the graph according to the rules, and arrive at X. The set
of reachable nodes for a node A is the collection of all nodes reachable from A.

In a Git commit graph, the set of reachable commits are those you can reach from a
given commit by traversing the directed parent links. Conceptually and in terms of
dataflow, the set of reachable commits is the set of ancestor commits that flow into and
contribute to a given starting commit.

When you specify a commit Y, to git log, you are actually requesting Git to show the
log for all commits that are reachable from Y. You can exclude a specific commit X and
all commits reachable from X with the expression *X.

Combining the two forms, git log X Y is the same as git log X..Y and might be
paraphrased as “give me all commits that are reachable from Y and don’t give me any
commit leading up to and including X.”

The commit range X. .Y is mathematically equivalent to X Y. You can also think of it
as a set subtraction: Use everything leading up to Y minus everything leading up to and
including X.

Commit History | 79

Returning to the commit series from the earlier example, here’s how M~12..M~10
specifies just two commits, A and B. Begin with everything leading up to M~10 as shown
in the first line of Figure 6-9. Find everything leading up to and including M~12, as shown
in the second line of the figure. And finally, subtract M~12 from M~10 to get the commits
shown in the third line of the figure.

M~14 M~13 M~12 M~11 M~10
A\ D

M~14 M~13 M~12

M~11 M~10

Figure 6-9. Interpreting ranges as set subtraction

When your repository history is a simple linear series of commits, it’s fairly easy to
understand how a range works. But when branches or merges are involved in the graph,
things can become a bit tricky and so it’s important to understand the rigorous defini-
tion.

Let’s look at a few more examples. In the case of a master branch with a linear history,
as shown in Figure 6-10, the setB. .E, the set *B E, and the set of C, D, and E are equivalent.

O~ ®-®-O-0O® e

Figure 6-10. Simple linear history

In Figure 6-11, the master branch at commit V was merged into the topic branch at B.

The range topic..master represents those commits in master, but not in topic. Because
each commit on the master branch prior to and including V (i.e., the set {..., T, U, V})
contributes to topic, those commits are excluded, leaving W, X, Y, and Z.

The inverse of the previous example is shown in Figure 6-12. Here, topic has been
merged into master.

80 | Chapter6: Commits

O—®—E—0O0 i
OO0 e

Figure 6-11. Master merged into topic

O—0—®) i

O-O-W—-O—-0O—@ e

Figure 6-12. Topic merged into master

In this example, the range topic..master, again representing those commits in master
but not in topic, is the set of commits on the master branch leading up to and including
V,W, X, Y, and Z.

However, we have to be a little careful and consider the full history of the topic branch.
Consider the case where it originally started as a branch of master and then merged
again as shown in Figure 6-13.

O—®—E—0OO i

OO 000D e

Figure 6-13. Branch and merge

In this case, topic..master, contains only the commits W, X, Y, and Z. Remember, the
range will exclude all commits that are reachable (going back or left over the graph)
from topic (i.e., the commits D, C, B, A, and earlier), as well as V, U, and earlier from the
other parent of B. The result is just W through Z.

There are two other range permutations. If you leave either the start or end commits
out of range, HEAD is assumed. Thus, ..end is equivalent to HEAD. .end and start.. is
equivalent to start. .HEAD.

Commit History | 81

Finally, just as start. .end can be thought of as representing a set subtraction operation,
the notation A...B (using three periods) represents the symmetric difference between
A and B, or the set of commits that are reachable from either A or B but not from both.
Because of the function’s symmetry, neither commit can really be considered a start or
end. In this sense A and B are equal.

More formally, the set of revisions in the symmetric difference between A and B,
A...B,is given by

$ git rev-list A B --not $(git merge-base --all A B)

Let’s look at the example in Figure 6-14.

Figure 6-14. Symmetric difference

We can compute each piece of the symmetric difference definition:

master...dev = (master OR dev) AND NOT (merge-base --all master dev)

The commits that contribute to master are (I, H, ..., B, A, W, V, U). The commits that
contribute to dev are (Z,Y, ..., U, C, B, A).
The union of those two setsis (A, . .., I, U, ..., Z). The merge base between master

and dev is commit W. In more complex cases, there might be multiple merge bases, but
here we have only one. The commits that contribute to W are (W, V, U, C, B, and A); those
are also the commits that are common to both master and dev, so they need to be
removed to form the symmetric difference: (I, H, Z, Y, X, G, F, E, D).

It may be helpful to think of the symmetric difference between two branches, A and B,
as “show everything in branch A or in branch B, but only back to the point where the
two branches diverged.”

Now that we’ve described what commit ranges are, how to write them, and how they
work, it’s important to reveal that Git doesn’t actually support a true range operator.
It is purely a notational convenience that A. .B represents the underlying ~A B form. Git
actually allows much more powerful commit set manipulation on its command line.
Commands that accept a range are actually accepting an arbitrary sequence of included
and excluded commits. For example, you could use:

$ git log ~dev “topic "bugfix master

to select those commits in master but not in either of the dev, topic, or bugfix branches.

82 | Chapter6: Commits

All of these example may be a bit abstract, but the power of the range representation
really comes to fruition when you consider that any branch name can be used as part
of the range. As described in “Tracking Branches” on page 199 of Chapter 12, if one
of your branches represents the commits from another repository, then you can quickly
discover the set of commits that are in your repository that are not in another repository!

Finding Commits

Part of a good RCS is the support it provides for “archaeology” and investigating a
repository. Git provides several mechanisms to help you locate commits that meet
certain criteria within your repository.

Using git bisect

The git bisect command is a powerful tool for isolating a particular, faulty commit
based on essentially arbitrary search criteria. It is well-suited to those times when you
discover that something “wrong” or “bad” is affecting your repository and you know
the code had been fine. For example, let’s say you are working on the Linux kernel and
a test boot fails, but you’re positive the boot worked sometime earlier, perhaps last
week or at a previous release tag. In this case, your repository has transitioned from a
known “good” state to a known “bad” state.

But when? Which commit caused it to break? That is precisely the question
git bisect is designed to help you answer.

The only real search requirement is that, given a checked-out state of your repository,
you are able to determine if it does or does not meet your search requirement. In this
case, you have to be able to answer the question: “Does the version of the kernel checked
out build and boot?” You also have to know a good and a bad version or commit before
starting so that the search will be bounded.

The git bisect command is often used to isolate a particular commit that introduced
some regression or bug into the repository. For example, if you were working on the
Linux kernel, git bisect could help you find issues and bugs such as fails to compile,
fails to boot, boots but can’t perform some task, or no longer has a desired performance
characteristic. In all of these cases, git bisect can help you isolate and determine the
exact commit that caused the problem.

The git bisect command systematically chooses a new commit in an ever decreasing
range bounded by good behavior at one end and by bad behavior at the other. Even-
tually, the narrowing range will pinpoint the one commit that introduced the faulty
behavior.

There is no need for you to do anything more than provide an initial good and bad
commit and then repeatedly answer the question “Does this version work?”

Finding Commits | 83

To start, you first need to identify a good commit and a bad commit. In practice, the
bad version is often your current HEAD, because that’s where you are working when you
suddenly noticed something wrong or were assigned a bug to fix.

Finding an initial good version can be a bit difficult, because it’s usually buried in your
history somewhere. You can probably name or guess some version back in the history
of the repository that you know works correctly. This may be a tagged release like
v2.6.25 or some commit 100 revisions ago, master~100, on your master branch. Ideally,
it is close to your bad commit (master~25 is better than master~100) and not buried too
far in the past. In any event, you need to know or be able to verify that it is, in fact, a
good commit.

[t is essential that you start the git bisect process from a clean working directory. The
process necessarily adjusts your working directory to contain various different versions
of your repository. Starting with a dirty work space is asking for trouble; your working
directory could easily be lost.

Using a clone of the Linux kernel in our example, let’s tell Git to begin a search:

$ cd linux-2.6
$ git bisect start

After initiating a bisection search, Git enters a bisect mode, setting up some state
information for itself. Git employs a detached HEAD to manage the current checked-
out version of the repository. This detached HEAD is essentially an anonymous branch
that can be used to bounce around within the repository and point to different revisions
as needed.

Once started, tell Git which commit is bad. Again, because this is typically your current
version, you can simply default the revision to your current HEAD.*

Tell git the HEAD version is broken
$ git bisect bad

Similarly, tell Git which version works:

$ git bisect good v2.6.27

Bisecting: 3857 revisions left to test after this

[cf2fa66055d718ae13e62451bb546505163906a2] Merge branch 'for linus'
of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-2.6

Identifying a good and bad version delineates a range of commits over which a good to
bad transition occurs. At each step along the way, Git will tell you how many revisions
are in that range. Git also modifies your working directory by checking out a revision
that is roughly midway between the good and bad end points. It is now up to you to
answer the question: “Is this version good or bad?” Each time you answer this question,
Git narrows the search space in half, identifies a new revision, checks it out, and repeats
the “good or bad?” question.

4. For the curious reader who would like to duplicate this example, HEAD is commit
49fdf6785fd660e18a1eb4588928f47e9fa29a9a here.

84 | Chapter6: Commits

Suppose this version is good:

$ git bisect good
Bisecting: 1939 revisions left to test after this
[2be508d847392e431759e370d21cea9412848758] Merge git://git.infradead.org/mtd-2.6

Notice that 3,857 revisions have been narrowed down to 1,939. Let’s do a few more:

$ git bisect good
Bisecting: 939 revisions left to test after this
[b80de369aa5c7c8ce7ff7a691e86eldcc89accc6] 8250: Add more OxSemi devices

$ git bisect bad

Bisecting: 508 revisions left to test after this

[9301975ec251bablad7cfcb84a688b26187e4e4a] Merge branch 'genirqg-v28-for-linus'
of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

In a perfect bisection run, it takes log, of the original number of revision steps to narrow
down to just one commit.

After another good and bad answer:

$ git bisect good

Bisecting: 220 revisions left to test after this

[7cf5244ces4a0ab3f0432e9593e07516b0df5715] mfd: check for
platform_get irq() return value in sm501

$ git bisect bad

Bisecting: 104 revisions left to test after this

[e4c2ce82ca2710e17cb4adf8eb2b249fa2eb5af30] ring buffer: allocate
buffer page pointer

Throughout the bisection process, Git maintains a log of your answers along with their
commit IDs.

$ git bisect log

git bisect start

bad: [49fdf6785fd660e18a1eb4588928f47e9fa29a9a] Merge branch
"for-linus' of git://git.kernel.dk/linux-2.6-block

git bisect bad 49fdf6785fd660e18a1eb4588928f47e9fa29a9a

good: [3fa8749e584b55f1180411ab1b51117190bacle5] Linux 2.6.27

git bisect good 3fa8749e584b55f1180411ab1b51117190bac1e5

good: [cf2fa66055d718ae13e62451bb546505163906a2] Merge branch 'for linus'
of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-2.6

git bisect good cf2fa66055d718ae13e62451bb546505f63906a2

good: [2be508d847392e431759e370d21cea9412848758] Merge
git://git.infradead.org/mtd-2.6

git bisect good 2be508d847392e431759e370d21cea9412848758

bad: [b80de369aa5c7c8ce7ff7a691e86e1dcc89accch] 8250: Add more
0xSemi devices

git bisect bad b80de369aa5c7c8ce7ff7a691e86eldcc89accch

good: [9301975ec251babiad7cfcb84a688b26187e4e4a] Merge branch
'genirqg-v28-for-linus' of

git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

git bisect good 9301975ec251bablad7cfcb84a688b26187e4e4a

bad: [7cf5244ce4a0ab3f043f2e9593e07516b0odf5715] mfd: check for

Finding Commits | 85

platform get irq() return value in sm501
git bisect bad 7cf5244ce4a0ab3f043f2e9593e07516b0df5715

If you get lost during the process, or if you just want to start over for any reason, type
thegit bisect replay command using the log file asinput. If needed, thisis an excellent
mechanism to back up one step in the process and explore a different path.

Let’s narrow down the defect with five more “bad” answers:

$ git bisect bad

Bisecting: 51 revisions left to test after this

[d3ee6d992821f471193a7ee7a00af9ebbabf5d01] ftrace: make it
depend on DEBUG_KERNEL

$ git bisect bad

Bisecting: 25 revisions left to test after this

[3f5a54e371ca20b119b7370416c01b71295c1714] ftrace: dump out
ftrace buffers to console on panic

$ git bisect bad

Bisecting: 12 revisions left to test after this

[8da3821ba5634497da63d58a69€24a97697c4a2b] ftrace: create
_mcount_loc section

$ git bisect bad

Bisecting: 6 revisions left to test after this

[fa340d9c050e78fb21a142b617304214ae5e0c2d] tracing: disable
tracepoints by default

$ git bisect bad
Bisecting: 2 revisions left to test after this
[4a0897526bbc5c6ac0df80b16b8c60339e717ae2] tracing: tracepoints, samples

You may use the git bisect visualize to visually inspect the set of commits still within
the range of consideration. Git uses the graphical tool gitk if the DISPLAY environment
variable is set. If not, then Git will use git log instead. In that case, --pretty=oneline
might be useful, too.

$ git bisect visualize --pretty=oneline

fa340d9c050e78fb21a142b617304214ae5e0c2d tracing: disable tracepoints
by default

b07c3f193a8074aa4afe43cfaBae38ecsc7ccfag ftrace: port to tracepoints

0a16b6075843325dc402edf80c1662838b929aff tracing, sched: LTTng
instrumentation - scheduler

4a0897526bbc5c6acodf80b16b8c60339e717ae2 tracing: tracepoints, samples

24b8d831d56aac7907752d22d2aba5d8127db6f6 tracing: tracepoints,
documentation

97e1c18e8d17bd87e1e383b2e9d9fc740332c8e2 tracing: Kernel Tracepoints

The current revision under consideration is roughly in the middle of the range.

$ git bisect good
Bisecting: 1 revisions left to test after this
[bo7c3f193a8074aad4afes3cfa8ae38ecac7ccfag] ftrace: port to tracepoints

86 | Chapter6: Commits

When you finally test the last revision and Git has isolated the one revision that
introduced the problem,? it’s displayed:

$ git bisect good

fa340d9c050e78fb21a142b617304214ae5e0c2d is first bad commit
commit fa340d9c050e78fb21a142b617304214ae5e0c2d
Author: Ingo Molnar <mingo@elte.hu>

Date:

tracing: disable tracepoints by default

Wed Jul 23 13:38:00 2008 +0200

while it's arguably low overhead, we dont enable new features by default.

Signed-off-by: Ingo Molnar <mingo@elte.hu>

1040000 040000 4bf5c05869a67e184670315c181d76605c973931
fd15e1c4adbd37b819299a9f0d4a6ff589721f6c M init

Finally, when your bisection run is complete and you are finished with the bisection
log and the saved state, it is vital that you tell Git that you have finished. As you may
recall, the whole bisection process is performed on a detached HEAD:

$ git branch
* (no branch)
master

$ git bisect reset

Switched to branch "master"

$ git branch
* master

Running git bisect reset places you back on your original branch.

Using git blame

Another tool you can use to help identify a particular commit is git blame. This com-
mand tells you who last modified each line of a file and which commit made the change.

$ git blame -L 35, init/version.c

4865ecf1
~da177e
4865ect1
3eb3c740
c71551ad

(Serge E. Hallyn
(Linus Torvalds
(Serge E. Hallyn
(Roman Zippel

(Linus Torvalds

c71551ad
3eb3c740

(Linus Torvalds
(Roman Zippel

3eb3c740 (Roman Zippel

2006-10-02
2005-04-16
2006-10-02
2007-01-10
2007-01-11

2007-01-11
2007-01-10

2007-01-10

02:
15:
02:

14

18:

18:

14

14

18:
136
18:
:45:
104

20

18

18:
:45:

:45:

14
14
28
04

28

28

-0700
-0700
-0700
+0100
-0800

-0800
+0100

+0100

35) b
36) };
37) EXPORT_SYMBOL_GPL(init_uts_ns);
38)
39) /* FIXED STRINGS!
Don't touch! */

40) const char linux_banner[] =

41) "Linux version "
UTS_RELEASE "

42) (" LINUX_COMPILE_BY "@"

5. No, this commit did not necessarily introduce a problem. The “good” and “bad” answers were fabricated

and landed here.

Finding Commits | 87

3eb3c740 (Roman
3eb3c740 (Roman
3eb3c740 (Roman
3eb3c740 (Roman
3eb3c740 (Roman
3eb3c740 (Roman
3eb3c740 (Roman

3eb3c740 (Roman
3eb3c740 (Roman

Using Pickaxe

Zippel
Zippel
Zippel
Zippel
Zippel
Zippel
Zippel

Zippel
Zippel

2007-01-10
2007-01-10
2007-01-10
2007-01-10
2007-01-10
2007-01-10
2007-01-10

2007-01-10
2007-01-10

14
14
14
14
14
14
14

14
14

:45:
:45:
:45:
:45:
:45:
:45:
:45:

145
:45:

28
28
28
28
28
28
28

128

28

+0100
+0100
+0100
+0100
+0100
+0100
+0100

+0100
+0100

43)
44)
45)
46)
47) const
48)
49)

50)
51)

LINUX_COMPILE_HOST ")
(" LINUX_COMPILER ")
" UTS_VERSION "\n";

char linux_proc_banner[]
"%s version %s"

" (" LINUX_COMPILE_BY
"

LINUX_COMPILE_HOST ")"
" (" LINUX_COMPILER ")

%s\n";

87-88 Wheareas git blame tells you about the current state of a file,
git log -Sstring searches back through the history of a file’s diffs for the given
string. By searching the actual diffs between revisions, this command can find commits
that perform a change in both additions and deletions.

$ git log -Sinclude --pretty=oneline --abbrev-commit init/version.c
cd354f1... [PATCH] remove many unneeded #includes of sched.h

4865ecf... [PATCH] namespaces: utsname: implement utsname namespaces
63104ee... kbuild: introduce utsrelease.h
1dai77e... Linux-2.6.12-rc2

Each of the commits listed on the left (cd354f1, etc.) will either add or delete lines that
contain the word include. Be careful, though. If a commit both adds and subtracts
exactly the same number of instances of lines with your key phrase, that won’t be
shown. The commit must have a change in the number of additions and deletions in

order to count.

The -S option to git log is called pickaxe. That’s brute force archeology for you.

88 | Chapter6: Commits

Download from Wow! eBook <www.wowebook.com>

CHAPTER 7
Branches

A branch is the fundamental means of launching a separate line of development within
a software project. A branch is a split from a kind of unified, primal state, allowing
development to continue in multiple directions simultaneously and, potentially, to
produce different versions of the project. Often, a branch is reconciled and merged with
other branches to reunite disparate efforts.

Git allows many branches and thus many different lines of development within a
repository. Git’s branching system is lightweight and simple. Moreover, Git has first-
rate support for merges. As a result, most Git users make routine use of branches.

This chapter shows you how to select, create, view, and remove branches. It also
provides some best practices, so your branches don’t twist into something akin to a
manzanita.!

Reasons for Using Branches

A branch can be created for a countless number of technical, philosophical, managerial,
and even social reasons. Here is just a smattering of common rationales.

* A branch often represents an individual customer release. If you want to start
version 1.1 of your project but you know that some of your customers want to stick
with version 1.0, then keep the old version alive as a separate branch.

* Abranch can encapsulate a development phase, such as the prototype, beta, stable,
or bleeding-edge release. You can think of the version 1.1 release as a separate
phase, too; the maintenance release.

* A branch can isolate the development of a single feature or research into a partic-
ularly complex bug. For example, you can introduce a branch for a well-defined
and conceptually isolated task or to facilitate a merge of several branches prior to
a release.

1. OK, OK. It’s a small, bushy tree, a highly branched shrub thing. Perhaps a better analogy is a banyan tree.

89

It may seem like overkill to create a new branch just to fix one bug, but Git’s
branching system encourages such small-scale use.

* Anindividual branch can represent the work of an individual contributor. Another
branch—the “integration” branch—can be used specifically to unify efforts.

Git refers to a branch like those just listed as a topic branch or a development branch.
The word “topic” simply indicates that each branch in the repository has a particular
purpose.

Git also has the notion of a tracking branch, or a branch to keep clones of a repository
in sync. Chapter 12 explains how to use a tracking branch.

Branch or Tag?

90 A branch and a tag seem similar, perhaps even interchangeable. So when should you
use a tag name and when should you use a branch name?

A tag and a branch serve different purposes. A tag is meant to be a static name that does
not change or move over time. Once applied, you should leave it alone. It serves as a
stake in the ground and reference point. On the other hand, a branch is dynamic and
moves with each commit you make. The branch name is designed to follow your con-
tinuing development.

Curiously, you can name a branch and a tag with the same name. If you do, you will
have to use their full ref names to distinguish them. For example, you could use refs/
tags/v1.0 and refs/heads/v1.0. You may want to use the same name as a branch name
during development and then convert it to a tag name at the conclusion of your devel-
opment.

Naming branches and tags is ultimately up to you and your project policies. However,
you should consider the key differentiating characteristic: is this name static and
immutable, or is it dynamic for development? The former should be a tag and the latter
a branch.

Finally, unless you have a compelling reason to do so, you should simply avoid using
the same name for both a branch and a tag.

Branch Names

The name you assign to a branch is essentially arbitrary, though there are some limi-
tations. The default branch in a repository is named master and most developers keep
the repository’s most robust and dependable line of development on that branch. There
is nothing magic about the name master, except that Git introduces it during the initi-
alization of a repository. If you prefer, you can rename or even delete the master branch,
although it’s probably best practice to leave it alone.

To support scalability and categorical organization, you can create a hierarchical
branch name that resembles a Unix pathname. For example, suppose you are part of

90 | Chapter7: Branches

a development team that fixes a multitude of bugs. It may be useful to place the
development of each repair in a hierarchical structure, under the branch name bug, on
separate branches named something like bug/pr-1023 and bug/pr-17. If you find you
have many branches or are just terminally overorganized, you can use this slash syntax
to introduce some structure to your branch names.

W

One reason to use hierarchical branch names is that Git, just like the
Unix shell, supports wildcards. For instance, given the naming scheme
Qs bug/pr-1023 and bug/pr-17, you can select all bug branches at once with
" aclever and familiar shorthand.

git show-branch 'bug/*'

Dos and Don'ts in Branch Names
Branch names must conform to a few simple rules.
¢ You can use the forward slash (/) to create a hierarchical name scheme. However,
the name cannot end with a slash.
* The name cannot start with a minus sign (-).
* No slash-separated component can begin with a dot (.). A branch name such as
feature/.new is invalid.
* The name cannot contain two consecutive dots (..) anywhere.
¢ Further, the name cannot contain:
— Any space or other whitespace character

— A character that has special meaning to Git, including the tilde (~), caret (*),
colon (:), question mark (?), asterisk (*), and open bracket ([)

— An ASCII control character, which is any byte with a value lower than \040
octal, or the DEL character (\177 octal)

These branch name rules are enforced by the git check-ref-format plumbing
command, and they are designed to ensure that each branch name is both easily typed
and usable as a filename within the .git directory and scripts.

Using Branches

There may be many different branches within a repository at any given time, but there
is at most one active or current branch. The active branch determines which files are
checked out in the working directory. Furthermore, the current branch is often an
implicit operand in Git commands, such as the target of the merge operation. By default,
master is the active branch, but you can make any branch the current branch.

Using Branches | 91

In Chapter 6, we presented commit graph diagrams containing several
branches. Keep this graph structure in mind when you manipulate
%s branches because it reinforces your understanding of the elegant and
* simple object model underlying Git’s branches.

A branch allows the content of the repository to diverge in many directions, one per
branch. Once a repository forks at least one branch, each commit is applied to one
branch or the other, whichever is active.

Each branch in a specific repository must have a unique name, and the name always
refers to the most recent revision committed on that branch. The most recent commit
on a branch is called the tip or head of the branch.

Git doesn’t keep information about where a branch originated. Instead, the branch
name moves incrementally forward as new commits are made on the branch. Older
commits must therefore be named by their hash or via a relative name such as dev~s.
If you want to keep track of a particular commit—because it represents a stable point
in the project, say, or is a version you want to test—you can explicitly assign it a light-
weight tag name.

Because the original commit from which a branch was started is not explicitly identified,
that commit (or its equivalent) can be found algorithmically using the name of the
original branch from which the new branch forked:

$ git merge-base original-branch new-branch

A merge is the complement of a branch. When you merge, the content of one or more
branches is joined with an implicit target branch. However, a merge does not eliminate
any of the source branches or those branches’ names. The rather complex process of
merging branches is the focus of Chapter 9.

You can think of a branch name as a pointer to a particular (albeit evolving) commit.
A branch includes the commits sufficient to rebuild the entire history of the project
along the branch from which it came, all the way back to the very beginning of the
project.

In Figure 7-1, the dev branch name points to the head commit, Z. If you wanted to
rebuild the repository state at Z, then all the commits reachable from Z back to the
original commit, A, are needed. The reachable portion of the graph is highlighted with
wide lines and covers every commit except (S, G, H, J, K, L).

Each of your branch names, as well as the committed content on each branch, is local
to your repository. However, when making your repository available to others, you can
publish or elect to make one or any number of branches and the associated commits
available, too. Publishing a branch must be done explicitly. Also, if your repository is
cloned, your branch names and the development on those branches will all be part of
the newly cloned repository copy.

92 | Chapter7: Branches

Figure 7-1. Commits reachable from dev

Creating Branches

A new branch is based upon an existing commit within the repository. It is entirely up
to you to determine and specify which commit to use as the start of the new branch.
Git supports an arbitrarily complex branching structure, including branching branches
and forking multiple branches from the same commit.

The lifetime of a branch is, again, your decision. A branch may be short lived or long
lived. A given branch name may be added and deleted multiple times over the lifetime
of the repository.

Once you have identified the commit from which a branch should start, simply use the
git branch command. Thus, to create a new branch off the HEAD of your current branch
for the purposes of fixing Problem Report #1138, you might use:

$ git branch prs/pr-1138

The basic form of the command is

git branch branch [starting-commit]

When no starting-commit is specified, the default is the revision committed most
recently on the current branch. In other words, the default is to start a new branch at
the point where you’re working right now.

Note that the git branch command merely introduces the name of a branch into the
repository. It does not change your working directory to use the new branch. No work-
ing directory files change, no implicit branch context changes, and no new commits
are made. The command simply creates a named branch at the given commit. You can’t
actually start work on the branch until you switch to it, as we show shortly in “Checking
out Branches” on page 97.

Sometimes you want to specify a different commit as the start of a branch. For instance,
suppose that your project creates a new branch for each reported bug and you hear

(reating Branches | 93

about a bug in a certain release. It may be convenient to use the starting-commit
parameter as an alternative to switching your working directory to the branch that
represents the release.

Normally, your project establishes conventions that let you specify a starting commit
with certainty. For instance, to make a bug fix on the Version 2.3 release of your
software, you might specify a branch named rel-2.3 as the starting commit:

$ git branch prs/pr-1138 rel-2.3

The only commit name guaranteed to be unique is the hash ID. If you
know a hash ID, you can use it directly:

$ git branch prs/pr-1138 db7de5feebef8bcd18c5356cba7c337236b50c13

Listing Branch Names

The git branch command lists branch names found in the repository.

$ git branch
bug/pr-1
dev

* master

In this example, three topic branches are shown. The branch currently checked out
into your working tree is identified by the asterisk. This example also shows two other
branches, bug/pr-1 and dev.

Without additional parameters, only topic branches in the repository are listed. As
you’ll see in Chapter 12, there may be additional remote tracking branches in your
repository. You can list those with the -r option. You can list both topic and remote
branches with -a.

Viewing Branches

The git show-branch command provides more detailed output than git branch, listing
the commits that contribute to one or more branches in roughly reverse chronological
order. As with git branch, no options list the topic branches, -r shows remote tracking
branches, and -a shows all branches.

Let’s look at an example.

$ git show-branch
! [bug/pr-1] Fix Problem Report 1
* [dev] Improve the new development
I [master] Added Bob's fixes.
* [dev] Improve the new development
* [dev”] Start some new development.

94 | Chapter7: Branches

+ [bug/pr-1] Fix Problem Report 1
+*+ [master] Added Bob's fixes.

The git show-branch output is broken down into two sections separated by a line of
dashes. The section above the separator lists the names of branches enclosed in square
brackets, one per line. Each branch name is associated with a single column of output,
identified by either an exclamation mark or—if it is also the current branch—an
asterisk. In the example just shown, commits within the branch bug/pr-1 start in the
first column, commits within the current branch dev start in the second column, and
commits in the third branch master start in the third column. For quick reference, each
branch in the upper section is also listed with the first line of the log message from the
most recent commit on that branch.

The lower section of output is a matrix stating which commits are present in each
branch. Again, each commit is listed with the first log message line from that commit.
A commit is present in a branch if there a plus (+), an asterisk (*), or a minus (-) in that
branch’s column. The plus sign indicates the commit is in a branch; the asterisk just
highlights the commit as being present on the active branch. The minus sign denotes
a merge commit.

For example, both of the following commits are identified by asterisks and are present
in the dev branch:

[dev] Improve the new development
* [dev*] Start some new development.

These two commits are not present in any other branch. They are listed in reverse
chronological order: The most recent commit is at the top and the oldest commit at
the bottom.

Enclosed within square brackets on each commit line, Git also shows you a name for
that commit. As already mentioned, Git assigns the branch name to the most recent
commit. Previous commits have the same name with trailing caret (*) characters. In
Chapter 6, you saw master as the name for the most recent commit and master” as the
name for the penultimate commit. Similarly, dev and dev” are the two most recent
commits on the branch dev.

Although the commits within a branch are ordered, branches themselves are listed in
an arbitrary order. This is because all branches have equal status; there is no rule stating
that one branch is more important than another.

If the same commit is present in multiple branches, then it will have a plus sign or an
asterisk indicator for each branch. Thus, the last commit shown in the previous output
is present in all three branches:

+*+ [master] Added Bob's fixes.
The first plus sign means that the commit is in bug/pr-1, the asterisk means the same

commit is in the active branch dev, and the final plus sign means the commit is also in
the master branch.

Viewing Branches | 95

When invoked, git show-branch traverses through all the commits on all branches
being shown, stopping the listing on the most recent common commit present on all
of them. In this case, Git listed four commits before it found one common to all three
branches (Added Bob's fixes.), at which point it stopped.

Stopping at the first common commit is the default heuristic for reasonable behavior.
It is presumed that reaching such a common point yields sufficient context to under-
stand how the branches relate to each other. If for some reason you actually want more
commit history, use the --more=num option, specifying the number of additional
commits you want to see going back in time along the common branch.

The git show-branch command accepts a set of branch names as parameters, allowing
you to limit the history shown to those branches. For example, if new branch named
bug/pr-2 is added starting at the master commit, it would look like this:

$ git branch bug/pr-2 master
$ git show-branch
! [bug/pr-1] Fix Problem Report 1
! [bug/pr-2] Added Bob's fixes.
* [dev] Improve the new development
I [master] Added Bob's fixes.

* [dev] Improve the new development

[
* [dev™] Start some new development.
+ [bug/pr-1] Fix Problem Report 1
++*+ [bug/pr-2] Added Bob's fixes.

If you wanted to see the commit history for just the bug/pr-1 and bug/pr-2 branches,
you could use

$ git show-branch bug/pr-1 bug/pr-2

Although that might be fine for a few branches, if there were many such branches, then
naming them all would be quite tedious. Fortunately, Git allows wildcard matching of
branch names as well. The same results can be achieved using the simpler bug/* branch
wildcard name:

$ git show-branch bug/pr-1 bug/pr-2
! [bug/pr-1] Fix Problem Report 1

! [bug/pr-2] Added Bob's fixes.
+ [bug/pr-1] Fix Problem Report 1
++ [bug/pr-2] Added Bob's fixes.

$ git show-branch bug/*

! [bug/pr-1] Fix Problem Report 1
! [bug/pr-2] Added Bob's fixes.

+ [bug/pr-1] Fix Problem Report 1

++ [bug/pr-2] Added Bob's fixes.

96 | Chapter7: Branches

Checking out Branches

Asmentioned earlier in this chapter, your working directory can reflect only one branch
at a time. To start working on a different branch, issue the git checkout command.
Given a branch name, git checkout makes the branch the new, current working branch.
It changes your working tree file and directory structure to match the state of the given
branch. However, as you’ll see, Git builds in safeguards to keep you from losing data
you haven’t yet committed.

In addition, git checkout gives you access to all states of the repository going back from
the tip of the branch to the beginning of the project. This is because, as you may recall
from Chapter 6, each commit captures a snapshot of the complete repository state at
a given moment in time.

A Basic Example of Checking out a Branch

Suppose you wanted to shift gears from the dev branch in the previous section’s example
and instead devote your attention to fixing the problem associated with the bug/pr-1
branch. Let’s look at the state of the working directory before and after git checkout:
$ git branch
bug/pr-1
bug/pr-2
* dev
master

$ git checkout bug/pr-1
Switched to branch "bug/pr-1"

$ git branch

* bug/pr-1
bug/pr-2
dev
master

The files and directory structure of your working tree have been updated to reflect the
state and contents of the new branch, bug/pr-1. However, in order to see that the files
your working directory have changed to match the state at the tip of that branch, you
must use a regular Unix command such as 1s.

Selecting a new current branch might have dramatic effects on your working tree files
and directory structure. Naturally, the extent of that change depends on the differences
between your current branch and the new, target branch that you would like to check
out. The effects of changing branches are:

* Files and directories present in the branch being checked out but not in the current
branch are checked out of the object store and placed into your working tree.

* Files and directories present in your current branch but absent in the branch being
checked out will be removed from your working tree.

Checking out Branches | 97

* Files common to both branches are modified to reflect the content present in the
checked out branch.

Don’t be alarmed if it looks like the checkout appears to happen almost instantane-
ously. A common newbie mistake is to think that the checkout didn’t work because it
returned instantly after supposedly making huge changes. This is one of the features of
Git that truly and strongly differentiates it from many other VCSs. Git is good at de-
termining the minimum set of files and directories that actually need to change during
a checkout.

Checking out When You Have Uncommitted Changes

Git precludes the accidental removal or modification of data in your local working tree
without your explicit request. Files and directories in your working directory that are
not being tracked are always left alone; Git won’t remove or modify them. However,
if you have local modifications to a file that are different from changes that are present
on the new branch, Git issues an error message such as the following and refuses to
check out the target branch:

$ git branch
bug/pr-1
bug/pr-2
dev

* master

$ git checkout dev

error: Your local changes to the following files would be overwritten by checkout:
NewStuff

Please, commit your changes or stash them before you can switch branches.

Aborting

In this case, a message warns that something has caused Git to stop the checkout
request. But what? You can find out by inspecting the contents of the file NewStuff, as
it is locally modified in the current working directory, and the target dev branch:

Show what NewStuff looks like in the working directory
$ cat NewStuff

Something

Something else

Show that the local version of the file has an extra line that
is not committed in the working directory's current branch (master)
$ git diff NewStuff
diff --git a/NewStuff b/NewStuff
index 0f2416e..5e79566 100644
--- a/NewStuff
+++ b/NewStuff
@@ -1 +1,2 @@
Something
+Something else

Show what the file looks like in the dev branch

98 | Chapter7: Branches

$ git show dev:NewStuff
Something
A Change

If Git brashly honored the request to check out the dev branch, your local modifications
to NewStuff in your working directory would be overwritten by the version from dev.
By default, Git detects this potential loss and prevents it from happening.

\

W

If you really don’t care about losing changes in your working directory
and are willing to throw them away, you can force Git to perform the
s checkout by using the -f option.

Seeing the error message might suggest that you update the file within the index and
then proceed with the checkout. However, this isn’t quite sufficient. Using, say,
git add to update the new contents of NewStuff into the index only places the contents
of that file in the index; it won’t commit it to any branch. Git still can’t check out the
new branch without losing your change, so it fails again.

$ git add NewStuff

$ git checkout dev

error: Your local changes to the following files would be overwritten by checkout:

NewStuff

Please, commit your changes or stash them before you can switch branches.
Aborting

Indeed, it would still be overwritten. Clearly, just adding it to the index isn’t sufficient.

You could just issue git commit at this point to commit your change into your current
branch (master). But suppose you want the change to be made in the new dev branch
instead. You seem to be stuck: You can’t put your change into the dev branch until you
check it out, and Git won’t let you check it out because your change is present.

Luckily, there are ways out of this catch-22. One approach uses the stash and is
described in Chapter 11. Another approach is described in the next section, “Merging
Changes into a Different Branch” on page 99.

Merging Changes into a Different Branch

In the previous section, the current state of your working directory conflicted with that
of the branch you wanted to switch to. What’s needed is a merge: The changes in your
working directory must be merged with the files being checked out.

If possible or if specifically requested with the -m option, Git attempts to carry your
local change into the new working directory by performing a merge operation between
your local modifications and the target branch.

Checking out Branches | 99

Download from Wow! eBook <www.wowebook.com>

$ git checkout -m dev
M NewStuf+
Switched to branch "dev"

Here, Git has modified the file NewStuff and checked out the dev branch successfully.

This merge operation occurs entirely in your working directory. It does not introduce
a merge commit on any branch. It is somewhat analogous to the cvs update command
in thatyour local changes are merged with the target branch and are left in your working
directory.

You must be careful in these scenarios, however. Although it may look like the merge
was performed cleanly and all is well, Git has simply modified the file and left the merge
conflict indicators within it. You must still resolve any conflicts that are present:

$ cat NewStuff

Something

<<<<<<< dev:NewStuff
A Change

Something else
>>>>>>> local:NewStuff

See Chapter 9 to learn more about merges and helpful techniques to resolve merge
conflicts.

If Git can check out a branch, change to it, and merge your local modifications cleanly
without any merge conflicts, then the checkout request succeeds.

Suppose you’re on the master branch in your development repository and you’ve made
some changes to the NewStuff file. Moreover, you realize that the changes you made
really should be made on another branch, perhaps because they fix Problem Report #1
and should be committed on the bug/pr-1 branch.

Here is the setup. Start on the master branch. Make some changes to some files, which
are represented here by adding the text Some bug fix to the file NewStuff.

$ git show-branch
! [bug/pr-1] Fix Problem Report 1
! [bug/pr-2] Added Bob's fixes.
! [dev] Started developing NewStuff
* [master] Added Bob's fixes.
+ [dev] Started developing NewStuff
+ [dev"] Improve the new development
+ [dev~2] Start some new development.
+
|

bug/pr-1] Fix Problem Report 1
bug/pr-2] Added Bob's fixes.

$ echo "Some bug fix" >> NewStuff
$ cat NewStuff

Something
Some bug fix

100 | Chapter7: Branches

At this point, you realize that all this work should be committed on the bug/pr-1 branch
and not the master branch. For reference, here is what the NewStuff file looks like in
the bug/pr-1 branch prior to the checkout in the next step:

$ git show bug/pr-1:NewStuff
Something

To carry your changes into the desired branch, simply attempt to check it out:

$ git checkout bug/pr-1
M NewStuff
Switched to branch "bug/pr-1"

$ cat NewStuff
Something
Some bug fix

Here, Git was able to correctly merge the changes from your working directories and
the target branch and leave them in your new working directory structure. You might
want to verify that the merge went according to your expectations by using git diff:

$ git diff

diff --git a/NewStuff b/NewStuff

index 0f2416e..b4d8596 100644

--- a/NewStuff

+++ b/NewStuff

@@ -1 +1,2 @@

Something

+Some bug fix

That one line addition is correct.

Creating and Checking out a New Branch

Another fairly common scenario happens when you want to both create a new branch
and simultaneously switch to it as well. Git provides a shortcut for this with the -b new-
branch option.

Let’s start with the same setup as the previous example, except now you must start a
new branch instead of checking changes into an existing branch. In other words, you
are in the master branch, editing files, and suddenly realize that you would like all of
the changes to be committed on an entirely new branch named bug/pr-3. The sequence
is as follows:

$ git branch
bug/pr-1
bug/pr-2
dev

* master

$ git checkout -b bug/pr-3
M NewStuff
Switched to a new branch "bug/pr-3"

Checking out Branches | 101

$ git show-branch
! [bug/pr-1] Fix Problem Report 1

! [bug/pr-2] Added Bob's fixes.

* [bug/pr-3] Added Bob's fixes.

! [dev] Started developing NewStuff

| [master] Added Bob's fixes.

[dev] Started developing NewStuff

[dev*] Improve the new development
+ [dev~2] Start some new development.
+ [
+HR [

bug/pr-1] Fix Problem Report 1
bug/pr-2] Added Bob's fixes.

Unless some problem prevents a checkout command from completing, the command:

$ git checkout -b new-branch start-point

is exactly the same as the two-command sequence:

$ git branch new-branch start-point
$ git checkout new-branch

Detached HEAD Branches

Normally, it’s advisable to check out only the tip of a branch by naming the branch
directly. Thus, by default, git checkout changes to the tip of a desired branch.

However, you can check out any commit. In such an instance, Git creates a sort of
anonymous branch for you called a detached HEAD. Git creates a detached HEAD when
you:

¢ Check out a commit that is not the head of a branch.

* Check out a tracking branch. You might do this to explore changes recently
brought into your repository from a remote repository.

* Check out the commit referenced by a tag. You might do this to put together a
release based on tagged versions of files.

* Start a git bisect operation, described in “Using git bisect” on page 83 of
Chapter 6.

* Use the git submodule update command.

In these cases, Git tells you that you have moved to a detached HEAD:

I have a copy of the Git sources handy!
$ cd git.git

$ git checkout vi1.6.0

Note: moving to "v1.6.0" which isn't a local branch

If you want to create a new branch from this checkout, you may do so

(now or later) by using -b with the checkout command again. Example:
git checkout -b <new_branch_name>

HEAD is now at eaoO2eef... GIT 1.6.0

102 | Chapter7: Branches

If, after finding yourself on a detached HEAD, you later decide that you need to make
new commits at that point and keep them, you must first create a new branch:

$ git checkout -b new_branch

This will give you a new, proper branch based on the commit where the detached
HEAD was. You can then continue with normal development. Essentially, you named
the branch that was previously anonymous.

To find out if you are on a detached HEAD, just ask:

$ git branch
* (no branch)
master

On the other hand, if you are finished with the detached HEAD and want to simply
abandon that state, you can convert to a named branch by simply entering git checkout
branch.

$ git checkout master

Previous HEAD position was ea02eef... GIT 1.6.0

Checking out files: 100% (608/608), done.
Switched to branch "master"

$ git branch
* master

Deleting Branches

The command git branch -d branch removes the named branch from a repository. Git
prevents you from removing the current branch:

$ git branch -d bug/pr-3
error: Cannot delete the branch 'bug/pr-3' which you are currently on.

Removing the current branch would leave Git unable to determine what the resulting
working directory tree should look like. Instead, you must always name a noncurrent
branch.

But there is another subtle issue. Git won’t allow you to delete a branch that contains
commits that are not also present on the current branch. That s, Git prevents you from
accidentally removing development in commits that will be lost if the branch were to

be deleted.

$ git checkout master
Switched to branch "master"

$ git branch -d bug/pr-3
error: The branch 'bug/pr-3' is not an ancestor of your current HEAD.
If you are sure you want to delete it, run 'git branch -D bug/pr-3'.

Deleting Branches | 103

In this git show-branch output, the commit “Added a bug fix for pr-3” is found only
on the bug/pr-3 branch. If that branch were to be deleted, there would no longer be a
way to access that commit.

By stating that the bug/pr-3 branch is not an ancestor of your current HEAD, Git is telling
you that the line of development represented by the bug/pr-3 branch does not contrib-
ute to the development of the current branch, master.

Git is not mandating that all branches be merged into the master branch before they
can be deleted. Remember, a branch is simply a name or pointer to a commit that has
actual content. Instead, Git is keeping you from accidentally losing content from the
branch to be deleted that is not merged into your current branch.

If the content from the deleted branch is already present on another branch, checking
that branch out and then requesting the branch deletion from that context would work.
Another approach is to merge the content from the branch you want to delete into your
current branch (see Chapter 9). Then the other branch can be safely deleted.

$ git merge bug/pr-3
Updating 7933438..401b78d

Fast forward

NewStuff | 1+

1 files changed, 1 insertions(+), 0 deletions(-)

$ git show-branch
! [bug/pr-1] Fix Problem Report 1

! [bug/pr-2] Added Bob's fixes.

! [bug/pr-3] Added a bug fix for pr-3.

! [dev] Started developing NewStuff

* [master] Added a bug fix for pr-3.
bug/pr-3] Added a bug fix for pr-3.
dev] Started developing NewStuff
dev”] Improve the new development
dev~2] Start some new development.
bug/pr-1] Fix Problem Report 1
bug/pr-2] Added Bob's fixes.

+
+
+

+

++++¥

— e ——

$ git branch -d bug/pr-3
Deleted branch bug/pr-3.

$ git show-branch
! [bug/pr-1] Fix Problem Report 1
! [bug/pr-2] Added Bob's fixes.
! [dev] Started developing NewStuff
* [master] Added a bug fix for pr-3.

* [master] Added a bug fix for pr-3.

[
+ [dev] Started developing NewStuff
+ [dev"] Improve the new development
+ [dev~2] Start some new development.
[bug/pr-1] Fix Problem Report 1
[bug/pr-2] Added Bob's fixes.

¥
e+

104 | Chapter7: Branches

Finally, as the error message suggests, you can override Git’s safety check by using -D
instead of -d. Do this if you are certain you don’t want the extra content in that branch.

Git does not maintain any form of historical record of branch names being created,
moved, manipulated, merged, or deleted. Once a branch name has been removed, it is
gone.

The commit history on that branch, however, is a separate question. Git will eventually
prune away commits that are no longer referenced and reachable from some named ref
such as a branch or tag name. If you want to keep those commits, you must either merge
them into a different branch, make a branch for them, or point a tag reference to them.
Otherwise, without a reference to them, commits and blobs are unreachable and will
eventually be collected as garbage by the git gc tool.

B
)

After accidentally removing a branch or other ref, you can recover it by
using the git reflog command. Other commands such as git fsck and
Wls" configuration options such as gc.reflogExpire and gc.pruneExpire can
also help recover lost commits, files, and branch heads.

Deleting Branches | 105

CHAPTER 8
Diffs

A diff is a compact summary of the differences (hence the name “diff”) between two
items. For example, given two files, the Unix and Linux diff command compares the
files line by line and summarizes the deviations in a diff, as shown in Example 8-1. In
the example, initial is one version of some prose and rewrite is a subsequent revision.
The -u option produces a unified diff, a standardized format used widely to share mod-
ifications.

Example 8-1. Simple Unix diff

$ cat initial $ cat rewrite

Now is the time Today is the time
For all good men For all good men
To come to the aid And women

Of their country. To come to the aid

Of their country.

$ diff -u initial rewrite

--- initial 1867-01-02 11:22:33.000000000 -0500
+++ rewrite 2000-01-02 11:23:45.000000000 -0500
0@ -1,4 +1,5 @@

-Now is the time
+Today is the time

For all good men
+And women

To come to the aid

Of their country.

Let’s look at the diff in detail. In the header, the original file is denoted by - - - and the
new file by +++. The @@ line provides line number context for both file versions. A line
prefixed with a minus sign (-) must be removed from the original file to produce the
new file. Conversely, a line with a leading plus sign (+) must be added to the original
file to produce the new file. A line that begins with a space is the same in both files and
is provided by the -u option as context.

By itself, a diff offers no reason or rationale for a change, nor does it justify the initial
or final state. However, a diff offers more than just a digest of how files differ. It provides

107

a formal description of how to transform one file to the other. (You’ll find such in-
structions useful when applying or reverting changes.) In addition, diff can be exten-
ded to show differences among multiple files and entire directory hierarchies.

The Unix diff command can compute the differences of all pairs of files found in two
directory hierarchies. The command diff -r traverses each hierarchy in tandem, twins
files by pathname (say, original/src/main.c and new/src/main.c), and summarizes the
differences between each pair. Using diff -r -u produces a set of unified diffs com-
paring two hierarchies.

Git has its own diff facility and can likewise produce a digest of differences. The com-
mand git diff can compare files much akin to Unix’s diff command. Moreover, like
diff -r, Gitcan traverse two tree objects and generate a representation of the variances.
But git diff also has its own nuances and powerful features tailored to the particular
needs of Git users.

B
o)

Technically, a tree object represents only one directory level in the
repository. It contains information on the directory’s immediate files
s and immediate subdirectories, but it does not catalog the complete con-
" tents of all subdirectories. However, because a tree object references the
tree objects for each subdirectory, the tree object at the root of the
project effectively represents the entire project at a moment in time.
Hence, we can paraphrase and say git diff traverses “two” trees.

In this chapter, we’ll cover some of the basics of git diff and some of its special
capabilities. You will learn how to use Git to show editorial changes in your working
directory as well as arbitrary changes between any two commits within your project
history. You will see how Git’s diff can help you make well-structured commits during
your normal development process and you will also learn how to produce Git patches,
which are described in detail in Chapter 14.

Forms of the git diff Command

If you pick two different root-level tree objects for comparison, git diff yields all
deviations between the two project states. That’s powerful. You could use such a diff
to convert wholesale from one project state to another. For example, if you and a
co-worker are developing code for the same project, a root-level diff could effectively
sync the repositories at any time.

There are three basic sources for tree or treelike objects to use with git diff:

* Any tree object anywhere within the entire commit graph
* Your working directory
* The index

108 | Chapter8: Diffs

Typically, the trees compared in a git diff command are named via commits, branch
names, or tags, but any commit name discussed in “Identifying Commits” on page 67 of
Chapter 6 suffices. Also, both the file and directory hierarchy of your working directory,
as well as the complete hierarchy of files staged in the index, can be treated as trees.

The git diff command can perform four fundamental comparisons using various
combinations of those three sources.

git diff
git diff shows the difference between your working directory and the index. It
exposes what is dirty in your working directory and is thus a candidate to stage for
your next commit. This command does not reveal differences between what’s in
your index and what’s permanently stored in the repository (not to mention remote
repositories you might be working with).

git diff commit
This form summarizes the differences between your working directory and the
given commit. Common variants of this command name HEAD or a particular branch
name as the commit.

git diff - -cached commit
This command shows the differences between the staged changes in the index and
the given commit. A common commit for the comparison—and the default if no
commit is specified—is HEAD. With HEAD, this command shows you how your next
commit will alter the current branch.

If the option --cached doesn’t make sense to you, perhaps the synonym --staged
will. It is available in Git version 1.6.1 and later.

git diff commit1 commit2
If you specity two arbitrary commits, the command displays the differences
between the two. This command ignores the index and working directory, and it
is the workhorse for arbitrary comparisons between two trees that are already in
your object store.

The number of parameters on the command line determines what fundamental form
is used and what is compared. You can compare any two commits or trees. What’s
being compared need not have a direct or even an indirect parent—child relationship.
If you don’t supply a tree object or two, then git diff compares implied sources, such
as your index or working directory.

Let’s examine how these different forms apply to Git’s object model. The example in
Figure 8-1 shows a project directory with two files. The file filel has been modified in
the working directory, changing its content from “foo” to “quux.” That change has
been staged in the index using git add file1, but it is not yet committed.

Forms of the git diff Command | 109

Working directory

This is the—» quux

working
directory
version
Index
git diff HEAD
Object store

git diff--cached

¥ a v 3
al3bf 9d3a2 bd71363
This is the -+ foo bar quux‘“ .
: This is the version
version “inthe index"

Figure 8-1. Various file versions that can be compared

A version of the file filel from each of your working directory, the index, and the
HEAD have been identified. Even though the version of filel that is in the index,
bd71363, is actually stored as a blob object in the object store, it is indirectly referenced
through the virtual tree object that is the index. Similarly, the HEAD version of the file,
a23bf, is also indirectly referenced through several steps.

This example nominally demonstrates the changes within filel. The bold arrows in the
figure point to the tree or virtual tree objects to remind you that the comparison is
actually based on complete trees and not just on individual files.

From Figure 8-1, you can see how using git diff withoutargumentsisagood technique
for verifying the readiness of your next commit. As long as that command emits output,
you have edits or changes in your working directory that are not yet staged. Check the

110 | Chapter8: Diffs

edits on each file. If you are satisfied with your work, use git add to stage the file. Once
you stage a changed file, the next git diff no longer yields diff output for that file. In
this way, you can step progressively through each dirty file in your working directory
until the differences disappear, meaning that all files are staged in your index. Don’t
forget to check for new or deleted files, too. At any time during the staging process, the
command git diff --cached shows the complementary changes, or those changes
already staged in the index that will be present in your next commit. When you’re
finished, git commit captures all changes in your index into a new commit.

You are not required to stage all the changes from your working directory for a single
commit. In fact, if you find you have conceptually different changes in your working
directory that should be made in different commits, you can stage one set at a time,
leaving the other edits in your working directory. A commit captures only your staged
changes. Repeat the process, staging the next set of files appropriate for a subsequent
commit.

The astute reader might have noticed that, although there are four fundamental forms
of the git diff command, only three are highlighted with bold arrows in Figure 8-1.
So, what is the fourth? There is only one tree object represented by your working
directory, and there is only one tree object represented by the index. In the example,
there is one commit in the object store along with its tree. However, the object store is
likely to have many commits named by different branches and tags, all of which have
trees that can be compared with git diff. Thus, the fourth form of git diff simply
compares any two arbitrary commits (trees) already stored within the object store.

In addition to the four basic forms of git diff, there are myriad options as well. Here
are a few of the more useful ones.

--M
The --M option detects renames and generates a simplified output that simply re-
cords the file rename rather than the complete removal and subsequent addition
of the source file. If the rename is not a pure rename but also has some additional
content changes, Git calls those out.

-w or --ignore-all-space
Both -w and --ignore-all-space compare lines without considering changes in
whitespace as significant.

--stat
The --stat option adds statistics about the difference between any two tree states.
It reports in a compact syntax how many lines changed, how many were added,
and how many were elided.

--color
The --color option colorizes the output; a unique color represents each of the
different types of changes present in the diff.

Finally, the git diff may be limited to show diffs for a specific set of files or directories.

Forms of the git diff Command | 111

The -aoption forgit diff does nothing even remotely like the -a option
for git commit. To get both staged and unstaged changes, use

git diff HEAD. The lack of symmetry is unfortunate and counterintui-
tive.

Simple git diff Example

Here we construct the scenario presented in Figure 8-1, run through the scenario, and
watch the various forms of git diff in action. First, let’s set up a simple repository with
two files in it.

$ mkdir /tmp/diff_example
$ cd /tmp/diff_example

$ git init
Initialized empty Git repository in /tmp/diff example/.git/

$ echo "foo" > file1
$ echo "bar" > file2

$ git add file1 file2

$ git commit -m "Add file1l and file2"

[master (root-commit)]: created fec5ba5: "Add filel and file2"
2 files changed, 2 insertions(+), 0 deletions(-)

create mode 100644 filei

create mode 100644 file2

Next, let’s edit filel by replacing the word “foo” with “quux.”

$ echo "quux" > file1

The filel has been modified in the working directory but has not been staged. This state
is not yet the situation depicted in Figure 8-1, but you can still make a comparison.
You should expect output if you compare the working directory with the index or the
existing HEAD versions. However, there should be no difference between the index and
the HEAD because nothing has been staged. (In other words, what is staged is the current
HEAD tree still.)

working directory versus index
$ git diff

diff --git a/file1 b/file1

index 257cc56..d90bda0 100644
--- a/file1

+++ b/filel

@@ -1 +1 @@

-foo

+quux

working directory versus HEAD
$ git diff HEAD

diff --git a/file1 b/file1
index 257cc56..d90bda0 100644

112 | Chapter8: Diffs

Download from Wow! eBook <www.wowebook.com>

--- a/file1
+++ b/file1
00 -1 +1 @@
-foo
+quux

index vs HEAD, identical still
$ git diff --cached
$

Applying the maxim just given, git diff produced output and so filel could be staged.
Let’s do this now.

$ git add file1

$ git status

On branch master

Changes to be committed:
(use "git reset HEAD <filed>..." to unstage)
#

modified: filei

Here you have exactly duplicated the situation described by Figure 8-1. Because filel
is now staged, the working directory and the index are synchronized and should not
show any differences. However, there are now differences between the HEAD version and
both the working directory and the staged version in the index.

working directory versus index
$ git diff

working directory versus HEAD
$ git diff HEAD

diff --git a/file1 b/file1
index 257cc56..d90bda0 100644
--- a/file1

+++ b/filel

@@ -1 +1 @@

-foo

+quux

index vs HEAD

$ git diff --cached

diff --git a/file1 b/file1
index 257cc56..d90bda0 100644
--- a/file1

+++ b/filel

@@ -1 +1 @@

-foo

+quux

If you ran git commit now, the new commit would capture the staged changes shown
by the last command, git diff --cached (which, as mentioned before, has the new
synonym git diff --staged).

Simple git diff Example | 113

Now, to throw a monkey wrench in the works, what would happen if you edited
filel before making a commit? Let’s see!

$ echo "baz" > filei

wd versus index

$ git diff

diff --git a/file1 b/file1
index d9obda0..7601807 100644
--- a/file1

+++ b/filel

00 -1 +1 @@

-quux

+baz

wd versus HEAD

$ git diff HEAD

diff --git a/file1 b/file1
index 257c¢c56..7601807 100644
--- a/file1

+++ b/file1

0@ -1 +1 @

-foo

+baz

index vs HEAD

$ git diff --cached

diff --git a/file1 b/file1
index 257cc56..d90bda0 100644
--- a/file1

+++ b/filel

00 -1 +1 @@

-foo

+quux

All three diff operations show some form of difference now! But which version will be
committed? Remember, git commit captures the state present in the index. And what’s
in the index? It’s the content revealed by git diff --cached or git diff --staged
command, or the version of filel that contains the word “quux™!

$ git commit -m "quux uber alles"”
[master]: created f8aelec: "quux uber alles"
1 files changed, 1 insertions(+), 1 deletions(-)

Now that the object store has two commits in it, let’s try the general form of the
git diff command.

Previous HEAD version versus current HEAD
$ git diff HEAD* HEAD

diff --git a/file1 b/file1

index 257cc56..d90bda0 100644

--- a/file1

+++ b/filel

@@ -1 +1 @@

114 | Chapter8: Diffs

-foo
+quux

This diff confirms that the previous commit changed filel by replacing “foo” with
C‘qqu.’7

So is everything synchronized now? No. The working directory copy of filel contains
“baz.”

$ git diff

diff --git a/file1 b/file1

index d90bdao..7601807 100644

--- a/file1

+++ b/file1

@@ -1 +1 @@

-quux

+baz

git diff and Commit Ranges

There are two additional forms of git diff that bear some explanation, especially in
contrast to git log.

The git diff command supports a double-dot syntax to represent the difference
between two commits. Thus, the following two commands are equivalent:

$ git diff master bug/pr-1
$ git diff master..bug/pr-1

Unfortunately, the double-dot syntaxin git diff meanssomething quite different from
the same syntaxingit log, whichyoulearned aboutin Chapter 6. It’s worth comparing
git diffandgit login this regard because doing so highlights the relationship of these
two commands to changes made in repositories. Some points to keep in mind for the
following example:

* git diff doesn’t care about the history of the files it compares or anything about
branches

* git log is extremely conscious of how one file changed to become another—for
example, when two branches diverged and what happened on each branch

The log and diff commands perform two fundamentally different operations. Whereas
log operates on a set of commits, diff operates on two different end points.

Imagine the following sequence of events:

1. Someone creates a new branch off the master branch to fix bug pr-1, calling the
new branch bug/pr-1.

2. The same developer adds the line “Fix Problem report 1” to a file in the bug/pr-1
branch.

git diff and CommitRanges | 115

3. Meanwhile, another developer fixes bug pr-3 in the master branch, adding the line
“Fix Problem report 3” to the same file in the master branch.

In short, one line was added to a file in each branch. If you look at the changes to
branches at a high level, you can see when the bug/pr-1 branch was launched and when
each change was made:

$ git show-branch master bug/pr-1

* [master] Added a bug fix for pr-3.
! [bug/pr-1] Fix Problem Report 1

* [master] Added a bug fix for pr-3.
+ [bug/pr-1] Fix Problem Report 1

*+ [master”] Added Bob's fixes.

If you type git log -p master..bug/pr-1, you will see one commit, because the syntax
master..bug/pr-1 represents all those commits in bug/pr-1 that are not also in master.
The command traces back to the point where bug/pr-1 diverged from master, but it
does not look at anything that happened to master since that point.

$ git log -p master..bug/pr-1

commit 8f4cf5757a3a83bob3dbecd26244593c5fc820ea
Author: Jon Loeliger <jdl@example.com>

Date: Wed May 14 17:53:54 2008 -0500

Fix Problem Report 1

diff --git a/ready b/ready
index f3b6foe..abbfoc5 100644
--- a/ready

+++ b/ready
@@ -1,3 +1,4 @@

stupid

znill

frot-less

+Fix Problem report 1

In contrast, git diff master..bug/pr-1 shows the total set of differences between the
two trees represented by the heads of the master and bug/pr-1 branches. History doesn’t
matter; only the current state of the files does.

$ git diff master..bug/pr-1
diff --git a/ready b/ready
index f3b6foe..abbf9c5 100644
--- a/ready

+++ b/ready
00 -1,4 +1,4 00

stupid

znill

frot-less

-Fix Problem report 3

+Fix Problem report 1

116 | Chapter8: Diffs

To paraphrase the git diff output, you can change the file in the master branch to the
version in the bug/pr-1 branch by removing the line “Fix Problem report 3” and then
adding the line “Fix Problem report 1” to the file.

As you can see, this diff includes commits from both branches. This may not seem
crucial with this small example, but consider the example in Figure 8-2 with more
expansive lines of development on two branches.

master

maint

Figure 8-2. git diff larger history

In this case, git log master..maint represents the five individual commits V, W, ..., Z.
On the other hand, git diff master..maint represents the differences in the trees at
Hand Z, an accumulated 11 commits: C, D, ...,Hand V, ..., Z.

Similarly, both git log and git diff accept the form commit1...commit2 to produce
a symmetrical difference. As before, however, git log commiti...commit2 and
git diff commiti...commit2 vyield different results.

As discussed in “Commit Ranges” on page 78 of Chapter 6, the command
git log commiti...commit2 displays the commits reachable from either commit but
not both. Thus, git log master...maint in the previous example would yield C, D, ...,
HandVv, ..., Z.

The symmetric difference in git diff shows the differences between a commit that is
a common ancestor (or merge base) of commit1 and commit2. Given the same genealogy
in Figure 8-2, git diff master...maint combines the changes in the commitsV, W, ..., Z.

git diff with Path Limiting

By default, the command git diff operates on the entire directory structure rooted at
a given tree object. However, you can leverage the same path limiting technique
employed by git log to limit the output of git diff to a subset of the repository.

For example, at one point! in the development of the Git’s own repository,
git diff --stat displayed this:

$ git diff --stat master~5 master
Documentation/git-add.txt | 2 +-

1. d2b3691b61d516a0ad2bf700a2a5d9113ceffobl

git diff with Path Limiting | 117

Documentation/git—cherry.txt |
Documentation/git—commit—tree.txt |
Documentation/git—format—patch.txt |
Documentation/git—gc.txt
Documentation/git-gui.txt
Documentation/git-1s-files.txt |
Documentation/git-pack-objects.txt |
Documentation/git-pack-redundant.txt |
Documentation/git-prune-packed.txt |
Documentation/git-prune.txt
Documentation/git-read-tree.txt |
Documentation/git-remote.txt |
Documentation/git-repack.txt |
Documentation/git-rm.txt
Documentation/git-status.txt |
Documentation/git-update-index.txt |
Documentation/git-var.txt
Documentation/gitk.txt

|

|

AN N NNNNNNNNNNNNNBRNNDNDO
+
1

builtin-checkout.c -
builtin-fetch.c P

git-bisect.sh L R
t/t5518-fetch-exit-status.sh | 37 +HHHHbRRRR R

23 files changed, 83 insertions(+), 40 deletions(-)

To limit the output to just Documentation changes, you could instead use
git diff --stat master~5 master Documentation:

$ git diff --stat master~5 master Documentation
Documentation/git-add.txt | 2 +-
Documentation/git-cherry.txt | -
Documentation/git-commit-tree.txt |
Documentation/git-format-patch.txt |
Documentation/git-gc.txt
Documentation/git-gui.txt
Documentation/git-1s-files.txt |
Documentation/git-pack-objects.txt |
Documentation/git-pack-redundant.txt |
Documentation/git-prune-packed.txt |
Documentation/git-prune.txt
Documentation/git-read-tree.txt |
Documentation/git-remote.txt |
Documentation/git-repack.txt |
Documentation/git-rm.txt
Documentation/git-status.txt |
Documentation/git-update-index.txt |
Documentation/git-var.txt

Documentation/gitk.txt | 2 +-

19 files changed, 25 insertions(+), 19 deletions(-)

N N NNMNNNNNNNNNDBSBNNNO
+
1

Of course, you can view the diffs for a single file, too.

$ git diff master~5 master Documentation/git-add.txt

diff --git a/Documentation/git-add.txt b/Documentation/git-add.txt
index bb4abe2..1afd0oc6 100644

--- a/Documentation/git-add.txt

+++ b/Documentation/git-add.txt

118 | Chapter8: Diffs

@@ -246,7 +246,7 @@ characters that need C-quoting. core.quotepath™ configuration can be

used to work this limitation around to some degree, but backslash,
double-quote and control characters will still have problems.

-See Also

+SEE ALSO
linkgit:git-status[1]
linkgit:git-rm[1]

In the following example, also taken from Git’s own repository, the -S"string" searches
the past 50 commits to the master branch for changes containing string.

$ git diff -S"octopus” master~50

diff --git a/Documentation/RelNotes-1.5.5.3.txt b/Documentation/RelNotes-1.5.5.3.txt
new file mode 100644

index 0000000..f22f98b

--- /dev/null

+++ b/Documentation/RelNotes-1.5.5.3.txt

@@ -0,0 +1,12 @@

* "git send-email --compose" did not notice that non-ascii contents
needed some MIME magic.

* "git fast-export"” did not export octopus merges correctly.

+ + 4+ + + +

+Also comes with various documentation updates.

Used with -S, often called the pickaxe, Git lists the diffs that contain a change in the
number of times the given string is used in the diff. Conceptually, you can think of
this as “Where is the given string either introduced or removed?” You can find an
example of the pickaxe used with git login “Using Pickaxe” on page 88 of Chapter 6.

Comparing How Subversion and Git Derive diffs

Most systems, such as CVS or SVN, track a series of revisions and store just the changes
between each pair of files. This technique is meant to save storage space and overhead.

Internally, such systems spend a lot of time thinking about things like “the series of
changes between A and B.” When you update your files from the central repository,
for example, SVN remembers that the last time you updated the file you were at revision
r1095, but now the repository is at revision r1123. Thus, the server must send you the
diff between r1095 and r1123. Once your SVN client has these diffs, it can incorporate
them into your working copy and produce r1123. (That’s how SVN avoids sending you
all the contents of all files every time you update.)

Comparing How Subversion and Git Derive diffs | 119

To save disk space, SVN also stores its own repository as a series of diffs on the server.
When you ask for the diffs between r1095 and r1123, it looks up all the individual diffs
for each version between those two versions, merges them together into one large diff,
and sends you the result. But Git doesn’t work like that.

In Git, as you’ve seen, each commit contains a tree, which is a list of files contained by
that commit. Each tree is independent of all other trees. Git users still talk about diffs
and patches, of course, because these are still extremely useful. Yet, in Git, a diff and
a patch are derived data, not the fundamental data they are in CVS or SVN. If you look
in the .git directory, you won’t find a single diff; if you look in a SVN repository, it
consists mostly of diffs.

Just as SVN is able to derive the complete set of differences between r1095 and r1123,
Git can retrieve and derive the differences between any two arbitrary states. But SVN
must look at each version between r1095 and r1123, whereas Git doesn’t care about the
intermediate steps.

Each revision has its own tree, but Git doesn’t require those to generate the diff; Git
can operate directly on snapshots of the complete state at each of the two versions. This
simple difference in storage systems is one of the most important reasons that Git is so
much faster than other RCSs.

120 | Chapter8: Diffs

CHAPTER 9
Merges

Git is a distributed version control system (DVCS). It allows, for example, a developer
in Japan and another in New Jersey to make and record changes independently, and it
permits the two developers to combine their changes at any time, all without a central
repository. In this chapter, we’ll learn how to combine two or more different lines of
development.

A merge unifies two or more commit history branches. Most often, a merge unites just
two branches, although Git supports a merge of three, four, or more branches at the
same time.

In Git, a merge must occur within a single repository—that is, all the branches to be
merged must be present in the same repository. How the branches come to be in the
repository is not important. (As you will see in Chapter 12, Git provides mechanisms
for referring to other repositories and for bringing remote branches into your current
working repository.)

When modifications in one branch do not conflict with modifications found in another
branch, Git computes a merge result and creates a new commit that represents the new,
unified state. But when branches conflict, which occurs whenever changes compete to
alter the same line of the same file, Git does not resolve the dispute. Instead, Git marks
such contentious changes as “unmerged” in the index and leaves reconciliation up to
you, the developer. When Git cannot merge automatically, it’s also up to you to make
the final commit once all conflicts are resolved.

Merge Examples
To merge other_branch into branch, you should check out the target branch and merge
the other branches into it, like this:

$ git checkout branch
$ git merge other_branch

121

Let’s work through a pair of example merges, one without conflicts and one with sub-
stantial overlaps. To simplify the examples in this chapter, we’ll use multiple branches
per the techniques presented in Chapter 7.

Preparing for a Merge

Before you begin a merge, it’s best to tidy up your working directory. During a normal
merge, Git creates new versions of files and places them in your working directory when
it is finished. Furthermore, Git also uses the index to store temporary and intermediate
versions of files during the operation.

If you have modified files in your working directory or if you’ve modified the index via
git add or git rm, then your repository has a dirty working directory or index. If you
start a merge in a dirty state, Git may be unable to combine the changes from all the
branches and from those in your working directory or index in one pass.

W
% You don’t have to start with a clean directory. Git performs the merge,
"‘:‘ for example, if the files affected by the merge operation and the dirty
T Qe files in your working directory are disjoint. However, as a general rule,
" your Git life will be much easier if you start each merge with a clean
working directory and index.
Merging Two Branches

For the simplest scenario, let’s set up a repository with a single file, create two branches,
and then merge the pair of branches together again.

$ git init

Initialized empty Git repository in /tmp/conflict/.git/

$ git config user.email "jdl@example.com"

$ git config user.name "Jon Loeliger"

$ cat > file

Line 1 stuff

Line 2 stuff

Line 3 stuff

D

$ git add file

$ git commit -m "Initial 3 line file"

Created initial commit 8f4d2d5: Initial 3 line file
1 files changed, 3 insertions(+), 0 deletions(-)
create mode 100644 file

Let’s create another commit on the master branch:

$ cat > other_file

Here is stuff on another file!
“D

$ git add other_file

$ git commit -m "Another file"

122 | Chapter9: Merges

Created commit 761d917: Another file
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 other file

So far, the repository has one branch with two commits, where each commit introduced
a new file. Next, let’s change to a different branch and modify the first file.

$ git checkout -b alternate master”
Switched to a new branch "alternate"

$ git show-branch
* [alternate] Initial 3 line file
| [master] Another file

+ [master] Another file
*+ [alternate] Initial 3 line file

Here, the alternate branch is initially forked from the master® commit, one commit
behind the current head.

Make a trivial change to the file so you have something to merge, and then commit it.
Remember, it’s best to commit outstanding changes and start a merge with a clean
working directory.

$ cat » file

Line 4 alternate stuff

D

$ git commit -a -m "Add alternate's line 4"

Created commit b384721: Add alternate's line 4

1 files changed, 1 insertions(+), 0 deletions(-)

Now there are two branches and each has different development work. A second file
has been added to the master branch, and a modification has been made to alternate
the branch. Because the two changes do not affect the same parts of a common file, a
merge should proceed smoothly and without incident.

The git merge operation is context sensitive. Your current branch is always the target
branch, and the other branch or branches are merged into the current branch. In this
case, the alternate branch should be merged into the master branch, so the latter must
be checked out before you continue:

$ git checkout master
Switched to branch "master"

$ git status
On branch master
nothing to commit (working directory clean)

Yep, ready for a merge!

$ git merge alternate

Merge made by recursive.

file | 1+

1 files changed, 1 insertions(+), 0 deletions(-)

Merge Examples | 123

Download from Wow! eBook <www.wowebook.com>

You can use another commit graph viewing tool, a part of git log, to see what what’s
been done:

$ git log --graph --pretty=oneline --abbrev-commit

1d51b93... Merge branch 'alternate’

*
I\
| * b384721... Add alternate's line 4
* | 761d917... Another file

|/

* 8f4d2d5... Initial 3 line file

That is conceptually the commit graph described earlier in the section “Commit
Graphs” on page 74 (Chapter 6), except that this graph is turned sideways, with the
most recent commits at the top rather than the right. The two branches have split at
the initial commit, 8f4d2ds; each branch shows one commit each (761d917 and
b384721); and the two branches merge again at commit 1d51b93.

B
)

Using git log --graph is an excellent alternative to graphical tools such
as gitk. The visualization provided by git log --graph is well-suited to
s dumb terminals.

Technically, Git performs each merge symmetrically to produce one identical, com-
bined commit that is added to your current branch. The other branch is not affected
by the merge. Because the merge commit is added only to your current branch, you can
say, “I merged some other branch into this one.”

A Merge with a Conflict

The merge operation is inherently problematic because it necessarily brings together
potentially varying and conflicting changes from different lines of development. The
changes on one branch may be similar to or radically different from the changes on a
different branch. Modifications may alter the same files or a disjoint set of files. Git can
handle all these varied possibilities, but often it requires guidance from you to resolve
conflicts.

Let’s work through a scenario in which a merge leads to a conflict. We begin with the
results of the merge from the previous section and introduce independent and con-
flicting changes on the master and alternate branches. We then merge the alternate
branch into the master branch, face the conflict, resolve it, and commit the final result.

On the master branch, create a new version of file with a few additional lines in it and
then commit the changes:

$ git checkout master

$ cat »> file
Line 5 stuff

124 | Chapter9: Merges

Line 6 stuff
"D

$ git commit -a -m "Add line 5 and 6"
Created commit 4d8b599: Add line 5 and 6
1 files changed, 2 insertions(+), 0 deletions(-)

Now, on the alternate branch, modify the same file differently. Whereas you made

new commits to the master branch, the alternate branch has not pr

$ git checkout alternate
Switched branch "alternate"

$ git show-branch
* [alternate] Add alternate's line 4
| [master] Add line 5 and 6
+ [master] Add line 5 and 6
*+ [alternate] Add alternate's line 4

In this branch, "file" left off with "Line 4 alternate stuff"
$ cat »> file

Line 5 alternate stuff
Line 6 alternate stuff

"D
$ cat file
Line 1 stuff

1
Line 2 stuff
Line 3 stuff
Line 4 alternate stuff
Line 5 alternate stuff
Line 6 alternate stuff

$ git diff
diff --git a/file b/file
index a29c52b..802acf8 100644
--- a/file
+++ b/file
@@ -2,3 +2,5 @@ Line 1 stuff
Line 2 stuff
Line 3 stuff
Line 4 alternate stuff
+Line 5 alternate stuff
+Line 6 alternate stuff

$ git commit -a -m "Add alternate line 5 and 6"
Created commit e306e1d: Add alternate line 5 and 6
1 files changed, 2 insertions(+), 0 deletions(-)

Let’s review the scenario. The current branch history looks like this:

$ git show-branch
* [alternate] Add alternate line 5 and 6
! [master] Add line 5 and 6

ogressed yet.

Merge Examples | 125

* [alternate] Add alternate line 5 and 6
+ [master] Add line 5 and 6
*+ [alternate”] Add alternate's line 4

To continue, check out the master branch and try to perform the merge:

$ git checkout master
Switched to branch "master"

$ git merge alternate

Auto-merged file

CONFLICT (content): Merge conflict in file

Automatic merge failed; fix conflicts and then commit the result.

When a merge conflict like this occurs, you should almost invariably investigate the
extent of the conflict using the git diff command. Here, the single file named file has
a conflict in its content:
$ git diff
diff --cc file
index 4d77dd1,802acf8..0000000
--- a/file
+++ b/file
@e@ -2,5 -2,5 +2,10 @@@ Line 1 stuf
Line 2 stuff
Line 3 stuff
Line 4 alternate stuff
++<<<<<<< HEAD:file
+Line 5 stuff
+Line 6 stuff

+ Line 5 alternate stuff
+ Line 6 alternate stuff
++>>>>>>> alternate:file

The git diff command shows the differences between the file in your working direc-
tory and the index. In the traditional diff command output style, the changed content
is presented between <<<<<<< and ======= with an alternate between ======= and
>>>>>>>. However, additional plus and minus signs are used in the combined diff format
to indicate changes from multiple sources relative to the final resulting version.

The previous output shows that the conflict covers lines 5 and 6, where deliberately
different changes were made in the two branches. It’s then up to you to resolve the
conflict. When resolving a merge conflict, you are free to choose any resolution you
would like for the file. That includes picking lines from only one side or the other, or
a mix from both sides, or even making up something completely new and different.
Although that last option might be confusing, it is a valid choice.

In this case, I chose a line from each branch as the makeup of my resolved version. The
edited file now has this content:

$ cat file
Line 1 stuff

126 | Chapter9: Merges

Line 2 stuff
Line 3 stuff
Line 4 alternate stuff
Line 5 stuff
Line 6 alternate stuff

If you are happy with the conflict resolution, you should git add the file to the index
and stage it for the merge commit:

$ git add file
After you have resolved conflicts and staged final versions of each file in the index using

git add, it is finally time to commit the merge using git commit. Git places you in your
favorite editor with a template message that looks like this:

Merge branch 'alternate’

Conflicts:
file
#
It looks like you may be committing a MERGE.
If this is not correct, please remove the file
.git/MERGE_HEAD
and try again.
#

Please enter the commit message for your changes.
(Comment lines starting with '#' will not be included)
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: file

HoH H HHHH R

As usual, the lines beginning with the octothorp (#) are comments and meant solely for
your information while you write a message. All comment lines are ultimately elided
from the final commit log message. Feel free to alter or augment the commit message
as you see fit, perhaps adding a note about how the conflict was resolved.

When you exit the editor, Git should indicate the successful creation of a new merge
commit:

$ git commit
Edit merge commit message
Created commit 7015896: Merge branch 'alternate’

$ git show-branch
| [alternate] Add alternate line 5 and 6
* [master] Merge branch 'alternate’
- [master] Merge branch 'alternate'
+* [alternate] Add alternate line 5 and 6

Merge Examples | 127

You can see the resulting merge commit using:

$ git log

Working with Merge Conflicts

Asdemonstrated by the previous example, there are instances when conflicting changes
can’t be merged automatically.

Let’s create another scenario with a merge conflict to explore the tools Git provides to
help resolve disparities. Starting with a common hello with just the contents “hello,”
let’s create two different branches with two different variants of the file.

$ git init
Initialized empty Git repository in /tmp/conflict/.git/

$ echo hello > hello

$ git add hello

$ git commit -m "Initial hello file"

Created initial commit b8725ac: Initial hello file
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 hello

$ git checkout -b alt
Switched to a new branch "alt"
$ echo world »> hello
$ echo 'Yay!' >> hello
$ git commit -a -m "One world"
Created commit do3e77f: One world
1 files changed, 2 insertions(+), 0 deletions(-)

$ git checkout master

$ echo worlds >> hello

$ echo 'Yay!' >> hello

$ git commit -a -m "All worlds"

Created commit eddcb7d: All worlds

1 files changed, 2 insertions(+), 0 deletions(-)

One branch says world, whereas the other says worlds—a deliberate difference.
As in the earlier example, if you check out master and try to merge the alt branch into
it, a conflict arises.

$ git merge alt

Auto-merged hello

CONFLICT (content): Merge conflict in hello

Automatic merge failed; fix conflicts and then commit the result.

As expected, Git warns you about the conflict found in the hello file.

128 | Chapter9: Merges

Locating Conflicted Files

But what if Git’s helpful directions scrolled off the screen or if there were many files
with conflicts? Luckily, Git keeps track of problematic files by marking each one in the
index as conflicted, or unmerged.

You can also use either the git status command or the git 1s-files -ucommand to
show the set of files that remain unmerged in your working tree.

$ git status

hello: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

unmerged: hello

#

no changes added to commit (use "git add" and/or "git commit -a")

$ git 1s-files -u

100644 ce013625030ba8dbag061756967f9e9ca394464a 1 hello
100644 €63164d9518blebcat28f455ac86c8246F78ab70 2 hello
100644 562080a4c6518e1bf67a9f58a32a67bff72d4f00 3 hello

You can use git diff to show what’s not yet merged, but it will show all of the gory
details, too!

Inspecting Conflicts

When a conflict appears, the working directory copy of each conflicted file is enhanced
with three-way diff or merge markers. Continuing from where the example left off, the
resulting conflicted file now looks like this:

$ cat hello

hello

<<<<<<< HEAD:hello
worlds

world

>>>>>>> 6ab5ed10d942878015e38e4bab333daff614b46e:hello

Yay!
The merge markers delineate the two possible versions of the conflicting chunk of the
file. In the first version, the chunk says “worlds”; in the other version, it says “world.”
You could simply choose one phrase or the other, remove the conflict markers, and
then run git add and git commit, but let’s explore some of the other features Git offers
to help resolve conflicts.

Working with Merge Conflicts | 129

The three-way merge marker lines (<<<<<<<<, ========_and >>>>>>>>)
are automatically generated, but they’re just meant to be read by you,
%s: not (necessarily) a program. You should delete them with your text
" editor once you resolve the conflict.

git diff with conflicts

Git has a special, merge-specific variant of git diff to display the changes made against
both parents simultaneously. In the example, it looks like this:

$ git diff
diff --cc hello
index e63164d,562080a..0000000
--- a/hello
+++ b/hello
@e@ -1,3 -1,3 +1,7 @@
hello
+4<<<<<<< HEAD:hello
+worlds

+ world
++>>>>>>> alt:hello
Yay!

What does it all mean? It’s the simple combination of two diffs: one versus the first
parent, called HEAD, and one against the second parent, or alt. (Don’t be surprised if
the second parent is an absolute SHA 1 name representing some unnamed commit from
some other repository!) To make things easier, Git also gives the second parent the
special name MERGE_HEAD.

You can compare both the HEAD and MERGE_HEAD versions against the working directory
(“merged”) version:

$ git diff HEAD

diff --git a/hello b/hello
index e63164d..4e4bc4e 100644
--- a/hello

+++ b/hello
00 -1,3 +1,7 @@

hello
+<<<<<<< HEAD:hello

worlds

+world
+>>>>>>> alt:hello
Yay!

And then this:

$ git diff MERGE_HEAD

diff --git a/hello b/hello
index 562080a..4e4bc4e 100644
--- a/hello

+++ b/hello

130 | Chapter9: Merges

00 -1,3 +1,7 00
hello

+<<<<<<< HEAD:hello

+worlds

world
+>>>>>>> alt:hello
Yay!

In newer versions of Git, git diff --ours is a synonym for
git diff HEAD, because it shows the differences between “our” version
% and the merged version. Similarly, git diff MERGE_HEAD can be written
asgit diff --theirs. Youcanusegit diff --base to see the combined
set of changes since the merge base, which would otherwise be rather
awkwardly written as:

$ git diff $(git merge-base HEAD MERGE_HEAD)

If you line up the two diffs side by side, all the text except the + columns are the same,
so Git prints the main text only once and prints the + columns next to each other.

The conflict found by git diff has two columns of information prepended to each line
of output. A plus sign in a column indicates a line addition, a minus sign indicates a
line removal, and a blank indicates a line with no change. The first column shows what’s
changing versus your version, and the second column shows what’s changing versus
the other version. The conflict marker lines are new in both versions, so they get a ++.
The world and worlds lines are new only in one version or the other, so they have just
a single + in the corresponding column.

Suppose you edit the file to pick a third option, like this:

$ cat hello
hello
worldly ones
Yay!

Then the new git diff outputis

$ git diff
diff --cc hello
index e63164d,562080a..0000000
--- a/hello
+++ b/hello
@e@ -1,3 -1,3 +1,3 Q@@
hello
- worlds
-world
++worldly ones
Yay!

Alternatively, you could choose one or the other original version, like this:

Working with Merge Conflicts | 131

$ cat hello
hello

world

Yay!

The git diff output would then be:

$ git diff

diff --cc hello

index e63164d,562080a..0000000
--- a/hello

+++ b/hello

Wait! Something strange happened there. Where does it show where the world line was
added to the base version? Where does it show that the worlds line was removed from
the HEAD version? As you have resolved the conflict in favor of the MERGE_HEAD version,
Git deliberately omits the diff because it thinks you probably don’t care about that
section anymore.

Running git diff on a conlflicted file only shows you the sections that really have a
conflict. In a large file with numerous changes scattered throughout, most of those
changes don’t have a conlflict; either one side of the merge changed a particular section
or the other side did. When you’re trying to resolve a conflict, you rarely care about
those sections, so git diff trims out uninteresting sections using a simple heuristic: if
a section has changes versus only one side, that section isn’t shown.

This optimization has a slightly confusing side effect: once you resolve something that
used to be a conflict by simply picking one side or the other, it stops showing up. That’s
because you modified the section so that it only changes one side or the other (i.e., the
side thatyou didn’t choose), so to Gititlooks just like a section that was never conflicted
at all.

This is really more a side effect of the implementation than an intentional feature, but
you might consider it useful anyway: git diff shows you only those sections of the file
that are still conflicted, so you can use it to keep track of the conflicts you haven’t fixed

yet.

git log with conflicts

While you’re in the process of resolving a conflict, you can use some special git log
options to help you figure out exactly where the changes came from and why. Try this:
$ git log --merge --left-right -p
commit <eddcb7dfe63258ae4695eb38d2bc22e726791227

Author: Jon Loeliger <jdl@example.com>
Date: Wed Oct 22 21:29:08 2008 -0500

All worlds

diff --git a/hello b/hello
index ce01362..e63164d 100644

132 | Chapter9: Merges

--- a/hello

+++ b/hello

@@ -1 +1,3 @@
hello

+worlds

+Yay!

commit >do3e77f7183cde5659bbaeefacb51281a9ectc79
Author: Jon Loeliger <example@example.com>
Date: Wed Oct 22 21:27:38 2008 -0500

One world

diff --git a/hello b/hello

index ce01362..562080a 100644

--- a/hello

+++ b/hello

@@ -1 +1)3 @@

hello

+world

+Yay!
This command shows all the commits in both parts of the history that affect conflicted
files in your merge, along with the actual changes each commit introduced. If you
wondered when, why, how, and by whom the line worlds came to be added to the file,
you can see exactly which set of changes introduced it.

The options provided to git log are as follows:

e --merge shows only commits related to files that produced a conflict

* --left-right displays < if the commit was from the “left” side of the merge (“our”
version, the one you started with), or > if the commit was from the “right” side of
the merge (“their” version, the one you’re merging in)

* -pshows the commit message and the patch associated with each commit

If your repository were more complicated and several files had conflicts, you could also
provide the exact filename(s) you’re interested in as a command line option, like this:

$ git log --merge --left-right -p hello

The examples here have been kept small for demonstration purposes. Of course, real-
life situations are likely to be significantly larger and more complex. One technique to
mitigate the pain of large merges with nasty, extended conflicts is to use several small
commits with well-defined effects contained to individual concepts. Git handles small
commits well, so there is no need to wait until the last minute to commit large, wide-
spread changes. Smaller commits and more frequent merge cycles reduce the pain of
conflict resolution.

Working with Merge Conflicts | 133

How Git Keeps Track of Conflicts

How exactly does Git keep track of all the information about a conflicted merge? There
are several parts:

* git/MERGE_HEAD contains the SHA1 of the commit you’re merging in. You
don’t really have to use the SHA1 yourself; Git knows to look in that file whenever
you talk about MERGE_HEAD.

* git/MERGE_MSG contains the default merge message used when you
git commit after resolving the conflicts.

* The Git index contains three copies of each conflicted file: the merge base, “our”
version, and “their” version. These three copies are assigned respective stage
numbers 1, 2, and 3.

* The conflicted version (merge markers and all) is not stored in the index. Instead,
it is stored in a file in your working directory. When you run git diff without any
parameters, the comparison is always between what’s in the index with what’s in
your working directory.

To see how the index entries are stored, you can use the git 1s-files plumbing com-
mand as follows:

$ git 1s-files -s

100644 ce013625030ba8dbag061756967f9e9ca394464a 1 hello
100644 €63164d9518blebcat28f455ac86c8246F78ab70 2 hello
100644 562080a4c6518e1bT67a9f58a32a67bff72d4f00 3 hello

The -s option to git 1s-files shows all the files with all stages. If you want to see only
the conflicted files, use the -u option instead.

In other words, the hello file is stored three times, and each has a different hash corre-
sponding to the three different versions. You can look at a specific variant by using
git cat-file:

$ git cat-file -p e63164d951

hello

worlds
Yay!

You can also use some special syntax with git diff to compare different versions of
the file. For example, if you want to see what changed between the merge base and the
version you’re merging in, you can do this:

$ git diff :1:hello :3:hello
diff --git a/:1:hello b/:3:hello
index ce01362..562080a 100644
--- a/:1:hello
+++ b/:3:hello
@@ -1 +1,3 @@

hello
+world
+Yay!

134 | Chapter9: Merges

Starting with Git version 1.6.1, the git checkout command accepts the

--ours or --theirs option as shorthand for simply checking out (a file

* Qlsr from) one side or the other of a conflicted merge; your choice resolves

" the conflict. These two options can only be used during a conflict res-
olution.

Using the stage numbers to name a version is different from git diff --theirs,
which shows the differences between their version and the resulting, merged (or still
conflicted) version in your working directory. The merged version is not yet in the
index, so it doesn’t even have a number.

Because you fully edited and resolved the working copy version in favor of their version,
there should be no difference now:

$ cat hello

hello

world
Yay!

$ git diff --theirs
* Unmerged path hello

All that remains is an unmerged path reminder to add it to the index.

Finishing Up a Conflict Resolution

Let’s make one last change to the hello file before declaring it merged:

$ cat hello

hello

everyone

Yay!
Now that the file is fully merged and resolved, git add reduces the index to just a single
copy of the hello file again:

$ git add hello

$ git 1s-files -s

100644 ebc56522386c504db37db907882c9dbdodo5aofo 0 hello
That lone 0 between the SHA1 and the path name tells you that the stage number for
a nonconflicted file is zero.

You must work through all the conflicted files as recorded in the index. You cannot
commit as long as there is an unresolved conflict. Therefore, as you fix the conflicts in
afile,rungit add (orgit rm,git update-index, etc.) on the file to clear its conflict status.

Be careful not to git add files with lingering conflict markers. Although
g that will clear the conflict in the index and allow you to commit, your

file won’t be correct.

Working with Merge Conflicts | 135

Finally, you can git commit the end result and use git show to see the merge commit:

$ cat .git/MERGE_MSG
Merge branch 'alt'

Conflicts:
hello

$ git commit
$ git show

commit a274b3003fc705ad22445308bdfb172ff583f8ad
Merge: eddcb7d... do3e77f...

Author: Jon Loeliger <@example.com>

Date: Wed Oct 22 23:04:18 2008 -0500

Merge branch 'alt'

Conflicts:
hello

diff --cc hello
index e63164d,562080a..ebc5652
--- a/hello
+++ b/hello
ee@ -1,3 -1,3 +1,3 Q@@
hello
- worlds
-world
++everyone
Yay!

You should notice three interesting things when you look at a merge commit:

e There is a new, second line in the header that says Merge:. Normally there’s no
need to show the parent of a commit in git log orgit show, since there is only one
parent and it’s typically the one that comes right after it in the log. But merge
commits typically have two (and sometimes more) parents, and those parents are
important to understanding the merge. Hence, git log and git show always print
the SHA1 of each ancestor.

* The automatically generated commit log message helpfully notes the list of files
that conflicted. This can be useful later if it turns out a particular problem was
caused by your merge. Usually, problems caused by a merge are caused by the files
that had to be merged by hand.

* The diff of a merge commit is not a normal diff. It is always in the combined diff or
“conflicted merge” format. A successful merge in Git is considered to be no change
at all; it is simply the combination of other changes that already appeared in the
history. Thus, showing the contents of a merge commit shows only the parts that
are different from one of the merged branches, not the entire set of changes.

136 | Chapter9: Merges

Aborting or Restarting a Merge

If you start a merge operation but then decide for some reason that you don’t want to
complete it, Git provides an easy way to abort the operation. Prior to executing the
final git commit on the merge commit, use:

$ git reset --hard HEAD

This command restores both your working directory and the index to the state imme-
diately prior to the git merge command.

If you want to abort or discard the merge after it has finished (thatis, afterit’s introduced
a new merge commit), use the command:

$ git reset --hard ORIG_HEAD

Prior to beginning the merge operation, Git saves your original branch HEAD in the
ORIG_HEAD ref for just this sort of purpose.

You should be very careful here, though. If you did not start the merge with a clean
working directory and index, you could get in trouble and lose any uncommitted
changes you have in your directory.

You can initiate a git merge request with a dirty working directory, but if you execute
git reset --hard then your dirty state prior to the merge is not fully restored. Instead,
the reset loses your dirty state in the working directory area. In other words, you
requested a --hard reset to the HEAD state! (See “Using git reset” on page 154.)

Starting with Git version 1.6.1, you have another choice. If you have botched a conflict
resolution and want to return to the original conflict state before trying to resolve it
again, you can use the command git checkout -m.

Merge Strategies

So far, our examples have been easy to handle because there are only two branches. It
might seem like Git’s extra complexity of DAG-shaped history and long, hard-to-
remember commit IDs isn’t really worth it. And maybe it isn’t for such a simple case.
So, let’s look at something a little more complicated.

Imagine that instead of just one person working on in your repository there are three.
To keep things simple, suppose that each developer—Alice, Bob, and Cal—is able to
contribute changes as commits on three separate eponymous branches within a shared
repository.

Because the developers are all contributing to separate branches, let’s leave it up to one
person, Alice, to manage the integration of the various contributions. In the meantime,
each developer is allowed to leverage the development of the others by directly incor-
porating or merging a coworker’s branch, as needed.

Merge Strategies | 137

Eventually, the coders develop a repository with a commit history as shown in Fig-
ure 9-1.

Alice

Bob

Cal

Figure 9-1. Criss-cross merge setup

Imagine that Cal started the project and Alice joined in. Alice worked on it for a while,
then Bob joined in. In the meantime, Cal has been working away on his own version.

Eventually, Alice merged in Bob’s changes, and Bob kept on working without merging
Alice’s changes back into his tree. There are now three different branch histories
(Figure 9-2).

Figure 9-2. After Alice merges in Bob

Let’s imagine that Bob wants to get Cal’s latest changes. The diagram is looking pretty
complicated now, but this part is still relatively easy. Trace up the tree from Bob,
through Alice, until you reach the point where she first diverged from Cal. That’s A,
the merge base between Bob and Cal. To merge from Cal, Bob needs to take the set of
changes between the merge base, A, and Cal’s latest, Q, and three-way merge them into
his own tree, yielding commit K. The result is the history shown in Figure 9-3.

W8

You can always find the merge base between two or more branches by
- usinggit merge-base. Itis possible for there to be more than one equally
s valid merge base for a set of branches.

So far, so good.

138 | Chapter9: Merges

Figure 9-3. After Bob merges in Cal

Alice now decides that she, too, wants to get Cal’s latest changes, but she doesn’t realize
Bob has already merged Cal’s tree into his. So she just merges Cal’s tree into hers. That’s
another easy operation because it’s obvious where she diverged from Cal. The resulting
history is shown in Figure 9-4.

D—B®—0—0—0©—0 D) e
O—O0—0—-O0—0 bob
O—®—0O 2

Figure 9-4. After Alice merges in Cal

Next, Alice realizes that Bob has done some more work, L, and wants to merge from
him again. What’s the merge base (between L and E) this time?

Unfortunately, the answer is ambiguous. If you trace all the way back up the tree, you
might think the original revision from Cal is a good choice. But that doesn’t really make
sense: both Alice and Bob now have Cal’s newest revision. If you ask for the differences
from Cal’s original revision to Bob’s latest then it will also include Cal’s newer changes,
which Alice already has, which is likely to result in a merge conflict.

What if you use Cal’s latest revision as the base? It’s better, but still not quite right: if
you take the diff from Cal’s latest to Bob’s latest, you get all Bob’s changes. But Alice
already has some of Bob’s changes, so you’ll probably get a merge conflict there, too.

And what if you use the version that Alice last merged from Bob, version J? Creating a
diff from there to Bob’s latest will include only the newest changes from Bob, which is
what you want. But it also includes the changes from Cal, which Alice already has!

What to do?

This kind of situation is called a criss-cross merge because changes have been merged
back and forth between branches. If changes moved in only one direction (e.g., from

Merge Strategies | 139

Download from Wow! eBook <www.wowebook.com>

Cal to Alice to Bob, but never from Bob to Alice or from Alice to Cal), then merging
would be simple. Unfortunately, life isn’t always that easy.

The Git developers originally wrote a straightforward mechanism to join two branches
with a merge commit, but scenarios like the one just described soon led them to realize
that a more clever approach was needed. Hence, the developers generalized, parame-
terized, and introduced alternate, configurable merge strategies to handle different
scenarios.

Let’s look at the various strategies and see how to apply each one.

Degenerate Merges

There are two common degenerate scenarios that lead to merges and are called already
up-to-date and fast-forward. Because neither of these scenarios actually introduces a
new merge commit after performing the git merge,! some might consider them not to
be true merge strategies.

* Already up-to-date. When all the commits from the other branch (its HEAD) are
already present in your target branch, even if it has advanced on its own, the target
branch is said to be already up-to-date. As a result, no new commits are added to
your branch.

For example, if you perform a merge and immediately follow it with the exact same
merge request, then you will be told that your branch is already up-to-date.

Show that alternate is already merged into master

$ git show-branch
| [alternate] Add alternate line 5 and 6
* [master] Merge branch 'alternate'

- [master] Merge branch 'alternate'
+* [alternate] Add alternate line 5 and 6

Try to merge alternate into master again

$ git merge alternate
Already up-to-date.
* Fast-forward. A fast-forward merge happens when your branch HEAD is already fully
present and represented in the other branch. This is the inverse of the Already up-
to-date case.

Because your HEAD is already present in the other branch (likely due to a common
ancestor), Git simply tacks on to your HEAD the new commits from the other branch.
Git then moves your branch HEAD to point to the final, new commit. Naturally, the

1. Yes, you can force Git to create one anyway by using the --no-ff option in the fast-forward case. However,
you should fully understand why you want to do so.

140 | Chapter9: Merges

index and your working directory are also adjusted accordingly to reflect the new,
final commit state.

The fast-forward case is particularly common on tracking branches because they
simply fetch and record the remote commits from other repositories. Your local
tracking branch HEADs will always be fully present and represented, because that is
where the branch HEAD was after the previous fetch operation. See Chapter 12 for
more details.

It is important for Git to handle these cases without introducing actual commits. Imag-
ine what would happen in the fast-forward case if Git created a commit. Merging branch
A into B would first produce Figure 9-5. Then merging B into A would produce Fig-
ure 9-6, and merging back again would yield Figure 9-7.

oQq—0o—0 -

Figure 9-5. First nonconverging merge

-O0—Q—0 s
bode .

Figure 9-6. Second nonconverging merge

_O () () () B
O/
Y A
O/ O/

Figure 9-7. Third nonconverging merge

Each new merge is a new commit, so the sequence will never converge on a steady state
and reveal that the two branches are identical.

Merge Strategies | 141

Normal Merges

These merge strategies all produce a final commit, added to your current branch, that
represents the combined state of the merge.

* Resolve. The resolve strategy operates on only two branches, locating the common
ancestor as the merge basis and performing a direct three-way merge by applying
the changes from the merge base to the tip of the other branch HEAD onto the current
branch. This method makes intuitive sense.

* Recursive. The recursive strategy is similar to the resolve strategy in that it can only
join two branches at once. However, it is designed to handle the scenario where
there is more than one merge base between the two branches. In these cases, Git
forms a temporary merge of all of the common merge bases and then uses that as
the base from which to derive the resulting merge of the two given branches via a
normal three-way merge algorithm.

The temporary merge basis is thrown away, and the final merge state is committed
on your target branch.

* Octopus. The octopus strategy is specifically designed to merge together more than
two branches simultaneously. Conceptually, it is fairly simple; internally, it calls
the recursive merge strategy multiple times, once for each branch you are merging.

However, this strategy cannot handle a merge that requires any form of conflict
resolution that would necessitate user interaction. In such a case, you are forced
to do a series of normal merges, resolving the conflicts one step at a time.

Recursive merges

A simple criss-cross merge example is shown in Figure 9-8.

/I-J\F\OB

Figure 9-8. Simple criss-cross merge

The nodes a and b are both merge bases for a merge between A and B. Either one could
be used as the merge base and yield reasonable results. In this case, the recursive strategy
would merge a and b into a temporary merge base, using that as the merge base for A
and B.

142 | Chapter9: Merges

Because a and b could have the same problem, merging them could require another
merge of still older commits. That is why this algorithm is called recursive.

Octopus merges

The main reasons why Git supports merging multiple branches together all at once are
generality and design elegance. In Git, a commit can have no parents (the initial com-
mit), one parent (a normal commit), or more than one parent (a merge commit). Once
you have more than one parent, there is no particular reason to limit that number to
only two, so Git data structures support multiple parents.2 The octopus merge strategy
is a natural consequence of the general design decision to allow a flexible list of commit
parents.

Octopus merges look nice in diagrams, so Git users tend to use them as often as possible.
You can just imagine the rush of endorphins a developer gets when merging six
branches of a program into one. Besides looking pretty, octopus merges don’t actually
do anything extra. You could just as easily make multiple merge commits, one per
branch, and accomplish exactly the same thing.

Specialty Merges

There are two special merge strategies that you should be aware of because they can
sometimes help you solve strange problems. Feel free to skip this section if you don’t
have a strange problem. The two special strategies are ours and subtree.

These merge strategies each produce a final commit, added to your current branch,
that represents the combined state of the merge.

* Qurs. The ours strategy merges in any number of other branches, but it actually
discards changes from those branches and uses only the files from the current
branch. The result of an ours merge is identical to the current HEAD, but any other
named branches are also recorded as commit parents.

This is useful if you know you already have all the changes from the other branches
but want to combine the two histories anyway. That is, it lets you record that you
have somehow performed the merge, perhaps directly by hand, and that future Git
operations shouldn’t try to merge the histories again. Git can treat this as real merge
no matter how it came to be.

* Subtree. The subtree strategy merges in another branch, but everything in that
branch is merged into a particular subtree of the current tree. You don’t specify
which subtree; Git determines that automatically.

2. That’s the “Zero, One, or Infinity Principle” at work.

Merge Strategies | 143

Applying Merge Strategies

So how does Git know or determine which strategy to use? Or, if you don’t like Git’s
choice, how do you specify a different one?

Git tries to keep the algorithms it uses as simple and inexpensive as possible, so it first
tries using the already up-to-date and fast-forward to eliminate the trivial, easy
scenarios if possible.

If you specify more than one other branch to be merged into your current branch, Git
has no choice but trying the octopus strategy because that is the only one capable of
joining more than two branches in a single merge.

Failing those special cases, Git must use a default strategy that works reliably in all
other scenarios. Originally, resolve was the default merge strategy used by Git.

In criss-cross merge situations such as those described previously, where there is more
than one possible merge basis, the resolve strategy works like this: pick one of the
possible merge bases (either the last merge from Bob’s branch or the last merge from
Cal’s branch) and hope for the best. This is actually not as bad as it sounds. It often
turns out that Alice, Bob, and Cal have all been working on different parts of the code.
In that case, Git detects that it’s remerging some changes that are already in place and
just skips duplicate changes, avoiding the conflict. Or, if there are slight changes that
do cause a conflict, at least the conflicts should be fairly easy for a developer to handle.

Because resolve is no longer Git’s default, if Alice wanted to use it then she would make
an explicit request:

$ git merge -s resolve Bob

In 2005, Fredrik Kuivinen contributed the new recursive merge strategy, which has
since become the default. It is more general than resolve and has been shown to result
in fewer conflicts, without fault, on the Linux kernel. It also handles merges with
renames quite well.

In the previous example, where Alice wants to merge all of Bob’s work, the recursive
strategy would work like this:

1. Start with the most recent revision from Cal that both Alice and Bob have. In this
case, that’s Cal’s most recent revision, Q, which has been merged into both Bob’s
and Alice’s branches.

2. Calculate the diff between that revision and the most recent revision that Alice
merged from Bob, and patch that in.

3. Calculate the diff between that combined version and Bob’s latest version, and
patch that in.

This method is called “recursive” because there may be extra iterations, depending on
how many levels of criss-crossing and merge bases Git encounters. And it works. Not
only does the recursive method make intuitive sense, it has also been proven to result

144 | Chapter9: Merges

in fewer conflicts in real-life situations than the simpler resolve strategy. That’s why
recursive is now the default strategy for git merge.

Of course, no matter which strategy Alice chooses to use, the final history looks the
same (Figure 9-9).

Alice

Bob

Gl

Figure 9-9. Final criss-cross merge history

Using ours and subtree

You can use these two merge strategies together. For example, once upon a time, the
gitweb program (which is now part of git) was developed outside the main git.git
repository. But at revision 0a8f4f, its entire history was merged into git.git under the
gitweb subtree. If you wanted to do something similar, you could proceed as follows

1. Copy the current files from the gitweb.git project into the gitweb subdirectory of
your project.
2. Commit them as usual.
3. Pull from the gitweb.git project using the ours strategy:
$ git pull -s ours gitweb.git master
You use ours here because you know that you already have the latest version of

the files and you have already put them exactly where you want them (which is
not where the normal recursive strategy would have put them).

4. In the future, you can continue to pull the latest changes from the gitweb.git
project using the subtree strategy:

$ git pull -s subtree gitweb.git master

Because the files already exist in your repository, Git knows automatically which
subtree you put them in and performs the updates without any conflicts.

Merge Drivers

Each of the merge strategies described in this chapter uses an underlying merge driver
to resolve and merge each individual file. A merge diver accepts the names of three
temporary files that represent the common ancestor, the target branch version, and the

Merge Strategies | 145

other branch version of a file. The driver modifies the target branch version to have the
merged result.

The text merge driver leaves the usual three-way merge markers, (<<<<<<<<, ========,
and >>>>>>>).

The binary merge driver simply keeps the target branch version of the file and leaves
the file marked as a conflict in the index. Effectively, that forces you to handle binary
files by hand.

The final built-in merge diver, union, simply leaves all the lines from both versions in
the merged file.

Through Git’s attribute mechanism, Git can tie specific files or file patterns to specific
merge drivers. Most text files are handled by the text driver and most binary files by
the binary driver. Yet, for special needs that warrant an application-specific merge
operation, you can create and specify your own custom merge driver and tie it to your
specific files.

If you think you need custom merge drivers, you may want to investigate
custom diff drivers as well!
&

How Git Thinks About Merges

At first, Git’s automatic merging support seems nothing short of magical, especially
compared to the more complicated and error-prone merging steps needed in other
VCSs.

Let’s take a look at what’s going on behind the scenes to make it all possible.

Merges and Git’s Object Model

In most VCSs, each commit has only one parent. On such a system, when you merge
some_branch into my_branch, you create a new commit on my_branch with the changes
from some_branch. Conversely, if youmergemy_branchinto some_branch then this creates
anew commit on some_branch containing the changes frommy_branch. Merging branch
A into branch B and merging branch B into branch A are two different operations.

However, the Git designers noticed that each of these two operations results in the
same set of files when you’re done. The natural way to express either operation is simply
to say, “Merge all the changes from some_branch and another branch into a single
branch.”

In Git, the merge yields a new tree object with the merged files, but it also introduces
a new commit object on only the target branch. After these commands:

146 | Chapter9: Merges

$ git checkout my_branch
$ git merge some_branch

the object model looks like Figure 9-10.

some_branch

my_branch

TY

Figure 9-10. Object model after a merge

In Figure 9-10, each Cx is a commit object and each Tx represents the corresponding
tree object. Notice how there is one common merged commit (CZC) that has both CC
and (Z as commit parents, but it has only one resulting set of files represented in the
TZC tree. The merged tree object symmetrically represents both source branches equally.
But because my_branch was the checked out branch into which the merge happened,
only my_branch has been updated to show the new commit on it; some_branch remains
where it was.

This is not just a matter of semantics. It reflects Git’s underlying philosophy that all
branches are created equal.3

Squash Merges

Suppose some_branch had contained not just one new commit, but instead, 5 or 10 or
even hundreds of commits. In most systems, merging some_branch intomy_branch would
involve producing a single diff, applying it as a single patch ontomy_branch, and creating
one new element in the history. This is called a squash commit because it “squashes”
all the individual commits into one big change. As far as the history of my_branch is
concerned, the history of some_branch would be lost.

3. And, by extension, so are all complete repository clones.

How Git Thinks About Merges | 147

In Git, the two branches are treated as equal, so it’s improper to squash one side or the
other. Instead, the entire history of commits on both sides is retained. As users, you
can see from Figure 9-10 that you pay for this complexity. If Git had made a squash
commit, you wouldn’t have to see (or think about) a diagram that diverges and then
rejoins again. The history of my_branch could have been just a straight line.

W

Git can make squash commits if desired. Just give the --squash option
to git merge or git pull. Beware, however! Squashing commits will
Wi+ upset Git’s history, and that will complicate future merges because the
" squashed comments alter the history of commits (see Chapter 10).

The added complexity might appear unfortunate, but it is actually quite worthwhile.
For example, this feature means that the git blame and git bisect commands, dis-
cussed in Chapter 6, are much more powerful than equivalents in other systems. And
as you saw with the recursive merge strategy, Git is able to automate very complicated
merges as a result of this added complexity and the resulting detailed history.

B
o)

Although the merge operation itself treats both parents as equal, you
can choose to treat the first parent as special when you go back through
¢ the history later. Some commands (e.g., git log and gitk) support the
" --first-parent option, which follows only the first parent of every
merge. The resulting history looks much the same as if you had used --
squash on all your merges.

Why Not Just Merge Each Change One by One?

You might ask wouldn’t it be possible to have it both ways: a simple, linear history with
every individual commit represented? Git could just take all the commits from
some_branch and apply them, one by one, onto my_branch. But that wouldn’t be the
same thing at all.

An important observation about Git’s commit histories is that each revision in the
history is real. (You can read more about treating alternate histories as equal realities
in Chapter 13.)

If you apply a sequence of someone else’s patches on top of your version, you will create
a series of entirely new versions with the union of their changes and yours. Presumably,
you will test the final version as you always would. But what about all those new,
intermediate versions? In reality, those versions never existed: nobody actually pro-
duced those commits, so nobody can say for sure whether they ever worked.

Git keeps a detailed history so that you can later revisit what your files were like at a
particular moment in the past. If some of your merged commits reflect file versions that
never really existed, then you’ve lost the reason for having a detailed history in the first
place!

148 | Chapter9: Merges

This is why Git merges don’t work that way. If you were ask “What was it like five
minutes before I did the merge?” then the answer would be ambiguous. Instead you
must ask about eithermy_branch or some_branch specifically, because both were different
five minutes ago and Git can give the true answer for each one.

Even though you almost always want the standard history merging behavior, Git can
also apply a sequence of patches (see Chapter 14) as described here. This process is
called rebasing and is discussed in Chapter 10. The implications of changing commit
histories are discussed in “Changing Public History” on page 248 of Chapter 13.

How Git Thinks About Merges | 149

CHAPTER 10
Altering Commits

A commit records the history of your work and keeps your changes sacrosanct, but the
commit itself isn’t cast in stone. Git provides several tools and commands specifically
designed to help you modify and improve the commit history cataloged within your
repository.

There are many valid reasons why you might modify or rework a commit or your overall
commit sequence.
* You can fix a problem before it becomes a legacy.
* You can decompose a large, sweeping change into a number of small, thematic
commits. Conversely, you can combine individual changes into a larger commit.
* You can incorporate review feedback and suggestions.
* You can reorder commits into a sequence that doesn’t break a build requirement.
* You can order commits into a more logical sequence.

* You can remove debug code committed accidentally.

As you’ll see in Chapter 12, which explains how to share a repository, there are many
more reasons to change commits prior to publishing your repository.

In general, you should feel empowered to alter a commit or a commit sequence if your
effort makes it cleaner and more understandable. Of course, as with all of software
development, there is a trade-off between repeated overrefinement and acceptance of
something that is satisfactory. You should strive for clean, well-structured patches that
have concise meaning for both you and your collaborators. However, there comes a
time when good enough is good enough.

151

Download from Wow! eBook <www.wowebook.com>

Philosophy of Altering History

When it comes to manipulating the development history, there are several schools of

thought.

One philosophy might be termed realistic history: every commit is retained and nothing
is altered.

One variant is a fine-grained realistic history, where you commit every change as soon
as possible, ensuring that each and every step is saved for posterity. Another option is
didactic realistic history, where you take your time and commit your best work only at
convenient and suitable moments.

Given the opportunity to adjust the history—possibly cleaning up a bad intermediate
design decision or rearranging commits into a more logical flow—you can create a more
“idealistic” history.

As a developer, you may find value in the full, fine-grained realistic history, because it
might provide archaeological details on how some good or bad idea developed. A
complete narrative may provide insight into the introduction of a bug, or explicate a
meticulous bug fix. In fact, an analysis of the history may even yield insight into how
a developer or team of developers works and how the development process can be
improved.

Many of those details might be lost if a revised history removes intermediate steps. Was
a developer able to simply intuit such a good solution? Or did it take several iterations
of refinement? Whatis the root cause of a bug? If the intermediate steps are not captured
in the commit history, answers to those types of questions may be lost.

On the other hand, having a clean history showing well-defined steps, each with logical
forward progress, can often be a joy to read and a pleasure to work with. There is,
moreover, no need to worry about the vagaries of a possibly broken or suboptimal step
in the repository history. Also, other developers reading the history may thereby learn
a better development technique and style.

So is a detailed realistic history without information loss the best approach? Or is a
clean history better? Perhaps an intermediate representation of the development is
warranted. Or, with a clever use of Git branches, perhaps you could represent both a
fine-grained realistic history and an idealized history in the same repository.

Git gives you the ability to clean up the actual history and turn it into a more idealized
or cleaner one before it is published or committed to public record. Whether you choose
to do so, to keep a detailed record without alteration, or to pick some middle ground
is entirely up to you and your project policies.

Caution About Altering History

As a general guideline, you should feel free to alter and improve your repository commit
history as long as no other developer! has obtained a copy of your repository. Or, to

152 | Chapter10: Altering Commits

be more pedantic, you can alter a specific branch of your repository as long as no one
has a copy of that branch. The notion to keep in mind is you shouldn’t rewrite, alter,
or change any part of a branch that’s been made available and might be present in a
different repository.

For example, let’s say you’ve worked on your master branch and made commits A
through D available to another developer, as shown in Figure 10-1. Once you make your
development history available to another developer, that chronicle is known as a “pub-
lished history.”

@ @ @ @ master

Figure 10-1. Your published history

Let’s say you then do further development and produce new commits W through Z as
unpublished history on the same branch. This is pictured in Figure 10-2.

000 OLOLOO

Figure 10-2. Your unpublished history

In this situation, you should be very careful to leave commits earlier than W alone.
However, until you republish your master branch, there is no reason you can’t modify
the commits W through Z. This could include reordering, combining, and removing one
or more commits or, obviously, adding even more commits as new development.

You might end up with a new and improved commit history, as depicted in Fig-
ure 10-3. In this example, commits X and Y have been combined into one new commit;
commit W has been slightly altered to yield a new, similar commitW'; commit Z has been
moved earlier in the history; and new commit P has been introduced.

00006

Figure 10-3. Your new history

This chapter explores techniques to help you alter and improve your commit history.
Itis for you to judge whether the new history is better, when the history is good enough,
and when the history is ready to be published.

1. That includes you too!

Caution About Altering History | 153

Using git reset

The git reset command changes your repository and working directory to a known
state. Specifically, git reset adjusts the HEAD ref to a given commit and, by default,
updates the index to match that commit. If desired, git reset can also modify your
working directory to mirror the revision of your project represented by the given
commit.

You might construe git reset as “destructive” because it can overwrite and destroy
changes in your working directory. Indeed, data can be lost. Even if you have a backup
of your files, you might not be able to recover your work. However, the whole point of
this command is to establish and recover known states for the HEAD, index, and working
directory.

The git reset command has three main options: --soft, --mixed, and --hard.

git reset --soft commit
The --soft changes the HEAD ref to point to the given commit. The contents of your
index and working directory are left unchanged. This version of the command has
the “least” effect, changing only the state of a symbolic reference so it points to a
new commit.

git reset --mixed commit
--mixed changes HEAD to point to the given commit. Your index contents are also
modified to align with the tree structure named by commit, but your working
directory contents are left unchanged. This version of the command leaves your
index as if you had just staged all the changes represented by commit, and it tells
you what remains modified in your working directory.

Note that --mixed is the default mode for git reset.

git reset --hard commit
This variant changes the HEAD ref to point to the given commit. The contents of your
index are also modified to agree with the tree structure named by the named
commit. Furthermore, your working directory contents are changed to reflect the
state of the tree represented by the given commit.

When changing your working directory, the complete directory structure is altered
to correspond to the given commit. Modifications are lost and new files are removed.
Files that are in the given commit but no longer exist in your working directory are
reinstated.

These effects are summarized in Table 10-1.

Table 10-1. git reset option effects

Option HEAD | Index | Working directory
--soft Yes No No

--mixed | Yes Yes No

154 | Chapter10: Altering Commits

Option HEAD | Index | Working directory
--hard Yes Yes Yes

The git reset command also saves the original HEAD value in the ref ORIG_HEAD. This is
useful, for example, if you wish to use that original HEAD’s commit log message as the
basis for some follow-up commit.

In terms of the object model, git reset moves the current branch HEAD within the
commit graph to a specific commit. If you specify --hard, your working directory is
transformed as well.

Let’s look at some examples of how git reset operates.

In the following example, the file foo.c has been accidentally staged in the index. Using
git status reveals that it will be committed:

$ git add foo.c
Oops! Didn't mean to add foo.c!

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#
#
new file: foo.c
#

As suggested, to avoid committing the file, use git reset HEAD to unstage it:

$ git 1s-files
foo.c
main.c

$ git reset HEAD foo.c

$ git 1s-files

main.c
In the commit represented by HEAD, there is no pathname foo.c (or else git add foo.c
would be superfluous). Here, git reset onHEAD for foo.c might be paraphrased as “With
respect to file foo.c, make my index look like it did in HEAD, where it wasn’t present.”
Or, in other words, “Remove foo.c from the index.”

Another common use for git reset is to simply redo or eliminate the topmost commit

on a branch. As an example, let’s set up a branch with two commits on it.
$ git init
Initialized empty Git repository in /tmp/reset/.git/
$ echo foo >> master_file
$ git add master_file
$ git commit
Created initial commit e719bif: Add master file to master branch.
1 files changed, 1 insertions(+), 0 deletions(-)

Using gitreset | 155

create mode 100644 master file

$ echo "more foo" >> master_file

$ git commit master_file

Created commit 0f61a54: Add more foo.

1 files changed, 1 insertions(+), 0 deletions(-)

$ git show-branch --more=5
[master] Add more foo.
[master”] Add master file to master branch.

Suppose you now realize that the second commit is wrong and you want to go back
and do it differently. This is a classic application of git reset --mixed HEAD". Recall
(from “Identifying Commits” on page 67 of Chapter 6) that HEAD* references the commit
parent of the current master HEAD and represents the state immediately prior to com-
pleting the second, faulty commit.

--mixed is the default

$ git reset HEAD*
master file: locally modified

$ git show-branch --more=5
[master] Add master file to master branch.

$ cat master_file
foo
more foo

Aftergit reset HEAD", Git hasleft the new state of the master_file and the entire working
directory just as it was immediately prior to making the “Add more foo” commit.

Because the --mixed option resets the index, you must restage any changes you want
in the new commit. This gives you the opportunity to reedit master_file, add other files,
or perform other changes before making a new commit.

$ echo "even more foo" >> master_file

$ git commit master_file

Created commit 04289da: Updated foo.
1 files changed, 2 insertions(+), 0 deletions(-)

$ git show-branch --more=5
[master] Updated foo.
[master”] Add master file to master branch.

Now only two commits have been made on the master branch, not three.

Similarly, if you have no need to change the index (because everything was staged

correctly) but you want to adjust the commit message, then you can use --soft instead:
$ git reset --soft HEAD*

$ git commit

Thegit reset --soft HEAD* command moves you back to the prior place in the commit
graph but keeps the index exactly the same. Everything is staged just as it was prior to
the git reset command. You just get another shot at the commit message.

156 | Chapter10: Altering Commits

But now that you understand that command, don’t use it. Instead, read
about git commit --amend , which follows!

Suppose, however, that you want to eliminate the second commit entirely and don’t
care about its content. In this case, use the --hard option:

$ git reset --hard HEAD*
HEAD is now at e719bif Add master_file to master branch.

$ git show-branch --more=5
[master] Add master file to master branch.

Just as with --mixed, the --hard option has the effect of pulling the master branch back
to its immediately prior state. It also modifies the working directory to mirror the prior
(HEAD?) state as well. Specifically, the state of the master_file in your working directory
is modified to again contain just the one, original line:

$ cat master file
foo

Although the examples all use HEAD in some form, you can apply git reset to any
commit in the repository. For example, to eliminate several commits on your current
branch, you could use git reset --hard HEAD™3 or even git reset --hard master~3.

But be careful. Just because you can name other commits using a branch name, this is
not the same as checking the branch out. Throughout the git reset operation, you
remain on the same branch. You can alter your working directory to look like the head
of a different branch, but you are still on your original branch.

To illustrate the use of git reset with other branches, let’s add a second branch called
dev and add a new file to it.

Should already be on master, but be sure.
$ git checkout master
Already on "master"

$ git checkout -b dev

$ echo bar >> dev_file

$ git add dev_file

$ git commit

Created commit 7ecdc78: Add dev_file to dev branch
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 dev_file

Back on the master branch, there is only one file:

$ git checkout master
Switched to branch "master"

$ git rev-parse HEAD
e719b1fe81035cobb5e1daaabcd81c7350b73976

Using gitreset | 157

$ git rev-parse master
e719b1fe81035c0bb5eldaaabcd81c7350b73976

$ 1s
master file

By using --soft, only the HEAD reference is changed.

Change HEAD to point to the dev commit
$ git reset --soft dev

$ git rev-parse HEAD
7ecdc781c3eb9fbb9969b2fd18a7bd2324d08c2f

$1s
master file

$ git show-branch
! [dev] Add dev file to dev branch
* [master] Add dev_file to dev branch

+* [dev] Add dev_file to dev branch

It certainly seems as if the master branch and the dev branch are at the same commit.
And, to a limited extent, they are—you’re still on the master branch, and that’s good
—but doing this operation leaves things in a peculiar state. To wit, if you made a
commit now, what would happen? The HEAD points to a commit that has the file
dev_file in it, but that file isn’t in the master branch.

$ echo "Funny" >> new

$ git add new

$ git commit -m "Which commit parent?”

Created commit f48bb36: Which commit parent?

2 files changed, 1 insertions(+), 1 deletions(-)

delete mode 100644 dev_file
create mode 100644 new

$ git show-branch
! [dev] Add dev_file to dev branch
* [master] Which commit parent?

* [master] Which commit parent?
+* [dev] Add dev_file to dev branch

Git correctly added new and has evidently determined that dev_file isn’t present in this
commit. But why did Git remove this dev_file? Git is correct that dev_file isn’t part of
this commit, but it’s misleading to say that it was removed because it was never there
in the first place! So why did Git elect to remove the file? The answer is that Git uses
the commit to which HEAD points at the time a new commit is made. Let’s see what that
was:

$ git cat-file -p HEAD

tree 948ed823483a0504756c2da81d2e6d8d3cd95059

parent 7ecdc781c3eb9fbb9969b2fd18a7bd2324d08c2f
author Jon Loeliger <jdl@example.com> 1229631494 -0600

158 | Chapter10: Altering Commits

committer Jon Loeliger <jdl@example.com> 1229631494 -0600
Which commit parent?

The parent of this commit is 7ecdc7, which you can see is the tip of the dev branch and
not master. But this commit was made while on the master branch. The mix-up
shouldn’t come as a surprise, because master HEAD was changed to point at the dev HEAD!

At this point, you might conclude that the last commit is totally bogus and should be
removed entirely. And well you should. It is a confused state that shouldn’t be allowed
to remain in the repository.

Just as the earlier example showed, this seems like an excellent opportunity for the
git reset --hard HEAD* command. But now things are in a bit of pickle.

The obvious approach to get to the previous version of the master HEAD is simply to use
HEAD", like this:

Make sure we're on the master branch first
$ git checkout master

BAD EXAMPLE!
Reset back to master's prior state
$ git reset --hard HEAD"

So what’s the problem? You just saw that HEAD’s parent points to dev and not to the
prior commit on the original master branch.

Yep, HEAD" points to the dev HEAD. Darn.
$ git rev-parse HEAD"
7ecdc781c3eb9fbb9969b2fd18a7bd2324d08c2f

There are several ways of determining the commit to which the master branch should,
in fact, be reset.

$ git log

commit f48bb36016e9709ccdd54488a0aae1487863b937
Author: Jon Loeliger <jdl@example.com>

Date: Thu Dec 18 14:18:14 2008 -0600

Which commit parent?

commit 7ecdc781c3eb9fbb9969b2fd18a7bd2324d08c2f
Author: Jon Loeliger <jdl@example.com>

Date: Thu Dec 18 13:05:08 2008 -0600

Add dev_file to dev branch

commit e719b1fe81035c0bb5eldaaabcd81c7350b73976
Author: Jon Loeliger <jdl@example.com>

Date: Thu Dec 18 11:44:45 2008 -0600

Add master file to master branch.

The last commit (e719b1f) is the correct one.

Using gitreset | 159

Another method uses the reflog, which is a history of changes to refs within your
repository.
$ git reflog
f48bb36... HEAD@{0}: commit: Which commit parent?
7ecdc78... HEAD@{1}: dev: updating HEAD
e719b1f... HEAD@{2}: checkout: moving from dev to master
7ecdc78... HEAD@{3}: commit: Add dev_file to dev branch
e719b1f... HEAD@{4}: checkout: moving from master to dev
e719b1f... HEAD@{5}: checkout: moving from master to master
e719b1f... HEAD@{6}: HEAD": updating HEAD
04289da... HEAD@{7}: commit: Updated foo.
e719b1f... HEAD@{8}: HEAD": updating HEAD
72c001c... HEAD@{9}: commit: Add more foo.
e719b1f... HEAD@{10}: HEAD": updating HEAD
0f61a54... HEAD@{11}: commit: Add more foo.

Reading through this list, the third line down records a switch from the dev branch to
the master branch. At that time, e719b1f was the master HEAD. So, once again, you could
directly use e719b1f or you could use the symbolic name HEAD@{2}.

$ git rev-parse HEAD@{2}
e719b1fe81035cobb5e1daaabcd81c7350b73976

$ git reset --hard HEAD@{2}
HEAD is now at e719bif Add master file to master branch.

$ git show-branch
! [dev] Add dev file to dev branch
* [master] Add master file to master branch.

+ [dev] Add dev_file to dev branch
+* [master] Add master file to master branch.

As just shown, the reflog can frequently be used to help locate prior state information
for refs such as branch names.

Similarly, it is wrong to try and change branches using git reset --hard.

$ git reset --hard dev
HEAD is now at 7ecdc78 Add dev_file to dev branch

$ 1s
dev_file master file

Again, this appears to be correct. In this case, the working directory has even been
populated with the correct files from the dev branch. But it didn’t really work. The
master branch remains current.

$ git branch

dev
* master

160 | Chapter10: Altering Commits

Just as in the previous example, a commit at this point would cause the graph to be
confused. And, as before, the proper action is to determine the correct state and reset
to that:

$ git reset --hard e719b1f

Or, possibly, even:
$ git reset --soft e719b1f

Using --soft, the working directory is not modified, which means that your working
directory now represents the total content (files and directories) present in the tip of
the dev branch. Furthermore, because HEAD now correctly points to the original tip of
the master branch as it used to, a commit at this point would yield a valid graph with
the new master state identical to the tip of the dev branch.

That may or may not be what you want, of course. But you can do it.

Using git cherry-pick

The command git cherry-pick commit applies the changes introduced by the named
commit on the current branch. It will introduce a new, distinct commit. Strictly speaking,
using git cherry-pick doesn’t alter the existing history within a repository; instead, it
adds to the history.

As with other Git operations that introduce changes via the process of applying a diff,
you may need to resolve conflicts to fully apply the changes from the given commit.

The command git cherry-pick is typically used to introduce particular commits from
one branch within a repository onto a different branch. A common use is to forward-
or back-port commits from a maintenance branch to a development branch.

In Figure 10-4, the dev branch has normal development, whereas the rel_2.3 contains
commits for the maintenance of release 2.3.

dev

rel_23

Figure 10-4. Before git cherry-pick of one commit

During the course of normal development, a bug is fixed on the development line with
commit F. If that bug turns out to be present in the 2.3 release also, the bug fix, F, can
be made to the rel 2.3 branch using git cherry-pick:

$ git checkout rel_2.3

$ git cherry-pick dev~2 # commit F, above

Using git cherry-pick | 161

After cherry-pick, the graph resembles Figure 10-5.

Figure 10-5. After git cherry-pick of one commit

In Figure 10-5, commit F' is substantially similar to commit F, but it is a new commit
and will have to be adjusted—perhaps with conflict resolutions—to account for its
application to commit Z rather than commit E. None of the commits following F are
applied after F'; only the named commit is picked and applied.

Another common use for cherry-pick is to rebuild a series of commits by selectively
picking a batch from one branch and introducing them onto a new branch.

Suppose you had a series of commits on your development branch, my dev, as shown
in Figure 10-6, and you wanted to introduce them onto the master branch but in a
substantially different order.

O-Q-O-® -
D-®-O-DQD e

Figure 10-6. Before git cherry-pick shuffle

To apply them on the master branch in the order Y, W, X, Z, you could use the following
commands.

$ git checkout master

$ git cherry-pick my_dev®
$ git cherry-pick my_dev~3
$ git cherry-pick my_dev~2

#
#
#
$ git cherry-pick my_dev #

N X = <

Afterward, your commit history would look something like Figure 10-7.

162 | Chapter10: Altering Commits

Download from Wow! eBook <www.wowebook.com>

Figure 10-7. After git cherry-pick shuffle

In situations like this, where the order of commits undergoes fairly volatile changes, it
is quite likely that you will have to resolve conflicts. It depends entirely on the
relationship between the commits. If they are highly coupled and change overlapping
lines, then you will have conflicts that need to be resolved. If they are highly independ-
ent, then you will be able to move them around quite readily.

Originally, the git cherry-pick command selected and reapplied one commit at a time.
However, in later versions of Git, git cherry-pick allowed a range of commits to be
selected and reapplied in a single command. For example, the following command:

on branch master
$ git cherry-pick X..Z

would apply new commits X', Y', and Z' on the master branch. This is particularly
handy in porting or moving a large sequence of commits from one line of development
to another without necessarily using the entire source branch at one time.

Using git revert

The git revert commit command is substantially similar to the command
git cherry-pick commit with oneimportantdifference: it applies the inverse of the given
commit. Thus, this command is used to introduce a new commit that reverses the effects
of a given commit.

Like git cherry-pick, the revert doesn’t alter the existing history within a repository.
Instead it adds a new commit to the history.

A common application forgit revertisto “undo” the effects of a commit that is buried,
perhaps deeply, in the history of a branch. In Figure 10-8, a history of changes have
been built up on the master branch. For some reason, perhaps through testing, commit
D has been deemed faulty.

000000

Figure 10-8. Before simple git revert

Using gitrevert | 163

One way to fix the situation is to simply make edits to undo the effects of D and then
commit the reversal directly. You might also note in your commit message that the
purpose of this commit is to revert the changes that were caused by the earlier commit.

An easier approach is to simply run git revert:

$ git revert master~3 # commit D

The result look likes Figure 10-9, where commit D' is the inverse of commit D.

0000060600

Figure 10-9. After simple git revert

reset, revert, and checkout

The three Git commands reset, revert, and checkout can be somewhat confusing,
because all appear to perform similar operations. Another reason these three com-
mands can be confusing is that other VCSs have different meanings for the words reset,
revert, and checkout.

However, there are some good guidelines and rules for when each command should
and should not be used.

If you want to change to a different branch, use git checkout. Your current branch and
HEAD ref change to match the tip of the given branch.

The git reset command does not change your branch. However, if you supply the
name of a branch, it will change the state of your current working directory to look like
the tip of the named branch. In other words, git reset is intended to reset the current
branch’s HEAD reference.

Because git reset --hard is designed to recover to a known state, it is also capable of
clearing out failed or stale merge efforts, whereas git checkout will not. Thus, if there
were a pending merge commit and you attempted to recover using git checkout instead
of git reset --hard, your next commit would erroneously be a merge commit.

The confusion with git checkout is due to its additional ability to extract a file from
the object store and put it into your working directory, possibly replacing a version in
your working directory in the process. Sometimes the version of that file is one corre-
sponding to the current HEAD version and sometimes it is an earlier version.

Checkout file.c from index
$ git checkout -- path/to/file.c

Checkout file.c from rev v2.3
$ git checkout v2.3 -- some/file.c

Git calls this “checking out a path.”

164 | Chapter10: Altering Commits

In the former case, obtaining the current version from the object store appears to be a
form of a “reset” operation—that is, your local working directory edits of the file are
discarded because the file is reset to its current, HEAD version. That is double-plus un-
good Git thinking.

In the latter case, an earlier version of the file is pulled out of the object store and placed
into your working directory. This has the appearance of being a “revert” operation on
the file. That, too, is double-plus ungood Git thinking.

In both cases, it is improper to think of the operation as a Git reset or a revert. In both
cases, the file is “checked out” from a particular commit: HEAD and v2.3, respectively.

The git revert command works on full commits, not on files.

If another developer has cloned your repository or fetched some of your commits, there
are implications for changing the commit history. In this case, you probably should not
use commands that alter history within your repository. Instead, use git revert; do
not use git reset nor the git commit --amend command described in the next section.

Changing the Top Commit

One of the easiest ways to alter the most recent commit on your current branch is with
git commit --amend. Typically, amend implies that the commit has fundamentally the
same content but some aspect requires adjustment or tidying. The actual commit object
that is introduced into the object store will, of course, be different.

A frequent use of git commit --amend is to fix typos immediately after a commit. This
is not the only use, however as with any commit, this command can amend any file or
files in the repository and, indeed, can add or delete a file as part of the new commit.

Aswithanormalgit commit command, git commit --amend prompts you with an editor
session in which you may also alter the commit message.

For example, suppose you are working on a speech and made the following recent
commit:

$ git show

commit Obal61a94e03able2b27c2e65e4cbef476d04f5d
Author: Jon Loeliger <jdl@example.com>

Date: Thu Jun 26 15:14:03 2008 -0500

Initial speech

diff --git a/speech.txt b/speech.txt

new file mode 100644

index 0000000..310bcf9

--- /dev/null

+++ b/speech.txt

@@ 'OJO +115 @@

+Three score and seven years ago

+our fathers brought forth on this continent,

Changing the Top Commit | 165

+a new nation, conceived in Liberty,
+and dedicated to the proposition
+that all men are created equal.

At this point, the commit is stored in Git’s object repository, albeit with small errors
in the prose. To make corrections, you could simply edit the file again and make a
second commit. That would leave a history like this:

$ git show-branch --more=5

[master] Fix timeline typo
[master”] Initial speech

However, if you wish to leave a slightly cleaner commit history in your repository, then
you can alter this commit directly and replace it.

To do this, fix the file in your working directory. Correct the typos and add or remove
files as needed. As with any commit, update the index with your changes using com-
mands such as git add or git rm. Then issue the git commit --amend command.

edit speech.txt as needed.

$ git diff
diff --git a/speech.txt b/speech.txt
index 310bcf9..7328a76 100644
--- a/speech.txt
+++ b/speech.txt
@@ -1J5 +115 @@
-Three score and seven years ago
+Four score and seven years ago
our fathers brought forth on this continent,
a new nation, conceived in Liberty,
and dedicated to the proposition
-that all men are created equal.
+that all men and women are created equal.

$ git add speech.txt
$ git commit --amend

Also edit the "Initial speech"” commit message if desired
In this example it was changed a bit...

With an amendment, anyone can see that the original commit has been modified and
that it replaces the existing commit.

$ git show-branch --more=5
[master] Initial speech that sounds familiar.

$ git show

commit 47d849c61919f05dalacf983746F205d2cdbo0s5
Author: Jon Loeliger <jdl@example.com>

Date: Thu Jun 26 15:14:03 2008 -0500

Initial speech that sounds familiar.

diff --git a/speech.txt b/speech.txt

166 | Chapter10: Altering Commits

new file mode 100644

index 0000000..7328a76

--- /dev/null

+++ b/speech.txt

@@ -0,0 +1,5 @@

+Four score and seven years ago

+our fathers brought forth on this continent,
+a new nation, conceived in Liberty,

+and dedicated to the proposition

+that all men and women are created equal.

This command can edit the meta-information on a commit. For example, by specifying
--author you can alter the author of the commit:

$ git commit --amend --author "Bob Miller <kbob@example.com>"
...just close the editor...

$ git log

commit Oe2a14f933a3aaff9edd848a862e783d9861149F
Author: Bob Miller <kbob@example.com>

Date: Thu Jun 26 15:14:03 2008 -0500

Initial speech that sounds familiar.

Pictorially, altering the top commit using git commit --amend changes the commit
graph from that shown in Figure 10-10 to that shown in Figure 10-11.

Figure 10-10. Commit graph before git commit --amend

Figure 10-11. Commit graph after git commit --amend

Here, the substance of the C commit is still the same, but it has been altered to obtain
C'. The HEAD ref has been changed from the old commit, C, so that it points to the
replacement ref, C'.

Rebasing Commits

The git rebase command is used to alter where a sequence of commits is based. This
command requires at least the name of the other branch onto which your commits will
be relocated. By default, the commits from the current branch that are not already on
the other branch are rebased.

Rebasing Commits | 167

A common use for git rebase is to keep a series of commits that you are developing
up-to-date with respect to another branch, usually a master branch or a tracking branch
from another repository.

In Figure 10-12, two branches have been developed. Originally, the topic branch
started on the master branch when it was at commit B. In the meantime, it has pro-
gressed to commit E.

O-QOOQ®
D-O-DD

Figure 10-12. Before git rebase

You can keep your commit series up-to-date with respect to the master branch by writ-
ing the commits so that they are based on commit E rather than B. Because the topic
branch needs to be the current branch, you can use either:

$ git checkout topic
$ git rebase master

or

$ git rebase master topic

After the rebase operation is complete, the new commit graph resembles Figure 10-13.

03036300 -
B-O-D®

Figure 10-13. After git rebase

Using the git rebase command in situations like the one shown in Figure 10-12 is often
called forward porting. In this example, the topic branch topic has been forward ported
to the master branch.

There is no magic to a rebase being a forward or a backward port; both are possible
using git rebase. The interpretation is usually left to a more fundamental understand-
ing of what functionality is considered ahead of or behind another functionality.

In the context of a repository that you have cloned from somewhere else, it is common
to forward port your development branch or branches onto the origin/master tracking
branch like this using the git rebase operation. In Chapter 12, you will see how this

168 | Chapter10: Altering Commits

operation is requested frequently by a repository maintainer using a phrase such as
“Please rebase your patch to the tip-of-master.”

The git rebase command may also be used to completely transplant a line of devel-
opment from one branch to an entirely different branch using the --onto option.

For example, suppose you've developed a new feature on the feature branch with the
commits P and Q, which were based on the maint branch as shown in Figure 10-14. To
transplant the P and Q commits on the feature branch from the maint to the master
branch, issue the command:

$ git rebase --onto master maint” feature

020202020
0303030
o o feature

Figure 10-14. Before git rebase transplant

The resulting commit graph looks like Figure 10-15.

o o feature
020202020

D-O-D-@D

Figure 10-15. After git rebase transplant

The rebase operation relocates commits one at a time from each respective original
commit location to a new commit base. As a result, each commit that is moved might
have conflicts to resolve.

If a conflict is found, the rebase operation suspends its processing temporarily so you
can resolve the conflict. Any conflict during the rebase process that needs to be resolved
should be handled as described in “A Merge with a Conflict” on page 124 of Chapter 9.

Once all conflicts are resolved and the index has been updated with the results, the
rebase operation can be resumed using the git rebase --continue command. The

Rebasing Commits | 169

command resumes its operation by committing the resolved conflict and proceeding
to the next commit in the series being rebased.

If, while inspecting a rebase conflict, you decide that this particular commit really isn’t
necessary, then you can also instruct the git rebase command to simply skip this
commit and move to the next by using git rebase --skip. This may not be the correct
thing to do, especially if subsequent commits in the series really depend on the changes
introduced by this one. The problems are likely to snowball in this case, so it’s better
to truly resolve the conflict.

Finally, if the rebase operation turns out to be the totally wrong thing to do,
git rebase --abort abandons the operation and restores the repository to the state
prior to issuing the original git rebase.

Using git rebase -i

Suppose you start writing a haiku and manage to compose two full lines before checking
it in:

$ git init

Initialized empty Git repository in .git/

$ git config user.email "jdl@example.com"

$ cat haiku
Talk about colour
No jealous behaviour here

$ git add haiku
$ git commit -m "Start my haiku"
Created initial commit a75f74e: Start my haiku
1 files changed, 2 insertions(+), 0 deletions(-)
create mode 100644 haiku

Your writing continues, but you decide you really should use the American spelling of
color instead of the British. So, you make a commit to change it:

$ git diff
diff --git a/haiku b/haiku
index 088bea0..958aff0 100644
--- a/haiku
+++ b/haiku
@@ -1,2 +1,2 @@
-Talk about colour
+Talk about color
No jealous behaviour here

$ git commit -a -m "Use color instead of colour"
Created commit 3dof83b: Use color instead of colour
1 files changed, 1 insertions(+), 1 deletions(-)

Finally, you develop the final line and commit it:

170 | Chapter10: Altering Commits

$ git diff

diff --git a/haiku b/haiku
index 958aff0..cdeddf9 100644
--- a/haiku

+++ b/haiku
00 -1,2 +1,3 00

Talk about color

No jealous behaviour here

+I favour red wine

$ git commit -a -m "Finish my colour haiku"
Created commit 799dba3: Finish my colour haiku
1 files changed, 1 insertions(+), 0 deletions(-)

However, again you have spelling quandary and decide to change all British “ou”

« _»

spellings to the American “o0” spelling:

$ git diff

diff --git a/haiku b/haiku
index cdeddf9..064c1b5 100644
--- a/haiku

+++ b/haiku

00 -1,3 +1,3 @@

Talk about color

-No jealous behaviour here
-I favour red wine

+No jealous behavior here
+I favor red wine

$ git commit -a -m "Use American spellings"
Created commit b61b0o41: Use American spellings
1 files changed, 2 insertions(+), 2 deletions(-)

At this point, you’ve accumulated a history of commits that looks like this:

$ git show-branch --more=4

[master] Use American spellings
[master”] Finish my colour haiku
[master~2] Use color instead of colour
[master~3] Start my haiku

After looking at the commit sequence or receiving review feedback, you decide that
you prefer to complete the haiku before correcting it and want the following commit
history:

master] Use American spellings

master”] Use color instead of colour

[
[
[master~2] Finish my colour haiku

[master~3] Start my haiku

But then you also notice that there’s no good reason to have two similar commits that
correct the spellings of different words. Thus, you would also like to master the

squash and master” into just one commit.

Rebasing Commits | 171

[master] Use American spellings
[master”] Finish my colour haiku
[master~2] Start my haiku

Reordering, editing, removing, squashing multiple commits into one, and splitting a
commit into several are all easily performed by the git rebase command using the -i
or --interactive option. This command allows you to modify the commits that make
up a branch and place them back onto the same branch or onto a different branch.

A typical use, and one apropos for this example, modifies the same branch in place. In
this case there are three changesets between four commits to be modified;
git rebase -i needs to be told the name of the commit beyond which you actually
intend to change.

$ git rebase -i master~3

You will be placed in an editor on a file that looks like this:

pick 3dof83b Use color instead of colour
pick 799dba3 Finish my colour haiku
pick b61b0o41 Use American spellings

Rebase a75f74e..b61b041 onto a75f74e

Commands:

pick = use commit

edit = use commit, but stop for amending

squash = use commit, but meld into previous commit

If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.

#
#
#
#
#
#
#
#
#
#
The first three lines list the commits within the editable commit range you specified on
the command line. The commits are initially listed in order from oldest to most recent
and have the pick verb on each one. If you were to leave the editor now, each commit
would be picked (in order), applied to the target branch, and committed. The lines
preceded by a # are helpful reminders and comments that are ignored by the program.

At this point, however, you are free to reorder the commits, squash commits together,
change a commit, or delete one entirely. To follow the listed steps, simply reorder the
commits in your editor as follows and exit it:

pick 799dba3 Finish my colour haiku

pick 3dof83b Use color instead of colour
pick b61b0o41 Use American spellings

Recall that the very first commit for the rebase is the “Start my haiku” commit. The
next commit will become “Finish my colour haiku,” followed by the “Use color ...”
and “Use American ...” commits.

$ git rebase -i master~3

reorder the first two commits and exit your editor

172 | Chapter10: Altering Commits

Successfully rebased and updated refs/heads/master.

$ git show-branch --more=4

master] Use American spellings
master”] Use color instead of colour
master~2] Finish my colour haiku
master~3] Start my haiku

—r—r——

Here, the history of commits has been rewritten; the two spelling commits are together
and the two writing commits are together.

Still following the outlined order, your next step is to squash the two spelling commits
into just one commit. Again, issue the git rebase -i master~3 command. This time,
convert the commit list from

pick d83f7ed Finish my colour haiku
pick 1f7342b Use color instead of colour
pick 1915dae Use American spellings

to

pick d83f7ed Finish my colour haiku
pick 1f7342b Use color instead of colour
squash 1915dae Use American spellings

The third commit will be squashed into the immediately preceding commit, and the
new commit log message template will be formed from the combination of the commits
being squashed together.

In this example, the two commit log messages are joined and offered in an editor:

This is a combination of two commits.
The first commits message is:

Use color instead of colour
This is the 2nd commit message:
Use American spellings

These messages can be edited down to just

Use American spellings

Again, all # lines are ignored.

Finally, the results of the rebase sequence can be seen:
$ git rebase -i master~3

squash and rewrite the commit log message

Created commit cf27784: Use American spellings
1 files changed, 3 insertions(+), 3 deletions(-)
Successfully rebased and updated refs/heads/master.

Rebasing Commits | 173

$ git show-branch --more=4
[master] Use American spellings
[master”] Finish my colour haiku
[master~2] Start my haiku

Although the reordering and squash steps demonstrated here occurred in two separate
invocations of git rebase -i master~3, the two phases could have been performed in
one. It is also perfectly valid to squash multiple sequential commits into one commit
in a single step.

rebase Versus merge

In addition to the problem of simply altering history, the rebase operation has further
ramifications of which you should be aware.

Rebasing a sequence of commits to the tip of a branch is similar to merging the two
branches; in either case, the new head of that branch will have the combined effect of
both branches represented.

You might ask yourself “Should I use merge or rebase on my sequence of commits?”
In Chapter 12, this will become an important question—especially when multiple de-
velopers, repositories, and branches come into play.

The process of rebasing a sequence of commits causes Git to generate an entirely new
sequences of commits. They have new SHA1 commit IDs, are based on a new initial
state, and represent different diffs even though they involve changes that achieve the
same ultimate state.

When faced with a situation like that of Figure 10-12, rebasing it into Figure 10-13
doesn’t present a problem because no other commit relies on the branch being rebased.
However, even within your own repository you might have additional branches based
on the one you wish to rebase. Consider the graph shown in Figure 10-16.

O-QO®
DROD o«
D@

Figure 10-16. Before git rebase multibranch

You might think that executing the command:

Move onto tip of master the dev branch
$ git rebase master dev

174 | Chapter10: Altering Commits

Download from Wow! eBook <www.wowebook.com>

would yield the graph in Figure 10-17. But it does not. Your first clue that it didn’t
happen comes from the command’s output.

OG-0 -
D@ -
D@ «

Figure 10-17. Desired git rebase multibranch

$ git rebase master dev

First, rewinding head to replay your work on top of it...
Applying: X

Applying: Y

Applying: Z

This says that Git applied the commits for X, Y, and Z only. Nothing was said about P
or @, and instead you obtain the graph in Figure 10-18.

00 -~

0202620 -
D-O-O-@ w

Figure 10-18. Actual git rebase multibranch

The commits X', Y', and Z' are the new versions of the old commits that stem from B.
The old X and Y commits both still exist in the graph because they are still reachable
from the dev2 branch. However, the original Z commit has been removed because it is
no longer reachable. The branch name that was pointing to it has been moved to the
new version of that commit.

The branch history now looks like it has duplicate commit messages in it, too:

$ git show-branch
* [dev] Z
! [dev2] Q
I [master] D

Rebasing Commits | 175

dev] Z
devr] Y
dev~2] X
master] D

[
[
[
+ [
+ [master”] C
[
[
[
[

* X ¥ ¥ ¥

dev2] Q
dev2*] P
dev2~2] Y
dev2~3] X
*++ [master~2]

+
+
+
+
B

But remember, these are different commits that do essentially the same change. If you
merge a branch with one of the new commits into another branch that has one of the
old commits, Git has no way of knowing that you’re applying the same change twice.
The result is duplicate entries in git log, most likely a merge conflict, and general
confusion. It’s a situation that you should find a way to clean up.

If this resulting graph is actually what you want, then you’re done. More likely, moving
the entire branch (including subbranches) is what you really want. To achieve that
graph, you will, in turn, need to rebase the dev2 branch on the new Y' commit on the
dev branch:

$ git rebase dev” dev2

First, rewinding head to replay your work on top of it...
Applying: P

Applying: Q

$ git show-branch
I [dev] Z
* [dev2] Q

I [master] D
* [dev2] Q
* [dev2*] P
+ [dev] Z
+* [dev2~2] Y
+* [dev2~3] X
+*+ [master] D

And this is the graph shown in Figure 10-17.

Another situation that can be extremely confusing is rebasing a branch that has a merge
onit. For example, suppose you had a branch structure like that shown in Figure 10-19.

176 | Chapter10: Altering Commits

000 -~

O-O-O-® s

Figure 10-19. Before git rebase merge

If you want to move the entire dev branch structure from commit N down through to
commit X off of B and onto D, as shown in Figure 10-20, then you might expect simply

to use the command git rebase master dev.

OO0 -

0%05GY0 s

Figure 10-20. Desired git rebase merge

Again, however, that command yields some surprising results:

$ git rebase master dev

First, rewinding head to replay your work on top of it...
Applying: X

Applying:
Applying:
Applying:
Applying:

=Z= o N<

It looks like it did the right thing. After all, Git says that it applied all the (nonmerge)

commit changes. But did it really get things right?

$ git show-branch
* [dev] N
! [master] D

[dev] N
[devr] P
[dev~2] z
[dev~3] Y

****I

Rebasing Commits | 177

* [dev~4] X
*+ [master] D

All those commits are now in one long string!
What happened here?

Git needs to move the portion of the graph reachable from dev back to the merge base
at B, so it found the commits in the range master..dev. To list all those commits, Git
performs a topological sort on that portion of the graph to produce a linearized
sequence of all the commits in that range. Once that sequence has been determined,
Git applies the commits one at a time starting on the target commit, D. Thus, we say
that “Rebase has linearized the original branch history (with merges) onto the master
branch,” as shown in Figure 10-21.

Again, if that is what you wanted or if you don’t care that the graph shape has been
altered, then you are done. But if in such cases you want to explicitly preserve the
branching and merging structure of the entire branch being rebased, then use the --
preserve-merges option.

This option is a version 1.6.1 feature

$ git rebase --preserve-merges master dev
Successfully rebased and updated refs/heads/dev.

Using my Git alias from “Configuring an Alias” on page 30 of Chapter 3, we can see
that the resulting graph structure maintains the original merge structure.
$ git show-graph

* 061f9fd... N
* £669404... Merge branch 'dev2' into dev

_—

* c386cfc... Z
| 38ab2se... P

~

bg3ad42...
65be7f1...
e3bge22...
f2b96c4. ..
8619681. ..
d6fbais...

B-O-O-Q -
D-O-OO®D® «

Figure 10-21. git rebase merge after linearization

* K K K K K ¥/
> ™M O X<

And this looks like the graph in Figure 10-20.

178 | Chapter10: Altering Commits

Some of the principles for answering the rebase-versus-merge question apply equally
to your own repository as they do to a distributed or multirepository scenario. In
Chapter 13, you can read about the additional implications that affect developers using
other repositories.

Depending on your development style and your ultimate intent, having the original
branch development history linearized when it is rebased may or may not be acceptable.
If you have already published or provided the commits on the branch that you wish to
rebase, consider the negative ramifications on others.

If the rebase operation isn’t the right choice and you still need the branch changes, then
merging may be the correct choice.

The important concepts to remember are:

* Rebase rewrites commits as new commits.
* Old commits that are no longer reachable are gone.
* Any user of one of the old, pre-rebase commits might be stranded.

* If you have a branch that uses a pre-rebase commit, you might need to rebase it in
turn.

* If there is a user of a pre-rebase commit in a different repository, he still has a copy
of that commit even though it has moved in your repository; the user will now have
to fix up his commit history, too.

Rebasing Commits | 179

CHAPTER 11

The Stash and the Reflog

The Stash

Do you ever feel overwhelmed in your daily development cycle when the constant
interruptions, demands for bug fixes, and requests from coworkers or managers all pile
up and clutter the real work you are trying to do? If so, the stash was designed to help
you!

The stash is a mechanism for capturing your work in progress, allowing you to save it
and return to it later when convenient. Sure, you can already do that using the existing
branch and commit mechanisms within Git, but the stash is a quick convenience
mechanism that allows a complete and thorough capturing of your index and working
directory in one simple command. It leaves your repository clean, uncluttered, and
ready for an alternate development direction. Another single command restores that
index and working directory state completely, allowing you to resume where you left

off.

Let’s see how the stash works with the canonical use case: the so-called “interrupted
work flow.”

In this scenario, you are happily working in your Git repository and have changed
several files and maybe even staged a few in the index. Then, some interruption hap-
pens. Perhaps a critical bug is discovered and lands on your plate and must be fixed
immediately. Perhaps your team lead has suddenly prioritized a new feature over
everything else and insists you drop everything to work on it. Whatever the circum-
stance, you realize you must stash everything, clean your slate and work tree, and start
afresh. This is a perfect opportunity for git stash!

$ cd the-git-project
edit a lot, in the middle of something

High-Priority Work-flow Interrupt!
Must drop everything and do Something Else now!

$ git stash save

181

edit high-priority change
$ git commit -a -m "Fixed High-Priority issue"

$ git stash pop
And resume where you were!

The default and optional operation to git stash is save. Git also supplies a default log
message when saving a stash, but you can supply your own to better remind you what
you were doing. Just supply it in the command after the then-required save argument:

$ git stash save "WIP: Doing real work on my stuff"

The acronym WIP is a common abbreviation used in these situations meaning “work in
progress.”

To achieve the same effect with other, more basic Git commands requires manual cre-
ation of a new branch on which you commit all of your modifications, re-establishing
your previous branch to continue your work, and then later recovering your saved
branch state on top of your new working directory. For the curious, that process is
roughly this sequence:

... normal development process interrupted ...

Create new branch on which current state is stored.
$ git checkout -b saved_state
$ git commit -a -m "Saved state"

Back to previous branch for immediate update.
$ git checkout master

edit emergency fix
$ git commit -a -m "Fix something."

Recover saved state on top of working directory.
$ git checkout saved_state
$ git reset --soft HEAD*

... resume working where we left off above ...

That process is sensitive to completeness and attention to detail. All of your changes
have to be captured when you save your state, and the restoration process can be dis-
rupted if you forget to move your HEAD back as well.

The git stash save command will save your current index and working directory state
and clear them out so that they again match the head of your current branch. Although
this operation gives the appearance that your modified files and any files updated into
the index using, for example, git add or git rm, have been lost, they have not. Instead,
the contents of your index and working directory are actually stored as independent,
regular commits and are accessible through the ref refs/stash.

$ git show-branch stash
[stash] WIP on master: 3889def Some initial files.

182 | Chapter11: The Stash and the Reflog

As you might surmise by the use of pop to restore your state, the two basic stash com-
mands, git stash save and git stash pop, implement a stack of stash states. That
allows your interrupted work flow to be interrupted yet again! Each stashed context
on the stack can be managed independently of your regular commit process.

The git stash pop command restores the context saved by a previous save operation
on top of your current working directory and index. And by restore here, I mean that
the pop operation takes the stash content and merges those changes into the current
state rather than just overwriting or replacing files. Nice, huh?

You can only git stash pop into a clean working directory. Even then, the command
may or may not fully succeed in recreating the full state you originally had at the time
it was saved. Because the application of the saved context can be performed on top of
a different commit, merging may be required, complete with possible user resolution
of any conflicts.

After a successful pop operation, Git will automatically remove your saved state from
the stack of saved states. That is, once applied, the stash state will be “dropped.” How-
ever, when conlflict resolution is needed, Git will not automatically drop the state, just
in case you want to try a different approach or want to restore it onto a different commit.
Once you clear the merge conflicts and want to proceed, you should use the
git stash drop to remove it from the stash stack. Otherwise, Git will maintain an ever
growing! stack of contexts.

If you just want to recreate the context you have saved in a stash state without dropping
it from the stack, use git stash apply. Thus, a pop command is a successful apply
followed by a drop.

In fact, you can use git stash apply to apply the same saved stashed
context onto several different commits prior to dropping it from the

However, you should consider carefully if you want to use git stash apply or
git stash pop to regain the contents of a stash. Will you ever need it again? If not, pop
it. Clean the stashed content and referents out of your object store.

Thegit stash list command lists the stack of saved contexts from most to least recent.
$ cd my-repo
$ 1s
filel1 file2
$ echo "some foo" >> filei

$ git status

1. Technically, not growing without bounds. The stash is subject to reflog expiration and garbage collection.

The Stash | 183

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#
#
#
modified: filea
#

no changes added to commit (use "git add" and/or "git commit -a")

$ git stash save "Tinkered file1"
Saved working directory and index state On master: Tinkered filel
HEAD is now at 3889def Add some files

$ git commit --dry-run
On branch master
nothing to commit (working directory clean)

$ echo "some bar" >> file2

$ git stash save "Messed with file2"
Saved working directory and index state On master: Messed with file2
HEAD is now at 3889def Add some files

$ git stash list
stash@{0}: On master: Messed with file2
stash@{1}: On master: Tinkered filel

Git always numbers the stash entries with the most recent entry being zero. As entries
get older, they increase in numerical order. And yes, the different stash entry names are
stash@{0} and stash@{1}, as explained in “The Reflog” on page 189.

The git stash show command shows the index and file changes recorded for a given
stash entry, relative to its parent commit.
$ git stash show

filez | 1+
1 files changed, 1 insertions(+), 0 deletions(-)

That summary may or may not be the extent of the information you sought. If not,
adding -p to see the diffs might be more useful. Note that by default the
git stash show command shows the most recent stash entry, stash@{o}.

Because the changes that contribute to making a stash state are relative to a particular
commit, showing the state is a state-to-state comparison suitable for git diff, rather
than a sequence of commit states suitable for git log. Thus, all the options for
git diff may also be supplied to git stash show as well. As we saw previously,
--stat is the default, but other options are valid, too. Here, -p is used to obtain the
patch differences for a given stash state.

$ git stash show -p stash@{1}

diff --git a/file1 b/file1

index 257cc56..f9e62e5 100644

--- a/file1
+++ b/file1l

184 | Chapter11: The Stash and the Reflog

00 -1 +1,2 @@
foo
+some foo

Another classic use case for git stash is the so-called “pull into a dirty tree” scenario.

Until you are familiar with the use of remote repositories and pulling changes (see
“Getting Repository Updates” on page 212), this might not make sense yet. But it goes
like this. You're developing in your local repository and have made several commits.
You still have some modified files that haven’t been committed yet, but you realize
there are upstream changes that you want. If you have conflicting modifications, a
simple git pull will fail, refusing to overwrite your local changes. One quick way to
work around this problem uses git stash.

$ git pull
... pull fails due to merge conflicts ...

$ git stash save
$ git pull
$ git stash pop

At this point you may or may not need to resolve conflicts created by the pop.

In case you have new, uncommitted (and hence “untracked”) files as part of your local
development, it is possible that a git pull that would also introduce a file of the same
name might fail, thus not wanting to overwrite your version of the new file. In this case,
add the --include-untracked option on your git stash so that it also stashes your new,
untracked files along with the rest of your modifications. That will ensure a completely
clean working directory for the pull.

The --all option will gather up the untracked files as well as the explicitly ignored files
from the .gitignore and exclude files.

Finally, for more complex stashing operations where you wish to selectively choose
which hunks should be stashed, use the -p or --patch option.

In another similar scenario, git stash can be used when you want to move modified
work out of the way, enabling a clean pull --rebase. This would happen typically just
prior to pushing your local commits upstream.

... edit and commit ...
... more editing and working...

$ git commit --dry-run

On branch master

Your branch is ahead of 'origin/master' by 2 commits.

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: filei.h

#
#
#
#
modified: filel.c

The Stash | 185

#
no changes added to commit (use "git add" and/or "git commit -a")

At this point you may decide the commits you have already made should go upstream,
but you also want to leave the modified files here in your work directory. However, git
refuses to pull:

$ git pull --rebase

file1l.h: needs update

filel.c: needs update

refusing to pull with rebase: your working tree is not up-to-date

This scenario isn’t as contrived as it might seem at first. For example, I frequently work
in a repository where I want to have modifications to a Makefile, perhaps to enable
debugging, or I need to modify some configuration options for a build. I don’t want to
commit those changes, and I don’t want to lose them between updates from a remote
repository. I just want them to linger here in my working directory.

Again, this is where git stash helps:

$ git stash save
Saved working directory and index state WIP on master: 5955d14 Some commit log.
HEAD is now at 5955d14 Some commit log.

$ git pull --rebase
remote: Counting objects: 63, done.
remote: Compressing objects: 100% (43/43), done.
remote: Total 43 (delta 36), reused 0 (delta 0)
Unpacking objects: 100% (43/43), done.
From ssh://git/var/git/my repo
871746b..6687d58 master -> origin/master
First, rewinding head to replay your work on top of it...
Applying: A fix for a bug.
Applying: The fix for something else.

After you pull in upstream commits and rebase your local commits on top of them,
your repository is in good shape to send your work upstream. If desired, you can readily
push them now:

Push upstream now if desired!
$ git push

or after restoring your previous working directory state:

$ git stash pop

Auto-merging filei.h

On branch master

Your branch is ahead of 'origin/master' by 2 commits.

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: filei.h

#
#
#
#
modified: filel.c
#

186 | Chapter11: The Stash and the Reflog

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (7e2546f5808a95a2e6934fcffb5548651badfood)

$ git push

If you decide to git push after popping your stash, remember that only completed,
committed work will be pushed. There’s no need to worry about pushing your partial,
uncommitted work. There is also no need to worry about pushing your stashed content:
the stash is purely a local notion.

Sometimes stashing your changes leads to a whole sequence of development on your
branch and, ultimately, restoring your stashed state on top of all those changes may
not make direct sense. In addition, merge conflicts might make popping hard to do.
Nonetheless, you may still want to recover the work you stashed. In situations like this,
git offers the git stash branch command to help you. This command converts the
contents of a saved stash into a new branch based on the commit that was current at
the time the stash entry was made.

Let’s see how that works on a repository with a bit of history in it.

$ git log --pretty=one --abbrev-commit
dsef6c9 Some commit.
efe99oc Initial commit.

Now, some files are modified and subsequently stashed:

$ git stash
Saved working directory and index state WIP on master: dsef6c9 Some commit.
HEAD is now at d5ef6c9 Some commit.

Note that the stash was made against commit d5ef6c9.

Due to other development reasons, more commits are made and the branch drifts away
from the d5ef6c9 state.

$ git log --pretty=one --abbrev-commit
2c2af13 Another mod

1d1e905 Drifting file state.

dsef6c9 Some commit.

efe990c Initial commit.

$ git show-branch -a
[master] Another mod

And although the stashed work is available, it doesn’t apply cleanly to the current
master branch.

$ git stash list
stash@{0}: WIP on master: d5ef6c9 Some commit.

$ git stash pop
Auto-merging foo
CONFLICT (content): Merge conflict in foo
Auto-merging bar
CONFLICT (content): Merge conflict in bar

TheStash | 187

Say it with me: “Ugh.”

So reset some state and take a different approach, creating a new branch called mod that
contains the stashed changes.

$ git reset --hard master
HEAD is now at 2c2af13 Another mod

$ git stash branch mod

Switched to a new branch 'mod’
On branch mod

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: bar

modified: foo

#

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{o} (96e53da61f7e5031ef04d68bf60a34bd4f13bdof)

There are several important points to notice here. First, notice that the branch is based
on the original commit d5ef6c9, and not the current head commit 2c2af13.
$ git show-branch -a

! [master] Another mod
* [mod] Some commit.

+ [master] Another mod
+ [master"] Drifting file state.
+* [mod] Some commit.

Second, because the stash is always reconstituted against the original commit, it will
always succeed and hence will be dropped from the stash stack.

Finally, reconstituting the stash state doesn’t automatically commit any of your changes
onto the new branch. All the stashed file modifications (and index changes, if desired)
are still left in your working directory on the newly created and checked out branch.

$ git commit --dry-run

On branch mod

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: bar
modified: foo

Hod oH O OH B

no changes added to commit (use "git add" and/or "git commit -a")

At this point you are of course welcome to commit the changes onto the new branch,
presumably as a precursor to further development or merging as you deem necessary.
No, this isn’t a magic bullet to avoid resolving merge conflicts. If there were merge
conflicts when you tried to pop the stash directly onto the master branch earlier, trying

188 | Chapter11: The Stash and the Reflog

to merge the new branch with the master will yield the same effects and the same merge
conflicts.
$ git commit -a -m "Stuff from the stash"

[mod 42c104f] Stuff from the stash
2 files changed, 2 insertions(+), 0 deletions(-)

$ git show-branch
I [master] Another mod
* [mod] Stuff from the stash

* [mod] Stuff from the stash

+ [master] Another mod

+ [master”] Drifting file state.
+* [mod™] Some commit.

$ git checkout master
Switched to branch 'master’

$ git merge mod

Auto-merging foo

CONFLICT (content): Merge conflict in foo

Auto-merging bar

CONFLICT (content): Merge conflict in bar

Automatic merge failed; fix conflicts and then commit the result.

As some parting advice on the git stash command, let me leave you with this analogy:
you name your pets and you number your livestock. So branches are named and stashes
are numbered. The ability to create stashes might be appealing, but be careful not to
overuse it and create too many stashes. And don’t just convert them to named branches
to make them linger!

The Reflog

OK, I confess: sometimes Git does something either mysterious or magical and causes
one to wonder what just happened. Sometimes you simply want an answer to the
question, “Wait, where was I? What just happened?” Other times, you do some oper-
ation and realize, “Uh oh, I shouldn’t have done that!” But it is too late and you have
already lost the top commit with a week’s worth of awesome development.

Not to worry! Git’s reflog has you covered in either case! By using the reflog, you can
gain the assurance that operations happened as you expected on the branches you
intended, and that you have the ability to recover lost commits just in case something
goes astray.

The reflog is a record of changes to the tips of branches within nonbare repositories.
Every time an update is made to any ref, including HEAD, the reflog is updated to record
how that ref has changed. Think of the reflog as a trail of bread crumbs showing where
you and your refs have been. With that analogy, you can also use the reflog to follow
your trail of crumbs and trace back through your branch manipulations.

The Reflog | 189

Some of the basic operations that record reflog updates include:

* Cloning

* Pushing

* Making new commits

* Changing or creating branches
* Rebase operations

* Reset operations

Note that some of the more esoteric and complex operations, such as
git filter-branch, ultimately boil down to simple commits and are thus also logged.
Fundamentally, any Git operation that modifies a ref or changes the tip of a branch is
recorded.

By default, the reflog is enabled in nonbare repositories and disabled in bare
repositories. Specifically, the reflog is controlled by the Boolean configuration option
core.logAllRefUpdates. It may be enabled using the command git config
core.logAllRefUpdates true or disabled with false as desired on a per-repository basis.

So what does the reflog look like?

$ git reflog show

a44d980 HEAD@{0}: reset: moving to master

79e881c HEAD@{1}: commit: last foo change

a44d980 HEAD@{2}: checkout: moving from master to fred

a44d980 HEAD@{3}: rebase -i (finish): returning to refs/heads/master
a44d980 HEAD@{4}: rebase -i (pick): Tinker bar

a777d4f HEAD@{5}: rebase -i (pick): Modify bar

e3c46b8 HEAD@{6}: rebase -i (squash): More foo and bar with additional stuff.
8a04ca4 HEAD@{7}: rebase -i (squash): updating HEAD

la4be28 HEAD@{8}: checkout: moving from master to 1a4be28

ed6e906 HEAD@{9}: commit: Tinker bar

6195b3d HEAD@{10}: commit: Squash into 'more foo and bar'

488b893 HEAD@{11}: commit: Modify bar

1a4be28 HEAD@{12}: commit: More foo and bar

8a04ca4 HEAD@{13}: commit (initial): Initial foo and bar.

Although the reflog records transactions for all refs, git reflog show displays the
transactions for only one ref at a time. The previous example shows the default ref,
HEAD. If you recall that branch names are also refs, you will realize that you can also get
the reflog for any branch as well. From the previous example, we can see that there is
also a branch named fred, so we can display its changes in another command:

$ git reflog fred

a44d980 fred@{0}: reset: moving to master

79e881c fred@{1}: commit: last foo change
a44d980 fred@{2}: branch: Created from HEAD

Each line records an individual transaction from the history of the ref, starting with the
most recent change and going back in time. The leftmost column contains the commit
ID at the time the change was made. The entries like HEAD@{7} from the second column

190 | Chapter11: The Stash and the Reflog

Download from Wow! eBook <www.wowebook.com>

provide convenient names for the commit at each transaction. Thus, HEAD@{0} is the
most recent entry, HEAD@{1} records where HEAD was just prior to that, etc. The oldest
entry, here HEAD@{13}, is actually the very first commit in this repository. The rest of
each line after the colon describes what transaction occurred. Finally, for each trans-
action there is a time stamp (not shown) recording when the event took place within
your repository.

So what good is all that? Here’s the interesting aspect of the reflog: each of the sequen-
tially numbered names like HEAD@{1} may be used as symbolic names of commits for
any Git command that takes a commit. For example:

$ git show HEAD@{10}

commit 6195b3dfd30e464ffb9238d89e3d15f2c1dc35b0

Author: Jon Loeliger <jdl@example.com>
Date: Sat Oct 29 09:57:05 2011 -0500

Squash into 'more foo and bar'

diff --git a/foo b/foo

index 740fdo5..a941931 100644

--- a/foo

+++ b/foo

00 -1,2 +1 @0

-Foo!

-more foo

+junk
That means that as you go about your development process, recording commits, mov-
ing to different branches, rebasing, and otherwise manipulating a branch, you can
always use the reflog to reference where the branch was. The name HEAD@{1} always
references the previous commit for the branch, HEAD@{2} names the HEAD commit just
prior to that, etc. Keep in mind, though, that although the history names individual
commits, transactions other than git commit are present also. Every time you move the
tip of your branch to a different commit, it is logged. Thus, HEAD@{3} doesn’t necessarily
mean the third prior git commit operation. More accurately, it means the third prior
visited or referenced commit.

W

Botch a git merge and want try again? Use git reset HEAD@{1}. Add --
hard if desired.

Gitalso supports more English-like qualifiers for the part of the reference within braces.
Maybe you aren’t sure exactly how many changes took place since something hap-
pened, but you know you want what it looked like yesterday or an hour ago.

$ git log 'HEAD@{last saturday}’

commit 1a4be2804f7382b2dd399891eef097ebi0ddcieb

Author: Jon Loeliger <jdl@example.com>
Date: Sat Oct 29 09:55:52 2011 -0500

The Reflog | 191

More foo and bar

commit 8a04ca4207elcb74dd3a3e261d6be72e118ace9e
Author: Jon Loeliger <jdl@example.com>
Date: Sat Oct 29 09:55:07 2011 -0500

Initial foo and bar.

Git supports a fairly wide variety of date-based qualifiers for refs. These include words
like yesterday, noon, midnight, tea,2 weekdays, month names, A.M. and P.M. indica-
tors, absolute times or dates, and relative phrases like last monday, 1 hour ago, 10
minutes ago, and combinations of these phrases suchas1 day 2 hours ago. And, finally,
if you omit the actual ref name and just use the @{...} form, the current branch name
is assumed. Thus, while on the bugfix branch, using just @{noon} refers to bug
fix@{noon}.

W
N The Git tool responsible for understanding references is
"‘:‘ git rev-parse. Its manpage is extensive and details more than you
T Q8 would ever care to know about how refs are interpreted. Good luck!

Although these date-based qualifiers are fairly liberal, they are not perfect. Understand
that Git uses a heuristic to interpret them and exercise some caution in referring to
them. Also remember that the notion of time is local and relative to your repository:
these time-qualified refs reference the value of a ref in your local repository only. Using
the same phrase about time in a different repository will likely yield different results
due to different reflogs. Thus, master@{2.days.ago} refers to the state of your local
master branch two days ago. If you don’t have reflog history to cover that time period,
Git should warn you:

$ git log HEAD@{last-monday}

warning: Log for 'HEAD' only goes back to Sat, 29 Oct 2011 09:55:07 -0500.

commit 8a04ca4207elcb74dd3a3e261d6be72e118acede

Author: Jon Loeliger <jdl@example.com>
Date: Sat Oct 29 09:55:07 2011 -0500

Initial foo and bar.

One last warning. Don’t let the shell trick you. There is a significant difference between
these two commands:

Bad!

$ git log dev@{2 days ago}

Likely correct for your shell
$ git log 'dev@{2 days ago}'

2. No, really. And yes, that is 5:00 P.M.!

192 | Chapter11: The Stash and the Reflog

The former, without single quotes, provides multiple command line arguments to your
shell, whereas the latter, with quotes, passes the entire ref phrase as one command line
argument. Git needs to see the ref as one word from the shell. To help simplify the word
break issue, Git allows several variations:

These should all be equivalent

$ git log 'dev@{2 days ago}'

$ git log dev@{2.days.ago}

$ git log dev@{2-days-ago}
One more concern to address. If Git is maintaining a transaction history of every
operation performed on every ref in the repository, doesn’t the reflog eventually become
huge?

Luckily, no. Git automatically runs a garbage collection process occasionally. During
this process, some of the older reflog entries are expired and dropped. Normally, a
commit that is otherwise not referenced or reachable from some branch or ref will be
expired after a default of 30 days, and commits that are reachable expire after a default
of 90 days.

If that schedule isn’t ideal, the configuration variables gc. reflogExpireUnreachable and
gc.reflogExpire, respectively, can be set to alternate values in your repository. You can
use the command git reflog delete to remove individual entries, or use the command
git reflog expire to directly cause entries older than a specified time to be immediately
removed. It can also be used to forcefully expire the reflog.

$ git reflog expire --expire=now --all

$ git gc
As you might have guessed by now, the stash and the reflog are intimately related. In
fact, the stash is implemented as a reflog using the ref stash.

One last implementation detail: reflogs are stored under the .git/logs directory. The
file .git/logs/HEAD contains the history of HEAD values, whereas the subdirectory .git/
logs/refs/ contains the history of all refs, including the stash. The sub-subdirectory .git/
logs/refs/heads contains the history for branch heads.

All the information stored in the reflogs, specifically everything under the .git/logs di-
rectory, is ultimately transitory and expendable. Throwing away the .git/logs directory
or turning the reflog off harms no Git-internal data structure; it simply means references
like master@{4} can’t be resolved.

Conversely, having the reflog enabled introduces references to commits that might
otherwise be unreachable. If you are trying to clean up and shrink your repository size,
removing the reflog may enable the removal of otherwise unreachable (i.e., irrelevant)
commits.

The Reflog | 193

CHAPTER 12
Remote Repositories

So far, you’ve worked almost entirely within one local repository. Now it’s time to
explore the much lauded distributed features of Git and learn how to collaborate with
other developers via shared repositories.

Working with multiple and remote repositories adds a few new terms to the Git
vernacular.

A clone is a copy of a repository. A clone contains all the objects from the original; as
aresult, each clone is an independent and autonomous repository and a true, symmetric
peer of the original. A clone allows each developer to work locally and independently
without centralization, polls, or locks. Ultimately, it’s cloning that allows Git to easily
scale and permit many geographically separated contributors.

Essentially, separate repositories are useful whenever:

* Developers work autonomously.

* Developers are separated by a wide area network. A cluster of developers in the
same location may share a local repository to amass localized changes.

* A project is expected to diverge significantly along separate development paths.
Although the regular branching and merging mechanisms demonstrated in previ-
ous chapters can handle any amount of separate development, the resulting com-
plexity may become more trouble than it’s worth. Instead, separate development
paths can use separate repositories to be merged again whenever appropriate.

Cloning a repository is just the first step in sharing code. You must also relate one
repository to another to establish paths for data exchange. Git establishes these repos-
itory connections through remotes.

A remoteis areference, or handle, to another repository through a filesystem or network
path. You use a remote as a shorthand name for an otherwise lengthy and complicated
Git URL. You can define any number of remotes in a repository, thus creating terraced
networks of repository sharing.

195

Once a remote is established, Git can transfer data from one repository to another using
either a push ora pull model. For example, it’s common practice to occasionally transfer
commit data from an original repository to its clone in order to keep the clone in sync.
You can also create a remote to transfer data from the clone to its original or configure
the two to exchange information bidirectionally.

To keep track of data from other repositories, Git uses remote-tracking branches. Each
remote-tracking branch in your repository is a branch that serves as a proxy for a specific
branch in a remote repository. You may set up a local-tracking branch that forms the
basis for integrating your local changes with the remote changes from a corresponding
remote-tracking branch.

Finally, you can make your repository available to others. Git generally refers to this as
publishing a repository and provides several techniques for doing so.

This chapter presents examples and techniques to share, track, and obtain data across
multiple repositories.

Repository Concepts

Bare and Development Repositories
A Git repository is either a bare or a development (nonbare) repository.

A development repository is used for normal, daily development. It maintains the
notion of a current branch and provides a checked out copy of the current branch in a
working directory. All of the repositories mentioned in the book so far have been
development repositories.

In contrast, a bare repository has no working directory and shouldn’t be used for normal
development. A bare repository has no notion of a checked out branch, either. Think
of a bare repository as simply the contents of the .git directory. In other words, you
shouldn’t make commits in a bare repository.

A bare repository might seem to be of little use, but its role is crucial: to serve as an
authoritative focal point for collaborative development. Other developers clone and
fetch from the bare repository and push updates to it. We’ll work through an example
later in this chapter that shows how all this works together.

If you issue git clone with the --bare option, Git creates a bare repository; otherwise,
a development repository is created.

196 | Chapter12: Remote Repositories

Notice that we did not say thatgit clone --bare creates a new or empty
repository. We said it creates a bare repository. And that newly cloned
W repository will contain a copy of the content from the upstream repos-
" itory. The command git init creates a new and empty repository, and
that new repository can come in both development and bare variants.
Also, be aware of how the --bare flag affects the directory that is ini-
tialized:

$ cd /tmp

$ git init fluff2

Initialized empty Git repository in /tmp/fluff2/.git/

$ git init --bare fluff
Initialized empty Git repository in /tmp/fluff/

By default, Git enables a reflog (a record of changes to refs) on development repositories
but not on bare repositories. This again anticipates that development will take place in
the former and not in the latter. By the same reasoning, no remotes are created in a bare
repository.

If you set up a repository into which developers push changes, it should be bare. In
effect, this is a special case of the more general best practice that a published repository

should be bare.

Repository Clones

The git clone command creates a new Git repository based on the original you specify
via a filesystem or network address. Git doesn’t have to copy all the information in the
original to the clone. Instead, Git ignores information that is pertinent only to the
original repository, such as remote-tracking branches.

In normal git clone use, the local, development branches of the original repository,
stored within refs/heads/, become remote-tracking branches in the new clone under refs/
remotes/. Remote-tracking branches within refs/remotes/ in the original repository are
not cloned. (The clone doesn’t need to know what, if anything, the upstream repository
is in turn tracking.)

Tags from the original repository are copied into the clone, as are all objects that are
reachable from the copied refs. However, repository-specific information such as hooks
(see Chapter 15), configuration files, the reflog, and the stash of the original repository
are not reproduced in the clone.

In “Making a Copy of Your Repository” on page 27 of Chapter 3, we showed how
git clone can be used to create a copy of your public_html repository:

$ git clone public_html my website

Here, public_html is considered the original, “remote” repository. The new, resulting
clone is my_website.

Similarly, git clone can be used to clone a copy of a repository from network sites:

Repository Concepts | 197

All on one line...
$ git clone \
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

By default, each new clone maintains a link back to its parent repository via a remote
called origin. However, the original repository has no knowledge of—nor does it main-
tain a link to—any clone. It is purely a one-way relationship.!

The name “origin” isn’t special in any way. If you don’t want to use it, simply specify
an alternate with the --origin name option during the clone operation.

Git also configures the default origin remote with a default fetch refspec:

fetch = +refs/heads/*:refs/remotes/origin/*

Establishing this refspec anticipates that you want to continue updating your local
repository by fetching changes from the originating repository. In this case, the remote
repository’s branches are available in the clone on branch names prefixed with ori
gin/, such as origin/master, origin/dev, or origin/maint.

Remotes

The repository you’re currently working in is called the local or current repository, and
the repository with which you exchange files is called the remote repository. But the
latter term is a bit of a misnomer, because the repository may or may not be on a
physically remote or even different machine; it could conceivably be just another
repository on a local filesystem. In Chapter 13, I discuss how the term upstream repos-
itory is usually used to identify the remote repository from which your local repository
is derived via a clone operation.

Git uses both the remote and the remote-tracking branch to reference and facilitate the
connection to another repository. The remote provides a friendly name for the repos-
itory and can be used in place of the actual repository URL. A remote also forms part
of the name basis for the remote-tracking branches for that repository.

Use the git remote command to create, remove, manipulate, and view a remote. All
the remotes you introduce are recorded in the .git/config file and can be manipulated
using git config.

Inaddition togit clone, other common Git commands that refer to remote repositories
are:
git fetch
Retrieves objects and their related metadata from a remote repository.
git pull
Like git fetch, but also merges changes into a corresponding local branch.

1. Of course, a bidirectional remote relationship can be set up later using the git remote command.

198 | Chapter12: Remote Repositories

git push
Transfers objects and their related metadata to a remote repository.

git ls-remote
Shows a list of references held by a given remote (on an upstream server). This
command indirectly answers the question “Is an update available?”

Tracking Branches

Once you clone a repository, you can keep up with changes in the original source
repository even as you make local commits and create local branches.

As Git itself has evolved, some terminology around branch names have also evolved
and become more standard. To help clarify the purposes of the various branches, dif-
ferent namespaces have been created. Although any branch in your local repository is
still considered a local branch, they can be further divided into different categories.

* Remote-tracking branches are associated with a remote and have the specific pur-
pose of following the changes of each branch in that remote repository.

* A local-tracking branch is paired with a remote-tracking branch. It is a form of
integration branch that collects both the changes from your local development and
the changes from the remote-tracking branch.

* Any local, nontracking branch is usually generically called a topic or development
branch.

* Finally, to complete the namespaces, a remote branch is a branch located in a non-
local, remote repository. It is likely an upstream source for a remote-tracking
branch.

During a clone operation, Git creates a remote-tracking branch in the clone for each
topic branch in the upstream repository. The set of remote-tracking branches is intro-
duced in a new, separate namespace within the local repository that is specific to the
remote being cloned. They are not branches in a remote repository. The local repository
uses its remote-tracking branches to follow or track changes made in the remote
repository.

W

- You may recall from “refs and symrefs” on page 68 of Chapter 6 that a
"‘:\ local topic branch that you call dev is really named refs/heads/dev.
T Wy Similarly, remote-tracking branches are retained in the refs/remotes/

namespace. Thus, the remote-tracking branch origin/master is actually
refs/remotes/origin/master.

Because remote-tracking branches are lumped into their own namespace, there is a
clear separation between branches made in a repository by you (topic branches) and
those branches that are actually based on another, remote repository (remote-tracking
branches). In the early Git days, the separate namespaces were just convention and best

Repository Concepts | 199

practice, designed to help prevent you from making accidental conflicts. With later
versions of Git, the separate namespaces are much more than convention: it is an
integral part of how you are expected to use your branches to interact with your up-
stream repositories.

All the operations that you can perform on a regular topic branch can also be performed
on a tracking branch. However, there are some restrictions and guidelines to observe.

Because remote-tracking branches are used exclusively to follow the changes from
another repository, you should effectively treat them as read only. You shouldn’t merge
or make commits onto a remote-tracking branch. Doing so would cause your remote-
tracking branch to become out of sync with the remote repository. Worse, each future
update from the remote repository would likely require merging, making your clone
increasingly more difficult to manage. The proper management of tracking branches is
covered in more detail later in this chapter.

Referencing Other Repositories

To coordinate your repository with another repository, you define a remote, which here
means a named entity stored in the config file of a repository. It consists of two different
parts. The first part states the name of the other repository in the form of a URL. The
second part, called a refspec, specifies how a ref (which usually represents a branch)
should be mapped from the namespace of one repository into the namespace of the
other repository.

Let’s look at each of these components in turn.

Referring to Remote Repositories

Git supports several forms of Uniform Resource Locators (URLs) that can be used to
name remote repositories. These forms specify both an access protocol and the location
or address of the data.

Technically, Git’s forms of URLs are neither true URLs nor Uniform Resource Identi-
fiers (URIs), because none entirely conform to RFC 1738 or RFC 2396, respectively.
However, because of their versatile utility in naming the location of Git repositories,
Git’s variants are usually referred to as Git URLs. Furthermore, the .git/config file uses
the name url as well.

As you have seen, the simplest form of Git URL refers to a repository on a local file-
system, be it a true physical filesystem or a virtual filesystem mounted locally via the
Network File System (NFS). There are two permutations:

/path/to/repo.git
file:///path/to/repo.git

200 | Chapter12: Remote Repositories

Although these two formats are essentially identical, there is a subtle but important
distinction between the two. The former uses hard links within the filesystem to directly
share exactly the same objects between the current and remote repository; the latter
copies the objects instead of sharing them directly. To avoid issues associated with
shared repositories, the file:// form is recommended.

The other forms of the Git URL refer to repositories on remote systems.

When you have a truly remote repository whose data must be retrieved across a net-
work, the most efficient form of data transfer is often called the Git native protocol,
which refers to the custom protocol used internally by Git to transfer data. Examples
of a native protocol URL include:

git://example.com/path/to/repo.git
git://example.com/~user/path/to/repo.git

These forms are used by git-daemon to publish repositories for anonymous read. You
can both clone and fetch using these URL forms.

The clients that use these formats are not authenticated, and no password will be
requested. Hence, whereas a ~user format can be employed to refer to a user’s home
directory, a bare ~ has no context for an expansion; there is no authenticated user whose
home directory can be used. Furthermore, the ~user form works only if the server side
allows it with the --user-path option.

For secure, authenticated connections, the Git native protocol can be tunneled over

Secure Shell(SSH) connection using the following URL templates:
ssh://[user@]example.com[:port]/path/to/repo.git
ssh://[user@]example.com/path/to/repo.qgit
ssh://[user@]example.com/~user2/path/to/repo.git
ssh://[user@]example.com/~/path/to/repo.git

The third form allows for the possibility of two different user names. The first is the
user under whom the session is authenticated, and the second is the user whose home
directory is accessed.

Git also supports a URL form with scp-like syntax. It’s identical to the SSH forms, but
there is no way to specify a port parameter:

[user@]example.com: /path/to/repo.git

[user@]example.com: ~user/path/to/repo.git

[user@]example.com:path/to/repo.git
Although the HTTP and HTTPS URL variants have been fully supported since the early
days of Git, they have undergone some important changes after Version 1.6.6.

http://example.com/path/to/repo.git

https://example.com/path/to/repo.git
Prior to Git Version 1.6.6, neither the HTTP nor the HTTPS protocols were as efficient
as the Git native protocol. In Version 1.6.6, the HTTP protocols were improved
dramatically and have become essentially as efficient as the native Git protocols. Git

Referencing Other Repositories | 201

literature refers to this implementation as “smart” in contrast to the prior, so-called
“dumb” implementation.

With the HTTP efficiency benefit realized now, the utility of the http:// and
https:// URL forms will likely become more important and popular. Notably, most
corporate firewalls allow the HTTP port 80 and HTTPS port 443 to remain open while
the default Git port 9418 is typically blocked and would require an act of Congress to
open it. Furthermore, these URL forms are being favored by popular Git hosting sites
like GitHub.

Finally, the Rsync protocol can be specified:
rsync://example.com/path/to/repo.qgit

The use of Rsync is discouraged because it is inferior to the other options. If absolutely
necessary, it should be used only for an initial clone, at which point the remote repos-
itory reference should be changed to one of the other mechanisms. Continuing to use
the Rsync protocol for later updates may lead to the loss of locally created data.

The refspec

In “refs and symrefs” on page 68 of Chapter 6, I explained how the ref, or reference,
names a particular commit within the history of the repository. Usually a ref is the name
of a branch. A refspec maps branch names in the remote repository to branch names
within your local repository.

Because a refspec must simultaneously name branches from the local repository and
the remote repository, complete branch names are common in a refspec and are often
required. In a refspec, you typically see the names of development branches with the
refs/heads/ prefix and the names of remote-tracking branches with the refs/remotes/
prefix.

The syntax of a refspec is:

[+]source:destination

It consists primarily of a source ref, a colon (:), and a destination ref. The whole format
may be prefixed with an optional plus sign (+). If present, the plus sign indicates that
the normal fast-forward safety check will not be performed during the transfer. Fur-
thermore, an asterisk (*) allows a limited form of wildcard matching on branch names.

In some uses, the source ref is optional; in others, the colon and destination ref are
optional.

Refspecs are used by both git fetch and git push. The trick to using a refspec is to
understand the data flow it specifies. The refspec itself is always source:destination,
but the roles of source and destination depend on the Git operation being performed.
This relationship is summarized in Table 12-1.

202 | Chapter12: Remote Repositories

Download from Wow! eBook <www.wowebook.com>

Table 12-1. Refspec data flow

Operation | Source Destination
push Local ref being pushed Remote ref being updated
fetch Remote ref being fetched | Local ref being updated

A typical git fetch command uses a refspec such as:

+refs/heads/*:refs/remotes/remote/*

This refspec might be paraphrased as follows:

All the source branches from a remote repository in namespace refs/heads/ are (i) mapped
into your local repository using a name constructed from the remote name and (ii) placed
under the refs/remotes/remote namespace.

Because of the asterisks, this refspec applies to multiple branches as found in the
remote’s refs/heads/*. It is exactly this specification that causes the remote’s topic
branches to be mapped into your repository’s namespace as remote-tracking branches
and separates them into subnames based on the remote name.

Although not mandatory, it is convention and common best practice to place the
branches for a given remote under refs/remotes/remote/*.

W

Use git show-ref to list the references within your current repository.
Use git ls-remote repository to list the references in a remote
98y repository.

Because git pull’s first step is fetch, the fetch refspecs apply equally to git pull.

N

You should not make commits or merges onto a remote-tracking branch
identified on the righthand side of a pull or fetch refspec. Those refs
* 9ls will be used as remote-tracking branches.

During a git push operation, you typically want to provide and publish the changes
you made on your local topic branches. To allow others to find your changes in the
remote repository after you upload them, your changes must appear in that repository
as topic branches. Thus, during a typical git push command, the source branches from
your repository are sent to the remote repository using a refspec such as:

+refs/heads/*:refs/heads/*

This refspec can be paraphrased as follows:

From the local repository, take each branch name found under the source namespace
refs/heads/ and place it in a similarly named, matching branch under the destination
namespace refs/heads/ in the remote repository.

Referencing Other Repositories | 203

The first refs/heads/ refers to your local repository (because you’re executing a push),
and the second refers to the remote repository. The asterisks ensure that all branches
are replicated.

Multiple refspecs may be given on the git fetch and git push command lines. Within
a remote definition, multiple fetch refspecs, multiple push refspecs, or a combination
of both may be specified.

What if you don’t specify a refspec at all on a git push command? How does Git know
what to do or where to send data?

First, without an explicit remote given to the command, Git assumes you want to use
origin. Without a refspec, git push will send your commits to the remote for all
branches that are common between your repository and the upstream repository. Any
local branch that is not already present in the upstream repository will not be sent
upstream; branches must already exist and match names. Thus, new branches must be
explicitly pushed by name. Later they can be defaulted with a simple git push. Thus,
the default refspec makes the following two commands equivalent:

$ git push origin branch
$ git push origin branch:refs/heads/branch

For examples, see “Adding and Deleting Remote Branches” on page 231.

Example Using Remote Repositories

Now you have the basis for some sophisticated sharing via Git. Without a loss of gen-
erality and to make examples easy to run on your own system, this section shows
multiple repositories on one physical machine. In real life, they’d probably be located
on different hosts across the Internet. Other forms of remote URL specification may
be used because the same mechanisms apply to repositories on physically disparate
machines as well.

Let’s explore a common use scenario for Git. For the sake of illustration, let’s set up a
repository that all developers consider authoritative, although technically it’s no dif-
ferent from other repositories. In other words, authority lies in how everyone agrees to
treat the repository, not in some technical or security measure.

This agreed on authoritative copy is often placed in a special directory known as a
depot. (Avoid using the terms “master” or “repository” when referring to the depot,
because those idioms mean something else in Git.)

There are often good reasons for setting up a depot. For instance, your organization
may thereby reliably and professionally back up the filesystems of some large server.
You want to encourage your coworkers to check everything into the main copy within
the depot in order to avoid catastrophic losses. The depot will be the remote origin for
all developers.

204 | Chapter12: Remote Repositories

The following sections show how to place an initial repository in the depot, clone
development repositories out of the depot, do development work within them, and
then sync them with the depot.

To illustrate parallel development on this repository, a second developer will clone it,
work with his repository, and then push his changes back into the depot for all to use.

Creating an Authoritative Repository

You can place your authoritative depot anywhere on your filesystem; for this example,
let’s use /tmp/Depot. No actual development work should be done directly in the /tmp/
Depot directory or in any of its repositories. Instead, individual work should be per-
formed in a local clone.

In practice, this authoritative upstream repository would likely already be hosted on
some server, perhaps GitHub, git.kernel.org, or one of your private machines.

These steps, however, outline what is necessary to transform a repository into another
bare clone repository capable of being the authoritative upstream source repository.

The first step is to populate /tmp/Depot with an initial repository. Assuming you want
to work on website content that is already established as a Git repository in ~/pub-
lic_html, make a copy of the ~/public_html repository and place it in /tmp/Depot/pub-
lic_html.git.

Assume that ~/public_html is already a Git repository

$ cd /tmp/Depot/
$ git clone --bare ~/public_html public_html.git
Initialized empty Git repository in /tmp/Depot/public_html.git/

This clone command copies the Git remote repository from ~/public_html into the
current working directory, /tmp/Depot. The last argument gives the repository a new
name, public_html.git. By convention, bare repositories are named with a .git suffix.
This is not a requirement, but it is considered a best practice.

The original development repository has a full set of project files checked out at the top
level, and the object store and all of the configuration files are located in the .git
subdirectory:

$ cd ~/public_html/

$ 1s -aF

./ fuzzy.txt index.html techinfo.txt

../ .git/ poem. html

$ 1s -aF .git

. config hooks/ objects/
./ description index ORIG_HEAD
branches/ FETCH HEAD info/ packed-refs
COMMIT_EDITMSG HEAD logs/ refs/

Because a bare repository has no working directory, its files have a simpler layout:

Example Using Remote Repositories | 205

$ cd /tmp/Depot/

$ 1s -aF public_html.git
./ branches/ description hooks/ objects/ refs/
../ config HEAD info/ packed-refs

You can now treat this bare /tmp/Depot/public_html.git repository as the authoritative
version.

Because you used the --bare option during this clone operation, Git did not introduce
the normal, default origin remote.

Here’s the configuration in the new, bare repository:
In /tmp/Depot/public_html.git

$ cat config

[core]
repositoryformatversion = 0
filemode = true
bare = true

Make Your Own Origin Remote

Right now, you have two repositories that are virtually identical, except the initial
repository has a working directory and the bare clone does not.

Moreover, because the ~/public_html repository in your home directory was created
usinggit initandnotviaaclone,itlacksanorigin. Infact, it has no remote configured
at all.

It is easy enough to add one, though. And it’s needed if the goal is to perform more
development in your initial repository and then push that development to the newly
established, authoritative repository in the depot. In a sense, you must manually con-
vert your initial repository into a derived clone.

A developer who clones from the depot will have an origin remote created automati-
cally. In fact, if you were to turn around now and clone off the depot, you would see it
set up for you automatically, too.

The command for manipulating remotes is git remote. This operation introduces a few
new settings in the .git/config file:

$ cd ~/public_html

$ cat .git/config

[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true

$ git remote add origin /tmp/Depot/public_html

206 | Chapter12: Remote Repositories

$ cat .git/config
[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
[remote "origin"]
url = /tmp/Depot/public_html
fetch = +refs/heads/*:refs/remotes/origin/*

Here, git remote added a new remote section called origin to our configuration. The
name origin isn’t magical or special. You could have used any other name, but the
remote that points back to the basis repository is named origin by convention.

The remote establishes a link from your current repository to the remote repository
found, in this case, at /tmp/Depot/public_html.git as recorded in the url value. As a
convenience, the .git suffix is not required; both /tmp/Depot/public_html
and /tmp/Depot/public_html.git will work. Now, within this repository, the name ori
gin can be used as a shorthand reference for the remote repository found in the depot.
Note that a default fetch refspec that follows branch name mapping conventions has

also been added.

The relationship between a repository that contains a remote reference (the referrer)
and that remote repository (the referee) is asymmetric. A remote always points in one
direction from referrer to referee. The referee has no idea that some other repository
points to it. Another way to say this is as follows: a clone knows where its upstream
repository is, but the upstream repository doesn’t know where its clones are.

Let’s complete the process of setting up the origin remote by establishing new remote-
tracking branches in the original repository to represent the branches from the remote
repository. First, you can see that there is only one branch, as expected, called master.

List all branches
$ git branch -a
* master
Now, use git remote update:

$ git remote update

Updating origin

From /tmp/Depot/public_html

* [new branch] master -> origin/master

$ git branch -a
* master
origin/master

Depending on your version of Git,2 the remote-tracking branch ref may be shown with
or without the remotes/ prefix:

2. Version 1.6.3 appears to be the delineation here.

Example Using Remote Repositories | 207

$ git branch -a
* master
remotes/origin/master

Git introduced a new branch called origin/master into the repository. It is a remote-
tracking branch within the origin remote. Nobody does development in this branch.
Instead, its purpose is to hold and track the commits made in the remote origin
repository’s master branch. You could consider it your local repository’s proxy for
commits made in the remote; eventually you can use it to bring those commits into
your repository.

The phrase Updating origin, produced by the git remote update, doesn’t mean that
the remote repository was updated. Rather, it means that the local repository’s notion
of the origin has been updated based on information brought in from the remote
repository.

W

The generic git remote update caused every remote within this reposi-
tory to be updated by checking for and then fetching any new commits
s from each repository named in a remote. Rather than generically
updating all remotes, you can restrict the operation to fetch updates
from a single remote by supplying the desired remote name on the
git remote update command:

$ git remote update remote_name
Also, using the -f option when the remote is initially added causes an
immediate fetch of from that remote repository:

$ git remote add -f origin repository

Now you’re done linking your repository to the remote repository in your depot.

Developing in Your Repository

Let’s do some development work in the repository and add another poem, fuzzy.txt:
$ cd ~/public_html

$ git show-branch -a
[master] Merge branch 'master' of ../my website

$ cat fuzzy.txt

Fuzzy Wuzzy was a bear

Fuzzy Wuzzy had no hair

Fuzzy Wuzzy wasn't very fuzzy,
Was he?

$ git add fuzzy.txt
$ git commit
Created commit 6f16880: Add a hairy poem.
1 files changed, 4 insertions(+), 0 deletions(-)

208 | Chapter12: Remote Repositories

create mode 100644 fuzzy.txt

$ git show-branch -a
* [master] Add a hairy poem.
! [origin/master] Merge branch 'master' of ../my website

* [master] Add a hairy poem.
-- [origin/master] Merge branch 'master' of ../my_website

At this point, your repository has one more commit than the repository
in /tmp/Depot. Perhaps more interesting is that your repository has two branches, one
(master) with the new commit on it, and the other (origin/master) that is tracking the
remote repository.

Pushing Your Changes

Any change that you commit is completely local to your repository; it is not yet present
in the remote repository. A convenient way to get your commits from your master
branch into the origin remote repository is to use the git push command. Depending
on your version of Git, the master parameter on this command was assumed.

$ git push origin master

Counting objects: 4, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 400 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

To /tmp/Depot/public_html

0d4ce8a..6T16880 master -> master

All that output means that Git has taken your master branch changes, bundled them
up, and sent them to the remote repository named origin. Git has also performed one
more step here: it has taken those same changes and added them to the
origin/master branch in your repository as well. In effect, Git has caused the changes
that were originally on your master branch to be sent to the remote repository and then
has requested that they be brought back onto the origin/master remote-tracking
branch as well.

Git doesn’t actually round-trip the changes. After all, the commits are already in your
repository. Git is smart enough to instead simply fast-forward the remote-tracking
branch.

Now both local branches, master and origin/master, reflect the same commit within
your repository:
$ git show-branch -a

* [master] Add a hairy poem.
! [origin/master] Add a hairy poem.

*+ [master] Add a hairy poem.

Example Using Remote Repositories | 209

You can also probe the remote repository and verify that it, too, has been updated. If
your remote repository is on a local filesystem, as it is here, then you can easily check
by going to the depot directory:

$ cd /tmp/Depot/public_html.git

$ git show-branch
[master] Add a hairy poem.

When the remote repository is on a physically different machine, a plumbing command
can be used to determine the branch information of the remote repository:

Go to the actual remote repo and query it

$ git 1s-remote origin
61168803f6f1b987dffd5fff77531dcadf7f4b68 HEAD
61168803f611b987dffd5Fff77531dcadf7f4b68 refs/heads/master

You can then show that those commit IDs match your current, local branches using
something like git rev-parse HEAD or git show commit-id.

Adding a New Developer

Once you have established an authoritative repository, it’s easy to add a new developer
to a project simply by letting him clone the repository and begin working.

Let’s introduce Bob to the project by giving him his own cloned repository in which to
work:
$ cd /tmp/bob

$ git clone /tmp/Depot/public_html.git
Initialized empty Git repository in /tmp/public_html/.git/

$ 1s
public_html
$ cd public_html

$1s
fuzzy.txt index.html poem.html techinfo.txt

$ git branch
* master

$ git log -1

commit 6f168803f6f1b987dffd5fff77531dcadf7f4b68
Author: Jon Loeliger <jdl@example.com>

Date: Sun Sep 14 21:04:44 2008 -0500

Add a hairy poem.

Immediately, you can see from 1s that the clone has a working directory populated
with all the files under version control. That is, Bob’s clone is a development repository,
and not a bare repository. Good. Bob will be doing some development, too.

210 | Chapter12: Remote Repositories

From the git log output, you can see that the most recent commit is available in Bob’s
repository. Additionally, because Bob’s repository was cloned from a parent repository,
it has a default remote called origin. Bob can find out more information about the
origin remote within his repository:
$ git remote show origin
* remote origin
URL: /tmp/Depot/public_html.git
Remote branch merged with 'git pull' while on branch master
master

Tracked remote branch
master

The complete contents of the configuration file after a default clone show how it con-
tains the origin remote:
$ cat .git/config
[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
[remote "origin"]
url = /tmp/Depot/public_html.git
fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
remote = origin
merge = refs/heads/master

In addition to having the origin remote in his repository, Bob also has a few branches.
He can list all of the branches in his repository by using git branch -a:

$ git branch -a

* master

origin/HEAD
origin/master

The master branch is Bob’s main development branch. It is the normal, local topic
branch. It is also a local-tracking branch associated with the correspondingly named
master remote-tracking branch. The origin/master branch is a remote-tracking branch
to follow the commits from the master branch of the origin repository. The origin/
HEAD ref indicates which branch the remote considers the active branch, through a
symbolic name. Finally, the asterisk next to the master branch name indicates that it is
the current, checked-out branch in his repository.

Let’s have Bob make a commit that alters the hairy poem and then push that to the main
depot repository. Bob thinks the last line of the poem should be “Wuzzy?”, makes this
change, and commits it:

$ git diff
diff --git a/fuzzy.txt b/fuzzy.txt

index 0d601fa..608ab5b 100644
--- a/fuzzy.txt

Example Using Remote Repositories | 211

+++ b/fuzzy.txt
@@ -1,4 +1,4 @@
Fuzzy Wuzzy was a bear
Fuzzy Wuzzy had no hair
Fuzzy Wuzzy wasn't very fuzzy,
-Was he?
+Wuzzy?

$ git commit fuzzy.txt
Created commit 3958f68: Make the name pun complete!
1 files changed, 1 insertions(+), 1 deletions(-)

To complete Bob’s development cycle, he pushes his changes to the depot, using
git push as before:

$ git push

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 377 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

To /tmp/Depot/public_html.git
6116880..3958f68 master -> master

Getting Repository Updates

Let’s suppose that Bob goes on vacation and, in the meantime, you make further
changes and push them to the depot repository. Let’s assume you did this after getting
Bob’s latest changes.

Your commit looks like this:

$ cd ~/public_html
$ git diff
diff --git a/index.html b/index.html
index 40booff..063ac92 100644
--- a/index.html
+++ b/index.html
@@ -1,5 +1,7 @@
<html>
<body>
My web site is alive!
+

+Read a hairy poem!
</body>
<html>

$ git commit -m "Add a hairy poem link." index.html
Created commit 55c15c8: Add a hairy poem link.
1 files changed, 2 insertions(+), 0 deletions(-)

Using the default push refspec, push your commit upstream:

$ git push
Counting objects: 5, done.

212 | Chapter12: Remote Repositories

Compressing objects: 100% (3/3), done.
Unpacking objects: 100% (3/3), done.
Writing objects: 100% (3/3), 348 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
To /tmp/Depot/public_html

3958168..55c15c8 master -> master

Now, when Bob returns he’ll want to refresh his clone of the repository. The primary
command for doing this is git pull:
$ git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From /tmp/Depot/public_html
395868..55c15c8 master -> origin/master
Updating 3958f68..55c15c8
Fast forward
index.html | 2 4+
1 files changed, 2 insertions(+), 0 deletions(-)

The fully specified git pull command allows both the repository and multiple refspecs
to be specified: git pull options repository refspecs.

If the repository is not specified on the command line, either as a Git URL or indirectly
through a remote name, then the default remote origin is used. If you don’t specify a
refspec on the command line, the fetch refspec of the remote is used. If you specify a
repository (directly or using a remote) but no refspec, Git fetches the HEAD ref of the
remote.

The git pull operation is fundamentally two steps, each implemented by a separate
Git command. Namely, git pull implies git fetch followed by either git merge or
git rebase. By default, the second step is merge because this is almost always the desired
behavior.

Because pull also performs the second merge or rebase step, git pushand git pull are
not considered opposites. Instead, git push and git fetch are considered opposites.
Both push and fetch are responsible for transferring data between repositories, but in
opposite directions.

Sometimes you may want to execute the git fetch and git merge as two separate
operations. For example, you may want to fetch updates into your repository to inspect
them but not necessarily merge immediately. In this case, you can simply perform the
fetch, and then perform other operations on the remote-tracking branch such as
git log, git diff, or even gitk. Later, when you are ready (if ever!), you may perform
the merge at your convenience.

Even if you never separate the fetch and merge, you may do complex operations that
require you to know what’s happening at each step. So let’s look at each one in detail.

Example Using Remote Repositories | 213

The fetch step

In the first fetch step, Git locates the remote repository. Because the command line did
not specify a direct repository URL or a direct remote name, it assumes the default
remote name, origin. The information for that remote is in the configuration file:
[remote "origin"]
url = /tmp/Depot/public_html.git
fetch = +refs/heads/*:refs/remotes/origin/*

Git now knows to use the URL /tmp/Depot/public_html as the source repository.
Furthermore, because the command line didn’t specify a refspec, Git will use all of the
fetch =lines from the remote entry. Thus, every refs/heads/* branch from the remote
will be fetched.

Next, Git performs a negotiation protocol with the source repository to determine what
new commits are in the remote repository and are absent from your repository, based
on the desire to fetch all of the refs/heads/* refs as given in the fetch refspec.

You don’t have to fetch all of the topic branches from the remote repos-
itory using the refs/heads/* wildcard form. If you want only a particular
Wi branch or two, list them explicitly:

[remote "newdev"]
url = /tmp/Depot/public_html.git
fetch = +refs/heads/dev:refs/remotes/origin/dev
fetch = +refs/heads/stable:refs/remotes/origin/stable

The pull output prefixed by remote: reflects the negotiation, compression, and transfer
protocol, and it lets you know that new commits are coming into your repository.
remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 1), reused 0 (delta 0)

Git places the new commits in your repository on an appropriate remote-tracking
branch and then tells you what mapping it uses to determine where the new commits
belong:

From /tmp/Depot/public_html
3958f68..55c15c8 master -> origin/master

Those lines indicate that Git looked at the remote repository /tmp/Depot/public_html,
took its master branch, brought its contents back to your repository, and placed them
on your origin/master branch. This process is the heart of branch tracking.

The corresponding commit IDs are also listed, just in case you want to inspect the
changes directly. With that, the fetch step is finished.

214 | Chapter12: Remote Repositories

Download from Wow! eBook <www.wowebook.com>

The merge or rebase step

In the second step of the pull operation, Git performs a merge (the default), or a
rebase operation. In this example, Git merges the contents of the remote-tracking
branch, origin/master, into your local-tracking branch, master, using a special type of
merge called a fast-forward.

But how did Git know to merge those particular branches? The answer comes from the
configuration file:
[branch "master"]

remote = origin
merge = refs/heads/master

Paraphrased, this gives Git two key pieces of information:

When master is the current, checked out branch, use origin as the default remote from
which to fetch updates during a fetch (or pull). Further, during the merge step of
git pull, use refs/heads/master from the remote as the default branch to merge into
this, the master branch.

For readers paying close attention to detail, the first part of that paraphrase is the actual
mechanism by which Git determines that origin should be the remote used during this
parameterless git pull command.

The value of the merge field in the branch section of the configuration file (refs/heads/
master) is treated like the remote part of a refspec, and it must match one of the
source refs just fetched during the git pull command. It’s a little convoluted, but think
of this as a hint conveyed from the fetch step to the merge step of a pull command.

Because the merge configuration value applies only during git pull, a manual appli-
cation of git merge at this point must name the merge source branch on the command
line. The branch is likely a remote-tracking branch name, such as this:

Or, fully specified: refs/remotes/origin/master

$ git merge origin/master

Updating 3958f68..55c15c8

Fast forward

index.html | 2 4+

1 files changed, 2 insertions(+), 0 deletions(-)

There are slight semantic differences between the merging behavior of
branches when multiple refspecs are given on the command line and
918 when they are found in a remote entry. The former causes an octopus
" merge, wherein all branches are merged simultaneously in an n-way
operation, whereas the latter does not. Read the git pull manual page
carefully!

If you choose to rebase rather than merge, Git will instead forward port the changes on
your local-tracking topic branch to the newly fetched HEAD of the corresponding remote-

Example Using Remote Repositories | 215

tracking branch. The operation is the same as that shown in Figure 10-12 and
Figure 10-13 in Chapter 10.

The command git pull --rebase will cause Git to rebase (rather than merge) your
local-tracking branch onto the remote-tracking branch during only this pull. To make
rebase the normal operation for a branch, set the branch.branch_name .rebase configu-
ration variable to true:
[branch "mydev"]

remote = origin

merge = refs/heads/master

rebase = true

And with that, the merge (or rebase) step is also done.

Should you merge or rebase?

So, should you merge or rebase your changes during a pull operation? The short answer
is “Do either as you wish.” So, why would you choose to do one over the other? Here
are some issues to consider.

By using merge, you will potentially incur an additional merge commit at each pull to
record the updated changes simultaneously present in each branch. In a sense, it is a
true reflection of the two paths of development that took place independently and were
then, well, merged together. Conflicts will have to be resolved during the merge. Each
sequence of commits on each branch will be based on exactly the commit on which it
was originally written. When pushed upstream, any merge commits will continue to
be present. Some consider these superfluous merges and would rather not see them
cluttering up the history. Others consider these merges a more accurate portrayal of
the development history and want to see them retained.

As a rebase fundamentally changes the notion of when and where a sequence of com-
mits was developed, some aspects of the development history will be lost. Specifically,
the original commit on which your development was originally based will be changed
to be the newly pulled HEAD of the remote-tracking branch. That will make the devel-
opment appear to happen later (in commit sequence) than it actually did. If that’s OK
with you, it’'s OK with me. It’ll just be different and simpler than if the history was
merged. Naturally, you will have to resolve conflicts during the rebase operation as
needed still. As the changes that are being rebased are still strictly local within your
repository and haven’t been published yet, there’s really no reason to fear the “don’t
change history” mantra with this rebase.

With both merge and rebase, you should consider that the new, final content is different
from what was present on either development branch independently. As such, it might
warrant some form of validation in its new form: perhaps a compilation and test cycle
prior to being pushed to an upstream repository.

I tend to like to see simpler, linear histories. During most of my personal development,
I’'m usually not too concerned by a slight reordering of my changes with respect to those

216 | Chapter12: Remote Repositories

of my coworker’s that came in on a remote-tracking branch fetch, so I am fond of using
the rebase option.

If you really want to set up one consistent approach, consider setting config options
branch.autosetupmerge or branch.autosetuprebase to true, false, or always as desired.
There are also a few other options to handle behavior between purely local branches
and not just between a local and a remote branch.

Remote Repository Development Cycle in Pictures

Integrating your local development with changes from an upstream repository is at the
very core of the distributed development cycle in Git. Let’s take a moment to visualize
what happens to both your local repository and an upstream origin repository during
clone and pull operations. A few pictures should also clarify the often confusing uses
of the same name in different contexts.

Let’s start with the simple repository shown in Figure 12-1 as the basis for discussion.

Repository

00000

A B

Figure 12-1. Simple repository with commits

As with all of our commit graphs, the sequence of commits flows from left to right and
the master label points to the HEAD of the branch. The two most recent commits are
labeled A and B. Let’s follow these two commits, introduce a few more, and watch what
oceurs.

Cloning a Repository
A git clone command results in two separate repositories, as shown in Figure 12-2.
This picture illustrates some important results of the clone operation:
* All the commits from the original repository are copied to your clone; you could
now easily retrieve earlier stages of the project from your own repository.

* Thebranch named master from the original repository is introduced into your clone
on a new remote-tracking branch named origin/master.

* Within the new clone repository, the new origin/master branch is initialized to
point to the master HEAD commit, which is B in the figure.

Remote Repository Development Cycle in Pictures | 217

Original repository

lgit done

Cloned repository

A +B

Figure 12-2. Cloned repository

* A new local-tracking branch called master is created in your clone.

* The new master branch is initialized to point to origin/HEAD, the original
repository’s active branch HEAD. That happens to be origin/master, so it also points
to the exact same commit, B.

After cloning, Git selects the new master branch as the current branch and checks it
out for you. Thus, unless you change branches, any changes you make after a clone
will affect your master.

In all of these diagrams, development branches in both the original repository and the
derived clone repository are distinguished by a dark shaded background, and remote-
tracking branches by a lighter shaded background. It is important to understand that
both the local-tracking development branches and remote-tracking branches are pri-
vate and local to their respective repositories. In terms of Git’s implementation, how-
ever, the dark shaded branch labels belong to the refs/heads/ namespace whereas, the
lighter ones belong to refs/remotes/.

Alternate Histories

Once you have cloned and obtained your development repository, two distinct paths
of development may result. First, you may do development in your repository and make
new commits on your master branch, as shown in Figure 12-3. In this picture, your
development extends the master branch with two new commits, X and Y, which are
based on B.

218 | Chapter12: Remote Repositories

A B
Yours
A B X Y

Figure 12-3. Commits in your repository

In the meantime, any other developer who has access to the original repository might
have done further development and pushed her changes into that repository. Those
changes are represented in Figure 12-4 by the addition of commits C and D.

In this situation, we say that the histories of the repositories have diverged or forked at
commit B. In much the same way that local branching within one repository causes
alternate histories to diverge at a commit, a repository and its clone can diverge into
alternate histories as a result of separate actions by possibly different people. It is
important to realize that this is perfectly fine and that neither history is more correct
than the other.

In fact, the whole point of the merge operation is that these different histories may be
brought back together and resolved again. Let’s see how Git implements that!

Non—Fast-Forward Pushes

If you are developing in a repository model in which you have the ability to git push
your changes into the origin repository, then you might attempt to push your changes
at any time. This could create problems if some other developer has previously pushed
commits.

This hazard is particularly common when you are using a shared repository develop-
ment model in which all developers can push their own commits and updates into a
common repository at any time.

Remote Repository Development Cycle in Pictures | 219

A B C D
Yours
A B X Y

Figure 12-4. Commits in original repository

Let’s look again at Figure 12-3, in which you have made new commits, X and Y, based
on B.

If you wanted to push your X and Y commits upstream at this point, you could do so
easily. Git would transfer your commits to the origin repository and add them on to
the history at B. Git would then perform a special type of merge operation called a fast-
forward on the master branch, putting in your edits and updating the ref to point to
Y. A fast-forward is essentially a simple linear history advancement operation; it was
introduced in “Degenerate Merges” on page 140 of Chapter 9.

On the other hand, suppose another developer had already pushed some commits to
the origin repository and the picture was more like Figure 12-4 when you attempted to
push your history up to the origin repository. In effect, you are attempting to cause
your history to be sent to the shared repository when there is already a different history
there. The origin history does not simply fast-forward from B. This situation is called
the non—fast-forward push problem.

When you attempt your push, Git rejects it and tells you about the conflict with a
message like this:

$ git push
To /tmp/Depot/public_html
! [rejected] master -> master (non-fast forward)

error: failed to push some refs to '/tmp/Depot/public_html’

So what are you really trying to do? Do you want to overwrite the other developer’s
work, or do you want to incorporate both sets of histories?

220 | Chapter12: Remote Repositories

If you want to overwrite all other changes, you can! Just use the -f option
on your git push. We just hope you won’t need that alternate history!

More often, you are not trying to wipe out the existing origin history but just want
your own changes to be added. In this case, you must perform a merge of the two
histories in your repository before pushing.

Fetching the Alternate History

For Git to perform a merge between two alternate histories, both must be present within
one repository on two different branches. Branches that are purely local development
branches are a special (degenerate) case of their already being in the same repository.

However, if the alternate histories are in different repositories because of cloning, then
the remote branch must be brought into your repository via a fetch operation. You can
carry out the operation through a direct git fetch command or as part of a git pull
command; it doesn’t matter which. In either case, the fetch brings the remote’s com-
mits, here C and D, into your repository. The results are shown in Figure 12-5.

Yours

Figure 12-5. Fetching the alternate history

Remote Repository Development Cycle in Pictures | 221

In no way does the introduction of the alternate history with commits C and D change
the history represented by X and Y; the two alternate histories both now exist
simultaneously in your repository and form a more complex graph. Your history is
represented by yourmaster branch, and the remote history is represented by the origin/
master remote-tracking branch.

Merging Histories

Now that both histories are present in one repository, all that is needed to unify them
is a merge of the origin/master branch into the master branch.

The merge operation can be initiated either with a direct git merge origin/master
command or as the second step in a git pull request. In both cases, the techniques for
the merge operation are exactly the same as those described in Chapter 9.

Figure 12-6 shows the commit graph in your repository after the merge has successfully
assimilated the two histories from commit D and Y into a new merge commit, M. The ref
fororigin/master remains pointing atD because it hasn’t changed, butmaster isupdated
to the merge commit, M, to indicate that the merge was into the master branch; this is
where the new commit was made.

Origin
A B C D
Yours

Figure 12-6. Merging histories

222 | Chapter12: Remote Repositories

Merge Conflicts

Occasionally there will be merge conflicts between the alternate histories. Regardless
of the outcome of the merge, the fetch still occurred. All the commits from the remote
repository are still present in your repository on the tracking branch.

You may choose to resolve the merge normally, as described in Chapter 9, or you may
choose to abort the merge and reset your master branch to its prior ORIG_HEAD state
using the command git reset --hard ORIG_HEAD. Doing so in this example would move
master to the prior HEAD value, Y, and change your working directory to match. It would
also leave origin/master at commit D.

W N

You can brush up on the meaning of ORIG_HEAD by reviewing “refs and
symrefs” on page 68 of Chapter 6; also see its use in the section “Abort-
98 ing or Restarting a Merge” on page 137 (Chapter 9).

Pushing a Merged History

If you’ve performed all the steps shown, your repository has been updated to contain
the latest changes from both the origin repository and your repository. But the converse
is not true: the origin repository still doesn’t have your changes.

If your objective is only to incorporate the latest updates from origin into your repos-
itory, then you are finished when your merge is resolved. On the other hand, a simple
git push can return the unified and merged history from your master branch back to
the origin repository. Figure 12-7 shows the results after you git push.

Finally, observe that the origin repository has been updated with your development
even if it has undergone other changes that had to be merged first. Both your repository
and the origin repository have been fully updated and are again synchronized.

Remote Configuration

Keeping track of all of the information about a remote repository reference by hand
can become tedious and difficult: you have to remember the full URL for the repository;
you must type and retype remote references and refspecs on the command line each
time you want to fetch updates; you have to reconstruct the branch mappings; and so
on. Repeating the information is also likely to be quite error prone.

You might also wonder how Git remembers the URL for the remote from the initial
clone for use in subsequent fetch or push operations using origin.

Git provides three mechanisms for setting up and maintaining information about
remotes: the git remote command, the git config command, and editing

Remote Configuration | 223

Yours

Figure 12-7. Merged histories after push

the .git/config file directly. All three mechanisms ultimately result in configuration
information being recorded in the .git/config file.

Using git remote

The git remote command is a more specialized interface, specific to remotes, that
manipulates the configuration file data and remote refs. It has several subcommands
with fairly intuitive names. There is no help option, but you can circumvent that to
display a message with subcommand names via the “unknown subcommand trick”:

$ git remote xyzzy
error: Unknown subcommand: xyzzy
usage: git remote
or: git remote add <name> <url>
or: git remote rm <name>
or: git remote show <name>
or: git remote prune <name>
or: git remote update [group]

-v, --verbose be verbose

224 | Chapter12: Remote Repositories

You saw the git remote add and update commands in the section “Make Your Own
Origin Remote” on page 206, earlier in this chapter, and you saw show in “Adding a
New Developer” on page 210. You used git remote add origin to add a new remote
named origin to the newly created parent repository in the depot, and you ran the
git remote show origin command to extract all the information about the remote
origin. Finally, you used the git remote update command to fetch all the updates
available in the remote repository into your local repository.

The command git remote rmremoves the given remote and all of its associated remote-
tracking branches from your local repository. To remove just one remote-tracking
branch from your local repository, use a command like this:

$ git branch -r -d origin/dev
But you shouldn’t really do that unless the corresponding remote branch really has

been removed from the upstream repository. Otherwise, your next fetch from the up-
stream repository is likely to recreate the branch again.

The remote repository may have branches deleted from it by the actions of other
developers, even though your copies of those branches may linger in your repository.
The git remote prune command may be used to remove the names of those stale (with
respect to the actual remote repository) remote-tracking branches from your local
repository.

To keep even more in sync with an upstream remote, use the command
git remote update --prune remote to first get updates from the remote and then prune
stale tracking branches all in one step.

To rename a remote and all of its refs, use git remote rename old new. After this
command:

$ git remote rename jon jdl
any ref like jon/bugfixes will be renamed as jd1/bugfixes.

In addition to manipulations of the remote name and its refs, you can also update or
change the URL of the remote:

$ git remote set-url origin git://repos.example.com/stuff.git

Using git config

The git config command can be used to manipulate the entries in your configuration
file directly. This includes several config variables for remotes.

For example, to add a new remote named publish with a push refspec for all the
branches you would like to publish, you might do something like this:

$ git config remote.publish.url 'ssh://git.example.org/pub/repo.git’
$ git config remote.publish.push '+refs/heads/*:refs/heads/*'

Remote Configuration | 225

Each of the preceding commands adds a line to the .git/config file. If no publish remote
section exists yet, then the first command you issue that refers to that remote creates a
section in the file for it. As a result, your .git/config contains, in part, the following
remote definition:

[remote "publish"]

url = ssh://git.example.org/pub/repo.git
push = +refs/heads/*:refs/heads/*

Use the -1 (lowercase L) option 4 la git config -1 to list the contents
of the configuration file with complete variable names:

From a clone of git.git sources

$ git config -1

core.repositoryformatversion=0

core.filemode=true

core.bare=false

core.logallrefupdates=true
remote.origin.url=git://git.kernel.org/pub/scm/git/git.git
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
branch.master.remote=origin
branch.master.merge=refs/heads/master

Using Manual Editing

Rather than wrestling with either the git remote or git config commands, directly
editing the file with your favorite text editor may be easier or faster in some situations.
There is nothing wrong with doing so, but it can be error prone and is usually done
only by developers who are very familiar with Git’s behavior and the configuration file.
Yet having seen the parts of the file that influence various Git behaviors and the changes
resulting from commands, you should have basis enough to understand and manipulate
the configuration file.

Multiple Remote Repositories

Operations such as git remote add remote repository-URL can be executed multiple
times to add several new remotes to your repository. With multiple remotes, you can
subsequently fetch commits from multiple sources and combine them in your reposi-
tory. This feature also allows you to establish several push destinations that might
receive part or all of your repository.

In Chapter 13, we’ll show you how to use multiple repositories in different scenarios
during your development.

226 | Chapter12: Remote Repositories

Working with Tracking Branches

Because the creation and manipulation of tracking branches is such a vital part of the
Git development methodology, it is important to understand how and why Git creates
the different tracking branches and how Git expects you to develop using them.

Creating Tracking Branches

In the same way that your master branch can be thought of as extending the develop-
ment brought in on the origin/master branch, you can create a new branch based on
any remote-tracking branch and use it to extend that line of development.

We've already seen that remote-tracking branches are introduced during a clone
operation or when remotes are added to a repository. In later versions of Git, after about
1.6.6 or so, Git makes it very easy to create a local- and remote-tracking branch pair
using a consistent ref name for them. A simple check out request using the name of a
remote-tracking branch causes a new local-tracking branch to be created and associated
with the remote-tracking branch. However, Git does this only if your branch name
matches just one remote branch name from all of the repository remotes. And by the
phrase “branch name matches,” Git means the full branch name after the name of the
remote in a refspec.

Let’s use Git’s source repository for some examples. By pulling both from GitHub and
git.kernel.org, we’ll create a repository that has a vast collection of branch names from
two remotes, some of which are duplicates.

Grab GitHub's repository
$ git clone git://github.com/gitster/git.git
Cloning into 'git'...

$ git remote add korg git://git.kernel.org/pub/scm/git/git.git

$ git remote update

Fetching origin

Fetching korg

remote: Counting objects: 3541, done.

remote: Compressing objects: 100% (1655/1655), done.

remote: Total 3541 (delta 1796), reused 3451 (delta 1747)
Receiving objects: 100% (3541/3541), 1.73 MiB | 344 KiB/s, done.
Resolving deltas: 100% (1796/1796), done.

From git://git.kernel.org/pub/scm/git/git

* [new branch] maint -> korg/maint
* [new branch] master -> korg/master
* [new branch] next -> korg/next

* [new branch] pu -> korg/pu

* [new branch] todo -> korg/todo

Find a uniquely name branch and check it out.

Working with Tracking Branches | 227

$ git branch -a | grep split-blob
remotes/origin/jc/split-blob

$ git branch
* master

$ git checkout jc/split-blob
Branch jc/split-blob set up to track remote branch jc/split-blob from origin.
Switched to a new branch 'jc/split-blob'

$ git branch
* jc/split-blob
master

Notice that we had to use the full branch name jc/split-blob and not simply split-
blob.

In the case when the branch name is ambiguous, you can directly establish and set up
the branch yourself.

$ git branch -a | egrep 'maint$'
remotes/korg/maint
remotes/origin/maint

$ git checkout maint
error: pathspec 'maint' did not match any file(s) known to git.

Just select one of the maint branches.

$ git checkout --track korg/maint

Branch maint set up to track remote branch maint from korg.
Switched to a new branch 'maint’

It is likely that the two branches represent the same commit as found in two different
repositories and you can simply choose one on which to base your local-tracking

branch.

If for some reason you wish to use a different name for your local-tracking branch, use
the -b option.

$ git checkout -b mypu --track korg/pu
Branch mypu set up to track remote branch pu from korg.
Switched to a new branch 'mypu’

Under the hood, Git automatically adds a branch entry to the .git/config to indicate that
the remote-tracking branch should be merged into your new local-tracking branch. The
collected changes from the previous series of commands yields the following config file:

$ cat .git/config
[core]
repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
[remote "origin"]
fetch = +refs/heads/*:refs/remotes/origin/*
url = git://github.com/gitster/git.git

228 | Chapter12: Remote Repositories

Download from Wow! eBook <www.wowebook.com>

[branch "master"]
remote = origin
merge = refs/heads/master
[remote "korg"]
url = git://git.kernel.org/pub/scm/git/git.git
fetch = +refs/heads/*:refs/remotes/korg/*
[branch "jc/split-blob"]
remote = origin
merge = refs/heads/jc/split-blob
[branch "maint"]
remote = korg
merge = refs/heads/maint
[branch "mypu"]
remote = korg
merge = refs/heads/pu

As usual, you may also use git config or a text editor to manipulate the branch entries
in the configuration file.

W
- When you get lost in the tracking branch mire, use the command
git remote show remote to help sort out all the remotes and branches.

At this point, it should be pretty clear that the default clone behavior introduces local-
tracking branch master for the remote-tracking branch origin/master as a simplifying
convenience just as if you had explicitly checked out the master branch yourself.

To reinforce the idea that making commits directly on a remote-tracking branch isn’t
good form, checking out a remote-tracking branch using early versions of Git (prior to
about 1.6.6 or so) caused a detached HEAD. As mentioned in “Detached HEAD
Branches” on page 102 of Chapter 7, a detached HEAD is essentially an anonymous
branch name. Making commits on the detached HEAD is possible, but you shouldn’t
then update your remote-tracking branch HEAD with any local commits lest you suffer
grief later when fetching new updates from that remote. (If you find you need to keep
any such commits on a detached HEAD, use git checkout -b my_branch to create a new,
local branch on which to further develop your changes.) Collectively, it isn’t really a
good, intuitive approach.

If you don’t want to check out a local-tracking branch when you create it, you can
instead use git branch --track local-branch remote-branch to create the local-
tracking branch and record the local- and remote-branch association in the .git/config
file for you:

$ git branch --track dev origin/dev
Branch dev set up to track remote branch dev from origin.

And, if you already have a topic branch that you decide should be associated with an
upstream repository’s remote-tracking branch, you can establish the relationship using
the --upstream option. Typically, this is done after adding a new remote, like this:

Working with Tracking Branches | 229

$ git remote add upstreamrepo git://git.example.org/upstreamrepo.git

Branch mydev already existed.
Leave it alone, but associated it with upstreamrepo/dev.
$ git branch --set-upstream mydev upstreamrepo/dev

Ahead and Behind

With the establishment of a local- and remote-tracking branch pair, relative compari-
sons between the two branches can be made. In addition to the normal diff, log, and
other content-based comparisons, Git offers a quick summary of the number of com-
mits on each of the branches and states which branch it judges to be “ahead of” or

“behind” the other branch.

If your local development introduces new commits on a local-tracking branch, it is
considered to be ahead of the corresponding remote-tracking branch. Conversely, if
you fetch new commits onto remote-tracking branches and they are not present on
your local-tracking branch, Git considers your local-tracking branch to be behind the
corresponding remote-tracking branch.

The git status usually reports this status:

$ git fetch
remote: Counting objects: 9, done.
remote: Compressing objects: 100% (6/6), done.
remote: Total 6 (delta 4), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
From example.com:SomeRepo

b1a68a8..b722324 ver2 -> origin/ver2

$ git status
On branch ver2
Your branch is behind 'origin/ver2' by 2 commits, and can be fast-forwarded.

To see which commits you have in master that are not in origin/master, use acommand

like this:

$ git log origin/master..master

Yes, it is possible to be both ahead and behind simultaneously!

Make one local commit on top of previous example
$ git commit -m "Something" main.c

$ git status

On branch ver2

Your branch and 'origin/ver2' have diverged,

and have 1 and 2 different commit(s) each, respectively.

And in this case, you probably want to use the symmetric difference to see the changes:

$ git log origin/master...master

230 | Chapter12: Remote Repositories

Adding and Deleting Remote Branches

Any new development you create on branches in your local clone are not visible in the
parent repository until you make a direct request to propagate it there. Similarly, a
branch deletion in your repository remains a local change and is not removed from the
parent repository until you request it to be removed from the remote as well.

In Chapter 7, you learned how to add new branches to and delete existing ones from
your repository using the git branch command. Butgit branch operates only on a local
repository.

To perform similar branch add and delete operations on a remote repository, you need
to specify different forms of refspecs in a git push command. Recall that the syntax of
a refspec is:

[+]source:destination

Pushes that use a refspec with just a source ref (i.e., with no destination ref) create a
new branch in the remote repository:

$ cd ~/public_html

$ git checkout -b foo
Switched to a new branch "foo"

$ git push origin foo

Total 0 (delta 0), reused 0 (delta 0)
To /tmp/Depot/public_html

* [new branch] foo -> foo

A push that names only a source is just a shorthand for using the same name for both
the source and destination ref name. A push that names both a source and a destination
ref that are different can be used to create a new destination named branch or extend
an existing destination remote branch with the content from the local source branch.
That is, git push origin mystuff:dev will push the local branch mystuff to the
upstream repository and either create or extend a branch named dev. Thus, due to a
series of default behaviors, the following commands have the same effect:
$ git push upstream new_dev

$ git push upstream new_dev:new_dev
$ git push upstream new_dev:refs/heads/new_dev

Pushes that use a refspec with just a destination ref (i.e., no source ref) cause the
destination ref to be deleted from the remote repository. To denote the ref as the
destination, the colon separator must be specified:

$ git push origin :foo

To /tmp/Depot/public_html

- [deleted] foo
If that :branch form causes you heartache, you can use a syntactically equivalent form:

$ git push origin --delete foo

Adding and Deleting Remote Branches | 231

So whatabout renaming a remote branch? Unfortunately, there is not a simple solution.
The short answer is create a new upstream branch with the new name and then delete
the old branch. That’s easy enough to do using the git push commands as shown
previously.

Create new name at exiting old commit

$ git branch new origin/old
$ git push origin new

Remove the old name

$ git push origin :old
But that’s the easy and obvious part. Now what are the distributed implications? Do
you know who has a clone of the upstream repository that was just modified out from
underneath them? If you do, they could all just fetch and remote prune to get their
repositories updated. But if you don’t, then all those other clones will suddenly have
dangling tracking branches. And there’s no real way to get them renamed in a dis-
tributed way.

Bottom line here: this is just a variant on the “Be careful how you rewrite history” theme.

Bare Repositories and git push

As a consequence of the peer-to-peer semantics of Git repositories, all repositories are
of equal stature. You can push to and fetch from development and bare repositories
equally, because there is no fundamental implementation distinction between them.
This symmetric design is critically important to Git, butitalso leads to some unexpected
behavior if you try to treat bare and development repositories as exact equals.

Recall that the git push command does not check out files in the receiving repository.
It simply transfers objects from the source repository to the receiving repository and
then updates the corresponding refs on the receiving end.

In a bare repository, this behavior is all that can be expected, because there is no working
directory that might be updated by checked out files. That’s good. However, in a
development repository that is the recipient of a push operation, it can later cause
confusion to anyone using the development repository.

The push operation can update the repository state, including the HEAD commit. That
is, even though the developer at the remote end has done nothing, the branch refs and
HEAD might change, becoming out of sync with the checked out files and index.

A developer who is actively working in a repository into which an asynchronous push
happens will not see the push. But a subsequent commit by that developer will occur
on an unexpected HEAD, creating an odd history. A forced push will lose pushed commits
from the other developer. The developer at that repository also may find herself unable
to reconcile her history with either an upstream repository or a downstream clone
because they are no longer simple fast-forwards as they should be. And she won’t know

232 | Chapter12: Remote Repositories

why: the repository has silently changed out from underneath her. Cats and dogs will
live together. It’ll be bad.

As aresult, you are encouraged to push only into a bare repository. This is not a hard-
and-fast rule, but it’s a good guide to the average developer and is considered a best
practice. There are a few instances and use cases where you might want to push into a
development repository, but you should fully understand its implications. When you
do want to push into a development repository, you may want to follow one of two
basic approaches.

In the first scenario, you really do want to have a working directory with a branch
checked out in the receiving repository. You may know, for example, that no other
developer will ever be doing active development there and therefore there is no one
who might be blind sided by silent changes being pushed into his repository.

In this case, you may want to enable a hook in the receiving repository to perform a
checkout of some branch, perhaps the one just pushed, into the working directory as
well. To verify that the receiving repository is in a sane state prior to having an automatic
checkout, the hook should ensure that the nonbare repository’s working directory
contains no edits or modified files and that its index has no files in the staged but
uncommitted state when the push happens. When these conditions are not met, you
run the risk of losing those edits or changes as the checkout overwrites them.

There is another scenario where pushing into a nonbare repository can work reasonably
well. By agreement, each developer who pushes changes must push to a non—checked
out branch that is considered simply a receiving branch. A developer never pushes to
a branch that is expected to be checked out. It is up to some developer in particular to
manage what branch is checked out and when. Perhaps that person is responsible for
handling the receiving branches and merging them into a master branch before it is
checked out.

Bare Repositories and git push | 233

CHAPTER 13
Repository Management

This chapter describes how to publish Git repositories and then presents two
approaches to managing and publishing repositories for cooperative development. One
approach centralizes the repository; the other distributes the repository. Each solution
has its place, and which is right for you and your project depends on your requirements
and philosophy.

However, no matter which approach you adopt, Git implements a distributed
development model. For example, even if your team centralizes the repository, each
developer has a complete, private copy of that repository and can work independently.
The work is distributed, yet it is coordinated through a central, shared repository. The
repository model and the development model are orthogonal characteristics.

A Word About Servers

The word “server” gets used liberally and loosely for a variety of meanings. Neither Git
nor this book will be an exception, so let’s clarify some aspects of what a server may
or may not be, might or might not do, and just how Git might use one.

Technically, Git doesn’t need a server. In contrast to other VCSs, where a centralized
server is often required, there is no need to hang onto the mindset that one is
required to host Git repositories.

Having a server in the context of a Git repository is often little more than establishing
a convenient, fixed, or known location from which repositories are obtained or updates
are exchanged. The Git server might also provide some form of authentication or access
control.

Git is happy to exchange files directly with a peer repository on the same machine
without the need for some server to broker the deal, or with different machines via a
variety of protocols none of which enforces a superior server to exist.

Instead, the word “server” here is more loose. On one hand, it may be just “some other
computer willing to interact with us.” On the other hand, it could be some rack-moun-

235

ted, highly available, well-connected, centralized server with a lot of computational
power. So, this whole notion of setting up a server needs to be understood in the context
of “if that’s how you want to do it.” You be the judge of your requirements here.

Publishing Repositories

Whether you are setting up an open source development environment in which many
people across the Internet might develop a project or establishing a project for internal
development within a private group, the mechanics of collaboration are essentially the
same. The main difference between the two scenarios is the location of the repository
and access to it.

W

- The phrase “commit rights” is really sort of a misnomer in Git. Git
"‘:\ doesn’t try to manage access rights, leaving that issue to other tools,
T Qi8¢ such as SSH, which are more suited to the task. You can always commit

in any repository to which you have (Unix) access, either via SSH and
cding to that repository, or to which you have direct rwx-mode access.

The concept might better be paraphrased as “Can [update the published
repository?” In that expression, you can see the issue is really the ques-
tion, “Can I push changes to the published repository?”

Earlier, in “Referring to Remote Repositories” on page 200, you were cautioned about
using the remote repository URL form /path/to/repo.git because it might exhibit
problems characteristic of repositories that use shared files. On the other hand, setting
up a common depot containing several similar repositories is a common situation where
you would want to use a shared, underlying object store. In this case, you expect the
repositories to be monotonically increasing in size without objects and refs being
removed from them. This situation can benefit from large-scale sharing of the object
store by many repositories, thus saving tremendous volumes of disk space. To achieve
this space savings, consider using the --reference repository, the --local, or the
--shared options during the initial bare repository clone setup step for your published
repositories.

In any situation where you publish a repository, we strongly advise that you publish a
bare one.

Repositories with Controlled Access

As mentioned earlier in the chapter, it might be sufficient for your project to publish a
bare repository in a known location on a filesystem inside your organization that
everyone can access.

Naturally, access in this context means that all developers can see the filesystem on
their machines and have traditional Unix ownership and read/write permissions. In

236 | Chapter13: Repository Management

these scenarios, using a filename URL such as /path/to/Depot/project.git or file://path/
to/Depot/project.git might suffice. Although the performance might be less than ideal,
an NFS-mounted filesystem can provide such sharing support.

Slightly more complex access is called for if multiple development machines are used.
Within a corporation, for example, the IT department might provide a central server
for the repository depot and keep it backed up. Each developer might then have a
desktop machine for development. If direct filesystem access such as NFS is not avail-
able, you could use repositories named with SSH URLs, but this still requires each
developer to have an account on the central server.

In the following example, the same repository published in /tmp/Depot/public_
html.git earlier in this chapter is accessed by a developer who has SSH access to the
hosting machine:

desktop$ cd /tmp

desktop$ git clone ssh://example.com/tmp/Depot/public_html.git
Initialize public_html/.git

Initialized empty Git repository in /tmp/public_html/.git/
jdl@example.com's password:

remote: Counting objects: 27, done.

Receiving objects: 100% (27/27), done.objects: 3% (1/27)
Resolving deltas: 100% (7/7), done.

remote: Compressing objects: 100% (23/23), done.

remote: Total 27 (delremote: ta 7), reused 0 (delta 0)

When that clone is made, it records the source repository using the following URL:
ssh://example.com/tmp/Depot/public_html.git.

Similarly, other commands such as git fetch and git push can now be used across the
network:

desktop$ git push

jdl@example.com's password:

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 385 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

To ssh://example.com/tmp/Depot/public_html.git
55c15c8..451e41c master -> master

In both of these examples, the password requested is the normal Unix login password
for the remote hosting machine.

W

A If you need to provide network access with authenticated developers
"‘:\ but are not willing to provide login access to the hosting server, check
T 98 out the Gitolite project. Start here:

$ git clone git://github.com/sitaramc/gitolite

Publishing Repositories | 237

Again, depending on the desired scope of access, such SSH access to machines may be
entirely within a group or corporate setting or may be available across the entire
Internet.

Repositories with Anonymous Read Access

If you want to share code, then you’ll probably want to set up a hosting server to publish
repositories and allow others to clone them. Anonymous, read-only access is often all
that developers need to clone or fetch from these repositories. A common and easy
solution is to export them using git-daemon and also perhaps an HTTP daemon.

Again, the actual realm across which you can publish your repository is as limited or
as broad as access to your HTTP pages or your git-daemon. That is, if you host these
commands on a public-facing machine, then anyone can clone and fetch from your
repositories. If you put it behind a corporate firewall, only those people inside the
corporation will have access (in the absence of security breaches).

Publishing repositories using git-daemon

Setting up git-daemon allows you to export your repositories using the Git-native
protocol.

You must mark repositories as “OK to be exported” in some way. Typically, this is
done by creating the file git-daemon-export-ok in the top-level directory of the bare
repository. This mechanism gives you fine-grained control over which repositories the
daemon can export.

Instead of marking each repository individually, you can also run git-daemon with the
--export-all option to publish all identifiable (by having both an objects and a refs
subdirectory) repositories found in its list of directories. There are many git-daemon
options that limit and configure which repositories will be exported.

One common way to set up the git-daemon on a server is to enable it as an inetd service.
This involves ensuring that your /etc/services has an entry for Git. The default port is
9418, though you may use any port you like. A typical entry might be:

git 9418/tcp # Git Version Control System
Once you add that line to /etc/services, you must set up an entry in your /etc/
inetd.conf to specify how the git-daemon should be invoked.
A typical entry might look like this:

Place on one long line in /etc/inetd.conf

git stream tcp nowait nobody /usr/bin/git-daemon

git-daemon --inetd --verbose --export-all
--base-path=/pub/git

238 | Chapter13: Repository Management

Download from Wow! eBook <www.wowebook.com>

Using xinetd instead of inetd, place a similar configuration in the file /etc/xinetd.d/
git-daemon:

description: The git server offers access to git repositories
service git

{
disable = no
type = UNLISTED
port = 9418
socket_type = stream
wait = no
user = nobody
server = /usr/bin/git-daemon
server_args = --inetd --export-all --base-path=/pub/git
log on failure += USERID
}

You can makeitlook as if repositories are located on separate hosts, even though they’re
just in separate directories on a single host, through a trick supported by git-daemon.
The following example entry allows a server to provide multiple, virtually hosted Git
daemons:

Place on one long line in /etc/inetd.conf

git stream tcp nowait nobody /usr/bin/git-daemon
git-daemon --inetd --verbose --export-all
--interpolated-path=/pub/%H%D

In the command shown, git-daemon will fill in the %H with a fully qualified hostname
and %D with the repository’s directory path. Because %H can be a logical hostname,
different sets of repositories can be offered by one physical server.

Typically, an additional level of directory structure, such as /software or /scm, is used
to organize the advertised repositories. If you combine the --interpolated-path=/pub/
%H%D with a /software repository directory path, then the bare repositories to be pub-
lished will be physically present on the server, in directories such as:

/pub/git.example.com/software/
/pub/www.example.org/software/

You would then advertise the availability of your repositories at URLs such as:
git://git.example.com/software/repository.git
git://www.example.org/software/repository.git

Here, the %H is replaced by the host git.example.com or www.example.org and the %D is
replaced by full repository names, such as /software/repository.git.

The important point of this example is that it shows how a single git-daemon can be
used to maintain and publish multiple, separate collections of Git repositories that are
physically hosted on one server but presented as logically separate hosts. Those repo-
sitories available from one host might be different from those offered by a different host.

Publishing Repositories | 239

Publishing repositories using an HTTP daemon

Sometimes, an easier way to publish repositories with anonymous read access is to
simply make them available through an HTTP daemon. If you also set up gitweb, then
visitors can load a URL into their web browsers, see an index listing of your repository,
and negotiate using familiar clicks and the browser Back button. Visitors do not need
to run Git in order to download files.

You will need to make one configuration adjustment to your bare Git repository before
it can be properly served by an HTTP daemon: enable the hooks/post-update option as
follows:

$ cd /path/to/bare/repo.git
$ mv hooks/post-update.sample hooks/post-update

Verify that the post-update script is executable, or use chmod 755 on it just to be sure.
Finally, copy that bare Git repository into a directory served by your HTTP daemon.
You can now advertise that your project is available using a URL such as:

http://www.example.org/software/repository.git

If you see the error message such as:

. not found: did you run git update-server-info on the server?

Perhaps git-update-server-info needs to be run there?

then chances are good that you aren’t running the hooks/post-update
command properly on the server.

Publishing a repository using Smart HTTP

Publishing a repository via the newer, so-called Smart HTTP mechanism is pretty
simple in principle, but you may want to consult the full online documentation for the
process as found in the manual page of the git-http-backend command. What follows
here is a simplified extraction of some of that material that should get you started.

First, this setup is really geared for use with Apache. Thus, the examples that follow
show how to modify Apache configuration files. On a Ubuntu system, these are found
in /etc/apache2. Second, some mapping from your advertised repository names to the
repository layout on the disk as made available to Apache needs to be defined. As with
the git-http-backend documentation, the mapping here makes http://$hostname/git/
foo/bar.git correspond to var/www/git/foo/bar.git under Apache’s file view. Third,
several Apache modules are required and must be enabled: mod _cgi, mod_alias, and
mod_env.

Define some variables and a script alias that points to the git-http-backend command
like this:

240 | Chapter13: Repository Management

SetEnv GIT_PROJECT ROOT /var/www/git
SetEnv GIT_HTTP_EXPORT_ALL
ScriptAlias /git/ /usr/libexec/git-core/git-http-backend/

The location of your git-http-backend may be different. For example, Ubuntu places
it in /usr/lib/git-core/git-http-backend.

Now you have a choice: you can allow anonymous read access but require authenti-
cated write access to your repository, or you can require authentication for read and
write.

For anonymous read access, set up a LocationMatch directive:

<LocationMatch "~/git/.*/git-receive-pack$">
AuthType Basic
AuthName "Git Access"
Require group committers

</LocationMatch>

For authenticated read access, set up a Location directive for the repository or a parent
directory of the repository:
<Location /git/private>
AuthType Basic

AuthName "Private Git Access"
Require group committers

</Location>
Further recipes exist within the manual page to set up coordinated gitweb access, and

show how to serve multiple repositories namespaces and configure accelerated access
to static pages.

Publishing via Git and HTTP daemons

Although using a web server and browser is certainly convenient, think carefully about
how much traffic you plan to handle on your server. Development projects can become
large, and HT TP is less efficient than the native Git protocol.

You can provide both HTTP and Git daemon access, but it might take some adjusting
and coordination between your Git daemon and your HTTP daemon. Specifically, it
may require a mapping with the --interpolated-path option to git-daemon and an
Alias option to Apache to provide seamless integration of the two views of the same
data. Further details on the --interpolated-path are available in the git daemon manual
page, whereas details about the Apache Alias option can be found in the Apache doc-
umentation or its configuration file, /etc/apache2/mods-available/alias.conf.

Publishing Repositories | 241

Repositories with Anonymous Write Access

Technically, you may use the Git native protocol URL forms to allow anonymous write
access into repositories served by git-daemon. To do so requires you to enable the
receivepack option in the published repositories:

[daemon]
receivepack = true

You might do this on a private LAN where every developer is trusted, but it is not
considered best practice. Instead, you should consider tunneling your Git push needs
over an SSH connection.

Publishing Your Repository to GitHub

We’ll assume you have a repository with some commits and have already established
a GitHub account. With these prerequisites established, the next step is creating a
repository to accept your commits at GitHub.

Creating the GitHub Repository
Sign in to GitHub and begin at your personal dashboard. You can access this per-
sonal dashboard at any time by clicking the GitHub logo. Next, click the “New
repository” button.

Supplying the New Repository Name
The only required field is the “Project Name” and it will be the last part of the URL
at which you’ll access your repository. For example, if your GitHub username was
jonl, a Project Name of gitbook would appear at https://github.com/jonl/git
book.

Choosing the Access Control Level
There are two choices for access control at this juncture. One is to allow anyone
to access the repository’s contents. The other is to specify a list of GitHub users
that are permitted to access it. GitHub, in its mission to foster more open source
projects, allows for unlimited public repositories at no cost. Closed repositories,
being more likely business focused, are charged on a monthly or annual subscrip-
tion plan basis. Click “Create repository” to continue.

Initializing the Repository
The repository has now been created, but doesn’t yet have any contents. GitHub
provides users with stepwise instructions from which we’ll follow the “Existing Git
Repo” process. At a shell prompt in your local existing Git repository, we’ll add
the GitHub remote and push the contents.

Adding the Remote
First, type git remote add origin githubrepoaddress. This registers a remote
destination to which Git can push contents. The specific githubrepoaddress and
initialization instructions are repeatedly provided on the GitHub page for the
project after creating the repository but before it has any contents.

242 | Chapter13: Repository Management

Pushing the Contents
Second, type git push -u origin master if you wish to selectively publish your
master branch. If you wish to publish all your local branches and tags, you can
alternatively (one time only) issue the git push --mirror origin command. Sub-
sequent invocations would less desirably push remote-tracking branches that are
not intended to be pushed.

View the site
That’s all there is to publishing a Git repository to GitHub. You can now refresh
the project page and, in place of the initialization instructions, the project’s
README and directory and file structure will be shown in a web-navigable view.

Repository Publishing Advice

Before you go wildly setting up server machines and hosting services just to host Git
repositories, consider what your needs really are and why you want to offer Git repo-
sitories. Perhaps your needs are already satisfied by existing companies, websites, or
services.

For private code or even public code where you place a premium on the value of service,
you might consider using a commerical Git hosting service.

If you are offering an open source repository and have minimal service needs or
expectations, there are a multitude of Git hosting services available. Some offer up-
grades to supported services as well.

The more complicated situations arise when you have private code that you want to
keep in house and therefore must set up and maintain your own master depot for
repository hosting. Oh, and don’t forget your own backups!

In this case, the usual approach is to use the Git-over-SSH protocol and require all users
of the repository to have SSH access to the hosting server. On the server itself, a semi-
generic user account and group (e.g., git orgituser) are usually created. All repositories
are group owned by this user and typically live in some filespace (e.g., /git, /opt/git,
or /var/git) set aside for this purpose. Here’s the key: that directory must be owned by
your gituser group, be writable by that group, and it must have the sticky group bit set.

Now, when you want to create a new, hosted repository called newrepo.git on your
server, just ssh into the server and do this:

$ ssh git.my-host.example.com

$ cd /git

$ mkdir newrepo.git

$ cd newrepo.git
$ git init --shared --bare

Those last four commands can be simplified as follows:

$ git --git-dir /git/newrepo.git init --shared

Repository Publishing Advice | 243

At this point, the bare repository structure exists, but it remains empty. The important
aspect of this repository, though, is that it is now receptive to a push of initial content
from any user authorized to connect with the server.

from some client

$ cd /path/to/existing/initial/repo.git
$ git push git+ssh://git.my-host.example.com/git/newrepo.git master

The whole process of executing that git init on the server in such a way that subse-
quent pushes will work is at the heart of the Git web hosting services. That command
is essentially what happens when you click on the GitHub “New Repo” button.

Repository Structure

The Shared Repository Structure

Some VCSs use a centralized server to maintain a repository. In this model, every
developer is a client of the server, which maintains the authoritative version of the
repository. Given the server’s jurisdiction, almost every versioning operation must
contact the server to obtain or update repository information. Thus, for two developers
to share data, all information must pass through the centralized server; no direct sharing
of data between developers is possible.

With Git, in contrast, a shared, authoritative, and centralized repository is merely a
convention. Each developer still has a clone of the depot’s repository, so there’s no
need for every request or query to go to a centralized server. For instance, simple log
history queries can be made privately and offline by each developer.

One of the reasons that some operations can be performed locally is that a checkout
retrieves not just the particular version you ask for, the way most centralized VCSs
operate, but the entire history. Hence, you can reconstruct any version of a file from
the local repository.

Furthermore, nothing prevents a developer from either establishing an alternate repos-
itory and making it available on a peer-to-peer basis with other developers, or from
sharing content in the form of patches and branches.

In summary, Git’s notion of a shared, centralized repository model is purely one of
social convention and agreement.

Distributed Repository Structure

Large projects often have a highly distributed development model consisting of a cen-
tral, single, yet logically segmented repository. Although the repository still exists as
one physical unit, logical portions are relegated to different people or teams that work
largely or wholly independently.

244 | Chapter13: Repository Management

When it’s said that Git supports a distributed repository model, this
doesn’t mean that a single repository is broken up into separate pieces
%s' and spread around many hosts. Instead, the distributed repository is
" just a consequence of Git’s distributed development model. Each
developer has her own repository that is complete and self-contained.
Each developer and her respective repository might be spread out and
distributed around the network.

How the repository is partitioned or allocated to different maintainers is largely
immaterial to Git. The repositories might have a deeply nested directory structure or
they might be more broadly structured. For example, different development teams
might be responsible for certain portions of a code base along submodule, library, or
functional lines. Each team might raise a champion to be the maintainer, or steward,
of its portion of the code base, and agree as a team to route all changes through this
appointed maintainer.

The structure may even evolve over time as different people or groups become involved
in the project. Furthermore, a team could likely form intermediate repositories that
contain combinations of other repositories, with or without further development.
There may be specific stable or release repositories, for instance, each with an attendant
development team and a maintainer.

It may be a good idea to allow the large-scale repository iteration and dataflow to grow
naturally and according to peer review and suggestion rather than impose a possibly
artificial layout in advance. Git is flexible, so if development in one layout or flow
doesn’t seem to work, it is quite easy to change it to a better one.

How the repositories of a large project are organized, or how they coalesce and com-
bine, is again largely immaterial to the workings of Git; Git supports any number of
organizational models. Remember that the repository structure is not absolute. More-
over, the connection between any two repositories is not prescribed. Git repositories
are peers.

So how is a repository structure maintained over time if no technical measures enforce
the structure? In effect, the structure is a web of trust for the acceptance of changes.
Repository organization and dataflow between repositories is guided by social or
political agreements.

The question is, “Will the maintainer of a target repository allow your changes to be
accepted?” Conversely, do you have enough trust in the source repository’s data to
fetch it into your own repository?

Repository Structure | 245

Repository Structure Examples

The Linux Kernel project is the canonical example of a highly distributed repository
and development process. In each Linux Kernel release, there are roughly 1,000 to 1,300
individual contributors from approximately 200 companies. Over the last 20 kernel
releases (2.6.24 through 3.3), the corp of developers averaged just over 10,000 commits
per release. Releases were made on an average 82-day cycle. That’s between four and
six commits per hour, every development hour, somewhere on the planet. The rate-of-
change trend is upward still.1

Although Linus Torvalds does maintain an official repository at the top of the heap
that most people consider authoritative, there are still many, many derived second-tier
repositories in use. For example, many of the Linux distribution vendors take Linus’s
official tagged release, test it, apply bug fixes, tweak it for their distribution, and publish
it as their official release. (With any luck, bug fixes are sent back and applied to Linus’s
Linux repository so that all may benefit.)

During a kernel development cycle, hundreds of repositories are published and mod-
erated by hundreds of maintainers and used by thousands of developers to gather
changes for the release. The main kernel website, http://kernel.org/, alone publishes
about 500 Linux Kernel-related repositories with roughly 150 individual maintainers.

There are certainly thousands, perhaps tens of thousands, of clones of these repositories
around the world that form the basis of individual contributor patches or uses.

Short of some fancy snapshot technology and some statistical analysis, there isn’t really
a good way to tell how all these repositories interconnect. It is safe to say it is a mesh,
or network, that is not strictly hierarchical at all.

Curiously, though, there is a sociological drive to get patches and changes into Linus’s
repository, thus effectively treating it like it is the top of the heap! If Linus himself had
to accept each and every patch or change one at a time into his repository, there would
simply be no way he could keep up. Linus, it is rumored, just doesn’t scale up well.
Remember, changes are collectively going into his tree at a rate of about one every 10
to 15 minutes throughout a release’s entire development cycle.

It is only through the maintainers—who moderate, collect, and apply patches to sub-
repositories—that Linus can keep up at all. It is as if the maintainers create a pyramid-
like structure of repositories that funnel patches toward Linus’s conventional master
repository.

In fact, below the maintainers but still near the top of the Linux repository structure
are many sub-maintainers and individual developers who act in the role of maintainer

1. Kernel statistics from the Linux Foundation Publications link http://go.linuxfoundation.org/who-
writes-1linux-2012 for the Linux Foundation report by Jonathan Corbet, et al., titled “Linux Kernel
Development.”

246 | Chapter13: Repository Management

and developer peer as well. The Linux Kernel effort is a large, multilayered mesh of
cooperating people and repositories.

The point isn’t that this is a phenomenally large code base that exceeds the grasp of a
few individuals or teams. The point is that those many teams are scattered around the
world and yet manage to coordinate, develop, and merge a common code base toward
a fairly consistent long-term goal, all using Git’s facilities for distributed development.

At the other end of the spectrum, Freedesktop.org development is done entirely using
a shared, centralized repository model powered by Git. In this development model,
each developer is trusted to push changes straight into a repository, as found on
git.freedesktop.org.

The X.org project itself has roughly 350 X-related repositories available on gitweb. free
desktop.org, with hundreds more for individual users. The majority of the X-related
repositories are various submodules from the entire X project, representing a functional
breakdown of applications, X servers, different fonts, and so on.

Individual developers are also encouraged to create branches for features that are not
ready for a general release. These branches allow the changes (or proposed changes) to
be made available for other developers to use, test, and improve. Eventually, when the
new feature branches are ready for general use, they are merged into their respective
mainline development branches.

A development model that allows individual developers to directly push changes into
arepository runs some risk, though. Without any formal review process prior to a push,
it is possible for bad changes to be quietly introduced into a repository and to go
unnoticed for quite some time.

Mind you, there is no real fear of losing data or of being unable to recover a good state
again because the complete repository history is still available. The issue is that it would
take time to discover the problem and correct it.

As Keith Packard wrote:?

We are slowly teaching people to post patches to the xorg mailing list for review, which
happens sometimes. And, sometimes we just back stuff out. Git is robust enough that
we never fear losing data, but the state of the top of the tree isn’t always ideal.

It’s worked far better than using CVS in the same way....

2. Private email, March 23, 2008.

Repository Structure | 247

Living with Distributed Development

Changing Public History

Once you have published a repository from which others might make a clone, you
should consider it static and refrain from rewriting the history of any branch. Although
this is not an absolute guideline, avoiding rewinds and alterations of published history
simplifies the life of anyone who clones your repository.

Let’s say you publish a repository that has a branch with commits A, B, C, and D. Anyone
who clones your repository gets those commits. Suppose Alice clones your repository
and heads off to do some development based on your branch.

In the meantime you decide, for whatever reason, to fix something in commit C. Com-
mits A and B remain the same, but starting with commit C, the branch’s notion of commit
history changes. You could slightly alter C or make some totally new commit, X. In either
case, republishing the repository leaves the commits A and B as they were but will now
offer, say, X and then Y instead of C and D.

Alice’swork is now greatly affected. Alice cannot send you patches, make a pull request,
or push her changes to your repository because her development is based on commitD.

Patches won’t apply because they’re based on commit D. Suppose Alice issues a pull
request and you attempt to pull her changes; you may be able to fetch them into your
repository (depending on your tracking branches for Alice’s remote repository), but
the merges will almost certainly have conflicts. The failure of this push is due to a non—
fast-forward push problem.

In short, the basis for Alice’s development has been altered. You have pulled the commit
rug out from underneath her development feet.

The situation is not irrecoverable, though. Git can help Alice, especially if she uses the
git rebase --ontocommand to relocate her changes onto your new branch after fetch-
ing the new branch into her repository.

Also, there are times when it is appropriate to have a branch with a dynamic history.
For example, within the Git repository itself there is a so-called proposed updates
branch, pu, which is specifically labeled and advertised as being rewound, rebased, or
rewritten frequently. You, as a cloner, are welcome to use that branch as the basis for
your development, but you must remain conscious of the branch’s purpose and take
special effort to use it effectively.

So why would anyone publish a branch with a dynamic commit history? One common
reason is specifically to alert other developers about possible and fast-changing direc-
tions some other branch might take. You can also create such a branch for the sole
purpose of making available, even temporarily, a published changeset that other
developers can use.

248 | Chapter13: Repository Management

Download from Wow! eBook <www.wowebook.com>

Separate Commit and Publish Steps

One of the clear advantages of a distributed VCS is the separation of commit and pub-
lish. A commit just saves a state in your private repository; publishing through patches
or push/pull makes the change public, which effectively freezes the repository history.
Other VCSs, such as CVS or SVN, have no such conceptual separation. To make a
commit, you must publish it simultaneously.

By making commit and publish separate steps, a developer is much more likely to make
precise, mindful, small, and logical steps with patches. Indeed, any number of small
changes can be made without affecting any other repository or developer. The commit
operation is offline in the sense that it requires no network access to record positive,
forward steps within your own repository.

Git also provides mechanisms for refining and improving commits into nice, clean
sequences prior to making them public. Once you are ready, the commits can be made
public in a separate operation.

No One True History

Development projects within a distributed environment have a few quirks that might
not be obvious at first. And although these quirks might initially be confusing and their
treatment often differs from other nondistributed VCSs, Git handles them in a clear
and logical manner.

As development takes place in parallel among different developers of a project, each
has created what he believes to be the correct history of commits. As a result, there is
my repository and my commit history, your repository and your commit history, and
possibly several others being developed, simultaneously or otherwise.

Each developer has a unique notion of history, and each history is correct. There is no
one true history. You cannot point to one and say: “This is the real history.”

Presumably, the different development histories have formed for a reason, and ulti-
mately the various repositories and different commit histories will be merged into one
common repository. After all, the intent is likely to be advancement toward a common
goal.

When various branches from the different repositories are merged, all of the variations
are present. The merged result states, effectively, “The merged history is better than
any one independently.”

Git expresses this history ambivalence toward branch variations when it traverses the
commit DAG. So if Git, when trying to linearize the commit sequence, reaches a merge
commit, then it must select one branch or the other first. What criteria would it use to
favor or select one branch over another? The spelling of the author’s last name? Perhaps
the time stamp of a commit? That might be useful.

Living with Distributed Development | 249

Even if you decide to use time stamps and agree to use Coordinated Universal Time
(UTC) and extremely precise values, it doesn’t help. Even that recipe turns out to be
completely unreliable! (The clocks on a developer’s computer can be wrong either
intentionally or accidentally.)

Fundamentally, Git doesn’t care what came first. The only real, reliable relationship
that can be established between commits is the direct parent relationship recorded in
the commit objects. At best, the time stamps offer a secondary clue, usually accompa-
nied by various heuristics to allow for errors such as unset clocks.

In short, neither time nor space operates in well-defined ways, so Git must allow for
the effects of quantum physics.

Git as Peer-to-Peer Backup

Linus Torvalds once said, “Only wimps use tape backup: real men just upload their
important stuff on ftp, and let the rest of the world mirror it.” The process of uploading
files to the Internet and letting individuals make a copy was how the source code for
the Linux kernel was “backed up” for years. And it worked!

In some ways, Git is just an extension of the same concept. Nowadays, when you
download the source code to the Linux Kernel using Git, you’re downloading not just
the latest version but the entire history leading up to that version, making Linus’s
backups better than ever.

This concept has been leveraged by projects that allow system administrators to manage
their /etc configuration directories with Git and even allow users to manage and back
up their home directories. Remember, just because you use Git doesn’t mean you are
required to share your repositories; it does, however, make it easy to “version control”
your repositories right onto your Network Attached Storage (NAS) box for a back-up

copy.

Knowing Your Place

When participating in a distributed development project, it is important to know how
you, your repository, and your development efforts fit into the larger picture. Besides
the obvious potential for development efforts in different directions and the require-
ment for basic coordination, the mechanics of how you use Git and its features can
greatly affect how smoothly your efforts align with other developers working on the
project.

These issues can be especially problematic in a large-scale distributed development
effort, as is often found in open source projects. By identifying your role in the overall
effort and understanding who the consumers and producers of changes are, many of
the issues can be easily managed.

250 | Chapter13: Repository Management

Upstream and Downstream Flows

There isn’t a strict relationship between two repositories that have been cloned one
from the other. However, it’s common to refer to the parent repository as being “up-
stream” from the new, cloned repository. Reflexively, the new, cloned repository is
often described as being “downstream” from the original parent repository.

Furthermore, the upstream relationship extends “up” from the parent repository to any
repository from which it might have been cloned. It also extends “down” past your
repository to any that might be cloned from yours.

However, it is important to recognize that this notion of upstream and downstream is
not directly related to the clone operation. Git supports a fully arbitrary network
between repositories. New remote connections can be added and your original clone
remote can be removed to create arbitrary new relationships between repositories.

If there is any established hierarchy, it is purely one of convention. Bob agrees to send
his changes to you; in turn, you agree to send your changes on to someone further
upstream; and so forth.

The important aspect of the repository relationship is how data is exchanged between
them. Thatis, any repository to which you send changes is usually considered upstream
of you. Similarly, any repository that relies on yours for its basis is usually considered
downstream of yours.

It’s purely subjective but conventional. Git itself doesn’t care and doesn’t track the
stream notion in any way. Upstream and downstream simply help us visualize where
patches are going.

Of course, it’s possible for repositories to be true peers. If two developers exchange
patches or push and fetch from each other’s repositories, then neither is really upstream
or downstream from the other.

The Maintainer and Developer Roles

Two common roles are the maintainer and the developer. The maintainer serves pri-
marily as an integrator or moderator, and the developer primarily generates changes.
The maintainer gathers and coordinates the changes from multiple developers and
ensures that all are acceptable with respect to some standard. In turn, the maintainer
makes the whole set of updates available again. That is, the maintainer is also the
publisher.

The maintainer’s goal should be to collect, moderate, accept or reject changes, and then
ultimately publish branches that project developers can use. To ensure a smooth
development model, maintainers should not alter a branch once it has been published.
In turn, a maintainer expects to receive changes from developers that are relevant and
that apply to published branches.

Knowing Your Place | 251

A developer’s goal, beyond improving the project, is to get her changes accepted by the
maintainer. After all, changes kept in a private repository do no one else any good. The
changes need to be accepted by the maintainer and made available for others to use
and exploit. Developers need to base their work on the published branches in the
repositories that the maintainer offers.

In the context of a derived clone repository, the maintainer is usually considered to be
upstream from developers.

Because Git is fully symmetric, there is nothing to prevent a developer from considering
herself a maintainer for other developers further downstream. But she must now
understand that she is in the middle of both an upstream and a downstream dataflow
and must adhere to the maintainer and developer contract (see the next section) in this
dual role.

Because this dual or mixed-mode role is possible, upstream and downstream is not
strictly correlated to being a producer or consumer. You can produce changes with the
intent of them going either upstream or downstream.

Maintainer—Developer Interaction

The relationship between a maintainer and a developer is often loose and ill-defined,
but there is an implied contract between them. The maintainer publishes branches for
the developer to use as her basis. Once published, though, the maintainer has an
unspoken obligation not to change the published branches because this would disturb
the basis upon which development takes place.

In the opposite direction, the developer, by using the published branches as her basis,
ensures that when her changes are sent to the maintainer for integration they apply
cleanly without problems, issues, or conflicts.

It may seem as if this makes for an exclusive, lock-step process. Once published, the
maintainer can’t do anything until the developer sends in changes. And then, after the
maintainer applies updates from one developer, the branch will necessarily have
changed and thus will have violated the “won’t change the branch” contract for some
other developers. If this were true then truly distributed, parallel, and independent
work could never really take place.

Thankfully, itis not that grim at all! Instead, Git is able to look back through the commit
history on the affected branches, determine the merge basis that was used as the starting
point for a developer’s changes, and apply them even though other changes from other
developers may have been incorporated by the maintainer in the meantime.

With multiple developers making independent changes and with all of them being
brought together and merged into a common repository, conflicts are still possible. It
is up to the maintainer to identify and resolve such problems. The maintainer can either

252 | Chapter13: Repository Management

resolve these conflicts directly or reject changes from a developer if they would create
conflicts.

Role Duality

There are two basic mechanisms for transferring commits between an upstream and a
downstream repository.

The first uses git push or git pull to directly transfer commits, whereas the second
uses git format-patchand git amto send and receive representations of commits. The
method that you use is primarily dictated by agreement within your development team
and, to some extent, direct access rights as discussed in Chapter 12.

Using git format-patch and git am to apply patches achieves the exact same blob and
tree object content as if the changes had been delivered via a git push or incorporated
with a git pull. However, the actual commit object will be different because the
metadata information for the commit will be different between a push or pull and a
corresponding application of a patch.

In other words, using push or pull to propagate a change from one repository to another
copies that commit exactly, whereas patching copies only the file and directory data
exactly. Furthermore, push and pull can propagate merge commits between reposito-
ries. Merge commits cannot be sent as patches.

Because it compares and operates on the tree and blob objects, Gitis able to understand
that two different commits for the same underlying change in two different repositories,
or even on different branches within the same repository, really represent the same
change. Thus, it is no problem for two different developers to apply the same patch
sent via email to two different repositories. As long as the resulting content is the same,
Git treats the repositories as having the same content.

Let’s see how these roles and dataflows combine to form a duality between upstream
and downstream producers and consumers.

Upstream Consumer

An upstream consumer is a developer upstream from you who accepts your
changes either as patch sets or as pull requests. Your patches should be rebased to
the consumer’s current branch HEAD. Your pull requests should either be directly
mergeable or already merged by you in your repository. Merging prior to the pull
ensures that conflicts are resolved correctly by you, relieving the upstream con-
sumer of that burden. This upstream consumer role could be a maintainer who
turns around and publishes what he has just consumed.

Downstream Consumer
A downstream consumer is a developer downstream from you who relies on your
repository as the basis for work. A downstream consumer wants solid, published
topic branches. You shouldn’t rebase, modify, or rewrite the history of any pub-
lished branch.

Knowing Your Place | 253

Upstream Producer/Publisher

An upstream publisher is a person upstream from you who publishes repositories
that are the basis for your work. This is likely to be a maintainer with the tacit
expectation that he will accept your changes. The upstream publisher’s role is to
collect changes and publish branches. Again, those published branches should not
have their histories altered, given that they are the basis for further downstream
development. A maintainer in this role expects developer patches to apply and
expects pull requests to merge cleanly.

Downstream Producer/Publisher

A downstream producer is a developer downstream from you who has published
changes either as a patch set or as a pull request. The goal of a downstream producer
is to have changes accepted into your repository. A downstream producer con-
sumes topic branches from you and wants those branches to remain stable, with
no history rewrites or rebases. Downstream producers should regularly fetch
updates from upstream and should also regularly merge or rebase development
topic branches to ensure they apply to the local upstream branch HEADs. A down-
stream producer can rebase her own local topic branches at any time, because it
doesn’t matter to an upstream consumer that it took several iterations for this
developer to make a good patch set that has a clean, uncomplicated history.

Working with Multiple Repositories

Your Own Workspace

As the developer of content for a project using Git, you should create your own private
copy, or clone, of a repository to do your development. This development repository
should serve as your own work area where you can make changes without fear of col-
liding with, interrupting, or otherwise interfering with another developer.

Furthermore, because each Git repository contains a complete copy of the entire
project, as well as the entire history of the project, you can feel free to treat your repos-
itory as if it is completely and solely yours. In effect, it actually is!

One benefit of this paradigm is that it allows each developer complete control within
her working directory area to make changes to any part, or even to the whole system,
without worrying about interaction with other development efforts. If you need to
change a part, you have the part and can change it in your repository without affecting
other developers. Likewise, if you later realize that your work is not useful or relevant,
then you can throw it away without affecting anyone else or any other repository.

As with any software development, this is not an endorsement to conduct wild exper-
imentation. Always consider the ramifications of your changes, because ultimately you
may need to merge your changes into the master repository. It will then be time to pay
the piper, and any arbitrary changes may come back to haunt you.

254 | Chapter13: Repository Management

Where to Start Your Repository

Faced with a wealth of repositories that ultimately contribute to one project, it may
seem difficult to determine where you should begin your development. Should your
contributions be based on the main repository directly, or perhaps on the repository
where other people are focused on some particular feature? Or maybe a stable branch
of a release repository somewhere?

Without a clear sense of how Git can access, use, and alter repositories, you may be
caught in some form of the “can’t get started for fear of picking the wrong starting
point” dilemma. Or perhaps you have already started your development in a clone
based on some repository you picked but now realize that it isn’t the right one. Sure,
it’s related to the project and may even be a good starting point, but maybe there is
some missing feature found in a different repository. It may even be hard to tell until
well into your development cycle.

Another frequent starting point dilemma comes from a need for project features that
are being actively developed in two different repositories. Neither of them is, by itself,
the correct clone basis for your work.

You could just forge ahead with the expectation that your work and the work in the
various repositories will all be unified and merged into one master repository. You are
certainly welcome to do so, of course. But remember that part of the gain from a dis-
tributed development environment is the ability to do concurrent development. Take
advantage of the fact that the other published repositories with early versions of their
work are available.

Another pitfall comes if you start with a repository that is at the cutting edge of devel-
opment and find that it is too unstable to support your work, or that it is abandoned
in the middle of your work.

Fortunately, Git supports a model where you can essentially pick any arbitrary repos-
itory from a project as your starting point, even if it is not the perfect one, and then
convert, mutate, or augment that repository until it does contain all the right features.

If you later wanted to separate your changes back out to different respective upstream
repositories, you may have to make judicious and meticulous use of separate topic
branches and merges to keep it all straight.

On the one hand, you can fetch branches from multiple remote repositories and com-
bine them into your own, yielding the right mix of features that are available elsewhere
in existing repositories. On the other hand, you can reset the starting point in
your repository back to a known stable point earlier in the history of the project’s
development.

Working with Multiple Repositories | 255

Converting to a Different Upstream Repository

The first and simplest kind of repository mixing and matching is to switch the basis
(usually called the clone origin) repository, the one you regard as your origin and with
which you synchronize regularly.

For example, suppose you need to work on feature F and you decide to clone your
repository from the mainline, M, as shown in Figure 13-1.

Figure 13-1. Simple clone to develop feature F

You work for a while before learning that there is a better starting point closer to what
you would really like, but it is in repository P. One reason you might want to make this
sort of change is to gain functionality or feature support that is already in repository P.

Another reason stems from longer term planning. Eventually, the time will come when
you need to contribute the development that you have done in repository F back to
some upstream repository. Will the maintainer of repository M accept your changes
directly? Perhaps not. If you are confident that the maintainer of repository P will accept
them, then you should arrange for your patches to be readily applicable to that repos-
itory instead.

Presumably, P was once cloned from M, or vice versa, as shown in Figure 13-2. Ulti-
mately, P and M are based on the same repository for the same project at some point in
the past.

(W)

Figure 13-2. Two clones of one repository

The question often asked is whether repository F, originally based on M, can now be
converted so that it is based on repository P, as shown in Figure 13-3. This is easy to

256 | Chapter13: Repository Management

(®)
(®)
()

Figure 13-3. Feature F restructured for repository P

do using Git, because it supports a peer-to-peer relationship between repositories and
provides the ability to readily rebase branches.

As a practical example, the kernel development for a particular architecture could be
done right off of the mainline Linus Kernel repository. But Linus won’t take it. If you
started working on, say, PowerPC®3 changes and did not know that, then you would
likely have a difficult time getting your changes accepted.

However, the PowerPC architecture is currently maintained by Ben Herrenschmidt; he
is responsible for collecting all PowerPC-specific changes and in turn sending them
upstream to Linus. To get your changes into the mainline repository, you must go
through Ben’s repository first. You should therefore arrange to have your patches be
directly applicable to his repository instead, and it’s never too late to do that.

In a sense, Git knows how to make up the difference from one repository to the next.
Part of the peer-to-peer protocol to fetch branches from another repository is an
exchange of information stating what changes each repository has or is missing. As a
result, Git is able to fetch just the missing or new changes and bring them into your
repository.

Git is also able to review the history of the branches and determine where the common
ancestors from the different branches are, even if they are brought in from different
repositories. If they have a common commit ancestor, then Git can find it and construct
a large, unified view of the commit history with all the repository changes represented.

Using Multiple Upstream Repositories

As another example, suppose that the general repository structure looks like Fig-
ure 13-4. Here, some mainline repository, M, will ultimately collect all the development
for two different features from repositories F1 and F2.

However, you need to develop some super feature, S, that involves using aspects of
features found in only F1 and F2. You could wait until F1 is merged into M and then wait
for F2 to also be merged into M. That way, you will then have a repository with the

3. PowerPC® is a trademark of International Business Machines Corporation in the United States, other
countries, or both.

Working with Multiple Repositories | 257

®) ©

Figure 13-4. Two feature repositories

correct, total basis for your work. But unless the project strictly enforces some project
life cycle that requires merges at known intervals, there is no telling how long this
process might take.

You might start your repository, S, based off of the features found in F1 or, alternatively,
off of F2 (see Figure 13-5). However, with Git it is possible to instead construct a repos-
itory, S, that has both F1 and F2 in it; this is shown in Figure 13-6.

(W) o (W)

®) ® @ ©

Figure 13-5. Possible starting repositories for S

In these pictures, it is unclear whether repository S is composed of the entirety of F1
and F2 or just some part of each. In fact, Git supports both scenarios. Suppose repository
F2 has branches F2A and F2B with features A and B, respectively, as shown in Fig-
ure 13-7. If your development needs feature A, but not B, then you can selectively fetch
just that F2A branch into your repository S along with whatever part of F1 is also needed.

Again, the structure of the Linux Kernel exhibits this property. Let’s say you’re working
on a new network driver for a new PowerPC board. You will likely have architecture-
specific changes for the board that will need code in the PowerPC repository maintained
by Ben. Furthermore, you will likely need to use the Networking Development “netdev”
repository maintained by Jeff Garzik. Git will readily fetch and make a union repository

258 | Chapter13: Repository Management

Figure 13-6. Combined starting repository for S

Figure 13-7. Two feature branches in F2

with branches from both Ben’s and Jeff’s branches. With both basis branches in your
repository, you will then be able to merge them and develop them further.

Forking Projects

Anytime you clone a repository, the action can be viewed as forking the project. Forking
is functionally equivalent to “branching” in some other VCSs, but Git has a separate
concept called “branching,” so don’t call it that. Unlike a branch, a Git fork doesn’t
exactly have a name. Instead, you simply refer to it by the filesystem directory (or remote
server, or URL) into which you cloned.

The term “fork” comes from the idea that when you create a fork, you create two
simultaneous paths that the development will follow. It’s like a fork in the road of

Working with Multiple Repositories | 259

development. As you might imagine, the term “branch” is based on a similar analogy
involving trees. There’s no inherent difference between the “branching” and “forking”
metaphors—the terms simply capture two intents. Conceptually, the difference is that
branching usually occurs within a single repository, whereas forking usually occurs at
the whole repository level.

Although you can fork a project readily with Git, doing so may be more of a social or
political choice than a technical one. For public or open source projects, having access
to a copy or clone of the entire repository, complete with its history, is both an enabler
of and a deterrent to forking.

W

. GitHub.com, an online Git hosting service, takes this idea to the logical
"‘:\ extreme: everybody’s version is considered a fork, and all the forks are
T Usy shown together in the same place.

Isnt forking a project bad?

Historically, forking a project was often motivated by perceptions of a power grab, a
reluctance to cooperate, or the abandonment of a project. A difficult person at the hub
of a centralized project can effectively grind things to a halt. A schism may develop
between those “in charge” of a project and those who are not. Often, the only perceived
solution is to effectively fork a new project. In such a scenario, it may be difficult to
obtain a copy of the history of the project and start over.

Forking is the traditional term for what happens when one developer of an open source
project becomes unhappy with the main development effort, takes a copy of the source
code, and starts maintaining his own version.

Forking, in this sense, has traditionally been considered a negative thing; it means the
unhappy developer couldn’t find a way to get what he wanted from the main project.
So he goes off and tries to do it better by himself, but now there are two projects that
are almost the same. Obviously neither one is good enough for everybody, or one of
them would be abandoned. So most open source projects make heroic efforts to
avoid forking.

Forking may or may not be bad. On the one hand, perhaps an alternate view and new
leadership is exactly what is needed to revitalize a project. On the other hand, it may
simply contribute to strife and confusion on a development effort.

Reconciling forks

In contrast, Git tries to remove the stigma of forking. The real problem with forking a
project is not the creation of an alternate development path. Every time a developer
downloads or clones a copy of a project and starts hacking on it, she has created an
alternative development path, if only temporarily.

260 | Chapter13: Repository Management

In his work on the Linux Kernel, Linus Torvalds eventually realized that forking is only
a problem if the forks don’t eventually merge back together. Thus, he designed Git to
look at forking totally differently: Git encourages forking. But Git also makes it easy for
anyone to merge two forks whenever they want.

Technically, reconciling a forked project with Git is facilitated by its support for large-
scale fetching and importing one repository into another and for extremely easy branch
merging.

Although many social issues may remain, fully distributed repositories seem to reduce
tensions by lessening the perceived importance of the person at the center of a project.
Because an ambitious developer can easily inherit a project and its complete history,
he may feel it is enough to know that, if needed, the person at the center could be
replaced and development could still continue!

Forking projects at GitHub

Many people in the software community have a dislike for the phrase “forking.” But if
we investigate whys, it is because it usually results in infinitely diverging copies of the
software. Our focus should not be on the dislike for the concept of forks, but rather on
the quantity of divergence before bringing the two lines of code back together again.

Forking at GitHub typically has a far more positive connotation. Much of the site is
built around the premise of short-lived forks. Any drive-by developer can make a copy
(fork) of a public repository, make code changes she thinks are appropriate, and then
offer them back to the core project owner.

The forks offered back to the core project are called “pull requests.” Pull requests afford
a visibility to forks and facilitate smart management of these diverging branches. A
conversation can be attached to a pull request, thus providing context as to why a
request was accepted or returned to sender for additional polish.

Well-maintained projects have the attribute of a frequently maintained pull request
queue. Project contributors should process through the pull request queue, either ac-
cepting, commenting on, or rejecting all pull requests. This signals a level of care about
and active maintenance of the code base and the greater community surrounding the
project.

Although GitHub has been intentionally designed to facilitate a good use of forks, it
cannot inherently enforce good behavior. The negative form of forking—hostile wran-
gling of the code base in an isolationist direction—is still possible on GitHub. However,
there is a notably low volume of this misbehavior. It can be attributed in large part to
the visibility of forks and their potential divergence from the primary code base in the
network commit graph.

Working with Multiple Repositories | 261

<WO02"00GOMOM MMM > H00gD jMOA\ WOJJ PROJUMOQ

CHAPTER 14
Patches

Designed as a peer-to-peer VCS, Git allows development work to be transferred directly
and immediately from one repository to another using both a push and a pull model.

Git implements its own transfer protocol to exchange data between repositories. For
efficiency (to save time and space), Git’s transfer protocol performs a small handshake,
determines what commits in the source repository are missing from the target, and
finally transfers a binary, compressed form of the commits. The receiving repository
incorporates the new commits into its local history, augments its commit graph, and
updates its branches and tags as needed.

Chapter 12 mentioned that HTTP can also be used to exchange development between
repositories. HTTP is not nearly as efficient as Git’s native protocol, but it is just as
capable of moving commits to and fro. Both protocols ensure that a transferred commit
remains identical in both source and destination repositories.

However, the Git-native and HTTP protocols aren’t the only mechanisms for exchang-
ing commits and keeping distributed repositories synchronized. In fact, there are times
when using these protocols is infeasible. Drawing on tried-and-true methods from an
earlier Unix development era, Git also supports a “patch and apply” operation, where
the data exchange typically occurs via email.

Git implements three specific commands to facilitate the exchange of a patch:

* git format-patch generates a patch in email form

* git send-email sends a Git patch through an Simple Mail Transfer Protocol
(SMTP) feed

* git amapplies a patch found in an email message

The basic use scenario is fairly simple. You and one or more developers start with a
clone of a common repository and begin collaborative development. You do some
work, make a few commits to your copy of the repository, and eventually decide it’s
time to convey your changes to your partners. You choose the commits you would like

263

to share and choose with whom to share the work. Because the patches are sent via
email, each intended recipient can elect to apply none, some, or all of the patches.

This chapter explains when you might want to use patches and demonstrates how to
generate, send, and (if you’re a recipient) apply a patch.

Why Use Patches?

Although the Git protocol is much more efficient, there are at least two compelling
reasons to undertake the extra effort required by patches: one is technical and the other
is sociological.

* In some situations, neither the Git native protocol nor the HTTP protocol can be

used to exchange data between repositories in either a push or a pull direction or
both.

For example, a corporate firewall may forbid opening a connection to an external
server using Git’s protocol or port. Additionally, SSH may not be an option. More-
over, even if HTTP is permitted, which is common, you could download reposi-
tories and fetch updates but you may not be able to push changes back out. In
situations like this, email is the perfect medium for communicating patches.

* One of the great advantages of the peer-to-peer development model is collabora-
tion. Patches, especially those sent to a public mailing list, are a means of openly
distributing proposed changes for peer review.

Prior to permanently applying the patches to a repository, other developers can
discuss, critique, rework, test, and either approve or veto posted patches. Because
the patches represent precise changes, acceptable patches can be directly applied
to a repository.

Even if your development environment allows you the convenience of a direct push
or pull exchange, you may still want to employ a “patch email review apply”
paradigm to gain the benefits of peer review.

You might even consider a project development policy whereby each developer’s
changes must be peer reviewed as patches on a mailing list prior to directly merging
them via git pull or git push. All the benefits of peer review together with the
ease of pulling changes directly!

And there are still other reasons to use patches.

In much the same way that you might cherry-pick a commit from one of your own
branches and apply it to another branch, using patches allows you to selectively choose
commits from another developer’s repository without having to fully fetch and merge
everything from that repository.

Of course, you could ask the other developer to place the desired commits on a separate
branch and then fetch and merge that branch alone, or you could fetch his whole

264 | Chapter14: Patches

repository and then cherry-pick the desired commits out of the tracking branches. But
you might have some reason for not wanting to fetch the repository, too.

If you want an occasional or explicit commit—say, an individual bug fix or a particular
feature—then applying the attendant patch may be the most direct way to get that
specific improvement.

Generating Patches

The git format-patch command generates a patch in the form of an email message. It
creates one piece of email for each commit you specify. You can specify the commits
using any technique discussed in “Identifying Commits” on page 67 of Chapter 6.

Common use cases include:

* A specified number of commits, such as -2
* A commit range, such as master~4..master~2
* A single commit, often the name of a branch, such as origin/master

Although the Git diff machinery lies at the heart of the git format-patch command, it
differs from git diff in two key ways:

* Whereas git diff generates one patch with the combined differences of all the
selected commits, git format-patch generates one email message for each selected
commit.

* git diff doesn’t generate email headers. In addition to the actual diff content,
git format-patch generates an email message complete with headers that list the
commit author, the commit date, and the commit log message associated with the
change.

W

git format-patchand git log should seem very similar. As an interest-
ing experiment, compare the output of the following two commands:
NN git format-patch -1and git log -p -1 --pretty=email.

Let’s start with a fairly simple example. Suppose you have a repository with just one
file in it named file. Furthermore, the content of that file is a series of single capitalized
letters, A through D. Each letter was introduced into the file, one line at a time, and

committed using a log message corresponding to that letter.
$ git init
$ echo A > file
$ git add file
$ git commit -mA
$ echo B »> file ; git commit -mB file
$ echo C »> file ; git commit -mC file
$ echo D »> file ; git commit -mD file

Generating Patches | 265

Thus, the commit history now has four commits.

$ git show-branch --more=4 master
[master] D

[master”] C

[master~2] B

[master~3] A

The easiest way to generate patches for the most recent n commits is to use a -n option
like this:

$ git format-patch -1
0001-D.patch

$ git format-patch -2
0001-C.patch
0002-D.patch

$ git format-patch -3
0001-B.patch
0002-C.patch
0003-D.patch

By default, Git generates each patch in its own file with a sequentially numbered name
derived from the commit log message. The command outputs the file names as it
executes.

You can also specify which commits to format as patches by using a commit range.
Suppose you expect other developers to have repositories based on commit B of your
repository, and suppose you want to patch their repositories with all the changes you
made between B and D.

Based on the previous output of git show-branch, you can see that B has the version
name master~2 and thatD has the version name master. Specify these names as a commit
range in the git format-patch command.

Although you’re including three commits in the range (B, C, and D), you end up with
two email messages representing two commits: the first contains the diffs between B
and C; the second contains the diffs between C and D. See Figure 14-1.

Here is the output of the command:

$ git format-patch master~2..master
0001-C.patch
0002-D.patch

Each file is a single email, conveniently numbered in the order that it should be sub-
sequently applied. Here is the first patch:

$ cat 0001-C.patch

From 69003494a4e72b1ac98935fbb90ecca67677f63b Mon Sep 17 00:00:00 2001
From: Jon Loeliger <jdl@example.com>

Date: Sun, 28 Dec 2008 12:10:35 -0600

Subject: [PATCH] C

266 | Chapter14: Patches

Revision master~2 master~1 master

w @ @ ®

Diff diff between diff between
Band(C Cand D
Patch 0001-C.patch 0002-D.patch

Figure 14-1. git format-patch with a commit range

file | 1+
1 files changed, 1 insertions(+), 0 deletions(-)

diff --git a/file b/file
index 35d242b..b1e6722 100644
--- a/file

+++ b/file

00 -1,2 +1,3 @@

A

B
+C

1.6.0.90.g436ed

And here is the second:

$ cat 0002-D.patch

From 73ac30e21dfiebefd3bibca53c5e7a08a5ef9e6f Mon Sep 17 00:00:00 2001
From: Jon Loeliger <jdl@examplel.com>

Date: Sun, 28 Dec 2008 12:10:42 -0600

Subject: [PATCH] D

file | 1+
1 files changed, 1 insertions(+), 0 deletions(-)

diff --git a/file b/file
index b1e6722..8422d40 100644
--- a/file

+++ b/file

0@ -1,3 +1,4 @@

A

B
C
+D

1.6.0.90.g436ed

Generating Patches | 267

Let’s continue the example and make it more complex by adding another branch named
alt based on commit B.

While the master developer added individual commits with the lines C and D to the
master branch, the alt developer added the commits (and lines) X, Y, and Z to her
branch.

Create branch alt at commit B
$ git checkout -b alt e587667

$ echo X >> file ; git commit -mX file
$ echo Y >> file ; git commit -mY file
$ echo Z »>> file ; git commit -mZ file

The commit graph looks like Figure 14-2.

O-@Q-O®
H-D-@ =

Figure 14-2. Patch graph with alt branch

You can draw an ASCII graph with all your refs using option --all, like
this:

$ git log --graph --pretty=oneline --abbrev-commit --all
* 62eb555... Z
* 204a725... Y

* d3b424b... X

| * 73ac30e... D
| * 6900349... C
|/

* e587667... B
* 2702377... A

Suppose further that the master developer merged the alt branch at commit Z into
master at commit D to form the merge commit E. Finally, he made one more change
that added F to the master branch.

$ git checkout master
$ git merge alt

Resolve the conflicts however you'd like
I used the sequence: A, B, C, D, X, Y, Z

$ git add file
$ git commit -m'All lines'
Created commit a918485: All lines

$ echo F »>> file ; git commit -mF file

268 | Chapter14: Patches

Created commit 3a43046: F
1 files changed, 1 insertions(+), 0 deletions(-)

The commit graph now looks like Figure 14-3.

o000 O
02020 .

Figure 14-3. History of two branches

A display of the commit branch history looks like this:

$ git show-branch --more=10
I [alt] z
* [master] F

* [master] F

alt] z
alt™] Y
alt~2] X
master~2] D
master~3] C
master~4] B
master~5] A

— e ——

Patching can be surprisingly flexible when you have a complicated revision tree. Let’s
take a look.

You must be careful when specifying a commit range, especially when it covers a merge.
In the current example, you might expect that the range D..F would cover the two
commits for E and F, and it does. But the commit E contains all the content merged into
it from all its merged branches.

Format patches D..F

$ git format-patch master~2..master

0001-X.patch

0002-Y.patch

0003-Z.patch
0004-F.patch

Remember, a commit range is defined to include all commits leading up to the range
end point but to exclude all commits that lead up to and including the range starting
point state. In the case of D. .F this means that all the commits contributing to F (every
commit in the example graph) are included but, all the commits leading up to and
including D (A, B, C, and D) are eliminated. The merge commit itself won’t generate a
patch.

Generating Patches | 269

Detailed Range Resolution Example

To figure out a range, follow these steps. Start at the end point commit and include it.
Work backwards along every parent commit that contributes to it, and include those.
Recursively include the parent of every commit that you have included so far. When
you are done including all the commits that contribute to the end point, go back and
start with the start point. Remove the start point. Work back over every parent commit
that contributes to the start point and remove those, too. Recursively remove every
parent commit that you have removed so far.

With the case of our D..F range, start with F and include it. Back up to the parent
commit, E, and include it. Then look at E and include its parents, D and Z. Now recur-
sively include the parents of D, giving C and then B and A. Down the Z line, recursively
include Y and X and then B again, and finally A again. (Technically, Band Aaren’tincluded
again; the recursion can stop when it sees an already included node.) Effectively all
commits are now included. Now go back and start with the start point D, and remove
it. Remove its parent, C, and recursively its parent, B, and its parent, A.

You should be left with the set F E Z Y X. But E is a merge; so remove it, leaving F Z Y
X, which is exactly the reverse of the generated set.

Issuegit rev-list --no-merges -vsince..until to verify the set of com-
mits for which patches will be generated before you actually create your

You can also reference a single commit as a variation of the git format-patch commit
range. However, Git’s interpretation of such as a command is slightly nonintuitive.

Git normally interprets a single commit argument as “all commits that lead up to and
contribute to the given commit.” In contrast, git format-patch treats a single commit
parameter as if you had specified the range commit..HEAD. It uses your commit as the
starting point and takes HEAD as the end point. Thus, the patch series generated is
implicitly in the context of the current branch checked out.

In our ongoing example, when the master branch is checked out and a patch is made
specifying the commit A, all seven patches are produced:

$ git branch
alt
* master

From commit A

$ git format-patch master~s
0001-B.patch

0002-C.patch

0003-D.patch

0004-X.patch

0005-Y.patch

270 | Chapter14: Patches

0006-Z.patch
0007-F.patch

But when the alt branch is checked out and the command specifies the same A commit,
only those patches contributing to the tip of the alt branch are used:

$ git checkout alt
Switched to branch "alt"

$ git branch
* alt
master

$ git format-patch master~s
0002-B.patch
0003-X.patch
0004-Y.patch
0005-Z.patch

Even though commitAis specified, you don’tactually get a patch forit. The root commit
is somewhat special in that there isn’t a previously committed state against which a diff
can be computed. Instead, a patch for it is effectively a pure addition of all the initial
content.

If you really want to generate patches for every commit including the initial, root com-
mit, up to a named end-commit, then use the --root option like this:

$ git format-patch --root end-commit

The initial commit generates a patch as if each file in it was added based on /dev/null.

$ cat 0001-A.patch

From 27023770db3385b237631363993191844dd2ce0 Mon Sep 17 00:00:00 2001
From: Jon Loeliger <jdl@example.com>

Date: Sun, 28 Dec 2008 12:09:45 -0600

Subject: [PATCH] A

file | 1+
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 file

diff --git a/file b/file
new file mode 100644
index 0000000..f70f10e
--- /dev/null

+++ b/file

@@ -0,0 +1 @@

+A

1.6.0.90.g436ed

Generating Patches | 271

Treating a single commit as if you had specified commit. .HEAD may seem unusual, but
this approach has a valuable use in one particular situation. When you specify a
commit on a branch that’s different from the branch you currently have checked out,
the command emits patches that are in your current branch but not in the named
branch. In other words, it generates a set of patches that can bring the other branch in
sync with your current branch.

To illustrate this feature, assume you’ve checked out the master branch:

$ git branch
alt
* master

Now you specify the alt branch as the commit parameter:

$ git format-patch alt
0001-C.patch
0002-D.patch
0003-F.patch

The patches for commits C, D, and F are exactly the set of patches in the master branch,
but not in the alt branch.

The power of this command, coupled with a single commit parameter, becomes
apparent when the named commit is the HEAD ref of a tracking branch from someone
else’s repository.

For example, if you clone Alice’s repository and your master development is based on
Alice’s master, then you would have a tracking branch named something like alice/
master.

After you have made some commits on your master branch, the command
git format-patch alice/master generates the set of patches that you must send her to
ensure that her repository has at least all of your master content. She may have more
changes from other sources in her repository already, but that is not important here.
You have isolated the set from your repository (the master branch) that are known not
to be in hers.

Thus, git format-patch is specifically designed to create patches for commits that are
in your repository in a development branch that are not already present in the upstream
repository.

Patches and Topological Sorts

Patches generated by git format-patch are emitted in topological order. For a given
commit, the patches for all parent commits are generated and emitted before the patch
for this commit is emitted. This ensures that a correct ordering of patches is always
created, but a correct ordering is not necessarily unique: there may be multiple correct
orders for a given commit graph.

272 | Chapter14: Patches

Download from Wow! eBook <www.wowebook.com>

Let’s see what this means by looking at some of the possible generation orders for
patches that could ensure a correct repository if the recipient applies them in order.
Example 14-1 shows a few of the possible topological sort orders for the commits of
our example graph.

Example 14-1. Some topological sort orders

ABCDXYZEF
ABXYZCDEF
ABCXYZDEF
ABXCYZDEF

ABXCYDZETF

Remember, even though patch creation is driven by a topological sort of the selected
nodes in the commit graph, only some of those nodes will actually produce patches.

The first ordering in Example 14-1 is the ordering that Git picked for
git format-patch master~5. Because A is the first commit in the range and no --root
option was used, there isn’t a patch for it. Commit E represents a merge, so no patch
is generated for it, either. Thus, the patches are generated in the orderB C D X Y Z F.

Whatever patch sequence that Git chooses, it is important to realize that Git has pro-
duced a linearization of all the selected commits, no matter how complicated or
branched the original graph was.

If you are consistently adding headers to the patch email as generated, then you might
investigate the configuration options format.headers.

Mailing Patches

Once you have generated a patch or a series of patches, the next logical step is to send
them to another developer or to a development list for review, with an ultimate goal of
it being picked up by a developer or upstream maintainer and applied to another
repository.

The formatted patches are generally intended to be sent via email by directly importing
them into your mail user agent (MUA) or by using Git’s git send-email command. You
are not obliged to use git send-email; it is merely a convenience. As you will see in the
next section, there are also other tools that use the patch file directly.

Assuming that you want to send a generated patch file to another developer, there are
several ways to send the file: you can run git send-email, you can point your mailer
directly to the patches, or you can include the patches in an email.

Using git send-email is straightforward. In this example, the patch 0001-A.patch is
sent to a mail list called devlist@example.org:

Mailing Patches | 273

$ git send-email -to devlist@example.org 0001-A.patch

0001-A.patch

Who should the emails appear to be from? [Jon Loeliger <jdl@example.com>]
Emails will be sent from: Jon Loeliger <jdl@example.com>

Message-ID to be used as In-Reply-To for the first email?

(mbox) Adding cc: Jon Loeliger <jdl@example.com> from line \

'From: Jon Loeliger <jdl@example.com>'

OK. Log says:

Sendmail: /usr/sbin/sendmail -i devlist@example.org jdl@example.com
From: Jon Loeliger <jdl@example.com>

To: devlist@example.org

Cc: Jon Loeliger <jdl@example.com>

Subject: [PATCH] A

Date: Mon, 29 Dec 2008 16:43:46 -0600

Message-Id: <1230590626-10792-1-git-send-email-jdl@exmaple.com>
X-Mailer: git-send-email 1.6.0.90.g436ed

Result: OK

There are many options to either utilize or work around a myriad of SMTP issues or
features. What’s critical is ensuring that you know your SMTP server and port. Likely,
it is the traditional sendmail program or a valid outbound SMTP host, such as smtp.my-
isp.com.

B
)

Don’tset up SMTP open relay servers just to send your Git email. Doing
so will contribute to spam mail problems.

Thegit send-email command has many configuration options, which are documented
in its manual page.

You may find it convenient to record your special SMTP information in your global
configuration file by setting, for example, the value sendemail.smtpserver and sende
mail.smtpserverport using commands similar to this:

$ git config --global sendemail.smtpserver smtp.my-isp.com
$ git config --global sendemail.smtpserverport 465

Depending on your MUA, you may be able to directly import an entire file or directory
of patches into a mail folder. If so, this can greatly simplify sending a large or compli-
cated patch series.

Here is an example where a traditional mbox style mail folder is created using
format-patch that is then directly imported into mutt, where the message can be
addressed and sent.

$ git format-patch --stdout master~2..master > mbox
$ mutt -f mbox

q:Quit d:Del u:Undel s:Save m:Mail r:Reply g:Group ?:Help

274 | Chapter14: Patches

1 N Dec 29 Jon Loeliger (' 15) [PATCH] X
2 N Dec 29 Jon Loeliger (' 16) [PATCH] Y
3 N Dec 29 Jon Loeliger (' 16) [PATCH] Z
4 N Dec 29 Jon Loeliger (15) [PATCH] F

The latter two mechanisms, using send-email and directly importing a mail folder, are
the preferred techniques for sending email, because both are reliable and not prone to
messing with the carefully formatted patch contents. You are less likely, for example,
to hear a developer complain about a wrapped line if you use one of these techniques.

On the other hand, you may find that you need to directly include a generated patch
file into a newly composed email in a MUA such as thunderbird or evolution. In these
cases, the risk of disturbing the patch is much greater. Care should be taken to turn off
any form of HTML formatting and to send plain ASCII text that has not been allowed
to flow or word wrap in any way.

Depending on your recipient’s ability to handle mail or contingent on your develop-
ment list policies, you may or may not want to use an attachment for the patch. In
general, inlining is the simpler, more correct approach. It also facilitates an easier patch
review. However, if the patch is inlined then some of the headers generated by
git format-patch might need to be trimmed, leaving just the From: and Subject: headers
in the email body.

L)
)

If you find yourself frequently including your patches as text files in

newly composed emails and are annoyed at having to delete the super-

Y fluous headers, you might want to try the following command:

" git format-patch --pretty=format:%s%n%n%b commit. You might also
configure that as a Git global alias as described in “Configuring an
Alias” on page 30 of Chapter 3.

Regardless of how the patch mail is sent, it should look essentially identical to the
original patch file when received, albeit with more and different mail headers.

The similarity of the patch file format before and after transport through the mail system
is not an accident. The key to this operating successfully is plain text and preventing
any MUA from altering the patch format through such operations as line wrapping. If
you can preclude such interdictions, a patch will remain usable irrespective of how
many mail transfer agents (MTAs) carry the data.

B
)

Use git send-email if your MUA is prone to wrap lines on outbound
mail.

Mailing Patches | 275

There are a host of options and configuration settings to control the generation of email
headers for patches. Your project probably has some conventions that you should
follow.

If you have a series of patches, you might want to funnel them all to a common directory
with the -o directory option to git format-patch. Afterward, you can then use
git send-email directory to send them all at once. In this case, use either
git format-patch --cover-letter or git send-email --compose to write a guiding,
introductory cover letter for the entire series.

There are also options to accommodate various social aspects of most development
lists. For example, use --cc to add alternate recipients, to add or omit each Signed-off-
by: addressasaCc: recipient, or to select how a patch series should be threaded on a list.

Applying Patches

Git has two basic commands that apply patches. The higher level porcelain command,
git am, is partially implemented in terms of the plumbing command git apply.

The command git apply is the workhorse of the patch application procedure. It accepts
git diff or diff style outputs and applies it to the files in your current working direc-
tory. Though different in some key respects, it performs essentially the same role as
Larry Wall’s patch command.

Because a diff contains only line-by-line edits and no other information (such as author,
date, orlog message), it cannot perform a commit and log the change in your repository.
Thus, when git apply is finished, the files in your working directory are left modified.
(In special cases, it can use or modify the index as well.)

In contrast, the patches formatted by git format-patch, either before or after they have
been mailed, contain the extra information necessary to make and record a proper
commit in your repository. Although git amis configured to accept patches generated
by git format-patch, it is also able to handle other patches if they follow some basic
formatting guidelines.! Note that git am creates commits on the current branch.

Let’s complete the patch generation/mail/apply process example using the same repos-
itory from “Generating Patches” on page 265. One developer has constructed a com-
plete patch set, 0001-B.patch through 0007-F.patch, and has sent it or otherwise made
it available to another developer. The other developer has an early version of the repos-
itory and wants to now apply the patch set.

Let’s first look at a naive approach that exhibits common problems that are ultimately
impossible to resolve. Then we’ll examine a second approach that proves successful.

Here are the patches from the original repository:

1. By the time you adhere to the guidelines detailed in the manual page for git am (a “From:”, a “Subject:”,
a “Date:”, and a patch content delineation), you might as well call it an email message anyway.

276 | Chapter14: Patches

$ git format-patch -o /tmp/patches master~s
/tmp/patches/0001-B.patch
/tmp/patches/0002-C.patch
/tmp/patches/0003-D.patch
/tmp/patches/0004-X.patch
/tmp/patches/0005-Y.patch
/tmp/patches/0006-Z.patch
/tmp/patches/0007-F.patch

These patches could have been received by the second developer via email and stored
on disk, or they may have been placed directly in a shared file system.

Let’s construct an initial repository as the target for this series of patches. (How this
initial repository is constructed is not really important—it may well have been cloned
from the initial repository, but it needn’t have to be.) The key to long-term success is
amoment in time where both repositories are known to have the exact same file content.

Let’s reproduce that moment by creating a new repository containing the same file,
file, with the initial contents A. That is exactly the same repository content as was
present at the very beginning of the original repository.

$ mkdir /tmp/am

$ cd /tmp/am

$ git init

Initialized empty Git repository in am/.git/

$ echo A >> file
$ git add file
$ git commit -mA
Created initial commit 5108c99: A
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 file

A direct application of git am shows some problems:

$ git am /tmp/patches/*

Applying B

Applying C

Applying D

Applying X

error: patch failed: file:1

error: file: patch does not apply

Patch failed at 0004.

When you have resolved this problem run "git am --resolved".

If you would prefer to skip this patch, instead run "git am --skip".
To restore the original branch and stop patching run "git am --abort".

This is a tough failure mode and it might leave you in a bit of a quandary about how
to proceed. A good approach in this situation is to look around a bit.

$ git diff

$ git show-branch --more=10

[master] D
[master”] C

Applying Patches | 277

[master~2] B
[master~3] A

That’s pretty much as expected. No file was left dirty in your working directory, and
Git successfully applied patches up to and including D.

Often, looking at the patch itself, and the files that are affected by the patch helps clear
up the problem. Depending on what version of Git you have installed, either
the .dotest directory or the .git/rebase-apply directory is present when git am runs. It
contains various contextual information for the entire series of patches and the indi-
vidual parts (author, log message, etc.) of each patch.

Or .dotest/patch, in earlier Git releases

$ cat .git/rebase-apply/patch

file | 1+
1 files changed, 1 insertions(+), 0 deletions(-)

diff --git a/file b/file
index 35d242b..7f9826a 100644
--- a/file

+++ b/file

00 -1,2 +1,3 @@

A

B
+X

1.6.0.90.g436ed

This is a difficult spot. The file has four lines in it, but the patch applies to a version of
that same file with just two lines. As the git am command output indicated, this patch
doesn’t actually apply:

error: patch failed: file:1

error: file: patch does not apply
Patch failed at 0004.

You may know that the ultimate goal is to create a file in which all the letters are in
order, but Git is not able to figure that out automatically. There just isn’t enough con-
text to determine the right conflict resolution yet.

As with other actual file conflicts, git am offers a few suggestions:

When you have resolved this problem run "git am --resolved".
If you would prefer to skip this patch, instead run "git am --skip".
To restore the original branch and stop patching run "git am --abort".

278 | Chapter14: Patches

Unfortunately, there isn’t even a file content conflict that can be resolved and resumed
in this case.

You might think you could just skip the X patch, as suggested:
$ git am --skip
Applying Y
error: patch failed: file:1
error: file: patch does not apply
Patch failed at 0005.
When you have resolved this problem run "git am --resolved".
If you would prefer to skip this patch, instead run "git am --skip".
To restore the original branch and stop patching run "git am --abort".

But as with this Y patch, all subsequent patches fail now, too. It’s clear that the patch
series isn’t going to apply cleanly with this approach.

You can try to recover from here, but it’s tough without knowing the original branching
characteristics that led to the patch series being presented to git am. Recall that the X
commit was applied to a new branch that originated at commit B. That means the X
patch would apply correctly if it were applied again to that commit state. You can verify
this: reset the repository back to just the A commit, clean out the rebase-apply directory,
apply the Bcommitusinggit am /tmp/patches/0002-B.patch, and see that the X commit
will apply, too!
Reset back to commit A

$ git reset --hard master~3
HEAD is now at 5108c99 A

Or .dotest, as needed
$ rm -rf .git/rebase-apply/

$ git am /tmp/patches/0001-B.patch
Applying B

$ git am /tmp/patches/0004-X.patch
Applying X

Cleaning up a failed, botched, or hopeless git am and restoring the
original branch can be simplified to just git am --abort.

The success of applying the 0004-X.patch to the commit B provides a hint on how to
proceed. However, you can’t really apply patches X, Y, and Z, because then the later
patches C, D, and F would not apply. And you don’t really want to bother recreating the
exact original branch structure even temporarily. Even if you were willing to recreate
it, how would you even know what the original branch structure was?

Knowing the basis file to which a diff can be applied is a difficult problem for which
Git provides an easy technical solution. If you look closely at a patch or diff file gener-

Applying Patches | 279

ated by Git, you will see new, extra information that isn’t part of a traditional Unix
diff summary. The extra information that Git provides for the patch file 0004-
X.patch, is shown in Example 14-2.

Example 14-2. New patch context in 0004-X.patch

diff --git a/file b/file
index 35d242b..7f9826a 100644
--- a/file

+++ b/file

Just after the diff --git a/file b/file line, Git adds the new line index 35d242b..
7f9826a 100644. This information is designed to answer with certainty the following
question: “What is the original state to which this patch applies?”

The first number on the index line, 35d242b, is the SHA1 hash of the blob within the
Git object store to which this portion of the patch applies. That is, 35d242b is the file
as it exists with just the two lines:

$ git show 35d242b

A
B

And that is exactly the version of file to which this portion of the X patch applies. If that
version of the file is in the repository, then Git can apply the patch to it.

This mechanism—having a current version of a file; having an alternate version; and
locating the original, base version of a file to which the patch applies—is called a three-
way merge. Git is able to reconstruct this scenario using the -3 or --3way option to
git am.

Let’s clean up the failed effort; reset back to the first commit state, A; and try to reapply
the patch series:

Get rid of temporary "git am" context, if needed.
$ rm -rf .git/rebase-apply/

Use "git log" to locate commit A -- it was SHA1 5108c99
It will be different for you.

$ git reset --hard 5108c99

HEAD is now at 5108c99 A

$ git show-branch --more=10
[master] A

Now, using the -3, apply the patch series:

$ git am -3 /tmp/patches/*
Applying B

Applying C

Applying D

Applying X

error: patch failed: file:1
error: file: patch does not apply

280 | Chapter14: Patches

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

Auto-merged file

CONFLICT (content): Merge conflict in file

Failed to merge in the changes.

Patch failed at 0004.

When you have resolved this problem run "git am -3 --resolved".

If you would prefer to skip this patch, instead run "git am -3 --skip".
To restore the original branch and stop patching run "git am -3 --abort".

Much better!

Just as before, the simple attempt to patch the file failed but instead of quitting, Git has
changed to the three-way merge. This time, Git recognizes it is able to perform the
merge, but a conflict remains because overlapping lines were changed in two different
ways.

Because Git is not able to correctly resolve this conflict, the git am -3 is temporarily
suspended. It is now up to you to resolve the conflict before resuming the command.

Again, the strategy of looking around can help determine what to do next and how to
proceed:

$ git status

file: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)

#

unmerged: file

As indicated previously, the file file still needs to have a merge conflict resolved.
The contents of file show the traditional conflict merge markers and must be resolved
via an editor:

$ cat file

A

B

<<<<<<< HEAD:file

>>>>>>> X:file

Fix conflicts in "file"
$ emacs file

Applying Patches | 281

After resolving the conflict and cleaning up, resume the git am -3:

$ git am -3 --resolved

Applying X

No changes - did you forget to use 'git add'?

When you have resolved this problem run "git am -3 --resolved".

If you would prefer to skip this patch, instead run "git am -3 --skip".
To restore the original branch and stop patching run "git am -3 --abort".

Did you forget to use git add? Sure did!

$ git add file
$ git am -3 --resolved

Applying X

Applying Y

error: patch failed: file:1

error: file: patch does not apply

Using index info to reconstruct a base tree...
Falling back to patching base and 3-way merge...
Auto-merged file

Applying Z

error: patch failed: file:2

error: file: patch does not apply

Using index info to reconstruct a base tree...
Falling back to patching base and 3-way merge...
Auto-merged file

Applying F
Finally, success!

$ cat file
A

TN <XOMNw

$ git show-branch --more=10
[master] F

[master”] z
[master~2] Y
[master~3] X
[master~4] D
[master~s5] C
[master~6] B
[master~7] A

Applying these patches didn’t construct a replica of the branch structure from the orig-
inal repository. All patches were applied in a linear sequence, and that is reflected in
the master branch commit history.

282 | Chapter14: Patches

The C commit
$ git log --pretty=fuller -1 1666a7
commit 848f55821c9d725cb7873ab3dc3b52d1bcbfoe93

Author: Jon Loeliger <jdl@example.com>
AuthorDate: Sun Dec 28 12:10:42 2008 -0600
Commit: Jon Loeliger <jdl@example.com>

CommitDate: Mon Dec 29 18:46:35 2008 -0600
C

The patch Author and AuthorDate are per the original commit and patch, whereas the
data for the committer reflects the actions of applying the patch and committing it to
this branch and repository.

Bad Patches

The obligation to create robust, identical content in multiple, distributed repositories
around the world—despite the difficulties of today’s email systems—is an onerous task.
Itis no wonder that a perfectly good patch can be trashed by any number of mail-related
failures. Ultimately, the onus is on Git to ensure that the complete patch/email/apply
cycle can faithfully reconstruct identical content through an unreliable transport
mechanism.

Patch failures stem from many areas, many mismatched tools, and many different
philosophies. But perhaps the most common failure is simply failing to maintain exact
line handling characteristics of the original content. This usually manifests itself as line
wrappings due to text being reflowed by either the sender or receiver MUA, or by any
of the intermediate MTAs. Luckily, the patch format has internal consistency checks
that prevent this type of failure from corrupting a repository.

Patching Versus Merging

Git can handle the situation where applying patches and pulling the same changes have
been mixed in one repository. Even though the commit in the receiving repository
ultimately differs from the commit in the original repository from which the patch was
made, Git can use its ability to compare and match content to sort matters out.

Later, for example, subsequent diffs will show no content changes. The log message
and author information will also be the same as they were conveyed in the patch mail,
but information such as the date and SHA1 will be different.

Directly fetching and merging a branch with a complex history will yield a different
history in the receiving repository than the history that results from a patching se-
quence. Remember, one of the effects of creating a patch sequence on a complex branch
is to topologically sort the graph into a linearized history. Hence, applying it to another
repository yields a linearized history that wasn’t in the original.

Patching Versus Merging | 283

Depending on your development style and your ultimate intent, having the original
development history linearized within the receiving repository may or may not be a
problem for you and your project. At the very least, you have lost the complete branch
history that led to the patch sequence. At best, you simply don’t care how you arrived
at the patch sequence.

284 | Chapter14: Patches

CHAPTER 15
Hooks

You can use a Git hook to run one or more arbitrary scripts whenever a particular event,
such as a commit or a patch, occurs in your repository. Typically, an event is broken
into several prescribed steps, and you can tie a custom script to each step. When the
Git event occurs, the appropriate script is called at the outset of each step.

Hooks belong to and affect a specific repository and are not copied during a clone
operation. In other words, hooks you set up in your private repository are not
propagated to and do not alter the behavior of the new clone. If for some reason your
development process mandates hooks in each coder’s personal development
repository, arrange to copy the directory .git/hooks through some other (nonclone)
method.

A hook runs either in the context of your current, local repository or in the context of
the remote repository. For example, fetching data into your repository from a remote
repository and making a local commit can cause local hooks to run; pushing changes
to a remote repository may cause hooks in the remote repository to run.

Most Git hooks fall into one of two categories:

* A “pre” hook runs before an action completes. You can use this kind of hook to
approve, reject, or adjust a change before it’s applied.

* A “post” hook runs after an action completes and can be used to trigger notifications
(such as email) or to launch additional processing, such as running a build or
closing a bug.

As a general rule, if a pre-action hook exits with a nonzero status (the convention to
indicate failure), the Git action is aborted. In contrast, the exit status of a post-action
hook is generally ignored because the hook can no longer affect the outcome or
completion of the action.

In general, the Git developers advocate using hooks with caution. A hook, they say,
should be a method of last resort, to be used only when you can’t accomplish the same
result in some other way. For example, if you want to specify a particular option each
time you make a commit, check out a file, or create a branch, a hook is unnecessary.

285

Download from Wow! eBook <www.wowebook.com>

You can accomplish the same task with a Git alias (see “Configuring an
Alias” on page 30 in Chapter 3) or with shell scripts to augment git commit,
git checkout, and git branch, respectively.!

At first blush, a hook may seem an appealing and straightforward solution. However,
there are several implications of its use.

* A hook changes the behavior of Git. If a hook performs an unusual operation, other
developers familiar with Git may run into surprises when using your repository.

* A hook can slow operations that are otherwise fast. For example, developers are
often enticed to hook Git to run unit tests before anyone makes a commit, but this
makes committing slow. In Git, a commit is supposed to be a fast operation, thus
encouraging frequent commits to prevent the loss of data. Making a commit run
slowly makes Git less enjoyable.

* A hook script that is buggy can interfere with your work and productivity. The
only way to work around a hook is to disable it. In contrast, if you use an alias or
shell script instead of a hook, then you can always fall back on the normal Git
command wherever that makes sense.

* A repository’s collection of hooks is not automatically replicated. Hence, if you
install a commit hook in your repository, it won’t reliably affect another developer’s
commits. This is partly for security reasons—a malicious script could easily be
smuggled into an otherwise innocuous-looking repository—and partly because Git
simply has no mechanism to replicate anything other than blobs, trees, and
commits.

Junio’s Overview of Hooks

Junio Hamano wrote the following about Git hooks on the Git mailing list (paraphrased
from the original).

There are five valid reasons to hook a Git command/operation:
1. To countermand the decision made by the underlying command. The
update hook and the pre-commit hook are two hooks used for this purpose.

2. To manipulate data generated after a command starts to run. Modifying the
commit log message in the commit-msg hook is an example.

3. To operate on the remote end of a connection, that you access only via the
Git protocol. A post-update hook that runs git update-server-info does this
very task.

4. To acquire a lock for mutual exclusion. This is rarely a requirement, but
sufficient hooks are available to achieve it.

1. As it happens, running a hook at commit time is such a common requirement that a precommit hook
exists for that, even though it isn’t strictly necessary.

286 | Chapter15: Hooks

5. To run one of several possible operations, depending on the outcome of the
command. The post-checkout hook is a notable example.

Each of these five requirements requires at least one hook. You cannot realize a
similar result from outside the Git command.

On the other hand, if you always want some action to occur before or after running
a Git operation locally, you don’t need a hook. For instance, if your postprocessing
depends on the effects of a command (item 5 in the list) but the results of the
command are plainly observable, then you don’t need a hook.

With those “warnings” behind us, we can state that hooks exist for very good reasons
and that their use can be incredibly advantageous.

Installing Hooks

Each hook is a script, and the collection of hooks for a particular repository can be
found in the .git/hooks directory. As already mentioned, Git doesn’t replicate hooks
between repositories; if you git clone orgit fetch from another repository, you won’t
inherit that repository’s hooks. You have to copy the hook scripts by hand.

Each hook script is named after the event with which it is associated. For example, the
hook that runs immediately before a git commit operation is named .git/hooks/
pre-commit.

A hook script must follow the normal rules for Unix scripts: it must be executable
(chmod a+x .git/hooks/pre-commit) and must start with a line indicating the language
in which the script is written (for example, #!/bin/bash or #!/usr/bin/perl).

If a particular hook script exists and has the correct name and file permissions, Git uses
it automatically.

Example Hooks

Depending on your exact version of Git, you may find some hooks in your repository
at the time it’s created. Hooks are copied automatically from your Git template
directory when you create a new repository. On Debian and Ubuntu, for example, the
hooks are copied from /usr/share/git-core/templates/hooks. Most Git versions include
some example hooks that you can use, and these are preinstalled for you in the tem-
plates directory.

Here’s what you need to know about the example hooks:

* The template hooks probably don’t do exactly what you want. You can read them,
edit them, and learn from them, but you rarely want to use them as is.

* Even though the hooks are created by default, all the hooks are initially disabled.
Depending on your version of Git and your operating system, the hooks are

Installing Hooks | 287

disabled either by removing the execute bit or by appending .sample to the hook
file name. Modern versions of Git have executable hooks named with a .sample
suffix.

* To enable an example hook, you must remove the .sample suffix from its filename
(mv .git/hooks/pre-commit.sample .git/hooks/pre-commit) and setits execute bit,
as is apropos (chmod a+x .git/hooks/pre-commit).

Originally, each example hook was simply copied into the .git/hooks/ directory from
the template directory with its execute permission removed. You could then enable the
hook by setting its execute bit.

That worked fine on systems like Unix and Linux, but didn’t work well on Windows.
In Windows, file permissions work differently and, unfortunately, files are executable
by default. This meant the example hooks were executable by default, causing great
confusion among new Git users because all the hooks ran when none should have.

Because of this problem with Windows, newer versions of Git suffix each hook file
name with .sample so it won’t run even if it’s executable. To enable the example hooks,
you’ll have to rename the appropriate scripts yourself.

If you aren’t interested in the example hooks, it is perfectly safe to remove them from
your repository: rm .git/hooks/*. You can always get them back by copying them from
their home in the templates directory.

W N

In addition to the template examples, there are more example hooks in

Git’s contrib directory, a portion of the Git source code. The supple-

* Qlsr mental files may also be installed along with Git on your system. On

* Debian and Ubuntu, for example, the contributed hooks are installed
in /usr/share/doc/git-core/contrib/hooks.

Creating Your First Hook

To explore how a hook works, let’s create a new repository and install a simple hook.
First, we create the repository and populate it with a few files:

$ mkdir hooktest
$ cd hooktest

$ git init
Initialized empty Git repository in .git/

$ touch a b c
$ git add a b c
$ git commit -m ‘'added a, b, and c'

Created initial commit 97e9cf8: added a, b, and c
0 files changed, 0 insertions(+), 0 deletions(-)

288 | Chapter15: Hooks

create mode 100644 a
create mode 100644 b
create mode 100644 c

Next, let’s create a pre-commit hook to prevent checking in changes that contain the
word “broken.” Using your favorite text editor, put the following in a file called .git/
hooks/pre-commit:
#1/bin/bash
echo "Hello, I'm a pre-commit script!" >&2
if git diff --cached | grep '"\+' | grep -q 'broken'; then
echo "ERROR: Can't commit the word 'broken'" >&2
exit 1 # reject
fi
exit 0 # accept
The script generates a list of all differences about to be checked in, extracts the lines to
be added (that is, those lines that begin with a + character), and scans those lines for
the word “broken.”

There are many ways to test for the word “broken,” but most of the obvious ones result
in subtle problems. I'm not talking about how to “test for the word ‘broken’” but rather
about how to find the text to be scanned for the word “broken.”

For example, you might have tried the test:
if git 1s-files | xargs grep -q 'broken'; then

or, in other words, search for the word “broken,” in all files in the repository. But this
approach has two problems. If someone else had already committed a file containing
the word “broken,” then this script would prevent all future commits (until you fix it),
even if those commits are totally unrelated. Moreover, the Unix grep command has no
way of knowing which files will actually be committed; if you add “broken” to file b,
make an unrelated change to a, and then run git commit a, there’s nothing wrong with
your commit because you’re not trying to commit b. However, a script with this test
would reject it anyway.

N

If you write a pre-commit script that restricts what you’re allowed to
check in, it’s almost certain that you’ll need to bypass it someday. You
Wls" can bypass the pre-commit hook either by using the --no-verify option
" togit commit or by temporarily disabling your hook.

Now that you’ve created the pre-commit hook, make sure it’s executable:

$ chmod a+x .git/hooks/pre-commit

And now you can test that it works as expected:

$ echo "perfectly fine" >a

$ echo "broken" >b

Installing Hooks | 289

Try to commit all files, even a 'broken' one.
$ git commit -m "test commit -a" -a

Hello, I'm a pre-commit script!

ERROR: Can't commit the word 'broken’

Selectively committing un-broken files works.
$ git commit -m "test only file a" a

Hello, I'm a pre-commit script!

Created commit 4542056: test

1 files changed, 1 insertions(+), 0 deletions(-)

And committing 'broken' files won't work.

$ git commit -m "test only file b" b

Hello, I'm a pre-commit script!

ERROR: Can't commit the word 'broken’
Observe that even when a commit works, the pre-commit script still emits “Hello.” This
would be annoying in a real script, so you should use such messages only while
debugging the script. Notice also that, when the commit is rejected, git commit doesn’t
print an error message; the only message is the one produced by the script. To avoid
confusing the user, be careful always to print an error message from a “pre” script if
it’s going to return a nonzero (“reject”) exit code.

Given those basics, let’s talk about the different hooks you can create.

Available Hooks

As Git evolves, new hooks become available. To discover what hooks are available in
your version of Git, run git help hooks. Also refer to the Git documentation to find all
the command-line parameters as well as the input and output of each hook.

Commit-Related Hooks

When you run git commit, Git executes a process like that shown in Figure 15-1.

None of the commit hooks run for anything other than git commit. For
"‘E’% example, git rebase, git merge, and git am don’t run your commit

hooks by default. (Those commands may run other hooks, though.)
However, git commit --amend does run your commit hooks.

Each hook has its own purpose as follows:

* The pre-commit hook gives you the chance to immediately abort a commit if some-
thing is wrong with the content being committed. The pre-commit hook runs before
the user is allowed to edit the commit message, so the user won’t enter a commit
message only to discover the changes are rejected. You can also use this hook to
automatically modify the content of the commit.

290 | Chapter15: Hooks

pre-commit hook (unless --no-verify)
v

(prepa:i'e default commit message)
v

preparrle-comit-msg hook
v

(let the user edit the commit message)
v

commit-msg hook (unless --no-verify)
v

(actua}ly do the commit)

v
post-commit hook

Figure 15-1. Commit hook processing

* prepare-commit-msg lets you modify Git’s default message before it is shown to the
user. For example, you can use this to change the default commit message template.

* The commit-msg hook can validate or modify the commit message after the user
edits it. For example, you can leverage this hook to check for spelling mistakes or
reject messages with lines that exceed a certain maximum length.

* post-commit runs after the commit operation has finished. At this point, you can
update a log file, send email, or trigger an autobuilder, for instance. Some people
use this hook to automatically mark bugs as fixed if, say, the bug number is men-
tioned in the commit message. In real life, however, the post-commit hook is rarely
useful, because the repository thatyougit commit in is rarely the one that you share
with other people. (The update hook is likely more suitable.)

Patch-Related Hooks

When you run git am, Git executes a process like that shown in Figure 15-2.

Despite what you might expect from the names of the hooks shown in
‘*@@ Figure 15-2, git apply does not run the applypatch hooks, only

git am does. This is because git apply doesn’t actually commit any-
thing, so there’s no reason to run any hooks.

* applypatch-msg examines the commit message attached to the patch and deter-
mines whether or notit’s acceptable. For example, you can choose to reject a patch
if it has no Signed-off-by: header. You can also modify the commit message at this
point if desired.

Available Hooks | 291

applypelltch-msg hook
v

(applylthe patch)
v

pre-aplepatch hook

v
(actua}ly do the commit)

v
post-applypatch hook

Figure 15-2. Patch hook processing

* The pre-applypatch hook is somewhat misnamed, because this script actually runs
after the patch is applied but before committing the result. This makes it exactly
analogous to the pre-commit script when doing git commit, even though its name
implies otherwise. In fact, many people choose to create a pre-applypatch script
that runs pre-commit.

* post-applypatch is analogous to the post-commit script.

Push-Related Hooks

When you run git push, the receiving end of Git executes a process like the one shown
in Figure 15-3.

(receive all new objects)

v
pre-receive hook

v
for each updated ref:

v
uptilate hook
v
update ref
v
post-receive hook

v
post-update hook

Figure 15-3. Receive hook processing

292 | Chapter15: Hooks

All push-related hooks run on the receiver, not the sender. Thus, the
hook scripts that run are in the .git/hooks directory of the receiving
%s" repository, not the sending one. Output produced by remote hooks is
" still shown to the user doing the git push.

Asyou can see in the diagram, the very first step of git push is to transfer all the missing
objects (blobs, trees, and commits) from your local repository to the remote one. There
is no need for a hook during this process because all Git objects are identified by their
unique SHA1 hash; your hook cannot modify an object because it would change the
hash. Furthermore, there’s no reason to reject an object, because git gc cleans up
anyway if the object turns out to be unneeded.

Instead of manipulating the objects themselves, push-related hooks are called when it’s
time to update the refs (branches and tags).

* pre-receive receives a list of all the refs that are to be updated, including their new
and old object pointers. The only thing the prereceive hook can do is accept or
reject all the changes at once, which is of limited use. You might consider it a
feature, though, because it enforces transactional integrity across branches. Yet,
it’s not clear why you’d need such a thing; if you don’t like that behavior, use the
update hook instead.

* Theupdate hook is called exactly once for each ref being updated. The update hook
can choose to accept or reject updates to individual branches, without affecting
whether other branches are updated or not. Also for each update you can trigger
an action such as closing a bug or sending an email acknowledgment. It’s usually
better to handle such notifications here than in a post-commit hook, because a
commitis not really considered “final” until it’s been pushed to a shared repository.

* Like the prereceive hook, post-receive receives a list of all the refs that have just
been updated. Anything that post-receive can do could also be done by the
update hook, but sometimes post-receive is more convenient. For example, if you
want to send an update notification email message, post-receive can send just a
single notification about all updates instead of a separate email for each update.

* Don’t use the post-update hook. It has been superseded by the newer
post-receive hook. (post-update knows what branches have changed but not what
their old values were; this limited its usefulness.)

Available Hooks | 293

Other Local Repository Hooks

Finally, there are a few miscellaneous hooks, and by the time you read this there may
be even more. (Again, you can find the list of available hooks quickly with the command
git help hooks.)

* The pre-rebase hook runs when you attempt to rebase a branch. This is useful
because it can stop you from accidentally running git rebase on a branch that
shouldn’t be rebased because it’s already been published.

* post-checkout runs after you check out a branch or an individual file. For example,
you can use this to automatically create empty directories (Git doesn’t know how
to track empty directories) or to set file permissions or Access Control List (ACLs)
on checked out files (Git doesn’t track ACLs). You might think of using this to
modify files after checking them out—for example, to do RCS-style variable
substitution—but it’s not such a good idea because Git will think the files have
been locally modified. For such a task, use smudge/clean filters instead.

* post-merge runs after you perform a merge operation. This is rarely used. If your
pre-commit hook does some sort of change to the repository, you might need to use
a post-merge script to do something similar.

* pre-auto-gc helps git gc --auto decide whether or not it’s time to clean up. You
can make git gc --auto skipits git gc task by returning nonzero from this script.
This will rarely be needed, however.

294 | Chapter15: Hooks

CHAPTER 16
Combining Projects

There are many reasons to combine outside projects with your own. A submodule is
simply a project that forms a part of your own Git repository but also exists
independently in its own source control repository. This chapter discusses why devel-
opers create submodules and how Git attempts to deal with them.

Earlier in this book, we worked with a repository named public_html that we imagine
contains your website. If your website relies on an AJAX library such as Prototype or
jQuery, then you’ll need to have a copy of that library somewhere inside public_html.
Not only that: you’d like to be able to update that library automatically, see what has
changed when you do, and maybe even contribute changes back to the authors. Or
perhaps, as Git allows and encourages, you want to make changes and not contribute
them back but still be able to update your repository to their latest version.

Git does make all these things possible. But here’s the bad news: Git’s initial support
for submodules was unapologetically awful, for the simple reason that none of the Git
developers had a need for them. At the time that this book is being written, the situation
has only recently started to improve.

In the beginning, there were only two major projects that used Git—Git itself and the
Linux Kernel. These projects have two important things in common: they were both
originally written by Linus Torvalds, and they both have virtually no dependencies on
any outside project. Where they’ve borrowed code from other projects, they’ve
imported it directly and made it their own. There’s no intention of ever trying to merge
that code back into someone else’s project. Such an occurrence would be rare, and it
would be easy enough to generate some diffs by hand and submit them back to the
other project.

If your project’s submodules are like that, where you import once, leaving the old
project behind forever—then you don’t need this chapter. You already know enough
about Git to simply add a directory full of files.

On the other hand, sometimes things get more complicated. One common situation
at many companies is to have a lot of applications that rely on a common utility library

295

or set of libraries. You want each of your applications to be developed, shared,
branched, and merged in its own Git repository, either because that’s the logical unit
of separation, or perhaps because of code ownership issues.

But dividing your applications up this way creates a problem: what about the shared
library? Each application relies on a particular version of the shared library, and you
need to keep track of exactly which version. If someone upgrades the library by accident
to a version that hasn’t been tested, they might end up breaking your application. Yet
the utility library isn’t developed all by itself; usually people are tweaking it to add new
features that they need in their own applications. Eventually, they want to share those
new features with everybody else writing other applications; that’s what a utility library
is for.

What can you do? That’s what this chapter is about. I discuss several strategies in
common use—although some people might not dignify them with that term, preferring
to call them “hacks”—and end with the most sophisticated solution, submodules.

The Old Solution: Partial Checkouts

A popular feature in many VCSs, including CVS and Subversion, is called a partial
checkout. With a partial checkout, you choose to retrieve only a particular subdirectory
or subdirectories of the repository and work just in there.!

If you have a central repository that holds all your projects, partial checkouts can be a
workable way of handling submodules. Simply put your utility library in one
subdirectory and put each application using that library in another directory. When
you want to get one application, just check out two subdirectories (the library and the
application) instead of checking out all directories: that’s a partial checkout.

One benefit of using partial checkouts is that you don’t have to download the gigantic,
full history of every file. You just download just the files you need for a particular
revision of a particular project. You may not even need the full history of just those
files; the current version alone may suffice.

This technique was especially popular in an older VCS: CVS. CVS has no conceptual
understanding of the whole repository; it only understands the history of individual
files. In fact, the history of the files is stored in the file itself. CVS’s repository format
was so simple that the repository administrator could make copies and use symbolic
links between different application repositories. Checking out a copy of each applica-
tion would then automatically check out a copy of the referenced files. You wouldn’t
even have to know that the files were shared with other projects.

1. In fact, SVN cleverly uses partial checkouts to implement all its branching and tagging features. You just
make a copy of your files in a subdirectory and then check out only that subdirectory.

296 | Chapter16: Combining Projects

Download from Wow! eBook <www.wowebook.com>

This technique had its idiosyncrasies, but it has worked well on many projects for years.
The KDE (K Desktop Environment) project, for example, encourages partial checkouts
with their multigigabyte SVN repository.

Unfortunately, this idea isn’t compatible with distributed VCSs like Git. With Git, you
don’t just download the current version of a selected set of files, you download all the
versions of all the files. After all, every Git repository is a complete copy of the reposi-
tory. Git’s current architecture doesn’t support partial checkouts well.2

As of this writing, the KDE project is considering a switch from SVN to Git, and sub-
modules are their main point of contention. An import of the entire KDE repository
into Git is still several gigabytes in size. Every KDE contributor would have to have a
copy of all that data, even if they wanted to work on only one application. But you can’t
just make one repository per application: each application depends on one or more of
the KDE core libraries.

For KDE to successfully switch to Git, it needs an alternative to huge, monolithic
repositories using simple partial checkouts. For example, one experimental import of
KDE into Git separated the code base into roughly 500 separate repositories.3

The Obvious Solution: Import the Code into Your Project

Let’s revisit one of the options glossed over earlier: why not just import the library into
your own project in a subdirectory? Then you can copy in a new set of files if you ever
want to update the library.

Depending on your needs, this method can actually work just fine. It has these advan-
tages:

* You never end up with the wrong library version by accident.

* It’s extremely simple to explain and understand, and it relies only on everyday Git
features.

* It works exactly the same way whether the external library is maintained in Git,
some other VCS, or no VCS at all.

* Your application repository is always self-contained, so a git clone of your appli-
cation always includes everything your application needs.

* It’seasy to apply application-specific patches to the library in your own repository,
even if you don’t have commit access to the library’s repository.

2. Actually, there are some experimental patches that implement partial checkouts in Git. They aren’t yet
in any released Git version, and may never be. Also, they are only partial checkouts, not partial clones.
You still have to download the entire history even if it doesn’t end up in your working tree, and this limits
the benefit. Some people are interested in solving that problem, too, but it’s extremely complicated—
maybe even impossible—to do right.

3. See http://labs.trolltech.com/blogs/2008/08/29/workflow-and-switching-to-git-part-2-the-tools/.

The Obvious Solution: Import the Code into Your Project | 297

http://labs.trolltech.com/blogs/2008/08/29/workflow-and-switching-to-git-part-2-the-tools/

* Branching your application also makes a branch of the library, exactly as you’d
expect.

e If you use the subtree merge strategy (as described in the section “Specialty
Merges” on page 143) in your git pull -s subtree command, then updating to
newer versions of the library is just as easy as updating any other part of your
project.

Unfortunately, there are also some disadvantages:

* Each application that imports the same library duplicates that library’s files.
There’s no easy way to share those Git objects between repositories. If KDE did
this, for example, and you did want to check out the entire project—say, because
you’re building the KDE distribution packages for Debian or Red Hat—then you
would end up downloading the same library files dozens of times.

* If your application makes changes to its copy of the library, then the only way to
share those changes is by generating diffs and applying them to the main library’s
repository. This is OK if you do it rarely, but it’s a lot of tedious work if you do it
frequently.

For many people and many projects, these disadvantages aren’t very serious. You
should consider using this technique if you can, because its simplicity often outweighs
its disadvantages.

If you're familiar with other VCS, particularly CVS, you may have had some bad
experiences that make you want to avoid this method. You should be aware that many
of those problems do not arise in Git. For example:

* CVS didn’t support file or directory renames, and its features (e.g., “vendor
branches”) for importing new upstream packages meant it was easy to make mis-
takes. One common mistake was to forget to delete old files when merging in new
versions, which would result in strange inconsistencies. Git doesn’t have this prob-
lem because importing any package is a simple matter of deleting a directory, rec-
reating it, and using git add --all.

* Importing a new module can be a multistep process requiring several commits, and
you might make mistakes. In CVS or SVN, such mistakes form a permanent part
of the repository’s history. This is normally harmless, but making mistakes can
unnecessarily bloat the repository when importing huge files. With Git, if you screw
up, then you simply throw away the erroneous commits before pushing them to
anyone.

* CVS made it hard to follow the history of branches. If you imported upstream
version 1.0, then applied some of your own changes, and then wanted to import
version 2.0, it was complicated to extract your local changes and re-apply them.
Git’s improved history management makes this much easier.

* Some VCSs are very slow when checking for changes through a huge number of
files. If you import several large packages using this technique, then the everyday

298 | Chapter16: Combining Projects

speed impact could cancel out the anticipated productivity gains from including
submodules in your repository. Git, however, has been optimized for dealing with
tens of thousands of files in one project, so this is unlikely to be a problem.

If you do decide to handle submodules by just importing them directly, there are two
ways to proceed: by copying the files manually or by importing the history.

Importing Subprojects by Copying

The most obvious way to import another project’s files into your project is by simply
copying them. In fact, if the other project isn’t stored in a Git repository, this is your
only option.

The steps for doing this are exactly as you might expect: delete any files already in that
directory, create the set of files you want (e.g., by extracting a tarball or ZIP file con-
taining the library you want to import), and then git add them. For example:

$ cd myproject.git

$ rm -rf mylib

$ git rm mylib

$ tar -xzf /tmp/mylib-1.0.5.tar.gz

$ mv mylib-1.0.5 mylib

$ git add mylib

$ git commit

This method works fine, with the following caveats:

* Only the exact versions of the library you import will appear in your Git history.
Compared to our next alternative—including the complete history of the subpro-
ject—you might actually find this convenient, because it keeps your log files clean.

* If you make application-specific changes to the library files, then you’ll have to
re-apply those changes whenever you import a new version. For example, you’ll
have to manually extract the changes through git diff and incorporate them
through git apply (see Chapter 8 or Chapter 14 for more information). Git won’t
do this automatically.

* Importing a new version requires you to rerun the full command sequence
removing and adding files every time; you can’t just git pull.

On the other hand, copying is easy to understand and explain to your coworkers.

Importing Subprojects with git pull -s subtree

Another way to import a subproject into yours is by merging the entire history from
that subproject. Of course, it works only if the subproject’s history is already stored in
Git.

This is a bit tricky to set up for the first time; however, once you’ve done the work,
future merges are much easier than with the simple file-copying method. Because Git

The Obvious Solution: Import the Code into Your Project | 299

knows the entire history of the subproject, it knows exactly what needs to happen every
time you need to do an update.

Let’s say you want to write a new application called myapp and you want to include a
copy of the Git source code in a directory called git. First, let’s create the new repository
and make the first commit. (If you already have a myapp project, you can skip this part.)

$ cd /tmp

$ mkdir myapp

$ cd myapp

$ git init
Initialized empty Git repository in /tmp/myapp/.git/

$ 1s
$ echo hello > hello.txt
$ git add hello.txt

$ git commit -m 'first commit’

Created initial commit 644e0ae: first commit

1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 hello.txt

Next, import the git project from your local copy, assumed to be ~/git.git.* The first
step is just like the one in the previous section: extract a copy of it into a directory called
git, then commit it.

The following example takes a particular version of the git.git project, denoted by the
tag v1.6.0. The command git archive v1.6.0 creates a tar file of all the v1.6.0 files.
They are then extracted into the new git subdirectory:

$ 1s
hello.txt

$ mkdir git

$ cd git
$ (cd ~/git.git & git archive v1.6.0) | tar -xf -

$cd..

$ 1s
git/ hello.txt

$ git add git
$ git commit -m 'imported git vi.6.0'

Created commit 72138f0: imported git v1.6.0
1440 files changed, 299543 insertions(+), 0 deletions(-)

4. If you don’t have such a repository already, you can clone it from git:/git.kernel.org/pub/scm/git/git.git.

300 | Chapter16: Combining Projects

git://git.kernel.org/pub/scm/git/git.git

So far, you’ve imported the (initial) files by hand, but your myapp project still doesn’t
know anything about the history of its submodule. Now you must inform Git that you
have imported v1.6.0, which means you also should have the entire history up to
v1.6.0. To do that, use the -s ours merge strategy (from Chapter 9) with your
git pull command. Recall that -s ours just means “record that we’re doing a merge,
but my files are the right files, so don’t actually change anything.”

Git isn’t matching up directories and file contents between your project and the
imported project or anything like that. Instead Git is only importing the history and
tree pathnames as they are found in the original subproject. We’ll have to account for
this relocated directory basis later, though.

Simply pulling v1.6.0 doesn’t work, which is due to a peculiarity of git pull.

$ git pull -s ours ~/git.git v1.6.0
fatal: Couldn't find remote ref v1.6.0
fatal: The remote end hung up unexpectedly

This might change in a future version of Git, but for now the problem is handled by
explicitly spelling out refs/tags/vi.6.0, as described in “refs and sym-
refs” on page 68 of Chapter 6:

$ git pull -s ours ~/git.git refs/tags/v1.6.0

warning: no common commits

remote: Counting objects: 67034, done.

remote: Compressing objects: 100% (19135/19135), done.

remote: Total 67034 (delta 47938), reused 65706 (delta 46656)

Receiving objects: 100% (67034/67034), 14.33 MiB | 12587 KiB/s, done.

Resolving deltas: 100% (47938/47938), done.

From ~/git.git

* tag v1.6.0 -> FETCH_HEAD

Merge made by ours.

If all the v1.6.0 files were already committed, then you might think there was no work
left to do. On the contrary, Git just imported the entire history of git.git up to
v1.6.0, so even though the files are the same as before, our repository is now a lot more
complete. Just to be sure, let’s just check that the merge commit we just created didn’t
really change any files:

$ git diff HEAD" HEAD

You shouldn’t get any output from this command, which means the files before and
after the merge are exactly the same. Good.

Now let’s see what happens if we make some local changes to our subproject and then
try to upgrade it later. First, make a simple change:

$ cd git
$ echo 'I am a git contributor!' > contribution.txt

$ git add contribution.txt

The Obvious Solution: Import the Code into Your Project | 301

$ git commit -m 'My first contribution to git'
Created commit 6c9fac5: My first contribution to git
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 gi‘t/contribution.txt

Our version of the Git subproject is now v1.6.0 with an extra patch.

Finally, let’s upgrade our Git to version v1.6.0.1 tag but without losing our additional
contribution. It’s as easy as this:

$ git pull -s subtree ~/git.git refs/tags/v1.6.0.1
remote: Counting objects: 179, done.
remote: Compressing objects: 100% (72/72), done.
remote: Total 136 (delta 97), reused 100 (delta 61)
Receiving objects: 100% (136/136), 25.24 KiB, done.
Resolving deltas: 100% (97/97), completed with 40 local objects.
From ~/git.git
* tag v1.6.0.1 -> FETCH_HEAD
Merge made by subtree.

,—_ Don’t forget to specify the -s subtree merge strategy in your pull. The
“5"@ merge might have worked even without -s subtree, because Git knows
how to deal with file renames and we do have a lot of renames: all the
files from the git.git project have been moved from the root directory
of the project into a subdirectory called git. The -s subtree flag tells Git
to look right away for that situation and deal with it. To be safe, you
should always use -s subtree when merging a subproject into a sub-
directory (except during the initial import, where we’ve seen that you
should use -s ours).

Was it really that easy? Let’s check that the files have been updated correctly. Because
all the files in v1.6.0.1 were in the root directory and are now in the git directory, we
must use some unusual selector syntax with git diff. In this case, what we’re saying
is: “Tell me the difference between the commit from which we merged (i.e., parent #2,
which is v1.6.0.1) and what we merged into, the HEAD version.” Because the latter is in
the git directory, we have to specify that directory after a colon. The former is in its root
directory, so we can omit the colon and default the directory.

The command and its output looks like this:

$ git diff HEAD"2 HEAD:git

diff --git a/contribution.txt b/contribution.txt
new file mode 100644

index 0000000..7d8fd26

--- /dev/null

+++ b/contribution.txt

@@ -0,0 +1 @@

+I am a git contributor!

It worked! The only difference from v1.6.0.1 is the change we applied earlier.

How did we know it was HEAD*2? After the merge, you can inspect the commit and see
which branch HEADs were merged:

302 | Chapter16: Combining Projects

Merge: 6c9fac5... 5760a6b...

As with any merge, those are HEAD~1 and HEAD"2. You should recognize the latter:

commit 5760a6b094736e6f59eb32c7abbscdbb7fca1627
Author: Junio C Hamano <gitster@pobox.com>
Date: Sun Aug 24 14:47:24 2008 -0700

GIT 1.6.0.1
Signed-off-by: Junio C Hamano <gitster@pobox.com>

If your situation is a bit more complex, you might need to place your subproject deeper
into your repository structure and not right at the top level as shown in this example.
For instance, you might instead need other/projects/git. Git doesn’t automatically keep
track of the directory relocation when you imported it. Thus, as before, you would need
to spell out the full path to the imported subproject:

$ git diff HEAD"2 HEAD:other/projects/git

You can also break down our contributions to the git directory one commit at a time:

$ git log --no-merges HEAD"2..HEAD

commit 6c9fac58bed056c5b06fd70b8471137918b5a895
Author: Jon Loeliger <jdl@example.com>

Date: Sat Sep 27 22:32:49 2008 -0400

My first contribution to git

commit 72138f05ba3e6681c73d0585d3d6d5boad329b7c
Author: Jon Loeliger <jdl@example.com>
Date: Sat Sep 27 22:17:49 2008 -0400

imported git v1.6.0

Using -s subtree, you can merge and remerge updates from the main git.git project
into your subproject as many times as you want, and it will work just as if you simply
had your own fork of the git.git project all by itself.

Submitting Your Changes Upstream

Although you can easily merge history into your subproject, taking it out again is much
harder. That’s because this technique doesn’t maintain any history of the subproject.
It has only the history of the whole application project, including its subproject.

You could still merge your project’s history back into git.git using the -s subtree
merge strategy, but the result would be unexpected: you’d end up importing all the
commits from your entire application project and then recording a deletion of all the
files except those in the git directory at the point of the final merge.

Although such a merged history would be technically correct, it’s just plain wrong to
place the history of your entire application into the repository holding the submodule.
It would also mean that all the versions of all the files in your application would become

The Obvious Solution: Import the Code into Your Project | 303

a permanent part of the git project. They don’t belong there, and it would be a time
sink, produce an enormous amount of irrelevant information, and waste a lot of effort.
It’s the wrong approach.

Instead, you’ll have to use alternative methods, such as git format-patch (discussed in
Chapter 14). This requires more steps than a simple git pull. Luckily, you only have
to approach the problem when contributing changes back to the subproject, not in the
much more common case of pulling subproject changes into your application.

The Automated Solution: Checking out Subprojects Using
Custom Scripts

After reading the previous section, you might have reasons not to copy the history of
your subproject directly into a subdirectory of your application. After all, anyone can
see that the two projects are separate: your application depends on the library, but they
are obviously two different projects. Merging the two histories together doesn’t feel
like a clean solution.

There are other ways to do it that you might like better. Let’s look at one obvious
method: simply git clone the subproject into a subdirectory by hand every time you
clone the main project, like this:

$ git clone myapp myapp-test

$ cd myapp-test

$ git clone ~/git.git git

$ echo git >.gitignore
This method is reminiscent of the partial checkout method in SVN or CVS. Instead of
checking out just a few subdirectories of one huge project, you check out two small
projects, but the idea is the same.

This method of handling submodules has a few key advantages:

* The submodule doesn’t have to be in Git; it can be in any VCS or it can just be a
tar or ZIP file from somewhere. Because you’re retrieving the files by hand, you
can retrieve them from anywhere you want.

* The history of your main project never gets mixed up with the history of your
subprojects. The log doesn’t become crowded with unrelated commits, and the
Git repository itself stays small.

* If you make changes to the subproject, you can contribute them back exactly as if
you were working on the subproject by itself, because, in essence, you are.

Of course, there are also some problems that you need to deal with:

* Explaining to other users how to check out all the subprojects can be tedious.

* You need to somehow ensure that you get the right revision of each subproject.

304 | Chapter16: Combining Projects

* When you switch to a different branch of your main project or when you
git pull changes from someone else, the subproject isn’t updated automatically.

* If you make a change to the subproject, you must remember to git push it sepa-
rately.

* If you don’t have rights to contribute back to the subproject (i.e., commit access
to its repository), then you may not be able to easily make application-specific
changes. (If the subproject is in Git, you can always put a public copy of your
changes somewhere, of course.)

In short, cloning subprojects by hand gives you infinite flexibility, but it’s easy to over-
complicate things or to make mistakes.

If you choose to use this method, the best approach is to standardize it by writing some
simple scripts and including them in your repository. For example, you might have a
script called ./update-submodules.sh that clones and/or updates all your submodules
automatically.

Depending on how much effort you want to put in, such a script could update your
submodules to particular branches or tags or even to particular revisions. You could
hard-code commit IDs into the script, for example, and then commit a new version of
the script to your main project whenever you want to update your application to a new
version of the library. Then, when people check out a particular revision of your
application, they can run the script to automatically derive the corresponding version
of the library.

You might also think about creating a commit or update hook, using the techniques of
Chapter 15, which prevents you from accidentally committing to your main project
unless your changes to the subproject are properly committed and pushed.

You can well imagine that, if you want to manage your subprojects this way, then other
people do, too. Thus, scripts to standardize and automate this process have already
been written. One such script, by Miles Georgi, is called externals (or ext). You can
find it at http://nopugs.com/ext-tutorial. Conveniently, ext works for any combination
of SVN and Git projects and subprojects.

The Native Solution: gitlinks and git submodule

Git contains a command designed to work with submodules called git submodule. I
saved it for last for two reasons:

* TItis much more complicated than simply importing the history of subprojects into
your main project’s repository.

* Itis fundamentally the same as but more restrictive than the script-based solution
just discussed.

The Native Solution: gitlinks and git submodule | 305

http://nopugs.com/ext-tutorial

Even though it sounds like Git submodules should be the natural option, you should
consider carefully before using them.

Git’s submodule support is evolving fast. The first mention of submodules in Git
development history was by Linus Torvalds in April 2007, and there have been
numerous changes since then. That makes it something of a moving target, so you
should check git help submodule in your version of Git to find out if anything has
changed since this book was written.

Unfortunately, the git submodule command is not very transparent; you won’t be able
to use it effectively unless you understand exactly how it works. It’s a combination of
two separate features: so-called gitlinks and the actual git submodule command.

Gitlinks

A gitlink is a link from a tree object to a commit object.

Recall from Chapter 4 that each commit object points to a tree object and that each
tree object points to a set of blobs and trees, which correspond (respectively) to files
and subdirectories. A commit’s tree object uniquely identifies the exact set of files,
filenames, and permissions attached to that commit. Also recall from “Commit
Graphs” on page 74 of Chapter 6, that the commits themselves are connected to each
other in a DAG. Each commit object points to zero or more parent commits, and
together they describe the history of your project.

But we haven’t yet seen a tree object pointing to a commit object. The gitlink is Git’s
mechanism to indicate a direct reference to another Git repository.

Let’s try it out. As in “Importing Subprojects with git pull -s subtree” on page 299, we’ll
create a myapp repository and import the Git source code into it:

$ cd /tmp

$ mkdir myapp

$ cd myapp

Start the new super-project
$ git init
Initialized empty Git repository in /tmp/myapp/.git/

$ echo hello >hello.txt

$ git add hello.txt

$ git commit -m 'first commit’

[master (root-commit)]: created c3d9856: "first commit

1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 hello.txt

306 | Chapter16: Combining Projects

But this time, when we import the git project we’ll do so directly; we don’t use
git archive like we did last time:

$ 1s
hello.txt

Copy in a repository clone
$ git clone ~/git.git git
Initialized empty Git repository in /tmp/myapp/git/.git/

$ cd git

Establish the desired submodule version

$ git checkout vi1.6.0

Note: moving to "v1.6.0" which isn't a local branch

If you want to create a new branch from this checkout, you may do so

(now or later) by using -b with the checkout command again. Example:
git checkout -b <new _branch_name>

HEAD is now at ea02eef... GIT 1.6.0

Back to the super-project
$d..

$1s
git/ hello.txt

$ git add git

$ git commit -m 'imported git vi.6.0'

[master]: created bo814ac: "imported git v1.6.0"
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 160000 git

Because there already exists a directory called git/.git (created during the git clone),
git add git knows to create a gitlink to it.

Normally, git add git and git add git/ (with the POSIX-compatible
%% trailing slash indicating that git must be a directory) would be equiva-
lent. But that’s not true if you want to create a gitlink! In the sequence
we just showed, adding a slash to make the command git add git/

won’t create a gitlink at all; it will just add all the files in the git directory,
which is probably not what you want.

Observe how the outcome of the preceding sequence differs from that of the related
steps in “Importing Subprojects with git pull -s subtree” on page 299. In that section,
the commit changed all the files in the repository. This time, the commit message shows
that only one file changed. The resulting tree looks like this:

$ git 1s-tree HEAD

160000 commit ea02eef096d4bfcbb83e76cfabofcb42dbcad3se git
100644 blob ce013625030ba8dba906756967f9e9ca394464a hello.txt

The git subdirectory is of type commit and has mode 160000. That makes it a gitlink.

The Native Solution: gitlinks and git submodule | 307

Git usually treats gitlinks as simple pointer values or references to other repositories.
Most Git operations, such as clone, do not dereference the gitlinks and then act on the
submodule repository.

For example, if you push your project into another repository, it won’t push in the sub-
module’s commit, tree, and blob objects. If you clone your superproject repository, the
subproject repository directories will be empty.

In the following example, the git subproject directory remains empty after the clone
command:
$ cd /tmp

$ git clone myapp app2
Initialized empty Git repository in /tmp/app2/.git/

$ cd app2

$ 1s
git/ hello.txt

$ 1s git

$ du git

4 git
Gitlinks have the important feature that they link to objects that are allowed to be
missing from your repository. After all, they’re supposed to be part of some other
repository.

It is exactly because the gitlinks are allowed to be missing that this technique even
achieves one of the original goals: partial checkouts. You don’t have to check out every
subproject; you can check out just the ones you need.

So now you know how to create a gitlink and thatit’s allowed to be missing. But missing
objects aren’t very useful by themselves. How do you get them back? That’s what the
git submodule command is for.

The git submodule Command

At the time of this writing, the git submodule command is actually just a 700-line Unix
shell script called git-submodule.sh. And if you’ve read this book all the way through
to this point, you now know enough to write that script yourself. Its job is simple: to
follow gitlinks and check out the corresponding repositories for you.

First of all, you should be aware that there’s no particular magic involved in checking
out a submodule’s files. In the app2 directory we just cloned, you could do it yourself:
$ cd /tmp/app2

$ git 1s-files --stage -- git
160000 ea02eef096d4bfcbb83e76cfabofcbs2dbcad3se 0 git

308 | Chapter16: Combining Projects

$ rmdir git

$ git clone ~/git.git git
Initialized empty Git repository in /tmp/app2/git/.git/

$ cd git

$ git checkout eao02eef

Note: moving to "ea02eef" which isn't a local branch

If you want to create a new branch from this checkout, you may do so

(now or later) by using -b with the checkout command again. Example:
git checkout -b <new_branch_name>

HEAD is now at ea0O2eef... GIT 1.6.0

The commands you just ran are exactly equivalent to git submodule update. The only
differenceis thatgit submodule will do the tedious work such as determining the correct
commit ID to check out for you. Unfortunately, it doesn’t know how to do this without
a bit of help:

$ git submodule update
No submodule mapping found in .gitmodules for path 'git'

The git submodule command needs to know one important bit of information before
it can do anything: where can it find the repository for your submodule? It retrieves
that information from a file called .gitmodules, which looks like this:
[submodule "git"]
path = git
url = /home/bob/git.git
Using the file is a two-step process. First, create the .gitmodules file, either by hand or
with git submodule add. Because we created the gitlink using git add earlier, it’s too
late now for git submodule add, so just create the file by hand:
$ cat >.gitmodules <<EOF
[submodule "git"]
path = git
url = /home/bob/git.git

EOF

The git submodule add command that performs the same operations is:

., $ git submodule add /home/bob/git.git git

* The git submodule add command will add an entry to the .gitmodules
and populate a new Git repository with a clone of the added repository.

Next, run git submodule init to copy the settings from the .gitmodules file into
your .git/config file:

$ git submodule init
Submodule 'git' (/home/bob/git.git) registered for path 'git'

The Native Solution: gitlinks and git submodule | 309

$ cat .git/config
[core]

repositoryformatversion = 0

filemode = true

bare = false

logallrefupdates = true
[remote "origin"]

url = /tmp/myapp

fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]

remote = origin

merge = refs/heads/master
[submodule "git"]

url = /home/bob/git.git

The git submodule init command added only the last two lines.

The reason for this step is that you can reconfigure your local submodules to point at
a different repository from the one in the official .gitmodules. If you make a clone of
someone’s project that uses submodules, you might want to keep your own copy of
the submodules and point your local clone at that. In that case, you wouldn’t want to
change the module’s official location in .gitmodules, but you would want
git submodule to look at your preferred location. So git submodule init copies any
missing submodule information from .gitmodules into .git/config, where you can safely
edit it. Just find the [submodule] section referring to the submodule you’re changing,
and edit the URL.

Finally, run git submodule update to actually update the files, or if needed, clone the
initial subproject repository:

Force a complete new clone by removing what's there
$ rm -rf git

$ git submodule update

Initialized empty Git repository in /tmp/app2/git/.git/

Submodule path 'git': checked out 'ea02eef096d4bfcbb83e76cfabofcbs2dbcad3se’
Here git submodule update goes to the repository pointed to in your .git/config, fetches
the commit ID found in git 1s-tree HEAD -- git, and checks out that revision in the
directory specified in .git/config.

There are a few other things you need to know:

* When you switch branches or git pull someone else’s branch, you always need
to run git submodule update to obtain a matching set of submodules. This isn’t
automatic because it could cause you to lose work in the submodule by mistake.

* Ifyouswitch to another branch and don’t issue git submodule update, Git will think
you have deliberately changed your submodule directory to point at a new commit
(when really it was the old commit you were using before). If you then
git commit -a, you will accidentally change the gitlink. Be careful!

310 | Chapter16: Combining Projects

Download from Wow! eBook <www.wowebook.com>

* You can update an existing gitlink by simply checking out the right version of a
submodule, executing git add on the submodule directory, and then running
git commit. You don’t use the git submodule command for that.

* If you have updated and committed a gitlink on your branch and if you git pull
or git merge another branch that updates the same gitlink differently, then Git
doesn’t know how to represent this as a conflict and will just pick one or the other.
You must remember to resolve conflicted gitlinks by yourself.

As you can see, the use of gitlinks and git submodule is quite complex. Fundamentally,
the gitlink concept can perfectly represent how your submodules relate to your main
project, but actually making use of that information is a lot harder than it sounds.

When considering how you want to use submodules in your own project, you need to
consider carefully if the complexity is worth it Note that git submodule is a standalone
command like any other, and it doesn’t make the process of maintaining submodules
any simpler than, say, writing your own submodule scripts or using the ext package
described at the end of the previous section. Unless you have a real need for the flexi-
bility that git submodule provides, you might consider using one of the simpler meth-
ods.

On the other hand, I fully expect that the Git development community will address the
shortfalls and issues with the git submodule command, to ultimately lead to a techni-
cally correct and very usable solution.

The Native Solution: gitlinks and git submodule | 311

CHAPTER 17
Submodule Best Practices

Submodules are a powerful, but sometimes perceived as complex piece of the Git
toolchain. Submodules are, at the highest level, a facility for the composition of Git
repositories (Figure 17-1).

Figure 17-1. Nested repos

But unlike some of their non-Git cousins such as SVN Externals, they default to offering
greater precision, pointing not only at the network address of the nested repository,
but also to the commit hash of the nested repository (Figure 17-2).

Because each commit ref has, within a repo, a unique identifier to a specific point in
the graph and all parent states that led up to that point, pointing to the ref of another
repo records that precise state in the commit history of the parent project.

313

http://svnbook.red-bean.com/en/1.5/svn.advanced.externals.html

Figure 17-2. Nested repos pointing to precise revision

Submodule Commands

Although the dedicated chapter on submodules provides an exhaustive list of com-
mands, a quick recap of the basic submodule actions is helpful:

git

git

git

git

git

git

submodule add address localdirectoryname
Register a new submodule for this superproject and, optionally, express it in the
specified folder name (can be a subfolder path relative to the root of the project).

submodule status
Summary of the commit ref and dirtiness state of all submodules at this project
level.

submodule init
Use the .gitmodules long-term storage of submodule information to update
the .git/config file used during developer repository actions.

submodule update
Fetch the submodule contents using the address from .git/config and check out the
superproject’s submodule-recorded ref in a detached HEAD state.

submodule summary

Display a patch of the changes of each submodule’s current state as compared to
its committed state.

submodule foreach command

Scripts a shell command to be run on each submodule and provides variables for
$path, $shai, and other useful identifiers.

314 | Chapter17: Submodule Best Practices

Why Submodules?

The most common driving factor behind the use of submodules is modularization.
Submodules provide a componentization of a source code base in the absence of such
a modularization at the binary level (DLL, JAR, SO). Solutions such as Maven Multi-
module Projects and Gradle Multiproject Builds are well-known Java solutions for
componentized binary or semibinary dependency management that don’t require the
entire source base to be checked out to a monolithic folder. Likewise, the .NET space
has Assemblies that allow for binary consumption of subcomponents and plug-ins.
Driving the use of submodules in the Objective-C ecosystem is the contrasting sparse-
ness of options for modularity and the inclusion of compiled binaries.

Take, for example, the instructions for the Pull To Refresh functionality that so many
i0S apps are leveraging today. The README suggests that a developer “Copy the files,
PullRefreshTableViewController.h, PullRefreshTableViewController.m, and arrow.png
into your project.” This concept of a nested source in a subdirectory is shown in Fig-
ure 17-3.

I myproject |

Figure 17-3. Nested source folders

Git submodules facilitate leaving the existing directory structure of a subcomponent
intact, provided the separation of components falls along directory fault lines, while
enabling precise labeling and version control of each component that contributes to an
aggregate project.

Leveraging the appropriate database terminology, submodules can also facilitate the
creation of multiple views of different versions of the same plugins or different over-
lapping sets of plug-ins. More than one superproject can contain the same submodule,
and the different superprojects can record a different desired ref of the submodule, thus
projecting older and newer views of the composed system, while allowing the sub-
module developers to continue unimpeded with forward development at no risk to the
consuming superprojects.

Submodules Preparation

When considering the use of Git submodules, the first question to ask is if the com-
position of the code base is ready to accept such a fracture. Submodules are always

Submodules Preparation | 315

http://www.sonatype.com/books/mvnex-book/reference/multimodule.html
http://www.sonatype.com/books/mvnex-book/reference/multimodule.html
http://www.gradle.org/docs/current/userguide/multi_project_builds.html
http://msdn.microsoft.com/en-us/library/hk5f40ct(v=vs.71).aspx
https://github.com/leah/PullToRefresh

expressed as subdirectories of the superproject. Submodules cannot blend sets of files
into a single directory. Field experience has shown that most systems already have a
subdirectory composition, even in a monolithic repository, as the crudest form of
modularization. Thus, the translation and extraction of a subfolder (Figure 17-4) to a
true submodule is relatively easy and can be implemented by these steps:

I myproject | JN refresh-plugin |
—»I re in —»1 images |
fmm—m—m=1 emm—--==4
——»! resources | —p logic |
—»1 soure)

Figure 17-4. Nested source folder extracted

1. Move the subdirectory out of the superproject to be a peer to the superproject
directory. If maintaining repository history is important, consider using
git filter-branch to help extract subdirectory structure.

2. Rename the submodule-to-be directory to more accurately express the nature of
the submodule. For example, a refresh subdirectory might be renamed to client-
app-refresh-plug-in.

3. Create anew upstream hosting for the submodule as a first-class project (e.g., create
a new project on GitHub to host the extracted code).

4. Initialize the now stand-alone plug-in as a Git repo and push the commit to the
newly created project hosting URL.

5. In the superproject, add a Git submodule, pointing to the new submodule project
URL.

6. Commit and push the superproject, which will include the newly cre-
ated .gitmodules file.

Why Read Only?

The recommendation for the previous extraction of a subdirectory into a Git submodule
advised for it to be cloned via a read-only address, which frequently means access
through https:// without a username or git://. This recommendation has served
many users of submodules very well, making it easier to cope with the complexity that
the use of submodules brings about. It offers an enforced separation of activities, push-
ing work on submodules out into the stand-alone clone of the submodule and sug-
gesting that it should first be engineered, tested, and built in an independent way. Then,
asasecondary step, the developer switches focus back into the superproject then fetches
and checks out the newer revision of the submodule. This step is occasionally lamented

316 | Chapter17: Submodule Best Practices

as being tedious, but many developers learn to appreciate the precision this offers over
the less deterministic approach of having a floating version of the subcomponent (in
the style of an SVN External pointing to trunk) always pointing to the latest committed
state.

Why Not Read Only?

If the previous recommendation is greatly disliked, it is practical, though more risky,
to update the source code directly within the submodules of a superproject,
committing, pushing, and checking out from that nested directory. It can be slightly
more efficient to use this combined approach, although it foregoes the true separation
of implementing versus consuming modes that submodules were meant to bring about.

The greatest risk with this all-in-one working directory approach, even for veteran sub-
module users, is the committing of code and the recording of an updated submodule
hash in the superproject without having pushed the submodule’s new commits to a
shared network repository. Thus, if the superproject’s new commit is pushed, other
developers, upon pulling the updated superproject, will find they cannot fully check
out the current committed ref because there are inaccessible commits in the unpushed
subproject that the superproject is calling for.

Examining the Hashes of Submodule Commits

For developers wanting to examine their project one level deeper than t hey will use it
on a daily basis, the recording of a submodule commit ref is a fascinatingly simple thing
to observe. The ref of the submodule’s commit is stored in the tree just as the ref of a
subdirectory or blob would be, but with an entry type of commit rather than tree or blob.

$ git 1s-tree HEAD

100644 blob 0cf8086ddd1ac6c6463405ea9aa46102e0e6eb20 .gitmodules

100644 blob e425f022e79989a5ecb2c8343e697d1e4bf70258 README.txt

040000 tree aaa0af6b82db99c660b169962524€2201ac7079C resources

040000 tree 42103128ceaebabff8f50cf408903d12e14c21d9 src
160000 commit 47b28b4e89481095f0eefe764eeefafcfaze5b6c submodulel

A practical use of this tooling output is in the examination of, sometimes from a build
automation script, the state of a consumed submodule and comparing it to another
known state. git rev-parse can be used on a HEAD or labeled build in another phase of
automation to capture a known good point of the submodule and then the resultant
hash can be compared to the currently preserved ref (state) of the submodule within
the superproject.

Examining the Hashes of Submodule Commits | 317

Credential Reuse

A traditional git clone user@hostname:pathtorepo is acceptable for a stand-alone Git
repository. However, this is a less desirable address for a git submodule add URL com-
mand because the username will be saved in the submodule metadata at the
superproject repository level. This username will be preserved and unintentionally used
by all other repository cloning developers.

In a business where access control to repositories is decided on a per user basis, it would
be undesirable to store a specific username as part of the .gitmodules recorded address
for a submodule. It would be nice if the superproject’s username used during cloning
was passed along to the submodules cloning operation.

The Git submodule commands know to take the credentials given during the super-
project cloning operation and pass them downward (Figure 17-5) to any actions
invoked by --recurse-submodules. This leaves the .gitmodules address free of any user-
names and usable by any developer authorized to clone the project.

$ git clone --recurse-submodules https://github.com/useri/myproject
Username for ‘https://github.com’: useri
Password for ‘https://useri@github.com?:

[

Figure 17-5. Reuse of credentials in submodules

Use Cases

Open Sourcing a Book’s Code Samples
One of the most exciting examples of applying submodules was the open sourcing
of the Building and Testing Gradle book’s code examples long before the book itself
was put on the market. This allowed for the creation of some early buzz around
the book as well as community contributions to and polishing of the examples.
Using GitHub as the repository host, the top level book project was closed source,
but contained a submodule for the example code in a folder named examples.
Specific source code files in the examples directory were directly referenced by the
book prose AsciiDoc files. The book PDF and HTML generation tooling had no
idea a Git submodule was used; it was just a regular directory as far as it was

318 | Chapter17: Submodule Best Practices

concerned. The contributors to the open source examples had no burden on how
this code was used in the book. It was an eye-opening experience that other tech-
nical authors are encouraged to repeat.
A Plug-in

Frequently in the Objective-C world, but also in the ANSI C and C++ ecosystems,
plug-in—like code can be incorporated as a submodule into a superproject without
losing the ability to update of a connection to the original add-in author’s reposi-
tory. The traditional README-suggested process of copying these files into your
project leaves them detached from any historical metadata and subject to a manual
copy-and-paste update. This plug-in pattern extends even to noncompiled code

such as Emacs Lisp setups, and dotfile configurations with the inclusion of oh-my-
zsh.

A Large Repo
The most contentious use of submodules is for scaling down the size of a repository.
Although a practical solution to Git’s desire to have relatively small repos (1 to 4GB
total) compared to several-hundred-gigabyte SVN repositories, strategic develop-
ers should consider solutions that link projects on a binary or Application
Programming Interface (API) level rather than at the source level that submodules
provide.

Visibility Constraints

A final and unique implementation pattern of submodules is the partitioning of
(access control-based) visibility of a composed application. One Git-using devel-
opment team has cryptographic code that had licensing constraints permitting only
a handful of developers to see it. That code was stored as a Git submodule and
when the superproject was cloned, the permissions denied the majority of devel-
opers from being able to clone that submodule. The build system for this project
was carefully constructed to adapt to the missing source of the cryptographic
component, outputting a developer-only build. The SSH key of the continuous
integration server, on the other hand, does have permission to retrieve the cryp-
tography submodule, thus producing the feature-complete builds that customers
will ultimately receive.

Multilevel Nesting of Repos

The use of submodules discussed thus far can be extended to another level of recursion.
submodules can in turn be superprojects, and thus contain submodules. This prolif-
erated the use of custom automation scripts to recursively apply behavior to every
nested submodule. However, that need has been mitigated through recent improve-
ments in submodule support across the Git vocabulary.

Submodules have received renewed attention in the 1.6.x and 1.7.x era of Git, with the
addition of - -recurse-submodules option switch to the majority of the network-enabled
Git commands. As of Git Version 1.7.9.4, this option is supported by the clone,

Multilevel Nesting of Repos | 319

https://github.com/matthewmccullough/emacs
https://github.com/matthewmccullough/dotfiles
https://github.com/robbyrussell/oh-my-zsh
https://github.com/robbyrussell/oh-my-zsh

fetch, and pull commands. Furthermore, the convenience of working with nested
submodules has been improved with submodule status, submodule update, and
submodule for each, all supporting the --recurse option.

Submodules on the Horizon

I've been pleased to see that as submodule tooling support increases, such as the
Graphical User Interface (GUI) support for revision updates in Git Tower, in
addition to the hyperlinking of submodules on GitHub, adoption has also increased
(see Figure 17-6). This also parallels the developer community’s ever increasing profi-
ciency in Git. As the idea of pointers to specific views of all files at an instant in time
becomes more of a pedestrian concept, the use of submodules is likely to increase even
further.

B gitigr‘ore/ 6 months agoe Removing unnecessary global ignores [matthewmccullough]

I= oh-my-zsh @ eBd582a 10 hours ago Updated oh-my-zsh [matthewmccullough]

B profile 6 months ago Refactored names of scripts to not have dots [Matthew McCullough]
B rvmre 6 months ago Refactored names of scripts to not have dots [Matthew McCullough]
K& scripts @ Oedff67 10 hours ago Added macvim to scripts [matthewmeccullough]

Figure 17-6. Submodule hyperlinks on GitHub repositories

320 | Chapter17: Submodule Best Practices

http://www.git-tower.com/files/applicationHelp/pgs/Submodules_ConceptIntroduction.html
http://help.github.com/submodules/

CHAPTER 18
Using Git with Subversion Repositories

As you become more and more comfortable with Git, you’ll likely find it harder and
harder to work without such a capable tool. But sometimes you’ll have to do without
Git—say, if you work with a team whose source code is managed by some other VCS.
(SVN, for example, is popular among open source projects.) Luckily, the Git developers
have created numerous plug-ins to import and synchronize source code revisions with
other systems.

This chapter demonstrates how to use Git when the rest of your team employs SVN.
This chapter also provides guidance if more of your teammates want to make the switch
to Git, and it explains what to do if your team wants to drop SVN entirely.

Example: A Shallow Clone of a Single Branch

To begin, let’s make a shallow clone of a single SVN branch. Specifically, let’s work
with the source code of SVN itself (which is guaranteed to be managed with SVN for
as long as this book is in print) and a particular set of revisions, 33005 through 33142,
from the 1.5.x branch of SVN.

The first step is to clone the SVN repository:

$ git svn clone -r33005:33142 \
http://svn.collab.net/repos/
svn/branches/1.5.x/ svn.git

'
og In some Git packages, such as those provided by the Debian and Ubuntu

"‘:‘ Linux distributions, the git svn command is an optional part of Git. If
T Ua you type git svn and are warned that “svn is not a git-command,” try

" toinstall the git-svn package. (See Chapter 2 for details about installing

Git packages.)

The git svn clone command is more verbose than the typical git clone and is usually
slower than running either Git or SVN separately.! In this example, however, the initial

321

clone won’t be too slow, because the working set is but a small portion of the history
of a single branch.

Once git svn

clone finishes, glance at your new Git repository:

$ cd svn.git

$1s
./ build/ contrib/ HACKING README win-tests.py
i build.conf COPYING INSTALL STATUS wWww/
aclocal.m4 CHANGES doc/ Makefile.in subversion/
autogen.sh* COMMITTERS gen-make.py* notes/ tools/
BUGS configure.ac .git/ packages/ TRANSLATING
$ git branch -a
* master
git-svn
$ git log -1
commit 05026566123844aa2d65a6896bf7c6e65fc53f7¢
Author: hwright <hwright@612f8ebc-c883-4be0-9ee0-a4e9ef946e3a>
Date: Wed Sep 17 17:45:15 2008 +0000
Merge 132790, 132796, r32798 from trunk:
* 132790, 132796, 132798
Fix issue #2505: make switch continue after deleting locally modified
directories, as it update and merge do.
Notes:
132796 updates the docstring.
132798 is an obvious fix.
Justification:
Small fix (with test). User requests.
Votes:
+1: danielsh, zhakov, cmpilato
git-svn-id: http://svn.collab.net/repos/svn/branches/
1.5.x@33142 612f8ebc-c883-4be0-9ee0-a4e9ef946e3a
$ git log --pretty=oneline --abbrev-commit
0502656... Merge r32790, 132796, r32798 from trunk:
77a44ab... Cast some votes, approving changes.
de50536... Add r33136 to the r33137 group.
96d6de4. .. Recommend r33137 for backport to 1.5.x.
e2d810c... * STATUS: Nominate r32771 and vote for r32968, r32975.
23e5373... * subversion/po/ko.po: Korean translation updated (no
fuzzy left; applied from trunk of r33034)
92902fa... * subversion/po/ko.po: Merged translation from trunk r32990
4e7f79a... Per the proposal in

1. The git svn command is sluggish because it isn’t highly optimized. SVN support in Git has fewer users
and developers than plain Git or plain SVN. Additionally, git svn simply has more work to do. Git
downloads the repository’s history, not just the most recent version, whereas the SVN protocol is
optimized for downloading just one version at a time.

322 | Chapter18:

Using Git with Subversion Repositories

Download from Wow! eBook <www.wowebook.com>

http://svn.haxx.se/dev/archive-2008-08/0148.shtml,

Add release stream openness indications to the

STATUS files on our various release branches.
foeae83... Merge r31546 from trunk:

There are a few things to observe:

* You can now manipulate all the imported commits directly with Git, ignoring the
SVN server. Only git svn commands talk to the server; other Git commands such
as git blame, git log, and git diff are as fast as always and function even when
you’re not online. This offline feature is a major reason developers prefer to use
git svninstead of SVN.

* The working directory lacks .svn directories, but it does have the familiar .git
directory. Normally, when you check out a SVN project, each subdirectory con-
tains a .svn directory for bookkeeping. However, git svn does its bookkeeping in
the .git directory, as Git always does. The git svn command does use an extra
directory called .git/svn, which is described momentarily.

* Even though you checked out a branch named 1.5.x, the local branch has the
standard Git name master. Nonetheless, it still corresponds to the 1.5.x branch,
revision 33142. The local repository also has a remote ref called git-svn, which is
the parent of the local master branch.

e The author’s name and email address in git log is atypical for Git. For example,
the author is listed as hwright instead of the author’s real name, Hyrum Wright.
Moreover, his email address a string of hex digits. Unfortunately, SVN doesn’t store
an author’s full name or email address. Instead, it stores only the author’s login,
which in this case is hwright. However, because Git wants the extra information,
git svnfabricates it. The string of hex digits is the unique ID of the SVN repository.
With it, Git can uniquely identify this particular hwright user on this particular
server by using his generated email address.

W N

If you know the proper name and email address of every developer in
your SVN project, you can specify the --authors-file option to use a
4 list of known identities instead of a set of manufactured ones. However,
this is optional and matters only if you care about the aesthetics of your
logs. Most developers don’t. Run the command git help svn for more
information.

User identification differs between SVN and Git. Every SVN user must
have a login on the central repository server to make a commit. Login
+ names must be unique and thus are suitable for identification in SVN.

Git, on the other hand, does not require a server. In Git’s case, the user’s
email address is the only reliable, easily understood, and globally unique
string.

Example: A Shallow Clone of a Single Branch | 323

* SVN users don’t typically write one-line summaries in commit messages, as Git
users do, so the one line format from git log produces rather ugly results. There’s
not much you can do about this, but you might ask or encourage your SVN col-
leagues to adopt the one-line summary voluntarily. After all, a one-line summary
is helpful in any VCS.

* There’s an extra line in each commit message, prefixed with git-svn-id. This line
is used by git svn to keep track of where the commit came from. In this case, the
commit came from http://svn.collab.net/repos/svn/branches/1.5.x, as of revision
33142, and the server unique ID is the same one used to generate Hyrum'’s fake
email address.

* git svn created a new commit ID number (0502656...) for each commit. If you
used exactly the same Git software and command-line options as those shown here,
then the commit numbers you see on your local system should likewise be identical.
That’s appropriate, because your local commits are the same commits from the
same remote repository. This detail is critical in certain git svn work flows, as
you’ll see shortly.

It’s also fragile. If you use different git svn clone options, even just cloning a
different revision sequence, then all your commit IDs will change.

Making Your Changes in Git

Now that you have a Git repository of SVN source code, the next thing to do is make
a change:
$ echo 'I am now a subversion developer!' >hello.txt

$ git add hello.txt
$ git commit -m 'My first subversion commit'

Congratulations, you’ve contributed your first change to the SVN source code!

Well, not really. You’ve committed your first change to the SVN source code. In plain
SVN, where every commit is stored in the central repository, committing a change and
sharing it with everyone is the same thing. In Git, however, a commit is just an object
in your local repository until you push the change to someone else. And git svndoesn’t
change that.

Alas, if you want to contribute your changes back, the usual Git operation doesn’t work:

$ git push origin master
fatal: 'origin': unable to chdir or not a git archive
fatal: The remote end hung up unexpectedly

In other words: you didn’t create a Git remote called origin, so the command doesn’t
make any sense. (For more about defining remotes, see Chapter 12.) In fact, a Git
remote won’t solve this problem. If you want to commit back to SVN, you must use
git svn dcommit.2

324 | Chapter18: Using Git with Subversion Repositories

http://svn.collab.net/repos/svn/branches/1.5.x

$ git svn dcommit

Committing to http://svn.collab.net/repos/svn/branches/1.5.x ...
Authentication realm: <http://svn.collab.net:80> Subversion Committers
Password for 'bob':

If you actually had commit access to the central SVN source code repository (only a
few people in the world have this privilege), you would enter your password at the
prompt and git svn would do its magic. But then things would become even more
confusing, because you’re trying to commit to a revision that isn’t the latest one.

Let’s examine what to do about this next.

Fetching Before Committing

Recall that SVN keeps a linear, sequential view of history. If your local copy has an
older version from the SVN repository (it does) and you’ve made a commit to that old
version (you did), then there’s no way to send it back to the server. SVN simply has no
way of creating a new branch at an earlier point in the history of a project.

However, you did create a fork in the history, as a Git commit always does. That leaves
two possibilities:
1. The history was intentionally forked. You want to keep both parts of the history,
merge them together, and commit the merge to SVN.
2. The fork wasn’t intentional and it would be better to linearize it and then commit.
Does this sound familiar? It’s similar to the choice between merging and rebasing dis-

cussed in “rebase Versus merge” on page 174 of Chapter 10. The former option cor-
responds to git merge, and the latter is akin to git rebase.

The good news here is that, once again, Git offers both options. The bad news is that
SVN is going lose some part of your history no matter which option is chosen.

To continue, fetch the latest revisions from SVN:3
$ git svn fetch

M STATUS
M build.conf
M COMMITTERS
133143 = 152840fb7ec59d642362b2de5d8f98ba87d58a87 (git-svn)
M STATUS
133193 = 13fc53806d777e3035f26ff5d1eedd5d1b157317 (git-svn)

2. Why “dcommit” instead of “commit”? The original git svn commit command was destructive and poorly
designed, and it should be eschewed. However, rather than break backward compatibility, the git svn
developers decided to add a new command, dcommit. The old commit command is now better known as
set-tree, but don’t use that command, either.

3. Your local repository will definitely be missing revisions, because only a subset of all revisions was cloned
at the start. You'll probably see more new revisions than those shown here, because SVN developers are
still working on the 1.5.x branch.

Example: A Shallow Clone of a Single Branch | 325

M STATUS
133194 = d70041fd576337b1d0e605d7f4eb2feb8ce08f86 (git-svn)

You can interpret the previous log messages as follows:

* The M means a file was modified.
* 133143 is the SVN revision number of a change.
* 152840f... is the corresponding Git commit ID generated by git svn.

* git-svn is the name of the remote ref that’s been updated with the new commit.

Let’s look at what’s going on:

$ git log --pretty=oneline --abbrev-commit --left-right master...git-svn
<2e5f71c... My first subversion commit

>d70041f... * STATUS: Added note to r33173.

>13fc538... * STATUS: Nominate r33173 for backport.

>152840f... Merge r31203 from trunk:

In plain English, the left branch (master) has one new commit and the right branch
(git-svn) has three new commits. (You’ll likely see different output when you run the
command because this output was captured during production of the book.) The
--left-right option and the symmetric difference operator (...) are discussed in “git
log with conflicts” on page 132 of Chapter 9 and in “Commit Ranges” on page 78 of
Chapter 6, respectively.

Before you can commit back to SVN, you need one branch with all the commits in one
place. Additionally, any new commits must be relative to the current state of the git-
svn branch because that’s all SVN knows how to do.

Committing Through git svn rebase

The most obvious way to add your changes is to rebase them on top of the git-svn

branch:

$ git checkout master

Rebase current master branch on the upstream git-svn branch
$ git rebase git-svn

First, rewinding head to replay your work on top of it...
Applying: My first subversion commit

$ git log --pretty=oneline --abbrev-commit --left-right master...git-svn
<0c4c620... My first subversion commit

A shortcut for git svn fetch followed by git rebase git-svn is simply
git svn rebase. The latter command automatically deduces that your branch is based
on the one called git-svn, fetches that from SVN, and rebases your branch onto it.
Furthermore, when git svn dcommit notices that your SVN branch is out of date, it
doesn’t just give up; it automatically calls git svn rebase first.

326 | Chapter18: Using Git with Subversion Repositories

If you always want to rebase instead of merging, git svn rebase is a
:‘é% great time saver. But if you don’t like rewriting history by default, you

must be very careful not to dcommit until you’ve done git svn fetch and
git merge manually.

If you’re just using Git as a convenient way to access your SVN history, then rebasing
is fine—just as git rebase is a perfectly fine way to rearrange a set of patches you’re
working on—as long as you’ve never pushed those patches to anyone else. But rebasing
with git svn faces all the same drawbacks as rebasing in general.

If you rebase your patches before committing them to SVN, make sure you understand
the following;:

* Don’t create local branches and git merge them. As mentioned in “rebase Versus
merge” on page 174 of Chapter 10, rebasing confuses git merge. With plain Git,
you can choose not to rebase any branch that another branch is based on, but with
git svn you don’t have that option. All your branches are based on the git-svn
branch, and that’s the one that all other branches need to be based on.

* Don’tlet anyone pull from or clone your repository; let them use git svn to create
their own Git repository instead. Because pulling one repository into another
always causes a merge, it won’t work, and for the same reason that git merge won’t
work when you’ve rebased your repository.

* Rebase and dcommit frequently. Remember, an SVN user does the equivalent of
a git push every time she makes a commit, and that’s still the best way to keep
things under control when your history has to stay linear.

* Don’t forget that, when you rebase a series of patches onto another branch, the
intermediate versions created by the patches never really existed and were never
really tested. You are essentially rewriting history and, indeed, that’s what it is. If
later you try to use git bisect or git blame (or svn blame in SVN) to determine
when a problem was introduced, you won’t have a true view of what happened.

Do these warnings make git svn rebase sound dangerous? Good. Every variation of
git rebaseistreacherous. However, if you follow the rules and don’t try anything fancy,
you’ll be OK.

Now let’s try something fancy.

Pushing, Pulling, Branching, and Merging with git svn

Rebasing all the time is fine if you simply want to use Git as a glorified SVN repository
mirror. Even that by itself is a great step forward: you get to work offline; you get faster
log, blame, and diff operations; and you don’t annoy your coworkers who are perfectly
happy using SVN. Nobody even has to know you’re using Git.

Pushing, Pulling, Branching, and Merging with gitsvn | 327

But what if you want to do a little more than that? Maybe one of your coworkers wants
to collaborate with you on a new feature using Git. Or perhaps you want to work on a
few topic branches at a time and wait on committing them back to SVN until you’re
sure they’re ready. Most of all, maybe you find SVN’s merging features tedious and you
want to use Git’s much more advanced capabilities.

If you use git svn rebase, you can’t really do any of those things. The good news is
that if you avoid using rebase, git svn will let you do it all.

There’s only one catch: your fancy, nonlinear history won’t ever be in SVN. Your SVN-
using coworkers will see the results of your hard work in the form of an occasional
squashed merge commit (see “Squash Merges” on page 147 in Chapter 9), but they
won’t be able to see exactly how you got there.

If that’s going to be a problem, you should probably skip the rest of this chapter. But
if your coworkers don’t care—most developers don’t look at others’ histories, anyway
—or if you want to use it to prod your coworkers to try out Git, then what’s described
next is a much more powerful way to use git svn.

Keeping Your Commit IDs Straight

Recall from Chapter 10 that a rebase is disruptive because it generates entirely new
commits that represent the same changes. The new commits have new commit IDs,
and when you merge one branch with one of the new commits into another branch
that had one of the old commits, Git has no way of knowing you’re applying the same
change twice. The result is duplicate entries in git log and sometimes a merge conflict.

With plain Git, preventing such situations is easy: avoid git cherry-pick and
git rebase and the problems won’t occur at all. Or use the commands carefully, and
issues will occur only in controlled situations.

With git svn, however, there’s one more potential source of problems, and it’s not as
easy to avoid. The problem is that the Git commit objects created by your git svn are
not always the same as the ones produced by other people’s git svn, and you can’t do
anything about it. For example:

* Ifyouhavea different version of Git than someone else, your git svnmight generate
different commits than your coworker. (The Git developers try very hard to avoid
this, but it can happen.)

* Ifyou use the --authors-file option to remap author names or apply various other
git svn options that change its behavior, all the commit IDs will be different.

* If you use a SVN URI that’s different from someone else working in the SVN
repository (e.g., if you access an anonymous SVN repository but someone else uses
an authenticated method to access the same repository), then your git-svn-idlines
will be different; this changes the commit message, which changes the SHA1 of the
commit, which changes the commit ID.

328 | Chapter18: Using Git with Subversion Repositories

* If you fetch only a subset of SVN revisions by using the -r option to
git svn clone (as in the first example in this chapter) and someone else fetches a
different subset, then the history will be different and so the commit IDs will be
different.

* If you use git merge and then git svn dcommit the results, the new commit will
look different to you from the same commit that other people retrieve through
git svn fetch because only your copy of git svn knows the true history of that
commit. (Remember that, on its way into SVN, the history information is lost, so
even Git users retrieving from SVN can’t get that history back again.)

With all those caveats, it might sound like trying to coordinate between git svn users
is almost impossible. But there’s one simple trick you can use to avoid all these prob-
lems: make sure there’s only one Git repository, the “gatekeeper,” which uses
git svn fetch or git svn dcommit.

Using this trick has several advantages:

* Because only one repository ever interfaces with SVN, there will never be a problem
with incompatible commit IDs, because every commit is created only once.

* Your Git-using coworkers will never have to learn how to use git svn.

* Because all Git users are just using plain Git, they can collaborate with each other,
using any Git workflow, without worrying about SVN.

* It’s faster to convert a new user from SVN to Git because a git clone operation is
much faster than downloading every single revision from SVN, one at a time.

* Ifyour entire team eventually converts to Git, then you can simply unplug the SVN
server one day and nobody will know the difference.

But there’s one main disadvantage: you end up with a bottleneck between the Git world
and the SVN world. Everything must go through a single Git repository, which is prob-
ably administered by a small number of people.

At first, compared to a completely distributed Git setup, requiring a centrally managed
git svnrepository may seem like a step backward. But you already have a central SVN
repository, so this doesn’t make matters any worse.

Let’s look at setting up that central gatekeeper repository.

Cloning All the Branches

Earlier, when you set up a personal git svn repository, the procedure cloned just a few
revisions of a single branch. That’s good enough for one person who wants to do some
work offline, but if an entire team is to share the same repository then you can’t make
assumptions about what parts are needed and what parts are not. You want all the
branches, all the tags, and all the revisions of each branch.

Pushing, Pulling, Branching, and Merging with gitsvn | 329

Because this is such a common requirement, Git has an option to perform a complete
clone. Let’s clone the SVN source code again, but this time doing all the branches:

All on one line
$ git svn clone --stdlayout --prefix=svn/
-r33005:33142 http://svn.collab.net/repos/svn svn-all.git

The best way to produce a gatekeeper repository is to leave out the -r
”’% option entirely. But if you did that here, it would take hours or even

days to complete. As of this writing, the SVN source code contains tens
of thousands of revisions, and git svn would have to download each
one individually over the Internet. If you’re following along with this
example, keep the -r option. But if you’re setting up a Git repository for
your own SVN project, leave it out.

Notice the new options:

» --stdlayout tells git svn that the repository branches are set up in the standard
SVN way, with the /trunk, /branches, and /tags subdirectories corresponding
(respectivel) to mainline development, branches, and tags. If your repository is laid
out differently then you can try the --trunk, --branches, and --tags options
instead, or edit .git/config to set the refspec option by hand. Type git help svn for
more information.

* --prefix=svn/ creates all the remote refs with the prefix svn/, allowing you to refer
to individual branches as svn/trunk and svn/1.5.x. Without this option, your SVN
remote refs wouldn’t have any prefix at all, making it easy to confuse them with
local branches.

git svnshould churn for a while. When it’s all over, the results look like this:

$ cd svn-all.git
$ git branch -a -v | cut -c1-60
* master 0502656 Merge r32790, 132796, r32798

svn/1.0.x 19e69aa Merge the 1.0.x-issue-2751 br
svn/1.1.x e20abce Per the proposal in http://sv
svn/1.2.x 70a5c8a Per the proposal in http://sv
svn/1.3.x 3218c36 * STATUS: Leave a breadcrumb

svn/1.4.x 23ecb32 Per the proposal in http://sv
svn/1.5.x 0502656 Merge r32790, r32796, 132798

svn/1.5.x-issue2489 2bbe257 On the 1.5.x-issue2489 branch
svn/explore-wc 798467 On the explore-wg branch:

svn/file-externals 4c6e642 On the file externals branch.
svn/ignore-mergeinfo e3d51f1 On the ignore-mergeinfo branc
svn/ignore-prop-mods 7790729 On the ignore-prop-mods branc
svn/svnpatch-diff 918b5ba On the 'svnpatch-diff' branch
svn/tree-conflicts 79f44eb On the tree-conflicts branch,
svn/trunk ae47f26 Remove YADFC (yet another dep

The local master branch has automatically been created, but it isn’t what you might
expect. It’s pointing at the same commit as the svn/1.5.x branch, not the svn/trunk
branch. Why? The most recent commit in the range specified with -r belonged to the

330 | Chapter18: Using Git with Subversion Repositories

svn/1.5.x branch. (But don’t count on this behavior; it’s likely to change in a future
version of git svn.) Instead, let’s fix it up to point at the trunk:

$ git reset --hard svn/trunk
HEAD is now at ae47f26 Remove YADFC (yet another deprecated function call).

$ git branch -a -v | cut -c1-60
* master ae47f26 Remove YADFC (yet another dep

svn/1.0.x 19e69aa Merge the 1.0.x-issue-2751 br
svn/1.1.x e20abce Per the proposal in http://sv
svn/1.2.x 70a5c8a Per the proposal in http://sv
svn/1.3.x 3218c36 * STATUS: Leave a breadcrumb

svn/1.4.x 23ecb32 Per the proposal in http://sv
svn/1.5.x 0502656 Merge 132790, 132796, 132798

svn/1.5.x-issue2489 2bbe257 On the 1.5.x-issue2489 branch
svn/explore-wc 798f467 On the explore-wg branch:

svn/file-externals 4c6e642 On the file externals branch.
svn/ignore-mergeinfo e3d51f1 On the ignore-mergeinfo branc
svn/ignore-prop-mods 7790729 On the ignore-prop-mods branc
svn/svnpatch-diff 918b5ba On the 'svnpatch-diff' branch
svn/tree-conflicts 79f44eb On the tree-conflicts branch,
svn/trunk ae47f26 Remove YADFC (yet another dep

Sharing Your Repository

After importing your complete git svn gatekeeper repository from SVN, you need to
publish it. You do that in the same way you would set up any bare repository (see
Chapter 12), but with one trick: the SVN branches that git svn creates are actually
remote refs, not branches. The usual technique doesn’t quite work:

$c..
$ mkdir svn-bare.git
$ cd svn-bare.git

$ git init --bare
Initialized empty Git repository in /tmp/svn-bare/

$c..
$ cd svn-all.git

$ git push --all ../svn-bare.git

Counting objects: 2331, done.

Compressing objects: 100% (1684/1684), done.

Writing objects: 100% (2331/2331), 7.05 MiB | 7536 KiB/s, done.
Total 2331 (delta 827), reused 1656 (delta 616)

To ../svn-bare

* [new branch] master -> master

Pushing, Pulling, Branching, and Merging with gitsvn | 331

You’re almost there. With git push you copied the master branch but none of the
svn/ branches. To make things work properly, modify the git push command by telling
it explicitly to copy those branches:

$ git push ../svn-bare.git 'refs/remotes/svn/*:refs/heads/svn/*'
Counting objects: 6423, done.

Compressing objects: 100% (1559/1559), done.

Writing objects: 100% (5377/5377), 8.01 MiB, done.

Total 5377 (delta 3856), reused 5167 (delta 3697)

To ../svn-bare

* [new branch] svn/1.0.x -> svn/1.0.x

* [new branch] svn/1.1.x -> svn/1.1.x

* [new branch] svn/1.2.x -> svn/1.2.x

* [new branch] svn/1.3.x -> svn/1.3.x

* [new branch] svn/1.4.x -> svn/1.4.x

* [new branch] svn/1.5.x -> svn/1.5.x

* [new branch] svn/1.5.x-issue2489 -> svn/1.5.x-issue2489
* [new branch] svn/explore-wc -> svn/explore-wc

* [new branch] svn/file-externals -> svn/file-externals

* [new branch] svn/ignore-mergeinfo -> svn/ignore-mergeinfo
* [new branch] svn/ignore-prop-mods -> svn/ignore-prop-mods
* [new branch] svn/svnpatch-diff -> svn/svnpatch-diff

* [new branch] svn/tree-conflicts -> svn/tree-conflicts

* [new branch] svn/trunk -> svn/trunk

This takes the svn/ refs, which are considered remote refs, from the local repository
and copies them to the remote repository, where they are considered heads (i.e., local
branches).4

Once the enhanced git push is done, your repository is ready. Tell your coworkers to
go ahead and clone your svn-bare.git repository. They can then push, pull, branch,
and merge among themselves without a problem.

Merging Back into Subversion

Eventually, you and your team will want to push changes from Git back into SVN. As
before, you’ll do this using git svn dcommit, but you need not rebase first. Instead, you
can first git merge orgit pull the changes into a branch in the svn/ hierarchy and then
dcommit only the single new merged commit.

For instance, suppose that your changes are in a branch called new-feature and that
you want to dcommit it into svn/trunk. Here’s what to do:

$ git checkout svn/trunk
Note: moving to "svn/trunk" which isn't a local branch
If you want to create a new branch from this checkout, you may do so
(now or later) by using -b with the checkout command again. Example:
git checkout -b <new_branch_name>
HEAD is now at ae47f26... Remove YADFC (yet another deprecated function call).

4. If you think this sounds convoluted, you’re right. Eventually, git svn may offer a way to simply create
local branches instead of remote refs, so that git push --all will work as expected.

332 | Chapter18: Using Git with Subversion Repositories

$ git merge --no-ff new-feature

Merge made by recursive.

hello.txt | 1+

1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 hello.txt

$ git svn dcommit
There are three surprising things here:

* Rather than checking out your local branch, new-feature, and merging in svn/
trunk, you must do it the other way around. Normally, merging works fine in either
direction, but git svn won’t work if you do it the other way.

* You merge using the --no-ff option, which ensures there will always be a merge
commit (even though sometimes a merge commit might seem unnecessary).

* You do the whole operation on a disconnected HEAD, which sounds dangerous.

You absolutely must do all three surprising things, or the operation won’t work reliably.

How dcommit handles merges

To understand why it’s necessary to dcommit in such a strange way, consider carefully
how dcommit works.

First, dcommit figures out the SVN branch to commit to by looking at the git-svn-
id of commits in the history.

B
)

If you’re nervous about which branch dcommit will pick, you can use
git svn dcommit -n to try a harmless dry run.
N

If your team has been doing fancy things—which is, after all, the point of this section
—then there might be merges and cherry-picked patches on your new-feature branch,
and some of those merges might have git-svn-id lines from branches other than the
one to which you want to commit.

To resolve the ambiguity, git svnlooks at only the left side of every merge, in the same
way that git log --first-parent does. That’s why merging from svn/trunk into new-
feature doesn’t work: svn/trunk would end up on the right, not the left, and git svn
wouldn’t see it. Worse, it would think your branch was based on an older version of
the SVN branch and so would try to automatically git svn rebase it for you, making
a terrible mess.

The same reasoning explains why --no-ff is necessary. If you check out the new-
feature branch and git merge svn/trunk, then check out the svn/trunk branch and
git merge new-feature without the --no-ff option, Git will do a fast-forward rather

Pushing, Pulling, Branching, and Merging with gitsvn | 333

than a merge. This is efficient, but results in svn/trunk being on the right side, with the
same problem as before.

Finally, after it figures all this out, git svn dcommit needs to create one new commit in
SVN corresponding to your merge commit. When that’s done, it must add a git-svn-
idline to the commit message, which means the commit ID changes, so it’s not the same
commit anymore.

The new merge commit ends up in the real svn/trunk branch, and the merge commit
you created earlier (on the detached HEAD) is now redundant. In fact, it’s worse than
redundant. Using it for anything else eventually results in conflicts. So, just forget about
that commit. If you haven’t put it on a branch in the first place, it’s that much easier
to forget.

Miscellaneous Notes on Working with Subversion

There are a few more things that you might want to know when you’re using git svn.

svn:ignore Versus .gitignore

In any VCS, you need to be able to specify files that you want the system to ignore, such
as backup files, compiled executables, and so on.

In SVN, this is done by setting the svn:ignore property on a directory. In Git, you create
a file called .gitignore, as explained in “The .gitignore File” on page 58 of Chapter 5.

Conveniently, git svnprovides an easy way to map from svn:ignore to .gitignore. There
are two approaches to consider:

* git svn create-ignore automatically creates .gitignore files to match the
svn:ignore properties. You can then commit them, if you’d like.

e git svn show-ignore finds all the svn:ignore properties in your whole project and
prints the entire list. You can capture the command’s output and put it in
your .git/infolexclude file.

Which technique you choose depends on how covert your git svnusageis. If you don’t
want to commit the .gitignore files into your repository, thus making them show up for
your SVN-using coworkers, then use the exclude file. Otherwise, .gitignore is usually
the way to go, because it’s automatically shared by everyone else using Git on that
project.

Reconstructing the git-svn Cache

The git svn command stores extra housekeeping information in the .git/svn directory.
This information is used, for example, to quickly detect whether a particular SVN
revision has already been downloaded and so doesn’t need to be downloaded again. It

334 | Chapter18: Using Git with Subversion Repositories

also contains all the same git-svn-id information that shows up in imported commit
messages.

If that’s the case, then why do the git-svn-id lines exist at all? The reason is that,
because the lines are added to the commit object and the content of a commit object
determines its ID, it follows that the commit ID changes after sending it through
git svn dcommit, and changing the commit IDs can make future Git merging painful
unless you follow the careful steps listed earlier. But if Git just omitted the git-svn-
id lines, then the commit IDs wouldn’t have to change and git svn would still work
fine. Right?

Yes, except for one important detail. The .git/svn directory isn’t cloned with your Git
repository. An important part of Git’s security design is that only blob, tree, and commit
objects are ever shared. Hence, the git-svn-id lines need to be part of a commit object,
and anyone with a clone of your repository will get all the information they need to
reconstruct the .git/svn directory. This has two advantages:

1. If you accidentally lose your gatekeeper repository or break something, or if you
disappear and there’s nobody to maintain your repository, then anyone with a
clone of your repository can set up a new one.

2. If git-svn has a bug and corrupts its .git/svn directory, you can regenerate it when-
ever you want.

You can try out regenerating the cache information whenever you want by moving
the .git/svn directory out of the way. Try this:
$ cd svn-all.git

$ mv .git/svn /tmp/git-svn-backup
$ git svn fetch -r33005:33142

Here, git svn regenerates its cache and fetches the requested objects. (As before, you
would normally leave off the -r option to avoid downloading thousands of commits,
but this is just an example.)

Miscellaneous Notes on Working with Subversion | 335

CHAPTER 19
Advanced Manipulations

Using git filter-branch

The command git filter-branch is a generic branch processing command that allows
you to arbitrarily rewrite the commits of a branch using custom commands that operate
on different objects within the repository. Some filters work on commits, some filters
on tree objects and directory structures, and others provide environmental
manipulation opportunity.

Does that sound useful and yet dangerous?

Good.

As you might suspect, with great power comes great responsibility.! The power and
purpose of filter-branchis also the source of my warning: it has the potential to rewrite
the entire repository’s commit history. Executing this command on a repository that
has already been published for others to clone and use will likely cause them endless
grief later. As with all rebasing operations, commit history will change. After this
command, you should consider any repositories cloned from it earlier as obsolete.

With that warning about rewriting repository history behind us, let’s find out what the
command can do, when and why it might be useful, and how to use it responsibly.

The filter-branch command runs a series of filters on one or more branches within
your repository. Each filter can have its own custom filtering command. You don’t have
to run them all, or even more than one. But they are designed and sequenced so that
earlier filters can affect the behavior of later filters. The subdirectory-filter runs as a
precommit-processing selection filter, and the tag-name-filter runs as a postcommit-
processing step,

1. Frangois-Marie Arouet, of course!

337

To help you get a clearer picture of what is happening during the filtering process, it
might help to know that as of version 1.7.9, git filter-branch is a shell script.2 Except
for the conmit-filter, each command is evaluated in a shell (sh) context using eval.

Here is a brief description of each filter and the order in which they run:

env-filter command
The env-filter can be used to create or alter the shell environment settings prior
to running the subsequent filters and committing the newly rewritten objects. Of
note, changing variables such as GIT_AUTHOR_NAME, GIT AUTHOR_EMAIL, GIT_COMMIT
TER_NAME, and GIT_COMMITTER _EMAIL may be useful. The command should likely both
set and export environment variables.

tree-filter command
The tree-filter allows you to modify the contents of a directory that will be cap-
tured by a tree object. You can use this filter to remove files from or add files to the
repository retroactively. This filter checks out the branch at each commit during
the filtering. Be aware that the .gitignore file is not effective during this filter.

index-filter command
The index-filter is used to alter the contents of the index prior to making a com-
mit. Throughout the filtering process, the index of each commit is made available
without checking out the corresponding files into a working directory. Thus, this
filter is similar to the tree-filter but faster if you don’t actually need the file con-
tents during the filter. You should study the low-level git update-index command.

parent-filter command
The parent-filter allows you to restructure the parent relationship of every com-
mit. For a given commit, you specify its new parent or parents. To use this properly,
you should study the low-level git commit-tree command.

msg-filter command
Just prior to actually making a newly filtered commit, the msg-filter allows you
to edit the commit message. The command should accept the old message on stdin
and write the new message on stdout.

commit-filter command

Normally during the filtering pipeline, git commit-tree will be used to perform the
commit. However, this filter gives you control over this step yourself. Your
command will be called with the new (possibly rewritten) tree-obj and a list of
(possibly rewritten) -p parent-obj parameters. The (possibly rewritten) commit
message will be on stdin. You should likely still use git commit-tree, but there are
also a few convenience functions provided environmentally as well: map, skip_com
mit, git commit_non_empty tree,and die. The git filter-branch manual page has
details for each of these functions.

2. Due to the scripting context for each filter, it’s likely to stay that way, too.

338 | Chapter19: Advanced Manipulations

Download from Wow! eBook <www.wowebook.com>

tag-name-filter command

If your repository has any tags, you should probably use tag-name-filter to rewrite
existing tags to reference the newly created corresponding commits. By default,
the old tags will remain, but you can use cat as the filter to obtain direct
new-for-old mappings of your tags. Although simply mapping tags to reference the
new, corresponding commits is certainly possible, maintaining a signed tag is not.
Remember that the whole point of signing a tag was to maintain a cryptographically
secure indicator of the repository at a certain point in its history. That just went
out the window here, right? So all those signatures on signed tags will be removed
from the corresponding new tags.

subdirectory-filter command
The subdirectory-filter can be used to limit the rewriting of history to only those
commits that affect a specific directory. That is, after filtering, the new repository
will contain only the named directory at its root.

After a git filter-branch completes, the original references comprising the entire old
commit history are available as new refs in refs/original. Naturally, this implies that the
refs/original directory must be empty at the start of the filtering operation. After veri-
fying that you obtained the filtered history you desired, and the original commit history
is no longer needed, carefully remove the .git/refs/original refs. (Or, if you want to be
fully Git compliant and Git friendly, you can even use the command
git update-ref -d refs/original/branch for each branch you filtered.) If you do not
remove this directory, you will continue to have the entirety of both the old and new
content within your repository. The old refs will linger and prevent garbage collection
(see “Garbage Collection” on page 368) from trimming out the otherwise obsolete
commits.3 If you don’t want to explicitly remove this directory, you can also clone away
from it. That is, make a clone of the repository, leaving these original refs behind and
not cloning them into a new repository. Think of it as a natural checkpoint backup.

There are several reasons that best practices with git filter-branch suggest you should
always operate on a newly cloned repository. For starters, git filter-branch flat-out
requires that the operation to begin with a clean working directory. Because the
git filter-branch modifies your original repository in place, it is often described as
being a “destructive” operation. Because the command has many steps, options, and
subtleties, running the command can be quite tricky and often difficult to get right on
the first attempt. Saving the original repository is just prudent computing.

Examples Using git filter-branch

Now that we know what git filter-branch can do, let’s look at a few cases where it
can be used productively. One of the most useful situations occurs when you have just

3. Butalso see the section called “Checklist for Shrinking a Repository” from the git-filter-branch manual
page.

Using git filter-branch | 339

created a repository full of commit history and want to clean it up or do a large-scale
alteration on it prior to making it available for cloning and general use by others.

Using git filter-branch to expunge a file

A common use for git filter-branch is to completely remove a file from the entire
history of a repository. Remember, Git maintains the complete history of every file
within the repository. Thus, simply deleting a file with git rm will not remove it from
older history. One can always go back to earlier commits and retrieve the file.

However, by using git filter-branch, afile can be removed from any and every commit
in the repository, making it appear as if it was never there in the first place.

Let’s work on an example repository that contains personal notes after reading various
books. The notes are stored in files named after the works.

$ cd BookNotes

$1s
1984 Animal_Farm Nightfall Readme Snow_Crash

$ git log --pretty=oneline --abbrev-commit
ffd358c Read Asimov's 'Nightfall'.

4df8f74 Read a few classics.

8d3f5a9 Read 'Snow Crash'

3ed7354 Collect some notes about books.

And the classics from the third commit 4df8f74 are:

$ git show 4df8f74

commit 4df8f74b786b31b6043c44df59d7d13ee2bsb298
Author: Jon Loeliger <jdl@example.com>

Date: Sat Jan 14 12:57:35 2012 -0600

Read a few classics.

- Animal Farm by George Orwell
- 1984 by George Orwell

diff --git a/1984 b/1984

new file mode 100644

index 0000000..84a2da2

--- /dev/null

+++ b/1984

@@ -0,0 +1 @@

+George Orwell is disturbed.
diff --git a/Animal_Farm b/Animal_Farm
new file mode 100644

index 0000000..el1fcdal

--- /dev/null

+++ b/Animal_Farm

@@ -0,0 +1 @@

+Animal Farm was interesting.

340 | Chapter19: Advanced Manipulations

Suppose for some history-revising reason we have decided to remove any record of
George Orwell’s 1984 from the repository. If you don’t care about the old commit
history, simply issuing a git rm 1984 would suffice. But to be thoroughly Orwellian, it
must be removed from the complete history of the repository. It must never have ex-
isted.

Of all the filters listed previously, the likeliest candidates for this operation are the
tree-filter and index-filter. Because this is a small repository and the operation we
want to do, namely, remove one file, is pretty simple and direct, we’ll use the
tree-filter.

As advised earlier, start with a clean clone, just in case.

$c..

$ git clone BookNotes BookNotes.revised
Cloning into 'BookNotes.revised'...
done.

$ cd BookNotes.revised

$ git filter-branch --tree-filter 'rm 1984' master
Rewrite 3ed7354c2c8ae2678122512b26d591a9ed61663e (1/4)

rm: cannot remove "1984': No such file or directory
tree filter failed: rm 1984

$1s
1984 Animal_Farm Nightfall Readme Snow_Crash

Clearly that didn’t go well and something failed. The file is still in the repository.

Let’s think a little about what Git is doing here. Git will iterate over each commit in the
master branch, starting with the very first commit, establish the context (index, files,
directories, etc.) of that commit, and then try to remove the file 1984.

Git tells you which commit it was modifying when the command failed. Commit
3ed7354 is the first of 4 commits.

Rewrite 3ed7354c2c8ae2678122512b26d591a9ed61663e (1/4)

But recall that the file 1984 was introduced in the third commit, 4df8f74, and not the
first. That means that for the first two commits, 3ed7354 and 8d3f5a9, the 1984 file was
not yet in the repository or any of its managed files. That in turn means that when
establishing the filtering context of those first two commits, a simple rm 1984 shell
command within the top-level directory will fail for lack of a file to remove. It’s exactly
as if you had typed rm snizzle-frotz in a directory with no snizzle-frotz file in it.

$ cd /tmp

$ rm snizzle-frotz
m: cannot remove “snizzle-frotz': No such file or directory

The trick is to realize that when removing a file, you don’t care whether the file is
actually present or not. So just force the removal and ignore nonexistent files using the
-f or --force option:

Using git filter-branch | 341

$ cd /tmp
$ rm -f snizzle-frotz

$
OK, back to the BookNotes.revised repository:

$ cd BookNotes.revised

$ git filter-branch --tree-filter 'rm -f 1984' master
Rewrite ffd358c675a1c6d36114e10a92d93fdclee84629 (4/4)
Ref 'refs/heads/master' was rewritten

Asaside note, Gitreally scrolls through all the commits, stating which one it is presently
rewriting, but only the last one shows up on your screen, as just shown. If you are a bit
more clever, perhaps by piping that output through less, you can see that it actually
prints each commit processed:

Rewrite 3ed7354c2c8ae2678122512b26d591a9ed61663e (1/4)
Rewrite 8d3f5a96b18f9795a1bb41295e5a9d2d4ebs14bs (2/4)
Rewrite 4df8f74b786b31b6043c44df59d7d13ee2bdb298 (3/4)
Rewrite ffd358c675a1c6d36114e10a92d93fdc1lee84629 (4/4)

But it worked this time:

$1s
Animal_Farm Nightfall Readme Snow_Crash

The 1984 file is now gone!

W

For the terminally curious, the corresponding command using
index-filter would be something like this:

! $ git filter-branch --index-filter \
'git rm --cached --ignore-unmatch 1984' master

Let’s look at the new commit log:

$ git log --pretty=oneline --abbrev-commit
ad1000b Read Asimov's 'Nightfall'.

7298fc5 Read a few classics.

8d3f5a9 Read 'Snow Crash'

3ed7354 Collect some notes about books.

Notice how each commit starting with the original third commit (4df8f74 and
ffd358c) now has different SHA1 values (7298fc5 and ad1000b), whereas the earlier
commits (3ed7354 and 8d3f5a9) remain unchanged.

During the filtering and rewriting process, Git creates and maintains this mapping be-
tween old and new commit values and makes it available to you as the map convenience
function. If for some reason you need to convert from an old commit SHA1 to the
corresponding new SHA1, you can do so using this mapping from within your filter
command command.

Let’s investigate a bit more, though.

342 | Chapter19: Advanced Manipulations

$ git show 7298fc5

commit 7298fc55d1496c7e70909f3ebce238d447d07951
Author: Jon Loeliger <jdl@example.com>

Date: Sat Jan 14 12:57:35 2012 -0600

Read a few classics.

- Animal Farm by George Orwell
- 1984 by George Orwell

diff --git a/Animal_Farm b/Animal_Farm
new file mode 100644

index 0000000..el1fcdal

--- /dev/null

+++ b/Animal Farm

@@ -0,0 +1 @@

+Animal Farm was interesting.

Indeed the commit that first introduced 1984 no longer does so! That means the file
was never introduced in the first place. It is not just gone from the top commit; it is not
just gone from any commit reachable from the master branch; it never existed on this
branch.

But doesn’t it bother you that the commit message itself still mentions the 1984 book?
Let’s fix that in the next section!

Using filter-branch to edit a commit message

Here’s the problem we’re solving: some commit message needs to be revised. In the
previous section, we saw how to remove a file from the complete history of a repository.
However, the commit message that used to introduce it still alludes to it:

$ git log -1 7298fc55

commit 7298c55d1496c7e70909f3ebce238d447d07951

Author: Jon Loeliger <jdl@example.com>
Date: Sat Jan 14 12:57:35 2012 -0600

Read a few classics.

- Animal Farm by George Orwell
- 1984 by George Orwell

That last line has to go!

This is the perfect use case for the --msg-filter filter. Your filter command should
accept the old text of a commit message on stdin and write its revised text on stdout.
That is, your filter should be a classic stdin-to-stdout edit filter. Typically, it will be
something like sed, although it can be as complex as needed.

In our case, we’ll want to delete that last 1984 line. We’ll also want to touch up the
previous sentence to just talk about one book rather than a “a few.” A sed command
to do these edits looks like this:

sed -e "/1984/d" -e "s/few classics/classic/"

Using git filter-branch | 343

Put that together with the --msg-filter option. Be careful with your line breaks on
input here. It should be all one line, or use the single quote as a command input con-
tinuation technique.
$ git filter-branch --msg-filter '
sed -e "/1984/d" -e "s/few classics/classic/"' master

Rewrite ad1000b936acf7dbesa29da6706cb759efdedlae (4/4)
Ref 'refs/heads/master' was rewritten

Let’s check:

$ git log --pretty=oneline --abbrev-commit
bf7351c Read Asimov's 'Nightfall.'

f28e55d Read a classic.

8d3f5a9 Read 'Snow Crash'

3ed7354 Collect some notes about books.

We can already see that the log message from commit f28e55d has been singularized
by our sed script. Good. Looking again at the whole message:

$ git log -1 f28e55d

commit f28e55dc8bbdee555a3f7778ba8355db9absc4al

Author: Jon Loeliger <jdl@example.com>
Date: Sat Jan 14 12:57:35 2012 -0600

Read a classic.
- Animal Farm by George Orwell

Now it is truly as if it never existed in this repository! And we’ve always been at war
with Eastasia.

One cautionary note about the filtering process: make sure that you are both operating
on the items you want to change, and that you are operating on only those items!

For example, the sed command from the previous --msg-filter example appears to
change precisely the one commit message we wanted to adjust. However, be aware that
same sed script is applied to every commit message in the history. If there were other,
perhaps incidental occurrences of the string 1984 in other commit messages, they would
also have been deleted because our script was not very discriminating. Subsequently,
you may have to write a more detailed sed command or a more clever script.

filter-branch Pitfalls

It is important to understand a brutal consequence of the name of this Git command:
it is filter-branch. At its core, the git filter-branch command is designed to operate
on just one branch or ref. However, it can operate on many branches or refs.

In many cases, you want to have it operate on all branches so as to obtain a repository-
wide coverage. In these cases, you will need the -- --all tacked onto the end of the
command.

344 | Chapter19: Advanced Manipulations

$ git filter-branch --index-filter \
"git rm --cached -f --ignore-unmatch '*.jpeg'" \
-- --all

Similarly, you almost certainly want to translate any tag refs from a prefiltered state
into the new postfiltered repository. That means adding --tag-name-filter catis also
quite common:

$ git filter-branch --index-filter \

"git rm --cached -f --ignore-unmatch '*.jpeg'" \

--tag-name-filter cat \
- -all

B

How about this one? You used --tree-filter or --index-filter to
remove a file from a repository, but did that file get moved or have its
vl name changed at some point in its history? You can use a command like
" this to find out:

$ git log --name-only --follow --all -- file

If other names for that file exist, you might want to delete those versions
as well.

How | Learned to Love git rev-list

One day, I received this piece of email:
Jon,

I'm trying to figure out how to do a date-based check out from a Git repository into an
empty working directory. Unfortunately, winding my way through the Git manual pages
makes me feel like I'm playing “Adventure.”

Eric

Indeed. Let’s see if we can navigate some of those twisty passages.

Date-Based Checkout

It might seem that a command like git checkout master@{Jan 1, 2011} should work.
However, that command is really using the reflog (See “The Stash” on page 181) to
resolve the date-based reference for the master ref. There are lots of ways this innocent
looking construct might fail: your repository may not have the reflog enabled, you may
not have manipulated the master ref during that time period, or the reflog may have
already expired refs from that time period. Even more subtly, that construct may not
give you your expected answer. It requests the reflog to resolve where your master was
at the given time as you manipulated the branch, and not according to the branch’s
commit time line. They may be related, especially if you developed and committed that
history in this repository, but they don’t have to be.

How | Learned to Love git rev-list | 345

Ultimately, this approach can be a misleading dead-end. Using the reflog might get
what you want. But it can also fail, and it isn’t a reliable method.

Instead, youshould use thegit rev-1list command. Itis the general purpose workhorse
whose job is to combine a multitude of options, sort through a complex commit history
of many branches, intuit potentially vague user specifications, limit search spaces, and
ultimately locate selected commits from within the repository history. It then emits one
or more SHA1 IDs for use by other tools. Think of git rev-1ist and its myriad options
as a commit database front-end query tool for your repository.

In this case, the goal is fairly simple: find the one commit in a repository that existed
immediately before a given date on a given branch and then check it out.

Let’s use the actual Git source repository because it has a fairly extensive and explorable
history. First, we’ll use rev-1list to find that SHA1. The -n 1 option limits the output
from the command to just one commit ID.

Here, we try to locate just the lastmaster commit of 2011 from the Git source repository:

$ git clone git://github.com/gitster/git.git

Cloning into 'git'...

remote: Counting objects: 126850, done.

remote: Compressing objects: 100% (41033/41033), done.

remote: Total 126850 (delta 93115), reused 117003 (delta 84141)
Receiving objects: 100% (126850/126850), 27.56 MiB | 1.03 MiB/s, done.
Resolving deltas: 100% (93115/93115), done.

$ cd git
$ git rev-list -n 1 --before="Jan 1, 2012 00:00:00" master
Oeddcbf1612ed044de586777b233caf8016c6e70

Having identified the commit, you may use it, tag it, reference it, or even check it out.
But as the checkout note reminds you, you are on a detached HEAD.

$ git checkout oeddcb
Note: checking out 'oOeddcb'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at Oeddcbf... Add MYMETA.json to perl/.gitignore

But is that really the right commit?

$ git log -1 --pretty=fuller
commit Oeddcbf1612ed044de586777b233caf8016c6e70

Author: Jack Nagel <jacknagel@gmail.com>
AuthorDate: Wed Dec 28 22:42:05 2011 -0600
Commit: Junio C Hamano <gitster@pobox.com>

346 | Chapter19: Advanced Manipulations

CommitDate: Thu Dec 29 13:08:47 2011 -0800

Add MYMETA.json to perl/.gitignore

The rev-1list date selection uses the CommitDate field, not the AuthorDate field. So it
looks like the last commit of 2011 in the Git repository happened on December 29,
2011.

Date-based checkout cautions

A few words of caution are in order, though. Git’s date handling is implemented using
a function called approxidate(). Not that dates are inherently approximate, but rather
that Git’s interpretation of what you meant are approximated, usually due to insuffi-
cient details or precision.

$ git rev-list -n 1 --before="Jan 1, 2012 00:00:00" master
Oeddcbf1612ed044de586777b233cat8016c6e70

$ git rev-list -n 1 --before="Jan 1, 2012" master
5c951ef47bf2e34dbde58bda88d430937657d2aa

I typed those two commands at 11:05 A.M. local time. For lack of a specified time in
the second command, Git assumed I meant “at this time on Jan 1,2012.” Subsequently,
11 more hours of leeway were available in which to match commits.

$ git log -1 --pretty=fuller 5c951ef
commit 5c951ef47bf2e34dbde58bda88d430937657d2aa

Author: Clemens Buchacher <drizzd@aon.at>
AuthorDate: Sat Dec 31 12:50:56 2011 +0100
Commit: Junio C Hamano <gitster@pobox.com>

CommitDate: Sun Jan 1 01:18:53 2012 -0800

Documentation: read-tree --prefix works with existing subtrees

This commit happened an hour and 18 minutes into the new year; well within the 11
hours past midnight that I accidentally specified in my second command.

Git's Date Parsing

So does Git’s date parsing behavior even make sense? Probably.

Git is trying to intuit the intended meaning behind vaguely specified time requests. For
example, how should yesterday be interpreted? As the previous 24-hour period? As the
absolute time period midnight-to-midnight of the previous calendar date? As some
vague notion of yesterday’s business working hours? Git happens to use the first inter-
pretation: the 24 hours prior to the current time. Generalizing now, any date used as a
starting or ending point in Git uses the current time, and if a date is specified without
a time, the current time is used as the demarcation, which is where the notion of “the
current time” comes in. If you wanted to be more precise about just exactly when yes-
terday, you could have said something like yesterday noon, or 5pm yesterday.

How | Learned to Love git rev-list | 347

One more caution about date-based checkout. Although you may get a valid answer
to your query for a specific commit, that same question at some later date may yield a
different answer. For example, consider a repository with several lines of development
happening on different branches. As previously, when you request the commit - -before
date on a given branch, you get an answer for the branch as it exists just then. At some
later point in time, however, new commits from other branches might be merged into
your branch, altering the notion of which commit might satisty your search conditions.
In the previous January 1, 2012 example, someone might merge in a commit from
another branch that is closer to midnight December 31, 2011 than December 29, 2011
at 13:08:47.

Retrieve Old Version of a File

Sometimes in the course of software archeology, you simply want to retrieve an old
version of a file from the repository history. It seems overkill to use the techniques of
a date-based checkout as described in “Date-Based Checkout” on page 345 because
that causes a complete change in your working directory state for every directory and
file just to get one file. In fact, itis even likely that you want to keep your current working
directory state but replace the current version of just one file by reverting it to an earlier
version.

The first step is to identify a commit that contains the desired version of the file. The
direct approach is to use an explicit branch, tag, or ref already known to have the correct
version. In the absence of that information, some searching has to be done. And when
searching the commit history, you should think about using some rev-1ist techniques
to identify commits that have the desired file. As previously seen, dates can be used to
select interesting commits. Git also allows the search to be restricted to a particular file
or set of files. Git calls this approach “path limiting.” It provides the ultimate guide to
possible previous commits that might contain different versions of a file, or as Git calls
them, paths.

Again, let’s explore Git’s source repository itself to see what previous versions of, say,
date.c are available.

$ git clone git://github.com/gitster/git.git

Cloning into 'git'...

remote: Counting objects: 126850, done.

remote: Compressing objects: 100% (41033/41033), done.

remote: Total 126850 (delta 93115), reused 117003 (delta 84141)
Receiving objects: 100% (126850/126850), 27.56 MiB | 1.03 MiB/s, done.
Resolving deltas: 100% (93115/93115), done.

$ git rev-list master -- date.c
eeb46eb48f9a7fc6c225fact2b7449a8a65ef812
f1e9¢548ce45005521892a10299696204ece286b

89967023da94c0d874713284869e1924797d30bb
ecee9d9e793c7573cf3730fb9746527a0a7e94e7

348 | Chapter19: Advanced Manipulations

Uh, yeah, something like 60-odd lines of SHA1 commit IDs. Fun! But what does it all
mean? And how do you use it?

Because I didn’t specify the -n 1 option, all matching commit IDs have been generated
and printed. The default is to emit them in reverse chronological order. So this means
commit ee646e contains the most recent version of the file date.c, and ecee9d9 contains
the oldest version. In fact, looking at commit ecee9d9 shows the file being introduced
into the repository for the first time.

$ git show --stat ecee9d9 --pretty=short

commit ecee9d9e793c7573cf3730fb9746527a0a7e94e7
Author: Edgar Toernig <froese@gmx.de>

[PATCH] Do date parsing by hand...

Makefile | 4 +-

cache.h | 3+

commit-tree.c | 27 #--------

date.c | 184 +H++ttttttttbbt bbb

4 files changed, 191 insertions(+), 27 deletions(-)

Where you go from here to find your desired commit is kind of sketchy. You could do
git log operations on randomly selected SHA1 values from that rev-1list list output.
Or you could binary search the time stamps on commits from that list. Earlier we used
the -n 1 to select the most recent. It’s really hard to say what trick might work in your
selection process to identify the precise commit that contains the version of a file that
Is interesting to you.

But once you have identified one of those commits, how do you use it? What does that
version of date.c look like? What if we wanted to retrieve it in place?

There are three slightly different approaches you can use to get that version of a file.
The first form directly checks out the named version and overwrites the existing version
in your working directory.

$ git checkout ecee9d9 date.c

If you want to get the version of a file from a commit and you don’t
know its SHAT, but you do happen to know some text from its commit
Wi log message, you can use this searching technique to obtain it:

$ git checkout :/"Fix PR-1705" main.c

The youngest commit found is used.

In two other very similar commands, Git accepts the form commit:path to name the
desired file (i.e., path) as it existed at the time the commit happened, and writes the
specified version of the file to be written to stdout. What you do with that output is up
to you, though. You could pipe the output to other commands or create files:

$ git show ecee9d9:date.c > date.c-oldest

How | Learned to Love git rev-list | 349

Or:
$ git cat-file -p 89967:date.c > date.c-first-change

The difference between these two forms is a bit esoteric. The former filters the output
file through any applicable text conversion filters, whereas the latter is a more basic,
plumbing command and does not. Differences might show up between these two
commands when manipulating binaries, when textconv filters are set up, or possibly
during some newline handling transformations. If you want the raw data, use the
cat -p form. If you want the transformed version as it would be when checked out or
added to the repository, use the show form.

These are exactly the same mechanisms you would use to obtain versions of a file as it
appears in another branch:

$ git checkout dev date.c

$ git show dev:date.c > date.c-dev

Or even earlier on the same branch:

$ git checkout HEAD~2:date.c

Interactive Hunk Staging

Although a bit of an ominous moniker, interactive hunk staging is nevertheless an
incredibly powerful tool that can be used to simplify and organize your development
into concise and easily understood commits. If anyone has ever asked you to split your
patch up or make single-concept patches, chances are good that this section is for you!

Unless you are a super coder, and both think and develop in concise patches, your day-
to-day development probably resembles mine: a little scattered, perhaps over-extended,
and likely containing several intertwined ideas all mixed up as they occurred to you.
One coding thought leads to another and pretty soon you fixed the original bug, stum-
bled onto another (but fixed it!), and then added a new easy feature while you were
there. Oh, and, you fixed those two typos as well.

And, if you, like I do, appreciate having someone review your changes to important
code before you ask for it to be accepted upstream, chances are good that having all of
those different, unrelated changes will not make for a logical presentation of a single
patch. Indeed, some open source projects insist that submitted patches contain separate
self-contained fixes. That is, a patch shouldn’t serve multiple purposes in one shot.
Instead, each idea should stand alone and should be presentable as a well-defined,
simple patch that is just large enough to do the job and nothing more. If more than one
idea needs to be upstreamed, more than one patch, perhaps in a sequence, will be
needed. Common wisdom suggests that these sorts of patches and patch sequences
lead to very solid reviews, quick turnaround, and easy acceptance into the mainline
upstream development.

350 | Chapter19: Advanced Manipulations

Download from Wow! eBook <www.wowebook.com>

So how do these perfect patch sequences come about? Although I strive for a develop-
ment style that facilitates simple patches, I'm not always successful. Nevertheless, Git
provides some tools to help formulate good patches. One of those tools is the ability
to interactively select and commit pieces, or “hunks,” of a patch, leaving the rest to be
committed in a later patch. Ultimately, you will want to create a new sequence of
smaller commits that still sum up to your original work.

What Git won’t do for you is decide which conceptual pieces of a patch belong together
and which do not. You have to be able to discern the meaning and grouping of hunks
that make logical sense together. Sometimes those hunks are all in one file, but some-
times they are in multiple files. Collectively, all the conceptually related hunks must be
selected and staged together as part of one commit.

Furthermore, you must ensure that your selection of hunks still meets any external
requirements. For example, if you are writing source code that must be compiled, you
will likely want to ensure that the code base continues to be compilable after each
commit. Thus, you must ensure that your patch breakup, when reassembled in smaller
parts, still compiles at each commit within the new sequence. Git can’t do that for you;
that’s the part where you have to think. Sorry.

Staging hunks interactively is as easy as adding the -p option to the git add command!
$ git add -p file.c

Interactive hunk staging looks pretty easy, and it is. But we should probably still have
a mental model in mind of what Git is doing with our patches. Remember way back in
Chapter 5, I explained how Git maintains the index as a staging area that accumulates
your changes prior to committing them. That’s still happening. But instead of gathering
the changes an entire file at a time, Git is picking apart the changes you have made in
your working copy of a file, and allowing you to select which individual part or parts
to stage in the index, waiting to be committed.

Let’s suppose we’re developing a program to print out a histogram of white-space—
separated words found in a file. The very first version of this program is the “Hello,
World!” program that proves things are starting out on the right compilation track.
Here’s main.c:

#include <stdio.h>

int main(int argc, char **argv)
{
/*

* Print a histogram of words found in a file.
"Words" are any whitespace separated characters.
Words are listed in no particular order.

FIXME: Implementation needed still!

EE

*/
printf("Histogram of words\n");

Interactive Hunk Staging | 351

Add a Makefile and .gitignore, and put it all in a new repository:

$ mkdir /tmp/histogram

cd /tmp/histogram

$ git init

Initialized empty Git repository in /tmp/histogram/.git/
$ git add main.c Makefile .gitignore

$ git commit -m "Initial histogram program."

[master (root-commit) 42300e7] Initial histogram program.
3 files changed, 18 insertions(+), 0 deletions(-)

create mode 100644 .gitignore

create mode 100644 Makefile

create mode 100644 main.c

Let’s do some miscellaneous development until main.c looks like this:

#include <stdio.h>
#include <stdlib.h>

struct htentry {
char *item;
int count;
struct htentry *next;

b
struct htentry ht_table[256];
void ht_init(void)

/* FIXME: details */
}

int main(int argc, char **argv)

{
FILE *f;

f = fopen(argv[1], "r");
if (f = 0)
exit(-1);

/*

* Print a histogram of words found in a file.

* "Words" are any whitespace separated characters.
* Words are listed in no particular order.

FIXME: Implementation needed still!

*

*/
printf("Histogram of words\n");
ht_init();
}
Notice that this development effort has introduced two conceptually different changes:

the hash table structure and storage, and the beginnings of the file reading operation.
In a perfect world, these two concepts would be introduced into the program with two

352 | Chapter19: Advanced Manipulations

separate patches. It will take us a couple of steps to get there, but Git will help us split
these changes properly.

Git, along with most of the Free World, considers a hunk to be any series of lines from
a diff command that are delineated by a line that looks something like this:

@@ -1,7 +1,27 @@
or this:
@@ -9,4 +29,6 @@ int main(int argc, char **argv)

In this case, git diff shows two hunks:

$ git diff

diff --git a/main.c b/main.c
index 9243ccf..bo7f5dd 100644
--- a/main.c

+++ b/main.c

@@ '1:7 +1127 @@

#include <stdio.h>

+#finclude <stdlib.h>

+

+struct htentry {

+ char *item;

+ int count;

+ struct htentry *next;
+};

+

+struct htentry ht_table[256];
+

+void ht_init(void)

+
+ /* FIXME: details */
+}
int main(int argc, char **argv)
{
+ FILE *f;
+
+ f = fopen(argv[1], "r");
+ if (f == 0)
+ exit(-1);
+

/%
* Print a histogram of words found in a file.
* "Words" are any whitespace separated characters.
@@ -9,4 +29,6 @@ int main(int argc, char **argv)
* FIXME: Implementation needed still!
*/
printf("Histogram of words\n");

+ ht_init();

Interactive Hunk Staging | 353

The first hunk starts with the line @ -1,7 +1,27 @@ and finishes at the start of the
second hunk: @@ -9,4 +29,6 @@ int main(int argc, char **argv).

When interactively staging hunks with git add -p, Git offers a choice for each hunk in
turn: do you want to stage it?

But let’s look at our patch a bit more closely and consider the need to break up the
pieces so that conceptually related parts are all gathered up and staged at the same time.
That means we’d like to stage all the hash table parts together in one patch, and then
stage all the file operations in a second patch. Unfortunately, it looks like the first hunk
has both hash table and file operation pieces in one hunk! That means, for the purposes
of the first commit (i.e., the hash table pieces), we want to both stage it and not stage
it. Or more precisely, we want to stage part of the hunk. If Git only asks us about the
first and second hunks, we are in trouble.

But, not to worry! The hunk staging will allow us to split a hunk. Any place where a
contiguous sequence of added and deleted lines identified by a plus or minus in the
first column is broken up by original context text, a split operation may be performed.

Let’s see how this works by starting with a git add -p main.c command:

$ git add -p

diff --git a/main.c b/main.c
index 4809266..c60b800 100644
--- a/main.c

+++ b/main.c

@@ -1,7 +1,27 @@

#include <stdio.h>

+#include <stdlib.h>

"

+struct htentry {

+ char *item;

+ int count;

+ struct htentry *next;
+};

"

+struct htentry ht_table[256];
+

+void ht_init(void)

+
+ /* FIXME: details */
+}
int main(int argc, char **argv)
{
+ FILE *f;
+
+ f = fopen(argv[1], "r");
+ if (f == 0)
+ exit(-1);
+
/%

* Print a histogram of words found in a file.

354 | Chapter19: Advanced Manipulations

* "Words" are any whitespace separated characters.
Stage this hunk [y,n,q,a,d,/,j,3,g,s,€,?]?

After reviewing this hunk and seeing both the hash table and file operation related
changes there, you realize you need to both stage and not stage this hunk. That is your
clue to answer s, for split, to the question.

Stage this hunk [y,n,q,a,d,/,j,3,8,5,€,?]? s
Split into 2 hunks.

00 -1,4 +1,18 @@

#include <stdio.h>
+#include <stdlib.h>

+

+struct htentry {

+ char *item;

+ int count;

+ struct htentry *next;
+};

+

+struct htentry ht_table[256];
+

+void ht_init(void)

+

+ /* FIXME: details */

+}

int main(int argc, char **argv)

Siage this hunk [y,n,q,a,d,/,j,3,8,e,?]?
Excellent. We want this hunk staged.

Stage this hunk [y,n,q,a,d,/,j,3,g,5,e,2]2 y
And immediately next up:

@@ -2,6 +16,12 @@

int main(int argc, char **argv)
FILE *f;
f = fopen(argv[1], "r");

if (f == 0)
exit(-1);

+ + + + + +
—~

/*

* Print a histogram of words found in a file.

* "Words" are any whitespace separated characters.
Stage this hunk [y,n,q,a,d,/,K,j,3,g8,e,?]?

But not that one.

Stage this hunk [y,n,q,a,d,/,j,3,8,5,€,?]? n

Interactive Hunk Staging | 355

And finally, Git offers to stage the last hunk. We want it, too.

@@ -9,4 +29,6 @@ int main(int argc, char **argv)
* FIXME: Implementation needed still!
*/
printf("Histogram of words\n");

+

+ ht_init();

Stage this hunk [y,n,q,a,d,/,j,3,8,s,€,?]? y

Let’s review. Originally, there were two hunks. But we wanted only part of the first
hunk and all of the second. So when Git offered us the first hunk we had to split it into
two subhunks. We then staged the first subhunk, and not the second subhunk. We

then staged the entire original second hunk.

Verifying that the staged pieces look correct is easy:

$ git diff --staged

diff --git a/main.c b/main.c
index 4809266..8a95bb0 100644
--- a/main.c

+++ b/main.c

00 -1,4 +1,18 @@

#include <stdio.h>

+#include <stdlib.h>

+

+struct htentry {

+ char *item;

+ int count;

+ struct htentry *next;
+};

+

+struct htentry ht_table[256];
+

+void ht_init(void)

+
+ /* FIXME: details */
+}
int main(int argc, char **argv)
{

@@ -9,4 +23,6 @@ int main(int argc, char **argv)
* FIXME: Implementation needed still!
*/
printf("Histogram of words\n");
+
+ ht_init();
}

That looks good, so you can go ahead and commit it. Don’t worry that there are lin-
g y g y

gering differences remaining in the file main.c. That’s by design because it is the next

patch! Oh, and don’t use the filename with this next git commit command because that

would use the entire file and not the just the staged parts.

356 | Chapter19: Advanced Manipulations

$ git commit -m "Introduce a Hash Table."
[master 66a212c] Introduce a Hash Table.
1 files changed, 16 insertions(+), 0 deletions(-)

$ git diff

diff --git a/main.c b/main.c

index 8a95bb0..c60b800 100644

--- a/main.c

+++ b/main.c

@@ -16,6 +16,12 @@ void ht_init(void)

int main(int argc, char **argv)
FILE *f;
f = fopen(argv[1], "r");

if (f == 0)
exit(-1);

+ + + + + +
~~

/*
* Print a histogram of words found in a file.
* "Words" are any whitespace separated characters.

And with that, just add and commit the remaining change because it is the total material
for the file operations patch.

$ git add main.c

$ git commit -m "Open the word source file."

[master e649d27] Open the word source file.
1 files changed, 6 insertions(+), 0 deletions(-)

A glance at the commit history shows two new commits:

$ git log --graph --oneline

* e649d27 Open the word source file.
* 66a212c Introduce a Hash Table.

* 3ba81f7 Initial histogram program.

And that is a happy patch sequence!
As usual, there are a few caveats and extenuating circumstances. For instance, what
about that sneaky line:

#include <stdlib.h>

Doesn’t it really belong with the file operation patch and not the hash table patch? Yep.
You got me. It does.

That’s a bit trickier to handle. But let’s do it anyway. We’ll have to use the e option.
First, reset to the first commit and leave all those changes in your working tree so we
can do it all over again.

$ git reset 3ba81f7

Unstaged changes after reset:
M main.c

Interactive Hunk Staging | 357

Do the git add -p again, and split the first patch just like before. But this time, instead
of answering y to the first subhunk staging request, answer e and request to edit the
patch:

$ git add -p

diff --git a/main.c b/main.c
index 4809266..c60b800 100644
--- a/main.c

+++ b/main.c

0@ -1,7 +1,27 @@

#include <stdio.h>
+#include <stdlib.h>

"

+struct htentry {

+ char *item;

+ int count;

+ struct htentry *next;

+}5
+
+struct htentry ht_table[256];
+
+void ht_init(void)
+{
+ /* FIXME: details */
+}

int main(int argc, char **argv)

{
+ FILE *f;
+
+ f = fopen(argv[1], "r");
+ if (f == 0)
+ exit(-1);
+

/%

* Print a histogram of words found in a file.
* "Words" are any whitespace separated characters.

Stage this hunk [y,n,q,a,d,/,j,3,8,5,e,?]? s

Split into 2 hunks.

@@ -1J4 +1118 @@

#include <stdio.h>

+#include <stdlib.h>

+

+struct htentry {

+ char *item;

+ int count;

+ struct htentry *next;

+};

+

+struct htentry ht_table[256];

+

+void ht_init(void)

+

+ /* FIXME: details */

+}

358 | Chapter19: Advanced Manipulations

int main(int argc, char **argv)
Stage this hunk [y,n,q,a,d,/,j,3,g,e,?]? e

You will be placed in your favorite editor* and allowed the chance to manually edit the
patch. Read the comment at the bottom of the editor buffer. Carefully delete that one
#include <stdlib.h> line. Don’t disturb the context lines, and don’t mess with the line
counts. Git, and most any patch program, will lose its mind if you mess with the context
lines. However, my editor updates the line counts automatically.

In this case, because the #include line was removed, it will be swept up in the remainder
of the patches that get formed. This effectively introduces it at the correct time in the
patch with the other file operation changes.

It is kind of tricky here, but Git now assumes that when you exit your editor, the patch
that is left in your editor should be applied and its effects staged. So it offers you the
following hunk and lets you choose its disposition. Be careful.

Because Git has moved on to the file operation changes, don’t stage those changes yet,
but do pick up the last hash table change:

@@ -2,6 +16,12 @@

int main(int argc, char **argv)

{
FILE *f;

f = fopen(argv[1], "r");
if (f == 0)
exit(-1);

+ + 4+ + + +

/%
* Print a histogram of words found in a file.
* "Words" are any whitespace separated characters.
Stage this hunk [y,n,q,a,d,/,K,j,3,g,€,2]? n
@@ -9,4 +29,6 @@ int main(int argc, char **argv)
* FIXME: Implementation needed still!
*/
printf("Histogram of words\n");
+
+ ht_init();

Stage this hunk [y,n,q,a,d,/,K,g,e,?2]? y
The separation can be verified, noting that the #include <stdlib.h> line has been cor-

rectly associated with the file operations now:

$ git diff
diff --git a/main.c b/main.c
index 3e77315..c60b800 100644
--- a/main.c

4. emacs, right?

Interactive Hunk Staging | 359

+++ b/main.c

00 -1,4 +1,5 00
#include <stdio.h>
+#include <stdlib.h>

struct htentry {
char *item;
@@ -15,6 +16,12 @@ void ht_init(void)

int main(int argc, char **argv)
{
FILE *f;

f = fopen(argv[1], "r");
if (f == 0)
exit(-1);

+ + + + + +

/%
* Print a histogram of words found in a file.
* "Words" are any whitespace separated characters.

As before, wrap up with a git commit for the hash table patch, then stage and commit
the remaining file operation pieces.

I’ve only touched on the essential responses to the “Stage this hunk?” question. In fact,
even more options than those listed in its prompt (i.e., [y,n,q,a,d,/,K,g,e,?]) are
available. There are options to delay the fate of a hunk and then revisit it when prompted
again later.

Furthermore, although this example only had two hunks in one file, the staging oper-
ation generalizes too many hunks, possibly split, in many files. Pulling together changes
across multiple files can be a simple process of applying git add -p to each file that has
a hunk needing to be staged.

However, there is another, outer level to the whole interactive hunk staging process
that can be invoked using the git add -i command. It can be a bit cryptic, but its
purpose is to allow you to select which paths (i.e., files) to stage in the index. As a sub-
option, you may then select the patch option for your chosen paths. This enters the
previously described per file staging mechanism.

Recovering a Lost Commit

Occasionally, an ill-timed git reset command or an accidental branch deletion leaves
you wishing you hadn’t lost the development it represented, and wishing you could
recover it somehow. The usual approach to recovering such work is to inspect your
reflog as shown in Chapter 11. Sometimes the reflog isn’t available, perhaps because it
has been turned off (e.g., core.logAllRefUpdates = false), because you are manipu-
lating a bare repository directly, or perhaps because the reflog has simply expired. For
whatever reason, sometimes the reflog cannot help recover a lost commit.

360 | Chapter19: Advanced Manipulations

The git fsck Command

Although not foolproof, Git provides the command git fsck to help locate lost data.
The word “fsck” is an old abbreviation for “file system check.” Although this command
does not check your filesystem, it does have many characteristics and algorithms that
are quite similar to a traditional filesystem check, and results in some of the same output
data as well.

Understanding how git fsck works is predicated on a good understanding of Git’s
data structures as described in Chapter 4. Normally, every object in the Git repository,
whether it is a blob, tree, commit, or tag, is connected to another object and anchored
to a branch name, tag name, or some other symbolic ref such as a reflog name.

However, various commands and manipulations can leave objects in the object store
that are not linked into the complete data structure somehow. These objects are called
“unreachable” or “dangling.” They are unreachable because a traversal of the full data
structure that starts from every named ref and follows every tag, commit, commit
parent, and tree object reference will never encounter the lost object. In a sense, it is
out there dangling on its own.

But traversing the ref-based commit graph isn’t the only way to walk every object in
the database! Consider simply listing the objects in your object store using 1s directly:

$ cd path/to/some/repo

$ 1s -R .git/objects/
.git/objects/:

25 3b 73 82 info pack

.git/objects/25:
7cc5642cb1a054f08cc83f2d943e56fd3ebe99

.git/objects/3b:
d1f0e29744a1f32b08d5650e62e2e62afb177c

.git/objects/73:
8d05ac5663972e2dcf4b473e04b3d1f19ba674

.git/objects/82:
b5fee28277349b6d46beff5fdf6a7152347bao

.git/objects/info:
.git/objects/pack:

In this simple example, the set of objects in the repository has been listed without doing
a traversal of the refs and commits.

Recovering a Lost Commit | 361

Download from Wow! eBook <www.wowebook.com>

By carefully comparing the total set of objects with those reachable via a traversal of
the ref-based commit graph, you can determine all of the unreferenced objects. From
the previous example, the second object listed turns out to be an unreferenced blob
(i.e., file):

$ git fsck

Checking object directories: 100% (256/256), done.
dangling blob 3bd1foe29744a1f32b08d5650e62e2e62atb177c

Let’s follow an example that shows how a lost commit can occur, and see how
git fsck can recover it. First, construct a simple, new repository with a single simple
file in it.

$ mkdir /tmp/lost

$ cd /tmp/lost

$ git init

Initialized empty Git repository in /tmp/lost/.git/

$ echo "foo" >> file

$ git add file

$ git commit -m "Add some foo"

[master (root-commit) 1adfs6e] Add some foo

1 files changed, 1 insertions(+), 0 deletions(-)

create mode 100644 file

$ git fsck
Checking object directories: 100% (256/256), done.

$ 1s -R .git/objects/
.git/objects/:
25 4a f8 info pack

.git/objects/25:
7¢c5642cb1a054f08cc83f2d943e56fd3ebe99

.git/objects/4a:
1c03029e7407c0afe9fc0320b3258e188b115e

.git/objects/f8:
5b097ee0f77c5f4dc1868037acbffe59boe93e

.git/objects/info:
.git/objects/pack:

Notice that there are only three objects and none of them are dangling. In fact, starting
from the master ref, which is the f85b097ee commit object, the traversal points to the
tree object 4a1c0302 and then the blob 257cc564.

N

The command git cat-file -t object-id can be used to determine an
object’s type.
ey

362 | Chapter19: Advanced Manipulations

Now let’s make a second commit, and then hard reset back to the first commit:

$ echo bar >> file

$ git commit -m "Add some bar" file

[master 11e0dc9] Add some bar

1 files changed, 1 insertions(+), 0 deletions(-)

And now the “accident” that causes us to lose a commit:

$ git commit -m "Add some bar" file
[master 11e0dc9] Add some bar
1 files changed, 1 insertions(+), 0 deletions(-)

$ git reset --hard HEAD*
HEAD is now at f85b097 Add some foo

$ git fsck
Checking object directories: 100% (256/256), done.

But wait! git fsck doesn’t report any dangling object. It doesn’t seem to be lost after
all. This is exactly what the reflog is designed to do: prevent you from accidentally
losing commits. (See “The Reflog” on page 189.)

So let’s try again after brutally eliminating the reflog:

Not recommended; this is for purposes of exposition only!
$ rm -rf .git/logs

$ git fsck

Checking object directories: 100% (256/256), done.

dangling commit 11e0dc9c11d8f650711b48c4a5707edf5c8a02fe

$ 1s -R .git/objects/
.git/objects/:
11 25 3b 41 4a f8 info pack

.git/objects/11:
€0dc9c11d81650711b48c4a5707edf5c8a02fe

.git/objects/25:
7cc5642cb1a054108cc83f2d943e56fd3ebe99

.git/objects/3b:
d1f0e29744a1f32b08d5650e62e2e62afb177c

.git/objects/41:
31fe4d33cd85da805ac9a6697c2251c913881c

.git/objects/4a:
1c03029e7407c0afe9fc0320b3258e188b115e

.git/objects/f8:
5b097ee0f77c5f4dc1868037acbffe59boe93e

.git/objects/info:

.git/objects/pack:

Recovering a Lost Commit | 363

You can use the git fsck --no-reflog command to find dangling
objects as if the reflog were not available to reference commits. That is,
%5 objects that are only reachable from the reflog will be considered
unreachable.

Now we can see that only the reflog was referencing the second commit 11e0dc9c in
which the “bar” content was added.

But how would we even know what that dangling commit is?

$ git show 11e0dc9c

commit 11e0dc9c11d8f650711b48c4a5707edf5c8a02fe
Author: Jon Loeliger <jdl@example.com>

Date: Sun Feb 10 11:59:59 2012 -0600

Add some bar

diff --git a/file b/file
index 257cc56..3bd1f0e 100644
--- a/file

+++ b/file
00 -1 +1,2 @@

foo

+bar

The "index" line above named blob 3bdifoe

$ git show 3bdifoe
foo
bar

Note that the blob 3bd1foe is not considered dangling because it is actually referenced
by the commit 11e0dc9c, even though the commit itself is unreferenced.

Sometimes, though, git fsck will find blobs that are unreferenced. Remember, every
time you git add a file to the index, its blob is added to the object store. If you subse-
quently change that content and re-add it, no commit will have captured the inter-
mediate blob that was added to the object store. Thus, it will be unreferenced.

$ echo baz >> file

$ git add file

$ git fsck

Checking object directories: 100% (256/256), done.
dangling commit 11e0dc9c11d8f650711b48c4a5707edf5c8a02fe

$ echo quux >> file

$ git add file

$ git fsck

Checking object directories: 100% (256/256), done.
dangling blob 0c071e1d07528f124e31f1b6c71348ec13f21a7a
dangling commit 11e0dc9c11d8f650711b48c4a5707edf5c8a02fe

364 | Chapter19: Advanced Manipulations

The reason the first git fsck didn’t show a dangling blob was because that blob was
still referenced directly by the index. Only after the content associated with the path-
name file was changed again and re-added did that blob become dangling.

$ git show 0co71e1d

foo
baz

If you find you have a very cluttered git fsck report consisting entirely of unnecessary
blobs and commits and want to clean it up, consider running garbage collection as
described in “Garbage Collection” on page 368.

Reconnecting a Lost Commit

Although using git fsck is a handy way to discover the SHA1 of lost commits and
blobs, I mentioned the reflog earlier as another mechanism. In fact, you could cut and
paste it from some lingering line of output found by scrolling back over your terminal
output log. Ultimately, it doesn’t matter how you discover the SHA1 of a lost blob or
commit. The question remains, once you know it, how do you reconnect it or otherwise
incorporate it into your project?

By definition, blobs are nameless file content. All you really have to do to reestablish a
blob is place that content into a file and git add it again. As I showed in the previous
section, git show can be used on the blob SHA1 to obtain the full object content. Just
redirect that to your desired file:

$ git show 0co71e1d > file2

On the other hand, reconnecting a commit might depend on what you want to do with
it. The simple example from the previous section is only one commit. But it could
equally well have been the first commit in an entire sequence of commits that was lost.
Maybe even an entire branch was accidentally lost! Consequently, a usual practice
would reintroduce a lost commit as a branch.

Here, the previously lost commit that introduced the bar content, 11eo0dcoc, is
re-introduced on the new branch called recovered:

$ git branch recovered 11e0dc9c
$ git show-branch
* [master] Add some foo

| [recovered] Add some bar

+ [recovered] Add some bar
*+ [master] Add some foo

From there it can manipulated (kept as is, merged, etc.) as you wish.

Recovering a Lost Commit | 365

CHAPTER 20
Tips, Tricks, and Techniques

With a plethora of commands and options, Git provides a rich resource for performing
varied and powerful changes to a repository. Sometimes, though, the actual means for
accomplishing some particular task are a bit elusive. Sometimes, the purpose of a
particular command and option isn’t really clear or becomes lost in a technical de-
scription.

This chapter provides a collection of various tips, tricks, and techniques that highlight
Git’s ability to do interesting transformations.

Interactive Rebase with a Dirty Working Directory

Frequently, when developing a multicommit change sequence on a local branch, I
realize that I need to make an additional modification to some commit I've already
made earlier in the sequence. Rather than scribbling a note about it on the side and
coming back to it later, I will immediately edit and introduce that change directly into
anew commit with a reminder note in the commit log entry that it should be squashed
into a previous commit.

When I eventually get around to cleaning up my commit sequence, and want to use
git rebase -i,Iam often midstride and find myself with a dirty working directory. In
this case, Git will refuse to do the rebase.

$ git show-branch --more=10

[master] Tinker bar

master®] Squash into 'More foo and bar'
master~2] Modify bar

master~3] More foo and bar

master~4] Initial foo and bar.

————

$ git rebase -i master~4
Cannot rebase: You have unstaged changes.
Please commit or stash them.

As suggested, clean out your dirty working directory with git stash first!

367

$ git stash
Saved working directory and index state WIP on master: ed6e906 Tinker bar
HEAD is now at ed6e906 Tinker bar

$ git rebase -i master~4

In the editor, move master” next to master~3
and mark it for squashing.

pick 1a4be28 More foo and bar

squash 6195b3d Squash into 'more foo and bar'
pick 488b893 Modify bar

pick ed6e906 Tinker bar

[detached HEAD e3c46b8] More foo and bar with additional stuff.
2 files changed, 2 insertions(+), 1 deletions(-)
Successfully rebased and updated refs/heads/master.

Naturally, you will want to recover your working directory changes now:

$ git stash pop
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: foo

#

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (71b4655668e49ce88686fc9eda8432430b276470)

Remove Left-Over Editor Files

Because the git filter-branch command really drives a shell operation, either the
--index-filter command or the --tree-filter command can use normal shell wild card
matching in its command. That can be handy when you accidentally add, say, temporary
editor files on first creating your repository.

$ git filter-branch --tree-filter 'rm -f *~' -- --all
That command will remove all files matching the *~ pattern from -- --all refs in one
command.
Garbage Collection

In “The git fsck Command” on page 361, which I expanded on the concept of reach-
ability was first introduced in Chapter 4. In those sections, I explained how the Git
object store and its commit graph might leave unreferenced or dangling objects within
the object store. I also gave a few examples how some commands might leave these
unreferenced objects in your repository.

368 | Chapter20: Tips, Tricks, and Techniques

Having dangling commits or unreachable objects is not necessarily bad. You may have
moved away from a particular commit intentionally or added a file blob and then
changed it again before actually committing it. The problem, however, is that over a
long period, manipulating the repository can be messy and leave many unreferenced
objects in your object store.

Historically, within the computer science industry, such unreferenced objects are
cleaned up by an algorithm called “garbage collection.” It is the job of the git gc com-
mand to perform periodic garbage collection and keep your repository object stores
neat and tidy.

This is neat, tidy, and small. Git’s garbage collection has one other very important task:
optimizing the size of the repository by locating unpacked objects (loose objects) and
creating pack files for them.

So when does garbage collection happen, and how often? Is it automatic or is it some-
thing that needs to be done manually? When it runs does it remove everything it can?
Pack everything it can?

All good questions and, as usual, the answers are all, “It depends.”

For starters, Git runs garbage collection automatically at strategic times. At other times,
you should run git gc directly by hand.

Git runs garbage collection automatically:

* If there are too many loose objects in the repository
* When a push to a remote repository happens
* After some commands that might introduce many loose objects
* When some commands such as git reflog expire explicitly request it
And finally, garbage collection occurs when you explicitly request it using the git gc

command. But when should that be? There’s no solid answer to this question, but there
is some good advice and best practice.

You should consider running git gc manually in a few situations:

* Ifyouhavejust completed a git filter-branch. Recall that filter-branch rewrites
many commits, introduces new ones, and leaves the old ones on a ref that should
be removed when you are satisfied with the results. All those dead objects (that are
no longer referenced since you just removed the one ref pointing to them) should
be removed via garbage collection.

* After some commands that might introduce many loose objects. This might be a
large rebase effort, for example.

And on the flip side, when should you be wary of garbage collection?

* If there are orphaned refs that you might want to recover

* In the context of git rerere and you do not need to save the resolutions forever

Garbage Collection | 369

Download from Wow! eBook <www.wowebook.com>

* In the context of only tags and branches being sufficient to cause Git to retain a
commit permanently

* Inthe context of FETCH_HEAD retrievals (URL-direct retrievals viagit fetch) because
they are immediately subject to garbage collection

Git doesn’t spontaneously jump to life and carry out garbage collection of its own free
will, not even automatically. Instead, what happens is that certain commands that you
run cause Git to then consider running garbage collection and packing. But just because
you run those commands and Gitruns git gc doesn’t mean that Git acts on this trigger.
Instead, Git takes that opportunity to inspect a whole series of configuration parameters
that guide the inner workings of both the removal of unreferenced objects and the
creation of pack files. Some of the more important git config parameters include:

gc.auto
The number of loose objects allowed to exist in a repository before garbage col-
lection causes them to be packed. The default is 6700.

gc.autopacklimit
The number of pack files that may exist in a repository before pack files are them-
selves repacked into larger, more efficient pack files. The default is 50.

gc.pruneexpire
The period of time unreachable objects may linger in an object store. The default
is two weeks.

gc.reflogexpire
The git reflog expire command will remove reflog entries older than this time
period. The default is 90 days.

gc.reflogexpireunreachable
The git reflog expire command will remove reflog entries older than this time
period only if they are unreachable from the current branch. The default is 30 days.

Most of the garbage collection config parameters have a value that means either “do it
now” or “never do it.”

Split a Repository

You can use Git’s filter-branch to split a repository or to extract subdirectories. And
in this case, we mean split a repository and maintain the history that lead to this point.
(If you don’t care about the development and commit history and want to split a repos-
itory, just clone the repository and remove the parts from each that you don’t want!)
This approach preserves the appropriate development and commit history.

For example, let’s say you had a repository with four top-level directories named part1,
part2, part3, and part4, and you wanted to split the top-level directory part4 into its
Oown repository.

370 | Chapter20: Tips, Tricks, and Techniques

For starters, you should work in a clone of the original repository and remove all of the
origin remote references. This will ensure that you don’t destroy the original reposi-
tory, nor will you think you can push or fetch changes from your original via a lingering
remote reference.

Then, use the --subdirectory-filter option like this:
$ git filter-branch --subdirectory-filter part4 HEAD

However, there are likely some extenuating circumstances that will cause you to want
to extend that command to allow for incidental and tricky situations. Do you have tags
and want them reflected in the new part4 repository too? If so, add the --tag-name-
filter cat option. Might a commit end up empty due to its inapplicability to this sub-
section of the original repository? Almost certainly, so add the --prune-empty too. Are
you interested in only the one current branch indicated by HEAD? Almost certainly not.
Instead, you might want to cover all branches from the original repository. In that case,
you’ll want to use -- --all in place of the final HEAD parameter.

The revised command now looks like this:

$ git filter-branch --tag-name-filter cat \
--subdirectory-filter part4 -- --all

Naturally, you will want to verify the contents are as expected and then expire your
reflog, remove the original refs, and do garbage collection on the new repository.

Finally, you might (or might not) need to return to your original repository and perform
a different git filter-branch to remove part4 from it, too!

Tips for Recovering Commits

Time is the enemy of lost commits. Eventually, Git’s garbage collection will run and
clean out any dangling or unreferenced commits and blobs. Garbage collection will
eventually retire reflog refs as well. At that point, lost commits are lost and git fsck
will no longer be able to find them. If you know you are slow to realize a commit has
been lost, you may want to adjust the default timeouts for reflog expiration and retiring
unreferenced commits during garbage collection.

default is 90 days
$ git config --global gc.reflogExpire "6 months"

default is 30 days
$ git config --global gc.reflogExpireUnreachable "60 days"

default is 2 weeks
$ git config --global gc.pruneexpire="1 month"

Sometimes, using a graphical tool such as gitk or viewing a log graph can help find and
establish necessary context for interpreting and understanding the reflog and other
dangling or orphaned commits.

Tips for Recovering Commits | 371

Here are two aliases that you might add to your global .gitconfig:
$ git config --global \
alias.orphank=!gitk --all ‘git reflog | cut -c1-7°&
$ git config --global \
alias.orphanl=!git log --pretty=oneline --abbrev-commit \
--graph --decorate ‘git reflog | cut -c1-7°

Subversion Conversion Tips

General Advice

Maintaining an SVN repository and a Git repository in parallel is a lot of work, espe-
cially if subsequent new commits to the SVN repository are allowed. Make absolutely
sure that you need to do this before you commit to this workflow. By far the easiest
approach is to do the SVN to Git conversion once, making the SVN repository inac-
cessible when the conversion has been completed.

Plan on doing all of your importing, converting, and cleaning up once up front before
ever publishing the first Git version of your repository. There are several steps in a well-
planned conversion that you really should do before anyone else has a chance to clone
the first version of your Git repository. For example, all of your global changes, such
as directory renaming, author and email address cleanup, large file removal, branch
fiddling, tag construction, etc., will be significantly more difficult for both you and your
downstream consumers if they happen after they have cloned the conversion reposi-
tory.

Do you really want to remove all the SVN commit identifiers from your Git commit
logs? Just because recipes exist to do so and someone shows you how, doesn’t mean
you should. It’s your call.

After doing a conversion, the metadata in the .git directory for the SVN conversion is
lost upon cloning or pushing to a Git repository. Make sure you are done.

If you can, ensure that you have a good author and email mapping file prior to doing
your import. Having to fix them up later with git filter-branch is just extra pain.

If creating and maintaining parallel SVN and Git repositories seems complicated, and
you find you still must use both, using GitHub’s Subversion Bridge (see “Subversion
Bridge” on page 407) is an easy alternative that meets this requirement.

Remove a Trunk After an SVN Import

Often, after creating a new repository from an SVN import, you are left with a top-level
directory such as trunk that you don’t really want in your Git repository.

$ cd 01dSVNStuff

372 | Chapter20: Tips, Tricks, and Techniques

$ 1s -R .

trunk

./trunk:

Recipes Stuff Things

./trunk/Recipes:
Chicken_Pot Pie Ice_Cream

. /trunk/Stuff:
Note to_self

./trunk/Things:
Movie List
There is no real reason to keep trunk. You can use Git’s filter-branch to remove it:

$ git filter-branch --subdirectory-filter trunk HEAD
Rewrite b6b4781ee814cbbbfcb6an1a91c8dob54ec78fbel (1/1)
Ref 'refs/heads/master' was rewritten

$1s
Recipes Stuff Things

Everything under trunk will be hoisted up one level and the directory trunk will be
eliminated.

Removing SVN Commit IDs
First, run git filter-branch --msg-filter using a sed script to match and delete the
SVN commit IDs from your Git log messages.
From the git-filter-branch manual page
$ git filter-branch --msg-filter 'sed -e "/*git-svn-id:/d"’
Toss the reflog or else it will have lingering references:
$ git reflog expire --verbose --expire=0 --all
Remember that afteragit filter-branch command, Git leaves the old, original branch
refs in refs/original/. You should remove them and take the garbage out with prejudice:
Careful...
$ rm -rf .git/refs/original

$ git reflog expire --verbose --expire=0 --all
$ git gc --prune=0
$ git repack -ad

Alternatively, clone away from it:

$ cd /tmp/somewhere/else/
$ git clone file:///home/jd1l/stuff/converted.git

Subversion Conversion Tips | 373

Remember to use a file:/// URL, because a normal, direct file reference will hard link
the files rather than copy them; that won’t be effective.

Manipulating Branches from Two Repositories

[am occasionally asked the question, “How do I compare two branches from different
repositories?” It is sometimes asked with slight variations as well: “How do T tell
whether my commits from my repository have been merged into a branch in some other
repository?” Or sometimes something like, “What does the devel branch in this remote
repository have that isn’t in my repository?”

These are all fundamentally the same question in that they aim to resolve or compare
branches from two different repositories. Developers are sometimes thrown off by the
fact that the branches they wish to compare are in two or more different repositories,
and that those repositories might also be remote or located on another server.

In order for these questions to make sense at all, the developer must know that, at some
point back in time during the earlier development of these repositories, they must have
had some common ancestor and were derived from a common basis. Without such a
relationship, it makes little to no sense to even ask how two branches might compare
to each other. That means that Git should be able to discover the commit graph and
branch history of both repositories and be able to relate them.

The key technique for solving all these questions, then, is to realize that Git can compare
branches only within one local repository. Thus, you need to have all the branches from
all the repositories colocated in one repository. Usually, this is a simple matter of adding
a new remote for each of the other repositories containing a needed branch, and then
fetching from it.

Once the branches are all in one repository, use any of the usual diff or comparison
commands on those branches as needed.

Recovering from an Upstream Rebase

Sometimes, when working in a distributed environment where you don’t necessarily
control the upstream repository from which you derived your current development
clone, the upstream version of the branch on which you have developed your work will
undergo a non—fast-forward change or a rebase. That change destroys the basis of your
branch, and prevents you from directly sending your changes upstream.

Unfortunately, Git doesn’t provide a way for an upstream repository maintainer to state
how its branches will be treated. That is, there is no flag that says “this branch will be
rebased at will,” or “don’t expect this branch to fast-forward.” You, the downstream
developer, just have to know, intuit its intended behavior, or ask the upstream main-
tainer. For the most part, other than that, branches are expected to fast-forward and
not be rebased.

374 | Chapter20: Tips, Tricks, and Techniques

Sure, that can be bad. I've explained before how changing published history is bad.
Nevertheless, it happens sometimes. Furthermore, there are some very good develop-
ment models that even encourage the occasional rebasing of a branch during the normal
course of development. (For an example, see how the pu, or proposed updates branches,
of the Git repository itself are handled.)

So when it happens, what do you do? How do you recover so that your work can be
sent upstream again?

First, ask yourself whether the rebased branch is really the right branch on which you
should have been basing your work in the first place. Branches are often intended to
be read only. For example, maybe a collection of branches are being gathered and
merged together for testing purposes into a read only branch, but are otherwise avail-
able individually and should form the basis of development work. In this case, you
likely shouldn’t have been developing on the merged collection branch. (The Linux
next branches tend to operate like this.)

Depending on the extent of the rebase that occurred upstream, you may get off easily
and be able to recover with a simple git pull --rebase. Give it a try; if it works, you
win. But I wouldn’t count on it. You should be prepared to recover an ensuing mess
with a judicious use of reflog.

The real, more reliable approach is to methodically transfer your developed and
orphaned commit sequence from your now defunct branch to the new upstream
branch. The basic sequence is to:

* Rename your old upstream branch. It is important to do this before you fetch
because it allows a clean fetch of the new upstream history. Try something like:
git branch save-origin-master origin/master.

* Fetch from upstream to recover the current upstream content. A simple
git fetch should be sufficient.

* Rebase your commits from the renamed branch onto the new upstream branch
using commands like cherry-pick or rebase. This should be the command:
git rebase --onto origin/master save-origin-master master.

* Clean up and remove the temporary branch. Try using the command
git branch -D save-origin-master.

It seems easy enough, but the key can often be in locating the point back in the history
of the upstream branch where the original history and the new history begin to diverge.
It’s possible that everything between that point and your first commit isn’t needed at
all; thatis, the rewritten commit history changes nothing that intersects with your work.
In this case, you win because a rebase should happen readily. On the other hand, it is
also possible that the rewritten history touches the same ground that you were devel-
oping. In this case, you likely have a tough rebase road ahead of you and will need to
fully understand the semantic meanings of the original and changed histories in order
to figure out how to resolve your desired development changes.

Recovering from an Upstream Rebase | 375

Make Your Own Git Command

Here’s a neat little trick to make your own Git command that looks like every other
git command.

First, write your command or script using a name that begins with the prefix git-. Place
it in your ~/bin directory or some other place that is found on your shell PATH.

Suppose you wanted a script that checked to see if you were in the top level of your Git
repository. Let’s call it git-top-check, like this:

#1/bin/sh
git-top-check -- Is this the top level directory of a Git repo?

if [-d ".git"]; then
echo "This is a top level Git development repository."
exit 0

fi

echo "This is not a top level Git development repository."

exit -1
If you now place that script in the file ~/bin/git-top-check and make it executable, you
can use it like this:

$ cd ~/Repos/git

$ git top-check
This is a top level Git development repository.

$ cd /etc
$ git top-check
This is not a top level Git development repository.

Quick Overview of Changes

If you need to keep a repository up to date by continually fetching from an upstream
source, you may find yourself frequently asking a question similar to, “So, what
changed in the last week?”

The answer to your wonderment might be the git whatchanged command. Like many
commands, it accepts a plethora of options centered around git rev-parse for selecting
commits, and formatting options typical of, say, git logsuch as the --pretty= options.

Notably, you might want the --since= option.

The Git source repository

$ cd ~/Repos/git

$ git whatchanged --since="three days ago" --oneline

745950C p4000: use -3000 when promising -3000

1100755 100755 d6e505c... 7€00c9d... M t/perf/pao0o-diff-algorithms.sh
42e52e3 Update draft release notes to 1.7.10

1100644 100644 ae446e0... a8fdoac... M Documentation/RelNotes/1.7.10.txt
561ae06 perf: export some important test-1lib variables

376 | Chapter20: Tips, Tricks, and Techniques

Download from Wow! eBook <www.wowebook.com>

1100755 100755 f8dd536... cf8elef... M t/perf/p0000-perf-lib-sanity.sh
1100644 100644 bcc0131... 5580c22... M t/perf/perf-1lib.sh

1cbc324 perf: load test-lib-functions from the correct directory
1100755 100755 2cadaac... f8dd536... M t/perf/p0000-perf-lib-sanity.sh
1100644 100644 2a5e1f3... bcc0131... M t/perf/perf-1lib.sh

That’s dense. But we did ask for --oneline! So the commit log has been summarized
in single lines like this:

561ae06 perf: export some important test-1lib variables

And each of those are followed by the list of files that changed with each commit:

1100755 100755 f8dd536... cf8elef... M t/perf/p0000-perf-lib-sanity.sh
1100644 100644 bcc0131... 5580c22... M t/perf/perf-1lib.sh

That’s file mode bits, before and after the commit, the SHA 1s of each blob before and
after the commit, a status letter (M here means modified content or mode bits), and
finally the path of the blob that changed.

Although the previous example defaulted the branch reference to master, you could
pick anything of interest, or explicitly request the set of changes that were just fetched:

$ git whatchanged ORIG_HEAD..HEAD

You can also limit the output to the set of changes that affect a named file:

$ cd /usr/src/linux
$ git pull

$ git whatchanged ORIG_HEAD..HEAD --oneline Makefile
fde7d90 Linux 3.3-rc7

1100644 100644 66d13c9... 56d4817... M Makefile
192cfd5 Linux 3.3-rc6

1100644 100644 b61a963... 66d13c9... M Makefile

The workhorse behind this output is git diff-tree. Grab yourself a caffeinated
beverage prior to reading that manual page.

Cleaning Up

Everyone enjoys a clean and tidy directory structure now and then! To help you achieve
repository directory nirvana, the git clean command may be used to remove untracked
files from your working tree.

Why bother? Perhaps cleaning is part of an iterative build process that reuses the same
directory for repeated builds but needs to have generated files cleaned out each time.
(Think make clean.)

By default, git clean just removes all files that are not under version control from the
current directory and down through your directory structure. Untracked directories
are considered slightly more valuable than plain files and are left in place unless you
supply the -d option.

CleaningUp | 377

Furthermore, for the purposes of this command, Git uses a slightly more conservative
concept of under version control. Specifically, the manual page uses the phrase “files
that are unknown to Git” for a good reason: even files that are mentioned in
the .gitignore and .git/info/exclude files are actually known to Git. They represent files
that are not version controlled, but Git does know about them. And because those files
are called out in the .gitignore files, they must have some known (to you) behavior that
shouldn’t be disturbed by Git. So Git won’t clean out the ignored files unless you ex-
plicitly request it with the -x option.

Naturally, the -X option causes the inverse behavior: namely, only files explicitly
ignored by Git are removed. So choose the files that are important to you carefully.

If you are skittish, do a --dry-run first.

Using git-grep to Search a Repository

You may recall from “Using Pickaxe” on page 88 that I introduced the pickaxe option
(spelled -Sstring) for the git log command, and then in “git diff with Path Limit-
ing” on page 117, I showed it in use with the git diff command. It searches back
through a branch’s history of commit changes for commits that introduce or remove
occurrences of a given string or regular expression.

Another command that can be used to search a repository is git grep. Rather than
searching each commit’s changes to a branch, the git grep command searches the
content of files within a repository. Because git grep is really a generic Swiss Army
knife with a multitude of options, it is more accurate to say that git grep searches for
text patterns in tracked blobs (i.e., files) of the work tree, blobs cached in the index, or
blobs in specified trees. By default, it just searches the tracked files of the working tree.

Thus, pickaxe can be used to search a series of commit differences, whereas git grep
can be used to search the repository tree at a specific point in that history.

Want to do some ego surfing in a repository? Sure you do. Let’s go get the Git source
repository and find out!!

$ cd /tmp
$ git clone git://github.com/gitster/git.git

Cloning into 'git'...

remote: Counting objects: 129630, done.

remote: Compressing objects: 100% (42078/42078), done.

Receiving objects: 100% (129630/129630), 28.51 MiB | 1.20 MiB/s, done.
remote: Total 129630 (delta 95231), reused 119366 (delta 85847)
Resolving deltas: 100% (95231/95231), done.

$ cd git

1. I'both elided an obsolete name reference, and shortened the actual output lines for this example. Oh, and
apparently I'm a closet Git artist!

378 | Chapter20: Tips, Tricks, and Techniques

$ git grep -i loeliger

Documentation/gitcore-tutorial.txt:Here is an ASCII art by Jon Loeliger
Documentation/revisions.txt:Here is an illustration, by Jon Loeliger.
Documentation/user-manual.txt:Here is an ASCII art by Jon Loeliger

$ git grep jdl
Documentation/technical/pack-heuristics.txt: <jdl> What is a "thin" pack?

Ever wonder where the documentation for the git-grep command itself is located?

What files in the git.git even mention git-grep by name? Do you even know where it is
located? Here’s how you can find out:

Still in the /tmp/git repository

$ git grep -1 git-grep

.gitignore
Documentation/RelNotes/1.5.3.6.txt
Documentation/RelNotes/1.5.3.8.txt
Documentation/RelNotes/1.6.3.txt
Documentation/git-grep.txt
Documentation/gitweb.conf.txt
Documentation/pt BR/gittutorial.txt
Makefile

command-list.txt

configure.ac

gitweb/gitweb.perl

t/README

t/perf/p7810-grep.sh

A few things to note here: git-grep supports many of the normal command line options
to the traditional grep tool, such as -i for case insensitive searches, -1 for a list of just
the matching file names, -w for word matching, etc. Using the -- separator option, you
can limit the paths or directories that Git will search. To limit the search to the occur-
rence within the Documentation/ directory, do something like this:

Still in the /tmp/git repository

$ git grep -1 git-grep -- Documentation
Documentation/RelNotes/1.5.3.6.txt
Documentation/RelNotes/1.5.3.8.txt
Documentation/RelNotes/1.6.3.txt
Documentation/git-grep.txt
Documentation/gitweb.conf.txt
Documentation/pt_BR/gittutorial.txt

Using the --untracked option, you can also search for patterns in untracked (but not
ignored) files that have neither been added to the cache nor committed as part of the
repository history. This option may come in handy if you are developing some feature
and have started adding new files but haven’t yet committed them. A default
git grep wouldn’t search there, even though your past experience with the traditional
grep command might lead you to believe that all files in your working directory (and
possibly its subdirectories) would otherwise be searched.

Using git-grep to Search a Repository | 379

So why even bother introducing the git grep in the first place? Isn’t the traditional shell
tool sufficient? Yes and no.

There are several benetfits to building the git grep command directly into the Git tool-
set. First, speed and simplicity. Git doesn’t have to completely check out a branch in
order to do the search; it can operate directly on the objects from the object store. You
don’t have to write some script to check out a commit from way back in time, then
search those files, then restore your original checked out state. Second, Git can offer
enhanced features and options by being an integrated tool. Notably, it offers searches
that are limited to tracked files, untracked files, files cached in the index, ignored or
excluded files, variations on searching snapshots from the repository history, and
repository-specific pathspec limiters.

Updating and Deleting refs

Way back in “refs and symrefs” on page 68, I introduced the concept of a ref and
mentioned Git also had several symbolic refs that it maintained. By now, you should
be familiar with branches as refs, how they are maintained under the .git directory, and
that the symbolic refs are also maintained there. Somewhere in there a bunch of SHA1
values exist, get updated, shuffled around, deleted, and referenced by other refs.

Occasionally, it is nice or even necessary to directly change or delete a ref. If you know
exactly what you are doing, you could manipulate all of those files by hand. But if you
don’t do it correctly, it is easy to mess things up.

To ensure that the basic ref manipulations are done properly, Git supplies the command
git update-ref. This command understands all of the nuances of refs, symbolic refs,
branches, SHA1 values, logging changes, the reflog, etc. If you need to directly change
a ref’s value, you should use a command like:

$ git update-ref someref SHA1
where someref is the name of a branch or ref to be updated to the new value, SHA1.
Furthermore, if you want to delete a ref, the proper way to do so is:

$ git update-ref -d someref
Of course, the normal branch operations might be more appropriate, but if you find

yourself directly changing a ref, using git update-ref ensures that all of the bookkeep-
ing for Git’s infrastructure is done properly, too.

Following Files that Moved

If, over the history of a file, it is moved from one place to another within your repository
directory structure, Git will usually only trace back over its history using its current
name.

380 | Chapter20: Tips, Tricks, and Techniques

To see the complete history of the file, even across moves, use the --follow as well. For
example, the following command shows the commit log for a file currently named
file, but includes the log for its prior names as well:

$ git log --follow file
Add the --name-only option to have Git also state the name of that file as it changes:

$ git log --follow --name-only file

In the following example, file a is first added in the directory foo and then moved to
directory bar:

$ git init

$ mkdir foo

$ touch foo/a

$ git add foo/a

$ git commit -m "First a in foo" foo/a

$ mkdir bar

$ git mv foo/a bar/a

$ git commit -m "Move foo/a to bar/a"

At this point, a simple git log bar/b will show only the commit that created file bar/
a, but adding option --follow will trace back through its name changes, too:

$ git log --oneline bar/a
6a4115b Move foo/a to bar/a

$ git log --oneline --follow bar/a
6a4115b Move foo/a to bar/a
1862781 First a in foo

If you want to use its original name, you have to work harder because only the current
name of the file, bar/a, is able to be referenced normally. Adding option -- and then
any of its current or former names will work. And adding --all will produce a
comprehensive search as if all refs were searched, too.

$ git log --oneline foo/a

fatal: ambiguous argument 'foo/a': unknown revision or path not in the

working tree.
--' to separate paths from revisions

Use

$ git log --oneline -- foo/a
6a4115b Move foo/a to bar/a
1862781 First a in foo

Keep, But Don’t Track, This File

A common developer problem, described here by Bart Massey, arises with Makefiles
and other configuration files: the version that the developer works with locally may be
customized in ways that are not intended to be visible upstream. For example, I com-
monly change my Makefile CFLAGS from -Wall -g -02 to -Wall -g -pg during

Keep, But Don't Track, This File | 381

development. Of course, I also change the Makefile in ways that should be visible up-
stream, such as adding new targets.

I could maintain a separate local development branch, which differs only in the
Makefile. Whenever I make a change, I could merge back tomaster and push upstream.
I’d have to do an interactive merge in order to omit my custom CFLAGS (while maybe
merging other changes). This seems hard and error prone.

Another solution would be to implement some form of Makefile snippet that provided
local overrides for certain variable settings. But this approach is highly specific where
an otherwise general problem remains.

It turns out that git update-index --assume-unchanged Makefile will leave the
Makefile in the repository, but will cause Git to assume that subsequent changes to the
working copy are not to be tracked. Thus, I can commit the version with the CFLAGS I
want published, mark the Makefile with --assume-unchanged, and edit the CFLAGS to
correspond to my development version. Now, subsequent pushes and commits will
ignore the Makefile. Indeed, git add Makefile will report an error when the Makefile
is marked --assume-unchanged.

When [want to make a published change to my Makefile, 1 can proceed via:

$ git update-index --no-assume-unchanged Makefile
$ git add -p Makefile

[add the Makefile changes I want published]

$ git commit

$ git update-index --assume-unchanged Makefile

$ git push
This work flow does require that I remember to perform the previous steps when [want
a Makefile change published. But that is relatively infrequent. Further, initially forget-
ting carries a low price tag: I can always do it later.

Have You Been Here Before?

Ever have that feeling you’ve worked through a complex merge or rebase over and over
again? Are you getting tired of it yet? Do you wish there was some way to automate it?

I thought so. And so did the Git developers!

Git has a feature named rerere that automates the chore of solving the same merge or
rebase conflicts repeatedly. The seemingly alliterative name is a shortening of reuse
recorded resolution. Sometimes long development cycles that use a branch to hold a
line of development that undergoes many development iterations before finally being
merged into a mainline development will have to be rebased or moved through the
same set of conflicts and resolutions many times.

To enable and use the git rerere command, you must first set the Boolean
rerere.enabled option to true.

382 | Chapter20: Tips, Tricks, and Techniques

$ git config --global rerere.enabled true

Once enabled, this feature records the right and left side of a merge conflict in the .git/
rr-cache directory and, if resolved, also records the manual resolution to that conflict.
If the same conflict is seen again, the automatic resolution engages and preemptively
solves the conflict.

When rerere is enabled and participates in a merge, it will prevent autocommitting of
the merge, giving the opportunity to review the automatic conflict resolution before
making it a part of the commit history.

Rerere has only one prominent shortcoming: the nonportability of the .rr-cache direc-
tory. Conflict and resolution recording happens on a per clone basis and is not trans-
mitted in push or pull operations.

Have You Been Here Before? | 383

Download from Wow! eBook <www.wowebook.com>

CHAPTER 21

Git and GitHub

Although the other chapters of this book have focused on the Git command line tool,
the years since the 2005 inception of Git have allowed and fostered the growth of a
community of tools around it. Those tools number in the hundreds and take on many
forms, from desktop GUIs like SmartGit to disk backup tools like SparkleShare. But
out of this ocean of Git tooling, one stands at the forefront of the mind of many devel-
opers and even nondevelopers: GitHub.

This website, shown in Figure 21-1, introduced the phrase that seemed dismissible just
a few years ago, but now feels like the way many of us should consider working: social
coding. This model of social coding was first applied to open source, but the last two
years have seen this idea of code as a point of geographically distributed collaboration
grow even in the closed source enterprise. Let’s take a look at what GitHub has to offer.

Repo for Public Code

Statistics indicate that the first interaction that many developers have with Git is in
cloning a repository from GitHub. This is the original function of GitHub. It offers an
interface to repositories over the git://, https://, and git+ssh:// protocols. Accounts
are free for open source projects and all accounts can create unlimited publicly acces-
sible repositories. This has greatly fostered the adoption of Git within the open source
community for languages from JavaScript to ClojureScript.

Creating an account begins with opening http://github.com in your web browser and
clicking the Sign Up link shown in Figure 21-2.

385

http://syneveo.com/smartgit
http://sparkleshare.org
http://github.com
http://github.com

github

git gt/

Git is an extremely fast, efficient, distributed version control system
ideal for the collaborative development of software.

Signup and Pricing

jQuery, reddit, Sparkle, curl, Ruby on Rails, node.js, ClickToFlash, Erlang/OTP, CakePHP, Redis, and many more

git-hub /et ne/

GitHub is the best way to collaborate with others. Fork, send pull
requests and manage all your publie and private git repositories.

Explore GitHub Features Blog Login

1,460,226 people hosting over 2,454,172 repositories

Find any repository

twikker Micresoft vmware @ rednat Linkedf mozilla

Plans, Pricing and Signup

Unlimited public repos e free!

Free public issue tracking, wikis, downloads, code review, graphs and much more...

Team management Code review Reliable code hosting Open source collaboration

Participate in the mostimportant open
source community in the world today —
online or at one of our meetups

We spend all day and night making
sure your reposilories are secure
backed up and always available

Comment on changes, track issues,
compare branches, send pull requests
and merge forks

30 seconds 10 give people access 10
code. No SSH key required. Activity
feeds keep you updated on progress

More about collaboration

More about code review

More about code hosting

More about our community

Figure 21-1. GitHub homepage

Plans & Pricin

$0 Free for open source
L public e and

Join today and collaborate with the smartest developers in the world.

public collaborators

Micro §7/mo

5 Private Repositories
1 Private Collaborator

Unlimited public repositories

Unlimited public collaborators

Create an account

Business Plans

Bronze $25/mo

Silver

Small $12/mo

10 Private Repositories
5 Private Collaborators

Unlimited public repositories

Unlimited public collaborators

Create an account

$50/mo Gold

$1 oofmo

Create a free account

Medium $22/mo0

20 Private Repositories
10 Private Collaborators

Unlimited public repositories

Unlimited public collaborators

Create an account

Platinum $200/m0

125 Private Repositories

10 Private Repositories
Unlimited Teams

Unlimited public repositories

Create an organization

20 Private Repositories
Unlimited Teams

Unlimited public repositories

Create an organization

50 Private Repositories
Unlimited Teams

Unlimited public repositories

Create an organization

Unlimited Teams

Unlimited public repositories

Create an organization

Figure 21-2. Choosing an account type

386 | Chapter21: Gitand GitHub

GitHub has four types of account and plan combinations: free personal, paid personal,
free organization and paid organization. A personal account is a pre-requisite for joining
as an organization. Be thoughtful in your choice of username because only one rename
action is allowed per account by default (Figure 21-3). Multiple email addresses can be
associated with a single username and can be changed at any time. Thus, the username
is the most permanent part of the sign up information.

Slgn Up 'for G|tHub Log In to an existing account

30 You are signing up for the free plan

The cost for this plan is $0 per month. You can cancel or upgrade at any time.

Create your free personal account
[l twitter mozilla 37signals 3

Username

You're joining the smartest companies in the world

Email Address

Email support
We promise we won't share your emall with anyane. Upgrade, downgrade or cancel at any time
Password Secure, reliable, always-available repository hosting

Must contain one lowercase letter, one number, and be at least 7 characters long.

Confirm Password

By clicking on "Create an account" below, you are agreeing to the
Terms of Service and the Privacy Policy.

Figure 21-3. Free personal account

At the conclusion (Figure 21-4) of creating a free personal account, which is the most
common type, users are directed to the GitHub help pages, which offer tutorials on
setting up a few necessary configuration parameters of the developer desktop installa-
tion of Git.

Repo for PublicCode | 387

booktestuserss ‘R’ ¢ [+

github

Explore Gist Blog Help

booktestuser9g - ED News Feed

News Feed Your Actions Pull Requests Issues

GitHub Bootcamp 1 you are stil new to things, we've provided a few walkthroughs to get you staried. (x]

2=’ = . =8 an B
ar i P M@

Set Up Git Create A Repository Fork a Repository Be social
A quick guide to help you get Create the place where your Copy a repo to create a new, Follow a friend.
started with Git. commits will be stored. unique project from its contents. Watch a project.

git Welcome to GitHub! What's next? L
Your Repositories

New repository

Create a Repository
Tell us about yourself

Browse Interesting Repos
Follow @github on Twitter

You don't have any repositories yet!
Create your first repository or learn more about Git
and GitHub

Figure 21-4. Account creation complete

Creating a GitHub Repository

New Repository Information

Once you’ve created an account, creating a repository is as easy as clicking on the
New Repository button on the top-most toolbar, visible at all times once logged
in, or by navigating directly to the New Repository page by typing http://github
.com/new.

The only required data is the name of the repository, but an optional description
of the project’s objectives and the URL of its home page signal attentiveness of the
maintainers (Figure 21-5).

Next, the repository must be given its initial content. There are two distinct
approaches based on whether or not you have existing commits to preserve.

README Seeding (Option 1)

If the first step in working with the project was to create the GitHub repository
before writing any code, you’ll want to create a placeholder file as the first commit.
During the new repository creation on the GitHub site, you are presented with
choices to optionally seed the repository with an initial README file and
a .gitignore file. Projects use this README text file to describe the intent of the
project.

388 | Chapter21: Gitand GitHub

http://github.com/new
http://github.com/new

The project is then ready to be cloned with the command git clone url, after
which new code can begin to be locally added and committed.

Adding a Remote (Option 2)
If you already have a local Git repository with commits, you can connect the
GitHub address to the existing local repo. You do this by adding the GitHub URL
(a Git remote) to an existing local Git repository with the git remote add url
command.

Pushing the Local Contents to GitHub
Once one of the two options has been followed to connect the local repository to
the remote repository, the contents of the local repo can be pushed to GitHub.
This is done with the git push remote branch command. If the branch has never
been published before, the more specific invocation git push -u origin master is
appropriate, in which -u tells Git to track the pushed branch, push it to the ori
gin remote, and to push just the master branch.

Owner Repository name

£ matthewmeculiough -

Great repository names are short and memorable. Meed inspiration? How about glowing-nemesis.

Description (optional)

© Public ©
Anyone can see this repository. You choose who can commit.

O Private =
You choose who can see and commit to this repository.
Initialize this repository with a README
This will allow you to git clone the repository immediately.

Add .gitignore: None -

Figure 21-5. Creating a public repo

Once the connection with the upstream (GitHub) server is established with one of the
previous techniques, further code changes can be easily pushed with additional
git push calls. This exhibits a core benefit of a centrally accessible Git repository host,
even in a very distributed worker—focused tool such as Git: the ability to see the changes
that all members of the project have completed and pushed (Figure 21-6), even if they
are offline.

Creating a GitHub Repository | 389

@ matthewmccullough / hellogitworld © Watch 4 Fork 19 4 40
Code Network Pull Requests © Issues 0 Wiki 1 Stats & Graphs
A branch: master - Files Commits Branches 7 Tags 2 Downloads

hellogitworld / Commit History £

Keyboard shortcuts avaiable E=]
Mar 22, 2012

Merge pull request #41 from githubstudents/feature7 16f1e563ec
matthewmecullough authored 4 days ago

A great new feature a97ffc02a3
matthewmecullough authored 4 days aga

Merge branch 'master’ of https:/github.com/githubstudents/hellogitworld 55fded181c
matthewmecullough authored 4 days aga

one more 38ebd86@ae
matthewmecullough authored 4 days aga

spelling check 570£85de83
matthewmecullough authored 4 days ago

Bug fix b3c536fbae
matthewmecullough authored 4 days ago

A random change of 12532 to sampled.txt 4ecfBdocea
matthewmeeullough authored 4 days ago

¥ [[[[D

E A random change of 22074 to sample3.txt c493ead3ad
= matthewmccullough authored 4 days ago

Figure 21-6. Commit history on GitHub

Social Coding on Open Source

GitHub can be minimally thought of as a place to host open source projects. However,
the pedestrian concept of repository hosting isn’t new and has been well pioneered by
forges such as SourceForge and Google Code, among many others, each with their own
user interface strengths. The extended idea of a forge with organizational policies,
licenses, and commit rights through meritocracy was furthered by The Apache
Foundation, Codehaus, and The Eclipse Foundation.

But GitHub took a different approach to extending the mere concept of a forge with
community contributions (Figure 21-7). GitHub offers social aspects of the Web, as
seen on Twitter, Facebook, and other social networks, mapped onto the previously
considered solitary activity of programming. With the concepts of watching other users
that seem to be making interesting contributions, repository forks to permit anyone to
copy a project, pull requests to signal project owners that another programmer has an
interesting set of code to potentially merge in, and line-level comments on commits to
allow simple iterative refinement to contributions, GitHub has made coding a social
activity. In the process, a vast amount of open source has benefited from a much wider
range of contributors than were afforded in the days of patch files attached to bug
tickets.

390 | Chapter21: Gitand GitHub

Features Project Management G sting | Community |

1,507,018 developeré

{and counting) »

Activity Streams. Developer Profiles Explore GitHub
GitHub allows you to watch repositories and Every developer gets their own profile page Explore s a section of our site where we
follow users to generate activity streams. Our that is automatically updated with a stream of highlight the most interesting and popular
activity streams show you everything important the important things they are doing on GitHub repasitories on GitHub right now. Additionally,
that's happening with anyone or anything on and a list of the Open Source projects they are our comprehensive search helps you find
GitHub. hosting at GitHub. Many developers have repositories, users, and code across all of
started referring to GitHub Profiles as the new GitHub.
résumé.
Meet the Network Graph

Forking Is a good thing. We encourage developers to fork repositories
often — even for the simplest changes. The network graph answers the
question: What are people doing in those forks?

The network graph is available on every repository on GitHub. It gives
you as a project maintainer an at-a-glance understanding of the activity
on your source code across all developers interested in it.

Before GitHub, forking was a subgroup of developers going in a difierent
dirsction with the codebase — a riftin the community. Today a project can have
hundreds of forks, each trying out ideas that may get merged back in to the main
project. Forks now represent a vibrant and active community.

Figure 21-7. Social coding

Watchers

The simplest of the social coding features to be found on GitHub is watching, which
begins with the press of the Watch button as shown in Figure 21-8. Watching, a concept
similar to that of Twitter followers or Facebook friends, signals interest in a GitHub
user, organization, or particular project.

matthewmecullough / hellogitworld @b Watch o [F Fork 8

Codz Hetwork Pull Regquests 1 SELCs 1 Wik Graphs

Figure 21-8. Watch button

The watcher count can often be a signal of the usefulness of an open source project.
The GitHub explore page allows for site-wide searching or browsing based on reposi-
tory follower count (Figure 21-9). When combined with a particular programming
language search, watcher count data can yield useful public domain code examples.

Watchers | 391

Popular Watched Repositories

Explore Repositories Languages Timeline Search

Interesting Popular Forked ~ Popular Watched

bOOtStrap twitter 24,944 watching

HTML, CSS, and JS toolkit from Twitter "
o node joyent 13,887 watching

evented I/ for v8 javascript n
Ei rails rails 13,378 watching

Ruby on Rails n
(S jquery jquery 12,988 watching
MUeY | iQuery JavaScript Library u

html5-boilerplate hsbp 11,678 watching
A professional front-end template that helps you build fast, robust, n
adaptable, and future-proof websites.

Figure 21-9. Explore and search watcher count

News Feed

Besides the technical high-five that watching a user, organization, or repository pro-
vides, it also shapes the content of your personalized news feed as shown in Fig-
ure 21-10. This news feed reports the interesting activities of the user repositories and
organizations that you’re watching.

News feeds are offered both as a web page that you can view on the GitHub. com site, as
well as an RSS feed for consumption in the reader application of your choosing.

Forks

The next idea that GitHub popularized, so much so that the phrase has spread to other
domains, is personal forks of projects (Figure 21-11). The term forking has commonly
carried a negative connotation. In the coding landscape of yesteryear, forking often
meant an aggressive parting of ways with the primary copy of the project with the intent
of taking the program in a different direction.

GitHub’s idea of forking is a positive one that enables a greater number of contributors
to make a greater number of contributions in a controlled and highly visible way. Fork-
ing is the democratic ability of any potential contributor to get a personal copy of a
project’s code. This personal copy (a fork in GitHub parlance) can then be changed at
will without any explicit permission from the original author. This does not pose any
risk to the core project because the changes are happening in the forked repository, not
the original repository.

392 | Chapter21: Gitand GitHub

9 matthewmceullough ~ B News Feed

News Feed Your Actions Pull Requests Issues

@ fernandoalmeida commented on pull request 119 on progit/progit 4 minutes ago
. | dont know why this pull request was not accepted yet, my other contributions were
quickly accepted:https://github.com/progit/progit/commits/maste...

=

2 Today we are announcing the next version of GitHub

] GitHub for Mac 1.2: Snow Octocat
“ for Mac. Snow Octocat.

n hide this broadcast View 77 new broadcasts
@ rogeriopradoj commented on pull request 119 on progitprogit 24 minutes ago * !

Hello, @fernandoalmeida . I'd like to contribute with the translation of @progit into
[pt-br]. However I'm seeing that a long long time has passed ...

Your Repositories (52)
& 1 d started a 7 hours ago
rdebusscher has 4 public repos and 1 follower

All Repositories Public Private Sources Forks

& nealford/ppap

= d started ge-plugi pike 7 hours ago
l forge-plugin-deltaspike was created 2 months ago @ matthewmccullough/git-workshop
! @ matthewmccullough/emacs
@ nealford pushed to master at nealford/ppap 11 hours ago @ githubstudents/MarchClassTest

I3

1 1a4b3c9 renamed Thinking is Not Designing (finally!) to Fourthought, and star...) githubstudents/hellogitworld
& matthewmccullough/hellogitworld
@ nealford pushed to master at nealford/ppap 12 hours ago & wakaleo/game-of-life
1 b7921€7 ups to narrative arc @ githubstudents/submodulel

@ matthewmccullough/dotfiles

% peterlie started] git-workshop 15 hours ago @ matthewmccullough/scripts
git-workshop's description:
A Git Workshop and Associated Courseware Show 42 more repositories...

Figure 21-10. News feed

tberglund / groovy-liquibase A Admin @& Unwatch 28 [¥ YourFork 12
L'y Code Netwark Pull Requests 0 Issues 5 Wik Graphs
et An Groovy DSL for Lguibase — Read mare
@ Clonein Mac < 2P HITP Git Bead-Only hTTps:/ AEIThut, constiberglund, groovy-1liquibase, git [E Fead-Only access

Figure 21-11. Fork button

This is the inverse of the protected core concept of an Apache or Eclipse project, where
patches are submitted as file attachments to bug reports. A primary benefit of this model
is the transparency and public visibility of the community contributions (Fig-
ure 21-12), even before they are submitted back to the core project for discussion and
potential incorporation.

The network graph, shown in Figure 21-12, displays the relation of the core project’s
branches and commits to those of other branches and commits, including repository
forks. This provides a high level overview of the community’s activity on this project
and whether a given fork is diverging significantly from the core project. This allows

Forks | 393

Code Network Pull Requests 1 Issues 22 Wiki o Graphs

Graph =~ Members ForkQueue Branch List

The git-scribe network graph Keyboard shortcuts available =]
All branches in the network using schacon/gil ibe as the reference point. Read our biog post about how it works.
Show Help Last updated: 2 hours ago
Oct Dec Jan Mar

a 16 20 25 & 9 29

schacen

.—s

eee-c E
hgavin

michel-kraemer-e. *—a—s
tamsuiboy

Figure 21-12. Network graph

for a thoughtful review of the divergent community contributions and if they are ben-
eficial to merge back into the core, even in the absence of a pull request.

Several years of observing community behavior with the concept of forks shows that a
greater number of fringe users of a project decide to actually submit fixes and small
improvements because the ceremony of doing so is extremely low. Many consumers
of open source that have worked in both the old patches-attached-to-bugs model and
the new fork-and pull-request approach say that the barrier to making contributions
in the old model was the disproportionate time required to prepare the patch compared
to the time it took to make the actual fix to the code.

Creating Pull Requests

Forking is the enabling step of creating a personal copy of a project, but the real value
for the core project lies in the second action, formally called a pull request. Pull requests
allow any user with a commit that she feels makes a useful contribution to the project
to announce that contribution to the core project owners.

Once a contributor has finished coding a feature, committed that new code to a well-
named branch, and pushed that new branch to a fork, it can be turned into a pull
request. A pull request can be accurately but minimally described as a list of topically
focused commits. Pull requests are most commonly based on the entire contents of a
topic branch, but can be adjusted to a more narrow range of commits when less than
the full branch is ready for offering as a contribution to the release branch. When the
newly pushed branch has been selected from the branch selector drop-down control,

394 | Chapter21: Gitand GitHub

the context-sensitive Pull Request button, shown in Figure 21-13, is pressed to initiate
the assembly of the pull request announcement.

matthewmccullough / hellogitworld # Admin 1 Pull Request

Code /' Metwork Pull Requests 2 Isd 2

Git Workshop Sample Repo — Read more

‘ Clone in Mac @ ZIP HTTP SSH Git Read-Only https://github. com/matthewmccullough/hellegity

¥ branch: feature_divisi... ~ Files Commits Branches &

Figure 21-13. Pull request button

The default behavior of a pull request is to include all of the commits on the current
topic branch. However, in cases that call for it, a specific range of commits, as well as
the source and target branch, can be manually altered as shown in Figure 21-14.

hellogitworld-1 + Send & pull regueet

You're zakrg . mat

gh to pull 5 commits into TGt 1om i e G hk] Changs Commits

Base branch - tag - commit / Head branch - tag - commit /
| mamhawmceulocgh . = | @ master gitrubstLdents jhe... @ anlonl
£ mamhewmeeullough (aUThor - 2 cays ago £ mamthewmeoullough (authcr) - o yodr ogo

Owver ndng thousand Fixed

ze7alde4le e dFoe2as061647 c AT Fedae chNcas =

typo In o tested value of dlelslon [commert and actoal

74202fa50dS6ac ad6IbaFabT 38T a00T 042

Update Commil Rangs

Figure 21-14. Pull request ranges

With the pull request now created, itis up to the core project owners to review, evaluate,
comment on, and potentially merge in these changes. Conceptually, this is often com-
pared to the code review process of Crucible and Gerrit. However, it is GitHub’s opin-
ion that this process works well—it strikes the perfect balance of being lightweight, yet
sufficient for a thorough code review. It also automates the most burdensome step of
incorporating new code, merging it in, which can in most cases be done from the
GitHub site on a Pull Request page via a mere button click.

Creating Pull Requests | 395

Download from Wow! eBook <www.wowebook.com>

Managing Pull Requests

A successtul project on GitHub has a queue of Pull Requests (Figure 21-15) to manage.
Anyone that is a collaborator on this core instance of the project can manage and
process pull requests. It is useful to note that pull requests do not necessarily have to
come from forks. Disciplined contributors that have the collaborator privilege on the

core project may still decide to use pull requests as a means of soliciting code feedback

before merging it in.

work Pull Flequestskz Issues 2 Wik

N

2 open requests

Performance Tuning
This adjusts the performance of the core Ul widget It has been tested by Toomas

githuke its submitted to matthewrr ut gi ld aday ago Updated a

Feature division
Mo description available

£ matthewm h submitted to matthewr vhellogitworld 5 days ago Upda

Showing 2 open requests and 0 closed requests

Graphs

Keyboard shortcuts available

Closed ~ Submitted Updated Popularty

1 comment

0 comments

Figure 21-15. Project pull request queue

Pull requests are such an important part of the GitHub ecosystem that each user has
his own custom dashboard to display pull requests across all the projects he

associated with as a contributor (Figure 21-16).

is

F matthewmccullough ~

News Feed Your Actions Pull Requests

Issues

Implementation of Flux Capacitor
Public 2 This is an enhancement Many small refactorings

Private 0

Keyboard shericuls avaiable

v Submitted Updated Popularity

£ | mattt submitted to matthewm gh/hellogitworld 21 minutes age Updated 21 minutes age «* 0 comments

1 open request and 0 closed requests

schacon/git-scribe 1

matthewmecullough/hellogitw. 1

Figure 21-16. System-wide pull request queue

396 | Chapter21: Gitand GitHub

Part of the concept behind pull requests is turning a typically binary accept/deny
operation into a conversation. That conversation happens with comments on pull
requests or comments on specific commits (Figure 21-17). Comments can be of an
instructive nature, indicating that the proposed solution still needs work. If the con-
tributor then makes further commits on the topic branch that is part of the pull request,
those commits, when pushed, show up sequentially in the pull request thread.

REEAFIT f Fixed A typn in a tastad value of d*v s on (comment and Actual didn't.

Yeu can add more commiis to this pull request oy pus rg fo th2 arterl branch on githubstudenta/ellogitwaric-1

Comment on this pull requeet (Halp) Close pull request

Write Preview / Comments are parsed wih GiHJD Flavared Markoown

I'm generally happy with the changes in ths Pull Request. ;s pit]

Z

"4

m Tipe You car aleo ace noles to lines Clege & comment
changec inafie under D

Notifizalons for new comments on 11§ Pull Request ave on. D sable nadllicatcrs 17 s Pull Request

Figure 21-17. Pull request comments

Comments can be made at one of three levels of precision: pull request, commit, or line
of code. The line-level comments (Figure 21-18) are the most useful for technical
adjustments, offering the reviewer an ability to precisely suggest a more preferred way
of coding the same logic to the author.

Soowing 1 changed Tile w'th 1 additiza and @ deletions. Bhow Dilt Btxis
T m /hi Clpnure View file & 1zeafie
8,0 +1 @@
-class
ma

Write Proview Uommenta are parsed wih GiHUD “lavorad Masdow

Why were we nat i 9ar g elass i as in the past™

Close form

 No neuline 3t and of file

1 note on commit 13eafic [T Show Ina roves beiow

Figure 21-18. Pull request line level commit comments

Managing Pull Requests | 397

When the solution in the pull request is sufficiently polished and ready to be merged
in, typically to the master branch, it can be done in one of several ways. The most
innovative and time-saving approach is to use the automatic merge button on the
GitHub web user interface (Figure 21-19). This performs a real Git commit, just as if
it had been done from the command line, minus the ceremony of locally downloading
and merging the code and pushing the result back up to GitHub.

E matthewmecullough added some commiis a year ago
- 7elbf73 F Created an image tc be used for web image diffing on GitHub
Feeffad F Made changes to an image to show GitHub web inage diffing.

You can add more commits fo this pull request by pushing o the feature_inage branch on Il 1l d

@ This pull req can be ged. Merge pull request

Figure 21-19. Pull request automatic merges

It is natural to think of pull requests as an activity that is done at the end of working
on a feature, bug fix, or other contribution. However, pull requests can be effectively
used at the beginning of a concept too. It is becoming ever more common to see pull
requests initiated with a mere mockup JPEG image or quick text file outline of the
objectives of the topic branch, followed by solicitation of team feedback via the pull
request comment approaches given previously. The contributors to the topic branch
continue to push their changes to GitHub and the pull request is automatically updated
in conversation style with links to the latest commits.

Notifications

A social system like GitHub needs a strong notification mechanism to announce
potentially important changes on the projects, organizations, and users that a contrib-
utor has elected to watch. Notifications, as you might reasonably guess, are driven by
watches of the previously mentioned three types of items on GitHub.

The summary of all notifications that pertain to you are centrally located on a notifi-
cations page that is reachable by an icon in the top level navigation, as shown in
Figure 21-20.

github Explore Oist Blog Help f matthewmecullough g ‘F ¥ B

Figure 21-20. Notifications button

398 | Chapter21: Gitand GitHub

This list of pertinent notifications is iconified based on the source of the event. It has
icons for repository- user- and organization-level activities. A summary of each activity
is provided and hyperlinked to the details of the event, as shown in Figure 21-21.

4 Compose Message Notifications « Pravious | [Next »
Notifications (60) Wark all as read
Private Messages
Sent Messages [github sent a system message 1 day ago @
i | Wikl Created
https://github.com/matthewmccullough/git-workshop/wiki has been created.
[github sent a system message 2 days ago @
sia | [git-workshop] Page build successtul
Your page has been built. If this is the first time you've pushed, it may take a few mi...
[4 blackant opened a pull request on github/github 2 days ago @
| fixes whitespace gap with forked line (#2829)
", @kneath You can merge this Pull Request by running: git pull hitps://github.com/github. ..
[petf opened a pull request on github/github 2 days ago @
git_proxy: allow trailing slash in repository name
% Regular git-daemon doesn' care if you ask for "git:/fexample.com/user/project/ or ".....
[4 githubstudents discussed a commit 2 days ago @
Re: Idea
Per line comment
[4 githubstudents opened a pull request on a deleted repo. 2 days ago =]
Idea
What do you think? You can merge this Pull Request by running: git pull https://github....
=] made you a 2 days ago @
You were added to a repo that is now deleted.
[jhernand opened a pull request on gradle/gradle 2 days ago (<]
Update to JNR (JRuby Native Extensions) 1.1.8
We are in the process of packaging Gradle for Fedora (http://fedoraproject.org) and we ...
[si14 discussed an issue on rupa/z 3 days ago @

Re: z is not working
Ok, I'l check it out somewhat later.

« Previous || Next »

Figure 21-21. Notifications list

Notifications can be toggled on and off on a per repository basis by a hyperlink at the
bottom of the repository’s page (Figure 21-22).

System-wide options for notifications are performed under the user’s administration
settings. The type of events to be notified about, as well as whether these should be
routed solely to the web page or additionally to the user’s email address are all
controlled through this page, as shown in Figure 21-23.

Notifications | 399

PahRAad P Added sum furctian ard tast rall

3c9305f @ Added susiracl felure

es5EFIT 9 Fized a typo in a3 tested value of division {(commant and actusl didn't..

Ycu can 2dd more commils 1o this pull request by pushing 0 1€ anzonl branch on githubstudents/Mme llogiworid-1

Comment on this pull request (Help)

Wirlte Preview

Close pull request

Commants are paremd with GiHb Flavaned Macddswn

Tip: Yl e:an AS0 Add notes 1o lines
m rhanged in a tile uncer OHF

Notif cacions for new commenis an this Pull Feguest are on. Disable nolif cations for th s Pull Recuesi

e

Figure 21-22. Notifications repository toggle

githubstudents

cam. Manage your emalls

Profle
Turn on cmail notifiestions (global setting) ¥
Ascount Sertnga

Notification Center
Emzils
/ EVERTS

Motitieation Center
G 1Hub meeups and even: arnounceme s

Billing coce

Paymet History Lomments o7 my eImTiis

Oemments on pormm s in my sapesiares
SSH Keys
Comments ates m2 o0 comm s

Security History Comnis menton ng Bgihubelucens

Apolications PMULL AEQUESTS

Renos lores ull Fiequests 7 Ty repos o7 es
REv EwW DOmmen s

Crganizations

SSUES

PAIVATE AEPDE 0UFQ

“aw IBEJSE |7 MY repas mieE
Lommonts 0 Isues ator me
demoorg1234 Diemmeats tat mantan githuas idents
GIST

Commenle o my gists

SomTos 290 me 07 giss

G Hub can neify you woen peopls interact with yeur code. Email nolifications will be sent 1o

Figure 21-23. Notifications settings

400 | Chapter21: Gitand GitHub

Finding Users, Projects, and Code

GitHub certainly is keen on hosting and facilitating collaboration on open source
projects. However, the greater portion of the open source community is focused on
finding and using open source libraries. This discovery is facilitated by the GitHub
Explore page (Figure 21-24). The opening Explore page provides a curated set of
repositories that are exhibiting statistical trends, making them likely to be of interest
to the greater open source community.

Explore GitHub
Explore Repositories Languages Timeline Search
[Trending Repos Today | Week | Month | Forever The Changelog Podcast Subscribe
EightMedia / hammer.js o™ 4 a2 Brought to you by Adam Stacoviak and Wynn Netherland.
A javascript library for multi-touch gestures =/ You ean touch this
shichuan / javascript-patterns 1,708 4 158 Episode 0.7.6 — .NET, NuGet, and open source
JavaScrpt Patiems with Phil Haack 15 days aco
AlternativaPlatform / Alternativa3D 9% 411 ‘Wynn caught up with Phil Haack to talk about NuGet and growing
the .NET open source community at GitHub.
thoughtbot / laptop o 585 4 164
Laptop is a shell scriptthat turns your Mac OS X laptop into an awesome
development machine.
luis-almeida / filtrify ST 44
Beautiful ad d tag filteri ith HTMLS and jQu
eautiul advanced iag filtering wi andjQuery @ Travis Cl, Riak, and more with Josh Kalderimis and Mathias
v TOPSY Meyer
23 days ago
(f;. The League of Moveable Type with Micah Rich
Featured Repos ED subscribe 2 month ago
@ Tmux with Brian Hogan and Josh Clayton
nvie /rq @1e 46 amonth ago
Simple job gueues for Python @ Vagrant with Mitchell Hashimoto
Read The Changelog's Article 2 months ago
joshbuddy / noexec ©106 42 @ Spine, and client-side MVC with Alex MacCaw
NO MORE BUNDLE EXEC 8 months ago

Read The Changelog's Article) Foundation and other Zurb goodies

4 months ago

ES

domesticcatsoftware / DCintrospect oM 464
Small library of visual debugging tools for i0S.
FAead The Changelog's Article

) Spree with Sean Schofield and Brian Quinn
5 months ago

ES

¢} Growl and open source in the App Store with Chris Forsythe

8

mobiata / MBRequest o8 41 6 months ago
MBRegquest is a simple networking library for iOS and 08 X. @ HTMLS Bollerplate, Modernizr. and more with Paul s
Read The Changelog's Article O ot ag‘o P : ! !
davidcelis / recommendable o6 417 @ RVM and BDSM with Wayne Seguin

A recommendation engine for Likes and Dislikes in Rails 3. Uses Redis. 8 months ago

Read The Changelog's Article

Figure 21-24. Explore

If your focus is to find a code example in a particular programming language, then the
Advanced Search page is what you are looking for, as shown in Figure 21-25. Available
criteria for user, popularity, repository name, and programming language allow for
highly targeted searches.

Finding Users, Projects, and Code | 401

githUb Explore Gist Blog Help £ matthewmecullough ap % B A

Explore Repositories Languages Timeline Search
Advanced Search Search for
Search Everything

Search Language

Any Language

Repositories Users
Repository search will look through the names and descriptions of all The User search will find users with an account on GitHub. You can
the public projects on GitHub. You can also filter the results by: filter by :

prefix description prefix description

size: repo size in kilobyles fullname: the users full name

forks: the number of forks repos: the number of public repos a user has

fork: if the project itself is a fork location: the location of the user

pushed: the last pushed date language: the primary language of the project

username: the username of the owner created: the date it was created

language: the primary language of the project followers: the number of followers

created: the date it was created actions: the number of events it has had

followers: the number of followers

actions: the number of events it has had

Code Search

The Code search will look through all of the code publicly hosted on GitHub. You can also filter by :

prefix description
language: the language
repo: the repository name (including the username)
path: the file path

Figure 21-25. Site search

Wikis
Updating a wiki previously meant editing a page in a browser. This was a very volatile

form of editing with minimal version control. Changes could be lost at the slightest
browser refresh.

With a simple Markdown syntax, wikis are first-class Git repos that sit alongside their
project. GitHub wikis (Figure 21-26) permit commits, comments, merging, rebasing,

402 | Chapter21: Gitand GitHub

http://daringfireball/markdown

and all the features that Git users have come to enjoy, but that wiki users previously
have not had at their disposal.

L booktes‘(usergg ,"tes'“ This repository's default branch Is empty! 4 Admin © Unwatch o1 1

Code Network Pull Requests 0 Issues 0 Wiki 1 Stats & Graphs

Home Pages WikiHistory = Git Access

‘Your Wiki has been created.

SSH HTTP Git Read-Only git®github.com:booktestuser®8/testl.wiki.git [Read+Write access
Your wiki data can be cloned from a git repository for offline access. You have several options for editing it at this point:

1. With your favorite text editor or IDE.
2. With the built-in web interface, included with the Gollum Ruby APIL.
3. With the Gollum Ruby API.

When you're done, you can simply push your changes back to GitHub to see them reflected on the site. The wiki repositories obey the same
access rules as the source repository that they belong to.

Figure 21-26. GitHub wikis

But just because you can edit the wiki via a Git repository cloned to your local machine
doesn’t mean giving up the convenience of the in-browser editing approach (Fig-
ure 21-27). The in-browser editor is also writing back to the underlying Git repo so
users can trace the author and reasoning history of all page edits.

GitHub Pages (Git for Websites)

If the wiki page idea sounded attractive, what about having Git-tracked Markdown
files as the foundation of a tool for publishing entire websites? GitHub pages based on
Jekyll provide exactly that, and can even be mapped to a Domain Name System (DNS)
CNAME record as content for a subdomain or primary domain name (Figure 21-28).

Octopress (Figure 21-29) is gaining traction as a mashup of Jekyll and GitHub pages,
making it easier than ever to publish dynamic content in a static way. The security
vulnerabilities and the growing set of attack vectors on dynamically generated sites
using live databases and just-in-time compilation has pushed a large number of indi-
viduals back to statically served content. But that doesn’t mean giving up dynamic site
generation, it just means relocating the dynamic processing to authoring time rather
than its traditional location at the time of page requests with technologies like Java-
Server Pages (JSPs) and PHP: Hypertext Preprocessor (PHP).

GitHub Pages (Git for Websites) | 403

https://github.com/mojombo/jekyll
http://octopress.org

Code Network Pull Requests 0 Issues © Wiki 1 Stats & Graphs

Home Pages Wiki History Git Access

Edltlng Home View Page | Page History

Home

WM h2 h3 [2 @ B i {}

= | 66 || 18 ? Edit Mode: | Markdown 2

Welcome to the testl wiki!

Save Preview

Figure 21-27. GitHub in-browser editing of wikis

github pages Support Back to GitHub

Introduction to Pages

The GitHub Pages feature allows you to publish content to the web by simply pushing content to one of your GitHub hosted repositories. There are two
different kinds of Pages that you can create: User Pages and Project Pages.

User & Organization Pages

Let’s say your GitHub usemame is “alice”. If you create a GitHub repositery named |alice.github.com, commit a file named index.html intothe master
branch, and push it to GitHub, then this file will be automatically published to htip:/alice.github.com/.

On the first push, it can take up to ten minutes before the content is available.

The same works for organizations. If your org account is named “PlanEx’, creating the repo | planex.github.com| under the org will publish pages to
http://planex.github.com/.

Real World Example: github.com/defunkt/defunkt.github.com — http://defunkt.github.com/.

Project Pages

Let’s say your GitHub usemame is “bob” and you have an existing repository named fancypants . If you create a new root branch named gh-pages in your
repository, any content pushed there will be published to hitp:/bob.github.com/fancypants/.

Figure 21-28. GitHub pages how to

404 | Chapter21: Gitand GitHub

OCTOPRESS

A blogging framework for hackers.

Blog Documentation | Help | Source

Latest Tweets
OCtopress 2.0 Surfaces “I'm done with db-driven CMS. |
want control...” - @philbarbato
Octopress is a framework designed by Brandon Mathis for Jekvll, the blog Can | get an "amen"?
aware static site genelratnr powering Github Pages. To start blogg"mgwuh What would you ramave From
Jekyll, you have to write your own HTML templates, CSS, Javascripts and Octopress? I'd love to trim things
set up your configuration. But with Octopress All of that is already taken down a bit.
care of. Simply clone or fork Octopress, install dependencies and the In case you missed my tweet last
theme, and you're set. night, preview the new linklog

feature gist.aithub.com/1812265 and
tell me what you think.

What’s new in 2.0? Want to try oufthe new linklog
feature? gist.ithub.com/1812265

Short answer: Everything. Octopress is now based on mojombo/jekyll has Give feedback:
been completely rewritten from the ground up with a mountain of aithub.com/imathis/octopr...
goodies. 3 Follow Boctopress

Figure 21-29. Octopress home page

In-Page Code Editor

Traditionally, coding is done on the desktop in the user’s text editor of choice. But for
a small fix this seems like a burdensome ceremony of pulling the code, editing the code,
committing the code, and pushing the code. For something as simple as a spelling
correction in an error message, GitHub supports in-browser code editing, as shown in
Figure 21-30.

The in-browser editor is based on Mozilla’s Ace JavaScript—based control. This is the
same control used by the Cloud9 IDE and Beanstalk. This control, shown in Fig-
ure 21-31, supports line numbering, syntax highlighting, and space and tab formatting.
Code changes become as simple as browsing to the source file on GitHub, clicking Edit
this file, and committing the change with your commit message entered directly below
the in-browser editor. Small fixes have never been so easy.

In-Page Code Editor | 405

http://ace.ajax.org/

Ajax.org Cloud9 Editor

Previously Skywriter, Bespin

% Fork on GitHub Ace s a standalone code editor writen n JavaSeript Our goal is o creato a
web based code editor that matches and extends the features, usability and

performance of existing native editors such as TextMate, Vim or Eclipse. It can
be easily embedded in any web page and JavaScript application. Ace is
developed as the primary editor for Cloud9 IDE and the successor of the

Ace Google Group Mozilla Skywriter (Bespin) Project.

User Resources

Ace Core Google Group

irc.freenode.net #ace

Features
Related Projects

Syntax highlighting

Gl « Auto indentation and outdent
Dryice « An optional command line
= Work with huge documents (100,000 lines and more are no problem)
PcelmapnegiofBES « Fully customizable key bindings including Vi and Emacs modes
Ace wrapper for GWT « Themes (TextMate themes can be imported)

Search and replace with regular expressions
Projects Using Ace « Highlight matching parentheses

Toggle between soft tabs and real tabs
Displays hidden characters

Highlight selected word

Cloud9 IDE

GitHub

Figure 21-30. Ace in-browser editor

@ githubstudents / hellogitworld #Admin | © Watch | § YourFork | il Pull Request 25 440
‘h

forked from matt louahologitword

Code Network Pull Requests 0 Wiki o Graphs
& branch: master ~ | Files Commits Branches 32 Tags 2 Downloads Q
hellogitworld / src / Division.groovy [B s e
Codo Proview Spaces ¢ (4] [Nowrap

f static int divideCint vall, val2) {
vall / val2

Commit message:

Cancel Commit Changes

Figure 21-31. In-browser code editing

406 | Chapter21: Gitand GitHub

Download from Wow! eBook <www.wowebook.com>

Subversion Bridge

Although GitHub certainly believes that Git is the VCS of the future, there is also an
understanding that SVN will be with us for quite some time. GitHub supports that dual
existence in two ways.

Traditionally, Git users have kept their repository in SVN and used git-svn to bridge
the two technologies. However, this approach means that only the lower fidelity SVN
metadata can be kept for commits, excluding the ever useful Git Author and Git Com-
mitter fields, as well as the Git parent commit refs.

GitHub makes the opposite bridge possible, without the aid of any client-side conver-
sion software. Every Git repository at GitHub is also dynamically converted at request-
time to be served as an SVN repository at exactly the same HTTPS URL used for Git
cloning, as shown in action in Figure 21-32. This is a complex dynamic conversion,
unique to Git repositories served from GitHub. This bridge facilitates continued SVN
use in a cautious and stepwise conversion to an eventual sole use of Git. This server-
side bridge (Figure 21-33) permits not just commit GUIs, but other SVN-connected
legacy tools to work with a Git-based repository of commits. The Git default branch,
typically master, is automatically mapped to trunk in the SVN interface, showing fore-
thought of even mapping to the idioms of the SVN realm.

8 00 2. mcem06@tron: ~/Documents/Temp/Scratch (zsh) e
../Temp/Scratch {zsh) ;1

= Scratch svn co https://github.com/matthewmccullough/hellogitworld
hellogitworld/branches

hellogitworld/branches/feature_division
hellogitworld/branches/feature_division/.gitignore
hellogitworld/branches/feature_division/README.txt
hellogitworld/branches/feature_division/resources
hellogitworld/branches/feature_division/resources/labels.properties
hellogitworld/branches/feature_division/runme.sh
hellogitworld/branches/feature_division/src
hellogitworld/branches/feature_division/src/Main.groovy
hellogitworld/branches/feature_division/src/Square.groovy
hellogitworld/branches/feature_division/src/Subtract.groovy
hellogitworld/branches/feature_division/src/Sum.groovy
hellogitworld/branches/feature_division_polished
hellogitworld/branches/feature_division_polished/.gitignore
hellogitworld/branches/feature_division_polished/README.txt
hellogitworld/branches/feature_division_polished/resources
hellogitworld/branches/feature_division_polished/resources/labels.propert

A
A
A
A
A
A
A
A
.
A
.
A
.
A
.
A
.
i
A

hellogitworld/branches/feature_division_polished/runme.sh

Figure 21-32. Subversion clone of Git repository

Subversion Bridge | 407

Improved Subversion Client Support
v

About a year and a half ago we announced SVN client support, which could be used
for limited access to GitHub repositories from Subversion clients.

Today we're launching new, improved SVN support.

What's New?

The URL

No need to use svn.github.com anymore, now your svn client can use the same
URL as your git client. Repositories can still be accessed using the old URLs at
hitps://svn.github.com/ but everyone should migrate as we'll be turning off
svn.github.com soon.

$ git clone https://github.com/nickh/dynashard git-ds
Cloning into git-ds...

remote: Counting objects: 135, done.

remote: Compressing objects: 100% (71/71), done.
remote: Total 135 (delta 65), reused 128 (delta 58)
Receiving objects: 100% (135/135), 31.19 KiB, done.
Resolving deltas: 100% (65/65), done.

sva checkout https://github.com/nickh/dynashard svn-ds
svn-ds/branches

5

A

A svn-ds/branches/shard names

A svn-ds/branches/shard_names/.document
A

svn-ds/branches/shard names/.gitignore

A svn-ds/trunk/spec/support
A svn-ds/trunk/spec/support/factories.rb
A svn-ds/trunk/spec/support/models.rb

Checked out revision 25.

Figure 21-33. Git-SVN bridge

Tags Automatically Becoming Archives

When an open source project wants to create a compressed archive of the project on
GitHub, there’s an easy shortcut: just tag the desired revision of code. Git tags are
automatically converted into TGZ and ZIP compressed archives available from the Tags
page as shown in Figure 21-34.

408 | Chapter21: Gitand GitHub

@ matthewmccullough / hellogitworld 4 Admin © Watch | 4 Fork (i Pull Request < 19 4 40
Code Network Pull Requests 0 Issues 0 Wiki 1 Graphs
Files Commits Branches 7 Tags z Downloads Q

2tags

RELEASE 1.1.zIp — Added text about image diff example
8d2636dab5 - Uploaded 11 months ago

RELEASE _1.0.zIp — Merge branches feature_division_palished' and feature_subtraction_palished'
2252096389 - Uploaded 11 months ago

Figure 21-34. Tags as archives

Organizations

Up until now, this book has primarily discussed interactions of smaller quantities of
GitHub users, acting in a relatively independent fashion. However, the attraction of
Git has spread to more cohesive groups, small businesses, and enterprises. GitHub has
an Organizations (Figure 21-35) set of features to serve those groups well.

github Explore Gist Blog Help

Switch account context
¥ & github

5 Neg 34 minutes ago
26

f_ matthewmccullough 41

(£ gradleware

-
ninutes ago

Figure 21-35. Organization selector

GitHub Organizations provide ownership of repositories at a higher level than mere
user accounts. In support of that, there is an additional security construct: Teams.
Teams are a grouping mechanism for users that associates with a certain permission
level and a set of repositories. The three permission levels are pull only, pull+push, and
pull+push+administration as shown in Figure 21-36.

Organizations | 409

This team grants
Choose a permission

| Push & Pull ? Pull Only
¥ Push & Pull |

Push, Pull & Administrative

Figure 21-36. Organization permissions

REST API

Having a web application is a great starting point, but GitHub has a rich community
of developers that are eager to use true services, not just page scraping, to build the
next layer of useful features. To facilitate the community construction of supporting
tools, GitHub has built a full Application Programming Interface (API). GitHub’s API
has evolved in three major eras, and the current v3 of the API, as it is known, offers
almost all Ul-accessible features in an equivalent API form. In some cases, advanced
services are offered though the API that aren’t even part of the GitHub Ul yet.

An example shown in Example 21-1 makes a call to the API to get the organizations
that a user belongs to. The response, as are all responses from the GitHub API, are
given in JavaScript Object Notation (JSON) format. Note that the avatar_url is really
one long string value that has been split here for typography reasons.

Example 21-1. Calling the GitHub API
curl https://api.github.com/users/matthewmccullough/orgs

[

{
"avatar_url": "https://secure.gravatar.com/avatar/11f43e3d3b15205be70289ddedfe2de7

2d=https://a248.e.akamai.net/assets.github.com
%2Fimages%2Fgravatars%2Fgravatar-orgs.png",
"login": "gradleware",
"url": "https://api.github.com/orgs/gradleware",
"id": 386945

)

{
"avatar _url": "https://secure.gravatar.com/avatar/610248961291303615bcd4f7a0dcfb74

2d=https://a248.e.akamai.net/assets.github.com
%2Fimages%2Fgravatars%2Fgravatar-orgs.png",
"login": "github",
"url": "https://api.github.com/orgs/github",
"id": 9919
}
]

The gamut of GitHub operations are exposed through the RESTful API and are well-
documented on the GitHub API site, as shown in Figure 21-37. But what is more idea
enabling than just calling out for a list of users, repositories, or files is the ability to use
the open standard for authorization, OAUTH, to request and gain the ability to act on

410 | Chapter21: Gitand GitHub

http://developer.github.com/v3/

githUb dEVEI.Oper APIYI | APIv2 Support

API v3

)) o v | Summary
This describes the resources that make up the official GitHub API v3. If you have any problems

or requests please contact support. OAuth
Note: This AP is in a beta state. Breaking changes may occur. Mime Types

+ Schema

Changelog
+ Client Errors

o HTTP Verbs Libraries
+ Authentication
+ Pagination) Gists
+ Rate Limiting
+ Cross Origin Resource Sharing) GitData
« JSON-P Callbacks
b Issues
<> Schema
) Orgs
All AP access is over HTTPS, and accessed from the |api.github. com domain. Al data is
sent and received as JSON. » Pull Requests

$ curl -i https://api.github.com » Repos

HTTP/1.1 302 Found > Users
Server: nginx/1.0.12
Date: Mon, 2@ Feb 2012 11:15:49 GMT

»
Content-Type: text/html;charset=utf-8 Events

Connection: keep-alive

Status: 302 Found

X-RateLimit-Limit: 5000

ETag: "d41dBcd9800b204e9800998ecr8427¢"
+//developer . github. com

X-RateLimit-Remaining: 4999

Content-Length: 0

“This website is a public GitHub repo. Please help us by
forking the projectand adding 1o it

Blank fields are included as |null instead of being omitted.

All timestamps are retumed in ISO 8601 format

¥YYY-MY-DDTHE: MM: 552

Figure 21-37. GitHub REST API

behalf of a GitHub user. This opens up the possibility of querying and manipulating
private repository contents, using repositories as storage containers for versioned arti-
facts beyond source code, and building applications that can abstract themselves from
the difficulty of building a version control persistence layer.

Social Coding on Closed Source

Though the first idea that comes to mind with a collaborative development model like
GitHub is open source, nearly all of the benefits described can be derived even inside
the offices of a company. Businesses should take full advantage of the talents of all
developers in their employ, even if they aren’t currently assigned to a given project. Pull
requests, in combination with organizations and pull only teams, enable gated contri-
butions by any authorized employee, but with the safety net of a code review by core
project collaborators.

Eventual Open Sourcing

Although open source is often thought of as being open from birth, an increasing num-
ber of projects are being open sourced after a certain amount of maturity is achieved
or after a certain development milestone is reached. This eventual open sourcing ben-

Eventual Open Sourcing | 411

efits from the history having been kept in Git and the repository being maintained on
GitHub. The fully preserved context of “why is this line of code the way it is?” is avail-
able from the Git commit history. The actual act of converting the repo to gain the full
benefit of GitHub’s social coding aspects is as simple as a Boolean toggle on the
repository’s admin page, as shown in Figure 21-38.

matthewmecullough / hellogitworld

heBogitworld - Repository Adminisiration

Collaborators Make this repository private
Hids this repository from the public Make private
Service Hooks
Transter Ownership

Deplcy Keys Transfer this repo o another user or an organization whera you have admin rights U

Delete this repository

Onea you daloto a repositary, thara is na going back Daloto this rapaettory

Figure 21-38. Public and private repo toggle

Coding Models

The choice of Git as the VCS of a development team and, more specifically, the choice
of GitHub as the repository host, facilitates dozens of unique usage patterns. Three of
these usage styles are briefly described.

The centralized model, shown in Figure 21-39, while still offering the local commit
insulation that isn’t afforded by true centralized systems like SVN, is the simplest, but
least interesting of the models. It is an easy first step because developers push their local
commits frequently so as to simulate the “everything is on the central server” state that
was enforced by their version control tool of yesteryear. Although this can be a viable
starting pattern with Git, it is a mere stepping stone toward unique and valuable lev-
eraging of the distributed and collaborative model Git and GitHub have to offer.

412 | Chapter21: Gitand GitHub

Figure 21-39. Centralized model

Next up is the lieutenant and commander model shown in Figure 21-40. You’ll recog-
nize it as very similar to that enabled by pull request facilities of GitHub. It is important
to note that Git projects in the absence of GitHub have a means of implementing this
model through emails and links passed around, but always with greater apparent fric-
tion and ceremony than real pull requests.

Coding Models | 413

Lastly, for companies that are leveraging open source, want to donate back their bug
fixes, but keep the innovations in-house, an arbitrator for the two repositories can be
established. This arbitrator, as shown in Figure 21-41, picks and chooses which com-
mits are cherry-picked and pushed back into the public domain to the open source
version of the project. This is being done today on well-known entities such as RedHat’s
JBoss Server.

T 'ﬂ”ll}gI
T re— .fj.

— i

™ ™

Figure 21-41. Partial open sourcing model

= Private [l Public m

GitHub Enterprise

All of this may sound very attractive, but your business may be governed by require-
ments or even laws that prohibit the storage of code on the public Internet, no matter
how secure the offering. The solution for this is GitHub Enterprise, whose home page
is shown in Figure 21-42. It offers the same public GitHub experience as described in
so many of the sections previously, but is delivered as a virtual machine image (shown
in VirtualBox in Figure 21-43) for on-premise hosting. Additionally, GitHub Enterprise
is compatible with Exchange Server Lightweight Directory Access Protocol (LDAP) and
Central Authentication Service (CAS) user authentication that many enterprises already
have in place.

414 | Chapter21: Gitand GitHub

Download from Wow! eBook <www.wowebook.com>

8 00 GitHubEnterprise (Got Mail Working and Account Setup) [Running]

N)
PN NP L

1P Address: 10.0.119.118
MAC Address: 08:00:27:56:3a:8
Hostname: github-enterprise-11-10
Gateway: 10.0.119.1

Vigit http:~-10.0.119.118/setup to setup GitHub Enterprise.

etwork Comfiguratiom:
. Static
. DHCP [selected]
. DNS
. Restart
Shutdown
. help

BP0 0B lefte 4

Figure 21-43. GitHub Enterprise in VirtualBox

GitHub on Your Servers fomry kroun 32 githubif

A secure, intuitive system for enterprise software
development and collaboration.

GitHub Enterprise is GitHub on your private network

) racispace SIMPLE Etgy
Collaborate like never before Track and assign issues Enterprise-level security
Pull Requests allow team members Finding and organizing issues can be GitHub Enterprise installs on your
to have living discussions about a hassle, especially for big teams. organization's servers. It's fully
code. Conversations happen next to GitHub Enterprise smooths the configurable to meet a wide range of
code, and updates in real time as process. Anyone with permission can security and regulatory requirements
code is changed, greatly reducing assign issues to other teammates and
back-and-forth and wasted then track progress by setting Every install fully supports L DAP
communication. milestones.

Figure 21-42. GitHub Enterprise home page

GitHub Enterprise

| 415

GitHub in Sum

Git is a developer tool that has shaken the very foundations of CVS, SVN, Perforce,
and ClearCase installations by showing that high performance, collaborative, and dis-
tributed version control can be found in an open source solution. Offset by only a short
delay from Git’s own development, GitHub has equally shown that a sharp web
application can reduce tool burden, facilitate quicker fixes, allow a greater number of
contributors to further a project, and most importantly, turn the act of coding into a
truly social activity.

416 | Chapter21: Gitand GitHub

Symbols
! (exclamation point), for inverted pattern, 59
(pound sign)
for comments, 127
in .gitmore file, 59
$GIT_DIR variable, 68
' (quotes), for ref as single word, 193
* (asterisk)
branch name restrictions and, 91
globbing, 59
in git show-branch output, 95
+ (plus sign)
in diff, 107, 131
in git show-branch output, 95
in refspec, 202
and location for split operation, 354
when viewing commit differences, 26
+++ (triple plus signs), in diff, 107
- (minus sign)
in diff, 107, 131
in git show-branch output, 95
and location for split operation, 354
-- (double dash) operand separator, 21
--- (triple minus signs)
in diff, 107
. (dot)
branch name restrictions and, 91
for current directory, 22
.. (double period)
for commit range, 78
in git diff command, 115
... (triple period), symmetric difference, 82,117,
230

Index

/ (slash character), trailing, for directory name,
59,91, 307
-3 or --3way option
for git am command, 280
: (colon)
branch name restrictions and, 91
in refspec, 202
< (left), for git log --left-right display, 133
<<<<<<<
as merge markers, 129, 146
in diff output, 126
> (right), for git log --left-right display, 133
S>>>>>>
as merge markers, 129, 146
in diff output, 126
? (question mark), branch name restrictions
and, 91
@ (at sign)
in reflog, 160, 190
in stash entry names, 184, 187
[] (square brackets), in git show-branch output,
95
~ (caret), 69-71
branch name restrictions and, 91
for branch name, 95
~ (tilde), 69-71
branch name restrictions and, 91

A

-a option
for git branch command, 211
for git diff command, 112
--abbrev-commit option, for git log command,
73,124,187, 323

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

47

abbreviations, with carets (*) and tildes (~),
70
--abort option
for git am command, 277
for git rebase command, 170
aborting
commit log message, 54
commit, pre-commit hook for, 290
due to uncommitted changes, 97
merges, 137,223
rebases, 170
absolute names, for identifying commits, 67—
68
access control level, choices, 242
Access Control List (ACLs), 294
account in GitHub, creating, 385
accountability, VCS enforcement of, 3
active branch, 91
add (see git add command)
alias, configuring, 30
--all option
for git commit command, 52
for git filter-branch command, 371
already up-to-date degenerate scenarios, 140,
144
altering commits, 151-179
caution about, 152-153
most recent, 165—-167
reasons for, 151
am (see git am command)
--amend option, for git commit command, 20,
165
annotated tag types, 46
anonymous read access
LocationMatch directive for, 241
publishing repositories with, 238-241
anonymous write access, repositories with,
242
Apache configuration files, 240
application, visibility, submodules as
constraint, 319
applypatch-msg hook, 291
approxidate() function, 347-348
apt-get command, 10
arbitrator model for GitHub development,
414
archive of project, creating on GitHub, 408
Arouet, Frangois-Marie, 337
asterisk (%)

in git show-branch output, 95
globbing, 59
prohibition in branch names, 91
asymmetric relationship between repositories,
207
atomic changesets, 66
atomic transactions of VCS, 3
attachment for patch, vs. inlining, 275
authenticated read access, Location directive
for repository, 241
authentication, 235
Git native protocol tunneling over SSH for
connections, 201
author, for Git commit, 23-24, 167
authoritative respository
adding new developer, 210-212
creating, 205-208
authority, 204

B

backup
Internet for, 250
peer-to-peer, 250
strategy, 1
backward port, 168
bad patches, 283
bare repository, 196, 239
creating, 205-206
and git push, 232-233
Bash (command prompt), 16
binary merge driver, 146
bisect (see git bisect command)
BitKeeper VCS, 2, 5
blame (see git blame command)
blob objects, 32-33, 32, 40
unreferenced, 364
books, open sourcing code samples, 318
branch.branch_name.rebase configuration
variable, 216
branched development, in VCS, 3
branches, 89-105, 121, 416
(see also git branch command)
(see also merge)
changing to different, 164
checking out, 97-103
commit presence in, 95
creating, 93-94
creating and checking out new, 101-103
deleting, 103-105

418 | Index

detached HEAD, 102-103
history of, viewing, 72
listing all in repository, 211
listing names, 94
manipulatig from 2 repositories, 374
merges of, 122-124
merging changes into different, 99-101
names, 90-91
as read-only, 375
reasons for using, 89-90
rebasing one with merge, 176
record of changes to tips, 189
in remote repository

deleted, 225

renaming, 231

viewing information, 210
remote-tracking, 196

including in branch listing, 94
tracking, 199-200
using, 91-92
viewing, 94-96
vs. tag objects, 90

bugs
isolating commits with, 83
specifying branch for fix, 94
build, beginning, 11

C

cache, reconstructing for git svn, 334-335
--cached option, for git diff command, 109
caret (™), 69-71
branch name restrictions and, 91
for branch name, 95
CAS (Central Authentication Service), 414
cat command, to view configuration file
contents, 29
cat-file (see git cat-file command)
Central Authentication Service (CAS), 414
centralized model for GitHub development,
412
change log, 3
changes, quick overview of, 376-377
checking out, 416
(see also git checkout command)
branches, 97-103
partial, 296-297
subprojects, with custom scripts, 304-305
uncommitted changes and, 98-99
cherry-pick (see git cherry-pick command)

chmod 755 command, 240
clean working directory, 23
cleanup, of directory structure, 377-378
clone of repository, 27-28, 195, 197-198
branch names in, 92
configuration settings and, 31
from GitHub, 385
origin, 198
private workspace for, 254
refreshing, 213
clone, shallow, of single SVN branch, 321-
324
cloned submodules, as read-only address, 316—
317
closed repository, on GitHub, 242
closed source, social coding on, 411
coding models, 412—414
collaboration, 236
collision, 43
SHA1, 40
colon (v)
branch name restrictions and, 91
in refspec, 202
combined diff format, 126
for merge commit, 136
combining projects, 295-311
command aliases, setting up, 30
commands, making your own, 376
commercial Git hosting service, 243
commit author, configuring, 23-24
commit graphs, 74-78
gitk to view, 77-78
for history, 72
commit history
power to rewrite, 337
preserving when splitting repository, 370
commit IDs, 67-71, 328-329
from git svn, 324
removing SVN, 373
commit log message, 54
editor settings for, 30
commit message
editing, 338
with git filter-branch, 343-344
git-svn-id in, 324
commit objects, 32
links from, 306
commit ranges, 78—83
detailed resolution example, 270

Index | 419

and git diff command, 115-117
for git format-patch, 269
commit rights, 236
commit-filter, 338
commit-msg hook, 286, 291
commit-related hooks, 290-291
commits, 37, 65-88
altering, 151-179
caution about, 152-153
most recent, 165-167
reasons for, 151
creating, 44—45
dangling, 369
differences between, 109
finding, 83-88
hashes of submodule, 317
history, 72-83
dynamic, 248
identifying, 67-71
with absolute names, 67—68
with relative names, 69-71
isolating one with bug, 83
linearization of, 273
mechanisms for transferring commits, 253—
254
meta-information on, editing, 167
rebasing, 167-179
reconnecting lost, 365
recovering lost, 360-365
separation of publish and, 249
symbolic names for, 191
tips for recovering, 371
as two-step process, 47
undoing effects, 163
viewing, 25-26
viewing details of, 45
viewing differences, 26
community contributions to GitHub,
transparency and public visibility,
393
comparison, 107
(see also diffs; git diff command)
of objects, hash function for, 43
Concurrent Version System (CVS), 5
revision information, 22
config (see git config command)
configuration files for Git, 28-30
listing variable settings, 29
configuring alias, 30

conflict merge markers, 281

conflicted files, locating, 129

conflicts (see merge conflicts)

content tracking system, Git as, 34

content, vs. pathname, 35

content-addressable file store, 5

content-addressable names, 33

--continue option, for git rebase command,
169

controlled access, publishing repositories with,
236-238

copying, importing subprojects by, 299

core.logAllRefUpdates Boolean configuration
option, 190

criss-cross merge, 139, 142, 144

curl-config tool, 12

current repository, 198

CVS (Concurrent Version System), 5, 296

importing code into project, disadvantages,
298
cvs update command, 100
Cygwin-based Git package
installing, 14

D
DAG (directed acyclic graph), 75
drawing, 77
dangling commits, 369
dangling objects, 361
data integrity of VCS, 3
data objects, immutability of, 3
date-based checkout, 345-348
dcommit, 329, 333, 335
Debian environment, xi
installing Git, 9-10
default branch, in respository, 90
default message, from pre-commit-msg hook,
291
default port
for Git, 202
for inetd service, 238
degenerate merges, 140-141
deleting
branches, 103-105
files from repositories, 27
refs, 380
deltas, between files, 36
depot repository, 204, 236
pushing changes to, 212-217

420 | Index

descendant node, in commit graph, 75
detached HEAD branches, 84, 102-103, 229
developer, 251
adding new to authoritative repository,
210-212
interaction with maintainer, 252
development
distributed, 248-250
position in project, 250-254
recovering from upstream rebase, 374—
375
manipulating history, 152
development branch, 90, 199
development projects, within distributed
environment history, 249
development repository, 196
clone of repository as, 210
push into, 233
didactic realistic history, 152
diff program, 26, 416
(see also git diff command)
-r option, 108
differences
in commits, viewing, 26
between files, 36
symmetric, 82
diffs, 107-120
of merge commit, 136
Subversion vs. Git, 119
digest, 42
directed acyclic graph (DAG), 75
directories
for Git revision information, 22
impact of selecting new current branch, 97
slash character (/) trailing in name for, 59
structure cleanup, 377-378
dirty state
of index, 61
resetting loss of, 137
tree objects, 185
of working directory, 122
interactive rebase with, 367-368
DISPLAY environment variable, 86
distributed development, 248-250
position in project, 250-254
upstream and downstream flows, 250—
254,251
recovering from upstream rebase, 374-375
VCS with, 2

distributed repository structure, 244-245
distributed version control system (DVCS),
121
diverged history of repository, 219
documentation
complete build of, 13
for git subcommands, 20
for git-grep command, 379
online for Git, 20
dot (see . (dot))
.dotest directory, 278
dotfile configurations, 319
double period (..)
for commit range, 78
in git diff command, 115
downstream consumer, 253
downstream flows, 251
downstream producer/publisher, 254
downstream repository, mechanisms for
transferrring commits, 253-254
--dry-run option, for git commit command,
185, 188
dynamic commit history, 248

E
editing
commit message, 338
with git filter-branch, 343-344
meta-information on commit, 167
editor
for commit log message, 30, 54
opening during git commit, 23
for remote repository configuration, 226
template message for merge, 127
editor files, removing left-over, 368
Emacs Lisp setups, 319
email address, in Git configuration, 24
email, for patch, 264, 265
emerge command (Gentoo), 10
empty directories, creating, 294
env-filter, 338
environment variables
DISPLAY, 86
GIT_AUTHOR_EMAIL, 24
GIT_AUTHOR_NAME, 24
GIT_EDITOR, 23
error messages, 23
branch 'bug/pr-3' is not an ancestor of your
current HEAD, 103

Index | 421

failed to push some refs, 220
not found: did you run git update-server-
info..., 240
Perhaps git-update-server-info needs to be
run there?, 240
printing from “pre” script, 290
Your local changes to the following files will
be overwritten by checkout, 98
/etc/gitconfig file, 28
/etc/inetd.conf file, 238
/etc/xinetd.d/git-daemon file, 239
eventual open sourcing, 411
exclamation point (1), for inverted pattern, 59
exit status, of post-action hook, 285
expat.h tool, 12
expunging file, git filter-branch command for,
340-343
external dependencies, for INSTALL file, 12
externals script, by M. Georgi, 305

F

fast-forward degenerate scenarios, 140, 144
fast-forward merge, 215, 220
Fedora, 10
fetch (see git fetch command)
fetching, before committing, 325-326
FETCH_HEAD, 69
file classifications, in Git, 48—50
--file option, 28
file store, content-addressable, 5
filenames, 40
changing, 27
double dash to explicitly identify, 21
patterns for ignored files, 58—-60
files
comparing different versions, 134-135,
134
converting from staged to unstaged, 55
differences between, 36
following moved, 380-381
git filter-branch command for expunging,
340-343
hidden, 39
history of, 57
individual modifying line in, 87
moving or renaming, 56—57
name vs. content, 35
removing from repositories, 26-27
removing left-over editor, 368

retrieving old version, 348-350
storage of every version, 34
tracking renames, 57-58
unstaging, 155
filter-branch (see git filter-branch command)
filtering process, 338
find command, 39
finding
commits, 83—88
open source libraries, 401
fine-grained realistic history, 152
--first-person option for commands, 148
--follow option, 381
for git log command, 57
following moved files, 380381
forked history of repository, 219
forking projects, 259-261
at GitHub, 261
personal, on GitHub, 392-394
reconciliation, 260
format-patch (see git format-patch command)
forward porting, 168
Freedesktop.org, development, 247

G
garbage collection, 193, 368-370
commits and blocks, 105
Garzik Jeff, 259
gatekeeper repository, 329, 331-332
gc.auto parameter, 370
gc.autopacklimit parameter, 370
gc.pruneExpire parameter, 105, 370
gc.reflogExpire parameter, 105, 193, 370
gc.reflogExpireUnreachable parameter, 193,
370
generation, commit in, 70
Gentoo systems, 10
Georgi, Miles, externals script, 305
getweb program, 145
Git, 9, 12-13
(see also installing Git)
as content tracking system, 34
birth, 2—4
coding models, 412—414
command line, 19-21
configuration files, 28-30
contrib directory, example hooks in, 288
date parsing, 347
file classifications in, 48—50

422 | Index

Download from Wow! eBook <www.wowebook.com>

master repository for sources, 11
--recurse-submodules option for
commands, 319-320
source repository, 227
timeline, 6
use with Subversion repositories, 321-335
--version, 11
.git/conlfig file, 28, 32, 120
git add command, 22, 41, 48, 50-56, 127, 299
for clearing file conflict status, 135
effects, 60
--interactive option, 52
-p option, for staging hunks interactively,
351,354
to update gitlink, 311
git add git command, 307
git am command, 253, 263, 276, 278, 291
--abort option, 279
git apply command, 276
git archive command, 300
git bisect command, 83-87, 102, 148
git bisect replay command, 86
git bisect reset command, 87
git bisect visualize command, 86
git blame command, 87, 148
git branch command, 93, 94, 103-105
-a option, 211
--track, 229
git cat-file command, 134, 349
-p option, 46
git check-ref-format command, 91
git checkout command, 97-103, 123, 135, 164,
271
date-based checkout, 344-345-348
for file version from commit, 349
for merge, 121
-m option, 137
git cherry-pick command, 161-163, 328, 375
git clean command, 377-378
git clone command, 27-28, 205, 217-218, 304
--bare, 196-198
hook scripts and, 287
hooks and, 285
git commit command, 23, 24, 45, 47
--all option, 52-56
--amend option, 20, 165-167
for deleting file from repository, 27
--dry-run option, 185, 188
effects, 61

--interactive option, 52
--no-verify option, 289
git commit-tree command, 45
git config command, 24, 29, 198, 225
--global option, 382
parameters, and garbage collection, 370
git config core.logAllRefUpdates command,
190
git daemon, publishing via, 241
git diff command, 26, 48, 107, 108-111
-a option, 112
--cached option, 109
and commit ranges, 115-117
for comparing file versions, 134
with conflicts, 130-132
example, 112-115
general form, 114
and git stash show, 184
HEAD” HEAD, 301
for interactive hunk staging, 353
options, 111
--ours, 131
with path limiting, 117-119
--staged, 356
--stat option, 74
--theirs, 131
vs. git format-patch command, 265
git diff HEAD command, 131
git diff MERGE_HEAD command, 131
git diff-tree command, 377
.git directory, metadata for SVN conversion,
372
git fetch command, 69, 198, 213-214, 221
hook scripts and, 287
refspec for, 203
git filter-branch command, 316, 337-345
--all option, 371
examples, 339-344
editing commit message, 343-344
expunging file, 340-343
--index-filter, 368
--msg-filter, 343, 373
pitfalls, 344-345
running git gc manually after, 369
--subdirectory-filter, 371
--tag-name-filter cat, 371
--tree-filter, 368
git format-patch command, 253,263, 265-273,
304

Index | 423

--pretty=format, 275

--root, 271

vs. git diff command, 265
git fsck command, 105, 361-365
git gc command, 105, 369-370
git hash-object command, 51
git help command, --all option, 20
git help hooks command, 290-294
git help svn command, 323
Git hosting services, 243
git init command, 21, 39

git log command, 25, 72-74, 79, 88, 211, 323,

333, 349

--abbrev-commit option, 73, 124, 187, 326

with conflicts, 132-133
duplicate entries, 176
--follow option, 57, 381
--graph option, 124
--left-right, 132, 133, 326
--merge, 132, 133
origin/master..master, 230
-p option, 73, 132, 133
--pretty=short option, 73
--pretty=oneline option, 124, 187, 326
--stat option, 74
vs. git format-patch command, 265
git Is-files command, 48, 51, 134
-u option, 129
git Is-remote command, 199, 203
git Is-remote origin command, 210
git Is-tree command, 317
git merge command, 121, 329
--no-ff option, 333
redoing, 191
git merge-base command, 78, 92
git mv command, 27, 56
Git native protocol, 201, 264
git pull command, 198, 203, 213, 221, 253
fail from conflicting modification, 185
merge or rebase option, 215-217, 216
--rebase option, 185, 375
-s ours, 301
-s subtree, 298, 302
for importing subprojects, 299-303
and subproject updates, 305
git push command, 187, 199, 203, 209-210,
212,213,253, 292, 389
and bare repository, 232-233
--mirror origin, 243

-u option, 243
git rebase command, 167-179, 328, 367, 375
--abort option, 170
--continue option, 169
-1 (—-interactive) option, 170-174
--onto option, 169, 248
--preserve-merges option, 178
--skip option, 170
vs. merge, 174-179
git reflog command, 105, 160
git reflog delete command, 193
git reflog expire command, 193, 370
git reflog show command, 190
git remote command, 198, 206-208, 224-225
add origin, 224, 242
prune, 225
rename, 225
rm, 225
show origin, 224
update, 208, 224
Git repository
maintaining SVN repository in parallel,
372
pu (proposed updates) branch, 248
git rerere command, 382
git reset command, 154-161, 164
to eliminate topmost commit, 155-156
--hard, 137, 154, 157, 159, 160, 188
--hard ORIG_HEAD, 223
and lost commit, 360
--mixed, 154
--soft, 154, 156, 158, 161
git rev-list command, 346, 348
--no-merges, 270
-v, 270
git rev-parse command, 71, 192, 317
git revert command, 163, 165
git rm command, 26, 47, 54-57
--cached, 55
git send-email command, 263, 273
git show command, 25, 136
--pretty=fuller, 45
git show-branch command, 25, 71, 94-96, 104,
188, 209, 277
--more option, 96
git show-ref command, 203
git stash branch command, 187
git stash command, 181-189
--all option, 185

424 | Index

for dirty working directory, 367
--include-untracked option, 185
git stash drop command, 183
git stash list command, 183-184
git stash pop command, 183, 186
git stash save command, 182
git stash show command, 184
git status command, 22, 48, 49, 51, 53, 129,
155,230
.git subdirectory, 39—40
git submodule add command, 309, 314
git submodule add URL command, 318
git submodule command, 305-311
git submodule foreach command, 314
git submodule init command, 309, 314
git submodule status command, 314
git submodule summary command, 314
git submodule update command, 102, 310,
314
git svn clone command, 321-324
--prefix=svn/, 330
--stdlayout, 330
git svn command, 321, 333
--authors-file, 328
pushing, pulling, branching and merging,
327
reconstructing cache, 334-335
vs. git svn rebase command, 328
working directory, 323
git svn create-ignore command, 334
git svn dcommit command, 329, 333, 335
git svn rebase command
committing through, 326
vs. git svn command, 328
git svn repository, cloning all branches, 329—
331
git symbolic-ref command, 69
git tag command, 46
Git tags, 408
Git Tower, 320
Git transfer protocol, 263
git update-index command, --assume-
unchanged Makefile, 382
git update-ref command, 380
Git URLs, 200
git whatchanged command, 376-377
--since= option, 376
git write-tree command, 41, 45
git-core package, 9

git-daemon command, 201, 238-239
--export-all, 238
git-daemon-run, 10
git-email command, 10
git-grep command
command line options, 379
for searching repository, 378-380
git-gui, 10
git-http-backend command, 240
Git-over-SSH protocol, 243
git-submodule.sh shell script, 308-311
git-svn-id command, 333
git-svn-id, in commit message, 324
git/.git directory, gitlink to, 307
.git/conlfig file, 198, 200, 224
adding branch entry, 228
adding to, 225, 226
copying .gitmodules file settings to, 309—
310
.git/hooks directory, 285, 287
.git/logs directory, reflogs stored under, 193
.git/logs/HEAD file, 193
.git/MERGE_HEAD file, 134
.git/MERGE_MSG file, 134
.git/objects directory, 40
.git/rebase-apply directory, 278
.git/refs/ directory, 68
~/.gitconfig file, 28
GitHub
Advanced Search page, 401
automatic merge button for Git commit,
398
creating account, 385
creating repository, 242, 388-389
Explore page, 401
forking projects at, 261
hyperlinking of submodules, 320
Mozilla’s Act control, 405
network graph, 393
New Repository page, 388
news feed, 392
notifications, 398
organizations, 409
pages (Git for websites), 403
personal forks of projects, 392-394
project archive creation, 408
pull requests
creating, 394-395
managing, 396-398

Index | 425

pushing local contents to repository, 389
submodule hyperlinks on repositories, 320
watchers, 391
wikis, 402
GitHub Enterprise, 414
GitHub.com, 260
.gitignore file, 49, 50, 58-60
svn:ignore vs., 334
gitk (Git browser), 10, 86
to view commit graph, 77-78
gitlinks, 306-308
git add to update, 311
.gitmodules file, 309
copying settings to .git/config file, 309-310
username as part of recorded address, 318
Gitolite project, 237
gitweb, 10
GIT_AUTHOR_EMAIL environment variable,
24
GIT_AUTHOR_NAME environment variable,
24
$GIT_DIR variable, 68
GIT_EDITOR environment variable, 23
--global option, 28
for git config command, 382
globally unique identifers, 34, 68
Gradle Multiproject Builds, 315
--graph option, for git log command, 124
graphs, 75
reachability in, 79
topological sort, 283
grep command (Unix), 289
Grune, Dick, 5

H

Hamano, Junio, 6, 286
--hard option, for git reset command, 137
hash fingerprint, 5
hash identifier, 67
head of branch, 92
HEAD ref, 69
adjusting, 154
detached, 84, 102-103
git reset for, 164
indirectly referenced in git diff command,
110
help, 20, 416
(see also documentation)
(see also git help command)

for GitHub, 387
Herrenschmidt, Ben, 257
hidden files, 39
hierarchies
with multiple .gitignore directories, 59
of tree objects, 43—44
history
of branch, viewing, 72
of commits, 72-83
displaying, 25
fetching alternate for remote repository,
221
hooks, 285-294
commit-related, 290-291
creating first, 288-290
examples, 287-288
implications, 286
installing, 287-290
patch-related, 291-292
push-related, 292-293
reasons for use, 286
HTTP daemon, publishing repositories using,
240, 241
HTTP protocol, 201, 264
HTTPS protocol, 201

I
-1 (--interactive) option, for git rebase
command, 170-174

identifying commits, 6771

with absolute names, 67-68

with relative names, 69-71
ignored files, 48, 58-60

exceptions for, 59
immutability, of data objects, 3
importing code into project, 297-305
importing subprojects

by copying, 299

with git pull -s subtree, 299-303
in-page code editor, 405
#include statement, 357
--include-untracked option, for git stash

command, 185

index, 32, 33, 47-62

creating tree object from, 41

differences between working directory and,

109
dirty, 61, 122
git commit capturing state, 114

426 | Index

querying state of, 48
restoring to state prior to starting merge,
137
update from object, 41
index-filter, 338
inetd service, git-daemon as, 238
inlining, vs. attachment for patch, 275
inspecting conflicts, 129-133
INSTALL file, external dependencies for, 12
installing Git, 9
with Linux binary distributions, 9—11
verifying package up-to-date, 11
on Windows, 13-16
installing hooks, 287-290
integration branch, 90
integrity of VCS, 3
--interactive option
for git add command, 52
for git commit command, 52
interactive hunk staging, 350-360
interactive rebase, with dirty working directory,
367-368
internal design, of VCS, 4
Internet for backup, 250
interrupted work flow, 181
inverse of commit, applying, 163

J

JavaScript Object Notation (JSON) format,
410

JavaServer Pages (JSPs), 403

Jekyll, 403

K

KDE (K Desktop Environment) project, 297
kernel development cycle, 246
Kuivinen, Fredrik, 144

L

LDAP (Lightweight Directory Access Protocol),
414

left (<), for git log --left-right display, 133

--left-right option, for git log command, 132,
133

libcurl library, 12

library, shared, 296

lieutenant and commander model for GitHub
development, 413

Lightweight Directory Access Protocol (LDAP),
414
lightweight tag types, 46
line wrap, avoiding when emailing patches,
275
linearization of commits, 273
Linux binary distributions, installing Git with,
9
Linux Foundation Publications, 246
Linux Kernel project, as repository example,
246-247
local respository, 198
remote-tracking branches, 199
local-tracking branch, 196, 199
comparing with remote, 230
creating, 229
name for, 228
Location directive for repository, 241
LocationMatch directive, for anonymous read
access, 241
locking model, 4
log (see git log command)
log message
for Git commit, 23
for saving stash, 182
lost commit, reconnecting, 365
lost data, git fsck to help locate, 361-365
Is-files (see git Is-files command)
Is-remote (see git Is-remote command)

M

-m option, for git checkout command, 137
--M option, for git diff command, 111
mail transfer agents (MTA), 275
mail user agent (MUA), 273, 275
mailing patches, 273-276
maintainer, 245, 246, 251
interaction with developer, 252
make command, for Git install, 12-13
Makefile, 381-382
NO_EXPAT option, 12
Massey, Bart, 381
master branch in repository, 90
determining commit to reset, 159
Maven Multimodule Projects, 315
mbox style mail folder, git format-patch
command for creating, 274
Mercurial, 5
merge, 92, 121-149, 416

Index | 427

(see also git merge command)
aborting or restarting, 137
automating solution process, 382
of branches, 4, 122-124
changes into different branch, 99-101
criss-cross, 139, 142, 144
dcommit and, 333
example, 121-128
and Git object model, 146
preparing for, 122
rebasing branch with, 176
specialty, 143
strategies, 137—140
applying, 144-145
degenerate merges, 140-141
multiple branches, 137-140
normal merges, 142-143
vs. git rebase command, 174-179
vs. patches, 283
merge commit
checking that no files were changed, 301
in commit graph, 77, 78
viewing, 136
merge conflicts, 124-128
git diff for investigating, 126
in remote repository development, 223
resolution, 128-137
finishing up, 135-136
inspecting conflicts, 129-133
locating conflicted files, 129
resolving in three-way merge, 281
merge drivers, 145
merge marker lines, 129
merged history, pushing for remote repository,
223
MERGE_HEAD, 69
meta-information on commit, editing, 167
metadata, for SVN conversion, 372
minus sign (-)
in diff, 107, 131
in git show-branch output, 95
and location for split operation, 354
minus signs (---), in diff, 107
--mirror origin option, for git push command,
243
modularization, submodules for, 315
mod_alias module (Apache), 240
mod_cgi module (Apache), 240
mod_env module (Apache), 240

Monotone, 5

--more option, for git show-branch command,
96

moved files, following, 380-381

moving files, 56

Mozilla’s Act control, 405

msg-filter, 338

msgfmt utility, 12

msysGit, 13

installing, 15-16

MTA (mail transfer agents), 275

MUA (mail user agent), 273, 275

mutt, mailbox importing, 274

N

names
of bare repositories, 205
of branches, 90-91
converting detached HEAD to, 102-103
listing, 94
upstream, 375
configuring for Git, 24
content-addressable, 33
for local-tracking branch, 228
of hook scripts, 287
of remote repository, changing, 225
.NET space, Assemblies, 315
netdev repository, 259
network access, providing, 237
Network File System (NFS), 200
news feed, on GitHub, 392
--no-ff option, for git merge command, 333
--no-verify option, for git commit command,
289
non-fast-forward pushes, 219-221
nontracking branch, 199
nonzero status, for pre-action hook, 285
notifications, in GitHub, 398

0

.o files, ignoring, 59

object ID, 33

object model, 60-62
merge and, 146

object store, 32
file contents entry in, 40
index snapshot in, 65
pictures, 36

428 | Index

Download from Wow! eBook <www.wowebook.com>

Objective-C ecosystem, submodules, 315
objects, unreachable, 369
Octopress, 403
octopus strategy for merge, 142
octothorp (#)
for comments, 127
in .gitmore file, 59
oh-my-zsh, 319
--onto option, for git rebase command, 169,
248
open source libraries, finding and using, 401
open source, social coding on, 390
open sourcing, eventual, 411
openssl library, 12
operating system, xi
options for Git, listing, 19
origin remote, 206-208
origin, for clone, 198
origin/HEAD ref, 211
ORIG_HEAD, 69
--ours option, for git diff command, 131
ours strategy merges, 143

P
-p option
for git add command, 351, 354
for git cat-file command, 46
for git log command, 73, 132, 133
Pacific Northwest-based operating system, 29
pack files, 33, 36
packages for Git install, 9
verifying up-to-date, 11
Packard, Keith, 247
parent commits, 70, 136
parent repository, 251
parent-filter, 338
partial checkouts, 296-297
partial open source model for GitHub
development, 414
password, for remote hosting machine, 237
patch command, 276
patch-related hooks, 291-292
patches, 263-284
applying, 276-284
bad, 283
commands for exchange, 263
generating, 265273
guidelines for, 350
mailing, 273-276

reasons for use, 264265
and topological sorts, 272-273
verifying set of commits for, 270
vs. merges, 283
path limiting, git diff command with, 117-119
pathname, vs. content, 35
patterns, .gitignore and filenames, 58
peer repository, 251
peer review, “patch email review apply”
paradigm for, 264
peer-to-peer backup, 250
peer-to-peer repository model , 5, 232, 244,
256,263
performance
hook impact, 286
of VCS, 2
period (see . (dot))
periods (...), symmetric difference, 82, 117,
230
personal account in GitHub, 387
PHP: Hypertext Preprocessor (PHP), 403
physical data layout, in Git, 35
pickaxe, 88
plug-ins, submodules for, 319
plus sign (+)
in diff, 107, 131
in git show-branch output, 95
in refspec, 202
and location for split operation, 354
when viewing commit differences, 26
plus signs (+++), in diff, 107
ports, default
for Git, 202
for inetd service, 238
post hook, 285
post-applypatch hook, 292
post-checkout hook, 287, 294
post-commit hook, 291
post-merge hook, 294
post-receive hook, 293
post-update hook, 286, 293
post-update script, 240
pound sign (#)
for comments, 127
in .gitmore file, 59
PowerPC architecture, 257
pre hook, 285
pre-applypatch hook, 292
pre-auto-gc hook, 294

Index | 429

pre-commit hook, 286, 290
creating, 289
pre-rebase command, 294
pre-receive hook, 293
prepare-commit-msg hook, 291
--preserve-merges option, for git rebase
command, 178
--pretty=oneline option, for git log command,
124,187,323
--pretty=short option, for git log command, 73
printing
changes from commit, 73
error messages from “pre” script, 290
SHAI hash, 51
projects
archive on GitHub, 408
combining, 295-311
forking, 259-261
guidelines for, 350
importing code into, 297-305
public code, repositories for, 385-387
public history, changing, 248
publishing branches, 92
publishing repositories, 196, 236-243
advice, 243-244
with anonymous read access, 238-241
with controlled access, 236-243
with Git and HTTP daemons, 241
with GitHub, 242-243
separation of commit and, 249
with Smart HTTP, 240-241
"pull into a dirty tree" scenario, 185 (see git pull
command)
pull requests, 261
GitHub
creating, 394-395
managing, 396-398
push operation
for local contents to GitHub, 389
non-fast-forward, 219-221
push-related hooks, 292-293

Q

querying state of index, 48
quotes ("), for ref as single word, 193

R

-r option, for Unix diff, 108

RCS (Revision Control System), 5
Reachability
in garbage collection, 369
in graphs, 79
read-only address, cloned submodules with,
316-317
README seeding for GitHub repository, 388
--rebase option, for git pull command, 375
rebase conflicts, automating solution process,
382
--rebase option, for git pull command, 185
rebase-apply directory, 279
rebasing, 149, 416
(see also git rebase command)
branches, hook for, 294
commits, 167-179
reconnecting, lost commit, 365
recovering
deleted branch, 105
lost commits, 360-365
--recurse-submodules option for commands,
319
for git, 318
recursive strategy for merge, 142, 144
referencing repositories, 200-204
reflog, 189-193, 416
(see also git reflog command)
adjusting default timeouts for expiration,
371
eliminating, 363
entry removal, 370
refs, 68-69
date-based qualifiers for, 192
record of changes, 189
tool for understanding, 192
updating and deleting, 380
refs/remotes/namespace, 199
refs/stash ref, 182
refspecs, 200, 202-204
pushes using, 231
relative names, for identifying commits, 69—71
remote (see git remote command)
remote repositories, 195-233
adding and deleting branches, 231-232
configuration, 223-226
using git config, 225
with git remote command, 224-225
with manual editing, 226
deleted branches, 225

430 | Index

development cycle, 217-223
alternate histories, 218-219
cloning repository, 217-218
fetching alternate history, 221
merge conflicts, 223
merging histories, 222
non-fast-forward pushes, 219-221
pushing merged history, 223
example using, 204-217
link between current repository and, 207
listing references in, 203
multiple, 226
pushing changes, 209-210
viewing branch information, 210
remote-tracking branches, 196, 197, 199, 208,
227
comparing with local, 230
including in branch listing, 94
remotes, 195, 198-199
removing
example hooks, 288
files from repositories, 26-27
renaming files, 27, 56
tracking, 57-58
repositories, 4, 31-32, 195
(see also remote repositories)
adding file, 22-23
advertising availability, 239
with anonymous write access, 242
asymmetric relationship between, 207
authoritative, adding new developer, 210—
212
clones and, 207
commit for introducing changes, 65
creating, 288
authoritative, 205-208
in GitHub, 388-389
initial, 21-22
development work, 208-209
for public code, 385-387
getting updates, 212-217
git-grep command for searching, 378-380
listing branch names in, 94
listing references in, 203
maintaining SVN and Git in parallel, 372
making copy, 27-28
multi-level nesting, 319-320
package for sharing, 10
private, locations for, 255

publishing, 236-243
advice, 243-244
with anonymous read access, 238-241
with controlled access, 236-238
with GitHub, 242-243
with HTTP daemon, 240
with Smart HTTP, 240-241
quick overview of changes, 376-377
receivepack option, 242
referencing, 200-204
removing files, 26-27, 54-57
in SCCS, 4
setting up, 112
sharing, 331-332
splitting, 370-371
structure, 244-247
distributed, 244-245
examples, 246-247
shared, 244
tree object representing, 75
using multiple upstream, 257-259
working with multiple, 254-261
rerere feature, 382
reset (see git reset command)
resolve strategy for merge, 142, 144
REST API, 410411
restarting merges, 137
retrieving old version of file, 348-350
rev-list (see git rev-list command)
Revision Control System (RCS), 5
RFC 1738, 200
RFC 2396, 200
right (>), for git log --left-right display, 133
Rochkind, M.]., 4
role duality, 253-254
root permissions, commands requiring, xiv
Rsync protocol, 202

S

.sample suffix, for executable hook names,
288
saved contexts, git stash list command to list
stack, 183-184
saving stash, log message for, 182
scaling for handling many developers, 2
SCCS (Source Code Control System), 4
scripts
checking out subprojects with, 304-305
making your own, 376

Index | 431

searching
for file version from commit, 349
repositories, git-grep command for, 378—
380
Secure Shell (SSH) commands, in mysysGit,
15
sed command, 343-344
servers, 235-236
Git commands and, 323
SHA1 (Secure Hash Function), 3, 33
and comparing index, 65
computing and printing hash, 51
Git use of, 42-43
shortening number, 67
uniqueness of hash, 40
shallow clone, of single SVN branch, 321-324
shared library, 296
shared repository structure, 244
sharing repositories, package for, 10
shell environment settings, creating or altering,
338
shell globbing characters, 59
show-branch (see git show-branch command)
Simple Mail Transfer Protocol (SMTP), 263,
274
--since= option, for git whatchanged command,
376
--skip option, for git rebase command, 170
slash character (/), trailing, for directory name,
59,91, 307
Smart HTTP, publishing repositories with,
240-241
SMTP (Simple Mail Transfer Protocol), 263,
274
snapshot of index, 65
social coding, 385
on closed source, 411
on open source, 390
sorts, topological, and patches, 272-273
source code manager (SCM), 1
(see also version control system (VCS))
source release, 11
SparkleShare, 385
specialty merges, 143
splitting hunk, 354
splitting, repositories, 370-371
square brackets ([]), in git show-branch output,
95
squash commit, 147

squash merges, 147-149
SSH (Secure Shell)
commands in mysysGit, 15
Git native protocol tunneling over, 201
repository access by, 237
staging
changes in index, 33
files, 22
git add command for, 50-56
git diff command for, 111
interactive hunk, 350-360
stash, 181-189, 416
(see also git stash command)
reconstituting state, 188
recreating context saved in state, 183—184
--stat option, 111
for git diff command, 111, 117, 118
for git log command, 74
for git stash show command, 184
statistics, about difference, 111
subcommands in Git, listing, 19
subdirectory-filter, 339
subfolders, translation and extraction to
submodule, 316
submodules, 295, 416
(see also git submodule command)
best practices, 313-320
cloned as read-only address, 316-317
commands, 314-315
credential reuse, 318
hashes of commits, 317
for modularization, 315
preparation, 315-316
support for, 320
use cases, 318-319
subprojects
checking out, with custom scripts, 304—
305
importing
by copying, 299
with git pull -s subtree, 299-303
submitting changes upstream, 303
subtree strategy, 143
Subversion bridge, 407
Subversion repositories, Git use with, 321—
335
sudo operation, xiv
svn (see git svn command)
SVN (Subversion)

432 | Index

conversion tips, 372-374
making your own Git command, 376
removing SVN commit IDs, 373
removing trunk after SVN import, 372
fetching before committing, 325-326
Git interoperability with, 13
making source code changes in Git, 324—
325
manipulating branches from 2 repositories,
374
merging back into, 332-334
repository clone, 321
revision information, 22
revisions tracking, 119
svn:ignore vs. .gitignore, 334
tracking file renames, 57
svn mv command, 57
svn:ignore, .gitignore file vs., 334
symbolic names, for commits, 191
symbolic references (symref), 68—69
symmetric difference, 82
.syn directory, 323
--system option, 28

T

tag objects, 32, 46
name for tracking count, 92
vs. branches, 90
tag-name-filter, 339
tarball, importing, 299
Teams, on GitHub, 409
template hooks, 287
text merge driver, 146
--theirs option, for git diff command, 131
three-way merge, 142, 280-282
Tichy, Walter F., 5
tilde (~), 69-71
time stamps
in commit graph, 76
of commits, 249
tip of branch, 92
record of changes to, 189
top-level directory, removing after SVN import,
372
topic branch, 90, 199
topmost commit
changing, 165-167
git reset to eliminate, 155—-156
topological sorts, and patches, 272-273

Torvalds, Linus, 48, 246, 250, 295, 306
and forking, 261
tracked file, 48
git add command for, 51
tracking branches, 90, 199-200, 227-229
tracking, file renames, 57-58
tree objects, 32, 36, 41
comparison in git diff command, 109
creating from current index, 41
hierarchies, 43—44
links from, 306
representing repository, 75
tree-filter, 338
trust, of VCS, 3

U

-u option
for git Is-files command, 129
for git push command, 243
Ubuntu Linux environment, xi
installing Git, 9-10
uncommitted changes, checking out and, 98—
99
unified diff, 107
Uniform Resource Locators (URLs), Git
support of, 200
union merge driver, 146
Unix diff, 108
unreachable objects, 361, 369
--unset option, 30
unstaging files, 155
untracked file, 49
update hook, 286, 293
updates to repository, getting, 212-217
Updating origin phrase, 208
updating refs, 380
upstream branch, renaming, 375
upstream consumer, 253
upstream flows, 251
upstream producer/publisher, 254
upstream rebase, recovery from, 374-375
upstream repository, 198
converting to different, 256-257
mechanisms for transferrring commits, 253—
254
submitting subproject changes, 303
using multiple, 257-259
user identification, SVN vs. Git, 323
utility libraries, 295

Index | 433

)

variables in configuration files, listing settings
of all, 29
--version option, for git command, 20
version control system (VCS), 1
desired features, 2—4
distributed, 121
precedents, 4-5
versions of file, comparing different, 134-135,
134
viewing
branches, 94-96
commit differences, 26
commits, 25-26
merge commit, 136
old commits, 72-74

]

Wall, Larry, 276
watchers, in GitHub, 391
wikis, GitHub, 402
Windows, installing Git on, 13-16
WIP (work in progress), 182
stash for capturing, 181
working directory, 22, 60, 323
bare clone and, 206
differences between index and, 109
dirty, 122
interactive rebase with, 367-368
removing file from, 54-57
restoring to state prior to starting merge,
137
untracked files and directories, 98
working tree files, impact of selecting new
current branch, 97

X

X.org project, 247
xinetd service, 239

Y

yum command (Fedora), 10

z
ZIP file, importing, 299
zlib library, 12

434 | Index

Download from Wow! eBook <www.wowebook.com>

About the Authors

Jon Loeliger is a freelance software engineer who contributes to Open Source projects
such as Linux, U-Boot, and Git. He has given tutorial presentations on Git at many
conferences, including Linux World, and has written several papers on Git for Linux
Magazine. In prior lives, Jon has spent a number of years developing highly optimizing
compilers, router protocols, Linux porting, and the occasional game. Jon holds degrees
in computer science from Purdue University. In his spare time, he is a home winemaker.

Matthew McCullough, Vice President of Training for GitHub.com, is an energetic 15-
year veteran of enterprise software development, a world-traveling open source edu-
cator, and co-founder of a US consultancy. All of these activities provide him avenues
of sharing success stories of leveraging Git and GitHub. Matthew is a contributing
author to the Gradle and Jenkins O'Reilly books and creator of the Git Master Class
series for O'Reilly. Matthew regularly speaks on the No Fluff Just Stuff conference tour,
is the author of the DZone Git RefCard, and is president of the Denver Open Source
Users Group.

Colophon

The animal on the cover of Version Control with Git is a long-eared bat. It is a fairly
large bat that is common and widespread throughout Great Britain and Ireland. It can
also be found in Japan. Often seen in colonies of 50 to a 100 or more, it lives in open
woodlands, as well as parks and gardens and in spaces under houses and church roofs.
It also hibernates in caves, where it is more solitary in habit.

The long-eared bat is a medium-size bat with a broad wingspan of about 25 cm. Its ears
are very long and have a very distinctive fold—their inner edges meet each other on the
top of the head, and their outer edges end just behind the angle of the mouth. When
the bat sleeps, it folds its ears under its wings. During flight, the ears are pointing
forward. Its fur is long, fluffy, and silky, extending a short way onto the surface of its
wings. It is dusky brown in color on top and light or dirty brown in color below.
Juveniles are pale grey, lacking the brown tinges of the adults. Their diet consists of
flies, moths, and beetles. It glides among foliage, frequently hovering to scour for in-
sects. When traveling to another tree, its flight is swift, strong, and close to the ground.

Long-eared bats breed in autumn and spring. Pregnant females form nursery colonies
of 100 or more in early summer, and the single young or twins are born in June and
July. Bats are the only true flying mammals. Contrary to popular misconception, they
are not blind—many can actually see very well. All British bats use echolocation to
orient themselves at night; they emit bursts of sound that are of such high frequencies
they are beyond the human range of hearing and are therefore called “ultrasound.” The
bats then listen to and interpret the echoes bounced back from objects around them
(including prey), which allows them to build a “sound-picture” of their surroundings.

http://www.GitHub.com

Like all bats, this species is vulnerable to a number of threats, including the loss of roost
sites, as hollow trees are often cut down if thought unsafe. Pesticide use has devastating
effects, causing severe declines in insect abundance and contaminating food with
potentially fatal toxins. Insecticides applied to timbers inside buildings where roosts
occur are a particular danger—the initial treatment can wipe out whole colonies
(spraying timber where bats are roosting is now illegal), but the effects of these chem-
icals can be lethal to bats for up to 20 years. In Britain, under the Wildlife and Coun-
tryside Act, it is illegal to intentionally kill, injure, take, or sell a bat; to possess a live
bat or part of a bat; and to intentionally, recklessly damage, obstruct, or destroy access
to bat roosts. Under the conservation regulations, it is an offense to damage or destroy
breeding sites or resting places. Offenders can be charged up to 5,000 pounds per bat
affected and be sentenced to six months imprisonment.

The cover image is from Lydekker’s. The cover font is Adobe ITC Garamond. The text
fontis Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font
is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Audience
	Assumed Framework
	Book Layout and Omissions
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Attributions

	Chapter 1. Introduction
	Background
	The Birth of Git
	Precedents
	Timeline
	What’s in a Name?

	Chapter 2. Installing Git
	Using Linux Binary Distributions
	Debian/Ubuntu
	Other Binary Distributions

	Obtaining a Source Release
	Building and Installing
	Installing Git on Windows
	Installing the Cygwin Git Package
	Installing Standalone Git (msysGit)

	Chapter 3. Getting Started
	The Git Command Line
	Quick Introduction to Using Git
	Creating an Initial Repository
	Adding a File to Your Repository
	Configuring the Commit Author
	Making Another Commit
	Viewing Your Commits
	Viewing Commit Differences
	Removing and Renaming Files in Your Repository
	Making a Copy of Your Repository

	Configuration Files
	Configuring an Alias

	Inquiry

	Chapter 4. Basic Git Concepts
	Basic Concepts
	Repositories
	Git Object Types
	Index
	Content-Addressable Names
	Git Tracks Content
	Pathname Versus Content
	Pack Files

	Object Store Pictures
	Git Concepts at Work
	Inside the .git Directory
	Objects, Hashes, and Blobs
	Files and Trees
	A Note on Git’s Use of SHA1
	Tree Hierarchies
	Commits
	Tags

	Chapter 5. File Management and the Index
	It’s All About the Index
	File Classifications in Git
	Using git add
	Some Notes on Using git commit
	Using git commit --all
	Writing Commit Log Messages

	Using git rm
	Using git mv
	A Note on Tracking Renames
	The .gitignore File
	A Detailed View of Git’s Object Model and Files

	Chapter 6. Commits
	Atomic Changesets
	Identifying Commits
	Absolute Commit Names
	refs and symrefs
	Relative Commit Names

	Commit History
	Viewing Old Commits
	Commit Graphs
	Using gitk to View the Commit Graph

	Commit Ranges

	Finding Commits
	Using git bisect
	Using git blame
	Using Pickaxe

	Chapter 7. Branches
	Reasons for Using Branches
	Branch Names
	Dos and Don’ts in Branch Names

	Using Branches
	Creating Branches
	Listing Branch Names
	Viewing Branches
	Checking out Branches
	A Basic Example of Checking out a Branch
	Checking out When You Have Uncommitted Changes
	Merging Changes into a Different Branch
	Creating and Checking out a New Branch
	Detached HEAD Branches

	Deleting Branches

	Chapter 8. Diffs
	Forms of the git diff Command
	Simple git diff Example
	git diff and Commit Ranges
	git diff with Path Limiting
	Comparing How Subversion and Git Derive diffs

	Chapter 9. Merges
	Merge Examples
	Preparing for a Merge
	Merging Two Branches
	A Merge with a Conflict

	Working with Merge Conflicts
	Locating Conflicted Files
	Inspecting Conflicts
	git diff with conflicts
	git log with conflicts

	How Git Keeps Track of Conflicts
	Finishing Up a Conflict Resolution
	Aborting or Restarting a Merge

	Merge Strategies
	Degenerate Merges
	Normal Merges
	Recursive merges
	Octopus merges

	Specialty Merges
	Applying Merge Strategies
	Merge Drivers

	How Git Thinks About Merges
	Merges and Git’s Object Model
	Squash Merges
	Why Not Just Merge Each Change One by One?

	Chapter 10. Altering Commits
	Caution About Altering History
	Using git reset
	Using git cherry-pick
	Using git revert
	reset, revert, and checkout
	Changing the Top Commit
	Rebasing Commits
	Using git rebase -i
	rebase Versus merge

	Chapter 11. The Stash and the Reflog
	The Stash
	The Reflog

	Chapter 12. Remote Repositories
	Repository Concepts
	Bare and Development Repositories
	Repository Clones
	Remotes
	Tracking Branches

	Referencing Other Repositories
	Referring to Remote Repositories
	The refspec

	Example Using Remote Repositories
	Creating an Authoritative Repository
	Make Your Own Origin Remote
	Developing in Your Repository
	Pushing Your Changes
	Adding a New Developer
	Getting Repository Updates
	The fetch step
	The merge or rebase step
	Should you merge or rebase?

	Remote Repository Development Cycle in Pictures
	Cloning a Repository
	Alternate Histories
	Non–Fast-Forward Pushes
	Fetching the Alternate History
	Merging Histories
	Merge Conflicts
	Pushing a Merged History

	Remote Configuration
	Using git remote
	Using git config
	Using Manual Editing

	Working with Tracking Branches
	Creating Tracking Branches
	Ahead and Behind

	Adding and Deleting Remote Branches
	Bare Repositories and git push

	Chapter 13. Repository Management
	A Word About Servers
	Publishing Repositories
	Repositories with Controlled Access
	Repositories with Anonymous Read Access
	Publishing repositories using git-daemon
	Publishing repositories using an HTTP daemon
	Publishing a repository using Smart HTTP
	Publishing via Git and HTTP daemons

	Repositories with Anonymous Write Access
	Publishing Your Repository to GitHub

	Repository Publishing Advice
	Repository Structure
	The Shared Repository Structure
	Distributed Repository Structure
	Repository Structure Examples

	Living with Distributed Development
	Changing Public History
	Separate Commit and Publish Steps
	No One True History

	Knowing Your Place
	Upstream and Downstream Flows
	The Maintainer and Developer Roles
	Maintainer–Developer Interaction
	Role Duality

	Working with Multiple Repositories
	Your Own Workspace
	Where to Start Your Repository
	Converting to a Different Upstream Repository
	Using Multiple Upstream Repositories
	Forking Projects
	Isn’t forking a project bad?
	Reconciling forks
	Forking projects at GitHub

	Chapter 14. Patches
	Why Use Patches?
	Generating Patches
	Patches and Topological Sorts

	Mailing Patches
	Applying Patches
	Bad Patches
	Patching Versus Merging

	Chapter 15. Hooks
	Installing Hooks
	Example Hooks
	Creating Your First Hook

	Available Hooks
	Commit-Related Hooks
	Patch-Related Hooks
	Push-Related Hooks
	Other Local Repository Hooks

	Chapter 16. Combining Projects
	The Old Solution: Partial Checkouts
	The Obvious Solution: Import the Code into Your Project
	Importing Subprojects by Copying
	Importing Subprojects with git pull -s subtree
	Submitting Your Changes Upstream

	The Automated Solution: Checking out Subprojects Using Custom Scripts
	The Native Solution: gitlinks and git submodule
	Gitlinks
	The git submodule Command

	Chapter 17. Submodule Best Practices
	Submodule Commands
	Why Submodules?
	Submodules Preparation
	Why Read Only?
	Why Not Read Only?
	Examining the Hashes of Submodule Commits
	Credential Reuse
	Use Cases
	Multilevel Nesting of Repos
	Submodules on the Horizon

	Chapter 18. Using Git with Subversion Repositories
	Example: A Shallow Clone of a Single Branch
	Making Your Changes in Git
	Fetching Before Committing
	Committing Through git svn rebase

	Pushing, Pulling, Branching, and Merging with git svn
	Keeping Your Commit IDs Straight
	Cloning All the Branches
	Sharing Your Repository
	Merging Back into Subversion
	How dcommit handles merges

	Miscellaneous Notes on Working with Subversion
	svn:ignore Versus .gitignore
	Reconstructing the git-svn Cache

	Chapter 19. Advanced Manipulations
	Using git filter-branch
	Examples Using git filter-branch
	Using git filter-branch to expunge a file
	Using filter-branch to edit a commit message

	filter-branch Pitfalls

	How I Learned to Love git rev-list
	Date-Based Checkout
	Date-based checkout cautions

	Retrieve Old Version of a File

	Interactive Hunk Staging
	Recovering a Lost Commit
	The git fsck Command
	Reconnecting a Lost Commit

	Chapter 20. Tips, Tricks, and Techniques
	Interactive Rebase with a Dirty Working Directory
	Remove Left-Over Editor Files
	Garbage Collection
	Split a Repository
	Tips for Recovering Commits
	Subversion Conversion Tips
	General Advice
	Remove a Trunk After an SVN Import
	Removing SVN Commit IDs

	Manipulating Branches from Two Repositories
	Recovering from an Upstream Rebase
	Make Your Own Git Command
	Quick Overview of Changes
	Cleaning Up
	Using git-grep to Search a Repository
	Updating and Deleting refs
	Following Files that Moved
	Keep, But Don’t Track, This File
	Have You Been Here Before?

	Chapter 21. Git and GitHub
	Repo for Public Code
	Creating a GitHub Repository
	Social Coding on Open Source
	Watchers
	News Feed
	Forks
	Creating Pull Requests
	Managing Pull Requests
	Notifications
	Finding Users, Projects, and Code
	Wikis
	GitHub Pages (Git for Websites)
	In-Page Code Editor
	Subversion Bridge
	Tags Automatically Becoming Archives
	Organizations
	REST API
	Social Coding on Closed Source
	Eventual Open Sourcing
	Coding Models
	GitHub Enterprise
	GitHub in Sum

	Index

